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Abstract

In this thesis, we explore the problem of training end-to-end neural network models
for automatic speech recognition (ASR) when limited training data are available.
End-to-end models are theoretically well-suited to low-resource languages because
they do not rely on expert linguistic resources, but they are difficult to train without
large amounts of transcribed speech. This amount of training data is prohibitively
expensive to acquire in most of the world’s languages.

We present several methods for improving end-to-end neural network-based ASR
in low-resource scenarios. First, we explore two methods for creating a shared em-
bedding space for speech and text. In doing so, we learn representations of speech
that contain only linguistic content and not, for example, the speaker or noise char-
acteristics in the speech signal. These linguistic-only representations allow the ASR
model to generalize better to unseen speech by discouraging the model from learn-
ing spurious correlations between the text transcripts and extra-linguistic factors in
speech. This shared embedding space also enables semi-supervised training of some
parameters of the ASR model with additional text.

Next, we experiment with two techniques for probabilistically segmenting text into
subword units during training. We introduce the n-gram maximum likelihood loss,
which allows the ASR model to learn an inventory of acoustically-inspired subword
units as part of the training process. We show that this technique combines well with
the embedding space alignment techniques in the previous section, leading to a 44%
relative improvement in word error rate in the lowest resource condition tested.

Thesis Supervisor: James Glass
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Motivation

Automatic speech recognition (ASR) has recently become ubiquitous, fundamentally

changing how we interact with technology. Advancements in machine learning tech-

niques, particularly deep neural networks, have revolutionized ASR. The rapid im-

provement in ASR performance in recent years can be attributed both to these new

models and to an explosion in available computing power and data. Neural network

models can be used for ASR as one component in a hybrid HMM-based system, or

as an end-to-end model that transcribes speech directly. Either way, modern ASR

systems that can operate effectively in realistic noise conditions require, at minimum,

word-level transcripts of thousands to hundreds-of-thousands of hours of speech for

training.

End-to-end neural network models for ASR have become the focus of much aca-

demic research, and now represent the state-of-the-art in some scenarios (Chiu et al.,

2018). These models are simpler to train than traditional ASR models: they com-

prise a single component trained end-to-end, instead of a series of models of increasing

complexity that must be trained in succession (Graves and Jaitly, 2014). End-to-end

neural network models can also be effectively trained from transcribed speech with-

out requiring any additional resources. Traditional models, by contrast, are most

often trained with a pronunciation dictionary that must be hand-crafted by linguists.
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Traditional models can be trained without such a dictionary, but their performance

suffers (Wang et al., 2018).

The ability to perform well without expert resources is especially attractive for

low-resource languages in which acquiring these resources can be prohibitively expen-

sive (Besacier et al., 2014). The development of ASR technologies in these languages

is an important problem with widespread applicability. There are nearly 7000 lan-

guages spoken world-wide, but ASR technology is available in fewer than 100. While

speech recognition transforms the lives of speakers of the world’s most widely spoken

languages, many others are being quickly left behind.

Despite the promise of end-to-end neural network models for low-resource lan-

guages, continued research has demonstrated a clear trade-off. While they do not

require expert resources, these models require even more transcribed speech than tra-

ditional models to reach the same level of performance (Chiu et al., 2018; Rosenberg

et al., 2017). Unfortunately, the collection of additional training data is expensive,

limiting the usefulness of end-to-end neural network models for low-resource speech

recognition.

In this thesis, we present several methods for improving end-to-end neural network-

based ASR in low-resource scenarios. Broadly, these methods aim to make better use

of small training corpora and improve generalization. Some of these methods also

enable semi-supervised learning with non-parallel speech and text, which are much

easier and cheaper to acquire than speech transcriptions.

1.2 Contributions

The contributions of this thesis are:

1. A broad framework for semi-supervised training of end-to-end ASR

models. The core components of this framework are a text autoencoder that

shares parameters with the ASR decoder and a method for pushing the speech

and text encoder outputs to use the same embedding space. This framework

allows us to learn representations of speech that contain only linguistic content

20



and not, for example, the speaker or noise characteristics in the speech signal.

Our hypothesis, born out in the results, is that these linguistic-only representa-

tions allow the ASR model to generalize better to unseen speech by discouraging

the model from learning spurious correlations between the text transcripts and

extra-linguistic factors in speech. This model architecture also allows us to

train some parameters of the ASR model with text only. This framework was

originally introduced in Drexler and Glass (2018).

2. A method for using adversarial training to create a shared embedding

space for speech and text. Adversarial training is typically used to match

a generated distribution to an existing data distribution. Here, we present a

modified version of adversarial training that pushes two generated distributions

together. We show that this method effectively uses non-parallel speech and

text to improve ASR performance, with greater improvements in lower-resource

scenarios. We also demonstrate that this method can improve the performance

of fully-supervised ASR models when trained with the same speech and text

used for ASR training. These results were first published in Drexler and Glass

(2018).

3. An objective function and training procedure for supervised embed-

ding space alignment. Our adversarial alignment technique considers only

individual speech and text embeddings rather than sequences. We develop an

alternative technique that aligns the embeddings for full utterances by taking

advantage of our ASR model’s attention mechanism. This attention mechanism

provides an alignment between parallel speech and text utterances. We show

that this technique improves ASR performance in low-resource scenarios, al-

though it works better when a slightly larger training corpus is available. This

is in contrast to the adversarial alignment technique, which leads to bigger rel-

ative improvements on smaller parallel corpora. This work was first published

in Drexler and Glass (2019a).

4. The extension of subword regularization (Kudo, 2018b) to end-to-
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end ASR. Any sequence of one or more characters is called a subword unit.

End-to-end neural network models are most commonly character-based, but the

use of subword units has recently become quite popular. Here, we are the first

to extend the subword regularization technique (Kudo, 2018b), developed for

machine translation, to ASR. Our experiments demonstrate that this technique

is effective for ASR generally and for low-resource corpora specifically. This

work was first published in Drexler and Glass (2019b).

5. A novel objective function for attention-based ASR that automati-

cally learns an inventory of acoustically-inspired subword units. We

introduce n-gram maximum likelihood loss, a simple modification of the stan-

dard maximum likelihood loss. Instead of maximizing the likelihood of a single

correct output sequence, we maximize the combined likelihood of all valid char-

acter n-grams at each time step. We show that the use of this loss function

both improves ASR performance and pushes the model to use an acoustically-

inspired subword inventory. We also develop a modified version of the latent

sequence decomposition (LSD) framework to use with the n-gram loss which is

both more efficient and better performing than the original. Parts of this work

were published in Drexler and Glass (2020).

6. Experiments demonstrating the effectiveness of acoustically-inspired

subword units for the construction of a shared speech/text embedding

space. We present experiments for all possible combinations of the above em-

bedding space alignment methods with the above subword segmentation tech-

niques. Both types of subword units improve the construction of the shared

embedding space, with the acoustically-inspired subword units working best in

both cases. The overall best combined model achieves a 45.4% error rate reduc-

tion relative to the baseline in the lowest-resource case tested in this thesis.
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1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 provides the back-

ground for this thesis. It includes both an overview of the background necessary to

understand the motivation for this work and a survey of prior work that is similarly

motivated.

Chapter 3 defines the low-resource problem for end-to-end ASR models. We de-

scribe all of the datasets used for this thesis and present baseline results for each. We

also provide comparable results from the literature where available.

Chapters 4 through 7 contain the novel ASR training methods developed for this

thesis. Chapter 4 introduces our semi-supervised learning framework and adversarial

embedding space alignment technique. In Chapter 5, we describe our supervised

embedding space alignment technique. In Chapter 6, we apply subword regularization

to ASR and analyze its impact on the transcripts produced by our ASR model.

Chapter 7 presents the n-gram maximum likelihood loss function and a statistical

model for acoustically-inspired subword segmentation of text.

In Chapter 8, we combine the techniques from Chapters 4 through 7, testing

both embedding space alignment methods with both subword segmentation methods.

While all four combinations work better than the individual techniques alone, we find

that the acoustically-inspired subword units are most useful for constructing a shared

embedding space for text and speech.

Finally, in Chapter 9, we summarize the contributions and results of this thesis.

We also provide several possible avenues for further research.
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Chapter 2

Background

2.1 Automatic Speech Recognition (ASR) Overview

Automatic speech recognition (ASR) is the task of automatically producing a sequence

of words given an input speech signal. ASR is traditionally a supervised learning

problem, meaning that our training data comprises a large number of paired speech

and text examples that demonstrate the desired behavior of the trained model. This

section provides a broad overview of the field of ASR. First, we give a high-level

introduction to the traditional ASR architecture, which is based on Hidden Markov

Models (HHMs). We then go into more detail about two different types of end-to-

end neural network models for ASR. We focus in particular on the attention-based

end-to-end model, which is the architecture used for all experiments in this thesis.

At the highest level, ASR models define the probability distribution 𝑃 (𝑡𝑒𝑥𝑡|𝑠𝑝𝑒𝑒𝑐ℎ).

Once the model is trained, we can search for the word sequence that maximizes

𝑃 (𝑡𝑒𝑥𝑡|𝑠𝑝𝑒𝑒𝑐ℎ) for any new speech signal. In this section, we explore the forms that

this probability distribution can take and the training methods we can use to learn

this distribution from data. All of the models discussed here share one aspect, which

is pre-processing of the continuous speech signal into frames of speech features. Some

newer models operate directly on the waveform, but that is beyond the scope of this

work. Pre-processing is done by taking small segments of the waveform, typically

25ms segments taken every 10ms, and converting that speech segment into a feature
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vector.

The inputs to all ASR models used in this thesis are standard features called log-

mel filterbank features. To compute these features, we first use a Fourier transform

to convert each speech segment into the frequency space, then apply a series of filters.

Each feature dimension represents the combined magnitude in a particular filterbank

channel. The filters that we use are designed to be equally spaced along the mel-scale,

which is based on human perceptions of pitch intervals (Stevens et al., 1937). Many

HMM-based ASR systems perform a further step to produce a lower dimensional

vector of features called MFCCs. This further step reduces the correlation across

features, which is important for traditional models that use Gaussians with diagonal

covariances, but is not necessary for neural network models.

2.1.1 ASR With Hidden Markov Models

HMM-based models for ASR were the first ASR models to work well enough for use

in real-world systems. While end-to-end models have begun to outperform HMM-

based models in some limited scenarios, HMM-based models have been researched

and optimized over decades, and have remained the state-of-the-art on many tasks,

especially when neural networks incorporated into some components. HMM-based

models that include neural networks as components are often called hybrid models.

HMM-based models are designed to mimic the following generative process of

speech. The first step in generating a speech utterance is to sample a word sequence.

Then we sample a particular pronunciation for each word, such that the sequence of

words is now a sequence of sounds. Finally, speech features are generated for each

sound. The distribution 𝑃 (𝑤𝑜𝑟𝑑𝑠|𝑠𝑝𝑒𝑒𝑐ℎ) can be re-written to reflect the separate

components of this generative model:

𝑃 (𝑤𝑜𝑟𝑑𝑠|𝑠𝑝𝑒𝑒𝑐ℎ) = 𝑃 (𝑠𝑝𝑒𝑒𝑐ℎ|𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛)𝑃 (𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛|𝑤𝑜𝑟𝑑𝑠)𝑃 (𝑤𝑜𝑟𝑑𝑠)

where 𝑃 (𝑠𝑝𝑒𝑒𝑐ℎ|𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛) is called the acoustic model, 𝑃 (𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛|𝑤𝑜𝑟𝑑𝑠)

is the lexicon, and 𝑃 (𝑤𝑜𝑟𝑑𝑠) is the language model.
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The language model 𝑃 (𝑤𝑜𝑟𝑑𝑠) is a common type of model that is useful for a

wide variety of speech and language tasks. This can be trained from only text data.

Rather than directly model the likelihood of an entire sequence of words, language

models typically model the likelihood of each word given the previous words in the

sentence:

𝑃 (𝑤1, 𝑤2, ..., 𝑤𝑚) = 𝑃 (𝑤1)𝑃 (𝑤2|𝑤1)...𝑃 (𝑤𝑚|𝑤1, ..., 𝑤𝑚−1)

HMM-based ASR models typically use n-gram language models, which make an

additional assumption: the likelihood of the current word is dependent on only the

previous 𝑛 words. The choice of 𝑛 is dependent in part on resource constraints; 3-gram

and 4-gram models are most common and work reasonably well for English.

The lexicon, 𝑃 (𝑝𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛|𝑤𝑜𝑟𝑑𝑠), breaks each word in the model’s vocabulary

down into a sequence of phonemes, the smallest sound units of language. The lexi-

con is most commonly crafted by expert linguists, but can also be learned from data.

Another option is to use graphemes, or character-based units, instead of phonemes, al-

though this usually results in worse performance (Wang et al., 2018). Most commonly,

the sequence of phonemes for an utterance is converted to a sequence of context-

dependent phonemes or triphones, which are simply three-phoneme sequences that

help the model account for co-articulation effects between nearby sounds.

The acoustic model is the main component of this ASR system that is learned

from transcribed speech. The acoustic model is actually a large number of individual

HMMs, one for each context-dependent phoneme. These individual HMMs can be

used to model an entire speech sequence by concatenating together the HMMs for

the sequence of units. HMMs model a sequence of observations as being emitted by a

sequence of unobserved latent states. In this case, the observations are the sequence

of speech features. The parameters of an HMM are the transition probabilities be-

tween states and the emission probabilities for each state. The emission probabilities

are the likelihoods of observing particular speech features at each state. A detailed

explanation of HMMs is beyond the scope of this thesis; more information can be

found in Rabiner (1989).
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When HMM-based ASR models were first introduced, the emission probabilities

were modeled with Gaussian Mixture Models (GMMs), and these models were referred

to as HMM-GMM models. More recently, these have instead been modeled with deep

neural networks; ASR models that use neural networks are called hybrid models or

HMM-DNN models. The best architectures and training objectives for these neural

networks are an active area of research.

A key feature of training an effective HMM-DNN acoustic model is using a recipe

that trains a successive series of models with more and more complicated objective

functions, using each model to bootstrap the training of the next one. The Kaldi

toolkit (Povey et al., 2011) contains recipes for training state-of-the art ASR systems

on a wide variety of corpora. The recipe for the Librispeech corpus, which we also use

in this thesis, trains five successive acoustic models on a 100 hour subset, followed by

another model trained on 460 hours, and then two more models trained on the full

960 hour corpus.

2.1.2 Connectionist Temporal Classification (CTC)

End-to-end models, which comprise a single neural network trained “end-to-end" for

a particular task, have become popular for a variety of tasks due to their simplicity.

They do not require the development of a complex generative model, as described in

the previous section. They can generally be trained in a single step and make very few

assumptions about the form of the task and its potential solutions. One particular

advantage of using an end-to-end model for ASR is that these models do not require

any understanding of the phonetics of a language. Instead, they directly model the

process of converting speech input to text output.

Connectionist temporal classification (CTC) was the first method for training end-

to-end neural network models for ASR (Graves et al., 2006). The input to this model,

as in the previous section, is a sequence of speech feature frames. The output is a

sequence of text units; the most common choice is characters but the model can be

used with words or subword units with no modifications.

CTC models comprise a single recurrent network (often with many layers) that
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produces one output for each input time-step. At the top of this network is a softmax

layer, which converts its inputs to a probability distribution over the vocabulary. In

this section, we will assume that the vocabulary is the set of Latin characters, plus a

‘blank’ unit, which is required for CTC and which will be explained shortly. We will

represent the blank unit with an underscore in this section.

After we feed a sequence of speech features through the CTC model, the output

is one probability distribution per input time-step. We will call the probability of

observing label 𝑘 at time 𝑡 𝑦𝑘𝑡 . We define a path 𝜋 as a sequence of labels of length

𝑇 , where 𝑇 is the length of the input and output sequences. The probability of

path 𝜋 according to the CTC model is 𝑝(𝜋|𝑥) =
∑︀𝑇

𝑡=1 𝑦
𝜋𝑡
𝑡 , or the total probability of

observing the labels that make up 𝜋.

The key feature of CTC is how it handles the vast majority of cases where the

desired transcript is not the same length as the input sequence. First, CTC makes

an assumption about the ASR task: that the length of the desired output is less than

or equal to the length of the input sequence. This assumption is a reasonable one for

ASR when there are, as is most common, tens or hundreds of speech feature frames

per second.

Second, CTC is premised on a simple function that maps the sequence of outputs

to a ‘labeling’, which is the actual transcript of the input speech. This function

handles cases in which the desired transcript is shorter than the input sequence.

Consider a simple training example: a sequence of 4 speech feature frames and the

word CAT. In CTC, there are several different ways that the model could take in these

4 frames and correctly produce the labeling CAT. They are: CAT_, CA_T, C_AT,

_CAT, CATT, CAAT, and CCAT. The mapping removes all blanks and repeated

labels so that each of these output sequences map to the same labeling, CAT.

CTC models are trained with the CTC loss function, which maximizes the likeli-

hood of the desired labeling by marginalizing over every possible output sequence that

condenses into that labeling. This is possible in part because of the way CTC models

are structured: the ouputs are conditionally independent given the input. Given an

input 𝑥 and ground-truth labeling 𝑦, the CTC objective function which we want to
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maximize is:

𝑂(𝑥, 𝑌 ) =
∑︁
𝜋∈𝑌

𝑝(𝜋|𝑥)

where 𝑌 is the set of paths that condense to the labeling 𝑦. Both this objective

function and the best labeling for a new input can be computed using a variant of

the forward-backward algorithm specifically designed for CTC (Graves et al., 2006).

2.1.3 Attention-Based End-to-End ASR

Attention-based models differ from CTC-based models in how they handle the differ-

ence between the input and output lengths. The attention-based model architecture

is also called an encoder-decoder model with attention. While the parameters are

all trained end-to-end with a single objective function, the model can be thought

of as three components: an encoder network, a decoder network, and an attention

mechanism. Attention-based models were originally developed for machine transla-

tion (Bahdanau et al., 2016; Chorowski et al., 2015) and make fewer assumptions than

CTC about the ASR task. The attention-based model architecture used throughout

this thesis is based on the Listen, Attend, and Spell (LAS) model (Chan, Jaitly, et

al., 2016). This model architecture is shown in Figure 2-1. We will refer here to the

LAS “listener" component as the encoder, and the LAS “speller" component as the

decoder.

The encoder network is typically a bi-directional recurrent neural network (RNN)

that takes the speech features as input and outputs a series of hidden states whose

length is the input length down-sampled by some multiplicative factor. This down-

sampling happens through the use of pyramidal layers, in which each unit receives

input from some number of consecutive units in the previous layer. Figure 2-1 illus-

trates two pyramidal layers that each downsample their input by a factor of 2, so that

the encoder network downsamples its input by a total factor of 4.

The decoder network is a recurrent neural network that functions similarly to an

RNN language model, but conditioned on the input speech. At each time-step, the
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Figure 2-1: Listen, Attend, and Spell (LAS) model architecture; figure adapted from
Chan, Jaitly, et al. (2016). In this work, we refer to the LAS “listener" component as
the encoder, and the LAS “speller" component as the decoder.

decoder receives two inputs. The first is the previous unit in the text sequence, fed

through an embedding layer so that it is converted to a continuous vector space.

During training, the decoder receives the ground truth text as input. The decoder

outputs a probability distribution over the set of output targets.

The decoder also receives input from the attention mechanism. The attention

mechanism is a neural network that, at each decoding time-step, produces a weighted

combination of the encoder outputs, based on the decoder input at that time-step and

the attention output from the previous time-step. The attention mechanism tells the

decoder which speech frames to focus on at each time-step. This allows the decoder

to operate without making any assumptions about the relative lengths of the input

and output sequences.
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We use an attention mechanism that takes as input the sequence of encoder out-

puts, 𝑔, and the current state of the first decoder layer. These inputs are fed through

a feed-forward layer to produce a set of attention weights which are used to create

the attention context vector. The context vector is a weighted linear combination of

the encoder outputs. Both the context vector and the first layer decoder state are fed

through another feed-forward layer, then to the next decoder layer.

The model is trained end-to-end to maximize the likelihood of the ground truth

text labels. More formally, each training example contains a speech utterance, 𝑥,

and text label sequence, 𝑦, where 𝑦 = 𝑦1, ..., 𝑦𝑇 , with 𝑇 being the length of the label

sequence. The training loss is:

𝐿(𝑥, 𝑦) = −
𝑇∑︁
𝑡=1

𝑙𝑜𝑔(𝑝𝑡(𝑦𝑡|𝑥, 𝑦1:𝑡−1))

where 𝑝𝑡 is the decoder output distribution at time-step 𝑡.

2.1.4 Inference in ASR Models

“Inference" refers to the process of searching for the best transcription of a new speech

utterance given a trained model. With HMM-based models, this process is split into

two steps: decoding and rescoring. For end-to-end models, we generally only do the

decoding step and thus use the word decoding interchangeably with inference.

With a model of the form 𝑝(𝑤𝑜𝑟𝑑𝑠|𝑠𝑝𝑒𝑒𝑐ℎ), we are searching for the sequence of

words that maximizes this probability. For most ASR applications, the search space

is far too large to do an exhaustive search of all possible word sequences. For all

three model types discussed here, decoding is done with variants of the beam search

algorithm (Sutskever et al., 2014). Broadly, the idea behind beam search is to do a

breadth-first search in which we choose a beam size, 𝑏, and prune the search space

after each time-step so that we are only exploring at most 𝑏 paths.

For HMM-based models, decoding is done through a weighted finite state trans-

ducer (WFST) created by composing together the language model, lexicon, and acous-

tic model into a single graph. This graph is essentially a large HMM in which the
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HMM states learned by the acoustic model have been mapped to words, so that the

most likely path through the HMM corresponds to the most likely word sequence ac-

cording to the combined model components. Viterbi search is an efficient algorithm

for finding the best path through an HMM, but ASR decoding graphs are typically

too large to do full Viterbi search. Beam search can be used to limit the search

space and make decoding more efficient. For more details on WFSTs and decoding

in HMM-based ASR models, see Mohri et al. (2002).

For CTC, we run the full neural network model to get a sequence of output distri-

butions and then use beam search to explore the paths through those distributions.

The CTC beam search algorithm looks not for the most likely sequence of outputs but

for the most likely labeling, which means summing over many possible ways of pro-

ducing the same final transcript. The beam that we maintain here is over 𝑏 labelings,

not output sequences.

For attention-based models, beam search with beam size 𝑏 means feeding the full

speech signal through the encoder and then maintaining 𝑏 copies of the decoder,

each with a different internal state. Attention-based ASR models are thus limited

to a relatively small beam compared to other model architectures. It also makes the

search process complicated to implement, because we frequently need to make copies

of the decoder state if two different likely hypotheses branch off from the same path.

As mentioned previously, the outputs of a CTC model are conditionally indepen-

dent given the input. This means that a CTC model is not doing any sort of language

modeling as part of the ASR process. Attention-based models, meanwhile, perform

some language modeling at the level of the output units, but often have trouble cap-

turing the long-range dependencies necessary to do language modeling at the word

level. Thus, in both cases, it can be beneficial to explicitly incorporate a word-level

language model into the decoding process.

To use a word-level n-gram language model in end-to-end ASR decoding, we first

use FST composition to convert the word-level language model to a character-level one

as in Bahdanau et al. (2016). We need to do this so that we can consider the likelihood

according to the language model every time we add a single character. For example,
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the language model likelihood of choosing the letter T at the beginning of an utterance

should be the combined likelihood of starting an utterance with any word that starts

with T. Once we have correctly formatted our language model, it is straightforward

to take the hypotheses in the beam and follow the same paths through the language

model. This language model integration has two hyperparameters: a language model

weight and a word bonus. We use the language model weight to find the combined

score for a hypothesis according to both the ASR model and the language model (the

ASR model likelihood always has a weight of 1). The word bonus is used to encourage

the model to transcribe the full utterance when the language model is used; without

this bonus, the language model can lead to truncated transcriptions because longer

sentences are less likely than shorter ones.

2.2 Low-Resource Machine Learning

There have been many recent advances in machine learning techniques, mostly de-

voted to larger and larger models trained with larger and larger corpora. These

state-of-the art techniques do not perform nearly as well when limited resources are

available.

While ASR is the focus of this thesis, the low-resource problem has been explored

for a variety of machine learning tasks. In this section, we will look at how others have

approached the problem of data scarcity in neural network training, both for ASR

and for other tasks. The work discussed here has broadly similar motivation to this

thesis, whether or not the techniques are similar to those used here. All subsequent

chapters will also have a “related work" section - we use those sections to discuss in

more detail the specific techniques that are most relevant to the technical content of

each chapter.

This section covers three topics. The first part focuses on explicit regularization of

neural networks through regularization terms, dropout, and data augmentation. The

next part looks at semi-supervised learning, or training with some labeled and some

unlabeled data. In the case of ASR, semi-supervised learning means training with
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untranscribed speech, stand-alone text, or both. Finally, the third part covers a range

of other techniques that have been used specifically for low-resource ASR. These tech-

niques all broadly aim to bring in more training data, performing either multilingual

or multi-task learning with additional corpora. It is worth noting that many of the

works discussed here could be placed in multiple sections, as the boundaries between

the categories of low-resource training techniques are fuzzy. In particular, most of

the work discussed in this chapter could be broadly categorized under the rubric of

regularization.

2.2.1 Regularization in Neural Networks

Neural networks are extremely powerful learning machines. Depending on the model

architecture and the training corpus, neural networks are sometimes so powerful that

they memorize the training data rather than finding patterns in it. When a machine

learning model performs well on the training data but does not generalize well to

new data, this is called “overfitting." Regularization is an important part of neural

network design and training that can greatly reduce this overfitting problem.

Regularization is often thought of specifically in the context of regularization

terms, which are additional terms added to the training objective function that push

the model to favor particular types of solutions. Regularization terms can also be

thought of in a Bayesian sense as imposing a prior over the model parameters. Two

classic regularization terms that can be used with a variety of machine learning models

are 𝐿1 and 𝐿2 regularization. 𝐿1 regularization terms penalize the sum of the model

weights; this encourages sparse solutions with limited redundancy. 𝐿2 regularization

penalizes the sum of the squared model weights; by contrast, this encourages all

weights to be as small as possible and encourages computations to be spread across

multiple weights.

In this section, we will also consider dropout, a different way of achieving regular-

ization in neural networks specifically. Dropout is a very simple technique in which

some percentage of the model weights are randomly set to zero on each training iter-

ation. This method is similar to 𝐿2 regularization in that it encourages redundancy
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and dense weight matrices.

Lastly, we will discuss data augmentation techniques. Some data augmentation

techniques are very similar to dropout: rather than randomly setting weights to zero,

they randomly set some parts of the speech input to zero. Others, like varying the

speed of the input speech or adding noise, encourage the model to learn representa-

tions that are invariant to these factors in audio.

Regularization Terms

As mentioned above, the most common way of doing regularization is to add an

explicit regularization term to the task loss function. This type of regularization is

a long-standing technique that is applicable not just to neural networks but to most

types of machine learning models.

Within the specific field of neural network models, regularization terms have been

applied to a wide range of problems and model architectures (Dieng et al., 2018; Hu

Liu et al., 2018; Ochiai et al., 2017). Here, we highlight two techniques that have

been applied successfully to neural networks used for ASR.

C. Wu et al. (2017) introduce a method they call activation regularization, which

imposes particular patterns on the activations of neurons in each layer of a neural net-

work. This method enables them to use their knowledge of the task and the training

data to design a custom regularization term. They test their method on a DNN acous-

tic model, using a map designed to have similar phonemes represented by neurons

that are nearby in the network. They show that their technique outperforms both 𝐿2

regularization and dropout on both the SI84 subset of the WSJ corpus and several

Babel languages. Their analysis also demonstrates that this type of regularization

can be used to improve the interpretability of neural network parameters.

Label smoothing (Szegedy et al., 2016) is a common technique to avoid overfitting

in neural networks. Label smoothing involves a modification to the loss function;

instead of asking the model to output the correct answer with 100% probability, the

model is trained to output the correct answer with slightly less confidence, say 90%.

This can help the model avoid memorization and thus improve generalization. Pereyra
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et al. (2017) show that a similar effect can be achieved with a regularization term that

imposes a penalty on overly confident output distributions. They demonstrate the

effectiveness of this technique on a number of tasks in different domains, including

ASR on the WSJ corpus.

Dropout

Dropout is a simple but effective technique. In the paper that first introduced

dropout, Srivastava et al. (2014) suggest that many of the learned dependencies be-

tween neurons in a neural network are spurious correlations that exist in the training

data but not in the larger data distribution, especially if the training set is small.

They argue that if the neurons can be encouraged to represent meaningful concepts

on their own, without over-reliance on other neurons, it will make the entire network

more robust and reduce overfitting. Another way of thinking about dropout is that it

allows a single neural network to mimic an ensemble of neural networks by training

a random subset of the network on each iteration, and then essentially averaging the

outputs of those subsets at test time. Srivastava et al. (2014) demonstrate the ef-

fectiveness of this method, producing, at the time, state-of-the art results in a range

of tasks in computer vision, speech recognition, and computational biology. More

recently, a number of researchers have devoted time to studying the best ways to ap-

ply dropout in recurrent neural networks (Gal and Ghahramani, 2016; Merity et al.,

2017; Zaremba et al., 2014). The improvements that have resulted from this work

are ones that we take advantage of; we use dropout in every model trained for this

thesis, in both recurrent and feed-forward layers.

Zhou et al. (2017) provide an overview of the impacts of both dropout and data

augmentation (discussed in the next section) on end-to-end neural network models

for ASR. They show WER improvements of more than 20% relative on both the WSJ

and Librispeech datasets from dropout alone.
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Data Augmentation

Data augmentation refers to the process of perturbing the inputs to a machine learning

model so as to create more variance in the data the model is exposed to. It can be

viewed as a regularization method that pushes the model to be invariant to the

dimensions along which the data are perturbed. In the case of speech recognition, a

range of augmentation strategies have been employed, both for acoustic model and

end-to-end model training.

In the case of data augmentation for acoustic model training, augmentation strate-

gies that have been shown to work well include: the addition of noise, speed perturba-

tion, and vocal track length perturbation (Cui et al., 2015; Jaitly and Hinton, 2013;

Ko et al., 2015).

Hannun et al. (2014) was one of the first papers to demonstrate the ability of

end-to-end models to compete with hybrid models on large ASR tasks. This model

was trained on a corpus of more than 5000 hours of collected audio, augmented by the

addition of recorded noise. Zhou et al. (2017) experiment with the addition of white

noise, as well as pitch, tempo, and volume modulation. They demonstrate a 6% rel-

ative improvement over a strong baseline on WSJ from just noise augmentation, and

a 21% relative improvement from all augmentation methods combined. Their results

suggest, however, that these gains are not additive with the gains from regulariza-

tion achieved through dropout; the combination of dropout and data augmentation

produced similar gains to either dropout or data augmentation on its own.

SpecAugment (Park et al., 2019) is a simple data augmentation method that

has produced state of the art results on the Librispeech and Switchboard corpora.

SpecAugment operates on the input speech features to the neural network and in-

cludes several methods: time-warping, time-masking, and frequency-masking. While

the best performing models used all three methods, time-warping contributed min-

imally to the results while also being more expensive to implement than the other

two. In the process of generating these results, the authors found that using SpecAug-

ment led to underfitting, but this issue was solved by using larger models and longer
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training times.

2.2.2 Semi-Supervised Learning

Semi-supervised learning describes any method that trains with unlabeled data in

addition to labeled data. In the context of ASR, this can mean either untranscribed

speech or stand-alone text. Almost every ASR system uses semi-supervised learning

in that it incorporates a language model trained on a large text-only corpus. In this

section, we focus on work that uses unlabeled data to train the parameters of a neural

network that is used for a supervised task. In the ASR context, this means either the

acoustic model component of a hybrid DNN-HMM system or an end-to-end neural

network model.

Pseudo-Labeling

Pseudo-labeling is simple technique for generating additional supervised training data

from unlabeled data (Lee, 2013). In the ASR context, pseudo-labeling means auto-

matically generating either text labels for untranscribed speech or speech features to

go with stand-alone text, then using those new paired speech/text examples as part

of ASR model training. Pseudo-labeling is most often used to label additional output

data, as bad pseudo-outputs can hurt model performance rather than help. For ex-

ample, if we pseudo-label speech and the generated text labels are un-grammatical,

then the model will learn to produce un-grammatical output.

Labeling additonal output data requires training two models: one to perform the

desired task and one in the reverse direction. This is a common technique in machine

translation, where the necessary model architecture is the same in both directions.

Replicating this idea for ASR is a bit more complicated: it means training a text-to-

speech, or TTS, model, which is an entirely separate research area.

Up until very recently, it has been difficult to generate high-quality speech, es-

pecially if the training corpus is small. The performance of TTS models has been

progressing rapidly thanks to similar developments as those seen in ASR. Rossen-
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bach et al. (2020) use a very recent, state-of-the-art TTS model to generate synthetic

spectrogram features from text.

Hayashi et al. (2018) introduce the concept of a text-to-encoder, or TTE, model

used in place of a TTS model. The authors first train an attention-based ASR model,

then use this model to get the encoder outputs for all of the training speech. The TTE

model is trained using (text, encoder) pairs created from the original (text, speech)

training data. Once the TTE model is trained, it can be used to generate encoder

sequences from new text. These encoder sequences can be used along with the text

for additional training of the decoder parameters in the ASR model. This method

avoids the difficulty of generating realistic speech features as well as the possibility of

training the encoder parameters on un-realistic speech.

It is also possible to train an ASR with pseudo-labels generated from speech by

the model itself, but it requires care to not exacerbate the model’s errors when doing

this. The TTE model described above is used in Hori et al. (2019) to score pseudo-

labels for untranscribed speech generated by the ASR model, using the notion of

cycle-consistency. The idea is that the ASR model should generate transcripts of

untranscribed speech that, when encoded with the TTE model, produce encodings

similar to those of the original speech. The cycle-consistency loss is calculated between

the speech encodings and the TTE encodings of several hypothesized transcripts from

the ASR model. The best pseudo-label sequence is chosen not according to the ASR

model likelihood but according to this cycle-consistency loss.

Kahn et al. (2020) also use pseudo-labels generated by the ASR model itself, but

takes several steps to ensure that these labels are high-quality. First, they decode with

an external language model when producing these labels, ensuring that the labels are

better than what the end-to-end neural network model by itself is able to produce.

Second, they develop a set of heuristic filters to remove pseudo-labels with errors

common to end-to-end models - looping and early stopping. Finally, they use an

ensembling method in which they train five models from different initializations and

sample each set of pseudo-labels from a randomly selected model.
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Alternative Objective Functions

In the previous section, pseudo-labeling was used to turn data in one domain (speech

or text) into paired speech/text data that could be used to train the ASR model with

the same maximum-likelihood loss function used for baseline training. In this section,

we will look at alternative objective functions that can be used to train the model

parameters based only on data from one modality, or on non-parallel speech and text

data.

Baskar et al. (2019) use the notion of cycle-consistency to create new loss functions

for training the model parameters with both untranscribed speech and additional text.

Their framework consists of both an ASR model and a TTS model. Both are originally

trained with a small corpus of parallel speech and text data. They feed untranscribed

speech first through the ASR model, then feed that output through the TTS model.

Cycle-consistency states that this should produce output that looks similar to the

original speech. Similarly, when text is fed through the TTS model and then the

ASR model, the output should be similar to the original text. The key innovation in

this paper is to modify the models so that an end-to-end differentiable loss can be

computed through both models at once. This essentially turns the combined models

into two autoencoders that can be trained, respectively, with just speech and just

text.

Liu et al. (2019) make use of adversarial training, a powerful technique that has

been used most notably in computer vision to generate highly realistic fake images and

videos. Adversarial training consists of two models: a discriminator and a generator.

The generator is the model being trained to generate a particular kind of data, such

as realistic images. In this case, the generator is the ASR model that is being trained

to generate text from speech. The discriminator is a classifier that is trained to

distinguish between true examples (here, text from a large text corpus) and examples

produced by the generator. These models are trained iteratively: the discriminator

is trained to classify the two types of examples, the generator is trained to ‘trick’

the discriminator, then the discriminator is re-trained, and so on. In this paper, the
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discriminator is what the authors call a ‘criticizing language model’. The authors run

experiments using the 100 hour clean librispeech subset as paired speech/text data

along with the text from either the remaining 360 hours of clean data or the remaining

860 hours from the whole corpus. They show that, in both cases, this technique is

better than pseudo-labeling the text with a TTS model.

Hsu et al. (2020) use a language model as a way to score the linguistic plausibil-

ity of different potential transcripts of untranscribed speech. Rather than use these

potential transcripts as pseudo-labels for further training, the authors introduce a

new objective function, called local prior matching, that encourages the probability

distribution over hypotheses in the beam to be proportional to the probabilities as-

signed by the language model. In this way, they use the language model as a prior

over the ASR outputs. In addition to impressive results using a large language model

as the prior, this paper demonstrates that this technique can be effective even when

not much text is available for language model training.

Unsupervised Pre-Training

Unsupervised pre-training has been very successful in computer vision for many

years (Erhan et al., 2010). More recently, several successful techniques (e.g. BERT (De-

vlin et al., 2018), ELMO (Peters et al., 2018)) have been introduced for building high-

quality text representations from unlabeled text, then doing supervised fine-tuning

for a particular task on top of those representations. These pre-training methods have

produced state-of-the-art results on a number of NLP tasks (Devlin et al., 2018).

In a very recent work, unsupervised pre-training for speech recognition has begun

to show the huge gains associated with unsupervised pre-training in other domains.

The architecture for wav2vec 2.0 (Baevski et al., 2020) comprises a convolutional

neural network encoder and a transformer network. The model encodes speech, then

parts of those encodings are masked. The model is trained to distinguish between

the true values of the masked encoding and several distractor candidates at each

masked time-step. Using this technique, the authors demonstrate both competitive

performance on the full Librispeech corpus with a much simpler ASR architecture and
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very impressive semi-supervised learning results. They are able to achieve comparable

results to a hybrid model trained on 100 hours of Librispeech data using only 10

minutes of labeled data. They are also able to outperform the previous state-of-the

art on Librispeech with 100 hours labeled and 860 hours unlabeled using only 1 hour

of the labeled data.

2.2.3 Other Approaches to Low-Resource ASR

Other work that has focused on ASR for low-resource languages has generally looked

at finding additional data for training. This work differs from semi-supervised learning

in that the extra data is not stand-alone speech or text but labeled data that can be

used to train all or part of the model in a supervised fashion. A popular method is

to train a multilingual ASR model using data from many languages, on the theory

that languages have much in common and learning about one language can help with

another. An alternative is to use the ASR training data to train the model to perform

multiple tasks at once.

Multilingual Training

The motivation behind multilingual training is most clear when considering acoustic

model training for hybrid HMM-DNN ASR systems. For these systems, it is possible

to develop a shared phone set so that an acoustic model can be trained with many

different languages using the same output targets (Lin et al., 2009). After the success

of this type of multilingual training, researchers have also considered multilingual

acoustic models that share everything except the output targets (Heigold et al., 2013;

Karafiát et al., 2017). This type of training rests on the theory that low-level speech

features will be shared among languages, even if the phone sets diverge.

The first models to use multilingual training for end-to-end models were incre-

mental models that proceeded in several stages (Rosenberg et al., 2017). First, a

multilingual acoustic model is trained using one of the two techniques described

above. Features are extracted from a ‘bottleneck’ layer in this acoustic model for
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every training utterance. A bottleneck layer is a layer with fewer units than the rest

of the layers in the network, and is typically the second-to-last layer when used as

a feature extractor. An end-to-end ASR model is then trained on the language of

interest using these features as input.

More recently - as in Cho et al. (n.d.), Dalmia et al. (2018), and Kannan et al.

(2019) - researchers have begun to train end-to-end models with multilingual corpora.

Of particular note is Pratap et al. (2020), in which the authors trained a single model

on data from 51 languages, with between 100 and 1000 hours of training data from

each. With their best model architecture, they achieved an average 28.8% relative

WER reduction across the languages tested compared to the monolingual baselines.

Multi-Task Training

.

Multi-task training has become popular for training low-resource DNN acoustic

models. In that case, the typical output targets are triphones, but many other output

targets are available within the same data because we have access to both a sequence

of character labels and a sequence of phonetic labels. As in multilingual training, the

idea is to share the entire model except for the output layer. Chen et al. (2014) do

multi-task training by using both triphones and trigraphemes as output targets. In

Chen and Mak (2015), the same authors combine that technique with multilingual

training, so that there are two tasks for each language used. Bell and Renals (2015)

use a similar approach, but with triphones and monophones.

A popular form of multi-task learning for end-to-end ASR is the joint CTC/attention

model (Kim et al., 2017). In this model, the CTC loss is computed from a softmax

layer directly on top of the attention-based encoder. The CTC loss is considered an

auxiliary loss in this case; the attention-based decoder is ultimately used for inference.

In Kim et al. (2017), this joint model performs better than either a CTC model or

an attention-based model on both the WSJ SI284 set (81 hours) and the SI84 set (15

hours).

Gowda et al. (2019) extend the joint CTC/attention framework to also include
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subword sequences produced with byte pair encoding (we will discuss subword se-

quences in more detail in Chapters 6 and 7). Instead of two losses, as in the above

model, this work has four: one loss of each type for characters and one of each for sub-

words. Tested on the Librispeech corpus, this model improves the on the performance

of the joint CTC/attention model.
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Chapter 3

The Low-Resource Problem in

Automatic Speech Recognition

3.1 Data and Evaluation

When we experiment with different ASR models, we divide each of our corpora into

three parts: training data, validation data, and test data. The training data is the

bulk of each corpus; this is the data that is used to teach the model how to perform

ASR. The validation and test sets are small subsets of the original corpus. The

validation data is used to determine when to stop training: we score the performance

of the model after each training epoch and choose the model parameters that perform

best on the validation set. All reported scores in this thesis use a set of test utterances

that were not used for either training or validation.

Throughout this thesis, we will judge the performance of an ASR model by mea-

suring the word error rate (WER) of its outputs compared to the ground-truth tran-

scripts. To calculate WER, we first align the ASR output to the reference, then count

up all of the errors in the output. These errors fall into three categories: substitu-

tions, insertions, and deletions. The WER is the total number of errors divided by

the number of words in the reference. Thus, if the output transcript is longer than

the reference, it is possible to have a WER greater than 100%. While WER is the

most common metric for ASR, we also frequently report character error rate (CER),
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which is calculated the same way as WER but on the individual character level.

The experiments in this thesis use datasets from two categories: well-studied

English benchmark datasets and datasets in true low-resource languages. The English

datasets allow a full exploration of the low-resource problem: we can look at how each

proposed technique performs across a range of settings by starting with the full corpus

and incrementally reducing the amount of data used for training. The low-resource

corpora then allow us to assess how the most promising of these ideas generalize across

languages and what their usefulness might be in real-world low-resource applications.

Corpus Speakers # Utterances Train Hours
WSJ SI284 284 37416 81
WSJ SI84 84 7138 15
WSJ 40 284 18708 40
WSJ 20 284 9354 20
WSJ 10 284 4677 10
WSJ 5 284 2338 5

WSJ 2.5 284 1169 2.5
Librispeech clean460 1172 132548 460
Librispeech clean100 251 28539 100
Librispeech clean20 251 5708 20

Table 3.1: Details on the two English copora, Wall Street Journal (WSJ) and Lib-
rispeech, used in this thesis. The WSJ SI284, WSJ SI84, Librispeech clean460, and
Librispeech clean100 sets are standard training corpora used frequently for ASR re-
search. The remaining subsets detailed here were created for this thesis to mimic
low-resource scenarios.

We use two English datasets: the Wall Street Journal (WSJ) corpus (LDC, 1994)

and the LibriSpeech corpus (Panayotov et al., 2015). The full WSJ corpus consists

of 81 hours of read speech; each utterance is a single sentence read from the Wall

Street Journal newspaper. This training corpus includes 37.4K utterances, read by

284 speakers. In all WSJ experiments, we use the standard dev93 and eval92 sets

for validation and test, respectively. For results that incorporate a language model,

we use the text corpus that accompanies the WSJ speech recognition corpus. To

simulate lower-resource conditions, we divide the training data by powers of two,

selecting the utterances so that all 284 speakers are represented in all training corpora.

In particular, we focus on three low-resource conditions - 1/8th, 1/16th, and 1/32nd
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of the original corpus, or approximately 2.5, 5, and 10 hours of transcribed speech,

respectively.

The LibriSpeech corpus is a much larger corpus - 960 hours - encompassing both

clean and noisy speech, read from books in the public domain. This comprises 460

hours of clean speech and 500 hours of noisy speech; there is also a standard 100 hour

clean training set. We use the 460 hour set as our topline and the 100 hour training

set as one low-resource condition. We also create our own sets of approximately

10, 20 and 50 hours by selecting 10, 20, or 50 percent of the 100-hour utterances,

respectively. We again ensure that these subsets contain all speakers from the 100

hour set. The corpus includes standard clean and “other" validation and test sets; all

results in this thesis use the clean validation and test sets unless otherwise indicated.

For both WSJ and Librispeech, we explore semi-supervised learning by using the

audio we do not include in our low-resource training corpus as untranscribed speech.

We also make use of the available language model training text as part of ASR training

in some cases. More details on the sizes of the WSJ and Librispeech corpora and the

subsets we created to emulate low-resource conditions can be found in Table 3.1.

The true low-resource corpora that are included in this thesis come from the

Babel program (Harper, 2014). This program was an effort by IARPA to collect

small ASR corpora in a range of low-resource languages and explore the possibilities

for rapid development of ASR capabilities in these languages. The audio quality

of these corpora tends to be much lower than for WSJ and Librispeech (where we

largely focus on the ‘clean’ portion of the corpus). These recordings also largely

capture conversational speech, which is well-known to be harder to recognize than

read speech.

In this chapter, we present results for four languages: Dholuo, Igbo, Javanese,

and Swahili. These languages were chosen for this work for two reasons. First,

these languages use the Latin alphabet, which allows us to do qualitative analysis of

the ASR models we train. Second, we were able to find published results on these

languages using end-to-end models. The training corpora that we use for the Babel

languages contain approximately 40 hours of transcribed speech per language.
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3.2 Model Details

For our baseline attention-based model, we use long short-term memory (LSTM)

units (Hochreiter and Schmidhuber, 1997) for all recurrent layers in the encoder

and the decoder. Our encoder has one standard bidirectional LSTM layer, and 3

pyramidal bidirectional LSTM layers that each downsample their input by a factor

of 2. The total downsampling factor of the encoder is 8. The decoder contains two

unidirectional LSTM layers. For all models, we use the same number of units in every

hidden layer of both the encoder and the decoder.

In this chapter, we experiment with a few standard hyperparameters of the model

to find the best baseline architecture for each corpus to be used in this thesis. First, we

experiment with the size of the hidden layers. Next, we experiment with dropout; the

amount of dropout is a single hyperparameter that applies to all layers of our model

except for the text embedding layers. Finally, we experiment with scheduled sampling.

This hyperparameter governs how often we sample the next decoder input from the

decoder output distribution, instead of using the ground-truth. Scheduled sampling

exposes the decoder to the types of mistakes it is likely to see during inference,

allowing the model to learn to recover from those mistakes.

3.3 Baseline Results

In this section, we present results for the baseline attention-based models used as the

starting point for all work in this thesis. Most results here are from the best model

settings found for each corpus described above. These results demonstrate first the

competitiveness of our model on the standard corpora that we work with here, and

second the low-resource problem with end-to-end models. This section also provides

example output that gives a qualitative understanding of the meaning of WER and

discusses the settings that we explored in order to achieve the best performance on

each corpus.
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3.3.1 Standard English Corpora

Corpus Model WER CER
WSJ SI284 this work 16.7 6.0

Bahdanau et al. (2016) 18.6 6.4
WSJ SI84 this work 36.5 15.0

Kim et al. (2017) 17.0
Karita et al. (2018) 15.8

Librispeech clean460 this work 12.7 5.7
Hori, Astudillo, et al. (2019) 11.8 4.6

Librispeech clean100 this work 23.3 11.2
Hori, Watanabe, et al. (2017) 25.2 11.1

Table 3.2: Baseline results on the standard English corpora used in this thesis, with
comparison to other published work.

Our baseline results for the standard subsets of the WSJ and Librispeech corpora,

along with a selection of published results, are in Table 3.2. We have specifically

chosen published results for model architectures that are similar to ours; this table

demonstrates that our model implementation is in line with those used elsewhere in

the field. For all four subsets in this table, other model architectures have been shown

to outperform those listed here. In particular, HMM-DNN models still consistently

outperform end-to-end models on all of these tasks. New end-to-end architectures

like transformer models, which are beyond the scope of this thesis, have also become

popular in the time since the majority of the research for this thesis was done.

3.3.2 Low-Resource English Subsets

Figure 3-1 clearly illustrates the low-resource problem in end-to-end ASR. It shows

WER on the y-axis, as a function of the number of hours of training data on the

x-axis. The two lines represent the two standard English corpora used here, WSJ and

Librispeech. As we decrease the amount of training data, performance degrades dras-

tically, to the point where the model has learned virtually nothing about performing

ASR when trained with only 2.5 hours of WSJ data. It is also worth noting that

Librispeech is a much harder corpus than WSJ for the same amount of training data.
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Figure 3-1: Word error rate as a function of number of hours of training data, for
both the WSJ (blue line) and Librispeech (red line) corpora.

There is no clear line for when the available data for a language or domain makes the

ASR problem “low-resource."

It is also difficult to judge exactly how WER correlates with the usefulness of an

ASR transcript, but some research has explored this question. In one study, students

were asked to take a quiz about the contents of a recorded lecture (Munteanu et al.,

2006). Students who were given either a perfect transcript or a transcript with 25%

WER did better on the quiz than those who did not have access to a transcript.

However, students with no transcript outperformed students with access to a 45%

WER transcript.

Table 3.3 gives qualitative examples of how the different low-resource models per-

form. WER is most useful averaged over many utterances - we see in this table that

the outputs from the models trained on 5 and 10 hours of transcribed speech score

the same WER on this one sentence, despite performing very differently on the full

test set. Still, this table gives a sense of what different WERs mean, and how WER

and CER interact. While the model trained with 20 hours of speech is clearly the
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Hours NOW CIBA IS TRYING TO MAKE AMENDS WER CER
2.5 THE NINETEEN MILLION DOLLARS 100.0 81.8
5 NOW S. BARYS TRYING TO MADE MANAGE 71.4 39.4
10 NOW SEE BASED TRIED TO MAKE IMMENSE 71.4 45.5
20 NOW C. BE IS TRYING TO MAKE IMMENSE 42.9 30.3

Table 3.3: Example outputs from models trained with different amounts of WSJ data,
along with word error rate and character error rate. The ground truth transcript is
“NOW CIBA IS TRYING TO MAKE AMENDS."

best performing, arguably none of these outputs is particularly useful in terms of

conveying the meaning of the original utterance.

The results in Table 3.2 and Figure 3-1 have all been optimized for each individual

training set by choosing the best performing out of a range of hyperparameter settings.

Table 3.4 shows the impact of the different hyperparameters we experimented with in

order to find the best baseline settings for each corpus on the 5 hour WSJ subset. We

do not replicate the full suite of results for all corpora here; we just give the 5 hour

WSJ subset as an illustrative example. For this corpus, the best configuration used

128 hidden units per recurrent layer, a dropout rate of 0.3 and a scheduled sampling

rate of 0.1.

hidden dropout sched. samp. WER CER
128 0.3 0.1 65.1 35.3
64 80.4 50.9
256 93.9 78.1

0.4 68.2 36.8
0.2 81.3 52.7
0.1 94.2 78.2
0.0 96.6 79.1

0.0 72.5 42.1

Table 3.4: Results from models trained on the 5 hour WSJ subset with a variety
of hyperparameter options. The best performing configuration is in the first row of
results; remaining rows are labeled with the hyperparameter that differs from the
best performing model.

Unless otherwise mentioned, all models in this thesis use a dropout rate of 0.3

and scheduled sampling rate of 0.1. We found that the best number of hidden units

was related to the amount of training data: 64 hidden units was best for the 2.5 hour

53



WSJ model, and 256 units was best for all WSJ models trained with at least 10 hours

of transcribed speech. For librispeech, the best choice of hidden size was 128 for the

10 and 20 hour subsets, 256 for 50 and 100 hour subsets, and 512 units for the larger

training corpora. 256 hidden units was best for all of the Babel languages, which each

have 40 hours of training data.

3.3.3 Babel Languages

Dholuo Igbo Javanese Swahili
This work - Attention 58.9 85.5 83.8 74.6

Rosenberg et al. (2017) - HMM-DNN 41.6 61.4 57.3
Rosenberg et al. (2017) - CTC 44.2 64.4 58.3

Rosenberg et al. (2017) - Attention 48.2 62.1 64.6
Cho et al. (n.d.) - Joint CTC/Attention 66.2

Table 3.5: Baseline results on selected Babel languages. All numbers in this table are
word error rates.

Baseline results on selected Babel languages are in Table 3.5. Our baseline results

are much worse than the results that we were able to find in the literature for these

corpora. However, while we selected these languages because there were available end-

to-end results for comparison, none of this other work is actually directly comparable

to ours. All of the models in Table 3.5 except for ours are trained on the language of

interest as well as training data from several other languages. We discuss multilingual

ASR models in more detail in Chapter 2.2.3, and the joint CTC/attention model

architecture in 2.2.3.

Despite the use of much larger training corpora than those used in this thesis,

these Babel results give us a sense of how well the state-of-the-art techniques for low-

resource languages can perform on these particular corpora. The techniques used in

this thesis are orthogonal to those used in Rosenberg et al. (2017) and Cho et al. (n.d.),

and hopefully can be productively combined with multilingual training techniques.

The results from Rosenberg et al. (2017) also give a sense of the relative perfor-

mance of the different types of ASR models outlined in this chapter. For all of the

languages tested in that paper, HMM-DNN models outperform end-to-end models.
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The difference between CTC and attention-based models is less consistent; which one

performs better is language-dependent.

3.4 Chapter Summary

In this chapter, we have demonstrated the low-resource problem in end-to-end ASR,

setting up the motivation for this thesis. This problem is most clearly illustrated

in our baseline results when training on subsets of standard English ASR training

corpora. Even with hyperparameters selected specifically for each corpus, our models

degrade significantly when the amount of training data is reduced. In the remainder

of this thesis, these low-resource English subsets will be used for the bulk of our

experiments, so that we can judge how our methods perform as the amount of training

data is adjusted.

We have also presented results for two other categories of datasets. We use the

full versions of the WSJ and Librispeech corpora to demonstrate that the attention-

based ASR implementation used for this thesis is in line with those used elsewhere

in the literature. We also present results on several corpora collected for the Babel

program (Harper, 2014) in true low-resource languages. While our baselines are

not directly comparable to other published results, all of the results in this section

demonstrate the difficulty of training an effective end-to-end ASR model in these

languages.
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Chapter 4

Semi-Supervised ASR with

Adversarial Training

4.1 Introduction and Motivation

In this chapter, we extend end-to-end models to smaller ASR corpora by focusing on

a low-resource paradigm that is realistic for many low-resource languages: a small

amount of transcribed speech along with much larger corpora of non-parallel speech

and text. Both text and speech data are widely available on the Internet; we believe

that this paradigm of semi-supervised ASR presents a clear path towards making

ASR technology available in many currently underserved languages.

We approach semi-supervised ASR as a multi-task learning problem. Our goal

is to train some of the parameters of our ASR model using tasks that require only

speech or only text. The standard “task" that can be performed with unlabeled data

is an autoencoder, which is a model that is trained to recreate its input. In this case,

we train an autoencoder with text data that shares decoder parameters with the ASR

model and an autoencoder with speech data that shares encoder parameters with the

ASR model.

When the ASR model shares its decoder with a text autoencoder, that decoder

must learn to decode the outputs of either the text encoder or the speech encoder.

In order to ensure as much transfer as possible from the text autoencoder training
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to the ASR model, we encourage the text and speech encoders to produce similar

outputs. This way, the decoder can learn to handle both modalities the same way.

To accomplish this, we use adversarial training. Adversarial training is a technique

typically used for training a model to generate outputs that match a data distribution.

Here, we instead use it to train two models - the speech and text encoders - to generate

outputs from the same distribution.

Through a series of experiments on small subsets of the WSJ corpus, we demon-

strate the effectiveness of this method. We show that this model architecture ef-

fectively uses non-parallel speech and text to improve performance, and that these

improvements are biggest when the parallel training corpus is smallest. Additionally,

we show that the creation of a shared embedding space for speech and text has a

regularizing effect on the ASR model, improving performance over the baseline even

when no extra data is used. We also analyze the factors contributing to these im-

provements, demonstrating in particular the importance of adversarial training to the

performance of this model.

4.2 Related Work

The low-resource scenario explored in this paper closely resembles the one used in

Tjandra et al. (2017) and Tjandra et al. (2018). In those papers, the authors train

both ASR and text-to-speech (TTS) systems with their small transcribed speech

corpus, and use both for pseudo-labeling. They use the ASR system to turn untran-

scribed speech into a synthetic training set for their TTS model and create a training

set for the ASR model from stand-alone text using their TTS system. Once these

synthetic datasets are used to further train their models, the new models are itera-

tively used to generate better synthetic training data. As in this work, Tjandra et al.

(2018) create a semi-supervised corpus from the Wall Street Journal speech recogni-

tion corpus (LDC, 1994) - treating a portion of the original dataset as ‘parallel’ and

the remainder as ‘non-parallel’. Using this method, they achieve impressive results:

their semi-supervised model closes 73% of the gap between the character error rate
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of their low-resource baseline and high-resource topline results.

While these results are encouraging, the fact that the non-parallel speech and text

come from the same dataset means that they are not truly independent from each

other. In our experiments, we enforce independence between the non-parallel speech

and text by ensuring that there is no overlap between the underlying utterances used

for each modality. This creates a more difficult task, but one that must be addressed

for real-world low-resource scenarios.

This work also shares many features with work in unsupervised machine transla-

tion (MT). Both Lample et al. (2017) and Artetxe et al. (2017) start with a common

architecture for end-to-end supervised MT and add components to allow for unsu-

pervised training. Specifically, non-parallel texts in the source and target languages

are used to train separate encoder-decoder sequence to sequence autoencoder models.

Adversarial training (see Goodfellow et al. (2014) for an overview) is used to push

the hidden representations in the two different encoders to use the same embedding

space. Thus, a decoder trained only as part of an autoencoder in the target language

can also decode the outputs of the source language encoder.

The success of these unsupervised MT models relies on a key observation: word

embedding spaces tend to have similar structure across languages (Mikolov et al.,

2013a). Conneau et al. (2017) use this fact to learn an unsupervised mapping from

the embedding space of one language to the embedding space of the other, then use

that mapping to learn a dictionary. This dictionary can then be used to seed the

training of a fully unsupervised MT system. We construct a similar model but use

a small corpus of transcribed speech to seed the training of a semi-supervised ASR

system.

4.3 Model Architecture

The architecture of our semi-supervised speech recognition model is shown in Figure

4-1. The components of the core speech recognition system are outlined in bold. This

ASR model is the attention-based model presented in Chapter 2, with the attention
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Figure 4-1: Semi-supervised ASR model architecture. Speech-to-text model is out-
lined in bold; text autoencoder is shaded blue; speech autoencoder is shaded red;
discriminator for adversarial training is shaded green.

mechanism considered to be part of the decoder for the purposes of this figure. Our

model architecture also contains a de-noising text autoencoder, shown in blue, which

shares the ASR decoder and is trained in an unsupervised fashion using only text.

The speech autoencoder is shown in red - it shares the ASR encoder and is trained

from untranscribed speech. Finally, our model has a classifier, colored green, used as

a discriminator for adversarial training of the outputs of the speech and text encoders.

Each new component of this system - the text autoencoder, the speech autoencoder,

and the adversarial training - is described in detail below.

4.3.1 Text Autoencoder

The text autoencoder has three components, shown in blue in Figure 4-1: a noise

model, an encoder and a decoder. The decoder is shared with the ASR model -

training this autoencoder thus also trains the parameters of our ASR decoder.

The text encoder takes one-hot character encodings as input. Its first layer is

an embedding layer (Mikolov et al., 2013b) that converts these inputs to multi-
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dimensional embedding vectors. It then has two bidirectional LSTM layers that do

not downsample their input. As a character autoencoder is a relatively trivial learning

task, we add noise to the input before feeding it the encoder, following Lample et al.

(2017). Whil Lample et al. (2017) delete words and shuffle their order when adding

noise for unsupervised MT, we delete characters but do not shuffle them. Monotonic-

ity is an important feature of ASR and we want the decoder to be able to learn that.

We drop characters with probability 𝑝 = 0.2. The text autoencoder is trained with

the same end-to-end maximum likelihood objective as the speech recognition model,

with the same scheduled sampling procedure.

4.3.2 Speech Autoencoder

The speech autoencoder is shown in red in Figure 4-1. Speech requires a different

autoencoder architecture than text, because the speech signal contains both linguis-

tic and non-linguistic information. By pushing the speech and text encoders to use

the same output embedding space, we will be encouraging the ASR encoder to con-

tain only the linguistic information, but we also need to capture the non-linguistic

information in order to train an autoencoder. As in Hsu, Zhang, et al. (2017), we

build a hierarchical autoencoder: one encoder to capture the aspects of the signal

that change over time (namely, linguistic content), and one encoder to capture the

utterance-level properties of the signal (non-linguistic characteristics). Here, our orig-

inal ASR encoder serves that first purpose, and a global speech encoder serves the

second purpose. The output of the global encoder is appended to the output of the

original speech encoder at every time step.

Our global encoder is a convolutional neural network (CNN) (LeCun and Bengio,

1998) with three layers. Each layer has a convolution, batch normalization, rectified

linear unit (ReLU) non-linearities, and max-pooling. The first layer performs con-

volution in frequency, the next two perform convolution in time. The layers look at

increasingly larger segments of speech - from a single frame at the lowest layer to 45

frames at the highest. The last layer pools over the entire utterance to generate a

single utterance-level representation vector.
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The speech decoder is a simple feed-forward neural network with two leaky ReLU

layers and a linear layer on top. It takes as input a single vector - a concatenation of

the output from the global encoder and a single output from the ASR encoder - and

generates eight frames of output speech features. These are scored against the eight

frames of input speech features that produced the given ASR encoder output.

The speech autoencoder is trained end-to-end using smoothed L1 loss, an element-

wise loss which equals the L1 loss when the difference between the output and the

label is greater than one and equals the L2 loss when that difference is less than one.

4.3.3 Adversarial Training

Adversarial training (Goodfellow et al., 2014) is a technique originally developed

for training generative models to produce examples whose distribution matches a

ground-truth data distribution. In the standard case, an adversarial model has two

components - a generator and a discriminator - which are trained alternately. The

discriminator is trained to differentiate between examples from the data distribution

and outputs from the generator. The generator is trained to ‘trick’ the discriminator

and generate examples that the discriminator will score as likely to have come from

the data distribution.

Here, we instead use adversarial training to encourage the outputs of the speech

and text encoders to share an embedding space: we have two generators (the encoders)

and no data distribution. While there are a number of ways to potentially modify the

original adversarial ‘game’ for our scenario, we chose to treat the output of the text

encoder as the data distribution. This choice made training more effective because

the text autoencoder, even with noise added, trains much faster than the ASR model

and thus the text encodings are more stable over the course of training. We also

theorized that this choice would further encourage the outputs of the speech encoder

to contain only linguistic information. This adversarial training can be performed

with all available text and speech data, as it does not assume any parallelism.

In our model, the discriminator is a simple feed-forward network with two fully-

connected layers. It takes as input a single vector, and outputs a single real-valued
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score in the interval [0, 1]. The discriminator is trained using binary cross-entropy loss

to assign high scores to output vectors generated by the text encoder and low scores

to those generated by the speech encoder. Adversarial training has been shown to

benefit greatly from label smoothing (Goodfellow, 2016), so we set the desired output

for vectors from the speech encoder to 0.1 and the desired output for vectors from the

text encoder to 0.9. During discriminator training, the losses are not backpropagated

to the encoders.

4.4 Experimental Details

For all experiments in this chapter, we use subsets of the Wall Street Journal (WSJ)

corpus, as outlined in Chapter 2.

All recurrent layers in all components have 256 units. Character embedding layers

have 64 units. The discriminator also has 256 units per layer. The convolutional

layers in the global speech autoencoder have 32, 64, and 256 filters and kernels of

size (36, 1), (1, 5), and (1, 3). All have a stride of one. The first convolutional layer

pools over three frames, the second over five inputs (15 frames), and the third over

the entire utterance. We use batches of size 32 for discriminator training and 16 for

all other training. For optimization, we use stochastic gradient descent (SGD) with

momentum (Sutskever, Martens, et al., 2013) and a learning rate of 0.2. We stop

training when WER on the validation set stops improving.

For all results in thid chapter, we use a beam of size 20 during decoding. For

language model experiments, we used a 3-gram word-level language model. We use

a language model weight of 0.5 and word bonus of 1 when decoding with a language

model.

4.5 Results

In Figure 4-2, we compare the performance of our baseline attention-based ASR

model (blue) with that of our proposed architecture (green and red). All three model
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Figure 4-2: Word error rate by model architecture and hours of transcribed training
data. The red and green bars both represent the results of our proposed architecture.
The semi-supervised model (red) uses our larger non-parallel dataset in addition to
the transcribed speech.

architectures were trained separately on 2.5, 5, and 10 hours of transcribed speech.

The semi-supervised model (red bar) also used the larger non-parallel corpora for the

autoencoders and adversarial training.

The baseline results denoted by the blue bars show clearly the impact of limited

training data size. Trained on the full WSJ set, this baseline model achieves a word

error rate (WER) of 16.6 and character error rate (CER) of 5.8, in line with previously

reported similar models (for example, Bahdanau et al. (2016) reports a WER of 18.0).

Using only 10 hours of transcribed speech degrades that performance to a WER of

42.6 and CER of 16.1. With only 2.5 hours of training data, the baseline model barely

learns anything, resulting in a WER of 96.4 and CER of 83.0.

When trained on the same data as the baseline model, our architecture (green bars)

produces improved results in all training conditions. Thus, this architecture allows

us to more efficiently use very small ASR corpora in a fully-supervised scenario. We

hypothesize multiple reasons for this. First, it is much easier to train the attention
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mechanism as part of the text autoencoder, even with noise added to the input text.

Second, adversarial training has a regularizing effect on the ASR model: there are

many possible sets of parameters that would solve the ASR problem equally well

on a small training corpus, but many fewer in which only linguistic information is

represented at the output of the encoder. Even in the lowest resource case where

the difference seems small, the model outputs are qualitatively much different. The

baseline model trained on 2.5 hours of speech did not learn anything meaningful about

the correspondence between speech and text; it essentially learned a language model

and only generated 93 unique outputs for the 333 inputs in the validation set. Our

new model architecture (without extra data), generated 330 unique sentences on that

same set.

We see significant additional improvements through the use of the non-parallel

data, as shown by the red bars. The impact of this semi-supervised training is highest

when the least parallel training data is available; with 10 hours of transcribed speech,

the improvements due to semi-supervised training are modest.

Our final set of experiments compares our model with a more traditional method of

incorporating additional text data: the inclusion of an external language model during

decoding. These results are in Figure 4-3 - the original results from Figure 4-2 are

shown in lighter colors with the corresponding language model results superimposed

on top. For reference, our baseline model trained on the full WSJ corpus achieves a

WER of 10.5 when combined with a language model, in comparison to the WER of

10.8 reported in Bahdanau et al. (2016).

Somewhat surprisingly, adding a language model significantly hinders the perfor-

mance of our model architecture trained on 2.5 hours of transcribed speech with no

non-parallel data. On further inspection, we find that the language model overwhelms

the speech recognition model in this case. Finding the optimal parameters to balance

these models is beyond the scope of this work, but the issue is an important one for

our suggested low-resource scenario and warrants further research. We get significant

improvement with a language model on all models trained on either five or ten hours

of transcribed speech; the improvement is greater - both relative and absolute - for
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Figure 4-3: Word error rate by model architecture and hours of transcribed training
data, when decoding with an external language model. The red and green bars both
represent the results of our proposed architecture. The semi-supervised model (red)
uses the full WSJ dataset as non-parallel text and speech.

all semi-supervised models compared to the baseline. Importantly, the gains achieved

through our method of incorporating text data are complimentary with the gains due

to the language model.

4.6 Ablation Study

We perform an ablation study to understand which components of our model have

the most impact on performance. These results are in Table 4.1. All models used

for this table were trained with 2.5 hours of transcribed speech. In addition to the

three models from 4-2, we experiment with two semi-supervised models that each

have a single feature of the complete model removed. We did not experiment with

removing the text autoencoder because it is so integral to the model: without the

text autoencoder, we cannot perform adversarial training or make any use of the

additional text data.
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Table 4.1: Ablation results. We compare the models tested in the previous section
with two semi-supervised models that each have a single feature of the complete model
removed. All models were trained on 2.5 hours transcribed speech.

WER CER
Baseline model 96.4 83.0
Proposed model:

with transcribed speech only 87.4 62.0
with parallel and non-parallel data 64.6 34.6

without speech autoencoder 69.0 42.0
without adversarial training 93.3 67.0

The first three rows of Table 4.1 mirror the left-hand side of Figure 4-2. The

fourth row shows that removing the speech autoencoder degrades the performance of

our model somewhat, but still allows for a significant improvement over the baseline.

We use a relatively simple speech decoder here, and plan to experiment with more

complex models in future work, which we hope will elicit further gains.

The final row of Table 4.1 shows that removing the adversarial training sharply

reduces the performance of our model, demonstrating that having a shared embedding

space for the outputs of the speech and text encoders is critical. Without adversarial

training, the text corpus is still used to expose the decoder to a wider range of possible

sentences, which likely accounts for the small improvement over the baseline using

this model.

In order to further understand the improvements generated by the use of our

model architecture, we inspect the attention mechanism during decoding. Figure

4-4 illustrates the activity of the attention mechanism during decoding of the same

test sentence with four different models. In each subfigure, the y-axis represents the

outputs from the speech encoder - one for every 8 frames, or 80ms, of speech - while

the x-axis represents outputs from the decoder. The lowest weights are shown in blue,

while the highest are shown in yellow.

When the baseline model is trained on only 2.5 hours of speech, the attention

mechanism has the same weights at all time-steps (Figure 4-4a) - it has not learned

anything about the correspondence between speech and text. When our proposed

model architecture is trained with the same data, however, the attention mechanism
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(a) Baseline model
(b) Proposed model with no non-parallel

data

(c) Proposed semi-supervised model
(d) Proposed semi-supervised model

without adversarial training

Figure 4-4: Attention weights during decoding for WSJ utterance 443c040c. In each
subfigure, the y-axis represents the outputs from the speech encoder - one for every 8
frames, or 80ms, of speech - while the x-axis represents time-steps in the decoder. The
lowest weights are shown in blue, while the highest are shown in yellow. The ground
truth transcript is: THE ERROR WAS BY THE AMERICAN STOCK EXCHANGE.

has clearly learned quite a bit, as shown in Figure 4-4b.

Incorporating additional non-parallel data - as in Figure 4-4c - allows our model to

learn more confident alignments between speech and text. However, when we remove

the adversarial training (Figure 4-4d), the model struggles to find the correspondence

between speech and text. The adversarial training is essential to this method of

incorporating additional text data into ASR training.

4.7 Chapter Summary

In this chapter, we have proposed an effective model for semi-supervised ASR with

limited transcribed speech and larger, separate speech and text corpora. This model

architecture is premised on the idea of creating a shared embedding space for speech

and text through adversarial training. This shared space allows us to regularize

the model by forcing the outputs of the speech encoder to contain only linguistic

information, while also enabling training of some parameters of the ASR model with

only speech and others with only text.

We have demonstrated significant performance gains across 2.5-, 5-, and 10-hour

subsets of the WSJ corpus, both with and without the use of additional unlabeled data
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for training. The model architecture introduced in this chapter produces larger gains

in lower-resource conditions, and much smaller gains as the amount of training data

is increased. In all cases, we have shown that the gains from our model architecture

are complementary with the use of an external language model during decoding.

Through an ablation study, we have demonstrated the relative contributions of

the different components of our model. We find that the speech autoencoder adds

only minimally to the model performance, while the adversarial training is vital.
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Chapter 5

Supervised Alignment of Text and

Speech Embedding Spaces

5.1 Introduction

In the previous chapter, we presented a model architecture and training method

to extend end-to-end automatic speech recognition to a semi-supervised scenario in

which large corpora of untranscribed speech and stand-alone text are available. While

motivation for that work came from the availability of that non-parallel speech and

text, the results demonstrated that this new model architecture was able to improve

the performance of models trained on small ASR corpora even when no extra speech

or text was used. That finding has motivated the work in this chapter, where we

present a model architecture and training procedure inspired by the same underlying

idea of a shared embedding space for speech and text but designed specifically for a

fully supervised training scenario.

The results in this chapter further demonstrate the regularizing effect of the cre-

ation of a shared embedding space as part of ASR training. As discussed in Chapter 3,

regularization is an important way of counteracting the overfitting that occurs when

neural network models are trained on small corpora. There are many possible values

of the neural network parameters that can perform well on a small training corpus.

The idea behind this chapter is that a network that performs well on the training
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corpus and only represents linguistic information at the output of the encoder will

perform better on unseen data than one that only performs well on the training data.

This additional constraint serves as a type of regularizer, as we are encouraging a

particular type of solution to our problem.

The model architecture used here is a simplified version of the one presented in

the previous chapter; it includes only the core attention-based ASR model and a text

encoder. Our supervised encoding alignment method works as follows: we take a

paired speech/text training example, separately encode the speech and text with our

two encoders, then push these encoder outputs to be close together in the shared em-

bedding space. The key contribution of this work is to handle the length discrepancies

between the speech and text encoder outputs by comparing the attention-weighted

speech encoder outputs to the text encoder outputs. We are thus using the attention

mechanism to provide an alignment between speech and text and enable supervised

learning of the shared embedding space.

We push the encodings of paired speech and text together with an objective func-

tion which we call the encoder loss. The model training proceeds in several stages.

First, we train a baseline ASR model. Then, we use the encoder loss to train the

parameters of the text encoder so that the text encoder outputs match the speech

encoder outputs as closely as possible - by definition, this will capture the linguistic

information in the current speech encoder outputs but nothing else. Next, we again

use the encoder loss, but this time to retrain the speech encoder parameters to match

the text encodings - removing the non-linguistic information from the speech encoder

outputs. Finally, we retrain the decoder to effectively decode these linguistic-only

encoder outputs.

While this chapter focuses on using parallel data to create the shared embedding

space for speech and text, we can still take advantage of that shared embedding

space for semi-supervised learning. In the last step of our fully-supervised training

procedure described above, we train the decoder to decode the updated speech encoder

outputs using the ASR corpus. We introduce a modified version of this last step in

which we retrain the decoder parameters as part of a text autoencoder. This can be
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done either in a fully-supervised way with only the text side of the ASR corpus, or

in a semi-supervised way with additional text.

This chapter contains several sets of results. First, we use the Librispeech (Panay-

otov et al., 2015) corpus for experiments, training on the “clean 100" set or a smaller

subset - 20 or 50 hours - of it. In this section, we show that, by following the proce-

dure outlined above, we can significantly improve performance over the baseline and

that the improvements are larger for models trained on less data. Additionally, we

show that our fully-supervised model outperforms a semi-supervised model trained

with a similar technique. We also explore the contribution of the different steps in our

training procedure with several “early stopping" experiments in which certain stages

of training are not trained to convergence.

In the next set of results, we confirm the effectiveness of this procedure for

low-resource scenarios with several different subsets of the Wall Street Journal cor-

pus (LDC, 1994). We compare results on the SI84 WSJ subset to related work in

the literature. We also run experiments on the same WSJ subsets used in the pre-

vious chapter, enabling a direct comparison between the direct alignment technique

explored here and adversarial alignment. Finally, we present results on the Babel

Swahili corpus, demonstrating that this technique can be effectively extended to non-

English languages.

5.2 Related Work

Our encoding loss objective function is inspired in part by the text-to-encoder (TTE)

model in Hori, Astudillo, et al. (2019), which considers a semi-supervised scenario

with a small ASR corpus and a larger corpus of untranscribed speech. In that work,

the TTE model is a full encoder-decoder model trained to take text as input and

mimic the speech encoder outputs that a trained ASR model produces when given the

matching speech utterance. Then, the authors sample several possible text outputs

from the ASR model for an untranscribed speech utterance and compute a cycle-

consistency loss based on the difference between the output of the speech encoder and
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the TTE model outputs. The idea is to train the ASR model to output transcripts for

untranscribed speech whose encodings are close to the encodings of the original speech.

This can be thought of as a way of generating pseudo-labels for untranscribed speech.

Our model and training procedure share many similarities with Hori, Astudillo, et al.

(2019), but we are able to significantly improve our baseline results using only the

same data used to train the baseline model.

Within the traditional ASR framework, there is a thread of research that also

bears some similarity to this work: adversarial training for removing non-linguistic

factors from speech representations. This research has been largely focused on neural

network acoustic models. Meng et al. (2018) uses adversarial training to push the

outputs of an intermediate layer of a DNN acoustic model to be speaker-invariant;

Serdyuk et al. (2016) uses a similar method to induce features that are invariant to

noise conditions. In both cases, the authors reported significant improvements in

performance. Here, we attempt to generate similar invariance without using explicit

speaker or noise condition labels.

5.3 Methods

5.3.1 Encoder Loss

Figure 5-1 depicts the model used in this chapter, which is the same attention-based

ASR model discussed in previous chapters, along with a text encoder. The text

encoder architecture is quite simple: it has an embedding layer followed by two bidi-

rectional LSTM layers that do not downsample their input. This is the same as the

text encoder in Chapter 4. Of particular interest in this figure are the speech en-

coder outputs (𝑔), text encoder outputs (ℎ), and attention-weights speech encoder

outputs (𝑤). In the previous chapter, our adversarial training method pushed 𝑔 and

ℎ to use the same shared embedding space. For this chapter, we use the attention-

weighted speech encoder outputs, 𝑤, instead of 𝑔. These attention-weighted speech

encoder outputs will necessarily be the same length as the text sequence, because one
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Figure 5-1: Schematic of the ASR model architecture when using teacher forcing,
at time-step 𝑡 = 2. Speech inputs (𝑋) and text labels (𝑌 ) shown in black solid
circles. Encoder outputs (𝑔) shown in red vertical-striped circles. Decoder states and
outputs shown in blue dotted circles. Attention-weighted encoder outputs (𝑤) shown
in green horizontal-striped circles, with attention weights (𝑎) computed as part of
the transformation from 𝑔 to 𝑤. Calculations from 𝑡 = 1 rendered in faded colors.
Separate schematic shows the calculation of the text encoder outputs, ℎ.

is generated for eery decoder time-step.

The inputs to our model are (𝑋, 𝑌 ) pairs, where 𝑋 is a sequence of speech features

and 𝑌 is a sequence of characters. 𝑔(𝑋) is the output sequence from the speech

encoder given input 𝑋; it has length 𝑁 , and 𝑔𝑛(𝑋) denotes the 𝑛𝑡ℎ element of 𝑔(𝑋).

ℎ(𝑌 ) is the output sequence of the text encoder given input 𝑌 ; its length is 𝑇 . We

use the MLP attention mechanism described in detail in Bahdanau et al. (2016); its

output, 𝑎(𝑋, 𝑌 ), is an 𝑁 -dimensional score vector at each decoding timestep 𝑡, where∑︀𝑁
𝑛=1 𝑎

𝑡
𝑛(𝑋, 𝑌 ) = 1. We compute the attention-weighted speech encoder output, 𝑤𝑡,

for timestep 𝑡 as:

𝑤𝑡(𝑋, 𝑌 ) =
𝑁∑︁

𝑛=1

𝑎𝑡𝑛(𝑋, 𝑌 ) * 𝑔𝑛(𝑋) (5.1)

The variables in Equation 5.1 (𝑋, 𝑔, 𝑎, and 𝑤) are labeled in Figure 5-1. We use

the following equation to compute the encoder loss for the full utterance (𝑋, 𝑌 ):
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𝐿𝑒𝑛𝑐(𝑋, 𝑌 ) =
𝑇∑︁
𝑡=1

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑤𝑡(𝑋, 𝑌 ), ℎ𝑡(𝑌 )) (5.2)

Equation 5.2 calculates the difference between the attention-weighted speech en-

codings, 𝑤, and the text encodings, ℎ(𝑌 ). We use an element-wise smoothed 𝐿1 loss

that is equivalent to the 𝐿2 loss when the absolute difference is less than one and the

𝐿1 loss otherwise.

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑎, 𝑏) =

⎧⎪⎨⎪⎩0.5(𝑎− 𝑏)2, if |𝑎− 𝑏| < 1

|𝑎− 𝑏| − 0.5, otherwise

This is conceptually similar to Hori, Astudillo, et al. (2019), which uses the sum

of the 𝐿1 loss and the 𝐿2 loss when comparing speech and text encoder outputs.

5.3.2 Training Procedure

For all experiments in this paper, we follow a sequential training procedure with

different loss functions for each step. The steps of this procedure are outlined in

Table 5.1. Step 1 is baseline ASR training; this step impacts all of the parameters in

the ASR model. In Step 2, we train the text encoder to match its outputs to those

of the speech encoder; all parameters are fixed except for those of the text encoder.

Step 3 uses the same loss as Step 2, but it is now used to train the parameters of the

speech encoder, pushing the speech encodings closer to the text encoder outputs. All

of these first three steps are always trained with the same corpus of paired text and

speech.

Step Description Loss Function Components Trained
1 ASR Training 𝐿𝑀𝐿 speech encoder, attention, decoder
2 Text Encoder Training 𝐿𝑒𝑛𝑐 text encoder
3 Speech Encoder Training 𝐿𝑒𝑛𝑐 speech encoder
4 Decoder Training 𝐿𝑀𝐿 attention, decoder

Table 5.1: Supervised encoding alignment training procedure.
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We experiment with three variants of Step 4; for all three, we fix the parameters

of the encoders and train only the decoder and attention mechanism. In the first,

Step 4a, we simply do standard ASR training. In version 4b, we do combined ASR

training and text autoencoder training, with the text drawn from the ASR corpus

itself. In version 4c, we again do both ASR training and text autoencoder training,

but the text comes from a larger text corpus with no associated speech.

For our main results, we train each step to convergence on the ASR validation set

before moving on to the next step. Steps 1 and 4 are considered to have converged

with the WER on the validation set stops improving. For Steps 2 and 3, we use the

loss between the speech and text encodings of the validation set as our convergence

criterion.

We also present results for a set of experiments in which we explore the impact

of stopping one of the training steps early, while still training the rest to conver-

gence. These experiments are designed with two questions in mind. First, whether it

is possible to achieve similar performance improvements with fewer overall training

iterations, and second, what the requirements are for an effective shared encoding

space for text and speech.

We considered an alternate training procedure in which we replace Steps 1 and 2

with simply training a text autoencoder, followed by Step 3, in which we train the

parameters of the speech encoder to minimize the loss between the speech and text

encoder outputs. We found, however, that this was not a reliable method for training

the attention mechanism in the decoder.

We also considered a number of ways of combining these steps together (as with

the combined objective function we used for adversarial alignment), but were unable

to achieve satisfactory results.

5.3.3 Experimental Details

In this chapter, we experiment with both Librispeech (Panayotov et al., 2015) and the

Wall Street Journal (WSJ) corpus (LDC, 1994). For Librispeech, we present results

for the standard clean460 training set as a ‘topline’ and treat the standard clean100
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training set as a low-resource training regime. We also create two lower-resource

scenarios with subsets of the clean100 set: clean50 and clean20 which comprise 50%

and 20% of the utterances in the clean100 set, respectively. We use the standard

clean validation and test sets for all Librispeech experiments.

For WSJ, one set of experiments uses the SI84 training set (also called WSJ0),

which is a standard subset that contains approximately 15 hours of transcribed speech.

We also present experiments using the 5- and 10-hour WSJ subsets created for the

previous chapter. For all WSJ experiments, use the standard dev93 set for validation

and all WSJ scores are reported on the eval92 set.

We use 80-dimensional log-mel filterbank features, computed using 25ms frames

with a 10ms frame-rate for all speech input. Librispeech text was segmented using a

unigram wordpiece model with a 500 unit vocabulary with a maximum unit length

of four characters. WSJ models are character based.

All Librispeech models trained with at least 50 hours of speech used 512 units for

all encoder layers and 1024 units for all decoder layers. Models trained on the clean20

set used 128 units for all encoder layers and 256 units for decoder layers - we find that

a smaller model produces better results in very low-resource scenarios. For WSJ0,

we used 320 units in all layers, to match comparable prior work. We used 128 units

per layer for the 5-hour WSJ model and 256 units per layer for the 10-hour model.

All word embedding layers in the Librispeech and WSJ0 models had 128 units; word

embedding layers in the smaller WSJ models had 64 units.

5.4 Librispeech Results

5.4.1 Main Results

First, we establish a baseline for our low-resource conditions. These results are in the

second and third columns of Table 5.2. We report both character error rate (CER) and

word error rate (WER). For comparison, our topline model trained on the clean460

training set achieves a WER of 12.7% and CER of 5.7%. Our baseline results on the
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Table 5.2: Comparison between baseline models and models trained with encoding
alignment procedure, using different amounts of training data.

Baseline Aligned
Train Set CER WER CER WER
clean100 11.2 23.3 9.9 21.3
clean50 16.0 31.2 14.6 29.2
clean20 30.4 53.3 27.7 49.7

standard 460 and 100 hour training sets are comparable to those reported in Hori,

Astudillo, et al. (2019). In that work, the authors report 11.1% CER and 25.2% WER

on the clean100 subset. THey report 4.6% CER and 11.8% WER on the clean460

subset. Our ASR encoder has fewer layers with more units each and our decoder

has a different output vocabulary, so it is to be expected that our results would be

slightly different from theirs. In particular, our slightly less powerful model performs

better on the smaller dataset but worse on the larger dataset.

The last two columns of Table 5.2 show the results of our encoding alignment

procedure. In all cases, we are able to improve on the baseline results, despite us-

ing exactly the same training data as the comparable baseline model. The relative

improvement in WER is largest on the clean100 set (8.6%), while the absolute im-

provement is largest on the smallest training set (3.6%). It is also worth noting that

our best result on the clean100 training set is comparable to the model presented in

Hori, Astudillo, et al. (2019) (CER: 9.4%, WER: 21.5%), which uses an extra 360

hours of speech (without transcriptions).

5.4.2 Early Stopping Results

In this section, we experiment with early stopping of different steps of our training

procedure. All experiments in this section use the clean20 training set. Training to

several different objective functions in sequence can be time consuming - we want to

understand to what extent each of these training steps is necessary and whether it is

possible to stop intermediate steps early without sacrificing final performance.
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Speech Encoder Training (Step 3)

Figure 5-2: Validation set loss (blue) and test set word error rate (red) as a function
of the number of Step 3 training epochs completed.

Stopping Step 3 early is a test of our core hypothesis - we expect that it will

negatively impact our results if the speech encoding space is not fully aligned to the

text encoding space. To perform this test, we train Steps 1 and 2 to convergence,

then save models at several points during Step 3. From each of these models, we train

Step 4 to convergence to get a final WER.

As shown in Figure 5-2, we see a direct relationship between the encoding loss on

the validation set and the WER on the test set as training progresses. This confirms

our hypothesis that directly matching the speech encoder outputs to a text encoding

space will improve generalization performance of the model.

Text Encoder Training (Step 2)

There is no theoretical reason why the text encoding space must be as close to the

original speech encoding space as possible, given that we will be re-training the speech
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encoder to match whatever text encoder space is defined in Step 2. In these experi-

ments, we stop Step 2 training early, then train Steps 3 and 4 to convergence using

their respective stopping criteria. The results of these experiments are in Table 5.3,

with models referenced based on how many epochs of Step 2 training were run before

moving on to Step 3.

Table 5.3: Results of encoder alignment models with early stopping of Step 2. After
Step 2, all models were trained to convergence on Steps 3 and 4.

Step 2 Epochs Val 𝐿𝑒𝑛𝑐 CER WER
50 86.4 27.6 49.9
100 82.4 27.8 50.0
200 80.8 27.7 49.7

Table 5.3 shows that the final model performance does not depend on the number

of epochs of Step 2 training. The second column, indicating the encoder loss on the

validation set at the end of Step 2 training, shows that this training has not converged

after 50 or 100 epochs; still, the final results are comparable across all three models.

It is not necessary to train Step 2 to convergence, but that does mean that we

will be able to save computation by stopping Step 2 early; it is possible that we are

simply trading fewer iterations of Step 2 for more iterations of Step 3 in order to

achieve the same final result. As shown in Figure 5-3, this is not the case: regardless

of how many epochs of Step 2 we complete, Step 3 training follows virtually the same

path in terms of the validation set loss and the models converge at approximately the

same number of Step 3 epochs.

It is also interesting to note the difference in the values of the validation loss after

Step 2 (in Table 5.3) and after Step 3 (in Figure 5-3). These numbers confirm that

the original speech encoder outputs contain much non-linguistic information that the

text encoder cannot learn to represent, and that much of this extraneous information

is removed from the speech encodings during Step 3 training.
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Figure 5-3: Validation set loss as a function of the number of Step 3 training epochs
completed. Each line represents a different early stopping point for Step 2. Validation
loss at 𝑋 = 0 is the loss at the end of Step 2.

5.5 WSJ Results

5.5.1 WSJ0

Since the Librispeech clean50 and clean20 training sets were created for this work, we

have no comparison in the literature for those results. We ran the same experiments

on the WSJ0 corpus, to confirm both the competitiveness of our baseline model and

the effectiveness of our proposed method. Our baseline model achieves a CER of

15.0% and WER of 36.5%, compared to similar attention-based models reporting a

CER of either 17.0% (Kim et al., 2017) or 15.8% (Karita et al., 2018). The training

procedure presented here reduces the CER to 13.8% and the WER to 35.0%. This

represents a 4.1% relative improvement in WER.
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5.5.2 Comparison to Adversarial Training

Train Corpus Technique WER CER WER (LM)
5 hours Baseline 62.2 35.3 56.7

Direct Alignment (4a) 61.0 33.3 54.9
Direct Alignment (4b) 59.8 32.8 53.4

Direct Alignment - semi-sup 57.6 30.9 50.0
Adversarial Alignment 53.0 25.8 41.5

Adversarial Alignment - semi-sup 47.8 21.2 35.0
10 hours Baseline 39.5 18.9 29.3

Direct Alignment (4a) 38.3 18.7 29.3
Direct Alignment (4b) 37.1 18.5 28.9

Direct Alignment - semi-sup 34.6 16.1 26.0
Adversarial Alignment 37.4 16.1 25.8

Adversarial Alignment - semi-sup 35.9 14.8 24.9

Table 5.4: Comparison of direct alignment and adversarial alignment on the 5 and
10 hour subsets of the WSJ corpus.

We also ran experiments on the 5 hour and 10 hour WSJ subsets; these results are

in Table 5.4. In this table, we experiment with the three versions of step 4: no text

autoencoder training (4a), text autoencoder training with only the text from the ASR

training corpus (4b), and text autoencoder training with additional text (semi-sup).

We see that we get small gains from the use of the text autoencoder, and slightly

larger gains from the incorporation of additional text.

The results enable a comparison to the adversarial alignment method presented in

the previous chapter. Without any non-parallel data, direct alignment does not work

as well as adversarial alignment, with a particularly stark difference in the lowest-

resource condition. We hypothesize that this is due to the attention mechanism;

whereas the adversarial alignment technique improves the training of the attention

mechanism, the direct alignment technique only impacts the training of the encoder.

When semi-supervised training is performed, adversarial training still works bet-

ter on the 5 hour subset, but this direct alignment method works better on the 10

hour subset. This result suggests that the direct alignment method is able to form

a better shared text/speech embedding space than adversarial training, as long as

enough training data is available to build an adequate baseline ASR model, and to
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do supervised training of the shared embedding space.

5.6 Babel Languages

We saw in the previous section that this technique works better with 10 hours of

WSJ data compared to 5 hours, the reverse of the pattern in the previous chapter

where we were able to get bigger gains from poorer-performing baseline models. With

the Babel languages, we have more training data than we used for any of the WSJ

experiments, but because of the nature of the data the baseline performance is worse

than any of the baseline WSJ models.

We tested this technique on the Swahili corpus, where we had a baseline of 74.6%

WER and 42.4% CER. After embedding space alignment, using ASR training only

during Step 4, this is reduced to 69.7% WER and 39.8% CER. When we include text

autoencoder training in step 4, this is further improved to 68.3% WER and 39.5%

CER. This improvement gets us most of the way to the 66.2% WER reported in

Cho et al. (n.d.) for a model that also made us of training data from several other

languages. These results demonstrate that the theory behind this technique is sound

even for non-English languages.

5.7 Chapter Summary

In this chapter, we developed a training procedure for attention-based ASR models

designed to improve their generalization performance in low-resource settings. Our

training strategy includes the addition of a text encoder network to a standard ASR

model architecture, and a novel objective function designed to push the encoder

component of the ASR model to represent only linguistic information. This is ac-

complished by encouraging the attention-weighted speech encoder outputs to match

the outputs of the trained text encoder when the networks are fed paired speech/text

inputs.

We experiment with several subsets of both the Librispeech corpus and the WSJ

84



corpus, and find that our procedure improves WERs in all cases. On the 100 hour

Librispeech set, we achieve comparable improvements to those reported in a related

paper that made use of an additional 360 hours of untranscribed speech (Hori, As-

tudillo, et al., 2019), while using only the same data used to train the baseline model.

Additionally, we show through a series of early-stopping experiments on the Lib-

rispeech corpus that the second step in our training process does not need to be

trained to convergence, which can reduce the overall training time needed.

We also experiment with the 5 and 10 hour subsets of the WSJ corpus, and

compare these results to those in the previous chapter. We find that adversarial

alignment of the text and speech embedding spaces works better in the lowest resource

condition, but direct alignment works better with the larger subset. We hypothesize

that this difference is related to both the quality of the baseline ASR model and the

fact that the direct alignment method relies only on the parallel training data to

create the shared embedding space.

Finally, we present results on the Babel Swahili corpus. The best model from

this chapter achieves an 8.4% relative WER improvement over the baseline on that

corpus.
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Chapter 6

Subword Regularization for ASR

6.1 Introduction

Within the field of automatic speech recognition (ASR), determining the correct scale

of units to use at various stages in the recognition pipeline is a key research area. The

idea of finding and using a vocabulary of “subword units” - sequences of one-or-more

phonemes or characters - has been explored extensively in the context of traditional

HMM-based state-dependent acoustic models (Bazzi and Glass, 2000; Bulyko et al.,

2012) and has become increasingly common at the output of end-to-end deep neural

network models (Xiao et al., 2018; Zenkel et al., 2017; Zeyer et al., 2018). For recent

end-to-end ASR models, subword units are most often discovered using the byte pair

encoding (BPE) technique (Sennrich et al., 2016), which was originally developed for

machine translation.

Subword regularization (Kudo, 2018b) is a more recent technique for both dis-

covering and using subword units that has been shown to produce large gains over

high-quality machine translation baselines that use BPE. Rather than deterministi-

cally splitting every word into subword units, subword regularization involves learning

a probabilistic model over subword units and sampling a new segmentation for every

word each time it appears. This technique is conceptually similar to regularization

techniques like dropout and data augmentation, which we discussed in Chapter 2.

While part of the motivation of this work is simply to extend this technique to a new
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domain, we were particularly interested to explore how it would work in low-resource

scenarios.

In this chapter, we describe our work applying subword regularization to ASR,

where it had not previously been tested. As in machine translation, this simple tech-

nique yields large ASR improvements across a variety of datasets. While we confirm

earlier results that standard subword units are most effective when the vocabulary

size is small, we find that subword regularization supports much larger vocabulary

sizes, and that larger vocabulary sizes work best, as long as enough regularization

is applied. This finding extends to low-resource scenarios, specifically the 20-hour

Librispeech subset and the 5- and 10-hour WSJ subsets, where we demonstrate that

subword regularization is more impactful when less training data is available. We ad-

ditionally present analysis demonstrating that the mechanism behind these improve-

ments is a regularizing effect similar to other techniques that penalize very confident

output distributions.

6.2 Prior Work

The idea of finding and using a vocabulary of subword units is a longstanding one

within ASR. These units were originally concieved as a way to avoid the out-of-

vocabulary (OOV) problem with traditional HMM-based models (Bazzi and Glass,

2000; Bulyko et al., 2012; Kneissler and Klakow, 2001), whose output units are

typically words. More recent character-based end-to-end models (Chan, Jaitly, et

al., 2016) do not have an OOV problem, but researchers have still found advantages

to using a larger vocabulary of subword units as opposed to characters.

The subword units used with end-to-end ASR models are typically discovered

using byte pair encoding (BPE) (Sennrich et al., 2016), which learns a subword vo-

cabulary from a text corpus that can be used to deterministially segment any word.

BPE units have been shown to improve ASR performance when used with attention-

based systems (Chiu et al., 2018; Zeyer et al., 2018), CTC-based systems (Zenkel

et al., 2017), and hybrid attention-CTC models (Xiao et al., 2018). This prior work
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shows a consistent trend of small improvements due to subword units, with the best

performance coming with relatively small vocabularies of 300 or 500 units. Chiu

et al. (2018) also argues for subword units with attention-based models on efficiency

grounds: larger units require fewer decoding steps, and also limit the length of the

dependencies the decoder must learn.

6.3 Subword Regularization

Subword regularization (Kudo, 2018b) is based on a simple unigram language model

(LM). Given a vocabulary of subword units, such a model is easy to train, and Viterbi

search can efficiently find the best segmentation for any word according to that model.

Alternatively, segmentations can be sampled from the language model. Kudo (Kudo,

2018b) introduced a technique for joint learning of the unigram LM and a vocabulary

of a desired size. The vocabulary always includes all of the single characters in the

alphabet, so that there will never be out-of-vocabulary words. This technique starts

with the set of the most frequent strings in the corpus, a set much larger than the

desired vocabulary size. Given this seed vocabulary, the LM is computed. Kudo then

computes the “loss" associated with each unit - the reduction in the overall likelihood

of the corpus if that unit were to be left out. The LM is then re-estimated using the

80% of subword units with the highest associated loss. This process is repeated until

the appropriate vocabulary size is reached.

Once the LM and vocabulary are fixed, we can sample a segmentation from the

following multinomial distribution:

𝑃 (𝑥𝑖|𝑋) ∼=
𝑝(𝑥𝑖)

𝛼∑︀𝑛
𝑗=1 𝑝(𝑥𝑗)𝛼

where 𝑛 is the number of n-best segmentations used to approximate the true distri-

bution and 𝛼 is a smoothing parameter. 𝛼 = 0 creates a uniform distribution, while

larger settings of 𝛼 move closer to the Viterbi segmentation. Kudo uses the forward-

filtering and backward-sampling algorithm (Scott, 2002) for exact sampling from all
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possible segmentations. All experimental results in this paper use this setting.

We make some minor modifications to the technique described in Kudo (2018b):

in addition to specifying a desired vocabulary size, we specify the maximum subword

length in characters, which is easily implemented by only considering subwords up

to that length in the seed vocabulary. In Kudo (2018b), subwords do not cross word

boundaries, but each space is included as part of the following word. We treat all

spaces as stand-alone characters, not included in any subword units.

6.4 Data and Methods

6.4.1 Data

This chapter contains experiments run on both Librispeech and WSJ. All Librispeech

results reported here are on the clean test set. All subword unigram models and

vocabularies were learned on the text of the full training set for each corpus, regardless

of the amount of data used to train the ASR model. Word-level n-gram language

models for both datasets were trained on the accompanying text corpora; we use a

3-gram LM for librispeech and a 4-gram LM for WSJ.

We used the SentencePiece library (Kudo, 2018a) to train unigram models and

sample subword segmentations of text. The large vocabularies we use here - 7775

units with 𝑘 = 4 and 2025 units with 𝑘 = 3 for Librispeech, and 7229 units with

𝑘 = 4 for WSJ - were the largest vocabularies that could be recovered by that library

using its most permissive settings.

Table 6.1 shows some example segmentations for the utterance "A LITTLE AT-

TACK OF NERVES POSSIBLY", which comes from the Librispeech corpus. We

segment this utterance with two unigram models; one with 500 units and one with

7775 units. The first line of each section of this table shows the Viterbi best seg-

mentation according to the unigram model for that section. The smaller model gives

a sequence of 15 units, while the larger model gives a sequence of 11 units, not in-

cluding spaces. Both are much shorter than the original sequence of 29 characters.
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|V| k 𝛼 A LITTLE ATTACK OF NERVES POSSIBLY
500 4 ∞ A LITT_LE AT_T_AC_K OF N_ER_VES POSS_I_B_LY

1 A LITT_LE AT_T_A_C_K OF N_ER_VES POSS_I_B_LY
1 A LITT_LE A_T_T_AC_K OF N_ER_VES POSS_I_BL_Y

0.5 A LITT_L_E AT_T_A_C_K OF NE_R_VES POSS_I_B_LY
0.5 A L_IT_T_LE AT_T_AC_K OF N_ER_V_ES POSS_I_B_L_Y

7775 4 ∞ A LITT_LE AT_TACK OF NERV_ES POSS_I_BLY
1 A LITT_LE AT_TACK OF NERV_E_S POSS_I_BLY
1 A LI_TTLE AT_TACK OF NERV_ES POSS_I_BLY

0.5 A LITT_L_E AT_TACK OF NER_VES PO_S_SI_BLY
0.5 A L_I_TTLE A_T_TACK OF NERV_ES POSS_I_BLY

Table 6.1: Example segmentations of the utterance "A LITTLE ATTACK OF
NERVES POSSIBLY", from the Librispeech corpus, using the unigram segmenta-
tion model. Units that differ from the best segmentation according to the unigram
model (𝛼 = ∞) are highlighted in red.

The additional lines in each section show two sampled segmentations each for two

different settings of the 𝛼 parameter, 𝛼 = 1 and 𝛼 = 0.5. Higher settings of 𝛼 mean

less regularization; the segmentations sampled with 𝛼 = 1 differ from the Viterbi best

segmentation in only one or two places. The segmentations sampled with 𝛼 = 0.5

differ more often from both the Viterbi best segmentation and from each other.

6.4.2 Model Details

We use the same attention-based model architecture from previous chapters. The

embedding layers in all models have 64 units, regardless of the size of the subword

vocabulary. The other layer sizes were dependent on the training corpus. Models

trained with the 960- and 460- hour Librispeech corpora had recurrent layers with

512 units each; those trained with the smaller Librispeech corpora had 256 unit

recurrent layers. We also used 256 unit recurrent layers for the model trained with

the 10 hour WSJ subset, and we used 128 unit layers for the model trained with only

5 hours of WSJ.
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6.5 Results

6.5.1 Librispeech

Train Corpus Characters Subword (|𝑉 | = 500, 𝑘 = 4)
(hours) 𝛼 = ∞ 𝛼 = 1

960 14.3 10.2 10.1 -0.1
460 19.0 12.7 11.9 -0.8
100 28.6 22.7 21.3 -1.4
20 53.3 48.0 43.8 -4.2

Table 6.2: Subword regularization results on subsets of the Librispeech corpus. All
results in this table are word errror rates. |𝑉 | is the size of the subword vocabulary,
𝑘 is the maximum length of a subword unit in characters. 𝛼 is the regularization
parameter; 𝛼 = ∞ is the condition where we always use the Viterbi best subword
segmentation (no regularization), while 𝛼 = 1 is with segmentations sampled from
the unigram model. The last column shows the performance difference between the
two previous columns.

Table 6.2 shows WER results on subsets of the Librispeech corpus using characters,

deterministic subword units (𝛼 = ∞), and subword regularization (𝛼 = 1). The same

training corpus and model size were used for all results within each row. The first

column indicates the amount of training data used; the next three columns represent

different output units used for training. For both subword conditions we used a

vocabulary of 500 subword units, with a maximum subword unit length in characters

of 4. These settings match what previous research has shown to be the best settings

for the use of deterministic subword units with ASR.

In the second column, where single characters were used as output targets, we

see the impact of reducing the amount of training data on ASR performance; once

again, training with limited data severely increases WER. The models in the third

column were trained using a fixed subword segmentation for each word. This usage of

subword units has become standard for end-to-end ASR models, and for good reason:

in all four cases, subwords produce better results than characters. Using subwords

reduces the word error rate (WER) relative to using characters by roughly the same

amount in all cases (between 4 and 6 percent absolute WER).

The fourth column, with 𝛼 = 1, is the subword regularization case; the last
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column shows the additional absolute gains from subword regularization beyond the

use of deterministic subwords. Subword regularization is more effective than using

deterministic subword units in all cases. As hypothesized, subword regularization

becomes more effective as the size of the training corpus is reduced.

|𝑉 |, k 𝛼 = ∞ 𝛼 = 2 𝛼 = 1 𝛼 = 0.5
500, 3 51.1 46.5 45.2 44.8
500, 4 48.0 44.9 43.8 43.6
500, 5 51.4 47.0 44.8 43.2
2025, 3 58.5 45.2 42.6 41.8
7775, 4 58.0 50.2 41.5 40.9

Table 6.3: Subword regularization results on the 20 hour Librispeech subset with
different vocabulary sizes, maximum subword lengths, and regularization amounts.

Table 6.3 shows results for a range of subword regularization settings on the 20

hour subset. For each subword vocabulary used here, we look at three different

settings of the subword regularization parameter. In the first section of this table,

we explore the effect of 𝑘, the maximum subword unit length parameter. The 𝑘 = 4

subword vocabulary performs best in most cases, although the 𝑘 = 5 vocabulary

performs slightly better at 𝛼 = 0.5.

In the next section of Table 6.3, we explore larger vocabulary sizes. For both

𝑘 = 3 and 𝑘 = 4, we use the maximum subword vocabulary size that could be

discovered on the text of the Librispeech corpus. The second column of this table

confirms the results of previous research: using large vocabularies of subword units

hurts performance when no regularization is applied. However, in the remaining

columns, we see that subword regularization allows us to achieve better performance

with larger vocabularies than with smaller ones.

6.5.2 Wall Street Journal

For the WSJ corpus, we focused on low-resource settings, training with either 5 or

10 hours of transcribed speech. These results are in Table 6.4. For each subset, we

experimented with both a 500 unit vocabulary and a 7229 unit vocabulary. While

the large vocabulary worked well on the 20-hour Librispeech corpus, we were unsure
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Train Corpus (|𝑉 |, k) 𝛼 WER CER WER (+LM)
5 hours (31, 1) 65.1 35.3 63.7

(500, 4) ∞ 64.5 34.4 60.9
1 54.5 25.8 47.7

0.5 54.3 24.1 46.7
0.25 55.9 25.0 46.9

(7229, 4) ∞ 85.7 62.7 84.3
1 58.0 28.9 53.4

0.5 53.6 23.3 44.2
0.25 55.4 23.6 45.0

10 hours (31, 1) 42.6 19.9 35.1
(500, 4) ∞ 39.3 19.0 34.6

1 37.1 14.8 28.9
0.5 37.8 14.5 30.0
0.25 38.1 14.4 29.9

(7229, 4) ∞ 43.3 22.1 39.6
1 33.7 13.2 27.1

0.5 36.3 13.8 27.9
0.25 38.4 14.1 29.1

Table 6.4: Subword regularization results on the 5 and 10 hour subsets of the WSJ
corpus. |𝑉 | = 31 is the character baseline.

whether it would be possible to train with such a large vocabulary on the 5 hour sub-

set. As in the previous section, we find that the large vocabulary with 𝛼 = −1 hurts

performance compared to the character baseline. With one exception, the large vo-

cabulary produced better results than the small vocabulary across both corpora and

all choices of 𝛼 less than ∞. The one exception is the 5-hour subset with 𝑎𝑙𝑝ℎ𝑎 = 1;

with this setting, the small vocabulary is better than the large. This result demon-

strates the importance of doing enough regularization with the large vocabulary to

expose the model adequately to all of the subword units.

Overall, the best subword regularization setting was better than the best deter-

ministic subwords by 11.5% absolute WER on the 5 hour set; this difference is only

5.6% on the 10 hour training set. These results again confirm the hypothesis that

subword regularization is particularly useful in low-resource cases. We also see that

the optimal 𝛼 setting is lower - meaning more regularization used - for the 5 hour set

than the 10 hour set.
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Subword regularization can also be thought of as a semi-supervised learning tech-

nique in that we are using information gleaned from a large text corpus to help our

ASR training. For this reason, it was important to demonstrate that the gains from

subword regularization are additive with the inclusion of a language model in decod-

ing. This can be seen in the last column of 6.4.

6.5.3 Babel Languages

|𝑉 | 𝛼 WER CER
chars 58.9 30.4
200 ∞ 57.8 30.0

2 55.7 29.4
1 54.7 27.7

0.5 55.5 28.3
1000 ∞ 57.3 31.0

5 55.5 30.1
2 54.1 29.4
1 54.3 28.4

0.5 55.5 27.9
4760 ∞ 58.2 32.6

2 55.1 29.1
1 52.9 26.6

0.5 53.4 26.4

Table 6.5: Subword regularization results on the Babel Dholuo corpus.

Subword regularization results on the Dholuo corpus are in Table 6.5. There is

not much benefit from just using subword units (rows with 𝛼 = ∞, compared to the

character baseline), but we can get big improvements with regularization. We see

again that a small vocabulary (in this case 1000 units) is best with 𝛼 = ∞, but a

larger vocabulary works better with subword regularization.

Subword regularization results on the Swahili corpus are in Table 6.6. These re-

sults differ slightly from our previous results. While our main findings that subword

regularization works better than deterministic subwords and that subword regulariza-

tion works well with large vocabularies hold, we see here that deterministic subwords

also work well with the large vocabulary in this case.

95



|𝑉 | 𝛼 WER CER
chars 74.6 42.4
1000 ∞ 69.8 41.6

1 66.8 38.1
0.5 65.7 36.1
0.2 69.5 37.5

5910 ∞ 68.6 40.9
2 66.0 38.9
1 65.2 36.9

0.5 66.1 35.9
0.2 68.0 36.0

Table 6.6: Subword regularization results on the Babel Swahili corpus.

With both of these low-resource languages, across the different vocabulary sizes

tested, we see that the best WER and best CER are achieved with different choices

of 𝛼, with more regularization giving a better CER and less giving a better WER.

6.6 Analysis

In this section, we would like to understand more about the mechanism through which

subword regularization works so well. We have so far presented subword regularization

first and foremost as a regularization technique with the main goal of penalizing

confident output distributions. However, it is possible that subword regularization

is actually changing the way the model uses subwords, relative to the setting with

𝛼 = ∞. There is no reason to think that the best subword segmentation according to

a unigram language model trained on text is the best subword segmentation for ASR.

Subword regularization exposes the model to other possible segmentations - does the

ASR model ever learn to use those?

For this analysis, we focus on the models trained on the Librispeech 20 hour subset,

using the 7775 unit vocabulary. To understand how the model is using subword units,

we look at the decoded validation data, counting how many different ways each word

is segmented and whether the most common segmentations line up with the best

segmentation according to the unigram model.

In counting how many ways each word is segmented, we find a clear difference:
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without subword regularization, 2.0% of the words that appear more than once are

segmented more than one way; with subword regularization, that same figure is 33.9%.

Likewise, while 94.6% of words are most often segmented with the Viterbi best seg-

mentation when no subword regularization is used, only 63.4% of words are most

often segmented that way with subword regularization.

Looking more closely at the words that are not segmented according to the Viterbi

segmentation when subword regularization is used, we can see two patterns as to

when this happens. The first is when the Viterbi segmentation does not separate off

a common prefix or suffix. For example, according to the unigram model, the best

segmentation for the word ITS is the unit ITS, and the best segmentation for the

word THINGS is the sequence TH_INGS. In both cases, the ASR model prefers to

have the ‘S’ character as its own unit, most often outputting IT_S and TH_ING_S.

The second pattern are words where the Viterbi segmentation places a break in

the middle of a sound. For example, while the unigram model segments the word

ANYTHING as ANYT_HING, the ASR model trained with subword regularization

prefers ANY_TH_ING. Without subword regularization, the ASR model uses the

Viterbi segmentation. This particular example seems like it could be an artifact of

the choice to set 𝑘 = 4, but there are many other words where the unigram model

separates ‘T’ and ’H’, including EITHER, THINK, THOSE, and NOTHING. These

other words are sometimes segmented with the ‘T’ and ‘H’ together by the regularized

ASR model, but more often they use the Viterbi segmentation. This finding motivates

the work in the next chapter, where we explore whether it is possible to let the

ASR model learn its own subword segmentations, without biasing it towards a model

learned from text.

6.7 Chapter Summary

In this chapter, we have demonstrated that the subword regularization technique,

originally developed for machine translation, transfers well to attention-based end-

to-end ASR. As hypothesized, subword regularization is particularly useful in low-
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resource scenarios. Our best model achieves a 17.7% relative WER reduction on the

5 hour WSJ subset. Our results suggest that, while smaller subword vocabularies

(500-1000 units) work best when deterministically sampling subword units, subword

regularization is most effective with larger vocabularies. Finally, we have shown that

subword regularization combines well with the use of an external language model.

These findings also extend to two true low-resource languages, Dholuo and Swahili.

In both cases, subword regularization improves the baseline performance by more

than 10% relative WER. In the case of Swahili, the best model trained with subword

regularization performs better than a character-based model training with data from

multiple languages (Cho et al., n.d.). For Dholuo, we recover more than half of the

difference between our baseline and a multilingual end-to-end model that also makes

use of a pronunciation dictionary (Rosenberg et al., 2017).

Our analysis demonstrates that subword regularization sometimes allows the ASR

model to choose segmentations that are more aligned with phonetics than the seg-

mentations chosen by the unigram model learned from text. Still, the regularized

ASR model more often uses the text-based segmentation. In the next chapter, we

will introduce a loss function that allows the ASR model to explicitly choose the

subword segmentations that are most useful for the ASR task.
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Chapter 7

Discovering an ASR-Specific Subword

Inventory

7.1 Motivation

In the previous chapter, we discussed the use of subword units as the output vocab-

ulary for end-to-end ASR. We showed that the subword regularization technique, in

which the subword sequence for a given utterance is sampled from a unigram language

model, can significantly improve ASR performance especially in low-resource scenar-

ios. Our analysis showed that the subword segmentations produced by the unigram

language model do not always correspond well with phonetic or syllable boundaries,

and that subword regularization allows the ASR model to sometimes choose more

natural segmentations.

In this chapter, we argue that the discovery and usage of subword units in end-to-

end ASR should be dependent on the ASR task itself. Rather than learn a vocabulary

of subword units and a model to sample from a text corpus, we will learn those things

as part of the ASR training process. Based on the analysis from the previous chap-

ter, as well as the past success of using phonetic output targets for ASR training, we

hypothesize that these learned subword units will capture predominantly phonetic in-

formation, compared to the primarily semantic information that can be captured from

text only. Part of the work of this chapter is to analyze which units the ASR model
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chooses to use and to understand to what extent capturing phonetic information in

the output targets is useful for ASR performance.

This work builds on the latent sequence decomposition (LSD) framework (Chan,

Zhang, et al., 2016), in which the use of subword units for ASR is dependent on both

the speech input and text output, because the subword sequences used for training

are sampled from the output distributions of the ASR model itself. We follow their

method for using subword units but introduce an updated loss function that improves

the ASR model’s ability to perform unit discovery. With this loss function, called

n-gram maximum likelihood loss, we simply maximize the combined probabilities of

all valid n-grams at each time-step. We show that this loss function outperforms

standard maximum likelihood loss within the LSD framework, particularly when we

allow the model to choose from a larger starting vocabulary of subword units, and

that this finding extends to low-resource scenarios.

We also experiment with two alternatives to LSD that enable us to train our

models more efficiently: uniform sampling and statistical model sampling. While

uniform sampling is the fastest technique tested, it also degrades performance. Sta-

tistical model sampling, by contrast, is faster than LSD but performs equally well

when combined with the n-gram loss.

End-to-end ASR models trained with n-gram maximum likelihood loss combine

much better with an external language model than the same models trained with

either character outputs or subword regularization. This finding suggests that this loss

function is enabling the model to learn primarily about how subword units correspond

to sounds, with the additional language model providing the semantic information not

learned during ASR training.

Along with our quantitative results, we present analysis of the subword units

used by these models. We show that models trained with the n-gram loss learn

to use only a subset of the available subword units. As a contrast to the subword

regularization technique discussed in Chapter 6, we refer to the process of training

a model with the n-gram loss as performing “subword discovery." We demonstrate a

clear correlation between the chosen subword units and English phonetics; the learned
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subword inventory is strongly influenced by the properties of speech in addition to

text.

7.2 Background

7.2.1 Graphones

In this work, we allow an end-to-end ASR model to learn the best subword inventory

for the ASR task. We hypothesize that this model will learn acoustically-inspired

units that capture the correspondence between phonology and orthography. There is a

related line of research that has explored the learning of joint phoneme-letter units for

HMM-based models (Deligne and Bimbot, 1997; Deligne, Yvon, et al., 1995). These

units are called ‘multigrams’ or ‘graphones,’ and can enable recognition of words that

do not have an entry in the pronunciation dictionary (Bisani and Ney, 2003; Bisani

and Ney, 2008). That work differs from ours in that learns these correspondences

from a pronunciation dictionary which contains paired sequences of phonemes and

letters; we instead learn directly from the acoustic signal.

Graphones are learned through the EM algorithm, with the goal of finding the

set of units and associated probabilities that maximizes the likelihood of the training

data. This model can then be used to find the best segmentation for the training data;

this segmented data can be used to train an n-gram graphone language model. Using

this model, it is now possible to decode an unknown word into a graphone sequence

that defines its most likely pronunciation. This can then be used to augment a

pronunciation dictionary with this new word.

7.2.2 Gram-CTC

Gram-CTC (Liu et al., 2017) is a technique for CTC-based models that is similar

in spirit to our work. In that paper, the authors modify the CTC loss function to

marginalize over all valid subword sequences. For example, the word “OF” could

be produced either by individually outputting the characters “O" and “F" or by
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outputting the unit “OF". This is closely related to our decoding method, which

similarly considers all possible segmentations of the same word sequence. Liu et al.

(2017) also use Gram CTC as a subword unit discovery method, starting with all

possible subwords up to a given length and then iteratively selecting the units most

often used by their trained model during greedy decoding. Unfortunately, while this

technique does improve performance, the authors note that it is difficult to train

with a large vocabulary and thus limit their experiments to a vocabulary of only 100

bigrams along with the original character set.

7.2.3 Latent Sequence Decomposition

This work builds on the latent sequence decomposition (LSD) framework, in which

subword decompositions are sampled from the ASR model itself and thus rely on both

the input speech and output text.

When the output vocabulary is made up only of characters, there is exactly one

possible decomposition of any particular sentence. Once subword units of length

2 or more are introduced, there are several possible valid decompositions of most

sentences. The “best" decomposition to use for training is unknown; latent sequence

decomposition (LSD) seeks to learn these decompositions as part of the ASR training

process, so that they depend on both speech and text (Chan, Zhang, et al., 2016).

The LSD problem is formulated as follows. 𝑍 is the set of valid decompositions of

text 𝑦. The goal is to maximize the likelihood of 𝑦 by marginalizing over all 𝑧 in 𝑍:

𝑙𝑜𝑔(𝑝(𝑦|𝑥)) = 𝑙𝑜𝑔
∑︁
𝑧

𝑝(𝑦|𝑧)𝑝(𝑧|𝑥)

Computing the gradient of this version of maximum likelihood loss is intractable,

but can be approximated by taking an expectation of 𝑙𝑜𝑔(𝑝(𝑧|𝑥)) over 𝑝(𝑧|𝑥, 𝑦). In

practice, this means sampling a subword decomposition 𝑧 from the ASR model and

performing standard maximum likelihood training using 𝑧 as the label sequence. Un-

fortunately, exact sampling from 𝑝(𝑧|𝑥, 𝑦) is also very difficult. LSD instead samples

𝑧 greedily, left-to-right, one unit at a time. This is a heuristic method that is not,
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initially, a good approximation of 𝑝(𝑧|𝑥, 𝑦).

To correct for this, LSD follows an 𝜖-greedy exploration strategy (Sutton and

Barto, 1998). Instead of always sampling from the output distribution of the model,

LSD samples from a mixture of that output distribution and a uniform distribution.

𝜖 is the mixture weight of the output distribution - it starts at zero and ramps up

over the course of training. The specifics of this ramp up are not discussed in detail

in Chan, Zhang, et al. (2016) - part of this chapter is exploring a range of potential

search strategies for LSD.

7.3 N-gram Maximum Likelihood Objective

7.3.1 Method

0 1 2 3 4 5 6 7 8
<s> ●
P ●
PO ● ●
POS ● ●
POSS ● ● ●
POSSI ● ● ●
POSSIB ● ● ● ●
POSSIBL ● ● ● ●
POSSIBLE ● ● ● ● ●

Figure 7-1: Lattice depiction of all of the valid subword segmentations of the word
POSSIBLE into single characters and character bigrams. Each column is one time-
step; each row indicates the character sequence that has already been decoded. The
red path represents the sequence P_OS_S_I_BL_E.

The process of decoding a sequence of characters using subword units can be

thought of as a lattice. An example is shown in Figure 7-1; in this case, we are

decoding the word POSSIBLE with a vocabulary that includes individual characters

and 2-character units. Each column represents one decoding time-step, each row

represents the character sequence that the decoder has already seen. Any left-to-
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right path through this lattice is a valid sequence of decoder outputs. The red path,

for example, indicates the output ‘P OS S I BL E’.

One way for the ASR model to be agnostic as to the subword segmentation chosen

by the model is to marginalize over the entire lattice of valid subword sequences.

However, because the attention-based model is autoregressive, two decoders that reach

the same point in the lattice by following different paths will be in different states.

This makes it intractable to marginalize over the entire lattice. LSD approximates this

marginalization by sampling a single path on each iteration and performing maximum

likelihood training using that sampled sequence as the labels.

Our method in this chapter starts the same way as LSD; we sample a single path

through the lattice to use as the decoder input. However, instead of using that path as

the fixed target labels for training, we introduce a new loss function that marginalizes

over the valid subword units at each time-step. For example, if we sampled the red

path in Figure 7-1, our method would allow the model to consider both the red

transitions and the blue transitions.

The standard maximum likelihood loss for end-to-end ASR is:

𝐿(𝑥, 𝑦) = −
𝑇∑︁
𝑡=1

𝑙𝑜𝑔(𝑝𝑡(𝑦𝑡|𝑥, 𝑦1:𝑡−1))

where 𝑥 is the sequence of speech feature inputs and 𝑦 is the sequence of target labels.

For this section, we define the set of valid output labels at time 𝑡 as 𝑛𝑡 =

{𝑛1
𝑡 , ..., 𝑛

𝑘
𝑡 } where 𝑘 is the maximum length of subword units in the vocabulary. The

sampled subword unit sequence fed into the decoder is 𝑧1:𝑡−1. The n-gram maximum

likelihood loss is, then:

𝐿(𝑥, 𝑧) = −
𝑇∑︁
𝑡=1

𝑙𝑜𝑔(
𝑘∑︁

𝑗=1

𝑝𝑡(𝑛
𝑗
𝑡 |𝑥, 𝑧1:𝑡−1))

with the added condition that 𝑝(𝑛|𝑥, 𝑧) = 0 if 𝑛 is not in the vocabulary. Thus, the

n-gram maximum likelihood objective decouples the decoder inputs and the training

labels: the sampled sequence is still used as decoder input but the objective function

is agnostic as to which of the valid subword units the model outputs at each timestep.
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In Chan, Zhang, et al. (2016), the authors found that sampling from the output

distribution from the beginning of training produced a model that used only character

outputs; we find that the same is true when the n-gram loss is used. For this reason,

we use 𝜖-greedy search with the n-gram loss. When testing both standard LSD and

LSD with the n-gram loss, we also experiment with 𝜖-greedy search in which the final

𝜖 is less than one.

7.3.2 Experimental Details

All English experiments in this chapter use the Wall Street Journal corpus. We

experiment with the full 81 hour training set as well as the 5- and 10-hour subsets.

Following Chan, Zhang, et al. (2016), we create subword vocabularies by simply

taking the most common n-grams in the training corpus. We experiment with two

vocabulary sizes, 512 and 5111, using 𝑘 = 4 with both. The smaller vocabulary

size was chosen to match the experiments in Chan, Zhang, et al. (2016); the larger

was reached by selecting all n-grams that appear 100 times or more in the training

corpus. As in Chan, Zhang, et al. (2016) and Drexler and Glass (2019b), we always

use <SPACE> as a stand-alone unit, not included in any subwords.

Chan, Zhang, et al., 2016 does not include details of the 𝜖-greedy search parameters

- how often 𝜖 is updated or at what rate it ramps up from zero to one. For all

LSD results reported in this section, we used a simple linear ramp over 100 epochs,

approximately the number of epochs that were required to fully train the baseline

character-based model. We experimented with three different stopping points for our

ramp: 𝜖 = 1.0, 𝜖 = 0.8, 𝜖 = 0.5.

7.3.3 Results

Table 7.1 shows the results of our implementation of LSD, experimenting with two dif-

ferent vocabulary sizes and three choices for the final 𝜖 used in the 𝜖-greedy sampling.

The first line is the character baseline, which outperforms the very similar model

in Bahdanau et al. (2016) (WER 18.0) but underperforms the baseline from Chan,
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final 𝜖
|𝑉 | 1.0 0.8 0.5
31 16.7
512 15.5 15.6 16.2
5111 16.5 15.7 15.8

Table 7.1: Word error rate for models trained on the full 81 hour WSJ corpus using
latent sequence decomposition.

Zhang, et al. (2016) (WER 14.8). There are two main differences between our model

and the baseline in Chan, Zhang, et al. (2016): they use much higher-dimensional

input features (including deltas) and their encoder downsamples the input by a factor

of 4 rather than 8. Nonetheless, we are able to demonstrate similar improvements

from LSD as in Chan, Zhang, et al. (2016). We see that with the smaller vocabulary

it is better to ramp all the way up to 𝜖 = 1.0, while the larger vocabulary works

better with 𝜖 < 1.0. It is likely that we have not found the optimal parameters for

this sampling - perhaps the larger vocabulary would work well with 𝜖 = 1.0 if we

lowered the slope of the ramp. We also compared our models to the models described

in Chan, Zhang, et al. (2016), and found that our LSD models use single characters

more often. This also suggests that we increased 𝜖 too quickly. For the remaining

results in this chapter, all experiments use a final 𝜖 of 0.8.

Loss |𝑉 | WER CER
Standard 31 16.7 6.0
Standard 512 15.6 5.6

5111 15.7 5.3
N-gram 512 15.2 5.1

5111 14.5 5.0

Table 7.2: Comparison of standard maximum likelihood loss and our n-gram maxi-
mum loss when used with latent sequence decomposition. All models were trained on
the 81 hour WSJ corpus.

Table 7.2 compares LSD with standard maximum likelihood loss and n-gram loss.

All of our subword models outperform the character baseline. N-gram loss signifi-

cantly improves LSD performance over the standard loss. Our results do corroborate

the assertion in Chan, Zhang, et al. (2016) that LSD is not much impacted by the
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size of the subword vocabulary. However, the n-gram loss is able to effectively use

the extra available subwords in the 5111 unit case compared to the 512 unit case,

resulting in our best overall score of 14.5% WER.

7.3.4 Analysis

We perform a similar analysis to that in the previous chapter, looking at the segmen-

tations chosen by the models trained with the n-gram loss. We do this by looking at

the output when we decode the WSJ validation set. Whereas the model trained with

subword regularization segmented 33.9% of words that appeared more than once in

multiple ways, the subword discovery models do this for 64% (512 units) or 65.9%

(5111 units) of words. Looking closely at these segmentations, we can calculate what

percentage of the time particular units are used, in this case focusing on the model

with 512 output units. For example, there are 895 instances of the letter sequence

TH, and they are only split apart 44 times, which is 4.9%. By contrast, the letter

sequence TS occurs 146 times and they are split apart 123, or 84.2%, of those times.

Unexpectedly, the letters SH are split apart 62.5% of the time. This highlights the

importance of letting the ASR model choose the subword units that are most useful

in practice, rather than imposing phonetic categories on the model in a top-down

fashion.

7.4 Alternative Segmentation Sampling Methods

LSD has one key downside: it is quite slow to train, because the sequence of decoder

inputs is sampled within the decoder loop. We experiment here with two methods of

speeding up this decomposition. First, we simply sample from a uniform distribution.

While this method does not work well with the standard maximum likelihood loss,

it is comparable to LSD when the n-gram maximum likelihood loss is used. This

is because the n-gram loss essentially decouples the sequence of units used as input

to the decoder from the sequence of units used as target labels for computing the

objective function. If the n-gram loss enables us to train with any decomposition
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strategy, we should instead be able to use something that runs more quickly.

The second decomposition strategy we test here is to approximate the ASR model

outputs with a statistical model. Then, instead of sampling from the ASR model

inside of the decoder loop, we can quickly sample a segmentation from the statistical

model prior to training. The statistical model is frequently re-estimated, so that it

keeps up with the training of the ASR model.

7.4.1 Statistical Model Sampling

Unlike uniform sampling, sampling from the output distribution enables us to focus

over time on the most important parts of the space - the decompositions that are

likely to be seen when decoding new audio. While uniform sampling is simple and

fast, we unnecessarily cover the entire space which means that the model requires

many more training iterations to converge.

In this section, we introduce a third option that combines the best features of

LSD and uniform sampling. For this technique, we train a statistical model to ap-

proximate the output distributions of the ASR model. This will enable us to sample

decompositions of text into speech-inspired subword units outside of the decoder loop.

We re-estimate this statistical model frequently so that it stays up-to-date as ASR

training progresses.

The statistical model that we train is an n-gram model. It is slightly different

than a typical n-gram language model because our task is segmentation rather than

prediction - we are not trying to predict the next subword token but to choose one

subword token out of a small set that is defined by the text to be segmented. For

this reason, this statistical segmentation model is conditioned on both previous and

future characters. The number of characters in each direction that we condition on

is a parameter of the model; we have found that it works well to set that parameter

equal to 𝑘, the maximim length of subword units in the vocabulary. This can be

modified, but the number of future characters that we condition on must be at least

𝑘 to ensure that we can select subword units of length 𝑘.

This statistical model is estimated on a subset of the training data. The first step
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in this estimation is to force-decode this data; this means feeding the outputs of the de-

coder back in as input like we do during inference, but only allowing the model to out-

put the correct character sequence. To encourage variety in these force-decoded out-

puts, we sample each unit from the output distribution, rather than selecting the most

likely unit. As an example, imagine we are decoding speech of the phrase THE MAN-

AGEMENT, and our force decoding output is TH_E M_A_N_AG_E_M_ENT.

At each step in this decoding process, we save both the current context and the out-

put distribution that our model sampled from. In this example, at the beginning of

this decoding, the prior context is empty (we are at the start of a word), and the fu-

ture context is THE. The ASR model produces a distribution over all possible output

units at each timestep, but we save a normalized version of the distribution over the

valid output units only. At this first timestep, the distribution we are saving is over

the units T, TH, and THE. Example output distributions for the force-decoding of

this phrase are in Table 7.3.

𝑡 prev next 𝑃 (𝑛1
𝑡 ) 𝑃 (𝑛2

𝑡 ) 𝑃 (𝑛3
𝑡 ) 𝑃 (𝑛4

𝑡 ) samp
1 THE 0.03 0.84 0.13 TH
2 TH E 1.00 E
3 MANA 0.86 0.14 0.00 0.00 M
4 M ANAG 0.98 0.02 0.00 0.00 A
5 MA NAGE 1.00 0.00 0.00 0.00 N
6 MAN AGEM 0.04 0.93 0.03 0.00 AG
7 ANAG EMEN 1.00 0.00 0.00 0.00 E
8 NAGE MENT 0.41 0.01 0.37 0.21 M
9 AGEM ENT 0.00 0.01 0.99 ENT

Table 7.3: Force-decoding the phrase "THE MANAGEMENT". 𝑡 is the decoding
timestep, 𝑃 (𝑛𝑘

𝑡 ) is the output probability at time 𝑡 of the valid output unit that is 𝑘
characters long.

Once we have done this for all of the data we are force-decoding, the statistical

model that we save is the average over all of the times we saw the same past and

future context. For example, imagine we saw the word THE one other time during

this decoding, and the second time the output of the ASR model had 𝑃 (𝑇 ) = 0.01,

𝑃 (𝑇𝐻) = 0.98, and 𝑃 (𝑇𝐻𝐸) = 0.01. Averaging this with the distribution in the first

row of Table 7.3, we would save: 𝑃 (𝑇 | < 𝑠 >, 𝑇𝐻𝐸) = 0.02, 𝑃 (𝑇𝐻| < 𝑠 >, 𝑇𝐻𝐸) =
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0.91, and 𝑃 (𝑇𝐻𝐸| < 𝑠 >, 𝑇𝐻𝐸) = 0.07. In practice, we set a minimum count, so we

only save these probabilities for contexts that appear at least 𝑀 times in the force-

decoding. It is also important to note that these probabilities are conditioned on

being at the start of a word and having the future context THE. These probabilities

would not be used if we were at the start of a longer word beginning with THE like

THEN or THERE, or in the middle of a word that ended THE.

prev next 𝑃 (𝑛1
𝑡 ) 𝑃 (𝑛2

𝑡 ) 𝑃 (𝑛3
𝑡 ) 𝑃 (𝑛4

𝑡 ) C samp
COUP 0.98 0.02 0.0 0.0 32 C

C OUPL 1.0 0.0 0.0 0.0 15 O
CO UPLE 0.27 0.73 0.0 0.0 15 UP

SAMP LED 0.38 0.62 0.0 5
TRIP LED 0.06 0.94 0.0 6

*P LED 0.21 0.79 0.0 11 LE

Table 7.4: Segmenting the word COUPLED into C_O_UP_LE_D. 𝑃 (𝑛𝑘
𝑡 ) is the

output probability of the valid output unit that is 𝑘 characters long.

When segmenting new text, we sample greedily from left to right. For contexts

that we did not see during force-decoding, we use a simple backoff scheme. An

example of the process for segmenting the word COUPLED is in Table 7.4. The first

three segmentation steps are straightforward: we have probabilities saved for these

contexts in our statistical model, and we can sample from them. On the fourth step,

however, the past context is COUP and the future context is LED. We did not see

this context when training our statistical model - the training data had the word

COUPLE but not COUPLED. To get a probability distribution to sample from, we

remove the first character of the past context and look for any saved probabilities

for contexts of the form (*OUP, LED). We do not find any of these, so we repeat

the process with the first two characters of the past context removed. None of these

contexts exist in our model, so we remove the third character from the past context.

Here, we find two examples of the form (*P, LED): (SAMP, LED) and (TRIP, LED).

We take a weighted average of these two distributions to get the backoff distribution

for (*P, LED) that we can sample from. If we had been unable to find any examples

of the future context LED, we would remove the last character and repeat the backoff
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process, looking for contexts of the form (COUP, LE*), then (*OUP, LE*) and so on.

7.4.2 Experimental Details

We re-estimate the statistical model every 10 epochs using a randomly selected subset

of 5000 utterances from the training set (or the full training set, if it has fewer than

5000 utterances, as in the case of the 5 and 10 hour WSJ subsets). We set the

minimum count to 5 for all estimated distributions in the statistical model. We use

𝜖-greedy sampling when segmenting text with the statistical model, with the same

ramp as we used for LSD.

7.4.3 Results

|𝑉 | LSD Uniform Stat
512 15.2 15.2 14.9
5111 14.5 15.1 14.5

Table 7.5: Word error rates for models trained with n-gram loss on the 81 hour WSJ
corpus, compared across decomposition strategies.

The effectiveness of uniform sampling when combined with the n-gram loss seems

to depend on the size of the vocabulary. While uniform sampling performs just as

well as LSD with the smaller vocabulary, it significantly degrades performance on

the larger vocabulary. It appears that uniform sampling does not allow the model to

effectively learn to use rare subword units.

The statistical model, however, slightly outperforms the original LSD model, in

addition to training more efficiently. This difference could be due to two potential

factors: the stability of the statistical model, which is re-estimated less often than

the neural network parameters are updated, and the fact that all of the probabilities

in the statistical model are averaged over several instances of the same word. Both

of these should prevent the model from overfitting to the pronunciations of specific

speakers in the training set.
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7.4.4 Analysis

In this section, we conduct our analysis of the models’ subword usage by greedily

sampling a valid decomposition for every training utterance. Instead of analyzing the

decompositions themselves, we save the output distributions that we sample from at

every time step. Once this is complete, we can analyze the set of output distributions

over each set of valid subwords. For example, we can look at every time the model

was asked to choose between ’THER’, ’THE’, ’TH’, and ’T’ and produce an average

distribution over those units.

When the next four characters of the text are ’THER’, as in the above example,

the unit ’TH’ has an average likelihood of 80.2% and the unit ’THER’ has an average

likelihood of 19.5%. We will say that the model is ’using’ a particular unit if, in any

context, that unit has an average likelihood greater than 10%. We set this threshold

intentionally low so that all units that are not being ’used’ could be removed from

the model with minimal expected impact.

|𝑉 | Model 2-gram 3-gram 4-gram Total
512 LSD 175 122 23 320

Uniform 170 99 5 274
Stat. 130 80 3 213

5111 LSD 319 886 433 1638
Uniform 324 744 193 1261
Stat 237 530 188 955

Table 7.6: Number of subword units “used” by models trained with the n-gram loss.
The model is ’using’ a particular unit if, in any context, that unit has an average
likelihood greater than 10%.

First, in Table 7.6, we look at how many units the different models are using.

All four models are using many fewer subword units than are available. With both

vocabularies, the models trained with uniform sampling use fewer units than those

trained with LSD. As noted above, uniform sampling does not degrade the perfor-

mance of the model with smaller vocabulary, suggesting that, in this case, LSD has

selected some units that are unnecessary. However, uniform sampling significantly

degrades the performance of the model with bigger vocabulary, suggesting that there
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may be some useful units that the uniform model is not using.

Interestingly, the models trained with statistical model sampling use the fewest

number of units. This is likely due to the minimum count we use to estimate our

statistical model. We do not save probabilities for contexts that appear fewer than

five times in the training set; instead, we use back-off probabilities for segmentation

in this case. The models trained with statistical sampling perform best out of the

models tested, suggesting that these rare contexts are not necessary for generalization

performance.

Given the black-box nature of end-to-end neural network models, an important

research question is to what extent these models’ choice of units corresponds to our

understanding of how language works. Are these models using units that are phonet-

ically meaningful?

We will focus on the letter ’C’ as an instructive example - it is a letter that,

in English, can denote many different sounds depending on context. When force-

decoding with the large-vocabulary LSD model, we look at all of the places where

C is the next letter in the sequence to be sampled. There are 228 different contexts

in which C is the next letter; in most (171) of these, the unigram letter C has an

average likelihood greater than 0.5. In 35 contexts, the model prefers a bigram unit,

but these contexts include just six bigrams: CE, CH, CK, CT, and CY. These clearly

demonstrate the different ways in which the letter C can be used - the letter C and

the bigrams CK and CT indicate the phoneme /k/, CE and CY indicate /s/, and CH

indicates /t/. There are 8 other bigrams that start with C in the large vocabulary,

but none are ever used.

CH is a further interesting example because it can, in fact, be used to denote either

a /t/ or /k/. Our model seems to have learned this: there are contexts in which the

model is most likely to output the letter C even though the next two characters are

CH. These contexts include CHRY (as in Chrysler), CHNO (as in technology), CHRI

(as in Christian or Christopher), and CHEM (as in chemistry) - all contexts in which

the letters CH indicate the phoneme /k/.
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7.5 Low-Resource Experiments

Before embarking on these experiments, we hypothesized that the n-gram loss would

help in some low-resource settings (say, 20 hours of training data) but would hurt

performance in extremely low-resource settings where there would not be enough

data to effectively learn a vocabulary of subword units. This hypothesis did not hold:

we found that subword discovery with the n-gram loss performs better than subword

regularization even with 5 hours of training data, and leads to bigger improvements

on the 5 hour corpus than the 10 hour corpus.The results in this section all use the

statistical model decomposition technique.

On the 5 hour WSJ subset, the baseline WER was 65.1% and the best subword

regularization model had a WER of 54.3%. Using subword discovery (with an initial

vocabulary of 512 subword units), the WER was reduced to 50.2%. The baseline and

subword regularization models had CERs of 35.3% and 24.1%, respectively. Here, we

get a CER of 20.3%.

On the 10 hour WSJ subset, the baseline WER was 39.5% and the best subword

regularization model had a WER of 36.0%. Using subword discovery, we were able

to get a WER of 35.4%. The improvement in CER from subword regularization to

subword discovery is larger: 14.9% versus 13.2%. The improvement in character error

rate seems to translate to much better results when combined with an external n-

gram language model. With the addition of this language model, the best subword

regularization methods achieved 29.9% WER and 15.8% CER. The subword discovery

model performs much better with the language model: 25.0% WER and 11.5% CER.

This result supports the original motivation for learning acoustically-inspired sub-

word units. Subword units learned from text capture mainly semantic information,

and cannot capture phonetic information. We expected it would be easier to train

a low-resource ASR model with a set of subword units that would instead represent

predominantly phonetic information. The large improvement from the addition of a

language model to the subword discovery model suggests that the learned subwords

are not capturing as much semantic information as the text-based subword units are.
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In the next chapter, we will explore whether these units make it easier to construct

a shared embedding space for speech and text.

7.6 Babel Language Experiments

We use statistical model sampling for all experiments with the Babel corpora. We

present results for two languages here, Dholuo and Swahili. In both cases, subword

discovery improves performance over the character baseline but does not perform as

well as subword regularization. On the Dholuo corpus, subword discovery with 5638

units (all units that occur at least ten times in the training set) gives a WER of 56.3%

and CER of 28.1%. This is worse than all subword regularization settings in terms of

WER and most in terms of CER. Similarly, subword discovery with 7655 units on the

Swahili corpus gives a WER of 67.2% and CER of 37.1%, worse than most subword

regularization settings on that corpus.

We hypothesize two reasons for this discrepancy. First, we have chosen to use

Babel languages that use the Latin alphabet - the orthography of these languages is

likely largely phonetic. Given this, characters likely correspond well to the acoustic

input, making speech-inspired subword units less necessary.

It is important to note that, while subword discovery lets the ASR model choose

which output units to use, it is not doing any active regularization on the output

distributions; the model can learn extremely confident output distributions. Subword

regularization, by contrast, is necessarily doing regularization. Thus, if subword units

are not particularly helpful for ASR in these languages, subword regularization should

perform better than subword discovery.

7.7 Chapter Summary

In this chapter, we have introduced a new loss function, the n-gram maximum like-

lihood loss, that yields significant improvements over a character-based model. We

build on the LSD framework, demonstrating that models trained with the n-gram
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loss outperform other LSD models with two different subword vocabularies. Addi-

tionally, we propose a modification of LSD in which we train a statistical segmentation

model to approximate the ASR model outputs. This statistical model both speeds

up training and further improves performance.

Analysis of our English models suggests that the n-gram loss enables the ASR

model to effectively learn which subword units to use, and that these units cor-

respond to phonetic categories. In our low-resource experiments, we demonstrate

this subword discovery method is more effective than subword regularization with

text-based subword units. We see especially stark improvements on the low-resource

training sets when we decode with an external language model. This finding provides

further evidence for the importance of phonetic output units when limited training

data are available.

This technique also outperforms our character baselines on the Babel languages,

but does not work as well as subword regularization in those cases. We hypothesize

that this is because their orthography is largely phonetic.
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Chapter 8

Using Subword Units to Construct a

Shared Embedding Space

In Chapters 4 and 5, we outlined two different methods for creating a shared embed-

ding space for text and speech. While both methods improved performance in both

fully- and semi-supervised scenarios, analysis demonstrated that we were not able to

fully align the embedding spaces with either technique. Our hypothesis is that this

is because individual characters do not represent the same information contained in

the speech signal. A set of speech feature frames captures a particular sound, an

individual character can represent a number of sounds, depending on context. In

Chapters 6 and 7, we showed that we can improve ASR performance using subword

units, particularly ones learned as part of the ASR training process.

This chapter will explore the construction of a shared text/speech embedding

space using subword units instead of characters. We expect subword regularization

and subword discovery to both work well with adversarial training, because the text

space will represent a huge number of subword units and some of these will capture

specific sounds and line up well with the speech embeddings. With direct alignment,

we do not expect subword regularization to work as well, because we are asking the

speech embeddings to match up with embeddings of text units that may or may not

capture acoustic/phonetic information.

This chapter is divided into two sections. The first focuses on the adversarial
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alignment method introduced in Chapter 4 and the second section looks at the com-

bination of subword units with the direct embedding alignment method from Chapter

5. In both cases, we compare the results from those earlier chapters with new results

using the same alignment methods but segmenting the text into subword units. In

both cases, we explore several different settings related to the use of subword units to

create a text embedding space. Ultimately, we find that subword units improve the

performance of both methods, with speech-inspired subword units performing best

overall.

8.1 Subword Adversarial Alignment

8.1.1 Methods

Speech

Text’

Text

[0,1]

Figure 8-1: Simplified semi-supervised adversarial ASR model architecture used in
this chapter. Speech-to-text model is outlined in bold; text autoencoder is shaded
blue; speech autoencoder is shaded red; discriminator for adversarial training is
shaded green.

For this chapter, we use a modified version of the architecture presented in Chapter

4. This architecture is shown in Figure 8-1; it does not have the speech autoencoder

component. In Chapter 4, our ablation studies showed that the speech autoencoder

did not contribute much to the overall performance, and our goal in this chapter is

to focus on the use of text data.
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In this adversarial alignment model there are a number of different places where we

segment text into subword units. Each time we see a text utterance, we sample a new

segmentation for it. This includes both the input and output of the text autoencoder.

We experiment with removing the noise component of the text autoencoder (setting

the probability of deletion to 0.0) for this model, because we are already making the

text autoencoder task much harder by having different input and output sequences.

For subword discovery, we always used the n-gram loss for ASR training, and tried

both the standard maximum likelihood loss and the n-gram loss for the text autoen-

coder training. With each of these, we tested two methods for subword discovery.

The first condition, referred to in the results tables as 𝑝0 = 0.0, is very similar to the

statistical model sampling in Chapter 7. For this condition, we used greedy uniform

random sampling to segment all text at the beginning of training; every ten epochs,

we used the current ASR model parameters to train a new statistical text segmen-

tation model. we sampled from this model with probability 𝑝 and from a uniform

distribution with probability 1− 𝑝, where 𝑝 started at zero at the first epoch and was

increased by 0.05 every ten epochs. For the other set of experiments, we used the

statistical segmentation model from the final baseline ASR model at the beginning of

training. This condition is indicated with 𝑝0 = 0.8, meaning that the segmentation

is sampled from the pre-trained statistical model with 𝑝 = 0.8 at the beginning of

training. After 160 Epochs, when 𝑝 would have reached 0.8 in the 𝑝0 = 0.0 condition,

we begin re-estimating the statistical model every 10 epochs.

8.1.2 WSJ Results

Table 8.1 contains results for the combination of subword regularization and adver-

sarial embedding space alignment. These results use the 5 hour WSJ subset and

no other data. We vary the both 𝛼 parameter for subword regularization and the

probability of deleting each text input unit in the noise model.

The first line of results in this table come from Chapter 4. The second line of

results uses deterministic subword segmentation; these results are worse than using

characters. This could be because the text-based model is choosing the wrong sub-
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|𝑉 | 𝑝𝑑𝑒𝑙 𝛼 WER CER + LM WER
31 0.1 N/A 58.6 27.8 51.1
500 0.1 ∞ 61.5 35.3 59.8

1 54.1 25.0 46.5
0.5 53.3 23.6 44.7

0.0 1 56.1 25.3 45.9
0.5 54.8 24.0 44.1

Table 8.1: Results of adversarial alignment with subword regularization on the 5 hour
subset of the WSJ corpus

words and thus making alignment even harder. It could also be because the noise

model makes the text autoencoder too hard in combination with subwords: deleting a

3- or 4-character unit might force the encoder to represent a lot of (implied) context,

which could actually make constructing the shared embedding space more difficult.

In the next two lines of Table 8.1, we see that we are able to improve upon

the performance of the character-based model with subword regularization. These

results are also slightly better than the baseline model with subword regularization;

the WER with the vocabulary and 𝛼 = 0.5 was 54.3% without a language model and

47.8% with one. Interestingly, the performance improvement is even larger with the

language model than without.

Finally, in the last two lines, we have the performance of this model with subword

regularization but without input text units deleted. While these results are worse

than those in the previous section when a language model is not used, these models

are slightly better when combined with an external language model. It makes sense

that the model would do better with the noise: the text autoencoder is forced to learn

more about semantics and do more language modeling in that case. It also makes

sense, then, that an ASR model that does better at language modeling would have

less to gain from the addition of an external language model. What is interesting is

that the second set of models outperforms the first when the external language model

is added. This echoes our results from Chapter 7, in which models that learned

more bout the phonetic content of speech combined very well with external language

models.
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|𝑉 | Text Auto. Obj. (𝑝0, 𝑝𝑚𝑎𝑥) WER CER + LM WER
31 N/A N/A 58.6 27.8 51.1
512 N-gram (0.8, 0.8) 51.0 21.5 40.0

(0.0, 0.8) 52.2 20.9 40.7
(0.0, 0.0) 52.3 21.5 41.4

ML (0.8, 0.8) 50.9 21.6 40.0
(0.0, 0.8) 52.2 21.0 39.8

Table 8.2: Results of adversarial alignment with subword discovery on the 5 hour
subset of the WSJ corpus

Table 8.2 has results on the 5 hour WSJ set for adversarial training with subword

discovery. We again show the character-based results in the first line of this table.

The next section uses subword discovery, with the n-gram loss used for both ASR

training and text autoencoder training. In the last section of the table, we use the

n-gram loss for ASR training but the standard maximum likelihood loss for the text

autoencoder training. Somewhat surprisingly, we find that this change has minimal

impact on the results.

Parallel Only Semi-Supervised
Seg. WER CER + LM WER CER + LM

Characters 58.6 27.8 51.1 55.6 24.7 45.1
Subword Reg. 53.3 23.6 44.7 51.9 21.9 41.6
Subword Disc. 51.0 21.5 40.0 48.6 22.0 40.1

Table 8.3: Summary of subword adversarial training results on the 5 hour subset of
the WSJ corpus. All results use the same model architecture and training procedure.
‘Parallel Only’ results use the speech and text data from the 5 hour training set for all
parts of model training. ‘Semi-supervised’ results use all 81 hours of WSJ speech data
for adversarial training, and additional text from the LM training data for adversarial
training and text autoencoder training.

Finally, in Table 8.3, we take the best performing model settings from the previous

two tables and also train semi-supervised models with these settings. These models

use additional text and speech for the adversarial training as well as addiitonal text

for autoencoder training. Subword discovery performs best overall, although it does

not gain much from semi-supervised learning when an external language model is

used.
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8.2 Subword Direct Alignment

8.2.1 Methods

The direct encoding alignment procedure outlined in Chapter 5 has four steps (see

5.1). To get the best performance out of the combination of this technique with the

use of subword units, we found that it was necessary to use different parameters for

each of these steps. For both types of subword units, the key modification was to

use a more stable subword segmentation setting when performing the alignment steps

than when doing ASR training.

For subword regularization, this means using 𝛼 = ∞ during the alignment steps

(steps 2 and 3), and a smaller 𝛼 setting during ASR training. Specifically, we use

𝛼 = 0.5 with the 5 hour subset of the WSJ corpus, since that was the best performing

setting with the baseline ASR model. We use that baseline ASR training that we

already did for Chapter 6 as our step 1 training for this section.

For subword discovery, we also used a previous model training as step 1 for this

section. In this case, we used the model trained with our statistical segmentation

procedure. While training that model, we set the maximum language model sampling

probability at 0.8, meaning that at the end of training we were still sampling from

a uniform distribution 20% of the time. For steps 2 and 3, we set that sampling

probability to 1.0. Note that we are still sampling from the language model, so this is

not a deterministic segmentation like subword regularization with 𝛼 = ∞. For step 4,

we set that probability back to 0.8, also returning to the statistical model estimation

procedure used in step 1, in which we re-estimated that model every 10 epochs.

For both subword segmentation methods, we experimented again with text au-

toencoder training during step 4, using either the text side of the training corpus

or additional text data used for LM training. In the case of subword discovery, we

tested using both the n-gram loss and standard maximum likelihood loss for this

autoencoder training.
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8.2.2 WSJ Results

Text 𝛼1 𝛼2 𝛼3 𝛼4 WER CER + LM
0.5 0.5 0.5 0.5 55.7 24.5 47.2
0.5 ∞ ∞ ∞ 56.0 24.8 48.4
0.5 ∞ ∞ 0.5 55.2 24.0 45.8

WSJ5 0.5 ∞ ∞ 0.5 53.2 22.7 43.9
LM 0.5 ∞ ∞ 0.5 52.7 22.2 42.8

Table 8.4: Results from the combination of direct embedding alignment and subword
regularization on the 5 hour WSJ subset. The first column indicates the text used for
text autoencoder training in Step 4. 𝛼1 is the value of 𝛼 used for text segmentation
during Step 1.

Results for direct alignment and subword regularization are in Table 8.4. All of

settings shown in this table work better than using characters, where the best WER

(with semi-supervised learning) was 60.5% without an external language model and

59.8$ with one. Using 𝛼 = 0.5 for all steps or using 𝛼 = ∞ for steps 2-4 both work

okay, but as noted above it works best to used 𝛼 = ∞ for steps 2 and 3 and 𝛼 = 0.5

for steps 1 and 4. The difference between these three settings is more pronounced

when an external language model is used during decoding. As in Chapter 5, we get

some improvement from text autoencoder training with the text portion of the 5 hour

WSJ subset, and an additional improvement from the use of extra standalone text.

Text Text Obj. WER CER + LM
51.6 20.3 33.7

WSJ 5 n-gram 49.8 19.8 34.5
WSJ 5 ML 49.5 19.9 34.6

LM n-gram 50.2 19.8 34.4
LM ML 50.0 19.8 33.8

Table 8.5: Results from the combination of direct embedding alignment and subword
discovery on the 5 hour WSJ subset. The first and second columns indicates the text
and objective function used for text autoencoder training, respectively.

Results for direct alignment and subword discovery are in Table 8.5. Subword

discovery works even better in combination with this alignment technique than sub-

word regularization. Of particular note is the performance when an external language

model is added. We saw in Chapter 7 that subword discovery models combine well
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with an external language model; we get even more from that combination when we

use direct alignment as well. Interestingly, while we get some improvement from the

use of text autoencoder training when we do not use an external language model, the

best overall result does not incorporate the text autoencoder.

8.3 Chapter Summary

In this chapter, we have explored combining our techniques for creating a shared

embedding space for speech and text with our techniques for using subword units

in ASR. We have shown that the use of subword units improves the performance

of both embedding alignment techniques presented here. The n-gram loss combines

particularly well with the direct alignment method, achieving a 33.7% WER on the

5 hour WSJ subset with an external language model, compared to 61.9% WER for

the baseline model.
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Chapter 9

Conclusion

9.1 Summary

This thesis has explored the problem of training end-to-end ASR models when limited

training data are available. End-to-end models are an attractive architecture for low-

resource languages because they do not require expert resources for training. However,

neural network models are prone to overfitting when trained on small corpora, making

them ill-suited to low-resource ASR in their current form.

We have explored two different categories of techniques for improving the perfor-

mance of end-to-end ASR models in low-resource settings. The first set of techniques

were motivated by a desire to perform semi-supervised learning to train some model

parameters with non-parallel speech and text. We introduced a general model archi-

tecture for this task, adding a text autoencoder that shared decoder parameters with

our attention-based ASR model. In order to effectively train these decoder parame-

ters with only text, it is important that the original ASR encoder outputs and the

text encoder outputs use the same embedding space. We presented two methods for

this task that differ in how they approach the construction of this shared space.

In Chapter 4, we presented a technique for using adversarial training to construct

this shared space. This was a novel modification of the adversarial training paradigm:

rather than matching a generated distribution to a data distribution, we used adver-

sarial training to match two generated distributions to each other. This adversarial

125



training method can be performed with non-parallel speech and text, making it ideal

for scenarios with limited parallel ASR training data but available non-parallel data.

We also added a speech autoencoder to this model, which can be trained on speech

only and thus allow the model to take full advantage of all available data.

In Chapter 5, we developed a supervised method of embedding space alignment.

We introduced an objective function, the encoder loss, that we used sequentially to

train the text encoder and then to fine-tune the speech encoder. The training process

included a final step of ASR training to adapt the decoder to the fine-tuned encoder

outputs. We experimented with incorporating text autoencoder training into this

final step, making this model architecture semi-supervised as well.

The next two chapters of this thesis explored ways to make better use of text data

within the standard ASR training paradigm. Both of the techniques tested here make

use of subword output units, rather than characters, and both segment the text used

for training into subword units in a probabilistic way. This probabilistic segmentation

is conceptually similar to regularization techniques like dropout (Srivastava et al.,

2014) and data augmentation (Park et al., 2019) that force the model to be adaptable

and thus reduce overfitting.

Subword regularization, discussed in Chapter 6, probabilistically segments text

into subword units based on a unigram language model learned from text. In Chapter

7, we introduced a novel loss function designed to allow the ASR model to learn

these subword segmentations for itself as part of the ASR training process. We

used this loss function in conjunction with the LSD framework (Chan, Zhang, et

al., 2016), and demonstrated that it improved model performance. Subsequently,

we presented a method for training a statistical segmentation model to mimic the

outputs of the ASR model. Using this statistical model, we were able to speed up LSD

considerably while also further improving performance. This statistical segmentation

model can also segment text that is not associated with speech, allowing us to use

this subword discovery framework in combination with the semi-supervised learning

methods described above.

In Chapter 8, we explored combinations of the methods introduced in the previous
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four chapters, investigating the creation of a shared embedding space for speech and

text using subword units. We experimented with each possible combination of one

embedding space alignment technique and one subword segmentation technique in

both fully- and semi-supervised scenarios.

Fully Supervised Semi-Supervised
+ LM + LM

WER CER WER WER CER WER
Character Baseline 65.1 35.3 61.7 - - -

Ch. 4: Adv. Alignment 58.6 26.3 51.1 55.3 24.7 45.1
Ch. 5: Direct Alignment 59.8 32.8 53.4 57.6 30.9 50.0

Ch. 6: Subword Reg. 53.6 23.3 45.2 - - -
Ch. 7: Subword Disc. 50.2 21.0 37.9 - - -

Ch. 8: Adv. + Subword Reg. 53.3 23.6 44.7 51.9 21.9 41.6
Ch. 8: Adv. + Subword Disc. 51.0 21.5 40.0 48.6 22.0 40.1
Ch. 8: Direct + Subword Reg. 53.2 22.7 43.9 52.7 22.2 42.8
Ch. 8: Direct + Subword Disc. 49.5 19.9 34.6 50.0 19.8 33.8

Table 9.1: Summary of results on the 5 hour subset of the WSJ corpus. All results
presented here use the best parameter settings found for that particular model on
this corpus. Fully supervised results use the text and speech from the 5 hour corpus
for all training of neural network parameters. Semi-supervised results use a selection
of the text used to train the language model and, for the adversarial training models,
the speech data from the full 81 hour corpus.

Table 9.1 contains results from all of the techniques described in this thesis on the

5 hour subset of the WSJ corpus. The baseline model that we introduced in Chapter

2 achieved a 61.9% WER when trained on this subset and decoded with the inclusion

of an external language model. Our best performing model, shown in the last line

of Table 9.1, is able to reduce this WER to 34.6% with no additional training data.

This is a 44.1% relative improvement in WER. The best semi-supervised model that

we trained achieved 33.8% WER, for a relative improvement of 45.4%.

There are several other notable results in Table 9.1. The subword segmentation

techniques introduced in Chapters 6 and 7 are able to achieve most of our overall

performance gain with very simple changes to how we handle the text data and to

how we compute the training loss. These models do not require any modifications to

the model architecture or any additional training data. While both semi-supervised
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architectures that we introduced were able to effectively use non-parallel speech and

text data to train parameters of our end-to-end model, the gains from this extra data

were modest once this semi-supervised learning was combined with the use of subword

units.

9.2 Future Work

In future work, there are a number of potential improvements to be made to the

techniques developed here.

Our results in Chapter 4 make clear that we are not achieving the full potential

of the additional speech data we are using for training. One direction this work could

take is to incorporate recent developments in unsupervised representation learning

from speech (Baevski et al., 2020) into our semi-supervised models. This could apply

to models trained with either the adversarial alignment technique or the direct align-

ment technique, as both model architectures could easily incorporate this training.

Another possible improvement to these models is to combine adversarial alignment

and direct alignment, using the available non-parallel speech and text for the former

and the parallel speech and text for the latter. This would most likely require devel-

opment of a modified version of the direct alignment technique in which the various

objective functions are used jointly rather than in sequence.

Subword regularization is a simple technique to use and implement, but is ham-

pered by the need for hyperparameter search to find the best 𝛼 setting for a particular

corpus. An interesting direction for future work would be to explore a schedule for

updating 𝛼 during training to hone in on the ideal value. This could take a similar

form to one of the many optimization techniques that begins with a high learning

rate and gradually lower it over the course of training.

The n-gram maximum likelihood loss introduced in Chapter 6 allowed our ASR

model to learn which subword units to use for ASR out of a large initial subword

vocabulary. However, our sampling procedure, in which we sample uniformly from

this vocabulary 20% of the time even at the end of training, will still expose the model
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to units it has chosen not to use. This technique could likely benefit from a pruning

procedure that would allow the model to focus on the acoustically-inspired subword

units.

The simplicity of subword regularization and subword discovery should make them

easy to combine with almost any end-to-end ASR architecture. We have already pub-

lished a modified CTC beam search decoding algorithm for use with subword regu-

larization (Drexler and Glass, 2019b). Another possible architecture to investigate is

transformer models (Vaswani et al., 2017). We saw that subword regularization and

subword discovery both combine effectively with our semi-supervised ASR models. It

could potentially be fruitful to combine either technique with existing multi-task or

multilingual models for low-resource ASR.

An alternative direction to take the n-gram maximum likelihood loss is to explore

its use in HMM-based ASR models. The subword inventory and statistical models

that we have learned here could be used as a substitute for a lexicon and pronunciation

dictionary in an HMM-based model. This could potentially make that architecture

more effective for languages in which a lexicon is not available.
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