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Abstract
Multivalent binding is commonly used throughout biology to create strong, conformal bonds
using multiple weak binding interactions simultaneously. Bonds are considered multivalent
when multiple ligands on one species simultaneously bind to multiple receptors on another
species. Together, this bond can be much stronger than the sum of its parts. Throughout
this thesis, we use theory and coarse-grain Brownian dynamics simulations with specific
reactive-binding to explore general characteristics of multivalent polymer interactions. Our
simulations bridge length and timescales and can sample large polymer systems that bind
targets at the sub-nanometer lengthscale. While the simulation and theory presented is very
general and can be applied to many different systems of multivalent polymers, this thesis
specifically explores consequences for two applications: multivalent polymers as decoys to
inhibit infection and polymers as scaffolds for biocondensates.

Many pathogens use multivalent bonds to attach to our cell surfaces before entering and
causing infection. Therefore, there is significant interest in preventing infection from viruses,
bacteria, and toxic proteins by inhibiting this attachment step using multivalent decoys.
There have been many experiments showing successful binding of long polymers or other
large multivalent architectures to colloids or small proteins that pathogens use to bind to
our cells. While these experiments have shown how promising multivalent inhibitors are for
preventing infection, a theoretical understanding of why design parameters of multivalent
polymers result in a particular binding affinity is still missing. Simulations can easily isolate
a single design parameter to provide direct links between structure and function, when
experiments cannot always do so. This research is intended to provide a systematic study
linking structure of multivalent polymers to their binding behavior.

In the first half of this thesis, we explore design properties of polymeric binders and how
degree of polymerization, solvent quality, binding site affinity patterns, backbone stiffness,
and target concentration change the multivalent binding affinity. We provide simple theory
to show that multivalent polymers are limited by their ability and the energetic costs of
forming polymer loops. We go on to show how these results and theory have implications on
the binding affinity of polymers with heterogeneous binding sites and determines the effect
of polymer backbone flexibility and solvent quality on binding affinity.

Multivalent polymers are also an essential component of biocondensates, liquid-like droplets
comprised of proteins and nucleic acids are found throughout cells. Although the function
of these biocondensates is still an active field of study, it is clear that multivalent polymers
are essential to their formation through liquid-liquid phase separation (LLPS). There is lit-
tle theoretical study of biocondensates that contain binding between species of asymmetric
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size and valency and the effects of multivalent polymers on the dynamics of these liquid
droplets is not well understood. Studying how multivalent polymers modulate droplet dy-
namics is important because droplet crystallization or solidification is often associated with
neurodegenerative disorders such as dementia and amyotrophic lateral sclerosis (ALS).

Therefore, in the second half of this thesis, we present research on the role multivalent
polymers play in LLPS droplets and their resulting dynamics. We consider how a host of
design parameters can change the phase boundary of systems with multivalent polymers
binding to smaller targets including solvent quality, valency, binding affinity, specific versus
non-specific binding sites, and backbone stiffness. We found that consistent with previous
work on other systems, asymmetric valency systems also showed increased phase separa-
tion with increased binding affinities and valencies. We show that phase separation due to
non-specific bonds is highly sensitive to changes in attraction, but that phase separation
through specific-bonds is much more robust. By combining specific and non-specific multi-
valency, systems can precisely tune the phase separation boundary. Polymer stiffness can
also modulate the phase boundary, where stiff, rod-like polymers were less able to cause
phase separation than their flexible counterparts. We also elucidate how polymer-target
binding affinities can be used to form micro-phase separated droplets. Lastly, we show that
increasing attraction to polymers can slow target diffusion inside droplets while decreasing
the density of droplets, with implications for droplet solidification.

We hope that this work will provide direction for the rational design of synthetic mul-
tivalent polymer systems such as pathogen inhibitors as well as improve understanding of
native biological systems like biocondensates.

Thesis Supervisor: Alfredo Alexander-Katz
Title: Associate Professor of Materials Science and Engineering
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does not overcome the loss of entropy. For divalent targets (red), longer polymers

lead to an increase in binding avidity with higher inter-target attraction. . . . . . . . 68
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3-14 End to end distance for 64-mer polymers in good solvent in the presence of divalent

targets (A) and monovalent targets (B). (A) Increasing binding affinity between the

targets and polymers induces a collapse transition where the polymer distinctly col-

lapses in size for higher inter-target attractions. This collapse in good solvent occurs

at a stronger target-polymer binding affinity than in theta solvent. (B) Only high

inter-target attraction leads to a transition where the polymer collapses. Low inter-

target attraction does not provide enough enthalpic gain to overcome the entropic

loss of phase separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3-15 Plot of the minimum distance away from the polymer that unbound targets are

found, normalized by the volume of a sphere with radius R, where R is the distance

the center of the target is from the center of the nearest polymer bead. Data is shown

for polymer-target binding affinity of �4 kBT in good solvent. The concentration of

unbound targets is approximately the same as the bulk when there is low inter-target

attraction, but the concentration of unbound target near the polymer is higher than

the bulk concentration when the inter-target potential is increased. This clustering

of unbound targets is slight for monovalent targets because the polymer has not gone

through a collapse transition, but unbound target clustering is significant for divalent

targets because the polymer end to end distance has been greatly reduced. . . . . . . 70

4-1 Multivalent polymers have shown promise as inhibitors for toxic lectins by preventing

their attachment and subsequent infection to cells, as shown in the right panel. . . . 73

4-2 Schematic of simulation. The globular protein target is approximated as a sphere with

one or more binding sites. The polymeric inhibitor is represented by a bead spring

model where each bead has a single binding site and is connected to its neighbors

through harmonic springs. Rendering from the Protein Data Bank [68,69]. This

figure is reprinted from Zumbro et al. with permission from Elsevier [86]. . . . . . . . 75

4-3 Schematic of the polymer patterns tested when exploring binding of a target (red)

to homopolymers and copolymers (blues). The periodicity, p is labeled above each

polymer pattern. Here, dark circles indicate high affinity binding sites with �E0 =

�6kBT , light circles represent low affinity binding sites with �E0 = �2kBT , and

striped circles represent a medium binding affinity used only for the homopolymer

comparison with �E0 = �4kBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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4-4 Plot of the average time bound ⌧B vs the periodicity of the polymer p. The binding

dependence on polymer pattern is different for divalent targets (blue) and monova-

lent targets (orange). Periodically patterned polymers are represented by connected

circles (-o), homopolymers are represented as x’s (x), and random copolymers are

represented by squares (⇤). Because the binding of 100 co-polymer patterns were

averaged, the standard deviation of the ⌧B across random polymer patterns is de-

picted as error bars. The effect of pattern is also dependent on the concentration of

targets. (A) At dilute target concentrations, target binding increases with copolymer

periodicity but (B) at higher target concentrations low periodicity copolymers have

higher ⌧B. The sampling error for all data points is smaller than the symbol size. . . 78

4-5 Frequency that a polymer bead is bound throughout the simulation when (A) a single

divalent target and (B) 64 divalent targets are present for homopolymers (blue),

alternating copolymers (red), and blocky copolymers (green). (A) For the patterned

copolymers, low affinity binding sites are bound with almost the same frequency.

However, the high affinity binding sites on the blocky polymer are bound much more

frequently than the low affinity binding sites on the alternating polymer. (B) For

the patterned copolymers, attractive binding sites are bound with almost the same

frequency. However, the low affinity binding sites on the blocky polymer are bound

much less frequently than the low affinity binding sites on the alternating polymer.

Error bars are smaller than the symbol size. . . . . . . . . . . . . . . . . . . . . . . . 80

4-6 Dissociation constant KD versus periodicity of polymer pattern for target concen-

trations from 1 to 96. We have marked the concentrations below the critical target

concentration where the blocky polymer (p = 16) has a KD less than that of an al-

ternating polymer (p = 2) with an orange background. The values above the critical

target concentration where the alternating polymer has a lower KD than the blocky

polymer has been labeled with a blue background. . . . . . . . . . . . . . . . . . . . 83

4-7 Frequency monovalent targets are bound to binding sites on homopolymers and

copolymers with alternating and blocky patterns. Results are shown for (A) when a

single target is placed with 4 16mer inhibiting polymers and (B) when 64 targets are

placed with 4 16mer inhibiting polymers. Frequency of time bound depends on the

affinity of that polymer binding site and not on polymer binding site pattern. . . . . 86
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4-8 Dissociation constant for alternating (p = 2) and blocky (p = 16) polymers with

�E0 pairs (0,�6kbT ), (�2,�6kbT ), and (�3,�5kbT ). All data shown is for high

competition simulations with 64 targets. . . . . . . . . . . . . . . . . . . . . . . . . . 87

4-9 Fraction of all time spent bound that a target is bound divalently for a single target

interacting with four polymers in orange (-⇤) and for 64 targets interacting with

polymers in blue (-⇤). Fraction of time bound is also plotted for all three divalent

bond types: two high affinity bonds (–x), two low affinity bonds (–⇤), and bonds

with one low and one high affinity bonds, labeled as “Both" in the legend (–o). Values

are shown for two polymer periodicities where (p = 2) is an alternating polymer and

(p = 16) is a block copolymer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5-1 Depiction of simulation scheme. Polymers are represented by spherical beads (light

blue) connected by harmonic springs. To introduce stiffness, we employ a simple

scheme used also by some commonly utilized force fields (e.g. MARTINI [119]),

where an additional spring is placed between every next nearest neighbor along the

chain. Each polymer bead has a single ligand, meaning it can only bind monovalently,

but making the polymer as a whole multivalent. Targets, on the other hand, can have

multiple binding sites and are represented by a single spherical bead (red) with one or

two binding sites as shown. Polymer ligands and target binding sites interact when

they are within a reaction radius. Within this reaction radius, they have a probability

of binding PB that depends on the free-energy landscape, as depicted. Once bound,

the target and polymer bead are connected by a harmonic spring, and they can unbind

with probability, PUB. Apart from the reactive kinetics that we include here to model

the specific binding mechanisms, we use a Lennard-Jones potential to maintain the

chain conformation and prevent target-target and target-polymer overlap. This figure

is adapted from Zumbro et al. with permission from Elsevier [86]. . . . . . . . . . . . 95
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5-2 Simulated average end-to-end distance R of 16mer polymer chain normalized by the

contour length L0 plotted versus chain stiffness spring coefficient � is shown as blue

X’s. Values of R and � at which simulations were run are highlighted with dashed

lines. These values of � were chosen to explore a wide range of polymer flexibilities

and represent the point where R ⇡ 4 for a perfectly flexible polymer, and 25%, 50%,

and 75% of the distance between the most flexible chain R ⇡ 4 and a perfectly rigid

rod where R = L0 = 15. End-to-end distances were converted to C1 on the right

axis and persistence length, p on the top axis using the empirical wormlike chain fit

relating R/L0 to p/L0 (black solid line) [121,55]. . . . . . . . . . . . . . . . . . . . . 96

5-3 (A) Schematic of the single target simulation set up with a single mono- or divalent

target shown in red and four polymers with a length of 16 beads. (B) The average

time interval bound ⌧B of a single divalent target (blue) and a monovalent target

(orange) versus the polymer stiffness controlled by the angle-bending spring coefficient

�. Higher � corresponds to stiffer springs and more rigid polymers. The monovalent

target ⌧B seems unaffected by the polymer chain stiffness while the divalent targets

show a decrease in ⌧B with �. Error bars are smaller than symbol size. . . . . . . . . 98

5-4 Percent of time that a polymer bound twice to a target is in a certain loop length

plotted in (A) log-log scale and (B) log-linear scale. Each color represents a different

polymer stiffness, the dashed black line represents 1%, and the solid black line is an

example of y = x
�1.8. The frequency of long loops decreases as polymer stiffness

increases. (A) More flexible chains (� = 0, 1) have a power law decay in loop size

due to the entropic cost of forming loops[86]. This manifests as a straight line in

the log-log scale. (B) Stiffer chains (� = 4.3, 7.65) have an exponential decay in loop

lengths for short loops due to the energetic cost of bending. We can see this manifest

in the log-linear plot as a straight line for short loop lengths (lloop = 1, 2, 3). Lines

are for aiding the eye and are not a theoretical fit. . . . . . . . . . . . . . . . . . . . 100

5-5 Frequency of loop sizes in Log-Linear scaling. ‘x’s denote simulation data and dashed

( ) lines represent the best linear fit following equation 5.3 with values of C1 and

C2 listed in Table 5.2 and 5.3. (A) Loop data and linear fits for matched size polymer

and target beads (aP = 0.5, aT = 0.5). (B) Loop data and linear fits for mismatched

bead sizes with smaller polymer beads and larger target bead (aP = 0.25, aT = 1.0)

in order to sample longer loops in the stiff chains. . . . . . . . . . . . . . . . . . . . . 102
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5-6 (A) The average time interval unbound ⌧UB for a single mono- (orange) or divalent

(blue) target binding to a polymer. The ⌧UB decreases similarly for both target valen-

cies because it is dependent on the distribution of polymer binding sites throughout

the simulation volume. Standard error is denoted by error bars. (B) Dissociation

constant KD for a divalent target versus polymer stiffness. The longer ⌧UB is not

enough to overcome the longer ⌧B for flexible polymers and flexible polymers show a

lower KD (higher affinity) than rigid ones. A plot of the KD for a monovalent target

is dominated by ⌧UB and is shown in Figure 5-16. . . . . . . . . . . . . . . . . . . . . 104

5-7 Schematic of simulations with multiple targets. In this case, 32, 64, 96, or 128

targets are placed in a box with four 16mer polymers to examine how target-target

interactions and competition between targets for binding sites on the polymer can

change the phase behavior of the system. . . . . . . . . . . . . . . . . . . . . . . . . . 105

5-8 Phase diagrams of (A) targets only with increasing concentration of targets on one

axis and increasing target-target Lennard-Jones attraction on the other and (B) sim-

ulations of 96 targets mixed with four 16mer polymer. To highlight the change in

phase separation with stiffness, the polymer stiffness on one axis and target-target

Lennard-Jones attraction on the other. Results are shown for both mono and divalent

targets. Not phase separated or “mixed" systems are denoted by a red letter “N" for

“no", a phase separated system where the polymer and targets are both components

of the condensed phase is denoted by a green “Y" for “yes", and a purple “Y" denotes

a system where the targets phase separated by themselves, in this case because no

polymer was added. Regions where targets can phase separate by themselves, with-

out the help of the polymer are shaded with a purple background. Systems where

phase separation only occurs through interaction between polymers and targets we

call "co-phase separation" and is shaded with a blue background. . . . . . . . . . . . 107
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5-9 Phase diagrams of divalent targets mixed with four 16mer polymers with increasing

concentration of targets on one axis and increasing target-target Lennard-Jones at-

traction on the other. Phase diagrams are shown for five polymer flexibilities. Phase

separation occurs at lower energies and target concentrations for flexible polymers

than stiff polymers. Not phase separated or “mixed" systems are denoted by a red

letter “N" for “no", a phase separated system where the polymer and targets are both

components of the condensed phase is denoted by a green “Y" for “yes", and a pur-

ple “Y" denotes a system where the targets phase separated by themselves, without

polymers. Regions where targets can phase separate by themselves, without the help

of the polymer are shaded with a purple background. Systems where phase separa-

tion only occurs through interaction between polymers and targets we call “co-phase

separation" and is shaded with a blue background. . . . . . . . . . . . . . . . . . . . 108

5-10 (A) KD for 96 divalent targets binding to four 16mer polymers. As target-target

attraction ✏TT increases, KD decreases. For ✏TT = 1.0, binding affinity is dominated

by the increased ⌧UB and flexible polymers are slightly lower affinity than stiff ones.

At ✏TT � 1.5, ⌧B dominates and flexible polymers have higher affinity than stiff

polymers. We can see a sharp increase in KD for ✏TT = 1.7 as � increases from 4.3

to 7.65 signaling the phase boundary where flexible polymers are able to nucleate a

condensed target phase but stiff polymers are not. (B) Binding efficiency of polymers

calculated as the average fraction of sites on the polymer bound versus �. This plot

closely mimics the one for KD, with a sharp decrease in binding efficiency for divalent

targets at ✏TT = 1.7 denoting the phase transition between � = 4.3 and 7.65. For

phase separated systems at ✏TT = 2.0, there is an approximately 10% decrease in

sites bound on the polymer between the � = 2.25 and � = 7.65 for both target

valencies. This is due to rigid polymer resistance to bending and their tails sticking

out away from the condensed phase as shown in Figure 5-8B. Error bars are smaller

than symbol size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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5-11 Radial distribution function (RDF) for concentration of unbound targets found near

the polymer chain where the x-axis R is the distance from a target center of the closest

polymer bead. Data is for 96 divalent target simulations. In all plots, the dashed line

represents low target-target interaction ✏TT = 1.0. (A) The solid lines represent the

RDF of targets for ✏TT = 1.5. Only small changes in the RDF occur with stiffness.

(B) The solid lines represent the RDF of targets for ✏TT = 1.7. Note that the solid

blue, red, and yellow (� = 0, 1, 2.25) lines overlap. Here, flexible polymers show a

much higher concentration of unbound targets near the chain because they are able to

induce phase separation at this target-target potential. (C) The solid lines represent

the RDF of targets for ✏TT = 2.0. Note that the blue, red, yellow, and purple lines

overlap (� = 0, 1, 2.25, 4.3). All polymers cause phase separation at this ✏TT, so all

flexibilities show increased concentration of unbound targets near the polymer. . . . 113

5-12 Phase diagrams of monovalent and trivalent targets mixed with four 16mer poly-

mers with increasing concentration of targets on one axis and increasing target-target

Lennard-Jones attraction on the other. Phase diagrams are shown for five polymer

flexibilities. Phase separation occurs at lower energies and target concentrations for

flexible polymers than stiff polymers. Not phase separated or “mixed" systems are

denoted by a red letter “N" for “no", a phase separated system where the polymer and

targets are both components of the condensed phase is denoted by a green “Y" for

“yes", and a purple “Y" denotes a system where the targets phase separated by them-

selves, without polymers. Regions where targets can phase separate by themselves,

without the help of the polymer are shaded with a purple background. Systems where

phase separation only occurs through interaction between polymers and targets we

call “co-phase separation" and is shaded with a blue background. . . . . . . . . . . . 115

5-13 Example of a typical system energy profile over time. The total energy is shown

for a system with four 16mer polymers and 96 divalent targets with a target-target

attraction ✏TT = 1.7kBT. Simulation energy is shown every 10000 timesteps. There

is an initial large drop in energy while the system equilibrates. Production research

data is taken from the second half of the simulation, past this equilibration time period.117
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5-14 Flux of an unbound target toward a cylinder (orange) and sphere (blue) vs the system

volume. The cylinder and sphere represent a rigid and flexible polymer respectively.

At the simulation volume per polymer ( black line), the diffusive flux toward the

cylinder (rigid polymer) is greater than the diffusive flux toward the sphere (flexible

polymer). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5-15 (A) Average time interval bound ⌧B and (B) unbound ⌧B for 96 targets. Monovalent

targets are shown in orange and divalent targets are shown in blue, with different

values of ✏TT denoted by different line styles and points. (A) Divalent targets see a

decrease in ⌧B with increasing ✏TT due to additional competition for sites between

targets. Nucleation of a condensed polymer/target phase also results in increased

competition, lowering the ⌧B more than in the mixed/not phase separated state.

Monovalent target ⌧B is unaffected by stiffness or phase separation and lines for

all ✏TT overlap. (B) For mixed systems, where no condensed phase is nucleated,

⌧UB is dominated by diffusion and flexible polymers with spherical morphology ex-

perience longer ⌧UB than rigid polymers for both divalent and monovalent targets.

When systems are phase separated, flexible polymers have slightly shorter ⌧UB than

stiff polymers, likely due to a higher concentration of polymer binding sites in the

condensed phase. Stiff polymers lower their concentration of binding sites in the

condensed phase by extending their tails away from the targets as shown in Figure

5-8B and 5-9. Error bars are smaller than symbol size. . . . . . . . . . . . . . . . . . 119
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5-16 Dissociation constant KD of monovalent targets for the single target case (A) and the

96 target case (B). (A) For one monovalent target, KD is dominated by the time it

takes the target to diffuse to a polymer. Because it takes longer for a target to diffuse

to a sphere than to a rod, ⌧UB is longer for flexible polymers than rigid polymers, so

flexible polymers are lower affinity (higher KD) for dilute monovalent targets. (B)

For 96 monovalent targets, systems that don’t phase separate behave similarly to

the single target case; flexible polymers have lower affinity (higher KD) than stiff

polymers. When the system phase separates at ✏TT = 2.0kBT , flexible polymers

become higher affinity (lower KD) than stiff polymers because stiff polymers extend

away from the condensed target and are therefore bound less efficiently with a lower

concentration of polymer binding sites in the condensed droplet. At ✏TT = 1.7kBT ,

flexible polymers are significantly higher affinity than stiff polymers because they can

induce phase separation at �  4.3 while stiff polymers (� = 7.65) cannot. Error

bars are smaller than symbol size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5-17 Percent of time the divalent target spends bound in loops between two polymers

(inter-polymer) out of all loops formed. (A) Results for the single target case. Stiffer

polymers have a higher percentage of inter-loops than flexible polymers, likely due

to the energetic cost of bending for stiff polymers to form intra-polymer loops. (B)

Results for 96 targets. For low inter-target attraction (blue, ✏TT = 1.0) and systems

where all polymer stiffnesses are phase separated (purple, ✏TT = 7.65), behavior is

similar to single target case where stiffness increases inter-polymer crosslinks. For

✏TT = 1.7 (yellow), flexible polymers have more crosslinks than stiff ones. In this

case, more flexible polymers lead to droplets at ✏TT = 1.7 which brings polymer

chains close together in a condensed phase and reduces the penalty for bonds across

two polymers. At ✏TT = 1.5, flexible polymers are likely on the verge of phase

separation and there are some transient small polymer-target droplets even though

they don’t nucleate a stable condensed phase. We suspect that crosslinks might occur

less in phase separated systems with ✏TT = 2.0 than in ✏TT = 1.7 because the targets

can phase separate by themselves and exclude the polymer from the droplet center

through microphase separation. The effects of microphase separation will be explored

in future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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5-18 Percent of time a bound target has both binding sites bound simultaneously versus

polymer stiffness. A target is considered bound if one or more of its binding sites

is occupied. Data is shown for 96 divalent targets binding to four 16mer polymers.

Lines represent constant target-target attraction. Error bars are smaller than symbol

size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5-19 Simulation results for divalent targets with � = 0. Data is shown for 32, 64, 96,

and 128 divalent targets interacting with four 16mer polymers with target-target

attractions ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target

concentration. (A) Average energy of the system. (B) Binder cumulant. (C) Average

Rg of all polymer beads relative to the collective system center of mass. (D) Average

Rg of each individual polymer relative to its own center of mass. . . . . . . . . . . . 124

5-20 Simulation results for divalent targets with � = 1.0. Data is shown for 32, 64, 96,

and 128 divalent targets interacting with four 16mer polymers with target-target

attractions ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target

concentration. (A) Average energy of the system. (B) Binder cumulant. (C) Average

Rg of all polymer beads relative to the collective system center of mass. (D) Average

Rg of each individual polymer relative to its own center of mass. . . . . . . . . . . . 125

5-21 Simulation results for divalent targets with � = 2.25. Data is shown for 32, 64,

96, and 128 divalent targets interacting with four 16mer polymers with target-target

attractions ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target

concentration. (A) Average energy of the system. (B) Binder cumulant. (C) Average

Rg of all polymer beads relative to the collective system center of mass. (D) Average

Rg of each individual polymer relative to its own center of mass. . . . . . . . . . . . 126

5-22 Simulation results for divalent targets with � = 4.3. Data is shown for 32, 64, 96,

and 128 divalent targets interacting with four 16mer polymers with target-target

attractions ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target

concentration. (A) Average energy of the system. (B) Binder cumulant. (C) Average

Rg of all polymer beads relative to the collective system center of mass. (D) Average

Rg of each individual polymer relative to its own center of mass. . . . . . . . . . . . 127
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5-23 Simulation results for divalent targets with � = 7.65. Data is shown for 32, 64,

96, and 128 divalent targets interacting with four 16mer polymers with target-target

attractions ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target

concentration. (A) Average energy of the system. (B) Binder cumulant. (C) Average

Rg of all polymer beads relative to the collective system center of mass. (D) Average

Rg of each individual polymer relative to its own center of mass. . . . . . . . . . . . 128

5-24 Simulation results for monovalent targets with � = 0. Data is shown for 32, 64, 96,

and 128 monovalent targets interacting with four 16mer polymers with target-target

attractions ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target

concentration. (A) Average energy of the system. (B) Binder cumulant. (C) Average

Rg of all polymer beads relative to the collective system center of mass. (D) Average

Rg of each individual polymer relative to its own center of mass. . . . . . . . . . . . 129

5-25 Simulation results for monovalent targets with � = 7.65. Data is shown for 32, 64, 96,

and 128 monovalent targets interacting with four 16mer polymers with target-target

attractions ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target

concentration. (A) Average energy of the system. (B) Binder cumulant. (C) Average

Rg of all polymer beads relative to the collective system center of mass. (D) Average

Rg of each individual polymer relative to its own center of mass. . . . . . . . . . . . 130

5-26 Simulation results for trivalent targets with � = 0. Data is shown for 32, 64, 96,

and 128 trivalent targets interacting with four 16mer polymers with target-target

attractions ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target

concentration. (A) Average energy of the system. (B) Binder cumulant. (C) Average

Rg of all polymer beads relative to the collective system center of mass. (D) Average

Rg of each individual polymer relative to its own center of mass. . . . . . . . . . . . 131

5-27 Simulation results for trivalent targets with � = 7.65. Data is shown for 32, 64, 96,

and 128 trivalent targets interacting with four 16mer polymers with target-target

attractions ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target

concentration. (A) Average energy of the system. (B) Binder cumulant. (C) Average

Rg of all polymer beads relative to the collective system center of mass. (D) Average

Rg of each individual polymer relative to its own center of mass. . . . . . . . . . . . 132
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6-1 Depiction of simulation scheme. Polymers are represented by spherical beads (light

blue) connected by harmonic springs. These polymers could represent either nucleic

acids or long modular binding proteins found in biocondensates. Each polymer bead

has a single binding ligand. Target binding proteins are represented as spherical

beads (red) and can have multiple binding sites (BS) depicted as green blocks. These

protein beads also encompass a intrinsically disordered region (IDR) that modulates

their non-specific attraction to the polymer and between the proteins themselves.

When the polymers and binding proteins are mixed together, they can undergo a

phase transition into a condensed droplet. . . . . . . . . . . . . . . . . . . . . . . . . 136

6-2 Two types types of protein-polymer interactions are explored in this work. (A) Non-

specific excluded volume interactions controlled by a Lennard-Jones potential. These

potentials are not valence limited and are felt by any target or polymer bead in

accordance with their distance apart r. (B) Specific, valence-limited, lock-and-key

type binding. Polymer ligands and target protein binding sites interact when they

are within a reaction radius that is dependent on the timestep. Within this reaction

radius, they have a probability of binding PB that depends on the depicted free-energy

landscape. Once bound, the target and polymer bead are connected by a harmonic

spring, and with some probability, PUB, can return to being unbound and interacting

solely through a Lennard-Jones potential. This figure is adapted from Zumbro et al.

with permission from Elsevier [86]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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6-3 Properties of a single species alone, before mixing them together. (A) Average end-

to-end distance of a 64mer polymer under various Lennard-Jones attractions ✏PP.

The polymer behaves as it would in ✓ conditions, as a perfect random walk, when

✏PP = 5
12 . ✏PP = 8.5

12 is highlighted with an arrow to denote the attraction at which

four 16mer polymers aggregate into a single condensate. From this, we can see

there is a region of poor solvent where polymers are collapsed but still soluble. (B)

Phase diagram showing solubilities of binding proteins alone. When targets form a

condensed phase without polymer, it is denoted with a purple "Y", and when they

do not form a condensed phase, it is denoted with a red "N". From this chart, we

see that all target concentrations tested are phase separated when ✏TT = 3.0, no

target concentrations nucleate a condensed phase at ✏TT = 1.7, and only high target

concentrations 96 and 128 targets phase separate at ✏TT = 2.0. This phase diagram

will serve as a control for the effects of mixing polymers and target proteins. . . . . . 138

6-4 Phase diagram resulting from specific lock-and-key binding to four 16mer polymers.

Results are shown for mono, di, and trivalent binding proteins with �E0 = 2, 4, and

6kBT . Letters and letter coloring were determined by visual inspection, with example

renderings shown on the left of “Mixed" states labeled as a red “N" for no phase

separation, fully phase separated systems with both polymers and proteins found in

the condensed phase labeled with a green “Y" for yes phase separated, and purple ‘Y"s

denoting systems in which a single species phase separated without the other such as
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normalized by the average number of sites bound. The variance also plateaus when

a condensed droplet is formed due to the smaller fluctuations in local concentration
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Chapter 1

Introduction

Multivalent binding interactions are used throughout biology and synthetic systems to enhance

weak, monovalent binding between molecules or surfaces. Multivalent binding occurs when multi-

ple ligands on one species interact with multiple receptors on another species simultaneously. In

biology, multivalency has evolved for a variety of reasons including enhancing weak monovalent

interactions, creating conformal interfaces such as those between cells or those inducing endocyto-

sis, and increasing specificity of binding using a limited number of receptor and ligand types [1,2].

Examples of native multivalency include targeting of antibodies, endocytosis, binding of a viral or

bacterial pathogen to a host cell, and cell-cell adhesion [1,3,4].

1.1 Thermodynamics and kinetics of multivalency

Multivalency is a robust strategy for increasing binding affinities of individually low affinity ligands,

with the energetic benefits of multivalency explained in different ways throughout literature such as

decreased loss of entropy, increased local binding site concentrations, and increased rebinding [1,5,6].

Mammen et al. provides a clear thermodynamic description of multivalent binding where binding

of a target depends on contributions from enthalpy and entropy. When a ligand and receptor bind,

enthalpy is gained from favorable ligand-receptor interactions, such as hydrophobicity or charge,

while entropy is lost from the decrease in rotational and translational degrees of freedom. Although

there can be enthalpic penalties for a multivalent species where the linker between ligands has

to stretch or compress to match the receptor spacing on the target, to a first approximation, the

change in enthalpy of a multivalent species with valency n is approximately equal to the enthalpy

change of n individual or “monovalent" binding events. In contrast, the entropy of multivalent
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versus monovalent binding can be very different. Translational and rotational entropy are only

weakly dependent on particle mass and dimensions, so the translational and rotational entopy cost

of binding is roughly the same for a monovalent or multivalent species [1]. Therefore, binding of n

monovalent targets costs entropy:

�S
mono = n(�Strans +�Srot) (1.1)

while binding of an n-valent target costs only:

�S
multi = �Strans +�Srot +�Sconf (1.2)

where Strans, Srot, and Sconf represent the translational, rotational, and conformational entropy

respectively. In the case of a multivalent species with rigid linkers between binding sites, �Sconf = 0

because there is only one molecule conformation. Therefore, the entropic cost of binding for a

multivalent target is approximately the monovalent entropy cost divided by a factor of n, clearly

demonstrating the increased binding free energy of multivalency. If the linker between sites on a

multivalent binder are flexible, available conformations are reduced upon binding, but as long as

the conformational entropy cost is less than (n� 1)(�Strans+�Srot), the n-valent species will have

enhanced avidity over n monovalent binders. This demonstrates the entropic avidity enhancement

of multivalency.

Another way to think about the enhanced avidity of multivalent binders is through kinetic

effects. While multivalency may not improve the kon or initial rate of binding of a multivalent

polymer to a receptor, once a multivalent species makes an initial bond, there is a higher change of

making additional bonds. This is because multivalent species create an increased local concentration

of ligands for the receptors to encounter [5]. This is not true in monovalent species where the ligands

would be relatively dispersed throughout the system.

A third description of the avidity enhancement of multivalency is described by Weber et al. as

an increased “rebinding effect" [6]. To imagine this effect, think of a piece of Velcro. If some of the

hooks in the center of the strip get detached but the two ends are still stuck, they center hooks

are still held nearby the free loops they were previously attached to. Because recently unbound

hooks are trapped close to unbound loops, they are very likely to rebind once they unbind. In order

to unbind a Velcro strip, the user has to pull it from one side in a peeling motion. This type of

directional applied force is unlikely to happen randomly, and therefore, once a multivalent species is
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bound, it has a much lower rate of unbinding, ko↵ , than monovalent equivalents (whose unbinding

is uncorrelated with it’s neighbors).

1.2 Functional benefits of multivalency

In addition to enhanced avidity, multivalency has many other advantages, including enhanced speci-

ficity. In native immune systems, antibodies use multivalency to target pathogens with highly speci-

ficity [1,4]. In synthetic systems, multivalent species have shown properties of “super-selectivity"

[7–10]. The concentration of monovalent nanoparticles bound to a surface was shown to increase

proportionally to the concentration of surface receptors, but multivalent nanoparticles demonstrated

almost switchlike behavior, where, upon reaching a threshold surface receptor concentration, the

concentration of bound nanoparticles increased almost exponentially [11]. Nanoparticles with mul-

tiple ligand types were also shown to superselectively target surfaces with similar concentration

ratios of ligand types [12]. The specificity of multivalent binding makes it ideal for targeting tumor

cells that often display higher concentrations of binding motifs [12,13].

Multivalency is also an efficient way to evolve new binding interactions; instead of creating a

completely new molecule, organisms could just repeat the same ligand [2,1]. This same concept is

helpful in a synthetic context where chemists may be able to use a simpler, weaker binding ligand

and graft it to a polymer instead of searching for a complex and highly specific monomer that

exactly matches a receptor binding site. Because mono and multivalent avidities can vary greatly,

valency also provides a simple way to tune interaction strengths and signals.

Many architectures can be used to display multivalency, and have been investigated as multi-

valent pathogen inhibitors with benefits and drawbacks of each described by S. Bhatia et al [14].

Architecture possibilities include nanoparticles, dendrimers, linear random coil polymers, bottle-

brush polymers, and sheets. With such a large design space available, we chose to reduce the

number of variables we consider by focusing only on linear polymers. A wide variety of synthesis

techniques can produce linear polymers [15], many experimental research studies have been con-

ducted on the binding of multivalent linear polymers [16–21], and at least one study found them

to be more potent than other architectures in vivo [22]. The flexibility of multivalency, enhanced

affinity, and improved specificity all using a limited number of binding motifs have made multivalent

binders prevalent in native systems and have made synthetic multivalent binders a promising class

of therapeutics.
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1.3 Thesis overview

Throughout this work, we focus on two examples of linear multivalent polymers from biology,

mucins and the multivalent proteins and nucleic acids that control liquid-liquid phase separation

in biocondensates. Mucins, the main gel-forming polymer found in mucus, display multiple sugar

binding sites that act as decoys to prevent pathogens from binding to the glycocalyx on the surface

of epithelial cells [23–25].

Figure 1-1: Pathogenic proteins can bind to the complex sugars on the surface of our cells as one of
the first steps of infection. Using multivalent polymers as decoys is a promising avenue for blocking
the binding of pathogens and the resulting infection of healthy cells. In this work we are interested
in how the properties of multivalent polymers change their binding to these toxic proteins.

Often, pathogens use sugar-binding proteins called lectins, on their surface to bind to the sugar

brushes on human cells in order to enter and cause harm. Many experimental and theoretical studies

have been conducted to explore binding to these lectins to inhibit their attachment to the cell

surface. If pathogens cannot bind to cells, this would prevent infection and allow the pathogens to

wash out of the body under normal digestive flow. Therapeutics that target the binding mechanism

of pathogens or their toxins instead of killing are a promising avenue for treating viral infections

and for fighting bacterial infections without promoting antibiotic resistance [3,26–30]. Because

inhibiting binding won’t promote drug resistence, the lack of treatments for viral infections, and

the versatility of multivalent platforms, linear multivalent polymers have drawn significant interest.

Experimentalists have used multivalent polymers to successfully target a variety of lectins and the

influenza virus [31,32,21,17,15]. While there are also many theoretical studies of multivalent binding,

they have primarily focused on binding between two species of similar size [6,20,27,33–35], with

relatively few theoretical or computational studies on how large polyvalent materials much larger

than their targets, such as native mucins, control polyvalent interactions [1]. Amongst theoretical

studies of large many-valent polymers, studies have focused on binding to larger surfaces instead

of to small globular proteins such as lectins, despite the many experiments that target this size
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regime [36,12,11]. Due to this lack of theoretical study, the importance of polymeric inhibitors of

multivalent lectins, and the changes in polymer conformations induced by small colloids that are

unique to this size regime[37,38], this work will focus on how design properties of long polymers

modulate their binding to smaller targets. This study begins with the effect of polymer length on

mono and multivalent binding in Chapter 3.

For targeting tumors or diseased cells, there has been an effort to make multivalent inhibitors

more specific so that they bind to a single targeted species with higher affinity [36,39,10,13]. At-

tempts to make broad spectrum binders like mucins, which have multiple complex binding moieties

[40,41] and may be high affinity to many targets is relatively unstudied. Therefore, in Chapter 4, we

consider the effects of binding site affinity patterns and heterogeneity along a polymer chain. Having

multiple binding site types is an important first step toward building multifunctional polymers that

can bind to multiple species or include moieties for tracking as well as binding [42].

Figure 1-2: Cells contain liquid-like droplets called biocondensates that contain multivalent polymers
and their cognate binding proteins. The multivalent polymers are depicted as RNA, but can also
be linear multivalent proteins. We are interested in how properties of multivalent polymers can
alter the phase separation that leads to these condensed droplets and the resulting dynamics of the
droplet.

In addition to pathogen inhibition, we also consider multivalent polymers in the context of

biocondensates, also referred to as membraneless organelles. Biocondensates are condensed polymer

droplets that form through the liquid-liquid phase separation of multivalent proteins and nucleic

acids inside cells. These bodies have liquid-like behavior and can contain tens to hundreds of
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components [43–48]. The function of biocondensates is still an active field of study, but they are

essential to for healthy cell activity. Recent research studies suggest that biocondensates can buffer

concentrations of critical cell components and act as reaction crucibles by collecting associated

ingredients and keeping them in close proximity [49–51].

Because biocondensates are phase separated polymer droplets, they display characteristics de-

scribed by many traditional polymer physics theories. Therefore, we can use polymer physics along-

side biology to understand them [52]. These polymer droplets can e viewed as phase separating

following Flory-Huggins theory or can be viewed through the lens of polymer crystal nucleation and

growth [53–55]. Previous research has also considered percolated networks or gels of multivalent

polymers that can form either inside biocondensates or without phase separation and follow Flory-

Stockmayer theory [56–58]. Biocondensates also experience microphase separation which is likely

to follow concepts similar to order-disorder transitions found in block copolymers or show elements

of order based on surface tension as seen in self-assembly and surfactant theory [59–62]. Therefore,

we seek to use polymer physics concepts to elucidate how multivalent polymer characteristics alter

the formation and dynamics of biocondensates.

Dysregulation of biocondensate formation and droplet solidification is associated with cancer and

neurodegenerative diseases such as ALS, Alzheimer’s Disease, and dementia [52,63–66]. Therefore,

understanding the phase separation and dynamics of multivalent polymers could provide essential

clues in treating and preventing these neurodegenerative disorders. Chapter 5 begins by discussing

the effects of polymer stiffness on multivalent binding to pathogens before delving into how the

stiffness of multivalent polymers can change their phase boundary and the resulting implications for

biocondensates. In chapter 6, we further explore how multivalent polymers can regulate the forma-

tion and dynamics of biocondensates by modulating a host of design variables including comparing

specific and non-specific binding interactions, binding site affinity, valency, and solvent quality.

The goal of this dissertation is to use simulation and theory to understand how design variables

affect the binding of linear multivalent polymers. We explore and explain how degree of polymer-

ization, binding site affinity patterns, backbone flexibility, and solvent quality control binding to a

single small target, to many targets simultaneously, and the resulting implications for phase sep-

aration of polymers. Our coarse-grained simulations bridge length and timescales and can sample

large polymer systems that bind proteins at the sub-nanometer lengthscale. This work specifically

explains how our simulation results and theory provide insight into biological systems, guide the

rational design of pathogen inhibitors, and control biocondensates. However, the general nature of
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our simulations and simplified theory presented herein define universal design rules linking structure

to function for multivalent polymers. Consequently, the results presented are applicable to many

systems of similar size ratios such as polymer-colloid systems and metal-ligand coordination gels

[35,67,37]. We hope this work provides helpful and clear rules for the rational design of multivalent

polymeric binders.
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Chapter 2

Methods

This chapter will explain the details of the general simulation methods used throughout this thesis.

We also include a description of how the monovalent binding affinity can be estimated using the

Langmuir adsorption theory and estimates of the side of a bead. Throughout this work we use

a coarse-grain model of our polymers and targets to serve two purposes. First, our goal is not

to recreate a specific experimental system, but to provide general structure-function relationships

for multivalent polymers. Using a coarse-grain model helps us keep our results general. Second,

multivalent biological polymers can be very large (megadaltons in the case of mucins) with binding

targets being full folded proteins. Therefore, simulating all-atom or even close to all-atom simula-

tions can only be done on relatively short timescales if at all, especially when we start to consider

the case of multiple proteins or polymers interacting together. Typical individual receptor-ligand

binding affinities in multivalent interactions are also typically low, and so long timescales are needed

to provide sufficient sampling for thermodynamic and kinetic calculations. Therefore, we have cho-

sen to use a typical coarse-grain bead spring model for our polymers to capture relevant time and

lengthscales as well as keep our results as general as possible.

We would like to note that, although there are many options for pre-packaged molecular dynam-

ics software, we made the choice to write all of our simulation code ourselves from the ground up.

The primary advantage of this method is that we have complete control over and knowledge of every

constant, force, protocol, and algorithm in our simulation to a detail that is difficult to achieve in a

pre-packaged software. The most important part of a PhD is to build a strong scientific foundation

that includes both a depth of knowledge in a particular field and general research skills that it can

be applied throughout the rest of our scientific careers. Writing all of my own simulations meant

that we had to make a conscious decision about which forces to include, how to include them, and
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why. This provided me with a thorough and thoughtful understanding of polymer physics which

was essential to my development as a graduate student in polymer science. With this overarching

simulation philosophy, we have depicted our resulting general model in Figure 2-1 and detailed all

of the forces and our simulation methods in the rest of this chapter. Any methods or constants

specific to only a particular chapter will be detailed in a shorter methods section in the requisite

chapter.

Figure 2-1: Polymers are represented by spherical beads (light blue) connected by gaussian springs.
Each polymer bead has a single ligand. Targets can have multiple binding sites and are represented
by a single spherical bead (red). Polymer ligands and target binding sites interact when they are
within a reaction radius that is dependent on the timestep. Within this reaction radius, they have
a probability of binding PB that depends on the depicted free energy landscape. Once bound, the
target and polymer beads are connected by a gaussian spring, and with some probability PUB can
return to being unbound and interacting solely through a Lennard-Jones potential. Rendering from
the Protein Data Bank [68,69].

2.1 General simulation methods

We model our target as a single bead with M binding sites and n polymers as NP freely jointed

beads connected by harmonic springs as shown in Fig. 2-1. Each polymer bead has a single ligand

and its valency is controlled by the polymer degree of polymerization NP. Each target bead can

have one or multiple binding sites. We model the chain using Brownian dynamics where the position

of each polymer bead and target is governed by:
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r(t+�t) = r(t) + (�rU

⇣
)�t+R

p
2D�t (2.1)

Where r is the position of the bead at time t, R is a random number drawn from a normal

distribution with a mean of 0 and a standard deviation of 1, ⇣ is the drag coefficient, and D = kBT/⇣

is the diffusion coefficient. The forces each bead experiences due to interactions with the surrounding

polymer or target are captured in rU where U is a potential energy that combines contributions

from connectivity, excluded volume, and binding. These are added together as U = Usp+ULJ+Ubind.

The connectivity potential between adjacent polymer beads Usp is modeled as a harmonic spring

Usp =


2
kBT

NP�1X

i=1

(ri+1,i � 2a)2 (2.2)

where rij is the distance between polymer beads, a = 0.5 is the radius of a simulation bead, and 

was chosen to be 50
a2 , a value sufficiently large enough to prevent the polymer from stretching apart

under normal Brownian forces.

To control excluded volume and non-specific interactions, a Lennard-Jones potential ULJ was

applied between bead pairs as

ULJ = ✏kBT
X

ij

((
2a

rij
)12 � 2(

2a

rij
)6) (2.3)

where the value of ✏ can be adjusted to control the solvent quality [70]. Throughout this thesis,

the Lennard-Jones coefficient ✏ will be denoted as ✏PP for polymer-polymer interactions, ✏TT for

target-target interactions, and ✏PT for polymer-target interactions. We confirmed that modifying

✏PP for polymer-polymer interactions appropriately adjusted solvent quality by running a single

polymer with a degree of polymerization NP = 64 in a box and measuring the average end to end

distance at various values of ✏PP. For a theta solvent, the average end-to-end distance should be

N
1/2
P = 8, which occurs at ✏PP = 5

12 (Fig. 2-2). This matches well with previous findings that

✏PP = 0.41 corresponds to polymer dynamics in theta solvent [70]. We also found that ✏PP = 1
12

corresponds to end-to-end distances of approximately N
3/5
P = 12.1, which is consistent with a

polymer in good solvent. Therefore, throughout the following chapters, we used ✏PP = 5
12 to mimic

polymer configurations in a theta solvent and ✏PP = 1
12 to mimic a good solvent. Any other solvent

qualities will be specified explicitly in their corresponding section.

Our last type of interaction in all chapters is a reactive lock and key bond, which represents our
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Figure 2-2: Simulated end-to-end distance of a polymer with degree of polymerization NP = 64
for various solvent qualities. The polymer has a size of 2a

p
NP = 8, consistent with theta solvent

conditions when ✏PP = 5
12 .

specific, valence-limited binding interaction. To simulate this reactive binding, harmonic springs

were turned on and off between the polymer beads and the targets to dynamically represent bonded

and unbonded states. This was implemented using the prefactor ⌦(i, j) multiplied by a harmonic

potential as follows:

Ubind =


2
kBT

MX

i=1

nNPX

j=1

⌦(i, j)(rij � 2a)2 (2.4)

⌦(i, j) = 1 when the ith binding site on the target is bound to the jth bead of the inhibitor, and

⌦(i, j) = 0 when the target binding site or polymer bead is unbound. To control the probability

of binding and unbinding, we use a piecewise function based on the energy barriers for the binding

reaction from C. Sing and A. Alexander-Katz [71].

⌦(i, j, t) =

8
>>>>>>>>><

>>>>>>>>>:

8
><

>:

1 ⌅ < e
��EB

0 ⌅ > e
��EB

if ⌦(i, j, t� ⌧0) = 0 \ rij < rrxn

8
><

>:

0 ⌅ < e
��EUB

1 ⌅ > e
��EUB

if ⌦(i, j, t� ⌧0) = 1

(2.5)

Here, ⌅ is a random number between 0 and 1, �EB is the energy barrier to bind normalized by

kBT , and �EUB is the energy barrier to unbind normalized by kBT as shown in Figure 1. Without
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loss of generality, these energies are considered to be always positive, and the kinetics of binding are

held constant by keeping �EB at 1
2kBT so that binding is an accessibly frequent event. Increasing

or decreasing the energy barrier will respectively slow or accelerate the kinetics of binding and

unbinding equally, but not change the system’s thermodynamics. The thermodynamic drive of

binding is controlled by varying �E0 = �EB � �EUB. Binding becomes more favorable as �E0

is made more and more negative. This method is based directly on Sing et al. as well as others

[71–75]. Researchers studying vitrimers have extended this approach to include the additional effect

of bond exchange [76–78], but in the case of ligand-receptor interactions in proteins, such additional

possibilities do not apply. This is because the protein is much larger than the size of the binding

site, which makes the binding very local and size exclusion prevents the swapping of bonds. Binding

reactions are evaluated every time interval ⌧0 = 100�t, where �t is the length of one timestep and t

is the current time. The reaction radius rrxn = 1.1 is the distance apart two beads would be if their

surface was touching plus 0.1. Choosing 0.1 < (6D⌧0)1/2 allows time for a target that unbinds to

diffuse out of the polymer radius of influence in ⌧0 and makes binding events independent [71]. We

have applied the constraint that at any time, a polymer bead can only bind to one target binding

site
P

j ⌦(i, j, t)  1, and a target site can only be bound to one polymer bead
P

i⌦(i, j, t)  1.

Competing reactions are sampled randomly. Note that we do not include the effect of forces in

the breaking of the bonds, this is due to the fact that for forces on the order of kBT/a, this effect

is negligible if the characteristic bond length is less than 1 nm. For reference, a discussion of the

subject is given in [79].

The potentials are applied over the timestep �t = 6⇡⌘a3

kBT
�t̃ where 6⇡⌘a3

kBT
is the characteristic

monomer diffusion time or the time that it takes a bead to diffuse its radius a and the dimensionless

timestep is �t̃ = 10�4. These equations can all be made dimensionless by scaling energies by

thermal energy kBT , lengths by bead radius a, and times by the characteristic diffusion time 6⇡⌘a3

kBT
.

The simulation code is included in appendix B.

2.2 Monovalent binding affinity

To confirm that we used biologically relevant binding affinities for individual binding site interac-

tions, we placed increasing concentrations of monomeric polymer beads (NP = 1) in a box with a

single monovalent target. At each concentration of inhibitor beads, we measured the fraction of time

the target spent bound plotted in Fig. 2-3. To estimate the dissociation constant KD of binding, we
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fit our simulation data to the Langmuir adsorption curve � = [P ]
[P ]+KD

where � is the fraction of time

the target spends bound, [P ] is the concentration of polymer (in this case monomer) beads, and

KD is the dissociation constant of the binding reaction. We can then converted our unitless KD to

a concentration by assuming a target bead diameter to be 5 nm which is the approximate diameter

of a peanut agglutinin lectin[80]. This method resulted in KDs in the mM to µM range for �E0s

between �2kBT and �6kBT . This monovalent binding affinity is well within the weakly binding

mM to µM range typical of lectins and sugars binding as well as the mM to µM affinity range of

some monovalent protein-protein and RNA-protein binding found in biocondensates [81–85].

Figure 2-3: A plot of the fraction of time bound for different monomeric polymer bead concentrations
interacting with a monovalent target. By fitting to the Langmuir adsorption curve [P ]/([P ] +KD)
(dashed lines), we can find the KD of monovalent binding corresponding to the values of �E0 noted
in the plot legend. Simulation results (circles) and Langmuir adsorption equation fits (dashed lines)
are shown for �E0 = �2, �3, �4, �5, and �6kBT . When results are rescaled to Molar using an
estimated target diameter of 5 nm, the KD for these binding energies is in the mM to µM range
typical of monovalent glycan – lectin and some protein - nucleic acid binding interactions [81–85].
Fit values of KD are shown above their corresponding lines.
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Chapter 3

Polymer Length Dependence of Multivalent

Binding Avidity

Abstract

Multivalent binding interactions are commonly found throughout biology to enhance weak mono-

valent binding such as between glycoligands and protein receptors. Designing multivalent polymers

to bind to viruses and toxic proteins is a promising avenue for inhibiting their attachment and sub-

sequent infection of cells. Several studies have focused on oligomeric multivalent inhibitors and how

changing parameters such as ligand shape and size, and linker length and flexibility affect binding.

However, experimental studies of how larger structural parameters of multivalent polymers such

as degree of polymerization affect binding avidity to targets have mixed results with some finding

an improvement with longer polymers and some finding no effect. Here, we use Brownian dynam-

ics simulations to provide a theoretical understanding of how degree of polymerization affects the

binding avidity of multivalent polymers. We show that longer polymers increase binding avidity to

multivalent targets, but reach a limit in binding avidity at high degrees of polymerization. We also

show that when interacting with multiple targets simultaneously, longer polymers are able to use

inter-target interactions to promote clustering and improve binding efficiency. We expect our results

to narrow the design space for optimizing the structure and effectiveness of multivalent inhibitors,

as well as be useful to understand biological design strategies for multivalent binding. The work

presented in this chapter is primarily sourced from Zumbro et al., Biophys. J. 115 (2019) 892-902

[86].
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Statement of Significance

Multivalent polymers show promise as inhibitors of toxins and microbial infection. Experimental

studies have demonstrated that only certain traits of such polymers are useful for binding proteins.

Here we demonstrate that the length of the polymer is an important parameter to consider as well

as the weak protein-protein interactions of the toxins themselves. Our results provide a guide for

the design of a new generation of polymeric binders that will have enhanced avidity.

3.1 Introduction

Biology uses multivalent interactions for a variety of reasons including enhancing weak monovalent

interactions, creating conformal interfaces such as those between cells or those inducing endocytosis,

or increasing specificity and affinity of binding using a limited number of receptor and ligand types

[1]. Multivalent binding occurs when multiple ligands on one species bind to multiple receptors on

another species simultaneously. While each individual binding site–ligand interaction might have

weak binding affinity, when multiple sites bind simultaneously, they can produce a much stronger

binding avidity than the sum of the corresponding monovalent interactions [1]. Here we use the

term “avidity" as the overall binding affinity of multivalent interactions and “affinity" to refer to the

binding affinity of single binding site interaction [87].

Because multivalent binding can be used to enhance low-affinity binding interactions such as

those commonly found between glycoligands and sugar-binding proteins called lectins, designing

synthetic multivalent polymers that target specific lectins is of great interest [88]. Binding strongly

to lectins is a promising avenue for treating common diseases from diarrhea and colitis to influenza

by inhibiting protein targets such as AB5 toxins including Shiga or Cholera toxin [89,27,90,26,91,92]

or the hemaglutinin receptor on the influenza virus [21,20].

To narrow the design space for multivalent inhibitors, several theoretical and experimental

models have looked at how spacing of binding sites and flexibilities of linkers affect binding avidity

[93,94,32,18,95]. Previous studies have explored optimizing parameters on the size scale of individual

binding sites. For example, Liese et al. modeled how changing the linker length and flexibility

between two ligands changes their binding avidity while Papp et al. explored matching the size

between ligands exactly to the target [33,20]. In contrast, the field has had relatively few studies on

how large polyvalent materials and design decisions at size scales much larger than individual binding
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sites control polyvalent interactions. Some experimental studies have attempted to understand the

effect of degree of polymerization on a polymer’s multivalent enhancement. Several of these studies

found that longer polymers are more effective binders for influenza virus [17,21,96], but other groups

have found that there is a limit to this binding enhancement from increased length when interacting

with proteins[31,97]. A general theoretical understanding of how polymer length contributes to

multivalent binding has yet to be developed.

In this article, we show that while polymers with higher degrees of polymerization bind more

tightly to multivalent targets, the enhancement in binding energy tapers off with polymer length.

We find that the entropic penalty from forming long loops is a likely explanation for this effect.

We also demonstrate that favorable interactions between targets, such as hydrophobic attraction

between proteins, can enhance the binding of the inhibiting polymer to the target, but only for higher

degrees of polymerization. We use a coarse grain Brownian dynamics simulation to establish rules

for how the degree of polymerization can influence the strength of multivalent binding interactions

between a polymer and a globular target such as a lectin.

3.2 Methods

This chapter follows all of the simulation methods detailed in Chapter 2 and depicted in Figure 2-1.

Across the simulations we used a Lennard-Jones potential of ✏PP = 5
12 to mimic polymer config-

urations in a theta solvent and ✏PP = 1
12 to mimic a good solvent as shown in Figure 2-2. We chose

to run both theta solvent and good solvent because these bound the solvent conditions for soluble

polymers, putting a limit on any characteristics that depend on solvent quality. For reference, the

excluded volume parameters for each of our simulation scenarios are listed in Table 3.1.

Table 3.1: ✏ values for Polymer-Polymer (PP), Polymer-Target (PT), and Target-Target (TT) bead
Lennard-Jones Interactions

Case # ✏PP ✏PT ✏TT Case Description
1 5/12 1/12 N/A Theta Solvent, Dilute Targets
2 1/12 1/12 N/A Good Solvent, Dilute Targets
3 5/12 1/12 1/12 Theta Solvent, Many Low Attraction Targets
4 5/12 1/12 18/12 Theta Solvent, Many High Attraction Targets
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3.3 Results and Discussion

To better inform the design of multivalent polymeric binders, we seek to determine how degree of

polymerization changes the inhibitor’s binding avidity. We examine two cases. In the first case, we

observe how the binding avidity between a single monovalent or multivalent target and a polymer

changes with the degree of polymerization of the polymer. In the second case, we probe how this

result changes when the polymer is in the presence of multiple targets which have some favorable

inter-target interactions.

3.3.1 Biologically relevant binding affinities

To establish a baseline binding affinity and ensure we are at biologically relevant binding affinities

for individual binding sites, we first characterize the monovalent binding interactions of monovalent

targets and monovalent free inhibitor beads. We place a single monovalent target in a box with a

constant concentration of free inhibitor beads and measure the fraction of time the target is bound

and unbound from an inhibitor bead. We run these simulations for 108 timesteps and run either

50 or 100 simulations in parallel to ensure that we capture sufficiently long timescales that are

much longer than the typical time for a single binding and unbinding to have accurate averaging.

The resulting fraction of time bound plotted for different inhibitor concentrations and fitted with

a Langmuir adsorption curve is shown in Figure 2-3. Throughout this chapter, we use binding site

affinities of �E0 = �4kBT . By assuming a target diameter of 5 nm, we can show this corresponds

to a KD on the order of 1 ⇥ 10�4 M. This binding affinity is similar to the monovalent binding

interactions between lectins and their corresponding sugars, which typically have a KD in the mM

to µM range. [98,16].

3.3.2 Effect of length on binding avidity to an individual toxin

Using �E0 = �4kBT as an experimentally relevant individual binding site affinity, we then explored

how the degree of polymerization of our inhibiting polymer changed its binding avidity to a mono-

valent or multivalent target. We compared binding and unbinding kinetics of a single target with

one or two binding sites to a constant concentration of inhibitor beads with varying connectivity.

This scenario is depicted in Fig. 3-1, where a single target is placed with 64 inhibitor beads with

increasing degrees of connectivity, such as 64 free inhibitor beads, 32 dimers, or a single 64mer.
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Figure 3-1: Schematic of the scenarios tested when comparing binding avidity’s dependence on
degree of polymerization. The volume and number of inhibitor ligands are held constant to maintain
a constant concentration of ligands at 64 ligands per box. The connectivity of the inhibitor ligands
was varied from monomers to 64mers in multiples of two so that degrees of polymerization, 1, 2,
4, 8, 16, 32, and 64 were all investigated. This ensured that all polymers in each simulation were
monodisperse.

To compare the binding avidity of the polymeric inhibitors to the target, we counted the time

that a target stayed bound to an inhibitor bead, where a target was considered bound whenever at

least one of the target’s binding sites was occupied. Unsurprisingly, the average time interval spent

bound for monovalent targets does not depend on length (Fig. 3-2). The target’s single binding site

can only interact with one inhibitor ligand at a time, so interactions with neighboring ligands have

no impact on the duration the target spends bound. Therefore, the polymeric structure and valency

of the inhibitor do not affect the average time bound for a single or dilute monovalent target.

In contrast, for the divalent targets, switching from monomeric inhibitors to polymeric inhibitors

shows a significant increase in time the target spends bound (Fig. 3-2), demonstrating the enhance-

ment in binding avidity created by multivalent binding. This follows the multivalent binding theories

of increased local concentration [5] and decreased loss of entropy over free ligands [99,1,87]. Both

the constant duration of time spent bound for our monovalent target and the increase in duration of

time spent bound with the lengthening of our inhibiting polymer is consistent with these previous

theories.

However, these theories have not previously captured how degrees of polymerization much larger

than the size scale of the target can change binding avidity. Revisiting Fig. 3-2, we can see that the

time spent bound approaches a limit at high degrees of polymerization for both theta solvent (Case

1 in Table 3.1) and good solvent qualities (Case 2 in Table 3.1). To explain this phenomenon, we

considered the proportion of time a target is bound in a system with a given degree of polymerization.

This proportion can be transformed into a free energy of binding, which we term �GB:
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Figure 3-2: Average time interval a monovalent or divalent target are bound to polymeric inhibitors
of various lengths, normalized by the average time bound for a monovalent target, ⌧0B. The time
interval bound for a monovalent toxin does not depend on the inhibitor length (dashed blue line and
dashed red line overlap). For the divalent target (solid), oligomeric inhibitors spend significantly
more time bound than monomeric inhibitors, exhibiting the enhancement of multivalent binding
avidities over monovalent binding. At high degrees of polymerization of the inhibiting polymer,
as the length of the inhibitors is increased further, there is only a small gain in the average time
interval the target is bound. The time spent bound approaches some maximum value with increasing
inhibitor length. Inhibitors in theta solvent (red, Case 1 in Table 3.1) spend more time bound than
good solvent (blue, Case 2 in Table 3.1). Error bars are smaller than symbol size.

�GB ⇡ �kBT ln

✓
⌧B

⌧UB

◆
(3.1)

where ⌧B and ⌧UB are the average time spent bound and unbound respectively. Relative to

the KD of monovalent binding, we can find the dissociation constant of multivalent binding by

using the difference in �Gs. For example, assuming a bead diameter of 5 nm, we can estimate the

64mer-divalent target dissociation constant in theta solvent to be approximately 6⇥ 10�6 M. While

⌧B as examined in Fig. 3-2 is difficult to treat theoretically, we found this �GB more theoretically

tractable. Note that in Eq. 3.1 we have not included second order corrections for finite size effects

which will reduce the binding affinity measured in small simulations [100], but we expect this will

not change qualitative results. We developed a model predicting �GB as a function of the degree of

polymerization and valency of the target as well as other factors, described in detail in Appendix A.

Briefly, the model is loosely inspired by the Poland-Scheraga model of DNA denaturation, in that a

polymer bound multivalently to a target can be represented as a sequence of loops alternating with

sites bound to the target [101]. In the general case, the partition function of this model can only

be evaluated numerically, but in the limit of high NP, where NP is the degree of polymerization,
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there is an analytical result for �GB. The full function, given in Eq. A.22, is complex, but the

dependence on NP, the number of polymers n, and volume Vbox, is simple:

�GB = C � kBT ln(
nNP

Vbox

) (3.2)

where C is a value not dependent on NP related to the persistence length, solvent quality,

ligand density, and valency of the target. Note that in our simulations, both nNP and Vbox are held

constant; specifically, nNP = 64. Thus, Eq. 3.2 predicts that at high NP, polyvalency no longer

increases avidity. So, for example, if NP = 32 is high enough to approach the limit (a question

we address shortly), �GB should be the same for two 32-mers and one 64-mer. Our theoretical

treatment successfully reproduces the qualitative behavior of �GB: as predicted, we observe that

�GB initially decreases sharply, representing the benefits of polyvalency, before reaching a limit at

higher degrees of polymerization, shown in Fig. 3-3.

Figure 3-3: A plot of the free energy of binding for the degree of polymerization of the inhibitor.
The free energy of binding is calculated using the average time interval the target spends bound to
the polymer ⌧B (meaning one or more binding sites is bound) divided by the average time interval
the target spends completely unbound ⌧UB. Longer loops are entropically unfavorable, so while they
are possible in longer polymers, they are unlikely to form. We can see that this leads to a limiting
minimum binding energy as degree of polymerization of our inhibitor increases. This is true in both
good (blue) and theta (red) solvents.

The leveling off of �GB in our theoretical model is due to loop entropy: when two faraway

monomers each bind the target, the polymer is forced into a large loop, which restricts the con-

formational degrees of freedom of the polymer chain. This free energy penalty increases with the

57



size of the loop, and for large enough loops, the free energy penalty becomes larger than the free

energy of binding. Beyond the length where binding loops are no longer thermodynamically fa-

vored (which corresponds to where the high-NP limit begins to be reached), increasing the degree

of polymerization will provide no benefit. Thus, we predicted that the flattening of the �GB curve

should coincide with the length at which loops stop forming. Indeed, the frequency of loops drops

precipitously with loop lengths, and loops larger than a length of 9 for good solvent and 13 for

theta solvent are vanishingly rare as shown in Fig. 3-4. This is in agreement with the fact that

�GB flattens beyond NP = 8 for good solvent and NP = 16 for theta solvent (Fig. 3-3). Note

that if entropic costs were turned off, multivalency would continue to yield increases in avidity for

longer polymers. As Kitov and Bundle show, when all possible binding sites on a multivalent ligand

can bind equally to the receptor, �G will not plateau [102]. Our theory describes the plateau in

binding behavior well for an ideal chain and the good solvent scenario also seems to follow. Thus,

loop entropy is the likely culprit for the diminishing returns of increasing NP.

Figure 3-4: Log-log plot of the percent of time a divalent target forms various loop sizes for different
length polymers. For reference, 1% frequency is shown with dashed black line. In theta solvent (A)
and good solvent (B), loops larger than 13 and 9 beads, respectively, are formed less than 1% of
the time. mref = �3⌫ is a reference slope where ⌫ is the Flory exponent.

Ultimately, our simulation and model results match excitingly well with the experimental results

that increasing polymer length leads to only a limited increase in polymer avidity to lectins [31,97].
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3.3.3 Effect of length on binding avidity in the presence of multiple

toxins

In vivo, environments can be crowded and multiple targets might interact with a single inhibiting

polymer. If the target is a protein, hydrophobicity and charge can create target-target interactions

leading to a wide range of solubility maximums from 1 mg/ml for wheat germ agglutinin to more

than 50 mg/ml for serum albumin [103,104]. In this section, we examine binding between multiple

targets and the inhibiting polymer and consider how target-target interactions influence binding

avidity. To investigate the affect that target-target interactions have on the binding avidity of the

inhibitors, we added a Lennard-Jones potential between targets and explored how changing the

attraction between the targets modified their binding with the inhibiting polymer.

To examine the effect of multiple targets interacting with the inhibitor simultaneously, we placed

64 divalent targets in a box with inhibiting polymers. To compare the effect of polymer length, we

again varied the connectivity of the inhibiting beads while maintaining the same total concentration

of polymer binding sites, as depicted in Fig. 3-5. We modified our target-target attraction by

changing ✏ in Eq. 2.3, and compared two target-target attraction scenarios: a relatively neutral

condition where ✏TT = 1
12 (Case 3 in Table 3.1)and a weakly attractive condition where ✏TT = 18

12

(Case 4 in Table 3.1). These ✏TT values correspond to scenarios where the target-target interaction

has a positive and negative second virial coefficient, respectively. To ensure we were at biologically

relevant target-target interactions, we calculated the concentration of our targets by making the

following assumptions. Assuming a target diameter of 5 nm and molecular weight of 70 kDa, 64

targets corresponds to a concentration of 7 mg/ml. By running 64 targets in a box without an

inhibiting polymer present, we confirmed that at both ✏TT = 1
12 and ✏TT = 18

12 the targets do

not aggregate and phase separate. This shows that both levels of target-target Lennard-Jones

interactions are within the range of relevant protein solubilities.

Increased competition

Normally one does not have isolated targets, but a finite concentration of them. Thus, it is inter-

esting to ask the following question: if one had multiple targets with a given degree of solubility

binding to the same inhibitor, would that have a marked effect on the kinetics? To answer this, we

examined the binding kinetics of 64 targets to our inhibiting polymers to compare to our single or

dilute target case. Similarly to when interacting with single targets, the binding avidity of polymers
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Figure 3-5: Schematic of the scenarios tested when comparing binding avidity’s dependence on
degree of polymerization with multiple targets present. The volume and number of inhibitor ligands
are held constant to maintain a constant concentration of ligands at 64 ligands per box. The
connectivity of the inhibitor ligands was varied from monomers to 64mers in multiples of two so
that degrees of polymerization, 1, 2, 4, 8, 16, 32, and 64 were all investigated. This ensured that
all polymers in each simulation were monodisperse. The concentration of targets was held constant
in all simulations.

initially increases with increasing degree of polymerization before tapering off at high polymerization

as shown in Fig. 3-6. More interestingly, in the presence of multiple targets, increased attraction

between targets decreases the maximum ⌧B. To investigate this phenomenon, we compared the rate

of unbinding in Fig. 3-7. Here, we see two timescales at which targets unbind, a fast and a slow

timescale. The fast timescale represents targets that only become singly bound before unbinding,

whereas the slow timescale represents targets that transition from being doubly bound to unbound.

By comparing the slope of the linear best fit line in both regions, we find that the rate of unbinding

for single bonds is unchanged when there is inter-target attraction, but the rate of unbinding for

doubly bound targets increases with inter-target attraction. The increased rate of unbinding for

doubly bound targets leads to the decrease in average ⌧B seen in Fig. 3-6.

The higher probability that doubly bound targets unbind can be explained by increased compe-

tition. If a lone or very dilute target becomes doubly bound and then unbinds with one binding site,

this unbound site could easily rebind. In contrast, in a crowded environment with many targets, a

site that unbinds has to compete with neighboring targets to rebind. This increase in competition

comes from both neighboring bound targets (Fig. 3-8A) as well as unbound targets that are aggre-

gated by a high density of bound targets (Fig. 3-8B). We will show that the increase in inter-target

attraction from ✏TT = 1
12 to ✏TT = 18

12 leads to a drastically higher local concentration of targets in

the polymer’s radius of influence, exacerbating this competition and shortening the maximum ⌧B.
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Figure 3-6: Plot of average time bound (⌧B) for targets when multiple targets are present. Y-
axis is normalized by the average time bound for monomeric inhibitors, ⌧0B. Data presented is for
polymer-target binding energy of �E0 = �4 kBT in theta solvent. Similar to with a single target,
⌧B has a limited increase with degree of polymerization of the inhibiting polymer. More attractive
inter-target potentials (orange, ✏TT = 18

12) decrease the maximum ⌧B. Error bars are smaller than
symbol size.

Polymer induced phase separation

Because the kinetic changes were correlated to changes in local concentration of the target, we next

considered the thermodynamics of the system, where we found an increased concentration of targets

bound to the inhibitor. In Fig. 3-9A, we show that in theta solvent for ⇠ 0.1 mM binding affinity

(�E0 = �4kBT ), the average number of targets bound to the polymer increased for higher target-

target attraction, for both mono and divalent targets. Therefore, although individual targets unbind

more quickly, inter-toxin attraction leads to higher inhibiting polymer avidity overall. Attraction

between targets causes a significant increase in the number of targets bound because it induces a

collapse transition where bound targets collapse the polymer and themselves into a globule or liquid

phase. When the polymer/bound target system collapses to form a globule, the enthalpic benefit

of an additional target joining the globule becomes greater than the loss of entropy of binding,

leading to a significant increase in the number of targets bound to the target. This leads to a target

rich liquid-like phase attached to the polymer and a low concentration gas-like target phase in the

supernatant. Similar data for good solvent can be seen in Supplemental Figure 3-13.

We confirmed that the marked increase in avidity was caused by a polymer collapse transition by

examining the end to end distance. Fig. 3-10 shows the decrease in the average end to end distance

for a 64mer polymer in theta solvent interacting with divalent (Fig. 3-10A) and monovalent (Fig.

61



Figure 3-7: Distribution of times spent bound for single target scenarios (yellow) and scenarios with
multiple targets (orange and blue). The rate of unbinding corresponds to the slope of the line in
these two regions, shown in black. There is a fast and a slow timescale on which targets unbind.
The former corresponds to singly bound targets unbinding and does not change with inter-target
potentials. The second, longer timescale corresponds to doubly bound targets that unbind. When
there are favorable target-target interactions (orange), the decay in doubly bound times is faster
than if there is not an attraction between targets (blue), or if there is no competition from other
targets (yellow).

3-10B) targets with ✏TT = 1
12 and ✏TT = 18

12 attractions between targets. End to end distances for

polymers in good solvent interacting with multiple targets can be seen in Supplemental Figure 3-14.

As expected, the theta polymer is at its normal random walk size of 8 with no targets present, but

when divalent targets are added, the polymer collapses to a globule for both levels of inter-target

attraction. For 64mers interacting with monovalent targets, we only see a collapse in the end to end

distance when the inter-target attraction is ✏TT = 18
12 , meaning that the collapse transition does not

occur when ✏TT = 1
12 . Instead, for monovalent targets with positive second virial coefficient, bound

targets have high enough excluded volume to extend the polymer chain, causing the swelling seen

in Fig. 3-10B.

This collapse transition that leads to globular polymers and higher target binding is caused by

a competition between entropy and enthalpy and can be induced by increasing the polymer length.

This can be seen in the large jump in targets bound for monovalent targets with ✏TT = 18
12 in Fig.

3-9A as the degree of polymerization is increased from 8 to 32 beads. Examining this case more

closely, we see that as degree of polymerization is increased, the percent of inhibitor beads bound

initially drops, before a sudden increase in binding after a polymerization of approximately 10 beads.

When the targets have a positive second virial coefficient, a bound target reduces the volume
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Figure 3-8: There are two types of competition bound targets experience that lead to shorter times
bound for divalently bound targets. (A) shows competition from neighboring bound targets and (B)
shows competition from nearby unbound targets which is increased for more favorable inter-target
potentials.

that a target on a neighboring bead has. Because of this, targets prefer to bind to monomeric

inhibitors or polymer ends that have more available volume around them, or targets prefer to be

unbound. When the targets have high attraction, a neighboring target creates favorable interactions

and smaller excluded volume so targets prefer to bind places that have more neighbors such as the

center of the polymer. This can be seen in Fig. 3-11, where low inter-attraction monovalent targets

prefer to bind polymer ends and monomeric inhibitors and high inter-attraction targets prefer to

bind the center of the polymeric inhibitors.

Targets can also overcome the unfavorable excluded volume created by their neighbors when the

polymer-target binding affinity is high enough, such as in the case where the target is divalent and

�E0 = �4kBT . Divalent targets benefit from two factors, they get the energy benefit of binding

twice to the polymer and the benefit of monopolizing two polymer beads worth of space, reducing

interactions with neighboring bound targets.

In addition to increased binding of targets, the polymeric inhibitor promotes aggregation and

increased local concentration of unbound targets. By measuring the minimum distance between

all unbound targets and the polymer and normalizing by the volume of the shell, we compared

the concentration of targets at each distance R away from the polymer as shown in Fig. 3-12 for

theta solvent and Supplemental Figure 3-15 for good solvent. From these plots, it is clear that at

small inter-target potentials such as ✏TT = 1
12 there is a negligible increase in the concentration of

unbound targets near the polymer. In contrast, with an attractive inter-target potential of ✏TT = 18
12 ,

there is a significant increase in the concentration of unbound targets near the polymer - almost 5

times the bulk concentration for theta solvent with �E0 = �4kBT . Overall, this means that inter-

target attraction leads to significant increases in both bound targets and unbound target clustering,
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Figure 3-9: Percent of inhibitor beads bound in theta solvent when the target-polymer binding
affinity is �E0 = �4kBT (A) and �2kBT (B). (A) As inhibitor length increases, a transition occurs
that allows the polymer to bind a significantly higher percentage of targets when there is some
inter-target attraction. This transition happens at approximately degree of polymerization of 10
for monovalent targets and degree of polymerization of around 3 for divalent targets. (B) At very
low polymer-target binding affinities, such as �2kBT , a critical percentage of targets never bind to
the inhibiting polymer, so even at high degrees of polymerization, a transition in binding does not
occur. Error bars are smaller than symbol size.

encouraging the collapse transition that makes the polymeric inhibitors more effective binders.

At a target-polymer binding affinity of �4kBT , this effect is not specific to the divalent targets,

and increased aggregation can also be seen for monovalent targets, although less extreme. But at

lower binding affinities such as �2kBT shown in Fig. 3-9B and Fig. 3-12B, targets are unaffected

by target-target attraction because they do not bind strongly enough to the polymer to create the

critical concentration needed on the polymer to attract more targets. Therefore, the average number

of targets bound to the polymer barely increases at higher inter-target attraction.

Above a critical length or a critical binding affinity, polymers are able to take advantage of

weakly attractive inter-target interactions, increasing inhibitor binding avidity. Though competition

for binding sites lowers the ⌧B for individual targets, inter-target attraction allows the polymer to

induce a collapse transition that clusters unbound targets, significantly increasing the binding of

the polymer overall. With a sharper collapse transition and a diminished entropy of collapse and

re-swelling, longer polymers should show an amplified effect.
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Figure 3-10: End to end distance for 64-mer polymers in theta solvent in the presence of divalent
targets (A) and monovalent targets (B). (A) Increasing binding affinity between the targets and
polymers induces a transition where the polymer collapses in size for both inter-target attractions.
(B) Only high inter-target attraction leads to a collapse transition (orange). Low inter-target
attraction (blue) does not provide enough enthalpic gain to overcome the entropic loss of phase
separation. Error bars are smaller than symbol size.

3.4 Conclusion

This work has shown that increasing the degree of polymerization of a multivalent inhibitor in-

creases the overall avidity of binding, but there is a limited increase in avidity at high degrees of

polymerization. To explore the effect of multivalent polymer structure, we used a Brownian dy-

namics bead-spring model coupled with a reactive polymer-target binding model to investigate how

degree of polymerization influences a polymeric inhibitor’s avidity. First, we examined how the

length of our inhibiting polymer modulates binding interactions with a single mono and divalent

target model. We found that, consistent with previously reported experimental results for polymer

binding to lectins, increasing the inhibitor length did increase binding avidity for multivalent tar-

gets, but interestingly, this effect was limited. We provide evidence that this limit can be explained

by the entropic penalty of forming large loops; long polymers theoretically provide more possible

loops when bound to a target in two places, but the entropic cost of forming long loops makes them

unachievable in practice. Therefore, if the target is a globular protein, polymers longer than the

maximum achievable loop length will demonstrate the maximum binding avidity. From an inhibitor

design perspective, this means that the easier it is for loops to form, the greater the benefits from
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Figure 3-11: The amount of time each inhibitor bead spends bound when interacting with mono-
valent, �4 kBT binding targets. Plots compare binding times for monomeric inhibitor beads (red)
and beads that are part of a 64-mer polymer (blue). (A) Time bound when interacting with targets
that have low (✏ = 1/12 kBT ) target-target attraction. Monomers are each bound for a uniform
amount of time, but the polymer ends are bound much more frequently than the polymer beads in
the center of the chain. (B) When interacting with targets that have higher target-target attraction
(✏ = 18/12 kBT ), the polymer collapses, making the center beads bound more frequently than the
chain ends. Monomeric inhibitor beads continue to experience uniform binding preference.

multivalent binding and lengthening a polymer. For example, our simulations show that increasing

solvent quality discourages loop formation and causes �G to plateau more quickly and at a less

favorable value. Likewise, our theory predicts that factors that discourage loops such as increased

polymer stiffness and high amounts of swelling will reduce avidity. However, we do not address

precise ligand engineering in this work; if ligands are spaced exactly to fit the receptor’s binding

sites, making a polymer stiffer may be an effective method to increase avidity [33].

Due to its estimation of the targets as point particles, our model works well for systems in which

the binding sites are clustered in areas smaller than the distance between polymer binding sites, such

as lectins or possibly clustered receptors on a surface. Our model does not address the experimental

results that increasing polymer length continues to increase avidity for larger many-valent surfaces

such as viruses. In this case, longer polymers may continue to show increased avidity as they are

able to reach more binding sites along the surface and benefit from increased combinatorial entropy

[11]. Consequently, for targeting viruses, researchers may want to continue creating polymers with

higher degrees of polymerization.
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Figure 3-12: Plot of the minimum distance away from the polymer that unbound targets are found,
normalized by the volume of a sphere with radius R, where R is the distance the center of the target
is from the center of the nearest polymer bead. Data is shown for 64mer polymers in theta solvent
with polymer-target binding affinities of (A) �4kBT and (B) �2kBT . (A) The concentration of
unbound targets is approximately the same as the bulk when there is low inter-target attraction,
but the concentration of unbound target near the polymer is higher than the bulk concentration
when the inter-target potential is increased. The rendering in the inset shows unbound targets
(yellow) clustered inside the polymer (blue) by the bound targets (orange). (B) Fewer targets have
bound to the polymer, so the polymer has not collapsed. This makes the local concentration of
unbound targets near the polymer approximately the same as the bulk concentration for both high
and low inter-target attractions.

In the presence of multiple targets, we found that longer polymers are able to use inter-target

interactions to increase their avidity further. We show that despite decreased time bound for

individual targets, longer polymers are able to bind to more targets simultaneously in the presence

of favorable inter-target interactions. When inter-target attraction is present, longer polymers are

able to induce a collapse transition where targets precipitate into a globule with the polymer,

helping the polymer draw in a significant number of unbound targets. Increasing the concentration

of unbound targets near the polymer makes the polymer better at clustering and binding targets.

This could be a desirable effect in both the inhibition of targets and in other scenarios such as

controlling biological signaling [105].

Our results suggest design rules for creating multivalent polymeric binders. With the under-

standing that increasing degree of polymerization has a limited effect on avidity in low target con-
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centration environments and that inhibitor length can be used to induce phase separation in high

concentration environments, future designers can focus on other variables when creating multivalent

polymeric binders for proteins.

3.5 Appendix

3.5.1 Additional figures for good solvent

Figure 3-13: Percent of inhibitor beads bound in good solvent when the target-polymer binding
affinity is �4 kBT . As inhibitor length increases, fewer monovalent targets (blue) are bound for
both inter-target attractions because the enthalpic gain of targets binding does not overcome the
loss of entropy. For divalent targets (red), longer polymers lead to an increase in binding avidity
with higher inter-target attraction.
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Figure 3-14: End to end distance for 64-mer polymers in good solvent in the presence of divalent
targets (A) and monovalent targets (B). (A) Increasing binding affinity between the targets and
polymers induces a collapse transition where the polymer distinctly collapses in size for higher
inter-target attractions. This collapse in good solvent occurs at a stronger target-polymer binding
affinity than in theta solvent. (B) Only high inter-target attraction leads to a transition where the
polymer collapses. Low inter-target attraction does not provide enough enthalpic gain to overcome
the entropic loss of phase separation.
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Figure 3-15: Plot of the minimum distance away from the polymer that unbound targets are found,
normalized by the volume of a sphere with radius R, where R is the distance the center of the
target is from the center of the nearest polymer bead. Data is shown for polymer-target binding
affinity of �4 kBT in good solvent. The concentration of unbound targets is approximately the
same as the bulk when there is low inter-target attraction, but the concentration of unbound target
near the polymer is higher than the bulk concentration when the inter-target potential is increased.
This clustering of unbound targets is slight for monovalent targets because the polymer has not
gone through a collapse transition, but unbound target clustering is significant for divalent targets
because the polymer end to end distance has been greatly reduced.
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Chapter 4

Influence of Binding Site Affinity Patterns on

Binding of Multivalent Polymers

Abstract

Using inspiration from biology, we can leverage multivalent binding interactions to enhance weak,

monovalent binding between molecules. While most previous studies have focused on multivalent

binders with uniform binding sites, new synthetic polymers might find it desirable to have multiple

binding moieties along the chain. Here, we probe how patterning of heterogeneous binding sites along

a polymer chain controls binding affinity of a polymer using a reactive Brownian Dynamics scheme.

Unlike monovalent binders which are pattern agnostic, we find that divalent binding is dependent on

both polymer pattern and binding target concentration. For dilute targets, blocky polymers provide

high local concentrations of high affinity sites, but at high target concentrations, competition for

binding sites makes alternating polymers the strongest binders. Subsequently, we show that random

71



copolymers are robust to target concentration fluctuations. These results will assist in the rational

design of multivalent polymer therapeutics and materials. The work presented in this chapter is

primarily sourced from Zumbro and Alexander-Katz, ACS Omega 5 (2020) 10774–10781 [106].

4.1 Introduction

Multivalent polymers that bind to smaller targets are of interest in both biological and physical

applications. In biology, multivalent interactions are used for a variety of reasons including enhanc-

ing weak monovalent binding or increasing specificity of binding using a limited number of receptor

and ligand types [1]. Multivalent binding is defined as when multiple ligands on one species bind

to multiple receptors on another species simultaneously. This can create a much stronger bind-

ing interaction than the sum of the corresponding monovalent single receptor/ligand interactions.

In chemistry and materials science, multivalent polymers have been used to bind to multivalent

crosslinkers to modulate gel characteristics [67]. Similarly, membraneless organelles also depend on

the binding sequences of multivalent polymers to control gelation and liquid-liquid phase separation

[58,63]. Furthermore, glycosylation of proteins in vivo often appears as a random process leading

to a random arrangement of binding sites, but dysregulation of the sequence has been linked to

neurodegenerative disorders [107]. Understanding the role of sequence in multimodal multivalent

polymers and their influence on aggregation is thus of great interest to biology.

Synthetic multivalent polymers have also shown promise binding to sugar-binding proteins called

lectins [94,92]. Sugar-protein binding sites frequently create low-affinity bonds, so multivalency can

be essential to creating strong binding interactions [98,16]. Lectins are of special interest to us

because viruses and bacteria use lectins to bind-to and subsequently infect cells, and microbes can

release toxic lectins such as cholera or shiga toxin that cause diarrheal diseases [89,90]. Building

synthetic multivalent inhibitors of lectins is a promising avenue for combating viruses, antibiotic

resistant bacteria, and diarrheal diseases such as cholera [89,27,90,26,91,92,21,20] as shown in Figure

4-1.
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Figure 4-1: Multivalent polymers have shown promise as inhibitors for toxic lectins by preventing
their attachment and subsequent infection to cells, as shown in the right panel.

Previous theoretical studies of multivalent structures with heterogeneous binding sites discussed

the case of binding to a much larger flat multivalent surface such as Curk et al. who assumed very

flexible ligands and focused on how changing overall receptor concentrations modulated binding of

nanoparticles [12] and Tito et al. who examined the case of multivalent polymers binding to larger

flat surfaces [108]. While these studies were well done, we wanted to investigate whether similar

results could be found for multivalent polymers binding to much smaller targets such as folded

proteins or nanoparticles. Theoretical studies have shown that interacting with small colloids can

induce only a local conformational change in the polymer [37] whereas copolymers binding to a

surface can create a strong conformational change leading to a stretched or even brushlike structure

depending on other conditions [109,110]. This makes the scenario of binding to a much smaller target

unique from binding to a surface. Experimental studies on polymers binding to multivalent proteins

like lectins have focused on homopolymers with sites matched to a specific target lectin [90,32,33,97].

The ability to carefully control glycopolymer sequence was developed recently, and so comparatively

few experimental studies have examined the effect of binding site sequence of heteropolymers on

lectin binding [111]. Zhang et al. found some dependence of binding on copolymer sequence, but

overall binding site concentration dominated the results, muddling the effects of sequence on binding

to DC-SIGN [112].

Here, we examine polymers with multiple binding site types binding to globular protein targets

such as a lectin. While holding the concentration of all binding site types constant, we explore

how changing the pattern of binding sites along the chain affects binding. The study of copolymers

as multivalent binders is interesting because of their potential use for binding to multiple targets

for example targeting multiple lectins in the galactose-binding family. The binding specificity of
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lectins to complex glycans is an active field of research. While lectins often target a particular

monosaccharide or oligomeric sugar, the binding affinity can change based on the linkage or place-

ment in a larger complex glycan ligand. For example, some galactose binding proteins can bind to

both galactose and N-acetylgalactosamine, and the mannose-binding lectin concanavalin A binds to

monomeric mannose, as well as mannose connected to various complex glycans with significantly

different affinities [82,113]. Therefore, it is reasonable to assume that a binding site meant for one

lectin might interact with another lectin or conversely that a single lectin might bind to two binding

sites with different affinities. This “cross-talk” could significantly affect overall polymer binding.

Unintentional heterogeneity is also important to investigate since imperfect grafting or other syn-

thesis methods can create random binding site copolymers which could have a significant effect on

target binding [42]. Additionally, in biological polymers such as mucins, the regulation and sequence

of complex sugars are still not fully understood and might be heterogeneous [24].

In this chapter, we show that multivalent binding affinities are very different depending on poly-

mer heterogeneity compared to monovalent binding. The binding affinity of monovalent targets to

multivalent polymers is dependent on only the number and affinity of the highest affinity sites and

not location. For multivalent targets, however, the results are more interesting. In dilute target con-

ditions, the strength of the bond between the polymer and target is controlled by the highest affinity

binding sites and the relative location between them. “Blockier" or clustered high affinity polymer

binding sites create stronger binding to dilute multivalent targets. Alternatively, when many mul-

tivalent targets interact with patterned copolymers, the highest affinity polymers have alternating

affinity binding sites while “blocky" copolymers have the lowest average binding to divalent targets.

This results from competition between target for the same binding sites. Furthermore, we find that

random copolymers are more robust to target concentration and perform mid-way between blocky

and alternating copolymers in all target concentrations. We expect that these results will assist in

the rational design of multivalent polymer therapeutics and materials.
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Figure 4-2: Schematic of simulation. The globular protein target is approximated as a sphere with
one or more binding sites. The polymeric inhibitor is represented by a bead spring model where
each bead has a single binding site and is connected to its neighbors through harmonic springs.
Rendering from the Protein Data Bank [68,69]. This figure is reprinted from Zumbro et al. with
permission from Elsevier [86].

4.2 Results and Discussion

To examine the effects of polymer binding site patterns, we placed four polymers with degree of

polymerization of N = 16 beads in a cubic box with periodic boundaries. We chose a polymer

length of N = 16 beads because previous work showed that increasing polymer length leads to a

plateau in binding affinity after approximate lengths of N = 13 beads [86]. Using the same methods

described in Chapter 2 with chapter-specific constants detailed in the methods section. Targets

were represented by single beads of the same size as a polymer bead as shown in 4-2. Target beads

were assigned one or multiple binding sites to represent monovalent or multivalent binding scenarios

respectively.

Every polymer set was assigned a binding site pattern where each polymer bead was given a

single binding site with a particular binding affinity �E0 as shown in Figure 4-3. The binding

site pattern parameter space is very large when we consider binding site energy, arrangement, and

fraction of sites in the chain. Therefore, we have shrunk the parameter space to a more tractable

subset where we consider polymers with 50% higher affinity binding sites and 50% lower affinity
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sites. We believe that this case is still relevant to experimentalists who may only have two ligand

chemistries available or who plan to target two proteins in the same family. We used polymers

that had various patterns of 50% high affinity binding sites (�E0 = �6kBT ) and 50% low affinity

binding sites (�E0 = �2kBT ), corresponding to monomeric binding affinities of KD = 0.02 mM and

KD = 0.8 mM, respectively. Additional dissociation constant data for polymers with �E0 = 0kBT

and �E0 = �6kBT binding sites and with �E0 = �3kBT and �E0 = �5kBT binding sites are

included in the chapter appendix (4.5). In all cases we observe identical trends, and thus we only

present the (�2,�6) scenario. To generate randomly patterned polymers, we randomly selected half

of the polymer bead indices and labeled those as high affinity sites �E0 = �6kBT , the remaining

half of the beads were labeled as low affinity sites. This created randomly patterned polymers while

maintaining a 50 : 50 ratio of high and low affinity sites. All of the four polymers in a simulation

were assigned the same binding site pattern. For comparison, we also ran homogeneous polymers

with uniform binding sites with �E0 = �4kBT , corresponding to a monovalent binding site affinity

of KD = 0.1 mM. These binding affinities were calculated by fitting the Langmuir adsorption curve

using the fraction of time bound (�) of a monovalent target binding at different monomeric inhibitor

concentrations. As detailed in Chapter 2, we can convert the unitless dissociation constant KD to

Molar by estimating a size of each bead in nm. These binding affinities capture relevant biological

affinities of monovalent binding between sugars and proteins, commonly on the order of mM to µM

[81,82].
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Figure 4-3: Schematic of the polymer patterns tested when exploring binding of a target (red) to
homopolymers and copolymers (blues). The periodicity, p is labeled above each polymer pattern.
Here, dark circles indicate high affinity binding sites with �E0 = �6kBT , light circles represent low
affinity binding sites with �E0 = �2kBT , and striped circles represent a medium binding affinity
used only for the homopolymer comparison with �E0 = �4kBT .

Throughout this work, we consider a target “bound” if one or more of its binding sites are

bound to the polymer and “unbound” if the target has no bonds to the polymer. We analyzed the

average time interval the target spent bound, ⌧B, as we varied the binding site periodicity p while

maintaining the 50 : 50 high affinity and low affinity bead ratio. For example, an alternating high

and low affinity polymer is considered to have a periodicity p = 2 and a polymer with half high

affinity beads and half low affinity sites split down the center has p = 16 as shown in Figure 4-3.

Results for four polymer periodicities p = 2, 4, 8, 16 with comparisons to a uniform binding site

polymer and randomly patterned polymers are discussed in this work.
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Figure 4-4: Plot of the average time bound ⌧B vs the periodicity of the polymer p. The binding
dependence on polymer pattern is different for divalent targets (blue) and monovalent targets (or-
ange). Periodically patterned polymers are represented by connected circles (-o), homopolymers are
represented as x’s (x), and random copolymers are represented by squares (⇤). Because the binding
of 100 co-polymer patterns were averaged, the standard deviation of the ⌧B across random polymer
patterns is depicted as error bars. The effect of pattern is also dependent on the concentration of
targets. (A) At dilute target concentrations, target binding increases with copolymer periodicity
but (B) at higher target concentrations low periodicity copolymers have higher ⌧B. The sampling
error for all data points is smaller than the symbol size.

4.2.1 Dilute Target Case

First, we considered a dilute target case where one target interacts in a box with four 16mer

polymers. Assuming a target protein size of 5 nm, this corresponds to a target concentration of

approximately 1.6µM. Results for ⌧B at this dilute target concentration are shown in Figure 4-4A.

For monovalent targets, ⌧B is only affected by individual affinities of sites and is pattern agnostic.

Shown in orange circles (-o) in Figure 4-4A, ⌧B is higher for polymers with 50% �E0 = �6kBT

affinity sites, than the uniform polymer (shown as an orange x in Figure 4-4A) with �E0 = �4kBT

affinity sites. By plotting the fraction of time each site on the polymer chain is bound to a monovalent

target in Figure S4A, we show that low affinity polymer sites are rarely bound, regardless of pattern

periodicity. The design relationship for monovalent targets is straightforward: the affinity but not

the relative position of sites controls the ⌧B. Note that sites at the polymer ends do experience

slightly higher binding than the center beads because polymer ends have less excluded volume
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from neighbors, and so more available volume from which targets can bind. These end effects are

relatively small contributors and are found across all polymer patterns. With only one binding site,

monovalent targets can only sense the non-specific interactions of the polymer around them such as

the Lennard-Jones potential, so they cannot distinguish between binding site patterns. Therefore,

the binding of dilute monovalent targets is pattern agnostic and depends only on the strength and

number of high affinity binding sites.

Next, we consider a single divalent target interacting with uniform and patterned polymers.

Unlike monovalent targets, ⌧B of divalent targets increases with p as shown in Figure 4-4A. A divalent

target spends significantly more time bound to polymers with clustered high affinity binding sites

than polymers with distributed high affinity sites. By examining which polymer beads are bound

in Figure 4-5B, we find that for uniform polymers, beads in the center of the polymer are bound

more often because they have the highest local concentration of binding site neighbors. Having the

most binding site neighbors provides the highest chances for the target to create two simultaneous

bonds.

From Figure 4-4A, we also see that on both the alternating polymer (p = 2) and the blocky

polymer (p = 16), the low affinity binding sites are almost never bound (although the low affinity

sites on the p = 2 polymer are bound slightly more often than those in p = 16). Comparatively, the

high affinity sites on the blocky polymer are bound significantly more than the high affinity sites

on the alternating polymer. This follows directly from our observation that clustered sites create

increased opportunity for targets to become double bound. Blocky polymers have clustered high

affinity sites, so targets can navigate to the high affinity block and will most likely become bound

to two high affinity sites, creating a strong bond. In contrast, alternating high affinity sites are

less occupied because for two sticky sites to be bound simultaneously, a divalent target has to form

an entropically unfavorable loop. Targets prefer to bind to sites directly next to each other on the

polymer to limit loop size and the corresponding polymer entropy loss as previously demonstrated

in Zumbro et al [86]. A similar entropic penalty of loop formation has also been seen previously

in the case of polymers binding to surfaces [108]. These loops make the alternating polymer less

sticky than the blocky polymer in the case of dilute multivalent targets. While precise ligand design

on the order of the target size is not considered in this work, previous research has shown that to
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minimize entropic cost, binding sites should be spaced to exactly match the distance between target

sites [33,34]. Therefore, when designing a polymer to bind with high affinity for a dilute target, the

designer should use a blocky polymer whose binding sites are spaced the same distance apart as on

the target.

Figure 4-5: Frequency that a polymer bead is bound throughout the simulation when (A) a single
divalent target and (B) 64 divalent targets are present for homopolymers (blue), alternating copoly-
mers (red), and blocky copolymers (green). (A) For the patterned copolymers, low affinity binding
sites are bound with almost the same frequency. However, the high affinity binding sites on the
blocky polymer are bound much more frequently than the low affinity binding sites on the alter-
nating polymer. (B) For the patterned copolymers, attractive binding sites are bound with almost
the same frequency. However, the low affinity binding sites on the blocky polymer are bound much
less frequently than the low affinity binding sites on the alternating polymer. Error bars are smaller
than the symbol size.

4.2.2 High Target Concentration Case

We continued our exploration of the effect of polymer pattern by simulating the same polymer

patterns shown in Figure 4-3 interacting with 64 targets to capture the case where multiple targets

compete for binding sites. While previous theoretical investigation into competition of patterned

polymers was between the polymers for the binding surface instead of between the targets for

binding to the polymer, competition has been shown to significantly change the binding statistics

[108]. Therefore again, we placed four 16mers in the box with our targets, so in this scenario, the
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number of targets match the number of binding sites on the polymers. This higher concentration

corresponds to approximately 100 µM assuming a 5 nm target diameter. Creating target competition

for binding sites allows us to ask the question: how does pattern modulate multivalent binding when

a target may not have access to the highest affinity sites? Competition for sites encourages faster

turnover in bound targets because neighboring targets can steal polymer binding sites from each

other. This faster turnover leads the drastically shorter ⌧Bs seen between Figure 4-4A and 4-4B.

With competition, monovalent target binding was qualitatively unchanged. Monovalent targets were

pattern agnostic and on average spent the highest ⌧B on the patterned polymers with �6kBT as

shown in Figure 4-4B. For divalent targets, increased binding competition inverted ⌧B’s dependence

on polymer binding site periodicity as shown in Figure 4-4B.

When multiple targets interact with a single binding polymer, a uniform polymer with medium

binding affinity sites has the highest overall avidity. The next highest ⌧B is to the alternating high

and low affinity polymer (p = 2), with blockier polymers p = 4, 8, 16 showing the shortest ⌧B. By

investigating which polymer sites are bound in Figure 4-5B, we find that the high affinity sites

on the alternating polymer are now bound almost as often as the high affinity sites on the blocky

polymer. In contrast, low affinity sites on the alternating polymer are significantly stickier than the

low affinity sites on the blocky polymer. This is a result of restricted access to high affinity binding

sites in blocky copolymers. When multiple targets are present, high affinity sites on the blocky

polymer fill up, and unbound targets are forced into the low affinity region. In the low affinity

half, targets are only able to bind two low affinity sites simultaneously – making relatively weak

bonds. For the alternating polymer, targets forced to bind to the low affinity sites are still in close

proximity to high affinity sites and can do a better job sharing sites with their target neighbors by

binding to a high affinity site and a low affinity site simultaneously. This sharing makes alternating

polymers the highest overall affinity of the patterned polymers for multivalent targets.

Because there is a transition in the binding as the concentration increases, there is some critical

target concentration where the polymer pattern should not matter reflected as when target binding

time is not dependent on the polymer periodicity. Because competition between targets for high

affinity sites is causing the transition, we expect that the transition concentration should be approx-

imately the concentration at which competition starts. Whenever there are multiple targets, there
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will be some competition for sites, but we believe this competition will start to dominate when there

are enough targets to bind to all high affinity polymer sites. This can be described quantitatively

as when Ct = CHA

vt
= 16 where Ct is the concentration of targets, CHA = 32 is the concentration

of high affinity binding sites, and vt is the valency of the target, in this case vt = 2. We expect

the critical concentration to be slightly above this because the number of targets must exceed the

available binding sites to create competition.

To investigate this critical target concentration, we plotted the dissociation constant KD from

simulations with Ct between 1 and 96 in Figure 4-6. We calculated the dissociation constant using

KD = ⌧UB
⌧B

, where ⌧UB is the average time interval spend unbound. We consider a target unbound

whenever both binding sites are unbound. From this data we can see that the critical concentration

occurred somewhere between Ct = 20 and Ct = 24. This is very close to our theoretical estimate

of 16 targets as our critical concentration. The difference of 4 to 8 targets is most likely due to

significant concentration occurring only when there is an additional target (above the full capacity)

for each chain to compete with, but could also be explained by there being a low affinity site for

each of the 4 polymer chains that has access to a high affinity site. A target that bound there could

form a relatively favorable high and low affinity bond, almost creating another good binding site

per chain. Either of these effects or a combination of both could increase the critical concentration

slightly above Ct = 20. Following these results, we expect that designers can perform our simple

estimation that the alternating polymer becomes higher affinity than the blocky polymer when the

target concentration exceeds Ct =
CHA

vt
.
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Figure 4-6: Dissociation constant KD versus periodicity of polymer pattern for target concentrations
from 1 to 96. We have marked the concentrations below the critical target concentration where the
blocky polymer (p = 16) has a KD less than that of an alternating polymer (p = 2) with an orange
background. The values above the critical target concentration where the alternating polymer has
a lower KD than the blocky polymer has been labeled with a blue background.

4.2.3 Unknown Concentration

Because binding dependence on polymer pattern changes with target concentration, we subsequently

explored the use of a random copolymer containing some blocky and some alternating areas. We

hypothesized that polymers with both high and low periodicity binding sites would have binding

behavior more robust to fluctuations in target concentration. We examined simulations with ran-

domly patterned binding sites. To create random patterns while maintaining the 50/50 ratio of high

to low affinity sites, we randomly chose 50% of the beads along the polymer chain to be high affinity

(�6kBT ) sites, and the rest were labeled as low affinity (�2kBT ) sites. We averaged the performance

of 100 of these different polymers, with their standard deviation of performance denoted as error

bars in Figure 4-4A and 4-4B. As expected, we found that randomly patterned copolymers resulted

in ⌧B between that of polymers with p = 1 and p = 16 for both dilute and more concentrated diva-

lent target scenarios as shown by the squares (⇤) plotted at p = 0 in Figure 4-4. Pattern continued
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to have negligible affect on binding of monovalent targets. This suggests that in an unknown or

fluctuating target concentration, a polymer with both blocky and alternating regions, such as a

randomly patterned multivalent polymer may provide the broadest binding capabilities.

4.3 Conclusion

We have examined how binding site patterns along the polymer chain influence their average binding

time to both monovalent and multivalent targets. In this paper, we have shown that for targets

with a single binding site, the polymer is only as sticky as its highest affinity site. For targets with

multiple binding sites, the effects of polymer binding site pattern are more nuanced. In dilute target

conditions, polymers bind multivalent targets more tightly when high affinity sites are concentrated,

so blocky copolymers are better binders than alternating copolymers. Blocky polymers also provide

areas of high local concentration of high affinity sites, assisting divalent targets in to form two

strong bonds. For targets to bind two sticky sites on an alternating polymer, they must form an

entropically unfavorable loop with a low affinity bead, making these polymers worse binders. In

crowded environments, the opposite result was found; with multiple competing targets, alternating

high and low affinity binding sites were bound the longest of patterned polymers. When many

targets bind to the same polymer, blocky designs with clusters of high affinity sites performed

the worst because high affinity sites filled up and leftover targets were excluded from the high

affinity region. Alternating polymers were able to share their high affinity sites to improve binding

performance overall. Consequently, our work suggests that the pattern of multivalent polymers

should be adjusted to their binding target application.

If target concentration is unknown, our results show that the most robust polymer pattern to

bridge many target concentrations is a polymer with both blocky and alternating regions. While

this could be achieved with a carefully crafted blocky and alternating copolymer, here we showed

an example of this concept with a random copolymer which had ⌧B’s between those of alternating

and blocky copolymers in both target concentrations. Therefore, for improved performance in

fluctuating target concentrations, a random copolymer or other design with blocky and alternating

regions may be the best choice of polymeric inhibitor. Understanding how patterns of multiple types
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of binding sites on polymeric inhibitors affect the polymer’s binding behavior to a single target type

is an essential first step toward rational design of polymers that display multiple moieties to fulfill

several simultaneous functions. The ability to tune a single polymer design to bind to multiple

types of targets means that multivalent polymers could be used as “broad-spectrum” inhibitors of

microbial or viral infections. Finally, our results clearly show that the effective interactions between

multivalent biopolymers/proteins is sequence dependent, and modifications to such sequences can

lead to clear changes in binding behavior. For example, in liquid-liquid phase separation, small

changes in sequence could lead to large repercussions in the assembly and should be studied further.

4.4 Computational Methods

This chapter uses all of the same general simulations methods as described in Chapter 2. Across

the simulations in this work, we have chosen ✏PP = 5
12 for the Lennard-Jones parameter (Eq. 2.3)

to mimic polymer configurations in a theta solvent [70]. We used polymer target potential ✏PT = 1
12

and target-target potential ✏TT = 1
12 to mimic a good solvent as summarized in Table 4.1. We chose

theta solvent because we previously demonstrated that polymer loops are easiest to form when the

polymer is in the smallest size because the entropic penalty of forming a loop is the lowest [86].

Since having a more collapsed polymer creates a higher local concentration of binding sites, a target

within reach of the polymer should find more accessible binding sites on a collapsed chain as opposed

to a swollen chain. Therefore, overall pattern should matter less for a collapsed chain, so we have

used theta solvent as our limiting case. We expect that using a better solvent would further restrict

the binding sites available to a target and magnify the effects of local pattern on binding.

Table 4.1: ✏ values for Polymer-Polymer (PP), Polymer-Target (PT), and Target-Target (TT) bead
Lennard-Jones Interactions

✏PP ✏PT ✏TT

5/12 1/12 1/12
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4.5 Appendix

Figure 4-7: Frequency monovalent targets are bound to binding sites on homopolymers and copoly-
mers with alternating and blocky patterns. Results are shown for (A) when a single target is placed
with 4 16mer inhibiting polymers and (B) when 64 targets are placed with 4 16mer inhibiting poly-
mers. Frequency of time bound depends on the affinity of that polymer binding site and not on
polymer binding site pattern.

4.5.1 Monovalent binding frequency

In Figure 4-7, we have plotted the frequency each bead along the polymer chain is bound for mono-

valent targets to homopolymers p = 1, alternating heteropolymers p = 2, and blocky polymers

p = 16. High affinity beads are bound with approximately the same frequency for all copolymer

patterns. While the absolute fraction of time bound is different for low and high target concentra-

tions, the qualitative results are the same. Monovalent targets bind to sites of the same affinity

with the same frequency, regardless of copolymer pattern. The same is true of low affinity sites.

4.5.2 Other binding affinities

We also tested other binding affinities pairs both farther apart in energy (0,�6kbT ) and closer in

energy (�3,�5kbT ). Without competition, dilute targets will still try to minimize the entropic cost

of loop formation by binding to the two highest affinity sites, so we expect that in the dilute case
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blocky polymers will always be higher affinity than alternating polymers even with different binding

affinity pairs. In competition with 64 targets, we also expect the same results as the main text for

different binding affinity pairs, which we confirmed with simulation shown in Figure 4-8. In the case

of competition, even when the low affinity sites go to �E0 = 0kbT , we still see a lower KD for the

alternating polymer most likely due to the larger available free volume around the high affinity sites.

Larger spacing between the high affinity sites gives unbound targets more free volume to approach

and bind to the high affinity sites, even when they are already bound by competitors.

Figure 4-8: Dissociation constant for alternating (p = 2) and blocky (p = 16) polymers with �E0

pairs (0,�6kbT ), (�2,�6kbT ), and (�3,�5kbT ). All data shown is for high competition simulations
with 64 targets.

4.5.3 Effective target valency

We also thought it was interesting to examine how the target bonding changes as competition

increases and with the polymer binding site pattern. In Figure 4-9, we have plotted the fraction

of all time bound that the target is bound divalently, as well as the fraction of time spent in each
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type of divalent bond. We show separately, the fraction of bound time the target spends with two

high affinity (�6kbT ) bonds, two low affinity bonds (�2kbT ), and one of both low and high affinity

bonds. From this plot we can see that as the blockiness or periodicity of the polymer increases,

the total fraction of time spent bound divalently stays almost constant, but the types of divalent

bonds change drastically. For example, in the 64 target case, two high affinity bonds account for

62% of all bonds for the blockiest copolymer, but only 41% of all bonds in the alternating polymer.

Divalent bonds with both a high and low affinity bond follow the opposite trend. For the same 64

target concentration we can see that these combination bonds account for almost 28% of bonds in

the alternating polymer and much less, only 7% of bonds in the blocky copolymer. These results

align well with those presented in the main text showing that targets attempt to make divalent

bonds with the polymer; the majority of all bonds formed are divalent. When bonding divalently,

targets prefer to bind twice to high affinity beads, but also seek to decrease loop length. This can be

seen by the lower number of two high affinity bonds for the alternating polymer than for the blocky

polymer, and the increase in both low affinity/high affinity bonds for the alternating polymer over

the blocky polymer.
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Figure 4-9: Fraction of all time spent bound that a target is bound divalently for a single target
interacting with four polymers in orange (-⇤) and for 64 targets interacting with polymers in blue
(-⇤). Fraction of time bound is also plotted for all three divalent bond types: two high affinity bonds
(–x), two low affinity bonds (–⇤), and bonds with one low and one high affinity bonds, labeled as
“Both" in the legend (–o). Values are shown for two polymer periodicities where (p = 2) is an
alternating polymer and (p = 16) is a block copolymer.
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Chapter 5

Polymer Stiffness Regulates Multivalent Binding

and Liquid-Liquid Phase Separation

Abstract

Multivalent binding is essential to many biological processes because it builds high affinity bonds by

using several weak binding interactions simultaneously. Multivalent polymers have shown promise

as inhibitors of toxins and other pathogens, and they are important components in the formation

of biocondensates. Explaining how structural features of these polymers change their binding and

subsequent control of phase separation is critical to designing better pathogen inhibitors and also

to understanding diseases associated with membraneless organelles. In this work, we will examine

the binding of a multivalent polymer to a small target. This scenario could represent a polymeric

inhibitor binding to a toxic protein or RNA binding to an RNA-binding protein in the case of liquid-

liquid phase separation. We use simulation and theory to show that flexible random-coil polymers

bind more strongly than stiff rod-like polymers and that flexible polymers nucleate condensed phases

at lower binding energies than their rigid analogues. We hope these results will provide insight into

the rational design of polymeric inhibitors and improve our understanding of phase separation in

cells and membraneless organelles. The work presented in this chapter is primarily sourced from

Zumbro and Alexander-Katz, In Review (2020) [114].
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Statement of Significance

Multivalent polymers are essential for many biological systems, including targeting pathogens and

controlling the formation of liquid-liquid phase separated biocondensates. Here, we explain how

increasing polymer stiffness can reduce multivalent binding affinity to a small target such as a toxic

protein and how modulating polymer stiffness can change the phase boundary for liquid-liquid phase

separation. These results have implications for designing stronger pathogen inhibitors and provide

insights on neurodegenerative diseases associated with abnormal biocondensate formation.

Introduction

Multivalent binding interactions are commonly found throughout biology and synthetic applications.

These interactions use multiple weak binding sites to simultaneously bind to another species. Using

many low-affinity binding events simultaneously enhances the overall binding affinity much more

than the sum of the constituent monovalent binding interactions [1]. Multivalent binding can

take on many different geometries and previous research has been done on nanoparticles, sheets,

dendrites, and polymers for numerous applications [90,14]. In this work, we will focus on multivalent

polymers as they pertain to toxin inhibition along with implications for nucleating liquid-liquid phase

separation in biocondensates.

Synthetic multivalent polymers have shown promise at binding to and inhibiting multivalent

sugar-binding proteins called lectins [94,32,95,31,97,16]. Monovalent sugar-protein binding affinities

are typically weak, in the millimolar to micromolar range, so multivalency is essential to creating high

binding affinities [98,16]. Binding to lectins is an exciting avenue for combatting infection because

many toxins are lectins such as cholera toxin, shiga toxin, and others that cause diarrheal diseases,

and because bacteria and viruses use lectins on their surface to bind to the glycocalyx on our cells

[89,90]. Mucins, the megadalton weight glyprotein polymer found in mucus, are thought to use their

glycan brushes as binding decoys, exploiting multivalency to bind to pathogenic lectins and prevent

infection [23]. Attempts to mimic this capability with synthetic polymers have been successful, but

the effects of polymer backbone flexibility and characteristic ratio C1 on the binding of polymers

much larger than their targets has not received theoretical study. Previous studies on the flexibility
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of multivalent binding have focused on species of similar size binding to each other. In these cases,

small molecules or oligomers with binding sites precisely spaced to the target found rigid linkers

to minimize the entropic cost of binding, resulting in the highest binding affinity [33,115,90,32,97].

When the polymer chain’s end-to-end distance is on the same scale as the binding target, stiff linkers

between binding sites on an antibody and rigid sections near the ligands of a divalent binder were

shown to be higher affinity than their flexible counterparts [116,35]. In contrast, very few studies

have considered polymers much larger than the size of their targets, even though this is the scale

of native mucins and many of the previously mentioned synthetic inhibitors tested experimentally

[37,86]. We anticipate that because, unlike small divalent oligomers, many-valent polymers allow for

many binding site pairs with different spacings, large multivalent polymers may benefit from higher

flexibility which allows them to sample more binding combinations [14,1,83]. Theoretical research

on this relevant size scale has not considered the effect of stiffness of the polymer chain and how this

controls binding affinity to a small multivalent target. Here, we examine how a single target binds

to large many-valent polymers of increasing stiffness and provide a theoretical explanation for the

difference in binding modes between a flexible random coil polymer and a stiff wormlike polymer

chain.

Understanding multivalent polymers and their binding is also essential to controlling liquid-

liquid phase separation in membraneless organelles [50,49,63]. Research has shown that polymeric

binding characteristics such as valency and individual binding site strength can be used to control the

phase separation boundary [83,58,50]. Other studies have shown that polymer properties indirectly

related to binding sites such as solvation volume can determine the difference between a cross-linked

gel and a phase separated system [58]. Because of this, we expect that flexibility of the polymer

could also be an important factor in controlling liquid-liquid phase separation. Dysregulation of

the phase separation in membraneless organelles is a common feature of neurodegenerative diseases

like Alzheimer’s, Parkinson’s, and ALS [49–51], and so investigating how features of multivalent

polymers can change the phase boundary are essential. We hope that this research will contribute

understanding to how the stiffness of polymer chains can modulate nucleation of condensed phases

and thus how changes in polymer stiffness could lead to aberrant condensates or disease.

In this work, we focus on how the change in polymer stiffness modifies its binding affinity to a
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much smaller target. This scenario could represent a coarse gain model of a polymer binding to lectin

in the case of toxin inhibition or a long section of RNA binding to a smaller RNA-binding protein in

the case of biocondensates [117,118]. First, we will discuss the case of a single target binding to the

polymer and provide a theoretical understanding of how polymer stiffness changes binding affinity.

In the second half of the paper, we will present results for many targets simultaneously binding

to the polymers for an array of target solubility limits. We explore how polymers can nucleate

condensed phases and how polymer stiffness changes this phase boundary. We hope that these

results can aid in the study of polymeric inhibitors as well as in the understanding of liquid-liquid

phase separation of biocondensates.

5.1 Computational Methods

In this chapter we used the general simulation methods from Chapter 2 and added an additional

spring force to prevent polymer bending. This adds another term to the potential energy U from Eq.

2.1 so that in this chapter U combines contributions from connectivity, bending, excluded volume,

and binding as U = Usp + UBend + ULJ + UBind.

To control the flexibility of the polymer chain we use the Kratky-Porod wormlike chain model

[120,121], and introduce an additional spring placed between every next nearest neighbor along the

chain. This is a commonly employed scheme in some force fields such as MARTINI [119]. This

spring imposes an energetic penalty for bending around the straight/stiff configuration between two

bonds as shown in Figure 5-1. This added spring is implemented using the potential below:

UBend =
�

2a

NP�1X

j=2

uj · uj�1 (5.1)

where � is the bending rigidity and 2a is the equilibrium length between two bead centers. uj is the

unit vector pointing from bead j to bead j + 1 [122,123]. This allows us to control the persistence

length or C1 by modulating �. When � = 0 we reproduce a freely jointed chain [124], and as �

increases, the chain becomes a semiflexible polymer and a stiff, rod-like polymer at high �. The end-

to-end distance of the polymer with increasing values of � is shown in Figure 5-2. The corresponding
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Figure 5-1: Depiction of simulation scheme. Polymers are represented by spherical beads (light
blue) connected by harmonic springs. To introduce stiffness, we employ a simple scheme used also
by some commonly utilized force fields (e.g. MARTINI [119]), where an additional spring is placed
between every next nearest neighbor along the chain. Each polymer bead has a single ligand,
meaning it can only bind monovalently, but making the polymer as a whole multivalent. Targets,
on the other hand, can have multiple binding sites and are represented by a single spherical bead
(red) with one or two binding sites as shown. Polymer ligands and target binding sites interact
when they are within a reaction radius. Within this reaction radius, they have a probability of
binding PB that depends on the free-energy landscape, as depicted. Once bound, the target and
polymer bead are connected by a harmonic spring, and they can unbind with probability, PUB.
Apart from the reactive kinetics that we include here to model the specific binding mechanisms, we
use a Lennard-Jones potential to maintain the chain conformation and prevent target-target and
target-polymer overlap. This figure is adapted from Zumbro et al. with permission from Elsevier
[86].

values of persistence length p and characteristic ratio C1 are also displayed for reference.

Across the simulations in this work, we have chosen ✏PP = 0.41 to mimic polymer configurations

in a theta solvent [70]. We used polymer target potential ✏PT = 0.1 and target-target potential

✏TT = 0.1 (unless otherwise stated) to mimic a good solvent as summarized in Table 3.1 Case 1.

We chose a theta solvent for the polymer because this is the lower limit in end-to-end distance of

a soluble polymer. We would expect a polymer in good solvent to follow similar trends as shown

in our previous work, with a smaller range of possible chain end-to-end distances, although this

distinction for stiff polymers becomes even more irrelevant.
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Figure 5-2: Simulated average end-to-end distance R of 16mer polymer chain normalized by the
contour length L0 plotted versus chain stiffness spring coefficient � is shown as blue X’s. Values of
R and � at which simulations were run are highlighted with dashed lines. These values of � were
chosen to explore a wide range of polymer flexibilities and represent the point where R ⇡ 4 for a
perfectly flexible polymer, and 25%, 50%, and 75% of the distance between the most flexible chain
R ⇡ 4 and a perfectly rigid rod where R = L0 = 15. End-to-end distances were converted to C1
on the right axis and persistence length, p on the top axis using the empirical wormlike chain fit
relating R/L0 to p/L0 (black solid line) [121,55].

We used our reactive binding scheme with a free energy of binding per site of �E0 = �4kBT .

Each polymer bead contained a single binding site, and each target bead was given M = 1 or M = 2

binding sites so that we could compare the monovalent case to the divalent case. The binding sites

are isotropic to avoid unnecessary assumptions about binding site orientation and geometry in

this coarse-grain model. This means that binding is attempted and can be successful whenever

the centers of an unoccupied polymer bead and unoccupied target bead are within a distance of

rrxn = 1.1. Choosing a particular orientation of binding sites begins to enter the realm of precise

ligand engineering, in which extensive previous theory and experiments have shown that perfectly

matched receptor and ligand spacing enhances binding avidity [33,115,90,32,97].

The simulation box had periodic boundaries with side length lbox = 41a. Because the box size

is dependent on the size of the beads, we can convert the target concentration from beads per box

to Molar by assuming a binding protein radius. Unless otherwise specified, the polymer and target

beads are the same size. Assuming the target bead radius to be a = 2.5 nm results in a target
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Table 5.1: ✏ values for Polymer-Polymer (PP), Polymer-Target (PT), and Target-Target (TT) bead
Lennard-Jones Interactions

Case # ✏PP ✏PT ✏TT

1 0.41 0.1 0.1
2 0.41 0.1 1.0
3 0.41 0.1 1.25
4 0.41 0.1 1.5
5 0.41 0.1 1.7
6 0.41 0.1 2.0

concentration of approximately 1.6 µM per bead (ie: 64 targets per box is approximately 102 µM,

96 targets ⇡ 154 µM). Similarly, by assuming the size of a target bead radius to be approximately

a = 2.5 nm and using Langmuir adsorption theory, we can convert the �E0 = �4kBT binding

energy into a dissociation constant in Molar, resulting in a monovalent binding affinity of KD = 0.1

mM. This monovalent binding affinity is well within the weakly binding range typical of lectins and

sugars (KDs between mM to µM) as well as the affinity range of some monovalent protein-protein

and RNA-protein interactions found in biocondensates [81–85].

Results are averaged over the second half of the total simulation time and over at least 10

different runs, with a typical system energy profile over time shown in the chapter appendix (5.2)

Figure 5-13.

Results and Discussion

For all simulations we placed n = 4 polymers in a box with a degree of polymerization NP = 16

because this is slightly above the length at which increasing polymer length leads to only a small

increase in binding affinity for a perfectly flexible polymer chain binding to a divalent target [86].

The binding dependence on length for flexible polymers is primarily influenced by the loop sizes

that can favorably occur when bonded twice to a target. Thus, we expect that in wormlike chains,

intra-chain loops will be even shorter, and so overall polymer length will be relatively unimportant.

Simulations for both the dilute case of a single target binding to our polymers as well as higher

concentration cases where many targets interact with the polymer simultaneously are discussed in

97



this work.

Figure 5-3: (A) Schematic of the single target simulation set up with a single mono- or divalent
target shown in red and four polymers with a length of 16 beads. (B) The average time interval
bound ⌧B of a single divalent target (blue) and a monovalent target (orange) versus the polymer
stiffness controlled by the angle-bending spring coefficient �. Higher � corresponds to stiffer springs
and more rigid polymers. The monovalent target ⌧B seems unaffected by the polymer chain stiffness
while the divalent targets show a decrease in ⌧B with �. Error bars are smaller than symbol size.

Binding to a single target

It is important to consider how a single mono or multivalent target binds to a polymer without

competition from other targets for available binding sites. We did this by placing a single target

with either one or two binding sites in with four identical 16mer polymers as shown in Figure 5-3A.

To examine the binding affinity of our polymers we calculated the average time bound ⌧B for our

target, where we considered our target bound whenever at least one of its binding sites was bound

to the polymer. Accordingly, we consider the target unbound whenever none of its binding sites

were bound to the polymer and denote the average time interval unbound as ⌧UB.

We have plotted the ⌧B for for divalent and monovalent targets in Figure 5-3B. From this plot,

we can see that the ⌧B for the monovalent target does not depend on polymer stiffness, but the ⌧B

of a divalent target decreases with increasing bending spring coefficient �. Remember that higher �
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corresponds to a stiffer polymer. While this decrease was predicted by Zumbro et al., the previous

theory for random coil chains only partially applies [86]. Previous work showed that the entropic

cost of forming loops limits the polymer binding affinity, but in the case of a rod-like polymer or

worm-like chain, loop entropy is not the limiting factor. Instead, we predict that the major energetic

factor limiting multivalent binding affinity is the enthalpic cost of bending the polymer to make two

contacts with the target. If bending is the limiting factor, we can estimate the energy as:

E = E
0
bind + Ebend (5.2)

where E
0
bind is a constant denoting the favorable energy of forming two bonds while Ebend is the

quantity that is changing most drastically with loop length. When the target is bound twice to the

same polymer chain, once to polymer bead i and simultaneously once to polymer bead j, we define

the loop length by subtracting the two values lloop = |i � j|. This results in lloop = 1 when i and

j are right next to each other, lloop = 2 when there is a single unbound bead between them, etc.

To minimize bending penalty for a particular lloop, the polymer will want to minimize curvature

or maximize the bending radius Rloop. If we consider very small loops where lloop = 1, 2, 3, the

maximum Rloop is constant at 2a where a is the radius of the beads. Because our target is very

coarse-grained, we allow its binding sites to be accessible anywhere on the surface; this makes the

largest Rloop for lloop = 1, 2, 3 occur when the polymer beads all exactly touch the surface of the

target. Since at small lloop, Rloop is constant, we can estimate the probability of forming a loop as:

ln(Ploop) / �E = �E
0
bind � C0�Rlooplloop = C1 � C2�lloop (5.3)

where C0 is a constant representing the bending cross-section, and where, for small loops, we

have replaced �E
0
bind and C0Rloop with generic constants C1 and C2 respectively. From Equation

5.3, we find that if bending energy is the most significant influence on ⌧B, we should see the ln of

the frequency of increasing loop size decay linearly with a rate proportional to the chain stiffness �.

We can probe this theory directly by examining the length of loops formed and their frequency

depicted in Figure 5-4. From this plot, we can see that the more flexible polymers (� = 0, 1, or 2.25)

follow an exponential decay characteristic of entropic loop costs [86], while the stiffer chains (� =
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Figure 5-4: Percent of time that a polymer bound twice to a target is in a certain loop length plotted
in (A) log-log scale and (B) log-linear scale. Each color represents a different polymer stiffness, the
dashed black line represents 1%, and the solid black line is an example of y = x

�1.8. The frequency
of long loops decreases as polymer stiffness increases. (A) More flexible chains (� = 0, 1) have a
power law decay in loop size due to the entropic cost of forming loops[86]. This manifests as a
straight line in the log-log scale. (B) Stiffer chains (� = 4.3, 7.65) have an exponential decay in
loop lengths for short loops due to the energetic cost of bending. We can see this manifest in the
log-linear plot as a straight line for short loop lengths (lloop = 1, 2, 3). Lines are for aiding the eye
and are not a theoretical fit.

4.3 or 7.65) follow a more linear decay in loop length characteristic of an enthalpic bending loop

cost. This cost increases as C1 increases, leading to a drastic drop off in loop lengths with only

loops of length lloop  2 being formed more than 1% of the time for � = 4.3 and 7.65. Since only

small loops are formed for highly stiff polymers, we can test our theory on them by measuring their

slope.

Fitted values for C1 and C2 from Equation 5.3 are shown in Table 5.2 with corresponding

bending theory lines shown with simulation data in Figure 5-5A. For the values shown in Table

5.2, we have chosen to show the Y-intercept at lloop = 1 because this corresponds to the case of 0

angular springs between bound polymer beads i and j and because a loop length of 0 is nonsensical

in this context. From these best fit lines, we find an excellent fit for such a simple theory for the

stiffest polymer (� = 7.65) with worsening fit as � decreases, likely due to increasing contributions

from entropic loop costs dominating flexible polymers.
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Unfortunately, loops longer than 3 beads were almost never formed for stiff chains where � = 7.65

and 4.3, and so we were unable to fit lines to more than 3 loop sizes. Therefore, to sample longer

loop lengths for the stiff polymers, we also compared a case where the polymer and target beads

had mismatched sizes. Note that simulation data for mismatched sizes is only used in this section

on polymer loops. To do this, we doubled the target bead radius to aT = 1.0 and halved the

polymer bead radius to aP = 0.25. Smaller polymer beads binding to a larger target allows for

longer possible lloops while maintaining the same constant bending radius Rloop because there is

more surface area available on the target, and each polymer bead has less excluded volume. These

mismatched size simulations resulted in loops up to lloop =5 beads for � = 7.65. We also included

results for a very rigid polymer at � = 12.0 which show that even at these mismatched bead sizes,

loops longer than 3 beads are not achievable in an extremely rigid polymer. Simulation results,

theoretical linear fits, and fit variables are shown in Figure 5-5B and Table 5.3. Note that again,

the Y-intercepts shown in Table 5.3 are also calculated at lloop = 1. Similarly to the matched-size

case, in this new mismatched-size case we continue to see a good linear fit for small loops based on

fitting to the shortest 5 loop frequencies. Again, stiffer chains with � = 7.65 and 4.3 see a better

goodness of fit as measured by the high R-squared value of 0.99. Using just the first five loop

sizes, the more flexible polymer � = 2.25 has a worse fit than the stiffer chains, and the fit would

significantly worsen if fit on all loop sizes that occur more than 1% of the time (up to lloop = 8).

As predicted, the value of C1, which represents the binding energy unaffected by chain stiffness

is almost constant for the three highest stiffness chains. The small differences in C1 are likely due

to some dependence of E0
bind on � which our model does not capture such as increased stress on

target-polymer bonds in stiffer chains, and unbound polymer beads in the center of the loop pressing

in toward the target and into its excluded volume. Both of these secondary effects are energetically

unfavorable and would lead to an increase in E
0
bind with �, which aligns well with our calculated

values of C1.

As for the slope coefficient C2, the behavior of the chain with � = 2.25 is the least well-captured.

This is likely because the chain is still relatively flexible and experiencing a blend of the bending

costs of wormlike chains and the entropic cost of freely jointed chains. In contrast, we found good

agreement for the two stiffest chains (� = 4.3, 7.65) with our estimate that the decay rate of loop
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length should be constant C2 times the chain stiffness �. The fit C2 values for the two stiffest chains

are within 10% of each other. Thus, with this very simple theory of bending, we capture quite well

the behavior of stiff chains.

Figure 5-5: Frequency of loop sizes in Log-Linear scaling. ‘x’s denote simulation data and dashed
( ) lines represent the best linear fit following equation 5.3 with values of C1 and C2 listed in Table
5.2 and 5.3. (A) Loop data and linear fits for matched size polymer and target beads (aP = 0.5,
aT = 0.5). (B) Loop data and linear fits for mismatched bead sizes with smaller polymer beads and
larger target bead (aP = 0.25, aT = 1.0) in order to sample longer loops in the stiff chains.

Table 5.2: Slopes and intercepts for lines fitted to loop lengths for Eq. 5.3 and plotted in Figure
5-5A - matched bead sizes.

� Y-intercept (C1) Slope constant (C2) Goodness of fit (R2) # of points used in fit

2.25 4.23 -0.71 0.978 3

4.30 4.41 -0.57 0.993 3

7.65 4.66 -0.52 0.999 3
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Table 5.3: Slopes and intercepts for lines fitted to loop lengths for Eq. 5.3 and plotted in Figure
5-5B - mismatched bead sizes.

� Y-intercept (C1) Slope constant (C2) Goodness of fit (R2) # of points used in fit

2.25 3.83 -0.33 0.978 5

4.30 4.16 -0.26 0.997 5

7.65 4.71 -0.28 0.994 5

12.0 4.84 -0.30 0.980 3

As a result, we conclude that in the case of a much larger polymer binding to a single multivalent

target, stiff polymers are limited by the enthalpic cost of bending when forming an intra-polymer

loop. Because long loops cost high amounts of bending energy, they are almost impossible to form,

resulting in fewer possible binding arrangements for the target and overall decreasing the ⌧B of the

rigid polymer over a flexible polymer. We can extend our results from ⌧B to relative overall binding

affinity by also measuring the average time unbound ⌧UB and calculating the relative dissociation

constant as KD = ⌧UB
⌧B

with measured ⌧UB and KD shown in Figure 5-6A and B respectively.

The ⌧UB is a combination of the time it takes for a target to come within reach of a free polymer

binding site, which is dependent on the shape of the polymer, multiplied with the binding attempt

rate and success rate, which are constant for our simulations. By approximating the flexible polymer

as a sphere and the rigid polymer as a thin cylinder, we found that the diffusive flux of targets toward

the sphere is smaller than a cylinder for our polymer concentration. We can think of this as the

more rigid polymers having binding sites more uniformly distributed throughout the volume. This

means that on average, targets take longer to find flexible polymers than rigid ones and the ⌧UB

shortens with �. Diluting the polymer concentration can flip the relationship between the target

flux toward a cylinder and sphere so that ⌧
cyl
UB > ⌧

sp
UB, but this will only exaggerate the effect of

stiffness on KD plotted in Figure 5-6B. A detailed discussion of the flux calculation are presented

in the chapter appendix in Section 5.2.2, Figure 5-14.

While ⌧UB decreases with increasing chain stiffness shown in Figure 5-6A, the decrease is not

enough to overcome the decrease in ⌧B with chain stiffness for divalent targets. This results in a
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Figure 5-6: (A) The average time interval unbound ⌧UB for a single mono- (orange) or divalent
(blue) target binding to a polymer. The ⌧UB decreases similarly for both target valencies because
it is dependent on the distribution of polymer binding sites throughout the simulation volume.
Standard error is denoted by error bars. (B) Dissociation constant KD for a divalent target versus
polymer stiffness. The longer ⌧UB is not enough to overcome the longer ⌧B for flexible polymers
and flexible polymers show a lower KD (higher affinity) than rigid ones. A plot of the KD for a
monovalent target is dominated by ⌧UB and is shown in Figure 5-16.

larger dissociation constant KD (lower binding affinity) for stiffer chains than flexible polymers. The

effect is not monotonic, with a slight decrease in the KD as � increases from 0 to 1, which is probably

due to increased free volume and therefore more accessible binding sites as seen in an experiment

with polymers binding to lectins [95]. But as we move away from slightly extended chains that still

follow a random walk toward highly extended chains with end-to-end distances much greater than
p
NP, there is a distinct upward trend in KD. Because smaller KD corresponds to a stickier polymer,

we find that the affinity of the polymer generally decreases with increasing C1, and conclude that

this result is primarily affected by the transition of the binding regime from a flexible chain, where

the entropic cost of loop formation dominates, to the regime of a wormlike chain where the high

enthalpic cost of bending to create divalent loops dominates and reduces binding affinity.

Here, we showed simulations for targets with one or two binding sites, but these results also

have implications for globular targets of higher valencies. For example, with cholera toxin which is

pentavalent or concanavalin A (conA) which is tetravalent, following directly from our results, we

expect that anything that discourages loops will even more drastically decrease the binding affinity
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to higher-valent targets. This is because binding to all four binding sites on conA necessarily

requires three polymers loops (or more than one polymer to bind, which costs additional entropy

of constraining an second polymer chain). Therefore, we would expect the dependence on stiffness

to be magnified in higher-valency binding resulting in flexible polymers binding with much higher

affinity for tetra and pentavalent small targets than stiff polymers. Clearly, our analytical model

should serve as a starting point for future work on systems of higher valency involving stiff polymers.

Our results do not contradict previous research on precise ligand engineering where it was found

that for matched sizes on the size scale of the target, stiff linkers have higher affinity [33,115,90,

32,97]. Conversely, our research is complementary to previous works; our result of large flexible

polymers showing higher binding affinity than large rigid polymers suggests that the most sticky

polymer might consist of flexible regions between the stiff, matched-size binding sites detailed in

the aforementioned studies.

Figure 5-7: Schematic of simulations with multiple targets. In this case, 32, 64, 96, or 128 targets are
placed in a box with four 16mer polymers to examine how target-target interactions and competition
between targets for binding sites on the polymer can change the phase behavior of the system.

Binding to multiple targets

In this section, we consider the binding of many targets to polymers with varying backbone flexibility

as shown in Figure 5-7. In this case, we place 32, 64, 96, or 128 mono or divalent targets in with our

four 16mer polymers to create competition, explore the effect of varying stoichiometry, and examine
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the conditions under which a condensed phase might nucleate with the help of the polymer. Past

studies have shown that modulating stoichiometry and the mismatch between receptor and ligand

concentrations can lead to switchlike control of the composition and function of biocondensates, so

we wanted to explore how polymer stiffness can change this phase boundary [45]. At � 64 target

concentration, target binding sites exceed polymer binding sites for divalent targets, and there is

significant competition. We can consider the concentration of targets in real units by assuming a

target diameter. For example, assuming a target protein diameter of 5 nm, 64 targets corresponds

to approximately 100 µM and assuming a weight of 70 kDa, approximately 7 mg/ml.

Because we have multiple targets, we now need to consider the interactions between targets.

To capture these non-specific interactions that control protein solubility limits we added a generic

Lennard-Jones potential between the targets themselves as described in Eq. 2.3. We used several

values of potential well energies ranging from low attraction (✏TT = 1.0) to moderate levels of

attraction (✏TT = 2.0) to explore the wide range of solubilities found in proteins. Parameters for

the cases studied are summarized in Table 3.1 Cases 2-6. By themselves, up to 64 targets are soluble

throughout this entire range of intra-target interaction strengths, and only condense on their own at

approximately ✏TT = 2.5kBT Lennard-Jones attraction shown in a rough phase diagram in Figure

5-10A. 96 and 128 target concentrations can phase separate on their own at � 2.0 kBT . Areas of

the phase diagrams where target proteins can phase separate alone, without the addition of polymer

are shaded with a purple background in Figures 5-8B and 5-9.

Previous work has shown that increasing multivalent polymer length can induce a condensed

phase, so we wanted to further investigate how changing the polymer backbone stiffness changes

the phase boundary [86]. In doing so, we hope to provide insights for research on liquid-liquid phase

separation as well as those targeting inhibition of high concentrations of multivalent toxins. To this

end, we used a combination of visual inspection, the Binder cumulant, and a collapse in the system

radius of gyration Rg to look for a persistent condensed phase in our simulations. We first used

visual inspection to look for the proportion of 10 runs in which a condensed droplet of targets and

polymers persisted for the last half of the simulation time. Simulations in which a stable droplet

formed more than 70% of the time are marked with a green “Y", systems that formed a droplet

in 60% of runs are marked with a yellow “Y", and systems where less than 50% of runs formed
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Figure 5-8: Phase diagrams of (A) targets only with increasing concentration of targets on one
axis and increasing target-target Lennard-Jones attraction on the other and (B) simulations of 96
targets mixed with four 16mer polymer. To highlight the change in phase separation with stiffness,
the polymer stiffness on one axis and target-target Lennard-Jones attraction on the other. Results
are shown for both mono and divalent targets. Not phase separated or “mixed" systems are denoted
by a red letter “N" for “no", a phase separated system where the polymer and targets are both
components of the condensed phase is denoted by a green “Y" for “yes", and a purple “Y" denotes a
system where the targets phase separated by themselves, in this case because no polymer was added.
Regions where targets can phase separate by themselves, without the help of the polymer are shaded
with a purple background. Systems where phase separation only occurs through interaction between
polymers and targets we call "co-phase separation" and is shaded with a blue background.

a droplet are marked with a red “N" for no phase separation. Visual inspection is very similar

to measuring density inhomogeneities used in previous work by Choi et al. because our eyes are

excellent at capturing such changes [125].

We quantitatively confirmed these initial phase diagram determinations by calculating the av-

erage energy of the last half of run time and using it to compute the Binder cumulant <E4>
3<E2>2 .

This quantity compares the ratio of the energy variance, which is equivalent to the specific heat of

the system, to the average energy, and shows a maximum at the phase transition [126]. Plots of

the Binder cumulant for simulated cases are provided in the chapter appendix Figures 5-19-5-27.

By comparing the Binder cumulant along lines of constant target concentration, we confirmed our
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Figure 5-9: Phase diagrams of divalent targets mixed with four 16mer polymers with increasing
concentration of targets on one axis and increasing target-target Lennard-Jones attraction on the
other. Phase diagrams are shown for five polymer flexibilities. Phase separation occurs at lower
energies and target concentrations for flexible polymers than stiff polymers. Not phase separated
or “mixed" systems are denoted by a red letter “N" for “no", a phase separated system where
the polymer and targets are both components of the condensed phase is denoted by a green “Y"
for “yes", and a purple “Y" denotes a system where the targets phase separated by themselves,
without polymers. Regions where targets can phase separate by themselves, without the help of
the polymer are shaded with a purple background. Systems where phase separation only occurs
through interaction between polymers and targets we call “co-phase separation" and is shaded with
a blue background.

initial phase diagrams created through visual inspection.

In addition, we further corroborated our evidence of phase transitions by calculating the radius

of gyration Rg of the polymers individually and the Rg of the complete polymer system to capture

when the polymers showed collapse and aggregation, respectively. Methods of measuring aggregation

through Rg were used in previous computational work on phase separation of biocondensates[58].

When a polymer system phase separates the system should see a collapse in the system Rg as the

polymers come together, followed by a swelling of they polymer system and individual polymers as

the droplet swells with targets. We considered the system phase separated when the system and

individual polymer Rgs were at a minimum or showed a significant decrease before swelling. This
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aligned well with our previous phase separation assessment using the Binder cumulant and visual

inspection. Rgs and Binder cumulants for each system are plotted in the chapter appendix Figures

5-19-5-27. The results of this inspection were compiled into a phase diagram in Figure 5-8B and

Figure 5-9 with renderings of specific cases provided for reference. Areas where the Binder cumulant

and Rg predict phase separation are shaded with a blue or purple background in Figure 5-8B and

5-9.

Using our resultant phase diagrams, we find that, first, the addition of more flexible polymers

(�  4.3) lowers the phase boundary for 96 targets below ✏TT = 1.7 for both monovalent and

divalent targets. The stiffest polymers at � = 7.65 do not appear to change the phase boundary.

In this case, there is only a slight increase in phase separation as the targets valency is increased

from mono to divalent. This can be seen by the shift in the phase boundary in the ✏TT = 1.7 row

from right at � = 4.3 (denoted by a yellow “Y") in the monovalent system where only some systems

formed stable droplets to a fully phase separated system for divalent targets at ✏TT = 1.7 (denoted

by a green “Y") in Figure 5-8B. Although this shift is slight, it is consistent with previous research

showing that increasing the valency of the target lowers the phase boundary in liquid-liquid phase

separation of multivalent polymers [83,58,50]. We will return to the combined effects of stiffness

and valency later on in this paper.

For now, looking at the renderings of simulations with divalent targets, it is clear that even

though all divalent systems are phase separated at ✏TT = 2.0 attraction, the resulting complexes

look very different depending on the chain stiffness. For flexible polymers � = 1, the resulting

complex is spherical, characteristic of a liquid globule, and the polymers are coating the surface

relatively tightly. In the case of the stiffest polymer � = 7.65, we still see a rounded globule of

targets, but now the polymer is not completely stuck to the condensed target surface. Instead,

stiff polymers have peeled off the globule and are sticking out making the complex look spiky or

hairy. Because these stiff chain ends are sticking away from the condensed target phase, we expect

that they are less bound, making the KD larger (lower affinity) for the targets and lowering the

number of total sites occupied on the polymer. These effects lower the binding efficiency of the stiff

polymers and, in the case of multivalent targets, result in the phase boundary being pushed to higher

target-target attractions as the polymer stiffens. This appears as the solubility limit of our divalent
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targets being pushed to higher energies as polymer stiffness increases, from below ✏TT = 1.7 to

✏TT = 2.0 in Figure 5-8B. We have also plotted the phase separation on a more traditional diagram

for divalent targets at four different concentrations in Figure 5-9. In this figure, the blue shaded

region shrinks and the phase boundary clearly moves to higher target concentrations and higher

target-target attraction as the polymers stiffen. This phenomenon has also been seen in complex

coacervates where it was shown that the two phase region shrinks as the stiffness of the binding

polycation/polyanion species increases [127].

Here, we would like to note that while some polymer systems, such as chromatin folding, undergo

Polymer-Polymer Phase Separation (PPPS), where the targets act as linkers to condense the poly-

mers, we believe we are seeing Liquid-Liquid Phase Separation (LLPS) for several reasons. First,

for PPPS to occur, the divalent binders should act as bridges that collapse the polymer without at-

traction between divalent bridges [128]. By measuring the bonds between two chains (inter-bonds),

we found that bridges are more frequent in phase separated systems and in systems with stiffer

polymers, but even then only constitute less than a third of all divalent bonds as shown in Figure

5-17. Also, stiffer polymers which encourage more divalent bridges are more difficult to phase sep-

arate, pointing to divalent bridges not being the cause of phase separation. Instead, our system

only forms droplets when targets are attracted to themselves, with phase separation occurring only

above ✏TT = 1.5 for the most flexible polymers at the highest target concentration. Additionally,

increasing the concentrations of binding proteins, where target receptors far outnumber the polymer

ligands, results in droplet growth and more instances of droplet formation instead of dissolution. If

the multivalent targets were acting primarily as bridges, higher protein concentrations would mean

that more polymer sites are occupied monovalently, dissolving divalent bridges, and discouraging

phase separation, as seen in biocondensates and synthetic polymer gels undergoing PPPS [128,129].

Therefore, we believe our system to be undergoing LLPS. If we increased the binding affinity of

our reactive sites, it might be possible for the bridges to become more permanent and exhibit more

elements of PPPS, which could be explored in a later study.

To further explore the interactions between targets and polymers in our system, in Figure 5-

10A, we have plotted the dissociation constant for simulations of 96 divalent targets as KD = ⌧UB
⌧B

vs � for several values of ✏TT with the values of ⌧B, ⌧UB, and monovalent KDs plotted in the
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Figure 5-10: (A) KD for 96 divalent targets binding to four 16mer polymers. As target-target
attraction ✏TT increases, KD decreases. For ✏TT = 1.0, binding affinity is dominated by the increased
⌧UB and flexible polymers are slightly lower affinity than stiff ones. At ✏TT � 1.5, ⌧B dominates
and flexible polymers have higher affinity than stiff polymers. We can see a sharp increase in KD

for ✏TT = 1.7 as � increases from 4.3 to 7.65 signaling the phase boundary where flexible polymers
are able to nucleate a condensed target phase but stiff polymers are not. (B) Binding efficiency
of polymers calculated as the average fraction of sites on the polymer bound versus �. This plot
closely mimics the one for KD, with a sharp decrease in binding efficiency for divalent targets at
✏TT = 1.7 denoting the phase transition between � = 4.3 and 7.65. For phase separated systems
at ✏TT = 2.0, there is an approximately 10% decrease in sites bound on the polymer between the
� = 2.25 and � = 7.65 for both target valencies. This is due to rigid polymer resistance to bending
and their tails sticking out away from the condensed phase as shown in Figure 5-8B. Error bars are
smaller than symbol size.

chapter appendix Figure 5-15 and 5-16. As expected from the earlier single target case and our

phase diagram, intra-target attraction and chain stiffness have a significant effect on the binding of

divalent targets. As target-target attraction increases, the KD decreases for all polymer stiffnesses.

This is because when many targets are bound to the polymer, bound targets benefit energetically

from being near other neighbors also bound to the polymer chain. This additional energy benefit

makes the polymer appear stickier and is magnified when the polymer can nucleate a condensed

target phase because then bound targets can gain the energy benefit of being near both bound

neighbors and unbound neighbors. This can be seen in Figure 5-10A by looking at the values of

KD for intra-target attraction ✏TT = 1.7. More flexible polymers � = 0, 1, 2.25, 4.3 have a low
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and almost constant KD because the polymers nucleated a condensed target phase and so their

binding affinity is benefiting greatly from the favorable energy of clustered unbound targets. As �

increases from 4.3 to 7.65 we see a sharp increase in the KD, due to the fact that phase separation is

harder to induce with a stiff polymer. Subsequently, targets that bind to a rigid polymer will have

fewer target neighbors and benefit less from favorable target-target energies, making the polymer

effectively lower affinity.

We can confirm this reasoning by directly examining the clustering of unbound targets near

the polymers. We plot the radial distribution function (RDF) of unbound targets for simulations

with 96 divalent targets in Figure 5-11. While general curve shapes for ✏TT = 1.0, 1.5, and 2.0

show only small changes due to polymer stiffness, the profile of unbound targets near the phase

boundary ✏TT = 1.7 is strongly dependent on polymer stiffness. From the RDFs of unbound targets

at ✏TT = 1.7 (Figure 5-11B), we can see that the flexible polymers are able to stabilize unbound

targets at this target solubility while stiff polymers at � = 7.65 are not. In order for stiff polymers to

be able to form a stable cluster of unbound targets, the target-target attraction must be increased

to ✏TT = 2.0. Even when phase separation occurs at ✏TT = 2.0 in Figure 5-11C, the stiffer polymers

stabilize fewer unbound targets shown by the lower RDF, making them lower affinity than their

flexible counterparts.

We can also look at the polymer binding efficiency shown in Figure 5-10B to understand why stiff

polymers phase separate at higher target-target attractions than flexible polymers. Here, we can see

that for ✏TT = 2.0, where all polymers phase separate, the percent of polymer sites occupied drops

more than 10% as � goes from 0 to 7.65. This is likely due to the hairy or spiky ends shown in the

rendering of stiff chains in Figure 5-8B. These stiff chain ends that extend away from the condensed

phase rarely get to interact with the target globule since they would have to bend in to access

them, and bending for stiff chains is energetically costly. This results in the parts of the chain

extending away from the globule being relatively unbound and decreasing the binding efficiency

of the whole polymer. Since the rigid ends are extended out into the dilute target phase, they

interact with targets more like our dilute target case discussed above, where they are already lower

affinity than flexible chains due to the costs of bending associated with polymer loops. Therefore,

resistance to bending makes stiff polymers bind less efficiently, making it harder to collect the critical
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Figure 5-11: Radial distribution function (RDF) for concentration of unbound targets found near
the polymer chain where the x-axis R is the distance from a target center of the closest polymer
bead. Data is for 96 divalent target simulations. In all plots, the dashed line represents low target-
target interaction ✏TT = 1.0. (A) The solid lines represent the RDF of targets for ✏TT = 1.5. Only
small changes in the RDF occur with stiffness. (B) The solid lines represent the RDF of targets
for ✏TT = 1.7. Note that the solid blue, red, and yellow (� = 0, 1, 2.25) lines overlap. Here, flexible
polymers show a much higher concentration of unbound targets near the chain because they are able
to induce phase separation at this target-target potential. (C) The solid lines represent the RDF of
targets for ✏TT = 2.0. Note that the blue, red, yellow, and purple lines overlap (� = 0, 1, 2.25, 4.3).
All polymers cause phase separation at this ✏TT, so all flexibilities show increased concentration of
unbound targets near the polymer.

concentration of bound targets needed to stabilize and collect unbound targets. This explains the

change in the phase boundary to higher ✏TT and target concentration as stiffness � increases.

In general, we have found that increasing polymer stiffness can be thought as if one was lowering

the polymer’s effective valency and overall avidity because it strongly discourages polymer loops,

thereby reducing the possible binding configurations of the polymer. Previous research on LLPS

has shown that lower avidity and valency make it more difficult for systems to phase separate

[83,58,60,130]. Thinking of increasing polymer stiffness as reducing valency or affinity ties it nicely

into previous research on the LLPS of multivalent polymers.

Last, we have included an abbreviated set of phase diagrams for mono and trivalent targets

to provide a better sense of how the effect of stiffness changes with target valency in Figure 5-

12. Divalent targets may also be influenced by the “magic number" effect in multivalent systems.

This effect is seen when the valency of one species is an interval multiple of another and makes
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phase separation is more difficult [131,132]. Trivalent targets are example of a system that cannot

experience this “magic number" effect. We find that trivalent targets binding to flexible polymers

with � = 0 show more phase separation than lower valencies, which is consistent with both magic

number research and research showing that higher valencies lead to lower energy phase boundaries

[131,132,83,58,60,130]. While it is possible that our divalent and monovalent targets are experiencing

some magic number effects, we see the same dependence of phase separation on stiffness with the

trivalent targets as with other valencies. It is also interesting to see that the mono, di, and trivalent

targets all phase separate under the same limited set of conditions when mixed with stiff polymers

� = 7.65. This means that phase separation of these higher valency targets experience an even

more drastic on dependence polymer stiffness. This matches well with our earlier prediction in

the dilute target section. In order for higher valency targets to be fully bonded (all binding sites

occupied), it inherently creates more than one polymer loop. Therefore, anything that prevents

loops will more drastically reduce the affinity of higher-valent binding interactions. Stiffer polymers

discourage loop formation, and so the effect of stiffness is more drastic for the trivalent targets than

the mono or divalent targets. The phase diagrams are the same across valencies for the stiffest

polymer (� = 7.65) because at this stiffness very few loops can occur and so di and trivalent targets

become effectively monovalent.

In the context of native biocondensates, the results presented in this section are relevant for

asymmetrically-valent species where the binding protein has small valency. Examples include RNA

binding proteins FUS, hnRNP’s, and TDP-43, which have 1, 2, and 3 RNA recognition motifs

(RRM) [130,117,133]. By thinking of these RRMs as the specific binding sites in our model and RNA

as our multivalent polymer, our results might aid in understanding ribonucleic protein granules.

This is just one example, but we expect that there are other biocondensates in which these results

would be relevant. Phase separated droplets that contain DNA also might be especially impacted

by changes in stiffness, since DNA can go through drastic changes in stiffness if it transitions from

single to double stranded. There is evidence that membraneless organelles that contain DNA can

selectively absorb single stranded DNA, the more flexible option [134], which aligns well with our

simulation results showing that more flexible polymers phase separate at lower attractions.

Overall, we have found that the phase boundary between a gas-like and condensed target/poly-

114



Figure 5-12: Phase diagrams of monovalent and trivalent targets mixed with four 16mer polymers
with increasing concentration of targets on one axis and increasing target-target Lennard-Jones
attraction on the other. Phase diagrams are shown for five polymer flexibilities. Phase separation
occurs at lower energies and target concentrations for flexible polymers than stiff polymers. Not
phase separated or “mixed" systems are denoted by a red letter “N" for “no", a phase separated
system where the polymer and targets are both components of the condensed phase is denoted by
a green “Y" for “yes", and a purple “Y" denotes a system where the targets phase separated by
themselves, without polymers. Regions where targets can phase separate by themselves, without
the help of the polymer are shaded with a purple background. Systems where phase separation
only occurs through interaction between polymers and targets we call “co-phase separation" and is
shaded with a blue background.

mer phase depends on the polymer’s C1 or stiffness. Flexible random-coil polymers can lower the

solubilities of target proteins more significantly than rigid wormlike polymers, and thus we expect

that modulating polymer stiffness could play a role in controlling the phase separation of synthetic

systems as well as biological liquid-liquid phase separation.

Conclusion

In this work, we have studied on how the flexibility of multivalent polymers influences binding to

much smaller targets. When binding to dilute targets where there is little competition for binding

sites, we have shown that there are two multivalent binding regimes. Flexible random coil polymers
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fall into the first regime, where binding twice to the target is dominated by the loss of entropy of the

the polymer loop as described earlier by Zumbro et al. [86]. We have shown here that stiff polymers

fall into a second regime where binding affinity is dominated by the enthalpic cost of bending into a

loop when binding divalently to a target. The high cost of bending makes stiff rod-like polymers have

lower binding affinity for targets than random coil polymers. Therefore, combined with previous

research showing that rigid molecules with precisely spaced binding sites have the highest affinity

for targets of similar size, we expect that long polymers should ideally contain small rigid binding

sections with flexible linkers connecting them into a larger chain in order to achieve the highest

affinity [33,115,90,32,97].

Next, we extended our simulations to the case of many targets binding to the polymer at the same

time. This adds competition between our targets as well as allowing us to consider the non-specific

interactions between the targets themselves. We show that the presence of polymers can lower the

solubility limit of the targets for both multivalent and monovalent binding. We showed that flexible

polymers can nucleate a condensed phase at lower intra-target attractions than rigid polymers.

When stiff polymer do phase separate, the shape of the resultant condensate is different for from

flexible polymers; flexible polymers form a relatively smooth spherical droplet, conformally coating

the condensed target surface but rigid polymer tails stick out away from the target droplet resulting

in a hairy or spiky condensate. Because resistance to bending lowers the binding efficiency of the

rigid polymers, it makes it more difficult for stiff polymers to nucleate a condensed phase. We also

showed that stiffness has a stronger effect on higher-valent targets because they inherently require

more polymer loops to be fully bonded and stiff polymer discourage loops. We believe that these

results are relevant in biocondensates with asymmetrically-valent binding species such as between

some proteins and RNA. Since more flexible polymers phase separate at lower energies, perhaps

the drastic changes possible in DNA flexibility could also have implications on DNA-containing

biocondensate formation. While more investigation is needed on this topic, a recent experimental

study showed that more flexible DNA favors liquid-liquid phase separation [135].

We hope our results will aid in the design of new polymeric toxin inhibitors as well as help

scientists better understand the formation of membraneless organelles and how changes in polymer

stiffness can modify the phase boundary of biocondensates.
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5.2 Appendix

5.2.1 System energy profile

Figure 5-13: Example of a typical system energy profile over time. The total energy is shown
for a system with four 16mer polymers and 96 divalent targets with a target-target attraction
✏TT = 1.7kBT. Simulation energy is shown every 10000 timesteps. There is an initial large drop in
energy while the system equilibrates. Production research data is taken from the second half of the
simulation, past this equilibration time period.

5.2.2 Time unbound

The average time interval unbound ⌧UB is the inverse of the binding rate kon. The ⌧UB is controlled

by the probability of binding when within reach of the polymer and the average time it takes to

find a free polymer binding site. The rate of binding upon finding a free binding site is controlled

by raising or lowering the energy barrier �EB, which we fix at 0.5kBT for all simulations to get

good sampling on binding events. We also fix concentration of targets and polymers in each set of

simulations and the binding attempt rate, so in this case, the change in ⌧UB with � seen in Figure

6A is caused by changes in the polymer geometry and the resulting changes in how polymer sites are

distributed throughout the volume. To understand the time it takes a target to find a binding site,

we can look at the diffusive flux toward our polymers with different geometries. We can estimate
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the binding surface of our flexible polymer as a sphere with a radius equal to the radius of gyration

Rg = 2a
p

NP/6 plus the equilibrium distance between the centers of two bound beads 2a. We

can estimate our stiff polymer as a rod with radius equal to the distance between two bound bead

centers 2a and height h = 2aNP. Where a = 0.5 and NP = 16 from the main text. Then we

apply the known steady state diffusion equations for a cylinder and a sphere from J. Crank [136],

equations 5.4 and 6.7 respectively. We calculate the diffusive flux for targets toward the polymer

as:

J =

I
D
dC

dr

���
r=s

d2S (5.4)

where D is the diffusion constant, C(r) is the concentration, r is the radial variable, s is the

radius at which the binding surface lies, and S is the binding surface to integrate the partial flux

over to get the full flux of targets toward the polymer. This results in the flux for a sphere Jsp and

flux for a cylinder Jcyl:

Jsp = 4⇡DC0
sb

b� s
(5.5)

Jcyl =
2⇡hDC0

ln(b/s)
(5.6)

where C0 is the concentration of targets in the bath or very far from the polymer and b is the outer

radius of the system. Increasing b increases the volume of the polymer-target system, making the

polymer species more dilute. Plotted in Figure 5-14 is the flux of a sphere and cylinder with the

appropriate surface radii for our systems versus the system volume where volume for a sphere is

4/3⇡b3 and for a cylinder ⇡b
2
h. At our simulation volume per polymer, marked with a black line,

we can see that Jcyl > Jsp meaning that the time for a target to diffuse to a polymer is shorter for

the stiff rod-like polymer than the flexible globular polymer resulting in the behavior seen in Figure

6A, where ⌧
sti↵
UB < ⌧

flex
UB . If we increase the volume per polymer the ratio of the fluxes inverts so

that ⌧
sti↵
UB > ⌧

flex
UB . Since system volume does not affect the ⌧B, we expect that more dilute polymer

conditions would magnify the trends seen in the KD of divalent targets (Figure 6B) resulting in

the binding affinity of flexible polymers becoming much higher than the binding affinity of stiff

polymers.
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Figure 5-14: Flux of an unbound target toward a cylinder (orange) and sphere (blue) vs the system
volume. The cylinder and sphere represent a rigid and flexible polymer respectively. At the simu-
lation volume per polymer ( black line), the diffusive flux toward the cylinder (rigid polymer) is
greater than the diffusive flux toward the sphere (flexible polymer).

Figure 5-15: (A) Average time interval bound ⌧B and (B) unbound ⌧B for 96 targets. Monovalent
targets are shown in orange and divalent targets are shown in blue, with different values of ✏TT

denoted by different line styles and points. (A) Divalent targets see a decrease in ⌧B with increasing
✏TT due to additional competition for sites between targets. Nucleation of a condensed polymer/tar-
get phase also results in increased competition, lowering the ⌧B more than in the mixed/not phase
separated state. Monovalent target ⌧B is unaffected by stiffness or phase separation and lines for all
✏TT overlap. (B) For mixed systems, where no condensed phase is nucleated, ⌧UB is dominated by
diffusion and flexible polymers with spherical morphology experience longer ⌧UB than rigid polymers
for both divalent and monovalent targets. When systems are phase separated, flexible polymers have
slightly shorter ⌧UB than stiff polymers, likely due to a higher concentration of polymer binding sites
in the condensed phase. Stiff polymers lower their concentration of binding sites in the condensed
phase by extending their tails away from the targets as shown in Figure 5-8B and 5-9. Error bars
are smaller than symbol size. 119



Figure 5-16: Dissociation constant KD of monovalent targets for the single target case (A) and
the 96 target case (B). (A) For one monovalent target, KD is dominated by the time it takes the
target to diffuse to a polymer. Because it takes longer for a target to diffuse to a sphere than to a
rod, ⌧UB is longer for flexible polymers than rigid polymers, so flexible polymers are lower affinity
(higher KD) for dilute monovalent targets. (B) For 96 monovalent targets, systems that don’t phase
separate behave similarly to the single target case; flexible polymers have lower affinity (higher
KD) than stiff polymers. When the system phase separates at ✏TT = 2.0kBT , flexible polymers
become higher affinity (lower KD) than stiff polymers because stiff polymers extend away from the
condensed target and are therefore bound less efficiently with a lower concentration of polymer
binding sites in the condensed droplet. At ✏TT = 1.7kBT , flexible polymers are significantly higher
affinity than stiff polymers because they can induce phase separation at �  4.3 while stiff polymers
(� = 7.65) cannot. Error bars are smaller than symbol size.

5.2.3 Intra- and inter- divalent polymer bonds

Stiffer polymers have a slightly higher percentage of divalent bonds that are between two polymers

(inter-polymer) than within a single polymer (intra-polymer). This is shown for a single target in

Figure 5-17A and for many targets in Figure 5-17B. This is likely due to the high energy cost for

the stiff polymers to form intra-polymer loops longer than a few beads. Since intra-polymer bonds

of stiff polymers can have a high energy cost, this makes them closer to the energy of inter-polymer

bonds, which are less entropically favorable because they confine the movement of two polymer

instead of one. We suspect this leads to a higher percentage of bonds between two polymers as the

polymers stiffen.

120



An upward trend as the polymer stiffness increases is seen for both target concentrations. Addi-

tionally for the 96 target concentration shown in Figure 5-17B, phase separation makes inter-target

bonds more favorable. Since the polymers in a condensed phase are already held close together, the

entropy cost of binding two polymers is lower than in the mixed or low concentration phase. This

makes bonds across polymers much more frequent than in non-phase separated systems. Targets

that form inter-polymer bonds cross-link the polymers and we can see that upon phase separation,

the frequency of crosslinks goes up, likely nucleating a polymer gel in the condensed phase. In the

mixed or not phase separated state, the low frequency of crosslinks suggests that there is no perco-

lated network or gel. This phase separation with gelation is characteristic of many biocondensates

[58].
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Figure 5-17: Percent of time the divalent target spends bound in loops between two polymers
(inter-polymer) out of all loops formed. (A) Results for the single target case. Stiffer polymers
have a higher percentage of inter-loops than flexible polymers, likely due to the energetic cost of
bending for stiff polymers to form intra-polymer loops. (B) Results for 96 targets. For low inter-
target attraction (blue, ✏TT = 1.0) and systems where all polymer stiffnesses are phase separated
(purple, ✏TT = 7.65), behavior is similar to single target case where stiffness increases inter-polymer
crosslinks. For ✏TT = 1.7 (yellow), flexible polymers have more crosslinks than stiff ones. In this
case, more flexible polymers lead to droplets at ✏TT = 1.7 which brings polymer chains close together
in a condensed phase and reduces the penalty for bonds across two polymers. At ✏TT = 1.5, flexible
polymers are likely on the verge of phase separation and there are some transient small polymer-
target droplets even though they don’t nucleate a stable condensed phase. We suspect that crosslinks
might occur less in phase separated systems with ✏TT = 2.0 than in ✏TT = 1.7 because the targets can
phase separate by themselves and exclude the polymer from the droplet center through microphase
separation. The effects of microphase separation will be explored in future work.

5.3 Bond types

We were also interested in considering what types of bonds were forming and whether this changed

with stiffness or phase separation. The percent of time bound that a target has both of its binding

sites occupied is shown in Figure 5-18. In general, stiffer polymers have a lower percentage of fully

bonded divalent targets than flexible polymers, likely because the cost of bending for stiff polymers

reduces the number of ways a target can bind twice to the polymer. This makes it more likely

for a divalent target to only bind with a single binding site, with the other site unoccupied. As
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the target-target attraction increases, the percentage of doubly bound targets decreases due to the

increased competition for polymer sites from target neighbors. This can be seen very clearly for

targets with ✏TT = 1.7, where more flexible polymers are phase separated so targets are at high

concentrations and correspondingly experience high competition for binding. The stiffest polymer

does not phase separate, so targets have a lower local concentration, resulting in less competition

for polymer binding sites, and more frequent double bonds to the polymer.

Figure 5-18: Percent of time a bound target has both binding sites bound simultaneously versus
polymer stiffness. A target is considered bound if one or more of its binding sites is occupied.
Data is shown for 96 divalent targets binding to four 16mer polymers. Lines represent constant
target-target attraction. Error bars are smaller than symbol size.

5.3.1 Binder cumulant and radius of gyration for simulations with

multiple targets

The following figures detail the average energy, Binder cumulant, system polymer radius of gyra-

tion Rg, and the average Rg for each polymer. Results are shown along lines of constant target

concentration. These results were used to determine whether a system was phase separated or

not. As described in the main text, the Binder cumulant compares the variance in the energy or

specific heat to the average system energy and should be at a maximum when the system is on the
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phase boundary. The system and individual polymer radius of gyrations should be at a minimum

at the phase boundary because the polymer system collapses due to the change in effective solvent

quality upon entering a target/polymer droplet. Then the system should swell as more targets and

polymers aggregate into the droplet.

Divalent targets

Figure 5-19: Simulation results for divalent targets with � = 0. Data is shown for 32, 64, 96, and
128 divalent targets interacting with four 16mer polymers with target-target attractions ranging
from ✏TT = 1.0 to 2.0. Lines connect points of constant target concentration. (A) Average energy
of the system. (B) Binder cumulant. (C) Average Rg of all polymer beads relative to the collective
system center of mass. (D) Average Rg of each individual polymer relative to its own center of mass.
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Figure 5-20: Simulation results for divalent targets with � = 1.0. Data is shown for 32, 64, 96, and
128 divalent targets interacting with four 16mer polymers with target-target attractions ranging
from ✏TT = 1.0 to 2.0. Lines connect points of constant target concentration. (A) Average energy
of the system. (B) Binder cumulant. (C) Average Rg of all polymer beads relative to the collective
system center of mass. (D) Average Rg of each individual polymer relative to its own center of mass.
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Figure 5-21: Simulation results for divalent targets with � = 2.25. Data is shown for 32, 64, 96, and
128 divalent targets interacting with four 16mer polymers with target-target attractions ranging
from ✏TT = 1.0 to 2.0. Lines connect points of constant target concentration. (A) Average energy
of the system. (B) Binder cumulant. (C) Average Rg of all polymer beads relative to the collective
system center of mass. (D) Average Rg of each individual polymer relative to its own center of mass.
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Figure 5-22: Simulation results for divalent targets with � = 4.3. Data is shown for 32, 64, 96, and
128 divalent targets interacting with four 16mer polymers with target-target attractions ranging
from ✏TT = 1.0 to 2.0. Lines connect points of constant target concentration. (A) Average energy
of the system. (B) Binder cumulant. (C) Average Rg of all polymer beads relative to the collective
system center of mass. (D) Average Rg of each individual polymer relative to its own center of mass.
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Figure 5-23: Simulation results for divalent targets with � = 7.65. Data is shown for 32, 64, 96, and
128 divalent targets interacting with four 16mer polymers with target-target attractions ranging
from ✏TT = 1.0 to 2.0. Lines connect points of constant target concentration. (A) Average energy
of the system. (B) Binder cumulant. (C) Average Rg of all polymer beads relative to the collective
system center of mass. (D) Average Rg of each individual polymer relative to its own center of mass.
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Monovalent targets

Figure 5-24: Simulation results for monovalent targets with � = 0. Data is shown for 32, 64, 96, and
128 monovalent targets interacting with four 16mer polymers with target-target attractions ranging
from ✏TT = 1.0 to 2.0. Lines connect points of constant target concentration. (A) Average energy
of the system. (B) Binder cumulant. (C) Average Rg of all polymer beads relative to the collective
system center of mass. (D) Average Rg of each individual polymer relative to its own center of mass.
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Figure 5-25: Simulation results for monovalent targets with � = 7.65. Data is shown for 32, 64,
96, and 128 monovalent targets interacting with four 16mer polymers with target-target attractions
ranging from ✏TT = 1.0 to 2.0. Lines connect points of constant target concentration. (A) Average
energy of the system. (B) Binder cumulant. (C) Average Rg of all polymer beads relative to the
collective system center of mass. (D) Average Rg of each individual polymer relative to its own
center of mass.
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Trivalent targets

Figure 5-26: Simulation results for trivalent targets with � = 0. Data is shown for 32, 64, 96, and
128 trivalent targets interacting with four 16mer polymers with target-target attractions ranging
from ✏TT = 1.0 to 2.0. Lines connect points of constant target concentration. (A) Average energy
of the system. (B) Binder cumulant. (C) Average Rg of all polymer beads relative to the collective
system center of mass. (D) Average Rg of each individual polymer relative to its own center of mass.
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Figure 5-27: Simulation results for trivalent targets with � = 7.65. Data is shown for 32, 64, 96, and
128 trivalent targets interacting with four 16mer polymers with target-target attractions ranging
from ✏TT = 1.0 to 2.0. Lines connect points of constant target concentration. (A) Average energy
of the system. (B) Binder cumulant. (C) Average Rg of all polymer beads relative to the collective
system center of mass. (D) Average Rg of each individual polymer relative to its own center of mass.
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Chapter 6

Multivalent Polymers Can Control Phase

Boundary, Dynamics, and Organization of

Liquid-Liquid Phase Separation

Abstract

Multivalent polymers are a key structural component of many biocondensates. When interacting

with their cognate binding proteins, multivalent polymers such as RNA and modular proteins have

been shown to influence the liquid-liquid phase separation (LLPS) boundary to control condensate

formation and to influence condensate dynamics after phase separation. Much is still unknown

about the function and formation of these condensed droplets, but changes in their dynamics or

phase separation are associated with neurodegenerative diseases such as ALS and Alzheimer’s Dis-

ease. Therefore, investigation into how changes in the structure of multivalent polymers relate to

changes in biocondensate formation and maturation is essential to understanding and treating these

diseases. Here, we use a coarse-grain, Brownian Dynamics simulation with reactive binding that

mimics specific interactions in order to investigate the difference between non-specific and specific

multivalent binding polymers. We show that non-specific binding interactions can lead to much

larger changes in droplet formation at lower energies than their specific, valence-limited counter-

parts. We also demonstrate the effects of solvent conditions and polymer length on phase separation,

and how modulating binding energy to the polymer can change the organization of a droplet in a
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three component system of polymer, binding protein, and solvent. Finally, we compare the effects

of surface tension and polymer binding on the condensed phase dynamics, where we show that both

lower protein solubilities and higher attraction/affinity of the protein to the polymer result in slower

droplet dynamics. We hope that the research presented in this work helps to better understand

experimental systems and provides additional insight into how multivalent polymers can control

LLPS. The work presented in this chapter is primarily sourced from Zumbro and Alexander-Katz,

In Preparation (2020) [137].

6.1 Introduction

Multivalency is employed throughout biology for numerous reasons including building conformal

interfaces, increasing specificity of bonds using a limited number of ligand types, and creating much

stronger bonds by using many low affinity bonds simultaneously [1]. Multivalent binding is defined

as when multiple binding sites on both interacting species bind simultaneously to create a much

stronger bond than the sum of the constituent monovalent binding affinities [1]. Multivalent species

can come in many architectures, but here, we focus on multivalent polymers and their role in

biocondensates or membraneless organelles. Multivalent proteins and nucleic acids have been found

in many membraneless organelles. Although these biocondensates can have tens to hundreds of

components, studies have shown that multivalent polymers are key directors of the phase separation

of condensates and multivalent polymers can undergo phase separation with just their target binding

species in vivo, in vitro, and in simulation [50,49,51,83,58]. These studies suggests that controlling

features of multivalent polymers can modulate the formation of biocondensates and the recruitment

of other important components after the initial phase separation[58,138,45,47].

Because aberrant phase separation of these biocondensates is associated with neurodegenerative

diseases, understanding their formation is an important area of research [64,49,65]. Since multivalent

polymers control these biocondensates, exploring how multivalent polymer properties can change the

kinetics and thermodynamics of liquid-liquid phase separation (LLPS) is essential. Theoretical and

experimental studies of these systems have shown that increasing valency and individual binding site

affinities can lower the phase separation boundary to lower species concentrations [83,138]. Another
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theoretical study found that the solvation of polymeric linkers between binding sites controls whether

polymers form a cross-linked gel with or without phase separation [58]. In previous work, we showed

that polymer flexibility or persistence length can change the phase boundary of multivalent polymers

[114]. In this paper, we further build on the understanding that multivalent polymer characteristics

can significantly change the thermodynamics of biocondensates by exploring the effect of non-specific

vs specific polymer binding interactions, condensed phase nucleation in smaller systems, and the

dynamics of the resulting condensed polymer phase.

We use a coarse-grain Brownian Dynamics simulation to explore the phase separation of long,

many-valent polymers such as RNA and smaller binding targets such as RNA-binding proteins such

as those found in ribonucleicprotein (RNP) granules [118,117]. Using Brownian Dynamics allows

us to capture both the thermodynamics and kinetics of phase separated polymer-target systems.

Modeling the impact of polymer characteristics on the dynamics of globules could provide insight

into the liquid-to-solid transition in biocondensates that is associated with disease [133]. We show

that nucleating a condensed phase using non-specific interactions, such as hydrophobicity or charge,

occurs at lower attraction energies than using valence limited lock-and-key type binding such as those

between a ligand and a folded protein pocket. Therefore, non-specific and specific interactions can

be combined to carefully adjust phase transition boundaries. By looking at the morphologies of the

resulting condensates, we also explain how changing polymer interactions can control the spacial

organization of the condensed phase. Last, we investigate how polymer properties can alter the

kinetics inside condensed droplets.

6.2 Computational Methods

To study the condensed phase nucleation of multivalent polymers, we use coarse-grain Brownian

dynamics simulations with a bead-spring polymer and a spherical binding target represented as a

single bead of the same size as the polymer beads using the same methods detailed in Chapter 2.

This scenario represents a general model of the protein-protein or nucleic acid-protein binding found

in the formation of membraneless organelles. It most closely resembles a piece of RNA binding to

an RNA binding protein such as hnRNPA1 found in stress granules, and whose solidification of
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Figure 6-1: Depiction of simulation scheme. Polymers are represented by spherical beads (light
blue) connected by harmonic springs. These polymers could represent either nucleic acids or long
modular binding proteins found in biocondensates. Each polymer bead has a single binding ligand.
Target binding proteins are represented as spherical beads (red) and can have multiple binding
sites (BS) depicted as green blocks. These protein beads also encompass a intrinsically disordered
region (IDR) that modulates their non-specific attraction to the polymer and between the proteins
themselves. When the polymers and binding proteins are mixed together, they can undergo a phase
transition into a condensed droplet.

the condensed phase is associated with amyotrophic lateral sclerosis (ALS) and fronto-temporal

dementia [139,117,118].

In addition to excluded volume, we also use a Lennard-Jones potential to create non-specific

attraction between target binding proteins and polymer beads as shown in Figure 6-2A. This generic

potential could represent attraction due to hydrophobicity or van der Waals. Here, we could sub-

stitute a screened electrostatic potential but do not expect this to qualitatively change our results.

Unless otherwise specified, we chose ✏PP = 5
12 to mimic polymer configurations in a theta solvent

[70] as shown in Figure 6-3A. For protein targets binding with valence-limited lock and key bonds,

we used polymer target potential ✏PT = 1
12 to mimic a good solvent and separate non-specific and

specific binding interactions. Between the targets themselves, ✏TT was varied from 6
12 to 36

12 to

capture a range of target protein solubilities and are specified in later requisite sections.

The last type of interaction included is a reactive lock and key bond shown in Figure 6-2B,
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Figure 6-2: Two types types of protein-polymer interactions are explored in this work. (A) Non-
specific excluded volume interactions controlled by a Lennard-Jones potential. These potentials are
not valence limited and are felt by any target or polymer bead in accordance with their distance
apart r. (B) Specific, valence-limited, lock-and-key type binding. Polymer ligands and target protein
binding sites interact when they are within a reaction radius that is dependent on the timestep.
Within this reaction radius, they have a probability of binding PB that depends on the depicted free-
energy landscape. Once bound, the target and polymer bead are connected by a harmonic spring,
and with some probability, PUB, can return to being unbound and interacting solely through a
Lennard-Jones potential. This figure is adapted from Zumbro et al. with permission from Elsevier
[86].

which represents our specific, valence-limited binding interaction between polymers and targets with

details of this potential in Chapter 2. This reactive binding scheme is applied with a free energy of

binding per site of �E0 = �2,�4, and �6kBT . Each polymer bead contained a single binding site,

and each target bead was given 1, 2, or 3 binding sites in order to capture the effects of changing

binding valency. Assuming the size of a target bead to be approximately 5 nm in diameter, and

using Langmuir adsorption theory, we can convert this �E0 = �2,�4, and �6kBT binding energy

into a dissociation constant in Molar, resulting in a monovalent binding affinity of approximately

KD = 0.8, 0.1, and 0.02 mM, respectively. Details of this conversion are shown in Chapter 2. This

monovalent binding affinity is well within the weakly binding mM to µM affinity range of some

monovalent protein-protein and RNA-protein binding found in biocondensates [83–85].
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Figure 6-3: Properties of a single species alone, before mixing them together. (A) Average end-to-
end distance of a 64mer polymer under various Lennard-Jones attractions ✏PP. The polymer behaves
as it would in ✓ conditions, as a perfect random walk, when ✏PP = 5

12 . ✏PP = 8.5
12 is highlighted with

an arrow to denote the attraction at which four 16mer polymers aggregate into a single condensate.
From this, we can see there is a region of poor solvent where polymers are collapsed but still soluble.
(B) Phase diagram showing solubilities of binding proteins alone. When targets form a condensed
phase without polymer, it is denoted with a purple "Y", and when they do not form a condensed
phase, it is denoted with a red "N". From this chart, we see that all target concentrations tested are
phase separated when ✏TT = 3.0, no target concentrations nucleate a condensed phase at ✏TT = 1.7,
and only high target concentrations 96 and 128 targets phase separate at ✏TT = 2.0. This phase
diagram will serve as a control for the effects of mixing polymers and target proteins.

6.3 Results and Discussion

In biocondensates, species can often phase separate by themselves, but interactions with another

species can cause phase separation at lower energies or concentrations [133,140]. As a control, we first

ran simulations of a single species, only targets and only polymers, to understand their solubility

before mixing at different inter-polymer and inter-target attractions. These results for polymers

only and targets only are plotted in Figures 6-3A and B respectively. Polymer with a degree of

polymerization of 64 beads, were shown to behave as freely-jointed random walks, characteristic of

✓ solvent conditions at ✏PP = 5
12 , consistent with previous literature [70]. Four 16mer polymers were
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seen to condense into a single droplet at ✏PP >
8.5
12 . This means that, at this polymer concentration

used throughout our simulations, there is a region of ✏PP where polymers can experience poor solvent

quality but not phase separate on their own. Throughout this work, we will consider polymers with

✏PP  7
12 , meaning that in all results discussed below, the polymers do not phase separate on their

own.

We also consider the potentials necessary to phase separate the targets alone at our simulation

concentrations. By themselves, target concentrations of 96 and 128 forming a condensed phase

at ✏TT=2.0, all target concentrations nucleated a condensed droplet at ✏TT = 3.0, and no targets

phase separated at ✏TT = 2.0. These inter-target energies bounded the parameter space for our

simulations where polymers and target proteins were mixed together. In later phase diagrams,

energy and concentrations regions where targets can phase separate on their own are shaded with

a purple background.
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Figure 6-4: Phase diagram resulting from specific lock-and-key binding to four 16mer polymers.
Results are shown for mono, di, and trivalent binding proteins with �E0 = 2, 4, and 6kBT . Letters
and letter coloring were determined by visual inspection, with example renderings shown on the left
of “Mixed" states labeled as a red “N" for no phase separation, fully phase separated systems with
both polymers and proteins found in the condensed phase labeled with a green “Y" for yes phase
separated, and purple ‘Y"s denoting systems in which a single species phase separated without the
other such as the proteins condensing on their own. Yellow “Y"s denote systems in a the crossover
region between phase separated and mixed where 60% of simulations showed a stable condensed
droplet. Purple background shading denotes regions where pure protein simulations phase separated
on their own without the help of the polymer. Blue background shading denotes the regions where
phase separation was also indicated by Binder cumulant of the system energy. Yellow background
shading denotes that aggregation of polymers into a droplet was indicated by a significant drop in
the total Rg of the polymer system accompanied by a reduction in the Rg of individual polymers.
Phase separation occurs at lower protein target concentrations and lower ✏TT as valency and binding
affinity are increased.
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Figure 6-5: Examples of simulation properties for divalent protein targets with four 16mer polymers
in theta solvent and �E0 = 6kBT , shown with lines of protein concentration. (A) Total average
energy of simulation (B) Binder cummulant comparing average energy fluctuations to average system
energy. A maximum in the Binder cumulant corresponds to a phase boundary. (C) Rg of all
polymers in the system. A large reduction in system Rg signifies that all four polymers aggregated
into a single body. (D) Average Rg of individual polymers across the simulation time. A reduction in
Rg signifies a change in effective solvent conditions for the polymer as a result of complexation with
binding proteins. After a critical concentration of protein binding is achieved, the polymers swell
if the simulation isn’t protein concentration-limited. (E) Number of polymer sites bound with a
maximum of 64. A plateau in sites bound occurs when a protein-polymer droplet is formed because
the local concentration of protein targets reaches a maximum. (F) Variance in polymer binding
sites occupied normalized by the average number of sites bound. The variance also plateaus when a
condensed droplet is formed due to the smaller fluctuations in local concentration of proteins near
the polymer in a liquid droplet.

6.3.1 Valency and Affinity of Specific Lock and Key Bonding

To compare our system to previous computational studies, we first investigated the effects of valency

and binding site affinity on the LLPS of multivalent polymers and targets with specific, valence

limited binding interactions. To do so, we placed four polymers with a degree of polymerization

NP = 16 beads in ✓ solvent with 32, 64, 96, and 128 binding protein targets. Monovalent, divalent,

and trivalent targets were simulated with 3 different binding site affinities, and the resulting phase

141



diagrams are shown in Figure 6-4. In order to determine if a system nucleated a stable condensed

phase, we initially used visual inspection to look for the proportion of 10 runs in which a condensed

droplet of targets and polymers persisted for the last quarter of the simulation time. Simulations

in which a stable droplet formed more than 70% of the time are marked with a green “Y", systems

that formed a droplet in 60% of runs are marked with a yellow “Y", and systems where less than

50% of runs formed a droplet are marked with a red “N" for no phase separation. We further

confirmed these phase separations by calculating the average energy of the last quarter of run time

and using it to compute the Binder cumulant <E4>
3<E2>2 . This quantity compares the ratio of the

energy variance, which is equivalent to the specific heat of the system, to the average energy, and

shows a maximum at the phase transition [126]. Figure 6-5 shows an example of average energy

and cumulant plots for a divalent protein with lock and key binding affinity of �E0 = �6kBT .

By comparing the Binder cumulant along lines of constant target concentration, we confirmed our

initial phase diagrams created through visual inspection. Areas where the cumulant predicts phase

separation are shaded with a blue background in Figure 6-4.

We found that the cumulant did not fully predict simulations in which condensed phases were

nucleated, so we also calculated the radius of gyration Rg of the polymers individually and all

together to capture when the polymers themselves showed aggregation and collapse. Methods of

measuring aggregation through Rg was used in previous computational work on phase separation of

biocondensates[58]. When four 16mer polymers come together in ✓ conditions into a liquid droplet,

without considering any swelling from binding proteins, they should have a similar Rg to a polymer

with Np = 64 which in the ideal case is
q

Npl2

6 = 3.27 where l is the diameter of a bead 2a. In

the example shown in Figure 6-5B, all target concentrations show clear polymer aggregation with

Rg  3.27 at ✏TT = 1.5, and show an reduction in the individual polymer sizes around ✏TT = 1.25.

This aligned well with our observation of droplets at energies lower than the Binder cumulant

predictions, and values that showed system-wide polymer aggregation and individual polymer Rg

reduction but not a phase transition using the system energy are shaded with yellow in Figure 6-4 and

subsequent phase diagrams. We have also included plots of the number of polymer sites occupied by

binding proteins where there is an increase in sites bound and a decrease in the variance of polymer

site occupied with ✏TT. The number of sites bound and the variance in that number start to plateau
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upon polymer/target condensation because the local concentration of proteins within reach of the

polymer reaches a maximum in a the condensed phase.

We expect that the discrepancy of the polymer-target binding system showing aggregation and

individual polymer Rg reduction at lower energies than the cumulant predicts a phase transition is

the manifestation of two different transitions. As we increase the target-target attraction, bound

targets create an effective interaction between polymers so that they behave as if they are in poor

solvent. This leads to a first transition where the polymers aggregate and a condensed polymer

droplet or small polymer gel forms. This is similar to results reported by Harmon et al. where

a wider set of species concentrations resulted in gels than phase separated condensates [58]. This

polymer phase separation does not manifest in the Binder cumulant because intra-target interactions

are stronger than intra-polymer interactions and dominate the mean energy and specific heat of the

system. As the intra-target attraction ✏TT is further increased, we see a second transition captured

in the energy because the polymer clusters nucleate a condensed protein phase. This is consistent

with the idea that condensed RNA can act as scaffolds for nucleating condensates [133].

By exploring our phase diagram in Figure 6-4, we show that the addition of the binding polymer

leads to lower target solubilities for all target valencies studied for both �E0 = �4kBT and �6kBT .

The boundary for target phase separation in the absence of polymer is highlighted with a purple

background. As the affinity of the specific binding sites increase, the phase boundary shifts down

to weaker ✏TT and lower target concentration. Although less drastic, a similar shift is seen with

target valency. As target valency increases, phase separation occurs at lower target attraction

✏TT and target concentration. This result matches well with previous simulations and experiments

[83,58] and demonstrates that condensed droplets and similar behavior can be seen in much smaller

systems than previously reported. This suggests that condensates can from droplets much smaller

than can be seen through a microscope, and large condensates might grow through coalescence of

these smaller droplets.
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Figure 6-6: Phase diagrams for polymers of different of degrees of polymerization Np = 4 (Top
Row), 16 (Middle Row), and 64 (Bottom Row) with reactive, specific binding affinities �E0 = �4
and �6kBT . All simulations are for divalent proteins targets and theta solvent for the polymer.
Letter color coding and area shading have the same meanings as described in Figure 6-4.

We also explored phase diagrams through the lens of polymer valency or length. Figure 6-6

shows phase diagrams from divalent targets binding through reactive specific binding interactions

with polymers. In these simulations, the number of polymer beads was kept at a constant concen-

tration but the connectivity of the polymers were changed so that simulations contained sixteen

4mer polymers, four 16mer polymers, or one 64mer polymer. Consistent with previous results on

increasing valency, we also saw phase separation at lower energies for polymers with higher de-

grees of polymerization [83,58]. The lowering of the phase separation boundary is more drastic for

�E0 = �6kBT when the polymer length is increased from Np = 4 to Np = 16 than when the

polymer length is increased from Np = 16 to Np = 64 even though both scenarios reflect a 4X in-

crease in length. As explored in our previous work, binding affinity of a linear multivalent polymer

to a smaller protein target is significantly affected by the entropic cost of forming polymer loops

when binding to the target divalently [86]. As degree of polymerization increases, longer loops are

able to form, adding additional combinatorial entropy and increasing binding affinity. However, at

some critical loop size, the maximum possible loop length is limited by the configurational entropy
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loss of forming the loop and not limited by the polymer length. Polymers longer than the critical

loop length see limited increases in avidity with longer degrees of polymerization. In these phase

separation simulations, this results in a relatively small increase in binding avidity when Np is in-

creased from 16 to 64 and a correspondingly smaller change in the phase boundary than when Np

is increased from 4 to 16.

Figure 6-7: Phase diagram of simulations comparing the behavior of four 16mer polymers with lock
and key binding to divalent protein targets in theta solvent (✏PP = 5/12) to two types of poor
solvent (✏PP = 6/12 and 7/12). Polymers do not phase separate on their own at any values of ✏PP
tested. Lettering color codes and shading follow the same key as Figure 6-4, with “Y"s indicating
“yes" phase separation occurred and “N"s representing “no" phase separation occurred. In poor
solvent, phase separation occurs when polymers are mixed with binding targets at lower ✏TTs and
protein concentrations than theta solvent.

6.3.2 Solvent Quality

Previous research showed that native intrinsically disordered protein (IDP) linkers can be swollen,

theta condition freely random walk, or collapsed chains [58]. This same study showed that highly

solvated or swollen polymers initiated gelation without phase separation and theta polymers led

to phase separation with gelation [58]. Poor solvent quality is interesting because 30% of IDPs in

the aforementioned study were found to have negative solvation volume, but a condensed polymer’s
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binding sites may be less available for target binding, or the polymer could phase separate on its

own without the targets. Also, unlike good and theta solvent, polymers in poor solvent effectively

have multivalent binding interactions with themselves and their binding protein targets. Using a

Lennard-Jones potential and Brownian Dynamics, we show that there is a window of poor solvent

conditions where polymers are soluble on their own, but can nucleate condensed droplets in the

presence of binding targets.

Here, we again placed four 16mer polymers in a box with divalent targets with increasing

concentration and ✏TT. If four 16mer polymers are simulated in a box by themselves, they precipitate

out of solution at approximately ✏PP = 9/12, so we tested energies between ✏PP = 5/12 and 8/12

where the 16mer polymers were collapsed but still soluble. Resultant phase diagrams for theta, and

poor solvents with ✏PP = 6/12 and 7/12 are shown in Figure 6-7.

In the case of poor solvent, even though collapsed polymers have less available volume for targets

to bind in, polymers phase separate at lower target-target attraction and target concentrations than

polymers in theta solvent. Results from our general collapsed polymer model demonstrate that a

slight decrease in solvation of the polymer may trigger phase separation when the polymer is mixed

with a corresponding binding target. This phenomenon can still happen when the decrease in solvent

quality is not enough for the polymer to precipitate on its own. For example, changes in polymer

sequence, post-translational modifications, or binding to a protein or small molecule that lowers the

effective solvent quality for a multivalent polymer could cause phase separation at lower binding

energies, concentrations, and target-target attractions. Our result showing how decreasing solvent

quality lowers the phase boundary for systems with multiple species, builds on recent work from

Martin et al. that showed that pure multivalent polymers phase separate at higher temperatures

when they have more attractive self-interactions [141].
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Figure 6-8: Phase diagram for proteins binding to polymers through a non-specific Lennard-Jones
potential. Diagrams use the same key described in detail in Figure 6-4 where phase separated
systems are marked with a “Y" for “yes" and not phase separated systems are marked with an “N"
for “no". Results are shown for simulations with increasing polymer binding attractions ✏TP from
left to right (columns) with four 16mer polymers (Top) and one 64mer polymer (Bottom).

6.3.3 Non-specific binding interactions

In addition to multivalency through valence-limited specific binding sites, we wanted to consider

any differences in phase separation behavior associated with non-specific interactions such as charge

or hydrophobicity. Non-specific interactions are commonly believed to add additional valency to

lock-and-key binding through the promiscuous interactions IDRs on binding proteins such as FUS,

TDP43, and hnRNPA1 [48,65]. To isolate the effects of non-specific interactions on nucleating a

condensed phase, we turned off our reactive binding scheme and exclusively applied a more attractive

Lennard-Jones attraction between the polymers and the targets ✏TP. We again placed four 16mer

polymers in theta solvent with various target concentrations and ✏TPs. The phase behavior for

✏TP = 0.75, 1.0, 1.25, and 1.5kBT is shown in Figure 6-8. Results for a single longer polymer with

degree of polymerization NP = 64 are also included for comparison.

With a generic Lennard-Jones potential between target proteins and the polymer, we see phase

separation at much lower potential energies than with specific, reactive binding. For example, all

target concentrations and solubilities as low as ✏TT = 0.5kBT showed droplet formation at ✏TP =

1.5kBT, but with the highest reactive binding energy �E0 = �6kBT , only targets with ✏TT �
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1.5kBT formed droplets. This huge increase in the phase boundary energy is likely because the

non-specific interaction has a much higher valency that is only limited by the maximum number

of neighbors. The limited valence of lock-and-key type bonds creates competition for sites between

bound and unbound protein neighbors, reducing the influence of the polymer on the targets. This

reduction in binding due to competition for high affinity sites is discussed further in our previous

work on multivalent binding site patterns [106]. The promiscuous nature and high effective valency

of non-specific potentials reduces competition and allows polymers to interact with more targets

simultaneously. This results in polymer-target phase separation occurring at much lower attractions.

Therefore, non-specific interaction energies are a very sensitive dial for controlling phase separation

and polymer modifications that change the non-specific interactions such as hydrophobicity or charge

between the polymer and targets will have a more significant impact on the phase boundary than

alterations to specific binding sites.

Still, valency and affinity of specific bonds can also change the phase boundary, although rel-

atively large changes in these characteristics correspond to small changes in the LLPS boundary.

Consequently, with a combination of non-specific and lock and key binding, the LLPS of multiva-

lent polymers and targets can be precisely controlled. An example of using both non-specific and

specific binding is shown in Figure 6-9. A small non-specific attraction ✏TP = 5/12kBT was applied

in addition to specific divalent binding with �E0 = �2, �4, and �6kBT . The addition of the non-

specific attraction provides access to phase separation at lower intra-target attractions, previously

inaccessible through purely lock-and-key binding, or at such a low specific polymer attraction. The

non-specific binding makes the phase separation energy barrier accessible through specific, valency

limited bonds. This is helpful because the resultant phase boundary from specific bonds is less sen-

sitive to changes in binding affinity or valence. We speculate that some reliance on the insensitivity

of specific bonding could help biology to reduce the number of aberrant phase transitions caused

by unintentional changes in binding sites.
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Figure 6-9: Phase diagram of targets and polymer with both nonspecific binding affinity ✏TP = 5/12
and specific lock and key binding (Bottom Row) compared with polymers that have lock and key
binding but almost no non-specific attraction to the targets ✏TP = 5/12 (Top Row). Protein targets
in these simulations are divalent. Diagrams use the same key described in detail in Figure 6-4
where phase separated systems are marked with a “Y" for “yes" and not phase separated systems
are marked with an “N" for “no". Results are shown for simulations with specific polymer binding
attractions �E0 = �2, �4, and �6kBT from left to right (columns) with four 16mer polymers.
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Figure 6-10: Simulation renderings depicting ordered and mixed droplets with a cross section view
through the middle of the droplet and a perspective view showing the inside and outside of the
droplet. Polymer beads are blue and protein target beads are yellow. Results shown are for sim-
ulations with non-specific binding to four 16mer polymers in theta solvent and 96 target binding
proteins. Note that the x-axis on this phase diagram is now protein-polymer affinity ✏TP in units of
kBT and the y-axis is still the intra-protein attraction ✏TT seen on previous phase diagrams also in
kBT . By moving vertically down the phase diagram from ✏TT = 2.0 to 1.5 the droplet morphology
goes from ordered to mixed due to changes in surface tension of the liquid protein phase. The
droplet also goes from ordered to mixed as we move from left to right across the phase diagram
from ✏TP = 1.0 to 2.0 due to increasingly favorable protein-polymer interfacial energy �.
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Figure 6-11: Simulation renderings depicting ordered and mixed droplets with a cross section view
through the middle of the droplet and a perspective view showing the inside and outside of the
droplet. Polymer beads are blue, unbound protein targets are yellow, and bound protein targets
are orange. Results shown are for simulations with specific binding to four 16mer polymers in theta
solvent and 96 divalent target binding proteins. Note that the x-axis on this phase diagram is now
protein-polymer affinity �E0 in units of kBT and the y-axis is still the intra-protein attraction ✏TT

in kBT . By moving vertically down the phase diagram from ✏TT = 2.0 to 1.5 we also see the droplet
morphology change from ordered to mixed due to changes in surface tension of the liquid protein
phase.

6.3.4 Condensed phase organization

Biocondensates often show microphase separation within the condensed phase [49,50,142,143]. This

disorder to order transition is a well known phenomenon in polymer physics with block copolymers

where self-assembly can be controlled by the interaction (�) between the two polymer block types.

We expected the same to be true for polymer-target assemblies in LLPS. When attraction between

binding proteins is higher than attraction to the polymer, condensates should undergo microphase

separation where polymers surround a condensed target phase. When attraction between targets

is similar to target-polymer attraction, the condensed phase will remain mixed. If the targets are
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highly attracted to the polymer, and not attracted to themselves, we might also see the case where

the polymer is condensed in the center of the droplet with targets decorating the outside of the

condensed phase.

First, we can explore inducing droplet order by changing the self-interactions of a single species

such as the binding proteins. Using self-interactions or solvation volume can be thought of as

changing the surface tension of the liquid target phase. Changes in droplet organization due to

surface tension or interactions of polymers with solvent were previously explored in a 4 component

system with 3 types of equal size binding polymers and solvent. They found that swollen multivalent

polymers could lower the surface tension of similar less-solvated polymers and induce a shell-core

structure seen in some RNP bodies [142]. In Figure 6-10 we show that a similar ordering can be

induced through surface tension in our asymmetric valency/size 3 component system, where the 3

components in our system are multivalent polymer, smaller binding proteins, and implicit solvent.

If the target-polymer attraction is held constant, the condensates go through a demixing transition

as the target-target attraction increases from ✏TP = 1.0kBT to 2.0kBT , moving in the vertical

direction up the phase diagram in Figure 6-10. Similar changes in droplet organization controlled

by the excluded volume of the binding proteins is also seen for the specific lock-and-key binding

polymers in Figure 6-11.

In addition to ordering due to surface tension, we also see demixing caused by changes in non-

specific binding affinity between the polymers and targets, more akin to inducing order/disorder

through modulating the � parameter. Looking at droplet order in Figure 6-10, while moving across

the phase diagram from left to right, it is clear in the simulation renderings that if target-target

attraction is held constant, the system goes through and order-to-disorder transition as the target-

polymer attraction increases from ✏TP = 1.0kBT to 2.0kBT . In this case, when the bonding energy

or attraction between the targets and polymer are very strong, the targets prefer to associate with

the polymer equal to or more than themselves and subsequently decorate the polymer as much as

possible. This results in the polymer becoming fully mixed with the binding targets. In contrast,

when the target attraction to the polymer is less than the amount they like to associate with

themselves, the targets prefer to surround themselves with only target neighbors and the polymer

is pushed to the outside of the droplet. This means that modifications made to IDRs that impact
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attraction to RNA and not just excluded solvent volume can change droplet ordering.

Figure 6-12: Average mean squared displacement (MSD) of all proteins for several different protein-
protein affinities. Corresponding regions of the phase diagrams are highlighted with a blue rectangle
above each plot. The black dotted line ( ) represents normal 3-D Brownian diffusion. (A) MSD
of pure proteins without polymers present. Colors represent different protein concentrations and
line pattern represents intra-protein affinity. Not phase separated proteins diffuse with normal
Brownian motion whereas phase separated proteins see much slower diffusion rates. Higher ✏TT

leads to lower MSD and slower protein diffusion. (B) MSD for 64 proteins interacting with 16mer
polymers through non-specific attraction at ✏TP = 1.7. Color corresponds to ✏TT. Average MSD for
all proteins is shown with a solid line ( ) and average MSD for all polymer beads is shown with a
dashed line ( ). In the presence of polymers, higher intra-protein attraction still leads to slower
protein diffusion times.
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Figure 6-13: Neighbor persistence of a binding protein (A) without a polymer present and (B) with
a polymer present that interacts through non-specific interactions. In both cases the time proteins
spent with the same neighbors is lengthened as the intra-target attraction ✏TT increases. (A) Line
color corresponds to protein concentration and line pattern denotes ✏TT. (B) Line color denotes
✏TT in simulations with 64 proteins interacting with four 16mer polymers in theta solvent with
✏TP = 1.7kBT .

6.3.5 Kinetics inside the droplet

Our simulation methods also allow us to study the diffusion and dynamics of condensed phase

species which are important to understand biocondensate function and diseases associated with

altered droplet dynamics [118,66,144]. To examine the mobility of binding proteins and polymers

in droplets we looked at both the mean squared displacement (MSD) and the neighbor persistence.

We calculated neighbor persistence as the average number of neighbors that remained the same over

a time interval, where beads were considered neighbors when their centers were within 2.5a. The

rate at which the neighbor persistence goes to zero provides a measure of how quickly the targets

are exchanging with the dilute supernatant phase. A high neighbor persistence or slow decay rate

means that a target in the droplet maintains many of its neighbors over a long period of time,

suggesting a solid-like phase. A fast decay in neighbors to zero signifies that, in a short amount

of time, the target became surrounded by an entirely new set of neighbors or completely left the

droplet, signifying a more liquid-like droplet with a fast exchange rate with the outside environment.
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We compared the MSD and neighbor persistence of the target binding proteins across increasing

intra-protein interactions ✏TT in Figure 6-12 and Figure 6-13, respectively. Not phase separated

systems show normal three dimensional diffusion, while systems that formed condensed droplets

have decreased MSD consistent with transformation from a gas to liquid phase. More interestingly,

we see a slow down in the diffusion and longer neighbor persistence time as ✏TT increases from

2.0 to 3.0kBT . At ✏TT = 3.0kBT the system with 128 targets appears to be almost solid-like

with some neighbors maintained longer than the evaluated time interval in Figure 6-13A. The

same decrease in diffusion and increase in neighbor persistence with higher target-target attraction

is also seen in the presence of binding polymers as shown in Figure 6-12B and 6-13B. Although

only non-specific binding polymers are shown in Figure 6-12B, trends are similar for lock-and-key

binding polymers. These results match well with experimental evidence that when RNA-binding

proteins more attracted to themselves this result in slower protein diffusion times and more solid-like

droplets [140]. Therefore, any modifications that make these RNA-binding proteins more attractive

to themselves such as additional hydrophobic residues in the IDRs could lead to solidification of

droplets. The increase in neighbor persistence could also correspond to lower diffusion limited

reaction rates because neighboring proteins exchange more slowly.

Li et al. showed experimentally that valency and binding affinity of molecules inside droplets

inversely correlate with FRAP recovery kinetics, which is exactly what we see in simulation [83].

Here, we provide further evidence of these results through simulation where increasing the affinity

of the targets to the polymer decreased the MSD of targets and increased their neighbor persistence.

This effect is demonstrated with both non-specific attraction to the polymer and specific valence-

limited binding in a slow down in the MSD in Figure 6-14 and longer neighbor persistence in

Figure 6-15. The slow down in dynamics caused by higher affinity binding to the polymer is

concentration dependent. Unsurprisingly, a higher ratio of binding proteins to polymer results

in the polymer having less influence over the droplet dynamics. Comparing the diffusion time

and neighbor persistence of droplets with and without polymers in Figure 6-16, we find that our

simulations also match previous experiments that showed that dynamics of pure protein droplets

are slowed upon the addition of a long RNA polymer [140]. While we did not see any increase in

protein diffusion upon the addition of binding polymers as seen in Maharana et al. this may be
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because we were not deep enough into the energy regime where targets phase separate alone such

as proteins that formed a solid-like structure such as at ✏TT = 3.0kBT or because the polymers we

simulated were too long [133,140]. Exploring the conditions under which polymers can speed the

diffusion of proteins in condensed droplets would be an interesting avenue for future work. Here,

we consider beads of equal sizes, but if we used different sizes to disrupt the packing, we might see

more significant changes in diffusion.

Figure 6-14: Average MSD for proteins with ✏TT = 1.7kBT interacting with four 16mer polymers
in theta solvent. Dotted black line ( ) represents normal Brownian diffusion, dashed lines ( )
represent the average MSD over all proteins in the simulation, solid lines ( ) represent the av-
erage MSD over all proteins that started with at least one neighbor at the beginning of the time
interval, and the colored dotted ( ) lines represent the average MSD over all polymer beads in
the simulation. Colors represent two attraction energies between protein targets and polymers with
blue denoting lower affinity than orange. Each plot contains the corresponding phase diagrams
with the plotted regions highlighted with a blue rectangle. Cases plotted include (A) non-specific
binding polymer with 64 targets and ✏TP = 1.25 and 1.5kBT , (B) non-specific binding polymer with
96 targets and ✏TP = 1.25 and 1.5kBT , (C) specific binding polymer with 64 divalent targets and
�E0 = �4 and �6kBT , and (D) specific binding polymer with 96 divalent targets and �E0 = �4
and �6kBT . Protein diffusion slows with increasing protein-polymer attraction, but the polymer
has less influence on droplet dynamics when the ratio of proteins to polymer is high.
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Figure 6-15: Average time proteins spend with the same neighbors normalized by the average number
of initial neighbors. Faster decays to zero indicate a more liquid-like droplet where proteins can
move through or exit the droplet freely. Increasing binding affinity to the polymer results in longer
protein neighbor persistence. Results are shown for the same cases as Figure 6-14. (A) Non-specific
binding polymer with 64 targets and ✏TP = 1.25 and 1.5kBT , (B) non-specific binding polymer with
96 targets and ✏TP = 1.25 and 1.5kBT , (C) specific binding polymer with 64 divalent targets and
�E0 = �4 and �6kBT , and (D) specific binding polymer with 96 divalent targets and �E0 = �4
and �6kBT .
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Figure 6-16: Average MSD and neighbor persistence of 96 proteins with ✏TT = 2.0kBT compared
with the dynamics of a pure protein droplet (purple). (Top Row) Proteins experiencing non-specific
attraction with the polymers ✏TP = 1.25 (blue) and 1.5kBT (orange). (Bottom Row) Divalent
proteins experiencing specific attraction with the polymers �E0 = �4 (blue) and �6kBT (orange).
In MSD plots (Left Column), dotted black line ( ) is reference for normal Brownian diffusion,
dashed lines ( ) represent the average MSD over all proteins in the simulation, solid lines ( )
are the average MSD over all proteins that started with at least one neighbor at the beginning of
the time interval, and the colored dotted ( ) lines represent the average MSD over all polymer
beads in the simulation.

6.4 Conclusion

Understanding how the body can alter and control the phase transitions of biocondensates and their

dynamics is crucial to understanding pathological aggregation. Here, we present simulations and

explore the aggregation and diffusion kinetics of smaller species that bind multivalently to longer

polymers. This system directly resembles a coarse-grain model of smaller proteins binding to linear

polymers such as nucleic acids or other proteins with multiple repetitive binding sites such as RNP

bodies.
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Despite the different geometries, these results seem to align well with systems of two similarly

size linear multivalent polymers and their phase transitions [83,58]. We similarly found that the

addition of a multivalently binding polymers can lower the phase boundary for a protein, and that

increasing protein valency and binding affinity also lower the phase boundary. To add on previous

investigations, we consider the differences in non-specific binding that might come from IDRs versus

the specific valency limited binding that comes with RNA recognition motifs. We show that changes

in the affinity of non-specific interactions can cause more drastic changes in the phase boundary

than valence-limited lock-and-key type bonds. Together, they can be used to carefully tune the

phase boundary.

Next, we showed that both surface tension and binding affinity could be used to tune droplet

order in a system of only three components. When proteins had higher attraction to multivalent

polymers, droplets remained mixed with proteins and polymers distributed throughout. When

proteins had higher attraction to themselves than to the multivalent polymer, we were able to

recreate systems of concentric droplets. Pure proteins formed a central core, while the polymers

were pushed into an outer shell. This could have implications for understanding how changes in

polymer-protein binding can impact biocondensate function.

Last, we found that increasing attraction between targets themselves and between targets and

polymers can slow the diffusion of targets within condensates and make them more solid-like, consis-

tent with previous experimental results [140,83]. The attraction to the polymer has a greater effect

on target dynamics in droplets with lower target concentrations, but after nucleation and growth of

a condensed target phase where targets outnumber polymer binding sites, target-target attractions

dominate the droplet dynamics. This suggests that changes in the non-specific attraction between

binding proteins themselves can induce droplets to be more liquid or more solid-like in addition to

polymer-binding interactions. Changes in dynamics could have big implications for the reversibility

of condensate formation and for reaction rates inside condensates, leading to clear implications for

diseases related to dysregulation of liquid-liquid phase separation such as ALS.

While more research needs to be done on specific systems and systems with more than two

components we hope that the results presented contribute to the understanding and control of

biocondensates and their associated diseases.
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Chapter 7

Summary and Outlook

7.1 Summary of thesis

This thesis explored the rational design of linear multivalent polymers as both inhibitors of pathogens

and architects of biocondensates. We sought to relate structural design variables of these polymers

to their resultant function using simulation and theory. We hope that this work will narrow the

design space for experimentalists and help to understand native biological systems. In Chapter 2,

we developed a Brownian Dynamics bead-spring model for our multivalent polymer-target binding

system that included excluded volume effects and reactive binding. We used this general model to

explore the effect of degree of polymerization on multivalent binding affinity to a small globular

protein target or colloid in Chapter 3. While holding the concentration of binding sites constant,

we compared the binding of polymers of different connectivity (ie: 64 monomers, 32 dimers, 4

16mers) and showed that while multivalency drastically increases binding affinity to dilute targets,

the improvement plateaus with increasing length. We showed that this plateau in binding affinity

is likely due to the entropic loss of forming large polymer loops; when a polymer binds twice to a

target, it has to form an entropically unfavorable loop.

Using a Poland-Scheraga type model for polymer-loop entropy we show that the binding free

energy (and correspondingly the binding avidity) of multivalent polymers follows Equation 3.2 and

plateaus at long degrees of polymerization because there is a maximum critical loop size. Long

polymers can theoretically add additional binding configurations, but if the resultant polymer loops
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cost more entropy than they gain in binding enthalpy, these loops won’t form. Therefore, above

the critical loop length, longer polymers do not add accessible longer loop configurations and will

see very minimal increases in binding affinity with increasing length. Anything that makes polymer

loops more energetically costly to form such as improved solvent quality or stiffer chains will lower

the binding affinity to a small target. While this effect is true of dilute targets, longer polymers

may have additional benefits when interacting with many targets simultaneously. In high target

concentrations, long polymers can more easily induce phase separation than short ones because

condensing multiple small polymers into a droplet costs additional translational entropy than the

configurational entropy cost of compacting a single long polymer chain. Therefore, if the goal is to

bind dilute targets, using polymers above a the critical loop length is unnecessary, but if the goal

is to phase separate many target proteins, longer polymers can shift the phase boundary to lower

concentrations and protein solubilities.

In Chapter 4, we consider the possibility of multifunctional polymers and how patterns of dif-

ferent binding site affinities along the polymer chain can control binding to a target. We show that

again, behavior is dependent on binding target concentrations and the cost of forming loops within

the multivalent polymer. At low target concentrations, when there isn’t competition for binding

sites, block copolymers bind with higher affinity than alternating copolymers. This is because bind-

ing targets want to minimize loops by binding to two polymer beads next to each other, and block

copolymers provide the highest concentration of high-affinity binding sites. In contrast, when there

is high competition for polymer binding sites, the high affinity sites are excluded by already bound

targets, and free targets are pushed to interact with low affinity sites. This makes alternating poly-

mers higher affinity because they are better at sharing their high-affinity sites along the polymer

chain. We show that this critical competition occurs approximately when the target binding sites

equal the number of polymer binding sites. Therefore, binding site arrangement for polymer designs

with heterogeneous sites should be tuned to expected target concentrations, or designs should be

considered with a mixture of both blocky and alternating regions such as a random copolymer.

Next, we considered wormlike chains — polymers that are stiff and extended, instead of random

coils. Chains could be more rod-like due to their dense sidechains, high charge density, or com-

plexation with another chain such as in the case of double stranded DNA. For stiff chains, binding
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multiple times to a small target involves an additional enthalpic cost of bending. Because the cost

of bending is very high for stiff chains, only very small polymer loops can form. This lowers the

effective valency of rod-like polymers and makes them significantly lower binding affinity for small

targets. This effect is not dependent on target concentration, and at high target concentrations,

results in phase separation only at higher concentrations and lower solvent quality than for flexible

random coil polymers. We suspect that this could affect biocondensates where changes in stiffness

could induce or prevent phase separation. We also suggest that large differences in multivalent

polymer stiffness may play a role in experimental systems where biocondensates were shown to

selectively enrich themselves in single stranded DNA and exclude double stranded DNA [134].

Finally, in Chapter 6 we look directly at the phase boundary and dynamics of phase separation

and compare binding through non-specific and specific binding sites. This work is relevant to mem-

braneless organelles whose binding proteins often have both specific binding sites and intrinsically

disordered protein regions that add non-specific binding sites. We show that non-specific binding

can cause phase separation at lower energies, likely because non-specific binding sites can interact

with many targets simultaneously, effectively creating a much higher valency. Therefore, these two

types of interactions give the body two energetic knobs for controlling the phase boundary. Non-

specific binding is highly sensitive to changes in energy, and so small changes in non-specific affinity

can be used to set the overall system energy close to the phase boundary. Specific-binding is much

more robust to changes in energy with relatively large changes in energy resulting in small changes

to the phase boundary. Specific bonds can be applied on top of the non-specific attraction to make

small changes in the phase boundary, giving both native and synthetic polymers precise control of

phase separation. We suspect this also means that biological systems are less robust to changes in

non-specific binding affinities than changes in specific, valence-limited binding sites, and therefore,

subtle changes in intrinsically disordered protein sequences could result in large changes in phase

separation, aberrant biocondensates, and disease.

Also in Chapter 6, we explore how increased polymer length, binding affinity, and valence can

lower the phase boundary in our asymmetrically sized binding system, matching results previously

reported in systems of two binding polymer species. Furthermore, we explore the effects of poor

solvent and how even in systems of only three components (polymer, binding protein, and implicit
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solvent) we see microphase separation in the droplet. Furthermore, both polymer-target binding

affinity and surface tension with the solvent can control order within small droplets. We go on

to investigate changes in droplet dynamics associated with changing polymer interactions. Our

results show that increasing attraction between targets (lower protein solubilities) and increasing

binding affinity between targets and polymers resulted in slower diffusion within the droplet and

slower neighbor exchange. Although there isn’t a direct correlation between diffusion and droplet

crystallization because faster diffusion corresponds to both faster crystal growth and slower crystal

nucleation rates, we were able to show that phase separated protein droplets had lower density when

mixed with polymers. We suspect that since liquids are lower density than solids, small decreases in

the density of droplets due to multivalent polymers could explain why some RNA-binding proteins

droplets are more liquid-like and crystallization is suppressed when RNA is present [133]. If we ran

simulations where polymer and target beads were not the same size, we might also be able to see

that polymers disrupt droplet crystal structure.

Our general coarse-grained simulation platform has allowed us to apply our results to several

different scenarios of multivalent polymer binding. We hope that the results presented in this thesis

research will help guide the design of a next generation of polymeric pathogen inhibitors and aid in

understanding causes and treatments for neurodegenerative disease associated with biocondensates.

7.2 Open questions and future work

As in any research, the scope of this thesis was limited by time, but we have several additional

projects in mind for future work.

7.2.1 Different polymer geometries

As mentioned previously, there are many multivalent geometries that could have been considered —

too many to explore in a single thesis! If we had more time we would be interested in either adding

more detailed geometry to our target, perhaps by making the binding sites in specific patches on its

surface instead of isotropic. It would also be interesting to consider the differences in using linear

versus brush-like polymers to inhibit pathogens because mucins have a bottlebrush architecture
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[24,145]. Other geometries such as flexible multivalent sheets may provide additional steric shielding

to prevent target binding to cells [14,30]. Sheets also could have lower configurational entropy loss

upon binding than polymers because they are restricted to movement in only two dimensions. This

could improve their binding affinity and it would be interesting how design parameters alter their

binding affinity.

7.2.2 Machine learning on patterns

In the realm of heterogeneous polymers or considering the effect of intrinsically disordered protein

sequence, it could be helpful to use machine learning tools to understand the nuances of how sequence

is tied to binding affinity. The sequence of proteins that phase separate in biocondensates are of

particular interest, and there are several recent studies that discuss linking amino acid sequences

to phase behavior [146,147]. If neural networks could accurately predict the binding affinity of

polymers based on their sequence, this would speed up the time to evaluate a polymer sequence

using simulation from hours or days to seconds. Comparing thousands of sequences simultaneously

might clarify details of sequence-dependent phase separation. For multivalent polymeric inhibitors,

sequences could be optimized for multiple objectives such as binding to two different target species

but not a third or binding to a target that has multiple binding site types. During my thesis research,

we dabbled in machine learning by using binding affinity sequences as input to output a binding

affinity or average time bound as shown in Figure 7-1. By learning on hundreds of 8mer random

polymer sequences, we were able to get relatively good predictions for overall polymer binding

affinity with a fully connected feed forward, back propagation neural network. Unfortunately, the

network appeared to base its predictions primarily on average site affinity and couldn’t identify

subtle changes in pattern. Therefore, in future work, we would suggest starting with a convolutional

neural net or another method that can intrinsically capture sequence or patterns.

7.2.3 Polymer-polymer binding

It would also be interesting to consider the binding of two multivalent polymers because some

biocondensates contain two linear multivalent species such as those involved in coordinating the
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Figure 7-1: Binding site affinity patterns appear to lend themselves well to neural networks which
could take the binding site affinity sequence as input and give the overall polymer binding affinity
as output.

construction of actin filaments such as Nephrin, Nck and N-WASP[83,50,148]. Repeat expansion

disorders that cause Huntington disease, muscular distrophy, and ALS can also be modeled as two

multivalent polymers which only phase separate after a critical repeat number or valency is reached

[64]. Therefore, it would be interesting to consider how the binding of two polymers with similar

valency is different than the binding of a polymer to a small target, as considered in this thesis.

For example, in a two polymer system, how does the ratio of the two polymer stiffnesses change

binding or phase separation? In this case, we suspect that two rod-like polymers would have stronger

binding if their sites are perfectly matched, but what about if there is slight mismatch? In Chapter

6, we were unable to see hemispherical phase separation where one species is enriched in the left

hemisphere and one species is enriched in the right hemisphere as shown in Figure 7-2. Maybe

we could capture this morphology, seen in Cajal bodies, with two polymers [49]. To test this, we

placed ten 16mer polymers that bound themselves through four evenly spaced reactive binding sites

in a box with ten 16mer polymers with no specific binding sites. All of the polymers were in the

same quality of poor solvent so that they would phase separate without the specific binding forces.

Although these results are only preliminary, we did see behavior of small hemispherically segregated

droplets forming initially before aggregating into one large ordered droplet as shown in Figure 7-2.
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Figure 7-2: Systems of two multivalent polymers can phase separate into hemispherically segregated
droplets. A schematic is shown on the bottom left, with simulation renderings on center and
right. Initially, small ordered droplets formed that coalesced into one large ordered droplet at long
timescales. Polymers with specific binding sites are shown in yellow and polymers without specific
binding sites are shown in blue.

7.2.4 Third species

Another option for future work is considering a third or fourth species interacting with multivalent

polymers. In the case of inhibitors, this could represent another pathogenic lectin the polymer

is trying to inhibit, or a healthy protein the polymer wants to avoid binding to. For multivalent

polymers to be effective broad-spectrum therapeutics, they must bind broadly enough to have high

affinity for multiple pathogens, but be specific enough to have low affinity for important proteins,

healthy cell surfaces, and beneficial microbes. Exploring how multivalent polymers interact with a
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third lectin target or a lectin and a surface in the same system could help clarify these tradeoffs.

Biocondensates can contain tens to hundreds of components, but phase separation appears to be

controlled by only a few of these components termed “scaffolds" with the rest of the ingredients re-

cruited post-formation and categorized as “guests". How these phase separated droplets specifically

recruit guests is still an active field of study [45,47,46,149]. Simulations that contain additional

species could further elucidate how multivalent polymers can control the composition of droplets.

We would be especially interested in understanding how recruitment of additional species occurs in

micro-phase separated or ordered droplets.
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Appendix A

Statistical Mechanical Model of Polymer Loops

The purpose of this section is to develop a statistical mechanical treatment for binding of poly-

mers presenting many ligands to a multivalent receptor. In section A.1, we present the model for

polyvalent binding. In section A.2, we calculate the partition function and provide formulas for

the free energy of receptor-ligand binding, showing that numerical methods are required for precise

calculations. In section A.4, we perform a large-N approximation of polyvalent binding (where N

is the number of ligands present on the polymer) and find analytically that increasing N eventually

stops adding any advantage for target binding. Finally, in section A.5, we present the limitations

of the current model but also the interesting predictions it makes that are in agreement with the

simulations performed in the main text. This section is adapted from Zumbro et al., Biophys. J.

115 (2019) 892-902 [86].

A.1 Evaluation of the partition function for the canonical

ensemble

We start with a simple model of polyvalent binding: we have an infinitely dilute random coil polymer

with N ligands (N corresponds to NP in the main text), evenly spaced with spacers of contour length

l between each ligand, and an infinitely dilute receptor with M binding sites (Fig. A-1A). In an

individual binding conformation in which k sites are bound, we can partition the polymer into k+1

fragments, with fragment lengths y1l, . . . , yk+1l (so,
Pk+1

j=1 yj = N � 1; Fig. A-1B. Note that this
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Figure A-1: Variables for polyvalent binding. A) Polymer contains N ligands, spaced by contour
length l, and may bind to a receptor with M binding sites. B) In a particular binding conformation,
there will be k sites bound (so 1  k  M), which will effectively split the polymer into k + 1
fragments, in which all but the first and (k + 1)th fragments must be looped. The lengths of the
fragments are y1l, . . . , yk+1l

implies all of the fragments will be forced into a loop except the first and last fragment, which are

free on the edges.

Assuming that the polymer is a random coil with Flory exponent ⌫, we have an average end-to-

end distance as a function of contour length L:

p
hR2i (L) = �

✓
L

�

◆⌫

= �
1�⌫

L
⌫

where � is a constant related to the persistence length of the polymer. Then letting � = ↵l for some

constant ↵ (note that ↵ now carries the information about persistence length), let us consider the

end-to-end distance as a function of y (so the contour length L here is L = yl):

p
hR2i (y) = (↵l)1�⌫ (yl)⌫ = ↵

1�⌫
ly

⌫ (A.1)

Therefore, the potential volume of space explored by a fragment with length y is:

V ⇠
⇣p

hR2i (y)
⌘3

= ↵
3�3⌫

l
3
y
3⌫ (A.2)
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In order to form a loop, one particular point out of that volume must be chosen. Thus, the

probability of a loop forming Ploop(y) is:

Ploop(y) = �↵
3⌫�3

l
�3

y
�3⌫ (A.3)

where � is some constant. This probability also doubles as the Boltzmann weight given a loop. Also,

let g
Nl be the polymer’s configurational entropy, for some g, and let w = e

��Ebind , where Ebind is

the energy for one receptor-ligand interaction. Finally, let P (M,k) be the number of permutations

possible for k receptor-ligand interactions given a particular choice of k ligands on the polymer to

bind the receptor, or to use another term, it is the bound state degeneracy; we will discuss this

value later.

A.2 Statistical mechanical analysis of binding free energy

We are now in a position to write the partition function given some N and k, Q(N, k):

Q (N, k) = P (M,k)gNl
w

k
y1+···+yk+1=N,⇤X

y1,...,yk+1

�
�↵

3⌫�3
l
�3

y
�3⌫
2

�
· · ·
�
�↵

3⌫�3
l
�3

y
�3⌫
k

�

= P (M,k)gNl
w

k
�
k�1

↵
(3⌫�3)(k�1)

l
�3(k�1)

y1+···+yk+1=N,⇤X

y1,...,yk+1

y
�3⌫
2 · · · y�3⌫

k

The * represents the constraint that y1, . . . , yk+1 are all strictly positive because it is impossible to

have a loop of length 0. Strictly speaking, it should be possible to have y1 = 0 or yk+1 = 0 because

the first and last fragments are not looped; it doesn’t make a difference really whether we include

them in the constraint so we include it for consistency. Also, for the sake of legibility, we collect

our terms together the following way: let � = �
�1

↵
�(3⌫�3)

l
3 and  = w�↵

3⌫�3
l
�3, giving us:

Q (N, k) = P (M,k)gNl� k
y1+···+yk+1=N,⇤X

y1,...,yk+1

y
�3⌫
2 · · · y�3⌫

k (A.4)
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We can now write the full partition function Q(N), summing over all k:

Q (N) =
MX

k=1

Q(N, k)

=
MX

k=1

P (M,k)gNl� k
y1+···+yk+1=N,⇤X

y1,...,yk+1

y
�3⌫
2 · · · y�3⌫

k

This is as far as we can get with the canonical ensemble, because the constraint y1+ · · ·+yk+1 = N

makes calculations infeasible.

A.3 Tranformation to grand canonical ensemble

We therefore move to the grand canonical ensemble Z(z) (essentially a constant chemical potential

for adding new monomers to the polymer, with z = e
�µ), and get some helpful simplifications:

Z (z) =
1X

N=1

z
N
Q(N)

=
1X

N=1

z
N

MX

k=1
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where f
+
3⌫ is the polylogarithm or polylog function. Rearranging terms, we have:

Z(z) = �

✓
zg

l

1� zgl

◆2 ⇣
f
+
3⌫(zg

l)
⌘�1

MX
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Now, we calculate our permutation term: assuming no restrictions on binding topology, we have

P (M,k) = M !
(M�k)! . Using this calculation, we get a somewhat analytically tractable sum [151]:

Z(z) = �

✓
zg

l

1� zgl

◆2 ⇣
f
+
3⌫(zg

l)
⌘�1
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where �(a, x) is the upper incomplete gamma function:

�(a, x) =

Z 1

x
t
a�1

e
�t

dt (A.5)

Now, let’s consider the value ln(Z), first dropping the ‘-1’ on the assumption that it is not significant

because it represents no binding. That is, it corresponds to the k = 0 state in which the receptor

and ligand are spatially co-localized (meaning a loss of translational entropy) without physically

interacting. This can either be considered a sort of ‘binding’ because the ligand will be localized

to the receptor, or alternatively not binding. Regardless, the k = 0 state is is clearly unfavorable

compared to binding which justifies our dropping the �1:

Z(z) ⇡ �
✓

zg
l

1� zgl

◆2 ⇣
f
+
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Eventually we will have to relate z to the actual N which we are given. We do this by noting that

< N >= z
@ lnZ(z)

@z ; note that one of the properties of the polylog is that d
dxf

+
3⌫(x) =

f+
3⌫�1(x)

x (we
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ignore fluctuations in N here):
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We can also calculate thermodynamic quantities, which is what we’re actually looking for. Namely,

we have:

� kBT lnZ =< E > �TS � µ < N >= A� µ < N > (A.8)

where A is the Helmholtz free energy, and the chemical potential is given by µ = ln(z)
� = kBT ln(z).

Since A is what we’re after (we have constant N , after all, and assuming no substantial pressure

changes A will be equivalent to G), the numerical determination of free energy would proceed as

follows: we are given some length of polymer N
0. Since we have derived the function < N > (z),

we invert this relation (numerically, or, as we describe below, analytically in the high-N limit) to

find z(N0). We then calculate the free energy of binding using:

A = �kBT lnZ
�
z(N0)

�
+ kBT ln

�
z(N0)

�
N

0 (A.9)

A.3.1 Free energy of free, unbound polymer

Let us now consider the energy of not binding ANB, because ultimately what we want is the change

in free energy of binding, �A = A�ANB. Our canonical partition function QNB(N) is:

QNB(N) = g
Nl
V/h (A.10)
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where V is a volume, representing the increased translation entropy that comes from not binding

to the receptor, and h is a constant to make the partition function unitless. Transforming to the

grand canonical ensemble for consistency, and calculating the other quantities we need:

ZNB(z) =
1X

N=1

z
N
QNB(N)

=
1X

N=1

z
N
g
Nl
V/h

= V/h

1X
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V zg

l
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We can now calculate thermodynamic quantities:
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And:

lnZNB = ln(V/h) + ln(1� 1

N
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With the total Helmholtz free energy:

�ANB = � ln(V/h)� ln(1� 1

N
)� ln(N)�N ln(gl) + kBTN ln(1� 1

N
) (A.11)
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So to summarize, our prodecure for finding �A = A � ANB given some N
0 is as follows. We

first invert Equation A.7 to find z(N0). We then find A using Equation A.9, with lnZ given by

Equation A.6. ANB is given by Equation A.11. All this, particularly inverting Equation A.7, must

be performed numerically; we used Mathematica [152] in our analysis in section A.5 below. (Also

note that while we dropped the ‘-1’ to get to a more legible Equation A.6, in numerical Mathematica

analysis we need not drop this term. However, in the following section, we do drop the ‘-1’. We

have observed that this does not make a significant difference, as expected.)

A.4 Large-N approximations for binding energy

Alternatively, it would be desirable to acquire asymptotic, large-N results. First, we consider in-

verting the function < N > (z) given by Equation A.7. In order to make N large, we can send

1� zg
l to 0, by sending zg

l to 1.

The limiting behavior of the other terms depends on the exact value of 3⌫. If 1 < 3⌫ < 2,

which is the case for a polymer in a theta solvent or a good solvent, then f
+
3⌫�1(zg

l) also diverges

for zgl ! 1, while f
+
3⌫(zg

l) is perfectly well-behaved. In particular, f+
3⌫(1) = ⇣(3⌫), where ⇣(·) is the

Riemann zeta function. So the way to get to a high N is to send zg
l to 1. If 3⌫ > 2, as is required

for the Poland-Scheraga DNA denaturation model to be a first order rather than second order phase

transition [101], then f
+
3⌫�1(zg

l) is well-behaved, converging to ⇣(3⌫ � 1). We will show that the

2
1�zgl

term is the only significant one in the large-N limit of Equation A.7, and will therefore assume

that 1 < 3⌫ < 2; if 3⌫ > 2 then this is trivial.

Where we let zg
l approach 1, substituting in f

+
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Note that the last three terms are now independent of z except for a f
+
3⌫�1(zg

l) term in each. We

will factor that out and collect all the other terms into a constant  (which we will shortly be able
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to ignore):

< N >=
2

1� zgl
� f

+
3⌫�1(zg

l) (A.13)

This is still not invertible, so let us find out which term blows up faster, 2
1�zgl

or f+
3⌫�1(zg

l). First,

let x = 1� zg
l. Then we have:

< N >=
2

x
� f

+
3⌫�1(1� x) (A.14)

The expansion about x = 0 of f+
3⌫�1(1� x) is:

f
+
3⌫�1(1� x) ⇡ ⇣(3⌫ � 1) +

�(2� 3⌫)

x2�3⌫
+O(x3⌫ � 1) (A.15)

which means that this term goes to infinity only with 2 � 3⌫th power of 1
x , and 2 � 3⌫ < 1 [153].

Thus, the first term, 2
x , dominates as zg

l ! 1, so we drop all other terms. This at long last leaves

us with the invertible approximation:

< N >=
2

1� zgl
(A.16)

zg
l =

N � 2

N
= 1� 2

N
(A.17)

So, we now immediately have the extra term in the Helmholtz free energy:

kBTN ln z = kBTN ln

✓
1

gl

✓
1� 2

N

◆◆

= kBTN

✓
� ln(gl) + ln(1� 2

N
)

◆

⇡ �kBTN ln(gl)� kBTN

✓
2

N

◆

= �kBTN ln(gl)� 2kBT (A.18)

The approximation ln(1 � 2/N) ⇡ �2/N allowed the equation to take a more elegant form. We

can also now substitute 1 � 2
N for zg

l in our equation for lnZ. Again, we will make first-order
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approximations because we are working with high N :

ln(Z) = ln(�) + 2 ln

✓
1� 2

N

◆
� 2 ln

✓
1� (1� 2

N
)

◆
+

1

 f+
3⌫(1� 2

N )
+M ln 

+ (M � 1) ln

✓
f
+
3⌫(1�

2

N
)

◆
+ ln

 
�

 
M + 1,

1

 f+
3⌫(1� 2

N )

!!

= ln(�)� 4

N
� 2 ln(2) + 2 ln(N) +

1

 f+
3⌫(1� 2

N )
+M ln 

+ (M � 1) ln

✓
f
+
3⌫(1�

2

N
)

◆
+ ln

 
�

 
M + 1,

1

 f+
3⌫(1� 2

N )

!!
(A.19)

Also, in the large N limit, ANB reduces to:

�ANB = � ln(V/h)� 1

N
� ln(N)�N ln(gl)� 1 (A.20)

So, the total free energy of binding is:

��A = � ln(�) +
4

N
+ 2 ln(2)� ln(N)� 1

 f+
3⌫(1� 2

N )
�M ln + ln(V/h)

� (M � 1) ln

✓
f
+
3⌫(1�

2

N
)

◆
� ln

 
�

 
M + 1,

1

 f+
3⌫(1� 2

N )

!!
� 1

Note that all contributions of g
l have canceled out, which was what must happen because the

polymer has the same flexibility regardless of binding. In the high-N limit, we can continue to

simplify:

��A = � ln(�) + 2 ln(2)� ln(N)� 1

 ⇣(3⌫)
�M ln + ln(V/h)

� (M � 1) ln(⇣(3⌫))� ln

✓
�

✓
M + 1,

1

 ⇣(3⌫)

◆◆
� 1 (A.21)

Re-expanding out the terms � and  , we get: � = �
�1

↵
�(3⌫�3)

l
3 and  = w�↵

3⌫�3
l
�3, giving us:

��A = � ln(��1
↵
�(3⌫�3)

l
3) + 2 ln(2)� ln(N)� l

3
↵
3�3⌫

w�⇣(3⌫)
�M ln

�
w�↵

3⌫�3
l
�3
�

� (M � 1) ln(⇣(3⌫))� ln

✓
�

✓
M + 1,

1

w�↵3⌫�3l�3⇣(3⌫)

◆◆
� 1 + ln(V/h) (A.22)
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Equation A.22 is what we’ve been after all along, an analytical form for free energy of binding;

we can now start to draw some conclusions based on it. First, the energy of binding grows only

logarithmically with N . This makes sense in retrospect, because for large enough loops, the loop

entropy will eventually dominate the binding energy because the loop entropy can increase indefi-

nitely but the binding energy is fixed. Thus, all polyvalent binding is necessarily “local," with the

definition of local being dependent on the various parameters. The energy grows logarithmically

because the number of binding locations grows linearly with N (indeed, is N), which gives an extra

binding entropy on the order of lnN . Analysis of the effects of other variables is unfortunately

dependent on the incomplete gamma function term, which makes analytical statements difficult.

Lastly, let us bring � over to the right side of the equation, group together all the terms that

include neither N nor V into a constant C, and assume changes in pressure are negligible (so

�A = �G). We then have:

�G = C � kBT ln(N/V ) (A.23)

In other words, �G depends solely on d = N/V , where d the density of individual receptors. In the

simulation described in the main text, we have d = nNP

Vbox

Substituting this into Equation A.23 gives

us:

�G = C � kBT ln

✓
nNP

Vbox

◆
(A.24)

This is Equation 7 in the main text, as desired.

A.5 Conclusions and discussion

There are some clear caveats to this model that limit its potential efficacy:

1. There may be kinetic constraints on various types of binding conformations, or increased

steric hindrance of binding when there are many ligands bound to the receptor.

2. We are ignoring fluctuations in < N > in the grand canonical ensemble, which is fine in the

large-N limit but this could be problematic for medium N values.

3. We are assuming that the polymer forms a random coil in between each binding site, which

would not apply to systems without flexible linkers.
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4. We are assuming infinitely dilute polymer and receptor. Thus, this model is not directly

applicable to, for example, the situation with multiple targets, or gel formation mediated by a

multivalent cross-linker.

5. We are assuming that the receptor is a point mass, or at least small with respect to the

polymer. This assumption does not hold for viruses and other large targets for polyvalent inhibitors.

We note that points 1, 2 ,and 3 do not affect the asymptotic result of diminishing returns for

increasing the degree of polymerization, though they will affect the avidities for specific polymer

constructs. Points 4 and 5 do somewhat circumscribe the applicability of the model. We do not

apply this theoretical model to the multiple-target situation in the main text due to point 4, and

we do not expect that the model will provide accurate results (or even necessarily accurate scaling)

for viruses due to point 5.

Despite these caveats, a number of conclusions and predictions may be drawn from the model.

Most prominently, we predict diminishing returns of increased polymer length, as observed in the

main text. This perhaps suggests that more compact polymers, such as star-shaped highly branched,

or even looped polymers, may be more effective at polyvalent binding because they will not have

as much of an unfavorable free energy contribution from loop entropy.

This model also predicts that diminishing returns will be reached more quickly in good solvent,

and furthermore that good solvent will reduce the maximum achievable avidity. To show this,

we will first assign plausible values for various polymer constants constants. Assuming a flexible

polymer, let “Persistence length" � = 2 nm. For l, let’s start with l = 4 nm, so ↵ = �/l = 0.5.

To set a value for �, note that it has units of volume, so is essentially the size of the binding site.

We should be fine, order of magnitude wise, letting � = 1 nm3. We ignore V/h; those only shift

things by a constant, so we’ll let V = h = 1. Thus, we should not necessarily expect that absolute

�G values to be accurate, though the relative �G values should be. For our binding strength, let

w = e
3. We also let M = 2 to match the simulations. For good solvent, we use a Flory exponent of

⌫ = 0.588, and for theta solvent, we use ⌫ = 0.5.

Using these values, Fig. A-2 shows the �G given these values in good and theta solvent, using

the numerical calculations rather than high-N approximation. In this figure, we correct the �G for

constant receptor per volume density, to match the simulations performed. As described in the main
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text and observed in our simulations, �G initially decreases due to increased avidity but reaches

a limit at high NP as predicted from Equation A.24. Furthermore, �G is more negative in the

theta solvent case, as observed in the simulations. The plot for the theta solvent also appears to be

reaching its asymptote slightly more slowly than the good solvent case, which is likewise consistent

with the simulations described in the main text.

Figure A-2: Free energy of binding �G as a function of degree of polymerization NP for good and
theta solvent. Note that we are holding the total number of receptors in the system constant, only
changing the connectivity.

To conclude, our theoretical approach makes qualitatively accurate predictions about two inter-

esting phenomena: the diminishing returns on avidity for extending polymer length after a certain

point, and the effect of good versus theta solvent on avidity.

183



This Page Intentionally Left Blank

184



Appendix B

Simulation Code

This Appendix includes the general simulation code for all of the simulations used in this thesis. It

includes four Fortran files:

1. toxinSolubilityNVT.f95, primary simulation file

2. routinesMultTox.f95, routines for calculating forces, neighbor lists, etc.

3. functionsEmi.f95, small generic functions to round numbers and search arrays

4. parameters.f95, global simulation variables and constants

B.1 toxinSolubilityNVT.f95

1 ! To Compile:

2 ! gfortran -c parameters.f95 routinesMultTox.f95 functionsEmi.f95

3 ! gfortran -O2 toxinSolubilityNVT.f95 parameters.o routinesMultTox.o

functionsEmi.o -o toxinSolubility.exe

4

5 program toxinSolubilityNVT

6

7 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

8 ! This program runs the simulations of multivalent polymers and small

targets

185



9 ! used for my thesis research. It calls on variables and constants from

parameters.f95 ,

10 ! and routines and functions from routinesMultTox.f95 and functionsEmi.f95

.

11 !

12 ! Emiko Zumbro Jul 2020

13 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

14

15 USE parameters

16 USE routinesMultTox

17 USE functionsEmi

18

19 IMPLICIT NONE

20

21 ! Initiate all of the variables

22 INTEGER :: i,j,n,totSteps ,iStart

23

24 ! positions

25 REAL(DP), DIMENSION (:), ALLOCATABLE :: rx,ry,rz

26 REAL(DP), DIMENSION (:,:), ALLOCATABLE :: posTox ! dim x maxTox

27 REAL(DP), DIMENSION (:,:), ALLOCATABLE :: dRTox ! beads x maxTox

28

29 ! forces

30 REAL(DP), DIMENSION (:), ALLOCATABLE :: fljx ,fljy ,fljz ,fljxTox ,fljyTox ,

fljzTox ! beads

31 REAL(DP), DIMENSION (:), ALLOCATABLE :: fljxToxTox ,fljyToxTox ,fljzToxTox !

maxTox

32 REAL(DP), DIMENSION (:), ALLOCATABLE :: fljxToxTot ,fljyToxTot ,fljzToxTot !

beads

33 REAL(DP), DIMENSION (:), ALLOCATABLE :: fspringx ,fspringy ,fspringz ,

fspringxTox ,fspringyTox ,fspringzTox

34 REAL(DP), DIMENSION (:), ALLOCATABLE :: FbindMag ,fbindx ,fbindy ,fbindz

35 REAL(DP), DIMENSION (:), ALLOCATABLE :: fwx ,fwy ,fwz ! polymer beads
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36

37 ! delta positions and cummulative potentials

38 REAL(DP), DIMENSION (:), ALLOCATABLE :: delXToxUnit ,delYToxUnit ,delZToxUnit

39 REAL(DP), DIMENSION (:), ALLOCATABLE :: dUdx ,dUdy ,dUdz ,dUdxTox ,dUdyTox ,

dUdzTox

40

41 ! random multipliers

42 REAL(DP), DIMENSION (:,:), ALLOCATABLE :: deltaWt ,deltaWtTox

43 INTEGER :: nRun , nSeed

44 INTEGER*8, DIMENSION (:) :: readSeed(seedSize)

45 INTEGER*4, DIMENSION (:) :: seed(seedSize)

46

47 ! Gaussian random number holders

48 REAL(DP) :: gausNum = 0.0_DP

49 INTEGER :: rowG ,colG

50

51 ! binding information

52 INTEGER , DIMENSION (:,:,:), ALLOCATABLE :: prevOmegaTot

53 INTEGER , DIMENSION (:,:), ALLOCATABLE :: prevOmega , newOmega

54 INTEGER , DIMENSION (:), ALLOCATABLE :: beadsBound , timeBoundUnbound ,

timeTypeBond

55 INTEGER , DIMENSION (:), ALLOCATABLE :: idxToxBnd , bdBndIdx

56 REAL(DP), DIMENSION (:), ALLOCATABLE :: delE_0

57 REAL(DP), DIMENSION (:), ALLOCATABLE :: delE_UB

58

59 ! Variables for keeping toxin concentration constant

60 REAL(DP), DIMENSION (:,:), ALLOCATABLE :: dRToxTox , existTox

61

62 ! Variables for assigning random indexes

63 INTEGER , DIMENSION (:), ALLOCATABLE :: old_idxs , rand_idxs

64 INTEGER :: nIdx = 0

65 REAL(DP), DIMENSION (:,:), ALLOCATABLE :: delE0Tot

66
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67 ! Variables for neighbor lists

68 INTEGER , DIMENSION (:), ALLOCATABLE :: nNghbrsPP , nNghbrsToxTox ,

nNghbrsPolyTox

69 INTEGER , DIMENSION (:,:), ALLOCATABLE :: nghbrListPP , nghbrListToxTox ,

nghbrListPolyTox

70

71 ! restart info

72 INTEGER :: restart

73

74 CHARACTER (80) :: restart_conf

75 CHARACTER (80) :: restart_rand

76 CHARACTER (80) :: configuration

77

78 restart_conf =" dataOut/restart_conf.res"

79 restart_rand =" dataOut/restart_rand.res"

80

81 OPEN (UNIT=20,FILE=" dataOut/posToxX.dat",STATUS =" REPLACE ")

82 CLOSE (20)

83 OPEN (UNIT=20,FILE=" dataOut/posToxY.dat",STATUS =" REPLACE ")

84 CLOSE (20)

85 OPEN (UNIT=20,FILE=" dataOut/posToxZ.dat",STATUS =" REPLACE ")

86 CLOSE (20)

87 OPEN (UNIT=20,FILE=" dataOut/confX.dat",STATUS =" REPLACE ")

88 CLOSE (20)

89 OPEN (UNIT=20,FILE=" dataOut/confY.dat",STATUS =" REPLACE ")

90 CLOSE (20)

91 OPEN (UNIT=20,FILE=" dataOut/confZ.dat",STATUS =" REPLACE ")

92 CLOSE (20)

93 OPEN (UNIT=20,FILE=" dataOut/idxToxBnd.dat",STATUS =" REPLACE ")

94 CLOSE (20)

95 OPEN (UNIT=20,FILE=" dataOut/numBnd.dat",STATUS =" REPLACE ")

96 CLOSE (20)

97
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98 print *, "about to input.par"

99

100 OPEN(10,file=" input.par",status =" unknown ")

101 REWIND (10)

102 READ (10,FMT=*)

103 READ (10,FMT=*) restart

104 READ (10,FMT=*)

105 READ (10,FMT=*) Nmer

106 READ (10,FMT=*)

107 READ (10,FMT=*) beads

108 READ (10,FMT=*)

109 READ (10,FMT=*) delE_0_center

110 READ (10,FMT=*)

111 READ (10,FMT=*) bindingSites

112 READ (10,FMT=*)

113 READ (10,FMT=*) tot_t

114 READ (10,FMT=*)

115 READ (10,FMT=*) isPolymer

116 READ (10,FMT=*)

117 READ (10,FMT=*) randNewToxin

118 READ (10,FMT=*)

119 READ (10,FMT=*) stdDevPolyAff

120 READ (10,FMT=*)

121 READ (10,FMT=*) nRun

122 READ (10,FMT=*)

123 READ (10,FMT=*) nTox

124 READ (10,FMT=*)

125 READ (10,FMT=*) epsToxTox

126 READ (10,FMT=*)

127 READ (10,FMT=*) gammaw

128 READ (10,FMT=*)

129 READ (10,FMT=*) epsilon

130 READ (10,FMT=*)
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131 READ (10,FMT=*) epsToxPoly

132 CLOSE (10)

133

134 totSteps = tot_t/deltaT

135 print *, totSteps

136 !This size was calculated to have the same concentration of beads as I had

in all the data I ran with only 10 beads 1.1* beads;

137 sizeBox = ((11.0 _DP **3.0 _DP)*(64.0 _DP /10.0 _DP))**(1.0/3.0 _DP) !((11.0 _DP

**3.0 _DP)*(beads /10.0 _DP))**(1.0/3.0 _DP) ! 200

138 print *, "sizeBox = ", sizeBox

139

140 ! This is for NVT (we aren ’t going to change the number of tox , so don ’t

need

141 ! to allocate extra space in advance)

142 maxTox = nTox

143

144 ! Get out your random seed and seed your function

145 !print *, "about to rSeed.par"

146 OPEN(10,file=" rSeed.par",status =" unknown ")

147 REWIND (10)

148 DO nSeed = 1,seedSize

149 READ (10,FMT=*) readSeed(nSeed)

150 END DO

151

152 CLOSE (10)

153

154 seed = INT(readSeed ,4)

155

156 ! Initiate your random seed

157 CALL RANDOM_SEED(PUT=seed)

158 !print *, "size of seed = ", SIZEOF(seed)

159

160 print *, "seeded"
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161

162 ALLOCATE (rx(beads),ry(beads),rz(beads),posTox(dim ,maxTox),dRTox(beads ,

maxTox))

163 ALLOCATE (fljx(beads),fljy(beads),fljz(beads),fljxTox(beads),fljyTox(beads

),fljzTox(beads))

164 ALLOCATE (fljxToxTox(maxTox),fljyToxTox(maxTox),fljzToxTox(maxTox))

165 ALLOCATE (fljxToxTot(beads),fljyToxTot(beads),fljzToxTot(beads))

166

167 ALLOCATE (fspringx(beads),fspringy(beads),fspringz(beads))

168 ALLOCATE (fspringxTox(beads),fspringyTox(beads),fspringzTox(beads))

169 ALLOCATE (fwx(beads),fwy(beads),fwz(beads))

170

171 ALLOCATE (fbindx(beads),fbindy(beads),fbindz(beads),FbindMag(beads))

172 ALLOCATE (prevOmegaTot(beads ,bindingSites ,maxTox),prevOmega(beads ,

bindingSites), newOmega(beads ,bindingSites))

173 ALLOCATE (timeBoundUnbound(maxTox),timeTypeBond(maxTox))

174 ALLOCATE (delXToxUnit(beads), delYToxUnit(beads), delZToxUnit(beads))

175 ALLOCATE (deltaWt(dim ,beads), deltaWtTox(dim ,maxTox),beadsBound(beads))

176 ALLOCATE (dUdx(beads),dUdy(beads),dUdz(beads),dUdxTox(maxTox),dUdyTox(

maxTox),dUdzTox(maxTox))

177 ALLOCATE (delE_0(beads),delE_UB(beads))

178 ALLOCATE (dRToxTox(maxTox ,maxTox))

179 ! ALLOCATE (nToxAggTime(timeAvgInt),dRNewTox(maxTox),closeToxIdx(maxTox))

180 ALLOCATE (idxToxBnd(beads),bdBndIdx(bindingSites))

181 ALLOCATE (old_idxs(Nmer),rand_idxs(Nmer /2))

182 ALLOCATE (delE0Tot (50,beads))

183 ALLOCATE (nNghbrsPP(beads),nghbrListPP(beads ,beads),nNghbrsToxTox(maxTox),

nghbrListToxTox(maxTox ,maxTox))

184 ALLOCATE (nNghbrsPolyTox(maxTox),nghbrListPolyTox(maxTox ,beads))

185

186 delE_0 = delE_0_center

187

188 ! Alternate binding site pattern assignments are commented out below
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189 ! ! Assign a random number for every bead in the polymer

190 ! DO colG=1,beads

191 ! CALL gasdev_s(gausNum)

192 ! delE_0(colG) = gausNum

193 ! END DO

194

195 ! delE_0 = stdDevPolyAff*delE_0 + delE_0_center

196

197 ! ! ! Making half and half polymers

198 ! DO colG=1,beads/Nmer

199 ! rowG = Nmer*(colG -1)+1

200 ! delE_0(rowG:rowG -1+ Nmer /2) = delE_0_center -stdDevPolyAff

201 ! delE_0(rowG+Nmer /2:rowG -1+ Nmer) = delE_0_center+stdDevPolyAff

202 ! END DO

203

204 ! ! Making alternating polymers

205 ! delE_0 = delE_0_center -stdDevPolyAff

206 ! DO colG=1,beads /2

207 ! delE_0(colG *2) = delE_0_center+stdDevPolyAff

208 ! END DO

209

210 ! Making alternating every 2 polymers

211 ! delE_0 = delE_0_center -stdDevPolyAff

212 ! DO colG=4,beads ,4

213 ! delE_0(colG) = delE_0_center+stdDevPolyAff

214 ! delE_0(colG -1) = delE_0_center+stdDevPolyAff

215 ! END DO

216

217 ! ! Making alternating every 4 polymers

218 ! delE_0 = delE_0_center -stdDevPolyAff

219 ! DO colG=8,beads ,8

220 ! delE_0(colG) = delE_0_center+stdDevPolyAff

221 ! delE_0(colG -1) = delE_0_center+stdDevPolyAff

192



222 ! delE_0(colG -2) = delE_0_center+stdDevPolyAff

223 ! delE_0(colG -3) = delE_0_center+stdDevPolyAff

224 ! END DO

225

226 ! Making polymers with two binding affinities that are randomly located

along the chain

227

228 ! delE_0 = delE_0_center+stdDevPolyAff

229 ! DO colG=1,beads/Nmer

230 ! DO nIdx = 1,Nmer

231 ! old_idxs(nIdx) = nIdx+(Nmer*(colG -1))

232 ! END DO

233 ! print *, old_idxs

234

235 ! nIdx = Nmer/2

236 ! ! pick nIdx random indexes from old_idxs and return them in rand_idxs

237 ! CALL pick_random(old_idxs , rand_idxs , nIdx)

238

239 ! print *, "rand_idxs = ", rand_idxs , "\n"

240

241 ! delE_0(rand_idxs) = delE_0_center -stdDevPolyAff

242 ! END DO

243

244 ! ! Get polymer affinities from a previously written matrix

245 ! OPEN(10,file=" delE0Tot.txt",status =" unknown ")

246 ! REWIND (10)

247 ! DO nSeed = 1,50

248 ! READ (10,FMT=*) delE0Tot(nSeed ,:)

249 ! END DO

250 ! CLOSE (10)

251

252

253 delE_UB = -delE_0 + 0.5_DP
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254 posTox = 0.0

255

256 print *,"allocated"

257

258 !initialize the configuration

259 IF (restart == 0) THEN

260

261 iStart = 0

262 ry=0.0

263 rz=0.0

264

265 ! Only works for polymers with 64 beads or less

266 CALL setInitialPos(rx,ry,rz)

267 CALL setInitialPosTox(posTox (1,1: nTox),posTox (2,1: nTox),posTox (3,1: nTox)

,rx,ry,rz)

268

269 ELSE

270 ! Restart from previous configuration - Not Implemented

271 iStart = 0

272 END IF

273

274 print *, "iStart = ",iStart

275

276 OPEN(10,file=" dataOut/Output.dat",status =" REPLACE ")

277 ! WRITE (10 ,*)

278 ! WRITE (10 ,*) "This is the file that contains the parameters"

279 ! WRITE (10 ,*) "used in the simulation ."

280 ! WRITE (10 ,*)

281 WRITE (10 ,*) "startingStep",iStart

282 WRITE (10 ,*) "restart",restart

283 WRITE (10 ,*) "beads",beads

284 WRITE (10 ,*) "Nmer",Nmer

285 WRITE (10 ,*) "bindingSites",bindingSites

194



286 WRITE (10 ,*) "maxTox",maxTox

287 WRITE (10 ,*) "nTox0",nTox

288 WRITE (10 ,*) "tot_t",tot_t

289 !WRITE (10 ,*) "isPolymer",isPolymer

290 WRITE (10 ,*) "delE_0_center",delE_0_center

291 !WRITE (10 ,*) "delE_UB",delE_UB

292 WRITE (10 ,*) "deltaT",deltaT

293 WRITE (10 ,*) "tot_t",tot_t

294 WRITE (10 ,*) "checkBindingInterval",checkBindingInterval

295 WRITE (10 ,*) "D",D

296 WRITE (10 ,*) "DTox",DTox

297 WRITE (10 ,*) "dim",dim

298 WRITE (10 ,*) "sizeBox",sizeBox

299 WRITE (10 ,*) "d_wrt",d_wrt

300 WRITE (10 ,*) "nRun",nRun

301 WRITE (10 ,*) "epsilonLJPP",epsilon

302 WRITE (10 ,*) "epsLJToxTox",epsToxTox

303 WRITE (10 ,*) "epsLJToxPoly",epsToxPoly

304 WRITE (10 ,*) "gammaw",gammaw

305 CLOSE (10)

306

307 OPEN (UNIT=10,FILE=" dataOut/iPos.dat", STATUS =" REPLACE ")

308 DO j=1,beads

309 WRITE (UNIT=10,FMT=*) rx(j),ry(j),rz(j)

310 END DO

311 CLOSE (10)

312

313 OPEN (UNIT=10,FILE=" dataOut/iPosTox.dat", STATUS =" REPLACE ")

314 DO j=1,maxTox

315 WRITE (UNIT=10,FMT=*) posTox(1,j),posTox(2,j),posTox(3,j)

316 END DO

317 CLOSE (10)

318

195



319 OPEN (UNIT=10,FILE=" dataOut/randSeed.dat", STATUS =" REPLACE ")

320 WRITE (UNIT=10,FMT=*) seed

321 CLOSE (10)

322

323 OPEN (UNIT=10,FILE=" dataOut/delE0.dat", STATUS =" REPLACE ")

324 DO j=1,beads

325 WRITE (UNIT=10,FMT=*) delE_0(j)

326 END DO

327 CLOSE (10)

328

329 OPEN (UNIT=10,FILE=" dataOut/delEUB.dat", STATUS =" REPLACE ")

330 DO j=1,beads

331 WRITE (UNIT=10,FMT=*) delE_UB(j)

332 END DO

333 CLOSE (10)

334

335 ! Initiate everything to start unbound and unaggregated

336 IF (restart ==0) THEN

337 prevOmegaTot = 0

338 prevOmega = 0

339 timeBoundUnbound = 0

340 idxToxBnd = 0

341 timeTypeBond = 0

342 ELSE

343 prevOmega = 0

344 timeBoundUnbound = 0

345 timeTypeBond = 0

346 ENDIF

347

348 print *, "made it to function"

349

350 DO i=iStart+1,totSteps

351
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352 DO colG=1,dim

353 DO rowG=1,beads

354 CALL gasdev_s(gausNum)

355 deltaWt(colG ,rowG) = gausNum

356 END DO

357 END DO

358

359 deltaWt = deltaWt * SQRT(deltaT)

360

361 DO colG=1,dim

362 DO rowG=1,nTox

363 CALL gasdev_s(gausNum)

364 deltaWtTox(colG ,rowG) = gausNum

365 END DO

366 END DO

367

368 deltaWtTox = deltaWtTox * SQRT(deltaT)

369

370 ! Calculate the spring forces due to connectivity

371 IF (isPolymer) THEN

372 CALL springForces(fspringx ,fspringy ,fspringz ,rx,ry,rz)

373 IF (gammaw > 0.0) THEN

374 ! Calculate the wormlike chain forces to control bending

375 CALL worm_like(fwx ,fwy ,fwz ,rx,ry ,rz)

376 ELSE

377 fwx = 0.0

378 fwy = 0.0

379 fwz = 0.0

380 END IF

381 ELSE

382 ! there is no connectivity and all the spring forces are 0

383 fspringx = 0.0

384 fspringy = 0.0
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385 fspringz = 0.0

386

387 fwx = 0.0

388 fwy = 0.0

389 fwz = 0.0

390 END IF

391

392 ! print *, "Calculated spring forces"

393 IF (beads > 1) THEN

394

395 ! Update the neighbor list between inhibitor beads

396 IF ((i==( iStart +1)).OR.( MODULO(i,checkBindingInterval /10) ==0)) THEN

397 CALL updateNeighborListPP(rx,ry,rz ,nNghbrsPP ,nghbrListPP)

398 END IF

399

400 ! Calculate the lennard -jones excluded volume forces between inhibitor

beads

401 CALL rljmodNLBC(fljx ,fljy ,fljz ,rx ,ry ,rz ,nNghbrsPP ,nghbrListPP)

402

403 END IF

404

405 fbindx = 0.0

406 fbindy = 0.0

407 fbindz = 0.0

408

409 fljxTox =0.0

410 fljyTox =0.0

411 fljzTox =0.0

412

413 fljxToxTot =0.0

414 fljyToxTot =0.0

415 fljzToxTot =0.0

416
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417 dUdxTox =0.0

418 dUdyTox =0.0

419 dUdzTox =0.0

420

421 idxToxBnd = 0

422

423 ! Find LJ excluded volume between all the toxins and themselves if

there are multiple toxins

424 IF (nTox > 1) THEN

425

426

427 ! Update the neighbor list

428 IF ((i==( iStart +1)).OR.( MODULO(i,checkBindingInterval /10) ==0)) THEN

429 CALL updateNeighborListToxTox(posTox (1,1: nTox),posTox (2,1: nTox),

posTox (3,1: nTox),nNghbrsToxTox ,nghbrListToxTox)

430 END IF

431

432 ! Calculate the lennard -jones excluded volume forces between toxins

433 ! Neighbor List incompatible with changing toxin concentration

dynamically

434 CALL rljToxToxNLBC(fljxToxTox ,fljyToxTox ,fljzToxTox ,posTox (1,1: nTox),

posTox (2,1: nTox),posTox (3,1: nTox), &

435 & nNghbrsToxTox ,nghbrListToxTox)

436

437 END IF

438

439 IF (beads > 0) THEN

440

441 ! Update the neighbor list between toxins and inhibitor polymers

442 IF ((i==( iStart +1)).OR.( MODULO(i,checkBindingInterval /10) ==0)) THEN

443 CALL updateNeighborListPolyTox(rx ,ry ,rz ,posTox (1,1: nTox),posTox

(2,1: nTox),posTox (3,1: nTox) ,&

444 & nNghbrsPolyTox ,nghbrListPolyTox)
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445 END IF

446

447 DO j = 1,nTox

448 ! Calculate Lennard -Jones excluded volume forces between toxins and

inhibitor beads

449 CALL rljToxNLBC(fljxTox ,fljyTox ,fljzTox ,dRTox(:,j),rx,ry ,rz ,posTox

(:,j),delXToxUnit ,delYToxUnit ,&

450 & delZToxUnit ,nNghbrsPolyTox(j),nghbrListPolyTox(j,:))

451

452 prevOmega = prevOmegaTot (:,:,j)

453

454 ! If it is a binding interval , check to see if a binding event

happens

455 IF (( MODULO(i,checkBindingInterval)==0).AND.( delE_0_center <0)) THEN

456 CALL bound(prevOmegaTot , prevOmega , dRTox(:,j), FbindMag , newOmega

, delE_0 , delE_UB)

457 ELSE

458 newOmega = prevOmega

459 beadsBound = SUM(newOmega ,2) ! by this one toxin

460 FbindMag = -k_bind*beadsBound *( dRTox(:,j)-l_bind)

461 END IF

462

463 ! Calculate the bound forces with their direction

464 DO n = 1,beads

465 ! del_ToxUnit points from the toxin to the inhibitor

466 ! I think this makes it correct for the forces on the bead ,

but the toxin will have to have a negative of the fbind_

467 ! In order to have fbindx be dimension n, add the previous

fbindx as you iterate through the toxins , j

468 fbindx(n) = fbindx(n) + FbindMag(n)*delXToxUnit(n)

469 fbindy(n) = fbindy(n) + FbindMag(n)*delYToxUnit(n)

470 fbindz(n) = fbindz(n) + FbindMag(n)*delZToxUnit(n)

471 END DO
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472

473 ! Update the Omega

474 prevOmegaTot (:,:,j) = newOmega

475

476 bdBndIdx = 0

477 ! Update the tracker for whether my toxins is overall bound or not

478 IF (ANY(SUM(newOmega ,2) ==1)) THEN !newOmega(beads ,bindingSites)

479 ! sum along binding sites to get a 1 for every bead that is

bound and a 0 for every polymer bead that is unbound and then count the

bead as bound if any of its binding sites is bound (ie, any of the

bead slots = 1)

480 timeBoundUnbound(j) = 1

481 timeTypeBond(j) = SUM(SUM(newOmega ,2) ,1)

482 bdBndIdx = FIND(SUM(newOmega ,2) ==1);

483 DO n = 1,bindingSites

484 IF (bdBndIdx(n) >0) THEN

485 idxToxBnd(bdBndIdx(n)) = j

486 END IF

487 END DO

488

489 ELSE

490 timeBoundUnbound(j) = 0

491 timeTypeBond(j) = 0

492 END IF

493

494 ! Add together the forces on the toxins

495 dUdxTox(j) = SUM(FbindMag*delXToxUnit ,1) + SUM(fljxTox ,1) -

fljxToxTox(j) !( maxTox)

496 dUdyTox(j) = SUM(FbindMag*delYToxUnit ,1) + SUM(fljyTox ,1) -

fljyToxTox(j)

497 dUdzTox(j) = SUM(FbindMag*delZToxUnit ,1) + SUM(fljzTox ,1) -

fljzToxTox(j)

498
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499 ! Add together all of the lj forces from each toxin on the

inhibitor beads

500 fljxToxTot = fljxToxTot+fljxTox

501 fljyToxTot = fljyToxTot+fljyTox

502 fljzToxTot = fljzToxTot+fljzTox

503 END DO

504 ELSE

505 DO j = 1,nTox

506 dUdxTox(j) = - fljxToxTox(j) !( maxTox)

507 dUdyTox(j) = - fljyToxTox(j)

508 dUdzTox(j) = - fljzToxTox(j)

509 END DO

510 END IF

511

512 IF (beads > 0) THEN

513 ! Add together the forces on the polymer

514 dUdx = -(fspringx + fwx + fljx + fbindx + fljxToxTot)

515 dUdy = -(fspringy + fwy + fljy + fbindy + fljyToxTot)

516 dUdz = -(fspringz + fwz + fljz + fbindz + fljzToxTot)

517

518 ! Calculate the next position of the polymer

519 rx = rx + (Vf -dUdx/zeta)*deltaT + SQRT (2.0 _DP*D)*deltaWt (1,:)

520 ry = ry + (Vf -dUdy/zeta)*deltaT + SQRT (2.0 _DP*D)*deltaWt (2,:)

521 rz = rz + (Vf -dUdz/zeta)*deltaT + SQRT (2.0 _DP*D)*deltaWt (3,:)

522 END IF

523

524 ! Calculate the next position of the toxin

525 posTox (1,:) = posTox (1,:) + (Vf -dUdxTox/zeta)*deltaT + SQRT (2.0 _DP*DTox)

*deltaWtTox (1,:)

526 posTox (2,:) = posTox (2,:) + (Vf -dUdyTox/zeta)*deltaT + SQRT (2.0 _DP*DTox)

*deltaWtTox (2,:)

527 posTox (3,:) = posTox (3,:) + (Vf -dUdzTox/zeta)*deltaT + SQRT (2.0 _DP*DTox)

*deltaWtTox (3,:)
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528

529 ! Reestablish the boundary conditions for the polymer

530 DO j = 1,beads

531

532 IF (rx(j) > 0.5* sizeBox) THEN

533 rx(j) = rx(j) - sizeBox

534 ELSE IF (rx(j) < -0.5* sizeBox) THEN

535 rx(j) = rx(j) + sizeBox

536 END IF

537

538 IF (ry(j) > 0.5* sizeBox) THEN

539 ry(j) = ry(j) - sizeBox

540 ELSE IF (ry(j) < -0.5* sizeBox) THEN

541 ry(j) = ry(j) + sizeBox

542 END IF

543

544 IF (rz(j) > 0.5* sizeBox) THEN

545 rz(j) = rz(j) - sizeBox

546 ELSE IF (rz(j) < -0.5* sizeBox) THEN

547 rz(j) = rz(j) + sizeBox

548 END IF

549

550 END DO

551

552 ! Reestablish the boundary conditions for the toxin

553 DO j = 1,nTox

554

555 IF (posTox(1,j) > 0.5* sizeBox) THEN

556 posTox(1,j) = posTox(1,j) - sizeBox

557 ELSE IF (posTox(1,j) < -0.5* sizeBox) THEN

558 posTox(1,j) = posTox(1,j) + sizeBox

559 END IF

560
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561 IF (posTox(2,j) > 0.5* sizeBox) THEN

562 posTox(2,j) = posTox(2,j) - sizeBox

563 ELSE IF (posTox(2,j) < -0.5* sizeBox) THEN

564 posTox(2,j) = posTox(2,j) + sizeBox

565 END IF

566

567 IF (posTox(3,j) > 0.5* sizeBox) THEN

568 posTox(3,j) = posTox(3,j) - sizeBox

569 ELSE IF (posTox(3,j) < -0.5* sizeBox) THEN

570 posTox(3,j) = posTox(3,j) + sizeBox

571 END IF

572

573 END DO

574

575 ! Save things to files at specified intervals

576 IF (mod(i,checkBindingInterval) == 0) THEN

577

578 OPEN (UNIT=10,FILE=" dataOut/idxToxBnd.dat"&

579 &,STATUS =" unknown",POSITION =" append ")

580 WRITE (UNIT=10,FMT=*) idxToxBnd

581 CLOSE (10)

582

583 OPEN (UNIT=10,FILE=" dataOut/numBnd.dat"&

584 &,STATUS =" unknown",POSITION =" append ")

585 WRITE (UNIT=10,FMT=*) SUM(timeBoundUnbound)

586 CLOSE (10)

587

588 END IF

589

590 IF (mod(i,d_wrt) == 0) THEN

591

592 ! Write out the toxin position

593 OPEN (UNIT=20,FILE=" dataOut/posToxX.dat"&
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594 &,STATUS =" unknown",POSITION =" append ")

595 WRITE (UNIT=20,FMT=*) posTox (1,:)

596 CLOSE (20)

597

598 OPEN (UNIT=20,FILE=" dataOut/posToxY.dat"&

599 &,STATUS =" unknown",POSITION =" append ")

600 WRITE (UNIT=20,FMT=*) posTox (2,:)

601 CLOSE (20)

602

603 OPEN (UNIT=20,FILE=" dataOut/posToxZ.dat"&

604 &,STATUS =" unknown",POSITION =" append ")

605 WRITE (UNIT=20,FMT=*) posTox (3,:)

606 CLOSE (20)

607

608 ! Write out the polymer position

609 OPEN (UNIT=20,FILE=" dataOut/confX.dat"&

610 &,STATUS =" unknown",POSITION =" append ")

611 WRITE (UNIT=20,FMT=*) rx

612 CLOSE (20)

613

614 OPEN (UNIT=20,FILE=" dataOut/confY.dat"&

615 &,STATUS =" unknown",POSITION =" append ")

616 WRITE (UNIT=20,FMT=*) ry

617 CLOSE (20)

618

619 OPEN (UNIT=20,FILE=" dataOut/confZ.dat"&

620 &,STATUS =" unknown",POSITION =" append ")

621 WRITE (UNIT=20,FMT=*) rz

622 CLOSE (20)

623

624 END IF

625

626 IF (mod(i ,100000) == 0) THEN
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627

628 OPEN (UNIT=20,FILE=" dataOut/counter.dat",STATUS =" unknown ")

629 REWIND (20)

630 WRITE (20,FMT=’(I8) ’) i

631 CLOSE (20)

632

633 OPEN (UNIT=20,FILE=restart_conf ,STATUS =" unknown ")

634 REWIND (UNIT =20)

635 DO j=1,beads

636 WRITE (UNIT=20,FMT=*) rx(j),ry(j),rz(j)

637 END DO

638 CLOSE (20)

639

640 END IF

641

642 IF (mod(i ,1000000) == 0) THEN

643 print *, "Step ",i,"of ",totSteps

644 END IF

645

646 END DO

647

648

649 ! Deallocate all of our variables

650 DEALLOCATE (rx,ry,rz,posTox)

651 DEALLOCATE (fljx ,fljy ,fljz ,fljxTox ,fljyTox ,fljzTox)

652 DEALLOCATE (fljxToxTot ,fljyToxTot ,fljzToxTot ,fljxToxTox ,fljyToxTox ,

fljzToxTox)

653 DEALLOCATE (fspringx ,fspringy ,fspringz)

654 DEALLOCATE (fspringxTox ,fspringyTox ,fspringzTox)

655 DEALLOCATE (fbindx ,fbindy ,fbindz ,FbindMag)

656 DEALLOCATE (prevOmegaTot ,prevOmega ,newOmega)

657 DEALLOCATE (timeBoundUnbound)

658 DEALLOCATE (dRTox ,delXToxUnit ,delYToxUnit ,delZToxUnit)
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659 DEALLOCATE (deltaWt ,deltaWtTox ,beadsBound)

660 DEALLOCATE (dUdx ,dUdy ,dUdz ,dUdxTox ,dUdyTox ,dUdzTox)

661 DEALLOCATE (nNghbrsPP ,nghbrListPP)

662 DEALLOCATE (fwx ,fwy ,fwz)

663

664 print *, "Done!"

665

666 END program toxinSolubilityNVT

B.2 routinesMultTox.f95

1 MODULE routinesMultTox

2

3 IMPLICIT NONE

4

5 CONTAINS

6

7 SUBROUTINE worm_like(fwx ,fwy ,fwz ,rx,ry,rz)

8

9 !This subroutine uses a DOT product interaction between adjacent bond

vectors

10 !to implement the WLC model

11

12 USE parameters

13

14 IMPLICIT NONE

15

16 INTEGER :: i,n

17

18 REAL(DP) :: delta ,constw

19 REAL(DP) :: X_kj ,Y_kj ,Z_kj ,X_ij ,Y_ij ,Z_ij

20 REAL(DP) :: X_kj_Adj ,Y_kj_Adj ,Z_kj_Adj ,X_ij_Adj ,Y_ij_Adj ,Z_ij_Adj

21 REAL(DP), DIMENSION (:), INTENT(IN):: rx,ry,rz
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22 REAL(DP), DIMENSION (:), INTENT(OUT) :: fwx ,fwy ,fwz

23

24 fwx =0.0

25 fwy =0.0

26 fwz =0.0

27

28 constw=gammaw /( sigma **2)

29

30 IF (Nmer == 1) THEN

31 print *, fwx

32 print *, "forgot to change isPolymer to 0"

33

34 ELSE IF (Nmer == beads) THEN

35

36 DO i=2,SIZE(rx)-1

37

38 X_kj = rx(i+1)-rx(i)

39 Y_kj = ry(i+1)-ry(i)

40 Z_kj = rz(i+1)-rz(i)

41

42 X_ij = rx(i-1)-rx(i)

43 Y_ij = ry(i-1)-ry(i)

44 Z_ij = rz(i-1)-rz(i)

45

46 ! Correct for periodic boundary conditions

47 X_kj_Adj = X_kj - sizeBox*NINT(X_kj/sizeBox)

48 Y_kj_Adj = Y_kj - sizeBox*NINT(Y_kj/sizeBox)

49 Z_kj_Adj = Z_kj - sizeBox*NINT(Z_kj/sizeBox)

50

51 X_ij_Adj = X_ij - sizeBox*NINT(X_ij/sizeBox)

52 Y_ij_Adj = Y_ij - sizeBox*NINT(Y_ij/sizeBox)

53 Z_ij_Adj = Z_ij - sizeBox*NINT(Z_ij/sizeBox)

54

208



55 fwx(i) = fwx(i)+ X_kj_Adj + X_ij_Adj!x32 -x12

56 fwy(i) = fwy(i)+ Y_kj_Adj + Y_ij_Adj

57 fwz(i) = fwz(i)+ Z_kj_Adj + Z_ij_Adj

58

59 fwx(i-1) = fwx(i-1)-X_kj_Adj ! -x32

60 fwy(i-1) = fwy(i-1)-Y_kj_Adj

61 fwz(i-1) = fwz(i-1)-Z_kj_Adj

62

63 fwx(i+1) = -X_ij_Adj ! -x12

64 fwy(i+1) = -Y_ij_Adj

65 fwz(i+1) = -Z_ij_Adj

66

67 END DO

68

69 ELSE IF (Nmer < beads) THEN

70

71 DO n = 1,beads/Nmer

72 DO i=Nmer*(n-1)+2,Nmer*n-1

73

74 X_kj = rx(i+1)-rx(i)

75 Y_kj = ry(i+1)-ry(i)

76 Z_kj = rz(i+1)-rz(i)

77

78 X_ij = rx(i-1)-rx(i)

79 Y_ij = ry(i-1)-ry(i)

80 Z_ij = rz(i-1)-rz(i)

81

82 ! Correct for periodic boundary conditions

83 X_kj_Adj = X_kj - sizeBox*NINT(X_kj/sizeBox)

84 Y_kj_Adj = Y_kj - sizeBox*NINT(Y_kj/sizeBox)

85 Z_kj_Adj = Z_kj - sizeBox*NINT(Z_kj/sizeBox)

86

87 X_ij_Adj = X_ij - sizeBox*NINT(X_ij/sizeBox)
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88 Y_ij_Adj = Y_ij - sizeBox*NINT(Y_ij/sizeBox)

89 Z_ij_Adj = Z_ij - sizeBox*NINT(Z_ij/sizeBox)

90

91 fwx(i) = fwx(i)+ X_kj_Adj + X_ij_Adj !rx(i+1)+rx(i-1) -2.0*rx(i) !

x32 -x12

92 fwy(i) = fwy(i)+ Y_kj_Adj + Y_ij_Adj !ry(i+1)+ry(i-1) -2.0*ry(i) !

(derivative of r32.r12 wrt r2?)

93 fwz(i) = fwz(i)+ Z_kj_Adj + Z_ij_Adj !rz(i+1)+rz(i-1) -2.0*rz(i)

94

95 fwx(i-1) = fwx(i-1)-X_kj_Adj ! -x32

96 fwy(i-1) = fwy(i-1)-Y_kj_Adj

97 fwz(i-1) = fwz(i-1)-Z_kj_Adj

98

99 fwx(i+1) = -X_ij_Adj ! -x12

100 fwy(i+1) = -Y_ij_Adj

101 fwz(i+1) = -Z_ij_Adj

102

103 END DO

104

105 END DO

106

107 END IF

108

109

110 fwx=constw*fwx

111 fwy=constw*fwy

112 fwz=constw*fwz

113

114

115 END SUBROUTINE worm_like

116

117 SUBROUTINE updateNeighborListPP(rx,ry,rz,nNghbrs ,nghbrList)

118
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119 USE parameters

120

121 IMPLICIT NONE

122

123 REAL(DP), DIMENSION (:), INTENT(IN) :: rx,ry,rz

124 INTEGER , DIMENSION (:), INTENT(OUT) :: nNghbrs(beads)

125 INTEGER , DIMENSION (:,:), INTENT(OUT) :: nghbrList(beads ,beads)

126

127 REAL(DP) :: deltaX , deltaY , deltaZ , deltaXAdj , deltaYAdj , deltaZAdj

128 REAL(DP) :: delta , cutoff

129 INTEGER :: i,j

130

131 nNghbrs = 0

132 nghbrList = 0

133 cutoff = (LJcutoff +1.0 _DP)*sigma

134

135 DO i=1,SIZE(rx)

136 DO j=i+1,SIZE(rx)

137

138 deltaX = rx(j)-rx(i)

139 deltaY = ry(j)-ry(i)

140 deltaZ = rz(j)-rz(i)

141

142 ! Correct for periodic boundary conditions

143 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

144 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

145 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

146

147 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

148

149 ! if you are within the cutoff distance you are a neighbor

150 IF (delta < cutoff) THEN

151 ! add one to the number of neighbors beads i and j have
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152 nNghbrs(i) = nNghbrs(i)+1

153 nNghbrs(j) = nNghbrs(j)+1

154 ! then add bead i to j’s neighbor list and vice versa

155 nghbrList(i,nNghbrs(i)) = j

156 nghbrList(j,nNghbrs(j)) = i

157 END IF

158

159 END DO

160 END DO

161

162 END SUBROUTINE updateNeighborListPP

163

164 SUBROUTINE updateNeighborListToxTox(rx,ry,rz ,nNghbrs ,nghbrList)

165

166 USE parameters

167

168 IMPLICIT NONE

169

170 REAL(DP), DIMENSION (:), INTENT(IN) :: rx,ry,rz

171 INTEGER , DIMENSION (:), INTENT(OUT) :: nNghbrs(maxTox)

172 INTEGER , DIMENSION (:,:), INTENT(OUT) :: nghbrList(maxTox ,maxTox)

173

174 REAL(DP) :: deltaX , deltaY , deltaZ , deltaXAdj , deltaYAdj , deltaZAdj

175 REAL(DP) :: delta , cutoff

176 INTEGER :: i,j

177

178 nNghbrs = 0

179 nghbrList = 0

180 cutoff = (LJcutoff +1.0 _DP)*sigmaToxTox

181

182 DO i=1,SIZE(rx)

183 DO j=i+1,SIZE(rx)

184
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185 deltaX = rx(j)-rx(i)

186 deltaY = ry(j)-ry(i)

187 deltaZ = rz(j)-rz(i)

188

189 ! Correct for periodic boundary conditions

190 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

191 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

192 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

193

194 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

195

196 ! if you are within the cutoff distance you are a neighbor

197 IF (delta < cutoff) THEN

198 ! add one to the number of neighbors beads i and j have

199 nNghbrs(i) = nNghbrs(i)+1

200 nNghbrs(j) = nNghbrs(j)+1

201 ! then add bead i to j’s neighbor list and vice versa

202 nghbrList(i,nNghbrs(i)) = j

203 nghbrList(j,nNghbrs(j)) = i

204 END IF

205

206 END DO

207 END DO

208

209 END SUBROUTINE updateNeighborListToxTox

210

211 SUBROUTINE updateNeighborListPolyTox(rx,ry,rz ,tx ,ty ,tz,nNghbrs ,nghbrList

)

212

213 USE parameters

214

215 IMPLICIT NONE

216

213



217 REAL(DP), DIMENSION (:), INTENT(IN) :: rx,ry,rz,tx ,ty ,tz

218 INTEGER , DIMENSION (:), INTENT(OUT) :: nNghbrs(maxTox)

219 INTEGER , DIMENSION (:,:), INTENT(OUT) :: nghbrList(maxTox ,beads)

220

221 REAL(DP) :: deltaX , deltaY , deltaZ , deltaXAdj , deltaYAdj , deltaZAdj

222 REAL(DP) :: delta , cutoff

223 INTEGER :: i,j

224

225 nNghbrs = 0

226 nghbrList = 0

227 cutoff = (LJcutoff +1.0 _DP)*sigmaToxPoly

228

229 DO i=1,SIZE(tx)

230 DO j=1,SIZE(rx)

231

232 deltaX = rx(j)-tx(i)

233 deltaY = ry(j)-ty(i)

234 deltaZ = rz(j)-tz(i)

235

236 ! Correct for periodic boundary conditions

237 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

238 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

239 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

240

241 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

242

243 ! if you are within the cutoff distance you are a neighbor

244 IF (delta < cutoff) THEN

245 ! add one to the number of neighbors toxin i has

246 nNghbrs(i) = nNghbrs(i)+1

247 ! then add bead j to i’s neighbor list

248 nghbrList(i,nNghbrs(i)) = j

249 END IF
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250

251 END DO

252 END DO

253

254 END SUBROUTINE updateNeighborListPolyTox

255

256 SUBROUTINE rljmodNLBC(fljx ,fljy ,fljz ,rx,ry,rz ,nNghbrs ,nghbrList)

257 ! Takes into account boundary conditions and neighbor list

258

259 USE parameters

260

261 IMPLICIT NONE

262

263 ! Declare constants

264 INTEGER :: i,j

265

266 REAL(DP) :: delta ,const

267 REAL(DP) :: deltaX , deltaY , deltaZ , deltaXAdj , deltaYAdj , deltaZAdj

268 REAL(DP), DIMENSION (:), INTENT(IN) :: rx,ry,rz

269 INTEGER , DIMENSION (:), INTENT(IN) :: nNghbrs

270 INTEGER , DIMENSION (:,:), INTENT(IN) :: nghbrList

271 REAL(DP), DIMENSION (:), INTENT(OUT) :: fljx ,fljy ,fljz

272 REAL(DP) :: fx ,fy ,fz

273

274 fx=0.0

275 fy=0.0

276 fz=0.0

277

278 fljx =0.0

279 fljy =0.0

280 fljz =0.0

281

282 ! Loop through all the bead pairs and see what the LJ potential is
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between them

283 DO i=1,SIZE(nNghbrs)

284 DO j=1,nNghbrs(i)

285

286 deltaX = rx(nghbrList(i,j))-rx(i)

287 deltaY = ry(nghbrList(i,j))-ry(i)

288 deltaZ = rz(nghbrList(i,j))-rz(i)

289

290 ! Correct for periodic boundary conditions

291 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

292 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

293 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

294

295 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

296

297 IF (delta < LJcutoff*sigma) THEN

298

299 const = ((sigma/delta)**12 -( sigma/delta)**6)&

300 &*( epsilon/delta)/delta

301

302 fx = - const*deltaXAdj

303 fy = - const*deltaYAdj

304 fz = - const*deltaZAdj

305

306 ELSE

307

308 fx=0.0

309 fy=0.0

310 fz=0.0

311

312 END IF

313

314 fljx(i) = fljx(i)+fx
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315 fljy(i) = fljy(i)+fy

316 fljz(i) = fljz(i)+fz

317

318 END DO

319 END DO

320

321 END SUBROUTINE rljmodNLBC

322

323 SUBROUTINE rljToxToxNLBC(fljx ,fljy ,fljz ,rx,ry ,rz ,nNghbrs ,nghbrList)

324 ! Takes into account boundary conditions and neighbor list

325 ! Does not work with dynamically adjusting toxin concentration

326

327 USE parameters

328

329 IMPLICIT NONE

330

331 ! Declare constants

332 INTEGER :: i,j

333

334 REAL(DP) :: delta ,const

335 REAL(DP) :: deltaX , deltaY , deltaZ , deltaXAdj , deltaYAdj , deltaZAdj

336 REAL(DP), DIMENSION (:), INTENT(IN) :: rx,ry,rz

337 INTEGER , DIMENSION (:), INTENT(IN) :: nNghbrs

338 INTEGER , DIMENSION (:,:), INTENT(IN) :: nghbrList

339 REAL(DP), DIMENSION (:), INTENT(OUT) :: fljx ,fljy ,fljz

340 REAL(DP) :: fx ,fy ,fz

341

342 fx=0.0

343 fy=0.0

344 fz=0.0

345

346 fljx =0.0

347 fljy =0.0
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348 fljz =0.0

349

350 ! Loop through all the bead pairs and see what the LJ potential is

between them

351 DO i=1,SIZE(nNghbrs)

352 DO j=1,nNghbrs(i)

353

354 deltaX = rx(nghbrList(i,j))-rx(i)

355 deltaY = ry(nghbrList(i,j))-ry(i)

356 deltaZ = rz(nghbrList(i,j))-rz(i)

357

358 ! Correct for periodic boundary conditions

359 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

360 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

361 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

362

363 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

364

365 IF (delta < LJcutoff*sigmaToxTox) THEN

366

367 const = (( sigmaToxTox/delta)**12-( sigmaToxTox/delta)**6)&

368 &*( epsToxTox/delta)/delta

369

370 fx = - const*deltaXAdj

371 fy = - const*deltaYAdj

372 fz = - const*deltaZAdj

373

374 ELSE

375

376 fx=0.0

377 fy=0.0

378 fz=0.0

379

218



380 END IF

381

382 fljx(i) = fljx(i)+fx

383 fljy(i) = fljy(i)+fy

384 fljz(i) = fljz(i)+fz

385

386 END DO

387 END DO

388

389 END SUBROUTINE rljToxToxNLBC

390

391 SUBROUTINE rljToxNLBC(fljx ,fljy ,fljz ,deltaTox ,rx ,ry ,rz,posTox ,

delXToxUnit ,delYToxUnit ,delZToxUnit ,nNghbrs ,nghbrList)

392

393 USE parameters

394

395 IMPLICIT NONE

396

397 ! Declare constants

398 INTEGER :: i,j

399 INTEGER , INTENT(IN) :: nNghbrs

400 INTEGER , DIMENSION (:), INTENT(IN) :: nghbrList

401

402 REAL(DP) :: delta ,const

403 REAL(DP) :: deltaX , deltaY , deltaZ , deltaXAdj , deltaYAdj , deltaZAdj

404 REAL(DP), DIMENSION (:), INTENT(IN) :: rx,ry,rz,posTox

405 REAL(DP), DIMENSION (:), INTENT(OUT) :: fljx ,fljy ,fljz ,deltaTox(beads)

406 REAL(DP), DIMENSION (:), INTENT(OUT) :: delXToxUnit(beads), delYToxUnit

(beads), delZToxUnit(beads)

407 REAL(DP) :: fx ,fy ,fz

408

409 fx=0.0

410 fy=0.0
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411 fz=0.0

412

413 deltaTox =0.0

414

415 delXToxUnit =0.0

416 delYToxUnit =0.0

417 delZToxUnit =0.0

418

419 fljx =0.0

420 fljy =0.0

421 fljz =0.0

422

423 ! Loop through all the bead pairs and see what the LJ potential is

between them

424 DO i=1,nNghbrs

425

426 deltaX = rx(nghbrList(i))-posTox (1)

427 deltaY = ry(nghbrList(i))-posTox (2)

428 deltaZ = rz(nghbrList(i))-posTox (3)

429

430 ! Correct for periodic boundary conditions

431 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

432 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

433 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

434

435 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

436 deltaTox(nghbrList(i)) = delta

437

438 ! Make unit vectors for later use in bigger function

439 delXToxUnit(nghbrList(i)) = deltaXAdj/delta

440 delYToxUnit(nghbrList(i)) = deltaYAdj/delta

441 delZToxUnit(nghbrList(i)) = deltaZAdj/delta

442
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443 IF (delta < LJcutoff*sigmaToxPoly) THEN

444

445 const = (( sigmaToxPoly/delta)**12-( sigmaToxPoly/delta)**6)&

446 &*( epsToxPoly/delta)/delta

447

448 ! check to make sure the negative here is right!

449 fx = - const*deltaXAdj

450 fy = - const*deltaYAdj

451 fz = - const*deltaZAdj

452

453 ELSE

454

455 fx=0.0

456 fy=0.0

457 fz=0.0

458

459 END IF

460 ! This part still needs work

461 fljx(nghbrList(i)) = fljx(nghbrList(i))-fx

462 fljy(nghbrList(i)) = fljy(nghbrList(i))-fy

463 fljz(nghbrList(i)) = fljz(nghbrList(i))-fz

464

465 END DO

466 END SUBROUTINE rljToxNLBC

467

468 SUBROUTINE springForces(fspringx ,fspringy ,fspringz ,rx ,ry,rz)

469

470 USE parameters

471

472 IMPLICIT NONE

473

474 INTEGER :: i

475
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476 REAL(DP) :: delta ,const

477 REAL(DP) :: deltaX , deltaY , deltaZ , deltaXAdj , deltaYAdj , deltaZAdj

478 REAL(DP), DIMENSION (:), INTENT(IN) :: rx,ry,rz

479 REAL(DP), DIMENSION (:), INTENT(OUT) :: fspringx ,fspringy ,fspringz

480 REAL(DP) :: fsxMid (beads), fsyMid (beads), fszMid (beads)

481 REAL(DP) :: fsx (beads), fsy (beads), fsz (beads)

482

483 fspringx = 0.0

484 fspringy = 0.0

485 fspringz = 0.0

486

487 ! Compute spring forces from being connected to neighboring beads

488 ! Compute End Forces (because only connected to one neighbor)

489 IF (Nmer == 1) THEN

490 print *, fspringx

491 print *, "forgot to change isPolymer to 0"

492

493 ELSE IF (Nmer == beads) THEN

494

495 ! Do first bead

496 i=1

497

498 deltaX = rx(i+1)-rx(i)

499 deltaY = ry(i+1)-ry(i)

500 deltaZ = rz(i+1)-rz(i)

501

502 ! Correct for periodic boundary conditions

503 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

504 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

505 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

506

507 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

508 const = k_sp*(delta -l_sp)/delta
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509

510 fspringx(i) = const *( deltaXAdj)

511 fspringy(i) = const *( deltaYAdj)

512 fspringz(i) = const *( deltaZAdj)

513

514 ! Do force on the last bead

515 i=beads -1

516

517 deltaX = rx(i+1)-rx(i)

518 deltaY = ry(i+1)-ry(i)

519 deltaZ = rz(i+1)-rz(i)

520

521 ! Correct for periodic boundary conditions

522 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

523 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

524 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

525

526 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

527 const = k_sp*(delta -l_sp)/( delta)

528

529 fspringx(i+1) = - const*( deltaXAdj)

530 fspringy(i+1) = - const*( deltaYAdj)

531 fspringz(i+1) = - const*( deltaZAdj)

532

533 ELSE IF (Nmer < beads) THEN

534

535 ! Calculate bonding of first beads

536 DO i=1,beads -1,Nmer

537

538 deltaX = rx(i+1)-rx(i)

539 deltaY = ry(i+1)-ry(i)

540 deltaZ = rz(i+1)-rz(i)

541
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542 ! Correct for periodic boundary conditions

543 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

544 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

545 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

546

547 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

548 const = k_sp*(delta -l_sp)/( delta)

549

550 fspringx(i) = const *( deltaXAdj)

551 fspringy(i) = const *( deltaYAdj)

552 fspringz(i) = const *( deltaZAdj)

553

554 END DO

555

556 ! Calculate bonding of last beads

557 DO i=(Nmer -1) ,(beads -1),Nmer

558

559 deltaX = rx(i+1)-rx(i)

560 deltaY = ry(i+1)-ry(i)

561 deltaZ = rz(i+1)-rz(i)

562

563 ! Correct for periodic boundary conditions

564 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

565 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

566 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

567

568 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

569 const = k_sp*(delta -l_sp)/( delta)

570

571 fspringx(i+1) = - const*( deltaXAdj)

572 fspringy(i+1) = - const*( deltaYAdj)

573 fspringz(i+1) = - const*( deltaZAdj)

574
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575 END DO

576

577 END IF

578

579 ! Compute middle bead connectivity forces

580 IF (Nmer > 2) THEN

581 DO i=2,beads -1

582

583 deltaX = rx(i+1)-rx(i)

584 deltaY = ry(i+1)-ry(i)

585 deltaZ = rz(i+1)-rz(i)

586

587 ! Correct for periodic boundary conditions

588 deltaXAdj = deltaX - sizeBox*NINT(deltaX/sizeBox)

589 deltaYAdj = deltaY - sizeBox*NINT(deltaY/sizeBox)

590 deltaZAdj = deltaZ - sizeBox*NINT(deltaZ/sizeBox)

591

592 delta = (deltaXAdj **2+ deltaYAdj **2+ deltaZAdj **2) **0.5

593 const = k_sp*(delta -l_sp)/( delta)

594

595 ! If you are the end of an Nmer , make the force to the right 0

596 ! Otherwise proceed normally

597 IF (MOD(i,Nmer) /= 0) THEN

598 fsxMid(i) = const*( deltaXAdj)

599 fsyMid(i) = const*( deltaYAdj)

600 fszMid(i) = const*( deltaZAdj)

601 ELSE

602 fsxMid(i) = 0.0

603 fsyMid(i) = 0.0

604 fszMid(i) = 0.0

605 END IF

606

607 END DO
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608

609 ! Add in the forces pulling back to the left

610 ! This is 0 force pulling back to the left for left most end beads

611

612 fsxMid (1) = fspringx (1)

613 fsyMid (1) = fspringy (1)

614 fszMid (1) = fspringz (1)

615

616 fsxMid(beads) = fspringx(beads)

617 fsyMid(beads) = fspringy(beads)

618 fszMid(beads) = fspringz(beads)

619

620 ! Reassign the middle forces to a temporary variable

621 fsx = fsxMid

622 fsy = fsyMid

623 fsz = fszMid

624

625 DO i=2,beads -1

626 ! Without the temp variable , when I did -fsxMid(i-1) errors start

to accummulate as you move right along the chain because you modify i-1

and then you use the modified value instead of the original value

627 fsxMid(i) = fsxMid(i) - fsx(i-1)

628 fsyMid(i) = fsyMid(i) - fsy(i-1)

629 fszMid(i) = fszMid(i) - fsz(i-1)

630

631 END DO

632

633 DO i=1,beads ,Nmer

634

635 fsxMid(i) = fspringx(i)

636 fsyMid(i) = fspringy(i)

637 fszMid(i) = fspringz(i)

638
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639 END DO

640

641 DO i=Nmer ,beads ,Nmer

642

643 fsxMid(i) = fspringx(i)

644 fsyMid(i) = fspringy(i)

645 fszMid(i) = fspringz(i)

646

647 END DO

648

649 fspringx = fsxMid

650 fspringy = fsyMid

651 fspringz = fszMid

652

653 END IF

654

655 END SUBROUTINE springForces

656

657 ! dR is size beads by 1 (cycle through this funciton for each toxin)

658 ! prevOmegaTot is (beads ,bindingSites ,maxTox)

659 ! prevOmega = (beads ,bindingSites ,existingToxins(k))

660 ! newOmega = (beads ,bindingSites)

661 SUBROUTINE bound(prevOmegaTot , prevOmega , dRTox , FbindMag , newOmega ,

delE_0 ,delE_UB)

662

663 USE parameters

664 USE functionsEmi

665

666 IMPLICIT NONE

667

668 INTEGER :: i,j,k,cnt ,beadToBind ,beadBound ,randIdx

669 REAL(DP) :: deltaX , deltaY , deltaZ , deltaXAdj , deltaYAdj , deltaZAdj

670
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671 REAL(DP), DIMENSION (:), INTENT(IN) :: dRTox(beads),delE_0(beads),

delE_UB(beads)

672 INTEGER , DIMENSION (:,:), INTENT(IN) :: prevOmega(beads ,bindingSites) !

how this toxin was previously bound

673 INTEGER , DIMENSION (:,:,:), INTENT(IN) :: prevOmegaTot(beads ,

bindingSites ,maxTox) ! how all the other toxins are bound (to prevent

binding to same bead)

674

675 REAL(DP), DIMENSION (:), INTENT(OUT) :: FbindMag(beads)

676 INTEGER , DIMENSION (:,:), INTENT(OUT) :: newOmega(beads ,bindingSites)

677

678 REAL(DP), DIMENSION (:,:) :: oper(beads ,bindingSites), alreadyBoundTemp

(beads ,bindingSites)

679 INTEGER , DIMENSION (:) :: alreadyBound(beads), beadsBound(beads)

680 INTEGER , DIMENSION (:), ALLOCATABLE :: alreadyBoundIdx , closeBds ,

possibleBinds

681 REAL(DP), DIMENSION (:), ALLOCATABLE :: randPerm

682 REAL(DP), DIMENSION (:) :: dR_modifier(beads), dRAvailableBeads(beads),

delE_B(beads)

683 LOGICAL :: mask(beads)

684

685 delE_B = delE_0 + delE_UB

686 newOmega = 0

687 oper = 0.0

688 dR_modifier = 0.0

689

690 ! Generate uniform random numbers so that you can use them later to

determine binding

691 CALL RANDOM_NUMBER(oper)

692

693 ! Keep track of the beads you ’ve already bound so that you don ’t get

more than one tox binding site bound to it

694 alreadyBoundTemp = SUM(prevOmegaTot , 3)
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695 alreadyBound = SUM(alreadyBoundTemp , 2) ! This isn ’t affected by

changing the storage of toxins because unbound and nonexistent toxins

are both 0

696

697 ! Check to make sure nothing has bound to the same bead twice

698 mask = alreadyBound > 1

699 IF (ANY(mask)) THEN

700 print *, "Error: bound to the same bead twice"

701 END IF

702

703 ! Get the indexes of the beads that are bound so that you can keep

track of them

704 mask = alreadyBound ==1

705 alreadyBoundIdx = FIND(mask)

706

707 ! Make the already bound beads too far to be picked up by the close

beads search (so that they won ’t be available for new bonds to form)

708 dR_modifier(alreadyBoundIdx) = l_bind *(1.0 _DP+reach)*2.0 _DP; ! 2 is

just to guarantee bead is well outside reach of binding site

709 dRAvailableBeads = dRTox + dR_modifier;

710

711 ! Iterate through each binding site and assess whether you bind/unbind

stay unbound to it

712 DO j=1, bindingSites

713 ! If this binding site is not already bound to something

714 mask = prevOmega(:,j) == 0

715 IF (ALL(mask)) THEN

716 ! If your site is within binding range of any of the beads

717 ! This will have a problem if there is no excluded volume between

toxins and polymers

718 mask = (( dRAvailableBeads <=( reach)).AND.( dRAvailableBeads >0))

719 IF (ANY(mask)) THEN

720 ! Find which beads are close
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721 closeBds = FIND(mask)

722 ! Check if any of the close beads have a high enough energy to

jump the binding energy barrier

723 DO i = 1, SIZE(closeBds)

724 IF (oper(i,j) < EXP(-delE_B(closeBds(i)))) THEN

725 newOmega(closeBds(i),j) = 1;

726 ! Make sure bead you bound to is out of reach

727 dRAvailableBeads(closeBds(i)) = dRTox(closeBds(i)) + l_bind

*(1.0 _DP+reach)*2.0 _DP;

728 END IF

729 END DO

730 ! Check if you can bind to more than one bead

731 IF (SUM(newOmega(:,j)) > 1) THEN

732 ! Only pick one to bind to randomly

733 !randomize the index of beads you could successfully bind to

734 ALLOCATE (randPerm(SUM(newOmega(:,j))))

735 CALL RANDOM_NUMBER(randPerm)

736

737 randIdx = MAXLOC(randPerm ,1)

738 mask = newOmega(:,j) == 1

739 possibleBinds = FIND(mask)

740

741 beadToBind = possibleBinds(randIdx)

742 newOmega(:,j) = 0

743 newOmega(beadToBind ,j) = 1

744 ! Make sure the bead you just bound to is out of reach of

other binding sites

745 dRAvailableBeads(closeBds) = dRTox(closeBds)

746 dRAvailableBeads(beadToBind) = dRTox(beadToBind) + l_bind

*(1.0 _DP+reach)*2.0 _DP

747

748

749 ! Deallocate randperm in case it is used again for another
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binding site

750 DEALLOCATE (randPerm)

751 END IF

752 ! Otherwise , you ’re not within reach of the beads and everything

should be unbound

753 ELSE

754 newOmega(:,j) = 0

755 END IF

756

757 ! If you ’re already bound to something

758 ELSE

759 beadBound = MAXLOC(prevOmega(:,j) ,1)

760 ! If you don ’t have enough energy to unbind then stay bound to the

same bead

761 IF (oper(beadBound ,j) > exp(-delE_UB(beadBound))) THEN

762 newOmega(:,j) = prevOmega(:,j)

763 ELSE

764 newOmega(:,j) = 0

765 END IF

766 END IF

767

768 END DO

769

770 ! Calculate the new force

771 beadsBound = SUM(newOmega ,2)

772 FbindMag = -k_bind*beadsBound *(dRTox -l_bind)

773

774 END SUBROUTINE bound

775

776 ! This isn ’t very elegant , creates inhibitor starting positions in s or

ladder shape , only goes up to 92 beads

777 SUBROUTINE setInitialPos(rx ,ry ,rz)

778 USE parameters
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779 USE functionsEmi

780

781 IMPLICIT NONE

782

783 REAL(DP), DIMENSION (:), INTENT(OUT) :: rx(beads),ry(beads),rz(beads)

784 REAL(DP) :: rightEdge ,leftEdge

785 INTEGER :: lengthRow ,i

786 REAL(DP), DIMENSION (:) :: iPosTmp (100)

787 INTEGER :: maxBeads = 64

788

789 rightEdge = (floor(sizeBox /2.0) -1.0)

790 leftEdge = -(floor(sizeBox /2.0) -1.0)

791 lengthRow = rightEdge -leftEdge +1

792

793 ! Set up an array of x positions for your inhibitor to start from

794 DO i=1,lengthRow

795 iPosTmp(i) = leftEdge+l_sp*(i-1.0)

796 END DO

797 DO i=lengthRow+1, lengthRow +4

798 iPosTmp(i) = rightEdge

799 END DO

800 DO i=1,lengthRow

801 iPosTmp(i+lengthRow +4) = rightEdge -l_sp*(i -1.0)

802 END DO

803 DO i=2* lengthRow +4,2* lengthRow +8

804 iPosTmp(i) = leftEdge

805 END DO

806 DO i=1,lengthRow

807 iPosTmp(i+2* lengthRow +8) = leftEdge+l_sp*(i-1.0)

808 END DO

809 DO i=3* lengthRow +8,3* lengthRow +12

810 iPosTmp(i) = rightEdge

811 END DO
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812 DO i=1,lengthRow

813 iPosTmp(i+3* lengthRow +12) = rightEdge -l_sp*(i-1.0)

814 END DO

815 DO i=4* lengthRow +12 ,4* lengthRow +16

816 iPosTmp(i) = leftEdge

817 END DO

818

819 rx = iPosTmp (1: beads)

820

821 ! Set y positions

822 iPosTmp = 0.0

823 DO i=1,lengthRow

824 iPosTmp(i) = leftEdge

825 END DO

826 DO i=lengthRow+1, lengthRow +4

827 iPosTmp(i) = leftEdge +(i-lengthRow)

828 END DO

829 DO i=1,lengthRow

830 iPosTmp(i+lengthRow +4) = leftEdge +5

831 END DO

832 DO i=2* lengthRow +4,2* lengthRow +8

833 iPosTmp(i) = leftEdge +(i+1-2* lengthRow)

834 END DO

835 DO i=1,lengthRow

836 iPosTmp(i+2* lengthRow +8) = leftEdge +10

837 END DO

838 DO i=3* lengthRow +8,3* lengthRow +12

839 iPosTmp(i) = leftEdge +(i+2-3* lengthRow)

840 END DO

841 DO i=1,lengthRow

842 iPosTmp(i+3* lengthRow +12) = leftEdge +15

843 END DO

844 DO i=4* lengthRow +12 ,4* lengthRow +15
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845 iPosTmp(i) = leftEdge +(i+3-4* lengthRow)

846 END DO

847

848 ry = iPosTmp (1: beads)

849

850 ! Set z positions

851 rz = -4.0 !0.0

852

853 IF (beads > maxBeads) THEN

854 DO i = 1,(beads -maxBeads)

855 rx(i+maxBeads) = rx(i)

856 ry(i+maxBeads) = ry(i)

857 rz(i+maxBeads) = rz(i) -2.0

858 END DO

859 END IF

860

861 END SUBROUTINE setInitialPos

862

863 SUBROUTINE setInitialPosTox(rx ,ry,rz,px,py,pz)

864

865 USE parameters

866 USE functionsEmi

867

868 IMPLICIT NONE

869

870 INTEGER :: iTox , otherTox , ibds

871 REAL(DP) :: dX ,dY ,dZ,dXAdj ,dYAdj ,dZAdj ,dToxTmp

872 REAL(DP), DIMENSION (:), INTENT(OUT) :: rx(nTox),ry(nTox),rz(nTox)

873 REAL(DP), DIMENSION (:), INTENT(IN) :: px(beads),py(beads),pz(beads)

874

875

876 DO iTox=1,nTox

877
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878 100 CALL RANDOM_NUMBER(rx(iTox))

879 CALL RANDOM_NUMBER(ry(iTox))

880 CALL RANDOM_NUMBER(rz(iTox))

881

882 rx(iTox) = rx(iTox)*sizeBox -sizeBox /2.0 _DP

883 ry(iTox) = ry(iTox)*sizeBox -sizeBox /2.0 _DP

884 rz(iTox) = rz(iTox)*sizeBox -sizeBox /2.0 _DP

885

886 ! Check to make sure you didn ’t just put your new toxin on top of

other ones

887 DO otherTox=1,iTox -1

888

889 dX = rx(otherTox)-rx(iTox)

890 dY = ry(otherTox)-ry(iTox)

891 dZ = rz(otherTox)-rz(iTox)

892

893 ! Correct for periodic boundary conditions

894 dXAdj = dX - sizeBox*NINT(dX/sizeBox)

895 dYAdj = dY - sizeBox*NINT(dY/sizeBox)

896 dZAdj = dZ - sizeBox*NINT(dZ/sizeBox)

897

898 dToxTmp = SQRT(dXAdj **2.0 _DP+dYAdj **2.0 _DP+dZAdj **2.0 _DP)

899

900 IF (dToxTmp < 1.5 _DP*reach) THEN

901 GOTO 100

902 END IF

903 END DO

904 DO ibds=1,beads

905

906 dX = px(ibds)-rx(iTox)

907 dY = py(ibds)-ry(iTox)

908 dZ = pz(ibds)-rz(iTox)

909
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910 ! Correct for periodic boundary conditions

911 dXAdj = dX - sizeBox*NINT(dX/sizeBox)

912 dYAdj = dY - sizeBox*NINT(dY/sizeBox)

913 dZAdj = dZ - sizeBox*NINT(dZ/sizeBox)

914

915 dToxTmp = (dXAdj **2+ dYAdj **2+ dZAdj **2) **0.5

916

917 IF (dToxTmp < 1.5 _DP*reach) THEN

918 GOTO 100

919 END IF

920

921 END DO

922 END DO

923

924 END SUBROUTINE setInitialPosTox

925

926 SUBROUTINE init_random_seed(nRun ,seed)

927

928 INTEGER , INTENT(IN) :: nRun

929 INTEGER :: i, n, clock

930 INTEGER , DIMENSION (:), ALLOCATABLE , INTENT(OUT) :: seed

931

932 CALL RANDOM_SEED(size = n)

933 ALLOCATE(seed(n))

934

935 CALL SYSTEM_CLOCK(COUNT=clock)

936

937 seed = clock + 37 * (/ (i - 1, i = 1, n) /) + nRun

938 print *, "seed = ", seed

939 CALL RANDOM_SEED(PUT = seed)

940

941 END SUBROUTINE

942
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943 SUBROUTINE findAggToxins(dRToxTox ,timeBoundUnbound ,nToxAgg ,closeToxIdx)

944

945 USE parameters

946

947 IMPLICIT NONE

948

949 INTEGER :: i,j

950 INTEGER , DIMENSION (:,:) :: closeMaskINT(nTox ,nTox)

951 INTEGER , DIMENSION (:), INTENT(IN) :: timeBoundUnbound(nTox)

952 REAL(DP), DIMENSION (:,:), INTENT(IN) :: dRToxTox

953 INTEGER , DIMENSION (:), INTENT(OUT) :: closeToxIdx(nTox)

954 INTEGER , INTENT(OUT) :: nToxAgg

955

956 closeMaskINT = 0

957 nToxAgg = 0

958 closeToxIdx = 0

959

960 DO i=1,nTox

961 DO j = i+1,nTox

962 IF (AND(dRToxTox(i,j) > 0.0, dRToxTox(i,j) < reach)) THEN

963 closeMaskINT(i,j) = 1

964 closeMaskINT(j,i) = 1

965 END IF

966 END DO

967 END DO

968

969 closeToxIdx = SUM(closeMaskINT ,2)

970 closeToxIdx = closeToxIdx + timeBoundUnbound

971

972 DO i=1,nTox

973 IF (closeToxIdx(i) >0) THEN

974 nToxAgg = nToxAgg +1

975 closeToxIdx(i)=1
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976 END IF

977 END DO

978

979 END SUBROUTINE findAggToxins

980

981 SUBROUTINE adjNTox(nToxAgg ,toxConc0 ,nToxNew)

982

983 USE parameters

984

985 IMPLICIT NONE

986

987 REAL(DP), INTENT(IN) :: nToxAgg , toxConc0

988 INTEGER , INTENT(OUT) :: nToxNew

989 REAL(DP) :: toxConc , v0

990 LOGICAL :: didntAdd = .true.

991

992 v0 = sizeBox **3

993 nToxNew = nTox

994 ! Find the current free toxin concentration

995 toxConc = (nTox -nToxAgg)/(v0-nToxAgg *(4.0/3.0)*pi*(l_sp /2.0) **3)

996

997 ! Change the number of free toxins

998 DO WHILE (toxConc < toxConc0)

999 nToxNew = nToxNew +1

1000 toxConc = (nToxNew -nToxAgg)/(v0-nToxAgg *(4.0/3.0)*pi*(l_sp /2.0)

**3)

1001 didntAdd = .false.

1002 END DO

1003

1004

1005 DO WHILE (AND(toxConc > toxConc0 ,didntAdd))

1006 nToxNew = nToxNew -1

1007 toxConc = (nToxNew -nToxAgg)/(v0-nToxAgg *(4.0/3.0)*pi*(l_sp /2.0)
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**3)

1008 END DO

1009

1010 ! Make sure youre always slightly below the original concentration

instead of oscillating between below and above because of adding and

subtracting methods

1011 ! so if you added until higher than conc0 , subtract one

1012 IF (.NOT.didntAdd) THEN

1013 nToxNew = nToxNew -1

1014 END IF

1015

1016 !print *, "nToxNew", nToxNew

1017 END SUBROUTINE adjNTox

1018

1019 SUBROUTINE squeeze_to_string_long(prefix ,inum1 ,middle ,inum2 ,suffix ,ss)

1020 !

***************************************************************************

1021 ! Needs:

1022 ! subroutine integer_to_string (,)

1023 !

***************************************************************************

1024 IMPLICIT NONE

1025

1026 INTEGER inum1 ,inum2

1027 CHARACTER (*) :: prefix , middle , suffix

1028 CHARACTER (60) :: strnum1 , strnum2

1029 CHARACTER (*), INTENT(out) :: ss

1030

1031 CALL integer_to_string(inum1 ,strnum1)

1032 CALL integer_to_string(inum2 ,strnum2)

1033
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1034 ss = prefix // TRIM(strnum1) // middle // TRIM(strnum2) // suffix

1035

1036 RETURN

1037 END SUBROUTINE squeeze_to_string_long

1038

1039

1040 SUBROUTINE squeeze_to_string(prefix ,inum ,suffix ,ss)

1041 !

***************************************************************************

1042 ! Needs:

1043 ! subroutine integer_to_string (,)

1044 !

***************************************************************************

1045 IMPLICIT NONE

1046

1047 INTEGER inum

1048 CHARACTER (*) :: prefix , suffix

1049 CHARACTER (60) :: strnum

1050 CHARACTER (*), INTENT(out) :: ss

1051

1052 CALL integer_to_string(inum ,strnum)

1053

1054 ss = prefix // TRIM(strnum) // suffix

1055

1056 RETURN

1057 END SUBROUTINE squeeze_to_string

1058

1059

1060 SUBROUTINE integer_to_string(jj ,ss)

1061 ! ******************************************************************

1062 ! 11/02/00
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1063 ! Converts an integer to a character variable of same value

1064 ! Character variable has left over space so it must be trimmed.

1065 ! ******************************************************************

1066 IMPLICIT NONE

1067

1068 INTEGER :: ii , jj

1069 INTEGER :: maxdigits , idig , icount

1070 DOUBLE PRECISION :: mod1 , div1 , frame

1071 CHARACTER (*), INTENT(out) :: ss

1072

1073 frame=DBLE(jj)

1074 maxdigits=INT(LOG10(frame))+1

1075 ss=’ ’

1076 mod1 =10.0

1077 div1 =1.0

1078

1079 DO ii=1,maxdigits

1080 idig=INT(MOD(frame ,mod1)/div1)

1081 ss = ACHAR(idig +48) // ss

1082 div1=mod1

1083 mod1 =10.0* mod1

1084 END DO

1085

1086 RETURN

1087 END SUBROUTINE integer_to_string

1088

1089

1090 SUBROUTINE ARRAY_COPY(src ,dest ,n_copied ,n_not_copied)

1091

1092 USE parameters

1093

1094 REAL(DP), DIMENSION (:), INTENT(IN) :: src

1095 REAL(DP), DIMENSION (:), INTENT(OUT) :: dest
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1096 INTEGER , INTENT(OUT) :: n_copied ,n_not_copied

1097

1098 n_copied = MIN(SIZE(src),SIZE(dest))

1099 n_not_copied = SIZE(src)-n_copied

1100 dest (1: n_copied) = src (1: n_copied)

1101

1102

1103 END SUBROUTINE ARRAY_COPY

1104

1105

1106

1107 ! ******************************************************************

1108 ! From Numerical Recipes in Fortran 90 2nd Edition

1109 ! 01/18/18

1110 ! creates a vector of gaussian distributed numbers with zero mean

1111 ! and variance of 1, using RANDOM_NUMBER as the source of uniform

1112 ! random numbers

1113 ! ******************************************************************

1114 ! This is not working , not sure why - implemented one that does it one

number at a time

1115 SUBROUTINE gasdev_v(harvest)

1116

1117 USE parameters

1118

1119 IMPLICIT NONE

1120

1121 REAL(DP), DIMENSION (:), INTENT(OUT) :: harvest

1122 REAL(DP), DIMENSION(SIZE(harvest)) :: rsq ,v1,v2

1123 REAL(DP), ALLOCATABLE , DIMENSION (:), SAVE :: g

1124 INTEGER :: n,ng ,nn ,m

1125 INTEGER , SAVE :: last_allocated =0

1126 LOGICAL , SAVE :: gaus_stored =.false.

1127 LOGICAL , DIMENSION(SIZE(harvest)) :: mask
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1128

1129 n=SIZE(harvest)

1130

1131 print *, "ENTERING FUNCTION ...."

1132 print *, "last_allocated = ", last_allocated

1133 print *, "gaus_stored = ", gaus_stored

1134

1135 IF (n /= last_allocated) THEN

1136 IF (last_allocated /= 0) THEN

1137 DEALLOCATE(g)

1138 END IF

1139 ALLOCATE(g(n))

1140 last_allocated = n

1141 gaus_stored =. false.

1142 END IF

1143

1144 IF (gaus_stored) THEN

1145 harvest=g

1146 gaus_stored =. false.

1147 ELSE

1148 ng = 1

1149

1150 DO

1151

1152 IF (ng > n) THEN

1153 EXIT

1154 END IF

1155 print *, "ng = ", ng

1156

1157 CALL RANDOM_NUMBER(v1(ng:n))

1158 CALL RANDOM_NUMBER(v2(ng:n))

1159 ! Make your uniform random numbers from -1 to 1

1160 v1(ng:n) = 2.0 _DP*v1(ng:n) -1.0_DP
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1161 v2(ng:n) = 2.0 _DP*v2(ng:n) -1.0_DP

1162 rsq(ng:n) = v1(ng:n)**2+v2(ng:n)**2

1163 print *, "rsq = ", rsq

1164 print *, "v1 before Array copy = ", v1

1165 print *, "v2 before array copy = ", v2

1166

1167 mask(ng:n) = (rsq(ng:n) >0.0 .and. rsq(ng:n) <1.0)

1168 print *, "mask = ", mask

1169 print *, "v1(ng:) = ", v1(ng:)

1170 CALL ARRAY_COPY(PACK(v1(ng:n),mask(ng:n)),v1(ng:),nn,m)

1171 print *, "result of v1 PACK = ", PACK(v1(ng:n),mask(ng:n))

1172 print *, "v1 after array copy = ", v1

1173 v2(ng:ng+nn -1) = PACK(rsq(ng:n),mask(ng:n))

1174 print *, "v2 after pack = ", v2

1175 print *, "n copied = ", nn

1176 print *, "not copied = ", m

1177 ng=ng+nn

1178

1179 END DO

1180 ! Now make the Box -Muller transformation to get two normal deviates

1181 ! Return the amount needed and save the rest for next time

1182 rsq=sqrt (-2.0_DP*log(rsq)/rsq)

1183 harvest=v1*rsq

1184 g=v2*rsq

1185 gaus_stored =.true.

1186

1187 END IF

1188

1189 print *, "LEAVING FUNCTION ...."

1190 print *, "last_allocated = ", last_allocated

1191 print *, "gaus_stored = ", gaus_stored

1192 print *, "LEFT FUNCTION ."

1193
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1194 END SUBROUTINE gasdev_v

1195

1196 SUBROUTINE gasdev_s(harvest)

1197

1198 USE parameters

1199

1200 IMPLICIT NONE

1201

1202 REAL(DP), INTENT(OUT) :: harvest

1203 REAL(DP) :: rsq ,v1,v2

1204 REAL(DP), SAVE :: g

1205 LOGICAL , SAVE :: gaus_stored =.false.

1206

1207 IF (gaus_stored) THEN

1208 harvest=g

1209 gaus_stored =. false.

1210 ELSE

1211 DO

1212 CALL RANDOM_NUMBER(v1)

1213 CALL RANDOM_NUMBER(v2)

1214

1215 v1 = 2.0_DP*v1 -1.0 _DP

1216 v2 = 2.0_DP*v2 -1.0 _DP

1217 rsq = v1**2+v2**2

1218 IF (rsq > 0.0 .and. rsq < 1.0) THEN

1219 EXIT

1220 END IF

1221 END DO

1222 ! Now make the Box -Muller transformation to get two normal deviates

1223 ! Return the amount needed and save the rest for next time

1224 rsq = sqrt (-2.0_DP*log(rsq)/rsq)

1225 harvest = v1*rsq

1226 g = v2*rsq
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1227 gaus_stored =.true.

1228 END IF

1229

1230 END SUBROUTINE gasdev_s

1231

1232 SUBROUTINE pick_random(old_idxs , rand_idxs , nIdx)

1233 ! pick a random index

1234 IMPLICIT NONE

1235

1236 INTEGER , DIMENSION (:), INTENT(IN) :: old_idxs

1237 INTEGER , DIMENSION (:), INTENT(OUT) :: rand_idxs

1238 INTEGER , DIMENSION (:), ALLOCATABLE :: new_idxs

1239 INTEGER , INTENT(IN) :: nIdx

1240 REAL :: r ! random number from 0 to 1

1241 INTEGER :: r_int ,i ! random index

1242

1243 ALLOCATE (new_idxs(SIZE(old_idxs)))

1244 new_idxs = old_idxs

1245 DO i = 1,nIdx

1246

1247 ! get a random number between 0 and 1 and turn it into an index

1248 call random_number(r)

1249 r_int = int(r*(size(new_idxs)-i+1)) + 1

1250

1251 ! get the number associated with that index and return it (this is

your actual random index you ’ll use in the your program)

1252 rand_idxs(i) = new_idxs(r_int)

1253

1254 ! return a new matrix without the index you chose

1255 new_idxs (1:r_int -1) = new_idxs (1:r_int -1)

1256 new_idxs(r_int:SIZE(new_idxs) -1) = new_idxs (( r_int +1):SIZE(new_idxs)

)

1257
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1258 END DO

1259

1260 END SUBROUTINE pick_random

1261

1262 END MODULE routinesMultTox

B.3 functionsEmi.f95

1 MODULE functionsEmi

2

3 IMPLICIT NONE

4

5 CONTAINS

6

7 REAL(DP) FUNCTION round(n)

8

9 USE parameters

10

11 IMPLICIT NONE

12

13 REAL(DP), INTENT(IN) :: n

14

15 round = NINT(n)

16

17 END FUNCTION round

18

19 FUNCTION FIND(mask)

20

21 USE parameters

22

23 IMPLICIT NONE

24

25 INTEGER , DIMENSION (:), ALLOCATABLE :: find
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26 LOGICAL , DIMENSION (:), INTENT(IN) :: mask

27 INTEGER , DIMENSION (:), ALLOCATABLE :: indxs

28 INTEGER :: i, cnt

29

30 cnt = COUNT(mask)

31 ALLOCATE (indxs(cnt))

32 indxs=0

33 cnt=1

34 DO i=1,SIZE(mask ,1)

35 IF (mask(i)) THEN

36 indxs(cnt)=i

37 cnt = cnt+1

38 END IF

39 END DO

40

41 find = indxs

42

43 END FUNCTION FIND

44

45 END MODULE functionsEmi

B.4 parameters.f95

1 MODULE parameters

2

3 IMPLICIT NONE

4 !

5 ! THIS MODULE HAS THE DECLARATION OF MOST OF THE VARIALBES USED

6 ! IN THE SIMULATION. THE ONLY VARIABLES THAT ARE IN ANOTHER MODULE

7 ! ARE THE RANDOM NUMBER GENERATOR VARIABLES.

8 !

9 ! This statement is simply to select the precision

10 INTEGER , PARAMETER :: DP=SELECTED_REAL_KIND (14)
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11

12 ! Scientific constants

13 REAL(DP), PARAMETER :: pi =3.141592653589793238462643383279502884197 _DP

14 REAL(DP), PARAMETER :: N_A = 6.0221409 E23

15

16 ! Number of dimensions of space (ie: x,y,z)

17 INTEGER , PARAMETER :: dim = 3

18

19 ! Equilibrium length/starting length of the springs

20 REAL(DP), PARAMETER :: l_sp = 1.0

21 REAL(DP), PARAMETER :: kbT = 1.0 ! thermal energy

22 REAL(DP), PARAMETER :: k_sp = 200.0 ! spring constant for potential

force connecting polymer beads

23 REAL(DP), PARAMETER :: k_bind = 10.0 !k_sp ! spring constant of bond

between polymer and toxin

24 REAL(DP), PARAMETER :: d_tox = l_sp

25 REAL(DP), PARAMETER :: l_bind = l_sp /2.0 _DP + d_tox /2.0 _DP! equilibrium

length of spring after binding

26 REAL(DP), PARAMETER :: d_bead = l_sp ! diameter of a bead

27

28 ! How often should you check if a binding event happens

29 INTEGER , PARAMETER :: checkBindingInterval = 100 !1000

30 REAL(DP), PARAMETER :: D = 1.0 ! diffusion coefficient of Polymer

31 REAL(DP), PARAMETER :: DTox = D !10; % diffusion coefficient of Toxin

32 REAL(DP), PARAMETER :: Vf = 0.0 ! velocity of the fluid

33 REAL(DP), PARAMETER :: deltaT = .0001 ! time step

34 REAL(DP), PARAMETER :: zeta = 1.0 ! Not needed for now , so set to

arbitrary number (for hydrodynamic forces/friction of fluid)

35 INTEGER :: maxTox

36 INTEGER , PARAMETER :: timeAvgInt = 100

37 INTEGER :: nTox

38

39 ! Schmolochowsky limit for how far the toxin can see the inhibitor beads
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40 REAL(DP), PARAMETER :: reach = l_bind+SQRT(D*deltaT *100 _DP)

41

42 ! Species features

43 INTEGER :: Nmer

44 INTEGER :: bindingSites

45 REAL(DP) :: tot_t

46

47 ! The number of beads

48 INTEGER :: beads

49

50 ! size of side of box for periodic boundary conditions (origin is at

center of box)

51 REAL(DP) :: sizeBox

52

53 ! Energy barriers

54 REAL(DP) :: stdDevPolyAff

55 REAL(DP) :: delE_0_center

56 INTEGER :: randNumSeedMultiplier

57 INTEGER , PARAMETER :: seedSize = 33

58

59 ! The effective step size

60 REAL(DP) :: muo

61

62 ! The strength of the flow

63 REAL(DP) :: wi

64

65 ! stretching constant for wormlike chains

66 REAL(DP), PARAMETER :: gamma =100.0

67

68 ! bk is the kuhn length in units of a

69 ! dmax is the maximum bond length

70 REAL(DP), PARAMETER :: bk=2.0, dmax =2.2

71
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72 ! sigma is the space constant in the lennard -jones force

73 REAL(DP), PARAMETER :: sigma=l_sp

74 REAL(DP), PARAMETER :: sigmaToxTox=d_tox

75 REAL(DP), PARAMETER :: sigmaToxPoly=l_bind

76 REAL(DP), PARAMETER :: LJcutoff =3.0 _DP

77

78 ! epsilon is the strength of the lennard -jones potential

79 REAL(DP) :: epsilon

80 REAL(DP) :: epsToxTox

81 REAL(DP) :: epsToxPoly

82

83 ! constants to control the stiffness of the chain - wormlike chain model

84 REAL(DP) :: gammaw

85

86 ! Options

87 ! Decides whether the inhibitor is a polymer or just monomers floating

around , true = is a polymer and experiences connectivity forces , 0 =

free monomers in solution , don ’t experience connectivity forces

88 LOGICAL :: isPolymer

89

90 ! This controls whether when a toxin unbinds , if it is replaced with a

new toxin starting in a random place or if it just continues on

91 LOGICAL :: randNewToxin

92

93 ! Cycles and writing blocks

94 INTEGER :: block ,d_wrt= 10000

95

96 END MODULE parameters
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