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Abstract

The tremendous increase of personal data being shared online, along with the rapid devel-
opment of data mining techniques is a serious threats to privacy and security, as evidenced
by the numerous privacy and security scandals of the past several years. At their core, the
new privacy and security challenges that the big data revolution poses are due to the unclear
boundary between data shared willingly, which is deemed not-sensitive, and the sensitive
data that one wants to keep private.
Traditional tools in security and privacy provide protection by encrypting personal data, but
this method is not sustainable when it is unclear whether, or how much, the data is sensitive
to begin with. The premise of this thesis is that information theoretic tools and insights
are useful to identify how releasing personal data can impact privacy and security, and can
serve as a design driver for building privacy preserving, and security enhancing systems.
In particular, we will be focused on two types of attacks. In the first, we consider how a
user may release some personal data (e.g. movie ratings) in exchange for a service (e.g.
movie recommendations), while simultaneously not leaking information about a sensitive
attribute correlated with the personal data (e.g. political orientation). To this end, we
design a privacy framework which captures the inference threat of releasing data, and use
the latter to find optimal privacy-preserving mechanisms, which allows the user to trade
utility for privacy. In the second part, we look at brute-force attacks where an adversary
attempts to breach into a password secured system by querying potential passwords. Users
of such systems are likely to generate poor passwords, re-use passwords across systems, and
especially susceptible to targeted attacks if their password is correlated with personal data
that is available online. We consider various setups under which Brute-force attacks occur,
and analyze the security guarantees one obtain via Guesswork – an information theoretic
quantity that is a surrogate for the computational effort than the attacker has to perform.
The analysis of both attacks reveals that data is a precious commodity which should be
handled with care, and how the entire data acquisition and communication pipeline can
come under attack. Additionally, Information Theory and Statistics offers a dimension of
tools which is complementary to the existing ones, while still capturing the fundamentals of
the security and privacy threats in the digital age.

Thesis Supervisor: Muriel Médard
Title: Cecil H. Green Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The past decade has showcased the tremendous potential of data-driven methods in a variety

of domains from engineering, medicine, entertainment, and more. At the origin of this big

data wave is access to cheap and massive amounts of data, which is a necessary ingredient

in the success of current learning models. Thus, we live in an age in which our personal

data is collected, stored, and heavily processed. This has repercussions – our modern society

has already been affected by several privacy and security scandals including personal data

on social networks being used for political purposes [120, 7], passwords being guessed by

abusing security questions [111], and patient medical records being leaked and mined in

unlawful ways [8] – all showcasing how fragile our privacy is today. But, Is Privacy Dead

[115]?

In this thesis, we leverage tools from Information Theory and Statistical Learning to

provide insights into this question. While data security is a well-studied subject, we argue

that some new challenges of the big data era cannot be well understood from the lens of

traditional security primitives such as cryptography or differential privacy. Privacy leaks

sometimes happen in unexpected ways. In 2012, the father of a teenager learned via the

personalized coupons he received at home that his daughter was pregnant – before she had

a chance to tell him herself [3]. This example highlights how unclear the boundary between

private and public data is: sensitive data (pregnancy status of a teenager) could be leaked

from the correlation with data, which at first appears to be not sensitive (purchases at the

supermarket). The boundaries between sensitive data and publicly shared data are unclear,

resulting in a need for an understanding that is complementary to the traditional methods
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in data security. Therefore, our goal is to develop new ways to:

∙ Quantify privacy and security threats that arise from sharing personal data.

∙ Explore the fundamental trade-offs between the amount of data shared and the per-

formance of a service .

∙ Devise tools and methods to share/collect less data altogether.

The privacy and security issues highlight fundamental flaws in the entirety of our data ac-

quisition and communication pipeline. From the perspective of the user, personal data is

collected and can potentially be misused without having much control over it. From the

perspective of the data collectors, this massive amount of data creates tremendous challenges

in communication overhead, computational costs, and, of course, additional security con-

cerns. For both parties, there is interest in understanding what in the data is truly needed,

how to effectively represent, communicate, and process it. In other words, how can we be

parsimonious in what we share? In this thesis, we will discuss several problems which are

relevant to the big-data era:

1. Privacy against Inference: A user wishes to share some information and, in ex-

change, receives a service. For example, the information shared could be movie ratings

and the service – movie recommendations. The issue lies in the correlation between

personal data, and some sensitive information (e.g. political or sexual orientation)

that the user does not want to disclose. We will introduce novel tools and frameworks

to formally analyze this problem and quantify the privacy threat of an adversary per-

forming an inference attack on the sensitive information. At the core of this problem

lies an inherent trade-off between how private one is, and the quality of the service

one receives. This trade-off can be captured by the Privacy Funnel – a method to find

privacy mechanisms with strong guarantees that introduces as little noise in the data

as possible. The Privacy Funnel and related formulations we will discuss have several

generalizations and applications.

2. Brute-Force Security & Guesswork: Passwords are among the main ways we

provide security online. What happens when humans generate keys? We seldom make

good random number generators, and in fact, in many cases we are very poor at

creating strong passwords. Human generated passwords are predictable and re-used
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across many platforms. More importantly, personal information is often part of the

password itself (e.g. date of birth, name of family members or pets, etc.), which may

be already shared online. As a result of this, brute-force attacks – which consist in

querying password secured systems until the attacker guesses the correct password –

are a grave concern. We will introduce various settings in which a system undergoes

a brute-force attack.

3. Parsimonious Data Representation, beyond Privacy and Security: At a high

level, the two previous subjects share the same take-away: data is a precious commod-

ity and should be shared and collected only when necessary. We will briefly explain

how to collect/share less data altogether, and re-think the entirety of our data acqui-

sition and communication pipeline. The focus should be on obtaining quality data as

opposed to sheer quantity.

1.1 A new paradigm for privacy and security

The general premise of this thesis is that information theoretic tools and insights can help

us tackle some of the major privacy and security challenges in the era of big data. The

interplay between Information Theory and security dates back to Shannon himself. In 1945,

Shannon publishes a classified report titled "A Mathematical Theory of Cryptography", while

working at Bell Labs. The paper is eventually published for the public in 1949 [130], under a

different title, but the earlier version predates the publication of his "A Mathematical Theory

of Communications" which appeared in 1948. The relationship between the two fields goes

beyond the anecdote: It is undeniable that the perspective that Shannon obtained from

working on cryptanalysis helped him gain a completely revolutionary perspective on the

problem of communication – and vice-versa.

1.1.1 Privacy against Inference

One of the central problems in managing privacy on the Internet lies in the simultaneous

management of both private and public data. Many users are willing to release some in-

formation about themselves, such as their movie watching history, or their gender; they do

so because this data enables useful services, and is often not deemed sensitive. However,

users also have data that they consider private – their political or sexual orientation, income
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Raw Data

Alice Bob

Y � Y

Private

S � S

Sanitized Data

U � U

Privacy-preserving 
mapping pU |Y (u|y)

Bob provides a service

pS,Y (s, y)

Figure 1-1: Setup for Privacy against Inference. Alice wishes to share some data in exchange
for a service, but first sanitizes it using a privacy-preserving mapping so that Bob cannot
infer her private attributes. The probability distributions are known to both Alice and Bob.

levels, health status, etc. When releasing public data, users are thus susceptible to inference

attacks, where an adversary attempts to infer their private attributes from the public ob-

servations. Thus, instead of releasing her raw data, a user might want to modify the latter

as to sanitize it, see Figure 1-1. This is done via a privacy-preserving mapping. A main

contribution of this thesis, is an in-depth study of the privacy-utility trade-off introduced

in [60]. The framework can be characterized as an optimization problem, where a privacy

mapping must be found such that privacy is preserved, while the utility is above a specified

threshold. One instantiation of this privacy-utility trade-off is the the privacy distortion

trade-off
min
𝑃𝑈|𝑌

𝐼(𝑆;𝑈)

s.t. E[𝑑(𝑌 ;𝑈)] ≤ ∆,

(1.1)

where on the one hand, privacy is captured by the mutual information 𝐼(𝑆;𝑈) between the

private attribute 𝑆, and the sanitized data 𝑈 , and on the other hand a measure of utility or

distortion 𝑑 : 𝒴 ×𝒰 → R+ is specified between 𝑈 and the original data 𝑌 . When the utility

metric is also a mutual information, the resulting optimization is called the Privacy-Funnel

[96], and turns out to have deep connections with various subjects in Information Theory

(Mrs Gerber’s Lemma [150], Strong Data Processing Inequalities[112]), as well as in Statisti-

cal Learning (Information Bottleneck[139]). In chapter 2 of this thesis, we will discuss various

instantiations of privacy-utility trade-offs, with an emphasis on algorithms and insights to

solve the resulting optimization problems either exactly or approximately. Our contributions

are three-fold (1) theoretical guarantees of the Privacy Funnel, and the Privacy-distortion

formulations, along with connections with information theoretic concepts, and in the privacy
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literature (e.g. differential privacy); (2) How does one solve the optimizations and obtain the

optimal privacy-preserving mappings efficiently; (3) Practical considerations when looking

at real-world settings. The methods we develop are rooted in theory, but are adaptable to

the constraints of real-world data, as evidenced by several experiments showcased in the

thesis.

1.1.2 Guesswork and Brute-force Security

As previously stated, human-generated passwords are often far from random. Numerous

studies based on large password leaks reveal that some passwords are widely more popular

than others [33, 142, 140], that passwords are re-used across platforms [57], and that they

often contain personal information [143]. These three observations indicate that guessing

one’s password might be easier than expected, and that the consequences of a breach may be

dramatic (in the case of password reuse across many platforms). This means that a brute-

force attack is a great threat which should not be underestimated. To quantify this threat, we

use Guesswork as a surrogate for the computational cost an adversary has to pay to breach

the system. More precisely, a password is modeled as the realization of a random variable

𝑋, drawn according to a probability distribution. When this probability distribution is far

from uniform, an adversary can more easily guess the password. The guesswork precisely

captures this intuition, where 𝐺𝑃 (𝑋) is the position of the password𝑋 in the list of potential

passwords, sorted from most likely to least likely according to the distribution 𝑃 . Studying

this quantity gives insight on the risks associated with poor passwords. An interesting

characterization of guesswork is possible when looking at the specific case of passwords of

increasing lengths. In this setup, one can make use of mathematical tools from Information

Theory, to circumvent the combinatorial nature of the problem, and obtain the asymptotic

behavior of guesswork.

In this thesis, we will consider various brute-force attack scenarios. We will discuss

attacks performed via a botnet, where distributed machines which are completely uncoordi-

nated, attempt to query passwords to breach into a system. In this case, it is impossible to

construct the optimal list and query passwords one after the other, as the attacking agents

cannot coordinate. Despite this, we show that the asymptotic performance of the attackers

does not change, as they can employ a randomized strategy, and draw their guesses accord-

ing to a distribution. Perhaps surprisingly, the best guessing distribution is not, in fact, the
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Figure 1-2: Figure 4: Representation of the 3-dimensional simplex. Each point in the
triangle corresponds to a distribution over 3 elements. The blue and orange line correspond
to the tilted family that govern the matched (orange) and mismatched (blue) guessworks,
when 𝑃 is the true distribution and 𝑄 the mismatched.

distribution which was used to generate the passwords, but rather a tilted version of this

distribution. We also study a scenario where several attacking agents have access to some

side-information about the password. This could be personal details about the user (tar-

geted attack), or knowledge of some previously leaked password (password reuse). There,

we ask whether it is best to have a lot of side-information, or a lot of attacking agents – it

turns out that side-information is key, and in many setups better side-information is more

valuable than any finite number of agents, asymptotically. We will also discuss the case

of mismatch in the adversary’s knowledge of the password generating distribution 𝑃 , and

derive the resulting guesswork when using this mismatched distribution to construct the

list. An interesting consequence of this setup is that an adversary with a mismatch may still

perform exactly as well as if there was no mismatch at all, if the mismatched distribution

lies on a specific family of distributions. A main contribution of our work is also in the

technical tools we develop as proof techniques of the analysis of guesswork. In Figure1-2, an

overview of some of the results are shown using a geometric perspective which we developed.

This geometric viewpoint showcases an elegant structure in the problem of guessing and is

of independent interest in Information Theory, both as a proof and an interpretation tool.
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1.2 A brief overview of existing solutions

The goal of this section is to introduce some of the existing solutions in security and privacy.

The selected references and notions do not aim at drawing a complete picture of the literature

in security and privacy – such a survey would be out of scope for this thesis. However, we

will provide hints of the current technical landscape in the area, and discuss why there is

a need for novel solutions to address some of the new challenges that arise in the big-data

era. Where relevant, we will provide survey papers for the interested reader, and focus the

discussion on the high level shortcomings.

1.2.1 Cryptographic security

Cryptographic security1 is the one major toolset available to the practitioner interested in

securing a computer system, be it online or offline. Originally, cryptography was synonymous

with secure encryption – a method to hide private messages such that unauthorized users

(referred as eavesdroppers) are unable to recover the content of the message, while the

authorized users can decode and communicate efficiently. Nowadays, modern cryptographic

techniques are at the base of numerous applications which impact most of us on a daily

basis. The advent of e-commerce, one of the fastest growing industries of the past decade,

relies on cryptographic security to provide authentication, perform secure payments online,

and guarantee privacy. Recently, digital currencies such as BitCoin have also originated via

the use of cryptographic primitives. Needless to say that there are many more applications

of cryptography, new and old, and there is no doubt that cryptographic techniques are

powerful, and essential, in building tomorrow’s information age.

Perhaps the most relevant application of cryptography to the topic of privacy against

inference is given by the recent field of functional encryption (FE) [32, 76, 77] – a scheme

that allows function computation on ciphertext. More precisely, letting 𝑦 be Alice’s data,

and 𝑓(𝑦) be the desired function to be computed, under FE Alice releases an encrypted

ciphertext Enc(𝑦, 𝑘) with 𝑘 being a secret key, such that there exist an efficient function

𝑔 such that 𝑓(𝑦) = 𝑔(Enc(𝑦), 𝑘). In other words, Alice may intentionally reveal part of

her encrypted data (the function output) to Bob if he is an authorized entity. With a FE

scheme, Alice may disclose her personal data 𝑌 for the purpose of receiving a specific service
1In this thesis, we refer any scheme with computational hardness assumptions on the adversary as

cryptographic security.
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𝑓(𝑌 )– and nothing more.

Similarly, we mention secure multi-party computation systems (MPC), see [59] and ref-

erences therein for a survey of results. In MPC, the goal is for a group of users to jointly

compute a function of private data, while keeping their own data cryptographically secure.

More precisely, 𝑚 participants have access to private data 𝑦1, . . . , 𝑦𝑚, and wish to jointly

compute a function 𝑓(𝑦1, . . . , 𝑦𝑚), while keeping their own private data 𝑦𝑖 hidden from the

other participants. In principle, MPC also provides a solution to disclosure of personal data

online, via the means of encryption.

The final approach we mention is given via the means of fully homomorphic encryption

(FHE), see [11]. FHE allows operations to be performed on the cyphertext, such that the

result of the decoding process is the desired operation performed on the raw data. In other

words, Bob may perform operations on the ciphertext Enc(𝑦), such that the results of the

decoding output is the desired function. Note that, while in in FE, Bob has access to the

function 𝑓(𝑦) in plaintext, in FHE, decoding must happen at Alice’s end, i.e., Bob may only

perform the computation but may not observe the result. This technique can thus be used

to remove privacy barriers in several applications, by allowing operations on the personal

data of Alice without ever revealing the content of the data itself.

There are, however several main differences in the threats models which ought to be

emphasized:

∙ Computation hardness assumptions: In MPC and related methods, it is assumed

that the adversary has some computational restrictions. The methods we will describe

in this thesis regarding privacy against inference make no such assumption, and rather

provide fundamental information theoretic guarantees on the expected performance of

an inference attack.

∙ Exactness of the function computation: Traditionally, the function to be com-

puted is known in advance at all parties 2, and is recovered perfectly following the

decoding. Instead, the solutions we propose will introduce statistical noise, i.e., the

recovered function will be only approximately and statistically close to the desired

function.

∙ Key generation: MPC protocols require keys, whose length depends on the length of
2Note that this can be generalized, via fully homomorphic encryption.
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the data, and the computational guarantee that one wishes to provide. In the methods

we will discuss, no key generation step is assumed.

∙ Probabilistic assumption: In the cryptographic setup, there is no major assump-

tion on the probabilistic distribution of the data 𝑑. Instead, the inference setup we

introduce considers a probabilistic data generation process for both the data 𝑌 ∈ 𝒴
and the sensitive data 𝑆 ∈ 𝒮.

∙ Knowledge of sensitive data: Finally, in the MPC setup, the goal is to encrypt

the data 𝑌 itself – there is no sensitive variable 𝑆 which is related to the data itself.

Instead, the privacy setup we consider is an inference setup in which the sensitive

parameters are known in advance, and the schemes depend on the distribution 𝑃𝑆,𝑌 .

The differences listed above are significant, but we believe that the information theoretic

point of view brings an additional dimension to the problem of privacy against inference,

and is relevant in practice, as will be seen through the various applications showcased in

this thesis. Note that the methods presented can also be complimentary, i.e., we expect that

a realistic privacy preserving system should make use of both statistical tools to provide

privacy, while also relying on cryptographic principles.

1.2.2 Differential-Privacy

Since its inception in 2006, Differential Privacy[68] (DP) has emerged as one of the main

frameworks to design, evaluate and implement privacy preserving data analytics. Privacy

systems based on DP, and its numerous generalizations (see e.g. [64, 69] for a survey of

results), have been used successfully deployed in the context of statistical databases, defer-

entially private learning, privacy preserving surveying, and much more. Some highlighted

applications of DP are Apple’s large-scale private learning of users preferences and behav-

iors [6], and the 2020 United States Census’ privatization method to provide data privacy

protection [9], each impacting millions of individuals. In a few words, DP guarantees that

the answer of a query be statistically indistinguishable whether an individual participates

in the database or not. In other words, even if an adversary had background knowledge of

all records in the database before the participation of the an individual, he/she would be

unable to infer the private record of the latter from the output of the query. More precisely,
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a randomized mapping ℳ(𝑦) → R taking inputs 𝑦 ∈ 𝒴 3 is (𝜖, 𝛿)-DP, if for any pair of

neighboring 𝑦 and 𝑦′, and any measurable set 𝑆,

P[ℳ(𝑦) ∈ 𝑆] ≤ 𝑒𝜖P[ℳ(𝑦′) ∈ 𝑆] + 𝛿. (1.2)

Note that by denoting the output of the randomized mapping ℳ(𝑦) by 𝑈 , we can equiva-

lently represent the statistics of the randomized mapping via a channel 𝑃𝑈 |𝑌 , and thus, DP

can be seen as a stability property of the distributions 𝑃𝑈 |𝑌=𝑦 for varying 𝑦.

Similar to the methods we will study, the approximately indistinguishable outputs in DP

are usually obtained via randomization, that is some form of statistical mechanism is used

to obfuscate the individual’s personal record. How private a given statistical mechanism

is, is captured by the parameters 𝜖 and 𝛿. The smaller 𝜖 and 𝛿, the more privacy can be

guaranteed, which captures how little the adversary can infer about the individual’s record,

or equivalently, how many queries he would require to learn a fixed amount about this

record. However, mechanisms with high privacy requirements also suffer from loss in utility

as a highly private scheme relies on additional noise. Thus, there is also an inherent trade-off

between privacy and utility, which in DP manifests itself in the trade-off between the utility

of a mechanism, and the privacy parameters (𝜖, 𝛿).

Despite the similarities, we note the following main differences between DP, and in

particular local-DP, and the privacy against inference framework we propose:

∙ Probabilistic assumption: In DP, there is no assumption on the data generation

process of the data 𝑦 – the condition (1.2) holds for all neighboring pairs in 𝒴. Instead,

the methods we will study in this thesis make an assumption on the probabilistic

generation of the data, i.e. 𝑦 ∼ 𝑃𝑌 , and provide an expected guarantee over this

distribution.

∙ Knowledge of the sensitive data: Note that in DP, there is no distinction between

the personal data 𝑌 and the sensitive data 𝑆. As such, DP schemes are universal to

the sensitive data 𝑆. However, this universality comes at a cost – the DP condition fails

to provide information theoretic guarantee on the amount of knowledge an adversary

can gain from the observation 𝑈 , as was shown in [60]. On the other hand, the privacy

3The setup we describe here is akin to the local-DP setup [85], in which Alice disorts her data before
releasing it to the central authority Bob.
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against inference framework we will discuss depends on the sensitive data 𝑆, and the

probabilistic relationship between 𝑌 and 𝑆.

∙ Knowledge of the computed function: DP schemes are often designed hand-in-

hand with the desired query 𝑓(𝑦). Thus, they often require cooperation from the

service provider Bob in that the query that is sent needs to be known in advance. In

the framework we propose, we will modify the data 𝑌 itself, in a way which can be

made transparent from Bob’s point of view.

Despite these differences, local DP and Information theoretic measures of privacy are

related as can be seen in [95]. Once again, the methods we propose are complimentary to

DP, and can be used hand in hand. In particular, DP can be used as an incentivization

mechanism for users to participate in a data collection system, while the privacy against

inference framework can be used to provide strong statistical guarantees on the adversary’s

inference.
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Chapter 2

Privacy against Inference

Perhaps the most illuminating example of the modern-age privacy puzzle is given by the

Netflix privacy-lawsuit. In 2006, the streaming company launched a public contest with a

massive price pool of one million dollars to improve its recommender system. To this end, a

large dataset of user data was released to the public – 100 millions movie ratings, from about

480 thousands Netflix users. Researchers from all over the world could use this data to design

recommender systems, potentially significantly improving upon Netflix’s system of the time.

The data was sanitized for privacy, the names of the users were erased and replaced with

unique IDs, along with some other mild forms of anonymization. Despite this, it only took

several weeks for two researchers from University of Texas, Arvind Narayanan and Vitaly

Shmatikov, to de-anonymize several Netflix users, using publicly available information from

another movie rating aggregation website. Their publication [106] has since been cited more

than two thousand times and is a seminal work on the subject of data-anonymization. But

is it really a big privacy breach to learn about someone’s movie taste – enough to warrant

Netflix ultimately settling the lawsuit at the cost of nine millions dollars? The answer to

this question boils down to the so-called Brokeback Mountain factor. The major privacy leak

was not limited to movie taste, but rather a personal and sensitive attribute of some users:

in the case of the Netflix lawsuit, sexual orientation. This is why a closeted lesbian mother

joined the lawsuit, because she believed that "were her sexual orientation public knowledge,

it would negatively affect her ability to pursue her livelihood and support her family and

would hinder her and her children’s ability to live peaceful lives" [121]. In other words,

the privacy risk is in the inference threat – from the movie ratings, what can be deduced
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about a person’s sexual orientation. In fact, the issue goes beyond sexual orientation, as it

was shown that political leaning, race, gender, social status, and other potentially sensitive

attributes can be inferred from movie ratings.

This simultaneous management of data that is publicly shared, e.g. movie ratings, and

data that is sensitive, e.g. sexual orientation, is really at the core of the privacy conundrum.

Privacy leaks also happen in unexpected ways, especially when the boundary between sen-

sitive data and public data is unclear. For example, while some TV channels and programs

are clearly indicative of a person’s political leaning, there is also more indirect correlation,

e.g., fans of the NBA tend to be more liberal, and fans of the NFL more conservative.

Without a systematic and global understanding of the inference threat, users are bound to

inadvertently leak information about their private attributes. The object of this chapter

is to provide this theoretical foundation to quantify the privacy threat, and subsequently,

to design privacy-enhancing solutions. A critical component of our discussion is related to

the fundamental privacy-utility trade-off. As shall be made formal in the following sections,

there is an inherent tension between leakage of personal information, and quality of the ser-

vice one receives in exchange from personal data. An instance of this trade-off is illustrated

in the movie rating problem: sharing all your ratings improves the quality of your recom-

mendation, but at the expense of additional personal data leakage. Privacy is often thought

of as an all-or-nothing issue, but in our work, we provide nuance by discussing operating

points in between the complete privacy and the complete disregard for privacy cases. In

fact, we argue that this viewpoint is essential in tackling some of the important applications

in the era of big data. In certain domains such as genomic data, privacy is a critical concern

– because of ethical considerations, and heavy regulations. Laboratories which collect such

data may, in fact, not have an option, and are bound by law to provide strong privacy

guarantees to their patients. On the other hand, a movie streaming company, a large online

social network platform, or an online advertising group are less likely to provide complete

privacy if it jeopardizes their revenue significantly. Similarly, users of such services might

also be willing to give up part of their privacy in exchange for a better service. Therefore,

for data aggregating entities, it is essential to capture the best privacy that can be achieved

within a given accuracy budget. The dual problem of obtaining the best service within

a privacy budget is relevant for users. Characterizing precisely this optimal trade-off is a

major goal of our work. On a technical level, we build upon the privacy versus inference
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formulation which was introduced in [60], and expand this setup on its properties in several

ways, as explained in the contributions to follow.

Main Contributions and Organization of this Chapter:

To address the issues discussed above, we have organized this chapter as follows. First, in

Section 2.1, we will provide the mathematical formulation of the privacy versus inference

problem, starting with tools from statistical learning theory. Using this formulation, we will

develop in Section 2.2 a privacy distortion trade-off problem which will be characterized as

an optimization problem, and discuss its properties. Section 2.3 is devoted to the practical

issues around the design of privacy mappings, and we will develop several tools which allows

to efficiently solve the large scale optimization induced by the privacy-distortion formulation,

and discuss the case of uncertainty in the knowledge of the prior distribution 𝑃𝑆,𝑋 . Finally,

in Section 2.4, we introduce the Privacy Funnel as an optimization which captures the

fundamental information theoretic trade-off between privacy and utility. Despite the non-

convexity of this problem, we discuss some applications and approximations to the Privacy

Funnel method. Our novel key contributions are as follows:

1. Establish the universality of the log-loss as privacy metric by bounding the loss of any

bounded loss by 𝑂(
√︀
𝐼(𝑌 ;𝑆)). In other words, guaranteeing that the log-loss is small

is sufficient to guarantee that any such loss is also bounded.

2. Develop Algorithms to efficiently solve the Privacy-Distortion Optimization by lever-

aging the structure of the optimization (via sparse mappings), and/or the structure of

the prior distribution via quantization.

3. Establish stability results that guarantee small errors in the estimate of the prior

distribution 𝑃𝑆,𝑋 lead to almost-optimal privacy-mappings.

4. Introduce the Privacy Funnel, as an information theoretic formulation of the privacy-

utility trade-off, provide a close-form solution of the Privacy-Funnel for the Binary

Symmetric Sources, and propose a greedy algorithm to approximately solve the Privacy

Funnel for general discrete sources.
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Related Work:

Privacy-utility tradeoffs have been studied under either a local privacy setting, or a central-

ized privacy setting. In the local privacy setting, users do not trust the entity aggregating

data. Thus, each user holds her data locally, and processes it according to a privacy-

preserving mechanism before releasing it to the aggregator. Local privacy dates back to

randomized response in surveys [148], and has been considered in privacy for data mining

and statistics [12, 104, 72, 116, 85, 22, 61]. The setup we consider falls under the local

privacy setting, since the analyst is assumed to be untrusted, and users wish to protect

against statistical inference of private information from data they release to the analyst.

In contrast, the framework we study models non-asymptotic privacy guarantees in terms of

the inference cost gain that an adversary achieves by observing the released output. Local

privacy has also been considered in the differential privacy [62, 63] corpus, e.g. for learning

concept classes [85], training clustering algorithms [22], and statistical parameter estimation

[61], from data distorted locally by users. These works are concerned with the problem of

learning aggregate statistical properties from the data of several users. In contrast, we focus

on providing utility to an individual user while maintaining the privacy of this individual

user’s attributes.

In the centralized privacy setting, a trusted entity aggregates data from users in a

database, while an untrusted analyst queries the database. The trusted aggregator jointly

processes data from multiple users according to a centralized privacy-preserving mechanism

to produce a privatized answer to the query, that is released to the analyst. The central-

ized privacy setting is less stringent than the local privacy setting. Information theoretic

frameworks have been used to analyze privacy-utility tradeoffs in the centralized database

setting. One line of work [118, 152, 127] focuses mainly on collective privacy for all or

subsets of the entries of a data base, and provide fundamental and asymptotic results on

the rate-distortion-equivocation region as the number of data samples grows arbitrarily

large. Traditionally, many differential privacy works assumed a centralized setting with a

trusted database owner, and focused on making the output of an application running on

the database differentially private, e.g. data mining [73], social recommendations [94], rec-

ommender systems [99], as well as algorithms for statistical estimators [132, 67], classifiers

[46, 119], principal component analysis [47], etc. More specifically, [99] considers the case of
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a trusted recommender system who has access to ratings from privacy-conscious users, and

addresses the challenge of training a differentially-private recommendation algorithm based

on these original ratings. In contrast, we study a local privacy setup where the analyst is

not trusted by privacy-conscious users, who wish to protect against statistical inference of

private information from data they release to the analyst.

This chapter of the thesis relates to a vast literature on the study of differential privacy

introduced in [62, 63]. Differential privacy is studied in many contexts including mechanism

design [100, 75], learning theory [70, 30, 61], and data mining [22, 66, 65] (see [69] for a

survey of results). Moreover, [12, 98] study the class of adding distortion to the public data

to protect privacy and [137, 146] study the use of 𝑘−anonymity to mask private information

in classification.

Several approaches rely on information-theoretic tools to model privacy-utility trade-offs,

such as [117, 151, 72, 127]. Indeed, information theory, and more specifically rate-distortion

theory, appear as natural frameworks to analyze the privacy-utility trade-off resulting from

the distortion of correlated data. Although the approach we introduce in this thesis in-

volves information theoretic metrics, it is fundamentally different from previous information

theoretic privacy models. Indeed, traditional information theoretic privacy models, such as

[151, 127, 126], focus on collective privacy for all or subsets of the entries of a database, and

provide asymptotic guarantees on the average remaining uncertainty per database entry –

or equivocation per input variable – after the output release. More precisely, the average

equivocation per entry is modeled as the conditional entropy of the input variables given

the released output, normalized by the number of input variables. In contrast, the general

framework introduced in this thesis provides privacy guarantees in terms of bounds on the

inference cost gain that an adversary achieves by observing the released output. The use of

a self-information cost yields a non-asymptotic information theoretic framework modeling

the privacy risk in terms of information leakage. This framework, in turn, can be used to

design practical privacy preserving mappings.

Finally, mutual information as a measure of privacy has been used in the literature (see,

e.g., [44, 154, 45]), mostly under the context of quantitative information flow and anonymity

systems. The connections between different privacy notions have been studied recently, e.g.,

[13, 103, 147]. Several works have studied a rate-distortion approach to privacy including

[128, 16, 105, 23, 17, 34]. More recently, generalizations to the privacy-utility trade-offs
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have been considered, e.g. [113] measures the privacy leakage in terms of total variation;

[18, 107] consider privacy against guessing attacks; [90, 89] study privacy guarantees under 𝛼-

maximum leakage; [91, 88, 134] are concerned with privacy against an adversary performing

a hypothesis test; the estimation formulations of the privacy utility trade-offs have also

been extensively considered in [19, 144, 145]. We also mention [41, 114] which study the

fundamental limits of perfect privacy. Finally, [82] takes a data-driven approach to the

privacy funnel problem.

2.1 Preliminaries

We start by reviewing the general threat model which was introduced in [60]. We assume

that there are two parties that communicate over a noiseless channel, Alice and Bob. Alice

has access to a set of measurement points, represented by the r.v. 𝑋 ∈ 𝒳 , that she wishes

to transmit to Bob. Simultaneously, Alice also requires that a set of variables 𝑆 ∈ 𝒮
should remain private, where 𝑆 is jointly distributed with 𝑋 according to the distribution

(𝑋,𝑆) ∼ 𝑃𝑋,𝑆(𝑥, 𝑠), (𝑥, 𝑠) ∈ 𝒳 × 𝒮. Depending on the considered setting, the variable 𝑆

can be either directly accessible to Alice or inferred from 𝑋. If no privacy mechanism was

in place, Alice would simply transmit 𝑋 to Bob.

Bob has a utility requirement for the information sent by Alice. Furthermore, Bob

will try to learn 𝑆 from Alice’s transmission. Alice’s goal is thus to find and transmit a

sanitized version of 𝑋, denoted by 𝑌 ∈ 𝒴, such that 𝑌 satisfies a target utility constraint,

but “protects” (in a sense made more precise later) the private variable 𝑆. In the settings

we will consider in this thesis, Bob is passive but computationally unbounded, and will try

to infer 𝑆 based on 𝑌 . This setting is also known as honest but curious adversary.

We consider, without loss of generality, that 𝑆 → 𝑋 → 𝑌 . Note that this model

can capture the case where 𝑆 is directly accessible by Alice by appropriately adjusting the

alphabet 𝒳 . For example, this can be done by representing 𝑆 → 𝑌 as an injective mapping

or allowing 𝒮 ⊂ 𝒳 . In other words, even though the privacy mechanism is designed as a

mapping from 𝒳 to 𝒴, it is not limited to an output perturbation, and it encompasses input

perturbation settings.

Definition 1. A privacy-preserving mapping is a transition probability 𝑃𝑌 |𝑋(𝑦|𝑥), 𝑥 ∈
𝒳 , 𝑦 ∈ 𝒴. A distortion, or utility measure, is a function 𝑑 : 𝒳 ×𝒴 → R+. We say a privacy
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mapping 𝑃𝑌 |𝑋 has 𝛿-distortion for some 𝛿 ≥ 0, if E[𝑑(𝑋,𝑌 )] ≤ 𝛿 when (𝑋,𝑌 ) ∼ 𝑃𝑋𝑃𝑌 |𝑋 .

Throughout this preliminaries section, we make the following assumptions:

1. Alice and Bob know the prior distribution of 𝑃𝑋,𝑆(·). This represents the side infor-

mation that an adversary has. In Section 2.3.4, we relax this assumption to the case

where only 𝑃𝑋 is known.

2. Bob has complete knowledge of the privacy preserving mapping, i.e., 𝑔 and 𝑃𝑌 |𝑋(·)
are known.

Note that this represents the worst-case statistical side information that an adversary

can have about the input. In Section 2.3.4 we will discuss the case where the knowledge of

𝑃𝑆,𝑋 is inexact.

2.1.1 Threat model

We assume that Bob selects a revised distribution 𝑞 ∈ 𝒫𝑆 , where 𝒫𝑆 is the set of all

probability distributions over 𝒮, in order to minimize an expected cost 𝐶(𝑆, 𝑞). The cost

𝐶 : 𝒮 × 𝒫𝑆 → R+ models the statistical risk or cost, of picking an estimator 𝑞 to estimate

the random variable 𝑆. In other words, the adversary chooses 𝑞 as the solution of the

minimization

𝑐*0 = min
𝑞∈𝒫𝑆

E𝑆 [𝐶(𝑆, 𝑞)]

prior to observing 𝑌 , and

𝑐*𝑦 = min
𝑞∈𝒫𝑆

E𝑆|𝑌 [𝐶(𝑆, 𝑞)|𝑌 = 𝑦]

after observing the output 𝑌 . Note that this restriction on Bob models a very broad class

of adversaries that perform statistical inference, capturing how an adversary acts in order

to infer a revised belief distribution over the private variables 𝑆 when observing 𝑌 . After

choosing this distribution, the adversary can perform an estimate of the input distribution

(e.g. using a MAP estimator). However, the quality of the inference is inherently tied to

the revised distribution 𝑞.
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The average cost gain by an adversary after observing the output is

∆𝐶 = 𝑐*0 − E𝑌 [𝑐*𝑦]. (2.1)

We also mention that one can represent similarly the maximum cost gain by an adversary

in terms of the most informative output (i.e. the output that give the largest gain in cost),

via:

∆𝐶* = 𝑐*0 −min
𝑦∈𝒴

𝑐*𝑦. (2.2)

In the next section we present a formulation for the privacy-utility tradeoff based on this

general setting.

2.2 The Privacy-Distortion Trade-off

Our goal is to design privacy preserving mappings that minimize ∆𝐶 for a given distortion

level 𝐷, characterizing the fundamental privacy-utility tradeoff. More precisely, our focus is

to solve optimization problems over 𝑃𝑌 |𝑋 ∈ 𝒫𝑌 |𝑋 of the form

min ∆𝐶 (2.3)

s.t. E𝑋,𝑌 [𝑑(𝑋,𝑌 )] ≤ 𝛿 ,

where 𝒫𝑌 |𝑋 is the set of all conditional probability distributions of 𝑌 given 𝑋.

Remark 1. In the remainder of the chapter we consider only one distortion constraint.

However, it is straightforward to generalize the formulation and the subsequent optimization

problems to multiple distinct distortion constraints

E𝑋,𝑌 [𝑑1(𝑋,𝑌 )] ≤ 𝛿1, . . . ,E𝑋,𝑌 [𝑑𝑛(𝑋,𝑌 )] ≤ 𝛿𝑛.

This can be done by simply adding linear constraints to the optimization problem.

In principle, the formulation introduced above is general and can be applied to different

cost functions. Throughout the chapter, we specialize this formulation to the log-loss, or

self-information cost. We will show subsequently how the log-loss can be used to bound
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any other loss function. In addition to its generality, the log-loss has additional convenient

advantages. Namely, it is a local, proper and differentiable loss, which will, as we will see,

lead to a convex optimization formulation for privacy-utility trade-offs. For an overview of

the central role of the self-information cost function in prediction, we refer the reader to

[102]. Nevertheless, it is important to emphasize that many of the results presented in this

chapter hold for more general loss functions, at the expense of additional notation.

The self information (or log-loss) cost function is given by

𝐶(𝑆, 𝑞) = − log 𝑞(𝑆).

It is straightforward to show that for the log-loss function 𝑐*0 = 𝐻(𝑆) and, consequently,

𝑐*𝑦 = 𝐻(𝑆|𝑌 = 𝑦), and, therefore

∆𝐶 = 𝐼(𝑆;𝑌 ) = E𝑌 [𝐷(𝑃𝑆|𝑌 ||𝑃𝑆)],

From this definition, the optimal privacy-preserving mapping (the one with privacy𝐺𝑑(𝛿, 𝑃𝑆,𝑋))

is the solution of the minimization

min
𝑃𝑌 |𝑋

𝐼(𝑆;𝑌 )

s.t. E𝑋,𝑌 [𝑑(𝑋,𝑌 )] ≤ 𝛿 . (2.4)

In extreme cases, we say a privacy-mapping has full privacy if 𝐼(𝑆;𝑌 ) = 0 (which implies

the released random variable, 𝑌 , is independent from the private random variable, 𝑆), and

no privacy if 𝐼(𝑆;𝑌 ) = 𝐻(𝑆) ( implies that 𝑆 is fully recoverable from 𝑌 ).

Observe that finding the mapping 𝑃𝑌 |𝑋(𝑦|𝑥) that provides the minimum information

leakage is a modified rate-distortion problem. Alternatively, we can rewrite this optimization

as

min
𝑃𝑌 |𝑋

E𝑌 [𝐷(𝑃𝑆|𝑌 ||𝑃𝑆)] (2.5)

s.t. E𝑋,𝑌 [𝑑(𝑋,𝑌 )] ≤ 𝛿 .

The minimization (2.5) has an interesting and intuitive interpretation. If we consider
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KL-divergence as a metric for the distance between two distributions, (2.5) states that

the revised distribution after observing 𝑌 should be as close as possible to the a priori

distribution.

We are now ready to define the privacy-utility region.

Definition 2. For 𝐷 ≥ 0, distortion measure 𝑑 : 𝒳 × 𝒴 → R+, and a joint distribution

𝑃𝑆,𝑋 over 𝒮 × 𝒳 , we define the optimal privacy-utility function 𝐺𝑑(𝐷,𝑃𝑆,𝑋) as

𝐺𝑑(𝐷,𝑃𝑆,𝑋) , inf {𝐼(𝑆;𝑌 ) : E[𝑑(𝑋,𝑌 )] ≤ 𝐷,𝑆 → 𝑋 → 𝑌 } , (2.6)

where the infimum is over all mappings 𝑃𝑌 |𝑋 such that 𝒴 is finite. For a fixed 𝑃𝑆,𝑋 and

𝐷 ≥ 0, the set of pairs {(𝐷,𝐺𝑑(𝐷,𝑃𝑆,𝑋))} is called the privacy-utility region of 𝑃𝑆,𝑋 .

We next characterize a property of the optimal privacy-preserving mapping which will be

useful in Section 2.3 to construct solutions to the optimization problem 2.4. In particular,

the next lemma suggests that the size of the output alphabets |𝒴| one need to consider

is bounded by |𝒳 | + 1. This lemma will be used in Section 2.3 when we find to design

algorithms to find the optimum privacy-preserving mapping.

Lemma 1. We have

𝐺𝑑(𝐷,𝑃𝑆,𝑋) = min
𝑃𝑌 |𝑋

{𝐼(𝑆;𝑌 ) : E[𝑑(𝑋,𝑌 )] ≤ 𝐷,

𝑆 → 𝑋 → 𝑌, |𝒴| ≤ |𝒳 |+ 1} .

Proof. Let 𝑃𝑆,𝑋 and 𝑃𝑌 |𝑋 be given, with 𝑆 → 𝑋 → 𝑌 . Denote by w𝑖 the vector in the

|𝒳 |-simplex with entries 𝑃𝑋|𝑌 (·|𝑖). Furthermore, let 𝑎𝑖 , E[𝑑(𝑋,𝑌 )|𝑌 = 𝑖], and 𝑏𝑖 ,

𝐻(𝑆)−𝐻(𝑆|𝑌 = 𝑖). Therefore

|𝒴|∑︁
𝑖=1

𝑃𝑌 (𝑖) [w𝑖, 𝑎𝑖, 𝑏𝑖] = [𝑃𝑋 ,E[𝑑(𝑋,𝑌 )], 𝐼(𝑆;𝑌 )] . (2.7)

Since w𝑖 belongs to the |𝒳 |-simplex, the vector [w𝑖, 𝑎𝑖, 𝑏𝑖] is taken from a connected, compact

|𝒳 | + 1 dimensional space. Then, from Fenchel-Eggleston strengthening of Carathéodory’s

theorem [71, Theorem 18, pg. 35], the point [p𝑋 ,E[𝑑(𝑋,𝑌 )],∆𝐶] can also be achieved by

at most |𝒳 |+ 1 non-zero values of 𝑃𝑌 (𝑖). It follows directly that it is sufficient to consider
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|𝒴| ≤ |𝒳 | + 1 for the infimum (2.43). The set of all mappings 𝑃𝑌 |𝑋 for |𝒴| ≤ |𝒳 | + 1 is

compact, and both 𝑃𝑌 |𝑋 → 𝐼(𝑆;𝑌 ) and 𝑃𝑌 |𝑋 → E[𝑑(𝑋,𝑌 )] are continuous and bounded

when 𝑆, 𝑋 and 𝑌 have finite support. Consequently, the infimum in (2.43) is attainable.

Next, we give an example of the optimization given in (2.5) and its solution.

Example 1. Let 𝑆 be a Bernoulli(12) distribution and 𝑋 be the result of 𝑆 passing through

a BSC(𝑝) channel where 𝑝 ≤ 1
2 . Suppose the distortion measure is hamming distortion, i.e.

E[𝑑(𝑋,𝑌 )] = P[𝑋 ̸= 𝑌 ], and consider the log-loss. We claim that in this setting for a given

𝛿 ∈ (0, 1), we have

𝐺𝑑(𝛿, 𝑃𝑆,𝑋) = 1− ℎ𝑏(𝑝 * 𝛿),

where 𝑝 * 𝛿 = 𝑝(1 − 𝛿) + (1 − 𝑝)𝛿. First, note that using the privacy-preserving mapping,

𝑃𝑌 |𝑋 , given by 𝑌 = 𝑋 ⊕ 𝑍, where 𝑍 has a Bern(𝛿) distribution, we have E[𝑑(𝑋,𝑌 )] ≤ 𝛿

and 𝐼(𝑆;𝑌 ) = 1−ℎ(𝑝 * 𝛿). This shows that 𝐺𝑑(𝛿, 𝑃𝑆,𝑋) ≤ 1−ℎ𝑏(𝑝 * 𝛿). Next, we show that

𝐺𝑑(𝛿, 𝑃𝑆,𝑋) ≥ 1−ℎ𝑏(𝑝*𝛿). We have 𝐼(𝑆;𝑌 ) = 𝐻(𝑆)−𝐻(𝑆|𝑌 ) = 1−𝐻(𝑆⊕𝑌 |𝑌 ) ≥ 1−𝐻(𝑆⊕
𝑌 ). Using Markov property, it follows that P[𝑆 ⊕ 𝑌 = 1] ≤ 𝑝 * 𝛿, which completes the proof

of the claim. Now suppose we want to have full privacy. Given 𝐺𝑑(𝐷,𝑃𝑆,𝑋) = 1−ℎ𝑏(𝑝*𝐷),

full privacy is possible only in the following two cases:

1. 𝑝 = 1
2 , implying 𝑋 is independent from 𝑆. In this case, there is no privacy problem to

begin with.

2. 𝛿 = 1
2 , implying 𝑌 is independent from 𝑋. In this case, full privacy implies no utility

is preserved in the released data.

2.2.1 Generality of log-loss as a privacy metric

In this section, we focus on the threat model under the log-loss cost function and show

its generality. In particular, we establish that for any bounded cost function 𝐶(𝑆, 𝑞), the

associated inference cost gain ∆𝐶 can be upperbounded by an explicit constant factor of√︀
𝐼(𝑆;𝑌 ). Thus, controlling the cost gain under the log-loss, so that it does not exceed a

target privacy level, is sufficient to ensure that the privacy threat under a different bounded

cost function would also be controlled. Therefore, the design of the privacy mapping can be

focused on minimizing the privacy leakage as measured by 𝐼(𝑆;𝑌 ).
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Theorem 1. Let 𝐿 = sup𝑠∈𝒮,𝑞∈𝒫𝑆
|𝐶(𝑠, 𝑞)| <∞. We have ∆𝐶 = 𝑐*0−E𝑃𝑌

[𝑐*𝑌 ] ≤ 2
√

2𝐿
√︀
𝐼(𝑆;𝑌 ).

The proof of Theorem 1 requires the following lemma.

Lemma 2. Let 𝐶(𝑠, 𝑞) be a bounded cost function such that 𝐿 = sup𝑠∈𝒮,𝑞∈𝒫𝑆
|𝐶(𝑠, 𝑞)| <∞.

For any given 𝑦 ∈ 𝒴,

E𝑃𝑆|𝑌 [𝐶(𝑆, 𝑞*0)− 𝐶(𝑆, 𝑞*𝑦)|𝑌 = 𝑦] ≤ 2
√

2𝐿
√︁
𝐷(𝑃𝑆|𝑌=𝑦||𝑃𝑆),

where 𝑞*0 and 𝑞*𝑦 are the maximizing distributions for 𝑐*0 and 𝑐*𝑦 as defined in Section 2.1.1,

respectively.

Proof. We expand E𝑃𝑆|𝑌 [𝐶(𝑆, 𝑞*0)− 𝐶(𝑆, 𝑞*𝑦)|𝑌 = 𝑦] and have:

∑︁
𝑠

𝑝(𝑠|𝑦)[𝐶(𝑠, 𝑞*0)− 𝐶(𝑠, 𝑞*𝑦)]

=
∑︁
𝑠

(𝑃𝑆|𝑌 (𝑠|𝑦)− 𝑃𝑆(𝑠) + 𝑃𝑆(𝑠))[𝐶(𝑠, 𝑐*0)− 𝐶(𝑠, 𝑞*𝑦)]

=
∑︁
𝑠

(𝑃𝑆|𝑌 (𝑠|𝑦)− 𝑃𝑆(𝑠))[𝐶(𝑠, 𝑞*0)− 𝐶(𝑠, 𝑞*𝑦)]

+
∑︁
𝑠

𝑝(𝑠)[𝐶(𝑠, 𝑞*0)− 𝐶(𝑠, 𝑞*𝑦)]

≤ 2𝐿
∑︁
𝑠

|𝑝(𝑠|𝑦)− 𝑝(𝑠)|+ (E𝑃𝑆
[𝐶(𝑆, 𝑞*0)]− E𝑃𝑆

[𝐶(𝑆, 𝑞*𝑦)]),

≤ 2𝐿
∑︁
𝑠

|𝑃𝑆|𝑌 (𝑠|𝑦)− 𝑃𝑆(𝑠)|

= 4𝐿||𝑃𝑆|𝑌=𝑦 − 𝑃𝑆 ||𝑇𝑉

≤ 4𝐿

√︂
1

2
𝐷(𝑃𝑆|𝑌=𝑦||𝑃𝑆),

where we used that 𝐶(𝑠, 𝑞*0) − 𝐶(𝑠, 𝑞*𝑦) ≤ 2𝐿 and E𝑃𝑆
[𝐶(𝑆, 𝑞*0)] − E𝑃𝑆

[𝐶(𝑆, 𝑞*𝑦)] ≤ 0. And

the last inequality follows from using Pinsker’s inequality [54, Problem 3.18] (where the log

in the definition of divergence is natural log).

We now prove Theorem 1.

proof of Theorem 1. We have

∆𝐶 = E𝑃𝑆
[𝐶(𝑆, 𝑞*0)]− E𝑃𝑌

[︁
E𝑃𝑆|𝑌 [𝐶(𝑆, 𝑞*𝑦)|𝑌 = 𝑦]

]︁
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= E𝑃𝑌

[︁
E𝑃𝑆|𝑌 [𝐶(𝑆, 𝑞*0)− 𝐶(𝑆, 𝑞*𝑦)|𝑌 = 𝑦]

]︁
≤ 2
√

2𝐿E𝑃𝑌

[︀
𝐷(𝑃𝑆|𝑌=𝑦||𝑃𝑆)

]︀
≤ 2
√

2𝐿
√︀
𝐼(𝑆;𝑌 ),

where the last step follows from concavity of square root function and the one before that

follows from Lemma 2.

Another important property of the log-loss is that it is a proper loss function, i.e., for

any 𝑆 ∼ 𝑃𝑆 , min𝑞 E[𝐶(𝑞, 𝑆)] = E[𝐶(𝑃𝑆 , 𝑆)]. In other words, a proper loss function can

be minimized by using the true distribution 𝑃𝑆 . The next proposition shows that, under

some regularity conditions, the log-loss 𝐶(𝑞, 𝑆) = − log 𝑞(𝑆) is in fact the unique proper

loss-function.

Proposition 1. Let 𝐶(𝑞, 𝑆) be smooth and differentiable in 𝑞, and assume that it takes the

form 𝐶(𝑆, 𝑞) = 𝐹 (𝑞(𝑆)) for some function 𝐹 . If argmin𝑞E[𝐶(𝑆, 𝑞)] = 𝑃𝑆, then 𝐶(𝑞, 𝑆) =

−𝐴 log 𝑞(𝑆) +𝐵 for some constants 𝐴,𝐵 ∈ R with 𝐴 > 0.

Proof. This can be proved in several ways, see e.g. [10]. The proof sketch below reduces the

problem to a differential equation, whose solution is given by the log-loss functional.

Note that since 𝐶(𝑞, 𝑆) = 𝐹 (𝑞(𝑆)) is differentiable in 𝑞, we have that the functional

𝐽(𝑞) = ∇𝑞E[𝐹 (𝑞(𝑆))] + 𝜆 must evaluate to zero at 𝑞 = 𝑃𝑆 , where 𝜆 > 0 is a Lagrange

multiplier which enforces that
∑︀

𝑠∈𝒮 𝑞(𝑠) = 1. Denoting 𝑞𝑖 , 𝑞(𝑠𝑖), for 𝑠𝑖, 𝑖 = 1, . . . , |𝒮| an

indexing of 𝒮, we have:

[𝐽(𝑞)]𝑖 = 𝑃𝑆(𝑖)
𝜕

𝜕𝑞𝑖
𝐹 (𝑞𝑖) + 𝜆, (2.8)

for 𝑖 = 1, . . . , |𝒮|. Now evaluating (2.8) at 𝑞𝑖 = 𝑃𝑆(𝑖) and equaling to zero, and noting that

this is true for any 𝑃𝑆(𝑖), we have that any proper cost function must satisfy a differential

equation of the form, where we have used the change of variables 𝑥 = 𝑃𝑆(𝑖), and with

𝐹 ′(𝑥) = 𝜕
𝜕𝑥𝐹 (𝑥) and 𝐴 = 𝜆:

𝑥𝐹 ′(𝑥) +𝐴 = 0, (2.9)

The differential equation in (2.9) can be solved directly and has solutions of the type 𝐹 (𝑥) =

−𝐴 log 𝑥+𝐵, for constant 𝐵 ∈ R and 𝐴 > 0, which concludes the proof.
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2.2.2 Inference Defeat through Privacy

One natural and related question is whether a privacy mapping which is designed to minimize

average information leakage, privacy, by solving problem (2.4), also provides guarantees

on the probability of correctly inferring 𝑆 from the observation of 𝑌 , using any inference

algorithm. Next, we show a lower bound on the error probability in inferring 𝑆 from 𝑌 ,

based on a bound on privacy, using Fano’s inequality.

Proposition 2. Assume |𝒮| > 2 and 𝐼(𝑆;𝑌 ) ≤ 𝜖𝐻(𝑆), for some 𝜖 ∈ [0, 1]. Let 𝑆 be an

estimator of 𝑆 based on the observation 𝑌 (possibly randomized). We have

𝑃𝑒 , P[𝑆(𝑌 ) ̸= 𝑆] ≥ (1− 𝜖)𝐻(𝑆)− 1

log(|𝒮| − 1)
.

For |𝒮| = 2, we have ℎ(𝑃𝑒) ≥ (1− 𝜖)𝐻(𝑆).

Proof. Denote 𝑃𝑒 = P[𝑆(𝑌 ) ̸= 𝑆]. From Fano’s inequality [53], Theorem 2.10.1, we have

𝑃𝑒 (log(|𝒮| − 1)) ≥ 𝐻(𝑆|𝑌 )− ℎ(𝑃𝑒).

Since 𝐼(𝑌 ;𝑆) = 𝐻(𝑆)−𝐻(𝑆|𝑌 ) ≤ 𝜖𝐻(𝑆), we have 𝐻(𝑆|𝑌 ) ≥ (1− 𝜖)𝐻(𝑆). Therefore,

𝑃𝑒 ≥
(1− 𝜖)𝐻(𝑆)− ℎ(𝑃𝑒)

log(|𝒮| − 1)
≥ (1− 𝜖)𝐻(𝑆)− 1

log(|𝒮| − 1)
.

The proof when |𝒮| = 2 is similar.

Note that one can obtain tighter bounds than the one in Proposition 2 by considering

𝛽-conditional entropies as the privacy metric, as shown in [129]. In particular, as 𝛽 goes to

∞, the bound becomes tight as the loss considered becomes the 0-1 loss.

2.2.3 Application examples

We illustrate next how the proposed model can be cast in terms of privacy preserving queries

and hiding features within data sets.

Privacy-preserving queries to a database

The framework described above can be applied to database privacy problems, such as those

considered in differential privacy. In this case we denote the private variable as a vector
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S = 𝑆1, . . . , 𝑆𝑛, where 𝑆𝑗 ∈ 𝒮, 1 ≤ 𝑗 ≤ 𝑛 and 𝑆1, . . . , 𝑆𝑛 are discrete entries of a database

that represent, for example, the entries of 𝑛 users. A (not necessarily deterministic) function

𝑓 : 𝒮𝑛 → 𝒳 is calculated over the database with output 𝑋 such that 𝑋 = 𝑓(𝑆1, . . . , 𝑆𝑛).

The goal of the privacy preserving mapping is to present a query output 𝑌 such that the

individual entries 𝑆1, . . . , 𝑆𝑛 are “hidden”, i.e. the estimation cost gain of an adversary is

minimized according to the previous discussion, while still preserving the utility of the query

in terms of the target distortion constraint. We illustrate this case with the counting query,

which will be a recurring example throughout the rest of this chapter.

Example 2 (Counting query). Let 𝑆 = (𝑆1, . . . , 𝑆𝑛), where 𝑆𝑖’s are the entries in a database,

and define:

𝑋 = 𝑓(𝑆1, . . . , 𝑆𝑛) =
𝑛∑︁

𝑖=1

1𝐴(𝑆𝑖), (2.10)

where

1𝐴(𝑧) =

⎧⎪⎨⎪⎩
1 if 𝑧 has property 𝐴,

0 otherwise.

In this case there are two possible approaches: (i) output perturbation, where 𝑋 is distorted

directly to produce 𝑌 , and (ii) input perturbation, where each individual entry 𝑆𝑖 is distorted

directly, resulting in a new query output 𝑌 . In particular, if each database input 𝑆𝑖, 1 ≤
𝑖 ≤ 𝑛 satisfies P [1𝐴(𝑆𝑖) = 1] = 𝑝 and are independent and identically distributed. Then 𝑋

is a binomial random variable with parameter (𝑛, 𝑝). It follows that 𝐻(𝑆|𝑋 = 𝑥) = log
(︀
𝑛
𝑥

)︀
.

Consequently, the optimal privacy preserving mapping will be the one that results in a

posterior probability 𝑃𝑋|𝑌 (𝑥|𝑦) that is proportional to the size of the pre-image of 𝑥, i.e.

𝑃𝑋|𝑌 (𝑥|𝑦) ∝ |𝑓−1(𝑥)| =
(︀
𝑛
𝑥

)︀
.

Hiding dataset features

Another important particularization of the proposed framework is the obfuscation of a set of

features 𝑆 by distorting the entries of a data set 𝑋. In this case |𝒮| ≪ |𝒳 |, and 𝑆 represents

a set of features that might be inferred from the data 𝑋, such as age group or salary. The

distortion can be defined according to the the utility of a given statistical learning algorithm

(e.g. a recommendation system) used by Bob.
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2.3 Design of Privacy Preserving Mappings

In this section, we consider the problem of finding optimal privacy mapping by solving (2.4).

We will discuss several dimensions which are relevant when designing privacy mappings: 1)

Solving the optimization problems in (2.4) efficiently, and 2) Reliance on the knowledge of

the joint distribution 𝑃𝑆,𝑋 . We first discuss the optimization itself.

2.3.1 The Privacy-Distortion Optimization

Consider the optimization given in (2.4). The following theorem shows that the problem can

be expressed as a convex optimization problem. We note that this optimization is solved in

terms of the unknowns 𝑃𝑌 |𝑋(·|·) and 𝑃𝑌 |𝑆(·|·), which are coupled together through a linear

equality constraint.

Proposition 3. Given 𝑃𝑆,𝑋(·, ·), a distortion function 𝑑(·, ·) and a distortion constraint 𝐷,

the mapping 𝑃𝑌 |𝑋(·|·) that minimizes the average information leakage can be found by solving

the following convex optimization (sssuming the usual simplex constraints on the probability

distributions):

min
𝑃𝑌 |𝑋 , 𝑃𝑌 |𝑆 , |𝒴|≤|𝒳 |+1

∑︁
𝑦∈𝒴

∑︁
𝑠∈𝒮

𝑃𝑌 |𝑆(𝑦|𝑠)𝑃𝑆(𝑠) log

(︂
𝑃𝑌 |𝑆(𝑦|𝑠)
𝑃𝑌 (𝑦)

)︂
(2.11)

s.t.
∑︁
𝑦∈𝒴

∑︁
𝑥∈𝒳

𝑃𝑌 |𝑋(𝑦|𝑥)𝑃𝑋(𝑥)𝑑(𝑦, 𝑥) ≤ 𝐷, (2.12)

∑︁
𝑥∈𝒳

𝑃𝑋|𝑆(𝑥|𝑠)𝑃𝑌 |𝑋(𝑦|𝑥) = 𝑃𝑌 |𝑆(𝑦|𝑠) ∀𝑦, 𝑠, (2.13)

∑︁
𝑠∈𝒮

𝑃𝑌 |𝑆(𝑦|𝑠)𝑃𝑆(𝑠) = 𝑃𝑌 (𝑦) ∀𝑦. (2.14)

Proof. Clearly the previous optimization is the same as (2.4). To prove the convexity of

the objective function, note that ℎ(𝑥, 𝑎) = 𝑎𝑥 log 𝑥 is convex for a fixed 𝑎 ≥ 0 and 𝑥 ≥ 0,

and, therefore, the perspective of 𝑔1(𝑥, 𝑧, 𝑎) = 𝑎𝑥 log(𝑥/𝑧) is also convex in 𝑥 and 𝑧 for

𝑧 > 0, 𝑎 ≥ 0 ([36]). Since the objective function (2.11) can be written as

∑︁
𝑦∈𝒴

∑︁
𝑠∈𝒮

𝑔(𝑃𝑌 |𝑆(𝑦|𝑠), 𝑃𝑌 (𝑦), 𝑃𝑆(𝑠)),

it follows the optimization is convex. In addition, since 𝑝(𝑦) → 0 ⇔ 𝑝(𝑦|𝑠) → 0 ∀𝑦, the
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minimization is well defined over the probability simplex. Finally, the constraint |𝒴| ≤ |𝒳 |+1

follows from Lemma 1.

In the particular case where 𝑋 is a deterministic function of 𝑆, the optimization takes a

simpler form, as shown in the corollary below.

Corollary 1. If 𝑋 is a deterministic function of 𝑆 and 𝑆 → 𝑋 → 𝑌 then the minimization

in (2.4) can be simplified to a rate-distortion problem:

min
𝑃𝑌 |𝑋

𝐼(𝑋;𝑌 )

s.t. E𝑋,𝑈 [𝑑(𝑋,𝑌 )] ≤ 𝐷 .

Furthermore, by restricting 𝑌 = 𝑋 + 𝑍 and 𝑑(𝑋,𝑌 ) = 𝑑(𝑋 − 𝑌 ), the optimization reduces

to

max
𝑃𝑍

𝐻(𝑍)

s.t. E𝑍 [𝑑(𝑍)] ≤ 𝐷 .

Proof. Since 𝑋 s a deterministic function of 𝑆 and 𝑆 → 𝑋 → 𝑌 , then

𝐼(𝑆;𝑌 ) = 𝐼(𝑆,𝑋;𝑌 )− 𝐼(𝑋;𝑌 |𝑆)

= 𝐼(𝑋;𝑌 ) + 𝐼(𝑆;𝑌 |𝑋)− 𝐼(𝑋;𝑌 |𝑆)

= 𝐼(𝑋;𝑌 ), (2.15)

where (2.15) follows from the fact that 𝑋 is a deterministic function of 𝑆 (𝐼(𝑋;𝑌 |𝑆) = 0)

and 𝑆 → 𝑋 → 𝑌 (𝐼(𝑆;𝑌 |𝑋) = 0). For the additive noise case, the result follows by

observing that 𝐻(𝑋|𝑌 ) = 𝐻(𝑍).

The above formulation allows the use of efficient algorithms for solving convex problems,

such as interior-point methods. However, it can also be solved using a dual minimization

procedure analogous to the Arimoto-Blahut algorithm [53] by starting at a fixed marginal

probability 𝑃𝑌 (𝑦), solving a convex minimization at each step (with an added linear con-

straint compared to the original algorithm) and updating the marginal distribution.
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In either cases, the number of free parameters which need to be optimized is |𝒳 |×|𝒴|, as

we are optimizing upon the mapping 𝑃𝑌 |𝑋 . This number of parameters is undesirable when

|𝒳 | and |𝒴| are even moderately large, and quickly becomes intractable in high-dimensional

settings. For example, taking 𝑋 to be a vector of movie ratings from the Movielens dataset

[80], the size |𝒳 | is 52800, as there are 2800 movies which can all be rated from 1 to 5.

By Lemma 1, the size of 𝒴 needs to also be comparable to obtain the best trade-off. In

other words, despite the optimization being convex, the staggering number of parameters

in the optimization does not suit itself to a simple solving, and it is necessary to come up

with alternative solutions. In the rest of this section, we propose three strategies to handle

this dimensionality issue: sparse mappings, unsupervised clustering, and noise mechanisms.

Note that, while we present these techniques as separate, they can be used together and can

complement each other. We start by leveraging the specific structure of the solution of the

optimization.

2.3.2 Sparse Privacy Preserving Mappings

In this section, we introduce an optimization technique which reduces the number of free

parameters in the optimization (2.4). The main idea is based on the following heuristic.

While theoretically, the number of parameters in 𝑃𝑌 |𝑋 is large, we make the assumption

that the matrix P𝑌 |𝑋 is in fact sparse, i.e. most entries of P𝑌 |𝑋 are zero. This heuristic

turns out to be empirically verified in the low-privacy regime, i.e., when 𝐷 is small, and can

be made formal in the limit of 𝐷 → 0. Indeed, in this case, let 𝑃 *
𝑌 |𝑋 be the optimal privacy

preserving mapping, and consider the set 𝒮 = {(𝑥, 𝑦) : 𝑃 *
𝑌 |𝑋(𝑦|𝑥) > 𝜖, 𝑑(𝑥, 𝑦) > 𝛿min} for

some 𝜖 > 0, and with 𝛿min = inf{𝑑(𝑥, 𝑦) : 𝑑(𝑥, 𝑦) > 0, (𝑥, 𝑦) ∈ 𝒳 × 𝒴}. Then, the expected

distortion E[𝑑(𝑋;𝑌 )] can be bounded as:

𝐷 = E[𝑑(𝑋;𝑌 )] =
∑︁

(𝑥,𝑦)∈𝒮

𝑃𝑋(𝑥)𝑃 *
𝑌 |𝑋(𝑦|𝑥)𝑑(𝑥, 𝑦) (2.16)

> 𝜖 · 𝛿
∑︁

(𝑥,𝑦)∈𝒮

𝑃𝑋(𝑥). (2.17)

Therefore, for a fixed 𝜖 and 𝛿, letting 𝐷 → 0, the bound above implies that
∑︀

(𝑥,𝑦)∈𝑆 𝑃𝑋(𝑥)

must go to zero as well. Since 𝑃𝑋(𝑥) is fixed, and cannot be changed by the choice of the

privacy-mapping 𝑃𝑌 |𝑋 , it must be the case that |𝒮| → 0.
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The assumption that 𝑃 *
𝑌 |𝑋 is sparse can be leveraged to use more efficient optimization

techniques. One such solution, which we will develop further in the rest of this subsection

is known as the Dantzig-Wolfe Decomposition, see e.g. [27, Section 6.4].

Before we describe our algorithm, we rewrite Optimization (2.4) compactly. Let X be

a 𝑛 × 𝑛 matrix of optimized variables, whose entries are defined as 𝑥𝑖,𝑗 = 𝑃𝑌 |𝑋(𝑦𝑖 | 𝑥𝑗),
and let X𝑗 be the 𝑗-th column of X. To highlight the optimization aspect of our prob-

lem, we write the objective function 𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋) as a function 𝑓(X), with the under-

standing that 𝑓 depends on 𝑃𝑆,𝑋 , which is not optimized, and on X, which is optimized.

Similarly the distortion constraint can be written as
∑︀𝑛

𝑗=1 𝑑
𝑇
𝑗 X𝑗 ≤ ∆, where each 𝑑𝑗 =

𝑃𝑋(𝑥𝑗)(𝑑(𝑦1, 𝑥𝑗), 𝑑(𝑦2, 𝑥𝑗), . . . , 𝑑(𝑦𝑛, 𝑥𝑗))
𝑇 is a vector of length 𝑛 that represents the dis-

tortion metric scaled by the probability of the corresponding symbol 𝑥𝑗 . The marginal of

𝑋 is computed as 𝑃𝑋(𝑥𝑗) =
∑︀

𝑠 𝑃𝑆,𝑋(𝑠, 𝑥𝑗). Finally, the simplex constrain can be written

as 1𝑛X𝑗 = 1 for all 𝑗, where 1𝑛 is an all-ones vector of length 𝑛. Given the new notation,

our original problem (2.4) can be written compactly as:

minimize
X

𝑓(X) (2.18)

subject to
𝑛∑︁

𝑗=1

𝑑𝑇
𝑗 X𝑗 ≤ ∆

1𝑇𝑛X𝑗 = 1 ∀𝑗 = 1, . . . , 𝑛

X ≥ 0

where X ≥ 0 is an entry-wise inequality.

Franke-Wolfe Linearization

The optimization problem (2.4) has linear constraints but its objective function is non-

linear. We propose to solve the problem as a sequence of linear programs, also known as the

Frank-Wolfe method. Each iteration ℓ of the method consists of three major steps. First, we

compute the gradient ∇X𝑓(Xℓ−1) at the solution from the previous step Xℓ−1. The gradient

is a 𝑛×𝑛 matrix C, where 𝑐𝑖,𝑗 = 𝜕
𝜕𝑥𝑖,𝑗

𝑓(Xℓ−1) is a partial derivative of the objective function

with respect to the variable 𝑥𝑖,𝑗 . Second, we find a feasible solution X′ in the direction of

the gradient. This problem is solved as a linear program with the same constraint as the
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original problem:

minimize
X

𝑛∑︁
𝑗=1

𝑐𝑇𝑗 X𝑗 (2.19)

subject to
𝑛∑︁

𝑗=1

𝑑𝑇
𝑗 X𝑗 ≤ ∆

1𝑇𝑛X𝑗 = 1 ∀𝑗 = 1, . . . , 𝑛

X ≥ 0

where 𝑐𝑗 is the 𝑗-th column of 𝐶. Finally, we find the minimum of 𝑓 between Xℓ−1 and

X′, Xℓ, and make it the current solution. Since 𝑓 is convex, this minimum can be found

efficiently by ternary search. The minimum is also feasible because the feasible region is

convex, and both X′ and Xℓ−1 are feasible.

Sparse Approximation

The linear program (2.19) has 𝑛2 variables and therefore is hard to solve when 𝑛 is large.

In this section, we propose an incremental solution to this problem, which is defined only

on a subset of active variables 𝒱 ⊆ {1, 2, . . . , 𝑛}×{1, 2, . . . , 𝑛}. The active variables are the

non-zero variables in the solution to the problem (2.19). Therefore, solving (2.19) on active

variables 𝒱 is equivalent to restricting all inactive variables to zero. The corresponding linear

program is shown in (2.20) in Algorithm 1. This linear program has only |𝒱| variables. Now

the challenge is in finding a good set of active variables 𝒱. This set should be small, and

such that the solutions of (2.19) and (2.20) are close.

We grow the set 𝒱 greedily using the dual linear program of (2.20). In particular, we

incrementally solve the dual by adding most violated constraints, which corresponds to

adding most beneficial variables in the primal. The dual of (2.20) is (2.22) in Algorithm 2,

where 𝜆 ∈ R is a variable associated with the distortion constraint and 𝜇 ∈ R𝑛 is vector of

𝑛 variables associated with the simplex constraints. Given a solution (𝜆*, 𝜇*) to the dual,

the most violated constraint for a given 𝑗 is the one that minimizes:

𝑐𝑖,𝑗 − 𝜆*𝑑𝑖,𝑗 − 𝜇*𝑗 . (2.24)

This quantity, called the reduced cost, has an intuitive interpretation. We choose an example
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Algorithm 1 SPPM: Sparse privacy preserving maps
Input: Starting point X0, number of steps 𝐿

for all ℓ = 1, 2, . . . , 𝐿 do
𝐶 ← ∇X𝑓(Xℓ−1)
𝒱 ← DWD
Find a feasible solution X′ in the direction of the gradient 𝐶:

minimize
X

𝑛∑︁
𝑗=1

𝑐𝑇𝑗 X𝑗 (2.20)

subject to
𝑛∑︁

𝑗=1

𝑑𝑇
𝑗 X𝑗 ≤ ∆

1𝑇𝑛X𝑗 = 1 ∀𝑗 = 1, . . . , 𝑛

X ≥ 0

𝑥𝑖,𝑗 = 0 ∀(𝑖, 𝑗) /∈ 𝒱

Find the minimum of 𝑓 between Xℓ−1 and X′:

𝛾* ← argmin
𝛾∈[0,1]

𝑓((1− 𝛾)Xℓ−1 + 𝛾X′) (2.21)

Xℓ ← (1− 𝛾*)Xℓ−1 + 𝛾*X′

end for

Output: Suboptimal feasible solution X𝐿

𝑖 in the direction of the steepest gradient of 𝑓(X), so 𝑐𝑖,𝑗 is small; which is close to 𝑗, so

𝑑𝑖,𝑗 is close to zero (ss 𝜆* ≤ 0). The search for the most violated constraint leverages the

problem structure. Therefore, our approach can be viewed as an instance of Dantzig-Wolfe

decomposition.

The pseudocode of our search procedure is in Algorithm 2. This is an iterative algorithm,

where each iteration consists of three steps. First, we solve the reduced dual linear program

(2.22) on active variables. Second, for each point 𝑗, we identify a point 𝑖* that minimize the

reduced cost. Finally, if the pair (𝑖*, 𝑗) corresponds to a violated constraint, we add it to

the set of active variables 𝒱.

The pseudocode of our final solution is in Algorithm 1. We refer to Algorithm 1 as Sparse

Privacy Preserving Mappings (SPPM), because of the mappings learned by the algorithm.

Algorithm 2 is a subroutine of Algorithm 1, which identifies the set of active variables 𝒱.

SPPM is parameterized by the number of iterations 𝐿.
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Algorithm 2 DWD: Dantzig-Wolfe decomposition
Initialize the set of active variables:
𝒱 ← {(1, 1), (2, 2), . . . , (𝑛, 𝑛)}

while the set 𝒱 grows do
Solve the master problem for 𝜆* and 𝜇*:

maximize
𝜆,𝜇

𝜆∆ +

𝑛∑︁
𝑗=1

𝜇𝑗 (2.22)

subject to 𝜆 ≤ 0

𝜆𝑑𝑖,𝑗 + 𝜇𝑗 ≤ 𝑐𝑖,𝑗 ∀(𝑖, 𝑗) ∈ 𝒱

for all 𝑗 = 1, 2, . . . , 𝑛 do
Find the most violated constraint in the master problem for fixed 𝑗:

𝑖* = arg min
𝑖

[𝑐𝑖,𝑗 − 𝜆𝑑𝑖,𝑗 − 𝜇𝑗 ] (2.23)

if (𝑐𝑖*,𝑗 − 𝜆𝑑𝑖*,𝑗 − 𝜇𝑗 < 0) then
𝒱 ← 𝒱 ∪ {(𝑖*, 𝑗)}

end if
end for

end while

Output: Active variables 𝒱

Convergence

Algorithm SPPM is a gradient descent method. In each iteration ℓ, we find a solution X′ in

the direction of the gradient at the current solution Xℓ−1. Then we find the minimum of 𝑓

between Xℓ−1 and X′, and make it the next solution Xℓ. By assumption, the initial solution

X0 is feasible in the original problem (2.4). The solution X′ to the LP (2.20) is always

feasible in (2.4), because it satisfies all constraints in (2.4), and some additional constraints

𝑥𝑖,𝑗 = 0 on inactive variables. After the first iteration of SPPM, X1 is a convex combination

of X0 and X′. Since the feasible region is convex, and both X0 and X′ are feasible, X1 is

also feasible. By induction, all solutions Xℓ are feasible.

The value of 𝑓(𝑋ℓ) is guaranteed to monotonically decrease with ℓ. When the method

converges, 𝑓(𝑋ℓ) = 𝑓(𝑋ℓ−1). The convergence rate of the Frank-Wolfe algorithm is 𝑂(1/𝐿)

in the worst case [27].
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Computational Efficiency

The computation time of our method is dominated by the search for 𝑛2 violated constraints

in Algorithm 2. To search efficiently, we implement the following speedup in the computation

of the gradients 𝑐𝑖,𝑗 . The marginal and conditional distributions:

𝑃𝑌 (𝑦) =
∑︁
𝑠,𝑥

𝑃𝑆,𝑋(𝑠, 𝑥)𝑃𝑌 |𝑋(𝑦 | 𝑥) (2.25)

𝑃𝑌 |𝑆(𝑦 | 𝑠) =

∑︀
𝑥 𝑃𝑆,𝑋(𝑠, 𝑥)𝑃𝑌 |𝑋(𝑦 | 𝑥)∑︀

𝑥 𝑃𝑆,𝑋(𝑠, 𝑥)
(2.26)

are precomputed, because these terms are common for all elements of 𝐶. Then each gradient

is computed as:

𝜕

𝜕𝑝(𝑦𝑖 | 𝑥𝑗)
𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋) =

∑︁
𝑠

𝑝(𝑠, 𝑥𝑗) log
𝑝(𝑦𝑖 | 𝑥)

𝑝(𝑦𝑖)

+
∑︁
𝑠

𝑝(𝑠, 𝑦)

(︂
𝑝(𝑥𝑗 | 𝑠)
𝑝(𝑦𝑖 | 𝑠)

− 𝑝(𝑠, 𝑥𝑗)

𝑝(𝑦𝑖)

)︂
.

Since all marginals and conditionals are precomputed, each gradient can be computed in

𝑂(|𝒮|) time. The space complexity of our method is 𝑂(|𝒱|), because we operate only on

active variables 𝒱. We point out that the complexity of the algorithm is closely linked to

the sparsity of the optimal solution, which itself is related to the value of the distortion

constraint ∆. This means that some distortion regimes may not be achievable with a given

computational budget. Therefore one has to reduce ∆ in order to have a sparser solution 1.

While SPPM is an attractive solution to solve privacy-distortion trade-off problems of

large scale, it still falls short at tackling high-dimensional setups because of the exponential

growth of the number of parameters, as the dimension grows. The next section is devoted

to tackling this issue via an unsupervised Quantization (or clustering) method, to reduce

the search space considerably.

2.3.3 Dimensionality Reduction via Quantization

As mentioned before, in real-world datasets, the alphabet 𝒳 is often large. In particular,

the number of symbols in the alphabet 𝒳 observed in the available dataset may be 𝜃(𝑛),

1In several practical experiments however, we did not run into problems of the sort, and were able to
generate mappings efficiently even when high distortion was needed to drive the mutual information close
to 0.
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Figure 2-1: The quantization approach for large alphabets

linear in the number of samples 𝑛 in the dataset. Suppose that 𝒴 = 𝒳 , for simplicity of

notation. Then the number of optimized variables in Problem (2.4) is 𝜃(𝑛2). Note that the

distortion constraint is linear in 𝑃𝑌 |𝑋(𝑦 | 𝑥) , but the objective function is neither linear nor

quadratic. As a result, Optimization (2.4) cannot be solved using fast linear or quadratic

programming solvers. In general, the problem is hard to solve when the size of alphabet 𝒳
exceeds a few hundreds symbols.

However, in many problems of interest, data lies on a low-dimensional manifold. For

instance, in recommender systems, the ratings of a user can be viewed as a low-dimensional

vector in the so-called latent space, whose length is the number of latent factors[86]. In such

cases, quantization is guaranteed to reduce the dimensionality of the problem. In particular,

let the data lie in a compact 𝑑-dimensional latent space where 𝑑 is small. Then based on a

standard sphere packing argument [51], this space can be covered by 𝑘 representative points

such the maximum distance of any point from the closest representative point is 𝜃(𝑘−1/𝑑). In

other words, to guarantee that the maximum distance is 𝛿, 𝜃((1/𝛿)𝑑) representative points

are necessary. Note that this quantity is independent of the number of data samples 𝑛.

We leverage this observation to propose an approach to reduce the number of optimiza-

tion variables. Our method comprises three steps. First, a quantization [74] step maps the

symbols in alphabet 𝒳 to |𝒞| representative examples in a smaller alphabet 𝒞. Second, we

learn a privacy-preserving mapping 𝑃𝑌 |𝐶 on the new alphabet, where 𝒴 = 𝒞. Third, the

symbols in 𝒳 are mapped to the representative examples 𝒴 based on the learned mapping

𝑃𝑌 |𝐶 . This approach is summarized in Diagram 2-1.

This solution has several notable properties. To begin with, the privacy-preserving map-

ping 𝑃𝑌 |𝐶 is learned on the reduced alphabet 𝒞. Thus, we need to solve the convex optimiza-

tion (2.4) for only |𝒞||𝒞| variables instead of |𝒳 ||𝒴|. In practice, |𝒞| ≪ |ℬ| and this results in

major computational savings. Second, quantization and privacy-preserving optimization are

done separately. Therefore, any quantization method can be easily combined with our ap-

proach. In particular, we can minimize the quantization error in the quantization step, and
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then our privacy mechanism guarantees the optimal mapping in terms of additional distor-

tion. It should be noted that the distance used in the quantization phase and the distortion

function in the constraint of the privacy mapping optimization need not be the same. In

the case where they differ, the end-to-end distortion can be obtained by first computing the

value of the distortion function for the representative points resulting from quantization,

and then adding this value to the distortion generated by the privacy mapping. Finally,

quantization obviously yields a suboptimal privacy-accuracy tradeoff, since the quantization

step is an additional source of distortion. However, in Theorem 2, we quantify how quanti-

zation affects the privacy-accuracy tradeoff, and show that the levels of privacy that can be

achieved are not affected, but come at the expense of a bounded amount of distortion.

In the rest of this section the following variant of problem (2.4):

minimize
𝑃𝑌 |𝐶

𝐼(𝑆;𝑌 ) (2.27)

subject to: E𝑃𝐶,𝑌
𝑑(𝐶, 𝑌 ) ≤ ∆

𝑃𝑌 |𝐶 ∈ Simplex

𝑆 → 𝐶 → 𝑌 (2.28)

where the joint distribution over 𝑆 and 𝐶 is defined as

𝑃𝑆,𝐶(𝑠, 𝑐) =
∑︁
𝑥∼𝑐

𝑃𝑆,𝑋(𝑠, 𝑥), (2.29)

where 𝑥 ∼ 𝑐 means that the symbol 𝑥 is in the cluster represented by center 𝑐. The above

equation aggregates the probability mass of all symbols in the cluster in its center. The

symbols in 𝒳 are mapped to 𝒴 according to

𝑃𝑌 |𝑋(𝑦 | 𝑥) = 𝑃𝑌 |𝐶(𝑦 | 𝜓(𝑥)), (2.30)

where 𝜓 : 𝒳 → 𝒞 is a function that maps a symbol in 𝒳 to a cluster center in 𝒞. Finally, we

use the notation 𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋) , 𝐼(𝑋;𝑌 ), which explicitly show how the privacy leakage

depends on the prior 𝑃𝑆,𝑋 , and on the privacy-mapping 𝑃𝑌 |𝑋 . We now prove our main

claim.

Theorem 2. Let 𝑄𝑌 |𝐶 be a solution to problem (2.27) and 𝑃𝑌 |𝑋 be the corresponding
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mapping from 𝒳 (Equation 2.30). Moreover, let 𝒞 be an alphabet such that max
𝑥∈𝒳

min
𝑐∈𝒞

𝑑(𝑥, 𝑐) ≤
𝑟. Then the privacy leakage 𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋) of the mapping 𝑃𝑌 |𝑋 is equal to the value of the

objective function of (2.27):

𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋) = 𝐽(𝑄𝑆,𝐶 , 𝑄𝑌 |𝐶),

and its total distortion rate is no more than 𝑟 larger than the target ∆:

E𝑃𝑋,𝑌
[𝑑(𝑋,𝑌 )] ≤ ∆ + 𝑟.

Proof. The information-leakage equality can be proved as follows. First, both 𝐽(𝑃𝑆,𝑋 , 𝑄𝑌 |𝑋)

and 𝐽(𝑄𝐴,𝐶 , 𝑄𝑌 |𝐶) can be rewritten as

𝐽(𝑃𝑆,𝑋 , 𝑄𝑌 |𝑋) = 𝐻(𝑃𝐴) +𝐻(𝑃𝑌 )−𝐻(𝑃𝐴,𝑌 ) (2.31)

𝐽(𝑄𝐴,𝐶 , 𝑄𝑌 |𝐶) = 𝐻(𝑄𝑆) +𝐻(𝑄𝑌 )−𝐻(𝑄𝐴,𝑌 ), (2.32)

where

𝑃 (𝑠, 𝑦) =
∑︁
𝑏

𝑄(𝑦|𝜓(𝑥))𝑃 (𝑠, 𝑥) (2.33)

𝑄(𝑠, 𝑦) =
∑︁
𝑐

𝑄(𝑦|𝑐)𝑄(𝑠, 𝑐). (2.34)

Second, note that

𝑃 (𝑠, 𝑦) =
∑︁
𝑏

𝑄(𝑦|𝜓(𝑥))𝑃 (𝑠, 𝑥)

=
∑︁
𝑐

𝑄(𝑦|𝑐)
∑︁
𝑥∼𝑐

𝑃 (𝑠, 𝑥)

=
∑︁
𝑐

𝑄(𝑦|𝑐)𝑄(𝑠, 𝑐)

= 𝑄(𝑠, 𝑦). (2.35)

The two distributions are identical, thus 𝐻(𝑃𝐴,𝑌 ) = 𝐻(𝑄𝐴,𝑌 ). An analogous result holds

for the entropies of the marginals. As a result, the privacy leakage of the mapping 𝑄𝑌 |𝑋 on

𝒳 is equal to the privacy leakage of the mapping 𝑄𝑌 |𝐶 on 𝒞.
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The distortion inequality is proved as follows. (2.30) implies

𝑄𝐵,𝑌 (𝑥, 𝑦) =
∑︁
𝑎

𝑄𝑌 |𝑋(𝑦|𝑥)𝑃𝑆,𝑋(𝑠, 𝑥)

=
∑︁
𝑎

𝑄𝑌 |𝐶(𝑦|𝜓(𝑥))𝑃𝑆,𝑋(𝑠, 𝑥). (2.36)

Based on this equality, we can bound the distortion as

E𝑄𝑋,𝑌 𝑑(𝑋,𝑌 ) =
∑︁
𝑥,𝑦

𝑄(𝑥, 𝑦)𝑑(𝑥, 𝑦)

=
∑︁
𝑎,𝑥,𝑦

𝑄(𝑦|𝜓(𝑥))𝑃 (𝑠, 𝑥)𝑑(𝑥, 𝑦)

=
∑︁
𝑎,𝑐,𝑦

𝑄(𝑦|𝑐)
∑︁
𝑥∼𝑐

𝑃 (𝑠, 𝑥)𝑑(𝑥, 𝑦)

≤
∑︁
𝑎,𝑐,𝑦

𝑄(𝑦|𝑐)
∑︁
𝑥∼𝑐

𝑃 (𝑠, 𝑥)[𝑑(𝑥, 𝑐) + 𝑑(𝑐, 𝑦)]

=
∑︁
𝑎,𝑐,𝑦

𝑄(𝑦|𝑐)
∑︁
𝑥∼𝑐

𝑃 (𝑠, 𝑥)⏟  ⏞  
𝑄(𝑠,𝑐)

𝑑(𝑐, 𝑦) +

∑︁
𝑎,𝑐

∑︁
𝑦

𝑄(𝑦|𝑐)⏟  ⏞  
1

∑︁
𝑥∼𝑐

𝑃 (𝑠, 𝑥)𝑑(𝑥, 𝜓(𝑥))

≤ E𝑄𝐶,𝑌 𝑑(𝐶, 𝑌 ) + 𝑟
∑︁
𝑎,𝑥

𝑃 (𝑠, 𝑥)

≤ ∆ + 𝑟.

Theorem 2 states that the information leakage of the mapping 𝑃𝑌 |𝑋 is the same as that

of the optimized mapping 𝑄𝑌 |𝐶 . So we optimize the quantity of interest 𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋) in a

time which is independent of the size of the input alphabet 𝒳 . The total distortion increases

due to quantization, linearly with the maximum distance 𝑟 between any example 𝑥 and its

closest representative example 𝜓(𝑥).

The maximum distance 𝑟 can be minimized by existing quantization techniques, e.g.

online 𝑘-center clustering [43] and cover trees [28]. Both methods quantize data nearly

optimally. In particular, if the minimum quantization error by |𝒞| examples is 𝑟*, then the
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maximum error produced by these methods is 8𝑟*. Note that finding |𝒞| examples that

minimize the quantization error is NP hard.

In the rest of this section, we discuss the case of uncertainty in the knowledge of the

distribution 𝑃𝑆,𝑋 , which is an input in all of the methods we have discussed so-far.

2.3.4 Uncertainty in the prior distribution 𝑃𝑆,𝑋

In practice, we may not have access to the probability of the underlying variable 𝑋 and

𝑆. The distribution 𝑃𝑆,𝑋 is however a main input in all the algorithms and methods we

have discussed so far. We discuss two strategies to handle this issue, namely a min-max

formulation, and a stability result.

First, we look at a worst-case setup, in which 𝑃𝑋 is assumed to be known, and a mapping

𝑃𝑌 |𝑋 aims to optimize a min-max loss. This setup is very relevant considering the nature

of the r.v. 𝑆, which is assumed to be sensitive. Therefore, in practical setups, in might be

challenging to gather data to make a reliable estimate of the relationship between 𝑆 and

𝑋, as it would require obtaining the sensitive data 𝑆. On the other hand, the data 𝑋 is

not deemed sensitive, and is often easier to gather. In any case, the distribution 𝑃𝑆,𝑋 is

assumed to be unavailable. Consequently, finding the exact solution of problem (2.4) may

not be possible. This raises the question of the design of privacy-preserving mappings under

this partial knowledge on the priors, i.e. suppose 𝑃𝑋 is known, but 𝑃𝑆|𝑋 is unknown. We

consider the privacy-preserving mapping which minimizes the worst-case privacy over all

possible 𝑃𝑆|𝑋 while satisfying the utility constraint. That is, the optimal privacy-preserving

mapping under this partial knowledge is

min
𝑃𝑌 |𝑋

max
𝑃𝑆|𝑋

𝐼(𝑆;𝑌 ),

s.t. E𝑋,𝑌 [𝑑(𝑋,𝑌 )] ≤ 𝐷 . (2.37)

The proposition which follows shows that this can actually be solved and reduces the problem

to a traditional rate-distortion formulation.

Proposition 4. The problem in (2.37) is equivalent to the following rate distortion problem.

min
𝑃𝑌 |𝑋 : |𝒴|≤|𝒳 |+1

𝐼(𝑋;𝑌 ),
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s.t. E𝑋,𝑌 [𝑑(𝑋,𝑌 )] ≤ 𝐷 (2.38)

Proof. First note that by letting 𝑆 = 𝑋, we obtain 𝐼(𝑋;𝑌 ) ≤ max𝑃𝑆|𝑋 𝐼(𝑆;𝑌 ) which then

result in

min
𝑃𝑌 |𝑋

𝐼(𝑋;𝑌 ) ≤ min
𝑃𝑌 |𝑋

max
𝑃𝑆|𝑋

𝐼(𝑆;𝑌 ).

The other direction follows from the Markov chain property, i.e. 𝑆 → 𝑋 → 𝑌 . In particular,

for any 𝑃𝑆|𝑋 we have 𝐼(𝑋;𝑌 ) ≥ 𝐼(𝑆;𝑌 ) which results in 𝐼(𝑋;𝑌 ) ≥ max𝑃𝑆|𝑋 𝐼(𝑆;𝑌 ) for

any 𝑃𝑌 |𝑋 . Therefore, we have

min
𝑃𝑌 |𝑋

𝐼(𝑋;𝑌 ) ≥ min
𝑃𝑌 |𝑋

max
𝑃𝑆|𝑋

𝐼(𝑆;𝑌 ).

Also, note that the constraint |𝒴| ≤ |𝒳 | + 1 follows from the same argument as in Lemma

1, which completes the proof.

Proposition 4 shows that optimization (2.38) can be solved by using any convex solver.

Also, note that, once again, the optimization (2.38) can be solved using an Expectation-

Minimization (EM) algorithm such as Arimoto-Blahut algorithm [53].

Next, we discuss the case where an estimate𝑄𝑆,𝑋 of the true prior 𝑃𝑆,𝑋 is made, and used

as an input in the optimization. Suppose that we do not have perfect knowledge of the true

prior distribution 𝑃𝑆,𝑋 but that we have its estimate 𝑄𝑆,𝑋 . Let the |𝑃𝑆,𝑋−𝑄𝑆,𝑋 |ℓ1 represent

the mismatch between the true prior 𝑃𝑆,𝑋 and the estimate 𝑄𝑆,𝑋 . Also denote by 𝑃 *
𝑌 |𝑋 the

optimal privacy mapping obtained when 𝑃𝑆,𝑋 is fed as an input to the optimization (2.4), and

let 𝑄*
𝑌 |𝑋 denote the solution obtained when feeding the mismatched distribution 𝑄𝑆,𝑋 as an

input to the optimization (2.4). A useful notation will be to denote the privacy leakage with

𝑃𝑆,𝑋 and privacy-mapping 𝑃𝑌 |𝑋 by 𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋) , 𝐼(𝑆;𝑌 ), where 𝑃𝑆,𝑋,𝑌 = 𝑃𝑆,𝑋 · 𝑃𝑌 |𝑋 .

Then, if 𝑄𝑆,𝑋 is a good estimate of 𝑃𝑆,𝑋 (low mismatch), then 𝑄*
𝑌 |𝑋 should be close to

𝑃 *
𝑌 |𝑋 . In particular, we distinguish between two desirable properties:

∙ Consistency: As the true prior is 𝑃𝑆,𝑋 , the actual privacy leakage when using privacy

mappings 𝑄*
𝑌 |𝑋 is given by 𝐽(𝑃𝑆,𝑋 , 𝑄

*
𝑌 |𝑋), and not by the quantity 𝐼(𝑄𝑆,𝑋 , 𝑄

*
𝑌 |𝑋)

that is optimized when the estimate 𝑄𝑆,𝑋 is fed as an input to the optimization. By

consistency, we mean that the privacy mappings 𝑄*
𝑌 |𝑋 obtained using the estimate
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𝑄𝑆,𝑋 should have a good performance, both in terms of actual privacy leakage and

distortion, when used under the true prior 𝑃𝑆,𝑋 . Theorem 3 expresses the difference

in privacy leakage |𝐽(𝑃𝑆,𝑋 , 𝑄
*
𝑌 |𝑋)−𝐽(𝑄𝑆,𝑋 , 𝑄

*
𝑌 |𝑋)| in terms of the mismatch |𝑃𝑆,𝑋 −

𝑄𝑆,𝑋 |ℓ1.

∙ Near-Optimality: For near-optimality, we wish that the performance of the privacy

mappings 𝑄*
𝑌 |𝑋 be close to that of the optimal mappings 𝑄*

𝑌 |𝑋 . Theorem 4 expresses

the difference in privacy leakage |𝐽(𝑄𝑆,𝑋 , 𝑄
*
𝑌 |𝑋) − 𝐽(𝑃𝑆,𝑋 , 𝑃

*
𝑋|𝑌 )| in terms of the

mismatch |𝑃𝑆,𝑋 −𝑄𝑆,𝑋 |ℓ1.

Theorem 3 (Consistency). Let 𝑄*
𝑌 |𝑋 be a solution to the optimization problem (2.4) with

𝑄𝑆,𝑋 as input. Then:

⃒⃒⃒
𝐽(𝑃𝑆,𝑋 , 𝑄

*
𝑌 |𝑋)− 𝐽(𝑄𝑆,𝑋 , 𝑄

*
𝑌 |𝑋)

⃒⃒⃒
≤ 3|𝑃𝑆,𝑋 −𝑄𝑆,𝑋 |ℓ1 log

|𝒮| |𝒳 |
|𝑃𝑆,𝑋 −𝑄𝑆,𝑋 |ℓ1

E𝑃𝑌,𝑋𝑑(𝑋;𝑌 ) ≤ ∆ + 𝑑max|𝑃𝑆,𝑋 −𝑄𝑆,𝑋 |ℓ1

where 𝑑max = max𝑦,𝑥 𝑑(𝑦, 𝑥) is the maximum distance in the feature space and E𝑃𝑌,𝑋
is the

expectation over 𝑃𝑋,𝑌 (𝑥, 𝑦) =
∑︀

𝑠 𝑃𝑆,𝑋(𝑠, 𝑥)𝑄*
𝑌 |𝑋(𝑦|𝑥).

Theorem 3 can be interpreted as a consistency result. Indeed, the optimized privacy

leakage 𝐽(𝑄𝑆,𝑋 , 𝑄
*
𝑌 |𝑋) and the actual leakage 𝐽(𝑃𝑆,𝑋 , 𝑄

*
𝑌 |𝑋) are close if the priors are

close. Note, however, that there is no mention of the true optimal leakage 𝐽(𝑃𝑆,𝑋 , 𝑃
*
𝑌 |𝑋).

Theorem 4 bounds this loss.

Theorem 4 (Near-optimality). Let 𝑄*
𝑌 |𝑋 and 𝑃 *

𝑌 |𝑋 be the solutions of the optimization

problem (2.4) respectively with 𝑄𝑆,𝑋 and 𝑃𝑆,𝑋 as inputs and distortion constraint ∆. Then,

|𝐽(𝑃𝑆,𝑋 , 𝑃
*
𝑌 |𝑋)− 𝐽(𝑄𝑆,𝑋 , 𝑄

*
𝑌 |𝑋)|

≤ 7‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1
𝑑max

𝑑min
log

|𝒮||𝒳 |
‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1

(2.39)

with 𝑑max defined as in Thm. 3, and 𝑑min the smallest non-zero value of the distortion, i.e.,

𝑑min = min𝑥,𝑦,𝑠.𝑡.,𝑑(𝑥,𝑦)>0 𝑑(𝑥, 𝑦).

Theorem 3 and Theorem 4 can be combined using the triangle inequality to give a bound

on the difference between the actual leakage when having 𝑄*
𝑌 |𝑋 ,i.e., 𝐽(𝑃𝑆,𝑋 , 𝑄

*
𝑌 |𝑋) and the
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optimal leakage 𝐽(𝑃𝑆,𝑋 , 𝑃
*
𝑌 |𝑋). The proof of these theorems are inspired by existing results

in Information Theory regarding uniform continuity of information theoretic measures such

as [153], [21], and methods for the proof of Theorem 4 can be found in [109]. The results can

be tighten by using a tighter version of Lemma 17 in the appendix, as in [54, Problem 3.10],

but the order of the error stays the same.

This set of results allows us to construct mappings 𝑄*
𝑌 |𝑋 that have close to optimal

performance, even though the mapping is not perfectly known. The error grows in the order

of 𝑂(−|𝑃𝑆,𝑋 −𝑄𝑆,𝑋 |ℓ1 log |𝑃𝑆,𝑋 −𝑄𝑆,𝑋 |ℓ1) with the mismatch. Note that only this distance

is necessary to compute the bounds, and not the true prior itself. In Prop. 5 below, we

provide a bound on the probability of |𝑃𝑆,𝑋 −𝑄𝑆,𝑋 |ℓ1 being large, when 𝑄𝑆,𝑋 is simply the

empirical distribution obtained from counting on 𝑛 samples.

Proposition 5. Let 𝑄𝑆,𝑋 = #{𝑠𝑖=𝑠,𝑥𝑖=𝑥}
𝑛 be the empirical distribution of 𝑃𝑆,𝑋 , where 𝑛 is

the total number of samples, and #{𝑠𝑖 = 𝑠, 𝑥𝑖 = 𝑥} is the number of examples where 𝑆 = 𝑠

and 𝑋 = 𝑥. Then,

P(‖𝑄𝑆,𝑋 − 𝑃𝑆,𝑋‖1 ≥ 𝜖) ≤ (𝑛+ 1)|𝒮||𝒳 |2−2𝑛𝜖2

The proof of Prop. 5 follows from Sanov’s theorem [53, Thm 12.4.1] and Pinsker’s In-

equality[54, Problem 3.18].

Therefore, as the sample size 𝑛 increases, the probability of having a poor empirical estimator

of the true distribution in terms of ℓ1-norm decreases with rate (𝑛 + 1)|𝒮||𝒳 |2−2𝑛𝜖2 . This

proposition allows us to formulate corollaries of the following form, here by combining it

with Theorem 3:

Corollary 2. Le 𝑄𝑆,𝑋 be the empirical distribution over 𝑛 samples, and let 0 < 𝜖 ≤ 1
2 .

Then,

⃒⃒⃒
𝐽(𝑃𝑆,𝑋 , 𝑝

*
𝐵̂|𝐵)− 𝐽(𝑄𝑆,𝑋 , 𝑃

*
𝑌 |𝑋)

⃒⃒⃒
≤ 3𝜖 log

|𝒮||𝒳 |
𝜖

(2.40)

E𝑃𝑋,𝑌 𝑑(𝑋;𝑌 ) ≤ ∆ + 𝑑max𝜖 (2.41)

with probability (𝑛+ 1)|𝒜||ℬ|2−2𝑛𝜖2

This corollary shows the impact on the privacy-accuracy tradeoff of the number of sam-

ples available to estimate the distribution and the size of the alphabets.
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In the next section, we slightly switch gears and discuss the privacy funnel optimization,

which arises when the log-loss is selected as the loss between 𝑋 and 𝑌 .

2.4 Log-loss Distortion and Privacy Funnel

The log-loss distortion is defined as 𝑑(𝑥, 𝑦) = − log𝑃𝑋|𝑌 (𝑥|𝑦). Note that this distortion

(unlike the one in Definition 1) is a function of 𝑥 and 𝑦 as well as 𝑃𝑌 |𝑋 . Using log-loss,

the average distortion becomes E[𝑑(𝑋,𝑌 )] = E𝑃𝑋,𝑌
[− log𝑃𝑋|𝑌 ] = 𝐻(𝑋|𝑌 ) . Therefore, for

a given 𝐷 ≥ 0, the distortion bound 𝐻(𝑋|𝑌 ) ≤ 𝐷 is equivalent to 𝐼(𝑋;𝑌 ) ≥ 𝑡, where

𝑡 = 𝐻(𝑋) − 𝐷. It should be noted that the average distortion under the log-loss is not

linear in 𝑃𝑌 |𝑋 (unlike the one in Definition 1).

2.4.1 Privacy-Utility Trade-off under Log-loss

Using log-loss distortion the tradeoff between between utility and privacy becomes mini-

mizing 𝐼(𝑆;𝑌 ) while 𝐼(𝑋;𝑌 ) ≥ 𝑡 for some 𝑡 ≥ 0. Therefore, the trade-off between utility

and privacy in the design of the privacy-preserving mapping is represented by the following

optimization, that we refer to as the Privacy Funnel:

min 𝐼(𝑆;𝑌 )

𝑃𝑌 |𝑋 : 𝐼(𝑋;𝑌 ) ≥ 𝑡. (2.42)

For a given utility level 𝑡, among all feasible privacy mappings 𝑃𝑌 |𝑋 satisfying 𝐼(𝑋;𝑌 ) ≥ 𝑡,
the privacy funnel selects the one that minimizes 𝐼(𝑆;𝑌 ).

Similar to Definition 2 We define next the privacy funnel function, which captures the

smallest amount of disclosed private information for a given threshold on the amount of

disclosed useful information. We then characterize properties of the privacy funnel function

in the rest of this section.

Definition 3. For 0 ≤ 𝑡 ≤ 𝐻(𝑋) and a joint distribution 𝑃𝑆,𝑋 over 𝒮 × 𝒳 , we define the

privacy funnel function 𝐺𝐼(𝑡, 𝑃𝑆,𝑋) as

𝐺𝐼(𝑡, 𝑃𝑆,𝑋) , inf {𝐼(𝑆;𝑌 ) : 𝐼(𝑋;𝑌 ) ≥ 𝑡, 𝑆 → 𝑋 → 𝑌 } , (2.43)

where the infimum is over all mappings 𝑃𝑌 |𝑋 such that 𝒴 is finite. For a fixed 𝑃𝑆,𝑋 and
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𝑡 ≥ 0, the set of pairs {(𝑡, 𝐺𝐼(𝑡, 𝑃𝑆,𝑋))} is called the privacy funnel region of 𝑃𝑆,𝑋 .

Before we proceed to the rest of the discussion, we can prove the counterpart of Lemma 1

for this setting, which gives a bound on the size of the alphabet 𝒴 one needs to consider.

Lemma 3. We have

𝐺𝐼(𝑡, 𝑃𝑆,𝑋) = min
𝑃𝑌 |𝑋

{𝐼(𝑆;𝑌 ) : 𝐼(𝑋;𝑌 ) ≤ 𝑡,

𝑆 → 𝑋 → 𝑌, |𝒴| ≤ |𝒳 |+ 1} . (2.44)

Proof. In the Proof of Lemma 1, we let 𝑎𝑖 , 𝐻(𝑋)−𝐻(𝑋|𝑌 = 𝑖) and the rest of the proof

is identical to that of Lemma 1.

We now prove a few useful properties of 𝐺𝐼(𝑡, 𝑃𝑆,𝑋) and the privacy region.

Lemma 4. For 0 ≤ 𝑡 ≤ 𝐻(𝑋), we have

max{𝑡−𝐻(𝑋|𝑆), 0} ≤ 𝐺𝐼(𝑡, 𝑃𝑆,𝑋) ≤ 𝑡𝐼(𝑋;𝑆)

𝐻(𝑋)
. (2.45)

Proof. Observe that 𝐺𝐼(𝐻(𝑋), 𝑃𝑆,𝑋) = 𝐼(𝑋;𝑆), since 𝐼(𝑋;𝑌 ) = 𝐻(𝑋) implies that 𝑃𝑌 |𝑋

is a one-to-one mapping of 𝑋. The upper bound then follows from Lemma 3 as follows. For

0 < 𝑡 ≤ 𝐻(𝑋) and 𝑃𝑆,𝑋 fixed, let 𝐺𝐼(𝑡, 𝑃𝑆,𝑋) = 𝛼. From the discussion above, there exists

𝑃𝑌 |𝑋 that achieves 𝐼(𝑆;𝑌 ) = 𝛼 for 𝐼(𝑋;𝑌 ) ≥ 𝑡. Now consider 𝑃𝑌 |𝑋 where 𝒴 = [|𝒴| + 1]

and, for 0 < 𝜆 ≤ 1,

𝑃𝑌 |𝑋(𝑦|𝑥) = (1− 𝜆)1{𝑦=|𝒴|+1} + 𝜆1{𝑦 ̸=|𝒴|+1}𝑃𝑌 |𝑋(𝑦|𝑥).

Intuitively, 𝑌 is an “erased” version of 𝑌 , with the erasure symbol being |𝒴|+ 1. It follows

directly that 𝐼(𝑆;𝑌 ) = 𝜆𝐼(𝑆;𝑌 ) = 𝜆𝛼, 𝐼(𝑋;𝑌 ) = 𝜆𝐼(𝑋;𝑌 ) ≥ 𝜆𝑡, and

𝐺𝐼(𝜆𝑡, 𝑃𝑆,𝑋)

𝜆𝑡
≤ 𝜆𝐼(𝑆;𝑌 )

𝜆𝑡
=
𝐺𝐼(𝑡, 𝑃𝑆,𝑋)

𝑡
.

Since this holds for any 0 < 𝜆 ≤ 1, then 𝐺𝐼(𝑡,𝑃𝑆,𝑋)
𝑡 is non-decreasing in 𝑡. Finally, for a fixed

𝑃𝑆,𝑋 , the set of points (w𝑖, 𝑎𝑖, 𝑏𝑖) ∈ R|𝒳 |+2 that satisfies (2.7) is convex, and thus, for a

fixed 𝑃𝑋 , it’s lower-boundary, which corresponds to the graph of (𝑡, 𝐺𝐼(𝑡, 𝑃𝑆,𝑋)), is convex.
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Figure 2-2: For a fixed 𝑃𝑆,𝑋 , the privacy region is contained within the shaded area. The
red and the blue lines correspond, respectively, to the upper and lower bounds presented in
Lemma 4.

Clearly 𝐺𝐼(𝑡, 𝑃𝑆,𝑋) ≥ 0. In addition, for any 𝑃𝑌 |𝑋 ,

𝐼(𝑆;𝑌 ) = 𝐼(𝑋;𝑌 )− 𝐼(𝑋;𝑌 |𝑆)

≥ 𝐼(𝑋;𝑌 )−𝐻(𝑋|𝑆)

≥ 𝑡−𝐻(𝑋|𝑆),

proving the lower bound.

Figure 2-2 illustrates the bounds from Lemma 4. The privacy region is contained withing

the shaded area. The next two examples illustrate that both the upper bound (red line) and

the lower bound (blue line) of the privacy region can be achieved for particular instances of

𝑃𝑆,𝑋 .

Example 3.

∙ Let 𝑋 = (𝑆,𝑊 ), where 𝑊 ⊥⊥ 𝑆. Then by setting 𝑌 = 𝑊 , we have 𝐼(𝑆;𝑌 ) = 0 and

𝐼(𝑋;𝑌 ) = 𝐻(𝑊 ) = 𝐻(𝑋|𝑆). Consequently, from Lemmas 3 and 4, 𝐺𝐼(𝑡, 𝑃𝑆,𝑋) = 0

for 𝑡 ∈ [0, 𝐻(𝑋|𝑆)]. By letting 𝑌 = 𝑊 with probability 𝜆 and 𝑌 = (𝑆,𝑊 ) with

probability 1 − 𝜆 for 𝜆 ∈ [0, 1], the lower-bound 𝐺𝐼(𝑡, 𝑃𝑆,𝑋) = 𝑡 − 𝐻(𝑋|𝑆) can be

achieved for 𝐻(𝑋|𝑆) = 𝐻(𝑊 ) ≤ 𝑡 ≤ 𝐻(𝑋). Consequently, the lower bound in (2.45)

is sharp.

∙ Now let 𝑋 = 𝑓(𝑆). Then 𝐼(𝑋;𝑆) = 𝐻(𝑋) and

𝐼(𝑆;𝑌 ) = 𝐼(𝑋;𝑌 )− 𝐼(𝑋;𝑌 |𝑆) = 𝐼(𝑋;𝑌 ).
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Consequently, 𝐺𝐼(𝑡, 𝑃𝑆,𝑋) = 𝑡, and the upper bound in (2.45) is sharp.

2.4.2 Connections to the Information Bottleneck Method

The information bottleneck method, introduced in [139], considers the setting where a vari-

able 𝑋 is to be compressed, while maintaining the information it bears about another

correlated variable 𝑆. The information bottleneck method is a technique generalizing rate-

distortion, as it seeks to optimize the tradeoff between the compression length of 𝑋 and the

accuracy of the information preserved about 𝑆 in the compressed output 𝑌 . The information

bottleneck optimization [139] is

min 𝐼(𝑋;𝑌 )

𝑃𝑌 |𝑋 : 𝐼(𝑆;𝑌 ) ≥ 𝐶 (2.46)

for some constant 𝐶. In the information bottleneck, the compression mapping 𝑃𝑌 |𝑋 is de-

signed to make 𝑋 and 𝑌 as far as possible from each other (minimizes 𝐼(𝑋;𝑌 )) while guar-

anteeing that 𝑆 and 𝑌 are close to each other. In other words, in the information botteleneck

the mapping 𝑃𝑌 |𝑆 is designed to make 𝐼(𝑆;𝑌 ) large and 𝐼(𝑋;𝑌 ) small. The information

bottleneck optimization (2.46) bears some resemblance to the privacy funnel (2.42), but is

actually the opposite optimization. Indeed, in the privacy funnel, the privacy mapping is

designed to make 𝐼(𝑆;𝑌 ) small and 𝐼(𝑋;𝑌 ) large.

Several techniques were developed to solve the information bottleneck problem such as

alternating iteration [139] and agglomerative information bottleneck [131]. This connection

is harvested in Section 2.4.4 to design algorithms for the privacy funnel optimization inspired

by the existing litterature on the information bottleneck optimization. Before we proceed

to the optimization, we provide another connection with a seminal result in Information

Theory colloquially referred to as Mrs Gerber’s Lemma.

2.4.3 Connections with Mrs Gerber’s Lemma

In this section, we explore connections between the privacy funnel optimization, and several

fundamental results in Information Theory. In 1973, Wyner and Ziv published a lemma

which will be known as Mrs Gerber’s Lemma (MGL) [150]. The lemma discusses an extramal

property of the entropy for binary sequences of random variables which are distorted by
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independent symmetric noise. The result is a simple consequence a scalar form of the

lemma, which is the one we refer to by MGL in this section:

Theorem 5 ([150]). Let 𝑌 be any r.v. such that 𝑋|𝑌 = 𝑦 ∼ Ber(𝑝𝑦), and let 𝑍 ∼ Ber(𝛼)

be independent of (𝑋,𝑌 ), then:

𝐻(𝑋 ⊕ 𝑍|𝑌 ) ≥ ℎ(𝛼 ⋆ ℎ−1(𝐻(𝑋|𝑌 ))), (2.47)

where ℎ(·) is the binary entropy function, 𝑎⋆𝑥 , 𝑎(1−𝑥)+𝑥(1−𝑎), and ℎ−1(·) is the inverse

binary function restricted to [0, 1/2]. Furthermore, the equality is achieved when 𝑃𝑌 |𝑋 is a

binary symmetric channel.

In what follows, we will show that this result essentially provides a closed-form solution

for the Information Bottleneck optimization, when (𝑆,𝑋) is a binary symmetric source, i.e.,

𝑋 ∼ Ber(𝑝) and 𝑆 = 𝑋 ⊕ 𝑍, where 𝑍 ∼ Ber(𝛼) is independent of 𝑋. Indeed, the result in

Theorem 5 states that 𝐻(𝑆|𝑌 ) ≥ ℎ(𝛼 ⋆ ℎ−1(𝐻(𝑋|𝑌 ))). We thus get:

𝐼(𝑆;𝑌 ) ≤ 𝐻(𝑆)− ℎ(𝛼 ⋆ ℎ−1(𝐻(𝑋|𝑌 ))). (2.48)

Noting that 𝐻(𝑋|𝑌 ) = 𝐻(𝑋) − 𝐼(𝑋;𝑌 ), the Information Bottleneck optimization can be

equivalently written as:

max
𝑃𝑌 |𝑋

𝐼(𝑆;𝑌 )

such that 𝐻(𝑋|𝑌 ) ≥ 𝐻(𝑋)− 𝐶 , 𝐶 (2.49)

Finally, noting that the inequality 𝐻(𝑋|𝑌 ) ≥ 𝐶 must be tight when 𝐶 ≤ 𝐻(𝑋), and using

the inequality (2.48), the information bottleneck is thus solved by 𝑃𝑌 |𝑋 = BSC(ℎ−1(𝐶)),

with value 𝐻(𝑆)− ℎ(𝛼 ⋆ ℎ−1(𝐶)).

The privacy funnel on the other hand, does not follow directly from MGL, but rather

from a dual of the MGL. This dual result is referred to as Mr Gerber’s Lemma in [83]

is proved using tools introduced in [149]. While the proof techniques and arguments are

interesting, a complete derivation of these results would detract from the main object of

this thesis, and we refer the interested reader to [83]. We simply state Mr Gerber’s Lemma,

and end this section by summarizing the results on the Information Bottleneck and Privacy
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Funnel for binary symmetric sources (𝑆,𝑋) in a theorem.

Lemma 5 (Mr Gerber’s Lemma [83]). Let 𝑌 be any r.v. such that 𝑋|𝑌 = 𝑦 ∼ Ber(𝑝𝑦),

and let 𝑍 ∼ Ber(𝛼) be independent of (𝑋,𝑌 ), then:

𝐻(𝑋 ⊕ 𝑍|𝑌 ) ≤ 𝜆ℎ
(︁
𝛼 ⋆

𝑞

𝑧

)︁
+ (1− 𝜆)ℎ(𝛼) (2.50)

where 𝑞 = 𝑃𝑋(0) ≤ 1/2, 𝑧 = max(𝛼, 2𝑞) , and 𝛼 ∈ [0, 1] satisfies 𝐻(𝑋|𝑌 ) = 𝛼ℎ(𝑞/𝑧).

Using this lemma, and essentially the same steps as in the Information Bottleneck case,

we may prove the following theorem.

Theorem 6. Let (𝑆,𝑋) be a binary symmetric source with 𝑃𝑋(0) = 𝑞 ≤ 1/2, and 𝑃𝑆|𝑋 =

BSC(𝛼). Then, the Information Bottleneck and Privacy Funnel trade-offs are characterized

implicitly by the pairs:

Information Bottleneck: 𝐼(𝑋;𝑌 ) = ℎ(𝑞)− 𝑥

𝐼(𝑆;𝑌 ) = ℎ(𝑞 ⋆ 𝛼)− 𝐿(𝑞, 𝑥)

Privacy Funnel: 𝐼(𝑋;𝑌 ) = ℎ(𝑞)− 𝑥

𝐼(𝑆;𝑌 ) = ℎ(𝑞 ⋆ 𝛼)− 𝑈(𝑞, 𝑥), (2.51)

where 𝐿(𝑞, 𝑥) = ℎ(𝛼⋆ℎ−1(𝑥)) and 𝑈(𝑞, 𝑥) = ℎ
(︀
𝛼 ⋆ 𝑞

𝑧

)︀
+(1−𝜆)ℎ(𝛼), with 𝜆 and 𝑧 as defined

in Lemma 5.

It should be noted that the techniques introduced in [149], and in [83] are not restricted

to binary symmetric sources. However, the technique fail to be tractable for larger alphabets,

as they involve finding the convex envelope to a polytope whose numbers of vertices grows

exponentially with the size of the alphabet. In the next section, we take an algorithmic

approach and look at approximate solutions to these problems instead.

2.4.4 Algorithm for Privacy Funnel

The alternating iteration algorithm [139] finds a stationary point of the Lagrangian of in-

formation bottleneck optimization (2.46) defined as ℒ = 𝐼(𝑋;𝑌 ) − 𝛽𝐼(𝑆;𝑌 ) for some 𝛽.

The stationary point can be a local minimum, which addresses the information bottleneck,

or a local maximum in which case it addresses the privacy funnel. However, there is no
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guarantee on the convergence of this alternating algorithm to either a local minimum or a

local maximum.

min 𝐼(𝑆;𝑌 )

𝑃𝑌 |𝑋 : 𝐼(𝑋;𝑌 ) ≥ 𝑡.

For a given utility level 𝑡, among all feasible privacy mappings 𝑃𝑌 |𝑋 satisfying 𝐼(𝑋;𝑌 ) ≥ 𝑡,
the privacy funnel selects the one that minimizes 𝐼(𝑆;𝑌 ).

Note that 𝐼(𝑋;𝑌 ) is convex in 𝑃𝑌 |𝑋 and since 𝑃𝑌 |𝑆 is linear in 𝑃𝑌 |𝑋 and 𝐼(𝑆;𝑌 ) is

convex in 𝑃𝑌 |𝑆 , the objective function 𝐼(𝑆;𝑌 ) is convex in 𝑃𝑌 |𝑋 . However, because of

the constraint 𝐼(𝑋;𝑌 ) ≥ 𝑡, the Privacy Funnel (2.42) is not a convex optimization [36,

Chap. 4]. As mentioned previously, the Privacy Funnel (2.42) is not a convex optimization.

In this section, we provide a greedy algorithm and an alternating iteration algorithm to solve

optimization (2.42), and we evaluate them on simulated data.

We use a greedy algorithm to find a privacy mapping as described next. Assume

𝐼(𝑋;𝑌 ) ≥ 𝑡 is given and we are looking for 𝑃𝑌 |𝑋 that minimizes 𝐼(𝑆;𝑌 ). Note that for

𝒴 = 𝒳 and 𝑃𝑌 |𝑋(𝑦|𝑥) = 1{𝑥 = 𝑦} (where 1{𝑥 = 𝑦} = 1 if and only if 𝑥 = 𝑦), the condition

𝐼(𝑋;𝑌 ) ≥ 𝑡 is satisfied, but, 𝐼(𝑆;𝑌 ) might be too large. The idea is to merge two elements

of 𝒴 to make 𝐼(𝑆;𝑌 ) smaller, while satisfying 𝐼(𝑋;𝑌 ) ≥ 𝑡. This method is motivated by

agglomerative information method introduced in [131]. We merge 𝑦𝑖 and 𝑦𝑗 and denote the

merged element by 𝑦𝑖𝑗 . We then update 𝑃𝑌 |𝑋 as 𝑝(𝑦𝑖𝑗 |𝑥) = 𝑝(𝑦𝑖|𝑥)+𝑝(𝑦𝑗 |𝑥), for all 𝑥 ∈ 𝒳 .

After merging, we also have 𝑝(𝑦𝑖𝑗) = 𝑝(𝑦𝑖)+𝑝(𝑦𝑗). Let 𝑌 (𝑖,𝑗) be the resulting 𝑌 from merging

𝑖 and 𝑗. Algorithm 1 is a greedy algorithm to solve optimization (2.42). Proposition 6 shows

that, there is an efficient way to calculate 𝐼(𝑆;𝑌 )− 𝐼(𝑆;𝑌 (𝑖,𝑗)) and 𝐼(𝑋;𝑌 )− 𝐼(𝑋;𝑌 (𝑖,𝑗))

at each iteration of algorithm 1.

Proposition 6. For a given joint distribution 𝑃𝑆,𝑋,𝑌 = 𝑃𝑆,𝑋𝑃𝑌 |𝑋 , we have 𝐼(𝑆;𝑌 ) −
𝐼(𝑆;𝑌 (𝑖,𝑗)) =

𝑝(𝑦𝑖𝑗)𝐻

(︂
𝑝(𝑦𝑖)𝑃𝑆|𝑌=𝑦𝑗 + 𝑝(𝑦𝑗)𝑃𝑆|𝑌=𝑦𝑗

𝑝(𝑦𝑖𝑗)

)︂
−
(︁
𝑝(𝑦𝑖)𝐻(𝑃𝑆|𝑌=𝑦𝑖) + 𝑝(𝑦𝑗)𝐻(𝑃𝑆|𝑌=𝑦𝑗 )

)︁
.

We also have 𝐼(𝑋;𝑌 )− 𝐼(𝑋;𝑌 (𝑖,𝑗)) =
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Algorithm 3 Greedy algorithm-privacy funnel
Input: 𝑡, 𝑃𝑆,𝑋

Initialization: 𝒴 = 𝒳 , 𝑃𝑌 |𝑋(𝑦|𝑥) = 1{𝑦 = 𝑥}.
while there exists 𝑖′, 𝑗′ ∈ 𝒴 such that 𝐼(𝑋;𝑌 (𝑖′,𝑗′)) ≥ 𝑡 do

among those 𝑖′, 𝑗′, let
{𝑦𝑖, 𝑦𝑗} = argmax𝑦𝑖′ ,𝑦𝑗′∈𝒴 𝐼(𝑆;𝑌 )− 𝐼(𝑆;𝑌 (𝑖′,𝑗′))

merge: {𝑦𝑖, 𝑦𝑗} → 𝑦𝑖𝑗
update: 𝒴 = {𝒴 ∖ {𝑦𝑖, 𝑦𝑗}} ∪ {𝑦𝑖𝑗} and 𝑃𝑌 |𝑋

end while
Output: 𝑃𝑌 |𝑋

Algorithm 4 Greedy algorithm-information bottleneck
Input: ∆, 𝑃𝑆,𝑋

Initialization: 𝒴 = 𝒳 , 𝑃𝑌 |𝑋(𝑦|𝑥) = 1{𝑦 = 𝑥}
while there exists 𝑖′, 𝑗′ ∈ 𝒴 such that 𝐼(𝑆;𝑌 (𝑖′,𝑗′)) ≥ ∆ do

among those 𝑖′, 𝑗′, let
{𝑦𝑖, 𝑦𝑗} = argmax𝑦𝑖′ ,𝑦𝑗′∈𝒴 𝐼(𝑋;𝑌 )− 𝐼(𝑋;𝑌 (𝑖′,𝑗′))

merge: {𝑦𝑖, 𝑦𝑗} → 𝑦𝑖𝑗
update: 𝒴 = {𝒴 ∖ {𝑦𝑖, 𝑦𝑗}} ∪ {𝑦𝑖𝑗} and 𝑃𝑌 |𝑋

end while
Output: 𝑃𝑌 |𝑋

𝑝(𝑦𝑖𝑗)𝐻

(︂
𝑝(𝑦𝑖)𝑃𝑋|𝑌=𝑦𝑗 + 𝑝(𝑦𝑗)𝑃𝑋|𝑌=𝑦𝑗

𝑝(𝑦𝑖𝑗)

)︂
−
(︁
𝑝(𝑦𝑖)𝐻(𝑃𝑋|𝑌=𝑦𝑖) + 𝑝(𝑦𝑗)𝐻(𝑃𝑋|𝑌=𝑦𝑗 )

)︁
.

Proof. After merging 𝑦𝑖 and 𝑦𝑗 , we have

𝑝(𝑠|𝑦𝑖𝑗) =
𝑝(𝑦𝑖)

𝑝(𝑦𝑖𝑗)
𝑝(𝑠|𝑦𝑖) +

𝑝(𝑦𝑗)

𝑝(𝑦𝑖𝑗)
𝑝(𝑠|𝑦𝑗), for all 𝑠 ∈ 𝒮,

𝑝(𝑥|𝑦𝑖𝑗) =
𝑝(𝑦𝑖)

𝑝(𝑦𝑖𝑗)
𝑝(𝑥|𝑦𝑖) +

𝑝(𝑦𝑗)

𝑝(𝑦𝑖𝑗)
𝑝(𝑥|𝑦𝑗), for all 𝑥 ∈ 𝒳 .

The proof follows from writing 𝐼(𝑆;𝑌 )−𝐼(𝑆;𝑌 (𝑖,𝑗)) = 𝐻(𝑆|𝑌 (𝑖,𝑗))−𝐻(𝑆|𝑌 ) and 𝐼(𝑋;𝑌 )−
𝐼(𝑋;𝑌 (𝑖,𝑗)) = 𝐻(𝑋|𝑌 (𝑖,𝑗))−𝐻(𝑋|𝑌 ).

Note that the greedy algorithm is locally optimal at every step since we minimize 𝐼(𝑆;𝑌 ).

However, there is no guarantee that such a greedy algorithm induces a global optimal privacy

mapping.

Remark 2. The minimum of 𝐼(𝑆;𝑌 ) in (2.42) is a decreasing function of 𝐼(𝑋;𝑌 ) and is

achieved for a mapping 𝑃𝑌 |𝑋 that satisfies 𝐼(𝑋;𝑌 ) = 𝑡 (if possible due to discrete alphabets).
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Figure 2-3: Maximum and minimum of 𝐼(𝑆;𝑌 ) for a given 𝐼(𝑋;𝑌 ): using greedy algorithms.

For a given mutual information, 𝑡, there are many conditional probability distributions,

𝑃𝑌 |𝑋 , achieving 𝐼(𝑋;𝑌 ) = 𝑡. Among which there is one that gives the minimum 𝐼(𝑆;𝑌 )

and one that gives the maximum 𝐼(𝑆;𝑌 ). We can modify the greedy algorithm so that it

converges to a local maximum of 𝐼(𝑆;𝑌 ) for a given 𝐼(𝑋;𝑌 ) = 𝑡. The algorithm which we

call greedy algorithm-information bottleneck is given in Algorithm (2). Algorithm (1) and

Algorithm (2) allow us to approximately characterize the range of values 𝐼(𝑆;𝑌 ) can take for

a given value of 𝐼(𝑋;𝑌 ) as being those between the local minimum and the local maximum.

Interestingly, by observing the gap between the local maximum and the local minimum, we

have a relative idea on the effectiveness of the Greedy algorithm, i.e., if the difference is

significant it means a negligent mapping may lie anywhere between those values, possibly

leading to a much higher privacy threat.

Example 4 (Numerical Example).

Data Set: The US 1994 Census dataset [20] is a well-known dataset in the machine learning

community, which is a sample of the US population from 1994. For each of the entries, it

contains features such age, work-class, education, gender, and native country, as well as

an income category. The income level is a binary variable which determines whether the

income is above or below USD 50000, gender is a binary variable, education level is a variable

with four categories, age is a variable divided into seven categories. For our purposes, we

consider the private attributes 𝑆 = (age, income level) and the attributes to be released as

𝑋 = (age, gender, education level). The goal of the privacy mapping is to release a modified

version of attributes 𝑌 which is informative about 𝑋 but that renders the inference of 𝑆

based on 𝑌 hard.
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Numerical illustration In Fig. 2-3, we plot the minimum and maximum of 𝐼(𝑆;𝑌 ) for a

given 𝐼(𝑋;𝑌 ). This figure is based on US 1994 census data set described before. The top

curve shows the maximum of 𝐼(𝑆;𝑌 ) versus 𝐼(𝑋;𝑌 ), using Algorithm (2). The bottom curve

shows the minimum of 𝐼(𝑆;𝑌 ) versus 𝐼(𝑋;𝑌 ), using Algorithm (1). The area between the

two curves shows the possible pairs of (𝐼(𝑋;𝑌 ), 𝐼(𝑆;𝑌 )) as 𝑃𝑌 |𝑋 varies (s subset of possible

pairs, since the algorithms are sub-optimal). Indeed, we will design the mapping to lie on

the bottom curve. For a given 𝑡, if we design the mapping negligently, we may have 𝐼(𝑆;𝑌 )

on the top curve instead of the bottom curve.
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Chapter 3

Guessing passwords

In the early 1960s, researchers at the Massachusetts Institute of Technology (MIT) were

using a rudimentary form of time-sharing computer system which allowed multiple users

access to computational resources. The system was known as the Compatible Time-Sharing

System (CTSS). They were faced with one problematic feature of the CTSS – users could

interrupt each-other’s activity on the machine, as well as access all files. It was to handle

this shortcoming of the time-sharing system that Professor Fernando Corbató designed the

computer password. While Prof. Corbató’s legacy in computer science is renowned – he

received the Turing Award in 1990 for his pioneering contributions – it was hard to envision

back then the major role that password secured systems would now occupy in our lives. From

purchases, to social networks, password secured systems are ubiquitous, and the backbone of

the digital revolution. While passwords have allowed what was only a dream in the 1960s, in

recent years the dream has evolved into a "kind of a nightmare" – the words of Prof Corbató

himself. This refers to a multitude of unforeseen effects of passwords, and how prevalent

they are in our lives.

First and foremost, passwords generated by humans are generally weak. When choosing

a secret string of length 𝑛 in an alphabet of size |𝒳 |, the best password is picked by choosing

one of the |𝒳 |𝑛 string uniformly at random. However, humans tend to generate strings

using a very different distribution, see [33]. Several models for the real-life distribution of

passwords have been proposed in the literature, and we refer the reader to the related works

section [33, 142, 140] for an in-depth review of such models. Needless to say though, that

human generated secret strings are strictly worse than the ideal uniform ones, and thus
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adversaries can leverage this knowledge to perform attacks on the secret string.

Next, there are now an unmanageable amount of passwords to keep track of. According

to a recent survey [93], the average user has more than 90 password-secured accounts. This

leads to password reuse. Suppose Alice has several accounts, each requiring a password.

From the security standpoint, Alice should generate each password independently from each-

other, in which case one password being compromised does not give away any information

on any of the other passwords. On the other extreme, Alice may decide to use one identical

password for all of her accounts, where the compromise of one of the accounts puts in peril

all of her accounts. Most users fall somewhere on this spectrum of password reuse. In either

case, this is knowledge an adversary can utilize to its benefit, as one compromised account

may actually reveal significant amounts of information and open the door to a person’s

digital life with catastrophic consequences. Since "a chain is as strong as its weakest link",

the security of a password secured system cannot be evaluated in a vacuum.

Finally, there is more readily available public information about individuals online. This

data, that is often shared willingly, may seem inauspicious but often users neglect to realize

that it reveals a large amount of side-information to adversaries when it comes to guessing

passwords. Indeed, it is quite common to generate passwords using some personal infor-

mation, e.g. date of birth, name of family member or pets, etc. This information is often

not deemed sensitive to users, who willingly share it online, for example on social networks.

This creates a huge vulnerability against targeted attacks. In a targeted attack, the adver-

sary leverages personal information about the user to generate password guesses which are

targeted to that specific user. As it becomes easier to collect this personal data, targeted

attacks are increasingly powerful, and dangerous.

For these reasons, brute-force attacks represent a significant portion of cyber-attacks [5].

They target password-secured systems and consist in querying tentative passwords until

the correct one is found. This can occur online, where the adversary connects to a host

server, sends her password queries, and receives notification of her success or failure after

each guess. More often though, these attacks happen offline. In this case, the adversary has

previously gained access to a collection of hashed passwords through another breach, and

queries tentative passwords by comparing them to a hash. In either case, these attacks turn

out to be surprisingly efficient. From online banking [81] and bitcoin wallets [1], to secure

shell (SSH), file transfer protocol(ftp), and telnet servers [108], and passing by governmental
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institutions [2], brute-force attacks have shown to be one of the major threats to network

security. In this chapter of the thesis, we will present a mathematical model for brute-force

attacks, and discuss the security of password secured systems under several types of attack

scenarios. In all these cases, we identify the number of queries—or guesses—as a surrogate

for the computational effort the adversary has to accomplish to breach the system. As such,

understanding quantities such as the average number of guesses before the correct password

is found, are useful in assessing the security risks of a system against brute-force attacks.

The resulting mathematical formulation is based on a quantity denoted by guesswork, which

also has applications in other areas of engineering, information theory, and statistics.

Main contributions and Organization of this chapter:

This chapter is organized as follows. First, we will introduce the mathematical foundation

for brute-force attacks, which is based on Guesswork, in 3.1, with a focus on the geomet-

ric properties of this quantity. The rest of the chapter is devoted to the evaluation of the

asymptotic security of password secured systems under various brute-force attacks. In Sec-

tion 3.2, we study how targeted attacks and password reuse can be modeled by guesswork

with side-information, and also quantify the impact of centralized versus decentralized at-

tacks. In Section 3.3, we explore password guessing under a distributional mismatch, where

the password distribution and the adversary’s knowledge of the latter are not identical. In

Section 3.4, we investigate attacks performed by asynchronous botnets by deriving a series of

results in guesswork without memory. Finally, we refer to Appendix B for additional lemmas

on Guesswork, and to Appendix C for an exploration of connections between Guesswork and

lossless source coding. Our key novel contributions are as follows:

1. Derive a closed-form solution for the decentralized guessing with independent side-

information generated from the same channel 𝑃𝑌 |𝑋 .

2. We prove a novel Large Deviations Principle result for Mismatched Guesswork, a

guessing setup where the guessing list is made according to the wrong distribution.

We also characterize the rate function in terms of information theoretic quantities,

which can be interpreted via tools from Information Geometry.

3. Characterize the asymptotic performance, both in terms of averge number of guesses,

and in terms of probability of success for a fixed number of guesses, of asynchronous
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brute-force attackers by establishing a connection with a guessing problem with no-

memory.

Related Work: The problem of a cipher with a guessing wiretapper was considered in

[101]. The problem of guessing subject to distortion and constrained Shannon entropy

were investigated in [15] and [26], respectively. The above results have been generalized to

ergodic Markov chains [135] and a wide range of stationary sources [110]. The problem of

guessing under source uncertainty was investigated in [136]. The analysis of the guessing

exponents, using large deviations theory, was considered in [79]. In [48] it was shown that the

guesswork satisfies a large deviation property and the rate function was characterized. They

also provided an approximation to the distribution of guesswork using the large deviation

property. Guessing a sequence given an erased version of the sequence was studied in [49],

where the interplay between the large-deviations of the erasure process, and of the sequence

generation were characterized. A brute-force attack where adversaries are interested in

multiple passwords is discussed in [50]. A distributed attack model based on password hints

was proposed in [39] and evaluated under guesswork metrics, and a wiretap system under

guessing guarantees was studied in [101]. A geometric characterization of the guesswork

was established in [24] and expanded in [25]. Finally, applications of guesswork [38] to

cryptographic guessing was studied in [38], where oblivious or memoryless guessers were

studied. The results of [38] are non-asymptotic, but very much related to our setting,

as optimal i.i.d. guessing strategies both in terms of number of guesses and in terms of

probability of success are studied, and a distributed attack scenario is also envisaged.

The statistics of password generation were studied in [142, 140, 29, 33]. Password fre-

quencies have been shown to follow closely variants of the Zipf’s law distribution. In par-

ticular, the so-called CDF-Zipf ’s law model introduced in [142, 140] is a modification of the

Zipf’s law which captures the frequencies of passwords, both for very frequent passwords,

and the tails, as exhibited by the close empirical fit to multiple password datasets (see [140,

142, 29]). Note than an adversary can benefit greatly from the the non-uniformity of these

distributions to design more powerful brute-force attacks. Indeed, Guesswork, and other

related notions of security related to brute-force attacks are also studied in [142, 29, 33]. A

special case of brute-force attack is given by targeted attacks, in which the adversary uses

the personal information of an user in his guessing strategy, see e.g. [143]. Works such as

[141, 57] empirically demonstrate the threat of these targeted attacks, as most users chose

70



their passwords according to some personal information which an adversary might have easy

access to (e.g. birthdays, names of family members, locations, or simply password reuse) .

3.1 Guesswork: A mathematical model for brute-force attacks

In this section, and throuhgout this thesis, we have made several modeling assumptions,

both on the password generation process, and the brute-force attack itself. In particular, we

assume the following.

1. Passwords are assumed to be strings of given length 𝑛, which is known. Note that in

some applications, the brute-force attack takes place on private key of some fixed size,

in which case the length of the secret key is often known.

2. Passwords are assumed to be strings whose characters are generated i.i.d. from a

distribution 𝑃𝑋 .1 In some cases, we prove non-asymptotic results, which hold true for

an arbitrary alphabet 𝒳 , and a distribution 𝑃 .

3. The common goal of the agents is to guess one given password, or string. In practice,

there might be multiple accounts which undergo attacks simultaneously.

We believe that some of these assumptions could be relaxed and generalized using techniques

from the literature, as discussed in the related works section. In addition, the i.i.d. setting,

and the resulting asymptotic results, can be used as guidelines in designing systems even if

the real system violates the memoryless assumption. For example, such results can be used

to choose the minimal length of a password to secure a system. Despite these assumptions,

the insights gained from the model we study shed light on the robustness of brute-force

attacks to the various setups we consider.

3.1.1 Moments of Guesswork

The goal of this section is to introduce guesswork as a surrogate for the computation burden

that an adversary has to commit before breaching into a password secured system. The

guesswork measures the number of queries needed before guessing correctly a discrete ran-

dom variable 𝑋 with probability mass function (pmf) 𝑃 . More precisely, let Alice select
1We briefly mention generalizations to passwords generated according to an irreducible stationary Markov

Chain in several remarks throughout the thesis, e.g. Remark 6 in Section 3.4.1.
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a secret password 𝑋 from an alphabet 𝒳 , which is assumed finite, i.e. |𝒳 | < ∞. Bob is

assumed to know 𝑃 , but has no access to 𝑋 when designing his guesses. To this end, he em-

ploys a guessing strategy, defined as a sequence 𝑋̂∞
1 = {𝑋̂𝑘(𝑃 ) : 𝑘 ≥ 1}, where 𝑋̂𝑘(𝑃 ) ∈ 𝒳

is independent of the realization 𝑋 but may depend on the password distribution 𝑃 . In

other words, 𝑋̂∞
1 is the list of guesses the attacker will use, one after the other, when trying

to guess 𝑋. The corresponding guessing function 𝐺(𝑋, 𝑋̂∞
1 ), defined as

𝐺(𝑋, 𝑋̂∞
1 ) = inf{𝑘 ≥ 1 : 𝑋̂𝑘(𝑃 ) = 𝑋}, (3.1)

represents the number of guesses Bob has to perform before correctly guessing 𝑋. This

allows to define the guesswork, as such:

Definition 4 (Guesswork). Let 𝑋 ∼ 𝑃 , with 𝑋 ∈ 𝒳 finite, and let 𝜌 > 0. Then, the 𝜌-th

moment of guesswork is defined as:

min
𝑋̂∞

1

E[𝐺(𝑋, 𝑋̂∞
1 )𝜌], (3.2)

where the minimization is over all guessing strategies 𝑋̂∞
1 .

Note that for this definition to be valid, there must be an optimal guessing strategy

which achieves the minimization in (3.2). The following guarantees the existence of such

optimal strategy and characterizes it.

Proposition 7 (Optimal Guessing Strategy). Consider list of symbols in 𝒳 , with ties broken

arbitrarily2 , that is {𝑥1, . . . , 𝑥|𝒳 |}, where 𝑃 (𝑥1) ≥ 𝑃 (𝑥2) ≥ . . . 𝑃 (𝑥|𝒳 |). Then, for any 𝜌 > 0

and any guessing strategy 𝑋̂∞
1 , we have:

E
[︀
𝐺(𝑋, {𝑥1, . . . , 𝑥|𝒳 |})𝜌

]︀
≤ E[𝐺(𝑋, 𝑋̂∞

1 )𝜌]. (3.3)

The optimal guessing function is denoted by 𝐺𝑃 (𝑋), and thus corresponds to the position of

𝑋 in the list of symbols ordered from most likely to least likely.

Remark 3 (Notation). While the formalism of the guessing function 𝐺(𝑋, 𝑋̂∞
1 ) is necessary

to consider randomized guesses, which will be of interest to us in Section 3.4 to come,
2For convenience, we let the ties be broken by lexicographical ordering when applicable throughout this

thesis.
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throughout several parts of this chapter, we will focus on deterministic guesses. Particularly,

the optimal guessing function 𝐺𝑃 is a bijection from 𝒳 → [|𝒳 |], and it is optimal under

stronged notions than the moment condition (3.3). For example, not only does it minimize

simultaneously all moments 𝜌 of Guesswork, it is also the optimal strategy for a fixed number

of guesses, i.e., for any guessing strategy 𝑋̂∞
1 , and any natural number 𝑘,

P
[︀
𝐺(𝑋, {𝑥1, . . . , 𝑥|𝒳 |}) ≤ 𝑘

]︀
≥ P[𝐺(𝑋, 𝑋̂∞

1 ) ≤ 𝑘]. (3.4)

Therefore, unless specified otherwise, the guessing strategy will often be implicit, and we

will focus on the quantity 𝐺𝑃 (𝑋). Finally, when looking at sequences of random variables

of length 𝑛, we may use exchangeably the notation 𝑋𝑛, or the bold font 𝑋, when the index

𝑛 is clear from the context.

Guessing functions, and in particular the moments of guesswork, were studied by Massey

[97] where it was shown that the average guesswork E[𝐺𝑃 (𝑋)] could not be bounded by the

entropy 𝐻(𝑃 ). This fact was then revisited by Arikan [14], where the following result is

established, here depicted as a lemma:

Lemma 6 ([14][Theorem 1). ] For any 𝜌 ≥ 0, the optimal guessing function 𝐺𝑃 (𝑋) satisfies:

(1 + log |𝒳 |)−𝜌

[︃∑︁
𝑥∈𝒳

𝑃 (𝑥)
1

1+𝜌

]︃1+𝜌

≤ E[𝐺𝑃 (𝑋)] ≤
[︃∑︁
𝑥∈𝒳

𝑃 (𝑥)
1

1+𝜌

]︃1+𝜌

. (3.5)

When looking at iid sequences of random variables 𝑋1, . . . , 𝑋𝑛 ∼𝑖.𝑖.𝑑. 𝑃 , the lemma

admits a powerful corollary, which characterizes the asymptotics of guesswork in terms of

the Rényi entropy.

Corollary 3 (Asymptotics of Guesswork). Let 𝑋1, . . . , 𝑋𝑛 ∈ 𝒳 be generated iid from 𝑃 ,

and let 𝜌 > 0. Then:

𝐸𝜌(𝑃 ) , lim
𝑛→∞

1

𝑛
logE[𝐺𝑃 (𝑛)(𝑋𝑛)] = 𝜌 ·𝐻1/1+𝜌(𝑃 ), (3.6)

where 𝐻𝛼(𝑃 ) is the Rényi entropy of order 𝛼 (𝛼 > 0, 𝛼 ̸= 1), defined as

𝐻𝛼(𝑋) ,
1

1− 𝛼 log

[︃∑︁
𝑥∈𝒳

𝑃 (𝑥)𝛼

]︃
. (3.7)
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Before we proceed to the proof, let us briefly discuss this result. First of all, 𝐸𝜌(𝑃 ) is

the asymptotic exponent of growth as a function of 𝑛, or in other words, as the length 𝑛

of a password grows, the average 𝜌-moment of the number of required guesses grows expo-

nentially with an exponent given by 𝐸𝜌(𝑃 ). Secondly, 𝐸𝜌(𝑃 ) can be seen as an operational

interpretation of the Rényi entropy 𝐻𝛼, for 𝛼 > 1.

Proof. There are several proofs of this result, which we will revisit at times throughout this

thesis. The first proof, due to Arikan, follows from Lemma 6, and is described below for

completeness. We start by expanding the lower-bound, the upper bound follows from similar

steps:

E[𝐺𝑃 (𝑛)(𝑋𝑛)𝜌] ≥ (1 + log |𝒳 |𝑛)−𝜌

[︃ ∑︁
𝑥𝑛∈𝒳𝑛

𝑃 (𝑛)(𝑥𝑛)
1

1+𝜌

]︃1+𝜌

(3.8)

=⇒ 1

𝑛
logE[𝐺𝑃 (𝑛)(𝑋𝑛)𝜌] ≥ 1

𝑛
log

[︃ ∑︁
𝑥𝑛∈𝒳𝑛

𝑃 (𝑛)(𝑥𝑛)
1

1+𝜌

]︃1+𝜌

+ 𝑜(1) (3.9)

=
1

𝑛
log

[︃ ∑︁
𝑥𝑛∈𝒳𝑛

𝑛∏︁
𝑖=1

𝑃 (𝑥𝑖)
1

1+𝜌

]︃1+𝜌

+ 𝑜(1) (3.10)

=
1

𝑛
log

⎡⎣ 𝑛∏︁
𝑖=1

∑︁
𝑦∈𝒳

𝑃 (𝑦)
1

1+𝜌

⎤⎦1+𝜌

+ 𝑜(1) (3.11)

=
1

𝑛
· 𝑛 · 𝜌𝐻1/1+𝜌(𝑃 ) + 𝑜(1). (3.12)

Evaluating the upper bound, and letting 𝑛 → ∞ yields the desired result via the squeeze

theorem.

Guesswork can also be studied when side-information is available. This models targeted

attacks, where Bob has access to additional information about Alice, which is modeled by

a random variable 𝑌 . More precisely, we let 𝑌 ∈ 𝒴 be the output of 𝑋 through a discrete

memoryless channel (DMC) with transition probability 𝑃𝑌 |𝑋 . Upon receiving a realization

𝑦 ∈ 𝒴, Bob updates his belief on the distribution of 𝑋 by ordering the candidate strings in

decreasing order with respect to the posterior 𝑃𝑋|𝑌 (·|𝑦), resulting in the optimal guessing

function 𝐺𝑃𝑋|𝑌 (𝑋|𝑌 = 𝑦) , 𝐺𝑃𝑋|𝑌 =𝑦
(𝑋). The 𝜌-th moment of the conditional guesswork
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𝐺𝑃𝑋|𝑌 (𝑋|𝑌 ) be defined as the average:

E [𝐺𝑃 (𝑋|𝑌 )𝜌] ,
∑︁
𝑦∈𝒴

𝑃𝑌 (𝑦)E[𝐺𝑃 (𝑋|𝑌 = 𝑦)𝜌]. (3.13)

Similarly, the asymptotic exponent of the conditional guesswork is defined as

𝐸𝜌(𝑃, 𝑃𝑌 |𝑋) , lim
𝑛→∞

1

𝑛
logE

[︁
𝐺𝑃𝑋𝑛|𝑌 𝑛 (𝑋𝑛|𝑌 𝑛)

]︁
. (3.14)

Finally, it was shown in [14], using essentially identical tools as the no side-information case,

that

𝐸𝜌(𝑃, 𝑃𝑌 |𝑋) = 𝜌 ·𝐻 1
1+𝜌

(𝑋|𝑌 ) (3.15)

= 𝜌 ·
∑︁
𝑦∈𝒴

𝑃𝑌 (𝑦)𝐻 1
1+𝜌

(𝑋|𝑌 = 𝑦). (3.16)

3.1.2 Geometry and Large Deviation Principle

In this section, we will introduce a geometric perspective on guesswork, which will be es-

sential, both as a proof technique, and an interpretation of the asymptotics of guesswork.

Along the way, we will discuss strengthening of the results on guesswork from moments,

to a large deviation principle (LDP). We make the following two assumptions on all the

probability distributions that we study in the rest of this section:

Assumption 1. We say 𝑃 is unambiguous if it satisfies the following:

1. 𝑃 (𝑥) > 0 for all 𝑥 ∈ 𝒳 .

2. argmin
𝑥∈𝒳

𝑃 (𝑥) and argmax
𝑥∈𝒳

𝑃 (𝑥) are unique.

Note that the set of distributions which are not unambiguous forms a set of Lebesgue

measure zero in the set of all distributions, which can be seen by the fact that the non-

umanbiguous distributions are contained in a finite union of lower dimensional sets. See [25]

for the implications of this assumption.

We are ready to define the tilt operator.

Definition 5 (Distribution Tilting). Let 𝛼 ∈ R and 𝑄 be unambiguous. We denote by
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𝑇 (𝑃,𝑄, 𝛼) the mismatched tilted distribution of order 𝛼 of 𝑄 with respect to 𝑃 , defined as

[𝑇 (𝑄,𝑃, 𝛼)](𝑥𝑖) ,
𝑃 (𝑥𝑖) ·𝑄(𝑥𝑖)

𝛼∑︀
𝑥∈𝒳 𝑃 (𝑥) ·𝑄(𝑥)𝛼

. (3.17)

We further define the the mismatched tilted family of 𝑄 with respect to 𝑃 as

𝒯𝑄,𝑃 , {𝑇 (𝑄,𝑃, 𝛼) : 𝛼 ∈ R} . (3.18)

By taking limits, we define :

[𝑇 (𝑄,𝑃,∞)](𝑥) =

⎧⎪⎨⎪⎩
1 if 𝑥 = argmax𝑥∈𝒳 𝑄(𝑥),

0 otherwise
, (3.19)

[𝑇 (𝑄,𝑃,−∞)](𝑥) =

⎧⎪⎨⎪⎩
1 if 𝑥 = argmin𝑥∈𝒳 𝑄(𝑥),

0 otherwise
, (3.20)

𝑇 (𝑄,𝑃, 0) = 𝑃. (3.21)

This definition of mismatched tilt generalizes the tilt defined in [25, Definition 13], and

recovers it when 𝑃 is the uniform distribution. The tilted family 𝒯𝑄,u𝒳 , is denoted by 𝒯𝑄,

and 𝑇 (𝑄,u𝒳 , 𝛼) is denoted by 𝑇 (𝑄,𝛼). Further, define 𝒯 +
𝑄 = {𝑇 (𝑄,𝛼) : 𝛼 > 0} as the

positive tilted family, and 𝒯 −
𝑄 = {𝑇 (𝑄,𝛼) : 𝛼 < 0} as the negative tilted family. Note that

𝒯𝑄 = 𝒯 +
𝑄 ∪ 𝒯 −

𝑄 ∪ u𝒳 .

Lemma 7 (closure of the tilted family under tilt operation). For any 𝛼 > 0, the following

holds:

𝒯𝑄,𝑃 = 𝒯𝑇 (𝑄,𝛼),𝑃 . (3.22)

Proof. The proof follows from the definition of 𝑇 (𝑄,𝛼) and from (3.17).

We now define a collection of linear families.

Definition 6 (linear family). We denote by ℒ(𝑄,𝛼) the linear family of 𝑄 of order 𝛼,

defined as

ℒ(𝑄,𝛼) , {𝛾 ∈ ∆𝒳 : 𝐻(𝛾‖𝑄) = 𝐻(𝑇 (𝑄,𝛼)‖𝑄))} (3.23)

76



uX

Figure 3-1: Representation of the 3-dimensional simplex, each point in the triangle represents
a distribution over |𝒳 | = 3. The corners of the triangle correspond to the distribution where
all the mass is on a single symbol. The exponential family 𝒯𝑄 goes through u𝒳 and 𝑄.
The exponential family 𝒯𝑄,𝑃 goes through 𝑃 . ℒ(𝑄,𝛼⋆) is the linear family of 𝑄 of order
𝛼⋆ which passes through 𝑃 . The distribution Π𝒯𝑄(𝑃 ) is the projection of 𝑃 onto 𝒯𝑄. Of
particular interest for lossless coding will be the divergences 𝐷(𝑃‖𝑄) and 𝐷(𝑃‖Π𝒯𝑄(𝑃 )).

Intuitively, the mismatched tilted family 𝒯𝑄,𝑃 and the tilted family 𝒯𝑄, correspond to

the curves that are orthogonal to the linear families ℒ(𝑄,𝛼), and pass through 𝑃 and u𝒳 ,

respectively. We refer the interested reader to [55, Section 3] for an overview of the duality

between linear and exponential families, and their applications in statistics, information

theory, and large deviations theory.

For a distribution 𝑃 , we can also define projections on a tilted family 𝒯𝑄 in the following

way:

Definition 7 (projection on a tilted family). We say Π𝒯𝑄(𝑃 ) is the projection of 𝑃 on 𝒯𝑄
and define it as

Π𝒯𝑄(𝑃 ) , arg𝛾∈𝒯𝑄 {𝐻(𝛾‖𝑄) = 𝐻(𝑃‖𝑄)} . (3.24)

Note that Π𝒯𝑄(𝑃 ) = 𝑇𝑄∩ℒ(𝑄,𝛼⋆) = 𝑇 (𝑄,𝛼⋆) with 𝛼⋆ selected such that 𝐻(𝑇 (𝑄,𝛼⋆)‖𝑄) =

𝐻(𝑃‖𝑄).

The following lemma guarantees existence and uniqueness of the projection operator.

Lemma 8. Let 𝑃 and 𝑄 be umambiguous, then Π𝒯𝑄(𝑃 ) exists and is unique. Further,

Π𝒯𝑄(𝑃 ) = 𝑃 iff 𝑃 ∈ 𝒯𝑄.

Proof. Note that for an unambiguous 𝑄, 𝐻(𝑇 (𝑄, 𝛽)‖𝑄) is a strictly decreasing continuous

function in 𝛽 [25]. Further, 𝐻(𝑇 (𝑄,∞)‖𝑄) < 𝐻(𝑃‖𝑄) < 𝐻(𝑇 (𝑄,−∞)‖𝑄), thus the
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projection must exist and is unique, by the intermediate value theorem. The second part of

the claim follows by definition of Π𝒯𝑄(𝑃 ).

The definitions above are summarized in Figure 3-1. These geometric quantities satisfy

various useful properties, which will be of use in the rest of this paper. We will review some

of those in the rest of this section. We start with the I-Projection Pythagorean theorem (see

for example [55, Theorem 3.2]).

Lemma 9 (I-Pythagoerean theorem). Let 𝛾 ∈ 𝒯𝑄, then

𝐷(𝑃‖𝛾) = 𝐷(𝑃‖Π𝒯𝑄(𝑃 )) +𝐷(Π𝒯𝑄(𝑃 )‖𝛾). (3.25)

The next two lemma characterize properties of the projection in terms of entropy and

reletive entropy (KL divergence).

Lemma 10 (Projection does not decrease entropy). Let Π𝒯𝑄(𝑃 ) ∈ 𝒯 +
𝑄 , then

𝐻(Π𝒯𝑄(𝑃 )) = 𝐻(𝑃‖Π𝒯𝑄(𝑃 )) ≥ 𝐻(𝑃 ) (3.26)

with equality iff 𝑃 ∈ 𝒯𝑄.

Proof. We first use the identity 𝐻(𝑃 ) = log |𝒳 | − 𝐷(𝑃‖u𝒳 ). By Theorem 9, we have

𝐷(𝑃‖u𝒳 ) = 𝐷(𝑃‖Π𝒯𝑄(𝑃 )) +𝐷(Π𝒯𝑄(𝑃 )‖u𝒳 ). Thus,

𝐻(𝑃 ) = log |𝒳 | −𝐷(𝑃‖Π𝒯𝑄(𝑃 ))−𝐷(Π𝒯𝑄(𝑃 )‖u𝒳 ) (3.27)

≤ log |𝒳 | −𝐷(Π𝒯𝑄(𝑃 )‖u𝒳 ) (3.28)

= 𝐻(Π𝒯𝑄(𝑃 )) (3.29)

This yields directly the following lemma.

Lemma 11 (Projection does not increase relative entropy). We have

𝐷(Π𝒯𝑄(𝑃 )‖𝑄) = 𝐷(𝑃‖𝑄) +𝐻(𝑃 )−𝐻(Π𝒯𝑄(𝑃 )) ≤ 𝐷(𝑃‖𝑄) (3.30)

with equality iff 𝑃 ∈ 𝒯𝑄 .
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Proof. By definition of Π𝒯𝑄 , we have 𝐻(Π𝒯𝑄(𝑃 )‖𝑄) = 𝐻(𝑃‖𝑄), or equivalently that

𝐻(Π𝒯𝑄(𝑃 )) +𝐷(Π𝒯𝑄(𝑃 )‖𝑄) = 𝐻(𝑃 ) +𝐷(𝑃‖𝑄) (3.31)

The proof follows from using Lemma 10.

We are now finally ready to revisit some of the results on guesswork. It was shown in [48]

that, under some mild conditions, the logarithm of guesswork satisfies a large deviation

principle (LDP), and the rate function was further given in terms of information theoretic

quantities in [25, Theorem 5].

Theorem 7 (LDP for matched guesswork). For any unambiguous 𝑃 , the sequence { 1𝑛 log𝐺𝑃 (𝑋𝑛)}𝑛∈N+

satisfies a LDP, with rate function 𝐽(𝑡) defined implicitly by

𝐽(𝑡) = 𝐷(𝑇 (𝑃, 𝛼(𝑡))‖𝑃 ), (3.32)

where 𝛼(𝑡) = arg𝛼≥0{𝐻(𝑇 (𝑃, 𝛼)) = 𝑡}.

LDP implies many of the results on the average growth rate of the moments 𝐸𝜌(𝑃 ), via

Varadhan’s lemma [58, Theorem 4.3.1], which is in essence Laplace’s method extended to

infinite dimensional spaces. Therefore, an alternative proof of Corollary 3 can be obtained

through Theorem 7, via Varadhan’s lemma:

Corollary 4. We have,

1

𝜌
· 𝐸𝜌(𝑃 ) = max

𝜑∈𝒯 +
𝜇

{︂
𝐻(𝜑)− 1

𝜌
𝐷(𝜑‖𝑃 )

}︂
. (3.33)

As expected, It is possible to express the solution for this optimization in (3.33) in terms of

Rényi entropies. Indeed, remarking that the optimization (3.33) can be equivalently written

as an optimization over the tilt parameter, we have that

1

𝜌
· 𝐸𝜌(𝑃 ) = max

𝛼∈R+

{︂
𝐻(𝑇 (𝑃, 𝛼))− 1

𝜌
𝐷(𝑇 (𝑃, 𝛼)‖𝑃 )

}︂
, (3.34)

which is maximized by 𝛼 = 1/(1 + 𝜌), and so 𝐸𝜌(𝑃 ) = 𝜌 ·𝐻1/1+𝜌(𝑃 ).

This closes this introductory section on guesswork. Next, we will study targeted attacks,

where the side-information is distributed.
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3.2 Attacks with Distributed Side-Information

In this section, we study a distributed attack scenario, where 𝑚 adversarial agents receive

additional side-information 𝑌 about the password𝑋, and perform a so-called targeted attack

[143, 57, 141]. As mentioned before, in the presence of side-information, the agents construct

an updated list of password strings, this time, ordered with respect to 𝑃𝑋|𝑌 (·|𝑌 ), that is they

update their belief on the password distribution by taking into account the side-information

they have observed. In its most general form, the side-information can model complex

additional information that the adversary may have acquired on the choice of the password,

ranging from background search on the user who chooses the password, to behind the back

attacks in which an illegitimate person observes parts of the password. This setting can

also indirectly model adversaries and users over multiple accounts, some of which have been

compromised. Suppose Alice has several accounts, each requiring a password. She may

decide to use one identical password for all of her accounts, where the compromise of one

of the accounts puts in peril all of her accounts. On the other extreme, she may decide to

use completely independent passwords for each of the accounts, in which case one password

being compromised does not give away any information on any of the other passwords. In

practice, most users settle for a solution in between these two extremes. For example, Alice

may choose to slightly tweak her passwords from one account to another as to avoid the

disastrous consequences of one account being compromised, while still maintaining some

convenience. In this case, if one password is compromised, an adversary gains some side-

information about the rest of the passwords, see, e.g., [141].

We say that agents are coordinated if they know the guessing strategies of each other,

and in this context it means that the agents are able to communicate about their knowledge

of the side-information on the password. In this section, we will contrast two strategies

illustrated in Fig. 3-2. The first is a decentralized approach in which the agents do not

communicate at all, representing the case where agents are fully uncoordinated. The second

is a centralized approach in which the side-information is pooled and a central authority

provides the optimal lists to the agents, representing a coordinated attack. We show that

in the case of an uncoordinated attack, having even a finite number of independent sources

of side-information reduces the number of queries exponentially. However, coordination

is very powerful, as complete knowledge of all the side-information can potentially reduce
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Figure 3-2: In a coordinated attack, a single list is constructed by collecting all the side-
information. In the uncoordinated setting, each agent constructs a separate list.

the computational burden on the adversaries by an even bigger exponent. This should be

contrasted with the case where side-information is unavailable, as the lack of coordination

there does not change the computational burden asymptotically.

We will assume that a finite number 𝑚 of sources of side information are available. Pre-

cisely, for each of the 𝑚 agents, we consider an independent realization of a side information

𝑌 𝑛
(𝑖), 𝑖 = 1, . . . ,𝑚, where 𝑌 𝑛

(𝑖) is the output of the password sequence 𝑋𝑛 through a discrete

memory-less channel 𝑃𝑌 |𝑋 . It follows that the 𝑌 𝑛
(𝑖) are identically distributed and indepen-

dent given 𝑋𝑛. Recall that coordination refers to the knowledge of the guessing strategies of

the other adversaries. Because the optimal guessing strategy of an agent 1 ≤ 𝑗 ≤ 𝑚 depends

only on the side information 𝑌 𝑛
(𝑗), coordination is equivalent to sharing the side information.

In other words, if no side information is shared, then the adversaries are uncoordinated,

and if all the side-information are pooled and shared among all of the 𝑚 agents, then the

adversaries are perfectly coordinated. We consider two strategies the 𝑚 adversaries may

adopt, reflecting two extremes of coordination c.f. Fig. 3-2.

Centralized: The agents share their observations 𝑌 𝑛
(𝑖), 𝑖 = 1, . . . ,𝑚, with a central authority

which collapses the side information and constructs an optimal list based on 𝑃𝑋|𝑌(1),...,𝑌(𝑚)
.

The 𝜌-th moment of the guesswork in this strategy is thus

E
[︁
𝐺(𝑋𝑛|𝑌 𝑛

(1), . . . , 𝑌
𝑛
(𝑚))

𝜌
]︁
, (3.35)

where 𝑃𝑌1,...,𝑌𝑚|𝑋(𝑦1, . . . , 𝑦𝑚|𝑥) =
∏︀𝑚

𝑖=1 𝑃𝑌 |𝑋(𝑦𝑖|𝑥). This corresponds to a completely coor-
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dinated attack. Finally, we define,

𝐸(𝑐)
𝜌 (𝑃𝑌 |𝑋 ,𝑚) , lim

𝑛→∞

1

𝑛
logE

[︁
𝐺(𝑋𝑛|𝑌 𝑛

(1), . . . , 𝑌
𝑛
(𝑚))

𝜌
]︁
. (3.36)

Decentralized Mechanism: Each of the 𝑚 agents tries to guess 𝑋𝑛 based on its own

observation 𝑌 𝑛
(𝑖). The process ends when at least one of the agents correctly guesses 𝑋𝑛.

The 𝜌-th moment of the guesswork for this strategy is thus,

E
[︂

min
𝑖=1,...,𝑚

𝐺(𝑋𝑛|𝑌 𝑛
(𝑖))

𝜌

]︂
, (3.37)

where 𝐺(𝑋𝑛|𝑌 𝑛
(𝑖)) is the optimal guessing function given 𝑌 𝑛

(𝑖), that is the position of 𝑋𝑛

in the ordered list according to 𝑃𝑋𝑛|𝑌 𝑛(·|𝑌 𝑛 = 𝑌 𝑛
(𝑖)). This corresponds to a completely

uncoordinated attack. As before, we define

𝐸(𝑑)
𝜌 (𝑝𝑌 |𝑋 ,𝑚) , lim

𝑛→∞

1

𝑛
logE

[︂
min

𝑖=1,...,𝑚
𝐺(𝑋𝑛|𝑌 𝑛

(𝑖))
𝜌

]︂
. (3.38)

In the sequel, we shall provide closed-form formulas for (3.36) and (3.38). It has to be

noted that we are studying guesswork behaviors for fixed 𝑚, that is 𝑚 may not grow with

the block-length 𝑛. We may take the limit when 𝑚 → ∞, but it should be clear that the

order of limits is crucial and an interchange of limits is not possible here.

Remark 4. The decentralized strategy we consider above is one in which each agent produce

an optimal list regardless of the list produced by the other agents. In particular, it is not

clear that this list should be the joint optimal list strategy. More precisely, it is clear that

min
𝐺(𝑗),𝑗=1,...,𝑚

E
[︂

min
𝑗=1,...,𝑚

𝐺𝑗(𝑋
𝑛|𝑌 𝑛

(𝑖))
𝜌

]︂
≤ E

[︂
min

𝑖=1,...,𝑚
𝐺(𝑋𝑛|𝑌 𝑛

(𝑖))
𝜌

]︂
, (3.39)

where the optimization on the left hand size is over all valid guessing functions 𝐺(𝑗). While

the inequality above holds by definition, it is unclear whether equality should hold. In fact,

the right-hand side corresponds to an uncoordinated case as we defined it previously, the

left-hand side corresponds to a case in which the agents can coordinate in advance to choose

their strategies but no more after the side-information is revealed. We shall address this

difference when analyzing the performance of the decentralized scheme under some specific

side-information channels for which it is possible to characterize the left-hand side, and shall
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X Y(1) Y(2) Y(3) Pooled SI
password wasswgrd phssyotd password password
iloveyou inoieyou izoveyou iloviybv i?oveyou
princess prinpess pghjcxys wrihness pri??ess
rockyou rockyeu rockyou hozkyxu rocky?u
nicole nicoie nbhole zocole n?cole

Figure 3-3: Top 5 lowercase case passwords in the RockYou data. The sister passwords 𝑌 𝑛
(𝑖)

are generated by changing each letter with probability .3 to any lowercase character. The
pooled password Side-Information is obtained by taking the letter that appears in more than
50% of the sister passwords, and putting an erasure (’?’) if no such letter exists..

show that they are, at least under these side-information channels, asymptotically identical

.

To illustrate the centralized and decentralized mechanisms, we consider the following toy

example, which is based on the RockYou leaked password dataset.

Toy Example: We extract the top 1000 most likely passwords from the RockYou dataset

(see [56] for a description of the dataset), and limit the scope to passwords with only lower-

case letters for convenience. For each such password, we also generate𝑚 = 3 sister passwords

synthetically by randomly changing letters, where each letter is changed to any other lower-

case letter with a probability of 50%. Those sister passwords model the effect of password

reuse, and corresponds to the side-information 𝑌 𝑛
(𝑖), that agent 𝑖 = 1, . . . ,𝑚 has access to.

We refer to [143] for an empirical study of the statistics of password reuse, which indicate

that many users have a sister password with a small Levenshtein distance. Examples of

passwords along with the synthetic sister passwords are shown in Figure 3-3.

For the sake of exposition, we assume that all letters are equally likely, which is a

sub-optimal but illustrative assumption for the purpose of this toy example. Under this

assumption, the optimal strategy of an adversary with side information is to modify the

sister password one letter at a time, until the correct password is found. Note that, by

making use of prior information such as letter frequency, the adversary can improve his

guessing strategy drastically – we refer once again to [143] for an implementation of such

guessing strategies. When considering the computational effort (in terms of number of

guesses), to recover the password, we can look at two separate scenarios:

∙ A decentralized mechanism, where each agent makes guesses based on its own sister

password 𝑌 𝑛
(𝑖), and the first one to finish determines the computational cost.
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∙ A centralized approach, where the sister passwords are pooled. In this case, we assume

that any letter that is common in at least 50% of sister passwords is also in the correct

password. Again, this is a sub-optimal guessing strategy, but serves as an illustration.

Example of this pooled side-information are shown in Figure 3-3.
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Figure 3-4: With a centralized mechanism, it takes about 300 guesses to recover 50% of
the passwords. With a decentralized mechanism, it takes several thousand guesses to reach
the same performance. Note that an agent with a single side-information, i.e. with a single
sister password, recovers only 40% of the passwords after 30k guesses.

In the centralized approach, the quality of the side information is much better, i.e.,

many of the letters are already correctly recovered, and the remaining sequence to find

are only the erased symbols. In the decentralized scenario, the side-information is weaker

but there is a benefit in having multiple sources of side-information, as the performance

is dominated by the best side-information. The results are showcased in Figure 3-4, and

showcase some of the take-aways from the theoretical analysis to follows. Namely, we see

that (1) the presence of sister passwords allows for a greatly reduced computational cost (2)

a decentralized approach performs better than a single sister password – in fact, we will show

that this gain is exponential in the analysis that follows, and (3) the centralized approach

allows to essentially improve the quality of the side-information, which proves to be a very

potent effect. In the rest of the paper, we will show analytically, that for several sources

of side-information, a centralized approach with two agents performs asymptotically better

than a decentralized approach with any finite number of agents, suggesting that improving
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Figure 3-5: BEC(𝜖): Exponents of the average guesswork (i.e. 𝜌 = 1) for various 𝑚, and
under centralized and decentralized strategies. Note that two cooperating agents have a
convex exponent, which is better than any number of non-cooperating agents.

the quality of side-information is crucial.

In the rest of this section, we will study the centralized and decentralized mechanisms in

detail, and provide closed-form solutions for the the asymptotics of the moments of guesswork

under a BSC and BEC side-information channels. The results of Theorems 9,11 and 12 to

follow are illustrated in Figures 3-5 and 3-6.

3.2.1 Centralized Mechanism

We illustrate the performance of centralized mechanisms over two side-information channels.

First, let 𝑋𝑛 be a uniformly distributed sequence of binary digits, i.e., 𝑋𝑛 i.i.d. generated

from Bern(1/2) 3. We will contrast two types of side-information channels, namely a binary

erasure channel (BEC) with parameter 𝜖 denoted BEC(𝜖), and a binary symmetric channel

(BSC) with parameter 𝛿, denoted BSC(𝛿).

We start with the BEC channel. Erasures channels have been studied in [49], where the

large deviation principle for the guesswork with erasure side-information was characterized.

This case is simple to analyze because collapsing information is tractable. In particular, the

𝑘-th entry 𝑋𝑘 of 𝑋𝑛 is erased in all received signals 𝑌 𝑛
(𝑖), 𝑖 = 1, . . . ,𝑚, with probability 𝜖𝑚.

3Note that the choice of binary inputs is made for the sake of exposition, and those results can be easily
generalized to arbitrary discrete sources.
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Figure 3-6: BSC(𝛿): Exponents of the average guesswork (i.e. 𝜌 = 1) for 𝑚 = 2 and as
𝑚→∞, and under centralized and decentralized strategies. Again, two cooperating agents
have a better exponent than any number of non-cooperating agents.

Therefore, the resulting collapsed random variable (𝑌 𝑛
(1), . . . , 𝑌

𝑛
(𝑚)) is equivalently described

by 𝑌 𝑛, where 𝑌 𝑛 is the output of 𝑋𝑛 through a BEC with erasure probability 𝜖𝑚. We have

the following result.

Theorem 8 ([49]). For BEC(𝜖), and 𝑚 agents,

𝐸(𝑐)
𝜌 (BEC(𝜖),𝑚) = max

𝜆∈[0,1]
[𝜌𝜆−𝐷(𝜆‖𝜖𝑚)] . (3.40)

Carrying out the maximization for 𝜌 = 1, we get the following immediate result.

Corollary 5. For 𝜌 = 1,

𝐸
(𝑐)
1 (BEC(𝜖),𝑚) = log (1 + 𝜖𝑚) . (3.41)

Remark 5. The function 𝑓(𝑥) = log(1 + 𝑥𝑚) over 𝑥 ∈ [0, 1], is convex for any 𝑚 ≥ 2.

Moreover, as the number of agents increases, the exponent tends towards a flat function

𝐸
(c)
𝜌 = 0, with a discontinuity at 𝜖 = 1. Finally, since the first derivative (when 𝜌 = 1) is

𝑚 𝜖𝑚−1

1+𝜖𝑚 for any 𝑚 ≥ 2, the centralized curve starts flat with a negligible exponent for small

𝜖.

For the BSC, the centralized mechanism is more involved to analyze. Indeed, we cannot
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describe the channel resulting from collapsing multiple BSC’s in terms of a single BSC

anymore, since one has 𝑚 noisy measurements per password-bit. Nevertheless, for 𝑚 = 2,

we can characterize precisely this channel by considering the 2𝑚 = 4 cases. We shall then

discuss how to generalize this result to arbitrary 𝑚 > 2.

Theorem 9. For BSC(𝛿), and 𝑚 = 2,

𝐸(𝑐)
𝜌 (BSC(𝛿), 2) = sup

𝜆∈[0,1]

{︂
𝜌𝜆𝐻1/1+𝜌

(︂
𝛿2

1− 2𝛿(1− 𝛿)

)︂
+𝜌(1− 𝜆)−𝐷 (𝜆‖2𝛿(1− 𝛿))} .

Corollary 6. For 𝜌 = 1,

𝐸
(𝑐)
1 (BSC(𝛿), 2) = log(4𝛿(1− 𝛿) + 1). (3.42)

Proof of Theorem 9. Denote by 𝑌 𝑛
(1) and 𝑌 𝑛

(2) the sequence of side information observed by

each agent. For each bit position, there are two cases: either 𝑌 𝑛
(1) and 𝑌 𝑛

(2) agree and have

the same value at that position, or they disagree. Without loss of generality, we assume that

all agreements appear consecutively with the disagreements following. In the first part, 𝑌 𝑛
(1)

and 𝑌 𝑛
(2) agree and have the same bit in every position. A simple application of Bayes’ rule

yields

𝑃𝑋|𝑌1,𝑌2
(0|(0, 0)) = 𝑃𝑋|𝑌1,𝑌2

(1|(1, 1)) =
(1− 𝛿)2

𝛿2 + (1− 𝛿)2 , (3.43)

𝑃𝑋|𝑌1,𝑌2
(1|(0, 0)) = 𝑃𝑋|𝑌1,𝑌2

(0|(1, 1)) =
𝛿2

𝛿2 + (1− 𝛿)2 . (3.44)

that is on this subsequence, the joint side-information (𝑌 𝑛
(1), 𝑌

𝑛
(2)) can be equivalently repre-

sented by a binary vector Ỹ which is the result of a BSC with parameter 𝛿2/(1− 2𝛿(1− 𝛿)).

In the second part, 𝑌 𝑛
(1) and 𝑌 𝑛

(2) disagree and have contradicting bits in every position.

We then have

𝑃𝑋|𝑌1,𝑌2
(0|(0, 1)) = 𝑃𝑋|𝑌1,𝑌2

(1|(0, 1)) =
1

2
, (3.45)
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and,

𝑃𝑋|𝑌1,𝑌2
(0|(1, 0)) = 𝑃𝑋|𝑌1,𝑌2

(1|(1, 0)) =
1

2
, (3.46)

which is essentially an erasure, since both values of 𝑋 are equally likely. We let 𝜆 ∈ [0, 1] be

the fraction of bits over which 𝑌 𝑛
(1) and 𝑌 𝑛

(2) agree, i.e., 𝜆𝑛 is the size of the first subsequence

defined above. Therefore, the central authority has to guess a sequence of the type 𝑋̃𝑛 =

(𝑈̃𝑛(1−𝜆), 𝑍𝑛𝜆), where 𝑈̃𝑛(1−𝜆) is an i.i.d. sequence of uniform Bernoulli random variables

that correspond to the erasures, and 𝑍𝑛𝜆 is an i.i.d. sequence of Bernoulli random variables

with parameter 𝛿 , 𝛿2/(1− 2𝛿(1− 𝛿)) which corresponds to the bit-flips. By Lemma 20 in

the Appendix, we have that

lim
𝑛→∞

1

𝑛
logE[𝐺(X̃)𝛼] = 𝜆𝛼+ (1− 𝜆)𝛼𝐻1/1+𝛼(𝛿). (3.47)

Noting that the probability of the subsequence of agreements of length 𝜆𝑛 is (up to polyno-

mial factors) exp {−𝑛𝐷(𝜆‖2𝛿(1− 𝛿))}, we get the desired optimization.

The previous theorem only treats the case of 𝑚 = 2 agents, although a similar technique

can be used to tackle any 𝑚 ≥ 2 number of agents. Unfortunately, this method is intractable

for large 𝑚. However, the following result allows us to compute the limit as the number of

agents grows to infinity.

Lemma 12. Assume 𝛿 ̸= 1
2 . Then:

lim
𝑚→∞

𝐸(𝑐)
𝜌 (BSC(𝛿),𝑚) = 0. (3.48)

Proof. Without loss of generality, let 𝛿 < 1/2. For a fixed 𝑛 and 𝑚, we do a deterministic

pre-processing on the sequences 𝑌 𝑛
(1), . . . , 𝑌

𝑛
(𝑚), which can only increase the guesswork, by

definition. We let 𝑌𝑘 be defined as the majority bit among the received side information

sequences at index 𝑘, that is,

𝑌𝑘 ,

⎧⎪⎨⎪⎩
0, if 𝑁𝑘(0) ≥ 𝑁𝑘(1)

1, if 𝑁𝑘(0) < 𝑁𝑘(1)
(3.49)

where 𝑁𝑘(0) ,
∑︀𝑚

𝑗=1 𝑌(𝑗),𝑘, 𝑌(𝑗),𝑘 is the 𝑘-th bit of the sequence 𝑌 𝑛
(𝑗), and 𝑁𝑘(1) , 𝑛−𝑁𝑘(0).
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Then, it is easy to see that the sequence 𝑌 𝑛 , (𝑌1, . . . , 𝑌𝑛) is the output of 𝑋𝑛 through a

BSC with parameter 𝛿𝑚, such that 𝛿𝑚 → 0 as 𝑚 → ∞, for any 𝛿 < 1/2 4. Therefore, for

any 𝑛 and, fixed 𝑚, the following equations hold:

E[𝐺(𝑋𝑛|𝑌 𝑛)𝜌] ≤ E[𝐺(X|Ŷ)𝜌], (3.50)

=⇒ 𝐸(c)
𝜌 (BSC(𝛿),𝑚) ≤ 𝐸𝜌(BSC(𝛿𝑚)), (3.51)

=⇒ lim
𝑚→∞

𝐸(c)
𝜌 (BSC(𝛿),𝑚) ≤ lim

𝑚→∞
𝐸𝜌(BSC(𝛿𝑚)). (3.52)

Since the right hand side of the last inequality converges to 0, for any 𝛿 < 1
2 , we obtain the

desired result.

In other words, when 𝑚 is large enough, one can estimate each bit of the password based

on the noisy observations. We now move to the decentralized setup, and contrast some of

those results.

3.2.2 Decentralized Mechanism

We now study the number of guesses per adversary under the decentralized approach. Our

main result, presented below, gives an asymptotic single letter formula for (3.38).

Theorem 10. Let 𝑋𝑛 be generated i.i.d. from 𝑃 . Then,

lim
𝑛→∞

1

𝑛
logE

[︂
min

𝑖=1,...,𝑚
𝐺(X|Y(𝑖))

𝜌

]︂
=

sup
𝛼∈[0,1]

sup
𝑃𝑋,𝑌

subject to 𝑃𝑋|𝑌 /∈𝒬(𝛼,𝑃𝑌 )

𝜌 · 𝛼−𝐷(𝑃𝑋 ||𝑃𝑋)−𝑚𝐷(𝑃𝑌 |𝑋 ||𝑃𝑌 |𝑋 |𝑃𝑋) (3.53)

where 𝒬(𝛼, 𝑃y) is defined as

𝒬(𝛼, 𝑃𝑌 ) ,
{︁
𝑄𝑋|𝑌 : 𝐷(𝑄𝑋|𝑌 ‖𝑃𝑋|𝑌 |𝑃𝑌 ) +𝐻(𝑄𝑋|𝑌 |𝑃𝑌 )

< 𝐷(𝑄*
𝑋|𝑌 ‖𝑃𝑋|𝑌 |𝑃𝑌 ) +𝐻(𝑄*

𝑋|𝑌 |𝑃𝑌 )
}︁
,

4A bound on 𝛿𝑚 can be obtained by an application of Chernoff bound, i.e., 𝛿𝑚 < 𝑒−𝑛𝐷(1/2‖𝛿)
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with 𝑄*
𝑋|𝑌 being the solution of the optimization problem

minimize
𝑄𝑋|𝑌

𝐷(𝑄𝑋|𝑌 ‖𝑃𝑋|𝑌 |𝑃𝑌 ) +𝐻(𝑄𝑋|𝑌 |𝑃𝑌 )

subject to 𝐻(𝑄𝑋|𝑌 |𝑃𝑌 ) ≥ 𝛼.
(3.54)

Proof of Theorem 10. We consider the case of 𝜌 = 1. The generalization for any 𝜌 ≥ 0 is

immediate. We start by conditioning on X,

E
[︂

min
𝑗=1,...,𝑚

𝐺* (︀X|Y(𝑗)

)︀]︂
= E

[︂
E
[︂

min
𝑗=1,...,𝑚

𝐺*(X|Y(𝑗))

⃒⃒⃒⃒
X

]︂]︂
. (3.55)

Since min𝑗=1,...,𝑚𝐺
*(X|Y) is non-negative, and recalling that E[𝑋] =

∑︀
𝑖≥0 P(𝑋 ≥ 𝑖) for a

non-negative random variable 𝑋, we have that the inner expectation on the right hand side

evaluates to

|𝒳 |𝑛∑︁
𝑖=1

P
{︂

min
𝑗=1,...,𝑚

𝐺* (︀X|Y(𝑗)

)︀
≥ 𝑖
⃒⃒⃒⃒
X = x

}︂
. (3.56)

For a fixed 𝑖 and x ∈ 𝒳 𝑛, note that Y(𝑗) are independent given X, and thus 𝐺*(X|Y(𝑗)) are

independent and identically distributed given X. We then have

P
{︂

min
𝑗=1,...,𝑚

𝐺* (︀X|Y(𝑗)

)︀
≥ 𝑖
⃒⃒⃒⃒
X = x

}︂
(3.57)

=

𝑚∏︁
𝑗=1

P
{︀
𝐺* (︀X|Y(𝑗)

)︀
≥ 𝑖
⃒⃒
X = x

}︀
(3.58)

=
[︀
P
{︀
𝐺* (︀X|Y(1)

)︀
≥ 𝑖
⃒⃒
X = x

}︀]︀𝑚
, (3.59)

where we have used independence in (3.58). Next, we have,

P
{︀
𝐺* (︀X|Y(1)

)︀
≥ 𝑖
⃒⃒
X = x

}︀
(3.60)

=
∑︁

y:𝐺*(x|y)≥𝑖

𝑃Y|X(y|x) (3.61)

=
∑︁

y∈ℒ𝑖(x)

exp
{︁
−𝑛
[︁
𝐷
(︁
𝑃y|x‖𝑃𝑌 |𝑋

⃒⃒⃒
𝑃x

)︁
+𝐻

(︁
𝑃y|x

⃒⃒⃒
𝑃x

)︁]︁}︁
, (3.62)

where ℒ𝑖(x) corresponds to the set ℒ𝑖(x) , {y ∈ 𝒴𝑛 : 𝐺(x|y) ≥ 𝑖}, and 𝑃x and 𝑃y|x cor-

respond to the empirical distribution (type) of x, and y given x, respectively (see [54,
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Lemma 2.6]). A given sequence y with conditional type 𝑃x|y induces a reverse channel

𝑃x|y =
𝑃x|y𝑃x

𝑃y
. The condition y ∈ ℒ𝑖(x) can then be expressed in terms of this reverse

channel, as the position of x in the optimal list constructed according to 𝑃𝑋|𝑌 is essentially

a function of the types 𝑃y and 𝑃x|y, and the value of 𝛼 , log 𝑖, as shown in Lemma 23 in

the Appendix. Thus, using the method of types [54, Chapter 2], we may rewrite (3.62) as

follows

P
{︀
𝐺* (︀X|Y(1)

)︀
≥ 𝑖
⃒⃒
X = x

}︀
(3.63)

=
∑︁

𝑃x,y /∈𝒬(𝛼,𝑃𝑌 )

⃒⃒⃒
𝑇 (𝑃y|x)

⃒⃒⃒
exp

{︁
−𝑛
[︁
𝐷
(︁
𝑃y|x‖𝑃𝑌 |𝑋

⃒⃒⃒
𝑃x

)︁
+𝐻

(︁
𝑃y|x

⃒⃒⃒
𝑃x

)︁]︁}︁
(3.64)

.
=

∑︁
𝑃𝑋,𝑌

subject to 𝑃𝑋|𝑌 /∈𝒬(𝛼,𝑃𝑌 )

exp
{︁
−𝑛
(︁
𝐷
(︁
𝑃y|x‖𝑃𝑌 |𝑋

⃒⃒⃒
𝑃x

)︁)︁}︁
(3.65)

.
= sup

𝑃𝑋,𝑌

subject to 𝑃𝑋|𝑌 /∈𝒬(𝛼,𝑃𝑌 )

exp
{︁
−𝑛
(︁
𝐷
(︁
𝑃y|x‖𝑃𝑌 |𝑋

⃒⃒⃒
𝑃x

)︁)︁}︁
. (3.66)

We are now ready to plug (3.66) into (3.56). Recall that the position of x is a function of the

types 𝑃x|y and 𝑃y. Let the set 𝒜 = {𝛼 : 𝛼 = 𝐻(𝑃x), for some sequence x ∈ 𝒳 𝑛}, be the set

of empirical entropy values which can be obtained from the 𝑛-length sequences. Note that

since there are only a polynomial number, in 𝑛, of valid types 𝑃x, 𝒜 is also of polynomial

size, and thus, we have

|𝒳 |𝑛∑︁
𝑖=1

P
{︂

min
𝑗=1,...,𝑚

𝐺* (︀X|Y(𝑗)

)︀
≥ 𝑖
⃒⃒⃒⃒
X = x

}︂
=
∑︁
𝛼∈𝒜

𝑒𝑛𝛼P
{︂

min
𝑗=1,...,𝑚

𝐺* (︀X|Y(𝑗)

)︀
≥ ⌈|𝒳 |𝑛𝛼⌉

⃒⃒⃒⃒
X = x

}︂
.

= sup
𝛼∈[0,1]

sup
𝑃𝑋,𝑌

subject to 𝑃𝑋|𝑌 /∈𝒬(𝛼,𝑃𝑌 )

exp
{︁
𝑛
[︁
𝛼−𝐷

(︁
𝑃y|x‖𝑃𝑌 |𝑋

⃒⃒⃒
𝑃x

)︁]︁}︁
. (3.67)

Finally, plugging (3.67) into (3.55), and using once again the method of types to get that

P(X ∈ 𝑇 (𝑃x))
.

= exp{−𝑛𝐷(𝑃x‖𝑃𝑋)}, the result is deduced.

Using Theorem 10, we have the following corollary.

91



Corollary 7. For any 𝜌 > 0,

lim
𝑚→∞

lim
𝑛→∞

1

𝑛
logE

[︂
min

𝑖=1,...,𝑚

{︁
𝐺(𝑋𝑛|𝑌 𝑛

(𝑖))
𝜌
}︁]︂

= 𝐻(𝑋|𝑌 ). (3.68)

Proof. Looking at (3.53), we see that as 𝑚 → ∞, 𝐷(𝑃𝑌 |𝑋‖𝑃𝑌 |𝑋 |𝑃𝑋) must be zero, and

thus 𝑃𝑌 |𝑋 must be equal to 𝑃𝑌 |𝑋 for all 𝑥 such 𝑃𝑋(𝑥) > 0. Note that, the maximizing 𝑃𝑋

is then given by 𝑃𝑋 = 𝑃𝑋 , and thus we get 𝑃𝑋,𝑌 = 𝑃𝑋,𝑌 . This in turns impose a condition

on 𝛼, namely that the set 𝒬(𝛼, 𝑃𝑌 ) must not contain 𝑃𝑋|𝑌 . Precisely, we have

𝑃𝑋|𝑌 /∈ 𝒬(𝛼|𝑃𝑌 ) =⇒ 𝐻(𝑃𝑋|𝑌 |𝑃𝑌 ) ≥ 𝐻(𝑄*
𝑋|𝑌 |𝑃𝑌 ) ≥ 𝛼, (3.69)

where the second inequality follows from the definition of 𝑄*
𝑋|𝑌 . Thus, the maximal 𝛼 is

given by 𝐻(𝑃𝑋|𝑌 |𝑃𝑌 ) = 𝐻(𝑋|𝑌 ).

To illustrate the power of the decentralized approach, we consider again the BEC and

BSC side information. Note that it is possible to obtain these results by plugging in The-

orem 10. However, for these two channels, it is insightful to take a direct approach. In

addition, we address Remark 4, and show that under these two channels, the number of

guesses does not change asymptotically even if the adversaries coordinate jointly their lists

prior to observing the side-information.

Theorem 11. For BEC(𝜖),

𝐸(𝑑)
𝜌 (BEC(𝜖),𝑚) = sup

𝜆∈[0,1]
(𝜌𝜆−𝑚𝐷(𝜆||𝜖)) . (3.70)

Before we proceed to the proof of Theorem 11, some remarks are in order. One can verify

that the guesswork exponent for the decentralized mechanism, as the number of agents 𝑚

increases, converges towards 𝜖 (see Fig 3-5), as expected from Corollary 7. On the other

hand, Remark 1 implies that even two agents that collapse their side information are more

powerful than any finite number of agents guessing 𝑋𝑛 in a decentralized way, since the

centralized scheme has a convex exponent.

Proof of Theorem 11. For simplicity of exposition, we focus on the case where 𝑚 = 2 and

𝜌 = 1, while the generalization for any 𝜌 and 𝑚 is immediate. The proof of Theorem 11

follows from two steps. First, we find an upper bound on the guesswork exponent by
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considering the exponent of the shortest sequence 5. Recall that, since 𝑌 𝑛
(𝑖) is just an erased

version of 𝑋𝑛 for any 𝑖 = 1, . . . ,𝑚. The adversaries must each try to guess a sequence 𝑍
ℰ𝑛
(𝑖)

(𝑖) ,

where the length ℰ𝑛(𝑖) of 𝑍
ℰ𝑛
(𝑖)

(𝑖) is the number of erasures in the sequence 𝑌 𝑛
(𝑖), and 𝑍

ℰ𝑛
(𝑖)

(𝑖) is a

uniformly distributed binary sequence. We then have

E[ min
𝑖=1,...,𝑚

𝐺(𝑍
ℰ𝑛
(𝑖)

(𝑖) )] ≤ E[𝐺(𝑍𝑛
* )], (3.71)

where 𝑍𝑛
* is the sequence of any adversary which has ℰ*𝑛 , min𝑖=1 ℰ𝑛(𝑖) erasures. Note

that the probability of having ℰ*𝑛 = 𝑛 · 𝜆 for some 𝜖 ≤ 𝜆 ≤ 1, is given (exponentially) by

exp [−𝑛 ·𝑚𝐷(𝜆‖𝜖)]. Indeed,

P
(︂

1

𝑛
ℰ*𝑛 = 𝜆

)︂
.
= P

(︂
1

𝑛
ℰ*𝑛 ≤ 𝜆

)︂
(3.72)

= P
(︂

1

𝑛
ℰ𝑖 ≤ 𝜆

)︂𝑚

(3.73)

.
= exp [−𝑛 ·𝑚𝐷(𝜆‖𝜖)] , (3.74)

where the last step follows from Sanov’s theorem. Similarly, when 0 ≤ 𝜆 < 𝜖, the prob-

ability P
(︀
1
𝑛ℰ*𝑛 = 𝜆

)︀
is exponentially equal to exp−𝑛𝐷(𝜆‖𝜖). Therefore, letting 𝑓(𝜆,𝑚) =

1 {𝜆 > 𝜖}𝑚𝐷(𝜆‖𝜖) + 1 {𝜆 ≤ 𝜖}𝐷(𝜆‖𝜖), we have:

E [𝐺(Z*)] = E [E [𝐺(Z*)|ℰ* = 𝑛𝜆]] (3.75)

=
∑︁

𝜆=0,1/𝑛,...,1

P(ℰ* = 𝜆𝑛) exp(𝑛𝜆) (3.76)

.
= exp

[︃
𝑛 sup

𝜆∈[0,1]
(𝜆− 𝑓(𝜆, 𝜖))

]︃
. (3.77)

Noting that the maximizing 𝜆 is always greater or equal to 𝜖, we have the upper-bound

lim
𝑛→∞

1

𝑛
logE

[︂
min

𝑖=1,...,𝑚
𝐺(Z(𝑖))

]︂
≤ sup

𝜆∈[0,1]
[𝜆−𝑚𝐷(𝜆‖𝜖)] . (3.78)

To obtain a matching lower-bound, we consider an oracle that provides additional informa-

tion to both agents, strictly reducing their guesswork. The additional information from the

5Note that this exponent can be derived directly as a consequence of the results in [49]. The proof
method in this thesis is included for completeness, and characterizes only the exponent of the guesswork, as
opposed to the entire large deviation rate, as done in [49].
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Figure 3-7: The erasures sets that the Oracle Mechanism shares. Note that 𝐺*(X|Y(1)) and
𝐺*(X|Y(2)) are not independent because of the bits in ℰ𝐶 . Over this interval, the agents
should query sequences which are disjoint, by for example, querying following opposite ends
of a lexicographical ordering.

oracle allows to construct explicitly the optimal list of both agents. More precisely, this is

achieved by transmitting the position of the common erasures for both agent. The optimal

joint strategy is then to construct lists as to minimize queries that have a common subse-

quence in the overlapping erasures. Indeed, each incorrect query from an agent, shapes the

probability distribution of the second agent because of the common sequences. We show

that this probability shaping, can be again lower-bounded by a mechanism in which each

agent has two guesses at each step, instead of one, therefore not affecting the guesswork

exponent. This is formalized below:

Definition 8 (Oracle Mechanism). Let ℰ1 be the set of erased indices for agent 1, that is

ℰ1 = {𝑖|𝑌(1),𝑖 = 𝜖}, and define ℰ2 similarly for agent 2. Also let ℰ𝐶 = ℰ1∩ℰ2 be the common

erasures, and denote by 𝑛𝑐 = |ℰ𝐶 |. Further, let 𝑛1 = |ℰ1∖ℰ𝐶 | and 𝑛2 = |ℰ2∖ℰ𝐶 |, see Fig. 3-7.

Suppose without loss of generality that 𝑛1 ≥ 𝑛2 .We consider an helping oracle that does

the following:

∙ Transmits to each agent the sets ℰ1 and ℰ2.

∙ Reveals 𝑛1 − 𝑛2 bits among those in ℰ1∖ℰ𝐶 to agent 1, making agent 1 as strong as

agent 2.

That is, agent 𝑖 has to guess a binary uniform sequence (𝑋̃𝑛1

(𝑖) , 𝑋̃
𝑛𝑐), where the subsequence

𝑋̃𝑛𝑐 is common for both agents, and the subsequences 𝑋̃𝑛1

(1) and 𝑋̃𝑛1

(2) are independent.

With the knowledge of the Oracle, the two agents will try to construct an optimal joint

strategy. At step 𝑘, the agent 1 will pick its sequence assuming its previous 𝑘 − 1 were

incorrect, as well as the 𝑘 − 1 sequences of the second agent. Indeed, each of the 𝑘 − 1

guesses of the second agent shapes the probability distribution over the sequences for the
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first agent due to the common sequence 𝑋̃𝑛𝑐 . Therefore, the optimal strategy for the agent

1 is to query a sequence for which the corresponding subsequence 𝑥̃𝑛𝑐 is as likely as possible,

or in other words, has been queried the least so far by the other agent. This can be achieved

simply by considering a lexicographical ordering over the subsequences 𝑥𝑛𝑐 for one agent

and an anti-lexicographical ordering for the other agent, as this guarantees that each agent

queries sequences that disagree on their subsequence. Next, using the Lemma 21, we show

that this process is worse, in terms of guesswork, to a process in which the agent gets one

free query. Therefore, the guesswork is unchanged asymptotically, and we obtain the desired

result.

We now study the BSC side-information channel.

Theorem 12. For BSC(𝛿),

𝐸(𝑑)
𝜌 (BSC(𝛿),𝑚) = 𝜌𝐻 𝑚

𝜌+𝑚
(𝛿). (3.79)

Proof of Theorem 12. First notice that Y(𝑖) = X ⊕ Z(𝑖) where Z(𝑖) is the sequence of flips,

and is generated i.i.d. from Bern(𝛿), and hence 𝐺(X|Y(𝑖)) = 𝐺(Z(𝑖)). Further, all Z(𝑖)

sequences are independent, and so are the guessworks 𝐺(Z(𝑖)). First recall the following

elementary result. Let 𝑆𝑛
𝑖 , for 𝑖 = 1, . . . ,𝑚, be the sum of 𝑛 i.i.d. coin flips with parameter

𝛿, and let 𝑆𝑛
1 , . . . , 𝑆

𝑛
𝑚 be independent. Then, for any 𝛿 < 𝑠 ≤ 1:

P
(︂

min
𝑖
𝑆𝑖 = 𝑠𝑛

)︂
= 𝑚 · P(𝑆1 = 𝑠 · 𝑛) ·

𝑚∏︁
𝑖=2

P(𝑆𝑖 ≥ 𝑠 · 𝑛)

.
= exp{−𝑛𝐷(𝑠||𝛿)} (exp{−𝑛𝐷(𝑠||𝛿)})𝑚−1

.
= exp{−𝑛𝑚𝐷(𝑠||𝛿)}.

Alternatively, when 0 < 𝑠 ≤ 𝛿, we have:

P
(︂

min
𝑖=1,...,𝑚

𝑆𝑖 = 𝑠𝑛

)︂
.

= exp{−𝑛𝐷(𝑠||𝛿)}. (3.80)

Using the previous results, and recalling that 𝐺(𝑍𝑛
(𝑖))

.
= 2𝑆

𝑛
𝑖 , where 𝑆𝑛

𝑖 is the number of 0’s
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in the sequence (the type of the binary sequence), we obtain that:

E
[︂

min
𝑖=1,...,𝑚

𝐺(Z(𝑖))
𝜌

]︂
.

= exp

{︃
𝑛 · sup

𝜆∈[0,1]
(𝜌𝜆− 𝑓(𝜆,𝑚))

}︃
, (3.81)

where 𝑓(𝜆,𝑚) = 1{𝜆 > 𝛿}𝑚𝐷(𝜆||𝛿) + 1{𝜆 ≤ 𝛿}𝐷(𝜆||𝛿). The desired result follows by

observing that the maximization over 𝜆 always lead to a solution in the range 𝜆 > 𝛿, for

any 𝜌 > 0.

The main take-away from this section is that side-information, and thus targeted-attacks,

are very powerful as that they reduce the asymptotic work of the adversary drastically.

While we only looked at two specific types of side-information, in both cases, we saw an

exponential decrease in the guesswork when there is side-information available. Next, we

look at adversaries which do not have the perfect knowledge of the password distribution

𝑃𝑋 .

3.3 Attacks with Distribution Mismatch

In this section, we study the probabilistic behavior of the so-called mismatched guesswork

𝐺𝑄(𝑋), for 𝑋 ∼ 𝑃 , and 𝑄 is a mismatched distribution 𝑄 ̸= 𝑃 . In many of the applica-

tions of guesswork to brute-force security, mismatch is inevitable in practice, as the source

distribution is obtained via a sample estimation which is prone to imprecision. We consider

the case where a sequence of length 𝑛 denoted by 𝑥𝑛 is drawn i.i.d. from 𝑃 , while the

mismatched distribution is the product distribution of 𝑄, denoted 𝑄𝑛. We prove that, on

the one hand, 𝐺𝑄𝑛(𝑥𝑛) is related to the entropy of the “projection” of the type of 𝑥𝑛 on

the tilted family of the mismatched distribution 𝑄. On the other hand, the probability of a

sequence 𝑥𝑛 is related to the KL-divergence of its type with the true distribution 𝑃 .

In the appendix, we also explore the application of mismatched guesswork in one-to-one

source coding, i.e., source coding without the prefix constraint. Mismatched guesswork has

a direct application in this setting, and is the counterpart of the usual mismatch prefix-free

source coding. It is well known that, in contrast to the prefix-free source codes, the average

length of the one-to-one source codes converge to the entropy rate from below at a rate

−1/2 log(𝑛)/𝑛 when the distribution is matched [138]. It was also shown that the cost of

universality is smaller in one-to-one codes because of one less degrees of freedom [87, 25]. To
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complete the characterization, we show that one-to-one source codes are more robust to an

incorrect knowledge of the source distribution. Moreover, it is possible to obtain the exact

same optimal performance of an optimal one-to-one encoder with a mismatched distribution

𝑄, under the condition that 𝑄 is on the tilted family of the true distribution 𝑃 .

3.3.1 Mismatched Guesswork

In this section, we investigate the behavior of 𝐺𝑄𝑛(𝑋𝑛), when 𝑋𝑛 ∼ 𝑃𝑛, and establish an

LDP result. We also aim at characterizing the exponent of the growth of the moments of

mismatched guesswork, denoted by 𝐸𝜌(𝑄‖𝑃 ), and defined as

𝐸𝜌(𝑄‖𝑃 ) =
1

𝜌
lim
𝑛→∞

E𝑃𝑛 [𝐺𝑄𝑛(𝑋𝑛)𝜌] . (3.82)

The following result, proved in [25, Theorem 1], characterizes the mismatched guesswork in

the case where 𝑃 ∈ 𝒯𝑄.

Lemma 13 (mismatched guesswork on the same tilted family). Let 𝑃 ∈ 𝒯 +
𝑄 , then 𝐺𝑄(𝑥) =

𝐺𝑃 (𝑥). Alternatively, let 𝑃 ∈ 𝒯 −
𝑄 , then 𝐺𝑄(𝑥) = |𝒳 | −𝐺𝑃 (𝑥).

Note that the previous result is non-asymptotic. In particular, it follows readily that

𝐸𝜌(𝑄‖𝑃 ) = 𝐸𝜌(𝑃 ) when 𝑃 ∈ 𝒯 +
𝑄 and 𝐸𝜌(𝑄‖𝑃 ) = log(|𝒳 |) when 𝑃 ∈ 𝒯 −

𝑄 .

However, the techniques in [25] fall short on characterizing mismatch for 𝑃 ̸∈ 𝒯𝑄. Such

characterization is given in the following theorem.

Theorem 13 (LDP for mismatched guesswork). For any unambiguous 𝑃 and 𝑄, such that

Π𝒯𝑄(𝑃 ) ∈ 𝒯 +
𝑄 , the sequence { 1𝑛𝑔𝑄(𝑥𝑛)}𝑛∈N+ satisfies a LDP, with rate function 𝐽(𝑡), and

the rate function is implicitly given by

𝐽(𝑡) = 𝐷(𝛾𝑄,𝑃 (𝑡)‖𝑃 ), (3.83)

for

𝛾𝑄,𝑃 (𝑡) = 𝒯𝑄,𝑃 ∩ ℒ(𝑄,𝛼(𝑡)), (3.84)

𝛼(𝑡) = arg𝛼≥0{𝐻(𝑇 (𝑄,𝛼)) = 𝑡}. (3.85)

Before we proceed to the proof, let us briefly discuss the result. Two features of this re-
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sult are particularly interesting. First, note that while the value 𝛼(𝑡) is determined through

a similar implicit equation as the matched guesswork in Theorem 7, the rate function is con-

trolled by 𝐷(𝛾𝑄,𝑃 (𝑡)‖𝑃 ), where 𝛾𝑄,𝑃 (𝑡) ∈ 𝒯𝑄,𝑃 . In particular, if 𝑃 ∈ 𝒯 +
𝑄 , then Theorem 13

recovers Theorem 7 by observing that 𝑄 = 𝑇 (𝑃, 𝛽) for some 𝛽 > 0, and thus 𝛾𝑄,𝑃 (𝑡) can be

reparameterized in terms of 𝑃 only.

The proof of Theorem 13 relies on a correspondence between guesswork, and some sets

of distributions, which we will define shortly. This correspondence is implicitly used in [25,

proof of Theorem 5] but it is not explicitly observed. For 𝜖 ≥ 0 and 𝛼 ∈ R, let

𝒟(𝑄,𝛼, 𝜖) , {𝜙 ∈ ∆𝒳 : 𝐻(𝜙‖𝑄)−𝐻(𝑇 (𝑄,𝛼)‖𝑄) ≤ 𝜖} (3.86)

ℰ(𝑄,𝛼, 𝜖) , {𝜙 ∈ ∆𝒳 : 𝐻(𝜙‖𝑄)−𝐻(𝑇 (𝑄,𝛼)‖𝑄) ≥ −𝜖} (3.87)

ℬ(𝑄,𝛼, 𝜖) , {𝜙 ∈ ∆𝒳 : 𝐻(𝑇 (𝑄,𝛼)‖𝑄)−𝐻(𝜙‖𝑄) ∈ [0, 𝜖]} . (3.88)

The sets above are extensions of tilted weakly typical sets of order 𝛼 [25, Definition 18],

and capture the set of types which are respectively, more likely, less likely, and as likely

according to 𝑄 than 𝑇 (𝑄,𝛼). For these sets, we then have the following lemma.

Lemma 14. For any 𝛼 > 0, the following inclusion relations hold, for sufficiently large 𝑛,

⃒⃒⃒⃒
1

𝑛
𝑔𝑄(𝑥𝑛)−𝐻(𝑇 (𝑄,𝛼))

⃒⃒⃒⃒
≤ 𝜖⇒ q𝑥𝑛 ∈ 𝒟(𝑄,𝛼, 2𝜖/𝛼), (3.89)⃒⃒⃒⃒

1

𝑛
𝑔𝑄(𝑥𝑛)−𝐻(𝑇 (𝑄,𝛼))

⃒⃒⃒⃒
≤ 𝜖⇒ q𝑥𝑛 ∈ ℰ(𝑄,𝛼, 2𝜖/𝛼), (3.90)⃒⃒⃒⃒

1

𝑛
𝑔𝑄(𝑥𝑛)−𝐻(𝑇 (𝑄,𝛼))

⃒⃒⃒⃒
≤ 𝜖⇐ q𝑥𝑛 ∈ ℬ(𝑄,𝛼, 𝜖/𝛼). (3.91)

This was proved implicitly in the proofs of Theorems 3 and 5 in [25]. We are now

equipped to provide the proof of the main theorem.

Proof of Theorem 13. Observe that by Lemma 13, for any 𝑄* ∈ 𝒯 +
𝑄 we have 𝐺𝑄*(𝑥) =

𝐺𝑄(𝑥) for all 𝑥 ∈ 𝒳 . In particular, this holds for 𝑄* = Π𝒯𝑄(𝑃 ). Therefore, without loss of

generality throughout the proof we assume that 𝑄 = Π𝒯𝑄(𝑃 ).

Next, note that as 1
𝑛𝑔𝑄𝑛(𝑋𝑛) takes values in a compact subset [0, log |𝒳 |] of R, it is

sufficient to prove that the limit below exists and evaluates to the rate function (see [25,
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Figure 3-8: Rate function 𝐽(𝑡) of { 1𝑛𝑔𝑄(𝑋𝑛)}, for a distribution over three symbols 𝑃 =
(0.05, 0.1, 0.85).

Section V] for a formal discussion), i.e.,

lim
𝜖↓0

lim
𝑛→∞

1

𝑛
logP𝑛

𝑃

(︂⃒⃒⃒⃒
1

𝑛
𝑔𝑄𝑛(𝑋𝑛)− 𝑡

⃒⃒⃒⃒
< 𝜖

)︂
= −𝐽(𝑡). (3.92)

We proceed with the proof in three separate cases.

Case (a): We let 𝑡 ∈ (𝐻(𝑄), log |𝒳 |), which implies 𝛼(𝑡) ∈ (0, 1) by monotonicity of

𝐻(𝑇 (𝑄,𝛼)) for non-negative 𝛼. Note that (3.89) and (3.91) respecitvely imply

lim
𝜖↓0

lim sup
𝑛→∞

1

𝑛
logP𝑃𝑛

(︂⃒⃒⃒⃒
1

𝑛
𝑔𝑄(𝑋𝑛)−𝐻(𝑇 (𝑄,𝛼(𝑡)))

⃒⃒⃒⃒
≤ 𝜖
)︂

≤ lim
𝜖↓0

lim sup
𝑛→∞

1

𝑛
logP𝑃𝑛(q𝑋𝑛 ∈ 𝒟(𝑄,𝛼(𝑡), 2𝜖/𝛼(𝑡))), (3.93)

lim
𝜖↓0

lim inf
𝑛→∞

1

𝑛
logP𝑃𝑛

(︂⃒⃒⃒⃒
1

𝑛
𝑔𝑄(𝑋𝑛)−𝐻(𝑇 (𝑄,𝛼(𝑡)))

⃒⃒⃒⃒
≤ 𝜖
)︂

≥ lim
𝜖↓0

lim inf
𝑛→∞

1

𝑛
logP𝑃𝑛(q𝑋𝑛 ∈ ℬ(𝑄,𝛼(𝑡), 𝜖/𝛼(𝑡))). (3.94)

Thus, it suffices to show that the RHS of (3.93) and (3.94) both evaluate to −𝐷(𝛾𝑄,𝑃 (𝑡)‖𝑃 ).

This is done via Sanov’s Theorem. Recall that Sanov’s Theorem [58, Theorem 6.2.10] states

99



that, for a set of distributions 𝒞,

− inf
𝛾∈int𝒞

𝐷(𝛾‖𝑃 ) ≤ lim inf
𝑛→∞

1

𝑛
logP(q𝑥𝑛 ∈ 𝒞)

≤ lim sup
𝑛→∞

1

𝑛
logP(q𝑥𝑛 ∈ 𝒞)

≤ − inf
𝛾∈cl𝒞

𝐷(𝛾‖𝑃 ). (3.95)

To obtain the upper bound, we apply this result to the set 𝒟(𝑄,𝛼(𝑡), 2𝜖/𝛼(𝑡)). Observing

that this holds for any 𝜖, and then letting 𝜖 ↓ 0, we get that the RHS of (3.93) is upper

bounded

− lim
𝜖↓0

inf
𝛾∈cl𝒟(𝑄,𝛼(𝑡),2𝜖/𝛼(𝑡))

𝐷(𝛾‖𝑃 ). (3.96)

We now make use of a basic topological fact. Observe that 𝐷(𝛾‖𝑃 ) is strictly convex in

𝛾 for a fixed 𝑃 , and thus there is a unique minimizer 𝛾(𝑡, 𝜖). Noting that the minimizer

𝛾(𝜖, 𝑡) is in the set cl𝒟(𝑄,𝛼(𝑡), 2𝜖/𝛼(𝑡)), by continuity of 𝐷(𝛾‖𝑃 ) and compactness of the

set. Thus, the collection of minimizers 𝛾(𝑡, 𝜖) is a collection of points such that 𝛾(𝑡, 𝜖) ∈
cl𝒟(𝑄,𝛼(𝑡), 2𝜖/𝛼(𝑡)). It follows from compactness that the limit point lim𝜖↓0 𝛾(𝜖, 𝑡) ∈⋂︀

𝜖>0 cl𝒟(𝑄,𝛼(𝑡), 2𝜖/𝛼(𝑡)) = cl𝒟(𝑄,𝛼(𝑡), 0), where we have used that 𝛼(𝑡) > 0. There-

fore, we have the bound

inf
𝛾∈Δ𝒳

𝐷(𝛾‖𝑃 )

subject to 𝐻(𝛾‖𝑄) ≤ 𝐻(𝑇 (𝑄,𝛼(𝑡))‖𝑄) (3.97)

Note that this optimization problem is convex, and thus can be solved analytically by writ-

ing the KKT conditions [36], which give a solution 𝛾𝑄,𝑃 (𝑡) ∈ 𝒯𝑄,𝑃 , and optimal value

𝐷(𝛾𝑄,𝑃 (𝑡)‖𝑃 ).

Analogously, the RHS of (3.91) can be shown to be lower bounded by − inf 𝐷(𝛾‖𝑃 ),

where 𝛾 ∈ ℬ(𝑄,𝛼(𝑡), 0), by noting ℬ(𝑄,𝛼, 0) ⊂ intℬ(𝑄,𝛼, 𝜖), for any 𝜖 > 0. Again, this

optimization can be solved analytically, and gives the desired output. Putting these results

together, we get that

lim
𝜖↓0

lim
𝑛→∞

1

𝑛
logP𝑛

𝑃

(︂⃒⃒⃒⃒
1

𝑛
𝑔𝑄𝑛(𝑋𝑛)−𝐻(𝑇 (𝑄,𝛼(𝑡)))

⃒⃒⃒⃒
< 𝜖

)︂
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= −𝐷(𝛾𝑄,𝑃 (𝑡)‖𝑃 ). (3.98)

Case (b): We now let 𝑡 ∈ (0, 𝐻(𝑄)), which implies 𝛼(𝑡) ∈ (1,∞). The proof in this case

follows from the same step as in Case (a), by replacing the set 𝒟(𝑄,𝛼(𝑡), 𝜖) with the set

ℰ(𝑄,𝛼(𝑡), 𝜖).

Case (c): Finally, let 𝑡 = 𝐻(𝑄), or equivalently, 𝛼(𝑡) = 1. In this case, note that

𝑃 ∈ ℬ(𝑄, 1, 𝜖), and thus, by the law of large numbers and (3.94), we have that

lim
𝜖↓0

lim
𝑛→∞

1

𝑛
logP𝑛

𝑃

(︂⃒⃒⃒⃒
1

𝑛
𝑔𝑄𝑛(𝑋𝑛)− 𝑡

⃒⃒⃒⃒
< 𝜖

)︂
≥ 0, (3.99)

which implies that 𝐽(𝑡) = 0 in this case.

As mentioned before, an attractive feature of the LDP is that it implies the asymptotic

average growth rate of the 𝜌-th moment of the mismatched guesswork, i.e., 𝐸𝜌(𝑃‖𝑄). This

is formalized in the following corollary, which is the second main result of this paper implied

by Theorem 13.

Corollary 8. Let Π𝒯𝑄(𝑃 ) ∈ 𝒯 +
𝑄 . Then, we have

𝐸𝜌(𝑄‖𝑃 ) = max
𝛾∈𝒯𝑄,𝑃

𝐻(Π𝑇𝑄
(𝛾))− 1

𝜌
𝐷(𝛾‖𝑃 ) (3.100)

Proof. We use Varadhan’s Lemma [58, Theorem 4.3.1], which states that if a sequence of

random variables 𝑀𝑛 satisfies a LDP with rate function 𝐽(𝑡), then we have

lim
𝑛→∞

1

𝑛
logE𝑃𝑛 [exp𝑛𝐹 (𝑀𝑛)] = sup

𝑡
𝐹 (𝑡)− 𝐽(𝑡), (3.101)

for any continuous and bounded function 𝐹 . Applying this results to the sequence { 1𝑛𝑔𝑄(𝑋𝑛)},
and letting 𝐹 (𝑡) = 𝜌 · 𝑡, for 𝜌 > 0 and 𝑡 ∈ [0, log |𝒳 |] thus yields

lim
𝑛→∞

1

𝑛
logE𝑃𝑛 [𝐺𝜌

𝑄(𝑋𝑛)] = sup
𝑡
𝜌 · 𝑡−𝐷(𝛾𝑄,𝑃 (𝑡)‖𝑃 ). (3.102)

Performing the optimization on 𝛾 instead of 𝑡, via the change of variables in (3.85) and

(3.84) concludes the proof.

The following is an immediate corollary which lower bounds the mismatched guesswork.
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Figure 3-9: Illustration of Corollary 8. The distributions are identical to the ones in Figure 3-
8. Note that, as 𝜌 grows, the curves meet at log |𝒳 |.

Corollary 9 (non-negativity of mismatch penalty). Let Π𝒯𝑄(𝑃 ) ∈ 𝒯 +
𝑄 , then the following

holds:

𝐸𝜌(𝑄‖𝑃 ) ≥ 𝐸𝜌(𝑃 ) = 𝐻 1
1+𝜌

(𝑃 ), (3.103)

with equality iff 𝑃 ∈ 𝒯 +
𝑄 .

Proof. Consider the optimization from (3.33), and notice that it can be equivalently written

as

max
𝜑∈𝒯𝑃

𝐻(𝜑)− 1

𝜌
𝐷(𝜑‖𝑃 ) (3.104)

Using Lemma 10, we obtain that 𝐻(Π𝒯𝑄(𝜁)) ≥ 𝐻(𝜁)), giving the upper bound

max
𝜑∈𝒯𝑃

𝐻(Π𝒯𝑄(𝜑))− 1

𝜌
𝐷(𝜑‖𝑃 ). (3.105)

Next, notice that since 𝐻(Π𝒯𝑄(𝜑)‖𝑄) = 𝐻(𝜑‖𝑄), by definition of Π𝒯𝑄 , it must be the case

that 𝐷(𝛾‖𝑃 ) < 𝐷(𝜑‖𝑃 ) for some 𝛾 ∈ 𝒯𝑄,𝑃 which satisfies 𝐻(𝛾‖𝑄) = 𝐻(Π𝒯𝑄(𝜑)‖𝑄). It
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follows that

max
𝜑∈𝒯𝑃

𝐻(Π𝒯𝑄(𝜑))− 1

𝜌
𝐷(𝛾‖𝑃 ) (3.106)

such that 𝐻(𝛾‖𝑄) = 𝐻(Π𝒯𝑄(𝜑)‖𝑄) (3.107)

is an upper bound to the matched guesswork. The proof follows from performing the change

of variable 𝐻(Π𝒯𝑄(𝜁)) = 𝑇 (𝑄,𝛼), and identifying the resulting optimization as being equiv-

alent to (3.100).

To summarize, in this section, we revisited mismatch guesswork using geometric insights.

In particular, we generalized the tilted families of [25], and showed that the LDP rate function

is implicitly expressed in terms of the relative entropy between distributions on this tilted

family, and the true distribution 𝑃𝑋 . These results also find applications in one-to-one

lossless coding, where one can show that, perhaps surprisingly, one-to-one coding is more

robust to mismatch than prefix-free coding. We refer the interested reader to Appendix C

for more details on the subject. Interestingly, similar tilted distributions have appeared in

the context of error exponents, see e.g. [35]. A more in depth study of the relationship

between mismatched guesswork and error exponents for random coding is of interest. The

next and final section of this chapter is dedicated to unsynchronized attacks which arise, for

example, in the context of attacks performed by botnets.

3.4 Randomized Attacks and Botnets

As mentioned at the start of this chapter, brute-force attacks are prevalent, despite the

computational burden on the attacker. This is in part explained by the fact that attacks

through huge networks of compromised computers (botnets) are now more common, giving

access to significant computational resources for the attacker. More critically, these botnets

help to disguise the attack by distributing it. Indeed, a main solution to the threat of online

brute-force attacks is to setup a system that detects and prevents too many queries from any

one user, as determined by IP addresses. As such, an attacker which using only a single IP

address would be limited to a fixed number of guesses. In recent years, however, this defense

was circumvented by using massive botnets, each bot querying potential passwords. In this

situation, it is hard to detect legitimate users in the crowd of illegitimate attackers. These
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attacks come with a cost, namely, the attack is now distributed across thousands, sometimes

millions of computers, each with limited computational power and synchronization tools.

1. password
2. 1234
3. qwerty...

a) Synchronized attack

1. password
2. 1234
3. qwerty

...

1. password
2. 1234
3. qwerty

...

1. password
2. 1234
3. qwerty

...

b) Asynchronized attack

Figure 3-10: In a synchronized attack, the bots query from the password-list in a specified
order. In the asynchronous attack, they do not know the order in which the queries will be
sent. Our solution will consist at drawing guesses according to some distribution, instead of
querying passwords one-by-one.

As a first step to understand the impact of synchronization, we put forth in this section

a simplified mathematical model for passwords and brute-force attacks without synchroniza-

tion. The intuition gained from this model is informative and helpful in assessing the security

of systems under brute-force attacks. If multiple adversarial agents (we shall use adversary

and agents interchangeably) coordinate their attack, the system will be compromised as soon

as any of them succeeds. Moreover, the individual computational effort of each adversary is

reduced, while the total number of queries remains the same. Indeed, an optimal strategy

here would consist of having each agent query the most-likely password that has not been

queried by any of the other agents. Since this strategy reduces to querying as a group from

the optimal list, the average number of queries completed by each agent is thus reduced by

a factor of the number of agents, with respect to the case where a single agent queries alone.

This requires the agents to be able to synchronize their queries, that is, there must be a

knowledge of an ordering in which the agents make guesses. However, in many practical

scenarios the adversarial agents are completely distributed and have limited communication

with each other. For example, in botnets agents are often oblivious to the actions taken

by other adversaries, and may have limited access to shared memory or synchronization

tools. Owing to constraints of the physical computers in which these bots run, the speed,

latency, and reliability of these agents is heterogeneous — thus, perfect synchronization is

unlikely. Note that even if a central agent distributes lists of possible guesses to the bots,
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Figure 3-11: Probability of finding the password in fewer than 𝑖 queries. In a synchronized
attack, the passwords has to be found after at most |𝒳 | = 1𝑒4 queries. The blue and orange
line correspond to i.i.d. guesses according to the distribution 𝑃 .

such that the lists form a partition of all guesses, making sure no guess is repeated, the

lack of synchronization may still render the process sub-optimal. We illustrate an example

of synchronized and asynchronous attack in Fig 3-10. At one extreme, a complete lack of

synchronization can be modeled by a worst-case optimization, in which the guesses of each

agent come in the worst possible order. The goal of this section is to study how much the

lack of synchronization, as described above, might affect the overall number of queries that

are made until the game ends. We discuss why deterministic strategies cannot perform well

in this paradigm, while on the other hand, a simple randomized strategy in which all the

guesses are drawn i.i.d. from a certain distribution asymptotically achieves the same optimal

performance of a synchronous attack when guessing secrets that are long sequences drawn

according to some types of distribution. This optimal guessing distribution is non-trivial,

and, perhaps surprisingly, it is not the original password generating distribution 𝑃𝑋 . It is a

tilted distribution from 𝑃𝑋 , where the tilt exponent depends on the moment of guesswork of

interest. In other words, distributed and asynchronous agents can adopt a strategy for which

the asymptotic number of total queries sent before a system breach is optimal, regardless of

the ordering in which these queries are received, but this distribution is only optimal for a

given moment of guesswork, and not optimal universally across all moments.

To illustrate the proposed scheme, we have shown our results on an extract of the Adobe

Leaked password dataset (see [4] for a description of the dataset). In particular, we extracted

the 104 most likely passwords from a subset of 10 millions passwords in the data, and
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Figure 3-12: Log-probability mass function. Notice how the tilted distribution gives more
weight to less likely symbols, as they correspond to the symbol which are the most costly
for password guessing.

restricted our study to those passwords. We investigate the guesswork when the correct

password is drawn according to the distribution 𝑃𝑋 as computed on this restricted sample

of the data. We show in Figures 3-11 and 3-12, the performance of a randomized strategy

when using the optimal guessing distribution versus the naive distribution 𝑃𝑋 , both in terms

of expected number of guesses and in terms of probability of making less than a fixed number

of guesses. Note that the true distribution 𝑃𝑋 performs well if one wishes to make only a

small number of guesses, but eventually takes longer to reach a high probability. This is

due to less frequent passwords, which are barely ever queried if guesses are drawn according

to 𝑃𝑋 . The guessing distribution which optimizes the average number of guesses increases

the probability of querying the less likely passwords, as those passwords represent the main

computational burden on the adversary when they occur.

Main Contributions: We define a min-max formulation that models a worst case

asynchronous attack from the attacker’s perspective, and show that a randomized strategy

in which each guess is drawn i.i.d. from a certain distribution achieves the same asymptotic

performance (in the length of the password sequence 𝑛) as an optimal synchronized attack.

This optimal distribution is non-trivial; performing guesses according to the distribution

from which the password was generated yields a strategy that is exponentially worse than

the optimal guessing distribution. In fact, the optimal choice is a tilted distribution, where

the tilt parameter is chosen depending on the moment of guesswork to be optimized. We

also discuss optimal strategies when the benchmark is to maximize the probability of success

106



of an attack with a fixed number of overall queries, and show that an i.i.d. guessing strategy

again has optimal performance asymptotically. The optimal distribution is again a tilted

distribution, where the tilt depends on the number of queries allowed. Together these

results indicate that there is no loss in performance (asymptotically in 𝑛) when performing

an asynchronous attack.

3.4.1 Asynchronous Brute-Force Attack

In this section, we discuss synchronization when multiple agents aim to breach a secured

system. Recall that we say that distributed agents are synchronized if they know in which

order every agent’s queries will be received by Alice. In this case, they can query from

the optimal list as a group, i.e., the first query received is the most likely symbol, etc. In

other words, full synchronization means they can all share a single (optimal) list, and a

pointer to this list advancing after each new guess. As a result, the total number of queries

sent is the same as the optimal single agent guesswork, namely, the optimal result from

Corollary 3 is achieved, while the individual computational burden on each agent is reduced

since the queries are divided among agents. Further, even if the number of adversaries grows

exponentially6 with the length of the password 𝑛, the total number of queries remains the

same 7.

Instead, if agents do not know in which order the queries are delivered, they must adopt

a strategy which performs well under any such ordering. In particular, we shall adopt a

worst-case approach in which the goal is to minimize the number of queries in the worst

ordering. Specifically, let X, an i.i.d. sequence of length 𝑛 generated from 𝑃𝑋 , be the

sequence to be guessed, and let {X̂(𝑎)
𝑘 : 𝑘 ≥ 1} be the strategy of agent 𝑎 ∈ 𝒜, where 𝒜 is a,

possibly infinite, countable set. Again, we shall be interested in the regime where |𝒜| grows

at least exponentially fast with 𝑛, and the goal is to characterize number of queries made in

total. We let the permutation 𝜋 : N+ → 𝒜× N+ denote the ordering in which the queries

are received, i.e., 𝜋(𝑖) = (𝑎𝑖, 𝑘𝑖) means that the 𝑖-th query received is 𝑋̂(𝑎𝑖)
𝑘𝑖

. Denote by Π

the set of all such possible orderings. Under an ordering 𝜋, Alice receives the sequence of

6Note that in practice, the number of agents usually needs to grow since most secured systems include
a mechanism which blocks IP addresses after a given number of password attempts. Thus, if a single agent
can only make 𝑘 queries, there must be at least ⌈|𝒳 |𝑛/𝑘⌉ agents to guarantee that a password of length 𝑛
will be found.

7Note that in this work we use the total number of queries as the main metric for computational effort,
as opposed to e.g. [38] where the average number of guesses per agent is characterized.
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queries 𝜋(X̂∞
1 ) , {X̂(𝑎𝑖)

𝑘𝑖
: 𝑖 ≥ 1}. Note that this permutation allows reordering of guesses of

a given agent 𝑎 ∈ 𝒜 which may be received in any arbitrary order. For some fixed strategies

{X̂(𝑎)
𝑘 : 𝑘 ≥ 1}, the worst ordering in terms of guesswork is thus given by

sup
𝜋∈Π

E
{︁
𝐺(X, 𝜋(X̂∞

1 ))𝜌
}︁
. (3.108)

The goal of the agents is to minimize the worst-case number of queries, or, in other words,

solve the min-max problem

inf
{𝑋̂(𝑎)

𝑘 ,𝑘≥1} for 𝑎∈𝒜
sup
𝜋∈Π

E
{︁
𝐺(X, 𝜋(X̂∞

1 ))𝜌
}︁
. (3.109)

The main result of this section, presented below, characterizes the asymptotic exponent of

(3.109), as 𝑛 → ∞. The proof of this result, along with the associated lemmas, are given

after some discussion.

Theorem 14. For X𝑛 an i.i.d. sequence according to 𝑃𝑋 , and {X̂(𝑡)
𝑘 , 𝑘 ≥ 1} sequences of

guesses which are independent over 𝑎 ∈ 𝒜, we have the following

lim
𝑛→∞

1

𝑛
log

(︃
inf

{X̂(𝑡)
𝑘 :𝑘≥1}

sup
𝜋∈Π

E
{︁
𝐺(X𝑛, 𝜋(X̂∞

1 ))𝜌
}︁)︃

= lim
𝑛→∞

1

𝑛
logE {𝐺*(X𝑛)𝜌}

= 𝜌 ·𝐻 1
1+𝜌

(𝑋). (3.110)

Note that guesswork measures the total number of guesses made by the agents. Thus it is

clear that with full synchronization among the agents this value will not depend on |𝒜|. In a

sense, dependence on |𝒜| for a certain scheme would indicate a lack of synchronization, as it

would suggest that queries are repeated by the agents. Surprisingly, Theorem 14 states that

even under a worst-case assumption, there exist a strategy under which the guesswork does

not depend on |𝒜| and is similar to the fully synchronous case. The above result show that

synchronization is not necessary to achieve the asymptotic optimal guessing performance.

This can be equivalently formulated by an achievability strategy, and a converse. The

converse result is trivial, as the performance of the synchronized strategy E {𝐺*(X)} upper

bounds (3.109).
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Lemma 15 (Converse). For any strategy X̂∞,

inf
{𝑋̂(𝑡)

𝑘 ,𝑘≥1} for 𝑎∈𝒜
sup
𝜋∈Π

E
{︁
𝐺(X, 𝜋(X̂∞

1 ))𝜌
}︁
≥ E {𝐺*(X)} . (3.111)

We now turn to finding an appropriate strategy which would match this converse bound.

Let us first examine a naive solution to this problem. Consider the strategy which consists

in letting each agent construct the optimal list and query it individually, that is 𝑋(𝑎)
1 is

the most likely symbol for all 𝑎 ∈ 𝒜, 𝑋(𝑎)
2 the second most likely symbol, etc. It is easy

to see that (3.108) would evaluate to a quantity which grows with the number of agents

|𝑇 |. Indeed, many queries are duplicated, and thus the overall number of queries grows

with |𝒜|, without even reducing the computational burden on each adversary since they all

must query the same password strings. Note that this remains true if one considers a less

stringent worst-case analysis, by for example, letting the guesses of each of the agent to be

consistent among themselves, i.e. the permutation does not change the relative order of the

guesses of each agent.

If instead the agents agree on a partition of the guesses before the attack, in a way such

that no two guesses are repeated, then the correct password is queried by one unique agent.

Again, it is easy to see that the worst-case analysis yields a quantity which grows with

|𝒜|, even though it cannot grow beyond |𝒳 |𝑛, as every unique password is queried at most

once. In particular, if |𝒜| = |𝒳 |𝑛, then the worst-case analysis achieves its upper-bound.

Note that these observations are not only an artifact of the worst-case analysis, but rather

a consequence of the deterministic nature of the queries.

This motivates us to study randomized strategies. In particular, we consider guesses,

which are randomly and independently drawn according to a specific distribution, indepen-

dent from each other, and identically distributed. We then study this optimal distribution

in terms of the expected moments of guesswork. Consider first a scalar 𝑋 ∈ 𝒳 , generated

from 𝑃𝑋 . We let {𝑋̂(𝑎)
𝑘 , 𝑘 ≥ 1} be an i.i.d. process with respect to 𝑃 (·), for all 𝑎 ∈ 𝒜. For

a given 𝜌 > 0, we define the quantity

𝑉𝜌(𝑋, 𝑋̂∞
1 ) ,

(︂
𝐺(𝑋, 𝑋̂∞

1 ) + 𝜌− 1

𝜌

)︂
, (3.112)

where
(︀
𝑥
𝑦

)︀
is the generalized binomial coefficient defined in terms of the Gamma function
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Γ(·), i.e.

(︂
𝑥

𝑦

)︂
=

Γ(𝑥+ 1)

Γ(𝑦 + 1)Γ(𝑥− 𝑦 + 1)
. (3.113)

In particular, 𝑉1(𝑋, 𝑋̂∞
1 ) = 𝐺(𝑋,𝑋∞

1 ). The motivation for this definition of 𝑉𝜌(𝑋, 𝑋̂∞
1 ) will

be made clear in the proof of Lemma 16, where it allows us to compute a particular infinite

sum neatly. Note that for large 𝐺(𝑋, 𝑋̂∞
1 ) and fixed integer 𝜌, Stirling’s approximation of

the binomial coefficient directly gives 𝑉𝜌(𝑋, 𝑋̂∞
1 ) ≈ 𝐺(𝑋, 𝑋̂∞

1 )𝜌/𝜌!, therefore 𝑉𝜌(𝑋, 𝑋̂∞
1 )

approximates the behavior of the guesswork moment 𝐺(𝑋, 𝑋̂∞
1 )𝜌, up to some factor.

We are interested in the following optimization problem

E{𝑉 *
𝜌 (𝑋, 𝑋̂∞

1 )} , inf
𝑃∈𝒫

E{𝑉𝜌(𝑋, 𝑋̂∞
1 )}, (3.114)

where 𝒫 is the probability simplex and {𝑋̂𝑘 : 𝑘 ≥ 1} is generated i.i.d. from 𝑃 . We let

𝑃 *
𝜌 designate the minimizer. The following Lemma is the main ingredient in proving an

achievability and thus Theorem 14.

Lemma 16. For any 𝜌 ≥ 1,

logE{𝑉 *
𝜌 (𝑋, 𝑋̂∞

1 )} = 𝜌 ·𝐻 1
1+𝜌

(𝑋), (3.115)

and for any 𝑥 ∈ 𝒳 ,

𝑃 *
𝜌 (𝑥) =

𝑃𝑋(𝑥)
1

1+𝜌∑︀
𝑥′∈𝒳 𝑃𝑋(𝑥′)

1
1+𝜌

. (3.116)

Before providing the proof of Lemma 16 we briefly discuss our result. First, we note that

contrary to Corollary 3, the above result provides an exact operational meaning for Rényi

entropy 𝐻𝛼(𝑋) of order 𝛼 > 0. It should be mentioned here that a similar interpretation

for 𝐻1/2(𝑋) was reported in [37, 78, 38]. Also, we see that the optimal guessing distribution

(3.116) is simply the tilted distribution of 𝑃𝑋 of order 1/(1 + 𝜌). It should be emphasized

that, since the function 𝑓(𝑥) = 𝑥1/1+𝜌 is monotone, creating an optimal list according to

𝑃𝑋 yields the exact same list as if done according to 𝑃𝑋 . However, the list of guesses chosen

i.i.d. according to 𝑃𝑋 will be different from the one if guesses are made i.i.d. according to
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𝑃𝑋 . Indeed, letting 𝑃 (𝑥) = 𝑃𝑋(𝑥) gives

logE{𝐺(𝑋, 𝑋̂∞
1 )} = log |𝒳 | ,

which could be much worse than logE{𝑉 *
1 (𝑋, 𝑋̂∞

1 )} = 𝐻1/2(𝑋). Namely, when one is

allowed only to guess passwords according to a certain distribution, independently, and

without a list, then using the original distribution is strictly sub-optimal, and the tilted

distribution should be used. This result is related to similar results from the source-coding

literature in which a tilted distribution also appears as the solution of an optimization

where longer codewords are penalized exponentially (see e.g. [42, 31]). Finally, note that

the result is not asymptotic. In particular, the randomized strategy can be used over an

alphabet 𝒳 where each 𝑥 ∈ 𝒳 corresponds to a password. This result is thus relevant to

dictionary attacks, where queries are drawn according to a dictionary of possible passwords,

and suggests that distributed dictionary attacks should use a guessing distribution which is

a tilted version of the true distribution.

Proof of Lemma 16. First, note that given 𝑋, 𝐺(𝑋, 𝑋̂∞
1 ) is a geometric random variable,

and for 𝑘 ≥ 1,

Pr{𝐺(𝑋, 𝑋̂∞
1 ) = 𝑘} =

∑︁
𝑥∈𝒳

𝑃𝑋(𝑥)(1− 𝑃 (𝑥))𝑘−1𝑃 (𝑥).

Then, for any 𝜌 > 0, we have

E{𝑉𝜌(𝑋, 𝑋̂∞
1 )} =

∞∑︁
𝑚=1

(︂
𝑚+ 𝜌− 1

𝑚− 1

)︂
Pr{𝐺(𝑋, 𝑋̂∞

1 ) = 𝑚}

=
∑︁
𝑥∈𝒳

𝑃𝑋(𝑥)𝑃 (𝑥)

∞∑︁
𝑚=1

(︂
𝑚+ 𝜌− 1

𝑚− 1

)︂
(1− 𝑃 (𝑥))𝑚−1.

In the following, we calculate the second summation term in the r.h.s. of the last equality.

This is equivalent to calculating

∞∑︁
𝑚=1

(︂
𝑚+ 𝜌− 1

𝜌

)︂
𝑦𝑚−1.
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Note that, using the identity Γ(𝑥+ 1) = 𝑥Γ(𝑥) recursively, we get that

Γ(𝑚+ 𝜌)

Γ(𝜌+ 1)
= (𝑚+ 𝜌− 1) · (𝑚+ 𝜌− 2) · · · (𝜌+ 1)

= (−1)𝑚−1(−𝜌− 1) · (−𝜌− 2) · · · (−𝜌−𝑚+ 1)

= (−1)𝑚−1 Γ(−𝜌)

Γ(−𝜌−𝑚+ 1)
, (3.117)

which yields
(︀
𝑚+𝜌−1

𝜌

)︀
= (−1)𝑚−1

(︀−𝜌−1
𝑚−1

)︀
, and together with the change of variable 𝑘 = 𝑚−1

we obtain

∞∑︁
𝑚=1

(︂
𝑚+ 𝜌− 1

𝑚− 1

)︂
𝑦𝑚−1 =

∞∑︁
𝑘=0

(︂−𝜌− 1

𝑘

)︂
(−𝑦)𝑘 (3.118)

= (1− 𝑦)−𝜌−1, (3.119)

where the last equality follows from the binomial formula. Thus,

E{𝑉𝜌(𝑋, 𝑋̂∞
1 )} =

∑︁
𝑥∈𝒳

𝑃𝑋(𝑥)𝑃 (𝑥)
1

𝑃 (𝑥)1+𝜌

=
∑︁
𝑥∈𝒳

𝑃𝑋(𝑥)

𝑃 (𝑥)𝜌
. (3.120)

Next, we minimize the last expression with respect to 𝑃 ∈ 𝒫. To this end, since (3.120) is

convex in 𝑃 , 𝑃 * is given by the solution of (for 𝑥 ∈ 𝒳 )

−𝜌 · 𝑃𝑋(𝑥)

𝑃 *(𝑥)𝜌+1
+ 𝜆 = 0,

where 𝜆 is a Lagrange multiplier, and thus,

𝑃 *(𝑥) =
𝑃𝑋(𝑥)

1
1+𝜌∑︀

𝑥′∈𝒳 𝑃𝑋(𝑥′)
1

1+𝜌

.

On substituting this optimal distribution in (3.120) we finally get

E{𝑉 *
𝜌 (𝑋, 𝑋̂∞

1 )} =
∑︁
𝑥∈𝒳

𝑃𝑋(𝑥)

𝑃 *(𝑥)𝜌
=

(︃∑︁
𝑥∈𝒳

𝑃𝑋(𝑥)
1

1+𝜌

)︃1+𝜌

,

as claimed.
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The previous lemma applies to a scalar RV 𝑋, but can be easily extended to sequences

X𝑛, as shown in the following corollary.

Corollary 10. Let X be a sequence of length 𝑛 generated i.i.d. from 𝑃𝑋 . Then, we have,

lim
𝑛→∞

1

𝑛
logE{𝑉 *

𝜌 (X, X̂∞
1 )} = 𝜌 ·𝐻 1

1+𝜌
(𝑋). (3.121)

Proof. Treating X as a random vector, a direct application of Lemma 16 yields

logE{𝑉 *
𝜌 (X, X̂∞

1 )} = 𝜌 ·𝐻 1
1+𝜌

(X)

=

(︃ ∑︁
x∈𝒳𝑛

𝑃X(x)
1

1+𝜌

)︃1+𝜌

.

The desired result follows by the additivity of the Rényi entropy.

Note that when 𝑋 is generated i.i.d., tilting the marginal distributions and drawing sym-

bols i.i.d., or tilting the entire product distribution result in the same optimal distribution.

Remark 6. We note that the result above can be generalized to passwords 𝑋 which are

generated according to an irreducible stationary Markov Chain. More precisely, let 𝑈 =

(𝑈𝑎𝑏) and 𝛾𝑎, for 𝑎, 𝑏 ∈ 𝒳 , be the stochastic matrix and stationary distribution of the

Markov chain, respectively, so that

Pr {X = (𝑥1 . . . 𝑥𝑛)} = 𝛾𝑥1

𝑛−1∏︁
𝑖=1

𝑈𝑥𝑖𝑥𝑖+1 (3.122)

Then, it was shown in [135] that

lim
𝑛→∞

logE {𝐺*(𝑋)𝜌} =
1

1 + 𝜌
log 𝜆, (3.123)

where 𝜆 is the Perron-Frobenius eigenvalue of the matrix with entries 𝑊 = (𝑈
1/1+𝜌
𝑎𝑏 ) for

𝑎, 𝑏 ∈ 𝒳 . Further, let {𝑙𝑎} and {𝑟𝑎} be the left and right eigenvectors of 𝑊 associated with

𝜆, that is

∑︁
𝑎∈𝒳

𝑙𝑎 = 1,
∑︁
𝑎∈𝒳

𝑙𝑎𝑊𝑎𝑏 = 𝜆𝑙𝑏,
∑︁
𝑏∈𝒳

𝑟𝑏𝑊𝑎𝑏 = 𝜆𝑟𝑎. (3.124)

Analogously to the result of Corollary 10, it can be shown that generating guesses X̂ ac-
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cording to a Markov Chain with entries 𝑊𝑎𝑏𝑟𝑏/(𝜆𝑟𝑎) achieves the asymptotic performance

in (3.122). A proof of this fact follows from steps outlined in [135] along with the proof of

Lemma 16.

Remark 7. In the standard guessing problem [14] Alice tries to guess 𝑋 using her knowledge

of 𝑃𝑋 . It is assumed that there are no constraints on the memory of Alice, namely, for

each new guess, Alice knows her previous guesses, and thus she can adapt her new guess

accordingly (i.e., she will not guess again a previous incorrect guess). The setting we consider

here is equivalent to one in which Alice cannot keep track of her guesses, but still knows

the distribution 𝑃𝑋 . It should be clear that in this case all that Alice can do is to present

a sequence of i.i.d. guesses 𝑋̂1, 𝑋̂2, . . ., drawn from some distribution 𝑃 (·), which shall be

optimized in some sense. Lemma 16 can be equivalently interpreted as the performance of

a memoryless, (or oblivious) attacker [37, 78, 84, 38].

We are now ready to prove Theorem 14.

Proof of Theorem 14. We start by noting that letting {X̂(𝑡)
𝑘 : 𝑘 ≥ 1} be an i.i.d. process

distributed according to 𝑃 * (as defined in Lemma 16) gives an upper bound on (3.109). We

prove that two bounds match asymptotically, by showing that the exponent of the upper-

bound is equal to 𝜌 ·𝐻1/𝜌+1(𝑋). Indeed, let {X(𝑡)
𝑘 : 𝑘 ≥ 1} be an i.i.d. process distributed

according to 𝑃 * for all 𝑡 ∈ 𝑇 . Then, it is evident that 𝜋(X̂∞
1 ) is also an i.i.d. process

distributed according to 𝑃 *, for any permutation 𝜋 ∈ Π. An application of Corollary 10

concludes the proof.

Note that the optimal distribution from Lemma 16 depends on the moment 𝜌. Indeed,

the larger 𝜌, the more we are penalized for passwords which are less frequent (which increase

the work significantly). Therefore, the optimal strategy gives extra weight to less frequent

symbols as to make sure that they are more likely to be chosen than what their probability

suggests. We do so by raising 𝑃𝑋 to a power 1/1 + 𝜌. Nevertheless, the optimal distribution,

and thus guessing strategy, will change as a function of the guesswork moment 𝜌 of interest.

This contrasts with the synchronous case, in which the optimal strategy consisting of query-

ing the sequences from most likely to least likely is optimal universally for all moments 𝜌.

This loss of universality is exploited in the following corollary, which characterizes the loss

in using a distribution optimized for a moment 𝜌 > 0, when measured in terms of a moment

𝛾 ̸= 𝜌, and is illustrated for a binary source in Figure 3-13.
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Figure 3-13: This plots compares the performance of the randomized strategy as a function
of the moment 𝜌. We compare the optimal strategy which depends on 𝜌, against a fixed
tilted distribution (𝛾 = 1 in Corollary 11), when 𝑋 ∼ Ber(1/5).

Corollary 11. Fix 𝛾 > 0, and let {𝑋̂𝑘 : 𝑘 ≥ 1} be an i.i.d. process generated according to

𝑃 *
𝛾 (𝑥). Then:

logE{𝑉𝜌(𝑋, 𝑋̂∞
1 )} =

𝜌

1 + 𝛾
𝐻 𝛾−𝜌+1

1+𝛾
(𝑋) +

𝛾 · 𝜌
1 + 𝛾

𝐻 1
1+𝛾

(𝑋) (3.125)

Proof. The proof follows by substituting 𝑃 (·) = 𝑃 *
𝛾 (·) into (3.120).

Remark 8 (Zipf’s distribution). We emphasize that Lemma 16 is a non-asymptotic result.

As such, it can be readily used in the context of passwords generated according to a Zipf’s

law distribution of parameter 𝑠 for some 𝑠 ≥ 0 (also known as PDF-Zipf model [142]), i.e.,

𝑃𝑋(𝑖) ,
1

𝐻𝑚,𝑠
· 1

𝑖𝑠
(3.126)

where 𝑖 = 1, . . . ,𝑚, and 𝐻𝑚,𝑠 is the generalized harmonic number defined as 𝐻𝑚,𝑠 =∑︀𝑚
𝑗=1

1
𝑗𝑠 . As pointed out in the introduction, this family of distribution has been shown

in the literature to be useful in modeling password distributions, where the parameter 𝑠

is dataset dependent. We refer to [142, 140] for more details about the relevance of the

Zipf’s law in this setting. Under this distribution, applying Lemma 16, we obtain that the

optimal i.i.d. guessing strategy is to generate guesses according to a Zipf’s law of parameter
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𝑠/(𝜌+ 1). Further, we get that

logE
{︁
𝑉 *
𝜌 (𝑋, 𝑋̂∞

1 )
}︁

= (1 + 𝜌) log𝐻𝑚, 𝑠
1+𝜌
− log𝐻𝑚,𝑠. (3.127)

Note that this is worse than the optimal synchronized strategy which achieves log𝐻𝑚,(𝑠−𝜌)−
log𝐻𝑚,𝑠, for 𝑠 ≥ 𝜌, but can perform much better than picking the sub-optimal i.i.d. guessing

distribution 𝑃𝑋̂ = 𝑃𝑋 , which gives log𝑚. Note that a similar result would hold for the so-

called CDF-Zipf’s law in [142], i.e., when 𝑃𝑋(𝑖) = 𝐶𝑖𝑠 − 𝐶(𝑖 − 1)𝑠, for some normalizing

constant 𝐶 and parameter 0 ≥ 𝑠 ≤ 1. Namely, it is easy to show that the resulting optimal

i.i.d. strategy is then according to the distribution 𝑃 *
𝜌 (𝑖) = 𝐶 ′(𝑖𝑠− (𝑖− 1)𝑠)

1
1+𝜌 , where 𝐶 ′ is

once again a normalizing constant.

Remark 9 (Targeted Attacks). Lemma 16 can also be generalized to the case of availability

of some side information 𝑌 which is correlated with 𝑋. That is, (𝑋,𝑌 ) is now a pair of

random variables with joint distribution 𝑃𝑋𝑌 . This models targeted attacks [143] where an

adversary makes use of the additional information he possess about an user (e.g. personal

information, previously compromised passwords), as modeled by the side-information 𝑌 ,

to make guesses. Note that, as there are various kinds of side-information 𝑌 (e.g., sister

password, gender), each of which has a different role in impacting password creation, how

to systematically employ such side-information 𝑌 is subtle. We refer readers to [143] for

a more precise treatment of targeted attacks, and the change in performance that results

from them. Then, assume that the guesser generates a sequence of guesses 𝑋̂1, 𝑋̂2, . . .

which are i.i.d. given 𝑌 , and distributed according to 𝑃𝑋|𝑌 (·|·). As before, we define

𝐺(𝑋, 𝑋̂∞
1 |𝑌 ) , inf{𝑘 ≥ 1 : 𝑋̂𝑘(𝑌 ) = 𝑋}. Then, following the proof of Theorem 16 we can

show that the optimal guessing distribution is

𝑃 *
𝑋|𝑌 (𝑥|𝑦) =

𝑃𝑋|𝑌 (𝑥|𝑦)
1

1+𝜌∑︀
𝑥′∈𝒳 𝑃𝑋|𝑌 (𝑥′|𝑦)

1
1+𝜌

(3.128)

for any 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴, and

logE{𝑉 *
𝜌 (𝑋, 𝑋̂∞

1 |𝑌 )} = 𝜌 ·𝐻 1
1+𝜌

(𝑋|𝑌 ), (3.129)

where 𝐻𝛼(𝑋|𝑌 ) is the conditional Rényi entropy of order 𝛼, and 𝑉 *
𝜌 (𝑋, 𝑋̂∞

1 |𝑌 ) is defined as

in (3.114) but with 𝐺(𝑋, 𝑋̂∞
1 ) replaced by 𝐺(𝑋, 𝑋̂∞

1 |𝑌 ). This demonstrates that targeted
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attacks can also be performed in a distributed way by employing i.i.d. guesses from the

distribution 𝑃𝑋|𝑌 (·|𝑌 ). Note that this assumes that all distributed agents have access to

the same side-information 𝑌 . A setting in which this does not hold true, i.e. agents may

use different side-information 𝑌𝑖, is outside the scope of this paper, but was studied in [122].

In particular, [122] compare two mechanisms, one in which the agents do not share their

side-information and attempt to breach the system independently, and one in which all the

side-information is pooled.

3.4.2 Constraints on the Number of Guesses

In Section 3.4.1, we considered the case in which guesses are made until the correct sequence

is found. In this section, we consider the case where adversaries can use only a fixed number

of guesses denoted by 𝐽 . The goal of the adversary is then to maximize her probability of

success within this fixed number of queries, both in the synchronized case [14], as well as

the asynchronous case. For synchronous guessers, the probability of success associated with

the optimal strategy is given by

Psynchr
𝑐,𝐽 =

∑︁
𝑥∈ℒ

𝑃𝑋(𝑥),

where ℒ designates the set of the 𝐽 most likely elements according to 𝑃𝑋 . For asynchronous

guessers, one strategy consists in generating guesses 𝑋̂ i.i.d. from a distribution 𝑃𝑋̂ , as was

done in the previous section. This setting was precisely studied in [38, Theorem 6], where the

optimal guessing distribution 𝑃𝑋̂ was characterized as a function of the password distribution

𝑃𝑋 and of the number of guesses 𝐽 . Instead, in this work, we focus on the scenario of guessing

𝑛-length i.i.d. sequences, and we assume the adversaries make 𝐽 = ⌈𝒳 𝑛𝛼⌉ total guesses. We

analyze the success probability in guessing the correct sequence and derive expressions which

are exponentially tight as a function of 𝑛. We consider both the synchronized case [14] as

well as the asynchronous case.

We start with synchronized guessers, and define the exponential rate of Psynchr
𝑐,𝐽 as

𝐸synchr
𝑐,𝛼 , lim inf

𝑛→∞
− 1

𝑛
log Psynchr

𝑐,𝐽 (3.130)

= lim inf
𝑛→∞

− 1

𝑛
log
∑︁
x∈ℒ

𝑃X(x), (3.131)
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where again ℒ represents the set of the 𝐽 most likely elements distributed according this

time to the product distribution 𝑃X. The following result is an immediate application of

the large deviation principle of Guesswork, shown in [48].

Theorem 15 (Theorem 3 in [48]). For any 𝛼 ∈ [0, 1],

𝐸synchr
𝑐,𝛼 = min

𝑄𝑋∈𝒬(𝛼)
𝐷(𝑄𝑋‖𝑃𝑋), (3.132)

where 𝒬(𝛼) is defined as:

𝒬(𝛼) = {𝑄𝑋 : 𝐷(𝑄𝑋‖𝑃𝑋) +𝐻(𝑄𝑋) < 𝐷(𝑄*
𝑋‖𝑃𝑋) +𝐻(𝑄*

𝑋)} , (3.133)

with 𝑄*
𝑋 being the solution of the optimization problem:

minimize
𝑄𝑋

𝐷(𝑄𝑋‖𝑃𝑋) +𝐻(𝑄𝑋)

subject to 𝐻(𝑄𝑋) ≥ 𝛼
(3.134)

In particular, if 𝛼 > 𝐻(𝑃𝑋), then 𝐸synchr
𝑐,𝛼 = 0.

Note that the average number of guesses, roughly 2𝑛𝐻1/2(𝑋), is much larger than the

required list size that drives Psynchr
𝑐,𝐽 to one (exponentially). This great difference comes

from the way atypical events are treated in each optimization. In the case of guesswork, an

exponential price is payed for atypical events, since the number of queries will be exponential.

For probability of error however, the scenario is closer to regular source coding in which

the impact of atypical events is sub-exponential, meaning that the optimized quantity will

necessarily be related to the typical events. Consider now the asynchronous case, and let

{𝑋̂𝑘 : 𝑘 ≥ 1} be once again i.i.d. with distribution 𝑃𝑋̂ . In this case the probability of

success is defined as

Pasynchr
𝑐,𝐽 , Pr

{︁
𝐺(X, X̂∞

1 ) ≤ 𝐽
}︁
. (3.135)

One can verify that

Pasynchr
𝑐,𝐽 =

∑︁
x∈𝒳𝑛

𝑃X(x)
[︀
1− (1− 𝑃X̂(x))𝐽

]︀
.
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Finally we define

𝐸asynchr
𝑐,𝛼 , lim inf

𝑛→∞
− 1

𝑛
log Pasynchr

𝑐,𝐽 . (3.136)

While, in principle, the distribution 𝑃X̂ can be optimized to maximize the probability of

success, we will assume that this distribution is simply given by the tilted distribution of

𝑃X, namely, for some 𝛽 ≥ 0, and any x ∈ 𝒳 𝑛,

𝑃
(𝛽)

𝑋̂
(𝑥) ,

𝑃𝑋(𝑥)𝛽∑︀
𝑥∈𝒳 𝑃𝑋(𝑥)𝛽

. (3.137)

We motivate this choice by the results of the previous sub-section, which showed that these

tilted distributions were optimal in terms of the number of guesses. We have the following

result.

Theorem 16. For any 𝛼, 𝛽 ≥ 0,

𝐸asynchr
𝑐,𝛼 (𝛽) = min

𝑄𝑋∈𝒬(𝛼)

{︂
𝐷(𝑄𝑋 ||𝑃𝑋) +

[︁
𝐷(𝑄𝑋 ||𝑃 (𝛽)

𝑋̂
) +𝐻(𝑄𝑋)− 𝛼

]︁
+

}︂
, (3.138)

where [𝑥]+ , max{𝑥, 0}.

Using Theorem 16, we obtain the following immediate result.

Corollary 12.

min
𝛽≥0

𝐸asynchr
𝑐,𝛼 = min

𝑄𝑋∈𝒬(𝛼)
𝐷(𝑄𝑋‖𝑃𝑋) (3.139)

= 𝐸synchr
𝑐,𝛼 . (3.140)

Corollary 12 essentially proves that the tilted family is asymptotically optimal, and that

there exist a unique optimal tilt 𝛽 for each size list 𝐽 = ⌈𝒳 𝑛𝛼⌉. It follows from this that even

though the optimization (3.132) is over a set of distributions 𝒬(𝛼), the solution is always a

tilted distribution 𝑃 (𝛽)
𝑋 for some 𝛽 ≥ 0 which depends on 𝛼.

Proof of Corollary 12. By definition, min𝛽≥0𝐸
asynchr
𝑐,𝛼 ≥ 0. Then, for 𝛼 ≥ 𝐻(𝑃𝑋), we see

from Theorem 16 that by taking 𝑄𝑋 = 𝑃𝑋 and 𝛽 = 1, we have

min
𝛽≥0

𝐸asynchr
𝑐,𝛼 ≤ [𝐻(𝑃𝑋)− 𝛼]+ = 0. (3.141)
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For 𝛼 < 𝐻(𝑃𝑋), we first note that by definition min𝛽≥0𝐸
asynchr
𝑐,𝛼 ≥ 𝐸synchr

𝑐,𝛼 . Hence, due to

Theorem 15 and Lemma 22 in the appendix we may conclude that

min
𝛽≥0

𝐸asynchr
𝑐,𝛼 ≥ 𝐷(𝑄*

𝑋‖𝑃𝑋), (3.142)

where 𝑄*
𝑋 is the solution of the optimization

minimize
𝑄𝑋

𝐷(𝑄𝑋‖𝑃𝑋) +𝐻(𝑄𝑋)

subject to 𝐻(𝑄𝑋) ≥ 𝛼.
(3.143)

On the other hand, by taking 𝑄𝑋 = 𝑄*
𝑋 , we have

min
𝛽≥0

𝐸asynchr
𝑐,𝛼 ≤ 𝐷(𝑄*

𝑋‖𝑃𝑋) + min
𝛽≥0

[︁
𝐷(𝑄*

𝑋 ||𝑃 (𝛽)

𝑋̂
)
]︁
+
.

It is a simple exercise to verify that 𝑄*
𝑋 is a tilted distribution, i.e. there exist a 𝛽 such

that 𝑄*(𝑥) = 𝑄𝑋(𝑥)𝛽∑︀
𝑥′ 𝑄𝑋(𝑥′)𝛽

. Letting 𝛽 = 𝛽 gives

min
𝛽≥0

𝐸asynchr
𝑐,𝛼 ≤ 𝐷(𝑄*

𝑋 ||𝑃𝑋). (3.144)

The result follows from combining (3.142) and (3.144).

We next provide the proofs of Theorems 15 and 16.

Proof of Theorem 16. For simplicity of presentation, we prove the theorem for binary se-

quences, i.e. 𝒳 = {0, 1}, and assume that 1/2 ≥ 𝑝 , 𝑃𝑋(0). For any given sequence

𝑥𝑛 ∈ 𝒳 𝑛,

1

𝑛
log𝑃𝑋𝑛(𝑥𝑛) = −𝐷(𝑃x𝑛 ||𝑝𝛽)−𝐻(𝑃x𝑛) (3.145)

where 𝑃x𝑛 is the empirical measure of a given sequence 𝑥𝑛, and 𝑝𝛽 = 𝑝𝛽

𝑝𝛽+(1−𝑝)𝛽
. Then,

Pasynchr
𝑐,𝐽 =

∑︁
𝑥𝑛∈𝒳𝑛

𝑃𝑋𝑛(𝑥𝑛)
[︁
1− (1− 𝑃x𝑛)𝐽

]︁
=

∑︁
𝑥𝑛∈𝒳𝑛

2−𝑛(𝐷(𝑃x𝑛 ||𝑝)+𝐻(𝑃x𝑛 ))

×
[︁
1− (1− 2−𝑛(𝐷(𝑃x𝑛 ||𝑝𝛽)+𝐻(𝑃x𝑛 )))𝐽

]︁
.
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Letting 𝒬𝑛 denote the set of possible types, i.e. 𝒬𝑛 , {0, 1/𝑛, 2/𝑛, . . . , 𝑛/𝑛} we obtain,

Pasynchr
𝑐,𝐽 =

∑︁
𝑞∈𝒬𝑛,𝑛

|𝑇 (𝑞)| 2−𝑛(𝐷(𝑞||𝑝)+𝐻(𝑞))

×
[︁
1− (1− 2−𝑛(𝐷(𝑞||𝑝𝛽)+𝐻(𝑞)))𝐽

]︁
.
=

∑︁
𝑞∈𝒬𝑛,𝑛

2𝑛𝐻(𝑞)2−𝑛(𝐷(𝑞||𝑝)+𝐻(𝑞))2
−𝑛[𝐷(𝑞||𝑝𝛽)+𝐻(𝑞)−𝛼]

+

.
= max

𝑞∈[0,1]
2
−𝑛

[︁
𝐷(𝑞||𝑝)+[𝐷(𝑞||𝑝𝛽)+𝐻(𝑞)−𝛼]

+

]︁

where the fourth equation follows from the fact that (see, e.g., [133, Lemma 1]) if 𝑎 ∈ [0, 1],

then 1
2 min {1, 𝑎𝑀} ≤ 1− (1− 𝑎)𝑀 ≤ min {1, 𝑎𝑀}. Thus, we have shown that

𝐸asynchr
𝑐,𝛼 = min

𝑞∈[0,1]

{︂
𝐷(𝑞||𝑝) +

[︁
𝐷(𝑞||𝑝𝛽) +𝐻(𝑞)− 𝛼

]︁
+

}︂
.

Together, Lemma 16 and Corollary 12 imply that i.i.d. guesses can perform optimally,

both in terms of the expected number of guesses, and in terms of the probability of success.

Note that, analogous to Lemma 16, the optimal distribution in Corollary 12 depends on

the parameter 𝛼. As a result, asynchronous guessers can perform brute-force attacks as

efficiently as synchronized guessers asymptotically, at the expense of universality. Finally,

it should be emphasized that the optimality of the tilted distribution is a by-product of

the asymptotic treatment. Indeed, the results of [38] show that the optimal distribution in

the non-asymptotic regime is not a tilted distribution of 𝑃𝑋 , but rather a more involved

functional of the password distribution. As such, our result does not follow from [38] in a

straightforward way.

Remark 10 (Probability of failure). The above results characterized the probability of success

of an adversary. In particular we demonstrated that a list size 𝐽 which is large enough

(i.e., such that 𝛼 > 𝐻(𝑃𝑋)) will have an exponent of success probability equal to 1, both

under asynchronous and synchronous attacks. Note that this result can be strengthened by

looking at the complementary probability of failure 𝑃 synchr
𝑓,𝐽 and 𝑃 asynchr

𝑓,𝐽 . Again, in the i.i.d.

setting, using essentially the same tools as for the probability of success, one can show that

the exponents of the probability of failure for both synchronous and asynchronous attacks
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are the same, equal to 1 when 𝛼 < 𝐻(𝑃𝑋), and decreasing as 𝛼 grows. Similarly, the

optimal guessing distribution for asynchronous guessers is a tilted distribution, where the

tilt depends on the size of the list.

Remark 11 (𝐽-Guesswork). We briefly mention 𝐽-Guesswork, a related notion of compu-

tational security which was introduced in [33] (denoted 𝛼-Guesswork). While the usual

Guesswork captures the average number of guesses necessary for a system breach, the av-

erage 𝐽-Guesswork, denoted by E[𝐺𝐽(𝑋)], captures the average number of guesses for an

adversary which performs no-more than 𝐽 queries, where 𝐽 is picked to guarantee a certain

probability of success. As such, when 𝐽 = 𝒳 𝑛, the 𝐽-Guesswork reduces to E[𝐺(𝑋)]. We

can rewrite the average 𝐽-Guesswork, as a sum of two terms, i.e.

𝐽 × P(𝐺(𝑋) > 𝐽) +
𝐽∑︁

𝑖=1

𝑖 · 𝑃𝑋(𝑖), (3.146)

where the first term corresponds to the case where the attacker is unsuccessful and stops

at 𝐽 guesses, and the second terms captures his average number of guesses otherwise. In

the asymptotic regime where we look at passwords generated from the product distribution

𝑃X, and letting 𝐽 = ⌈|𝒳 |𝑛𝛼⌉, for 𝛼 > 𝐻(𝑃𝑋), it follows from the remark above that the

probability P(𝐺(𝑋) > 𝐽) goes to zero with an exponent 𝐷(𝑃
(𝛽)
𝑋 ‖𝑃𝑋) for some unique

𝛽 ≥ 0, as long as 𝐽 is large enough (i.e. 𝛼 > 𝐻(𝑃𝑋)). It is then easy to prove that, when

𝛼 > 𝐻(𝑃𝑋), the average 𝐽-Guesswork takes exponent

lim
𝑛→∞

1

𝑛
logE[𝐺𝛽(X)] = max{𝛼−𝐷(𝑃

(𝛽)
𝑋 ‖𝑃𝑋), 𝐻1/2(𝑃𝑋)}. (3.147)

When 𝐽 is too small, i.e. when 𝛼 < 𝐻(𝑃𝑋), then with high probability 𝐺(𝑋) > 𝐽 , and

therefore the exponent is dominated by 𝐽 itself, that is lim𝑛→∞
1
𝑛 logE[𝐺𝛽(X)] = 𝛼. Note

that these result hold true in an asynchronous setting as well. Indeed, picking guesses i.i.d.

from a distribution 𝑃X̂ such that it is equal to the tilted distribution which achieves the

maximum in (3.147) gives the same exponent of 𝐽-Guesswork. Therefore, i.i.d. guesses

perform asymptotically optimally with respect to 𝐽-Guesswork as well.
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Chapter 4

Conclusion

The privacy and security issues that arise when sharing data reveal how precious personal

data is. In this thesis, we looked at two problems which arise when releasing such data:

privacy against inference, and brute-force security. The nature of these problems does not

suit itself to be solved via the traditional tools and techniques from cryptographic security.

The classical computer secrecy model assumes that the sensitive data is known – but this

model turns out to be unsatisfactory when the security threat associated with data that

appears to be non-sensitive is unclear. While it is hard to envision a future where no personal

data will be collected, it is already critical to be able to explore the trade-off between the

utility of the data, and the potential threat. To explore this trade-off and handle these

modern problems, it is essential to lay a strong and robust theoretical foundation. This

thesis provides some outlines for this foundation, using tools from Information Theory,

Statistical Learning, and Cryptography.

On the privacy end, we considered a privacy-utility trade-off encountered by users who

wish to disclose some information to an analyst, that is correlated with their private data,

in the hope of receiving some utility. We proposed a general framework under which data is

transformed according to a probabilistic privacy-preserving mapping before it is disclosed.

Applying this general framework to the setting where the adversary uses the log-loss cost

function naturally led to a non-asymptotic information-theoretic formulation for character-

izing the best achievable privacy subject to utility constraints. We justified the relevance

and generality of the privacy metric under the log-loss by proving that the inference threat

under any bounded cost function can be upper bounded by an explicit function of the mutual
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information between private data and disclosed data. In addition, we showed that when the

log-loss is used in this framework in both the privacy metric and the distortion metric, the

average information leakage and the utility constraint can be reduced to the mutual informa-

tion between private data and disclosed data, and between non-private data and disclosed

data, respectively. We then showed that the privacy-utility tradeoff under the log-loss can

be cast as the non-convex Privacy Funnel optimization, and we leverage its connection to

the Information Bottleneck and Mrs Gerber’s Lemma, to provide a greedy algorithm for

solving it.

On the security end, we studied brute-force attacks in which an adversary aims at breach-

ing a password secured system by querying tentative passwords until the correct one is found.

There, we used Guesswork as a surrogate for the computational effort than an adversary has

to commit before breaking such security. We looked at three brute-force attack settings, and

discussed the impact of the distribution of the password (how predictable the password is),

and where relevant, the amount of side-information that an adversary has (how targeted the

attack is). Our studies reveal some surprising facts about such attacks. First, the impact

of side-information is tremendous, even when this side-information is distributed. Next, at-

tacks are perhaps more surprising to mismatched knowledge of adversaries than what would

be expected. Finally, asynchronous attacks perform asymptotically as good as fully syn-

chronized ones. Together, these highlight the danger of brute-force attacks. Additionally,

we introduced a series of proving techniques inspired from the geometry of guesswork which

shed a different light on this seminal problem.

While this is the conclusion of this thesis, there are several future directions which are

worth pointing out and pursuing. In the next section, we will discuss and motivate the quest

for better data representations as a main direction which could have both theoretical and

practical impact in this area.

4.1 Parsimonious Data Representations: The Road Ahead

From the perspective of the users, it is in their favor to release as little data as possible,

while still obtaining quality services. However, the trend is exactly the opposite, more and

more personal data is being collected and processed. While data collecting services tend to

benefit from this trend, they also face challenges as a consequence of this evolution. For
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example, in 2004, Facebook was operated from a single server in a dorm room at Harvard

University – now, the company owns massive data-centers across the globe, each housing

tens of thousands of computers, connected via an intricate network of links. Each interaction

with the website launches a chain of reactions over these data-centers, eventually leading to

the collection, storage, and treatment of data. With 1.59B daily users, the data created is

staggering, and the management of the communication overhead is complex. Interestingly,

both privacy-conscious users, and the corporations collecting the data share a common desire

– collect as little data as possible, while still being able to provide/obtain the desired service.

This quest for parsimonious data representations spans all the steps in the data acquisition

and communication pipeline, from acquisition of physical signals, to communication and

processing of the data. A simple, yet important observation is that, while data is important,

data is not the end-goal itself. Thus, if there is knowledge of the purpose of the data, one

should aim at having a task-specific representation. Some example of questions which are

worth studying in the future are presented below. In all these problems, adapting the data

representation to the task is the main leverage to improve current solutions, which is in

contrast with the traditional task-agnostic approaches.

∙ Signal Processing for Tasks: Consider a sensor in an autonomous car, whose goal is

to identify traffic signs. When designing such sensors, an engineer might be concerned

with, the frame rate at which this camera should operates, the quality at which to

capture images, or the appropriate digital representation of said images, and many

more parameters of concern. Each of these parameters may impact how well and how

reliably traffic signs can be recognized by the vehicle. On the other hand, the engineer

must take into account energy consumption, available hardware, and implementation

burden. Thus, there is an inherent trade-off between the physical constraints that a

system must satisfy, and how well it can perform the task. In a series of preliminary

works, we have studied how one can make use of the knowledge of the task (identify

traffic signs), to better optimize the number of quantization bits [125]. These results

show great promise over task-agnostic solutions, and are a first step towards Signal-

Processing for Tasks, where representations of signals adapt to the tasks.

∙ Communication for Tasks: Consider a healthcare monitoring application where

a set of distributed sensors are capturing biomedical signals. The values from these
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sensors are communicated to a central unit which pools the data to compute some

health indicators, i.e. a function of the sensors value. A few questions of interest are

the following: How do we effectively make use of the correlation between the sensors

(e.g. one sensor capturing heart-rate and the other blood-pressure) to reduce the

communication overhead? Is it better to have many low quality sensors, or few high

quality ones? How robust is the computation to failures of some sensors? Importantly,

how do we do this over wireless noisy communication links, or via an entire network of

links? In some earlier works, we proposed to use a specific structure in the correlation

between some sources to drastically reduce the communication overhead using efficient

codes [124, 123]. In some more recent works [92], we explored how data-driven methods

such as Neural Networks can be used to construct non-linear network codes that are

robust to noise, which permit correlated sources to be communicated efficiently. The

latter techniques also generalize to the case where the specific function is known, and

thus reduce the communication overhead further.

∙ Learning Data Representations: So far, we have assumed that the task is known

and can be expressed as a function. But many setups actually require to learn from

the data itself. This is the standard Machine Learning process, where data is fed to a

learning algorithm for the purpose of classification or regression. We are faced with a

predicament. How can we represent the data parsimoniously, without knowing which

parts of the data are useful beforehand? To address this apparent paradox, I suggest

to explore how methods from unsupervised representation learning can be leveraged

locally, to represent the data in a compact way before communication. One such

context that we have explored is the following: consider two cameras capturing the

same object, but from different angles, light conditions, and distance. In [83], we asked

how to find representations of the data from each camera such that they capture what

is common in both scenes (i.e. the object), and not what is superfluous (i.e. angle, light

condition, etc.). For this purpose, we designed an entire framework which spans both

practice and theory. We formalized the problem above in the language of Principal

Inertia Components (PICs) [40], a mathematical tool which has a long history in

statistical sciences and information theory. The PICs and the corresponding principal

functions provide a fine-tuned decomposition of a probability distribution between two

random variables in terms of maximally correlated embeddings. Then, we designed
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a data-driven approach based on neural networks to find these representations from

data. This approach turns out the be very versatile and provides methods to deal with

various problems in machine learning, such as data visualization using correspondence

analysis, comparison of black-box models, multi-modal learning, and more.

127



128



Appendix A

Proofs of Theorem 3 and 4

The following lemma [53], which bounds the difference in the entropies of two distributions,

will be useful in the proof of the Theorems.

Lemma 17 ([53, Thm 17.3.3]). Let 𝑃 and 𝑄 be distributions with the same support 𝒳 such

that ‖𝑃 −𝑄‖1 ≤ 1
2 . Then:

|𝐻(𝑃 )−𝐻(𝑄)| ≤ ‖𝑃 −𝑄‖1 log
|𝒳 |

‖𝑃 −𝑄‖1
.

Proof of Theorem 3: The first inequality can be proved in four steps. Initially, we note

that the objective function can be rewritten as

𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋) = 𝐻(𝑃𝑆) +𝐻(𝑃𝑌 )−𝐻(𝑃𝑆,𝑌 ). (A.1)

Therefore, the difference between the objective functions with respect to 𝑃𝑆,𝑋 and 𝑄𝑆,𝑋 is

bounded as:

⃒⃒
𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋)− 𝐽(𝑄𝑆,𝑋 , 𝑃𝑌 |𝑋)

⃒⃒
≤|𝐻(𝑃𝑆)−𝐻(𝑄𝑆)|+

|𝐻(𝑃𝑌 )−𝐻(𝑄𝑌 )| + |𝐻(𝑃𝑆,𝑌 )−𝐻(𝑄𝑆,𝑌 )|. (A.2)

The bound in Lemma 17 can be used to bound each of the terms in Equation (A.2). For

instance:

‖𝑃𝑆,𝑌 −𝑄𝑆,𝑌 ‖1 =
∑︁
𝑠,𝑦

⃒⃒⃒⃒
⃒∑︁

𝑏

𝑃 (𝑦|𝑥)[𝑃 (𝑠, 𝑥)−𝑄(𝑠, 𝑥)]

⃒⃒⃒⃒
⃒
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≤
∑︁
𝑠,𝑥,𝑦

𝑃 (𝑦|𝑥) |𝑃 (𝑠, 𝑥)−𝑄(𝑠, 𝑥)|

=
∑︁
𝑠,𝑥

∑︁
𝑦

𝑃 (𝑦|𝑥)⏟  ⏞  
1

|𝑃 (𝑠, 𝑥)−𝑄(𝑠, 𝑥)|

= ‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1 (A.3)

and therefore:

|𝐻(𝑃𝑆,𝑌 )−𝐻(𝑄𝑆,𝑌 )| ≤ ‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1 log
|𝒮| |𝒳 |

‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1
. (A.4)

Similarly, it can be shown that:

|𝐻(𝑃𝑆)−𝐻(𝑄𝑆)| ≤ ‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1 log
|𝒮|

‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1
(A.5)

|𝐻(𝑃𝑌 )−𝐻(𝑄𝑌 )| ≤ ‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1 log
|𝒳 |

‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1
. (A.6)

Finally, the three upper bounds can be substituted into Equation (A.2), which yields:

⃒⃒
𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋)− 𝐽(𝑄𝑆,𝑋 , 𝑃𝑌 |𝑋)

⃒⃒
≤ 3 ‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1 log

|𝒮| |𝒳 |
‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1

. (A.7)

Our first claim is proved by substituting 𝑃 *
𝑌 |𝑋 for 𝑃𝑌 |𝑋 in the above equation.

The proof of our second claim is based on the inequality:

⃒⃒
E𝑃𝑌,𝑋

[𝑑(𝑌,𝑋)]− E𝑄𝑌,𝑋
[𝑑(𝑌,𝑋)]

⃒⃒
=

⃒⃒⃒⃒
⃒∑︁
𝑠,𝑥,𝑦

𝑃 (𝑦|𝑥)[𝑃 (𝑠, 𝑥)−𝑄(𝑠, 𝑥)]𝑑(𝑥, 𝑦)

⃒⃒⃒⃒
⃒

≤
∑︁
𝑠,𝑥,𝑦

𝑃 (𝑦|𝑥)𝑑(𝑥, 𝑦) |𝑃 (𝑠, 𝑥)−𝑄(𝑠, 𝑥)|

≤ 𝑑max

∑︁
𝑠,𝑥

∑︁
𝑦

𝑃 (𝑦|𝑥)⏟  ⏞  
1

|𝑃 (𝑠, 𝑥)−𝑄(𝑠, 𝑥)|

= 𝑑max ‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1 . (A.8)
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Based on this observation, it follows that:

E𝑃𝑌,𝑋
[𝑑(𝑌,𝑋)] ≤ E𝑄𝑌,𝑋

[𝑑(𝑌,𝑋)] +

𝑑max ‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1
≤ ∆ + 𝑑max ‖𝑃𝑆,𝑋 −𝑄𝑆,𝑋‖1 . (A.9)

The last step is due to the constraint E𝑄𝑌,𝑋
[𝑑(𝑌,𝑋)] ≤ ∆ that is enforced in our problem

(2.4).

We now move onto the next proof. First, let us introduce some useful notation. Consider

the optimization problem 2.4, and denote by 𝑅(𝑃𝑆,𝑋 ,∆) the optimal privacy leakage for

input 𝑃𝑆,𝑋 and distortion constraint ∆. We also denote by 𝒮(∆) the set of feasible mappings,

i.e., 𝒮(∆) =
{︀
𝑃𝑌 |𝑋 : E𝑋,𝑌 [𝑑(𝑋,𝑌 )] ≤ ∆

}︀
. The following lemma is useful in the proof of

Thm. 4, and allows us to construct distributions that are close in a ℒ1 sense but have specific

expected distortions.

Lemma 18. Let 𝑄 be a distribution over 𝒳 such that E𝑄[𝑓 ] = 𝛿, with 𝑓 a non-negative

function. For any 𝛿 > 0, there exist a distribution 𝑃 over the same support, such that

E𝑝[𝑓 ] = 0 and ‖𝑄 − 𝑃‖1 ≤ 2𝛿
𝑓min

, where 𝑓min = min𝑥,𝑓(𝑥)>0 𝑓(𝑥) is the smallest non-zero

value of 𝑓 .

Proof: We do the proof by construction. Consider 𝑃 such that for all 𝑥 ∈ 𝒳 with 𝑓(𝑥) > 0,

let 𝑃 (𝑥) = 0. For all other 𝑥 ∈ 𝒳 , set 𝑃 (𝑥) = 𝑄(𝑥) +
∑︀

𝑥∈𝒳 ,𝑓(𝑥)>0 𝑄(𝑥)

|𝑥∈𝒳 :𝑑(𝑥)>0| , where the second

term corresponds to adding uniformly the missing mass so that
∑︀

𝑥 𝑃 (𝑥) = 1. We have:

‖𝑃 −𝑄‖1 ≤
∑︁

𝑥∈𝒳 ,𝑓(𝑥)>0

|𝑃 (𝑥)−𝑄(𝑥)| (A.10)

+
∑︁

𝑥∈𝒳 ,𝑓(𝑥)=0

|𝑃 (𝑥)−𝑄(𝑥)| (A.11)

= 2
∑︁

𝑥∈𝒳 ,𝑓(𝑥)>0

𝑄(𝑥) (A.12)

Next, we have that:

𝛿 = E𝑄[𝑓 ] =
∑︁
𝑥∈𝒳

𝑓(𝑥)𝑄(𝑥) (A.13)
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≥ 𝑓min
∑︁

𝑥∈𝒳 ,𝑓(𝑥)>0

𝑄(𝑥) (A.14)

≥ 𝑓min

2
‖𝑃 −𝑄‖1 (A.15)

where (A.15) folows from (A.12). Noticing that E𝑝[𝑓 ] = 0 gives the desired result.

Proof of Theorem 4: Recall that we denote by 𝑅(𝑃𝑆,𝑋 ,∆) the result of the optimization

problem (2.4) with input 𝑃𝑆,𝑋 and distortion constraint ∆, and that we use 𝒮(∆) to denote

the feasible region of this optimization problem. We use 𝜖 = ‖𝑃 −𝑄‖1. Our goal is to bound

|𝑅(𝑃𝑆,𝑋 ,∆)−𝑅(𝑄𝑆,𝑋 ,∆)|. We have:

𝑅(𝑃𝑆,𝑋 ,∆ + 𝜖𝑑max) ≤ 𝐽(𝑃𝑆,𝑋 , 𝑄
*
𝑌 |𝑋) (A.16)

≤ 𝐽(𝑄𝑆,𝑋 , 𝑄
*
𝑌 |𝑋) + |𝐽(𝑃𝑆,𝑋 , 𝑄

*
𝑌 |𝑋)− 𝐽(𝑄𝑆,𝑋 , 𝑄

*
𝑌 |𝑋)|

= 𝑅(𝑄𝑆,𝑋 ,∆) + |𝐽(𝑃𝑆,𝑋 , 𝑄
*
𝑌 |𝑋)− 𝐽(𝑄𝑆,𝑋 , 𝑄

*
𝑌 |𝑋)| (A.17)

where (A.16) follows from the distortion inequality of Thm. 3 which means that 𝑄*
𝑌 |𝑋 is in

the feasible set 𝒮(∆ + 𝜖𝑑max). Adding 𝑅(𝑃𝑆,𝑋 ,∆) on both sides of (A.17), and rearranging

terms, we obtain:

𝑅(𝑃𝑆,𝑋 ,∆)−𝑅(𝑄𝑆,𝑋 ,∆)

≤ |𝐽(𝑃𝑆,𝑋 , 𝑄
*
𝑌 |𝑋)− 𝐽(𝑄𝑆,𝑋 , 𝑄

*
𝑌 |𝑋)|

+𝑅(𝑃𝑆,𝑋 ,∆)−𝑅(𝑃𝑆,𝑋 ,∆ + 𝜖𝑑max) (A.18)

Notice that the first term of (A.18) can be bounded using Thm. 3. The second term

corresponds to the difference in the solution of the optimization problem when we have

expanded the feasible set by allowing an additional distortion 𝜖𝑑max. We have the following

cases:

∙ 𝑃 *
𝑌 |𝑋 was not on the border of the feasible set 𝒮(∆). Then, as the problem is convex,

𝑃 *
𝑌 |𝑋 is also a minimizing distribution of the optimization problem with expanded

feasible set 𝒮(∆ + 𝜖𝑑max). Therefore, 𝑅(𝑃𝑆,𝑋 ,∆)−𝑅(𝑃𝑆,𝑋 ,∆ + 𝜖𝑑max) = 0.

∙ 𝑃 *
𝑌 |𝑋 is on the border of the feasible set 𝒮(∆). First, notice that 𝑅(𝑃,∆) is convex

in ∆. This can be seen as E𝑃𝑌,𝑋
[𝑑(𝑌,𝑋)] is linear and that the mutual information

𝐽(𝑃𝑆,𝑋 , 𝑃𝑌 |𝑋) is convex in 𝑃𝑌 |𝑋 . Therefore, if we let ∆1 and ∆2 be two distortion
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value, and let 𝑃 *
1 and 𝑃 *

2 be the respective minimizing distributions, then it is the case

that for 𝑃𝛼 = 𝛼𝑃 *
1 + (1− 𝛼)𝑃 *

2 , with 0 ≤ 𝛼 ≤ 1, we have:

𝑅(𝑃𝛼,∆) ≤ 𝐽(𝑃𝑆,𝑋 , 𝑃𝛼) (A.19)

≤ 𝛼𝐽(𝑃𝑆,𝑋 , 𝑃
*
1 ) + (1− 𝛼)𝐽(𝑃𝑆,𝑋 , 𝑃

*
2 ) (A.20)

= 𝛼𝑅(𝑃𝑆,𝑋 ,∆1) + (1− 𝛼)𝑅(𝑃𝑆,𝑋 ,∆2) (A.21)

As the function 𝑅(𝑃,∆) is convex and non-increasing with respect to ∆, its steepest

descent is at zero, that is :

𝑅(𝑃𝑆,𝑋 ,∆)−𝑅(𝑃𝑆,𝑋 ,∆ + 𝜖𝑑max)

≤ 𝑅(𝑃𝑆,𝑋 , 0)−𝑅(𝑃𝑆,𝑋 , 𝜖𝑑max) (A.22)

Then, by Lemma 18 with 𝑓 = 𝑑(𝑌,𝑋), and 𝛿 = 𝜖𝑑max, there is a 𝑃𝑌 |𝑋 ∈ 𝒮(0), such

that the distance between 𝑃𝑌 |𝑋 and the minimizing distribution of the optimization

problem with expanded feasible set 𝒮(𝜖𝑑max) is at most 𝜖2𝑑max
𝑑min

. If 𝜖 ≤ 𝑑min
4𝑑max

, we can

use Lemma 17 and equations similar to those in (A.3) to obtain:

𝑅(𝑃𝑆,𝑋 ,∆)−𝑅(𝑃𝑆,𝑋 ,∆ + 𝜖𝑑max)

≤ 4𝜖
𝑑max

𝑑min
log

𝑑min|𝒮||𝒳 |
𝜖𝑑max

(A.23)

≤ 4𝜖
𝑑max

𝑑min
log
|𝒮||𝒳 |
𝜖

(A.24)

Using (A.24) in (A.18) gives the desired bound.
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Appendix B

Additional Lemmas on Guesswork

The following lemma relate the position of a sequence x𝑛 in the optimal list, with the type

of that sequence.

Lemma 19. Let x𝑛 be a i.i.d. generated sequence ,and consider the position of x𝑛 in the

optimal list according to 𝑃𝑋 , i.e. 𝐺*(x). For a given 𝛼, we have that 𝐺*(x) < ⌈|𝒳 |𝛼⌉ if and

only if the sequence x satisfy 𝑃x ∈ 𝒬(𝛼), where

𝒬(𝛼) = {𝑄𝑋 : 𝐷(𝑄𝑋‖𝑃𝑋) +𝐻(𝑄𝑋) < 𝐷(𝑄*
𝑋‖𝑃𝑋) +𝐻(𝑄*

𝑋)} , (B.1)

with 𝑄*
𝑋 being the solution of the optimization problem:

minimize
𝑄𝑋

𝐷(𝑄𝑋‖𝑃𝑋) +𝐻(𝑄𝑋)

subject to 𝐻(𝑄𝑋) ≥ 𝛼
. (B.2)

Proof. Recall that 𝑃𝑋(x) = exp{−𝑛
(︁
𝐷(𝑃x‖𝑃𝑋) +𝐻(𝑃x)

)︁
}, and that the size of the type

set 𝑇 (𝑃x)
.
= 2𝑛𝐻(𝑃x). Let 𝒬(𝛼) be the set of types of the sequences that are in the first 𝒳 𝑛𝛼

position in the list optimal list. Then, by definition of 𝒬(𝛼):

∑︁
𝑄𝑋∈𝒬(𝛼)

2𝑛𝐻(𝑄𝑋) .= 2𝑛𝛼 (B.3)

An application of the method of types gives that the left-hand side evaluates to 2𝑛 sup𝑄𝑋∈𝒬(𝛼) 𝐻(𝑄𝑋),

meaning that sup𝑄𝑋∈𝒬(𝛼)𝐻(𝑄𝑋) = 𝛼. Thus, the threshold probability is given by the type

that solves (B.2), and any type that has lower probability must appears before in the list.
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The following lemma characterizes the guesswork exponent of a sequence generated by

the concatenation of a uniform binary sequence, and an arbitrary i.i.d. sequence.

Lemma 20. Let 𝑈 ∼ Bern(1/2) and 𝑉 ∼ Bern(𝑝), with 𝑝 ≤ 1/2, and denote by 𝑈𝑚𝑛 and

𝑉 𝑛−𝑚𝑛 their i.i.d. sequences, for some sequence 𝑚𝑛 such that lim𝑛→∞
𝑚𝑛
𝑛 = 𝜆. Then, the

guesswork exponent for sequence 𝑋𝑛 = (𝑈𝑚𝑛 , 𝑉 𝑛−𝑚𝑛) is:

lim
𝑛→∞

logE [𝐺(X)𝜌] = 𝜆𝜌+ (1− 𝜆)𝜌𝐻1/1+𝜌(𝑝). (B.4)

Proof. We do the proof for 𝜌 = 1, general case follows trivially. It is easy to verify that the

optimal list is constructed by first ordering the subsequence v𝑛−𝑚𝑛 by most likely to least

likely, and then concatenating to each such subsequence all the possible u𝑚𝑛 , in an arbitrary

order. To reach a given x𝑛 = (𝑣𝑛−𝑚𝑛 , 𝑢𝑚𝑛), it is necessary to reach the subsequences 𝑣𝑛−𝑚𝑛 ,

and we have:

E [𝐺(X𝑛)] = E [E [𝐺(X𝑛)|V𝑛−𝑚𝑛 ]]

.
=

∑︁
v𝑛−𝑚𝑛

exp
{︁
−(𝑛−𝑚𝑛)

[︁
𝐷(𝑃v||𝑃𝑉 ) +𝐻(𝑃v)

]︁}︁
× exp

{︁
(𝑛−𝑚𝑛)𝐻(𝑃v)

}︁
exp{𝑚𝑛}

.
=
∑︁
𝑃𝑉

exp
{︁

(𝑛−𝑚𝑛)
[︁
𝐻(𝑃𝑉 )−𝐷(𝑃𝑉 ||𝑃𝑉 )

]︁
+𝑚𝑛

}︁
.

= exp

{︃
𝑛 sup

𝑃𝑉

(1− 𝜆)
[︁
𝐻(𝑃𝑉 )−𝐷(𝑃𝑉 ||𝑃𝑉 )

]︁
+ 𝜆

}︃
.

Solving the optimization yields the desired result.

The next lemma compares the guesswork of a random variable which takes values in a

discrete alphabet uniformly at random, with a random variables for which one of the symbol

has been softly removed. Precisely, we have

Lemma 21 (Soft Elimination). Consider a random variable 𝑈𝑁 taking values uniformly in

[𝑁 ], and 𝑈 . For some 0 ≤ 𝑠 < 1, we call a 𝐾 soft-elimination, a random variable 𝑉(𝑁,𝐾)

such that:

𝑃𝑟(𝑉(𝑁,𝐾) = 𝑖) =

⎧⎪⎨⎪⎩
1

𝑁−1 if 1 ≤ 𝑖 ≤ 𝑁 −𝐾
𝐾−1

𝐾(𝑁−1) if 𝑁 −𝐾 ≤ 𝑖 ≤ 𝑁
. (B.5)
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Then, for any 𝛼 > 0, E[𝐺(𝑈𝑁 )𝛼] > E[𝐺(𝑉(𝑁,𝐾))
𝛼] ≥ E[𝐺(𝑈𝑁−1)

𝛼].

Proof. We have :

E[𝐺(𝑉(𝑁,𝐾))]− E[𝐺(𝑈𝑁−1)] = (B.6)
𝑁−𝐾∑︁
𝑖=1

𝑖𝛼
(︂

1

𝑁 − 1
− 1

𝑁 − 1

)︂
+

𝑁−1∑︁
𝑖=𝑁−𝐾+1

𝑖𝛼
(︂

𝐾 − 1

𝐾(𝑁 − 1)
− 1

𝑁 − 1

)︂
+𝑁𝛼 𝐾 − 1

𝐾(𝑁 −𝐾)
.

By evaluating the series and combining terms it is easy to verify that the right hand side is

non-negative.

The following two lemmas relate the position of a sequence x in the optimal list, i.e.

𝐺*(x), with the type 𝑃x of that sequence, first without side-information, and then with

side-information.

Lemma 22. Let x be a i.i.d. generated sequence of length 𝑛,and consider the position of x

in the optimal list according to 𝑃𝑋 , i.e. 𝐺*(x). For a given 𝛼, we have that 𝐺*(x) < ⌈|𝒳 |𝛼⌉
if and only if the sequence x satisfy 𝑃x ∈ 𝒬(𝛼), where

𝒬(𝛼) = {𝑄𝑋 : 𝐷(𝑄𝑋‖𝑃𝑋) +𝐻(𝑄𝑋)

< 𝐷(𝑄*
𝑋‖𝑃𝑋) +𝐻(𝑄*

𝑋)} , (B.7)

with 𝑄*
𝑋 being the solution of the optimization problem:

minimize
𝑄𝑋

𝐷(𝑄𝑋‖𝑃𝑋) +𝐻(𝑄𝑋)

subject to 𝐻(𝑄𝑋) ≥ 𝛼
(B.8)

Lemma 23. Let (x𝑛,y𝑛) be a pair of binary sequences ,and consider the position of x in the

optimal list according to 𝑃𝑋|𝑌 , i.e. 𝐺*(x|y). For a given 𝛼, we have that 𝐺*(x|y) < ⌈|𝒳 |𝛼⌉
if and only if the sequence (x,y) satisfy 𝑃x|y ∈ 𝒬(𝛼, 𝑃y), where

𝒬(𝛼, 𝑃y) =
{︁
𝑄𝑋|𝑌 : 𝐷(𝑄𝑋|𝑌 ‖𝑃𝑋|𝑌 |𝑃y) +𝐻(𝑄𝑋|𝑌 |𝑃y)

< 𝐷(𝑄*
𝑋|𝑌 ‖𝑃𝑋|𝑌 |𝑃y) +𝐻(𝑄*

𝑋|𝑌 |𝑃y)
}︁
. (B.9)
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with 𝑄*
𝑋|𝑌 being the solution of the optimization problem:

minimize
𝑄𝑋|𝑌

𝐷(𝑄𝑋|𝑌 ‖𝑃𝑋|𝑌 |𝑃y) +𝐻(𝑄𝑋|𝑌 |𝑃y)

subject to 𝐻(𝑄𝑋|𝑌 |𝑃y) ≥ 𝛼.
(B.10)

Since Lemma 22 is a direct consequence of Lemma 23, we only include the proof of the

latter.

Proof. Recall that 𝑃𝑌 |𝑋(x|y) = exp{−𝑛
(︁
𝐷(𝑃x|y‖𝑃𝑋|𝑌 |𝑃y) +𝐻(𝑃x|y|𝑃y)

)︁
}. Furthermore,

note that for a given y the number of sequences x which have conditional type 𝑄x|y is given

by |𝑇 (𝑄x|y)(y)| .
= exp{𝑛𝐻(𝑄x|y|𝑃y)} (see, e.g., [54, Lemma 2.5]). Let 𝒬̂(𝛼, 𝑃y) be the set

of types of the sequences that are in the first 𝒳 𝑛𝛼 position in the list, that is 𝒬̂(𝛼, 𝑃y) is

such that:

∑︁
𝑄𝑋|𝑌 ∈𝒬(𝛼,𝑃y)

2𝑛𝐻(𝑄𝑋|𝑌 |𝑃y) = 2𝑛𝛼. (B.11)

An application of the method of types gives that the left-hand side evaluates (exponen-

tially) to 2
𝑛 sup𝑄𝑋|𝑌 ∈𝒬̂(𝛼,𝑃y) 𝐻(𝑄𝑋|𝑌 |𝑃y)

, meaning that sup𝑄𝑋|𝑌 ∈𝒬𝐻(𝑄𝑋|𝑌 |𝑃y) = 𝛼. Thus,

the threshold probability is given by (B.10), and any type that has lower probability ap-

pears before in the list.

The list 𝒬(𝛼, 𝑃y) is specified implicitely for any 𝑃𝑌 |𝑋 , but can also be made explicit for

some specific channels. In particular, binary erasures channels yield to an easy character-

ization of 𝒬(𝛼, 𝑃y). Indeed, in this case the only reverse channel types which need to be

considered are those that are valid outputs of an erasure channel. Thus, the order of x in

the ordered list after observation y solely depends on the type of x over the position which

are erased in y, which we shall denote by 𝑄̂(𝜖)
𝑋|𝑌 . Letting 𝜖 be the erasure symbol, 𝑃y(𝜖) is

thus the fraction of erasures in the received output y, and assuming 𝑃𝑋(0) > 𝑃𝑋(1), we

have 𝑃𝑋|𝑌 ∈ 𝒬(𝛼, 𝑃y) iff 𝑄̂
(𝜖)
𝑋|𝑌 < 𝛼

𝑃y(𝜖)
.
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Appendix C

Applications to one-to-one Coding

In this section, we connect the established results on mismatched decoding to lossless source

coding. We follow the notation from [52], and start by a discussion on lossless coding

without mismatch. A lossless source code is an injective function 𝑓 : 𝒳 → {0, 1}*, and we

refer to 𝑓(𝑥), for some 𝑥 ∈ 𝒳 as a codeword. For a codeword 𝑐 ∈ {0, 1}*, the length of the

codeword is denoted by 𝑙(𝑐). A lossless source code 𝑓* is said to be optimal if it satisfies

E[𝑙(𝑓*(𝑋))] ≥ E[𝑙(𝑓(𝑋))] for all valid source codes 𝑓 .

The relationship between the optimal source code 𝑓* and the log-guesswork 𝑔𝑃 , was

discussed in [15] [79], and later in [48]. Essentially, this correspondence is due to the relation

𝑃 (𝑥) ≥ 𝑃 (𝑦) ⇐⇒ 𝑙(𝑓*(𝑥)) ≤ 𝑙(𝑓*(𝑦)), which imposes that there is an optimal encoding

with 𝑙(𝑓*(𝑥)) ≥ ⌊log2𝐺𝑃 (𝑥)⌋ for all 𝑥 ∈ 𝒳 . For iid sources, the asymptotic behavior of

lossless codes are investigated through two quantities of interest, namely the asymptotic

average length, and the reliability function

𝐿(𝑃 ) , lim
𝑛→∞

1

𝑛
E[𝑙(𝑓*(𝑋𝑛))], (C.1)

𝐸(𝑅,𝑃 ) , − lim inf
𝑛→∞

1

𝑛
logP𝑃𝑛 (𝑙(𝑓*(𝑋𝑛)) > 𝑛𝑅) , (C.2)

where 𝐻(𝑃 ) < 𝑅 < log |𝒳 |. Naturally, the average length 𝐿(𝑃 ) = 𝐻(𝑃 ), that is, the best

average length for a lossless code is asymptotically converging to the entropy of the source,

see [138]. By using the correspondence between 𝑙(𝑓*(𝑥𝑛)) and 𝑔𝑃 (𝑥𝑛), one can directly apply

the results in Theorem 7 to obtain closed forms on the reliability function 𝐸(𝑅,𝑃 ) (we refer

to [52] for more details). In the rest of this section, we discuss analogous quantities for the

case of mismatched lossless coding without prefix-free constraint.
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Now, assume that an optimal lossless source code is constructed according to a mis-

matched source statistic 𝑄. We let 𝑓*𝑄 be the resulting optimal code for the source statistic

𝑄, and define the asymptotic average length and reliability function similarly as in the

matched case, i.e.,

𝐿(𝑄‖𝑃 ) = lim
𝑛→∞

1

𝑛
E[𝑙(𝑓*𝑄(𝑋𝑛))] (C.3)

𝐸(𝑅,𝑄‖𝑃 ) , − lim inf
𝑛→∞

1

𝑛
logP𝑃𝑛

(︀
𝑙(𝑓*𝑄(𝑋𝑛)) > 𝑛𝑅

)︀
. (C.4)

The following is the main result of this section, and is a direct consequence of the LDP

result on the mismatched guesswork.

Theorem 17. Let 𝑋𝑛 ∼ 𝑃𝑛, and assume Π𝒯 (𝑃 ) ∈ 𝒯 +
𝑄 , then:

𝐿(𝑄‖𝑃 ) = 𝐻(Π𝒯𝑄(𝑃 )), (C.5)

𝐸(𝑅,𝑄‖𝑃 ) = 𝐽(𝑅), (C.6)

for 𝐻(Π𝒯𝑄(𝑃 )) < 𝑅 < log |𝒳 |.

Proof. The proof of the statement on the reliability function follows immediately by noting

that there is an optimal encoding such that 𝑔𝑄(𝑥𝑛) ≤ 𝑙(𝑓*𝑄(𝑥𝑛)) < 𝑔𝑄(𝑥𝑛) + 1, and by

applying Theorem 13. The result on 𝐿(𝑄‖𝑃 ) follows from:

𝐿(𝑄‖𝑃 ) = lim
𝑛→∞

1

𝑛
E𝑃𝑛 [𝑔𝑄(𝑋𝑛)] (C.7)

= lim
𝜌↓0

𝐸𝜌(𝑄‖𝑃 ), (C.8)

where the first equality is again a consequence of the correspondence between optimal code

and guesswork, while the second equality is an application of L’Hôpital’s rule. Recall that,

by Corollary 8, 𝐸𝜌(𝑄‖𝑃 ) = max𝛾∈𝒯 +
𝑄
𝐻(Π𝒯𝑄(𝛾))) − 1

𝜌𝐷(𝛾‖𝑃 ). It follows that when 𝜌 ↓ 0,

it must be that 𝛾 = 𝑃 , which results in 𝐿(𝑄‖𝑃 ) = 𝐻(Π𝒯𝑄(𝑃 )).

In prefix free coding, the average length of the coded iid sequence is governed by the cross

entropy 𝐻(𝑃‖𝑄), where 𝑃 is the true distribution, and 𝑄 is the mismatched distribution

used to generate the code. In particular, since 𝐷(𝑃‖𝑄) ≥ 0, with equality only if 𝑃 = 𝑄,

there is always a loss in performance in using a mismatched distribution. The result above
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guarantees that the performance of a lossless one-to-one code always exceeds that of a prefix-

free code in terms of asymptotic average length, in the presence of mismatch. Indeed, we

have by Lemma 10,

𝐻(Π𝒯𝑄(𝑃 )) = 𝐻(𝑃‖Π𝒯𝑄(𝑃 )) (C.9)

= 𝐻(𝑃 ) +𝐷(𝑃‖Π𝒯𝑄(𝑃 )) (C.10)

≤ 𝐻(𝑃 ) +𝐷(𝑃‖𝑄), (C.11)

where the last step follows from Lemma 9. Therefore, the penalty induced by mismatch

from one-to-one coding is always upper bounded by the penalty for prefix-free codes as the

asymptotic average codeword length in both cases is characterized by 𝐻(𝑃 ) [138]. The

relative entropy 𝐷(𝑃‖Π𝒯𝑄(𝑃 )) can also be 0, if 𝑃 ∈ 𝒯 +
𝑄 , i.e., if 𝑃 and 𝑄 are on the same

tilted distribution. This implies that the cost of mismatched source coding vanishes if and

only if 𝑃 ∈ 𝒯 +
𝑄 (Lemma 13), and Theorem 17 generalizes such characterization to arbitrary

mismatched distributions.
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