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ABSTRACT

In this thesis, we study techniques of machine learning for media users who submitted movie
ratings to the MovieLens dataset --- a project inspired by Sky UK’s own business problems I
encountered during my internship there. It follows the “feature engineering” paradigm,
compared to the “deep learning” paradigm, through three stages: Feature Engineering,
Clustering and Recommendation, each being a classic machine learning problem. For each step,
I am introducing the common, relevant methods, along with my own designed models on top of
available tools and experiments on the MovieLens data on the Google Cloud Platform. Due to
the open-ended nature of all three problems, we don't have quantifiable conclusions on which
methods would prove the best; instead, presented here is some learning on the trade-offs and
suitability for these designs.
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Chapter 1

Introduction

1.1 Sky’s Problem: Promo Optimization

This thesis is generated as a result of my data science internship at Sky from 2020
February to 2020 August. Sky is the UK’s largest pay-TV broadcaster with 12.5 mil-
lion customers, as of 2018. [1] For a Sky viewer, a few minutes in an hour of TV
programming will be scheduled for promotions, or promos — they are the adver-
tisements for Sky’s own content materials, such as movies or sport events. These
promos have the potential to elevate the user’s engagement for programs. How-
ever, without knowing the audience and targeting the right viewers, these promos
may be ineffective when being shown to the uninterested people.

In the meantime, Sky has garnered two types of valuable data about its viewers:

e The detailed records of viewing activities (who watched what at what time)
combined with descriptive tags on the watched programs (such as genre);

e A detailed model of the viewer profiles. Each user is mapped into a mod-
eled profile, and each profile has more than 200 features (pieces of information
about the user, such as gender, age, and income level).

Then naturally we can ask this question: how can the available user data help
us design better (even individualized) promo schedules — at best, automatically
— and thus improve the user response rates and achieve the end goal of higher
profits? And this became the origin of my thesis work.

Why would this be important to Sky?

e Financial impact. A small fluctuation in user response rates can result in a
difference of millions of pounds in revenue. All the investment needed is a
machine learning pipeline and one or two engineers to monitor and update
the results.

e Operational model: data intelligence. The more fundamental impact is for
Sky to modify its operational model — from a manual-surveying, discretion-
based process of decision making, to be an automatic, systematic and data-
driven one. This promo problem is an example where data can be directly
leveraged for business decisions, with a high certainty of positive impact. And
in the future, this can become a more reliable and efficient model — a norm
— for data scientists to integrated as an essential part of the business process,
given the availability of user data (big data) and the rising demand for more
tailored user experiences.
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1.2 My Research Problem and the Thesis

Initially the research was conducted on Sky’s dataset of user activities, but due to
data confidentiality concerns, later I pivoted to focus my research on the classic
movie rating dataset, MovieLens. Two datasets share much of similarity — they
both record users” consumption of media content — but the difference is Movie-
Lens data also contains rating info, whereas Sky’s data contains the timing of each
viewing record. (MovieLens has “timestamp” columns, but that is the timing when
the user submitted the rating, rather than when watching the movie.) Due to data
confidentiality concerns, this thesis is based on only the MovieLens dataset.

But on both datasets, my research problem boils down to: what can we learn
about the media users given the data of their media consumption and ratings?

This is a classic data mining question — with open-ended goals. Below are a few
possibilities:

e Clustering. How can we divide the users into subgroups, each group consist-
ing of “similar” users by certain measure? And what are the salient features to
describe the users in each subgroup?

o Recommendation. Given a particular user (or a group of users), what other
unviewed movies (or TV programs) would be interesting? What should we
recommend, not just the directly interesting materials, but also the programs
the users don’t expect they would be interested in?

e Optimization. For the “promo optimization” project, knowledge about the
users is only an intermediate step, the end goal is to maximize revenue. So
taking into account factors like the “revenue potential” of the programs or the
restrictions of promo schedule slots, how would the knowledge of users result
in an optimal, individualized promo schedule?

There are two approaches to solve this problem. The first one is a “manual” ap-
proach — the feature engineering paradigm. Basically, it breaks the whole machine
learning pipeline into several stages and intermediate results. For our problem, we
can break them into these three stages:

o Feature Engineering. (Chapter Two.) Transforming the raw data into a set of
features for each individual user.

o Clustering. (Chapter Three.) Dividing the whole user set into cluster groups,
based on individual feature vectors.

¢ Recommendation. (Chapter Four.) Making movie recommendations based on
the clustering and individual information.

The other approach is the deep learning paradigm: we do only minimal data
processing before feeding the data into the neural network structure and training
the model to produce the end results. In our case, the end result is (or can be) movie
recommendations. The trade-off between the two approaches is: the first feature
engineering approach provides much more transparency and explainability, while
the deep learning approach is more automatic, leverages much of the complexity
within the neural network architecture’s capacity, and can discover data patterns
not discoverable or interpretable by humans. This will be explored briefly in the
concluding Chapter Five.
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1.3 Technical Complexities and Practical Concerns

During the first part of my research on Sky’s dataset, some technical challenges
emerged. (And these challenges were still relevant when I later turned to focus on
the MovieLens lens.) As it turned out, the research work was not just about solving
those research questions about the media users, it also contains many engineering
complexities.

Performance Engineering & Computation Efficiency. The amount of computa-
tion required is not trivial. For a single day, on average there are more than 70 mil-
lion viewing activity records (rows) for Sky’s UK viewership. Sky is using Google
Cloud Platform (GCP) as the computation power, but still I was required, as an engi-
neer, to design efficient code and computing approaches. One example is using SQL
directly, substituting computations processed by Pandas and Python, to increase
speed. There are techniques online for machine learning-oriented data processing
techniques. And there are GCP techniques to facilitate this. [2]

Building Efficient & Robust Systems. Another engineering concern was rele-
vant in the project — to build a system as efficient and robust as possible. How
do we design databases when a large amount of intermediate data is also gener-
ated? Can we design the system to be distributive, so that parallel computing can
be achieved? This was more of a concern for Sky’s dataset because of its sheer size.
However, the MovieLens dataset can comfortably resides on the GCP.

Deployment of Results. This is another piece of complexity about Sky’s dataset.
I partnered with and report to another department, Content Supply Chain, which
handles the business side of the problem. It is responsible for procuring and manag-
ing many sources of user data at Sky, and it collaborates with the data science group
to leverage data mining and ultimately roll out the promo schedules for Sky’s users.
My research also needs to take into account how to participate in the deployment
process — making it effective and cost-efficient.

Aside from these engineering complexities to make the system work, some other
practical concerns also emerged to make the system more aligned with business
needs:

Capturing Changes in User Behaviors. What the algorithm is trying to predict
and influence is human behaviors, and they may not be stable. How sensitive is our
algorithm’s ability to detect a shift in users’ preferences? Or for example, if a user’s
girlfriend moves into the house, can our system react to that quickly? Or if the user
simply is just tired of repetitions and looking for something new? One immediate
solution is to assign time-decaying weights, when compiling the user’s historical
profile, to emphasize recency. And how should we set the decaying rate? Or should
we design some other more sophisticated mechanisms to detect changes and discern
noises? Other related issues are seasonality (the user’s preferences may be recurring
and tied to some seasonal schedules, such as TV seasons and sport schedules) and
trends (for example, the coronavirus pandemic is leaving a huge cultural imprint).
Can the algorithm learn these “macro” factors? And possibly provide some “domain
adaptation” when the broader TV culture moves? These are questions to be explored
further for Sky’s dataset after this thesis.

Parameter-Setting by Human vs. Machine. The model I am designing is not a
cookie-cutter one, but one with many parameters involved responding to business
or engineering needs. A recurring theme is: how should they be determined, manu-
ally or by machine learning? An intuition is thatit’s helpful to have a framework first
with some pre-set parameters. And later in the experiment these parameters can be
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further developed through machine learning or some scientific-approach. The trade-
off is that human-set parameters are more immediately meaningful, or explainable,
and can directly reflect discretionary business strategies; the machine-learned pa-
rameters can be more aligned with data and but always have the risk of overfitting.
This plays out in every stage of the "feature engineering" paradigm, discussed in
Chapters 2, 3 and 4.

And now, we're ready to dive deep into the dataset this thesis is based on, the
MovieLens dataset, and start from the first stage of the "manual approach", feature
engineering.



Chapter 2

MovieLens Data and Feature
Engineering

2.1 The MovieLens Dataset

The MovieLens dataset was created in 1997 by GroupLens Research, a research lab
in the Department of Computer Science and Engineering at the University of Min-
nesota. On MovieLens, real-world people can rate movies they’'ve watched on a
5-star scale and use tags (generated by themselves) to describe those movies. The
version of the dataset I'm using was generated on November 21, 2019, containing
data provided by 162,541 users ever since January 09, 1995. [3] The dataset, with
multiple versions released since its creation, was widely used by research and in-
dustry — for example, in 2014, it had more than 140,000 downloads, and more than
7,500 references to “movielens” appeared in Google Scholar. [4] MovieLens is thus
one of the most classic data sources to study user movie preferences and machine-
generated movie recommendations, which is the primary goal of this research work.

The dataset can be divided into two parts. The first part, which I'm referring to
as “the base data”, contains genre labels (coarse categorizing information) for all the
available movies and all the movie ratings gathered from participating users. The
other part, “the tagging data”, includes more than 1K tag labels (fine categorizing
information) and the associations between these tags and the movies.

Below are the specifics (the numbers in square brackets represent the numbers of
data entries).

The base data:

o Users [162,541]. IDs range among 1, 2, ..., 162541.

e Movies [62,523]. Each movie has unique IDs and title names. For each movie,
one or more genres, like “Mystery” or “Fantasy”, are assigned — even if none
is assigned, the movie still has a placeholder genre, “(no genres listed)”. There
are 20 genres, including the placeholder.

e Ratings [25,000,095]. Ratings, provided from the users, are made on a 5-star
scale, with half-star increments (0.5 stars - 5.0 stars). Each rating entry also has
a timestamp denoting when it was collected.

The tagging data:
o Tags (genome-tags) [1,128]. IDs range among 1, 2, ..., 1128.

e User-provided taggings (tags) [1,093,360]. Similarly to ratings, these taggings
are provided by the users, to reflect users” own views on the movies. They
each have a timestamp. And these tagging entries are the original source of all
available tags.
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o Computer-generated taggings (genome-scores) [13,816 x 1,128]. The Grou-
pLens group did their own research and produced computer-generated tag-
gings for 13,816 movies — for each movie-tag pair, a score was produced to
measure their alighment — based on the original user-provided taggings.

For this and the three following chapters, our research will focus exclusively on
the base data.

2.2 Feature Engineering Overview

To utilize a machine learning algorithm, raw data usually can’t be directly fed as
input. Because

e The data is not organized or clean enough to conform to the algorithm’s spec-
ifications;

e The data’s original form is not suitable or optimal to most effectively represent
the information for that machine learning problem.

So to clean and wrangle the data and to design an optimal problem-oriented
form, we are in effect performing feature engineering. In a Forbes’ survey, data
scientists spend around 80% of the time on data preparation.

There isn’t a formula for every feature engineering problem. The techniques are
very specific to the bigger machine learning problem we are trying to solve — it’s
more like an art. For the following, I'm introducing some common techniques for
feature engineering; most of them are also discussed at this web post. [6]

The first part, cleaning the data, includes imputation and handling outliers.

Imputation is about dealing with the missing values. It is reasonable to omit
the data point altogether when it doesn’t have sufficient features (deleting rows),
or to exclude the feature when it only covers a small proportion of the data points
(deleting columns). A good threshold of data coverage would be 0.7. But when the
missing proportion is small enough, we can still use the data by filling in the missing
values ourselves — two common options are a default value (like zero) or an average
value (like the median).

For outliers, we usually would simply omit them when mining the pattern from
the dataset (because they would disproportionately sway the result), but it requires
work to detect the outliers. We can use statistical metrics (for example, percentiles
and standard deviation) to quickly determine whether a data point is an outlier, but
the best way is to sufficiently visualize the dataset and apply human judgment.

Next, I'm now going to introduce four common strategies to transform individ-
ual values into features: one-hot encoding, binning, log-transformation, and scal-
ing.

One-hot encoding is probably the most common encoding method. It trans-
forms a single categorical data value into a list of 0-or-1 values, one for each category,
denoting which category the data point belongs to.

The advantage of such encoding is that the information is split into a list of
boolean values or simple counts (e.g. the bag-of-words method), so that category
can be independently analyzed and no information is lost. But the obvious disad-
vantage is that it greatly increased the number of features and the representation
complexity.

Binning is about changing the granularity of the data — lumping more finely
defined data into broader categories. For example, integers from 0 to 100 can be
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FIGURE 2.1: One-hot encoding example.

binned into three categories: ‘low” (0-30), ‘medium’ (31-70) and ‘high’ (71-100). And
this can be applied to categorical data, too — for example, ethnicity “Chinese” to
be re-labeled as “East Asian”. The data becomes less granular and therefore more
regularized. And the trade-off is just that of regularization — we sacrifice precision
to prevent over-fitting.

Log-transformation is simple: just taking the log of the value, and its effect is to
“bend the curve” — the value’s fluctuation when it’s already very large won’t matter
as much as when the value is small. It places more sensitivity to smaller data than
larger data. To avoid situations like “no definition” or negative log values, we add 1
before the logarithm:

x — log(x +1).

Scaling is about controlling the data value’s range. There are two common tech-
niques, both are linear transformations. Normalization relocates the data, with the
minimum to be 0 and the maximum to be 1:

X — sz'n

Xnorm - .
Xmax - Xmin

And (z-score) standardization extracts the magnitude of deviation in regard to
the whole data set, so that the mean y is now 0 (balanced), and a change of one stan-
dard deviation ¢ in the original data x will result in a change of 1 in the standardized
value z:

2.3 My Design for the MovieLens Dataset

First, what is the problem we are trying to solve/answer? Our main concern is
to learn more about the users. And to start with the base data, it makes sense to
compile all the relevant records regarding each particular user into a single profile.
This is simple. We will have 4 columns:

e userld

e movields (list of movies that user has rated)

e ratings (a list, corresponding to each movie)

e genres (a list, each genre group corresponding to each movie)

And now our concern is to transform this profile into a list of features for that
particular user.
What can we do immediately? To compute some statistics first:
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userid  movields

27612 8810~912~648~4873~1099~4310~44191~27660~527~4105~48516~45210~5810~5291~6586~6754~3623~33162~3471~30810
~1584~2701~8529~1097~33794~45447~2010~4995~4979~2712~7153~34405~5507~2006~45730~783~435~2797~1073~4657
8~1748~858~145~4874~2959~1206~318~3052~7147~3189~1270~3863~5679~260~8665~4226~3638~5690~3624~1831~208~
1233~7099~4015~6934~3617~104~30825~1485~4993~480~50005~1907~293~1380~1779~3969~10~33166~8528~608~39183
~1275~6188~53125~2716~2985~45186~2396~1876~597~8376~3751~6297~296~2826~40278~4816~4369~173~1127~3988~2
539~457~46530~1215~27728~2115~27773~4018~45722~1320~4148~5782~8644~95~2161~33493~2455~4262~500~5574~64
40~594~30793~786~1251~2289~8641~4963~2657~48043~1682~1253~919~2648~34~6365~6264~2915~1580~5872~1356~58
81~1221~1917~37729~47~1923~3977~595~1947~1287~355~6863~46976~4299~41997~596~34048~1873~1201~5952~6323~

FIGURE 2.2: User ID and movie compilation.

ratings

3.5~4~4~4.5~4.5~2 5~3.5~4~4.5~4~4~3 5~3~4.5~3~3.5~1~4.5~5~4.5~4.5~1~1.5~4.5~4.5~1~4.5~5~4~3 5~l4~4 5~ ~3~2~4~
3~3.5~4~4~5~4.5~1~4.5~4 5~4.5~4.5~3~4~3~3.5~3.5~4~4.5~3~4~3.5~4.5~3~3.5~4~4.5~4 5~2.5~2 5~2~3~3~3~4~3 5~4~4.
5~4.5~3~3.5~3.5~4.5~4~3~4~3.5~4.5~3~3~3.5~4~3.5~4~4~3.5~2.5~2.5~3.5~3.5~3.5~3.5~4~2~3~4.5~3.5~4~4~2 S5~l4~l~3~
3.5~2.5~3.5~3~4~3.5~3~3~l4~l~l~l4~2 5~2 5~4~3 5~3.5~3.5~5~4~3.5~2 5~4~4.5~3.5~3.5~4.5~4~2~3~3.5~3.5~3.5~3.5~4~3.
5~4~4~3.5~3~3~2.5~3.5~3.5~4~3~3.5~3.5~3~4~4~4~4~4~4~4~3~3.5~3~3 5~d4~l~8 5~ 3.5~4~4~3.5~3.5~4.5~3~3.5~4~4~4,
5~3~4~4~4n3~3~4~3.5~3~3 5~3~4~3~3.5~4~3.5~3.5~3.5~2~2 . 5~4~4 5~ 5~h~l~nd 5~ 4~ 8 5~3 5~ h~d 5~ 8. 5~2~2 5~3~4 5~ 3~
3~3.5~4~3.5~3.5~4~3.5~4~4~3.5~3.5~3.5~4.5~2.5~3~3.5~3.5~4~3~4~3.5~3.5~3.5~3.5~3.5~4.5~4.5~4.5~3.5~3~3.5~2.5~4.5~
4~4.5~3~3~4~3.5~4~2 5~3~3 5~4~3.5~4~4~2~3~ 444~ 5~4~3 5~3 5~ 4~ 4~ 4~ 3 5~4~3 5~3~3.5~2.5~3.5~2.5~4~2.5~3.5~3.

FIGURE 2.3: Rating compilation.

e total _count. Total number of movies the user has rated.
e avg_rating. Average of the all the user’s ratings.

e cnt_Mystery, etc. A movie count for each of the 20 genres. Note that because
each movie can have multiple genre labels, the sum of all 20 numbers will
exceed the total count.

e avg_Mystery, etc. The average rating of all the user’s ratings that belong to
each particular genre.

Row userld total_count  avg_rating cnt_Mystery cnt_Fantasy cnt_Musical cnt_Documentary cnt_None

1 121015 86.0 3.5406976744186 7.0 6.0 1.0 1.0 0.0

FIGURE 2.4: User statistics: total_count, avg_rating, cnt_Genre.

Then can we directly use these statistics as features, to feed into the machine
learning pipeline? There are two main issues.

The first issue is the data range. total_count can range from 20 to several thou-
sands (the largest count is 32202) and this count dominantly determines the level
of other genre counts. The rating statistics will be no larger than 5. And when two
users’ lists of features are compared together, the count features will overshadow the
rating features. We can consider applying weights, but the same issue arises again:
when the weights scale down the count features of large values, they trivialize the
count features of small values.

The second issue is — even if these features share the same value range — the
meaning of each feature and whether it aligns with the problem we're trying to
solve. From the total count, we want to know if the user is a heavy rater or not,
rather than the exact number of ratings. For example, we can do: 20-100 is “low”,
101-500 is “medium”, and 501+ is “high”. But this approach breaks the continu-
ity into discrete categories — we can think about transforming the total count into
a continuous “index” suggesting the degree of the rater’s engagement. Similarly,
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avg_Mystery avg_Fantasy avg_Musical avg_Documentary avg_None

4.0 3.66666666666667 3.0 0.5 0.0

FIGURE 2.5: User statistics: avg_Genre.

what does an average rating mean — and what do we want to learn from it? We
may want to learn the rater’s preferences among different genres. And to cancel out
the “rating generosity” of the rater, we may also consider the difference between the
genre-specific average rating and the overall average rating.

Therefore we can use these statistics as a basis, and generate features that are
more range-regular and meaningful.

But before we proceed, there is another set of data we can utilize: the global
statistics. Specifically, the average (or mean) of counts and ratings.

stats_global

Schema Details Preview

Row row mean median
1 Documentary  1.98380101020666 0.0
2 None 0.163817129216628 0.0
3 Film_Noir 1.52101315975662 0.0
4 Musical 5.93236168105278 2.0

FIGURE 2.6: Global statistics: mean and median of the number of
rating belonging to each genre.

Then now we can further build the features to serve as input for the next ma-
chine learning stage: count_score, interest_score (for each genre), avg_rating, and
div_rating (for each genre).

The first feature, count_score, transforms the total_count into a real number in
[0,1], using user-set parameters: power and total_threshold:

power = 0.5
if total count > total threshold:
count_score =1
else:
count_score = (total_count / total_threshold) xx power

The first if-statement categorizes all raters whose number of ratings exceeds a
certain threshold to "fully engaged", with the count_score being 1. The else-statement
deals with the level of engagement for “partially engaged” raters and obviously
should increase with respect to the total_count. It should also be more sensitive to a
smaller total_count, therefore I used the power function with a power smaller than 1.
Note that this power, now set as 0.5, can be adjusted later to better suit the problem
and the data.
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FIGURE 2.7: Power functions with different powers. Taken from ref-
erence [12].

Then for each genre (with a genre_count), we compute 2 scores: in_score and
ex_score, and they are defined by the following formula — with user-set parameters:
in_power, ex_power and genre_threshold.

0.5
(genre_count / total_count) *x in_power

in_power
in_score

ex_power = 0.5
if genre_count >= genre_threshold:
ex_score =1
else:
ex_score = (genre_count / genre_threshold) *x ex_power

in_score represents the user’s preference towards this genre, compared to the
user’s other genre commitments. That’s the reason why we’re using the fraction
over the total_count, and for the same reason of “bending the curve”, we are using
the power function with a parametric power.

ex_score represents the user’s commitment in a more absolute sense. It uses the
same formula as the count_score, with parameters genre_threshold and ex_power.

in_weight = 0.5
ex_weight = 1 — in_weight
interest_score = (in_score x*x in_weight)*(ex_score xx ex_weight)

(Genre-specific) interest_score is the final product of these two scores — the
weighted geometric average of in_score and ex_score. Note that this pair of weights,
in_weight and ex_weight, can be arbitrarily distributed, but should have the sum
of 1.

avg_rating is the same statistic we have calculated before, the overall average
rating among all ratings the user submitted. And (genre-specific) div_rating is the
rating surplus (or deficiency) that that genre rating has, compared to the total aver-
age:
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div_rating = genre_rating — avg_rating

The count_score and interest_scores are defined strictly within the interval [0,
1]. And the ave_rating is among [0, 5]. And div_ratings will theoretically be within
[-5, 5], but will most likely be among (-1, 1).

Schema Details Preview

Row userld count_score int_Mystery int_Fantasy int_Musical int_Documentary
1 122866 0.294428605808196 0.394610191805376 0.209147663589187 0.273786973539035 0.0
2 155750 0.294428605808196 0.0 0.0 0.387193251179987 0.0

FIGURE 2.8: Features.

This way we have a list of features that are meaningful and generally evenly
bounded. They also utilize most of the information from the statistics. And for
those parameters, we can set them in relation to the global statistics. For example:

total_threshold 0.7 % avg_total_count
genre_threshold = 0.7 x avg_genre_count

The effectiveness of these features can be evaluated based on the effectiveness of
downstream results, because features are to be designed for the following machine
learning steps. That opens the next chapter: Clustering.
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Chapter 3

Clustering

3.1 Common Clustering Methods

The goal of clustering is to divide the data sample into groups, such that:
e The data points within the same group should be similar,
¢ And the data points belonging to different groups should be dissimilar.

Of course, here similarity is something to be specifically defined — and based on
different similarity measures we should have different clustering results. Another
factor of clustering is the number of clusters. This, in different algorithms, can be
either specified beforehand or produced as the algorithm’s result.

Why is clustering relevant to our problem — to understand media users? Because
we do not just want to know everything about individual users (and this is usually
practically impossible). We also want to learn how the users form groups among
themselves and the characterization of these groups. This grouping can serve as
valuable information for the marketing staff, as they can target individuals with just
the traits of their membership group (focus groups), with the complexity substan-
tially reduced. (For example, they can recommend movies!) Another benefit for
performing clustering is that the associations to similar users and cluster groups
are another kind of information, something potentially useful in analyzing the user
himself/herself.

Clustering is a classic unsupervised learning problem, with so many approaches
theoretically available. Here I'm introducing some of them most relevant to our
research context.

3.1.1 K-Means Clustering

This is probably the most commonly used method. [7] The nice thing about K-Means
is its simplicity and computation efficiency. Note that the user needs to predetermine
the number of clusters (K) before the algorithm starts.

Each cluster group has a “cluster center”. The algorithm reiterates these two
steps:

e Re-centering: for each cluster group, update the cluster center as the average
of its members. (For the beginning iteration, we can assign the K cluster centers
either randomly, or arbitrarily by a default fashion. This is called seeding.)

e Re-assigning: reassign the associations between data points and the cluster
centers (thus their cluster groups) — each data point now belongs to its closest
cluster center.
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In the end the K cluster centers should converge — either move only minimally
below a certain threshold, or stay put. Note that if the clustering associations don’t
change after one iteration of the two steps, they will forever stay the same.

Aside from the requirement of determining the cluster number K beforehand,
the procedure can also be sensitive to outliers.

outher

outher

e

{B): Ideal clusters

FIGURE 3.1: K-Means: sensitivity to outliers. Taken from reference

[8].

3.1.2 Hierarchical Clustering

Hierarchical clustering [8] is about performing clustering step by step, each step’s
result is built on the previous step’s. These results eventually form a "hierarchy",
and the final clustering will emerge as one intermediate result.

There are two kinds of hierarchical clustering: the divisive approach (top-down)
and the agglomerative approach (bottom-up).

FIGURE 3.2: A hierarchical clustering approach: divisive. Taken from
reference [8].

Specifically, in the divisive approach, starting from all data members being in
one single group, each step takes a division — to break an existing cluster group
in half. Usually it would be the "widest present gap", however it is defined. For a
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group of N members, it will take N — 1 steps to produce N groups of isolated single
members, i.e. the hierarchical tree will have N — 1 parent nodes.

The agglomerative approach does the opposite — it starts from N groups (N iso-
lated data members) and, at each step, it combines two existing groups, until finally
after N — 1 steps, the entire data sample is grouped into one cluster. It makes sense
that at each step we combine the "closest two groups" together, based on certain
definition.

Obviously in both approaches, the beginning and end states — all members be-
longing to the same cluster or each member consisting its own cluster — wouldn’t
be useful clustering. A good clustering would a step in the middle, and this can be
determined after the hierarchy has been formed.

With proper definitions of "widest gap" and two "closest groups", both approaches
can be deterministic, but the agglomerative approach generally takes less time, as it,
at each step, compares all pairwise distances among the clusters (at most), whereas
the divisive approach needs to consider all possible partitions of every cluster at
each step.

3.1.3 Fuzzy Clustering

This is a generalization of the K-Mean algorithm. In K-means, there are K cluster
centers, and at all times, each data point is associated with one and only one cluster
center. In Fuzzy Clustering, we still have K cluster centers (with a predetermined
K), but each data point can belong to all K clusters, with a set of K weights of its own
prescribing the degree of association.

Specifically, we have a data sample {x1, x2, ..., X, }, and the algorithm starts, like-
wise, with K cluster centers {c1, 2, ..., cx}. We use a weight matrix

W=w;€0,1], i=12,...,n, j=12,...,K

where w;; describes the degree of association between element x; and center c;.
(We always have Yjwij=1 for any element x;.)
In addition, we have a weight degree m, also pre-determined, similar to K.
The algorithm still iterates between two steps, re-assigning and re-centering,
but at each step it aims to minimize the following objective function:
n K
Y ) wifllxi —gl”

i=1j=1

As aresult, for the re-assigning step, the weights w;; will be determined as (using
the Lagrange multiplier method)

1

Wij = =\ 2"
! ] —

Lk ()

It’s easily verifiable that ZJK 1 wij = 1 holds for any i.
And for the re-centering step, the cluster centers ¢; will be determined as

Y Wi

- )
i=1 Wij
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In the end, when both the weights w;; and the cluster centers ¢; converge (move
below a certain threshold), we’ve produced a stable fuzzy clustering.

We can now see that the K-Means algorithm is only a special case, where the
weights are taken from two values {0, 1}, whereas in the general case of Fuzzy Clus-
tering weights can be any real numbers in the internal [0, 1].

3.2 My Design for Clustering

In my own experiment, I used simply the K-means algorithm, supplied by the scikit-
learn platform. It requires two parameters: number of cluster centers (n_clusters)
and an integer specifying the randomness for the initiation of cluster centers (ran-
dom_state). I randomly selected 10000 users for this cluster analysis, and I set the
cluster number to be 50. And I set the random_state to be 0.

As a result, we have 50 centroids of the 10000 user features, numbered as 1, 2, ...,
50. And each user is labeled with a centroid ID.

KMeans_cluster_features @ QUERY TABLE 3 SHARE TABLE I0) COPY TABLE W DELETE

Schema Details Preview

centerld  count_score int_Mystery int_Fantasy int_Musical int_Documentary int_None int_Adventure
20 0.504634849039128  0.392216886881234  0.281608651081901  0.0971386281247067  0.00983544636125031 1.21430643318376e-17 0.482690145490518
39 0.473749385169739  0.411695052370286  0.261199775346637  0.169201531969611 0.359225979505543  1.21430643318376e-17 0.317322481479671

44 0.331014529652519  0.291143288853989  0.281890198671903 0.268849455372066 0.0105927770272256 -3.64291929955129¢-17 0.434758728903201

FIGURE 3.3: K-Means results: centroids of user features.

KMeans_labels

Schema Details Preview

Row userld centerld

1 72421 0
2 24919 0
3 68571 0
4 125114 0

FIGURE 3.4: K-Means results: associations between users and cen-
troids/clusters.

Note that we are performing clustering on the features of users, rather than the
direct representations of users (in our case it’s the first-round statistics, used to gen-
erate features afterwards). More specifically, for user representation x, his feature
is f(x). After performing K-Means on features like f(x), we can have clusters (for
example: cluster C containing that user, x € C), and we have K-Means centroids,
such as c(f(x)). But this is not necessarily the feature of the cluster center of C:

c(f(x)) # f(center(C))

So to get the centers of clusters, the right procedure should be to recalculate the
centers center(C) once we have the cluster groupings, instead of translating back
from the feature centroids: f~!(c(f(x))). So we can now do this because we have
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the cluster associations (the labels), and the cluster center would just be the mean of
all the cluster members.

KMeans_centers @ QUERY TABLE @ SHARE TABLE 1G] COPY TABLE

Schema Details Preview

centerld user_count user_proportions  total_count avg_rating cnt_Mystery cnt_Fantasy cnt_Musical cnt_Documentary
1 245 0.0245 25.3591836734694 3.60477252497399  2.98775510204082  2.31836734693878 1.12244897959184  0.0204081632653061
3 231 0.0231 42.8874458874459 3.66425727778298  3.21212121212121  1.74025974025974  0.294372294372294  0.0909090909090909
9 235 0.0235 41.6425531914894 3.58574046924415  3.32340425531915  3.49787234042553 1.18297872340426 0.131914893617021
1 180 0.018 35.5 3.72349290442163  2.40555555555556 23 0. 0.C

FIGURE 3.5: Cluster centers recalculated after cluster grouping is de-
termined.

This way the cluster centers and the user representations are of the same form.
And the next question would be how to measure the distances — between the users or
between the user and his cluster center?

A direct idea would be just the Euclidean distance, to calculate the differences be-
tween corresponding coefficients and to accumulate them by summing the squares
of the differences and taking the squared root. The issue with this approach is that
each coefficient, each category, means a different thing. And we need to apply differ-
ent weights before taking the Euclidean norm. Below are the weights I chose:

WEIGHT CNT = 3.0
WEIGHT_INT 1.0
WEIGHT DIV = 0.1

def feature_weight(feature):
if feature == ’“count_score’:
return WEIGHT CNT
elif feature.startswith(’int”):
return WEIGHT INT
elif feature.startswith(’div’):
return WEIGHT_DIV

WEIGHTS = [feature_weight(feature) for feature in FEATS_LIST]

Then we have the following distances calculated, between each user and the cor-
responding cluster center. Note that only the "distance" column is the final weighted
distance, other columns show the individual differences.

KMeans_distances @ QUERY TABLE @ SHARE TABLE I COPY TABLE @ DELETE TABLE

Schema Details Preview

Row userld centerld  distance count_score int_Mystery int_Fantasy int_Musical int_Documentary int_None

1 72421 0 0.383481214135188 0.012748560791012  0.028953439852288 0.053422572932057 -0.0108538720687856 -0.0118281620620034 -0.0110581698544939
2 24919 0 0.30797582910594 0.012748560791012  0.117331842334237  0.00718401739233099 -0.0108538720687856 -0.0118281620620034 -0.0110581698544939
3 68571 0 0.397322296454869 0.012748560791012  0.028953439852288 -0.188685647055349 -0.0108538720687856 -0.0118281620620034 -0.0110581698544939

FIGURE 3.6: Distances between each user and the corresponding clus-
ter center.

difference = user_score — center_score

And then we should ask: is this clustering good?
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3.3 Evaluation of Clustering

The evaluation of clustering is not a trivial problem, as the goals of clustering are
quite qualitative: the intra-cluster elements should be similar/close, while the inter-
cluster elements should be different/far apart. And in our problem, the data points
don’t have "natural" labels — given two data points, we don’t know if they should

be grouped together or not, without pre-existing labels/categories.

If such labels do exist, i.e. the data sample is partitioned into classes C = {c1, ¢, . .

.,C]},

and the clustering divides the data sample into another partition QO = {w1, wo, ..., wk},

we have some statistics to measure up the effectiveness of clustering. The methods

below are selected from the section "Evaluation of clustering" from book [10].

cluster 1 cluster 2 cluster 3

» Figure 16.1 Purity as an external evaluation criterion for cluster quality. Majority
class and number of members of the majority class for the three clusters are: x, 5 (cluster
1); o, 4 (cluster 2); and o, 3 (cluster 3). Purity is (1/17) x (5+4 +3) ~ 0.71.

FIGURE 3.7: Purity for data with pre-existing classes. Taken from
reference [10].

Purity. Each cluster is labeled as its most prevalent class, and purity is the
proportion of data points being correctly labeled by its cluster: (N is the size of
data sample)

1
purity(Q),C) = N Zm]ax |lwi N ejl.
k

Normalized Mutual Information. NMI is an information-theoretically based
measure: (I is mutual information, and H is entropy)

1(Q);C)

NMI(Q,C) = (H(Q) + H(C))/2

The Rand Index. We want to assign two data points into the same cluster if
and only if they share the same label ("the ideal criterion"). Given any two
data points, positive/negative denotes whether or not they belong to the same
cluster, true/false denotes whether they satisfy the ideal criterion. Then the
pair belongs to one of the four groups: TP, TN, FP and FN. The Rand Index is
the proportion of the "true" pairs:

TP + TN
RI(Q) = .
(@,C) TP + TN + FP + FN

The F Measure. The F Measure (Fg) is a weighted average of precision (P) and
recall (R), determined by a parameter > 1:
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TP

P=_—,
TP + FP

TP

R= o,
TP + FN

Fp(Q,C) =

(B*+1)P-R

B°P+R

Then what about our case, where the class labels C don’t exist, and we can only

measure the distances among data points (users) and cluster centers?

We can propose two measures, corresponding to the original goals of clustering:

e Cluster Radius. Within a cluster, we calculate the distances between the users
and the cluster center. The radius can be the root mean square of all the dis-
tances (This more heavily penalizes the large distances).

o Inter-Cluster Distances. Between clusters, we calculate the distances between
pairs of cluster centers. And eventually we can calculate, from each cluster
center, the minimal distance to any other cluster centers, and the overall inter-
cluster distance (some average of the minimal distances).

3.4 Results of Evaluation

KMeans_cluster_radius

Schema

Row

1

10

11

12

13

14

15

16
17

Details

centerld

41

12

7

49

24

21

37

48

14

19

36

4

44

42

35

26
8

Preview

cluster_size
257
258
260
261
275
280
281
294
61
65
83
340
342
87
122
124
132

max_distance
0.864121252695251
0.816495274416941
0.745110755203241
0.792588861908089
0.747400835255139
0.795043968294745
0.70790051874277
0.810113804064077
1.06675161494184
1.05175063538898
0.917006066793975
0.696856575602807
0.761515368960803
0.877983971176066
0.87552496555714
0.791328421126689

0.819333265157557

ave_distance
0.483766684550974
0.489677561006525
0.381434452874822
0.427848747231632
0.43978072801259
0.455227051896281
0.493912456491646
0.479988092720647
0.697535355453477
0.632807166860715
0.576574581723035
0.437939482766665
0.389620451620545
0.571260825428907
0.580004253566291
0.521952877938059

0.514209409340074

FIGURE 3.8: Cluster radiuses: distances within clusters

I used the aforementioned weighted distance to measure the difference between
two feature rows (users or clusters), for 10000 users and, after using K-Means pro-
vided by scikit-learn, 50 clusters. The table above shows a sample — within each
cluster, the maximum user distance from the cluster center and the cluster radius
(average user distance, taken by the root mean square).
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3.5 Interpretation of Clusters

After we’'ve done with clustering, one question is to interpret the clusters. What do
the data points in the same cluster have in common? This can be simple statistics, or
some further construction.

cluster_interpret @ QUERY TABLE B SHARE TABLE I0) COPY TABLE ‘B DELETE TABLE ity EXPORT w

Schema Details Preview

Row center_index user_percentage user_count top_genres top_genre_scores

1 24 2.0 197.0 [Action','Drama), ‘Thriller', 'Adventure', 'Crime’, 'Sci_Fi', 'Comedy', 'Mystery] [0.5,0.45,0.43,0.28, 0.27,0.24,0.19, 0.1]

2 8 2.0 204.0 [Drama','Comedy’,'Romance', 'Thriller', 'Crime’] [0.63, 0.49,0.32,0.13,0.13]

3 25 20 198.0 [Comedy', 'Drama’,'Romance’, 'Thriller, 'Action’, 'Adventure’, 'Crime’] [0.57,0.39,0.22,0.19,0.18,0.15,0.14]

4 16 4.0 401.0 [Drama, 'Comedy','Romance, ‘Thriller', 'Crime', ‘Action!, ‘Adventure] [0.61,0.35,0.22,0.2,0.16,0.14,0.13]

5 21 4.0 404.0 [Drama, 'Comedy', ‘Thriller', 'Action’, 'Adventure','Romance', 'Crime', 'Sci_Fi', 'Mystery'] [0.56,0.28,0.27,0.24,0.2,0.19,0.18,0.17,0.1]

6 4 1.5 148.0 [Action', 'Sci_Fi', 'Thriller, 'Drama', 'Adventure’,'Comedy’, ‘Crime’, 'Horror','Mystery', 'Fantasy’] [0.46, 0.44,0.37,0.35,0.32,0.21,0.15,0.13,0.11,0.11]
7 0 2.9 286.0 [Drama),'Comedy', ‘Thriller', 'Crime’, ‘Action’, 'Romance', 'Adventure’, 'Mystery', 'Sci_Fi] [0.53,0.36,0.33,0.26,0.21,0.19, 0.14,0.11, 0.1]

8 10 0.6 61.0 [Horror!, 'Thriller', 'Drama!, 'Action’,'Comedy’, 'Sci_Fi', 'Adventure’,'Mystery', ‘Crime’, 'Fantasy’] [0.59, 0.43,0.25,0.24,0.22,0.21,0.13,0.12,0.11,0.11]
9 45 0.6 65.0 [Sci_Fi', 'Action’, ‘Adventure', ‘Thriller’,'Drama','Comedy', 'Horror] [0.67,0.51, 0.38, 0.34, 0.26, 0.23, 0.13]

10 34 12 125.0 [Action', 'Thriller, 'Adventure','Comedy', 'Sci_Fi', 'Drama', 'Romance, 'Fantasy, 'Crime] [0.49,0.48,0.44,0.38,0.2,0.18,0.17,0.13,0.12]

11 22 1.2 124.0 [Comedy', 'Drama), 'Children’, 'Ad» ', ', 'Fantasy', ‘Animation’, ‘Action’, 'Musical', ‘Thriller] [0.51,0.34,0.32,0.32, 0.26, 0.22, 0.21,0.16, 0.16, 0.12]
12 38 1.2 123.0 [Comedy, Thriller', 'Adventure’, ‘Action’, 'Romance’, 'Drama’, 'Sci_Fi', 'Fantasy’, ‘Children [0.44,0.37, 0.34,0.34, 0.26, 0.25, 0.16, 0.14, 0.13]

FIGURE 3.9: Examples of clusters: their interpretation.

The table above shows my interpretation of the 50 clusters produced. It has the
number of its users and the user percentage, and also each cluster’s top genre inter-
ests, each characterized by a genre score.

Genre scores in this case are simple: just the frequency of the genre showing up in
the "cluster center"’s viewing record. (Note the cluster centers are not real users; they
are the average of its users, but, because they are of the same representation form as
the real users, they can be treated just like users.) Also, because each movie can have
multiple genre tags, after all the genre tags have been counted in the frequency, the
sum of these genre frequencies can be larger than 1.

In the above example, the top genres are selected when they have a score larger
than a genre threshold, set as 0.1 in this case.
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Chapter 4

Recommendations

4.1 Main Approaches of Recommender Systems

Now that we already have the clustering divisions, we can think about how to uti-
lize that information. One direct application is the recommender systems — rec-
ommending movies for users based on that user’s and all other people’s viewing
records. This is a classic machine learning problem, with much mature methods
available. From 2006 to 2009, Netflix held a competition for the best recommenda-
tion system using its own real user data, with the prize being 1 million dollars.

There are three main approaches to recommender systems: Content-Based, Col-
laborative Filtering, and Latent Factors. These methods are discussed in the Stan-
ford Course, Mining of Massive Datasets [11], while the following is my own sum-
marization.

Before we dive into the introduction, let’s frame the problem in a formal way:

Let X be the set of users, S the set of items (in our case, movies), K the set of
ratings, and we have a utility function r : X x S — K, denoting each user’s rating
for each item, and a utility matrix R = [r(x,i)],;. Some of values in R are present;
our job is to predict the missing values.

4.1.1 Content-Based Recommenders

This approach digs down into the content of both the items and the users. We build
profiles for them and then match the closest user-item pairs.

We first build item profiles, but what is a profile exactly? It would be a feature
vector, and each feature represents an descriptive aspect of the items. For example,
for movies, these features can be author, title, cast, staff, production year, etc. And
for text documents, the features can be counts of "important words", pre-determined
by the corpus content.

When we have these item profiles i, we can then build a profile x for each user
— to be an average of these items that the user has rated.

Intuitively, it shouldn’t be the simple mean, because not all items should mat-
ter the same. Then we can use again the weighted mean, with the weight being,
conveniently, the user’s rating for that item. Or the weight could be some further
processing of the rating. For example, the weight to be the deviation of that rating,
compared to the average level of users’ rating level.

Then with i and x available, how can we determine the compatibility, or similar-
ity? We can consider the following formula:

. . X1
u(x,i) = cos(x,i) = T

The cosine similarity can be used for prediction.
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The advantage for this content-based approach is that it can immediately deter-
mine the potential fondness towards a new item before it is rated by any user, and
that it provides an explanation for the prediction. The downside is — how do we
recommend for a new user? When he doesn’t have a viewing record and we can’t
build a profile for him. And this approach will solely base the recommendations on
the user’s viewing history, what he has already liked, without new possibilities to
discover new unknown interests.

4.1.2 Collaborative Filtering

Collaborative filtering uses parallel, similar records to predict missing ratings and
make new recommendations. It doesn’t need to decompose a single rating; instead,
it views them as atomic building blocks. Specifically, we have the utility matrix R
for all the user-item ratings, and to predict new ratings for user x (a row), we need to
tind other N similar users (rows) with respect to x and use this collection of records
to supply missing values in x’s row. Here N is a pre-determined parameter.

How do you define "similar"? Here are a few options:

e Jaccard Similarity. It simply counts the overlap of presence between two
users’ viewings, ignoring the ratings for them. For users x and y, the sets of
their rated items are X and Y, then their Jaccard similarity is

. |IXNY|
simj(x,y) = XoY|

Apparently, this omits some information, but in another sense, this omission
makes sense: the user may have the same amount of interest towards the items
he’s rated, regardless of the ratings.

e Cosine Similarity. If the two rows for users x and y in U are r, and r,, then

Yx'?'y

Sifcos (X, ) = cos(rx, T’y) - W
x y

For the missing values we fill in zeros.

The issue is that the missing values have even more of negative impact than the
low-rated items — if the two users only share a small overlap of rated items.

e Pearson Correlation Coefficient. This is the most comprehensive design of the
three. For users x and y, we have r, and r, to be their matrix rows, 7, and 7,
to be their rating average, and C to be the set of common items they have both
rated. Then we transform the two rating rows r, and r,: #, only includes all
the ratings of r, for items in the set C, but for each rating r, ; we modify it as:

Txi=Txi—Tx

Then we have new (shortened) rating rows 7, and 7,. Then the Pearson Corre-
lation Coefficient similarity would be:

?x'?y

Si?ﬂpcc(x,y) = COS(?x,TA’y) = W
x y
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This design eliminates the influence of missing values and also is adjusted
according to the levels of rating generosity of the users.

So now when we have the definition of similarity, for each user x and item i,
we can find the N neighbors closest to u who have rated item i. We define these
neighbor users form a set N(x,i). The last question becomes: how to synthesize all
of the neighbors’ ratings for rating prediction 7, ;?

Again there are two options are available: we can find the simple average of
these neighbors or the weighted average with the similarities we calculated being
the weights.

The interesting thing about collaborative filtering is that the two dimensions of
the utility matrix, "user" and "item", are symmetrical. We can calculate similarity
between users, so can we perform the same analysis between items. And in fact,
usually, this actually works better — two items are more easily similar than two
users on the utility matrix. Because users may be commonly interested in the same
item, but they may have different compositions of interests, so it’s harder to find two
users similar as a whole.

And we can also have some more nuanced adjustment to the synthesis step, aside
from adopting the item-item similarity approach.

For each user-item pair (x, i), we can at first calculate a baseline rating b, ; (even
if the rating r, ; is present):

bx,z' = ]1+bx + b,

where y is the overall average of all ratings, by is the deviance of user x (the dif-
ference between his average rating over the total average, by = 7, — u), and b; is the
deviance of item i, similarly defined.

And then we can use the item-item collaborative filtering to add adjustment:

YieN(ix) Sij(Txi — bxj)
YjeN(iyx) Sij

Txi = bx,i +

7

where N (i, x) is a set of N items most similar to i among the rated items of x, and
sij is item-item similarity.

If there aren’t enough similar items in user x’s rating history, we can switch back
to the user-user collaborative filtering pattern.

Compared to content-based approach, the collaborative filter approach doesn’t
need to understand deeper into "why" users would like items, or it is particularly
useful when the innate content analysis cannot generate enough information to make
nuanced recommendations. But this approach heavily depends on the density of
the utility matrix, so for users with very unique taste or unpopular items, or for
new users and newly introduced items, it can be very hard to apply collaborative
filtering.

And maybe in those cases, we can go back to the content-based recommen-
dations. Or to design a model to combine the two recommendations together —
content-based approach’s cosine similarity and collaborative filtering’s predicted
rating can be two quantifying scores to be combined together.
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4.1.3 Latent Factors

The “Latent Factors” approach tries to decompose the utility matrix R into two ma-
trices P and Q:
R=Q-Pl.

But what does this mean? And how would it be helpful?

P is a factorization of items, and Q is a factorization of users. Similar to the
content-based approach, "factors" are just features describing the items and users,
except that they also need to "work together" and satisfy a hypothesis — the de-
composition of ratings:

Yxi={x" PZT == Z qx,fpi,f
feF

where, R = [ry|rexics is our utility matrix, F is the set of factors, and P =

[pilies = [piflies,fer and Q = [qx]xex = [qx flxex, fer are the factorization matrices
for items and users.

users factors
1 3 5 5 4 T2
Gila 7 BIEE -5 |6 |5 users
[7)] -
cl23 ala 5 nEIE 203 |5 1M -2 (|3 [5 |2 |-5 |8 |[-4 |3 |14 |24 g
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) 21 |-4 |6 |17 |24 |9 [-3 |4 |8 |7 |-68| W
4| 3| 4|2 2|5 E -7 |21 | -2
1 3 3 2 4 D1 |7 |3 PT

R Q

FIGURE 4.1: Decomposition of the utility matrix. Taken from refer-

ence [11].
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FIGURE 4.2: Example: two factors for movie items. Taken from refer-
ence [11].
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The usefulness is that if we can use the present values in R to determine P and
Q according to the hypothesis equation, then by Q - PT = R we can map out the full
R, thus predicting the missing ratings in R.

And we can transform this problem into an optimization one:

P,Q=argmin, Y (qx-p/ —ri)* (P = [pilics,Q = [4x)xex)

Txi ER

The issue, of course, is over-fitting, as the matrix factorization can be very sen-
sitive to the outlier rating values. So to add regularization, it’s more reasonable to
minimize:

P,Q = argminy o Y (qx-pl —rei)* + Ml|pil P + Aallgx] >

i’x’iGR

And how to achieve this? One option is stochastic gradient descent.

The vulnerability of thus approach is the hypothesis, obviously. It assumes the
innate decomposition of ratings, but if this linear structure is completely senseless
with regard to our data, the "decomposition” can be nothing more than misleading.
It requires extensive testing to confirm validity.

4.2 My Design and Experiments
I'went along with the content-based approach, except I'm recommending movies for
the clusters, instead of individual users. This has a benefit — it combines the interest

of similar users, instead of one user alone.

cluster_recs

Schema Details Preview

Row centerld movield affinity title genres
1 18.0 154676 0.78 Dad (2010) Drama
2 18.0 173875 0.78 AWOL (2016) Drama
3 18.0 117452 0.78 Tied (2013) Drama
4 18.0 88321 0.78 Betty (1992) Drama
5 18.0 137351 0.78 Fiona (1998) Drama
6 18.0 121362 0.78 Oviri (1986) Drama
7 18.0 86583 0.78 Storm (2009) Drama
8 18.0 4762 0.78 Djomeh (2000) Drama
9 18.0 5318 0.78 Joshua (2002) Drama
10 18.0 153046 0.78 Page 3 (2005) Drama
11 18.0 156377 0.78 Strays (1997) Drama

FIGURE 4.3: Recommendations for clusters.

Specifically, for 50 clusters, I selected 1000 movies randomly, and designed an
affinity score that characterizes the alignment between movies and clusters to make
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these recommendation decisions — the method "rec_decision" takes in a feature row
of cluster center and one of a movie and return a boolean (whether to recommend)
and an affinity score (how strong is this recommendation):

def rec_decision (center_row , movie_row):
# some code to extract the top genre scores of clusters
movie_genre_scores = pass

interesting = False
for score in movie_genre_scores:
if score >= GENRE_THRESHOLD:

interesting = True
if interesting:
affinity = sum(movie_genre_scores)

if affinity >= AFFINITY_THRESHOLD:
return True, affinity
else:
return False, affinity
else:
return False, 0

Two parameters, "GENRE_THRESHOLD" and "AFFINITY_THRESHOLD", are
preset and adjustable, for this decision making. They were set as 0.10 and 0.70,
respectively, in this experiment.

The "AFFINITY_THRESHOLD" serves more like a filter — only selecting the
movies that reaches this affinity score, whereas the "GENRE_THRESHOLD" is more
influential in the affinity calculation. "GENRE_THRESHOLD" is meant to be a noise
filter — only those significant genre interest would be counted in the affinity scoring,
excluding the low score points. And with "AFFINITY_THRESHOLD" being 0.70,
there were 10094 movie-cluster pairs recommended out of 50000 possible pairs. The
top affinity score was 2.46. Even though more than 20% of selected pairs are selected,
for each cluster we can still pick just a few with the topmost affinity scores.

This approach has a bias, that is: when a movie is tagged with multiple genres,
it is more likely to be recommended than movies with a single genre. And in reality
maybe it sometimes should be put as less a priority? For example, if a user likes
to watch sports, a movie solely categorized as sports content may be more interest-
ing to that user, than a movie is relevant to sports but also to many other topics.
So it is more complicated than a ready solution: normalizing each movie’s "genre
contribution" to be the same. Because in one scenario, a multi-faceted movie can
appeal to many different types of users, but in another one, that movie may feel less
concentrated and would not exert a high impact on relevant users.

A different approach is collaborative filtering, apparently. It would be more
focused, as the "similar collaborators" would only watch a small number from the
movie pool. But it would make bring all the limitations of collaborative filtering, as
we have discussed — specifically, for users with limited viewing records.

So a combined approach can eventually be a better solution — to use clustering
as collaborative filtering groups (or to perform the original similarity search), and
within the repertoire of all the viewings in a cluster, use the content-based approach
to select recommendations for users according to their individual taste/history.
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Chapter 5

Conclusion

5.1 Wrapping Up: the Feature Engineering Paradigm

What’s so common about the three stages — Feature Engineering, Clustering, Rec-
ommendations — is that all three stages are quite open-ended, unsupervised learn-
ing problems. (Maybe except for Recommendations, we can hide away some ratings
as the test set and use the rest for training, but in real business cases, such ratings are
quite hard to collect and often irrelevant; the vast pool of recommendable options
makes it resemble more an unsupervised learning issue.) How to address this nature
of these problems?

One aspect is to make sure the methods we use make sense, i.e. there is some
rationale aligned with our data mining goals and data realities under the mathe-
matical/engineering designs of the model. When designing features, not only do
we care about the technical compatibility of these features, we also care about what
these features mean — the meaning determines their design and their usefulness. The
same story goes with Clustering — what do these users clustered together have in
common? Are they really similar? What are the clusters used for? And with Rec-
ommendations — why are we recommending items to users? Because we have cer-
tain marketing goals, want to help users discover new tastes, or just reinforce users’
strongest interests? These are not just technical problems, e.g. looking for the best,
most complex algorithm to optimize a numerical metric — they require the algo-
rithms to be understandable and, in many cases, flexible for changes. This is why
many methods presented are no more complicated than some high school math, but
when applied appropriately, they can produce good results.

Another aspect is iterative revisions, to make sure the model works well with
the reality, even if we think we have understood all the reasoning behind the model.
Because ultimately, these rationales are no more than hypotheses (for example, the
Latent Factor method in Chapter 4). Sky’s data then has a natural advantage in
this aspect, because they constantly collect users’ current viewing activities, whereas
some MovieLens data was collected more than a decade ago, and its reliability to re-
flect the users’ taste is questionable. For Sky, they can initially set up a simple, crude
model, but if they have frequent data updates and analysis, this iteration probably
will provide insights no less than the thoughts put in the initial design. They can
build the model iteratively.

5.2 An Alternative: the Deep Learning Paradigm

An alternative approach, mentioned in the beginning chapter, is the Deep Learning
Paradigm. This approach only does minimal data processing and delegate the end-
to-end hard work (for example, from raw ratings to recommendations) to the neural
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net architecture. It has the potential to discover unexpected, or unexpressible, data
patterns and can be more convenient and computationally powerful. But the trade-
off is the explanability — the deep learning approach is far more opaque — and
thus this may make the approach less reliable. As a consequence, we need extensive
testing before deploying such a deep learning model.

5.3 Looking Ahead: User Habits

Much of the thesis deals with the problem of user tastes, i.e. what content do
users like or take an interest in? But another dimension of data would be timing,
which corresponds to the problem of user habits — how do they spend time in
their viewings? Are there correlations between timing and genre, habit and taste?
Like the genre tags, what do the timing records say about the users? Sky’s data
is uniquely positioned to address this, given it has the start time of each customer
activity. MovieLens data, however, can’t provide much more information on users’
viewing habits, as the timestamps are of when users submitted the ratings, rather than
watched the movies.



29

Appendix A
Bibliography

1. Sky UK. https:/ /en.wikipedia.org/wiki/Sky_UK

2. Data preprocessing for machine learning: options and recommendations.
https:/ /cloud.google.com/solutions/machine-learning /data-preprocessing-for-
ml-with-tf-transform-pt1

3. MovieLens 25M Dataset. https:/ /grouplens.org/datasets/movielens/25m/

4. F.Maxwell Harper, and Joseph A. Konstan. The MovieLens Datasets: History and
Context. ACM Transactions on Interactive Intelligent Systems, December 2015,
Article No.: 19. https:/ /doi.org/10.1145/2827872

5. Jesse Vig, Shilad Sen, and John Riedl. 2012. The Tug Genome: Encoding Commu-
nity Knowledge to Support Novel Interaction. ACM Trans. Interact. Intell. Syst. 2,
3: 13:1-13:44. https:/ /doi.org/10.1145/2362394.2362395

6. Emre Rengberoglu. Fundamental Techniques of Feature Engineering for Machine
Learning. https:/ /towardsdatascience.com/feature-engineering-for-machine-
learning-3a5e293a5114

7. k-means clustering. https:/ /en.wikipedia.org/wiki/K-means_clustering

8. Shimon Ullman, Tomaso Poggio, Danny Harari, Daneil Zysman, and Darren
Seibert. Unsupervised Learning: Clustering.

http:/ /www.mit.edu/ 9.54/fall14/slides /Class13.pdf

9. Fuzzy clustering. https:/ /en.wikipedia.org/wiki/Fuzzy_clustering: :text=Fuzzy
%20clustering %20(also%20referred %20to,t0%20more%20than%20one%20cluster.

10. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduc-
tion to Information Retrieval. Cambridge University Press. 2008.

11. Jure Leskovec, Anand Rajaraman, and Jeff Ullman. Mining of Massive Datasets.
http:/ /www.mmds.org/

12. http:/ /www.biology.arizona.edu/biomath/tutorials/Power/GraphingPowerFunctions.html



	Acknowledgements
	Introduction
	Sky's Problem: Promo Optimization
	My Research Problem and the Thesis
	Technical Complexities and Practical Concerns

	MovieLens Data and Feature Engineering
	The MovieLens Dataset
	Feature Engineering Overview
	My Design for the MovieLens Dataset

	Clustering
	Common Clustering Methods
	K-Means Clustering
	Hierarchical Clustering
	Fuzzy Clustering

	My Design for Clustering
	Evaluation of Clustering
	Results of Evaluation
	Interpretation of Clusters

	Recommendations
	Main Approaches of Recommender Systems
	Content-Based Recommenders
	Collaborative Filtering
	Latent Factors

	My Design and Experiments

	Conclusion
	Wrapping Up: the Feature Engineering Paradigm
	An Alternative: the Deep Learning Paradigm
	Looking Ahead: User Habits

	Bibliography

