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Abstract

Retail operations have experienced a transformational change in the past decade with the advent
and adoption of data-driven approaches to drive decision making. Granular data collection has
enabled firms to make personalized decisions that improve customer experience and maintain
long-term engagement. In this thesis we discuss important problems that retailers face in
practice, before, while and after a product is introduced in the market.

In Chapter 2, we consider the problem of estimating sales for a new product before retailers
release the product to the customer. We introduce a joint clustering and regression method
that jointly clusters existing products based on their features as well as their sales patterns
while estimating their demand. Further, we use this information to predict demand for new
products. Analytically, we show an out-of-sample prediction error bound. Numerically, we
perform an extensive study on real world data sets from Johnson & Johnson and a large fashion
retailer and find that the proposed method outperforms state-of-the-art prediction methods and
improves the WMAPE forecasting metric between 5%-15%.

Even after the product is released in the market, a customer’s decision of purchasing the
product depends on the right recommendation personalized for her. In Chapter 3, we consider
the problem of personalized product recommendations when customer preferences are unknown
and the retailer risks losing customers because of irrelevant recommendations. We present
empirical evidence of customer disengagement through real-world data. We formulate this
problem as a user preference learning problem. We show that customer disengagement can
cause almost all state-of-the-art learning algorithms to fail in this setting. We propose modifying
bandit learning strategies by constraining the action space upfront using an integer optimization
model. We prove that this modification can keep significantly more customers engaged on
the platform. Numerical experiments demonstrate that our algorithm can improve customer
engagement with the platform by up to 80%.

Another important decision a retailer needs to make for a new product, is its pricing. In
Chapter 4, we consider the dynamic pricing problem of a retailer who does not have any infor-
mation on the underlying demand for the product. An important feature we incorporate is the
fact that the retailer also seeks to reduce the amount of price experimentation. We consider
the pricing problem when demand is non-parametric and construct a pricing algorithm that
uses piecewise linear approximations of the unknown demand function and establish when the
proposed policy achieves a near-optimal rate of regret (Õ)(

√
T ), while making O(log log T ) price

changes. Our algorithm allows for a considerable reduction in price changes from the previously
known O(log T ) rate of price change guarantee found in the literature.

Finally, once a purchase is made, a customer’s decision to return to the same retailer depends
on the product return polices and after-sales services of the retailer. As a result, in Chapter
5, we focus on the problem of reducing product returns. Closely working with one of India’s
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largest online fashion retailers, we focus on identifying the effect of delivery gaps (total time
that customers have to wait for the product they ordered to arrive) and customer promise
dates on product returns. We perform an extensive empirical analysis and run a large scale
Randomized Control Trial (RCT) to estimate these effects. Based on the insights from this
empirical analysis, we then develop an integer optimization model to optimize delivery speed
targets.

Thesis Supervisor: Georgia Perakis
Title: William F. Pounds Professor of Management Science
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Chapter 1

Introduction

1.1 Motivation

Operations management has undergone a paradigm shift in the last decade due to the emergence

of new data driven tools and practices to guide decision making. Granular data collection com-

bined with increased computational power has ushered an era where anything and everything

is recorded. A Forbes report from 2018 states that more than 90% of all data was generated

the previous two years. This paradigm shift has also led to a real need to look at classical

operations management problems through a data-driven lens, in order to make sure they con-

nect well with current practice. As a result, in this thesis we consider various decision problems

related to retail management, and propose novel methods that are both practically relevant and

theoretically strong.

To motivate the different decision problems considered in this thesis, we take a holistic view

of retail management in both the online and the offline setting. Retail operations for products

involve decision that are made prior to the launch of the product, decisions that are made when

the product is on the market and finally decisions that are made after the product is sold to

the customers.

Pre-launch decision involve deciding whether to release a new product, how much inventory

to produce, amongst many other decisions. Demand predictions play a central role in guiding all

these decisions. But predicting demand for new products remains one of the most challenging

problems. Each year, firms spend billions of dollars on new product launches but with little

success (Willemot et al. 2015). In fact a recent survey states that more than 72% of all new

products launched in the market do not meet their revenue targets. This leads to considerable
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bottom line losses for retailers. Hence, the first problem that we consider is that of predicting

sales for a new product. While accurate sales forecasts are instrumental for various operational

decisions, current practice has considerable difficulties in predicting the success of a new product.

Standard forecasting models rely on using past sales data, but new product sales forecasting

happens far in advance without any availability of sales history. This results in firms investing

in costly and time consuming quantitative methods such as surveys and expert opinions (Kahn

2002). Nevertheless, the use of analytics for predicting sales remains limited and as much as

80% of companies that use analytics are not satisfied with their approach (Cecere 2013, Kahn

2014).

Similarly, once the product is launched on the market, its eventual success is determined

based on whether it is recommended to the the right set of customers. But with an explosion

in product variety and considerable heterogeneity in customer taste, making relevant recom-

mendations remains a challenging problem. Popular techniques use prior data on customer

preferences to personalize recommendations but since there is no data for new customers, mak-

ing personalized recommendations becomes complex. To solve this, current practice involves

recommending different products to estimate individual customer preferences. But oftentimes,

this experimentation leads to customer disengagement, on account of poor recommendations.

In fact, a recent survey indicated that as much as 80% of the customers opt out of marketing

emails because of irrelevant recommendations.

Even if the customer is recommended the products that are relevant for her, the eventual

purchase decision depends on whether it is appropriately priced. Naturally, pricing decisions

play an important role in ensuring a product’s success (Huang et al. 2007). Since there is no

sales data to estimate price elasticity, dynamic pricing is used to experiment with prices and

estimate demand. Nevertheless, many practical constraints make the problem challenging. For

example, traditional learning policies involve frequent price experimentation which is infeasible

in many retail settings because of the negative effects of frequent price changes (Netessine 2006,

PK Kannan 2001). Hence retailers often resort to pre-decided pricing policies and risk loosing

considerable revenues due to poor pricing decisions (Carmichael 2014).

Finally, long-term engagement with customers is very important for retailers. And whether

a customer will return to the same retailer depends on after-sales services such as delivery speed

and product return polices. In fact, returns remains one of the largest problems in retail. Return

rates in online retail can be as high as 30% of the total orders. Hence, the problem of returns
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has been rightly referred to as a “ticking time bomb” estimated to be as much as $ 260 Billion

per year (Reagan 2016). In summary, the thesis aims to develop tools and techniques that can

be used to solve the aforementioned problems of practical relevance.

In summary, there are many challenges in using analytics for decision making in retail

management.

1.2 Contributions

The main contribution of this thesis is in developing analytical tools and methods for practical

problems in revenue management through close collaboration with industry practitioners.

From a practical stand point, the work in this thesis is an outcome of close collaboration

with industry partners. This close collaboration has ensured that the solutions we develop

remain practically relevant. This is particularly important, in light of previously cited reports

that discuss how very few retailers have adopted analytical tools for driving decisions. For

example, the second chapter discusses the creation of an excel tool, developed in collaboration

with Johnson & Johnson, that can be used by managers to forecast sales for new products using

sales data from comparable products. The third chapter is devoted to developing a practical

recommendations method whose performance is tested on real world movieLens data. Simi-

larly the fourth chapter discusses a pricing algorithm that ensures that the practical business

constraint of very limited price changes is satisfied. Finally the fifth chapter discusses a Ran-

domized Control Trial that was run in collaboration with one of the largest e-fashion retailers in

India to understand the causes of product returns and to reduce them. In summary, the thesis

contributes by developing practical solutions to important problems in retail management.

From a methodological stand-point, the thesis contributes in two main ways. First, we de-

velop new algorithms with provable analytical guarantees for problems in sequential-decision

making related to online and offline retail. Second, we introduce and analyze novel applications

of classical problems that are relevant due to the recent advances in personalized data gener-

ation and collection. For example, the second chapter on demand estimation introduces new

machine learning and optimization methods in order to develop a demand estimation method

with provable out-of-sample prediction analytical guarantees. The third and the fourth chapter

develop Bandit learning algorithms in order to learn the demand for new products with prov-

able regret guarantees. Finally, the last chapter focuses on using an empirical analysis combined

20



CHAPTER 1. INTRODUCTION

with optimization techniques to develop practical insights into the problem of product returns.

The underlying theme in each case is to develop tractable methods that can enable retailers to

leverage existing data to solve problems when there is little data to drive “good” decisions. We

discuss the contributions of each of the chapters in more detail next.

Chapter 2 investigates how to forecast sales of new products when there is no prior data

to estimate the demand for the product. Collaborating with Johnson & Johnson as well as

a large fashion retailer, we find that these estimates are crucial for many decisions including

those related to production, pricing and logistics among others. Yet, the problem of predicting

sales for new products is complex since no prior sales data is available to fit prediction models.

Hence, we devise a joint clustering and regression method that jointly clusters existing products

based on their features as well as sales patterns while estimating their demand. Intuitively, this

approach uses data from comparable past products to estimate the demand of the new product.

Analytically, we prove in-sample and out-of-sample prediction error guarantees in the LASSO

regularized linear regression case to account for over-fitting due to high dimensional data. We

show that as the size of the training data from comparable products increases, the prediction

error of the new product decreases. Numerically we perform an extensive comparative study

on real world data sets from Johnson & Johnson and a large fast fashion retailer. We show

that the proposed algorithm outperforms state-of-the-art prediction methods and improves the

WMAPE forecasting metric between 5%-15%. Furthermore, since the proposed method is

inspired from the intuition of our practitioner collaborators, the method is more interpretable.

We also provided a data-driven tool for forecasting sales that can guide practitioners in other

operational decisions.

Chapter 3 considers the problem of personalized recommendations, another important lever

that retailers and service providers use in order to increase demand. This problem becomes

particularly relevant in the current era where recommendations are omnipresent: from personal

emails to social media and news feeds. We study the problem of personalized product rec-

ommendations when customer preferences are unknown and the retailer risks losing customers

because of irrelevant recommendations. We present empirical evidence of customer disengage-

ment through real-world data from a major airline carrier who offers a sequence of ad campaigns.

Our findings suggest that customers decide to stay on the platform based on the relevance of

the recommendations they are offered. We formulate the problem as a user preference learning

problem with the notable difference that the customer’s total time on the platform is a function
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of the relevance of past recommendations. We show that this seemingly obvious phenomenon

can cause almost all state-of-the-art learning algorithms to fail in this setting. For example, we

find that classical bandit learning as well as greedy algorithms provably over-explore. Hence,

they risk loosing all customers from the platform. We propose modifying bandit learning strate-

gies by constraining the action space upfront using an integer optimization model. We prove

that this modification allows us to keep significantly more customers on the platform. Numerical

experiments on real movie recommendations data demonstrate that our algorithm can improve

customer engagement with the platform by up to 80%.

Chapter 4 investigates the problem of pricing of new products for a retailer who does not

have any information on the underlying demand for a product. The retailer aims to maximize

cumulative revenue collected over a finite time horizon by balancing two objectives: learning

demand and maximizing revenue. The retailer also seeks to reduce the amount of price ex-

perimentation because of the potential costs associated with price changes. Existing literature

solves this problem in the case where the unknown demand is parametric. We consider the

pricing problem when demand is non-parametric. We introduce a new pricing algorithm that

uses piecewise linear approximations of the unknown demand function and establish when the

proposed policy achieves near-optimal rate of regret, Õ(
√
T ), while making O(log log T ) price

changes. Hence, we show considerable reduction in price changes from the previously known

O(log T ) rate of price change guarantee in the literature. We also perform extensive numerical

experiments to show that the algorithm substantially improves over existing methods in terms

of the total price changes, with comparable performance on the cumulative regret metric.

Finally in Chapter 5, we focus on the problem of reducing product returns, one of the key

challenges that retailers face worldwide. We investigate this problem through a supply chain

lens. Closely working with one of India’s largest online fashion retailers, we focus on identifying

the effect of delivery gaps (total time that customers have to wait for the item to arrive) and

customer promise dates on product Returns To Origin (RTO): the setting where the customer

refuses to accept the package when delivered at their door and returns it back to the retailer. Our

empirical analysis reveals that an increase in delivery gaps causes an increase in product RTO.

We estimate that a 2-day reduction in the delivery gap from the current average can lead to

annual cost savings of up to $1.5 million just from RTO reduction for the retailer. To estimate

the effect of delivery promise on product returns, we conduct a Randomized Control Trial.

We find that in regions where product deliveries are expedited, beating the customer promise
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date by overshooting the promise can further lead to a reduction in product RTO. Based on the

insights from this empirical analysis, we then develop an integer optimization model that mimics

managers’ decision-making process in selecting delivery speed targets. Our integer optimization

formulation can account for various business constraints that might be relevant in practice. In

order to make the optimization model solve fast, we propose a linear optimization relaxation-

based method and show, both analytically as well as through simulations, that the method’s

performance is near-optimal.
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Chapter 2

Leveraging Comparables for New

Product Sales Forecasting

2.1 Introduction

Business analytics enables firms to improve their operational decision making through its data-

driven techniques. Analytics transform data to decisions by applying techniques from statistics,

machine learning, and optimization. Progress in data storage and computation power has ben-

efited analytics significantly. These advances have enabled algorithms to handle more complex

datasets in a faster manner. Additionally, analytics has benefited from improvements to the

algorithms themselves. Novel models are able to describe data more accurately, and hence take

decisions more optimally. In this chapter, we propose a new approach for predictive analytics

when facing new entities (e.g., new customers or new products). In addition, we apply this new

algorithm to an important problem in the space of retail, namely that of new product sales

forecasting.

Sales forecasting is a central activity in a firm’s operations. Most operational decision

making tools incorporate models describing product sales. Particularly, the sales forecasts of

new products guide many of the operational decisions made during product development (e.g.,

production, inventory, and pricing). Making the right decisions is key to the success of a product

launch, and therefore, it is important to forecast the sales of a product accurately. The difficulty

in doing this varies considerably between industries, even for existing products. When historical

sales data is available, regularly purchased products (e.g., fast moving consumer goods) are

easier to predict than temporary products (e.g., fashion clothing). Several studies illustrate this
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with a mean absolute error (MAE) of roughly 5 units and a mean absolute percentage error

(MAPE) of 11% to 19% for grocery brands (Ali et al. 2009, Cohen et al. 2017), which worsens

for fashion retailers where it is around 13 units and 68% to 93% (Ferreira et al. 2016). Regular

consumption of a product reduces the variability of its sales over time, which means that its

historical sales will be a good indicator of future sales.

Within this area, we focus on new product sales forecasting, where typically no historical

sales data is available. The interest in this particular problem originates from our collaboration

with Johnson & Johnson Consumer Companies Inc., a major fast moving consumer goods man-

ufacturer, and was later verified by the interest of a large fast fashion retailer in our approach.

Both industry partners introduce new products to update their assortment frequently: monthly

in the fast moving consumer goods industry, and weekly or sometimes daily in the fast fashion

industry. Before and during a new product launch, each firm needs to make many decisions that

affect the success of the product. These decisions span the entire range of operations: capacity

planning, procurement, production scheduling, inventory control, distribution planning, mar-

keting promotions and pricing. As each of these decisions are guided by forecasts, an accurate

sales forecasting model is key to a successful product launch for both industry partners and

others. The importance of this success has grown tremendously over the past decade, as Cecere

(2013) estimates that on average new product costs have increased four times over a period of

five years.

Current practice has considerable difficulties with predicting new product success. Standard

forecasting models use past sales data to predict on the short term. However, predictions for

new products need to be made far in advance without any sales history. As a result, many

firms, our industry partners included, resort to costly and time-consuming qualitative methods.

Kahn (2002) suggests that surveys, expert opinions, and average sales of comparable products

are the most widespread techniques for predicting demand of new products. These methods

are popular due to their interpretability. This is an essential characteristic, as Armstrong et al.

(2015) argue that practitioners should be overly conservative when they do not understand the

forecasting procedures. Possibly for this reason, Kahn (2002) observes that at the time only

10% of companies make use of some form of analytics. More recently, Cecere (2013) and Kahn

(2014) argue that the usage of analytics is still limited. At the same time only 20% of companies

are satisfied with their approach. Altogether, this literature shows that there are opportunities

to improve the new product sales forecasting process significantly, particularly using analytical
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techniques from optimization, statistics, and machine learning.

In this chapter, we develop an accurate, scalable, and interpretable forecasting method

calibrated with our industry partners’ data. These characteristics of the approach are important

to both industry partners. For interpretability, we draw inspiration from the practice of our

industry collaborators who use comparable products to predict sales of new products. Currently,

many practitioners manually determine which products are similar to the new product and use

their average sales as a prediction. We propose a Cluster-While-Regress model that mimics

this, but simultaneously creates clusters of comparable past products and creates forecasting

models for each cluster. Adding to the interpretability, the model also includes feature selection

methods from statistics and machine learning. Incorporating regularization allows each cluster

to prioritize different variables as the most important predictors of sales. As an example,

customers might be more price sensitive for generic brands than for premium brands. To address

scalability, we devise a fast optimization algorithm whose steps mimic industry practice. The

accuracy of the estimated model is established both in theory and in practice. Theoretically, we

prove bounds on the in-sample and out-of-sample forecasting error of the estimated model that

holds with high probability. From a practical standpoint, we estimate our model on data from

our two industry partners, and observe significant improvements in out-of-sample forecasting

metrics. From a broader standpoint, we remark that our proposed analytics model can be used

more generally to predict for new entities.

2.1.1 Contributions

Our main contribution is the development of a new forecasting approach based on ideas from

optimization, statistics, and machine learning. We estimate a clustered forecasting model using

data of comparable products, and show strong results on the forecasting accuracy for new

products introduced by our industry partners. To summarize our contributions:

1. Interpretable predictive analytics model using clustering and regression: We propose a

novel approach to predicting outcomes for new entities. Motivated by the practice in

new product sales forecasting, we say that sales of different product clusters are gen-

erated by different sales models. In our model formulation, comparable products are

clustered together and share a forecasting model that can be any regression model. As

this Cluster-While-Regress (CWR) model is grounded in current practice, it is easy to use

for managers who need to understand the model in order to trust it and use it. Further-
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more, the approach is general and can account for changes in drivers of product sales such

as marketing budget or distribution decisions. Section 5.2 uses the data of our industry

partners to motivate our general model, which is formulated in Section 2.3.1.

2. Tractable Cluster-While-Regress algorithm: The forecasting process associated with our

proposed model takes a stepwise approach. First, we estimate the clustered forecasting

model, then, we estimate a cluster assignment model, and finally, we assign the new prod-

uct to a cluster and compute the correct forecast. Altogether, this forms the basis of the

CWR algorithm. For the clustered forecasting model, we propose to solve a mixed integer

non-linear optimization model, while for the cluster assignment model, we propose to fit

a multiclass classication model. This method is flexible, as it allows using any regression

model (e.g., linear regression, generalized linear models, regression trees, etc.) in the clus-

tered forecasting model, and any classification model (e.g., multinomial logistic regression,

support vector machines, classification trees, etc.) in the cluster assignment model. In

cases where solving the mixed integer non-linear optimization problem is computationally

intractable, we propose an approximate CWR algorithm. This algorithm approximates

the mixed integer non-linear optimization problem using an iterative optimization proce-

dure. Section 2.3.2 discusses the clustered forecasting problem, and Section 2.3.3 describes

the cluster assignment problem.

3. Application to regularized linear regression: In our applications, we focus on the case

of regularized linear regression, because of its clarity to practitioners coming from its

interpretable coefficients and meaningful clusters. We formulate the linear version of our

model, and adapt the CWR algorithm to the linear case. For the linear model, we prove

that the forecasting error of the algorithm’s solution is bounded with high probability

both in-sample and out-of-sample. Section 2.4 formulates the linear model, discusses its

estimation, and presents these results.

4. Strong performance on experimental and real data: To test the practical performance of

our algorithm, we run a variety of computational experiments as well as tests on real

data. In our computations, the CWR algorithm significantly outperforms the benchmark

algorithms including random forests and gradient boosted trees. Working in collabora-

tion with two large industry partners, we also show that our algorithm results in at least

5%-15% WMAPE improvement on their data. These results are particularly robust to
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external changes in the market as we also incorporate competitor’s data in the estima-

tion of our prediction model, which results in a better understanding of how the market

responds to new product releases. In order to further check the robustness of our results,

we test our algorithm on various product categories and observe similar improvements.

Section 2.5 compares our algorithm’s performance against the benchmark algorithms on

experimental data. In Section 2.6, we describe the results on fast moving consumer goods

data. Furthermore, Section 2.7 tests the robustness of the model with fast fashion retail

data.

5. Accessible forecasting tool for practitioners: Out-of-sample results encouraged our fast

moving consumer goods manufacturing partner, Johnson & Johnson, to employ the fore-

casting approach. Our model can be estimated offline, which allows us to code the es-

timated model into Excel. In this tool, our partners can experiment with a product by

changing product features, which immediately gives a report on expected sales, trends

in sales over time, and the most important constituents of predicted sales. This allows

the managers to identify the key drivers of demand for own and competitive products, in

turn this allows them to optimize their new product launch and outperform competitive

launches through scenario planning. Positive feedback has encouraged further develop-

ment of the tool. Section 2.6 discusses the forecasting tool.

2.1.2 Literature Review

Our work relates to the literature on both sales forecasting and product innovation which

have been studied extensively in the operations management and marketing literature. More

specifically, our work lies in the intersection of three different streams of literature: product

diffusion and innovation in marketing, new products and high dimensional models in operations

management, and clustered regression models in machine learning and statistics.

First of all, product diffusion and innovation has been widely studied in the marketing

literature. As the seminal paper in this area, Bass (1969) develops a simple yet strong model

that estimates how a new product diffuses through a population. The Bass model predicts

lifetime sales based on a few parameters: market size, coefficient of innovation, and coefficient of

imitation. Over the years, this model has been extended substantially and Bass (2004) discusses

some of the most important extensions, namely how successive generations of products diffuse

and how contextual features such as pricing can be included in the model. The model is still
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widely used, for example, the inclusion of online reviews (Fan et al. 2017b), predicting adoption

of new automotive technologies (Massiani and Gohs 2015), the use of personal health records

(Ford et al. 2016). For reviews on product innovation and diffusion in marketing we refer to

Chandrasekaran and Tellis (2007) and Fan et al. (2017a). The Bass model, while widely used,

makes lifecycle predictions. Hence, it might make significant prediction error in the introductory

sales prediction, the focus of this chapter. In comparison, we propose a model that is grounded

in practice and is data-driven by incorporating machine learning and statistical tools.

A second stream of literature comes from operations management. In this area, the interest

in studying operational decision making for new products is growing. In particular, recent stud-

ies have considered production, inventory, and pricing of new products. Previously, Fisher and

Raman (1996) show that decisions can be improved significantly through accurate sales fore-

casts. While almost all decision making models in operations management include a forecasting

component, there are very few papers that carefully study the sales forecasting problem itself.

Recently, Hu et al. (2016) use a two step approach to forecasting the sales of new products and

show that mean absolute errors reduce by around 2-3%. Their forecasting model fits lifecycle

curves to products, then clusters these products, and aggregates the predictions. In contrast

to estimating the entire lifecycle of a product, our forecasting problem focuses on the product’s

introductory period. After this period, the acquired sales data can be used by existing models

(Ali et al. 2009, Huang et al. 2014) to generate better forecasts. Inherently, this means our

approach deals with the more complex and most uncertain period during a product’s lifecycle.

Furthermore, instead of the two step approach, we propose an algorithm that estimates clusters

and forecasting models jointly, while allowing each cluster’s forecasting model to be any machine

learning or statistical regression model. Specifically, this allows our model to incorporate other

features such as pricing, marketing, and distribution into the prediction models.

With regards to new product pricing, more attention has recently been placed on pricing

when the demand curve is unknown. Specifically, a new product is released into the market

and dynamic pricing is used as a tool to understand the underlying demand. These studies set

prices carefully to maximize revenue while balancing exploration and exploitation. Keskin and

Zeevi (2014) study asymptotically optimal policies for pricing a product with linear demand,

but assume either no or limited data is available. Ban and Keskin (2017) extend to the setting

where customer characteristics are available and pricing policies can be personalized. In certain

industries, experimenting with the price of a new product is not desired or allowed. This problem
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is analyzed by Cohen et al. (2015) who propose a simple pricing policy based on linear demand

curves that performs well for many parametric forms of unknown demand curves. To contrast

with this literature, we assume that historical data is available for comparable products and

focus on the forecasting problem.

Concerning production and inventory management of new products, several models have

been developed to improve decision making before the product launch. In Fisher and Raman

(1996), the quick response system changes production based on the sales forecast of the new

product. The analysis shows that responding with accurate forecasts can increase profits by up

to 60% in the fashion industry. Several studies followed along the same lines, for example, Caro

and Gallien (2010), Gallien et al. (2015), Chen et al. (2017b), and Ban et al. (2017). These

studies optimize production and inventory decisions assuming a particular structure on the

demand for the new products. This contrasts with our focus on improving the sales forecasting

model itself. In turn, our forecasts can also be used to improve these operational decision

models.

From a theoretical point of view, this work is related to the recent surge in operational models

that involve high dimensional features about people or products. This increase in data enables

personalized or product-specific policies. Regularization is used to control model complexity and

ensures that decisions can generalize to when new people or products arrive. Among others,

Bastani and Bayati (2015), Javanmard and Nazerzadeh (2016), Ban and Keskin (2017) analyze

various operations management problems, such as pricing and healthcare delivery, from a high

dimensional perspective. Our work differs in that regularization is used to improve the accuracy

of predictions instead of prescriptions. Datasets have grown in both observations (e.g., number

of people and products) and features (e.g., information on people and products). Therefore, our

models involve high dimensional data, and for the aforementioned reason, we use regularization

to avoid overfitting. Naturally, the model is to be used to enhance operational models, but our

main focus is the forecasting problem itself.

Finally, the model that was applied to the data of our industry collaborators uses a LASSO

regularized regression model for each cluster. In this setting, our model is related to clusterwise

regression. Clusterwise linear regression models cluster observations and fit linear regression

models to these clusters simultaneously. The objective is to find different clusters of obser-

vations whose data generating mechanisms follows significantly different correlation patterns.

The framework of clusterwise linear regression has been applied to various application domains
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including market segmentation (Brusco et al. 2002), income prediction (Chirico 2013), rainfall

prediction (Bagirov et al. 2017) and others.

Mainly, research has focused on the computational aspects of combining clustering with

regression. One of the first algorithms to solve this problem was a heuristic proposed by Späth

(1979), which, in each iteration, reassigned a single point to a different cluster if it would result

in a reduction of the prediction error. Since then, several algorithms have been proposed to

solve the clusterwise regression problem. In particular, clusterwise linear regression problems

are solved by DeSarbo et al. (1989) using simulated annealing, by DeSarbo and Cron (1988)

using maximum likelihood estimation and expectation-maximization, and by Viele and Tong

(2002) using Gibbs sampling while also providing theoretical consistency results on the posterior

sampling distribution. More recently, new aspects of the clusterwise regression problem have

been studied, such as fuzzy regression and fuzzy clustering by D’Urso et al. (2010), and robust

regression by Schlittgen (2011). Mathematical programming based approaches have also been

proposed. For example, Lau et al. (1999) propose to solve a nonlinear formulation, Bertsimas

and Shioda (2007) propose to solve a compact mixed-integer linear formulation, and Carbonneau

et al. (2011, 2012), Park et al. (2016) propose a heuristic based on column generation for an

integer linear formulation.

Our work differs from these studies in several important ways. Methodologically, our work

is complimentary to these papers because it provides a new technique for out-of-sample predic-

tions, which is still considered a challenge in clusterwise regression, even in the linear setting.

In particular, any new observation needs to be assigned to a cluster before its prediction can

be made. Two possible approaches that have been proposed previously are the following: fit

a cluster assignment function during the estimation process with which a new observation can

be clustered and a prediction can be made (Manwani and Sastry 2015), or to provide weights

to each cluster for a new observation and a weighted average becomes the prediction (Bagirov

et al. 2017). Our approach combines these ideas by developing a novel out-of-sample prediction

method that uses a data-driven function based on logistic regression weights in order to weight

the forecasts of each cluster. Additionally, in contrast to previous literature, we expand the

clusterwise regression setting to the high dimensional setting by considering regularized linear

regression models for each cluster. Hence, we consider the more realistic setting where our model

has access to many features, but it might need to discard those that are relevant. Analytically,

we contrast the literature by providing an out-of-sample prediction error bound, which shows
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that our model is statistically consistent. Our analysis is based on the cluster compatibility

condition, which is related to the classical compatibility condition if the number of misclassifi-

cations during the estimation process is limited. Finally, our model extends beyond the linear

case of clusterwise regression, as our estimation algorithm functions even when the forecasting

models of a cluster take nonlinear forms such as nonlinear regression models, regression trees,

or random forests.

2.2 Motivation and Data from Practice

Before introducing our model, we describe the problem faced by our two industry partners, we

discuss their current approaches to new product sales forecasting, and describe the challenges

of these approaches. Finally, we use the data of our industry partners to motivate the clustered

forecasting model proposed in this chapter.

Our industry partners, and firms more generally, invest millions of dollars in innovation

every year. The success of a new product is partially dependent on making the right operational

decisions surrounding the product launch. These decisions are guided by sales forecasts, and

therefore, our industry partners note the importance of accurate forecasting. Though, accuracy

is not the only metric of importance. It is also important that the forecasting tool is interpretable

and scalable. The model needs to be interpretable because new products are surrounded by large

uncertainty and models that are not easy to understand will receive less usage from practitioners.

In certain industries, such as fast moving consumer goods and fast fashion, new products are

introduced frequently and scalability is important. Their extensive product assortment leads to

large datasets to fit forecasting models on. Additionally, due to frequent product introductions,

these firms need to forecast often. Table 2.1 shows the number of products that our partners

introduced in several consumer goods and fashion categories during the corresponding periods.

Table 2.1: Description of available datasets from two partners with multiple categories

Industry Category Time Period Number of New Products

Consumer Goods
Baby care 2013-2017 122
Body care 2013-2017 71
Facial care 2012-2016 219

Fashion
1 April 2016-June 2016 75
2 April 2016-June 2016 66

Over a period of five years and three different product categories, the consumer goods man-

ufacturer released a total of 412 new products. At an even faster rate, the fashion retailer
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introduced 143 new products over just three months and two categories. The faster pace of

innovation also corresponds to products with shorter lifetimes. This does not change the fun-

damental problem of forecasting sales of new products, but it has an effect on the scale of the

problem. For example, yearly forecasts might be adequate for production, procurement, and

inventory decisions at a manufacturer, while weekly forecasts are needed for distribution and

pricing decisions at a retailer. In particular, where our consumer goods partner is interested

in forecasting first year sales in an entire country, the fashion retail partner needs accurate

forecasts for the first half-week at a store or regional level.

Forecasting new product sales is a clear challenge for both partners. Often, errors are too

large, namely over 50% off. In discussions, our partners explained that using these forecasts

would lead to wrong decisions. As an example, applying current forecasting methods to a

subcategory, only 16 out of 31 product introductions were predicted accurately enough to aid in

effective decision making. To illustrate the difficulty, Figure 2.1 shows the actual sales over the

first six months of two new products that were released by the consumer goods manufacturer.

The two products belong to the same product subcategory, yet behave very differently. While

the first product shows an increasing trend in sales over the introductory horizon, the sales of

the second product decline over the same months after release.

Figure 2.1: Actual sales data of two new products over the first six months after introduction

Evidently, consumer response to the two new products was very different. The cause of

this difference can be attributed to many factors: pricing, promotions, distribution, product

attributes (such as size, packaging, and color), and other latent factors. From Johnson &

Johnson Consumer Companies Inc., we have access to five year long datasets in which each

observation describes the monthly sales of a SKU (Stock Keeping Unit) in an entire trade

channel. Interestingly, this dataset includes the sales data from competitor’s products at the

same level of granularity. Available product features include the date of product introduction,
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the product’s categorization, price, promotional events, sizing, packaging, chemical composition,

claimed benefits, as well as distribution measures such as the number of stores selling the

product and %ACV (Percentage of All Commodity Volume), which is a measure of distribution

across stores. The fast fashion retailer gave us access to a dataset containing three months of

half-weekly store sales for individual SKUs. The data contains product features such as date

of introduction in both the brick-and-mortar and the online channel, product categorization,

price, color, style, and prior clickstream data if the product was introduced online earlier (e.g.,

cumulative views online, cumulative add-to-carts online, cumulative remove-from-carts online).

More information on the data can be found in Sections 2.6 and 2.7. Unfortunately, even when

accounting for all these product features and analyzing a specific subcategory, a single model

to predict sales of new products is often unable to capture certain hidden factors. One visible

example of these latent factors is the upwards or downwards sales trend in Figure 2.1. This

trend can be hard to predict before a product launch, as no historical sales data is available.

As a remedy, our partners and many other firms in the FMCG and fast fashion retailing

business, use prediction tools that combine market surveys, expert opinions, and comparable

products. Apart from being expensive, these research approaches are time consuming. More-

over, the final product often differs from the prototype product during market research, which

undermines the accuracy of these forecasts. Hence, high costs and long prediction lead times,

make these tools unpractical for most of the smaller and even medium sized new product

launches. This problem has been more pronounced in recent times when the frequency of new

product launches has been increasing. Therefore, sometimes, firms have to resort to more qual-

itative methods to forecast new product sales. One collaborator has established a forecasting

technique where product managers use their expertise to find products comparable to the new

product and then use their actual sales as a forecast. The hope is that these clusters of compa-

rable products capture shared latent factors. Thus, if the right comparables have been selected,

the effects of latent factors on sales should be captured by the actual sales of the clustered prod-

ucts. For this reason and the ease that practitioners have with forecasting using comparables,

in the remainder of the chapter, we develop an algorithm and subsequently a tool which clusters

products and simultaneously fits demand forecasting models for these clusters.
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2.3 Cluster-While-Regress Model

In what follows, we introduce our sales forecasting model for new products. As described,

many firms use a Cluster-Then-Regress (CTR) model in which experts select past products

similar to the new product and use their average sales as a forecast. Unfortunately, initial

tests on data from our industry partners showed that this approach produces weak results even

when using data-driven clustering (see Sections 2.6 and 2.7). Nonetheless, our new product sales

forecasting model is related to this practice, namely we propose a Cluster-While-Regress (CWR)

model that clusters products and fits sales forecasting models to each cluster simultaneously.

The main difference between the two approaches is that the data-driven version of the CTR

model clusters based on product feature similarity, fixes these clusters, and then forecasts the

cluster’s sales. Instead, our CWR model clusters products and estimates forecasting models

simultaneously, thereby clustering on the similarity in terms of both product features as well as

sales behavior of the products.

2.3.1 General Model

Formalizing our approach, we are interested in predicting sales of a new product, y0 ∈ R, based

on m product features that are available before introduction, x0 ∈ Rm. Examples of these

product features include the aforementioned data such as the product’s regular price, brand,

and sizing. Naturally, firms also use historical sales data to forecast future sales of existing

products, but lack this data for new products. As a result, the challenge is to provide an

accurate sales forecast for the new product without an indication of its rough sales potential.

Through our industry partners we have access to data on past products that were once new.

By yi ∈ R and xi ∈ Rm, i = 1, . . . , n, we denote the sales and product feature data for n past

new products.

Using this data, we determine a model describing the sales of these past products, which

can then be used to predict sales for the new product. Specifically, we consider ` clusters of

products, each with a different sales generating model, but where the products within a cluster

share the same model. To be precise, we propose the following sales generating model:

yi =
∑̀
k=1

zikfk(xi) + εi, i = 0, 1, . . . , n, (2.1)

where zik ∈ {0, 1} indicates whether product i belongs to cluster k, fk(xi) is the sales forecasting
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model for a product in cluster k with features xi (i.e., a particular functional form to estimate

the conditional expected sales for a product in cluster k with features xi), and εi is assumed to

be a zero-mean random noise. The conditional expected sales of each cluster can be a highly

non-linear function of the available features. Thus, our estimation approach needs to be able

to incorporate a large variety of cluster forecasting models. Examples of fk include linear

regression models (used in our application), generalized linear models, non-linear regression

models, regression trees, and random forests.

In addition, our approach needs to allow for estimating sparse models. To exemplify this ne-

cessity, consider the case where fk is a linear regression model. The total number of parameters

of model (2.1) is then not just the number of product features, m, but rather a multiple of the

number of product features and the number of clusters, m`. This means that the dimension of

the model can grow quickly as the number of clusters grows. Additionally, some of the features

that are included in the model might not affect the sales of certain groups of products. The goal

of the regularizer is to guard against fitting an overly complex model. The estimation procedure

is likely to find a model that only uses the most important predictors of a cluster’s sales. To

account for sparsity, we add a regularization penalty to the objective, which has the added

benefit of producing a model that is robust to measurement error (Bertsimas and Copenhaver

2017).

Now, if we want to forecast sales in accordance with model (2.1), we need to estimate each

cluster forecasting model as well as to which cluster each product is assigned. Our CWR algo-

rithm runs as follows:

1. In the first step, we estimate each cluster forecasting model by using past products’ sales

data and feature data, yi and xi. In this stage, we assign past products to clusters, ẑik,

and determine the parameters of each cluster forecasting model, f̂k.

2. In the second step, we estimate the cluster assignment model by using past products’ clus-

ter assignments and feature data, ẑik and xi. In this phase, we determine the parameters

of the cluster assignment model, p̂k.

3. In the final step, we plug the features of the new product, x0, into each cluster forecasting

model as well as the cluster assignment model, and combine these cluster forecasts and

cluster assignments to predict the sales of the new product, ŷ0.
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The details of each stage depend on the proposed sales generating model. In what follows,

we expand on what happens in each of these steps.

2.3.2 Estimation for Past Products

Before we can forecast sales, we have to describe the estimation procedure of the sales generating

model. For model (2.1), we need to decide in which cluster a product lies, ẑik, and estimate

each cluster forecasting model, f̂k. The general CWR problem is formulated as the following

mixed integer non-linear optimization problem (P ):

min
zik,fk

n∑
i=1

L

(
yi,
∑̀
k=1

zikfk(xi)

)
+ λR(f1, . . . , f`) (2.2a)

s.t.
∑̀
k=1

zik = 1, i = 1, . . . , n (2.2b)

zik ∈ {0, 1}, i = 1, . . . , n, k = 1, . . . , `. (2.2c)

The objective (2.2a) represents the minimization of regularized prediction error. For each past

product i, we observe yi sales and forecast
∑`

k=1 zikfk(xi) sales. For any error in this prediction

we incur a loss L
(
yi,
∑`

k=1 zikf(xi)
)

. In addition, we regularize the cluster forecasting models

through a regularizer R(f1, . . . , f`) and a penalty parameter λ ≥ 0 that balances the loss and

regularizer. The form of the loss, L, and regularizer, R, largely depends on the forecasting

model, fk, that is chosen. For example, to estimate the parameters of a LASSO regularized

linear regression model (as in our application), we use the squared error loss with a regularizer

that sums the absolute values of the regression parameters. Together, the constraints (2.2b)

and (2.2c) ensure that each product gets assigned to exactly one cluster.

2.3.3 Forecasting for New Products

Having estimated the sales generating model (2.1), we can now forecast sales for the new

product, y0. However, we still need to decide to which cluster the new product belongs, as

past products are clustered based on actual sales data which is unavailable for the new product.

For this, we can use any multiclass classification method such as a multinomial logistic re-

gression (which we use in our application), support vector machines, classification trees, and

random forests. We propose to train this cluster assignment model by using the cluster assign-
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ments for past products, ẑik, as the dependent variable, and the features of past products, xi,

as the independent variables. This creates a mapping p̂k from the product feature space (ex-

cluding sales) to the clusters. Depending on the classification method, its predicted assignment

for the new product, ẑ0k = p̂k(x0), will either be in the form of an assignment to a cluster

or probabilities of assignment to clusters. Both cases can be captured by letting p̂k(x0) give

the probability that the new product with features x0 lies in cluster k. In the case where the

classification method gives a pure cluster assignment the cluster’s corresponding probability is

set to 1, while others are set to 0. In either case, the new product sales forecast is given by

ŷ0 =
∑̀
k=1

ẑ0kf̂k(x0) =
∑̀
k=1

p̂k(x0)f̂k(x0). (2.3)

When p̂k(x0) assigns probabilities to clusters, the sales forecast in (2.3) is a weighted average

of the cluster forecasts weighted by the cluster probabilities.

2.4 Application of Linear Cluster-While Regress Model

In this section, we specify the cluster forecasting model, fk, and cluster assignment model,

pk, that we used in collaboration with our industry partners. In the real-world applications

considered in this work, we consider fk to be a LASSO regularized linear regression model, and

we use a multinomial logistic regression to estimate pk. This section will cover the linear model,

the linear CWR algorithm, and an analysis of the forecasting error of our model and algorithm.

2.4.1 Linear Model

Formally, we consider the following linear cluster forecasting model fk(xi) =
∑m

j=1 βkjxij where

βkj is the linear regression parameter associated with product feature j in cluster k. The sales

generating model (2.1) can then be rewritten as the following linear sales generating model:

yi =
∑̀
k=1

zik

m∑
j=1

βkjxij + εi, i = 0, 1, . . . , n, (2.4)

where we assume that εi
iid∼ N (0, σ2) for all i = 0, 1, . . . , n. We note that any of our results can

be extended to the case where εi follows a Subgaussian distribution. The linear sales generating
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model can also be given by the following vector representation:

y = (Z ∗X)β + ε, (2.5)

Here, y = (y1, . . . , yn) ∈ Rn is a column vector of product sales, X = (xij) ∈ Rn×m is a block

matrix whose blocks are rows of product features, Z = (zik) ∈ {0, 1}n×` is a block matrix whose

blocks are rows of cluster assignments, β = (β11, β12, . . . , β1m, β21, . . . , β`m) ∈ R`m is a column

vector that stacks the regression coefficients (this vector is s-sparse if at most s elements of β

are non-zero), and ε = (ε1, . . . εn) ∈ Rn is a column vector of zero-mean random error. In this

representation, we use the Khatri-Rao product Z ∗X, which is defined as follows:

Z ∗X =



z11 z12 . . . z1`

z21 z22 . . . z2`

...
...

. . .
...

zn1 zn2 . . . zn`


∗



x11 x12 . . . x1`

x21 x22 . . . x2`

...
...

. . .
...

xn1 xn2 . . . xn`


=



z11x11 z11x12 . . . z11x1m z12x11 z12x12 . . . z1`x1m

z21x21 z21x22 . . . z21x2m z22x21 z22x22 . . . z2`x2m

...
...

. . .
...

zn1xn1 zn1xn2 . . . zn1xnm zn2xn1 zn2xn2 . . . zn`xnm


.

Under the assumption that the conditional expected sales is also a linear function of the de-

pendent variables, we use Z∗ = (z∗ik) and β∗ = (β∗kj) to denote the cluster assignments and

regression parameters of the true model, while our estimates are denoted by Ẑ = (ẑik) and

β̂ = (β̂kj). Additionally, we consider the case where the true model might be sparse. Specifi-

cally, we let S ⊂ {(1, 1), (1, 2), . . . , (1,m), (2, 1), . . . , (`,m)} contain the indices of the s non-zero

regression parameters in the true model, and let βS denote the vector that contains βkj for the

indices (k, j) ∈ S and 0 otherwise.

2.4.2 Linear CWR Algorithm

In what follows, we adapt our CWR algorithm to the linear model. In the first step, the algo-

rithm uses the LASSO regularized linear regression model to estimate each cluster forecasting

model. In the second step, the algorithm uses a multinomial logistic regression model to esti-

mate a cluster assignment model. As a result, the algorithm can determine the sales forecast
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for the new product.

First, we have to describe how we estimate the cluster forecasting models based on the data of

past products. As we consider each cluster forecasting model to follow a linear regression model,

we use the ordinary least squares estimation method, which implies that L(yi, ŷi) = (yi − ŷi)2.

To this, we add LASSO regularization on the linear regression coefficients, which means that

R(β1, . . . , β`) =
∑`

k=1

∑m
j=1 |βkj |. Here, we consider LASSO regularization, but we note that

the results below can be extended to the case of ridge regularization. In preliminary experi-

mentation, we estimated the ridge regularized model and it produced worse results, plausibly

due to overfitting. Generally, ridge regularization is not able to exclude unimportant variables

while LASSO regularization can generate sparse models (Bühlmann and van de Geer 2011).

Having specified fk, L, and R, we adapt problem (P ) to formulate the linear CWR problem

that estimates the linear sales generating model (2.4) as the following mixed integer non-linear

optimization problem (PL):

min
zik,βkj

n∑
i=1

yi − ∑̀
k=1

zik

m∑
j=1

βkjxij

2

+ λ
∑̀
k=1

m∑
j=1

|βkj | (2.6a)

s.t.
∑̀
k=1

zik = 1, i = 1, . . . , n (2.6b)

zik ∈ {0, 1}, i = 1, . . . , n, k = 1, . . . , `. (2.6c)

In this problem, we minimize the LASSO objective by determining the right cluster assignments

and regression parameters. Earlier, we mentioned that problem (P ) is hard due to its integer de-

cision variables and possibly non-linear objective. Here, problem (PL) shows that even a linear

regression model without regularization has a non-linear objective, namely biquadratic. This

makes the problem hard to solve, even for commercial solvers. In fact, in Megiddo and Tamir

(1982), problem (PL) is proven to be NP-hard for the case where λ = 0. Clearly, adding regular-

ization generalizes the problem, which therefore remains NP-hard. Nonetheless, in Proposition

2.4.1, we show that problem (2.6) can be reformulated as a mixed-integer quadratic problem

that commercial solvers are able to solve.

Proposition 2.4.1. The linear CWR problem can be reformulated as the following mixed-
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integer quadratic optimization problem (PLR), where M is a big constant:

min
zik,βkj ,qikj ,rkj

n∑
i=1

yi − ∑̀
k=1

m∑
j=1

qikjxij

2

+ λ
∑̀
k=1

m∑
j=1

rkj (2.7a)

s.t.
m∑
k=1

zik = 1, i = 1, . . . , n (2.7b)

−M(1− zik) ≤ qikj − βkj ≤M(1− zik), i = 1, . . . , n, k = 1, . . . , `, j = 1, . . . ,m

(2.7c)

−Mzik ≤ qikj ≤Mzik, i = 1, . . . , n, k = 1, . . . , `, j = 1, . . . ,m (2.7d)

rkj ≥ βkj , k = 1, . . . , `, j = 1, . . . ,m (2.7e)

rkj ≥ −βkj , k = 1, . . . , `, j = 1, . . . ,m (2.7f)

zik ∈ {0, 1}, i = 1, . . . , n, k = 1, . . . , `. (2.7g)

Proof. Proof. See Appendix A.1. �

Second, we can now describe how we estimate the cluster assignment model based on our

previous cluster assignments of past products. The cluster assignment model is estimated

by fitting a multinomial logistic regression of the past product cluster assignments ẑik, on

the available product features xi (also available for the new product x0). In particular, this

estimation results in the multinomial logistic regression coefficients γ̂kj which define the following

cluster assignment probabilities of the new product:

ẑ0k =
exp

(∑m
j=1 γ̂kjx0j

)
∑`

k′=1 exp
(∑m

j=1 γ̂k′jx0j

) . (2.8)

Finally, plugging (2.8) into (2.3), the new product forecast becomes

ŷ0 =
∑̀
k=1

exp
(∑m

j=1 γ̂kjx0j

)
∑`

k′=1 exp
(∑m

j=1 γ̂k′jx0j

) m∑
j=1

β̂kjx0j . (2.9)

Thus, to forecast sales described by model (2.4), we combine these stages in our linear CWR

algorithm that takes the following approach:

1. In the first step, we solve (PLR) using the past products’ sales data and feature data, yi
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and xi, to find cluster assignments, ẑik, and linear regression parameters, β̂kj .

2. In the second step, we fit a multinomial logistic regression using past products’ cluster

assignments and feature data, ẑik and xi, to find the logistic regression parameters, γ̂kj .

3. In the final step, we plug the features of the new product, x0, into each cluster forecasting

model as well as the cluster assignment model, and combine these cluster forecasts and

cluster assignments to predict the sales of the new product, ŷ0.

This process assumes that an initial number of clusters ` and the penalty parameter λ have

been chosen. As we described before, we tune these parameters through the train-validate-test

split. By running the algorithm on a training set and selecting those parameters that result

in the best out-of-sample forecasting metrics on a validation set, we obtain the model to be

analyzed on the test set. Note that we rescale our data such that ||Xj ||2 = 1 in order to avoid

implementation issues.

Unfortunately, in some cases, solving (PLR) can be a time-consuming process. For example,

when using Gurobi 7.0.2 to solve 50 randomized instances of (PLR) programmed in Julia/JuMP

(Dunning et al. 2017) on an Intel Core i5-4690K @ 3.5GHz CPU and 8 GB RAM, the average

running time is 0.19 seconds when n = 10, m = 5, ` = 2, but it grows to over 10 minutes when

n = 100, m = 5, ` = 2. In the following, we describe the approximate linear CWR algorithm

that on average takes 0.02 seconds and 0.04 seconds to solve the same instances. In fact, it

scales well to larger instances as its running time is 8.74 seconds for n = 10000, m = 100,

` = 10, and 27.72 seconds for n = 10000, m = 200, ` = 20.

In the approximate linear CWR algorithm, the second and final step remain the same, but

we use an approximate method in the first step. Instead of solving a mixed-integer quadratic

optimization problem, this approximate method take ideas from iterative greedy algorithms.

The approximation initializes by assigning each past product to a random cluster, after which

it can fit a LASSO regularized linear regression model for these randomized cluster. Then, in

each iteration, it assigns a past product to the cluster whose LASSO regularized linear regression

model gives the best forecast for that product, and it fits a LASSO regularized linear regression

model for the updated clusters. To be more specific, the approximate linear CWR algorithm

has the following procedure:
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1. In the first step, we approximate (PLR) using the past products’ sales data and feature

data, yi and xi, through the following approximate method:

a. Initialize the assignment of products to clusters ẑ
(0)
ik randomly.

b. Iteratively re-estimate the cluster forecasting model and re-cluster the products. For

iteration t = 1, . . . , T :

i. For cluster k = 1, . . . , `, fit a LASSO regression of sales on the product features

of products in cluster k, i.e., fit LASSO regression of yi on xi for i such that

ẑ
(t−1)
ik = 1 to obtain β̂

(t)
kj .

ii. For product i = 1, . . . , n, compute the distance between product i’s sales and

each cluster’s forecast and assign product i to the closest cluster, i.e., for k =

arg mink′(yi −
∑m

j=1 β̂
(t)
k′jxij)

2 set ẑ
(t)
ik = 1 and ẑ

(t)
ik′ = 0 for k′ 6= k.

iii. Terminate with ẑik and β̂kj if t = T or ẑ
(t)
ik = ẑ

(t−1)
ik , otherwise proceed to t+ 1.

2. In the second step, we fit a multinomial logistic regression using past products’ cluster

assignments and feature data, ẑik and xi, to find the logistic regression parameters, γ̂kj .

3. In the final step, we plug the features of the new product, x0, into each cluster forecasting

model as well as the cluster assignment model, and combine these cluster forecasts and

cluster assignments to predict the sales of the new product, ŷ0.

This gives us two methods to forecast sales of new products that follow the linear CWR

model. The first linear CWR algorithm optimally solves the linear CWR problem, while the

second approximate linear CWR algorithm finds a good approximation to the linear CWR

problem. On the other hand, the optimal algorithm takes longer to run than the approximate

algorithm. After developing these algorithms, we want to test their theoretical and practical

performance.

2.4.3 Forecasting Error Analysis

In what follows, we present theoretical guarantees on the forecasts of the linear CWR algorithm.

We would like to note that these guarantees extend to the approximate linear CWR algorithm in

many cases. Specifically, our computational results indicate that the guarantees effectively hold

in 85% to 92% of simulated instances depending on the parameter settings of these instances.
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For the linear CWR algorithm, we prove that the forecasting error is bounded, both in-sample

for past products in the train data as well as out-of-sample for new products in a test set. In

proving these probabilistic guarantees, we use Lemma 2.4.2 to show that the forecasting error

coming from noisy measurements is small with high probability.

Lemma 2.4.2. If ||Xj ||2 = 1 and λ = 4σ
√

2
n log

(
2nm`
δ

)
, then for any allowable Z and 0 < δ < 1,

P
(

1

n
||εT (Z ∗X)||∞ ≤

λ

4

)
≥ 1− δ.

Proof. Proof. See Appendix A.1. �

In order to tighten the results, we require the train data X to follow the cluster com-

patibility condition, which specifically puts a condition on the minimum eigenvalue of XTX.

To state the definition, let β∆ = β̂ − β∗ and Z∆ = Ẑ − Z∗ denote the estimation error

in the regression parameters and in the cluster assignments. Additionally, recall that S ⊂

{(1, 1), (1, 2), . . . , (1,m), (2, 1), . . . , (`,m)} consists of the indices corresponding to the s non-

zero regression parameters in the true model, as well as that βS consists of βkj if (k, j) ∈ S and

0 otherwise.

Cluster Compatibility Condition The cluster compatibility condition is satisfied if for

all β∆ and Z∆ satisfying ‖β∆
SC
‖1 ≤ 3‖β∆

S ‖1 + 2‖β∗‖ there exists θ > 0 such that

‖β∆
S ‖1 ≤

s

nθ2

(
‖(Z∗ ∗X)β∆‖22 − ‖(Z∆ ∗X)β∆‖22 − 2‖(Z∗ ∗X)β∗‖22

)
(2.10)

Both the cluster compatibility condition in (2.10) and the regular compatibility condition

of Bühlmann and van de Geer (2011) are related to the minimum eigenvalue of the train data.

In particular, if there are no incorrect cluster assignments, then the second term of (2.10) goes

to 0, which reduces the cluster compatibility condition to the general compatibility condition.

Nevertheless, our condition remains stronger due to an additional constant term. This accounts

for the fact that our algorithm needs to learn clusters for both old and new products.

Interestingly, we can show that instead of imposing the cluster compatibility condition,

we can instead assume the regular compatibility condition and a bound on the number of

incorrect cluster assignments. Proposition 2.4.3 proves that the regular compatibility condition

is equivalent to the cluster compatibility condition under a limit on incorrect cluster assignments.

44



CHAPTER 2. LEVERAGING COMPARABLES FOR NEW PRODUCT SALES
FORECASTING

Proposition 2.4.3. If ||Xj ||2 = 1, and the number of incorrect cluster assignments r <(
n

2m

) ( β∆
min

β∆
max

)2
, where β∆

min = mink,j |β∆
kj | and β∆

max = maxk,j |β∆
kj | , then there exists κ > 0

such that

‖(Z∗ ∗X)
(
β∗ − β̂

)
‖2 − ‖(Z∆ ∗X)(β̂ − β∗)‖2 = κ‖(Z∗ ∗X)

(
β∗ − β̂

)
‖2 .

In addition, if for all β∆ and Z∆ satisfying ‖β∆
SC
‖1 ≤ 3‖β∆

S ‖1 + 2‖β∗‖ there exists η > 0 such

that

‖β∆
S ‖ ≤

s

nη2

(
‖(Z∗ ∗X)β∆‖22 −

2

κ
‖(Z∗ ∗X)β∗‖22

)
,

then there exists θ > 0 such that

‖β∆
S ‖ ≤

s

nθ2

(
‖(Z∗ ∗X)β∆‖22 − ‖(Z∆ ∗X)β∆‖22 − 2‖(Z∗ ∗X)β∗‖22

)
.

Proof. See Appendix A.1.

2.4.4 Bound on In-Sample Forecasting Error

First, we investigate the in-sample performance of our estimated model against the true model.

Specifically, we present a bound on the in-sample mean squared forecasting error:

1

n
||y∗ − ŷ||22 =

1

n
||(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂||22, (2.11)

where y∗ and ŷ contain the expected sales of each past product under the true and estimated

linear CWR models, respectively. As we consider the in-sample error, X is the train data, Ẑ is

the cluster assignments given by the linear CWR algorithm, and β̂ is the regression parameters

given by the linear CWR algorithm.

The mean squared forecasting error is a natural measure for the difference between the

forecasts from our estimated model and the true model. This difference is caused by the difficulty

in estimating z∗ik and β∗kj exactly, which comes from the fact that we gather noisy measurements

(due to εi) instead of the true conditional expected sales. Our theoretical results show that,

with high probability, the in-sample mean squared forecasting error (2.11) is bounded. Theorem

2.4.4 proves this probabilistic guarantee on the in-sample mean squared forecasting error (2.11),

45



CHAPTER 2. LEVERAGING COMPARABLES FOR NEW PRODUCT SALES
FORECASTING

which shows that the linear CWR algorithm produces statistically consistent forecasts.

Theorem 2.4.4. Consider the linear sales generating model (2.5) and let Ẑ and β̂ be the

estimates of Z∗ and β∗ generated by the linear CWR algorithm. Let ||Xj ||2 = 1 and λ =

4σ
√

2
n log

(
2nm`
δ

)
, then the following probabilistic bound holds for any 0 < δ < 1,

P
(

1

n
||(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂||22 ≤

5

2
λ||β∗||1

)
≥ 1− δ.

In addition, under the cluster compatibility condition,

P
(

1

n
||(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂||22 + λ||β̂ − β∗||1 ≤ 4λ2 s

θ2
+ 2λ||β∗||1

)
≥ 1− δ.

Proof. See Appendix A.1.

For the first bound in Theorem 2.4.4, the only required assumption is that ||Xj ||2 = 1,

which can always be achieved by simply rescaling the columns of X. For the second bound in

Theorem 2.4.4, we require an additional assumption, namely the cluster compatibility condition.

However, this condition grants us an additional bound on the estimation error between the

estimated regression parameters β̂ and the true regression parameters β∗. Generally, the bounds

in Theorem 2.4.4 show that the forecasts of the linear CWR algorithm are consistent, even

without the cluster compatibility condition, because log(n)/n converges to 0 as n increases.

To illustrate and compare these results, Figure 2.2 presents the bounds as a function of the

number of observations n. The figure on the left shows the case where the bounds hold with

90% probability (δ = 0.10) and the figure on the right for 99% probability (δ = 0.01). The solid

curves represent the first bound, whereas the dotted curves illustrate the second bound. The

red curves form the bound for ` = 2 clusters, and the blue curves form the bound for ` = 10

clusters. The other parameters are given by m = 10, ||β∗||1 = 10, σ = 1, s = 1, and θ = 2.

The main observation is that each forecasting error bound declines as the number of ob-

servations for past products n increases. Initially, the bound decreases rapidly, which indicates

that the algorithm is accurate even for small datasets. We also observe the consistency of our

algorithm’s estimates. As more and more data becomes available the estimated model converges

to the true model, and hence, the prediction error converges to 0. Additionally, we observe that

the algorithm’s forecasting error is nearly identical when there are two or more clusters. Finally,

comparing the two figures, the forecasting error is similar when the probability with which the
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Figure 2.2: Probabilistic bounds on the mean squared forecasting error as the number of observations
(n) changes for several numbers of clusters (`) and probability to exceed the bound (δ = 0.10 on the left,
δ = 0.01 on the right)

bound holds is increased. Each of the bounds on the left (δ = 0.10) increase by at most 20%

on the right (δ = 0.01).

2.4.5 Bound on Out-of-Sample Forecasting Error

Next, we analyze the out-of-sample performance of the proposed algorithm. In what follows,

we present a bound on the out-of-sample absolute forecasting error:

||y∗0 − ŷ0||1 = ||
∑̀
k=1

z∗0k

m∑
j=1

β∗kjx0j −
∑̀
k=1

ẑ0k

m∑
j=1

β̂kjx0j ||1, (2.12)

where y∗0 and ŷ0 are expected sales of the new product under the true and estimated linear CWR

models, respectively. Note that for the out-of-sample error, x0j will be the new product’s data,

ẑ0k will represent a forecasted cluster assignment, and β̂kj will remain the regression parameters

given by the linear CWR algorithm. Regarding the value of Ẑ, our forecasting approach uses

cluster assignment probabilities based on multinomial logistic regression, as in equation (2.8).

Instead, for our out-of-sample analysis, we will use cluster assignment probabilities that are

equal for each cluster, as in ẑ0k = 1/`. Lastly, we note that the new product’s true cluster

assignment is denoted by k∗, as in z∗0k∗ = 1 and z∗0k = 0 for k 6= k∗.

The absolute forecasting error measures the difference between forecasts, but to prove a

bound, we relate it to the estimation error. In particular, we rewrite the out-of-sample fore-
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casting error in terms of the in-sample forecasting error, after which we can use the result in

Theorem 2.4.4 to show that the out-of-sample forecasting error (2.12) is bounded with high

probability. Theorem 2.4.5 proves this probabilistic guarantee on the out-of-sample absolute

forecasting error (2.12).

Theorem 2.4.5. Consider the linear sales generating model (2.5) and let Ẑ and β̂ be the

estimates of Z∗ and β∗ generated by the linear CWR algorithm. Let ‖Xj‖2 = 1, let C =

maxk′,k′′ ‖β∗k′−β∗k′′‖1, and λ = 4σ
√

2
n log

(
2nm`
δ

)
, then under the cluster compatibility condition,

the following probabilistic bound holds for any new product feature vector x0 and any 0 < δ < 1,

P

||∑̀
k=1

z∗0k

m∑
j=1

β∗kjx0j −
∑̀
k=1

ẑ0k

m∑
j=1

β̂kjx0j ||1 ≤ C +
2

`
‖β∗‖1 +

4

`
λ
s

θ2

 ≥ 1− δ.

Proof. See Appendix A.1.

Theorem 2.4.5 that the out-of-sample error decreases as the number of training samples n

increases. Nevertheless, due to the uniform probability of assigning a test point to any of the

clusters, the worst case prediction error will remain a function of how far true parameters of

different clusters are (i.e. parameter C in Theorem 2.4.5).

2.5 Computational Experiments

In this section, we evaluate the results of our computational experiments. We analyze the

performance of our linear Cluster-While-Regress (CWR) algorithm. We compare it against

several benchmark algorithms including Regularized Linear Regression (LASSO), Cluster-Then-

Regress (CTR), Random Forests (RF), and Gradient Boosted Trees (GBT). Our algorithm was

coded in Python, and the benchmark algorithms were imported from the scikit-learn library for

Python.

2.5.1 Benchmark Algorithms

First, we describe the various benchmark algorithms that we used to compare our approach

against. The first two benchmarks are based on our linear CWR algorithm, the third benchmark

is a recently developed algorithm for the clusterwise regression problem, while the last two

benchmarks come from advanced machine learning. For any benchmark, we use the same train-

validate-test split as for our linear CWR algorithm. In particular, we fit each method to the
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train data, tune the model’s tuning parameters on the validation data, and analyze the results

on the test data.

Regularized Linear Regression (LASSO): Regularized linear regression, specifically LASSO,

is closely related to our linear CWR algorithm. While our linear CWR algorithm dynamically

clusters and regresses sales for different products, another simpler approach is to assume that

all products belong to the same single cluster. In the linear case, this simplifies our problem to

the well understood LASSO regression. Therefore, we consider LASSO regression as one of the

benchmark algorithms. In our application, we tune the LASSO regularization parameter.

Cluster-Then-Regress (CTR): The Cluster-Then-Regress algorithm follows a stepwise

method to clustering and regression. In the first step, we can cluster products using any clus-

tering method such as k-means or randomized clustering which allows us to use the multiple

restart method. After clustering, one can then fit separate demand models such as LASSO re-

gression to each cluster. The forecast comes from weighting the forecast of each cluster, similar

to our linear CWR algorithm. We consider this algorithm as one of the benchmark algorithms,

because both our industry partners used slight modifications of this stepwise approach. In

applying this model, we initialize using randomized clustering, where we tune the seed of this

initial clustering, as well as the number of clusters, and the LASSO regularization parameter.

Column-Generation for Clusterwise Regression (CGCR): Clusterwise Regression is a

problem for which algorithms have been developed previously. Recently, Park et al. (2016) have

developed a heuristic method that uses column-generation to solve the linear CWR problem

without regularization. For a fair assessment, we adapt their algorithm to account for regu-

larization. We include this column-generation based algorithm in order to compare our linear

CWR algorithm against previously developed methods for our problem. Our application tunes

the number of clusters, and the LASSO regularization parameter.

Random Forests (RF): The Random Forest algorithm is a machine learning method that

fits many randomized regression trees to a set of data. Each regression tree takes a random

subset of the data and features, and determines the best way to split this data into groups that

have as similar outcomes as possible. To produce a forecast, the average is taken of each tree’s

forecast for the new product. We compare against this algorithm due to its historical strengths
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in practice. In our application, we tune the number of trees, the maximum depth of each

tree, the minimum number of observations per leaf, and the minimum number of observations

required to split a node.

Gradient Boosted Trees (GBT): The Gradient Boosted Tree algorithm is another ap-

proach from machine learning that successively refits regression trees to a set of data. Initially,

a regression tree is fit and the error for each data point is computed. Afterwards, iteratively, new

regression trees are fit that specifically weigh the previously erroneous data points more heav-

ily. The new product’s forecast comes from averaging the successively built trees. We use this

algorithm as a benchmark as it is an advanced machine learning algorithm. In the application

of this model, we tune the maximal depth of the tree, and the stepsize of the algorithm.

2.5.2 Data Generation

Next, we describe the data that was generated for the computational experiments. In our

computations, we consider multiple parameter settings. For the number of past products n we

experiment with the values 100 and 200, while we consider 5 and 10 for the number of features

m and number of clusters `. The sales of each product i are generated according to the initially

proposed sales generating model in (2.4):

yi =
∑̀
k=1

zik

m∑
j=1

βkjxij + εi, i = 0, 1, . . . , n,

where the errors of the model εi are drawn from a normal distribution with mean 0 and standard

deviation 50, the product features xij are drawn from a uniform distribution on [0, 1], the cluster

regression parameters βkj are fixed, and the cluster assignments zik are such that each cluster

contains a 1/` fraction of the products. For each parameter setting, we draw 1000 random

instances of the dataset, run the algorithms over each dataset, and average the results. In these

parameter settings, we fix the cluster regression parameters to be the same across instances,

which allows us to specifically generate sparse models (i.e., some of the βkj are 0) in accordance

with our initial modeling assumptions.

2.5.3 Results

As our first forecasting metric, we use the Mean Absolute Percentage Error (MAPE). The

MAPE measures the relative difference between the actual and predicted sales, which means
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that a lower MAPE implies better performance. If we assume that there are n products in our

test set and that yi denotes the actual sales while ŷi denotes the predicted sales for the i’th

product, then the MAPE of a set of predictions is given by:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣. (2.13)

In Table 2.2, we present the MAPE of our algorithm as well as the benchmark algorithms when

we fix the number of iterations and the number of restarts of the CWR algorithm to both equal

10.

Table 2.2: MAPE comparison of algorithms on experimental settings

n m ` CWR LASSO CTR CGCR RF GBT

100 5 5 0.1782 0.2026 0.1870 0.1811 0.2146 0.1889
100 10 10 0.1200 0.1561 0.1396 0.1622 0.1356 0.1356
200 5 5 0.1215 0.1494 0.1382 0.1297 0.1371 0.1249
200 10 10 0.1122 0.1645 0.1453 0.1438 0.1508 0.1253

We note that all algorithms have a small MAPE on these computational experiments, indi-

cating their small error and good performance. Due to the structured sales generating model,

we would expect statistics and machine learning algorithms to yield strong results. However,

we note that our algorithm performs best among all algorithms. In particular, it outperforms

random forests and gradient boosted trees, which are advanced machine learning tools for non-

linear environments such as the one we encounter. This shows that by specifically exploiting

the model structure, as our algorithm does, we can obtain significantly better forecasts. Fur-

thermore, the CWR model is inspired from the current industry practice and the CWR which

makes it easier to use by industry practitioners. Additionally, we observe that our linear CWR

algorithm outperforms previously developed methods for the linear CWR problem without reg-

ularization, particularly the CGCR algorithm adapted to regularization.

For the second forecasting metric, we use the Weighted Mean Absolute Percentage Error

(WMAPE). The WMAPE is similar to the MAPE except for the different weighing of observa-

tions. Instead of weighing each product in the test set equally, the WMAPE weighs products

based on the magnitude of their sales. This means that products with higher sales have a higher

weight. Using the same notation as before, the WMAPE of a prediction method is given by:

WMAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ yi∑n
i=1 yi

. (2.14)
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In Table 2.3, we show the WMAPE of our algorithm against the benchmark algorithms when

the number of iterations and the number of restarts of the linear CWR algorithm are also fixed

to 10.

Table 2.3: WMAPE comparison of algorithms on experimental settings

n m ` CWR LASSO CTR CGCR RF GBT

100 5 5 0.1065 0.1236 0.1147 0.1135 0.1180 0.1166
100 10 10 0.0982 0.1264 0.1140 0.1319 0.1170 0.1087
200 5 5 0.1010 0.1237 0.1144 0.1080 0.1088 0.1036
200 10 10 0.0844 0.1253 0.1099 0.1106 0.1003 0.0888

In this table, we see that each algorithm has a small WMAPE in our experiments, which

indicates a strong performance for any algorithm. This confirms the previous results, yet we

see that the WMAPE is generally smaller than the MAPE. This indicates that our models have

an especially strong forecasting performance for high selling products, which are often deemed

more important.

Next, we test how robust our algorithm is to changes in its parameters. Table 2.4 presents

both the MAPE and WMAPE of our algorithm when we vary both the number of iterations

and the number of restarts of the linear CWR algorithm to be 5, 10, and 20.

Table 2.4: MAPE and WMAPE of CWR algorithm on experimental parameters

Iterations Restarts MAPE WMAPE

5 5 0.1854 0.1073
5 10 0.1774 0.1065
5 20 0.1819 0.1053
10 5 0.1753 0.1070
10 10 0.1782 0.1065
10 20 0.1806 0.1056
20 5 0.1754 0.1071
20 10 0.1780 0.1065
20 20 0.1805 0.1055

From this table, we observe that the results of our algorithm are robust to changes to its

parameters. Though the MAPE does not change predictably, we observe a slight improvement

in the WMAPE whenever the number of restarts increases. The running time of the algorithm

increases as these parameters increase, and hence, these results indicate that a good performance

can be obtained without the need for a long running time.
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2.6 Case Study: Johnson & Johnson Consumer Companies Inc.

In this section, we give a detailed description of our collaboration with Johnson & Johnson

Consumer Companies Inc., one of the largest consumer goods manufacturers in the world. While

we introduced the collaboration in Section 5.2 briefly, we will give an extensive description of

the data collected, segments tested and performance metrics used. Afterwards, we discuss the

forecasting tool that was developed for our collaborators.

2.6.1 Data Description

As mentioned before, Johnson & Johnson is highly invested in innovation of its product seg-

ments and releases new products frequently. As our partner, they provided us with sales and

feature data of new products released in the past. In our analysis, we focus on data from prod-

uct segments where most of the innovation occurred (i.e., the highest number of new product

releases). This leads us to the following categories of products: facial care, body care, and baby

care products.

For each category, we have access to monthly sales and feature data for a period of roughly 4

years. Through interactions with our industry partner, we realized that a product is considered

new for the first 12 months of its lifecycle. Additionally, products that last less than four months

are characterized as promotional versions of existing products. Thus, we subset our dataset to

first remove products with a lifecycle of less than four months. We further subset the data

to include only the first twelve months of a product’s sales information. Next, we split the

dataset into a train set containing the new products in the first two years of data, a validation

set containing the new products in the third year of data, and a test set containing the new

products in the last year of data. Then, we fit our prediction models using the linear CWR

algorithm on the train set, use the validation set to tune the model parameters (regularization

parameter λ and number of clusters `), and analyze the models on the test set.

In our application, we use the logarithm of sales as our dependent variable and all features

as our independent variables. In a preliminary analysis, we compared fitting sales as well as

the logarithm of sales on the features, which showed substantially improved forecasting metrics

when taking the logarithm of sales. As an additional benefit, this means that sales are an

exponential function of the features, and hence, the sales forecasts are non-negative. Another

interesting fact is that while the provided datasets contain sales data for the manufacturer’s
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brand, they also contain sales data for competing brands. This means, we can train our model

on both the manufacturer’s as well as the competitors’ data and then test models on collaborator

specific brand data.

The available features include product features such as average unit price, brand, claimed

benefits, form (e.g., lotion, foam, powder, etc.), and time-based features such as the time since

product introduction, month, season. Additionally, we have distribution information such as

%ACV (Percentage of All Commodity Volume), number of stores selling the product, and we

have promotion information such as usage of display promotions for the product, usage of feature

promotions for the product.

It is important to note how we engineer our features related to promotion and distribution.

While promotion and distribution are important drivers of product sales, these decisions are

possibly dependent on customer response. For instance, a well received new product might

see a jump in promotion budget and increased distribution amongst a variety of channels. In

contrast, firms might reduce spending on promotion and distribution for products that have

seen tepid response from consumers. As a consequence, correctly assessing promotion and

distribution features for new products is almost as hard as forecasting sales for the new product

itself. Therefore, we engineer features that give a rough indication of the level of promotion or

distribution that a product receives. It is often easier to assess whether the budget for a new

product will be low or high compared to the budgets that were allocated to past products.

Consider the display promotion feature, which describes whether the product in question

was promoted using a display promotion in a given month. Given that we have historical feature

and sales data, we have full hindsight information on when this product was promoted during

the months after introduction. Clearly, monthly prediction of such features is hard. Hence,

we will transform this feature into a new feature describing the intensity of display promotion

usage over the first year of introduction. For each product we check whether it falls below the

33rd percentile, between the 33rd and 67th percentile, or above the 67th percentile of display

promotion usage. Depending on where the product falls, we classify it as Low/Medium/High

on the intensity of display promotions used. Thus, we have simplified the task of predicting

monthly display based promotion to calculating an yearly promotion intensity indicator. Not

only does this transformation let us use feature information that could not have been directly

used, it can also provide insights on how display intensity can impact sales of the new product.

Furthermore, this is a more stable feature in comparison to monthly features that can change
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over the course of a product’s introduction and hence might be hard to predict. We use similar

transformation for all features related to promotion and distribution.

2.6.2 Results

To compare the performance of our linear CWR algorithm against the natural benchmark

algorithms from practice, we fit these algorithms to the train data, tune their parameters on

the validation data, and compute the forecasting metrics on the test data. Table 2.5 presents

WMAPE of each algorithm when applied to the three different segments.

Table 2.5: WMAPE comparison of algorithms on segments of consumer goods products

Segment CWR LASSO CTR CGCR RF GBT

Baby Care 0.5869 0.6616 0.7925 1.7055 0.6846 0.6119
Body Care 0.4976 0.6592 0.5759 0.6339 0.5942 0.5894
Facial Care 0.4704 0.5174 0.5213 3.7895 0.4957 0.5117

Not only do we notice that our method yields the best performance, we also see that it

beats the other methods by a considerable margin. Furthermore, the WMAPE lie below 0.6

regardless of the dataset considered. In turn, this indicates that our method is robust to

different data settings. We explore the question of robustness further in Section 2.7. The two

benchmarks that we consider are inspired by the current industry practice of either fitting a

single regression model to the sales of products introduced in the past or using a two step

approach of sequentially clustering products and fitting demand models. Our results clearly

show that a simultaneous approach of jointly clustering and regressing results in considerable

improvements in sales estimation.

As an additional forecasting metric, we consider the Bull’s Eye Metric, which is commonly

used by our partners. This measure compares the predicted sales with the actual sales by

bucketing products together based on their percent accuracy with respect to the actual sales.

Table 2.6 shows the Bull’s Eye metric for the CWR method on six different datasets. The end

points for different buckets have been created based on consultation with our industry partner.

Table 2.6: Bull’s Eye Metric of CWR algorithm on segments of consumer goods products

Segment <50% 50-70% 70-130% 130-150% >150%

Baby Care 2 1 11 2 0
Body Care 3 7 11 1 3
Facial Care 4 6 19 2 9

The number 11 in the 70-130 bucket for Baby Care represents that our predictions were
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within 70-130% of the actual sales for 11 out of the 16 products in the dataset. Ideally, the

higher the number in the middle bucket, the better the prediction method is. Notice that most

of the predictions lie within the desired bracket of 70-130%, which demonstrates the accuracy

of our method for each individual product in these subsegments.

2.6.3 Implementation in Practice

Next, we describe the pilot implementation of the CWR algorithm at Johnson & Johnson. Our

pilot tool was created with the objective of simplifying the sales forecasting of new products for

managers while giving fast, easy to use and reliable sales predictions. In Figure 2.3, we describe

the workflow of the pilot tool. We first apply the CWR algorithm on historical sales data of

comparable products to create optimal clusters and prediction models. Then, we use Excel to

make a user friendly prediction interface which can be used to make final sales predictions. In

the first step, the CWR model works with high dimensional feature data and selects important

features for sales predictions. Afterwards, we use these features in the Excel tool as input to

make predictions. Figure 2.4 shows a screen-shot of the Excel tool.

Figure 2.3: Workflow for live pilot testing

In this section we describe user related inputs that are needed for the Excel tool. The user

is asked to provide new product feature information such as the brand, packaging size and unit

price of the new product. We provide a range of values that all the input product features

can take. This serves dual purposes: first, to provide the user an idea of the kind of values

that the input can take, and second, to make sure that our predictions stay reliable and we

do not extrapolate our linear models. We also ask the user to provide information on product

marketing and the promotion budget as the marketing effort is a decision that can have a large

impact on the eventual sales of the new product.

This includes deciding on display promotions, feature promotions, and display and feature
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Figure 2.4: Screenshot of the Excel tool developed for live testing

promotions which includes periods when a product is promoted both through display as well as

feature advertising. As explained in the previous section, all these are transformed into intensity

indicator variables that compare the level of promotion or distribution in comparison to other

products within the same brand. The user inputs Low/Medium/High levels for these features

comparing the anticipated levels with those of existing products within the same brand. Similar

transformation is also done for distribution related features such as %ACV and others.

We next use the feature information and the already generated clusters and prediction

models to make monthly predictions. Note that our task here is to make accurate first year

predictions. Nevertheless, in order to make the predictions more interpretable, our tool also

illustrates the monthly predictions generated from our model (Figure 2.5).

Figure 2.5: Sample output for a new product with user input features. The model predicts that the sales
will slow down as we come close to the end of the introductory period.

As a by product of our prediction model, we also create a list of the predictors that are

most predictive of sales for the given input feature values of the new product. This is created
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Figure 2.6: Sample output comparing predicted and actual monthly sales

by evaluating the derivative of the forecasting model (2.9) presented in Section 2.4. This list

is useful in guiding important decisions such as pricing or packaging of the product before its

introduction to the market. We note that the Excel tool created is very simple to use, descriptive

and can guide decision making in various operations issues in new product management. While

the creation of cluster and regression model is computationally more expensive, given that new

product sales data is weekly. Hence, the Excel tool can be very easily updated to incorporate

new features and data into the prediction interface.

We asked our industry partner to use the pilot tool and present some of the feedback as

well as results from the live pilot. In Figure 2.5 we present an illustrative figure created from

the Excel tool. Note that since these product features do not exist in the market yet it was

impossible to compare our predictions with actual numbers. Hence, our industry partner tried

other products from the test set and compared the final prediction numbers in order to see how

well the tool and the models were performing.

Figure 2.6 presents results from one such product. Our prediction model performed well on

the product with an error of only 1% of overall sales. We also received positive feedback on

other features of the tool such as the list of important predictors and the movement of sales

with changing promotion or distribution levels. Overall, our industry partners appreciated the

ease of use of the tool as well as a simplified approach of incorporating new data generated

through product releases in the model. In all, the feedback that we received on the tool was

very positive and the industry partner is now trying to incorporate the tool in the decision

making and sales estimation process of new products.
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2.7 Case Study: Fashion Retailer

In order to test the robustness of our approach, and test whether the results of this work applies

to other retail settings, we also collaborated with a fashion retailer. Our industry partner is

one of the world’s largest fashion retailer. As in the previous case, this fashion retailer also

invests considerable resources in new product releases. In what follows, we describe the data

and results for forecasting sales of new products for the fast fashion retailer.

2.7.1 Data Description

The fast fashion retail industry is characterized by fast paced innovation and product with very

short life cycle. For instance, Gallien et al. (2015) states that in 2011, Zara released 8000 new

fashion products in the span of just one year. In this case, the products sold by our partner

also have a very short life cycle (at most 6 weeks).

Our industry partner classifies products into segments and subsegments (e.g., a particular

subsegment could include all female trousers or all male dress shirts). As with the consumer

goods data, we estimated and tested our model at the subsegment level. For each product we

again divided the data into train-validation-test set. As noted in Section 5.2, we have access

data for different subsegments between April to June of 2016. In consultation with our industry

partners, we realized that a product in fast fashion retail is considered new for the first half

week of its sales and hence we subset the data to only include the first half week of sales for

each product.

We are provided with sales and feature data from different new products at the store level.

For each product, we have access to product features such as color, price, segment, subsegment,

and time-based features such as the time since introduction, seasonality.Moreover, we have

distribution information such as total capacity allocated, store capacity allocated, and we have

e-commerce data such as number of user clicks on the product, number of times the product

was added in the cart, number of times the product was bought online, and other online specific

features. We used all these features as potential predictors of sales of the new product.

2.7.2 Results

In Table 2.7, we compare the results of our linear CWR algorithm against the two benchmark

methods on two different segments of fashion products. We present the forecasting metrics at
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both the individual store level as well as an aggregated store level (where sales of products

are aggregated over stores). Both these prediction numbers are important for the firm and

can aid different decision making problems. For instance, the aggregate predictions can guide

overall initial production of the product while the individual store level prediction can guide

the distribution of the product.

Table 2.7: WMAPE comparison of algorithms on segments of fashion products

Segment Store Level CWR LASSO CTR

1
Individual 0.553 0.699 1.031
Aggregated 0.291 0.463 0.824

2
Individual 0.660 0.777 1.598
Aggregated 0.370 0.587 0.895

In all instances, our method considerably improves over the other benchmarks. Moreover,

this improvement is independent of the aggregation level as well as the subsegment chosen. We

note that in absolute terms, predictions at the aggregate level are better. This is expected as

prediction at aggregated level is easier than individual store level due to higher variance from

store to store.

2.8 Conclusion

In this chapter, we propose a new sales forecasting model that can accurately predict sales of

new products by efficiently using available data on comparable products. The forecasting model

proposed is general as it is able to estimate a variety of standard demand models for unknown

clusters of products. Specifying the linear case for our real-world implementation, we develop

an optimization algorithm to forecast new product sales. This algorithm estimates the optimal

forecasting model with analytical guarantees on its forecasting error, but it is computationally

hard to run. Hence, we also propose an approximate version of the algorithm that is scalabale

due to its lower running time. We then use our algorithm to forecast sales of new products

for a consumer goods manufacturer and a fashion retailer. We show robust results on real

datasets from various segments and subsegments that significantly improve the prediction error

over other benchmarks. Finally, we create and test an Excel pilot tool with our consumer

goods manufacturing partner, and observe that its accurate, robust, and fast prediction process

considerably simplifies the task of forecasting new product sales for practitioners.
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Chapter 3

Personalized Product

Recommendations with Customer

Disengagement

3.1 Introduction

Personalized customer recommendations are a key ingredient to the success of platforms such

as Netflix, Amazon and Expedia. Product variety has exploded, catering to the heterogeneous

tastes of customers. However, this has also increased search costs, making it difficult for cus-

tomers to find products that interest them. Platforms add value by learning a customer’s

preferences over time, and leveraging this information to match her with relevant products.

The personalized recommendation problem is typically formulated as an instance of collab-

orative filtering (Sarwar et al. 2001, Linden et al. 2003). In this setting, the platform observes

different customers’ past ratings or purchase decisions for random subsets of products. Col-

laborative filtering techniques use the feedback across all observed customer-product pairs to

infer a low-dimensional model of customer preferences over products. This model is then used

to make personalized recommendations over unseen products for any specific customer. While

collaborative filtering has found industry-wide success (Breese et al. 1998, Herlocker et al. 2004),

it is well-known that it suffers from the “cold start” problem (Schein et al. 2002). In partic-

ular, when a new customer enters the platform, no data is available on her preferences over

any products. Collaborative filtering can only make sensible personalized recommendations for

the new customer after she has rated at least O(d log n) products, where d is the dimension

61



CHAPTER 3. PERSONALIZED PRODUCT RECOMMENDATIONS WITH CUSTOMER
DISENGAGEMENT

of the low-dimensional model learned via collaborative filtering and n is the total number of

products. Consequently, bandit approaches have been proposed in tandem with collaborative

filtering (Bresler et al. 2014, Li et al. 2016, Gopalan and Maillard 2016) to tackle the cold start

problem using a combination of exploration and exploitation. The basic idea behind these al-

gorithms is to sequentially offer random products to a customer during an exploration phase,

learn the customer’s low-dimensional preference model, and then exploit this model to make

good recommendations.

A key assumption underlying this literature is that the customer is patient, and will remain

on the platform for the entire (possibly unknown) time horizon T regardless of the goodness

of the recommendations that have been made thus far. However, this is a tenuous assumption,

particularly when customers have strong outside options (e.g., a Netflix user may abandon

the platform for Hulu if they receive a series of bad entertainment recommendations). We

demonstrate this effect using customer panel data on a series of ad campaigns from a major

commercial airline. Specifically, we find that a customer is far more likely to click on a suggested

travel product in the current ad campaign if the previous ad campaign’s recommendation was

relevant to her. In other words, customers may disengage from the platform and ignore new

recommendations entirely if past recommendations were irrelevant. In light of this issue, we

introduce a new formulation of the bandit product recommendation problem where customers

may disengage from the platform depending on the rewards of past recommendations, i.e., the

customer’s time horizon T on the platform is no longer fixed, but is a function of the platform’s

actions thus far.

Customer disengagement introduces a significant difficulty to the dynamic learning or bandit

literature. We prove lower bounds that show that any algorithm in this setting achieves regret

that scales linearly in T (the customer’s time horizon on the platform if they are given good

recommendations). This hardness result arises because no algorithm can satisfy every customer

early on when we have limited knowledge of their preferences; thus, no matter what policy

we use, at least some customers will disengage from the platform. The best we can hope to

accomplish is to keep a large fraction of customers engaged on the platform for the entire time

horizon, and to match these customers with their preferred products.

However, classical bandit algorithms perform particularly badly in this setting – we prove

that every customer disengages from the platform with probability one as T grows large. This

is because bandit algorithms over-explore: they rely on an early exploration phase where cus-
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tomers are offered random products that are likely to be irrelevant for them. Thus, it is highly

probable that the customer receives several bad recommendations during exploration, and dis-

engages from the platform entirely. This exploration is continued for the entire time horizon,

T , under the principal of optimism. This is not to say that learning through exploration is a

bad strategy. We show that a greedy exploitation-only algorithm also under-performs by either

over-exploring through natural exploration, or under-exploring by getting stuck in sub-optimal

fixed points. Consequently, the platform misses out on its key value proposition of learning

customer preferences and matching them to their preferred products.

Our results demonstrate that one needs to more carefully balance the exploration-exploitation

tradeoff in the presence of customer disengagement. We propose a simple modification of clas-

sical bandit algorithms by constraining the space of possible product recommendations upfront.

We leverage the rich information available from existing customers on the platform to identify

a diverse subset of products that are palatable to a large segment of potential customer types;

all recommendations made by the platform for new customers are then constrained to be in this

set. This approach guarantees that mainstream customers remain on the platform with high

probability, and that they are matched to their preferred products over time; we compromise

on tail customers, but these customers are unlikely to show up on the platform, and catering

recommendations to them endangers the engagement of mainstream customers. We formulate

the initial optimization of the product offering as an integer program. We then prove that

our proposed algorithm achieves sublinear regret in T for a large fraction of customers, i.e., it

succeeds in keeping a large fraction of customers on the platform for the entire time horizon,

and matches them with their preferred product. Numerical experiments on synthetic and real

data demonstrate that our approach significantly improves both regret and the length of time

that a customer is engaged with the platform compared to both classical bandit and greedy

algorithms.

3.1.1 Main Contributions

We highlight our main contributions below:

1. Evidence of disengagement: We first present empirical evidence of customer disengage-

ment using panel data from a sequence of ad campaigns from a major airline carrier. Our

results strongly suggest that customers decide to stay on the platform based on the quality

of recommendations.
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2. Disengagement model: A linear bandit is the classical formulation for learning product

recommendations for new customers. Motivated by our empirical results on customer

disengagement, we propose a novel formulation, where the customer’s horizon length is

endogenously determined by past recommendations, i.e., the customer may exit if given

poor recommendations.

3. Hardness & classical approaches: We first show that no algorithm can perform well (i.e.,

achieve sublinear regret) on every customer in this setting; however, we can hope to

perform well on a subset of customers. Unfortunately, we show that existing state-of-art

classical bandit and greedy algorithms over-explore and fail to keep any customer engaged

on the platform, suggesting that platforms should be careful to avoid over-exploration

when learning personalized recommendations.

4. Algorithm: We propose the Constrained Bandit algorithm, which modifies standard ban-

dit strategies by constraining the product set upfront using a novel integer programming

formulation. The integer program leverages information on other customers on the plat-

form to select a subset of products that are likely to be relevant for the incoming customer.

Unlike classical approaches, the Constrained Bandit achieves sublinear regret for a signif-

icant fraction of customers.

5. Numerical experiments: Extensive numerical experiments on synthetic and real world

movie recommendation data (we use the publicly available MovieLens data by Harper

and Konstan 2016) demonstrate that the Constrained Bandit significantly improves both

regret and the length of time that a customer is engaged with the platform. In particular,

our approach increases mean customer engagement time on MovieLens by up to 80% over

classical bandit and greedy algorithms.

3.1.2 Related Literature

Personalized decision-making is increasingly a topic of interest, and a central problem is that

of learning customer preferences and optimizing the resulting recommendations. However, cus-

tomer disengagement can introduces significant difficulty to traditional learning algorithms that

have been proposed in the literature.
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Personalized Recommendations: The value of personalizing the customer experience has

been recognized for a long time (Surprenant and Solomon 1987). We refer the readers to Murthi

and Sarkar (2003) for an overview of personalization in operations and revenue management

applications. Recently, Besbes et al. (2015), Demirezen and Kumar (2016), and Farias and Li

(2017) have proposed novel methods for personalization in online content and product recom-

mendations. We take the widely-used collaborative filtering framework (Sarwar et al. 2001,

Su and Khoshgoftaar 2009) as our point of departure. However, all these methods suffer from

the cold start problem (Schein et al. 2002). When a new customer enters the platform, no

data is available on her preferences over any products, making the problem of personalized

recommendations challenging.

Bandits: Consequently, bandit approaches have been proposed in tandem with collaborative

filtering (Bresler et al. 2014, Li et al. 2016, Gopalan and Maillard 2016) to tackle the cold

start problem using a combination of exploration and exploitation. The basic idea behind these

algorithms is to offer random products to customers during an exploration phase, learn the cus-

tomer’s preferences over products, and then exploit this model to make good recommendations.

Relatedly, Lika et al. (2014) and Wei et al. (2017) use machine learning techniques such as sim-

ilarity measures and deep neural networks to alleviate the cold start problem. In this chapter,

we consider the additional challenge of customer disengagement, which introduces a significant

difficulty to the dynamic learning or bandit literature. In fact, we show that traditional bandit

approaches over-explore, and fail to keep any customer engaged on the platform in the presence

of disengagement.

At a high level, our work also relates to the broader bandit literature, where a decision-

maker must dynamically collect data to learn and optimize an unknown objective function.

For example, many have studied the problem of dynamically pricing products with unknown

demand (see, e.g., den Boer and Zwart 2013, Keskin and Zeevi 2014). Agrawal et al. (2016)

analyze the problem of optimal assortment selection with unknown user preferences. Johari

et al. (2017) learn to match heterogeneous workers (supply) and jobs (demand) on a platform.

Kallus and Udell (2016) use online learning for personalized assortment optimization. These

studies rely on optimally balancing the exploration-exploitation tradeoff under bandit feedback.

Relatedly, Shah et al. (2018) study bandit learning where the platform’s decisions affects the

arrival process of new customers; interestingly, they find that classical bandit algorithms can
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perform poorly due to under-exploration. Closer to our findings, Russo and Van Roy (2018)

argue that bandit algorithms can over-explore when an approximately good solution suffices,

and propose constraining exploration to actions with sufficiently uncertain rewards. A key

assumption underlying this literature is that the time horizon T is fixed and independent of

the goodness of the decisions made by the decision-maker. We show that this is a tenuous

assumption for recommender systems, since customers may disengage from the platform when

offered poor recommendations. Thus, the customer’s time horizon T is endogenously determined

by the platform’s actions, necessitating a novel analysis.

Customer Disengagement: Customer disengagement and its relation to service quality have

been extensively studied. For instance, Venetis and Ghauri (2004) use a structural model to

establish that service quality contributes to long term customer relationship and retention.

Bowden (2009) models the differences in engagement behavior across new and repeat customers.

Sousa and Voss (2012) study the impact of e-service quality on customer behavior in multi-

channel services.

Closer to our work, Fitzsimons and Lehmann (2004) use a large-scale experiment on college

students to demonstrate that poor recommendations can have a considerably negative impact

on customer engagement. We find similarly that poor recommendations result in customer

disengagement on airline campaign data. Relatedly, Tan et al. (2017) empirically find that

increasing product variety on Netflix increases demand concentration around popular products;

this is surprising since one may expect that increasing product variety would cater to the

long tail of customers, enabling more nuanced customer-product matches. However, increasing

product variety also increases customer search costs, which may cause customers to cluster

around popular products or disengage from the platform entirely. Our proposed algorithm, the

Constrained Bandit, makes a similar tradeoff — we constrain our recommendations upfront to

a set of popular products that cater to mainstream customers. This approach guarantees that

mainstream customers remain engaged with high probability; we compromise on tail customers,

but these customers are unlikely to show up, and catering recommendations to them endangers

the engagement of mainstream customers.

There are also several papers that study service optimization to improve customer engage-

ment. For example, Davis and Vollmann (1990) develop a framework for relating customer

wait times with service quality perception, while Lu et al. (2013) provide empirical evidence
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of changes in customer purchase behavior due to wait times. Kanoria et al. (2018) model

customer disengagement based on the goodwill model of Nerlove and Arrow (1962). In their

work, a service provider has two options: a low-cost service level with high likelihood of cus-

tomer abandonment, or a high-cost service level with low likelihood of customer abandonment.

Similarly, Aflaki and Popescu (2013), model the customer disengagement decision as a deter-

ministic known function of service quality. None of these papers study learning in the presence

of customer disengagement.

A notable exception is Johari and Schmit (2018), who study the problem of learning a

customer’s tolerance level in order to send an appropriate number of marketing messages without

creating customer disengagement. Here, the decision-maker’s objective is to learn the customer’s

tolerance level, which is a scalar quantity. Similar to our work, the customer’s disengagement

decision is endogenous to the platform’s actions (e.g., the number of marketing messages).

However, in our work, we seek to learn a low-dimensional model of the customer’s preferences,

i.e., a complex mapping of unknown customer-specific latent features to rewards based on

product features. The added richness in our action space (product recommendations rather

than a scalar quantity) necessitates a different algorithm and analysis. Our work bridges the gap

between state-of-the-art machine learning techniques (collaborative filtering and bandits) and

the extensive modeling literature on customer disengagement and service quality optimization.

3.2 Motivation

We use customer panel data from a major commercial airline, obtained as part of client en-

gagement at IBM, to provide evidence for customer disengagement. The airline conducted a

sequence of ad campaigns over email to customers that were registered with the airline’s loyalty

program. Our results suggest that a customer indeed disengages with recommendations if a

past recommendation was irrelevant to her. This finding motivates our problem formulation

described in the next section.

Data. The airline conducted 7 large-scale non-targeted ad campaigns over the course of a

year. Each campaign involved emailing loyalty customers destination recommendations hand-

selected by a marketing team at discounted rates. Importantly, these recommendations were

made uniformly across customers regardless of customer-specific preferences.

Our sample consists of 130,510 customers. For each campaign, we observe whether or not
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the customer clicked on the link provided in the email after viewing the recommendations. We

assume that a click signals a positive reaction to the recommendation, while no click could

signal either (i) a negative reaction to the recommendation, or (ii) that the customer is already

disengaged with the airline campaign and is no longer responding to recommendations.

Empirical Strategy. Since recommendations were not personalized, we use the hetero-

geneity in customer preferences to understand customer engagement in the current campaign as

a function of the customer-specific quality of recommendations in previous campaigns. To this

end, we use the first 5 campaigns in our data to build a score that assesses the relevance of a

recommendation to a particular customer. We then evaluate whether the quality of the recom-

mendation in the 6th (previous) campaign affected the customer’s response in the 7th (current)

campaign after controlling for the quality of the recommendation in the 7th (current) campaign.

Our reasoning is as follows: in the absence of customer disengagement, the customer’s response

to a campaign should depend only on the quality of the current campaign’s recommendations; if

we instead find that the quality of the previous campaign’s recommendations plays an additional

negative role in the likelihood of a customer click in the current campaign, then this strongly

suggests that customers who previously received bad recommendations have disengaged from

the airline campaigns.

We construct a personalized relevance score of recommendations for each customer using

click data from the first 5 campaigns. This score is trained using the standard collaborative

filtering package available in Python, and achieves an in-sample RMSE of 10%. We note that a

version of this score was later implemented in a live pilot by the airline for making personalized

recommendations to customers in similar ad campaigns.

Regression Specification. We perform our regression over the 7th (current) campaign’s

click data. Specifically, we wish to understand if the quality of the recommendation in the 6th

(previous) campaign affected the customer’s response in the current campaign after controlling

for the quality of the current campaign’s recommendation. For each customer i, we use the

collaborative filtering model to evaluate the relevance score previ of the previous campaign’s

recommendations and the relevance score curri of the current campaign’s recommendation. We

then perform a simple logistic regression as follows:

yi = f(β0 + β1 · previ + β2 · curri + εi) ,
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where f is the logistic function and yi is the click outcome for customer i in the current cam-

paign, and εi is i.i.d. noise. We fit an intercept term β0, the effect of the previous campaign’s

recommendation quality on the customer’s click likelihood β1, and the effect of the current

campaign’s recommendation quality on the customer’s click likelihood β2. We expect β2 to be

positive since better recommendations in the current campaign should yield higher click likeli-

hood in the current campaign. Our null hypothesis is that β1 = 0, and a finding that β1 < 0

would suggest that customers disengage from the campaigns if previous recommendations were

of poor quality.

Results. Our regression results are shown in Table 3.1. As expected, we find that customers

are more likely to click if the current campaign’s recommendation is relevant to the customer,

i.e., β2 > 0 (p-value = 0.02). More importantly, we find evidence for customer disengagement

since customers are less likely to click in the current campaign if the previous campaign’s recom-

mendation was not relevant to the customer, i.e., β1 > 0 (p-value = 7×10−9). In fact, our point

estimates suggest that the disengagement effect dominates the value of the current campaign’s

recommendation since the coefficient β1 is roughly three times the coefficient β2. In other

words, it is much more important to have offered a relevant recommendation in the previous

campaign (i.e., to keep customers engaged with the campaigns) compared to offering a relevant

recommendation in the current campaign to get high click likelihood. These results motivate

the problem formulation in the next section explicitly modeling customer disengagement.

Variable Point Estimate Standard Error

(Intercept) −3.62*** 0.02
Relevance Score of Previous Ad Campaign 0.06*** 0.01
Relevance Score of Current Ad Campaign 0.02** 0.01

*p < 0.10, **p < 0.05, ***p < 0.01

Table 3.1: Regression results from airline ad campaign panel data.

3.3 Problem Formulation

We embed our problem within the popular product recommendation framework of collaborative

filtering (Sarwar et al. 2001, Linden et al. 2003). In this setting, the key quantity of interest is

a matrix A ∈ Rm×n, whose entries Aij are numerical values rating the relevance of product j

to customer i. Most of the entries in this matrix are missing since a typical customer has only

evaluated a small subset of available products. The key idea behind collaborative filtering is to
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use a low-rank decomposition

A = U>V ,

where U ∈ Rm×d, V ∈ Rd×n for some small value of d. The decomposition can be interpreted

as follows: each customer i ∈ {1, ...,m} is associated with some low-dimensional vector Ui ∈ Rd

(row i of the matrix U) that models her preferences; similarly, each product j ∈ {1, ..., n} is

associated with a low-dimensional vector Vj ∈ Rd (given by column j of the matrix V ) that

models its attributes. Then, the relevance or utility of product j to customer i is simply U>i Vj .

We refer the reader to Su and Khoshgoftaar (2009) for an extensive review of the collaborative

filtering literature. We assume that the platform has a large base of existing customers from

whom we have already learned good estimates of the matrices U and V . In particular, all

existing customers are associated with known vectors {Ui}mi=1, and similarly all products are

associated with known vectors {Vj}nj=1.

Now, consider a single new customer that arrives to the platform. She forms a new row in A,

and all the entries in her row are missing since she is yet to view any products. Like the other

customers, she is associated with some vector U0 ∈ Rd that models her preferences, i.e., her

expected utility for product j ∈ {1, ..., n} is U>0 Vj . However, U0 is unknown because we have no

data on her product preferences yet. We assume that U0 ∼ P, where P is a known distribution

over new customers’ preference vectors; typically, P is taken to be the empirical distribution of

known preference vectors associated with the existing customer base {U1, ..., Um}. For ease of

exposition and analytical tractability, we will take P to be a multivariate normal distribution

N (0, σ2Id) throughout the rest of the paper.

At each time t, the platform makes a single product recommendation at ∈ {V1, ..., Vn}, and

observes a noisy signal of the customer’s utility

U>0 at + εt ,

where εt is zero-mean ξ-subgaussian noise. For instance, platforms often make recommen-

dations through email marketing campaigns (see Figure 3.1 for example emails from Net-

flix and Amazon), and observe noisy feedback from the customer based on their subsequent

click/view/purchase behavior. We seek to learn U0 through the customer’s feedback from a

series of product recommendations in order to eventually offer her the best available product
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Figure 3.1: Examples of personalized recommendations through email marketing campaigns from Netflix
(left) and Amazon Prime (right).

on the platform

V∗ = arg max
Vj∈{V1,...,Vn}

U>0 Vj .

We impose that U>0 V∗ > 0, i.e., the customer receives positive utility from being matched to

her most preferred product on the platform; if this is not the case, then the platform is not

appropriate for the customer. We further assume that the product attributes Vi are bounded,

i.e., there exists L > 0 such that ‖Vi‖2 ≤ L ∀i . The problem of learning U0 now reduces

to a classical linear bandit (Rusmevichientong and Tsitsiklis 2010), where we seek to learn an

unknown parameter U0 given a discrete action space {Vj}nj=1 and stochastic linear rewards.

However, as we describe next, our formulation as well as our definition of regret departs from

the standard setting by modeling customer disengagement.

3.3.1 Disengagement Model

Let T be the time horizon for which the customer will stay on the platform if she remains

engaged throughout her interaction with the platform. Unfortunately, poor recommendations

can cause the customer to disengage from the platform. In particular, at each time t, upon

viewing the platform’s product recommendation at, the customer makes a choice Υt ∈ {0, 1},

where Υt = 1 signifies that the customer has disengaged (and receives zero utility for the

remainder of the time horizon T )1 and Υt = 0 signifies that the customer has chosen to remain

engaged for the next time step.

There are many ways to model disengagement. Our model follows the experimental find-

ings of Fitzsimons and Lehmann (2004), who study customer reactions to poor or inconsistent

recommendations. In particular, through a series of behavioral experiments, they observed that

1We later relax this assumption to allow disengaged customers to return to the platform after some time.
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irrelevant recommendations could lead to customers completely ignoring future recommenda-

tions. Therefore, we consider the following model: each customer has a tolerance parameter

ρ > 0 and a disengagement propensity p ∈ [0, 1]. Then, the probability that the customer dis-

engages at time t (assuming she has been engaged until now) upon receiving recommendation

at is:

Pr[Υt = 1 | at] =


0 if u>0 at ≥ u>0 V∗ − ρ ,

p otherwise.

In other words, each customer is willing to tolerate a utility reduction of up to ρ from a recom-

mendation with respect to her utility from her (unknown) optimal product V∗. If the platform

makes a recommendation that results in a utility reduction greater than ρ, the customer will

disengage with probability p. Note that we recover the classical linear bandit formulation (with

no disengagement) when p = 0 or ρ→∞. We discuss alternative disengagement models in the

next subsection.

We seek to construct a sequential decision-making policy π = {a1, · · · , aT } that learns U0

over time to maximize the customer’s utility on the platform. We measure the performance of π

by its cumulative expected regret, where we modify the standard metric in the analysis of bandit

algorithms (Lai and Robbins 1985) to accommodate customer disengagement. In particular, we

compare the performance of our policy π against an oracle policy π∗ that knows U0 in advance

and always offers the customer her preferred product V∗. At time t, we define the instantaneous

expected regret of the policy π for a new customer with realized latent attributes U0 = u0:

rπt (ρ, p, u0) =


u>0 V∗ if Υt′ = 1 for any t′ < t ,

u>0 V∗ − u>0 at otherwise.

This is simply the expected utility difference between the oracle’s recommendation and our

policy’s recommendation, accounting for the fact that the customer receives zero utility for

all future recommendations after she disengages. The expectation is taken with respect to εt,

the ξ-subgaussian noise in realized customer utilities that was defined earlier. The cumulative

expected regret for a given customer is then simply

Rπ(T, ρ, p, u0) =
T∑
t=1

rπt (ρ, p, u0) . (3.1)
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Our goal is to find a policy π that minimizes the cumulative expected regret for a new customer

whose latent attributes U0 is a random variable drawn from the distribution P = N (0, σ2Id).

We will show in the next section that no policy can hope to achieve sublinear regret for all

realizations of U0; however, we can hope to perform well on likely realizations of U0, i.e.,

mainstream customers.

We note that our algorithms and analysis assume that ρ (the tolerance parameter) and p

(the disengagement propensity) are known. In practice, these may be unknown parameters that

need to be estimated from historical data, or tuned during the learning process. We discuss one

possible estimation procedure of these parameters from historical movie recommendation data

in our numerical experiments (see §3.6).

3.3.2 Alternative Disengagement Models

We present the simplest possible disengagement model above; this allows for a simpler, more

intuitive exposition in the next two sections. However, our results easily extend to alternative,

more complex models of disengagement, e.g.,

1. In some settings, the customer may not have any beliefs about the utility u>0 V∗ that she

will derive from her (apriori unknown) optimal match, making it difficult to model her

disengagement decision around this value. In this case, the customer may instead choose

to disengage (with some probability) if she does not receive at least a baseline utility of ρ̃.

2. The customer’s disengagement probability p may not be a constant. It could depend on

the current time step t (e.g., capturing the customer’s loyalty to the platform), or on the

utilities derived from the recommendations thus far {u>0 ai}ti=1 (e.g., a poor recommen-

dation at time t may be less likely to cause disengagement if past recommendations have

been relevant).

We can easily incorporate the above by updating the customer’s disengagement decision to

be:

Pr[Υt = 1 | at] =


0 if u>0 at ≥ ρ̃ ,

p(t, u0, a1, ...at) otherwise.

Here, ρ̃ < u>0 V∗, i.e., there is at least one product on the platform that is acceptable to the

customer. We further impose that the disengagement probability is uniformly bounded below

by a positive constant, i.e., p(t, u0, a1, ...at) ≥ c̃ > 0 for all t, u0, {ai}ti=1; this ensures that
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disengagement is always a salient feature on the platform. All the forthcoming results (lower

and upper bounds) can be easily extended to the more general setting above; we defer the

details to Appendix B.4.

Finally, in some settings, customers may only disengage temporarily, rather than for the

entire horizon T ; we discuss how our results extend to this setting in Appendix B.4.

3.4 Classical Approaches

We now prove lower bounds that demonstrate (i) no policy can perform well on every customer in

this setting, and (ii) bandit algorithms and greedy Bayesian updating can fail for all customers.

3.4.1 Preliminaries

We restrict ourselves to the family of non-anticipating policies Π : π = {πt} that form a sequence

of random functions πt that depend only on observations collected until time t. In particular,

if we let Ht = (a1, Y1, a2, Y2, ...at−1, Yt−1) denote the vectorized history of product recommen-

dations and corresponding utility realizations and Ft denote the σ-field generated by Ht, then

πt+1 is Ft measurable. All policies assume full knowledge of the tolerance parameter ρ, the

disengagement propensity p, and the distribution of latent customer attributes P.

Next, we define a general class of bandit learning algorithms that achieve sublinear regret

in the standard setting with no disengagement.

Definition 3.4.1. A policy π belongs in the class of consistent bandit algorithms ΠC if for all

u0, there exists ν ∈ [0, 1) and R(T, ρ, p = 0, u0) = O(T ν). This is equivalent to the following

condition:

lim
T→∞

sup
log (R(T, ρ, p = 0, u0))

log(T )
= ν ,

where the supremum is taken over all feasible realizations of the unknown customer feature

vector u0. As discussed before, when p = 0, our regret definition reduces to the classical bandit

regret with no disengagement. The above definition implies that a policy π is consistent if its

rate of cumulative regret is sublinear in T . The consistent policy class ΠC includes the well-

studied UCB (e.g., Auer 2002, Abbasi-Yadkori et al. 2011), Thompson Sampling (e.g., Agrawal

and Goyal 2013, Russo and Van Roy 2014), and other bandit algorithms. Our definition of

consistency is inspired by Lattimore and Szepesvari (2016), but encompasses a larger class
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of policies. We will show that any algorithm in ΠC fails to perform well in the presence of

disengagement.

Notation: For any vector V ∈ Rd and positive semidefinite matrix X ∈ Rd×d, ‖V ‖X refers

to the operator norm of V with respect to matrix X given by
√
V >XV . Similarly, for any

set S, S\i for some i ∈ S refers to the set S without element i. Id refers to the d × d identity

matrix for some d ∈ Z. For any series of scalars (vectors), Y1, ...Yt, Y1:t refers to the column

vector of the scalars (vectors) Y1,..,Yt. Next, we define the set S(u0, ρ) of products that are

tolerable to the customer, i.e., recommending any product from this (unknown) set will not

cause disengagement:

Definition 3.4.2. Let S(u0, ρ) be the set of products, among all products, that satisfy the

tolerance threshold for the customer with latent attribute vector, u0. More specifically, when

p > 0,

S(u0, ρ) := {i : u>0 Vi ≥ u>0 V∗ − ρ,∀i = 1, .., n} . (3.2)

Note that in the classical bandit setting, this set contains all products, |S(u0, ρ)| = n. When

S(u0, ρ) is large, exploration is less costly, but as the customer tolerance threshold ρ decreases,

|S(u0, ρ)| decreases as well.

Finally, we consider the following simplified latent product features to enable a tractable

analysis.

Setting 1. We assume that there are d total products in Rd, and the latent product features

Vi = ei, the ith basis vector. We also take p > 0, i.e., customers may disengage.

3.4.2 Lower bounds

We first show an impossibility result that no non-anticipating policy can obtain sublinear regret

over all customers. We consider the worst-case regret of any non-anticipating policy over all

feasible customer tolerance parameters ρ. Proofs for all results in this section are deferred to

Appendix B.1.

Theorem 3.4.3 (Hardness Result). Under the assumptions of Setting 1, any non anticipating
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policy π ∈ Π achieves regret that scales linearly with T :

inf
π∈Π

sup
ρ>0

Eu0∼P [Rπ(T, ρ, p, u0)] = C · T = O(T ) ,

where C ∈ R is a constant independent of T but dependent on other problem parameters.

Theorem 3.4.3 shows that the expected worst case regret is linear in T . In other words,

regardless of the policy chosen, there exists a subset of customers (with positive measure under

P) who incur linear regret in the presence of disengagement. The proof relies on showing that

there is always a positive probability that the customer (i) will not be offered her preferred

product in the first time step, and consequently, (ii) for sufficiently small ρ, will disengage from

the platform immediately. Thus, in expectation, any non-anticipating policy is bound to incur

linear regret.

Theorem 3.4.3 shows that product recommendation with customer disengagement requires

making a trade-off over the types of customers that we seek to engage. No policy can keep all

the users engaged without knowing the user’s preference apriori. Nevertheless, since Theorem

3.4.3 only characterizes the worst case expected regret, this poor performance can be caused by

a very small fraction of customers. Hence, another approach could be to ensure that at least

a large fraction of customers (mainstream customers) are engaged, while potentially sacrificing

the engagement of customers with niche preferences (tail customers).

In Theorem 3.4.4, we show that consistent bandit learning algorithms fail to achieve en-

gagement even for mainstream customers throughout the time horizon. Thus, in contrast to

showing that the worst case expected regret is linear (Theorem 3.4.3), we show that the worst

case regret is linear for any customer realization u0.

Theorem 3.4.4 (Failure of Bandits). Let u0 be any realization of the latent user attributes

from P. Under the assumptions of Setting 1, any consistent bandit algorithm π ∈ ΠC achieves

regret that scales linearly with T for this customer as T →∞. That is,

inf
π∈ΠC

sup
ρ>0
Rπ(T, ρ, p, u0) = C1 · T = O(T ) ,

where C1 ∈ R is a constant independent of T but dependent on other problem parameters.

Theorem 3.4.4 shows that the worst case regret of consistent bandit policies is linear for every

customer realization (including mainstream customers). We note that this result is worse than
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what we may have hoped for given the earlier hardness result (Theorem 3.4.3), since the linearity

of regret applies to all customers rather than a subset of customers. The proof of Theorem 3.4.4

considers the case when the size of the set of tolerable products |S(u0, ρ)| < d, which occurs

for sufficiently small ρ. Clearly, exploring outside this set can lead to customer disengagement.

However, since |S(u0, ρ)| < d, this set of products cannot span the space Rd, implying that

one cannot recover the true customer latent attributes u0 without sampling products outside

of the set. On the other hand, consistent bandit algorithms require convergence to u0, i.e.,

they will sample outside the set S(u0, ρ) infinitely many times (as T → ∞) at a rate that

depends on their corresponding regret bound. Yet, it is clear to see that offering infinitely many

recommendations outside the customer’s set of tolerable products S(u0, ρ) will eventually lead

to customer disengagement (when p > 0) with probability 1. This result highlights the tension

between avoiding incomplete learning (which requires exploring products outside the tolerable

set) and avoiding customer disengagement (which requires restricting our recommendations to

the tolerable set). Thus, we see that the design of bandit learning strategies fundamentally

relies on the assumption that the time horizon T is exogenous, making exploration inexpensive.

State-of-the-art techniques such as UCB and Thompson Sampling perform particularly poorly

by over-exploring in the presence of customer disengagement.

Recent literature has highlighted the success of greedy policies in bandit problems where

exploration may be costly (see, e.g., Bastani et al. 2017). One may expect that the natural

exploration afforded by greedy policies may enable better performance in settings where ex-

ploration can lead to customer disengagement. Therefore, we now shift our focus to Greedy

Bayesian Updating policy (Algorithm 1) below. We use a Bayesian policy since we wish to

make full use of the known prior P over latent customer attributes. Unfortunately, we find

that, similar to consistent bandit algorithms, the greedy policy also incurs worst-case linear

regret for every customer. Furthermore, the greedy policy can perform poorly even when there

is no disengagement.

The greedy Bayesian updating policy begins by recommends the most commonly preferred

product based on the P. Then, in every subsequent time step, it observes the customer response,

updates its posterior on the customer’s latent attributes using Bayesian linear regression, and

then offers the most commonly preferred product based on the updated posterior. The form of

the resulting estimator ût of the customer’s latent attributes is similar to the well-known ridge

regression estimator with regularization parameter ξ2

σ2t
, where we regularize towards the mean
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of the prior P over latent customer attributes (which we have normalized to 0 here).

Algorithm 1 Greedy Bayesian Updating (GBU)

Initialize and recommend a randomly selected product.
for t ∈ [T ] do

Observe customer utility, Yt = u>0 at + εt.

Update customer feature estimate, ût+1 =
(
a>1:ta1:t + ξ2

σ2 I
)−1 (

a>1:tY1:t

)
.

Recommend product at+1 = arg maxi=1...,nû
>
t+1Vi.

In Theorem 3.4.5, we show that the greedy policy also fails to achieve engagement even for

mainstream customers throughout the time horizon. In essence, the free exploration induced by

greedy policies (see, e.g., Bastani et al. 2017, Qiang and Bayati 2016) is in theory as problematic

as the optimistic exploration by bandit algorithms. Furthermore, Theorem 3.4.6 shows that even

when exploration is not costly (there is no disengagement), the greedy policy can get stuck at

suboptimal fixed points, and fail to produce a good match.

Theorem 3.4.5 (Failure of Greedy). Let u0 be any realization of the latent user attributes

from P. Under the assumptions of Setting 1, the GBU policy achieves regret that scales linearly

with T for this customer as T →∞. That is,

sup
ρ>0
RGBU (T, ρ, p, u0) = C2 · T = O(T ) ,

where C2 ∈ R is a constant independent of T but dependent on other problem parameters.

Similar to our result for consistent bandit algorithms in Theorem 3.4.4, Theorem 3.4.5

shows that the worst case regret of the greedy policy is linear for every customer realization

(including mainstream customers). While intuition may suggest that greedy algorithms avoid

over-exploration, they still involve natural exploration due to the noise in customer feedback,

which may cause the algorithm to over-explore and choose irrelevant products. Although The-

orems 3.4.4 and 3.4.5 are similar, it is worth noting that over-exploration is empirically much

less likely with the greedy policy than with a consistent bandit algorithm that is designed to

explore. This difference is exemplified in our numerical experiments in §3.6; however, we will

see that one is still better off (both theoretically and empirically) constraining exploration by

restricting the product set upfront.

The proof of Theorem 3.4.5 has two cases: tail and mainstream customers. For tail customers

(this set is determined by the choice of ρ), the first offered product (the most commonly preferred

product across customers given the distribution P) may not be tolerable, and so they disengage
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immediately with some probability p, yielding linear expected regret for these customers. Note

that this is true for any algorithm, including the Constrained Bandit. The more interesting case

is that of mainstream customers, who do find the first offered product tolerable. In this case,

since customer feedback is noisy, the greedy policy may subsequently erroneously switch to a

product outside of the tolerable set, which again results in immediate customer disengagement

with probability p. Note that this effect is exactly the natural exploration that allows the greedy

policy to sometimes yield rate-optimal convergence in classical contextual bandits (Bastani et al.

2017). Putting these two cases together, we find that the greedy policy achieves linear regret

for every customer.

It is also worth considering the performance of the greedy policy when there is no disen-

gagement and exploration is not costly. In Theorem 3.4.6, we show that the greedy policy

may under-explore and fail to converge in the other extreme, i.e., when there is no customer

disengagement. Unlike the previous results, this result is under the case of p = 0 (otherwise,

the setting of Setting 1 applies).

Theorem 3.4.6 (Failure of Greedy without Disengagement). Let ρ → ∞ or p = 0, i.e., no

customer disengagement. The GBU policy achieves regret that scales linearly with T . That is,

Eu0∼P
[
RGBU (T, ρ, p = 0, u0)

]
= C3 · T = O(T ) ,

where C3 ∈ R is a constant independent of T but dependent on other problem parameters.

Theorem 3.4.6 shows that the greedy policy fails with some probability even in the classical

bandit learning setting when there is no customer disengagement. The proof follows from

considering the subset of customers for whom the most commonly preferred product is not their

preferred product. We show that within this subset, the greedy policy continues recommending

this suboptimal product for the remaining time horizon T with positive probability. This

illustrates that a greedy policy can get “stuck” on a suboptimal product due to incomplete

learning (see, e.g., Keskin and Zeevi 2014) even when customers never disengage. Thus, we see

that the greedy policy can also fail due to under-exploration. In contrast, a consistent bandit

policy is always guaranteed to converge to the preferred product when there is no disengagement;

the Constrained Bandit will trivially achieve the same guarantee since we will not restrict the

product set when there is no disengagement.

These results illustrate that there is a need to constrain exploration in the presence of
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customer disengagement; however, naively adopting a greedy policy does not achieve this goal.

This is because, intuitively, the greedy policy constrains the rate of exploration rather than the

size of exploration. The proof of Theorem 3.4.4 clearly demonstrates that the key issue is to

constrain exploration to be within the set of tolerable products S(u0, ρ). The challenge is that

this set is unknown since the customer’s latent attributes u0 are unknown. However, our prior

P gives us reasonable knowledge of which products lie in S(u0, ρ) for mainstream customers.

In the next section, we will leverage this knowledge to restrict the product set upfront in the

Constrained Bandit. As we saw from Theorem 3.4.3, we may as well restrict our focus to serving

the subset of mainstream customers, since we cannot hope to do well for all customers.

Remark 3.4.7. In these lower bounds, we have taken ρ→ 0 for simplicity. However, the proofs

and results hold even when ρ is sizeable. In particular, we only require that there exists at least

a single product that is not tolerable for every customer realization, i.e., |S(u0, ρ)| < d for all

u0.

3.5 Constrained Bandit Algorithm

We have so far established that both classical bandit algorithms and the greedy algorithm may

fail to perform well on any customer. We now propose a two-step procedure, where we play

a bandit strategy after constraining our action space to a restricted set of products that are

carefully chosen using an integer program. In §3.5.3, we will prove that this simple modification

guarantees good performance on a significant fraction of customers.

3.5.1 Intuition

As shown in Theorem 3.4.4, classical bandit algorithms fail because of over-exploration. Bandit

algorithms rely on an early exploration phase where customers are offered random products; the

feedback from these products is then used to infer the customer’s low-dimensional preference

model, in order to inform future (relevant) recommendations during the exploitation phase.

However, in the presence of customer disengagement, the algorithm doesn’t get to reap the

benefits of exploitation since the customer likely disengages from the platform during the explo-

ration phase after receiving several irrelevant recommendations. This is not to say that learning

through exploration is a bad strategy. Theorem 3.4.5 shows that greedy exploitation-only al-

gorithm also under-perform by under-exploring, and getting stuck in sub-optimal fixed points.
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This can be harmful since the platform misses out on its key value proposition of learning

customer preferences and matching them to their preferred products.

These results suggest that a platform can only succeed by avoiding poor early recommen-

dations. Since we don’t know the customer’s preferences, this is impossible to do in general;

however, our key insight is that a probabilistic approach is still feasible. In particular, the

platform has knowledge of the distribution of customer preferences P from past customers, and

can transfer this knowledge to avoid products that do not meet the tolerance threshold of most

customers. We formulate this product selection problem as an integer program, which ensures

that any recommendations within the optimal restricted set are acceptable to most customers.

After selecting an optimal restricted set of products, we follow a classical bandit approach (e.g.,

linear UCB by Abbasi-Yadkori et al. 2011). Under this approach, if our new customer is a

mainstream customer, she is unlikely to disengage from the platform even during the explo-

ration phase, and will be matched to her preferred product. However, if the new customer is a

tail customer, her preferred product may not be available in our restricted set, causing her to

disengage. This result is shown formally in Theorem 3.5.5 in the next section. Thus, we com-

promise performance on tail customers to achieve good performance on mainstream customers.

Theorem 3.4.3 shows that such a tradeoff is necessary, since it is impossible to guarantee good

performance on every customer.

We introduce a set diameter parameter γ in our integer program formulation. This parame-

ter can be used to tune the size of the restricted product set based on our prior P over customer

preferences. Larger values of γ increase the risk of customer disengagement by introducing

greater variability in product relevance, but also increase the likelihood that the customer’s

preferred product lies in the set. On the other hand, smaller values of γ decrease the risk of

customer disengagement if the customer’s preferred product is in the restricted set, but there

is a higher chance that the customer’s preferred product is not in the set. Thus, appropriately

choosing this parameter is a key ingredient of our proposed algorithm. We discuss how to choose

γ at the end of §3.5.3.

3.5.2 Constrained Exploration

We seek to find a restricted set of products that cater to a large fraction of customers (which

is measured with respect to the distribution P over customer attributes), but are not too “far”

from each other (to limit exploration). Before we describe the problem, we introduce notation
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that captures the likelihood of a product being relevant for the new customer:

Definition 3.5.1. Ci(ρ) is the probability of product i satisfying the new customer’s tolerance

level:

Ci(ρ) = Pu0∼P(i ∈ S(u0, ρ)) ,

where S(u0, ρ) is given by Definition 3.4.2.

Recall that S(u0, ρ) is the set of tolerable products for a customer with latent attributes

u0. Given that u0 is unknown, Ci(ρ) captures the probability that product i is relevant to

the customer with respect to the distribution P over random customer preferences. In the

presence of disengagement, we seek to explore over products that are likely to satisfy the new

customer’s tolerance level. For example, mainstream products may be tolerable for a large

probability mass of customers (with respect to P) while niche products may only be tolerable

for tail customers. Thus, Ci(ρ) translates our prior on customer latent attributes to a likelihood

of tolerance over the space of products. Computing Ci(ρ) using Monte Carlo simulation is

straightforward: we generate random customer latent attributes according to P, and count the

fraction of customers for which product i was within the customer’s tolerance threshold of ρ

from the customer’s preferred product V∗.

As discussed earlier, a larger product set increases the likelihood that the new customer’s

preferred product is in the set, but it also increases the likelihood of disengagement due to

poor recommendations during the exploration phase. However, the key metric here is not the

number of products in the set, but rather the similarity of the products in the set. In other

words, we wish to restrict product diversity in the set to ensure that all products are tolerable

to mainstream customers. Thus, we define

Dij = ‖Vi − Vj‖2 ,

the Euclidean distance between the (known) features of products i and j, i.e., the similarity

between two products. We seek to find a subset of products such that the distance between

any pair of products is bounded by the set diameter γ. Let φij(γ) be an indicator function that
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determines whether Dij ≤ γ. Hence,

φij(γ) =


1 if Dij ≤ γ ,

0 otherwise .

Note that γ and ρ are related. When the customer tolerance ρ is large, we will choose larger

values of the set diameter γ and vice-versa. We specify how to choose γ at the end of §3.5.3.

The objective is to select a set of products, which together have a high likelihood of contain-

ing the customer’s preferred match under the distribution over customer preferences P (i.e.,

high Ci(ρ)), with the constraint that no two products are too dissimilar from each other (i.e.,

pairwise distance greater than γ). We propose solving the following product selection integer

program:

OP(γ) = max
x,z

n∑
i=1

Ci(ρ)xi (3.3a)

s.t. zij ≤ xi, i = 1, . . . , n, (3.3b)

zij ≤ xj , j = 1, . . . , n, (3.3c)

zij ≥ xi + xj − 1, i = 1, . . . , n, j = 1, . . . , n, (3.3d)

zij ≤ φij(γ), i = 1, . . . , n, j = 1, . . . , n, (3.3e)

xi ∈ {0, 1} i = 1, . . . , n. (3.3f)

The decision variables in the above problem are {xi}ni=1 and {zi,j}ni,j=1. In particular, xi in

OP(γ) defines whether product i is included in the restricted set, and zi,j is an indicator

variable for whether both products i and j are included in the restricted set. Constraints (3.3b)

– (3.3e) ensure that only products that are “close” to each other are selected.

Solving OP(γ) results in a set of products (products for which the corresponding xi is 1)

that maximizes the likelihood of satisfying the new customer’s tolerance level, while ensuring

that every pair is within γ distance from each other.

Algorithm 2 presents the Constrained Bandit (CB) algorithm, where the second phase fol-

lows the popular linear UCB algorithm (Abbasi-Yadkori et al. 2011). There are two input

parameters: λ (the standard regularization parameter employed in the linear bandit literature,

see, e.g., Abbasi-Yadkori et al. 2011) and γ (the set diameter). We discuss the selection of

γ and the corresponding tradeoffs in the next subsection and in Appendix B.3. As discussed
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Algorithm 2 Constrained Bandit(λ,γ)

Step 1: Constrained Exploration:
Solve OP(γ) to get Ξ, the constrained set of products to explore over. Let a1 be a randomly
selected product to recommend in Ξ.
Step 2: Bandit Learning:
for t ∈ [T ] do

Observe customer utility, Yt = u>0 at + εt.
Let ût = (a>1:ta1:t + λI)−1a1:tY1:t, and,

Qt =

{
u ∈ Rd : ‖ût − u‖X̄t ≤

(
ξ

√
d log

(
1 + tL2

δ

)
+
√
λ
ρ

γ

)}
.

Let (uopt, at) = arg max{i∈Ξ,u∈Qt}u
>Vi.

Recommend product at at time t if the customer is still engaged. Stop if the customer
disengages from the platform.

earlier, we employ a two-step procedure. In the first step, the action space is restricted to the

product set given by OP(γ). This step ensures that subsequent exploration is unlikely to cause

a significant fraction of customers to disengage. Then, a standard bandit algorithm is used to

learn the customer’s preference model and match her with her preferred product through re-

peated interactions. The main idea remains simple: in the presence of customer disengagement,

the platform should be cautious while exploring. Since we are uncertain about the customer’s

preferences, we optimize exploration for mainstream customers who are more likely to visit the

platform.

Remark 3.5.2. The Constrained Bandit uses a fixed exploration set for the entire horizon T .

One could alternatively consider updating this set dynamically based on customer feedback,

i.e., update our posterior on the customer’s preference vector U0 using noisy observations of

the customer utilities, and resolve OP(γ) at each time t. While the latter does not lend a

tractable regret analysis, it may yield improved empirical performance. Note that when the

disengagement propensity p is high, dynamically updating the exploration set is unlikely to be

helpful, since the customer will likely disengage immediately if the initial product set is not

relevant (i.e., before we obtain sufficient observations to form a posterior that is significantly

different from the prior P).

3.5.3 Theoretical Guarantee

We now show that the Constrained Bandit performs well and incurs regret that scales sublinearly

in T over a fraction of customers. We begin by defining Lt,ρ,p, an indicator variable that captures
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whether the customer is still engaged at time t:

Definition 3.5.3. Let,

Lt,ρ,p =


1 Customer engaged until time t ,

0 otherwise.

Clearly, 1{LT,ρ,p = 1} = ΠT
t=11{Υt = 0} , where we recall that Υt is the disengagement

decision of the customer at time t. We first show that as T →∞, LT,ρ,p = 1 for some customers,

i.e., they remain engaged. Next, we show that most engaged customers are eventually matched

to their preferred product. Proofs for all results in this section are deferred to Appendix B.2.

Theorem 3.5.4 shows that the worst-case regret of the Constrained Bandit scales sublinearly

in T for a positive fraction of customers. In particular, regardless of the customer tolerance

parameter ρ, we can match some subset of customers to their preferred products. Note that

this is in stark contrast with both bandit and greedy algorithms (Theorems 3.4.4 and 3.4.5).

Theorem 3.5.4 (Matching Upper Bound for Constrained Bandit). Let u0 be any realization of

the latent user attributes from P. Under the assumptions of Setting 1, the Constrained Bandit

with set diameter γ = 1/
√

2 achieves zero regret with positive probability. In particular, there

exists a set Wλ,γ= 1√
2

of realizations of customer latent attributes with positive measure under

P, i.e.,

P
(
Wλ,γ= 1√

2

)
> 0 ,

such that, for all u0 ∈ Wλ,γ= 1√
2
, the worst-case regret of the Constrained Bandit algorithm is

sup
ρ>0
RCB

(
λ,γ= 1√

2

)
(T, ρ, p, u0) = 0 .

Note that this result holds for any value of ρ, i.e., customers can be arbitrarily intolerant

of products that are not their preferred product V∗. Thus, the only way to make progress is

to immediately recommend their preferred product. This can trivially be done by restricting

our product set to a single product, which at the very least caters to some customers. This is

exactly what we do in Theorem 3.5.4: the choice of γ = 1/
√

2 and the product space given in

Setting 1 ensures that only a single product will be in our restricted set Ξ. By construction of

OP(γ), this will be the most popular preferred product. W denotes the subset of customers for

whom this product is optimal, and this set has positive measure under P by construction since
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we have a discrete number of products. Note that these customers are immediately matched

to their preferred product, so it immediately follows that we incur zero regret on this subset of

customers.

Theorem 3.5.4 shows that there is nontrivial value in restricting the product set upfront,

which cannot be obtained through either bandit or greedy algorithms. However, it considers

the degenerate case of constraining exploration to only a single product, which is clearly too

restrictive in practice, especially when customers are relatively tolerant (i.e., ρ is not too small).

Thus, it does not provide useful insight into how much the product set should be constrained

as a function of the customer’s tolerance parameter. To answer this question, we move away

from the setting described in the simplified setting and consider a fluid approximation of the

product space. Since the nature of OP(γ) is complex, letting the product space be continuous

V = [−1, 1]d will help us cleanly demonstrate the key tradeoff in constraining exploration: a

larger product set has a higher probability of containing customers’ preferred products, but also

a higher risk of disengagement. Furthermore, for algebraic simplicity, we shift the mean of the

prior over the customer’s latent attributes, so P = N (ū, σ
2

d Id), where ‖ū‖2 = 1. This ensures

that our problem is not symmetric, which again helps us analytically characterize the solution

of OP(γ).

Theorem 3.5.5 shows that the Constrained Bandit algorithm can achieve sublinear regret for

a fraction of customers under this albeit stylized setting. More importantly, it yields insights

into how we might choose the set diameter γ as a function of the customer’s tolerance parameter

ρ. In §3.6, we demonstrate the strong empirical performance of our algorithm on real data.

Theorem 3.5.5 (Guarantee for Constrained Bandit Algorithm). Let P = N (ū, σ
2

d2 Id). Also

consider a continuous product space V = [−1, 1]d. There exists a set W of latent customer

attribute realizations with positive probability under P, i.e.,

P(W) ≥ w =

(
1− 2d exp

(
− 1

σ

(
1−

√
1− γ2

4

)))1− 2d exp

− 1

σ2

(
ρ

γ
−

i=d∑
i=1

ūi

)2
 ,

such that for all u0 ∈ W the cumulative regret of the Constrained Bandit is

RCB(λ,ρ)(T, ρ, p, u0) ≤ 5

√
Td log

(
λ+

TL

d

)(√
λ
ρ

γ
+ ξ

√
log (T ) + d log

(
1 +

TL

λd

))

= Õ
(√

T
)
.
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This result explicitly characterizes the fraction of customers that we successfully serve as a

function of the customer tolerance parameter ρ and the set diameter γ. Thus, given a value of

ρ, we can choose the set diameter γ to optimize the probability w of this set.

The proof of Theorem 3.5.5 follows in three steps. First, we lower bound the probability

that the constrained exploration set Ξ contains the preferred product for a new customer whose

attributes are drawn from P. Next, conditioned on the previous event, we lower bound the

probability that the customer remains engaged for the entire time horizon T when recommen-

dations are made from the restricted product set Ξ. Lastly, conditioned on the previous event,

we can apply standard self-normalized martingale techniques (Abbasi-Yadkori et al. 2011) to

bound the regret of the Constrained Bandit algorithm for the customer subset W.

Again, as in Theorem 3.5.4, we see that there can be significant value in restricting the

product set upfront that cannot be achieved by classical bandit or greedy approaches. We

further see that the choice of the set diameter γ is an important consideration to ensure that

the new customer is engaged and matched to her preferred product with as high a likelihood

as possible. As discussed earlier, larger values of γ increase the risk of customer disengagement

by introducing greater variability in product relevance, but also increase the likelihood that the

customer’s preferred product lies in the set. On the other hand, smaller values of γ decrease the

risk of customer disengagement if the customer’s preferred product is in the restricted set, but

there is a higher chance that the customer’s preferred product is not in the set. In other words,

we wish to choose γ to maximize w. While there is no closed form expression for the optimal γ,

we propose the following approximately optimal choice based on a Taylor series approximation

(see details in Appendix B.3):

γ∗ ∈
{
γ : ρ =

√
σγ2

2 (4− γ2)1/4
and γ > 0

}
.

Numerical experiments demonstrate that this approximate value of γ is typically within 1% of

the value of γ that maximizes the expression for w given in Theorem 3.5.5; the resulting values

of w are also very close (see Appendix B.3). This expression yields some interesting comparative

statics: we should choose a smaller set diameter γ when customers are less tolerant (ρ is small)

and customer feedback is noisy (σ is large). In practice, we can tune the set diameter through

cross-validation.
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3.6 Numerical Experiments

We now compare the empirical performance of the Constrained Bandit with the state-of-the-

art Thompson sampling (which is widely considered to empirically outperform other bandit

algorithms, see, e.g., Chapelle and Li 2011, Russo and Van Roy 2014) and a greedy Bayesian

updating policy. We present two sets of empirical results evaluating our algorithm on both

synthetic data (§3.6.1), and on real movie recommendation data (§3.6.2).

Benchmarks: We compare our algorithm with (i) linear Thompson Sampling (Russo and

Van Roy 2014) and (ii) the greedy Bayesian updating (Algorithm 1) referred to as MLE.

Constrained Thompson Sampling (CTS): To ensure a fair comparison, we consider a

Thompson Sampling version of the Constrained Bandit algorithm (see Algorithm 3 below).

Recall that our approach allows for any bandit strategy after obtaining a restricted product set

based on our (algorithm-independent) integer program OP(γ). We use the same implementation

of linear Thompson sampling (Russo and Van Roy 2014) as our benchmark in the second step.

Thus, any improvements in performance can be attributed to restricting the product set.

Algorithm 3 Constrained Thompson Sampling (λ,γ)

Step 1: Constrained Exploration:
Solve OP(γ) to get the constrained set of products to explore over, Sconstrained. Let û1 = ū.
Step 2: Bandit Learning:
for t ∈ [T ] do

Sample u(t) from distribution N
(
ût, σ

2Id
)
.

Recommend at = arg max{i∈Sconstrained}u(t)>Vi if the customer is still engaged.

Observe customer utility, Yt = U>0 at + εt, and update ût = (V >a1:atVa1:at + λI)−1Va1:atY1:t

Stop if the customer disengages from the platform.

3.6.1 Synthetic Data

We generate synthetic data and study the performance of all three algorithms as we increase

the customer’s disengagement propensity p ∈ [0, 1]. A low value of p implies that customer

disengagement is not a salient concern, and thus, one would expect Thompson sampling to

perform well in this regime. On the other hand, a high value of p implies that customers are

extremely intolerant of poor recommendations, and thus, all algorithms may fare poorly. We

find that Constrained Thompson Sampling performs comparably to vanilla Thompson Sampling

when p is low, and offers sizeable gains over both benchmarks when p is medium or large.
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Data generation: We consider the standard collaborative filtering problem (described ear-

lier) with 10 products. Recall that collaborative filtering fits a low rank model of latent customer

preferences and product attributes; we take this rank2 to be 2. We generate product features

from a multivariate normal distribution with mean [1, 5]> ∈ R2 and variance 0.3 · I2 ∈ R2×2,

where we recall that Id is the d × d identity matrix. Similarly, latent user attributes are gen-

erated from a multivariate normal with with mean [2, 2]> ∈ R2 and variance 2 · I2 ∈ R2×2.

These values ensure that, with high probability for every customer, there exists a product on

the platform that generates positive utility. Note that the product features are known to the

algorithms, but the latent user attributes are unknown. Finally, we take our noise ε ∼ N (0, 5),

the customer tolerance ρ to be generated from a truncated N (0, 1) distribution, and the total

horizon length T = 1000. All algorithms are provided with the distribution of customer latent

attributes, the distribution of the customer tolerance ρ, and the horizon length T . They are not

provided with the noise variance, which needs to be estimated over time. Finally, we consider

several values of the disengagement propensity, i.e., p ∈ {1%, 10%, 50%, 100%}, to capture the

value of restricting the product set with varying levels of customer disengagement.

Engagement Time: We use average customer engagement time (i.e., the average time that

a customer remains engaged with the platform, up to time T ) as our metric for measuring

algorithmic performance. As we have seen in earlier sections, customer engagement is necessary

to achieve low cumulative regret. Furthermore, it is a more relevant metric from a managerial

perspective since higher engagement is directly related with customer retention and loyalty, as

well as the potential for future high quality/revenue customer-product matches.

Results: Figure 3.2 shows the customer engagement time averaged over 1000 randomly gen-

erated users (along with the 95% confidence intervals) for all three algorithms as we vary the

disengagement propensity p from 1% to 100%. As expected, when p = 1% (i.e., customer

disengagement is relatively insignificant), TS performs well, and CTS performs comparably.

However, greedy Bayesian updating is likely to converge to a suboptimal product outside of the

customer’s relevance set, and continues to recommend this product until the customer eventu-

ally disengages. As we increase p, all algorithms achieve worse engagement, since customers

become considerably more likely to leave the platform. As expected, we also see that CTS starts

2We choose a small rank based on empirical experiments showing that collaborative filtering models perform
better in practice with small rank (Chen and Chi 2018). Our results remain qualitatively similar with higher
rank values.
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Figure 3.2: Time of engagement and 95% confidence intervals averaged over 1000 randomly generated
customers for disengagement propensity p values of 1%, 10%, 50%, and 100% respectively.

to significantly outperform the other two benchmark algorithms as p increases. For instance,

the mean engagement time of CTS improves over the engagement time of the benchmark algo-

rithms by a factor of 2.2 when p = 50% and by a factor or 4.4 when p = 100%. Thus, we see

that restricting the product set is critical when customer disengagement is a salient feature on

the platform.

A recent report by Smith (2018) notes that an average worker receives as many as 121 emails

on average per day. Furthermore, the average click rate for retail recommendation emails is as

low as 2.5%. These number suggest that customer disengagement is becoming increasingly

salient, and we argue that constraining exploration on these platforms to quickly match as

many customers as possible to a tolerable product is a key consideration in recommender system

design.

3.6.2 Case Study: Movie Recommendations

We now compare CTS to the same benchmarks on MovieLens, a publicly available movie recom-

mendations data collected by GroupLens Research. This dataset is widely used in the academic

community as a benchmark for recommendation and collaborative filtering algorithms (Harper

and Konstan 2016). Importantly, we no longer have access to the problem parameters (e.g., ρ)

and must estimate them; we discuss simple heuristics for estimating these parameters.
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Data Description & Parameter Estimation

The MovieLens dataset contains over 20 million user ratings based on personalized recommen-

dations of 27,000 movies to 138,000 users. We use a random sample (provided by MovieLens)

of 100,000 ratings from 671 users over 9,066 movies. Ratings are made on a scale of 1 to 5, and

are accompanied by a time stamp for when the user submitted the rating. The average movie

rating is 3.65.

The first step in our analysis is identifying likely disengaged customers in our data. We

will argue that the number of user ratings is a proxy for disengagement. In Figure 3.3, we

plot the histogram of the number of ratings per user. Users provide an average of 149 ratings,

and a median of 71 ratings. Clearly, there is high variability and skew in the number of

Figure 3.3: On left, the histogram of user ratings in MovieLens data. On right, the empirical distri-
bution of ρ, the customer-specific tolerance parameter, across all disengaged users for a fixed customer
disengagement propensity p = .75. This distribution is robust to any choice of p ∈ (0, .75]

ratings that users provide. We argue that there are two primary reasons why a customer may

stop providing ratings: (i) satiation and (ii) disengagement. Satiation occurs when the user has

exhausted the platform’s offerings that are relevant to her, while disengagement occurs when the

user is relatively new to the platform and does not find sufficiently relevant recommendations to

justify engaging with the platform. Thus, satiation applies primarily to users who have provided

many ratings (right tail of Figure 3.3), while disengagement applies primarily to users who have

provided very few ratings (left tail of Figure 3.3).

Accordingly, we consider the subset of users who provided fewer that 27 ratings (bottom

15% of users) as disengaged users. We hypothesize that these users provided a low number

of ratings because they received recommendations that did not meet their tolerance threshold.

This hypothesis is supported by the ratings. In particular, the average rating of disengaged users

is 3.56 (standard error of 0.10) while the average rating of the remaining (engaged) users is 3.67
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(standard error of 0.04). A one-way ANOVA test (Welch 1951) yields a F -statistic of 29.23

and a p-value of 10−8, showing that the difference is statistically significant and that disengaged

users dislike their recommendations more than engaged users. This finding relates to our results

in §3.2, i.e., disengagement is related to the customer-specific quality of recommendations made

by the platform.

Estimating latent user and movie features: We need to estimate the latent product

features {Vi}ni=1 as well as the distribution P over latent user attributes from historical data.

Thus, we use low rank matrix factorization (Ekstrand et al. 2011) on the ratings data (we find

that a rank of 5 yields a good fit) to derive {Ui}mi=1 and {Vi}ni=1. We fit a normal distribution

P to the latent user attributes {Ui}mi=1, and use this to generate new users; we use the latent

product features as-is.

Estimating the tolerance parameter ρ: Recall that ρ is the maximum utility reduction

(with respect to the utility of the unknown optimal product V∗) that a customer is willing to

tolerate before disengaging with probability p. In our theory, we have so far assumed that there

is a single known value of ρ for all customers. However, in practice, it is likely that ρ may be

a random value that is sampled from a distribution (e.g., there may be natural variability in

tolerance among customers), and further, the distribution of ρ may be different for different

customer types (e.g., tail customer types may be more tolerant of poor recommendations since

they are used to having higher search costs for niche products). Thus, we estimate the distribu-

tion of ρ as a function of the user’s latent attributes u0 using maximum likelihood estimation,

and sample different realizations for different incoming customers on the platform. We detail

the process of this estimation next.

In order to estimate ρ for a user, we consider the time series of ratings provided by a single

user with latent attributes u0 in our historical data. Clearly, disengagement occurred when the

user provided the last rating to the platform, and this decision was driven by both the user’s

disengagement propensity p, and tolerance parameter ρ. For a given p and ρ, let tleave denote

the last rating of the user, and a1, ....atleave be the recommendations made to the user until time

tleave. Then, the likelihood function of the observation sequence is:

L(p, ρ) = p(1− p)

(
tleave−

∑(tleave−1)
i=1 1{ai∈S(u0,ρ)}

)
,

92



CHAPTER 3. PERSONALIZED PRODUCT RECOMMENDATIONS WITH CUSTOMER
DISENGAGEMENT

where we recall that S(u0, ρ) defines the set of products that the user considers tolerable. Since

u0 and Vi are known apriori (estimated from the low rank model), S(u0, ρ) is also known apriori

for any given value of ρ. Hence, for any given value of p, we can estimate the most likely user-

specific tolerance parameter ρ using the maximum likelihood estimator of L(p, ρ). In Figure

3.3, we also plot the overall estimated empirical distribution of ρ for our subset of disengaged

users. We see that more than 88% of disengaged users have an estimated tolerance parameter of

less than 1.2, i.e., they consider disengagement if the recommendation is more than 1 star away

from what they would rate their preferred movie. As we may expect, very few disengaged users

have a high estimated value of ρ, suggesting that they have high expectations on the quality of

recommendations.

One caveat of our estimation strategy is that we are unable to identify both p and ρ simul-

taneously; instead, we estimate the user-specific distribution of ρ and perform our simulations

for varying values of the disengagement propensity p. Empirically, we find that our estimation

of ρ is robust to different values of p, i.e., for any value of p ∈ (0, .75], we observe that our

estimated distribution of ρ distribution does not change. Thus, we believe that this strategy is

sound.

Results

Similar to §3.6.1, we compare Constrained Thompson Sampling against our two benchmarks

(Thompson Sampling and greedy Bayesian updating) based on average customer engagement

time. We use a random sample of 200 products, and take our horizon length T = 100.

Figure 3.4 shows the customer engagement time averaged over 1000 randomly generated

users (along with the 95% confidence intervals) for all three algorithms as we vary the dis-

engagement propensity p from 1% to 100%. Again, we see similar trends as we saw in our

numerical experiments on synthetic data (§3.6.1). When p = 1% (i.e., customer disengagement

is relatively insignificant), all algorithms perform well, and CTS performs comparably. As we

increase p, all algorithms achieve worse engagement, since customers become considerably more

likely to leave the platform. As expected, we also see that CTS starts to significantly outperform

the other two benchmark algorithms as p increases. For instance, the mean engagement time of

CTS improves over the engagement time of the benchmark algorithms by a factor of 1.26 when

p = 10%, by a factor of 1.66 when p = 50% and by a factor or 1.8 when p = 100%. Thus, our

main finding remains similar on real movie recommendation data: restricting the product set
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Figure 3.4: Time of engagement and 95% confidence intervals on MovieLens data averaged over 1000
randomly generated customers for disengagement propensity p values of 1% (top left), 10% (top right),
50% (bottom left), and 100% (bottom right) respectively.

is critical when customer disengagement is a salient feature on the platform.

3.7 Conclusions

We consider the problem of sequential product recommendation when customer preferences are

unknown. First, using a sequence of ad campaigns from a major airline carrier, we present

empirical evidence suggesting that customer disengagement plays an important role in the

success of recommender systems. In particular, customers decide to stay on the platform based

on the quality of recommendations. To the best of our knowledge, this issue has not been

studied in the framework of collaborative filtering, a widely-used machine learning technique.

We formulate this problem as a linear bandit, with the notable difference that the customer’s

horizon length is a function of past recommendations. Our formulation bridges two disparate

literatures on bandit learning in recommender systems, and customer disengagement modeling.

We then prove that this problem is fundamentally hard, i.e., no algorithm can keep all

customers engaged. Thus, we shift our focus to keeping a large number of customers (i.e.,

mainstream customers) engaged, at the expense of tail customers with niche preferences. Our

results highlight a necessary tradeoff with clear managerial implications for platforms that seek

to make personalized recommendations. Unfortunately, we find that classical bandit learning

algorithms as well as a simple greedy Bayesian updating strategy perform poorly, and can fail

to keep any customer engaged. To solve this problem, we propose modifying bandit learning
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strategies by constraining the action space upfront using an integer program. We prove that

this simple modification allows our algorithm to perform well (i.e., achieve sublinear regret) for

a significant fraction of customers. Furthermore, we perform extensive numerical experiments

on real movie recommendations data that demonstrate the value of restricting the product set

upfront. In particular, we find that our algorithm can improve customer engagement with the

platform by up to 80% in the presence of significant customer disengagement.
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Chapter 4

Dynamic Pricing with Unknown

Non-Parametric Demand and

Limited Price Changes

4.1 Introduction

Firms constantly innovate and introduce new products in order to compete and better position

themselves in a rapidly changing business environment. Each year, billions of dollars are invested

on product innovation and new product launches (Willemot et al. 2015). Unfortunately, not

all new product launches succeed. In particular, Willemot et al. (2015) states that almost 15%

of the total new products launched in the market each year are unsuccessful and are taken off

shelves before the end of their life cycle. In fact, a recent survey states that more than 72%

of all new products do not meet their revenue targets and attributes such failures to pricing

(Carmichael 2014, Huang et al. 2007). While on one hand, dynamic pricing gives retailers the

opportunity to learn price elasticity, on the other hand, uninformed pricing can have unexpected

consequences and can lead to product failures.

One potential solution towards informed pricing decisions for new products is to incorpo-

rate demand learning within the dynamic pricing framework. Given the ubiquitous nature of

pricing for new products, it is not surprising that many researchers have studied the combined

pricing and learning problem. Since the introduction of the combined problem by Rothschild

(1974), various extensions and algorithms have been proposed. The central tradeoff in this

problem setting is that of exploration-exploitation. While the retailer can learn demand re-
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sponse by exploring prices, maximizing revenue implies exploiting from the already explored

prices. Near optimal algorithms ensure that the two competing goals of learning and earning

are appropriately balanced.

Both the analysis as well as the performance of the proposed algorithms depend on the

underlying assumptions made, particularly about the demand as well as the error in demand

realizations. The unknown demand is generally parameterized by a set of parameters that

are learned over time (Bertsimas and Perakis 2006, den Boer and Zwart 2013, Keskin and

Zeevi 2014, Cheung et al. 2015 amongst others). Common algorithms use Maximum Likelihood

Estimation (MLE) techniques to ensure fast convergence to the unknown optimal price. But

choosing a parametric form, particularly when demand is unknown can be challenging. In order

to alleviate these concerns, few studies (see for e.g., Besbes and Zeevi 2009, 2015) have focused

on assuming non-parametric demand and have proposed near optimal learning and pricing

algorithms. Nevertheless, to the best of our knowledge, all of the non-parametric pricing and

learning studies assume that prices can be potentially changed in every period. This becomes

a tenuous assumption, especially in the offline retail setting where changing prices involves

changing labels, which can be operationally costly (Netessine 2006). Moreover, even in the

online setting, the negative effect of frequent price changes on consumer trust has been well

established (Garbarino and Lee 2003). For example, if consumers observe frequent price changes

and observe price discrimination that is based on latent customer attributes unknown to the

customers, they are less likely to visit the store again. In light of these issues, we focus on the

dynamic pricing and demand learning problem with no parametric assumptions on the demand

when retailers prefer very limited price changes.

Non-parametric demand with limited price changes adds substantial difficulty to the pric-

ing problem. While changing prices from one time period to another could be optimal for

the learning and earning objectives, pricing constraints could imply that one has to keep a

fixed price (even when it is suboptimal) for a group of customers before prices can be changed

again. Furthermore, since demand is non-parametric, exact MLE-based estimation of parame-

ters becomes effectively infeasible. Following these constraints, we focus on the class of demand

functions that satisfy general smoothness assumptions and propose the Stochastic Limited Price

Experimentation (SLPE ) policy that uses three key ideas. First, since price changes are limited

and demand is stochastic, once a price is chosen to experiment upon, it is fixed until a high

probability estimate of demand at that price can be obtained. Second, since experimentation
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prices can potentially remain fixed for a long time period, future experimentation prices are

carefully selected based on a high probability estimate of the optimal price using previous price

experimentations. Third, over time as the high probability region containing the optimal price

becomes smaller and smaller, we can use the same price for longer time periods, thereby ensuring

very low cumulative price changes, without incurring extra revenue loss.

We analyze the proposed pricing policy both analytically and numerically to demonstrate its

effectiveness. We show that when the unknown demand function is locally linear infinitesimally

close to the optimal price, the demand and the revenue functions satisfy commonly imposed

continuity assumptions and the error in demand observations at two different prices satisfy

two-point bandit feedback, the rate of regret of the SLPE policy is Õ(
√
T ), and the rate of price

changes is O(log log T ). The two-point bandit feedback structure was introduced by Agarwal

and Dekel (2010) and independently by Nesterov (2011) to analyze zero-order optimization

methods when a direct gradient calculation is either infeasible or ill-posed. Subsequently, various

researchers have constructed optimal algorithms under the two-point feedback assumption in

various settings (see for example, Ghadimi and Lan 2013, Duchi et al. 2015, Shamir 2017). Our

work is also part of this growing literature. We establish that the rate of regret of the policy

is near optimal (upto a logarithmic factor), while making very limited price changes. We note

that the previous best known price change guarantee is O(log T ). Hence, our analysis reveals

a class of non-parametric functions for which the best known price change guarantee improves

from O(log T ) to O(log log T ). To the best of our knowledge, we are also the first to leverage

two-point bandit feedback to reduce the total number of price changes while maintaining near

optimal regret guarantee.

We also perform extensive numerical experiments to empirically test the performance of the

proposed method. Examples on synthetic data show that the proposed algorithm reduces the

number of price changes substantially over the best performing benchmark. While one would

expect that this reduction in price changes could lead to an increase in terms of regret, we find

that our policy performs at-par with benchmark methods.

4.1.1 Literature Review

Dynamic pricing under demand uncertainty has been widely studied in operations research and

operations management. While various learning methods have been proposed, non-parametric

demand coupled with limited price changes lead to significant challenges in revenue maximiza-
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tion.

Pricing and Learning: Pricing has a rich history. Since its introduction by Rothschild

(1974), numerous extensions have been proposed. Review papers and references therein (see

for e.g., Aviv and Vulcano 2012 and den Boer 2015) provide a comprehensive overview of the

current advancements in the field. While many of the early works tackled pricing problems

assuming that the underlying demand is known, recent studies have focused on the problem of

learning the demand while earning revenue. Assumptions on the demand, particularly assuming

a parametric vs non-parametric form, substantially changes the learning and pricing problem

and the subsequent analysis.

Parametric models for pricing and learning: Many researchers have proposed dynamic pric-

ing algorithms under various assumptions on the unknown parametric demand. Under this

setting, a parametric model of demand (often linear in price) is assumed and the unknown pa-

rameters of the demand model are learned in a sequential manner. den Boer and Zwart (2013)

assume a linear price demand relationship and propose a controlled variance pricing policy

that accomplishes sufficient learning by introducing variance in the dynamically chosen prices.

Keskin and Zeevi (2014) find sufficient conditions under which a pricing policy is optimal in

terms of its rate of regret in the linear demand setting. Handel and Misra (2015) and Bertsimas

and Vayanos (2017) use techniques from robust optimization to solve the dynamic pricing with

unknown demand parameters. More recently, Cohen et al. (2016), Qiang and Bayati (2016),

Javanmard and Nazerzadeh (2016), Ban and Keskin (2017), Elmachtoub et al. (2018), Bastani

et al. (2019) and others have used parametric models of demand that not only include price but

other product related covariates for optimal pricing decisions. None of these papers explicitly

account for price changes. Hence, they could potentially lead to linear rate of increase in the

number of price changes with respect to the total time horizon.

Non-parametric models for pricing and learning: Dynamic pricing with non-parametric

demand has also been extensively studied. Under this setting, demand is assumed to belong to a

family of demand curves characterized by some structural properties of the revenue function such

as its concavity and unimodality. Besbes and Zeevi (2015) construct a misspecified algorithm

that uses linear models of demand to optimize subsequent prices. Somewhat surprisingly, they

find that even though misspecified, their constructed policy is near optimal. Following their

intuition, our proposed policy also constructs linear interpolations of the unknown demand and
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uses these approximations for future pricing. Nevertheless, since their proposed algorithm does

not account for price changes, they incur at least O(log T ) price changes, substantially higher

than the proposed the rate of price change of the propsed algorithm in this chapter: O(log log T ).

Others such as Besbes and Zeevi (2009), Lei et al. (2014), Dokka Venkata Satyanaraya et al.

(2018), Chen et al. (2017a) and Chen and Gallego (2018) also construct non-parametric pricing

policies but do not account for price changes. As a result, the proposed algorithm and the

theoretical lower bounds we establish in this paper are fundamentally different from existing

work.

Dynamic Pricing with Limited Price Experimentation: The effects of dynamic pric-

ing on consumer behavior have also been extensively studied. For example, PK Kannan (2001)

hypothesized that extensive price changes based on dynamic pricing policies that discriminate

between consumers can lead to mistrust amongst consumers. These claims were substantiated

through experiments conducted by Garbarino and Lee (2003) and Haws and Bearden (2006).

These studies point out the inherent tension between frequent price changes and revenue max-

imization.

In the operations management literature, constraints on price changes are not new. Feng

and Gallego (1995) consider the optimal timing of a single price change to maximize revenue.

Similarly, Bitran and Mondschein (1997) optimize dynamic prices given a prespecified schedule

of price changes. Netessine (2006) considers the problem of optimal dynamic pricing with

infrequent price changes and inventory constraints. Nevertheless, these papers do not account

for demand learning and hence, they are substantially different from the current work. Closer

to our work, Broder (2011) first formulated the demand learning problem with limited price

changes. Focusing on the parametric demand setting, the authors construct a pricing algorithm

based on the Maximum Likelihood Estimation method that incurs Õ(
√
T ) regret with O(log T )

price changes. More recently, Cheung et al. (2015) focus on a demand learning problem with

limited price changes in a parametric setting where the actual demand is one among finite

known demand curves. Similarly, Chen and Chao (2017) focus on a parametric family of

unknown demand functions, but with the added complication of censored demand. Finally,

Cohen et al. (2015) analyze how a single price (average price) can be near optimal in many

parametric demand settings. Nevertheless, since no price changes are allowed, the single price

policy they propose would earn a linear rate of regret in our setting.
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All the studies cited above differ substantially from the current work due to their para-

metric demand assumption. For example, the MLE based algorithm of Broder (2011) works

with a known parametric demand form. Similarly, the pricing policy proposed by Cheung et al.

(2015) uses a data-driven approach to construct candidate demand curves that are known to

the retailer. In contrast, in this chapter, we do not impose any parametric assumptions on

the demand. In addition, we do not assume that historical sales data is available. Our pro-

posed SLPE policy uses a fundamentally different intuition. Our price selection procedure uses

piecewise linear approximations to provide near optimal prices for experimentation. We ensure

limited price changes by fixing a selected price until demand at that price cannot be estimated

with high certainty. Our proposed policy incurs Õ(
√
T ) rate of regret with O(log log T ) price

changes. We further show superior empirical performance through an extensive numerical study.

Bandit convex optimization and two-point bandit feedback: Our work is also related

to the Continuum Armed Bandit problem, an extension to the classical bandit learning intro-

duced by Lai and Robbins (1985). In this setting, decisions (arms) are a subset of R and rewards

are a continuous function of the decision (Agrawal 1995). Many extensions, particularly based

on changing the underlying assumption of the reward function have been proposed. See, for

example, Kleinberg (2005) and Auer et al. (2007). Nevertheless, these algorithms fundamentally

differ from the current algorithm because they rely on discretization of the decision space and

are robust to the adversarial setting. For example, the CAB1 algorithm of Kleinberg (2005)

incurs a regret of Õ(T 2/3). More recently, Agarwal et al. (2011) have proposed a bandit learning

algorithm that sequentially reduces the continuous action space to converge to the optimal de-

cision. Similar to our chapter’s policy, their algorithm also constructs high probability bounds

around sampled decision points in order to discard suboptimal decision regions. Nevertheless,

their proposed decision point selection is considerably different from the decision point selection

of this chapter’s algorithm and is based on stochastic bisection search. Their algorithm and

analysis leverages convexity. Instead, we focus on smoothness and consider the two-point ban-

dit feedback case. Hence, we obtain a strong numerical as well as analytical performance. The

SLPE algorithm we introduce in this chapter, provably reduces the number of price changes to

O(log log T ) from the O(log T ) price change of the proposed algorithm of Agarwal et al. (2011)

and shows better empirical performance on all metrics in numerical experiments. Finally, limited

price changes can also be associated with batched learning (Somerville 1954). In this setting,
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learning progresses with batched outcomes and switching between batches is associated with

costs. The objective is to find optimal batch sizes that minimizes the cost of switching between

batches while maximizing an unknown objective. Perchet et al. (2016) solve the batched learn-

ing problem in the context of clinical trials. Similar to the current chapter, they find that very

few batches lead to optimal regret bounds. More recently, Simchi-Levi and Xu (2019) explore

the relation between switching costs and phase transitions. Similarly, Simchi-Levi et al. (2019)

also study network revenue management with switching costs. Nevertheless, all these papers

focus on discrete arm bandits instead of continuum armed bandits studied in this chapter. This

leads to fundamentally different analysis techniques between the current work and the papers

referenced above. For instance, the regret bound that we establish in this chapter, relies on the

smoothness of the unknown objective revenue function. Instead, Perchet et al. (2016) use the

gap between the optimal arm and the second best arm in order to control the batch size and the

regret. By construction, since our setting includes continuous arms, this gap can be arbitrarily

small and hence the same techniques cannot be applied in our analysis.

Finally our work is also related to derivative free optimization, and in particular recent

studies on two-point bandit feedback. As mentioned, the two-point bandit feedback structure

was introduced by Agarwal and Dekel (2010), and independently by Nesterov (2011). This

structure posits that the objective function can be evaluated at two different query points with

identical stochastic error. This assumption becomes particularly useful in the derivative free

optimization setting where the decision maker has access to function evaluations only to make

optimal decisions. Both papers use randomized gradient estimates that are constructed using

the two-point bandit feedback, and then fed into gradient search similar to first order methods.

Since then, researchers have analyzed optimal regret rates under various settings. In particular,

Duchi et al. (2015) consider the class of strongly smooth functions and show that the optimal

rate of regret is O(
√
T ). More recently, Shamir (2017) extends this analysis to include convex

and Lipschitz continuous functions. All these papers consider the multi-dimensional functional

minimization case, and focus on the dependence of the rate of regret on the dimensions of the

decision space. Evidently, they update decisions in every round, thereby having a O(T ) price

change guarantee. Instead, the focus of the current chapter is on the single dimension case, but

with very limited price changes. Hence, the analysis and the algorithm are both considerably

different from the aforementioned papers. Furthermore, we also establish how to extend the

results under a relaxed version of the two-point bandit feedback assumption that can be of
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independent interest.

4.1.2 Contributions

• Dynamic pricing for non-parametric unknown demand with limited price changes: We

analyze the problem of dynamic pricing and demand learning with limited price changes

under non-parametric demand, when the feasible prices belong to a continuous price range.

While prior researchers have investigated separately, the problem of non parametric de-

mand learning as well as the one with limited price changes, to the best of our knowledge,

this chapter is the first that studies these two problems together. In many settings,

dynamic pricing and learning can be tenuous with either of the two assumptions. For

example, in offline retail, the parametric form of the demand for a new product could be

hard to select a-priori. Similarly, prices cannot be changed for every incoming customer.

Furthermore, choosing a predefined price ladder for a new product can be a hard problem

by itself. For example, if the price ladder is too coarse, the optimal price learned from

the discrete price ladder can be far from the real optimal price, which can lead to a linear

rate of regret.

• Pricing algorithm with piece-wise linear estimates and provable regret guarantee: We

propose the Stochastic Limited Price Experimentation (SLPE) policy that uses linear

interpolations of the unknown demand in order to generate future prices. We show that

the rate of regret for the SLPE policy is Õ(
√
T ) and the total number of price changes is

O (log log T ). The upper bound on the rate of regret of the SLPE policy matches the lower

bound up-to a constant and logarithmic factor. Furthermore, the rate of price changes is

the best known price change guarantee for a class of non-parametric demand functions.

Hence, our proposed policy provably achieves a near optimal regret rate (upto a constant

and logarithmic factor) while incurring very limited price changes.

• Proof technique and results: Our proof technique leverages Lipschitz continuity, local

linearity and the two-point bandit feedback of demand to reduce the cumulative number

of price changes. While Lipschitz continuity and local linearity is used to control the

gradient estimation error due to finite differences, two-point bandit feedback is important

for controlling the estimation error due to stochastic demand realizations. We also extend

all the results to a relaxed version of the two-point bandit feedback assumption, to show
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that our results are robust relative to the assumptions.

• Strong numerical performance: We perform extensive numerical experiments to inves-

tigate the empirical performance of the proposed policy. First, we present a practical

approach to elicit demand observations with near-identical stochastic error. Then, we

compare our policy to benchmark pricing policies and show that the SLPE policy consid-

erably outperforms the benchmark algorithms in terms of regret as well as in terms of the

total number of price changes. The proposed policy uses 80% less price changes than the

best performing benchmark policy. This leads us to conclude that our proposed method

exhibits strong numerical performance.

4.2 Model and Performance Metrics

In this section, we formulate the dynamic pricing and learning problem and formalize the notion

of regret, limited price experimentation and limited price changes.

4.2.1 Model

We consider the pricing problem of a retailer offering a single new product with unlimited

inventory. The retailer is allowed to choose prices p1, p2, ...pT such that pi ∈ [pL, pU ], ∀ i =

1, .., T . Each price results in a realized demand Y1, Y2, ... generated according to the following

demand specification with additive noise (similar to Agarwal et al. 2011, den Boer and Zwart

2013 etc.):

Yt = d(pt) + εt, ∀t = 1, 2, ..., (4.1)

where d : R+ ∈ [pL, pU ] → R+ is the unknown fixed demand. We let d be any non-parametric

demand function which is non-increasing in price and smooth (See §4.2.3). Similarly, {εt,

t=1,2,...} is the σ-subgaussian noise term. Given any price p ∈ [pL, pU ], the retailer’s expected

single period revenue function is given by:

r(p) := pd(p), (4.2)
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where the expectation is taken over εt, the σ-subgaussian noise in the demand realization. Then,

the revenue maximizing price, p∗, is defined as

p∗ := arg max{r(p) : p ∈ [pL, pU ]}. (4.3)

The retailer’s objective is to maximize revenue. Indeed, if demand function d was known a-

priori, the retailer would always charge p∗, the revenue maximizing price. Nevertheless, function

d is unknown and the retailer has to learn the demand function while concurrently earning

revenue.

Feasible Pricing Policies: We will restrict ourselves to the family of non anticipating policies

Π. A non anticipating policy, π ∈ Π : π = {πt}, is a sequence of random functions πt : R2t →

[pL, pU ], which indicate what price to charge at time t, such that πt depends only on demand

observations collected until time t. Thus, if we let Ht = (p1, Y1, p2, Y2, ...pt−1, Yt−1) denote the

vector of the history of prices and corresponding demand realizations until time t and Ft denote

the σ-field generated by Ht, then πt+1 is Ft- measurable.

4.2.2 Performance Metrics

We use two different performance metrics in order to compare feasible pricing policies. While

cumulative regret measures the revenue gap of a policy from the clairvoyant’s optimal policy,

the LPC metric measures the number of price changes for any policy π. We discuss each of

them next.

Cumulative Regret:

Rπ(T ), for any feasible pricing policy π, is defined as the expected cumulative revenue loss

incurred until time T , when using policy π instead of the revenue optimal price, p∗. That is,

Rπ (T ) =
T∑
t=1

(r(p∗)− r(pπt )) . (4.4)

The cumulative regret compares any policy π with a clairvoyant who has full knowledge of the

demand and hence chooses the optimal price, p∗. The classical pricing and learning literature

minimizes (4.4). Nevertheless, as noted before, practical pricing policies additionally aim to

make only a few price changes chosen over a very small set of prices.
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Limited Price Changes (Broder (2011)):

Limited Price Change, LPCπ(T ), for any feasible pricing policy π, measures the total number

of price changes made by policy π, until time T . That is,

LPCπ(T ) = 1 + |{2 ≤ t ≤ T : pπt 6= pπt−1}| . (4.5)

High LPCπ(T ) would imply potentially high price change costs and vice versa. As before, since

the clairvoyant’s optimal policy is a constant pricing policy, the optimal price change metric is

also 1.

Our goal is to find a policy π, that performs well on both the metrics. Policies with high

LPC could result in high price change costs that could out-weigh the benefits of learning the

optimal price. Furthermore, high LPC could also lead to customer dissatisfaction (PK Kannan

2001). Finally, high cumulative regret would imply lost revenue potential due to sub-optimal

learning. Nevertheless, allowing for unlimited price changes, with a large price menu aids in

learning the unknown demand. Hence optimally balancing both the metrics can be challenging.

Notation: Throughout the chapter, upper case letters refer to random variables, and lower

case letters refer to deterministic variables. For any random variable, X, X̄n refers to the

average over n i.i.d. realizations of the X. Similarly, X1,..,n denotes a vector of n independent

realizations of any random variable X. We will suppress n in the average notation wherever it

is self-explanatory for ease of exposition. For any vector V ∈ Rk, V i denotes the ith entry of

the vector V. Furthermore, we also normalize the demand so that pL = 0 and pU = 1. For any

twice differentiable real-valued function f(x), f ′(x) = d
dx(f(x)) denotes the derivative of f with

respect to x. Similarly, f ′′(x) = d
dx

(
d
dx(f(x))

)
denotes the second derivative of f with respect

to x. More generally, for a k-differentiable real-valued function, f (i)(x), ∀i = 1, .., k denotes the

ith-derivative of of f with respect to x.
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4.2.3 Assumptions

Preliminaries

Definition 4.2.1 (Lipschitz Continuity). A real valued function f(x) : R → R is ψ-Lipschitz

continuous if for any x1, x2 in the domain of f,

|f(x1)− f(x2)| ≤ ψ|x1 − x2| ,

for some constant ψ > 0.

Assumption 4.2.2 (Demand gradient bounded away from 0). Let p∗ > 0 be the revenue

maximizing price and p be any other feasible price. Then, ∃κ > 0 s.t.

d(p∗)− κ(p− p∗)2 ≤ −d′(p)p∗ ,

Assumption 4.2.2 bounds the gradient of the demand to be away from 0. Assumption 4.2.2

can be used to relate the gradient of the demand at any price with the gradient of the demand

at the optimal price. This statement is made more precise in Lemma 4.2.3.

Lemma 4.2.3. Consider a demand function d that satisfies Assumption 4.2.2. Then, ∀p ∈ [0, 1],

∃κ > 0 s.t.

p∗(d′(p)− d′(p∗)) ≤ κ(p− p∗)2 .

Proof. See Appendix C.2. �

Lemma 4.2.3 shows that for demand functions that satisfy Assumption 4.2.2, the demand

gradient at any price is close to the demand gradient at the unknown optimal price. Moreover

the gradient at the optimal price (p∗) can be expressed as a function of the gradient at any

price (p) plus an extra error factor (quadratic in (p− p∗)2 ).

Having given some interpretation to Assumption 4.2.2, next we establish some general prop-

erties of the demand function that satisfy Assumption 4.2.2. In particular, our assumptions

rely on the Lipschitz-continuity of the gradient of the unknown demand and the corresponding

revenue function.

Lemma 4.2.4. Let the double derivative of the revenue function r′′ and the derivative of

demand d′ be Ψ and Ψ̄ Lipschitz continuous and the demand function d be thrice differentiable.

107



CHAPTER 4. DYNAMIC PRICING WITH UNKNOWN NON-PARAMETRIC DEMAND
AND LIMITED PRICE CHANGES

Assume also that d′′(p∗) = 0 and let K1 = maxi≤3,p∈[0,1] |d(i)(p)|. Then, d satisfies the condition

of Assumption 4.2.2. That is, the following holds for κ = Ψ + Ψ̄ + 2K1 :

p∗(d′(p)− d′(p∗)) ≤ κ(p− p∗)2 .

Proof. See Appendix C.2. �

Lemma 2 shows that along with continuity of demand and revenue functions, if the second

derivative of the demand is 0 around the optimal price, implying that the demand function

is locally linear around the optimal price (see Figure 4.1), then the demand function satisfies

Assumption 4.2.2.

Figure 4.1: On the left figure, we plot the demand function that satisfies the smoothness assumptions
of Lemma 4.2.4. The demand function is a modified Logit function since the demand gradient around
the optimal price is 0. On the right figure, stochastic demand observations at two arbitrary chosen
prices. Notice that one of the demand observations at each price is displaced by the same amount;
hence it satisfies the two-point bandit feedback assumption. See §4.4.1 for details on how to relax this
assumption.

Assumption 4.2.5 (Two Point Bandit Feedback (Agarwal and Dekel 2010, Nesterov 2011)).

Let p1, p2 ∈ [0, 1] be any two prices charged by the retailer. Also let D1,..,n(p1) and D1,..,n(p2)

denote the vector of n random demand realizations each at p1 and p2 respectively given by

Di(p1) = d(p1) + ε1i & Dj(p2) = d(p2) + ε2j , ∀i = 1, .., n; j = 1, .., n ,

where εij are the σ-subgaussian noise terms. Then, ∀n,∃i∗ ≤ n and j∗ ≤ n such that ε1i∗ = ε2j∗ .

Furthermore, i∗ and j∗ can be estimated from data.

Assumption 2 posits that when prices are changed, the error in the demand realization

among at least one of the n demand realizations is identical (Figure 4.1). This is referred to
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as the two-point bandit feedback assumption and becomes important for estimating the error

in the gradient of the unknown demand curve at various prices. In particular, since demand

realizations are stochastic, estimating derivatives with zero-order demand information could

lead to merely subtracting noise. As discussed before, a similar assumption has also been used

in recent studies in bandit convex optimization, (see, for example, Agarwal and Dekel (2010),

Nesterov (2011), Duchi et al. (2015) and the references there in).

In what follows we present the algorithm and the analysis under Assumption 4.2.5. Nev-

ertheless, to show that the result is robust to the assumption, in §4.4.1 we consider various

relaxations of the assumption. In particular, we consider the case when the error at the two

demand observations i∗ and j∗ at the two prices is not the same. We show that all the results

continue to hold when this difference between the error terms is bounded and decreases as the

number of observations at each price increases (n). Furthermore, we also consider the case

when not all prices in the feasible price range satisfy this assumption. Instead, we show that

the results continue to hold even when the assumption is satisfied when considering demand

observations at prices only in a closed neighborhood around the optimal price.

Finally, we also discuss a practical strategy to compute demand pairs that satisfy Assump-

tion 4.2.5 from observed demand data. In practice, demand for products can have cyclic shocks.

For example in offline retail, if customers follow a fixed routine to shop for products over

a week, then the demand shocks on any given day of the week could be similar. That is,

εMonday(p1) ≈ εMonday(p2). Hence demand data for two different prices on a Monday would

satisfy the conditions of Assumption 4.2.5.

We also assume that the unknown demand function d is continuous and w-differentiable for

some w > 0. Here, w-differentiablity implies that the w-th derivative of the function exists.

Finally, the revenue function r has a unique maximizer that is strictly positive. Note that we

do not assume that the revenue function is concave since many common demand functions such

as Logit demand functions do not lead to concave revenue functions (Figure 4.2).

4.3 Proposed Algorithm

4.3.1 Preliminaries

Linear Interpolations: Let P ∈ Rk and G ∈ Rk−1 be k dimensional vectors of demand

and price points and an estimate of the change in demand at these prices, respectively. Each
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component of P is a tuple (pi, qi) that contains the price and estimated demand at that price.

For example, given n independent realizations of demand at a price pi, qi can be the average of

the n demand observations. Assume that P are arranged in an increasing order of its pricing

component. That is, p1 < p2, ..., < pk. Then, the linear interpolated approximation of the

demand, d̂ : R→ R is defined as:

d̂(P ,G, p) =


q2 +G1 (p− p2) ,∀p ≤ p2 ,

qi +Gi (p− pi) ,∀p ∈ [pi, pi+1], i = 2, .., k − 1 .

Similarly, r̂ : R→ R, the revenue approximation from such a linear interpolation, is given by,

r̂(P ,Q, p) = p · d̂(P ,Q, p) .

Finally, let ζ ⊂ R, be a subset of feasible prices over the domain of d̂. Then, p̂, the

approximated optimal price from the interpolated revenue approximation is given by:

p̂ (P ,Q, ζ) = arg max
p∈ζ

r̂(P ,Q, p) . (4.6)

Problem (4.6) involves solving at most k − 1 concave and quadratic revenue maximization

problems that relate to the k − 1 linear demand pieces. Nevertheless, each of these problems

has a closed form solution. Hence, the overall complexity of the problem is linear in terms of

k, the number of linear pieces.

In Figure 4.2, we plot such approximations of the unknown demand curve for a fixed P and

G. Note that the construction of these approximations are fairly simple. They are obtained

from linearly interpolating between the price and quantity observations.

4.3.2 Pricing Algorithm

The Stochastic Limited Price Experimentation (SLPE ) algorithm (Algorithm 4) takes as an

input three parameters: T , ρ and µ. While T is the total length of the time horizon, ρ and µ

are tuning parameters that govern the dispersion amongst experimentation prices as well as the

amount of demand observations allowed at each of these prices. High value of µ ensures that the

selected prices in each round are well dispersed in the feasible pricing range. Similarly, a high ρ

leads to a higher number of sampled demand points at each of the selected prices. In §4.4, we
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Figure 4.2: Linearly interpolated demand and the corresponding revenue approximation. In this case
the optimal price of the approximation is very close to the actual optimal price.

Algorithm 4 SLPE(T,µ,ρ)

Let pL1 = 0, pH1 = 1, i = 1, t = 0, ∆1 = .5, P = {}, G = {} and i = 1.
while t ≤ T do

Let ni = 2ρ4 log(T )
∆4
i

and t = t+ 3ni.

Price for ni periods each at pLi , pMi =
pLi +pHi

2 and pHi , respectively.

Let P = {(pLi , D̄ni(p
L
i )), (pMi , D̄ni(p

M
i )), (pHi , D̄ni(p

H
i ))}

Let G =
{DM∗1 (pMi )−DL∗ (pLi )

∆i
,
DH∗ (pHi )−DM∗2 (pMi )

∆i

}
(pairs satisfying Assumption 4.2.5).

Optimize over piecewise-linear demand estimate with P and G (see §4.3.1) to get p̃∗i .

Let pLi+1 = p̃∗i − µ∆2
i , p

H
i+1 = p̃∗i + µ∆2

i , ∆i+1 = µ∆2
i and i=i+1.

discuss how the choice of µ and ρ govern the theoretical guarantees of the algorithm and in §4.5,

we discuss practical choices of µ and ρ that show substantially improved numerical performance

over benchmark algorithms. Finally, while we assume that T is known in advance, we note that

the theoretical analysis of the SLPE algorithm (see §4.4) is independent of knowing the specific

value of T . The analysis can be extended using the well known “Doubling Trick” frequently

used in the analysis of online algorithms (see, for example, Besson and Kaufmann 2018).

Initially, the algorithm starts by experimenting at the end points, as well as the mid point

of the initial price range (prices 0, 0.5 and 1 respectively). The subsequent price selection

is determined by optimizing over the piecewise linear approximation of the demand function

created by the demand observations obtained in the previous round. In each subsequent round,

we select the optimal approximated price and two prices around that optimal approximated

price. Prices are selected so that in each round, the overall price range around the approximated
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optimal price contains the real unknown optimal price with high probability (see §4.4).

Interestingly, while we use the average of the observed demand, D̄ to estimate the unknown

demand at any price (see P in Algorithm 4), the gradient is estimated using the central-difference

estimator from demand observations satisfying two-point bandit feedback, DM∗1
and DL∗ (see

G in Algorithm 4).

While Algorithm 4 assumes that at least one pair of demand observations that satisfy As-

sumption 4.2.5 are known, in §4.4.1 we discuss how to estimate such demand pairs that could

potentially have the same error. This method can be used as a sub-routine to first find such

pairs, and then use the procedure that is proposed in Algorithm 4. In fact, the numerical algo-

rithm in §4.5 uses this sub-routine and still outperforms other benchmarks, showing practical

applicability of the proposed method.

Intuition:

To develop some intuition on the proposed pricing policy, we embed the pricing problem within

the framework of bandit convex optimization (Kleinberg 2005). In this setting, the quantity

of interest is a certain scalar p∗ that maximizes a certain well behaved function (see §4.2.3),

d, which is unknown. While d is unknown, noisy observations of d at selected decision points

pi, (D(pi)), are available; the objective is to select various decision points, pi, such that they

converge to the optimal point, p∗. Over the years, various algorithms have been proposed to

solve this problem. In particular, as we previously mentioned, one popular approach is to use

stochastic bisection search methods (Agarwal et al. 2011, Jasin et al. 2015) to find the optimal

price. These algorithms depend on an underlying concavity assumption on the revenue function.

Unfortunately, this concavity property is often not satisfied (see Figure 4.2). Similarly, another

approach is to approximate the unknown demand function, for example with linear functions

(Besbes and Zeevi 2015) that incurs Õ(
√
T ) with O(log T ) price changes.

Instead, the SLPE policy uses piecewise linear interpolations for approximating the unknown

non-parametric demand function. Gradients are estimated using a pair of demand observations

that have identical error (see Assumption 4.2.5). This ensures that not only is the estimate of

the demand at any price “good” enough, but also that the estimate of the first-derivative of

the demand at any price is also “good” enough. To see this, let d̂ be an approximation of the

unknown demand function d, and let p̂∗ the revenue maximizing price for the approximated

unknown demand curve. Also denote by g(p) = d(p) + d′(p)p and ĝ(p) = d̂(p) + d̂′(p)p, the first
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order condition for the revenue maximization problem. Then, g(p∗) = 0 and ĝ(p̂∗) = 0. Notice

that while g is unknown, ĝ is known. Furthermore,

ĝ(p∗)− g(p∗) = (d̂(p∗)− d(p∗)) + (d̂′(p∗)− d′(p∗))p∗

=⇒ ĝ(p∗)− ĝ(p̂∗) = (d̂(p∗)− d(p∗)) + (d̂′(p∗)− d′(p∗))p∗

Now if, for example, ĝ is a linear function of the form ĝ(p) = α + βp, for some β 6= 0, it

follows that

|p∗ − p̂∗| ≤ 1

β

|d̂(p∗)− d(p∗)|︸ ︷︷ ︸
A

+ |d̂′(p∗)− d′(p∗)|︸ ︷︷ ︸
B

p∗

 (4.7)

While (A) in (4.7) represents the estimation error of demand at the optimal price, (B) in (4.7)

represents the estimation error of the gradient at the optimal price. Hence, to get an upper

bound on the estimation error between the estimated and the unknown optimal price, we need to

bound the error in estimating the demand at the optimal price, as well as the error in estimating

the gradient at the optimal price. Since the optimal price is unknown, SLPE ensures that both

these estimation errors are “small” at any selected price. This is accomplished by controlling

two sources of error. First, we have to control for the error due to demand misspecification

on account of the unknown non-parametric structure of the demand function d. Second, since

demand realizations are stochastic, we also incur an estimation error due to the noise in demand

observations at selected prices. Notice that both misspecification and demand stochasticity

contribute to error in estimating demand and the gradient of demand at any given price. ni in

each round is selected so that the error due to stochastic demand realizations is of O(∆2
i ) for any

price. Similarly, the gradient estimation error is also of O(∆2
i ) since we use the finite difference

of demand observations with identical error. To contrast this with existing approaches that use

average demand at any two prices as an estimate of the gradient, we have that for any price p,

d̂′ (p) =
D̄(p)− D̄(p−∆)

∆
=
d(p)− d(p−∆)

∆
+

1

n∆

 n∑
i=1

εi −
n∑
j=1

ε̃j

 . (4.8)

Here ε and ε̃ are error realizations in demand (see §4.2.1), n denotes the total demand realizations

at any of these price points and D̄(p) denotes the average of demand observations at price

p. The first part on the RHS of (4.8) denotes the error due to using finite differences in
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demand observations to estimate the demand gradient. The second part is error incurred

due to stochastic demand observations. Importantly, this stochastic error is not present when

gradients are estimated in the SLPE policy. Hence, when n is tuned appropriately, the error

in the average based estimator (4.8) decays at the rate of O(∆), but the gradient estimated in

the SLPE policy decays at the faster rate of O(∆2). This faster convergence of the gradient

estimate to the true gradient leads to improved estimation of the optimal price. In every round,

we can estimate a high probability region of size O(∆2) around the approximated optimal price

that contains the optimal price. We make these statements precise in what follows.

4.4 Analytical Results

The main result of this section is a Õ(
√
T ) bound on the regret of the SLPE policy that we

present in Theorem 4.4.1.

Theorem 4.4.1. Let the unknown real demand function d(p) satisfy Assumptions (1) and (2).

Also assume that |d′(p∗)| ≥
(
K1
24 + κ

4

)
1
4 + c

2 , for some positive constant c and κ as defined

in Assumption 4.2.2 and K1 = maxi≤w,p∈[0,1] |d(i)(p)|, where d(p) is w-differentiable. Then if

2 > µ ≥
(

1
c

(
1
ρ2 + K1

6 + κ
4

)
+ K1

12 + 4κ
)

, the regret of the SLPE pricing policy is

RSLPE(T )(T ) ≤
(
C1 + C2 log

(
log

(
T

2µρ4 log(T )

)))√
T log(T ) = O

(
log(T ) log(log(T ))

√
T
)
,

where C1 and C2 are constants independent of T .

The proof follows through a series of lemmas that we discuss next.

First note that the SLPE algorithm is a round based policy. Hence, we start by showing

that with high probability, in any round i, the optimal price is contained within the upper and

lower bound on optimal price (pH and pL) for that round.

In Lemma 4.4.2, we start by showing that the selection of number of samples in each round

i of the SLPE algorithm (ni) ensures that the finite difference estimator of the gradient of

demand has a small approximation error of O(∆2
i ), where ∆i := pHi − pMi = pMi − pLi is the size

of the interpolation of round i. The result is based on Taylor series expansion that leads to an

upper bound on the error due to linear interpolations, and the Lipschitz continuity of demand

and revenue functions.
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Lemma 4.4.2. Consider the three experimental prices pLi , pMi and pHi of prices experimented

in round i of Algorithm (4). Then,

∣∣∣DM∗1
(pMi )−DL∗(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

) ∣∣∣ ≤ 1

2
K1

∆2
i

12
, (4.9)

and

∣∣∣DH∗(p
H
i )−DM∗2

(pMi )

∆i
− d′

(
pMi + pHi

2

) ∣∣∣ ≤ 1

2
K1

∆2
i

12
, (4.10)

where K1 = maxi≤w,p∈[0,1] |d(i)(p)|, and d(i)(p) denotes the ith derivative of demand at any price

p. Furthermore, (DL∗(p
L
i ), DM∗1

(pMi )) and (DM∗2
(Mi), DH∗(Hi)) are pair of demand realizations

that satisfy Assumption (4.2.5).

Proof. See Appendix C.2.

We combine the result of Lemma 4.4.2 to show in Lemma 4.4.3 that the “small” approxi-

mation error in the derivatives also leads to a “small” gap between the approximated optimal

price and the unknown optimal price. The proof relies on using the first order condition that

the optimal price satisfies and comparing it with the approximated first order condition that

can be estimated using the piecewise linear approximation. We show that the optimal price and

the approximated price for all rounds of the algorithm are contained in a region of size O(∆2
i )

with high probability.

Lemma 4.4.3. Consider the SLPE pricing policy of Algorithm 4 and let the unknown demand

function follow all assumptions as in Theorem 4.4.1. Then for any round i,

|p∗ − p̃∗i | ≤M∆2
i ,

for M =
(

1
c

(
1
ρ2 + K1

6 + κ
4

)
+ K1

12 + 4κ
)

with probability at least 1 − 1
T 2 , where p∗ is the real

unknown optimal price and p̃∗i is the approximated optimal price from the piecewise linear

interpolated demand curve of round i.

Proof. The proof follows in two main steps. In the first step, we use the first order condition to

relate the error in the unknown optimal and the approximated optimal price to the estimation

error in the demand and the gradient. Then in the second step, we bound the estimation error

respectively.
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Step 1: Relating the error in the approximated optimal price with the estimation error:

Let g(p) := r′(p) be the first order equation of the unknown revenue function. Then, by the

optimality of p∗, we have that g(p∗) = 0. Similarly, we have that p̃∗ is the estimated optimal

price from the piecewise linear demand curve constructed using demand observations at pL, pM

and pH . In particular, recall that

p̃∗ = arg maxp∈[pL,pH ]pd
est(p) ,

where we let

dest(p) :=


D̄(pM ) +

DM∗1
(pM )−DL∗ (pL)

pM−pL
(
p− pM

)
,∀p ≤ pM ,

D̄(pM ) +
DH∗ (pH)−DM∗2 (pM )

pH−pM
(
p− pM

)
,∀p > pM .

Recall by definition that p̃∗ is the approximated optimal price that is revenue maximizing for

the approximated demand dest(p). Since dest(p) is a piecewise-linear function we have two cases

to analyze: (i) p̃∗ ≤ pM or (ii) p̃∗ > pM . Assume without loss of generality that p̃∗ ≤ pM . Since

p̃∗ is the revenue maximizing price, it is a solution to the following (approximate) first order

condition:

dest(p) + d′est(p)p = 0 .

Hence dest(p̃∗) + d′est(p̃∗)p̃∗ = 0. In order to compare the approximated optimal price with the

real optimal price, we evaluate the optimal price at the approximate first order condition.Note

though that the approximate first order condition is also a piecewise function. Hence, we have

to analyze two cases: (i) if p∗ < pM or (ii) p∗ ≥ pM .

Case (i) p∗ < pM : Consider the approximate first order condition evaluated at p∗,

dest(p∗) + d′est(p∗)p∗ = D̄(pM ) +
DM∗1

(pM )−DL∗(p
L)

pM − pL
(
p∗ − pM

)
+
DM∗1

(pM )−DL∗(p
L)

pM − pL
p∗ .

(4.11)

Similarly,

dest(p̃∗) + d′est(p̃∗)p̃∗ = D̄(pM ) +
DM∗1

(pM )−DL∗(p
L)

pM − pL
(
p̃∗ − pM

)
+
DM∗1

(pM )−DL∗(p
L)

pM − pL
p̃∗ = 0 ,

(4.12)
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where the last equality follows from the optimality of p̃∗ for the approximate demand. Hence

subtracting (4.12) from (4.11), we have that:

dest(p∗) + d′est(p∗)p∗ − (dest(p̃∗) + d′est(p̃∗)p̃∗) = 2

(
DM∗1

(pM )−DL∗(p
L)

pM − pL

)
(p∗ − p̃∗) .

Also note that g(p∗) = 0. Hence, d(p∗) + d′(p∗)p∗ = 0. Furthermore,

dest(p∗) + d′est(p∗)p∗ = dest(p∗) + d′est(p∗)p∗ − (d(p∗) + d′(p∗)p∗)

= (dest(p∗)− d(p∗)) + (d′est(p∗)− d′(p∗))p∗ .

Hence, combining the two equalities above, we get that

2

(
DM∗1

(pM )−DL∗(p
L)

pM − pL

)
(p∗ − p̃∗) = (dest(p∗)− d(p∗)) + (d′est(p∗)− d′(p∗))p∗

2
∣∣∣(DM∗1

(pM )−DL∗(p
L)

pM − pL

)∣∣∣|p∗ − p̃∗| ≤ |dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)|p∗

=⇒ |p∗ − p̃∗| ≤ 1

2|d′est(p∗)|

|dest(p∗)− d(p∗)|︸ ︷︷ ︸
A

+ |d′est(p∗)− d′(p∗)|p∗︸ ︷︷ ︸
B

 ,

(4.13)

where d′est(p∗) :=

(
DM∗1

(pM )−DL∗ (pL)

pM−pL

)
. To bound the estimation error in the optimal price, we

need to bound terms (A) and (B). (A) denotes the estimation error in demand at the optimal

price and (B) denotes the estimation error in the gradient. In what follows, we will bound both

these errors.

Step 2: Bounding the estimation error in the demand and the gradient:

We proceed by independently bounding (A) and (B) from (4.13).

Bounding |dest(p∗)− d(p∗)|: By definition, we have that

|dest(p∗)− d(p∗)| =
∣∣∣D̄(pM ) +

DM∗1
(pM )−DL∗(p

L)

pM − pL
(
p∗ − pM

)
− d(p∗)

∣∣∣
=
∣∣∣D̄(pM )± d(pM ) +

DM∗1
(pM )−DL∗(p

L)

pM − pL
(
p∗ − pM

)
− d(p∗)±

(
d(pM )− d(pL)

pM − pL
(p∗ − pL)

) ∣∣∣
≤
∣∣∣D̄(pM )− d(pM ) +

DM∗1
(pM )− d(pM ) + d(pL)−DL∗(p

L)

pL − pM
(
p∗ − pM

) ∣∣∣+∣∣∣− d(p∗) + d(pM ) +
d(pM )− d(pL)

pM − pL
(p∗ − pM )

∣∣∣ .
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Now let p∗ = λpL + (1− λ)pM , for some λ ∈ [0, 1]. Then,

∣∣∣D̄(pM )− d(pM ) +
DM∗1

(pM )− d(pM ) + d(pL)−DL∗(p
L)

pL − pM
(
p∗ − pM

) ∣∣∣ ≤
|D̄(pM )− d(pM )|+ λ|(DM∗1

(pM )− d(pM ) + d(pL)−DL∗(p
L))| .

But by Assumption 4.2.5, we have that

(DM∗1
(pM )− d(pM ) + d(pL)−DL∗(p

L)) = d(pM ) + ε∗ − d(pM ) + d(pL)− d(pL)− ε∗ = 0 .

Hence, w.p at least 1− 1
T 2

∣∣∣D̄(pM )− d(pM ) +
DM∗1

(pM )− d(pM ) + d(pL)−DL∗(p
L)

pL − pM
(
p∗ − pM

) ∣∣∣ ≤ |D̄(pM )− d(pM )|

≤ ∆2

ρ2
.

The last inequality follows through Hoeffding’s inequality for sub-gaussian random variables.

Next, to bound
∣∣∣−d(p∗)+d(pM )+ d(pM )−d(pL)

pM−pL (p∗−pM )
∣∣∣, we can apply the linear interpolation

error bound (see Chapter 6 of Süli and Mayers (2003)) and get that

∣∣∣d(pL) +
d(pL)− d(pM )

pL − pM
(p∗ − pL)− d(p∗)

∣∣∣ ≤ K1

8
∆2 ,

where recall that K1 = maxp∈[0,1],i≤w |di(p)|. Hence,

|dest(p∗)− d(p∗)| ≤
(

1

ρ2
+
K1

8

)
∆2
i . (4.14)

Now we focus on bounding term (B) of (4.13), that is |d′est(p∗)− d′(p∗)|.

Bounding |d′est(p∗)− d′(p∗)|: First recall, by definition that d′est(p∗) =

(
DM∗1

(pM )−DL∗ (pL)

pM−pL

)
.

Hence,

|d′est(p∗)− d′(p∗)| =
∣∣∣DM∗1

(pM )−DL∗(p
L)

pM − pL
+ d′

(
pM + pL

2

)
− d′

(
pM + pL

2

)
− d′(p∗)

∣∣∣
≤
∣∣∣DM∗1

(pM )−DL∗(p
L)

pM − pL
− d′

(
pM + pL

2

) ∣∣∣+
∣∣∣d′(pM + pL

2

)
− d′(p∗)

∣∣∣ .
(4.15)
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Lemma 4.4.2 implies that

∣∣∣DM∗1
(pM )−DL∗(p

L)

pM − pL
− d′

(
pM + pL

2

) ∣∣∣ ≤ 1

2
K1

∆2
i

12
.

Similarly, to bound
∣∣∣d′ (pM+pL

2

)
− d′(p∗)

∣∣∣, we use Assumption 4.2.2 and get that

∣∣∣d′(pM + pL

2

)
− d′(p∗)

∣∣∣ ≤ κ(p∗ − pM + pL

2

)2

≤ κ∆2
i

4
,

where the last inequality follows because p∗ ≤ pM . Hence, combining the above two results and

using (4.15), we have that

|d′est(p∗)− d′(p∗)| ≤
(
K1

24
+
κ

4

)
∆2
i , (4.16)

Hence using (4.14) and (4.16), it follows that

|p∗ − p̃∗| ≤ 1

2|d′est(p∗)|
(
|dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)p∗|

)
≤ 1

2|d′est(p∗)|

(
1

ρ2
+
K1

6
+
κ

4

)
∆2
i .

Finally, to bound d′est(p∗), note that

|d′est(p∗)| ≥ |d′(p∗)|−|d′est(p∗)−d′(p∗)| ≥ |d′(p∗)|−
(
K1

24
+
κ

4

)
∆2
i ≥ |d′(p∗)|−

(
K1

24
+
κ

4

)
1

4
≥ c

2
,

where the last inequality follows from the assumption that the derivative of demand at the

optimal price is bounded away from 0. Hence, we get that

|p∗ − p̃∗| ≤ 1

c

(
1

ρ2
+
K1

6
+
κ

4

)
∆2
i .

So far, we assumed that both p∗ and p̃∗ are less than the mid point of the current interpo-

lation. Next, consider case (ii) when p∗ > pM but as before p̃∗ ≤ pM . In this case, we have

to account for a larger approximation error in the demand and the gradient of demand at the

optimal price.

Case (ii) p∗ > pM : Consider the first order condition on the approximated demand evaluated
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at p∗,

dest(p∗) + d′est(p∗)p∗ =D̄(pM ) +
DH∗(p

H)−DM∗2
(pM )

pH − pM
(
p∗ − pM

)
+
DH∗(p

H)−DM∗2
(pM )

pH − pM
pM − pLp∗ .

(4.17)

Similarly, evaluating the first order equation at the optimal price calculated using the approxi-

mated demand, we get that

dest(p̃∗) + d′est(p̃∗)p̃∗ = D̄(pM ) +
DM∗1

(pM )−DL∗(p
L)

pM − pL
(
p̃∗ − pM

)
+
DM∗1

(pM )−DL∗(p
L)

pM − pL
p̃∗ = 0 ,

(4.18)

where the difference is due to the fact that p∗ > pM but p̃∗ ≤ pM . Subtracting (4.18) from

(4.17), and letting m1 =
DH∗ (pH)−DM∗2 (pM )

pH−pM and m2 =
DM∗1

(pM )−DL∗ (pL)

pM−pL , for ease of notation, we

get that

dest(p∗) + d′est(p∗)p∗ −
(
dest(p̃∗) + d′est(p̃∗)p̃∗

)
= m1(p∗ − pM ) +m1p

∗ −m2(p̃∗ − pM )−m2p
∗

= m1(p∗ − pM + p̃∗ − p̃∗)−m2(p̃∗ − pM ) +m1(p∗ − p̃∗)−m2p̃
∗

= 2m1(p∗ − p̃∗) +m1(p̃∗ − pM )−m2(p̃∗ − pM ) + (m1 −m2)p̃∗

= 2m1(p∗ − p̃∗) + (m1 −m2)(2p̃∗ − pM ) .

We follow the same analysis as before and arrive at the following:

|p∗ − p̃∗| ≤ 1

2|m1|
(
|dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)|p∗

)
︸ ︷︷ ︸

A

+ |m1 −m2|
(
2p̃∗ − pM

)︸ ︷︷ ︸
B

. (4.19)

Notice that (A) in the equation above is the same as before (case (i) when p∗ ≤ pM ). Hence,

an identical analysis yields that

1

2|m1|
(
|dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)|p∗

)
≤ 1

c

(
1

ρ2
+
K1

6
+
κ

4

)
∆2
i .
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Focusing on (B), we get that

|m1 −m2| =
∣∣∣m1 −m2 + d′

(
pM + pH

2

)
− d′

(
pM + pH

2

) ∣∣∣
=
∣∣∣m1 −m2 + d′

(
pM + pH

2

)
− d′

(
pM + pH

2

)
+ d′

(
pM + pL

2

)
− d′

(
pM + pL

2

) ∣∣∣
≤
∣∣∣m1 − d′

(
pM + pH

2

) ∣∣∣+
∣∣∣d′(pM + pL

2

)
−m2

∣∣∣+
∣∣∣d′(pM + pH

2

)
− d′

(
pM + pL

2

) ∣∣∣
≤
(
K1

12
+ 4κ

)
∆2
i ,

where the last inequality follows by Lemma 4.4.2, Assumption 4.2.2 and p∗d′(p) ≤ d(p∗), ∀p ∈

[0, 1]. Hence, we have that

|p∗ − p̃∗| ≤
(

1

c

(
1

ρ2
+
K1

6
+
κ

4

)
+
K1

12
+ 4κ

)
∆2
i ,

hence, letting M =
(

1
c

(
1
ρ2 + K1

6 + κ
4

)
+ K1

12 + 4κ
)

proves the final result.

We are finally in the position to prove that the regret of the SLPE policy is near optimal and

it scales sublinearly with T (that is, Õ(
√
T )). The proof uses Lemma 4.4.2 and Lemma 4.4.3 to

first show that the regret is bounded as we move from one round to the next. In particular, we

use the Mean Value Theorem to first relate regret from any price to the distance of this price

from the optimal price. Then Lemma 4.4.3 is used to bound the distance of prices selected in

any round to the optimal price.

Proof. Proof of Theorem 4.4.1: We will show that the regret is bounded in two steps. In Step

1, we will first bound the regret from any round of the policy. Then, in Step 2, we will bound

the overall regret of the policy. Our focus will be the high probability events that happen with

probability at least 1 − 1/T 2 since regret from the low probability event over the whole time

horizon would be of a constant factor.

Step 1 (Bounding regret loss in any round): In any round i > 1, the SLPE policy makes

3 price changes, at pHi , pLi and at p̃∗i−1. Hence, we need to first estimate the revenue loss due to

pricing at these price points.

First note that

r(p∗)− r(p̃∗i−1) ≤ K1(p∗ − p̃∗i−1)2 ,
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where recall that K1 = maxp∈[0,1],i≤w |di(p)|. This follows by a direct application of (i) the Mean

Value Theorem and (ii) the boundedness of second derivative of the demand function and the

revenue optimality of the unknown optimal price p∗. Next, in order to bound (p∗− p̃∗i−1), notice

that by Lemma 4.4.3

|p∗ − p̃∗i−1| ≤M∆2
i−1 ≤ ∆i ,

which holds by by construction since ∆i = µ∆2
i−1 and M ≤ µ. Hence, we have that

r(p∗)− r(p̃∗i−1) ≤ K1∆2
i .

Similarly, considering the error from pHi ,

r(p∗)− r(pHi ) ≤ K1(p∗ − pHi )2 = K1(p∗ − pHi + p̃∗i−1 − p̃∗i−1)2

≤ K1(|p∗ − p̃∗i−1|+ |p̃∗i−1 − pHi |)2

≤ K1(∆i + 2∆i)
2

≤ 9K1∆2
i ,

where the last inequality follows because |p∗ − p̃∗i−1| ≤ ∆i and |p̃∗i−1 − pHi | ≤ 2∆i. An identical

analysis yields that

r(p∗)− r(pLi ) ≤ 9K1∆2
i .

Now recall that at each of these three prices, the number of demand realizations, by design,

is ni = 2ρ4 log(T )
∆4
i

. Hence, the upper bound on overall regret from this round is

ni(r(p
∗)− r(pLi ) + r(p∗)− r(pHi ) + r(p∗)− r(p̃∗i−1+)) ≤ ni

(
19K1∆2

i

)
=

2ρ4 log(T )

∆4
i

(
19K1∆2

i

)
=

38K1ρ
4 log(T )

∆2
i

.

But, recall that there are in total T samples. Hence, the samples at any given price cannot

exceed the total available samples. That is,

ni =
2ρ4 log(T )

∆4
i

≤ T =⇒ 38K1ρ
4 log(T )

∆2
i

≤ 38K1ρ
2 log(T )

√
T . (4.20)
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Hence, in each round after the first round, the regret scales with Õ(
√
T ). Simple algebra

also yields that the total regret from the first round is upper bounded by 24K1ρ
4. Next, to

bound the total regret, we bound the total number of rounds in the SLPE policy.

Step 2: Bounding the total number of rounds in SLPE: For any round i ≤ imax,

recall that

ni =
2ρ4 log(T )

∆4
i

,

steps. Also note that for any i > 1, ∆i = µ∆2
i−1. Hence, in any round i ≤ imax,

∆i = µ∆2
i−1 = µ

(
µ∆2

i−2

)2
= ... = µ2i−1

(
1

2

)2i

.

Furthermore, since the total number of demand realizations are upper bounded by T , we also

have that

2ρ4 log(T )

∆4
i

≤ T .

2ρ4 log(T )

∆4
i

≤ T =⇒ 1

∆4
i

≤ T

2ρ4 log(T )
=⇒ 1

∆i
≤
(

T

2ρ4 log(T )

) 1
4

=⇒ 22i

µ2i
≤ 1

µ

(
T

2ρ4 log(T )

) 1
4

=⇒ 2i log

(
2

µ

)
≤ log

(
1

µ

(
T

2ρ4 log(T )

) 1
4

)

=⇒ 2i ≤ 1

log
(

2
µ

) (log

(
T

2µρ4 log(T )

))
,

where the second to last inequality follows since, µ ≤ 2. Furthermore, since the inequality

above holds for all i, we have that

=⇒ imax ≤ log

 1

log
(

2
µ

) (log

(
T

2µρ4 log(T )

))
=⇒ imax ≤ log

 1

log
(

2
µ

)
+ log

(
log

(
T

2µρ4 log(T )

))
.

Step 3: Bounding the overall regret: We are now in a position to combine the maximum

number of rounds and the regret from each round to get an upper bound on the cumulative
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regret of the SLPE policy. First note that

RSLPE(T ) =
T∑
t=1

r(p∗)− r(pπt )

=

imax∑
i=1

ni
(
(r(p∗)− r(p̃∗i )) + (r(p∗)− r(pHi )) + (r(p∗)− r(pLi )

)
≤ n1K1

1

4
+

imax∑
i=2

38K1ρ
2 log(T )

√
T

≤ 24K1ρ
4 + 38K1ρ

2 log(T )
√
Timax ,

(4.21)

where the second to last inequality follows because of (4.20). Thus in order to bound the total

regret, we need to bound imax. Substituting back in (4.21), we get that

RSLPE(T )(T ) = 24K1ρ
4 + 38K1ρ

2 log(T )
√
Timax

= 24K1ρ
4 + 38K1ρ

2 log(T )
√
T

log

 1

log
(

2
µ

)
+ log

(
log

(
T

2µρ4 log(T )

))
≤
(
C1 + C2 log

(
log

(
T

2µρ4 log(T )

)))√
T log(T )

= O
(√

T log(log(T )) log(T )
)
,

where C1 = log

(
1

log
(

2
µ

)
)
C2 + 24K1ρ

4 and C2 = 38K1ρ
2. This proves the final result.

Theorem 4.4.1 shows that the regret of the SLPE policy is O(log T log(log T )
√
T ). Keskin

and Zeevi (2014) have already shown that the lower bound for the regret of this class of policies

is O(
√
T ) (Theorem 1). Hence, the proposed policy is near optimal. As a part of the proof,

we also bound the total number of rounds in the policy. Since each round entails a total of 3

price changes, this naturally results in an upper bound on the total number of price changes

(see §4.2.2). Furthermore, the above result also shows that the number of price changes are of

the order of log log(T ). Corollary 4.4.4 makes this statement more precise.

Corollary 4.4.4. Let the unknown real demand function d(p) satisfy Assumptions (1) and (2).

Also assume that 2 > µ ≥ M , where M is defined in Lemma 4.4.3. Then the total number of

price changes of the SLPE policy,

LPCSLPE(T ) ≤ 3C̃ + 3 log

(
log

(
T

2µρ4 log(T )

))
,
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where C̃ = log

(
1

log
(

2
µ

)
)

.

Proof. Proof: The proof follows directly from the analysis of Theorem 1.

We note that Broder (2011) proved a O(log T ) price change bound in the parametric demand

case. Nevertheless, our results do not contradict their lower bound since Assumption 4.2.5 allows

us to come up with improved gradient estimates, even when demand observations are stochastic.

In-fact, our work bridges the gap between discrete and the continuous armed bandit cases by

discovering a class of continuous armed problems that have identical price change guarantee as

that of the discrete case.

We have so far shown that the analytical performance of the algorithm is near optimal in

terms of regret, and the total number of price changes and price experimentation are also very

low. In what follows, we revisit Assumption 4.2.5 that is important in our analysis. We will

show that the results follow even when the two-point bandit feedback is relaxed. Furthermore,

we also discuss practical implications of the assumption and propose an algorithm for eliciting

pair of demand points that poses the two-point feedback property.

4.4.1 Relaxing the Two Point Bandit Feedback Assumption

Previously we saw that two-point bandit feedback plays an important role in reducing the

number of price changes from O(log T ) to O(log log T ). In this section, we posit the question of

how robust the results are to this assumption. In particular, we relax this assumption and still

get the same guarantees as before. Indeed, as mentioned before, without any structure on the

error, Broder (2011) have already shown a lower bound on the price changes that is O(log T )

in a parametric demand setting. Hence, completely removing this assumption is futile if we

want to reduce the number of price changes further. Instead, we consider a relaxed version of

Assumption 4.2.5. For the sake of completeness, we start by restating Assumption 4.2.5.

Assumption 2: Let p1, p2 ∈ [0, 1] be any two prices charged by the retailer. Also let D1,..,n(p1)

and D1,..,n(p2) denote the vector of n random demand realizations each at p1 and p2 respectively

given by

Di(p1) = d(p1) + ε1i & Dj(p2) = d(p2) + ε2j , ∀i = 1, .., n; j = 1, .., n , (4.22)

where εij are the σ-subgaussian noise terms. Then, ∀n,∃i∗ ≤ n and j∗ ≤ n such that ε1i∗ = ε2j∗.
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Furthermore, i∗ and j∗ can be estimated from data.

In particular, Assumption 4.2.5 imposes the existence of two stochastic demand realizations

(at different prices) with the same error realization throughout the price range. We relax this

assumption and instead impose the following assumption:

2A Let p1, p2 ∈ [p∗ − σ, p∗ + σ] be any two subsequent prices charged by the retailer in the

neighborhood of the unknown optimal price. Also let D1,..,n(p1) and D1,..,n(p2) denote n random

demand realizations each at p1 and p2 respectively given by (4.22). Then, ∀n, ∃i∗ ≤ n and

j∗ ≤ n such that

|ε1i∗ − ε2j∗ | ≤ f(n) ,

where f(n) is a decreasing function of n. Furthermore, the indices i∗ and j∗ can be estimated

from data. Assumption 4.4.1 relaxes Assumption 4.2.5 in several ways. In particular,

1. Assumption 4.4.1 allows the error realizations at the two selected prices to be different

from each other, in comparison to being the same as in Assumption 4.2.5. f(n) captures

the bound on this difference between the error. In Theorem 4.4.5 we show that when the

decay rate of f(n) is of O(n−δ), for δ ≥ 3/4, we get the same price change and regret

guarantees as before.

2. Assumption 4.4.1 relaxes the existence of such demand pairs that have bounded difference

in the error realization from throughout the feasible price range (p ∈ [0, 1]), to only a closed

neighborhood around p∗ (p ∈ [p∗ − σ, p∗ + σ]) (Figure 4.3).

Figure 4.3: The two point bandit feedback is restricted to the shaded region around the unknown optimal
price. The error in demand realization at the two prices is not the same. Its difference is bounded and
decreasing with the number of demand realization.

In Theorem 4.4.5 we show that the price change and regret guarantees remain the same,

albeit with a slightly modified SLPE Algorithm, Algorithm SLPE-Ext (Algorithm 5) presented
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in Appendix C.4.

Theorem 4.4.5. Let the unkown real demand function d(p) satisfy Assumptions (1) and (2A)

with f(n) = 1
nδ

and δ > 3/4 and that |d′(p∗)| ≥
(
K1
24 + κ

4 + 3
ρ2

)
1
4 + c

2 , for some c > 0. Also

assume that 2 ≥ µ > M , where M is defined in Lemma C.4.2 of Appendix C.4. Then the Regret

of the SLPE-Ext pricing policy (Algorithm 5 of Appendix C.4) is,

RSLPE(T )(T ) ≤
(
C1 + C2 log

(
log

(
T

2µρ4 log(T )

)))√
T log(T ) = O

(
log(T ) log(log(T ))

√
T
)
,

where C1 and C2 are constants independent of T .

Proof. See Appendix C.4.

The proof of Theorem 4.4.5 follows by proving results that are analogous to Lemma 4.4.2 and

Lemma 4.4.3. These proofs, along with the proof of Theorem 4.4.5 are presented in Appendix

C.4. We refer the interested reader to Appendix C.4 for further discussion on the algorithm as

well as the proof.

We have so far discussed different relaxations of the two-point bandit feedback assumption.

In what follows, we discuss a practical algorithm to elicit such pairs from stochastic demand

realizations.

Finding feasible demand pairs satisfying two-point bandit feedback assumption:

The SLPE algorithm assumes that the decision maker has access to a pair of demand observa-

tions that satisfy the two point bandit feedback assumption (either Assumption 4.2.5 or 4.4.1).

Naturally, two questions arise: (i) when is Assumption 4.4.1 satisfied, and (ii) how does the

retailer estimate the pair of demand observations that satisfy this assumption? In what follows,

we answer both these questions by first describing why the assumption is satisfied in many

settings. Then, we describe a heuristic algorithm that finds the pair of demand observations

that have the minimum difference between the error realizations.

Recall that the retailer has access to a series of demand observationsD1,..,n(p1) andD1,..,n(p2).

Each demand observation has an additive error: Di(pj) = d(pj) + εji . The objective is to find a

pair of demand realizations that minimize the error:

arg min
i=1,..,n;j=1,..,n

|ε1i − ε2j | . (OP)
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Problem (OP) is easy to solve if the real demand function, d(p) is known. Indeed, when

d(p) is known, the retailer can simply use the known error realizations to find the pair that

minimizes the error. Furthermore, the optimal solution would also satisfy Assumption 4.4.1.

Assumption 2A posits that the optimal value of OP is bounded above by O(n−3/4) as a function

of n. To see the intuition behind this, consider the case when εi is uniformly distributed over

a bounded space. Then as the number of samples n increases, the distance between the error

realizations will decrease with a rate of at least 1/n. In fact, similar intuition also holds in

the case of bounded errors with a heavy tailed distribution. Hence, if OP could be solved, the

optimal solution would satisfy the assumption.

But how should one solve OP when in the more practical setting, d(p) is unknown? One

strategy is to use an estimate of the demand, d̂(p) instead of the unknown real demand. Then,

problem OP becomes:

arg min
i=1,..,n;j=1,..,n

∣∣∣Di(p1)−Dj(p2) + d̂(p2)− d̂(p1)
∣∣∣ . (OP-Approx)

It is easy to notice that while OP is not solvable, problem OP-Approx can be solved using

data that the retailer has access to. In particular, Di(p) are known and d̂ can be constructed

using demand observations. Furthermore, notice that even if d̂(p) is not close to d(p) and the

approximation error is high, as long as the error at both p1 and p2 is close, then the solution

of Problem OP-Approx is close to the solution of OP. Hence, in what follows, we propose a

heuristic that ensures that the error in the estimation remains the same with high probability.

To motivate our proposed approach, we start by noting that in most practical situations, the

error in demand observations is bounded. Hence, we will consider the case of bounded random

variables with heavy tails. In such a setting, as the number of demand observations increase,

the likelihood of at least one demand observation for any price, taking its maximum value is

high. Hence, we simply let

d̂(p) = max
i=1,..,n

Di(p),∀p .

Then, it is easy to notice that the optimal solution of OP-Approx is 0 and is achieved for

i∗ = arg maxiDi(p1) and j∗ = arg maxj Dj(p2). Nevertheless, this pair of demand observations

might not be the optimal solution of OP. Moreover, it might not satisfy the O(n−3/4) upper

bound on the error.

Finally, the proposed model is not the only model to estimate d̂. In fact, a simpler model
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could be to simply use average demand realizations at each price (p1 and p2). Then, OP can

be written as

arg min
i=1,..,n;j=1,..,n

∣∣∣Di(p1)−Dj(p2) + D̄(p2)− D̄(p1)
∣∣∣ . (OP-Average)

We now compare both OP-Average and OP-Approx with maximum demand as an esti-

mate of the unknown demand OP-Max. We are interested in the performance of the two

proposed methods, as the size of the data increases. The comparison will be based on how good

the method approximates the real unknown demand difference, d(p1) − d(p2). We generate n

stochastic demand observations at prices p1 and p2. Each demand observation is a function of

price. As n increases, the distance between p1 and p2 decreases, as is the case in the SLPE

algorithm.

Figure 4.4: Comparison of OP-Average and OP-Approx with maximum demand. On the Y-axis we plot
the error in estimation of the difference in demand at p1 and p2 as the number of stochastic demand
observations, sample size, increases. On the left, we restrict the error to be Uniform [-1,1] and on the
right, we restrict the error to be truncated Normal [-1,1] with 0 mean and unit variance. In both cases,
the proposed heuristic outperforms the average based estimator. Furthermore, it consistently remains
below the required decay rate necessary for price change reduction (see Theorem 4.4.5).

In Figure 4.4, we plot the difference between the estimated and actual difference between

d(p1)− d(p2) as we scale n and compare it with the minimum decay rate needed for Theorem

4.4.5 to hold (at least n−3/4, see Theorem 4.4.5). Notice that the OP-Max solution consistently

outperforms the average-based method. Furthermore, it is consistently below the minimum

decay rate. This result continues to hold when the underlying error follows a uniform or a trun-

cated normal distribution. This shows that our proposed heuristic method of using maximum

demand observations at any price to estimate demand gradient is both computationally effi-

cient and satisfies Assumption 2A. Hence, in the next section, when we compare the numerical

performance of the algorithm, we use this heuristic to estimate demand gradient.
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4.5 Numerical Study

In this section, we perform numerical experiments to compare the performance of the proposed

SLPE algorithm over other algorithms. The purpose is two-fold: (i) to discuss practical implica-

tions of how to select different input parameters; and (ii) to compare the numerical performance

of the algorithm with other state-of-the-art algorithms for this setting. In what follows, we dis-

cuss these implications through an extensive numerical study and start by discussing the various

benchmarks.

Benchmarks: We consider two benchmark algorithms: (i) the single dimensional convex

bandit optimization algorithm (Algorithm 1) of Agarwal et al. (2011), (referred to as Bandit

Convex (BC)) (ii) the misspecified pricing scheme of Besbes and Zeevi (2015) (referred to

as Misspecified Pricing (MP)). These two benchmarks are selected because neither make any

parametric assumptions on the objective function. While neither of these limit price changes,

both have comparable theoretical regret guarantees. Since a limited number of price changes can

be a by-product of good regret performance, it is worthwhile to compare these algorithms with

the SLPE algorithm. The BC policy is modified for the pricing problem under consideration.

This ensures a fair comparison amongst benchmark algorithms. Chen et al. (2015) explicitly

model a constraint on the number of price experimentation points. Nevertheless, since demand

in their case is among several known parametric demand curves, their algorithm is considerably

different from the current proposed policy and cannot be applied without further assumptions

on the demand.

Performance metrics: We will compare all three algorithms in terms of 3 metrics: LPC,

R (T ) (see §4.2.2) and LPE that we discuss next.

Limited Price Experimentation, LPEπ(T ), for any feasible pricing policy π, measures the

total number of unique prices used by the pricing policy until time T . That is,

LPEπ(T ) = 1 + |{2 ≤ t ≤ T : pπt 6∈ {pπ1 , .., pπt−1}}| . (4.23)

Since the clairvoyant knows the optimal price, p∗, the optimal price ladder size (LPE) is 1.

Remark 4.5.1 (Connection between LPE and LPC). Both the LPE and LPC metrics are

related to how a pricing policy switches between different prices. A low LPC ensures that the
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policy does not switch between prices very often. In contrast, a low LPE ensures that the pricing

policy only experiments with a small set of prices. While a low LPC naturally implies a low

LPE, a low LPE can still lead to a high LPC. For example, the LPE of a 2-menu price policy

would be 2 but if the policy switches at each time period, LPC of the same policy would be T .

In Example 4.5.2, we make this connection clear by comparing two feasible pricing policies in a

5 period example.

Example 4.5.2 (Pricing policy comparison over different metrics). Consider a retailer selling a

single product with infinite inventory over 5 time periods. Under consideration are two pricing

policies with the following period specific prices:

π1 : {p1 = $100, p2 = $90, p3 = $80, p4 = $75, p5 = $50} ,

π2 : {p1 = $100, p2 = $80, p3 = $70, p4 = $70, p5 = $80} .

π1 changes prices from one period to the other and charges a unique price in each period.

π2 changes prices between periods 1-2, 2-3 and 4-5. Furthermore, over the 5 time periods π2

switches between a set of 3 unique prices. Hence, comparing π1 and π2 over LPE and LPC

metrics, we have that LPCπ1
(5) = 5 and LPCπ2

(5) = 4 and LPEπ
1
(5) = 5 and LPEπ

2
(5) = 3.

As described before, each of these metrics relate to operational considerations of different

pricing algorithms. Particularly, while LPE and LPC track the operational costs of the pricing

policy under consideration, the cumulative regret tracks the revenue generation from the pricing

policy. Policies that have low LPE, LPC and regret are the best performing since they would

incur minimal operational costs while ensuring revenue maximization.

4.5.1 Synthetic Data

We generate synthetic data and evaluate the performance of all three algorithms under different

demand realizations arising from the same parametric demand structure.

Data generation: We consider the following Logit demand model due to its wide applica-

bility and use by both the academic community and practitioners. See, for example, Besbes

and Zeevi (2015).

d(p) =
exp(α− βp)

1 + exp(α− βp)
, α ∈ [α, ᾱ], β ∈ [β, β̄], where [α, ᾱ] = [0, 10] and [β, β̄] = [0.5, 10].
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where α,ᾱ, β and β̄ ∈ R are such that the optimal price is between 0 and 1. The Logit demand

model is an S shaped demand function with varying price elasticity across the feasible price

range. For suitably chosen parameter values, the Logit demand function can model concave,

convex or both demand models as well.

We consider 20 draws of the parameters α and β that are sampled according to a uniform

distribution on [α,ᾱ] and [β,β̄]. Each sample determines the underlying true demand model

which is known to the clairvoyant. We compare all the three algorithms against the clairvoyant’s

optimal policy in each round. We denote by σ, the standard deviation of the error in the

idiosyncratic demand response, fixed to be 0.1. Similarly, the total time horizon length (T ) is

fixed to be 5,000. In all cases the feasible price range is fixed to be the interval [0,1]. The MP

policy has three parameters: block length, historical data length and a tuning parameter. We

let the block length to be 2i for round i, and tuning parameter to be 0.75. Finally we use all the

historical data length to be the full history of collected data until that time. Note that this set

of parameters ensure that the number of price changes remain O(log T ). Selecting block length

to be 1, as is done in Besbes and Zeevi (2015) can further reduce regret at the expense of making

more price changes. Since our focus is on price changes, hence our choice of parameters. There

are no tuning parameters for the BC algorithm. Finally, SLPE has two tuning parameters: µ

and ρ (see §4.3). While µ controls the size of exploration around the estimated approximate

optimal price, ρ controls the depth of exploration. For example, increasing µ ensures that a

larger pricing region around the approximated optimal price is explored in the future rounds.

Similarly, a higher ρ results in more demand realizations being sampled at selected prices in

each iteration of the simulation. We have already discussed the dependence of these parameters

on the theoretical performance of the algorithm in §4.3. But, as mentioned previously, in more

practical settings, the tuning of these parameters can be complex. Hence, in what follows, we

circumvent this issue by fixing both ρ = 1 and µ < 1. This modification does not change the

regret guarantee of the policy. Nevertheless, fixing tuning parameters could lead to sub-optimal

algorithmic performance. Finally, we use the SLPE-Ext algorithm which works under the

relaxed assumption (see Assumption 4.4.1) and use the heuristic proposed in §4.4.1 to estimate

demand observations satisfying two point bandit feedback. In what follows we compare different

algorithms and show that the SLPE algorithm continues to outperform benchmark algorithms

even when input parameters are fixed.
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Results: Figure 4.5 shows the cumulative price changes (LPC) and the price ladder size

(LPE) averaged over 20 different trials (along with the 95% confidence intervals) for all three

algorithms. The proposed SLPE policy considerably outperforms both the MP and the BC

policy. On average, the proposed SLPE policy makes only 4 price changes in comparison to

more than 20 price changes by the MP policy and more than 35 price changes by the BC policy.

This translates to almost an 80% reduction in the total price changes from the better performing

MP policy. It directly translates to a reduction in the cost incurred by the retailer and can be

detrimental to the success of a new product. This reduction in price changes can be directly

attributed to the price selection process of the SLPE policy. Since the approximate piecewise

demand yields a very good approximation of the unknown demand, the approximated optimal

price is estimated with very good accuracy. Hence when this price is fixed for a large fraction of

customers, it leads to very few total price changes without incurring considerable revenue loss

(see Figure 4.6).

Similar improvements are also observed in the overall price ladder size (LPE). In particular,

while the SLPE selects 4 unique prices, thereby selecting a new price every time a price change

is made, both the MP and the BC policy repeat previously selected prices. While the MP

policy selects from amongst 8 unique prices, the BC policy selects prices from 10 unique prices

for the 5000 customers. This again translates to a 50% reduction in the size of the price

ladder. This improvement is crucial in light of the negative behavioral effects of frequent

price changes established by researchers (see PK Kannan 2001). A small price ladder ensures

that customers do not think that they are discriminated against, based on unknown latent

information independent of the product utility (see PK Kannan 2001).

Figure 4.5: Cumulative price change (on the left) and cumulative price experimentation (on the right)
with 95% confidence intervals for Logit demand specification.

We have so far shown that SLPE performs well in terms of the LPE and the LPC metrics,
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outperforming the benchmark algorithms. Next, we focus on the regret metric of §4.2.2 that

compares the revenue of a pricing policy with respect to the clairvoyant’s optimal price. A priori,

since limited price experimentation and price changes can slow down learning, one might expect

that the MP or the BC policy outperforms SLPE policy. In Figure 4.6, we plot the cumulative

regret and the 95% confidence intervals of all three algorithms. SLPE policy considerably

outperforms MP and marginally improves over the regret of the BC policy. To begin with, we

first note that the MP policy’s regret performance can improve substantially at the expense of

more price changes (see Besbes and Zeevi 2015). Hence, we change the block length parameter

to 1 and rerun the policy to compare its regret. As expected, the regret performance improves

substantially (right of Figure 4.6) but this leads to a linear increase in price changes. Hence, it

might not be applicable in many offline retail settings.

The improvement over BC can again be directly attributed to the price selection of the

SLPE policy. The BC policy selects experimental prices based on bisection search. Instead,

the SLPE policy is fundamentally driven by a different intuition. Instead of merely using the

demand observations to determine optimal price region in the next round, as in the case of the

BC policy, the structure of the revenue maximization objective is used to guide price selection

as well. Estimation of piecewise linear approximation leads to improved price point selection.

Similarly, while the MP policy outperforms SLPE initially, since MP policy is forced to explore

around the myopic estimated optimal price in each round, SLPE overtakes the MP since SLPE

only explores when a suboptimal price region is identified and the policy moves to the next

round.

Overall, we find that the proposed SLPE policy outperforms other benchmark methods in

terms of the price change and price experimentation metrics with comparable performance in

terms of the regret metric.

4.6 Conclusions

We consider the dynamic pricing problem of a retailer selling a single product when the under-

lying demand is unknown and non-parametric. The retailer seeks to reduce the amount of price

experimentation due to the associated operational costs of price experimentation. To the best of

our knowledge, the non-parametric demand setting with limited price experimentation has not

been considered in the pricing literature so far. Limited price changes add another dimension to
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Figure 4.6: Cumulative regret and 95 % confidence intervals for Logit demand specification. On the
left, the MP policy’s performance with O(log T ) price changes. On the right, the performance of the
MP policy improves substantially when frequent price changes are allowed (O(T )). In both cases, the
proposed SLPE policy performance of the revenue metric is comparable to that of the BC and the MP
policy that make more frequent price changes.

the exploration-exploitation trade-off since learning and earning objectives might lead to price

changes in every time period which are not desired. We construct a dynamic pricing policy that

uses piecewise linear approximations of the non-parametric demand in order to generate future

prices. Our proposed policy performs well both analytically and numerically. We show that

the policy incurs Õ(
√
T ) rate of regret while the number of price changes grow at O(log log T )

for a class of non-parametric demand functions. Evaluation on synthetic examples demonstrate

that the policy reduces the number of price changes considerably while obtaining comparable

maximum revenue.
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Chapter 5

First Delivery Gaps: A Supply

Chain Lever to Reduce Product

Returns in Online Retail

5.1 Introduction

Online retail has become ubiquitous to shopping in recent years. More than 13% ($453.46

billion) of the overall retail purchases in 2017 came through online sales (Zaroban 2018), and

e-commerce is growing at an average annual rate of 56%. This rise of e-retail is not restricted

to the developed world. For example, the online industry in India alone is expected to grow

by a staggering 1200% to more than $100 billion by 2020 (Ahmad 2018). But this exponential

growth in developing countries comes with its own set of unique challenges.

A large portion of the population is new to online retail. Hence, getting traditional off-line

customers accustomed to online shopping involves unique marketing, pricing, and operational

strategies. A recent study by Goldman Sachs states that e-commerce players in India spend more

than 30% of their overall budget on discounts (Ramnath 2016). Another challenge is that of

bringing supply chain efficiency to e-retailers. With limited resources and subpar infrastructure,

managing timely delivery of products becomes very challenging. Alyoubi (2015) states that

logistical problems act as one of the biggest barriers in the growth of online retail. Finally, yet

another significant and related challenge is that of product returns. The problem of returns is

indeed a double-edged sword for retailers: it is a cost burner due to the two-way shipping costs

that companies experience on the returned orders. Furthermore, the negative experience of
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first-time customers could potentially lead to their complete disengagement with the e-retailer

due to unmet expectations.

Given the negative impact that product returns can have on a company’s bottom line, it

is not surprising that many researchers have looked at the problem of returns and proposed

operational strategies to reduce them (see Petersen and Kumar 2009 for a review). Neverthe-

less, very few researchers have analyzed probable supply chain levers, such as delivery gap, as

potential causes of returns. In this chapter, we focus on a particular form of return: Returns

to Origin (RTO). RTO is prevalent in India and other developing economies. An RTO product

is one that has been shipped to the customer who then refused to accept it and sent it back.

RTO products are different from usual returns mainly because they are not directly associated

with product defects or mismatched product quality expectations. As noted by Bandi et al.

(2017), lenient payment policies such as “cash on delivery (COD)” have led to a further increase

in RTO. Although for the customer, a product RTO is a “zero cost” process, it causes further

stress on the retailer’s supply chain. The retailer not only incurs double cost of shipment, but

COD orders that result in an RTO also leads to extra strain on the retailer’s cash flow and

finances.

The focus of the current work is to analyze the reasons for RTO and mitigate it by examining

the process through a supply chain lens. In particular, we focus on the following key research

questions: (i) What is the impact of expediting deliveries on product RTO?; (ii) how does

customer delivery promise drive product RTO? (particularly, is it better to provide an exact

estimate of delivery gap or should one be more robust in the delivery promises?); and, finally (iii)

given the operational costs attached to expediting deliveries, how can firms optimize on delivery

gaps at an order level? We answer the first two questions by estimating an econometric model

of customers’ RTO decisions and performing a large-scale RCT. In fact, this work is a result

of an industry collaboration with Myntra, one of the largest online fashion retailers in India.

Using the company’s rich order-level transactional data set, we are also able to provide unique

insights into customer RTO decisions. These insights lead to important managerial implications

that, we conjecture, have wider applicability. Particularly, we conservatively estimate that a

two-day reduction in delivery gaps from the current average can result in an overall cost savings

of $1.5 million per year for the industry partner from RTO reduction. We also find that

for faster deliveries with little scope of further delivery improvement, beating the customer

promise date by a larger margin is better for RTO reduction. Finally, we answer the third
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question by proposing a joint bilevel optimization problem that constitutes the strategic and

the tactical delivery expediting optimization problems, that can optimally balance delivery

costs with potential savings from RTO reduction. The objective in these problems is to reduce

the delivery gap while accounting for delivery improvement costs, which can be substantial.

Using data from our industry partner, we show that even in regions where delivery gaps are

considerably fast, our proposed delivery threshold recommendation could lead to cost savings

of up to 2.7%, accounting for RTO and delivery improvement costs.

5.1.1 Contributions

In this chapter, we analyze the problem of RTO reduction through a supply chain lens. We

answer the question of what causes RTO (increased delivery gaps) and what can be done to

reduce RTO (through optimizing the joint Optimal Delivery Thresholding Problem (ODTP)

and the Optimal Delivery Expediting Problem (ODEP)).

• Relation of RTO and the First Delivery Gap (FDG): We investigate the hypothesis that

an increase in delivery gap could lead to an increase in product RTO. Using data from a

large fashion e-retailer in India, we estimate an econometric model of a customer’s RTO

decision and establish that a reduction in the gap between order placement and delivery

attempted date can have a positive impact on RTOs.

• Relation of RTO and delivery promise date: We conduct a large-scale RCT in a region

where product deliveries are fast, and establish that beating customer promise date by

overshooting it can lead to further reduction in RTO.

We propose the joint strategic and tactical delivery optimization problems to effectively

balance delivery improvement costs with potential cost savings from RTO reduction.

• Optimal Delivery Thresholding: We introduce the strategic Optimal Delivery Threshold-

ing Problem (ODTP) to choose an optimal delivery threshold for the retailer so that

delivery of all orders is attempted within that threshold. The optimization formulation

we introduce is data driven (in fact, its inputs can be estimated using transaction-level

data). The formulation balances the cost of delivery improvements with RTO costs while

accounting for uncertainty in the delivery times. We establish that the objective function

of the ODTP is neither concave nor convex. Furthermore, it is not even unimodal. Nev-

ertheless, by characterizing the regions of convexity of the objective function, we are able
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to determine the unique optimal threshold solution.

• Optimal Delivery Expediting: To operationalize the strategic threshold of ODTP, we for-

mulate the multi-product Optimal Delivery Expediting Problem (ODEP) under budgetary

constraints and characterize its optimal solution. We propose an integer programming (IP)

formulation for the ODEP, and use a Linear Programming (LP) relaxation-based heuristic

solution for the ODEP. We also establish that our heuristic approach has a very small

optimality gap in comparison to the computationally intensive IP solution. We illustrate

the applicability of the model by recommending an optimal threshold and tactical delivery

expediting levels for our industry partner. Furthermore, we estimate that the proposed

threshold could reduce costs by as much as 2.7% for our industry partner.

5.1.2 Literature Review

Reducing returns is increasingly becoming an important operational problem, and researchers

have looked at both, understanding the causes of returns through econometric studies as well

as operational strategies for reducing returns.

Econometric studies for understanding causes of returns: Prior research in returns

has focused on answering two major questions: why customers return products and what is

the value of such returns to the customer (Rao et al. 2014). Different behavioral reasons

have been attributed to why product returns happen. Particularly, customer satisfaction and

cognitive dissonance have been found to be important drivers of product returns (Powers and

Jack 2013). Both these factors are hugely impacted by the overall transaction and post-purchase

experience of the customer. Post-purchase experience is driven by product defects, quality,

compatibility, and physical distribution services (Anderson et al. 2009, Gallino and Moreno

2018). Nevertheless, not many researchers have looked at the problem of returns through a

supply chain and operations perspective, especially in the online retail setting. Rao et al. (2014)

use online transaction data to show that physical distribution service plays an important role

in customer returns. Like the current work, they find that customer satisfaction, driven by the

reliability of delivery service, drives customer returns. However, we use different identification

strategies (instrumental variables and an RCT) to measure the effect of faster deliveries on

RTO. Furthermore, analysis on larger data sets ensure more robust findings. Similarly, Bandi

et al. (2017) find that observed post-purchase price drop is another cause of returns as it
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gives rise to opportunistic returns. Because they do not focus on delivery services as a cause

of returns, their work is considerably different from the current work. Finally, Fisher et al.

(2016) provides an empirical estimate on the revenue impact due to improvement in delivery

speeds. Like the current work, they use transaction data from an e-retailer to show that after

accounting for different delivery improvement costs, the net effect of such improvements on the

revenue is still positive. Nevertheless, they do not estimate the impact of such improvements on

returns. Hence, the current work can be considered complementary to their work. Somewhat

related, researchers have also analyzed how customers react to better (and worse) service quality.

For example, Smith and Bolton (1998) analyze the effect of service failure on the customer’s

overall assessment of the service provider. More recently, Proserpio and Zervas (2017) show

that targeted response to customer online reviews can lead to an overall increase in customer

ratings. Finally, Cohen et al. (2018) show how to use promotions effectively in case of unmet

service expectations in ride sharing. Because the focus of the current chapter is on returns, the

current work substantially differs from the previously cited studies.

Operational models for reducing returns: Two main stream of literature consider the

problem of optimizing return operations. One looks at optimizing the reverse logistics of sup-

pliers for supply chain efficiency (see Rogers and Tibben-Lembke (2001) for a review), while the

other looks at reducing returns by optimizing retailer’s return policies and other factors that

affect customer returns. Because the current work relates to the latter, we detail the literature

in this stream next. Davis et al. (1995) were the first to recognize the effect of full refund

policies on returns. Since then, many researchers have recognized the effect of return polices on

returns, including Chen et al. (2008b), Su (2009), Chen and Chen (2017), and Nageswaran et al.

(2017), among others. Nevertheless, because these works focus on optimizing return policies

instead of delivery gaps, they differ considerably from the current work. Somewhat related, the

importance of minimizing delivery lead time in the area of e-commerce and getting the product

to the costumer as soon as possible has been identified as a key characteristic of success for

online retailers (see, for example, Keeney (1999), Swaminathan and Tayur 2003). Following

this, researchers have also analyzed various delivery expediting policies. For instance, Li (2013)

considers the optimal logistics network design problem with expedited delivery option to min-

imize lead times and other costs. Similarly, Chen et al. (2008a) consider the optimal network

design problem when deliveries happen at particular time intervals. These studies differ consid-
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erably from the current work because we consider the case when the logistics network is a given,

and we instead focus on optimizing delivery times. Particularly, our optimization framework

optimally prioritizes orders for delivery so that RTO can be reduced. Finally, another stream of

literature considers optimal delivery policies in multichannel retail (see Guide Jr et al. (2006) for

a review). To the best of our knowledge, however, prior papers have not analyzed the problem

of minimizing delivery times in the context of returns reduction. The objective function as well

as the cost structure considered in the current work makes it considerably different from the

prior work.

5.2 Motivation from an Online Fashion Retailer

Our industry collaborator, Myntra, is one of India’s largest fashion e-retailers. The retailer

has annual revenue on the order of a billion dollars and ships more than 150,000 items to its

customers on average every day. Furthermore, the retailer sold more than 1.8 million unique

products (SKUs) in a 1-year period (spanning 2017-2018). The retailer sells both in-house

products (products manufactured, marketed, and sold by the e-retailer) and products from

other sellers. Products sold on the platform include apparel, footwear, and other accessories.

Customers are allowed to pay online or in cash at the time of delivery (COD), and deliveries

happen through a complex supply chain network. Because the current work focuses on reducing

product RTO, we start by providing some descriptive statistics on RTO and the retailer’s

logistics process.

Figure 5.1 shows the revenue contribution and RTO rates among different product categories.

We find that the RTO rate is significant, and is a cause of concern for the retailer. When an

order is returned, it is shipped back to its originating warehouse, where it goes through a

quality-check (QC) process before becoming part of the forward inventory. Returned shipments

traverse through different nodes of the supply chain in a reverse direction, starting from the

customer’s doorstep and eventually ending up at the warehouse. Naturally, and as a result,

these returned orders incur double the costs for the retailer. Hence, reducing returns is an

important problem to address for our industry collaborator.

Although product returns are often attributed to unmet expectations in terms of the quality

and other product-specific characteristics, reasons for RTOs are hard to pinpoint. For starters,

RTOs are product returns that happen when customers order the product of their own free will

141



CHAPTER 5. FIRST DELIVERY GAPS: A SUPPLY CHAIN LEVER TO REDUCE
PRODUCT RETURNS IN ONLINE RETAIL

Figure 5.1: On left, RTO rates (in %) across different categories for both online and COD orders. On
right, change in RTO orders with change in the FDG.

but decide to return it without opening the package when it eventually reaches their doorstep.

A good starting point to understand the causes of RTOs could be to examine the problem

through a supply chain efficiency lens. Particularly, we pose the hypothesis that delays in

delivery could lead to increased RTO orders. Customer reddress-seeking behavior due to the

lack of service fulfillment satisfaction has been well demonstrated and studied (see, e.g., Berry

et al. 1994, Weiner 2000). Unlike traditional retailers, for whom location plays an important

role in customer satisfaction, online retailers rely on delivery fulfillment quality for customer

satisfaction (Rabinovich and Bailey 2004, Rao et al. 2014). Whereas the effect of service quality

has been well studied in the offline setting, very few researchers have studied its effect in the

context of online retail. Following this literature, we expect that an increase in delivery gaps

could lead to an increase in RTO.

Hypothesis 1 (H1). An increase in days between the order placement date and the first delivery

attempted date leads to an increase in product RTO.

Figure 5.1 shows the percentage of RTO orders versus the gap (in terms of days) when

the order was placed relative to the first time delivery of the order was attempted (FDG).

Notice that there is a clear positive trend associated with RTOs and delivery gaps. If one

finds further evidence of H1, an important intervention would be to decrease the delivery time

for customers. However, delivery time is driven by the supply chain structure of the industry

collaborator. Hence, it is crucial to understand the current order fulfillment process of the

retailer. Orders are fulfilled using two different models: marketplace and inventory. Products

fulfilled through the inventory model are stored in the retailer’s warehouses, whereas products

fulfilled through the marketplace model are stored in the seller’s warehouses. When an order

is placed, the respective items are first brought to one of the retailer’s warehouses. Items are
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then shipped to the customer’s location. Each order goes through a series of line halls, regional

hubs, and delivery centers (DC) before it is finally picked up by the last mile delivery personnel

for delivery attempts. Figure D.1 in Appendix D.4 describes the overall supply chain structure

of the retailer. The four main steps of the delivery process can be described as follows:

1. An item involved in an order is identified as either inventory or marketplace, depending

on where it is stored in the supply chain.

2. The retailer finds the warehouse that is closest to the customer’s delivery address, and

the item is shipped from the current warehouse to the closest warehouse.

3. The item goes through a QC process at the shipping warehouse and is then packed to be

shipped to the last mile DC.

4. The item is then delivered to the customer’s doorstep via last mile delivery personnel.

Many interventions can lead to expedited product deliveries. In particular, one intervention

can be to implement a policy of attempting all deliveries within a threshold period from the

day of order placement. While such a change could bring RTO rates down, it could also lead to

substantial delivery improvements costs. Hence, balancing these costs in itself can be a complex

problem, particularly due to the retailer’s large supply chain network.

Nevertheless, even with a lot of cost investments, customer deliveries cannot be brought

down below a threshold. For example, in regions where the collaborator’s supply chain is

already very efficient, and delivery times have been minimized (one-day deliveries), improving

delivery times further is nearly infeasible. In these regions, we ask if customer promise can be

used as a tool to reduce product RTO. Customer promise is an estimate of the delivery date that

is made to the customer immediately after an order is placed on the retailer’s online platform.

In regions where delivery is fast and less variable, the industry collaborator has two options: (i)

either meet the customer promise; that is, deliver the order on the date of customer promise; (ii)

or beat the customer promise, that is, deliver the order before the customer promise date. For

example, giving a customer promise date of 1 day from the order placement date and delivering

within 1 day would mean meeting the promise. But instead, if the customer promise is 4 days

and the order is delivered within 1 day, it would imply beating the promise. The Expectation

Confirmation Theory (ECT) of Oliver (1980) posits that exceeding customer expectation results

in positive disconfirmation, which leads to customer satisfaction (Rao et al. 2014). Following
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this theory, we hypothesize that for faster deliveries, beating the promise can lead to further

reduction in product RTO.

Hypothesis 2 (H2). When delivery attempt is made within 1 day of order placement and

before the customer promise date, an increase in days between the customer promise date and

the delivery attempted date leads to a decrease in product RTO.

If we find evidence supporting H2, retailers can increase customer promise in regions where

there is little scope of delivery improvements or where deliveries are already expedited. This

change in customer promise could lead to a further reduction in product RTO.

In the remainder of this chapter, we will first tease out the effect of the FDG on RTO

and show evidence supporting H1. We will then describe an RCT that was conducted in

collaboration with Myntra to test H2, and provide further evidence supporting H1. Finally,

we will describe the strategic and tactical optimization problems and discuss cost savings if

deliveries are expedited based on the proposed recommendations.

5.3 Empirical Analysis

In this section, we discuss the details of the empirical approach used to test the hypothesis

developed in §5.2. We start in §5.3.1 by providing descriptive statistics related to the data set.

Then, in §5.3.2, we discuss the empirical approach and the potential challenges related to the

approach. In §5.3.3, we discuss results from the empirical analysis.

5.3.1 Data and Descriptive Statistics

As mentioned before, we use a comprehensive transaction-level data set from Myntra to answer

our empirical research questions. In total, the data set includes more than 56 million transac-

tions that occurred over a 12-month period (2017-18). We also have access to other information

associated with each transaction, such as product- and customer-related features. This infor-

mation creates a unique advantage because we are able to control for various factors that could

not be controlled otherwise due to data size issues. To make the analysis more tractable and

insightful, we focus on footwear orders with COD payment. The RTO rate among orders with

the COD payment type is significantly higher than online payments. Furthermore, footwear is

the second-largest category in terms of revenues and, at the same time, has the highest RTO
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rates among different product categories (Figure 5.1). In what follows, we present descriptive

statistics corresponding to the footwear category.

Footwear category at a glance.

Footwear is one of the most popular product types on Myntra’s online platform. More than 7

million footwear orders were made over the 1-year period of the study. These products were

associated with more than 400 brands. Out of these, 87 brands contributed more than 95% of the

overall revenue. Hence, we focus our analysis on transactions from these brands. Transaction-

level decisions, such as price charged and discount offered, are dynamically generated and vary

from order to order. For example, we find that the prices of footwear products are highly

variable with a mean-to-variance ratio of 0.001. Products are highly discounted: more than

50% of orders receive a discount of more than 50% over the retail price. This discount further

corroborates the general trend of heavy discounting in e-commerce retailers (Ramnath 2016).

Because product features such as price and discount can affect RTO decisions, we provide some

summary statistics and underlying product RTO implications next. Particularly, we focus on

(i) the type of product, (ii) the maximum retail price (MRP) charged, (iii) the selling price after

excluding all discounts, and (iv) the discount offered on the product.

• Article type: Myntra sells 10 different types of footwear products. The top three article

types in the footwear category that comprise 70% of the overall orders are casual shoes

(44.8%), flip flops (11.9%), and sports shoes (15.54%). The RTO rate among these

different groups varies significantly. For example, 16.6% of casual shoe orders were RTOed,

and 17.4% of sports shoes orders were RTOed. For flip flops, the RTO rate was 14.7%,

almost 3% lower than the other two groups. This shows significant heterogeneity in RTO

decisions based on the product article type.

• MRP: The maximum retail price (MRP) is the price of the product. The retailer often

offers discounts over this price. We find that there is high variability in the MRP of

footwear products sold. The average MRP is Rs. 2862 with a standard deviation of Rs.

1648. This variability also leads to differences in RTO decisions. As the MRP increases,

the likelihood of RTO also increases. The RTO rate of orders in the bottom 25% quantile

in terms of the MRP was 12.5% compared to an RTO rate of 17.5% for orders with an

MRP in the top 25% quantile.
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• Price paid: Price paid for an order is the MRP minus discounts offered on the order.

Because the price paid is highly correlated with the MRP, it is also highly variable. The

mean price paid for a footwear product is Rs. 1610 with a standard deviation of Rs. 1025.

The significant difference between the MRP and price paid shows that products are highly

discounted (analyzed next). We find empirical evidence of positive correlation between

price paid and RTO. Comparing the bottom 25% quantile of orders with the top 25%

quantile of orders in terms of price paid, we find that the RTO rates differ by almost 6.2%

(12.2% vs. 18.4%).

• Discount: Footwear products on Myntra are heavily discounted. The average discount

offered on products is 47.8% with more than 50% of products being offered at a higher

than 50% discount on the MRP. The effect of discounts on RTO decisions is hard to

anticipate. While a high discount could mean a lower price paid, it could also be related

to the perceived product quality being poor. Nevertheless, we find evidence of negative

correlation between discount and RTO rates: the RTO rate of all orders with discounts

below 40% (bottom 25% quantile) is 15.6% as compared to that of a 14.17% RTO rate

for orders with discounts above 60% (top 25% quantile).

In summary, we find that different order-level features play a key role when customers decide

on whether to RTO a product. While the focus of the current work is on supply chain features

(the FDG and the difference between actual and promised deliveries), the above discussion

provides an intuition about other features that could affect RTO decisions that need to be

controlled for in an econometric analysis.

5.3.2 Econometric Specification

The dependent variable in our analysis is rtoi, the RTO decision associated with order i. The rtoi

is 1 if order i is RTOed and 0 otherwise. As noted before, the RTO decision of an order depends

on various order-level factors, such as the price, discount offered, and delivery experience. Let

Ci denote all these order-level controls. We are particularly interested in the effect of the FDG

on RTO decisions. Hence, let

FDGi = First Delivery Attempted Datei − Customer Order Datei
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denote the FDG of order i. Similarly, to control for potential effects of customer promise with

respect to the actual delivery attempt date, we let Actual vs Promised Delivery (APDi) gap of

order i be

APDi = First Delivery Attempted Datei − Customer Promise Datei .

Notice that a positive APDi implies that the promise of an order was not met, meaning that

the first delivery was attempted after the customer promise, and vice versa for the negative

APD. Because the customer response to meeting the promise versus not meeting the promise

can be very different, we let

APD+
i =


0, if APDi ≤ 0

APDi, otherwise

and APD−i =


0, if APDi ≥ 0

APDi, otherwise

,

denote the positive and negative parts of APDi. Then,

rtoi = αFDGi + β+APD+
i + β−APD−i + γTCi + εi (5.1)

where εi is the idiosyncratic zero mean noise term associated with transaction i that is uncorre-

lated with Ci. A positive value of α would imply that an increase in the FDG would result in an

increase in RTO, supporting H1. Similarly, positive β+ would imply that whenever customer

promises are not met, an increase in the delivery gap would lead to an increase in the product

RTO. Finally, a positive β− would imply that if customer promises are met, it is better to beat

the customer promise by a larger margin. Next, we discuss potential challenges of the above

econometric approach and discuss methods to overcome these.

Empirical challenges.

Because the econometric analysis presented below is based on observational data, the analysis

is prone to the usual pitfalls associated with inference of this kind. We discuss some of these

issues in detail next.

• Potential endogeneity of the FDG: As the negative effects of RTO are considerable,

retailers usually enforce periodic review policies to keep RTO in check. This raises concerns

about potential reverse causality. For example, at our industry collaborator, as well as at
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other online retailers, inventory decisions that affect the FDG can be based occasionally

on the previous period’s RTO. At Myntra, last mile deliveries go through DCs that are

managed by supply chain managers. Each DC is responsible for order fulfillment in a small

geographical region. Furthermore, monthly reviews ensure that critical customer service

metrics, such as RTO rates, remain under control. When deliveries in a particular region

are RTOed more than other regions, managers try to push for faster last mile deliveries,

which, in-turn, leads to reduced FDGs. Indeed, such interventions (without controls)

would result in an endogeneity issue in our panel data analysis as RTO causes the FDG

to change and not the other way round, as conjectured. To control for such interventions,

we add month-DC level fixed effects to our base model. Because we have data from one

full year, these fixed effects would account for any potential intervention from month to

month at any DC.

• Omitted variable bias: Although we have access to a rich data set, RTO decisions can be

driven by other unobservables that we cannot control for. In the case of omitted variables,

estimation of α based on (5.1) would be biased. To assuage such concerns, we perform an

instrumental variable (IV) analysis (Imbens 2014). Specifically, we instrument the FDG

with a warehouse time metric that captures the effect of travel time between different zip

codes and warehouses on delivery gap. Details of this analysis are presented in §5.3.3.

• Customer and product heterogeneity: Product RTO decisions can be dependent both on

the customers ordering the products and the products being ordered. Although, limita-

tions in terms of the data set size constrain the number of controls in the econometric

model, access to a large data set provides a unique advantage. Particularly, we control

for customer level fixed effects in our model specification, which allows us to account for

customer-level heterogeneity in RTO decisions. We also account for various product-level

features such as brand, article type, price, and discount offered apart from other variables

in our panel analysis. These controls are further detailed in §5.3.2.

Controls.

Equation (5.1) includes several control variables. At the product level, brand-article type fixed

effects let us control for distinct characteristics of each article type of every brand. We also

control for the price paid and discount offered for an order i. At the customer level, we add
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fixed effects for every individual customer to control for invariant customer characteristics. In

order to account for reverse causality and seasonal effects, we add month-delivery center level

fixed effects. Finally, to account for delivery quality that can also drive RTO decisions, we add

courier partner and supply type fixed effects.

5.3.3 Results

In this section, we present the results of the econometric analysis and show evidence that

validates H1. We start by detailing the results of the base model panel analysis with different

controls. We then discuss the IV analysis and perform several statistical tests to check for

robustness of our findings.

Base level panel analysis.

Column (1) of Table 5.1 reports the estimation results from the panel analysis with no instru-

ments. We find strong evidence supporting H1. Particularly, the coefficient of the FDG is

positive and significant at the 99% significance level. This implies that when controlling for

various order-, customer-, and product-level features, an increase in delivery gap leads to an

increase in RTO. We also find the coefficient of APD+ to be positive and significant which

implies that whenever customer promises are not met, an increase in the delivery gap results

in increased chances of product RTO. The coefficient of discount is negative and significant,

and the coefficient of price is positive and significant. Hence, RTO increases with the price of

the product and decrease with the discount offered for the product. Although the coefficient of

APD− is positive, it is not significant. Hence, no inference can be drawn on the dependence

of APD− on RTO decisions. Nevertheless, the significant difference between the coefficients of

APD+ and APD− is further proof of the heterogeneous effects of meeting versus not meeting

delivery promise on product returns.

Variable OLS IV Single Zip Code

FDG 0.007*** (0.000) 0.014*** (0.001) 0.011*** (0.002)
APD+ 0.006*** (0.000) −0.001 (0.001) −0.000 (0.008)
APD− 0.000 (0.000) −0.001** (0.000) 0.000 (0.001)
price +0.000*** (0.000) +0.000*** (0.000) 0.000*** (0.000)
product discount -0.079*** (0.002) −0.100*** (0.006) 0.004 (0.022)

Observations 2,392,061 1,662,175 20,998

*p < 0.10, **p < 0.05, ***p < 0.01

Table 5.1: Estimation results from different regression models. In column (1), we present the results
from the base-level panel analysis; in column (2), we present the results from the IV analysis; and in
column (3), the results from the regression analysis based on transactions from a single zip code.
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Instrumental variable (IV) analysis.

While the panel analysis shows strong evidence supporting H1, coefficient estimates can be

biased because of potential omitted variables in the model specification (see §5.3.2). To assuage

these concerns, we propose an IV analysis (For a comprehensive review of the technique, we

refer the interested readers to Imbens (2014).) A valid instrument for the FDG is a variable/s

that satisfies the following two validity conditions: (i) the instrument is uncorrelated with the

error term of equation (5.1), and (ii) the instrument is highly correlated with the variable of

interest, FDG. After a valid instrument is found, standard two-stage procedure can be used to

get an unbiased estimate of the endogenous variable. Before we propose the instrument, we

describe in greater detail the supply chain structure of the industry collaborator that drives our

intuition about the instrument.

Myntra fulfills most orders through inventories stored in three large warehouses that are

located in Mumbai, Delhi and Bengaluru, which are large metro cities located in the west,

north, and south of the country. The product then traverses through a complex supply chain

network before arriving at the customer’s doorstep (see §5.2). Naturally, because most products

originate from one of the three warehouses, the overall delivery gap of an order is driven by the

time that it takes for the product to leave the warehouse and get to the customer’s location.

Furthermore, inventory storage decisions are exogenous to the RTO decisions of the customer

and are driven by capacity and other logistic considerations at the country-level. Let Zi and

wi define the zip code, warehouse, respectively, associated with transaction i. In addition, let

dkl ∈ R+ denote the travel time between two locations k and l, calculated using the Google

Maps application programming interface (API). Then, dZi,M defines the travel time between

zip code Zi and Mumbai, and dZi,B and dZi,D are defined analogously. Finally, the warehouse

travel time of an order can be defined as

warehouse timei = dZi,B1{wi = B}+ dZi,D1{wi = D}+ dZi,M1{wi = M}.

We use the warehouse time to instrument the FDG. We argue that it is a valid instrument

because it satisfies both the IV validity conditions. Particularly, because the order was sourced

from the corresponding warehouse, such a time metric should be highly correlated with the

FDG of the order and satisfy the second condition of being a valid instrument. Similarly, after

controlling for various covariates, we do not expect the warehouse time metric to be correlated

with the idiosyncratic error of (5.1). Such a correlation would imply that the customer order or

RTO decisions are correlated with the distance of the warehouse from which they are getting
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served. Nevertheless, as we noted before, there is no a priori reason to believe that such

a correlation would exist. We perform various statistical tests to check the validity of the

instrument, which we discuss next.

We start by presenting the results obtained from the first stage of the two-staged least

squares (2SLS) estimation for the endogenous variable, FDG. The model specification, including

controls, remains the same as before. In particular, we control for customer-level heterogeneity

by adding customer-level fixed effects to the model. Product-level heterogeneity is controlled

by article-type and brand-level fixed effects along with price, discount, and customer promise

controls (see (5.1)). In Table D.1 of Appendix D.4, we report the estimation results from the

first-stage analysis. Particularly, the coefficient of warehouse time is significant (at the 99%

significance level) and positive. Furthermore, the adjusted R2 of the first-stage regression is

0.77 and the within R2 of 0.44. The partial R2 of the warehouse time instrument is 0.21

with an F statistic above 106, showing the strong predictive power of the proposed instrument.

Moreover, we also perform statistical tests to check if the proposed instrument is weak or

under-identified. We find evidence of neither. Particularly, the the Kleibergen-Paap rk Wald

F statistic for weak identification is 527.10, beating the Stock-Yogo weak ID test critical value

of 16.38 by a considerable margin. Similarly, the Kleibergen-Paap rk LM statistic that tests

for under-identification is 21.09. All these results continue to hold at a coarser level of error

clustering (see §5.3.3).

In column (2) of Table 5.1, we present the results obtained from the second stage of the 2SLS

estimation. The coefficient of the FDG remains positive and significant at the 99% significance

level. Hence, accounting for potential omitted variables and endogeneity, we still see a strong

effect of the FDG on RTO. As before, the directional insights with respect to price and discount

remain consistent: RTO increases with an increase in price and decreases with a decrease in

product discount. Although the coefficient of APD+ is negative, it is not significant.

Robustness checks and instrument validity.

In the previous section, we provided intuition behind the proposed instrument and backed its

validity with the results from various statistical tests. However our identification strategy is

driven by variation in the travel time of an order from a warehouse to a particular zip code.

Hence, if a large fraction of zip codes are always served from the same warehouse, then the

warehouse time metric could be correlated with unobservable confounders associated with that
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zip code region. Similarly, if particular products are always served from the same warehouse,

then the warehouse time metric would be correlated with order level features, which would

make the coefficient estimates of the FDG biased. Finally, if other unobservables affect both

the RTO and order decisions of the customer, as well as the warehouse time, it would again

invalidate the instrument. In what follows, we provide further empirical evidence of instrument

validity by performing various robustness checks.

First, we perform a zip code level analysis to analyze the distribution of warehouses that

serve a particular zip code. To this effect, for each zip code, we find the percentage of total

orders that were served by the corresponding closest warehouse. We compare this percentage

with orders served from the second-closest warehouse and the farthest warehouse. On average,

only 51% of the orders were served from the closest warehouse of a zip code. Furthermore, more

than 20% of the orders were served from the farthest warehouse. These statistics attest to the

claim that inventory fulfillment decisions are very dynamic and are affected by various country-

level factors that include the capacity of the warehouse, the safety stock, the available logistics

capacity for inventory movement, and others. These factors bring significant heterogeneity to

the warehouse time metric, which we then exploit to identify the effect of the FDG on RTO.

Second, we investigate whether orders of particular footwear products are always served

from the same sourcing warehouse. We find that order fulfillment at the level of brand and

article type is relatively homogeneous among the three warehouses. On average, 27% of orders

of a selected brand were served from the Bengaluru warehouse, 41% were served from the Delhi

warehouse, and 32% from the Mumbai warehouse. Similarly, on average, 29% of orders of a

selected footwear type (article type; see §5.3.1 for more details) were sourced from Bengaluru,

38% from Delhi, and 31% from Mumbai.

Third, to assuage concerns related to potential heterogeneity in customer population and

other socioeconomic factors that could affect RTO decisions and are unobserved, we first run

a region-level panel analysis by focusing on a single zip code. A significant effect of the FDG

would provide further evidence for H1. This panel analysis on a subset of the data is performed

over the zip code with the highest number of orders (33,926 orders). We use the same model

specification and controls as before (see §5.3.2). In column (3) of Table 5.1, we present the

results of the single zip code panel analysis. The effect of the FDG on RTO is positive and

significant at the 99% significance level. We run the same analysis on five randomly selected zip

codes and find that the effect of FDG on RTO is robust and persistent: the coefficient of the
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FDG is consistently positive and significant above the 90% significance level. We also run the

IV analysis on a subset of the data set: only orders from zip codes that are close (less than 2

days in travel time) to all three warehouses are included in this analysis. Since zip codes close to

bigger metropolis regions should be relatively comparable in terms of unobserved socioeconomic

factors, this analysis would provide further evidence of the effect of the FDG on RTO decisions.

We find that the effect of the FDG on RTO continues to be significant and positive, and the

instrument passes all validity tests. Furthermore, the effect continues to be persistent as we

change the subset to only include orders from zip codes that are at most 1 day away from all

warehouses or 3 days away from all the warehouses (see Table D.2 of Appendix D.2).

Finally, we run the 2SLS model with different levels of error clustering. Particularly, we

cluster errors at two different coarser geographical levels, namely zip code and district (a district

is comprised of several zip codes). Cameron and Miller (2015) have noted that coarser error

clustering leads to weaker effects. The effect of the first delivery gap on RTO continues to remain

significant at the district-level error clustering, implying that the effect is indeed robust. In fact,

the results in column (2) of Table 1 are at the district-level error clustering. Furthermore, the

instrument also passes statistical tests for instrument validity at the coarser error clustering

level. Finally, as an alternate model, we use a probit model specification due to the binary

nature of the response variable. We perform the Probit analysis with 10 data sets comprising

a 10% randomly generated sample of the overall data set. In each case, the effect of the FDG

on RTO continues to be positive and significant at the 99% significance level. The average

coefficient of the FDG over the 10 samples is 0.092 with a standard deviation of 0.003. This

confirms the robustness of the effect of the FDG on RTO.

We have so far presented strong empirical evidence of the effect of the FDG on product

RTO. Nevertheless, delivery improvement becomes significantly difficult after a certain level.

To understand if the delivery promise plays a role in product RTO decisions, we run a large-scale

RCT. We discuss the RCT and the results next.

5.4 Live Experiment for Hypothesis Testing

Goal and Potential Outcomes The goal of the pilot is to understand the effect of difference

in promised versus actual delivery gap on RTO decisions for fast deliveries. Recall that H2

hypothesizes that for fast deliveries, beating customer promise by a larger margin leads to a

153



CHAPTER 5. FIRST DELIVERY GAPS: A SUPPLY CHAIN LEVER TO REDUCE
PRODUCT RETURNS IN ONLINE RETAIL

reduction in product RTO. H2 is particularly important for fast delivery regions where deliveries

are already expedited. Hence, reduction in RTO orders has to be driven by other measures,

such as customer promise. We also want to further check the relation between the FDG and

RTO, to test H1.

Experimental Design: We conduct our experiment over a 3-week period and consider all

orders originating in the Bengaluru metropolis region, which was selected for our experiment

based on Mnytra’s (i) significant customer base in this region (see §5.7 for details), which en-

sures enough data collection; (ii) relatively smaller geographical region, which ensures customer

homogeneity; and (iii) very strong fulfillment network in the region, which ensures potentially

fast deliveries of orders. Finally, because Myntra’s central office is in Bengaluru, this selection

ensured easier implementation of the pilot and subsequent data collection.

The Bengaluru metropolis region consists of 98 zip codes. Orders originating from this region

are fulfilled through a network of 14 delivery centers. Fulfillment happens on a first come, first

serve basis where order preference is based on the promise date made to the customer at the

time of order placement. For example, if order A has a 1-day delivery promise and order B has

a 2-day delivery promise, then order A is preferred over order B for fulfillment. Recall that we

are interested in randomizing the difference between actual versus promised delivery. We can

accomplish this by randomizing delivery promises for all orders with a fixed 1-day FDG. The

current design of the retailer enforces that on a given day, the customer promise for all orders

originating from a zip code remains fixed. This design is driven by operational considerations.

Particularly, customer promises are manually selected on a daily basis at the zip code level.

Hence, changing promises for every order is infeasible. Instead, we select zip code as our unit

of randomization. On all weekdays (Monday through Friday) during the experiment, random

delivery promises (between 2 and 4 days) are made to the customers. Randomization occurs

across weeks over all zip codes. That is, we randomly select an ordering of numbers 2-3-4 for

every zip code and every weekday. This becomes the random customer promise sequence on a

given day over the 3-week period.

In summary, the experiment affected a total of 65,187 product shipments across 98 zip

codes. 30.68% (20,001) were COD, which had an overall RTO rate of 6.72%. The RTO rate of

online orders was 0.48%, considerably below the RTO rate for COD orders, showing the strong

influence that payment type has on RTO decisions. In the subsequent analysis, we subset the

data to include COD orders.
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Out of 20,001 COD orders, 32.5% of orders received a promised delivery of 2 days, 34.9%

promised delivery of 3 days and 32.5% received a promised delivery of 4 days. The difference

in the size of the randomized groups is due to the random number of orders made on different

days in different zip codes. We also find that the retailer’s supply chain network in this region

is very efficient: 84.6% of the orders were delivered within a day of the order placement, and

less than 1% of orders had an FDG of more than 4 days.

Results: To test H2, we look at all orders that were attempted to be delivered 1 day after

order placement, which constitutes 15,765 COD orders (78.8% of all COD orders). Among

these, 32.5% of orders had a promised delivery of 2 days, 35% of orders had a promised delivery

of 3 days, and 32.5% of orders had a promised delivery of 4 days. This results in three groups

with randomly assigned actual versus promised delivery differences (-1, -2, and -3 days). The

RTO rate for orders with a -1 day difference was 6.6% versus 6.76% for orders with -2 day

difference and 5.51% for orders with a -3 day difference. Performing Pearson Chi-squared test

(Agresti 2018) to compare the mean RTO rate of different randomized groups, we find that

the RTO rates from the three groups are different at the 95% confidence level. Hence, delivery

promises do have an effect on product RTO decisions.

Nevertheless, the above analysis does not account for product-level or customer-level hetero-

geneity. More specifically, because the randomization happened at the zip code level, different

zip codes can be biased based on the kind of products being ordered. This heterogeneity in

products or customers can drive RTO, instead of the difference in actual versus promised deliv-

ery. To assuage these concerns, we perform a regression analysis controlling for various product

and user features.

Figure 5.2: Summary statistics from the RCT. On left, we plot the percentage of total orders in different
treatment groups. The different treatment groups are On right, we plot the RTO percentages in different
treatment groups. The RTO rate si significantly lower in the 4-day promise treatment group.

Regression Analysis: For any order i, let rtoi denote the dependent variable (whether order i

155



CHAPTER 5. FIRST DELIVERY GAPS: A SUPPLY CHAIN LEVER TO REDUCE
PRODUCT RETURNS IN ONLINE RETAIL

was a RTO). rtoi can be driven by two factors: (i) the customer associated with order i, and

(ii) the product associated with order i. Controlling for these factors, we are interested in the

effect of the difference in actual versus promised delivery gap on RTO decisions.

To control for customer heterogeneity, ideally we would like to estimate a customer-level

fixed effect model. Nevertheless, such an estimation would require multiple orders from the

same customer during the experimentation phase, which is a rarity, especially in the fashion

retail setting. Therefore, we work under the assumption that accounting for gender, customers

within the same zip code are homogeneous. This is modeled by considering a zip code level fixed

effect model with gender level indicators at the order level. Product heterogeneity is controlled

by accounting for the master category and article type of the product, the price of the product,

and the discount offered for the product on that order. Because the orders included in the

experiment were all serviced through Myntra’s in-house delivery personnel, delivery quality is

homogeneous across orders and is absorbed in the other fixed effect variables. We do not need

to control for the FDG since the analysis is restricted to orders that had a realized delivery gap

of 1. Hence,

rtoi = β−2 · 1{APD−i = −2}+

β−3 · 1{APD−i = −3}+ γ · pricei + δ · discounti + zi + ati + gi + dowi +mci + εi ,

where order i belongs to zip code zi, customer gender is denoted by gi, dowi is the day of the

week of order i, mci is the master category of product i and ati is the article type of product i.

In addition, εi is the idiosyncratic noise term assumed to be independent. (We also consider a

cluster-error model. The results and insights continue to remain consistent.)

We report the results of the OLS regression in Table 5.2. We find that the coefficient of

APD− is positive and significant at the 99% significance level. Hence, controlling for product-

level and customer-level heterogeneity, an increase in APD− causes an increase in the RTO

chances of the order. Particularly, promising more robust delivery dates can lead to a reduction

in the RTO rate. For example, if Myntra is certain that it can attempt deliveries within 1 day of

order placement, it is more beneficial to promise a 3-day delivery than a 1-day delivery promise.

This would ensure that the difference between actual and promised delivery is higher, which can

lead to a reduction in RTO orders. Running the same regression with a logistic specification

shows that the coefficient of APD− continues to remain significant at the 95% level.
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One concern with the analysis above is that zip code and gender-level effects might not

account for all the customer-level heterogeneity. To assuage these concerns, we run another

panel analysis based on transactions from repeat customers; that is, we subset the data to

include only orders that were placed by customers who had made purchases on Myntra prior to

the start of the RCT. We control for customer-level heterogeneity by accounting for the total

number of orders, the overall discount availed, and the average price paid prior to the start of

the RCT for each customer. We find that the coefficient of APD− is again positive (0.005) and

significant at the 90% confidence level, providing further evidence for the claim. The results of

this analysis are presented in Table D.3 of Appendix D.2.

Variable Point Estimate Standard Error

1{APD− = −2} 0.013** 0.002
1{APD− = −3} 0.014** 0.002
price +0.000*** 0.000
product discount −0.000 0.000

Observations 15,748

*p < 0.10, **p < 0.05, ***p < 0.01

Table 5.2: Regression results from the RCT. The coefficient of APD− is significant and positive showing
that it is better to overshoot promise and beat it by a wider margin for RTO reduction.

Effect of the FDG: Although we do not directly randomize FDGs, they are driven by customer

promises, as noted before; therefore, randomizing customer promises leads to a randomization

of delivery gaps. Because orders are fulfilled in a first in, first out sequence based on customer

promises, panel analysis based on the RCT data can provide further evidence on the increasing

effect that the FDG can have on RTO decisions. As before, we perform a panel analysis with

the model specification of

rtoi = αFDGi + β+APD+
i + β−APD−i + γ · pricei + δ · discounti + zi + ati + gi + dowi +mci + εi ,

where the different controls are defined as before. In Table D.4 of Appendix D.2, we present

the results of the panel analysis. Consistent with our hypothesis, we again find evidence that

an increase in the FDG leads to an increase in RTO. Particularly, the coefficient of the FDG

is 0.010 which is significant at the 99% level. Furthermore, consistent with the results of the

above analysis, we find the coefficient of APD− to be positive and significant at the 99%

significance level. Somewhat surprisingly, the coefficient of APD+ is negative and insignificant.

However, note that APD+ is the actual vs promised difference for all orders where the promise

of delivery was not met. These orders constitute less than 1.5% of the overall orders. Therefore,

the coefficient estimates turn out to be insignificant.

157



CHAPTER 5. FIRST DELIVERY GAPS: A SUPPLY CHAIN LEVER TO REDUCE
PRODUCT RETURNS IN ONLINE RETAIL

We end this section by remarking on two interesting outcomes from the RCT that relate

to the overall variability in RTO rates across treatment groups and the impact of increasing

promises on overall orders.

• Insignificant change in RTO due to changing customer promise from 2-days to

3-days: While we have seen that an increase in actual versus promised delivery difference

from -1 to -3 days results in a reduction in RTO orders, there is no significant decrease

when this difference goes from -1 to -2 days. One potential reason cold be that customers

have a threshold for exceptional service (i.e. beating delivery promise). Furthermore,

the positive effects of improved services only start to play a significant role above this

threshold. For example, in Bengaluru’s case, this threshold could be beating delivery

promises by more than 2 days. In this case, RTOs would start to decrease only when the

retailer beats the promised delivery date by more than 2 days. While a more detailed

analysis of how customers form this service threshold is out of the scope of this chapter,

it opens interesting new directions for future research.

• Effect of increase in delivery promise on total orders: As discussed before, we find

that the total number of RTO orders decrease as we beat customer promise by a wider

margin (4-day promise treatment group). But one potential concern could be that this

change could be due to a reduction in the overall orders on the e-retailer’s platform due

to customers ordering from other platforms that promise faster deliveries. Nevertheless,

in what follows, we show empirical evidence of no such effect.

In particular, our RCT design ensures that for each zipcode, we are able to observe the

total number of orders placed in all the three treatment group (2-3-4 days promise).

Hence, in Figure 5.3 on the left, we plot the average orders placed from different zipcodes

across different treatment groups. We also plot the standard errors of the total orders to

check if the total orders decrease from a zipcode, as we increase the customer promise.

As is evident, we find no evidence of such a change. In particular, the 90% confidence

intervals around average orders overlaps across different treatments, showing that there is

no statistical difference in total orders as we increase customer promises from 2 to 4.

Our RCT design ensures that we can also perform a day level analysis of total orders across

different zipcodes. In Figure 5.3, on the right, we plot the average orders as we vary the

week of the day and the treatment (customer promise). Interestingly, we find that except
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for Friday, total orders across different treatment groups remain similar. One potential

explanation for such a difference could be that customers start to notice and account for

promises if products are not promised to be delivered by the weekend. Nevertheless, a

more detailed analysis of this phenomenon is out of the scope of this chapter.

Figure 5.3: Average orders across different zipcodes under different treatment groups. On left, we plot
average orders from different zipcodes as we increase customer promises. On right, we plot the average
orders on a day (Monday to Friday) as we change customer promises. There is no statistically significant
decrease in orders due to an increase in customer promise, except for Fridays.

5.5 Managerial Insights

In this section, we present the managerial insights we gained from the analysis performed above.

• Expediting deliveries can lead to significant cost savings due to RTO reduction: We find

that reduction in the order delivery gap leads to a significant reduction in RTO orders.

Particularly, we estimate that a 2-day reduction in the FDG of order shipments from its

current average of 4.66 results in a 1.5% reduction in the probability of product RTO.

For Myntra, which ships 150,000 products per day, this translates into 2,250 fewer orders

being RTOed. Singh (2015) states that the average cost of each shipment in India is

around Rs. 67.5. Hence, we conservatively estimate that Myntra would reap cost savings

of as much as $1.5 million from cost savings due to a reduction in RTO orders. Given the

robustness of the effect, we expect that the positive effects of RTO are not restricted to

Myntra but extend to other e-retailers.

• Beating customer promise is better than meeting customer promise at locations with fast

order fulfillment: For regions where delivery gaps are minimal (1-day delivery gaps),

we find that beating customer promise can act as a proxy to faster deliveries for RTO

reduction. We recommend that retailers should make 2- or 3- day promise, while still
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fulfilling orders in 1 day. This would lead to a positive effect of beating customer promise

which could lead to a reduction in product RTO.

• Expediting deliveries has a heterogeneous effect on RTO: While an increase in the FDG

leads to an increase in product RTO, there is heterogeneity in the effect based on the

product and the discount offered. Particularly, we find that the coefficient of the FDG for

casual shoes is 0.008 as compared to 0.006 for sports shoes. Although it is significant at the

99% significance level, the difference in the magnitude of the effect shows that customers

are less likely to RTO casual shoes for the same improvement in delivery gap, as compared

to sports shoes. Running the panel analysis with the FDG and discount interaction terms,

we find that the coefficient of the interaction term is negative and significant at the 99%

significance level.

• E-retailers should promote online payments for RTO reduction: Product RTO is signifi-

cantly lower for orders with online payment versus COD orders. This is in line with Bandi

et al. (2017) who also find that product returns are significantly higher when a customer

decides to use the COD payment method. Therefore, one effective way of reducing prod-

uct RTO could be to promote and incentivize the usage of online payment methods (see

Appendix D.3 for details on the analysis of the heterogeneity in COD usage).

In summary, we have seen that while the effect of the FDG on RTO is consistent, it is het-

erogeneous across orders. Furthermore, because delivery improvements come at a considerable

cost in complex supply chains, we could use this heterogeneity to prioritize deliveries in order

to reduce RTOs. We discuss the details of this optimization problem next.

5.6 Optimizing Deliveries: A Joint Strategic and Tactical De-

cision

We have so far established that reducing delivery gaps can lead to a reduction in RTO orders,

which can lead to substantial cost savings for retailers. Nevertheless, considerable costs are

associated with expediting deliveries. In this section, we take both a system-level view and a

tactical operational view to optimize delivery gaps to reduce returns. Our modeling strategy is

motivated by two important decisions that supply chain managers have to make repeatedly.

• Strategic delivery threshold: Supply chain managers have to decide on a delivery threshold

160



CHAPTER 5. FIRST DELIVERY GAPS: A SUPPLY CHAIN LEVER TO REDUCE
PRODUCT RETURNS IN ONLINE RETAIL

target for the coming month. These targets are usually region specific and are tracked

by the retailer. Choosing a threshold for the overall supply chain is a strategic decision.

A fast delivery gap target, relative to the current practice of the retailer, could result in

substantial delivery improvement costs. However, not pushing for faster deliveries could

instead lead to high RTO costs. Furthermore, a considerable uncertainty is related to

realized costs because the threshold decision is made well in advance of the actual order

arrivals, which can change from day to day. Therefore, managers need to take a system-

level view of the overall supply chain to make threshold delivery target decisions.

• Tactical delivery expediting: In addition, when an order arrives, supply chain managers

have to decide how to ship the order among the various available transportation options.

More specifically, they need to decide if there is a need to expedite the order to minimize

the RTO and delivery expediting costs. These decisions are order based and hence tactical.

Furthermore, managers operate under delivery improvement budgets and multiple product

orders, meaning they need to decide on how to allocate their budget among the available

orders.

Indeed, both of these problems are connected. For example, if the overall supply chain

delivery threshold is very low, all the delivery improvement budget would be used to comply

with the delivery threshold provided. In contrast, if the delivery threshold is not changed,

important system-level service quality parameters, such as the average delivery gap, would be

high and could affect customer satisfaction on the retailer’s platform. In what follows,we make

this connection precise and formal.

Consider a retailer who is deciding on a system-level delivery threshold (y∗) such that all

orders will be attempted to be delivered within this threshold. Orders delivered through the

retailer’s current supply chain have a delivery gap of Z days, where Z ∼ f is a known probability

density function that can be estimated from the retailer’s data. In addition, let F (x) = P(Z ≤ x)

denote the cumulative distribution function (CDF) of Z, and let E[Z] = µ denote the current

mean delivery gap. Delivery gap from the supply chain is modeled as a random variable because

of the randomness in delivery locations, which are unknown in advance. However, prior data

can be used to estimate the distribution of order locations (f) that guide the distribution of

delivery gaps.

The retailer also has the option of delivering orders through an outside supplier, S̄(y) (e.g.
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Fedex, DHL etc.), which would deliver orders with a delivery gap of Z̄(y) (assumed to be

random) with E[Z̄(y)] = y. Expediting deliveries using outside suppliers would involve delivery

improvement costs (DIC). Let cDIC(w) : R→ R denote the DIC of expediting a delivery by w

days.

Finally, expediting deliveries would have an effect on the customer RTO decision. Partic-

ularly, let R(x) ∈ {0, 1} denote the RTO decision of the customer if the delivery gap of the

current order is x days. Each RTO order costs the retailer cRTO in delivery and reverse logistics

costs. A customer’s RTO decision is modeled as a random variable with E[R(x)] = r(x). The

expected RTO rate function, r(x) : R → [0, 1], can be estimated using historical supply chain

data (Figure 5.1).

Consider an order arrival that happens in the future, and let y be any chosen delivery

threshold target. In addition, let I(y) denote whether the order was assigned to an outside

option. I(y) is random because if the retailer can fulfill the delivery within y days using the

current supply chain (Z < y), there is no need to use an outside option for the delivery. Hence,

for any delivery threshold, y, the delivery gap is given by

Z̃(y) =


Z, if I(y) = 0,

Z̄(y), otherwise,.

(5.2)

and the combined RTO and delivery costs are given by

C(y) = cDIC(Z − y)I(y) + cRTOR
(
Z̃(y)

)
. (5.3)

The model above takes a system-level view of the supply chain. In contrast, the tactical decision

of expediting deliveries is a more immediate decision. Managers have to decide which orders

to expedite and by how much in order to meet the strategic threshold levels while minimizing

RTO rates. Hence, letting i = 1, .., n be the orders to be delivered tomorrow, zi (sampled from

f) be the delivery times of these orders (had they been delivered from S), and B be the delivery

expediting budget, the bi-level problem of jointly selecting a critical supply chain threshold and
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deciding expediting levels, wi, is given by

Minw1,...,wn

n∑
i=1

E[Ri(Z̄(zi − wi))] , (5.4a)

s.t
n∑
i=1

cDIC(wi) ≤ B, (5.4b)

0 ≤ zi − y∗ ≤ wi, ∀i = 1, ..., n, and (5.4c)

y∗ = arg miny E [C(y)] . (5.4d)

The upper-level problem (5.4a) is that of minimizing the total expected RTO orders from the

most recent orders under the budget constraint (5.4b) and the supply chain threshold constraint

(5.4c). The threshold constraint is determined by the lower-level problem of minimizing the

strategic expected RTO costs and DIC (5.4d). Notice that a very low y∗ could make the upper-

level problem infeasible; therefore, the two problems have to be solved jointly. Nevertheless,

both the upper-level and the lower-level problems are independently of interest to retailers.

For example, the solution from the lower level problem can be part of the retailer’s service

compliance plans whereas the upper-level problem can guide managers to accomplish these

service-level targets with optimal budget utilization. In what follows, we describe solution

strategies for each of the problems independently. We come back to the joint problem at the

end of the section.

Assumptions: For the remainder of this section, we assume that r(.), the expected return

rate function, is linear in x. That is, we let r(x) = rtomin + βx, where rtomin represents the

baseline RTO rate if orders are shipped with 0 days of the delivery gap. The baseline RTO

rate captures the effect of price, discount, product type, and other order-level features that

have an effect on RTO. β defines the rate of RTO change due to a change in the FDG. This

functional form is also validated by our empirical analysis, where we show that RTO rates

increase almost linearly with increasing delivery gaps (Figure 5.1). We also assume the DIC

function (cDIC(.)) to be piecewise constant. Particularly, the cost function has k different pieces,

defined by k + 1 end points, di, i = 1..., k + 1. Hence, the cost associated with an improvement

of dk < wi ≤ dk+1 would be C̄k. The piecewise constant assumption is again motivated from

practice: delivery improvement of up to a day can be accomplished using ground transport,

but 2-day improvements could lead to the use of air transport, in which case, the cost function
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would be piecewise constant. Finally, we also let f , the empirical delivery gap distribution, to

be exponential. This assumption is also motivated from discussions with the industry partner

and empirically justified (see Figure D.2 in Appendix D.4 and §5.7).

5.6.1 Lower-Level Optimal Delivery Thresholding Problem

We define the Optimal Delivery Thresholding Problem (ODTP) as the lower-level problem. In

this problem, the goal is to select a strategic delivery threshold by minimizing expected delivery

and RTO costs (5.4d) as

Miny≥0 g(y), (ODTP)

where g(y) = E [C(y)], is given by (5.3). For ease of exposition and simplicity of notation, we

start by letting cDIC(y) be constant for all y and refer to it as C̄DIC . We also assume WLOG

that rtomin is 0. We come back to the more general case of piecewise constant costs at the end

of the section. The objective function of ODTP simplifies to

E [C(y)] = cDIC (1− F (y)) + cRTO (r (y + F (y) (E[Z|Z < y]− y)))

= C̄DICe
−y
µ + cRTOβ

(
y +

(
1− e

−y
µ

)
(E[Z|Z < y]− y)

)
= C̄DICe

−y
µ + µcRTOβe

− 2y
µ

(
1− 2e

y
µ + e

2y
µ + y

µ

)
.

The objective of ODTP is to minimize the total costs by choosing an optimal threshold for

choosing an outside option for expedited deliveries. Solving the problem over y > µ would

lead to an increase in RTO costs with no change in DIC. Hence, we consider y ≤ µ. If the

objective function of ODTP is convex or unimodal, the problem can be solved using the first-

order conditions for the optimal threshold, y∗. Unfortunately, one can show, by generating

simple counter examples, that the objective is not well behaved. That is, it is neither a concave

nor a convex function. Furthermore, the objective function of ODTP is not even unimodal

in general (Figure D.3 in Appendix D.4). Nevertheless, in what follows, we characterize the

optimal solution of the ODTP.

Theorem 5.6.1. Let y∗ be the optimal delivery threshold of the retailer. Then,

• If C̄DIC
cRTO

> 2βµ,
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– the objective function of ODTP is strictly convex, and y∗ is the unique solution to:

cRTOβe
−2y
µ

(
2e

y
µ − 2

y

µ
− 1

)
− C̄DICe

−y
µ

µ
= 0, (5.5)

– y∗ decreases with β and cRTO and increases with C̄DIC and µ.

• If C̄DIC
cRTO

<
(
1− 2

e

)
2βµ, then the objective function of ODTP is concave, and the optimal

solution is y∗ = 0.

• If 2βµ ≥ C̄DIC
cRTO

≥
(
1− 2

e

)
2βµ, then the objective function of ODTP is neither concave

nor convex, and

y∗ = arg min {g(0), g(z∗µ), g(ȳ)} ,

where z∗ is the solution to

ez

z
=

2cRTOβ − C̄DIC
µ

4cRTOµβ
, z ∈ [0, 1] ,

and ȳ is the solution of (5.5) between [z∗µ, µ].

We relegate the proof of Theorem 5.6.1 to Appendix D.1 but discuss the intuition of the

proof next.

To characterize the optimal solution, we first characterize the convexity (concavity) of the

objective function. Whenever the ratio of the DIC relative to the RTO costs is sufficiently

large (namely, higher than twice the mean RTO costs, 2βµ), the objective function is convex.

Intuitively, for very small values of the threshold (y), the DICs dominates over the RTO costs.

As y increases, the RTO costs start to dominate. The optimal solution in this case is determined

through the first-order conditions (5.5). We also characterize how the optimal threshold (y∗)

changes as other problem parameters change. As the RTO cost or the slope of the RTO function

increases, the optimal y∗ decreases due to increased RTO costs, which start to dominate DICs.

Similarly, as the current mean delivery gap of the supply chain (µ) increases, y∗ again increases

because there is a higher percentage of orders above any chosen threshold.

When the ratio of the DICs and RTO costs is not sufficiently high (lower than
(
1− 2

e

)
2βµ),

the objective cost function can be shown to be concave. In this region, the DIC is so low that

the RTO costs always dominate in the ODTP objective cost function. The optimal solution, as

a result, is to choose the lowest threshold (0) and reduce the RTO rate to 0 to incur minimum

165



CHAPTER 5. FIRST DELIVERY GAPS: A SUPPLY CHAIN LEVER TO REDUCE
PRODUCT RETURNS IN ONLINE RETAIL

RTO costs.

Finally, when neither of the conditions discussed above hold, the function is neither concave

nor convex. Furthermore, z∗ (defined in Theorem 1) defines the convexity of the objective

function. The optimal solution in this case is obtained from comparing the boundary points (0,

z∗µ) and ȳ. We note that in practice, retailers fall into the case where DICs are high, that is,

the case where the objective is convex or both concave and convex (see §5.7).

Note that in the analysis of this subsection, we investigated the case of constant DICs.

Nevertheless, the case of piecewise constant DIC also follows in a similar fashion. For example,

consider the case when cDIC consists of two pieces. We can solve two ODEP subproblem

corresponding to the DICs of the two pieces. A comparison of the optimal costs from the two

subproblems would result in the overall optimal threshold. We omit the analysis for the sake of

brevity.

5.6.2 Upper Level Tactical Delivery Expediting Problem

Next, we consider the upper level ODEP (5.4a), which operationalizes the strategically chosen

delivery threshold target, y∗, under budgetary constraints:

Minw1,...,wn

n∑
i=1

E[Ri(Z̄(zi − wi))]

s.t
n∑
i=1

cDIC(wi) ≤ B,

0 ≤ zi − y∗ ≤ wi, ∀i = 1, ..., n.

(ODEP)

Recall that Ri(Z̄(.)) denotes the random variable that models a customer’s RTO decision, while

Z̄(wi) denotes the random delivery gap when the retailer expedites the delivery of order i by

wi days. The ODEP objective can be reformulated as

Minw1,...,wn

i=n∑
i=1

E[Ri(Z̄(zi − wi))] = Minw1,...,wn

i=n∑
i=1

ri(zi − wi) . (ODEP)

The reformulation above follows from Jensen’s inequality and the fact that r is an affine function.

Furthermore, because the list of orders is known, we now incorporate the order-level heterogene-

ity in the RTO-FDG relation by letting the RTO function ri(x) = rtoimin − βi · x, ∀i = 1, ..., n.

A priori, it is hard to characterize the optimal solution of the ODEP with piecewise constant

costs because a small shift in the amount of improvement in delivery speed, can result in a
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substantial change in the overall cost. Nevertheless, in Proposition 5.6.2, we reformulate the

ODEP with piecewise constant costs as a mixed integer optimization problem. We start by

taking a continuous approximation of the cost function and assume that the cost increases

linearly between di and di+1 + ε for a very small ε. This ensures that we have a continuous

DIC function (Figure D.4 in Appendix D.4). With a slight abuse of notation, we will assume

that the DIC function is continuous for all dj , j = 1..k+ 1. Finally, we assume that the rate of

change of the DICs at different constant levels is at least 1; That is, the higher the improvement

level, the more it will cost to further expedite deliveries. Finally, we assume that the budget,

B, is high enough so that a feasible solution to the problem exists.

Proposition 5.6.2. The ODEP with piecewise constant DIC can be reformulated as the fol-

lowing mixed-integer optimization problem:

Maxw,λ,τ

i=n∑
i=1

βiwi (5.6a)

s.t
i=n∑
i=1

j=k∑
j=1

C̄iλ
i
j ≤ B, (5.6b)

j=k∑
j=1

λjid
j
i = wi, ∀i = 1, .., n (5.6c)

0 ≤ zi − y∗ ≤ wi, ∀i = 1, ..., n. (5.6d)

λ1
i ≤ τ1

i , ∀i = 1, .., n (5.6e)

λji ≤ τ
j−1
i + τ ji , ∀i = 1, .., n, j = 2..., k (5.6f)

λk+1
i ≤ τki , ∀i = 1, .., n (5.6g)

j=k+1∑
j=1

λij = 1, ∀i = 1, .., n (5.6h)

j=k∑
j=1

τ ij = 1, ∀i = 1, .., n (5.6i)

τ ji ∈ {0, 1}, ∀i = 1, .., n, j = 1..., k (5.6j)

λji ≥ 0, ∀i = 1, .., n, j = 1..., k + 1 (5.6k)

We relegate the proof of Proposition 5.6.2 to Appendix D.1. The reformulation uses similar

ideas as in Vielma et al. (2010). Because the RTO rate is increasing in the FDG (decreasing
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in delivery improvement), the objective can be reformulated as maximizing the RTO rate

reduction over the n orders. To model the piecewise constant cost structure of DIC, we introduce

two sets of new variables τ ij and λij , where τ ij characterizes where the selected expediting level,

wi, lies, and λij represents wi as the convex combination of the end points of the region where

it lies. This convex combination of the end points is then used to effectively model the budget

constraint associated with DICs.

The number of variables increases linearly with the number of orders in the above formula-

tion. Hence, the IP solution can be computationally expensive to obtain, especially when the

order size is very high. In what follows, we consider the LP relaxation of the ODEP-IP prob-

lem and construct a feasible ODEP solution. We show that the optimality gap of the solution

constructed from the LP relaxation is bounded from above by the maximum rate of change of

RTO (βi) and is independent of n. Notice that in the process, we construct a polynomial time

algorithm to find the ODEP solution with a very small optimality gap.

Theorem 5.6.3. Consider the LP relaxation of ODEP-IP (ODEP-LP) where zij are relaxed

to be nonnegative continuous variables, and let (w̄, λ̄, τ̄) be the optimal solution of ODEP-LP.

Then, there exists at most one order i (iNI) such that τ̄ ji is nonintegral for j = 1, ...k.

Let wfeasible = arg maxj=1...k {C̄j ≤ B −
∑

i=1,..n,i 6=NI
∑

j=1,..,k+1 C̄j λ̄
j
i}. Consider (w̃, λ̃, τ̃)

such that

1. (w̃, λ̃, τ̃) = (w̄, λ̄, τ̄), ∀i 6= iNI ;

2. τ̃
wfeasible
iNI

= 1, λ
wfeasible
iNI

= 1, wiNI = dwfeasible ; and

3. τ̃ jiNI = 0, λjiNI = 0, ∀j 6= wfeasible.

Then (w̃, λ̃, τ̃) is a feasible solution to ODEP-IP and the optimality gap of (w̃, λ̃, τ̃) with optimal

solution (wopt, λopt, τ opt) is∑i=n
i=1 βiw

opt
i −

∑i=n
i=1 βiw̃i ≤ w̄INβIN ≤ maxi=1,..n w̄INβi ≤ 1 .

We relegate the proof of Theorem 5.6.3 to Appendix D.1. The heuristic solution constructed

in Theorem 5.6.3 differs from the LP solution only for a single order. This allows us to charac-

terize the optimality gap of the heuristic solution relative to the optimal IP solution. First, we

show feasibility of the constructed solution. We then show that the objective of the heuristic so-

lution is “close” to the optimal LP objective, which, in turn, bounds the optimality gap relative
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to the optimal IP solution. Note that because the optimality gap is independent of n, it also

implies that as the number of orders increases, the objective value of the heuristic converges to

the IP optimal value.

Solving the joint problem: Now that we have discussed the solutions of both the upper-

level and the lower-level problems, we come back to the joint bi-level problem of deciding

the threshold gap as well as the tactical expediting levels. Given an optimal threshold (y∗),

the upper-level solution might turn out to be infeasible due to limited budgets. In case of

infeasibility, the space of possible thresholds (y) can be updated, and the lower-level problem

can be resolved in the restricted region to get an updated y∗ which then can be used in the

upper-level problem to get optimal tactical decisions. We note that operationally, feasibility

can be also achieved by increasing the budget to ensure that all orders are delivered within the

selected threshold, which could lead to optimal solutions for both subproblems jointly.

Remark 5.6.4. The constructed IP for the upper-level problem assumes that all orders need to

meet the strategic threshold, y∗. Another relaxed version of the problem could be that the mean

delivery time of order, on any given day, cannot be more that the chosen strategic threshold, y∗.

The IP formulation presented in Proposition 5.6.2 can be easily updated to account for such a

constraint or order-specific constraints that are important in practice but we omitted here due

to space limitations.

5.7 Impact in Practice

In this section, we detail the implications of the FDG-optimization framework of §5.7 on our

industry collaborator. As we have discussed previously, our industry partner ships more than

150,000 orders every day across India. Because its supply chain decisions are based on geographic

considerations, we focus our analysis on the Bengaluru metropolis region, which lies in the

southern Indian state of Karnataka. This region consists of 98 zip codes, with a total population

of 12.34 million and a geographical area of 741 sq kms. It also contributes substantially to the

industry partner’s business. From 2017-18, the e-retailer shipped more than 4 million items in

eight master categories to more than 600,000 unique users in the region. These packages were

served through a network of 14 DCs spread across the region. Recall that after an order is

placed, the item goes through various nodes in the supply chain, eventually arriving at the last
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mile DC. From there, the package is then taken to the customer’s doorstep by last mile delivery

personnel.

Figure D.2 in Appendix D.4 shows the percentage of orders with respect to their FDGs in

the Bengaluru region. The average FDG for orders in this region is 1.886, which is considerably

lower than the national average. This difference can be attributed to the proximity of this region

to the Bengaluru warehouse and the relatively improved infrastructure of the region. Similarly,

Figure D.5 in Appendix D.4 shows the overall RTO rate with respect to the FDG for footwear

orders in this region. Note that an increase in FDG leads to an increase in RTO, replicating

the general trend.

The objective of the retailer is to jointly (i) select a strategic delivery gap threshold that

all orders should meet, and (ii) optimize budget allocations on different orders to minimize the

chances of an RTO occurring on any given day. Because delivery improvement costs drive the

trade-off between RTO costs and faster shipment, we discuss the associated costs in detail next.

The retailer takes 8 hours of initial processing time after an order is placed on the retailer’s

online platform. This involves initial QC packaging and bagging, after which the package is

ready to be shipped from the warehouse to the last mile DC. Because a majority of the orders

are delivered from the local warehouse, using air transportation to deliver products from different

areas to the Bengaluru warehouse is not useful. For transportation between the warehouse and

the last mile DC, the company uses trucks that run on a particular schedule two times per day.

These trucks leave the warehouse at 6 AM and 12:01 PM every day. If a product gets ordered

between midnight and 4 AM, then there is a chance that it will be delivered within the same

day, thus resulting in 0 days FDG. If a product is ordered after 4 AM, then a delivery attempt

is made at least 1 day after the order is placed.

To decrease the FDG of delivered orders, the retailer has the option to increase the frequency

of trips between warehouse and the DC. Nevertheless, as noted above, the cost of expediting

the process of delivery by w days does not increase linearly with w. For example, in the

Bengaluru warehouse, one could employ more trucks to ensure that almost all the products

reach the last mile DC within 1 day of order placement. But a 0 day FDG (2-day improvement

from the current average delivery gap) would mean that the company must also hire additional

warehouse employees and run the warehouse overnight at capacity. This has a substantial

overhead cost and further implies that the DIC function is indeed piecewise constant. In Figure

D.5 of Appendix D.4, we plot the DIC of the retailer for 1- and 2-day improvements. To reduce
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the mean FDG to 1 day in Bengaluru, our industry partner has to employ more trucks. Each

truck can transfer up to 500 kg of orders for a price of Rs. 1300. Because an average package

weighs around 0.7 kg, this adds an extra cost of around Rs. 1.9 per order. Similarly, to ensure

express delivery within the same day, the total cost rises to Rs. 100 per order. This includes

all the overhead costs attached with the warehouse and extra workers.

Having described the DIC, we discuss the estimation of the empirical delivery gap distri-

bution. Because a very small fraction of the total orders were served within a day of the

order placement, we assume that the delivery time for deliveries within 1 day is uniformly dis-

tributed. We use a mixture of shifted exponential distributions to estimate the delivery gap of

orders where the FDG is above 1 day (Figure D.2 in Appendix D.4). Note that a mixture of

exponentials shows a very good fit to the order-delivery gap distribution. Finally, the expected

RTO-FDG function can also be estimated using a linear fit (Figure D.5 of Appendix D.4). Hav-

ing estimated all the problem parameters, now we discuss the optimal threshold and expediting

decisions in the Bengaluru region.

The first-stage optimal ODTP threshold for Bengaluru is a 1 day delivery: the retailer

should target to deliver all orders within 1-day of order placement. Difference in the DICs make

deliveries faster than 1 day economically unviable for the retailer. In Figure D.6 of Appendix

D.4, we also plot the objective function of the ODTP for the retailer. As noted in Theorem 5.6.1,

the cost function is both concave and convex, depending on the DICs. An overall threshold

target of 1-day delivery would imply an average delivery improvement of 0.86 days from the

current average. We estimate that by expediting the mean FDG, the company can reduce

the RTO rate by 13.30% from the current mean RTO rate of the region. Finally, to check

the robustness of this improvement, we also perform a comparative analysis of the change in

improvement as DIC changes and increase the cost to Rs 2.85 for a 1-day delivery improvement,

50% more than the previously considered DIC cost (Figure D.7 in Appendix D.4). An increase

in the DIC leads to an increase in the optimal threshold (from 1 to 1.1) and a cost improvement

of 1.05%. Although the improvement is smaller than before (from 2.7% to 1.05%), given the

magnitude this is still a significant improvement.

Next, we discuss the second stage tactical problem of allocating a budget for expediting

deliveries of selected orders. The tactical ODEP optimally assigns a delivery improvement

budget over multiple orders. We consider all orders in the Bengaluru metropolis region on a

randomly selected day (1,563 total orders). We first estimate the change in RTO due to a
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change in the FDG at the master category, brand, and article type levels using OLS regression

(430 total combinations). Then, we consider the optimal ODEP solution over the n orders

with varying budget (B) and plot the percentage decrease in RTO orders due to expedited

deliveries (Figure D.8 in Appendix D.4). We assume that the budget allocation is such that all

deliveries satisfy the ODTP delivery threshold, and the budget can be used for further delivery

improvements. Whereas the LP-based heuristic computes the optimal solution within seconds,

the IP solver in Gurobi is considerably slower in solving . Note that the bound in Theorem

5.6.3 shows that the optimality gap of the LP-based heuristic is at most 0.30. Nevertheless,

our computational study shows that the realized bound is indeed below 1.0 x 10−5, establishing

the near optimality of the heuristic. We further find that the RTO rate can be reduce by as

much as 10% with optimal allocation of a reasonable budget (e.g., less than Rs. 2 per order).

Hence, an optimal allocation of budget for expediting deliveries can lead to substantial changes

in product RTOs.

5.7.1 Conclusions

Product returns pose a big challenge to online retailers around the world; Therefore, reducing

returns is an important problem. Working with one of India’s largest e-fashion retailers, we show

the causal relation of delivery gaps on RTO, thereby identifying a supply chain lever to control

returns. We also perform an RCT to analyze the effect of delivery promise on the RTO rates of

fast delivery orders. We conservatively estimate that a 2-day reduction in average delivery time

could lead to potential savings of as much as $1.5 million due to RTO costs reduction. We also

introduce the joint strategic and tactical delivery optimization problems that carefully balance

the reduction in RTO costs with DIC. Using our industry partner’s data, we estimate that this

improvement in delivery gaps can lead to a reduction of 2.7% by optimizing delivery times.
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Conclusions

Developing data-driven methods to drive operational decisions in retail management remains a

major challenge. In this thesis we consider various decision problems that retailers face before

and during a product is launched on the market, as well as after it is sold to the customer.

This thesis presents formulations, algorithms and analysis of operational problems in retail

management, that are developed in close collaboration with industry collaborators.

First, we start by discussing the problem of predicting demand for new products before they

are launched on the market. We devise a joint clustering and regression method that jointly

clusters existing products based on their features as well as sales patterns while estimating their

demand. Analytically, we prove in-sample and out-of-sample prediction error guarantees in the

LASSO regularized linear regression case to account for over-fitting due to high dimensional

data. Numerically we perform an extensive comparative study on real world data sets to show

that the proposed algorithm outperforms state-of-the-art prediction methods and improves the

WMAPE forecasting metric between 20-60%.

Second, we consider the problem of making personalized product recommendations when

customer preferences are unknown and the retailer risks losing customers because of irrelevant

recommendations. We present empirical evidence of customer disengagement through real-

world data from a major airline carrier who offers a sequence of ad campaigns. We formulate

the problem as a user preference learning problem and show that this seemingly obvious phe-

nomenon can cause almost all state-of-the-art learning algorithms to fail in this setting. We

propose modifying bandit learning strategies by constraining the action space upfront using

an integer optimization model. We prove that this modification allows us to keep significantly

more customers on the platform. Numerical experiments on real movie recommendations data
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demonstrate that our algorithm can improve customer engagement with the platform by up to

80%.

Third, we investigates the problem of pricing of new products for a retailer who does not have

any information on the underlying demand for a product. The retailer also seeks to reduce the

amount of price experimentation because of the potential costs associated with price changes.

We construct a pricing algorithm and establish when the proposed policy achieves near-optimal

rate of regret, Õ(
√
T ), while making O(log log T ) price changes. Hence, we show considerable

reduction in price changes from the previously known O(log T ) rate of price change guarantee

in the literature.

Fourth, we focus on the problem of reducing product returns and investigate it through a

supply chain lens. Closely working with one of India’s largest online fashion retailers, we focus

on identifying the effect of delivery gaps (total time that customers have to wait for the item

to arrive) and customer promise dates on product Returns To Origin (RTO). Our empirical

analysis reveals that an increase in delivery gaps causes a substantial increase in product RTO.

Furthermore, we also perform a RCT in to estimate the effect of delivery promise on prod-

uct returns. Based on the insights from this empirical analysis, we then develop an integer

optimization model that mimics managers’ decision-making process in selecting personalized

delivery speed targets.

In summary, the thesis develops data-driven practical techniques, in close collaboration with

industry practitioners, that can have substantial impact on retailer’s bottom line.
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Appendix of Chapter 2

A.1 Proofs of Section 2.4

Proof. Proof of Proposition 2.4.1. Consider problem (PL) where qikj substitutes zikβkj and rkj

substitutes |βkj |, namely,

min
zik,βkj

n∑
i=1

yi − ∑̀
k=1

m∑
j=1

qikjxij

2

+ λ
∑̀
k=1

m∑
j=1

rkj

s.t.
∑̀
k=1

zik = 1, i = 1, . . . , n

zik ∈ {0, 1}, i = 1, . . . , n, k = 1, . . . , `.

This substituted problem is not identical to (PL) as it does not specify the link between zik,

βkj , qikj , and rkj . For this, we need to add constraints that define how qikj and rkj depend on

zik and βkj . First, the following constraints defines that qikj = βkj when zik = 1,

−M(1− zik) ≤ qikj − βkj ≤M(1− zik), i = 1, . . . , n, k = 1, . . . , `, j = 1, . . . ,m.

When zik = 1, the inequality states that 0 ≤ qikj − βkj ≤ 0, and hence that qikj = βkj . On

the other hand, when zik = 0, the inequality leaves qikj and βkj unconstrained. Second, the

following constraint defines that qikj = 0 when zik = 0,

−Mzik ≤ qikj ≤Mzik, i = 1, . . . , n, k = 1, . . . , `, j = 1, . . . ,m.

When zik = 0, the inequality becomes 0 ≤ qikj ≤ 0, which means that qikj = 0. In the case

175



APPENDIX A. APPENDIX OF CHAPTER 2

where zik = 1, this constraint is essentially eliminated. Thus, together these two constraints

define that qikj = zikβkj . Finally, to ensure that rkj = |βkj | we add the following constraints,

rkj ≥ βkj , k = 1, . . . , `, j = 1, . . . ,m,

rkj ≥ −βkj , k = 1, . . . , `, j = 1, . . . ,m.

In the objective, λrkj appears as an additive term and λ ≥ 0. Hence, since we are minimizing

the objective, the optimal value of rkj is as small as allowed. In the case where βkj ≥ 0, the

first constraint will set this minimal value to be βkj , while in the case where βkj ≤ 0, the second

constraint will mean it is |βkj |. Therefore, the two constraints together define rkj = |βkj |.

Hence, after adding these 4 sets of constraints to the substituted problem it forms (PLR) and

is equivalent to (PL). �

Proof. Proof of Lemma 2.4.2. To bound this probability, we use the probability complement,

the union bound, Hölders inequality, and the tail bound on standard normal random variables

as follows,

P
(

1

n
||εT (Z ∗X)||∞ ≤

λ

4

)
= P

(
max

c=1,...,m`

∣∣εT (Z ∗X)c
∣∣ ≤ nλ

4

)
= 1− P

(
max

c=1,...,m`

∣∣εT (Z ∗X)c
∣∣ > nλ

4

)
≥ 1−

m∑̀
c=1

P
(∣∣εT (Z ∗X)c

∣∣ > nλ

4

)

≥ 1−
m∑̀
c=1

P
(
||εT ||∞||(Z ∗X)c||1 >

nλ

4

)

≥ 1−
m∑̀
c=1

P
(

max
i=1,...,n

|εi| >
√
nλ

4

)
≥ 1−

m∑̀
c=1

n∑
i=1

P
(∣∣∣εi
σ

∣∣∣ > √nλ
4σ

)

≥ 1−
m∑̀
c=1

n∑
i=1

2 exp

(
−1

2

(√
nλ

4σ

)2
)

= 1− δ.

In particular, in the third inequality, we use the fact that for x ∈ Rn, ||x||1 ≤
√
n||x||2, and

hence, ||(Z ∗X)c||1 ≤
√
n||(Z ∗X)c||2 ≤

√
n. The last inequality follows from the tail bound on

standard normal random variables. �

Proof. Proof of Proposition 2.4.3: Recall, by definition that

‖(Z∆ ∗X)(β̂ − β∗)‖2 = ‖(Z∆ ∗X)β∆‖2 .
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Furthermore, Z∆ = Ẑ − Z∗, which implies

Z∆ =



ẑ11 ẑ12 . . . ẑ1`

ẑ21 ẑ22 . . . ẑ2`

...
...

. . .
...

ẑn1 ẑn2 . . . ẑn`


−



z∗11 z∗12 . . . z∗1`

z∗21 z∗22 . . . z∗2`
...

...
. . .

...

z∗n1 z∗n2 . . . z∗n`


=



ẑ11 − z∗11 ẑ12 − z∗12 . . . ẑ1` − z∗1`

ẑ21 − z∗21 ẑ22 − z∗22 . . . ẑ2` − z∗2`
...

...
. . .

...

ẑn1 − z∗n1 ẑn1 − z∗n2 . . . ẑn` − z∗n`


Now assume without loss of generality that the first r points are incorrectly clustered. Then,

for i = 1, ...r, Z∆
i,c∗i

= −1 and Z∆
i,mci

= 1, where c∗i denotes the true unknown cluster of point

i and mci denotes the incorrect cluster to which point i was assigned. All other entries of the

Z∆ matrix are 0 by definition. Also note that Hence,

‖(Z∆ ∗X)β∆‖2 =

√√√√√ n∑
i=1

 m∑
j=1

∑̀
k=1

(
ẑik − z∗ik

)
(xijβ∆

kj)

2

≤

√√√√√ r∑
i=1

 m∑
j=1

∑̀
k=1

|xijβ∆
kjz

∆
ik|

2

=

√√√√√ r∑
i=1

 m∑
j=1

|xijβ∆
c∗i j
z∆
ic∗i
|+ |xijβ∆

mcij
z∆
imci
|

2

≤

√√√√√ r∑
i=1

 m∑
j=1

2 max
ijk
|xijβ∆

kj |

2

≤

√√√√√ r∑
i=1

 m∑
j=1

2 max
ijk
|xij ||β∆

kj |

2

≤

√√√√√ r∑
i=1

 m∑
j=1

2 max
ijk
|β∆
kj |

2

= 2m
√
rβ∆

max

177



APPENDIX A. APPENDIX OF CHAPTER 2

A similar analysis on ‖(Z∗ ∗X)
(
β∗ − β̂

)
‖2 yields that

‖(Z∗ ∗X)β∆‖2 =

√√√√√ n∑
i=1

 m∑
j=1

∑̀
k=1

z∗ikxijβ
∆
kj

2

≥ β∆
min

√√√√√ n∑
i=1

 m∑
j=1

∑̀
k=1

z∗ikxij

2

≥ β∆
min

√√√√ n∑
i=1

m∑
j=1

∑̀
k=1

z∗ikx
2
ij

= β∆
min

√√√√ n∑
i=1

‖xi‖2

=
√
nβ∆

min

where we have assumed that ‖xi‖2 = 1 ∀i = 1. Also, by assumption, r <
(
n

2m

) ( β∆
min

β∆
max

)2
. Hence,

‖(Z∆ ∗X)
(
β∗ − β̂

)
‖2 < ‖(Z∗ ∗X)

(
β∗ − β̂

)
‖2 ,

which proves the existence of κ > 0 such that

‖(Z∗ ∗X)β∆‖22 − ‖(Z∆ ∗X)β∆‖22 = κ‖(Z∗ ∗X)β∆‖22 .

Now we are in a position to prove the final statement. First note that we have β∆ such that

‖β∆
S ‖ ≤

s

nη2

(
‖(Z∗ ∗X)β∆‖22 −

2

κ
‖(Z∗ ∗X)β∗‖22

)
=⇒ ‖β∆

S ‖ ≤
s

nκη2

(
κ‖(Z∗ ∗X)β∆‖22 − 2‖(Z∗ ∗X)β∗‖22

)
=⇒ ‖β∆

S ‖ ≤
s

nκη2

(
‖(Z∗ ∗X)β∆‖22 − ‖(Z∆ ∗X)β∆‖22 − 2‖(Z∗ ∗X)β∗‖22

)
Hence, letting θ = κη gives the desired result.

Proof. Proof of Theorem 2.4.4. This proof can be divided into six steps. The first three steps

lead to a probabilistic bound without the cluster compatibility condition, and the last three

steps extend this under the cluster compatibility condition. First, we bound using the chance

that the solution of the CWR algorithm has a smaller LASSO objective than the true model.

Afterwards, we bound the forecasting error that is due to noisy measurements caused by the
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systematic error ε. Then, we can establish our first bound. Next, we rewrite the cluster

compatibility condition into a useful inequality. Additionally, we use the sparseness of the true

regression parameters to provide another helpful inequality. Finally, these inequalities together

allow us to construct the second bound.

(Step 1) Consider Ẑ and β̂ and note that the objective at the estimated parameters is smaller than

the objective at Z∗ and β∗, which means that,

1

n
||y − (Ẑ ∗X)β̂||22 + λ||β̂||1 ≤

1

n
||y − (Z∗ ∗X)β∗||22 + λ||β∗||1.

Plugging y = (Z∗ ∗X)β∗ + ε into this inequality, we obtain

1

n
||(Z∗ ∗X)β∗ + ε− (Ẑ ∗X)β̂||22 ≤

1

n
||(Z∗ ∗X)β∗ + ε− (Z∗ ∗X)β∗||22 + λ(||β∗||1 − ||β̂||1),

which we can rewrite into

1

n
||(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂||22 ≤

2

n
εT ((Ẑ ∗X)β̂ − (Z∗ ∗X)β∗) + λ(||β∗||1 − ||β̂||1).

To prove the probabilistic bound, we need to analyze the right-hand side of this event.

(Step 2) For the first term on the right-hand side, we add and subtract (Ẑ ∗X)β∗ to the product’s

second term, use Hölder’s inequality, and use the triangle inequality to obtain

εT ((Ẑ ∗X)β̂ − (Z∗ ∗X)β∗) = εT ((Ẑ ∗X)β̂ − (Ẑ ∗X)β∗ + (Ẑ ∗X)β∗ − (Z∗ ∗X)β∗)

= εT (Ẑ ∗X)(β̂ − β∗) + εT (Ẑ ∗X − Z∗ ∗X)β∗

≤ |εT (Ẑ ∗X)(β̂ − β∗)|+ |εT (Ẑ ∗X − Z∗ ∗X)β∗|

≤ ||εT (Ẑ ∗X)||∞||β̂ − β∗||1 + ||εT (Ẑ ∗X − Z∗ ∗X)||∞||β∗||1

≤ ||εT (Ẑ ∗X)||∞||β̂ − β∗||1 + ||εT (Ẑ ∗X)||∞||β∗||1 + ||εT (Z∗ ∗X)||∞||β∗||1.

Applying Lemma 2.4.2 this yields with probability at least 1− δ that

2

n
εT ((Ẑ ∗X)β̂ − (Z∗ ∗X)β∗) ≤ λ

2
(||β̂ − β∗||1 + 2||β∗||1).
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Merging with the result of step 1 this implies that

1

n
||(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂||22 ≤

λ

2
(||β̂ − β∗||1 + 2||β∗||1) + λ(||β∗||1 − ||β̂||1)

=
λ

2
||β̂ − β∗||1 + 2λ||β∗||1 − λ||β̂||1

(Step 3) For our first probabilistic bound, we use the result of step 2, the triangle inequality, and

λ = 4σ
√

2
n log

(
2nm`
δ

)
to find that

1

n
||(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂||22 ≤

λ

2
||β̂ − β∗||1 + 2λ||β∗||1 − λ||β̂||1 ≤

5λ

2
||β∗||1.

The guarantee is conditional on the event E, which implies our first probabilistic bound

P
(
||(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂||22 ≤

5λ

2
||β∗||1

)
≥

P
(
||(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂||22 ≤

5λ

2
||β∗||1|E

)
P(E) ≥ (1− δ)ζ.

(Step 4) To create a further bound under the cluster compatibility condition, we observe that for

some θ > 0,

1

n
‖(Z∗ ∗X)β∗−(Ẑ ∗X)β̂‖22 =

1

n
‖(Z∗ ∗X)(β∗ − β̂)− ((Ẑ − Z∗) ∗X)(β̂ − β∗)− ((Ẑ − Z∗) ∗X)β∗‖22

≥ 1

n

(
‖(Z∗ ∗X)β∆‖22 − ‖(Z∆ ∗X)β∆‖22 − ‖(Z∆ ∗X)β∗‖22

)
≥ 1

n

(
‖(Z∗ ∗X)β∆‖22 − ‖(Z∆ ∗X)β∆‖22 − 2‖(Z∗ ∗X)β∗‖22

)
≥ θ2

s
‖β∆

S ‖21,

which implies that

‖β̂S − β∗S‖21 ≤
s

nθ2
‖(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂‖22 .
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(Step 5) To construct a helpful inequality, we first rearrange ||β̂||1 to find that

‖β̂‖1 = ‖β̂S‖1 + ‖β̂SC‖1

= ‖β∗S + β̂S − β∗S‖1 + ‖β̂SC‖1

≥ ‖β∗S‖1 − ‖β̂S − β∗S‖1 + ‖β̂SC‖1

=⇒ ‖β̂SC‖1 ≤ ‖β̂‖1 + ‖β̂S − β∗S‖1 − ‖β∗S‖1.

Merging with the result of step 2 yields that

2

n
‖(Z∗ ∗X)β∗−(Ẑ ∗X)β̂‖22 + 2λ‖β̂SC‖1 ≤

2

n
‖(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂‖22 + 2λ‖β̂‖1 + 2λ‖β̂S − β∗S‖1 − 2λ‖β∗S‖1 .

≤ λ‖β̂S − β∗S‖1 + λ‖β̂SC‖1 + 4λ||β∗||1 + 2λ‖β̂S − β∗S‖1 − 2λ‖β∗S‖1

= 3λ‖β̂S − β∗S‖1 + 2λ‖β∗S‖1 + λ‖β̂SC‖1.

Using this inequality shows that

2

n
‖(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂‖22+λ‖β̂ − β∗‖1 =

2

n
‖(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂‖22 + λ‖β̂S − β∗S‖1 + λ‖β̂SC‖1

≤ 3λ‖β̂S − β∗S‖1 + 2λ‖β∗S‖1 + λ‖β̂S − β∗S‖1

= 4λ‖β̂S − β∗S‖1 + 2λ‖β∗S‖1 .

Following the inequality 4ab ≤ a2 + 4b2 this yields that

2

n
‖(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂‖22+λ‖β̂ − β∗‖1 ≤

4λ

√
s

nθ2
‖(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂‖2 + 2λ‖β∗S‖1

≤ 4λ2 s

θ2
+

1

n
‖(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂‖22 + 2λ‖β∗S‖1 .

(Step 6) For our second probabilistic bound, we rewrite the result of step 5 to find that

1

n
‖(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂‖22 + λ‖β̂ − β∗‖1 ≤ 4λ2 s

θ2
+ 2λ‖β∗S‖1 .
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Hence,

P
(

1

n
‖(Z∗ ∗X)β∗ − (Ẑ ∗X)β̂‖22 + λ‖β̂ − β∗‖1 ≤ 4λ2 s

θ2
+ 2λ‖β∗S‖1

)
≥ (1− δ).

Proof. Proof of Theorem 2.4.5. Note that ẑ0k = 1/` for all k, and z∗0k∗ = 1 and z∗0k = 0 for

k 6= k∗. Given these cluster assignments, bounding yields that

‖
∑̀
k=1

z∗0k

m∑
j=1

β∗kjx0j −
∑̀
k=1

ẑ0k

m∑
j=1

β̂kjx0j‖1 = ‖
m∑
j=1

β∗k∗jx0j −
1

`

∑̀
k=1

m∑
j=1

β̂kjx0j‖1

≤ 1

`

∑̀
k=1

‖β∗k∗ − β̂k‖1‖x0‖∞

≤ 1

`

∑̀
k=1

‖β∗k∗ − β̂k + β∗k − β∗k‖1

≤ 1

`

∑̀
k=1

‖β∗k∗ − β∗k‖1 +
1

`

∑̀
k=1

‖β̂k − β∗k‖1

= C +
1

`
‖β̂ − β∗‖1

Applying Theorem 2.4.4, we have on an event with at least probability (1− δ)ζ that

‖β̂ − β∗‖1 ≤ 4λ
s

θ2
+ 2‖β∗‖1,

which implies our probabilistic bound

P

||∑̀
k=1

z∗0k

m∑
j=1

β∗kjx0j −
∑̀
k=1

ẑ0k

m∑
j=1

β̂kjx0j ||1 ≤ C +
2

`
‖β∗‖1 +

4

`
λ
s

θ2

 ≥ (1− δ)ζ.
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Proofs of Chapter 3

B.1 Lower Bound for Classical Approaches

Proof. Proof of Theorem 3.4.3: Consider the case when d = 2. Then, u0 ∼ N (0, σ2I2). Further-

more, V1 = [1, 0] and V2 = [0, 1]. Clearly, Product 1 is optimal when u01 > u02 and vice versa.

Consider the following events: E1 = {u01 < u02 − ρ}, and E2 = {u02 < u01 − ρ} . Then on E1,

recommending product 1 leads to customer disengagement with probability p and on E2, rec-

ommending product 2 leads to customer disengagement with probability p. Next, we will char-

acterize the probability of events E1 and E2. P (E1) = P (u01 < u02 − ρ) = P
(
u01−u02√

2σ
< −ρ√

2σ

)
=

P
(
Z < −ρ√

2σ

)
= C , such that C ∈ (0, 1). Symmetrically, P (E2) = P (u02 < u01 − ρ) = C . Any

policy π has two options at time 1: either to recommend product 1 or to recommend product

2. First consider the case when a1 = 1 and notice that

Eu0∼P [Rπ(T, ρ, p, u0)] ≥
T∑
t=1

rt(ρ, p, u0 ∈ E1).P (E1) ≥ T · P (E1) · p = CpT .

Similarly, when a1 = 2, Eu0∼P [Rπ(T, ρ, p, u0)] ≥ CpT . Hence,

inf
π∈Π

sup
ρ>0

EU0∼P [Rπ(T, ρ, p, U0)] = C · p · T = O(T ) ,

The proof follows similarly for any d > 2 since the probability of disengagement continues to

be strictly positive in the initial round.

Before we prove Theorem 3.4.4, we prove an important Lemma that relates the confidence

width of the mean reward of product V (‖V ‖2
X−1
t

) and shows that this width shrinks at a rate

faster than the confidence width of the estimation of the gap between reward from V and the
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optimal product (∆V ).

Lemma B.1.1. Let π be a consistent policy and let a1, .., at be actions taken under policy

π. Let u0 ∈ Rd be a realization of the random user vector, U0 ∼ P, such that there is a

unique optimal product, V∗ amongst the set of feasible products. Then ∀ V ∈ {V1, ....Vn}/ V∗,

lim supt→∞ log(t)‖V ‖2
X−1
t

≤ ∆2
V

2(1−ν) , where ∆V = u>0 V∗ − u>0 V and Xt = E
[∑T

l=1 ala
′
l

]
.

Proof. The proof strategy is similar to that of Theorem 3.4.4 in Lattimore and Szepesvari (2016)

with two main steps. In Step 1, we show that lim supt→∞ log(t)‖V −V∗‖2X−1
t

≤ ∆2
V

2(1−ν) . Then, in

Step 2, we connect this result to the matrix norm on the features of V which leads to the final

result. We skip the details for the sake of brevity and refer the interested readers to Lattimore

and Szepesvari (2016).

Proof. Proof of Theorem 3.4.4: We will prove that whenever |S(u0, ρ)| < d, any consistent pol-

icy, π, recommends products outside of the customer’s feasibility set infinitely often. Note that

for any realization of u0, one can reduce ρ and make it sufficiently small so that |S(u0, ρ)| < d.

Customer disengagement thus follows directly since there is a positive probability, p, of customer

leaving the platform whenever a product outside the customer’s feasibility set is offered.

Let us assume, by contradiction, that there exists a policy π that is consistent and offers

products inside the feasible set infinitely often. This implies that there exists t̄ such that

∀t > t̄, at ∈ S(u0, ρ). Now under the stated assumptions of the simplified setting, there

are d products in total (n = d) and the feature vector of the ith product is the ith basis

vector. Further let uo, the unknown consumer feature vector, and ρ, the tolerance threshold

parameter be such that WLOG, S(u0, ρ) = {2, 3...d} (follows by Definition (3.2)). That is, only

the first product is outside of the feasible set. Also let, Rπt =


T π1 (t) 0 . . .

...
. . .

0 T πd (t)

 , where

Tj(t) = E
[∑t

f=1 1{aπf = j}
]
. Tj(n) is the total number of times the jth product is offered until
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time t under policy π. Next consider the following:

lim supt→∞ log(t)‖e1‖2X−1
t

= lim supt→∞ log(t)e>1 X
−1
t e1

= lim supt→∞ log(t)e>1 E

 t∑
f=1

afa
>
f

−1

e1

= lim supt→∞ log(t)e>1 [Rt]
−1 e1

≥ lim supt→∞ log(t)

(
1

T1(t)

)
≥ lim supt→∞ log(t)

(
1

T1(t̄)

)
=∞ .

(B.1)

Where the second to last inequality follows from the fact that ∀t > t̄, π recommends products

inside the feasible set, S(u0, ρ), which does not contain product 1. Furthermore, T1(t̄) =

T1(t̄+1) = T1(t̄+2) = .... = limn→∞ T1(t̄+n). For any finite ∆V1 , and 0 < ν < 1, we have that,

lim supt→∞ log(t)‖e1‖2X−1
t

≥ ∆2
1

2(1−ν) . which implies that ∃ai in the action space such that the

condition of Lemma B.1.1 is not satisfied. Hence, we have show that there exists no consistent

policy that recommends products inside of the feasible set of products infinitely often. Now

since ρ is small and p is positive, customers are guaranteed to disengage from the platform

eventually. This leads to a linear rate of regret for all customers.

Proof. Proof of Theorem 3.4.5: We prove the result in two parts. In the first part, we consider

latent attribute realizations for which the optimal apriori product, which is chosen by the GBU

policy in the initial round, is not optimal. In this case, if we take the tolerance threshold

parameter to be small, there is a positive probability that the customer leaves at the beginning

of the time period, which leads to linear regret over this set of customers. In the second part, we

consider those customers for which the apriori product is indeed optimal. For these customers,

we again take the case when ρ is sufficiently small and reduce the leaving time to the probability

of shifting from the first arm to another arm. Since the switched arm is suboptimal and outside

of the user threshold, the customer leaves with a positive probability resulting in linear regret

for this set of customers. Recall, by the simplified setting, there are d total products and

attribute of the ith product is the ith basis vector. Furthermore, the prior is uninformative.

That is, the first recommended product is selected at random. Let us assume, WLOG, that

the GBU policy picks product 1 to recommend. We have two cases to analyze: (i) product 1 is

sub optimal for the realized latent attribute vector, u0, (ii) product 1 is optimal for the realized
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latent attribute vector, u0. Let us consider case (i) when product 1 is suboptimal. In this case,

if we let ρ to be smaller than the difference between the utility of the optimal product and

product 1 (ρ < u>0 (V∗− V1)), then the customer leaves with probability p in the current round.

Hence, for all such customers Rπ(T, ρ, p, u0) ≥ T · p = pT . Next, we consider the customers

for which product 1 is optimal. In this case, the customer leaves with probability p when the

greedy policy switches from the initial recommendation to some other product. Again, at any

such time, t, if we let ρ to be small such that the chosen product is outside of the customer

threshold, then we will have disengagement with a constant probability p in that round. This

would again lead to a linear rate of regret. Let Eti = {V >1 ût−V >i ût > 0}. Eti denotes the event

that the initially picked product is indeed better than the ith product in the product assortment

at time t. Similarly, let Gt to be the event that the GBU policy switches to some other product

from product 1 by time t. Then,

P(Gt) = P
(
∪i=2..n ∪j=1..t (Eji )

c
)
≥ P

(
(Eji )

c
)
, ∀i = 2, .., n, ∀j = 1, .., t .

We will lower bound the probability of product 1 not being the optimal product for any time

t under the GBU policy. Since we are dynamically updating the estimated latent customer

feature vector, the probability of switching depends on the realization of εt, the idiosyncratic

noise term that governs the customer response. We will first consider the case of two products

(d = 2). Furthermore, we will analyze the probability of switching from product 1 to product

2 after round 1 ((E1
2)c). First note that, Eti = {V t

1 ût − V >i ût ≥ 0}, which implies

(Eti )
c = {V t

i ût − V >1 ût > 0} = {(Vi − V1)> (ût − u0) > ∆i} .

where ∆i = V >1 u0 − V >i u0. Now, note that

ût =

 t∑
f=1

afa
>
f +

ξ2

σ2
Id

−1

[a1:t]
> Yf=1:t .

Hence,

û1 =

1 + ξ2

σ2 0

0 ξ2

σ2


−1 Y1 0

0 0

 =

[
σ2Y1

σ2 + ξ2
, 0

]
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Therefore, we are interested in the event

{
σ2Y1

σ2 + ξ2
< 0

}
= {Y1 < 0} = {u01 + ε1 < 0} = {u01 + ε1 < 0} .

Now note that for any realization of u0, there is a positive probability of the event above

happening. Hence, let P(ε1 < −u01) = C4 > 0 . This implies that P(Gt) ≥ C4. Following the

same regret argument as before, we have that for all such customers, RGBU(T, ρ, p, u0) = C4 ·T .

The argument for d > 2 follows similarly since with positive probability, the GBU policy would

either get stuck at a sub-optimal arm or would switch to a sub-optimal arm. Hence, we have

shown that regardless of the realization of the latent user attribute, u0 the GBU policy incurs

linear regret on the customers. That is,

∀u0, sup
ρ>0
RGBU(T, ρ, p, u0) = C2 · T = O(T ) .

Proof. Proof of Theorem 3.4.6: We will use the same strategy as in the proof of Theorem 3.4.5

with two main exceptions; (i) because this is the case of no disengagement, we cannot select ρ

to be appropriately small, (ii) since the result is on the expectation of regret over all possible

latent attribute realizations, we need to show the result only for a set of customer attributes with

positive measure. Noting (ii) above, we focus on customers for which the first recommended

product is suboptimal and show that with positive probability the greedy policy gets “stuck”

on this product and keeps on recommending this product. This leads to a linear rate of regret

for these customers.

Step 1 (Lower bound on selecting an initial suboptimal product): WLOG assume that product

1 was recommended and consider the set of customers for which product 1 is suboptimal. Note

that since u0 is multivariate normal, there is a positive measure of such customers.

Step 2 (Upper bound on the probability of switching from the current product to a different

product during the later periods:) Now that we have selected a suboptimal product, we will

bound the probability that the GBU policy continues to offer the same product until the end

of the horizon. We will use the same notation as before. Recall that Eti = {V >1 ût− V >i ût > 0}.

Eti denotes the event that the initially picked product is indeed better than the ith product in

the product assortment at time t. Similarly, Gt denotes the event that the GBU policy switches
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to some other product from product 1 by time t. Then, we are interested in lower bounding

the event that the GBU policy never switches from the product 1 and gets stuck. That is,

P((Gt)c) ≥ 1 −
∑

j=1..t

∑
i=1..n,i 6=i∗ P((Eji )

c) . As before, first we consider the case when there

are only 2 products. In this case, if we start by recommending product 1, we want to calculate

the probability of continuing with Product 1 through out the time horizon. First note that using

the same calculation, one can show that if until time t, we continue with only recommending

product 1, then the latent attribute estimate at time t is given by ût =

[
σ2
∑t
f=1 Yf

tσ2+ξ2 , 0

]
. For

any time t, we claim that the GBU policy continues to recommend the same product as before

if the utility realization at time t is positive. That is, if Yt−1 > 0 and the GBU policy offered

product 1 in rounds 1, ..t − 1, then it will continue recommending product 1 in round t. We

prove this claim using induction. Note that the base case of t = 2 was proved in the previous

proof (reversing the argument in the second part of Theorem 3.4.5 results in the base case) and

we omit the details here. Now by induction hypothesis, we have that the GBU policy offered

product 1 at time t− 1 because Y1, ...Yt−2 were all positive. Now consider time t let Yt−1 > 0,

Then we have that ût−1 =

[
σ2
∑t−1
f=1 Yf

tσ2+ξ2 , 0

]
. We will select product 1 if

σ2
∑t−1
f=1 Yf

tσ2+ξ2 > 0 which

implies
σ2
∑t−2
f=1 Yf

tσ2+ξ2 + σ2Yt−1

tσ2+ξ2 > 0. But note that by induction hypothesis, the first term of the

sum above is positive. Hence, GBU selects product 1 at least when σ2Yt−1

tσ2+ξ2 > 0 which proves

the claim. Now note that for any time t, the probability Yi being positive is independent across

time periods. Furthermore,

P
(
σ2Yt−1

tσ2 + ξ2
> 0

)
= P (Yt−1 > 0) = P (u01 + εt > 0) .

For any t, probability of not switching from the first product is at least

P((Gt)c) = 1− P((Gt)c) ≥ 1−
∑
j=1..t

∑
i=1..n,i 6=i∗

P((Eji )
c)

= 1−
∑
j=1..t

P (εt > −u01)

= 1− tP (ε > −u01)

Now for any t, if we consider all realizations of u0 such that P (ε > −u01) < 1
t , then we have

that the above probability is always positive. Note that Product 1 was not optimal, hence, over

these customers, the GBU policy incurs linear regret which results in an expected linear regret.
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That is,

Eu0∼P
[
RGBU (T, ρ, 0, u0)

]
= C3 · T = O(T ) .

The proof for the case when d > 2 follows similarly since the GUB policy would continue to

switch to a sub-optimal arm, or get “stuck” at an optimal arm.

B.2 Upper Bound for Constrained Bandit

Proof. Proof of Theorem 3.5.4: Consider any feasible ρ > 0 and let γ̃ be such that only a single

product remains in the constrained exploration set. Note that a feasible γ that ensures that only

a single product is chosen for exploration is γ < 1√
2
. Such a selection would ensure that OP(γ)

picks a single product (̃i) in the exploration phase. Now let γ̃ = 1√
2

and consider Wλ,γ̃ :=

{u0 : V >
ĩ
u0 > maxi−1,..,n,i 6=ĩ V

>
i u0} . Then we have that ∀u0 ∈ Wλ,γ̃ , customers are going

to continue engaging with the platform since the recommended product is the corresponding

optimal product. Next, since the prior is a multivariate normal, we have that P (Wλ,γ̃) > 0.

This holds because by assumption since Vi is the ith basis vector and u0 is multivariate normal

with prior mean of 0 across all dimensions. So, the probability of sampling a u0 such that

u0ĩ
> u0j , ∀j = 1, .., d, j 6= ĩ has a positive measure under the prior assumption. We claim that

for any ρ, the regret incurred from this policy will be optimal. Consider two cases: (i) When

ρ is such that their is more than 1 product within the customer’s relevance threshold. That is,

|S(u0, ρ)| > 1 (ii) When there is a single product within the customer’s tolerance threshold, ρ.

That is, |S(u0, ρ)| = 1. In both cases, ĩ, which is the only product in the exploration phase,

is contained in |S(u0, ρ)|. That is, ∀u0 ∈ Wλ,γ̃ , ĩ ∈ S(u0, ρ). Hence, there are no chances of

customer disengagement if product ĩ is offered to the customer. Furthermore, regret over all

such customers is in fact 0 since the platform recommends their optimal product. This proves

the result.

Proof. Proof of Theorem 3.5.5: We will prove the above result in three steps. In the first

step we will lower bound the probability that the constrained exploration set, Ξ, contains the

optimal product for an incoming vector. In the second step we will lower bound the probability

of customer engagement over the constrained set. Finally, in the last step, we use the above

lower bounds on probabilities to upper bound regret from the Constrained Bandit algorithm.

Step 1 (Lower bounding the probability of not choosing the optimal product for an incoming

customer in the constrained set): Let, Eno−optimal, be the event that the optimal product, V∗
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for the incoming user is not contained in Ξ. Also let ĩ = arg maxV ∈[−1,1]d ū
>V , denote the

attributes of the prior optimal product. Notice that Vĩ = ū since ‖ū‖2 = 1. Also recall that

V∗ = arg maxV ∈[−1,1]d u
>
0 V , denotes the current optimal product which is unknown because

of unknown customer latent attributes. We are interested in P (Eno−optimal) = P (V∗ 6∈ Ξ) . In

order to characterize the above probability, we focus on the structure of the constrained set,

Ξ. Recall that Ξ is the outcome of Step 1 of Constrained Bandit (Algorithm 2) and uses

OP(γ) to restrict the exploration space. It is easy to observe that Ξ in the continuous feature

space case would be centred around the prior optimal product vector (ū) and will contain

all products that are at most γ away from each other. We are interested in characterizing

the probability of the event that u0 6∈ [ūl, ūr] where ūl and ūr denote the attributes of the

farthest products inside a γ constrained sphere. Simple geometric analysis yields that ū and ūl

are d̄ =

√
2
(

1−
√

(1− γ2/4)
)

apart. The distance between ū and ūr follows symmetrically.

Having calculated the distance between ū and ūl, we are now in a position to characterize

the probability of Eno−optimal. But P (Eno−optimal) = P (V∗ 6∈ Ξ) = P
(
‖u0 − ū‖2 ≥ d̄

)
. Note by

Holder’s inequality that, d̄ ≤ ‖u0 − ū‖2 ≤ ‖u0 − ū‖1 , which implies that,

P (Eno−optimal) = P
(
‖u0 − ū‖2 ≥ d̄

)
≤ P

(
‖u0 − ū‖1 ≥ d̄

)
.

Note that u0 ∼ N (ū, σ
2

d2 Id). Using Lemma B.5.1 in Appendix B.5, we have that, P
(
‖u0 − ū‖1 ≤ d̄

)
≥

1− 2d exp
(
−
(

1−
√

(1− γ2/4)/σ
))

, which results in a lower bound.

Step 2 (Lower bounding the probability of customer disengagement due to relevance of the

recommendation): Recall that customer disengagement decision is driven by the relevance of

the recommendation and the tolerance threshold of the customer. Hence,

P(u>0 V∗ − u>0 Vi < ρ) = P(u>0 u0 − u>0 ui < ρ|u0, ui ∈ Ξ) = P(u>0 (u0 − ui) < ρ|u0, ui ∈ Ξ) ,

≥ P
(
‖u0‖2 <

ρ

γ
|u0, ui ∈ Ξ

)
≥

1− 2d exp

−(ρ/γ − i=d∑
i=1

ūi

)2

/σ2

 .

where the second to last inequality follows by Cauchy-Schwarz ineqaulity and the last inequality

follows by Lemma B.5.1. This in-turn shows that with probability at least

1− 2d exp

−(ρ/γ − i=d∑
i=1

ūi

)2

/σ2

 ,
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customers will not leave the platform because of irrelevant product recommendations. We let

such latent attribute realizations be denoted by the event Erelevant.

Step 3 (Sub-linearity of Regret): Recall, by definition, that

rt(ρ, p, u0) = (u>0 V∗ − u>0 at)1{Lt,ρ,p = 1}+ u>0 V∗1{Lt,ρ,p = 0} = (u>0 V∗ − u>0 at) + u>0 at(1−Π>t=11{Υt = 0})

Next, focusing on cumulative regret and taking expectation over the random customer response

on quality feedback (ratings), we have that,

EU0∼P
[
RCB(T, ρ, p, u0)

]
= EU0∼P

[
T∑
t=1

rt(ρ, p, u0)

]

≤ E

[ >∑
t=1

(u>0 V∗ − u>0 at) + u>0 at(1−Π>t=11{Υt = 0})

]

=
T∑
t=1

E
[
(u>0 V∗ − u>0 at)

]
+ E

[
u>0 at

(
1−Π>t=11{Υt = 0}

)]
.

Note that conditional on fraction w of customers, we have that these customers would never

disengage from the platform due to irrelevant personalized recommendations. Hence, 1 −

Π>t=11{Υt = 0} = 0 , Hence, RCB(λ,γ)(T, ρ, p, u0|u0 ∈ Erelevant) =
∑T

t=1 (u>0 V∗ − u>0 at). Now

notice that for any realization of u0, Theorem 2 in Abbasi-Yadkori et al. (2011) shows that

RCB(λ,γ)(T, ρ, p, u0|u0 ∈ Erelevant) ≤ 4

√
Td log

(
λ+

TL

d

)(√
λS + ξ

√
2log

1

δ
+ dlog (1 +

TL

λd
)

)
,

with probability at least 1-δ if ‖u0‖2 ≤ S. From Step 2, we have that all w fraction of customers

have ‖u0‖2 ≤ ρ
γ . Hence first we replace S with ρ

γ . Finally, letting δ = 1√
T

, we get that

RCB(λ,γ)(T, ρ, p, u0|u0 ∈ Erelevant) ≤

4

√
Tdlog

(
λ+

TL

d

)(√
λ
ρ

γ
+ ξ

√
log(T ) + dlog

(
1 +

TL

λd

))
+

1√
T
T

= Õ
(√

T
)
.

Rearranging the terms above gives the final answer.

B.3 Selecting set diameter γ

In the previous section, we proved that the Constrained Bandit algorithm achieves sublinear

regret for a large fraction of customers. This fraction depends on the constrained threshold
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tuning parameter γ and other problem parameters (see Theorem 3.5.5). In this section, we

explore this dependence in more detail and provide intuition on the selection of γ that maximizes

this .

Recall, from Theorem 3.5.5, that the fraction of customers who remain engaged with the

platform is lower bounded by w. This fraction comprises of two parts.

The first part,
(

1− 2d exp
(
−
(

1−
√

1− γ2/4
)
/σ
))

, denotes the fraction of customers for

which the corresponding optimal product is contained in the constrained exploration set, Ξ.

Notice that the fraction of customers for which the optimal product is contained in the con-

strained set increases as the constraint threshold, γ, increases. This follows since a larger γ

implies a larger exploration set and more customer that can be served with their most rel-

evant recommendation. Similarly, the second part,

(
1− 2d exp

(
−
(
ρ/γ −

∑i=d
i=1 ūi

)2
/σ2

))
,

denotes the fraction of customers who will not disengage from the platform due to irrelevant

recommendations in the learning phase. Contrary to the previous case, as the constraint thresh-

old γ increases, the fraction of customers guaranteed to engage decreases. Intuitively, as the

exploration set becomes larger, there is wider range of offerings with more variability in the

relevance of the recommendations for a particular customer. This wider relevance in turn leads

to a decrease in the probability of engagement of a customer. Hence, γ can either increase or

decrease the fraction of engaged customers based on the other problem parameters.

In Figure B.1, we plot the fraction of customers who will remain engaged with the platform

as a function of the set diameter, γ, for different values of tolerance threshold, ρ. As noted

earlier, the fraction of engaged customers is not monotonically increasing in γ. When γ is

small, the constrained set for exploration (from Step 1 of Algorithm 2) is over constrained.

Hence, increasing γ leads to an increase in the fraction of engaged customers. Nevertheless,

increasing it above a threshold implies that customers are more likely to disengage from the

platform due to irrelevant recommendations. Hence, increasing γ further leads to a decrease

in the fraction of engaged customers. We also note that as customers become less quality

concious (small ρ), the fraction of engaged customers increases for any chosen value of γ. This

again follows from the fact that a higher value of ρ implies a higher probability of customer

engagement in the learning phase. This increase in engagement probability during the learning

phase encourages less conservative exploration (larger γ). The above discussion alludes to the

fact that the optimal γ that maximizes the fraction of engaged customers is a function of

different problem parameters and is hard to optimize in general. Nevertheless, simple algebra
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Figure B.1: Fraction of engaged customer as a function of the set diameter γ for different values of
tolerance threshold, ρ. A higher ρ implies that the customer is less quality conscious. Hence, for any γ,
this ensures higher chance of engagement. We also plot the optimal γ that ensures maximum engagement
and an approximated γ that can be easily approximated. The approximated γ is considerably close to
the optimal γ and ensures high level of engagement.

yields that w ≈ 1
2d2 − 1

2d exp

(
− 1
σ

(
1−

√
1− γ2

4

))
− 1

2d exp

(
− 1
σ2

(
ρ
γ −

∑i=d
i=1 ūi

)2
)

. Hence,

in order to maximize w, we have to solve the following minimization problem:

min
γ

exp
(
−
(

1−
√

1− γ2/4
)
/σ
)

+ exp

−(ρ/γ − i=d∑
i=1

ūi

)2

/σ2

 . (B.2)

While Problem (B.2) has no closed form solution, we consider the following problem:

min
γ

1/σ
√

(1− γ2/4)− ρ2/(γ2σ2). (B.3)

Note that (B.3) is an approximation of (B.2) based on the Taylor series expansion of the

exponent function and assuming that the joint term in the second exponent will be sufficiently

small. Solving (B.3) using FOC conditions, a suitable choice of γ yields the following: γ∗ ∈{
γ : ρ =

√
σγ2

2(4−γ2)1/4 and γ > 0
}
. While γ∗ is not optimal, it provides directional insights to

managers on suitable choices of γ. For example, as ρ increases the estimated optimal γ also

increases. Furthermore, it decreases with the prior variance, σ. A lower variance yields better

understanding of the unknown customer and leads to lower size of the optimal exploration

set. Similarly, as the latent vector dimension, d, increases, there are higher chances of not

satisfying customer relevance thresholds in the learning phase. This leads to a more constrained

exploration.

In order to analyze the estimated optimal γ, we compare the estimated optimal γ with the

numerically calculated optimal γ for different values of ρ, the customer tolerance threshold. In

Table B.1, we show the gap in the lower bound of engaged customers from choosing the optimal
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γ vs the estimated γ. Note that the approximated optimal γ performs well in terms of the

fraction of engaged customers. More specifically, the estimated γ loses at most 1% customers

because of the approximation.

Tolerance Threshold (ρ) Optimal γ∗ Estimated γ∗ % Gap in Engagement

0.4 1.31 1.25 1.1%

0.5 1.47 1.37 1.1%

1.0 1.93 1.76 0.07%

Table B.1: Optimal vs. estimated γ threshold for different values of customer tolerance threshold, ρ.
Note that the % gap between the lower bound on engaged customers is below 1.1% showing that the
estimated γ is near optimal.

B.4 Results for extensions of the disengagement model

We now discuss how our results extend under the alternative disengagement model described

in §3.3.2:

Pr[Υt = 1 | at] =


0 if u>0 at ≥ ρ̃ ,

p(t, u0, a1, ...at) otherwise.

Recall that p(t, u0, a1, ...at) ≥ c̃ > 0 for all t, u0, {ai}ti=1.

Proof. Proof of Theorem 3.4.3: We use the same setting as before with two products, whose

feature vectors are the basis vectors in R2, and customer feature vectors u0 ∼ N (0, σ2I2). At

t = 1, any policy π has to either recommend product 1 or product 2. Note that when product 1 is

recommended, the customer disengages immediately with probability at least c̃ ·P (u01 ≤ ρ̃) > 0.

The rest of the argument follows as before.

Proof. Proof of Theorem 3.4.4: We use the same setting as before and let ρ̃ be large enough so

that at least one product i is not acceptable to the customer, i.e., U>0 Vi < ρ̃. As before, it then

follows that bandit algorithms offer product i infinitely often. Since p(t, u0, a1, ...at) ≥ c̃ > 0, the

customer eventually disengages from the platform with probability 1. The rest of the argument

follows as before.

Proof. Proof of Theorem 1: Consider any feasible value of ρ̃ and let γ̃ be such that only a single

product remains in the constrained exploration set. The rest of the proof follows identically

as before: there is some subset of customers (with positive measure under P) for whom this

product is relevant/optimal, yielding 0 regret.
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Proof. Proof of Theorem 2: Steps 1 and 3 follow identically as before. We focus on Step

2, which characterizes the probability of disengagement due to poor recommendations. Let

C1 = d2

2σ

(
γ +

√
γ2 + 4ρ̃

)
. Then,

P(u>0 ai ≥ ρ̃) = P(u>0 u0 − u>0 u0 + u>0 ui ≥ ρ̃) = P(u>0 (u0 − ui) < u>0 u0 − ρ̃)

≥ P
(
‖u0‖2 <

u>0 u0 − ρ̃
γ

| u0, ui ∈ Ξ

)
= P

(
‖u0‖22 − γ‖u0‖2 − ρ̃ > 0 | u0, ui ∈ Ξ

)
=P
(

2‖u0‖2 ≥ γ +
√
γ2 + 4ρ̃ | u0, ui ∈ Ξ

)
≥ P

(
2‖u0‖1 ≥

√
d
(
γ +

√
γ2 + 4ρ̃

)
| u0, ui ∈ Ξ

)
≥ 2P

(
2u1

0 ≥
√
d
(
γ +

√
γ2 + 4ρ̃

)
| u0, ui ∈ Ξ

)
≥ 2P

(
2d(u1

0 − ū1) ≥ d2
(
γ +

√
γ2 + 4ρ̃

)
| u0, ui ∈ Ξ

)
≥ 1√

2πC1

exp
(
−C2

1/2
)
,

where the last inequality follows by the lower bound on tail probabilities of standard normal

random variables. Hence, the probability of engagement changes to

P(W) ≥ w =
(

1− 2d exp
(
−
(

1−
√

1− γ2/4
)
/σ
))( 1√

2πC1

exp

(
−C2

1

2

))
.

The regret guarantee remains the same.

Returning Customers: As noted earlier, in some settings, customers may disengage tem-

porarily rather than for the entire horizon T . With slight abuse of notation, let Υt denote the

total time of disengagement due to the recommendation at time t. Then, we can propose the

following customer disengagement model:

Υt | at =


0 if u>0 at ≥ ρ̃ ,

f(t, u0, a1, ...at) otherwise ,

where f(t, u0, a1, ...at) denotes the total time that the customer is disengaged due to all rec-

ommendations made until time t. Consider the case where f(t, u0, a1, ...at) = T δ, for some

δ ≤ 1. Our previous models imposed δ = 1 (customer does not return for remaining horizon),

while δ → −∞ models the classical bandit setting with no disengagement. Our results can be
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straightforwardly extended to this more general setting. First, we can show a lower bound on

regret for all consistent policies is Õ(Tmax{ 1
2
,min{1,δ+ 1

2
}}). In other words, one can safely use

classical bandit policies without any loss when customers disengage for no more than a constant

period of time (i.e., δ ≤ 0); however, when poor recommendations can result in substantial

periods of disengagement (i.e., δ > 0), we can show that constraining exploration is strictly

better than using classical bandit algorithms. Particularly, while classical bandit algorithms

would risk temporary disengagement of all customers, a modification of the constrained bandit

policy would incur Õ(
√
T ) regret for the fraction of customers for whom the constrained set of

products is relevant, and match the performance of classical bandit algorithms on the remaining

customers. We skip the details of this analysis due to space constraints.

B.5 Supplementary Results

Lemma B.5.1. Let X ∈ Rd ∼ N (µ, σ2I) be a multivariate normal random variable with

mean vector µ ∈ Rd. Let S ∈ Rd be such that S ≥
∑i=d

i=1 µi. Then, P(‖X‖1 ≤ S) ≥ 1 −

2d exp

(
−
(
S−
∑i=d
i=1 µi
dσ

)2
)

Proof. Proof: The proof follows from simple application of the Pigeon Hole Principle and tail

bounds on multivariate normal variables. We skip the details for the sake of brevity.
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Appendix of Chapter 4

C.1 Summary of Notation

VariablesDescription

T Total time horizon.
µ Price dispersion parameter.
ρ Price depth parameter.
P Vector of tuples where the first entry of the tuple is a price and the second entry is

the average of demand observations at that price.
G Vector of gradients estimated using finite differences from demand observations that

satisfy the two point Bandit feedback assumption.
pLi Minimum price that is used for experimentation in round i.
pHi Maximum price that is used for experimentation in round i.
pMi Average of the minimum and the maximum price that is used for experimentation in

round i.
p̃∗i Optimal price approximated from the linearly-interpolated demand in round i.
∆i Size of the linear interpolation for demand estimation in round i.

Table C.1: Notation Table

C.2 Proofs from §4.2.3

Proof. Proof of Lemma 4.2.3: We have that

d(p∗)− κ(p− p∗)2 ≤ −d′(p)p∗

=⇒ d(p∗) + p∗d′(p∗)− κ(p− p∗)2 ≤ −d′(p)p∗ + p∗d′(p∗)

=⇒ d′(p)p∗ − p∗d′(p∗) ≤ κ(p− p∗)2 − (d(p∗) + p∗d′(p∗))

=⇒ p∗
(
d′(p)− d′(p∗)

)
≤ κ(p− p∗)2 ,
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where the last inequality follows because p∗ is the revenue maximizing price. That is, d(p∗) +

p∗d′(p∗) = 0. This proves the final result.

Proof. Proof of Lemma 4.2.4: The proof follows in two steps. We first show using Lipschitz

continuity that the following holds:

r′(p1)− r′(p2) ≤ r′′(p2)(p1 − p2) + Ψ(p1 − p2)2 , (C.1)

and

d(p∗)− d(p) ≤ d′(p)(p∗ − p) + Ψ̄(p∗ − p)2 . (C.2)

We focus on (C.1) first and note by assumption that ∀p1, p2 ∈ [0, 1]

r′′(p1)− r′′(p2) ≤ Ψ(p1 − p2)2 .

Now let g(t) := r′(p1 + t(p2 − p1)),∀t ∈ [0, 1]. Furthermore,

g′(t)− g′(0) =
(
r′′(p1 + t(p2 − p1))− r′′(p1)

)
(p2 − p1) ≤ tΨ(p1 − p2)2 .

Hence, integrating from t = 0 to t = 1,

r′(p2) = g(1) = g(0) +

∫ 1

0
g′(t)dt

≤ g(0) + g′(0) + g′(0)
ψ

2
(p2 − p1)2

= r′(p1) + r′(p1)(p2 − p1) +
ψ

2
(p2 − p1)2 .

Interchanging p1 with p2 and p2 with p1 gives the final result. An identical argument can be

used for proving (C.2).

In the second step, we use these conditions with respect to the unknown optimal price and
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any other price. In particular, letting p1 = p and p2 = p∗, we get that

r′(p)− r′(p∗) ≤ r′′(p∗)(p− p∗) + Ψ(p− p∗)2 ,

=⇒ pd′(p) + d(p)− (p∗d′(p∗) + d(p∗)) ≤ r′′(p∗)(p− p∗) + Ψ(p− p∗)2

=⇒ p∗d′(p)− p∗d′(p) + pd′(p) + d(p)− (p∗d′(p∗) + d(p∗)) ≤ r′′(p∗)(p− p∗) + Ψ(p− p∗)2

=⇒ p∗(d′(p)− d′(p∗)) ≤ −d′(p)(p− p∗) + d(p∗)− d(p) + r′′(p∗)(p− p∗) + Ψ(p− p∗)2 .

where we have used the definition of r′(p) = pd′(p) + d(p). Next, note that r′′(p) = 2d′(p) +

p∗d′′(p). And also by (C.2), we have that

d(p∗)− d(p) ≤ d′(p)(p∗ − p) + Ψ̄(p∗ − p)2 .

Hence, replacing r′′(p∗), and using above, we have that

p∗(d′(p)− d′(p∗)) ≤

− d′(p)(p− p∗) + d′(p)(p∗ − p) + Ψ̄(p∗ − p)2 + (2d′(p∗) + p∗d′′(p∗))(p− p∗) + Ψ(p− p∗)2

=⇒ p∗(d′(p)− d′(p∗)) ≤ 2(p− p∗)(d′(p)− d′(p∗)) + p∗d′′(p∗)(p− p∗) + (Ψ + Ψ̄)(p∗ − p)2

=⇒ p∗(d′(p)− d′(p∗)) ≤ 2(p− p∗)(d′(p)− d′(p∗)) + (Ψ + Ψ̄)(p∗ − p)2 ,

where the last inequality follows by the assumption that d′′(p∗) = 0. Finally, since d′ is assumed

to be continuous and differentiable, by a direct application of the Mean Value Theorem, we

have that

d′(p)− d′(p∗) ≤ K1(p− p∗) ,

where K1 = maxi≤w,p∈[0,1] |d(i)(p)|. Hence,

p∗(d′(p)− d′(p∗)) ≤ 2K1(p− p∗)2 + (Ψ + Ψ̄)(p∗ − p)2

= (Ψ + Ψ̄ + 2K1)(p∗ − p)2 .

This proves the final result.

C.3 Proofs of results from §4.4.1

Proof. Proof of Lemma 4.4.2: We prove this result using a direct application of triangular
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inequality and Taylor series expansion of the unknown demand function around the
pMi +pLi

2 .

Consider (4.9) and note that

∣∣∣DM∗1
(pMi )−DL∗(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

) ∣∣∣ =

∣∣∣DM∗1
(pMi )−DL∗(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

)
+
d(pMi )− d(pLi )

pMi − pLi
− d(pMi )− d(pLi )

pMi − pLi

∣∣∣
≤
∣∣∣ DM∗1

(pMi )−DL∗(p
L
i )

pMi − pLi
− d(pMi )− d(pLi )

pMi − pLi︸ ︷︷ ︸
A

∣∣∣+
∣∣∣ d(pMi )− d(pLi )

pMi − pLi
− d′

(
pMi + pLi

2

)
︸ ︷︷ ︸

B

∣∣∣ .
(C.3)

We will bound (A) and (B) in (C.3) separately. In particular, while (A) corresponds to error

due to stochastic realizations, (B) corresponds to error due to finite difference approximation

of the gradient. In what follows, we will suppress the dependence on i for ease of notation.

Step 1: Bounding error due to stochastic realizations: Recall, by Assumption (4.2.5) that,

DM∗1
(pM ) = d(pM ) + ε∗ & DL∗(p

L) = d(pL) + ε∗ .

In particular the error in the two pairs of demand observations is the same. Hence,

DM∗1
(pM )−DL∗(p

L)

pM − pL
− d(pM )− d(pL)

pM − pL
=
d(pM ) + ε∗ − (d(pL) + ε∗)

pM − pL
− d(pM )− d(pL)

pM − pL
= 0 .

Step 2: Bounding error due to linear interpolation: To bound
∣∣∣d(pM )−d(pL)

pM−pL − d′
(
pM+pL

2

) ∣∣∣,
consider the Taylor series expansion of d(pM ) around pM+pL

2 . Let pmid = pM+pL

2 . Then, we

have that

d(pM ) = d(pmid) + d′(pmid)
∆i

2
+

1

2
d′′(pmid)

∆2
i

4
+

1

6
d′′′(pmid)

∆3
i

8
+ .. .

Similarly, considering the Taylor series expansion of d(pL) around pmid,

d(pL) = d(pmid)− d′(pmid)
∆i

2
+

1

2
d′′(pmid)

∆2
i

4
− 1

6
d′′′(pmid)

∆3
i

8
+ .. .

Hence, we get that ∣∣∣d(pM )− d(PL)

∆i
− d′(pmid)

∣∣∣ ≤ K1
∆2
i

24
,

where K1 = maxi≤q,p∈[0,1] |d(i)(p)|, and recall that d(i)(p) denotes the ith derivative of demand
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at any price p.

Finally, substituting back in (C.3), we have that

∣∣∣DH∗(p
H
i )−DM∗2

(pMi )

∆i
− d′

(
pMi + pHi

2

) ∣∣∣ ≤ 1

2
K1

∆2
i

12
.

The proof for (4.10) follows identically and hence we skip the details for the sake of brevity.

C.4 SLPE-Extended Algorithm to account for relaxed assump-

tions:

In §4.4.1 we discussed various relaxations of the two-point bandit feedback assumption and

claimed that an extension of the SLPE algorithm with similar ideas can be implemented to get

comparable guarantees on regret and price changes. In this section, we make these statements

more precise.

First we present the Extended SLPE algorithm (Algorithm 5) with the relaxed assumptions

(2A). Instead of using demand observations that satisfy two point bandit feedback throughout

the pricing space, the algorithm splits the pricing decisions in two different phases. In the first

phase, when the size of interpolation is large in comparison to the standard deviation of the

error (σ ≤ ∆), we use the average demand at each selected price point to estimate the region

of the optimal price. Then, when the feasible pricing region becomes small, making the overall

interpolation region small as well (∆ < σ), we switch to using demand realizations that satisfy

the two point bandit feedback assumption, to estimate the gradient of demand.

C.4.1 Theoretical Guarantees

The proofs follow similar intuition as before. In particular, we will first show that the approxi-

mated optimal price can be used to estimate the region containing the optimal price with high

probability. This translates to bounded regret in each round of SLPE-Ext and in-turn leads to

bounded regret with very limited price change.

We start by showing that the point wise gradient estimate of demand at any price is a good

estimate.

Lemma C.4.1. Consider the three experimental prices pLi , pMi and pHi of prices experimented

in round i of Algorithm (5). Assume that f(n) described in Assumption 4.4.1 is such that
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Algorithm 5 SLPE-Ext(T,µ,ρ,f(n))

Let pL1 = 0, pH1 = 1, i = 1, t = 0, ∆1 = .5, P = {}, G = {} and i = 1.
while t ≤ T do

if σ ≤ ∆i then
Let ni = 2ρ4 log(T )

∆4
i

and t = t+ 3ni.

Price for ni rounds each at pLi , pMi =
pLi +pHi

2 and pHi , respectively.
Let P = {(pLi , D̄ni(p

L
i )), (pMi , D̄ni(p

M
i )), (pHi , D̄ni(p

H
i ))}

Let G =
{
D̄ni (p

M
i )−D̄ni (p

L
i )

∆i
,
D̄ni (p

H
i )−D̄ni (p

M
i )

∆i

}
.

Optimize over piecewise-linear demand estimate with P and G to get p̃∗i .
Let pLi+1 = p̃∗i − µ∆2

i , p
H
i+1 = p̃∗i + µ∆2

i , ∆i+1 = µ∆2
i and i=i+1.

if σ > ∆i then
Let ni = 2ρ4 log(T )

∆4
i

and t = t+ 3ni.

Price for ni rounds each at pLi , pMi =
pLi +pHi

2 and pHi , respectively.
Let P = {(pLi , D̄ni(p

L
i )), (pMi , D̄ni(p

M
i )), (pHi , D̄ni(p

H
i ))}

Let G =
{DM∗1 (pMi )−DL∗ (pLi )

∆i
,
DH∗ (pHi )−DM∗2 (pMi )

∆i

}
.

Optimize over piecewise-linear demand estimate with P and G to get p̃∗i .
Let pLi+1 = p̃∗i − µ∆2

i , p
H
i+1 = p̃∗i + µ∆2

i , ∆i+1 = µ∆2
i and i=i+1.

δ > 3/4. Then, for any round i such that σ ≤ ∆i,

∣∣∣D̄ni(p
M
i )− D̄ni(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

) ∣∣∣ ≤ (K1

24
+

2

ρ2

)
∆2
i , (C.4)

and

∣∣∣D̄ni(p
H
i )− D̄ni(p

M
i )

∆i
− d′

(
pMi + pHi

2

) ∣∣∣ ≤ (K1

24
+

2

ρ2

)
∆2
i . (C.5)

Similarly, for all rounds i such that σ > ∆i,

∣∣∣DM∗1
(pMi )−DL∗(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

) ∣∣∣ ≤ ∆2
i

(
K1

24
+

1

ρ2

)
, (C.6)

and

∣∣∣DH∗(p
H
i )−DM∗2

(pMi )

∆i
− d′

(
pMi + pHi

2

) ∣∣∣ ≤ ∆2
i

(
K1

24
+

1

ρ2

)
, (C.7)

where K1 = maxi≤q,p∈[0,1] |d(i)(p)|, and d(i)(p) denotes the ith derivative of demand at any price

p. Furthermore, (DL∗(p
L
i ), DM∗1

(pMi )) and (DM∗2
(Mi), DH∗(Hi)) are pair of demand realizations

that satisfy Assumption (4.2.5).

Proof. Proof: We prove this result using a direct application of triangular inequality, Taylor
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series expansion of the unknown demand function around the
pMi +pLi

2 , and Hoeffding’s inequality

for tail bounds on sub-gaussian random variables.

Consider the case when σ ≤ ∆i. We will start by (C.4) and note that

∣∣∣D̄ni(p
M
i )− D̄ni(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

) ∣∣∣ =∣∣∣D̄ni(p
M
i )− D̄ni(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

)
+
d(pMi )− d(pLi )

pMi − pLi
− d(pMi )− d(pLi )

pMi − pLi

∣∣∣
≤
∣∣∣ D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi
− d(pMi )− d(pLi )

pMi − pLi︸ ︷︷ ︸
A

∣∣∣+
∣∣∣ d(pMi )− d(pLi )

pMi − pLi
− d′

(
pMi + pLi

2

)
︸ ︷︷ ︸

B

∣∣∣ .
(C.8)

We will bound (A) and (B) in (C.8) separately. In particular, while (A) corresponds to error

due to stochastic realizations, (B) corresponds to error due to finite difference approximation

of the gradient. In what follows, we will suppress the dependence on i for ease of notation.

Step 1: Bounding error due to stochastic realizations: Recall, by Assumption (4.2.5) that,

D̄ni(p
M
i ) = d(pM ) +

1

ni

ni∑
i=1

εi & D̄ni(p
L
i ) = d(pL) +

1

ni

ni∑
i=1

ε̃i .

Hence,

D̄n(pM )− D̄n(pL)

pM − pL
− d(pM )− d(pL)

pM − pL
=

1

pM − pL

(
d(pM ) +

1

n

n∑
i=1

εi −

(
d(pL) +

1

ni

n∑
i=1

ε̃i

))
− d(pM )− d(pL)

pM − pL

=
1

n(pM − pL)

(
n∑
i=1

εi −
n∑
i=1

ε̃i

)

Hence,

∣∣∣∣∣D̄n(pM )− D̄n(pL)

pM − pL
− d(pM )− d(pL)

pM − pL

∣∣∣∣∣ ≤ 1

n(pM − pL)

∣∣∣∣∣
n∑
i=1

εi −
n∑
i=1

ε̃i

∣∣∣∣∣ ≤ 2

n(pM − pL)

∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ .
Next, we have by a direct application of Hoeffding’s inequality that for any x

P

(
1

n

∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ > x

)
≤ 2 exp

(
−nx

2

2σ2

)
.
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Hence, letting n = 2 ρ4

∆4 log(T ) and x = σ∆2

ρ2 , we have that

P

(
1

n

∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ > σ∆2

ρ2

)
≤ 1

T 2
.

This implies that with probability at least 1− 1
T 2 ,

∣∣∣∣∣D̄n(pM )− D̄n(pL)

pM − pL
− d(pM )− d(pL)

pM − pL

∣∣∣∣∣ ≤ 2

n(pM − pL)

∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ =
2σ∆2

∆ρ2
≤ 2∆2

ρ2
,

where the last inequality follows because σ ≤ ∆.

Step 2: Bounding error due to linear interpolation: To bound
∣∣∣d(pM )−d(pL)

pM−pL − d′
(
pM+pL

2

) ∣∣∣,
consider the Taylor series expansion of d(pM ) around pM+pL

2 . Let pmid = pM+pL

2 . Then, we

have that

d(pM ) = d(pmid) + d′(pmid)
∆i

2
+

1

2
d′′(pmid)

∆2
i

4
+

1

6
d′′′(pmid)

∆3
i

8
+ .. .

Similarly, considering the Taylor series expansion of d(pL) around pmid,

d(pL) = d(pmid)− d′(pmid)
∆i

2
+

1

2
d′′(pmid)

∆2
i

4
− 1

6
d′′′(pmid)

∆3
i

8
+ .. .

Hence, we get that ∣∣∣d(pM )− d(PL)

∆i
− d′(pmid)

∣∣∣ ≤ K1
∆2
i

24
,

where K1 = maxi≤w,p∈[0,1] |d(i)(p)|, and recall that d(i)(p) denotes the ith derivative of demand

at any price p.

Finally, substituting back in (C.8), we have that

∣∣∣D̄ni(p
M
i )− D̄ni(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

) ∣∣∣ ≤ K1
∆2
i

24
+

2∆2
i

ρ2
= ∆2

i

(
K1

24
+

2

ρ2

)
.

The proof for (C.5) follows identically and hence we skip the details for the sake of brevity.
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Next, we focus on the case when ∆i ≤ σ and start by considering (C.6)

∣∣∣DM∗1
(pMi )−DL∗(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

) ∣∣∣ =

∣∣∣DM∗1
(pMi )−DL∗(p

L
i )

pMi − pLi
− d′

(
pMi + pLi

2

)
+
d(pMi )− d(pLi )

pMi − pLi
− d(pMi )− d(pLi )

pMi − pLi

∣∣∣
≤
∣∣∣ DM∗1

(pMi )−DL∗(p
L
i )

pMi − pLi
− d(pMi )− d(pLi )

pMi − pLi︸ ︷︷ ︸
A

∣∣∣+
∣∣∣ d(pMi )− d(pLi )

pMi − pLi
− d′

(
pMi + pLi

2

)
︸ ︷︷ ︸

B

∣∣∣ .
(C.9)

We will bound (A) and (B) in (C.9) separately. In particular, while (A) corresponds to error

due to stochastic realizations, (B) corresponds to error due to finite difference approximation

of the gradient. In what follows, we will suppress the dependence on i for ease of notation.

Step 1: Bounding error due to stochastic realizations: Recall, by Assumption 2A that,

DM∗1
(pM ) = d(pM ) + εm∗n & DL∗(p

L) = d(pL) + εl∗n ,

where |εm∗n − εl∗n | ≤ f(n). In particular the error in the two pairs of demand observations is the

same. Hence,

∣∣∣∣∣DM∗1
(pM )−DL∗(p

L)

pM − pL
− d(pM )− d(pL)

pM − pL

∣∣∣∣∣
=
d(pM ) + ε∗m − (d(pL) + ε∗l )

pM − pL
− d(pM )− d(pL)

pM − pL
=

∣∣∣∣∣ε∗m − ε∗l∆

∣∣∣∣∣ ≤ f(n)

∆
.

Hence, if f(n) = n−δ, we get that

∣∣∣∣∣DM∗1
(pM )−DL∗(p

L)

pM − pL
− d(pM )− d(pL)

pM − pL

∣∣∣∣∣ ≤ ∆4δ

ρ4δ∆
≤ ∆4δ−1

ρ4δ
≤ ∆2

ρ2
,

where in the last inequality, we have assumed that δ ≥ 3/4.

Step 2: Bounding error due to linear interpolation: This follows identically as the proof and

we get that ∣∣∣d(pM )− d(PL)

∆i
− d′(pmid)

∣∣∣ ≤ K1
∆2
i

24
,

where K1 was defined before. Finally, substituting back in (C.9), we have that

∣∣∣DH∗(p
H
i )−DM∗2

(pMi )

∆i
− d′

(
pMi + pHi

2

) ∣∣∣ ≤ K1
∆2
i

24
+

∆2

ρ2
= ∆2

i

(
K1

24
+

1

ρ2

)
.
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The proof for (C.7) follows identically and hence we skip the details for the sake of brevity.

Hence, this proves the final result.

Lemma C.4.2. Consider the SLPE pricing policy of Algorithm 5 and let the unknown demand

function be such that |d′(p∗)| ≥
(
K1
24 + κ

4 + 3
ρ2

)
1
4 + c

2 , for some positive constant c. Then, for

any round i,

|p∗ − p̃∗i | ≤M∆2
i ,

for M =
(

1
c

(
3
ρ2 + K1

6 + κ
4

)
+ K1

12 + 4κ
)

with probability at least 1 − 1
T 2 , where p∗ is the real

unknown optimal price and p̃∗i is the approximated optimal price from the piecewise linear

interpolated demand curve of round i.

Proof. Proof: The proof follows in two main steps. In the first step, we use the first order

conditions to relate the error in the unknown optimal and the approximated optimal price

to the estimation error in demand and gradient. Then in the second step, we bound the

estimation error respectively. Since the algorithm is split in two cases depending on the size of

the interpolation,

Step 1: Relating error in approximated optimal price with estimation error:

Let g(p) := r′(p) be the first order equation of the unknown revenue function. Then, by the

optimality of p∗, we have that g(p∗) = 0. Similarly, we have that p̃∗ is the estimated optimal

price from the piecewise linear demand curve constructed using demand observations at pL, pM

and pH . In particular, recall that

p̃∗ = arg maxp∈[pL,pH ]pd
est(p) ,

where we note that for all rounds such that σ ≤ ∆i

dest(p) :=


D̄(pM ) +

D̄ni (p
M
i )−D̄ni (p

L
i )

pMi −pLi

(
p− pM

)
,∀p ≤ pM ,

D̄(pM ) +
D̄ni (p

H
i )−D̄ni (p

M
i )

pHi −pMi

(
p− pM

)
, ∀p > pM .

And for all rounds such that σ ≥ ∆i,

dest(p) :=


D̄(pM ) +

DM∗1
(pM )−DL∗ (pL)

pM−pL
(
p− pM

)
,∀p ≤ pM ,

D̄(pM ) +
DH∗ (pH)−DM∗2 (pM )

pH−pM
(
p− pM

)
,∀p > pM .
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Recall by definition that p̃∗ is the approximated optimal price that is revenue maximizing for

the approximated demand dest(p). Since dest(p) is a piecewise-linear function we have two cases

to analyze: (i)p̃∗ ≤ pM or (ii) p̃∗ > pM . Assume without loss of generality that p̃∗ ≤ pM . Since

p̃∗ is the revenue maximizing price, it is a solution to the following (approximate) first order

condition:

dest(p) + d′est(p)p = 0 .

Hence dest(p̃∗) + d′est(p̃∗)p̃∗ = 0. In order to compare the approximated optimal price with the

real optimal price, we evaluate the optimal price at the approximate first order condition. But

note that the approximate first order condition is also a piecewise function and depends on the

size of the interpolation. Hence, we have to analyze all rounds such that ∆i ≤ σ and then

∆i ≥ σ. In each of these there are two cases to analyze: (i) if p∗ < pM or (ii) p∗ ≥ pM .

All rounds such that ∆i > σ:

Case (i) p∗ < pM : As before, consider the first order condition evaluated at p∗,

dest(p∗) + d′est(p∗)p∗ =

D̄(pM ) +
D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi

(
p∗ − pM

)
+
D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi
p∗ .

(C.10)

Similarly,

dest(p̃∗) + d′est(p̃∗)p̃∗ =

D̄(pM ) +
D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi

(
p̃∗ − pM

)
+
D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi
pM − pLp̃∗ = 0 ,

(C.11)

where the last equality follows from the optimality of p̃∗ for the approximate demand. Hence

subtracting (C.11) from (C.10), we have that:

dest(p∗) + d′est(p∗)p∗ − (dest(p̃∗) + d′est(p̃∗)p̃∗) = 2

(
D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi

)
(p∗ − p̃∗) .

Also note that g(p∗) = 0. Hence, d(p∗) + d′(p∗)p∗ = 0. Furthermore,

dest(p∗)+d′est(p∗)p∗ = dest(p∗)+d′est(p∗)p∗−(d(p∗)+d′(p∗)p∗) = (dest(p∗)−d(p∗))+(d′est(p∗)−d′(p∗))p∗ .

Hence, combining the two above, we get that
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2

(
D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi

)
(p∗ − p̃∗) = (dest(p∗)− d(p∗)) + (d′est(p∗)− d′(p∗))p∗

2
∣∣∣ (D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi

) ∣∣∣|p∗ − p̃∗| ≤ |dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)|p∗

=⇒ |p∗ − p̃∗| ≤ 1

2|d′est(p∗)|

|dest(p∗)− d(p∗)|︸ ︷︷ ︸
A

+ |d′est(p∗)− d′(p∗)|p∗︸ ︷︷ ︸
B

 ,

(C.12)

where d′est(p∗) :=
(
D̄ni (p

M
i )−D̄ni (p

L
i )

pMi −pLi

)
. Hence, to bound the estimation error in the optimal

price, we need to bound terms (A) and (B). Recall by definition that dest(p∗) and d(p∗) denote

the estimated demand at the optimal price and the real unknown demand at the optimal price,

respectively. Hence, (A) denotes the estimation error in demand at the optimal price. Similarly,

d′est(p∗) and d′(p∗) denote the approximate and the real unknown gradient of demand at the

optimal price. Therefore, (B) denotes the estimation error in the gradient. In what follows, we

will bound both these errors.

Step 2: Bounding estimation error in demand and gradient:

We proceed by independently bounding (A) and (B) from (4.13).

Bounding |dest(p∗)− d(p∗)|: By definition, we have that

|dest(p∗)− d(p∗)| =
∣∣∣D̄(pM ) +

(
D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi

)(
p∗ − pM

)
− d(p∗)

∣∣∣
=
∣∣∣D̄(pM )± d(pM ) +

(
D̄ni(p

M
i )− D̄ni(p

L
i )

pMi − pLi

)(
p∗ − pM

)
− d(p∗)±

(
d(pM )− d(pL)

pM − pL
(p∗ − pL)

) ∣∣∣
≤
∣∣∣D̄(pM )− d(pM ) +

(
D̄ni(p

M
i )− d(pM ) + d(pL)− D̄ni(p

L
i )

pMi − pLi

)(
p∗ − pM

) ∣∣∣+∣∣∣− d(p∗) + d(pM ) +
d(pM )− d(pL)

pM − pL
(p∗ − pM )

∣∣∣ .
Now let p∗ = λpL + (1− λ)pM , for some λ ∈ [0, 1]. Then,

∣∣∣D̄(pM )− d(pM ) +

(
D̄ni(p

M
i )− d(pM ) + d(pL)− D̄ni(p

L
i )

pMi − pLi

)(
p∗ − pM

) ∣∣∣ ≤
(1− λ)|D̄(pM )− d(pM )|+ λ|d(pL)− D̄ni(p

L)|

≤ |D̄(pM )− d(pM )| .
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Hence, with probability at least 1− 1
T 2 ,

∣∣∣D̄(pM )− d(pM ) +
D̄(pM )− d(pM ) + d(pL)− D̄(pL)

pL − pM
(
p∗ − pM

) ∣∣∣ ≤ |D̄(pM )− d(pM )|

≤ ∆2

ρ2
.

where the last inequality follows by a direct application of Hoeffding’s inequality for sub-gaussian

random variables.

Next, to bound
∣∣∣− d(p∗) + d(pM ) + d(pM )−d(pL)

pM−pL (p∗ − pM )
∣∣∣, we can directly apply the linear

interpolation error bound (see Chapter 6 of Süli and Mayers (2003)) and get that

∣∣∣d(pL) +
d(pL)− d(pM )

pL − pM
(p∗ − pL)− d(p∗)

∣∣∣ ≤ K1

8
∆2 ,

where recall that K1 = maxp∈[0,1],i≤W |di(p)|. Hence,

|dest(p∗)− d(p∗)| ≤
(

1

ρ2
+
K1

8

)
∆2
i . (C.13)

Now we focus on bounding term B of (C.12), and hence consider |d′est(p∗)− d′(p∗)|.

Bounding |d′est(p∗) − d′(p∗)|: First recall, by definition that d′est(p∗) =
(
D̄(pM )−D̄(pL)

pM−pL

)
.

Hence,

|d′est(p∗)− d′(p∗)| =
∣∣∣D̄(pM )− D̄(pL)

pM − pL
+ d′

(
pM + pL

2

)
− d′

(
pM + pL

2

)
− d′(p∗)

∣∣∣
≤
∣∣∣D̄(pM )− D̄(pL)

pM − pL
− d′

(
pM + pL

2

) ∣∣∣+
∣∣∣d′(pM + pL

2

)
− d′(p∗)

∣∣∣ . (C.14)

But by Lemma C.4.1, we have that

∣∣∣D̄(pM )− D̄pL)

pM − pL
− d′

(
pM + pL

2

) ∣∣∣ ≤ ∆2
i

(
K1

24
+

2

ρ2

)
.

Similarly, to bound
∣∣∣d′ (pM+pL

2

)
− d′(p∗)

∣∣∣, we use Assumption 4.2.2. This results in

∣∣∣d′(pM + pL

2

)
− d′(p∗)

∣∣∣ ≤ κ(p∗ − pM + pL

2

)2

≤ κ∆2
i

4
,
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where the last inequality follows because p∗ ≤ pM . Hence, combining the above two results and

using (C.14), we have that

|d′est(p∗)− d′(p∗)| ≤
(
K1

24
+

2

ρ2
+
κ

4

)
∆2
i , (C.15)

Hence using (C.13) and (C.15), we have that

|p∗ − p̃∗| ≤ 1

2|d′est(p∗)|
(
|dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)p∗|

)
≤ 1

2|d′est(p∗)|

(
3

ρ2
+
K1

6
+
κ

4

)
∆2
i .

Finally, to bound d′est(p∗), note that

|d′est(p∗)| ≥ |d′(p∗)| − |d′est(p∗)− d′(p∗)| ≥

|d′(p∗)| −
(
K1

24
+
κ

4
+

3

ρ2

)
∆2
i ≥

|d′(p∗)| −
(
K1

24
+
κ

4
+

3

ρ2

)
1

4
≥ c

2
,

(C.16)

where the last inequality follows by our assumption on the derivative of demand at the optimal

price bounded away from 0. Hence, we get that

|p∗ − p̃∗| ≤ 1

c

(
3

ρ2
+
K1

6
+
κ

4

)
∆2
i .

So far, we assumed that both p∗ and p̃∗ are below the mid point of the current interpolation.

Next, consider case (ii) when p∗ > pM but as before p̃∗ ≤ pM . In this case, we have to account

for a larger approximation error in demand and gradient of demand at the optimal price.

Case (ii) p∗ > pM : Consider the approximate first order condition evaluated at p∗,

dest(p∗) + d′est(p∗)p∗ = D̄(pM ) +
D̄(pH)− D̄(pM )

pH − pM
(
p∗ − pM

)
+
D̄(pH)− D̄(pM )

pH − pM
pM − pLp∗ .

(C.17)

Similarly, evaluating the first order equation at the approximated optimal price, we get that

dest(p̃∗) + d′est(p̃∗)p̃∗ = D̄(pM ) +
D̄(pM )− D̄(pL)

pM − pL
(
p̃∗ − pM

)
+
D̄(pM )− D̄(pL)

pM − pL
p̃∗ = 0 ,

(C.18)
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where note that the difference in the evaluation function is due to p∗ > pM but p̃∗ ≤ pM .

Subtracting (C.18) from (C.17), and letting m1 = D̄(pH)−D̄(pM )
pH−pM and m2 = D̄(pM )−D̄(pL)

pM−pL , for ease

of notation, we get that

dest(p∗) + d′est(p∗)p∗ −
(
dest(p̃∗) + d′est(p̃∗)p̃∗

)
= m1(p∗ − pM ) +m1p

∗ −m2(p̃∗ − pM )−m2p
∗

= m1(p∗ − pM + p̃∗ − p̃∗)−m2(p̃∗ − pM ) +m1(p∗ − p̃∗)−m2p̃
∗

= 2m1(p∗ − p̃∗) +m1(p̃∗ − pM )−m2(p̃∗ − pM ) + (m1 −m2)p̃∗

= 2m1(p∗ − p̃∗) + (m1 −m2)(2p̃∗ − pM ) .

We follow the same analysis as before and arrive at the following:

|p∗ − p̃∗| ≤ 1

2|m1|
(
|dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)|p∗

)
︸ ︷︷ ︸

A

+ |m1 −m2|
(
2p̃∗ − pM

)︸ ︷︷ ︸
B

. (C.19)

Notice that (A) in the equation above is the same as before (case (i) when p∗ ≤ pM ). Hence,

an identical analysis yields that

1

2|m1|
(
|dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)|p∗

)
≤ 1

c

(
1

ρ2
+
K1

6
+
κ

4

)
∆2
i .

Focusing on (B), we get that

|m1 −m2| =
∣∣∣m1 −m2 + d′

(
pM + pH

2

)
− d′

(
pM + pH

2

) ∣∣∣
=
∣∣∣m1 −m2 + d′

(
pM + pH

2

)
− d′

(
pM + pH

2

)
+ d′

(
pM + pL

2

)
− d′

(
pM + pL

2

) ∣∣∣
≤
∣∣∣m1 − d′

(
pM + pH

2

) ∣∣∣+
∣∣∣d′(pM + pL

2

)
−m2

∣∣∣+
∣∣∣d′(pM + pH

2

)
− d′

(
pM + pL

2

) ∣∣∣
≤
(
K1

12
+

4

ρ2
+ 4κ

)
∆2
i ,

with probability at least 1 − 1/T 2, where the last inequality follows by Lemma C.4.1 and

Assumption 4.2.2. Hence, we have that

|p∗ − p̃∗| ≤
(

1

c

(
3

ρ2
+
K1

6
+
κ

4

)
+
K1

12
+

4

ρ2
+ 4κ

)
∆2
i ,

hence, letting M =
(

1
c

(
3
ρ2 + K1

6 + κ
4

)
+ K1

12 + 4κ
)

proves the final result.
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We have so far considered all rounds such that ∆i ≥ σ. Next, we consider the case when

∆i ≤ σ. Since the proof follows very similarly as above, we will skip some details for the sake

of brevity.

All rounds such that ∆i ≤ σ:

As before we analyze two cases: (i) p∗ < pM and (ii)p∗ ≥ pM .

Case (i) p∗ < pM : Consider the approximate first order condition evaluated at p∗, and

following the same analysis as before, we have that

2

(
DM∗1

(pM )−DL∗(p
L)

pM − pL

)
(p∗ − p̃∗) = (dest(p∗)− d(p∗)) + (d′est(p∗)− d′(p∗))p∗

2
∣∣∣(DM∗1

(pM )−DL∗(p
L)

pM − pL

)∣∣∣|p∗ − p̃∗| ≤ |dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)|p∗

=⇒ |p∗ − p̃∗| ≤ 1

2|d′est(p∗)|

|dest(p∗)− d(p∗)|︸ ︷︷ ︸
A

+ |d′est(p∗)− d′(p∗)|p∗︸ ︷︷ ︸
B

 ,

(C.20)

where d′est(p∗) :=

(
DM∗1

(pM )−DL∗ (pL)

pM−pL

)
. Hence, to bound the estimation error in the optimal

price, we need to bound terms (A) and (B).

Step 2: Bounding estimation error in demand and gradient:

We proceed by independently bounding (A) and (B) from (C.20).

Bounding |dest(p∗)− d(p∗)|: By definition, we have that

|dest(p∗)− d(p∗)| =
∣∣∣D̄(pM ) +

DM∗1
(pM )−DL∗(p

L)

pM − pL
(
p∗ − pM

)
− d(p∗)

∣∣∣
=
∣∣∣D̄(pM )± d(pM ) +

DM∗1
(pM )−DL∗(p

L)

pM − pL
(
p∗ − pM

)
− d(p∗)±

(
d(pM )− d(pL)

pM − pL
(p∗ − pL)

) ∣∣∣
≤
∣∣∣D̄(pM )− d(pM ) +

DM∗1
(pM )− d(pM ) + d(pL)−DL∗(p

L)

pL − pM
(
p∗ − pM

) ∣∣∣+∣∣∣− d(p∗) + d(pM ) +
d(pM )− d(pL)

pM − pL
(p∗ − pM )

∣∣∣ .
Now let p∗ = λpL + (1− λ)pM , for some λ ∈ [0, 1]. Then,

∣∣∣D̄(pM )− d(pM ) +
DM∗1

(pM )− d(pM ) + d(pL)−DL∗(p
L)

pL − pM
(
p∗ − pM

) ∣∣∣ ≤
|D̄(pM )− d(pM )|+ λ|(DM∗1

(pM )− d(pM ) + d(pL)−DL∗(p
L))| .
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But by Assumption 4.4.1, we have that

(DM∗1
(pM )− d(pM ) + d(pL)−DL∗(p

L)) = d(pM ) + ε∗m − d(pM ) + d(pL)− d(pL)− ε∗l ≤ f(n) .

Hence,

∣∣∣D̄(pM )− d(pM ) +
DM∗1

(pM )− d(pM ) + d(pL)−DL∗(p
L)

pL − pM
(
p∗ − pM

) ∣∣∣ ≤ |D̄(pM )− d(pM )|+ λf(n)

≤ ∆2

ρ2
+

∆3

ρ3
,

where the last inequality follows by a direct application of Hoeffding’s inequality for sub-gaussian

random variables and by the assumption that δ > 3/4.

Next, to bound
∣∣∣ − d(p∗) + d(pM ) + d(pM )−d(pL)

pM−pL (p∗ − pM )
∣∣∣, we use the same argument as

before and get that

∣∣∣d(pL) +
d(pL)− d(pM )

pL − pM
(p∗ − pL)− d(p∗)

∣∣∣ ≤ K1

8
∆2 ,

where recall that K1 = maxp∈[0,1],i≤w |di(p)|. Hence,

|dest(p∗)− d(p∗)| ≤
(

1

ρ2
+

∆

ρ
+
K1

8

)
∆2
i . (C.21)

Now we focus on bounding term B of (C.20), and hence consider |d′est(p∗)− d′(p∗)|.

Bounding |d′est(p∗)− d′(p∗)|: First recall, by definition that d′est(p∗) =

(
DM∗1

(pM )−DL∗ (pL)

pM−pL

)
.

Hence,

|d′est(p∗)− d′(p∗)| =
∣∣∣DM∗1

(pM )−DL∗(p
L)

pM − pL
+ d′

(
pM + pL

2

)
− d′

(
pM + pL

2

)
− d′(p∗)

∣∣∣
≤
∣∣∣DM∗1

(pM )−DL∗(p
L)

pM − pL
− d′

(
pM + pL

2

) ∣∣∣+
∣∣∣d′(pM + pL

2

)
− d′(p∗)

∣∣∣ .
(C.22)

But by Lemma C.4.1, we have that

∣∣∣DM∗1
(pM )−DL∗(p

L)

pM − pL
− d′

(
pM + pL

2

) ∣∣∣ ≤ ∆2

(
K1

24
+

1

ρ2

)
.
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Similarly, to bound
∣∣∣d′ (pM+pL

2

)
− d′(p∗)

∣∣∣, we use Assumption 4.2.2. This results in

∣∣∣d′(pM + pL

2

)
− d′(p∗)

∣∣∣ ≤ κ(p∗ − pM + pL

2

)2

≤ κ∆2
i

4
,

where the last inequality follows because p∗ ≤ pM . Hence, combining the above two results and

using (C.22), we have that

|d′est(p∗)− d′(p∗)| ≤
(
K1

24
+

1

ρ2
+
κ

4

)
∆2
i , (C.23)

Hence using (C.21) and (C.23), we have that

|p∗ − p̃∗| ≤ 1

2|d′est(p∗)|
(
|dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)p∗|

)
≤ 1

2|d′est(p∗)|

(
2

ρ2
+

∆

ρ
+
K1

6
+
κ

4

)
∆2
i .

Finally, to bound d′est(p∗), note that previously, we assumed that the derivative of demand at

the optimal price is bounded away from 0

|d′(p∗)| −
(
K1

24
+
κ

4
+

3

ρ2

)
1

4
≥ c

2
.

Hence, since ∆ ≤ 1
ρ

|p∗ − p̃∗| ≤ 1

c

(
3

ρ2
+
K1

6
+
κ

4

)
∆2
i .

Notice that so far we assumed that both p∗ and p̃∗ are below the mid point of the current

interpolation. Next, consider case (ii) when p∗ > pM but as before p̃∗ ≤ pM . In this case,

we have to account for a larger approximation error in demand and gradient of demand at the

optimal price.

Case (ii) p∗ > pM : Consider the approximate first order condition evaluated at p∗,

dest(p∗) + d′est(p∗)p∗ = D̄(pM ) +
DH∗(p

H)−DM∗2
(pM )

pH − pM
(
p∗ − pM

)
(C.24)

+
DH∗(p

H)−DM∗2
(pM )

pH − pM
pM − pLp∗ . (C.25)
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Similarly, evaluating the first order equation at the approximated optimal price, we get that

dest(p̃∗) + d′est(p̃∗)p̃∗ = D̄(pM ) +
DM∗1

(pM )−DL∗(p
L)

pM − pL
(
p̃∗ − pM

)
+
DM∗1

(pM )−DL∗(p
L)

pM − pL
p̃∗ = 0 ,

(C.26)

where note that the difference in the evaluation function is due to p∗ > pM but p̃∗ ≤ pM . Sub-

tracting (C.26) from (C.24), and letting m1 =
DH∗ (pH)−DM∗2 (pM )

pH−pM and m2 =
DM∗1

(pM )−DL∗ (pL)

pM−pL ,

for ease of notation, we get that

dest(p∗) + d′est(p∗)p∗ −
(
dest(p̃∗) + d′est(p̃∗)p̃∗

)
= 2m1(p∗ − p̃∗) + (m1 −m2)(2p̃∗ − pM ) .

We follow the same analysis as before and arrive at the following:

|p∗ − p̃∗| ≤ 1

2|m1|
(
|dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)|p∗

)
︸ ︷︷ ︸

A

+ |m1 −m2|
(
2p̃∗ − pM

)︸ ︷︷ ︸
B

. (C.27)

Notice that (A) in the equation above is the same as before (case (i) when p∗ ≤ pM ). Hence,

an identical analysis yields that

1

2|m1|
(
|dest(p∗)− d(p∗)|+ |d′est(p∗)− d′(p∗)|p∗

)
≤ 1

c

(
3

ρ2
+
K1

6
+
κ

4

)
∆2
i .

Focusing on (B), we get that

|m1 −m2| =
∣∣∣m1 −m2 + d′

(
pM + pH

2

)
− d′

(
pM + pH

2

) ∣∣∣
=
∣∣∣m1 −m2 + d′

(
pM + pH

2

)
− d′

(
pM + pH

2

)
+ d′

(
pM + pL

2

)
− d′

(
pM + pL

2

) ∣∣∣
≤
∣∣∣m1 − d′

(
pM + pH

2

) ∣∣∣+
∣∣∣d′(pM + pL

2

)
−m2

∣∣∣+
∣∣∣d′(pM + pH

2

)
− d′

(
pM + pL

2

) ∣∣∣
≤
(
K1

12
+

2

ρ2
+ 4κ

)
∆2
i ,

where the last inequality follows by Lemma C.4.1 and Assumption 4.2.2. Hence, we have that

|p∗ − p̃∗| ≤
(

1

c

(
3

ρ2
+
K1

6
+
κ

4

)
+
K1

12
+

2

ρ2
+ 4κ

)
∆2
i ,

hence, letting M =
(

1
c

(
3
ρ2 + K1

6 + κ
4

)
+ 2

ρ2 + K1
12 + 4κ

)
proves the final result for all rounds

215



APPENDIX C. APPENDIX OF CHAPTER 4

such that ∆i ≤ σ.

Proof. Proof of Theorem 4.4.5: The proof of Theorem 4.4.5 follows identically as the proof

of Theorem 4.4.1, where we use Lemma C.4.1 and Lemma C.4.2 instead of Lemma 4.4.2 and

Lemma 4.4.3. We skip the details for the sake of brevity.

216



Appendix D

Appendix of Chapter 5

D.1 Proofs of technical results

Proof. Proof of Theorem 5.6.1: By definition, we have that

E [C(y)] = E
[
cDICI(y) + cRTOR

(
Z̃(y)

)]
= cDICE [I(y)] + cRTOE

[
R
(
Z̃(y)

)]
.

Note that E[I(y)] = 1− F (y). This follows directly from the definition of I(y). Similarly,

E
[
R
(
Z̃(y)

)]
= E

[
r(Z̃(y))

]
= r

(
E
[
Z̃(y)

])
,

where the first equality follows by definition of R, and the second equality follows using Jensen’s

inequality and the assumption that r is a simple affine function (Kuczma 2009). Finally,

E[Z̃(y)] = E[Z̃(y)|I(y) = 1]P(I(y) = 1) + E[Z̃(y)|I(y) = 0]P(I(y) = 0)

= y(1− F(y)) + µF(y) = y + F(y) (µ− y) .

Hence,

E
[
R
(
Z̃(y)

)]
= r (y + F(y) (µ− y)) . (D.1)
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E [C(y)] = cDIC (1− F (y)) + cRTO (r (y + F (y) (E[Z|Z < y]− y)))

= C̄DICe
−y
µ + cRTOβ

(
y +

(
1− e

−y
µ

)
(E[Z|Z < y]− y)

)
= C̄DICe

−y
µ + µcRTOβe

− 2y
µ

(
1− 2e

y
µ + e

2y
µ +

y

µ

)
,

where the first inequality follows because F (y) for an exponential random variable is 1 − e
−y
µ .

The second inequality follows because E[Z|Z < y] = µ
(

1− e−
y
µ

(
1 + y

µ

))
.

Next, to analyze the cost function, we consider the second derivative of the objective func-

tion:

∂E [C(y)]

∂y
= − C̄DICe

−y
µ

µ
+ βcRTOe

− 2y
µ

(
−1 + 2e

y
µ − 2

y

µ

)
∂2E [C(y)]

∂y2
=
C̄DICe

−y
µ

µ2
− 2

cRTOe
−2y
µ β

(
e
y
µ − 2y

µ

)
µ

.

Then, for any y, the objective cost function is strictly convex if ∂2E[C(y)]
∂y2 > 0. Hence,

> 0 =⇒ e
−2y
µ

µ

(
C̄DICe

y
µ

µ
− 2cRTOβ

(
e
y
µ − 2y

µ

))
> 0

=⇒ C̄DICe
y
µ

µ
+ 4cRTOβ

y

µ
> 2cRTOβ

(
e
y
µ

)
=⇒ C̄DIC

2cRTOβµ
+ 2

y
µ

e
y
µ

> 1 ,

=⇒
y
µ

e
y
µ

>
1

2

(
1− C̄DIC

2cRTOβµ

)
=⇒ z

ez
>

(
2cRTOβµ− C̄DIC

4cRTOβµ

)
(D.2)

where z = µy ∈ [0, 1]. Now note that if 2cRTOβµ < C̄DIC , the RHS of the above equation is

negative. Furthermore, the minimum of the LHS in the above equation is 0. Therefore, the

equation above holds for any value of z and the function is strictly convex. Furthermore, the

optimal solution of ODTP is given by the first order condition (FOC). This proves that the

objective is strictly convex when 2cRTOβµ < C̄DIC .

To characterize how the optimal solution changes with different problem parameters (β, cRTO, C̄DIC
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and µ), we use the Implicit Function Theorem. Hence,

∂y∗

∂cRTO
= −β

 2e
y
µ − 2 yµ − 1

C̄DICe
−y
µ

µ2 − 2
cRTOe

−2y
µ β

(
e
y
µ− 2y

µ

)
µ

 < 0,

∂y∗

∂β
= −cRTO

 2e
y
µ − 2 yµ − 1

C̄DICe
−y
µ

µ2 − 2
cRTOe

−2y
µ β

(
e
y
µ− 2y

µ

)
µ

 < 0

∂y∗

∂µ
= −

−2cRTOβy
(
e
y
µ − 2 yµ

)
+ C̄DICe

y
µ

(
y
µ − 1

)
C̄DICe

−y
µ

µ2 − 2
cRTOe

−2y
µ β

(
e
y
µ− 2y

µ

)
µ

 > 0,

∂y∗

∂C̄DIC
=

 e
y
µ

C̄DICe
−y
µ

µ − 2cRTOe
−2y
µ β

(
e
y
µ − 2y

µ

)
 > 0 ,

where the above inequalities follow from the fact that the denominator in each case is positive

(because of the convexity of the curve) and the sign of the numerator drives the sign of the

overall expression.

Next, consider 2cRTOβµ ≥ C̄DIC and note that z
ez ≤

1
e . Then, if

1

e
≤
(

2cRTOβµ− C̄DIC
4cRTOβµ

)
=⇒ 4cRTOβµ ≤ e

(
2cRTOβµ− C̄DIC

)
=⇒ C̄DIC

cRTO
≤ 2βµ

(
1− 2

e

)
,

then the objective cost function is concave. Furthermore, because ODTP has a minimum cost

objective, the optimal solution lies on the boundary points. Hence, checking the value of the

objective function at the boundary points, we find that the objective is C̄DIC when the threshold

is 0 and C̄DIC
e + cRTOµβ(2−2e+e2)

e2
when the threshold is µ. It is easy to check that the objective

cost at 0 always dominates the other cost, and hence the optimal solution is to always choose

the minimum threshold possible at the C̄DIC cost, which is 0. This proves the second part of

the Theorem.

Finally, if 2βµ ≥ C̄DIC
cRTO

≥
(
1− 2

e

)
2βµ, then the objective is neither concave nor convex.
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Furthermore, the second derivative of the objective function is 0 when,

z

ez
=

(
2cRTOβµ− C̄DIC

4cRTOβµ

)
,

where z = y
µ . Let z∗ be the solution to the above equation. The objective cost function is

concave ∀x ∈ [0, z∗µ] and convex ∀x ∈ [z∗µ, µ]. Hence, the optimal solution lies either at

the boundary points of the concave region (0 or z∗µ) or is the interior point solution in the

part of the region where the objective is convex (i.e., when it lies between [z∗µ, µ]). Checking

and comparing the objective value at all these end points gives the optimal solution of the

ODTP.

Proof. Proof of Proposition 5.6.2: In order to prove this proposition, we need to show that

the budget constraint is also satisfied with the IP formulation. We introduce auxiliary variables

τ ji and λji in order to enforce appropriate DIC cost accounting. Consider any order i and let

wi be such that dji ≤ wi ≤ dj+1
i . Then wi can be represented as a convex combination of dji

and dj+1
i . The convex weights are denoted by continuous variables λji . While (9g) ensures that

the weights sum up to 1, binary auxiliary variables τ ji ensure that only the corresponding λji

variables are chosen to represent wi. Furthermore, because DIC cost function is continuous and

piecewise linear, the DIC cost associated with decision wi is
∑

i=1,..k+1 λ
j
id
j
i . This is formulated

in the budget constraint 9(b). Hence, we have that the ODEP problem with piecewise linear

costs can be formulated as a mixed integer optimization problem.

Proof. Proof of Theorem 5.6.3: We prove the Theorem in two steps.

1. Showing feasibility of the constructed solution.

2. Showing that the heuristic solution is very close to the optimal LP solution in terms of

the objective value.

This in turn results in a optimality gap bound from the optimal IP solution.

Feasibility of the heuristic solution: We split the orders in two disjoint sets: O1 contains

all orders for which the optimal expediting decision w̄, is not at one of the end points of the

DICs function (dj), and O2 contains the rest of the orders not in O1. Note that for all orders

in O2, the corresponding z̄ variables are already integral. Hence, the optimal expediting LP

variable is already feasible for the IP formulation. Next, note that for orders in O2, the optimal

solution is dj and not dj + ε. Indeed, as noted before, increasing w̄i from dj + ε to dj+1 leads

220



APPENDIX D. APPENDIX OF CHAPTER 5

to no change in the cost function but an improvement in the objective value. Having shown

that wi are all on the right end of our constructed continuous DIC function, we next show the

integrality of the corresponding τ ji variables. WLOG assume that for order i ∈ O2, wi = d∗j .

Now notice that the corresponding constraints associated with τ and λ of order i are

λ1 ≤ τ i, λj ≤ τ j + τ j−1,∀j = 2, ...k and λk+1 ≤ τk.

Note that the integrality constraint on z ensures that any w is a convex combination of at most

two points, the end points of the region where w lies. Without the integrality constraint, w

can now be a convex combination of any number of points. Note that the convex combination

that is chosen to represent w does not affect the objective. Nevertheless, it indeed affects the

budget constraint. An optimal convex combination would be one that chooses the minimum

cost associated with the improvement w.

Next, we will show that the discontinuity parameter ε can be tuned such that representing

d∗j with a single nonzero λ would lead to a minimum cost. Indeed, if λ is integral, then so is τ

which will prove the integrality of the solution. To prove this, let us assume by contradiction

that d∗j is represented as
∑

j=1,..,k+1,j 6=j∗ λjdj . If j∗ is part of the convex combination, then the

solution is already integral, and we are done. If it is not, then the convex combination contains

two sets:

c+ = {dj : dj > d∗j} and c− = {dj : dj < d∗j} .

Note that the cost associated with all entries in c+ is more than the cost of cj∗ ,and vice versa.

Next, consider the following optimization problem:

Minλj ,j=1,..k+1

∑
j=1,..k+1,k 6=j∗

λjC̄j

s.t.
∑

j=1,..k+1,k 6=j∗
λj = 1,

∑
j=1,..k+1,k 6=j∗

λjdj = d∗j and λj ≥ 0 .

The objective of the constructed optimization problem is to find a convex representation of

d∗j with minimum DIC. If we can show that the optimal solution of the constructed LP is C̄∗j , the

LP relaxation already satisfies the integrality constraints. This happens because the continuous

problem will correctly account for the associated costs, and will have integral z variables.
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We start by considering the optimal solution of the constructed LP and note by LP duality

that the optimal solution has at least (k−1) λ variables equal to 0. If the convex representation

has only one positive λ, we are done. If not, and one of the two end points contain ε, it can

be tuned such that the objective value of the solution would always be greater than C̄j∗ . Next,

assume that the representation contains only end points without an ε, and let the representation

be

d∗j = λ+d+ + (1− λ+)d− ,

where d+ ∈ c+ and d− ∈ c−. Simple algebra yields that λ+ =
d∗j−d−

d+
j −d−

. Furthermore, the

corresponding objective value is C̄− + λ+(C̄+ − C̄−). Next, we show that the objective is at

least C̄j∗ . Consider

C̄− + λ+(C̄+ − C̄−) ≥ C̄j∗ =⇒ λ+(C̄+ − C̄−) ≥ C̄j∗ − C̄− =⇒ C̄+ − C̄−
C̄j∗ − C̄−

≥ 1

λ+
.

But by assumption, the costs change at a rate faster than a linear cost change (linear slope

of 1). Hence the inequality holds and the objective value is always less than C̄j∗ . Because the

proof holds for any arbitrary j∗, we are done with all orders in O2.

Next, consider all orders in O1. By definition, the LP optimal solution for these orders

is not one of dj . We first show that O1 contains at most one order. Let us prove this by

contradiction and let O1 contain two orders. Then, because it is a feasible solution, the sum of

the costs for both of these orders satisfies the budget constraint. Let the corresponding RTO

slopes (objective coefficients) be β1 and β2, respectively, and WLOG assume β1 ≤ β2. Then,

using more budget on order 2 yields greater improvement in the objective. Hence, the optimal

solution should use more budget for order 2, pushing order 2’s optimal solution to either the

next DIC range (if the budget constraint is not tight) or pushing it to the right end point of

the current cost level. In either case, it is pushed to O2. Hence, we are left with a single order

in O1. Let this order be NI and note that the updated heuristic solution constructed for order

NI is IP feasible by construction.

Optimality gap of the constructed heuristic: Having constructed a feasible IP solution, we

finally discuss the optimality gap of the constructed solution. First, note that

Obj(IPopt) ≤ Obj(LPopt) =⇒ Obj(IPopt)−Obj(LPheuristic) ≤ Obj(LPopt)−Obj(LPheuristic) .
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Hence, consider Obj(LPopt) − Obj(LPheuristic), and note that the heuristic solution is differ-

ent from the LP optimal solution only for a single order. Furthermore, because the optimal

improvement in RTO rate from a single order is bounded above by 1, the optimality gap follows.

D.2 Results from the Econometric Analysis of §5.3.3

FDG

warehouse time 0.001∗∗∗ (0.000)
APD+ 1.102∗∗∗ (0.038)
APD− 0.206∗∗∗ (0.011)
price -0.000∗∗∗ (0.000)
product discount 1.12∗∗∗ (0.036)

N 1,662,175

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table D.1: First-stage regression results for IV analysis with various controls. The Adj. R2 is 0.77.
Furthermore, the partial R2 of the warehouse time instrument is 0.21. Note that we also control for
brand, article type, supply type, courier, partner, month, and DC level fixed effects in our specification.

Variable IV-1 day IV-2 days IV-3 days

FDG 0.009*** (0.002) 0.014*** (0.000) 0.014*** (0.000)
APD+ 0.001 (0.002) −0.002 (0.000) −0.001 (0.000)
APD− 0.000 (0.000) −0.001** (0.000) −0.001*** (0.000)
price +0.000*** (0.000) +0.000*** (0.000) 0.000*** (0.000)
product discount -0.090*** (0.008) −0.103*** (0.003) −0.101*** (0.003)

Observations 196,765 1,489,067 1,653,729

*p < 0.10, **p < 0.05, ***p < 0.01

Table D.2: Estimation results from the second stage of the IV analysis with different levels of subsetting
of transaction data. In column (1), we present the results when the data set includes transactions from
zip codes that are less than 1 day away from each of the warehouses. In column (2), the subset includes
transactions from zip codes that are less than 2 days away from all the warehouses. Finally, in column
(3), we includes all zip codes that are less than 3 days away from all the warehouses.

Variable Point Estimate Standard Error

APD− 0.005* 0.002
price 0.000*** 0.000
product discount -0.000 0.000
average discount -0.000 0.000
total orders 0.000** 0.000
average price 0.000 0.000

Observations 9,138

*p < 0.10, **p < 0.05, ***p < 0.01

Table D.3: Regression results from the RCT with data from repeat customers. The coefficient of APD−

is significant and positive, showing that an increase in delivery gap results in an increase in product
RTO.
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Variable Point Estimate Standard Error

FDG 0.010*** 0.004
APD+ −0.002 0.008
APD− 0.005*** 0.002
price +0.000*** 0.000
product discount -0.000 0.000

Observations 19,983

*p < 0.10, **p < 0.05, ***p < 0.01

Table D.4: Regression results from the RCT with data from all customers with variable delivery gaps.
The coefficient of the FDG is significant and positive, showing that an increase in delivery gap results in
an increase in product RTO.

D.3 Analysis of the Usage of the COD Payment Method

We perform two different analyses to understand the heterogeneity in the COD usage. (i) We

perform a district-level analysis, where we empirically check for correlation between the COD

usage, and socioeconomic factors such as percentage of literate population, percentage of urban

population and percentage of population working in agriculture and related activities. Using

data from 255 districts from 19 states for which socioeconomic data was present, we find that

the COD usage is

• Negatively correlated with the percentage of literate population. Districts with literacy

rate of less than 56.06% (bottom 25% quantile) used the COD payment method for 70.22%

orders, as compared to 52.4% orders for districts with literacy rate higher than 68.74%

(top 25% quantile).

• Negatively correlated with the percentage of urban population. Districts with urban pop-

ulation of less than 16.25% (bottom 25% quantile) used the COD payment method for

71.09% orders, as compared to 53.79% orders for districts with urban population higher

than 33.96% (top 25% quantile).

• Positively correlated with the percentage of population related with agriculture and allied

activities. Districts where less than 6.06% (bottom 25% quantile) population was involved

in agriculture used the COD payment method for 52.04% orders, as compared to 71.30%

orders for districts where more than 16.1% (top 25% quantile) population was involved in

agriculture.

We also perform a city-level analysis of the COD usage. Myntra ranks each city between one

to three, based on infrastructure development and other socioeconomic factors. A Tier 1 city is
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economically more advanced than Tier 2 city and so on. We find that COD usage in Tier 1 cities

is lower (49.5% of all orders), compared to Tier 2 (65.24% of all orders) and Tier 3 (59.96% of all

orders) cities. Nevertheless, COD payment method is very popular among Myntra customers

across cities. Since we have city tier information on all zipcodes, this analysis is performed on

all orders and hence has no sample bias.

The above analysis shows that the COD payment method is used heterogeneously among dif-

ferent districts and is correlated with socioeconomic indicators of an area. A simple RTO

reduction strategy could be to focus on delivery improvement efforts only in districts with high

COD usage. This is similar to the order-level tactical problem that optimizes budget utilization

among different orders with base level RTO rates higher for regions where there is high COD

utilization.

D.4 Supplementary Figures

Figure D.1: Supply chain structure at the fashion e-retailer.

Figure D.2: Empirical f distribution fitted with a mixture of shifted exponentials. The exponential
distribution shows a very good fit for values greater than 1.
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Figure D.3: The objective function of ODTP for µ = 4, cRTO = 165, C̄DIC = 57, and β = 0.10. The
objective is neither concave nor convex and not even unimodal. Nevertheless, it is concave until a critical
value (µz∗) and becomes convex afterwards.

Figure D.4: Piecewise constant DIC function. To formulate ODEP as an IP, we first convert the cost
function into a piecewise-linear cost function by connecting the discontinuous pieces.
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Figure D.5: On the left, RTO function for Bengaluru around the mean. On the right, the cost in rupees
(Rs) of expediting FDG by y number of days.

Figure D.6: ODTP objective cost function for FDG <1 and FDG ≥ 1 on the left, and the middle plots.
On the right, we plot the RTO cost improvement for various threshold levels at C̄DIC = 1.9 Rs

Figure D.7: The objective function and the % improvement for CDIC=Rs. 2.85.
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Figure D.8: RTO rate improvement due to optimal budget allocation (ODEP) as a function of the daily
budget (B) in rupees.
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Abbasi-Yadkori, Y, D Pál, C Szepesvári. 2011. Improved algorithms for linear stochastic bandits. NIPS .

Aflaki, S, I Popescu. 2013. Managing retention in service relationships. Management Science 60(2).

Agarwal, Alekh, Ofer Dekel. 2010. Optimal algorithms for online convex optimization with multi-point

bandit feedback. COLT . Citeseer, 28–40.

Agarwal, Alekh, Dean P Foster, Daniel J Hsu, Sham M Kakade, Alexander Rakhlin. 2011. Stochastic

convex optimization with bandit feedback. Advances in Neural Information Processing Systems.

1035–1043.

Agrawal, Rajeev. 1995. The continuum-armed bandit problem. SIAM journal on control and optimization

33(6) 1926–1951.

Agrawal, S, V Avadhanula, V Goyal, A Zeevi. 2016. A near-optimal exploration-exploitation approach

for assortment selection. Proceedings of the 2016 ACM Conference on Economics and Computation.

ACM, 599–600.

Agrawal, Shipra, Navin Goyal. 2013. Further optimal regret bounds for thompson sampling. Artificial

Intelligence and Statistics.

Agresti, Alan. 2018. An introduction to categorical data analysis. Wiley.

Ahmad, Samreen. 2018. Indian e-commerce industry is expected to cross $100 billion mark by 2020 .
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Bühlmann, Peter, Sara van de Geer. 2011. Statistics for High-Dimensional Data: Methods, Theory and

Applications. Springer, New York.

Cameron, A Colin, Douglas L Miller. 2015. A practitioner’s guide to cluster-robust inference. Journal

of Human Resources 50(2) 317–372.
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