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Abstract
Stochastic traffic simulators are widely used in the transportation community to
model real-world urban road networks in applications ranging from real-time con-
gestion routing and control to traffic state prediction. Online calibration of these
simulators plays a crucial role in achieving high accuracy in the replication and pre-
diction of streaming traffic data (i.e., link flows, densities). In order to be relevant in
a real-time context, the problem must also be solved within a strict computational
budget. The primary goal of this thesis is to develop an algorithm that adequately
solves the online calibration problem for high-dimensional cases and on large-scale
networks.

In the first half, a new online calibration algorithm is proposed that incorporates
structural information from an analytical metamodel into a general-purpose extended
Kalman filter framework. The metamodel is built around a macroscopic network
model that relates calibration parameters to field measurements in an analytical,
computationally tractable, and differentiable way. Using the metamodel as an ana-
lytical approximation of the traffic simulator improves the computational efficiency
of the linearization step of the extended Kalman filter, making it suitable for use in
large-scale calibration problems. The embedded analytical network model provides
a secondary benefit of making the algorithm more robust to simulator stochasticity
compared with traditional black-box calibration methods.

In the second half, the proposed algorithm is adapted for the case study of online
calibration of travel demand as defined by a set of time-dependent origin-destination
matrices. First, an analytical network model relating origin-destination demand to
link measurements is formulated and validated on the Singapore expressway network.
Next, the proposed algorithm is validated on a synthetic toy network, where its flex-
ibility in calibrating to multiple sources of field data is demonstrated. The empirical
results show marked improvement over the baseline of offline calibration and com-
parable performance to multiple benchmark algorithms from the literature. Finally,
the proposed algorithm is applied to a problem of dimension 4,050 on the Singapore
expressway network to evaluate its feasibility for large-scale problems. Empirical re-
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sults confirm the real-time performance of the algorithm in a real-world setting, with
strong accuracy in the estimation of sensor counts.

Thesis Supervisor: Carolina Osorio
Title: Associate Professor
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Chapter 1

Introduction

Traffic congestion on urban road networks is an age-old problem that has only be-

come more important with increased urbanization. According to the World Bank,

the percentage of the entire population of the United States living in urban areas has

steadily increased from 73.6% in 1970 to 82.3% in 2018 [57]. Similar statistics hold

globally; the United Nations projects that 68% of the world’s population is expected

to live in urban areas by 2050 compared to 55% in 2018 [61]. The impacts of in-

creased urbanization and the associated traffic congestion are manifold, ranging from

increased energy consumption and adverse environmental effects like air pollution to

lost productivity. As a result, there is a growing need for better traffic management

of existing capacity on urban road networks. The traffic management centers respon-

sible for this guidance use traffic simulators to make decisions about traffic control

and congestion mitigation, often in a real-time setting.

Traffic simulators are widely used in the transportation community to model real-

world traffic networks and to estimate and predict traffic conditions from data re-

ceived through intelligent transportation systems (ITS). Applications of these simu-

lators range from real-time congestion routing and control to offline scenario planning.

Traffic simulators are comprised of supply and demand models that inform driver be-

havior, network behavior, and their interactions within the simulator with the goal of

replicating traffic dynamics observed in the real-world network. These models can be

at various levels of detail, from microscopic models that model individual drivers and
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their travel behavior decisions to macroscopic models that model higher-level traffic

dynamics. These models can also be analytical or simulation-based. Additionally,

as the interactions between demand and supply grow more complicated with new

technological advancements in vehicle-to-vehicle and vehicle-to-infrastructure com-

munications, the models that make up these traffic simulators have also grown more

intricate.

The other growing trend in transportation is an explosion of data available to traf-

fic management centers. As data collection tools for transportation networks have

developed and become more prevalent, methods driven by the new wealth of data

available have been the focus of much research in transportation and traffic network

modeling. The available data, specifically link- and route-specific information like

flows, travel times, and speeds collected by induction loop detectors, probe vehicles,

and increasingly mobile phone data, has led researchers to develop methods for incor-

porating new sources of information into existing transportation solutions, in service

of estimation of traffic behavior and improvement of forecasting power. Models for

real-time traffic estimation and prediction give managers of traffic networks crucial

data to make informed decisions about policies to reduce congestion and travel times.

These data-driven methods are primarily concerned with achieving high accuracy

in replication and prediction of real-world traffic information like flows, travel times,

and speeds. Since traffic networks can encompass hundreds or thousands of links and

intersections, the scalability and computational efficiency of a data-driven method are

also important considerations. With the increase in both intricacy of traffic simulator

models and incorporation of newly available data, there is a critical need for methods

guiding the operations of these urban road networks that are scalable, reliable, and

computationally efficient, particularly in the context of real-time traffic management.

The use of traffic simulators by practitioners for real-time responsiveness will only

become more imperative as the effects of growing urbanization and congestion are

felt worldwide.

The focus of this thesis is the online calibration of stochastic simulation-based,

rather than analytical or deterministic, traffic models. These traffic simulators are
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comprised of simulation-based models for demand and supply and cannot be repre-

sented by an analytical or closed-form expression. In general, the online calibration

problem aims to identify model parameter inputs for every discrete time interval in

the simulation period that lead to network state outputs (e.g., sensor counts, link

travel times) from the simulator consistent with real-time field measurements ob-

served on the real-world road network. The aim of this thesis is to develop an online

calibration algorithm that solves the online calibration problem for high-dimensional

cases (i.e., thousands of model parameters) and on large-scale networks to a high

degree of accuracy.

In addition to the goal of accuracy, several other factors play a significant role

in online calibration—algorithms for online calibration must be computationally effi-

cient and able to find parameter values in a real-time setting, often on the order of 5

to 30 minutes, to be of practical value, and algorithms should be robust to simulator

stochasticity. As seen in Section 1.3, many online calibration algorithms from the

literature treat the simulator as a black box, only utilizing it for basic inputs and

outputs. While this approach is model-agnostic and thus can be applied across prob-

lem settings, algorithms of this type often rely on computationally costly estimation

methods, limiting their scalability to larger networks. The primary goal of this thesis

is to embed problem-specific structural information within these existing algorithms

to improve their computational efficiency for large-scale networks. This structural

information is leveraged through the use of analytical traffic models, which are com-

bined with the black-box algorithm. This leads to the following research question:

can an online calibration framework be developed that combines existing online cal-

ibration algorithms with analytical network model information in a way that leads

to good calibration performance within a tight computational budget for large-scale

real-world networks?

In the design of this new framework, it should have the following qualities, which

are addressed throughout the thesis both in the algorithm development and in the

empirical case studies:

1. the algorithm should be general-purpose, in that it is able to jointly calibrate
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parameters across several types of models,

2. the algorithm should be able to incorporate different types of field measurement

data,

3. the algorithm should be robust to the stochasticity of the traffic simulator,

4. the algorithm should be of practical use to transportation practitioners, i.e., it

should be able to solve high-dimensional online calibration problems on large-

scale networks with a limited computational budget.

1.1 Dynamic Traffic Assignment systems

While traffic simulators range in specificity from microscopic simulators that model

distinct agents and their individual movements to macroscopic simulators that model

aggregate behavior, all stochastic traffic simulators operate under a framework in

which driver behavior responds iteratively to network conditions and the actions of

other drivers. The intricacy of the interactions being modeled in these transporta-

tion systems leads to the use of what are called Dynamic Traffic Assignment (DTA)

systems [16, 40].

Figure 1-1 shows a general schematic of a Dynamic Traffic Assignment framework.

As seen in the figure, DTA systems are comprised of supply and demand models that

inform driver and network behavior and the supply-demand interactions between

the two within the simulator. Demand models, represented by the box on the left,

include demand generation, often through time-dependent origin-destination (O-D)

matrices, and route choice. In addition, demand models may include information on

driver classes, travel mode preference, and both access and response to guidance in-

formation. Supply models, represented by the box on the right, dictate link attributes

and movement between links of the road network. These models specify supply be-

havior such as speed-density relationships on network links, lane connections, and link

output capacities based on network topology and traffic signalization. Models of how

traffic incidents and other events occur and propagate through the network are also
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Figure 1-1: General DTA framework adapted from [15]

included in the supply models. Through the simulation-based interaction between

these supply and demand models, often an iterative process, the DTA system models

traffic conditions on the network through the traffic assignment of drivers and flow

propagation according to supply models. The result of these simulations is a detailed

picture of the road network and its traffic conditions through time, and from this, key

network attributes like link flows, densities, speeds, and travel times can be observed

from the DTA system.

Simulation-based Dynamic Traffic Assignment systems can be used in both plan-

ning and real-time contexts. Real-time capabilities, which are the focus of online

calibration, are comprised of two functions, state estimation and prediction-based

information generation. The goal of state estimation is to infer current traffic con-

ditions on the network as represented by information like O-D demand, link flows,

queue lengths, velocities, and densities at various locations on the network. Real-time

information from traffic sensors is combined with offline historical data to estimate the

state, which also relies on driver behavioral models and guidance information. The

goal of the prediction functions is to estimate the state of the network in the near

future and use that to create information provided to travelers and control strategies.

Prediction-based information that is generated can consist of pre-trip demand levels,
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O-D flow prediction, network state prediction, and even guidance generation.

1.2 Parameter calibration problem definition

The Dynamic Traffic Assignment system models contain a large number of parame-

ters and inputs that must be tuned to ensure realistic and reliable output from the

simulator, and accurate calibration of these model parameters is a fundamental step

in using stochastic traffic simulators to reproduce the behavior of real-world traffic

systems. During the calibration process, estimates of the model parameters and in-

puts are calculated based on field data from the road network. Calibration generally

occurs in two regimes—offline calibration and online calibration.

Offline calibration provides a baseline estimate of model parameters, usually de-

rived from a set of historical field measurements. The goal of offline calibration is

to find settings for supply and demand parameters that correspond to typical traffic

dynamics on a network and average network conditions over the period represented

by the historical data. Several sets of offline calibrated parameters values may be

computed for different network settings, like time of day, day of week, or season, but

real-time field data is not utilized during offline calibration. Algorithms for offline

calibration identify good quality parameter estimates, which can be re-updated as

new field observations are added to a database of historical information.

Online calibration is the process of tuning simulator parameters to account for

fluctuations in traffic measurements in a real-time setting. Given a baseline set of

historical or long-run average parameter values from offline calibration, the online

calibration problem is focused on adjusting those parameter values in response to

streaming field data as they are being observed on the real-world road network. By

incorporating field data reflecting current network conditions, using model param-

eters obtained during online calibration allows traffic management centers to use

stochastic traffic simulators for real-time applications. For these applications, such

as real-time congestion routing and traffic control for incident management, the ac-

curacy and specificity of the online calibration algorithm is important, as the goal
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is to model time-dependent phenomena like rush hour demand and weather-related

network constraints and to reflect prevailing traffic conditions in order to provide

context-specific decisions. Accurate online calibration is also necessary for effective

prediction of future traffic conditions that feed into real-time guidance decisions. Be-

cause these applications must operate in a real-time context, runtime considerations

for online calibration algorithms are also important. Online calibration algorithms

need to provide solutions in a fixed time window, usually on the order of 5 to 30 min-

utes, to retain their relevancy; thus, they must be computationally inexpensive and

efficient. For large-scale networks that have thousands of model parameters to cali-

brate, just simulating traffic conditions over a 5-minute time frame using a stochastic

traffic simulator can take a couple of minutes to run depending on the granularity of

the simulator models. In these situations, the computational efficiency of the online

calibration algorithm becomes of the utmost importance.

Within the broader parameter calibration problem, a crucial and well-studied

subproblem is real-time origin-destination (O-D) demand calibration of stochastic

traffic simulators. Time-dependent O-D demand matrices are a significant input

for the demand models of traffic simulators and are a key component for online

calibration. The O-D calibration problem must combine historical and real-time data

to obtain dynamic (time-dependent) demand matrices, which are then used to seed

drivers, their trips, and their route choice behavior in the simulator. Additionally,

online O-D calibration can then feed into prediction of O-D matrices for future time

periods that significantly impact the ability of practitioners to anticipate and react

to future traffic dynamics.

1.3 Literature review

The online calibration problem has received significant attention from the transporta-

tion research community, especially with the growing use of DTA systems, the in-

creasing intricacy of tools for modeling traffic behavior on road networks, and richer

sources of traffic data. While this thesis focuses on online calibration of stochastic
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simulation-based traffic models, the literature review surveys research across several

types of models, which can generally be split between stochastic and deterministic

simulators, and between simulation-based models and analytical models. Depending

on the type of models being calibrated, different methodologies have been proposed

for tackling the online calibration problem.

In general, there are two popular modes for approaching the problem. The first,

motivated by applications with simulation-based models and stochastic traffic simula-

tors, is a more black-box approach that does not make any assumptions on the specific

models that comprise the simulator. The aim of this family of general-purpose meth-

ods is to be suitable for the calibration of any combination of model parameters using

any type of data available from the field. In particular, parameters for demand and

supply models may be calibrated jointly. The second mode of approach is motivated

more by a specific problem context, and attempts to utilize model-based or analytical

information to solve an online calibration problem. By focusing on a particular set

of model parameters (i.e., speed-density parameters, car-following model parameters,

or demand matrices) or type of field data (i.e., sensor counts or probe vehicle travel

times), these methods aim to exploit structural information to efficiently solve the

calibration problem. The majority of these problem-specific approaches tackle the

calibration of dynamic origin-destination (O-D) demand parameters, which is also

the focus on the case studies in Chapters 4 and 5 of this thesis.

Regardless of the mode of approach, all online calibration algorithms hope to

provide accurate parameter tuning in a real-time setting. Recent work has also fo-

cused on the scalability of these approaches for use on high-dimensional calibration

problems that are practically relevant for transportation practitioners. For a sense

of the scope of these online calibration problems, some of the largest road networks

used as case studies among research cited in this literature review are comprised of

thousands of links and model freeway and arterial networks in major world cities like

Stockholm [6], San Francisco [33], and Singapore [52]. The number of parameters

calibrated in each of these case studies is 462, 769, and 4121, respectively. In general,

the number of parameters being calibrated can easily reach an order of magnitude in
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the hundreds or thousands. In addition, to be considered a real-time approach, the

online calibration algorithm should identify parameter estimates within a limited time

budget, typically depicted as the time between consecutive measurements from the

field. For the case studies mentioned, the time windows range from 5 to 15 minutes.

A modified version of the Singapore road network, used in case studies by Prakash

et al. [52] and Zhang [73], is used for the case study discussed in Chapter 5.

As mentioned, one methodology suggested for the online calibration problem is to

create a solution framework that can be applied without any assumptions on the types

of models used by the traffic simulator. The goal of these general-purpose frameworks

is to be adaptable for any type of traffic model (i.e., analytical, simulation-based, mi-

croscopic, macroscopic, etc.), any set of calibration parameters across both demand

and supply models, and any type of field data (i.e., link flows, route travel times,

turning fractions, etc.). As real-time data collection tools for transportation net-

works have become more advanced, there is interest in algorithms that are flexible

in incorporating data of many different types [13]. In addition, as argued by An-

toniou [3], methods that are able to jointly calibrate model parameters provide an

advantage over methods that calibrate only a subset of parameters and sequential

calibration methods. For detailed DTA systems, the interactions among demand

and supply models can be very intricate, and methods that model these interactions

through the joint calibration of demand and supply parameters are shown to have

improved empirical performance [3]. While these methods provide adaptability to

various problem contexts, this generality also comes at the cost of computational

efficiency and specificity. Model assumptions are intentionally not made, so the ma-

jority of general-purpose methods are black-box optimization methods that utilize

simulator information only through simulator evaluations, with parameters as input

and network measurements as output.

The vast majority of these general-purpose approaches to online calibration uti-

lize a state-space model formulation of the problem, which provides a compact and

scalable representation of the traffic state through time. An established methodol-

ogy commonly found in the literature is to formulate the problem as a state-space
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model with the parameters to be calibrated defined as the state [10, 75]. The model

is then comprised of two types of equations—transition equations describe the evolu-

tion of the model parameters through time, while measurement equations relate the

parameters to observable traffic data used in the calibration. The consequences of a

state-space model formulation have been widely discussed in the literature. While the

model provides a simple, and thus relatively compact, representation of the temporal

evolution of model parameters, there is a trade-off between model simplicity, which

impacts computational efficiency, and the fidelity of the model to real-world behav-

iors, especially as represented by the transition equations. Model inconsistencies,

which measure the divergence from real-world network behavior, propagate within

a state-space model framework and can significantly degrade predictive performance

[36]. Modifications have been proposed to expand the size of the state to incorporate

more network information [9] or to increase the degree of the autoregressive relation-

ship modeled by the transition equation [75], but accommodations to improve model

fidelity also increase the computational burden, especially for large-scale network ap-

plications.

The state-space model formulation is commonly solved using Kalman filtering

techniques. Zhou and Mahmassani [75] calibrate O-D demand using a state-space

model, assuming a stationary random process with constant mean and variance for

the transition equation. The approach incorporates a polynomial trend component

to model structural deviations in the parameters from the historical O-D demand

pattern. While the Kalman filter solution algorithm is validated using data from

a road network of freeways and main arterials in Irvine, California, it is not fully

implemented within a real-time DTA system. Antoniou [3] develops a nonlinear

state-space model defined by a state vector consisting of calibration parameters, an

auto-regressive transition equation, and a nonlinear measurement equation given by

the simulator being calibrated. Since the state-space model is nonlinear, the standard

Kalman filter cannot be used and instead both an extended Kalman filter (EKF) and

an unscented Kalman filter (UKF) method are proposed. Both solution methods

are implemented in a case study on a freeway network in Southampton, UK, with a

26



problem dimension of 80 parameters. While both methods show good performance

with average root-mean-square normalized (RMSN) errors below 20%, the extended

Kalman filter approach is judged to be more straightforward in implementation.

Though the general-purpose framework developed by Antoniou was shown to have

good performance in estimation and prediction of traffic state measurements, it is not

practical for the real-time calibration of large-scale networks. Both of the proposed al-

gorithms (EKF and UKF) incur a significant computational cost at each time step due

to the number of simulator evaluations required to deal with the nonlinearity of the

state-space model formulation. The extended Kalman filter approach approximates

the gradient of the simulator at each time step, and since no analytical assumptions

are made about the models being calibrated, the gradient estimation must rely on

numerical methods. Antoniou suggests the use of central finite differences as a nu-

merical gradient approximation method. For a calibration problem of dimension 𝑛,

this requires 𝒪(𝑛) simulator evaluations each time step, which is unwieldy for high-

dimensional problems [5]. Additionally, numerical gradient estimation methods must

contend with errors stemming from simulator stochasticity. For simulator evaluations

at points differing by small perturbations, the random noise inherent in stochastic

traffic simulator output may outweigh true measurement of the gradient. To counter-

act this stochasticity, multiple replications of the gradient estimate may be taken and

averaged, which increases the computational burden of the gradient approximation

step [73]. There is a trade-off between accuracy of the gradient approximation and the

online computational cost of the algorithm. Similarly, the unscented Kalman filter

runs a set of sample points (called “sigma points”) through the simulator at each time

step to approximate the first and second moments of the state vector distribution.

The number of sigma points scales linearly with the dimension of the state vector. As

these methods aim to jointly calibrate all model parameters, which for a large-scale

problems may number in the thousands, these Kalman filtering algorithms cannot be

implemented in real-time without significant modifications.

Since Antoniou’s formulation of the online calibration problem as a nonlinear

state-space model, many approaches have been proposed to improve the computa-
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tional efficiency of the general-purpose Kalman filter approach for use in real time

on problems of high dimension. Several focus on improving the gradient computa-

tion step of the extended Kalman filter. Antoniou proposed two variations of his

algorithm in follow-up work—first, using simultaneous perturbation instead of finite

differences to approximate the gradient [7]. The simultaneous perturbation method,

as first proposed by Spall [56], only uses two random perturbations to approximate

the gradient, significantly reducing online computational cost but with a noisier gra-

dient estimate and a small deterioration in estimation performance, as shown by

Antoniou in a case study on the I-405 freeway network in Irvine, California [7]. As an

alternative, Antoniou proposes another algorithm in which a series of gradients are

calculated offline and the average is used online; the method is called the “Limiting

EKF” [3]. As shown in experiments calibrating traffic counts on a network represent-

ing the central district of Stockholm, the Limiting EKF algorithm is able to produce

root-mean-square normalized errors in the range of 10% to 16% for estimation and

prediction of field measurements for a real-world problem while significantly reducing

the online computational cost compared to the finite differences approach [6]. Inter-

estingly, Antoniou et al. also observe that the Limiting EKF shows robustness in the

face of simulator noise compared to the finite differences approach due to averaging

several noisy estimates of the gradient. Still, the fixed gradient estimate used by the

Limiting EKF results in an added approximation and information loss; it does not

model temporal aspects of the problem crucial for online calibration.

Other approaches improve the computational efficiency of the nonlinear Kalman

filtering algorithm by reducing the dimension of the problem. Huang [34] and Zhang

[73] propose a method for gradient estimation called partitioned simultaneous per-

turbation (PSP). Similarly, a dimensionality reduction approach using principal com-

ponents analysis (PCA) is proposed by Djukic and integrated within the Kalman

filtering framework [27]. Using a smaller number of principal components as the

state reduces the dimension of the calibration problem while still capturing a large

fraction of the variance of the system. A principal components analysis approach is

also taken by Prakash [52]. In a case study on the Singapore expressway network,
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4121 O-D demand parameters are calibrated using sensor counts. Using 80 principal

components that explain 95% of the variance as the state vector, Prakash et al. are

able to achieve better estimation and prediction results than the full-dimensional for-

mulation while seeing a 50-fold reduction in computational cost. Finally, one more

dimensionality reduction approach is proposed by Carrese et al. [20] based on the

Local Ensemble Transformed Kalman Filter (LETKF) developed by Hunt et al. [35].

The LETKF algorithm transforms the problem from the space of state variables (i.e.,

calibration parameters) to a lower-dimensional space defined by the “ensemble” that

parametrically models the distribution of the state variables. The method avoids a

linearization step, similar to the unscented Kalman filter, but at a smaller and more

scalable computational cost. Still, the simulator must be evaluated for each member

of the ensemble, and the experiments cited only consider problems of dimension up

to 36. Carrese et al. even acknowledge that for a large-scale network or a larger-sized

ensemble, computational times may not be suitable for online application [20].

In contrast to online calibration approaches that construct a general-purpose

framework that will work with any type of traffic models, other methods in the

literature take a more narrow approach by focusing on a specific subset of parame-

ters to calibrate or type of data from the field. While these methodologies are more

restrictive in their application and make assumptions about the problem context or

form of the models calibrated, they are also able to utilize problem-specific informa-

tion through analytical models or in algorithm design. One such approach by Tavana

and Mahmassani [59] focuses on the calibration of dynamic speed-density relations

using transfer function methods, which capture temporal effects like serial correlation

across the calibration period. Each transfer function is a bivariate time-series model

for the speed-density relationship on a link, with density as the leading indicator and

deviations of speeds from historical values as the dependent variable. The transfer

function parameters are calibrated using link detector data. While a case study is

run using data from a freeway network in San Antonio, the method is not incorpo-

rated within a simulation-based framework. Huynh et al. [36] extend the work by

Tavana and Mahmassani by implementing the methodology in a real-time context,

29



with an adaptive least-squares optimization procedure for re-fitting speed-density pa-

rameters that allows for integration with a DTA system. Specifically, they apply the

transfer function models for dynamic speed-density relations within DYNASMART,

a simulation-based DTA system, in order to improve estimation of link speeds. An

experiment is run on a network of the I-35 freeway with neighboring arterials and

local streets as a proof-of-concept with promising results, though only one link is cal-

ibrated with the proposed method and no real traffic data is used. Finally, Qin et al.

[53] extend the method even further by evaluating performance using real sensor data

from an Irvine, California, network. While the dynamic transfer function models are

shown to perform better than the benchmark static Greenshields models within the

DTA framework, the scalability of the approach is not addressed as only four links

are calibrated.

In recent years, the case has been made for the real-time calibration of micro-

scopic traffic simulation models in an online setting, particularly with advancements

in computational power and the emergence of richer datasets from sources like GPS

equipped vehicles and connected vehicles. Microscopic traffic simulators, which model

the behaviors of individual drivers in relation to the surrounding vehicles and network

attributes, are frequently calibrated to reflect average field performance measures,

though empirically-observed changes in individual driving behavior across time and

driving environment have motivated new work in online calibration [32]. In particular,

methods and justification for the online calibration of car-following models have been

proposed. Hammit et al. [30] use vehicle trajectory data to calibrate four well-known

car-following models, including the Gipps model and the Intelligent Driver Model,

using a genetic algorithm approach. They use a sampling of data from the Strategic

Highway Research Program’s Naturalistic Driving Study as a proxy for trajectory

data in their experimental results, and show the added benefit of using current traffic

data for calibration instead of historical traffic data. While this provides empirical

justification for the online calibration of microscopic traffic models, the results are

primarily a proof-of-concept, and it is not clear how the calibration method would

be implemented in a real-time setting. Papathanasopoulou et al. [50] also utilize
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trajectory data for the online calibration of car-following models. They establish a

rolling horizon framework for estimation and prediction of speeds and travel-times,

and apply their approach to calibrating the Gipps car-following model. The algorithm

is validated using real trajectory data from an experiment in Naples, Italy, involving

four drivers in a platoon. Though they only calibrate the model for one vehicle in

the case study, they also discuss methods that could be used to scale the technique,

including decentralization and extrapolation of calibration results.

The majority of online calibration methods that focus on a specific set of param-

eters look at the dynamic origin-destination (O-D) matrices used as input for DTA

systems. This problem grew out of the offline dynamic O-D estimation problem and

has been adapted to the context of online calibration. It is frequently addressed in

the literature because O-D matrices are a crucial input to demand models and show

considerable fluctuation across time, even within a span of a few hours, making them

an important component of online calibration. In addition, the number of O-D pairs

in a road network can often number in the thousands, as mentioned previously, mak-

ing this specific problem one of the most high-dimensional problems within the online

calibration literature. As an example, for the Singapore network case study described

in Chapter 5, there are over 4000 O-D pairs for which demand parameters must be

calibrated for each 15-minute time step. At the same time, there is rich structural

information relating O-D matrices to link flows (often the field data used for cali-

bration) represented by the dynamic assignment matrix that can be exploited during

online calibration through the use of analytical models. Toledo et al. [60] provide a

detailed survey of research done on the broad topic of O-D estimation, from which

this section summarizes the major contributions for real-time calibration.

The foundational approach for the O-D calibration problem relies on a general-

ized least-squares (GLS) formulation, proposed originally for offline estimation by

Cascetta [21] and adapted for dynamic estimators of O-D matrices in 1993 [22]. The

formulation estimates the O-D demand matrix from link counts using an analytical

assignment model. Inaudi et al. [37] develop a sequential version of the model in

order for it to be implemented in a real-time context. The extension also allows the

31



algorithm to be used for prediction, through a separate filtering approach combining

historical and estimated O-D information. The generalized least-squares formulation

has since been adapted for calibration and is a widely used benchmark for the O-D

calibration problem. Bierlaire and Crittin [18] propose an efficient solution algorithm

for the least-squares formulation by solving it online using the LSQR iterative algo-

rithm, an analytical equivalent to the conjugate gradient method that exploits matrix

sparsity [48]. In case studies using the DTA system DynaMIT on a small-scale net-

work in Boston (10 O-D pairs) and a large-scale network in Irvine (627 O-D pairs), the

LSQR algorithm significantly decreases computational effort compared to a Kalman

filtering approach. In more recent results, Prakash et al. [51] apply a principal

components analysis (PCA) approach for dimensionality reduction to the generalized

least-squares formulation. The effectiveness of this modification is shown in a case

study on the Singapore expressway network, and the results show a trade-off with

a loss of 2% in estimation accuracy for a reduction in the problem size by a factor

of 50 compared to the original full-dimensional generalized least-squares approach.

Interestingly, the PCA version of the GLS formulation has better predictive accuracy

than the full-dimensional method, which Prakash et al. attribute to the principal

components better capturing correlations within the structure of the O-D matrices

[51].

State-space modeling is also frequently applied to the O-D calibration problem.

Ashok and Ben-Akiva [8, 9, 10] formulate the real-time O-D calibration problem as a

state-space model and solve it using a Kalman filtering algorithm. Bierlaire and Crit-

tin show theoretically that their approach is identical to the approach proposed by

Ashok and Ben-Akiva when a Kalman filter is used to solve the least-squares formula-

tion [18]. The approach by Ashok and Ben-Akiva makes two significant contributions

to the literature. First, the state is defined as deviations of the O-D demand pa-

rameters from historical values, instead of the absolute values of the O-D parameters

themselves. They argue this incorporates structural information about the spatial

and temporal relationships between O-D flows contained in the historical estimates

into the state-space model, though as a result this method also relies heavily on the

32



accuracy of the historical estimates as a baseline for online calibration [10]. Second,

they propose augmentation of the state in the formulation to include O-D parame-

ters from several prior intervals [9]. This allows for better modeling of longer-term

temporal effects as O-D demand from previous time intervals does impact link count

measurements, especially for a large-scale network. On the other hand, this increases

the computational cost of the method by increasing the dimension of the state vec-

tor, which is another crucial component of use of the method for large-scale networks.

These methods are validated on case studies with the Massachusetts Turnpike and an

expressway network in Amsterdam, both medium-scale networks with limited route

choice.

Since the earlier Kalman filtering work, there have been many variations aiming to

incorporate more structural information into the problem, often utilizing additional

sources of data from the network. Ashok [10, 11] proposes two other state-space model

formulations, one based on a state comprising departure rates and destination node

shares and the other based on a state that incorporates estimation of the dynamic

assignment matrix as well. Lu and Zhou [38] propose an approach using an analytical

representation of the cumulative flow diagram in the measurement equation to model

congestion scenarios involving bottlenecks and incidents. Barceló [13] incorporates

travel time data between sensors as measured using Bluetooth technology in place of

a traditional assignment matrix in the measurement equation. The resulting model is

solved using a Kalman filter, and empirical results are shown for two road networks

in Spain using the AIMSUN simulator. Similarly, Lu et al. [39] incorporates turning

volume data in an analytical model for dynamic assignment matrices, which is then

embedded in a state-space model. In general, these proposed methods use specific

types of data from the network being calibrated in order to better represent analyt-

ically the relationship between O-D demand and link counts. This in turn leads to

more restrictive applicability of the models, and for case studies provided, scalability

for large-scale problems is not shown as the networks used all have fewer than 300

O-D pairs, and often fewer than 100.

An approach proposed by Hashemi et al. [31] calibrates dynamic O-D demand
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in addition to parameters for flow propagation models using a modularized frame-

work. Through a series of consistency checks learned through a reinforcement learning

framework, real-time adjustments are made to model parameters through a traffic flow

propagation adjustment module and a demand adjustment module. Though multiple

types of parameters are calibrated within the framework, the calibration is sequential

and the modules operate independently. The performance of the calibration frame-

work is shown with real-world data from a section of the US-75 highway corridor in

Dallas, Texas, on a network of the highway and surrounding arterials and local roads.

Another interesting recent research direction has been determining a systematic

way to isolate which O-D demand variables to calibrate in real-time. This approach is

termed quasi-dynamic O-D demand estimation [23] and aims to impose more model

structure on demand evolution within the day both to reduce the dimension of the

problem for real-time implementation and to counteract poor prior demand estima-

tion. Marzano et al. [41] posit that imposing constraints like the linear dynamic evo-

lution of O-D demand and holding destination shares constant can lessen the issues

caused by sparsity of measurement data in the O-D calibration problem. Extending

this, Cascetta et al. [23] construct a quasi-dynamic O-D estimation framework using

traffic count measurements, assuming constant O-D shares (the fraction of demand

going to each destination node for a given origin node) over a longer period of time.

They discuss statistical and empirical tests that can be used to confirm the validity

of this modeling assumption, and apply a generalized least-squares algorithm under

this framework to calibrate O-D demand for a motorway network in northeast Italy

with 91 O-D pairs. Marzano [42] applies this framework to an extended Kalman fil-

ter approach for estimation and prediction of O-D demand. A promising application

of this quasi-dynamic framework is in improving the prior O-D demand parameters,

which can then be used as input for an online calibration approach.

The online calibration problem aims to tune simulator parameters, like those for

stochastic traffic simulators as is the focus of this thesis, in order to better model

and predict traffic behavior based on the most current information from the field.

In that context, it falls within the broader research area of traffic state estimation
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and prediction. Traffic state variables include link flows, densities, speeds, and travel

times. Using available data, the traffic state estimation and prediction problem aims

to model the state of traffic dynamics in a network at the current time and shortly into

the future. While this thesis focuses on parameter calibration, approaches from the

broader field of traffic state estimation and prediction that exploit analytical models

for structural information have relevance to the aims of this thesis. The remainder of

the literature review focuses on several of these approaches.

While much recent research in traffic state estimation and prediction has focused

on developing machine learning methods like Bayesian networks [58, 71], neural net-

works [44, 63, 68], boosting [70, 74], and time-series models like ARIMA [64] (an

introductory survey of these types of methods can be found in [62]), these methods

require a large amount of historical data to train and generally do not exploit much

problem-specific structure. On the other hand, there are several approaches that use

analytical traffic flow models for traffic state estimation and prediction. A significant

portion of these methods focus on traffic flow prediction for freeway networks based

on analytical models like the Cell Transmission Model (CTM) [26] and other first-

order flow models. State-space model formulations and Kalman filtering approaches

are also very common. Nanthawichit [45] employs a macroscopic traffic flow model

as the measurement equation of a state-space model where densities and space-mean

speeds comprise the state. Link flows and speeds from probe vehicle data are used as

observations. Anand [2] develops a similar approach, modified to accommodate the

heterogeneous and less lane-disciplined traffic behavior of Indian freeway networks.

An influential approach proposed by Wang and Papageorgiou [67] relies on a stochas-

tic, second-order macroscopic flow model for freeway traffic. Again, a state-space

model is formulated and solved using an extended Kalman filter. The estimation

results in the case study presented show good performance for the freeway segment

and boundary variables, and the time-dependent measurements fit well.

While the extended Kalman filtering approach is the most common method used

in the literature to deal with the nonlinearity of the relationships in traffic networks, a

disadvantage of the approach is its reliance on a linear approximation in the gradient

35



calculation. Alternative solution methods for state-space models, like particle filters

[43], unscented Kalman filters [46], and ensemble Kalman filters [1], avoid lineariza-

tion or any approximation of the gradient and have been applied to state estimation in

freeway networks with good predictive accuracy for link densities, speeds, and flows.

These methods deal with nonlinearities by use of sampling, though as a result, prove

to be more computationally costly since more samples are needed for more intricate,

higher-dimensional problems [46]. Further relaxations of the state-space model have

also been proposed. Chen and Rakha [24] propose a particle filtering technique to

predict travel times on freeway networks. Instead of specifying a state transition

model, they employ trends in historical data to generate prior distributions at each

time interval, which allows for the modeling of time-variant and non-Markovian dy-

namics. On the other hand, this approach requires a substantial amount of historical

data and relies heavily on the ability of that historical data to model current traffic

dynamics.

The state estimation and prediction approaches illustrate the limitations of an

analytical approach. Many of the traffic flow models that provide the foundation for

these approaches apply specifically to freeway networks and require particular types of

data and information about boundary conditions, like entry and exit rates for on- and

off-ramps to the network [49]. Some work has been done to extend the applicability

of these model-based methods and to incorporate other data sources. Yang et al. [69]

formulate a model for freeway traffic state estimation in Lagrangian space instead

of Eulerian space to utilize newer sources of mobile data (i.e., GPS, Bluetooth, cell

phone) in addition to more standard detector data. Other research has leveraged the

emerging technology of connected vehicles as a data source. Bekiaris-Liberis et al. [14]

employ a Kalman filtering approach for the estimation of density and flow on freeway

networks, using only average speed measurements from connected vehicles and a

minimal number of flow measurements from fixed sensors. Given the penetration

rate of connected vehicles in the network, the density of mixed traffic on freeway

segments can be estimated. Similarly, Emami et al. [28] apply a Kalman filter to

traffic flow prediction using data from connected vehicles, but in the context of urban

36



arterial networks. In a very small case study across two intersections, the performance

of the algorithm is measured across a variety of connected vehicle penetration rates,

network signal settings, and demand arrival rates. As the technology becomes more

widespread, they posit that connected vehicles will provide a low-cost means for

obtaining data for traffic flow prediction applications.

In addition to the incorporation of novel data sources, model-based traffic state

estimation and prediction algorithms have been extended to accommodate scenarios

where previously established methods have had difficulty. Adverse weather conditions

affect traffic dynamics on a network, primarily in terms of free-flow speed and link

capacity, and should be modeled differently than normal conditions [17]. Bie et al.

[17] adapt a second-order macroscopic traffic model for use in this context through

the embedding of weather-specific fundamental diagrams parameterized by recent

historical weather and traffic data. A case study using real data from a 10-kilometer

freeway in Edmonton, Canada shows the added benefit of modeling weather effects

on the estimation and prediction of speeds. Incident detection and its impact on the

traffic state has also proven to be a difficult task in traffic state estimation. Wang

et al. [65] propose an efficient particle filtering method that jointly estimates the

traffic state and detects the location and severity of incidents. A multiple model

particle filter is used to integrate the continuous macroscopic traffic model and the

discrete incident model [66]. Similarly to the weather modeling extension, the impact

of the incident on traffic dynamics is modeled through the fundamental diagram in

the macroscopic traffic model in terms of the number of lanes open to vehicular traffic.

Another avenue for recent research in traffic state estimation and prediction has

been algorithmic modifications to the standard Kalman filtering approach. The

Kalman filter is built on strong modeling assumptions, such as the assumption of

independent Gaussian noise in the transition and measurement equations of the state-

space model. A couple of approaches aim to model processes outside of these assump-

tions. Guo et al. [29] use an adaptive Kalman filter, which continually updates the

noise variances of the process, instead of using the standard Kalman filter assumption

of constant variance across time. The approach produces point and confidence inter-
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val forecasts for traffic flows on a freeway network, and empirical results show the

largest improvement in cases where traffic is highly volatile. Cai et al. [19] develop a

noise-immune Kalman filter approach for short-term traffic flow prediction. Whereas

the standard Kalman filter provides the minimum mean square error estimates for a

process with Gaussian noise assumptions, the noise-immune Kalman filter proposed

is less sensitive to non-Gaussian noise in the process being modeled. One specific

advantage of this modeling approach is its relative robustness to outliers in the mea-

surement data. While the case studies shown are of low dimension, the development

of a more flexible modeling framework is a promising contribution to the literature

of traffic state estimation.

An interesting research direction in the literature is the development of hybrid

algorithms that combine analytical models with models from machine learning. All-

strom et al. [1] apply an ensemble Kalman filter to a state-space model that fuses

a CTM model with an autoregressive neural network to predict speeds. The hybrid

approach improves travel time prediction for a small case study on a ring road net-

work in Stockholm. For a problem setting on a larger network of arterial links in

San Francisco, Hofleitner et al. [33] apply a similar hybrid approach incorporating

traffic flow theory with a machine learning framework to estimate and predict travel

time distributions. The aim of the approach is to take advantage of benefits of both

techniques—robustness to noisy data due to the historical data used to fit the Dy-

namic Bayesian Network and creation of forecasts using traffic flow theory principles

with physical relevance. In the case study, a small amount of streaming GPS probe

data is able to produce strong performance in the prediction of travel times on a San

Francisco network with 769 links.

1.3.1 Summary of existing literature

As seen in this literature review, there is a wealth of research on online calibra-

tion methods. Several approaches create frameworks for generic application to any

type of traffic model, with the goal of increasing their applicability to many different

problem contexts. These approaches also have the goal of jointly tuning parameters
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across demand and supply models in order to describe the intricate nonlinear inter-

actions with the simulator. While these methods provide a flexible framework for

online calibration, they sacrifice computational efficiency and problem-specific struc-

tural information that is utilized by other algorithms in the literature. In both real-

time origin-destination demand calibration and traffic state estimation and prediction

problems, the incorporation of analytical models that represent relationships between

parameters and measurements has been shown to both lead to accurate estimation

and alleviate the computational burden of more numerical black-box calibration tech-

niques [33]. In addition to these challenges, there is still a critical need to demonstrate

the scalability of online calibration for large-scale networks. The vast majority of the

case studies cited in the literature focus on problems of small or medium dimension

(i.e., less than a few hundred parameters). For the online calibration of stochastic

traffic simulators, an approach must be able to handle a problem with thousands

of parameters with a reasonable computational budget to be of practical value for

transportation practitioners.

1.4 Thesis contributions

This thesis makes several contributions to the state-of-the-art of online calibration.

Most significantly, a new algorithm for online calibration is presented based on a state-

space model framework solved by an extended Kalman filter. The algorithm provides

a general-purpose and comprehensive framework in that the method is flexible and

theoretically able to accommodate the online calibration of parameters of any type,

and is able to incorporate multiple types of field data under a joint calibration set-

up. The algorithm embeds information from an analytical (macroscopic) network

model that is both tractable and differentiable. In doing so, it utilizes problem-

specific network structure taken from the traffic simulator and the traffic network

being calibrated to improve the performance of the algorithm, differing from black-

box calibration algorithms in the literature. Additionally, the use of an analytical

model reduces the computational cost of online calibration in comparison to other
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extended Kalman filter approaches by eliminating the need for numerical gradient

approximation. By decreasing the number of simulator runs required at each step

of the calibration process, the algorithm provides an approach that will work with a

limited computational budget. The performance of the online calibration algorithm

proposed is demonstrated in several empirical case studies, through which its accuracy,

scalability, and real-time performance are shown. It is directly compared to relevant

benchmark algorithms, and the specific contexts in which it provides a competitive

advantage are detailed.

More specifically, this thesis also develops a computationally tractable and differ-

entiable analytical model for the special case of real-time O-D calibration that is able

to model traffic conditions on a large-scale network. The analytical network model,

which incorporates endogenous assignment, represents network attributes like O-D

demand, densities, and travel times as a system of nonlinear equations. The system

of equations scales linearly with the number of links in the network. The model pre-

sented is validated on two road networks, one small synthetic toy network and one

large-scale real-world network, and its ability to replicate link observations like counts

and densities is illustrated.

Finally, observations from the case studies are used to contribute to the ongoing

discussion of algorithmic and practical considerations that must be taken into account

for online calibration, both for the research community and practitioners. In the

process, the advantages and disadvantages of different approaches are examined.

1.5 Thesis outline

The remainder of the thesis is organized as follows. Chapter 2 describes the proposed

methodology for online calibration, starting from a general formulation of the on-

line calibration problem. Chapter 3 presents the algorithmic details of the proposed

approach along with a specific application to the problem of online O-D demand cal-

ibration. Chapter 4 presents a case study on the Florian toy network. Chapter 5

shows a more realistic application for the Singapore expressway network, in order to
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analyze the performance of the algorithm on a real-world network. Finally, Chapter 6

concludes with the major findings and research considerations gleaned from the case

studies. Possible future directions for exploration are also discussed.
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Chapter 2

The Metamodel EKF Algorithm

The online calibration problem is presented in a general formulation in Section 2.1

with supporting information about the different components. The state-space model

formulation is given in Section 2.2 along with definitions of the transition and mea-

surement equations. In Section 2.3, the general Kalman filtering approach is first

explained. Changes in the online calibration formulation and state-space model are

given. Finally, the proposed algorithm is presented in relation to other Kalman fil-

tering approaches from the literature.

2.1 Problem formulation

As noted in the previous chapter, stochastic traffic simulators are comprised of multi-

ple supply and demand models, each with its own set of parameters to be calibrated.

Although not all parameters need to be calibrated online, the interplay among models

has a significant impact on the outputs of the traffic simulator. As a result, joint cal-

ibration of parameters is crucial and offers advantages over a sequential or iterative

online calibration approach [3]. In addition, given the wide range of data sources

available in a real-time setting, it is useful to create an online calibration framework

that is adaptable to tuning parameters in response to multiple distinct types of field

data. Offline-calibrated parameter values provide a useful foundation for good online

calibration performance and can be incorporated into the online calibration problem
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through use as a priori estimates. The influence of each of these separate components

motivates a flexible and adaptable formulation of the online calibration problem.

In this thesis, the online parameter calibration problem is formulated as a nonlin-

ear optimization problem:

min
xℎ∈Ω

1
|𝒥 |

∑︁
𝑗∈𝒥

(𝑦ℎ
𝑗 − 𝑦𝑗(xℎ))2 + 𝑤

1
𝑛

⃦⃦⃦
xℎ − xℎ

𝑎

⃦⃦⃦2
for ℎ = 1, 2, 3, . . . (2.1)

The notation is defined as follows. A full list of notation used in the thesis is also

included in Appendix A.

xℎ vector of calibration parameters for time period ℎ;
xℎ

𝑎 vector of prior calibration parameter values for time period ℎ;
𝑦ℎ

𝑗 observed field measurement 𝑗 for time period ℎ;
𝑦𝑗(xℎ) expected simulator estimate of measurement 𝑗 with input parameters xℎ;
𝑤 weight parameter for prior information;
𝑛 dimension of parameter vector xℎ;
Ω set of constraints on the vector of calibration parameters;
𝒥 set of field measurements observed in real time.

For each time period ℎ in the simulation period, the online calibration problem is

represented as a nonlinear optimization problem with decision vector xℎ. The vector

xℎ can represent any combination of simulator parameters to be calibrated online,

ranging from demand parameters like origin-destination (O-D) flows and route choice

model parameters to supply parameters like link capacities and speed-density function

parameters. Not all model parameters need to be included in the decision variable

xℎ. The parameters to be calibrated in an online setting are often time-dependent;

they are the subset of parameters that need to be tuned to adjust for time-dependent

events like traffic incidents or weather that influence travel behavior in a shorter time

frame than those considered during offline calibration. The vector of prior calibration

parameter values xℎ
𝑎 represents baseline estimates for the model parameters, typically

provided by a previously-run offline calibration procedure.

The observed field measurements vector yℎ, with components 𝑦ℎ
𝑗 for each field

measurement 𝑗 in 𝒥 , can represent any set of surveillance data that captures prevail-
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ing traffic conditions on the network, such as link flows, speeds, and densities. The set

𝒥 is indexed by the number of available field measurements; different measurement

types such as link counts and densities provided by the same sensor are treated and

indexed separately. The measurements yℎ are real-time surveillance data generated

by ITS or similar means for each time period ℎ. The most common source of real-time

traffic data are often road sensors like inductive loop detectors, which provide point

measurements like links counts and speeds.

The simulator estimates vector ŷ(xℎ), with components 𝑦𝑗(xℎ) for each measure-

ment 𝑗 in 𝒥 , are the corresponding traffic measurements output by the traffic simula-

tor to be calibrated. As the simulator is stochastic, these estimates are often obtained

via an average over multiple replications of evaluating the simulator at the same set

of calibration parameters xℎ.

The above formulation aims to determine the optimal parameter values xℎ at

each time interval ℎ that minimize the combined sum of squared differences between

observed and simulated measurements in the traffic network and the distance from

prior calibration parameter values. The first component of the sum given in Equa-

tion 2.1 represents the distance between real-time field measurements and those same

network measurements as estimated by the simulator. Specifically, a set 𝒥 of net-

work measurements are gathered in real time from the field through sensors and other

surveillance methods. The corresponding measurements from the simulator are esti-

mated with calibration parameters xℎ as input, and the online calibration problem

aims to minimize the distance between the two vectors. The second component of

the sum given in Equation 2.1 represents the distance between the decision vector

and a set of prior calibration parameter values. As the online calibration problem

is typically underdetermined, with the number of available field measurements an

order of magnitude or more smaller than the number of parameters to be calibrated,

prior information is used both to regularize the optimization problem and to center

the search for parameter values around a set of previously-calibrated values. Both

components of the sum in Equation 2.1 are normalized by the number of terms in the

summation, given by the cardinality of the set 𝒥 and the dimension of xℎ respectively,
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and the weight parameter 𝑤 adjusts the relative importance of each component of

the objective function.

2.1.1 Online calibration challenges

The online calibration of stochastic traffic simulators is a difficult problem due to

the complexity of the supply and demand interactions modeled within the simulator.

The relationship between the input model parameters and the output of the stochastic

traffic simulator (e.g., link state estimates) does not have a closed-form expression.

In addition, the relationship is often nonlinear, non-convex, and non-differentiable;

thus, the objective function formulated in Equation 2.1 also has these properties.

For real-world traffic networks, online calibration becomes a high-dimensional op-

timization problem, as the number of parameters to be calibrated scales with network

size. This is particularly true for problems involving calibration of time-dependent

O-D matrices. Case studies presented in the literature solve online calibration prob-

lems for hundreds or thousands of parameters [18, 73]. The large-scale case study

presented in Chapter 5 has a calibration parameter vector of dimension 4050. On the

other hand, the set 𝒥 of observed field measurements is usually low-dimensional—

that is, the dimension of the measurement vector yℎ used to adjust the parameters

is typically an order of magnitude or more smaller than the calibration parameter

vector xℎ [73]. This leads to the online calibration problem being underdetermined.

For the case study presented in Chapter 5, the dimension of the measurement vector

yℎ is 172.

Finally and most crucially, traffic simulators are computationally expensive to

evaluate, which poses an issue for online calibration problems that must solve the

optimization problem on a limited computational budget. To be functional for prac-

titioners using these algorithms in a real-time setting, the online calibration problem

must be solved every time interval within a rolling-horizon framework, often on the

order of 5 to 30 minutes. These characteristics make online calibration a challeng-

ing optimization problem to solve, for which an accurate, but scalable and efficient,

approach is needed.
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2.2 State-space model

The online calibration problem is first formulated as a state-space model, an ap-

proach commonly found in the literature. The state-space model is a time-series

model that describes the evolution mechanism over time and the observation mecha-

nism for an underlying set of state variables. State-space models are defined entirely

by the state vector, a system of transition equations that describe the evolution of the

state through time, and a system of measurement equations that relate the state to

observed measurements. For dynamic systems like the one solved in the online cali-

bration formulation above, state-space model formulations are powerful restatements

of the problem, as they provide a simple causal framework that explicitly represents

movement of the system through time and ties underlying states to observable out-

puts. State-space models can be efficiently solved using recursive algorithms like

Kalman filtering. In the following subsections, the various components of the state-

space model formulation of the online calibration problem are provided.

2.2.1 State definition

The online calibration problem is formulated as a state-space model with the state

vector defined to be the model parameters xℎ to be calibrated at time interval ℎ as

defined in Equation 2.1. The dimension of the state vector is equal to the number

of simulator parameters to be calibrated. Note that while many state-space model

approaches in the literature define the state vector as deviations of the parameter

values from historical parameter values [3, 18], the proposed state-space model defines

the state vector as the absolute parameter values. The observed measurement vector

is comprised of the field data yℎ observed in real time at time interval ℎ on the traffic

network used during online calibration as defined in Equation 2.1.

2.2.2 Transition equation

The transition equation models the change in the state vector of calibration param-

eters from one time interval to the next. The transition equation for the proposed
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state-space model is a simple random walk

xℎ+1 = xℎ + uℎ for ℎ = 0, 1, 2, 3, . . . (2.2)

where the error term has a Gaussian distribution uℎ ∼ 𝒩 (0, Qℎ) for all ℎ with mean

zero and covariance matrix Qℎ. As noted in Section 1.3, and to be discussed further

in Section 6.2.1, the simple random walk transition equation may prove to be too

reductive of a modeling assumption, in which case, the transition equation can be

formulated as a higher-degree autoregressive process where the state at time interval

ℎ + 1 is a summation of linear transformations of the previous several states plus a

random error term. In that case, the transition equation would have the form

xℎ+1 =
ℎ∑︁

𝑞=ℎ+1−𝑝

F𝑞
ℎ+1x𝑞 + uℎ for ℎ = 𝑝 − 1, 𝑝, 𝑝 + 1, 𝑝 + 2, . . . (2.3)

where F𝑞
ℎ+1 are matrices modeling the relationship between the state at time 𝑞 and

the state at time ℎ+1 and the error term has a Gaussian distribution uℎ ∼ 𝒩 (0, Qℎ)

for all ℎ with mean zero and covariance matrix Qℎ. As formulated, each state xℎ+1

can be represented as a function of the previous states xℎ−𝑝+1, xℎ−𝑝+2, . . . , xℎ.

2.2.3 Measurement equation

Measurement equations detail the relationship between information available for use

in online calibration (field data, prior information) and the unknown parameter val-

ues that define the underlying state vector. The proposed state-space model uses two

types of measurement equations, in an approach similar to the one formulated by

Antoniou [3]. The first type of measurement equation gives the relationship between

the underlying state and the observed field measurements like sensor counts, speeds,

and densities; these are known as indirect measurements of the state. For the indirect

measurement equations, the relationship between parameters and surveillance infor-

mation is provided by the traffic simulator. The indirect measurement equation for
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the proposed state-space model is

yℎ = ŷ(xℎ) + vℎ
1 for ℎ = 0, 1, 2, 3, . . . (2.4)

where ŷ(·) is the functional representation of the simulator and the random error term

has a Gaussian distribution vℎ
1 ∼ 𝒩 (0, Rℎ

1 ) for all ℎ with mean zero and covariance

matrix Rℎ
1 . Note that the indirect measurement equation is nonlinear and has no

closed-form analytical expression as it is given by the traffic simulator. The second

type of measurement equation gives the relationship between the a priori values of the

model parameters and the underlying state; these types of measurement equations are

called direct measurement equations since they provide observations of the underlying

state vector itself and preliminary estimates of the calibration parameters. The direct

measurement equation for the proposed state-space model is

xℎ
𝑎 = xℎ + vℎ

2 for ℎ = 0, 1, 2, 3, . . . (2.5)

where the random error term has a Gaussian distribution vℎ
2 ∼ 𝒩 (0, Rℎ

2 ) for all ℎ

with mean zero and covariance matrix Rℎ
2 . Additionally, the random error terms uℎ,

vℎ
1 , and vℎ

2 are assumed to be independent.

2.2.4 Incorporation of prior information

As discussed previously, calibration often occurs in two stages starting with an of-

fline component that provides a baseline for average demand and supply behavior

throughout the simulation period followed by an online component. The goal of on-

line calibration is to adjust this offline-calibrated prior information accordingly as

real-time observations are gathered from the network. As such, the online calibration

problem performs a more localized search of the parameter space. Prior information

from offline calibration can be incorporated into the online calibration framework in

several ways. Ashok and Ben-Akiva [9] proposed the concept of deviations for the

O-D estimation and prediction problem, and Antoniou [3] expanded the use for a
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general online calibration framework, where the state vector of the state-space model

is formulated in terms of deviation from the offline calibrated or historical parameter

values. The approach is justified as incorporating as much historical information into

the formulation as possible by implicitly building temporal and spatial structural

information into the state definition. In addition, the deviation state formulation

is argued to better satisfy the Gaussian error assumptions of the Kalman filtering

approach. On the other hand, there is little flexibility in the incorporation of prior

information through deviations as regardless of the quality of the offline-calibrated

parameter values, they are utilized in the same manner.

In the proposed state-space model, prior information is instead utilized in the

form of additional direct measurement equations. The direct measurement equations

provide a preliminary estimate of the calibration parameters; the offline-calibrated

parameter values are precisely that. The use of direct measurement equations instead

of deviations allows for more control of the influence the prior parameter information

plays on the results of online calibration. The weight parameter 𝑤 in the formulation

given in Equation 2.1 can be adjusted according to the confidence placed in the

prior information for the particular online calibration problem. While this leads to

more algorithm parameters to tune to ensure correct algorithm outcomes, the added

flexibility also allows for less reliance on the deviations structure.

2.2.5 Complete state-space model

In summary, the state-space model proposed for the online calibration problem is

given as

xℎ+1 = xℎ + uℎ for ℎ = 0, 1, 2, 3, . . . (2.6)

yℎ = ŷ(xℎ) + vℎ
1 for ℎ = 0, 1, 2, 3, . . . (2.7)

xℎ
𝑎 = xℎ + vℎ

2 for ℎ = 0, 1, 2, 3, . . . (2.8)

This set of transition and measurement equations completely specifies the state-space

model, which is solved using Kalman filtering techniques, as described in Section 2.3.
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The random error terms uℎ, vℎ
1 , and vℎ

2 are assumed to have independent Gaussian

distributions, and random errors are assumed to be uncorrelated across time intervals

ℎ. These strong assumptions allow for Kalman filtering techniques to be applied to

solve the state-space model formulation of the online calibration problem, though

variations of the standard Kalman filtering algorithm have been developed to relax

the assumptions of the Gaussian random errors terms, for example in Chapter 4 of

Chui and Chen[25] and as detailed in Section 1.3.

2.3 Proposed algorithm

The state-space model laid out for the online calibration problem provides a compact

and efficient framework that describes the interactions of a dynamic system and allows

for an efficient estimation of the underlying state. In particular, a Kalman filtering

algorithm can be applied to the state-space model to find estimates for the state.

In this section, the general Kalman filtering approach is explained, followed by a

detailed description of the proposed extended Kalman filter (EKF) approach, coined

the Metamodel EKF.

2.3.1 Kalman filtering

Kalman filtering is a powerful tool for traffic prediction that can incorporate the

evolution of the traffic network through time considered in time-series models with

physical relationships found in the traffic system. Kalman filters can be thought

of as solving a hidden Markov model where the “hidden” state variables occupy a

continuous space as opposed to a discrete state space [55]. They consist of a set of

equations that describe the transition between hidden states of the Markov model

and the distribution of observed outcomes based on the hidden state, both of which

are built from the physical processes of the traffic network [54]. State estimation and

prediction using Kalman filtering is a two-step process of “predicting” and “updating.”

During the prediction step, the Kalman filter produces estimates of the current state

variables and their uncertainties from the estimates of the state variables at the
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previous time step. In the update step, when a new data observation is recorded, it

is used to update the previous prediction via a weighted average called the Kalman

gain.

Kalman filtering yields the minimal mean square error state estimate for linear

state-space models. At each time step ℎ, the algorithm recursively updates two

quantities—the underlying state estimate xℎ and the associated covariance matrix

Pℎ that specifies the uncertainty of the state estimate—according to the structure

provided by the transition and measurement equations and through comparison of the

current predicted measurements (based on the state estimate of the previous time step

xℎ−1 and all previously observed measurements y1, y2, . . . , yℎ−1) with newly observed

measurements yℎ. Because each step of the algorithm only relies on the previous state

and covariance matrix estimates, estimation and prediction using Kalman filtering is

computationally efficient in runtime and storage and can be done in real-time [54].

The recursive structure of the algorithm makes it a good approach for the online

calibration problem.

For the state-space model formulation of the online calibration problem given in

Section 2.2, the standard Kalman filter cannot be directly applied because the indi-

rect measurement equation, yℎ = ŷ(xℎ)+vℎ
1 , is nonlinear. Generally, relationships in

traffic networks are often nonlinear, and nonlinear variations of the Kalman filter are

used instead, as has been described in Section 1.3. For the proposed Metamodel EKF

algorithm, an extended Kalman filter (EKF) approach is used. The extended Kalman

filter allows for nonlinear transition and measurement equations by using local lin-

ear approximations of the equations at each step in the algorithm. If the transition

equation is nonlinear, a first-order Taylor series approximation of the equation cen-

tered at the current best state estimate is calculated and used in the time update

step. Similarly, if the measurement equation is nonlinear, a first-order Taylor se-

ries approximation of the measurement equation around the current state estimate is

calculated and used during the measurement update step.

The online calibration problem in its state-space formulation defined by Equa-

tion (2.8) has an auto-regressive (linear) transition equation, a nonlinear indirect
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measurement equation, and a linear direct measurement equation. Thus, an extended

Kalman filter can be applied to estimate the optimal calibration parameter values at

each time interval ℎ; no additional steps need to be taken with the transition equa-

tion, but a linearization step is added before the measurement update in the Kalman

filter algorithm. The exact steps of the online calibration EKF algorithm are given

in detail in Algorithm 1.

Algorithm 1 EKF for Online Calibration adapted from Antoniou [3]
Initialization:

x0|0 = x0 (2.9)
P0|0 = P0 (2.10)

for ℎ = 1 to 𝑁 do
Time Update:

xℎ|ℎ−1 = xℎ−1|ℎ−1 (2.11)
Pℎ|ℎ−1 = Pℎ−1|ℎ−1 + Qℎ (2.12)

Linearization:
Hℎ = 𝜕ŷ(x)

𝜕x

⃒⃒⃒⃒
x=xℎ|ℎ−1

(2.13)

Measurement Update:

Gℎ = Pℎ|ℎ−1(Hℎ)ᵀ
(︁
HℎPℎ|ℎ−1(Hℎ)ᵀ + Rℎ

)︁−1
(2.14)

xℎ|ℎ = xℎ|ℎ−1 + Gℎ
[︁
yℎ − ŷ(xℎ|ℎ−1)

]︁
(2.15)

Pℎ|ℎ = Pℎ|ℎ−1 − GℎHℎPℎ|ℎ−1 (2.16)

end for

The four main stages of the EKF algorithm are outlined below:

1. Initialization: Initial estimates x0 (Equation 2.9) and P0 (Equation 2.10) are

made for the underlying state and the state covariance matrix, respectively.

2. Time update: At each time step ℎ, the algorithm gives an estimate of the current

state xℎ and covariance matrix Pℎ based on the transition equation of the state-

space model and the best state estimate at the previous time step ℎ − 1. As

these predictions are made from the data available at time step ℎ − 1, they are
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denoted by xℎ|ℎ−1 (Equation 2.11) and Pℎ|ℎ−1 (Equation 2.12). This step is also

known as the prediction step.

3. Linearization: The nonlinear measurement equation is approximated by its

gradient at the current state estimate xℎ|ℎ−1 (Equation 2.13).

4. Measurement update: At each time step ℎ, newly observed measurements yℎ

are received. The state estimate xℎ|ℎ−1 and covariance matrix estimate Pℎ|ℎ−1

calculated during the prediction step are updated to account for this new data.

The expected measurement as given by the measurement equation based on the

predicted state xℎ|ℎ−1 is compared to the actual observed measurement yℎ, and

an adjustment factor Gℎ called the Kalman gain is calculated (Equation 2.14).

The predictions xℎ|ℎ−1 and Pℎ|ℎ−1 are then corrected using the Kalman gain

Gℎ. The new state estimate that takes into account the observation yℎ is made

based on all data available at time step ℎ and is denoted by xℎ|ℎ (Equation 2.15).

Similarly, the new covariance matrix estimate that takes into account the ob-

servation yℎ is denoted by Pℎ|ℎ (Equation 2.16). This step is also called the

correction step.

5. The prediction step and correction step are repeated at each time step ℎ. The

best estimate for the calibration parameters at time interval ℎ is given by xℎ|ℎ.

In addition to being a nonlinear function, note that ŷ(·) does not have a closed-form

analytical expression since it is given by the stochastic traffic simulator. Thus, ana-

lytical methods for deriving a first-order Taylor series approximation are not feasible.

Instead, numerical differentiation methods have been proposed for the linearization

step of the EKF as detailed in Section 1.3.

Two common numerical methods for estimating the gradient are central finite

differences (FD) and simultaneous perturbation (SP). In both methods, simulator

evaluations of slight perturbations near the current state estimate are used to ap-

proximate the gradient. For the central finite differences approach, a total of 2𝑛

additional simulator evaluations are needed for the first-order approximation, where
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𝑛 is the dimension of the state vector xℎ. For each dimension of the state vector, the

simulator is evaluated at two points near the current state estimate, a positive pertur-

bation and a negative perturbation in that dimension. The simulated measurements

at these two perturbations are then used to estimate the gradient in that dimen-

sion. Since the simulator is stochastic, these simulated measurements are impacted

by the simulator error that can lead to noisy approximations of the gradient in that

dimension. To reduce the impact of simulator error, multiple simulator replications

at the same perturbed parameter values are often used and averaged; in this case, the

number of additional simulator evaluations needed for the first-order approximation

is multiplied by the number of replications used. For the simultaneous perturbation

approach, all dimensions are randomly perturbed at the same time, following the

conditions laid out by Spall [56]. The gradient approximation requires two additional

simulator evaluations, regardless of the dimension of the state vector; one in the pos-

itive direction of the random perturbation vector and one in the negative direction.

Simultaneous perturbation, while significantly faster and more scalable, sacrifices ac-

curacy compared to central finite differences [5]. Due to the computational cost of

numerically evaluating the gradient of the simulator, the linearization step of the

extended Kalman filter algorithm is the most significant factor in the computational

complexity of the algorithm, especially for high-dimensional online calibration prob-

lems. The use of a non-analytical measurement equation in the state-space model

causes the algorithm to resort to numerical differentiation, which greatly impacts the

speed and accuracy of the calibration algorithm.

In general, Kalman filtering provides a recursive and thus computationally efficient

method for attaining the minimal mean squared error solution for linear state-space

models. The extended Kalman filter allows for the method to be applied to the pro-

posed state-space model with a nonlinear indirect measurement equation. The main

drawback of the state-space model as currently formulated is the non-analytical mea-

surement equation which requires numerical differentiation in the first-order Taylor

series linearization step of the extended Kalman filter algorithm. The proposed Meta-

model EKF algorithm takes a step around this issue; an analytical approximation of
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the indirect measurement equation in the state-space model formulation is used as

detailed in the next section.

2.3.2 Metamodel Extended Kalman Filter

In the proposed Metamodel EKF algorithm, an analytical approximation for the

simulator is substituted for the actual stochastic traffic simulator in the state-space

model. The analytical approximation, which is called the metamodel, provides a re-

lationship between calibration parameters and observed measurements similar to the

simulator; the difference is the metamodel is analytical, computationally tractable,

and differentiable. This substitution in the state-space model, and in particular the

indirect measurement equation given in Equation 2.4, leads to a completely analyti-

cal state-space model that can be solved using an extended Kalman filter algorithm

without use of numerical differentiation methods for the linearization step. Eliminat-

ing the need for numerical gradient approximations involving multiple evaluations of

the traffic simulator leads to an analytically tractable and less computationally costly

algorithm.

In addition, the proposed metamodel contains problem-specific structural infor-

mation from an analytical traffic model that relates the calibration parameters to

the observed measurements. The problem-specific and model-driven information in

the metamodel is embedded in the state-space model formulation with the aim of

improving the quality of the parameter estimates found during the measurement up-

date step of the extended Kalman filter algorithm. The general idea of formulating

a metamodel with problem-specific information to build a computationally efficient

algorithm has shown success in other continuous transportation problems like offline

calibration [72] and congestion pricing [47].

In replacing the stochastic traffic simulator with a metamodel, the Metamodel

EKF algorithm solves the following optimization problem, similar to the one presented
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in Equation (2.1):

min
xℎ∈Ω

1
|𝒥 |

∑︁
𝑗∈𝒥

(𝑦ℎ
𝑗 − 𝑚𝑗(xℎ))2 + 𝑤

1
𝑛

⃦⃦⃦
xℎ − xℎ

𝑎

⃦⃦⃦2
for ℎ = 1, 2, 3, . . . (2.17)

with the same notation as defined for Equation (2.1) but where m(xℎ) is the meta-

model estimate at time interval ℎ of the observed measurements given calibration

parameters xℎ as input. The metamodel has components 𝑚𝑗(xℎ) for each field mea-

surement 𝑗 in 𝒥 . If the metamodel m(·) is a good approximation for the stochastic

traffic simulator ŷ(·), the parameter values computed as the solution to the optimiza-

tion problem given in Equation (2.17) will be a good estimate of the optimal parameter

values for the online calibration problem given by Equation (2.1). The solution to

the optimization problem in Equation (2.17) at each time interval ℎ is found using

the Metamodel EKF algorithm found in Algorithm 2. The original state-space model

formulation was given in Equation 2.8 with the state xℎ defined to be the parameters

to be calibrated. The corresponding state-space model solved by the Metamodel EKF

algorithm has the same state vector and transition equation definitions, but the new

indirect measurement equation is given by

yℎ = m(xℎ) + vℎ
1 for ℎ = 0, 1, 2, 3, . . . (2.18)

with the same assumptions as in Equation (2.4) on the random error vector vℎ
1 . This

state-space formulation is completely analytical.

2.3.3 Algorithm details

The full Metamodel Extended Kalman Filter (Metamodel EKF) algorithm is given in

Algorithm 2. The basic mechanism of the extended Kalman filter approach remains

the same as in Algorithm 1, with time update and measurement update steps, but

there are several key adjustments made to accommodate the metamodel approxima-

tion. First, some notation needs to be established. As mentioned in the previous

section, the metamodel m(·) is an analytical approximation of the stochastic traffic
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simulator ŷ(·). Each component 𝑚𝑗(·) of the metamodel, an approximation of field

measurement 𝑗 in the set 𝒥 , is a parametric function with metamodel parameters

𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , and 𝛾ℎ
𝑗 for time interval ℎ. The metamodel also includes an analytical traffic

model q(·) with components 𝑞𝑗(·) that provides problem-specific structural informa-

tion in the metamodel formulation. Further descriptions of these concepts are found

in Section 3.1.

The Metamodel EKF algorithm has several different components. First, an offline

phase is added to the EKF algorithm during which a database of parameter candidates

are generated and evaluated with the simulator (and analytical model). These samples

of the state vector xℎ are accumulated in order to better approximate the traffic

simulator with an analytical metamodel. In the algorithmic design, this phase takes

place offline, which allows for samples to be collected according to a more general

and free-ranging sampling procedure separate from the computational constraints of

the online calibration problem. Discussion of what and how parameter candidates

are chosen is found in Section 3.2.

Second, additional steps to the extended Kalman filter algorithm are needed to

construct a local analytical approximation of the traffic simulator. To prioritize the

local accuracy of the metamodel approximation near the current state estimate xℎ|ℎ−1,

the simulator is evaluated (and also the analytical model) a number of times at pa-

rameter candidates near or at the current state estimate xℎ|ℎ−1 before the linearization

step. The number of parameter candidates generated online depends on the compu-

tation budget of the online calibration problem. Once these points are generated, the

metamodel parameters 𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , and 𝛾ℎ
𝑗 are re-fit with the set of parameter candidates

collected so far to provide the most up-to-date approximation of the simulator. De-

tails on the methodology of how the metamodel parameters are fit can be found in

Section 3.2.

Once the metamodel has been updated, the quantities q(xℎ|ℎ−1) and 𝜕q(x)
𝜕x

⃒⃒⃒⃒
x=xℎ|ℎ−1

are computed for use in the linearization and measurement update steps. The lin-

earization step shown in Equation 2.23 calculates the gradient of the analytical meta-

model m(·) instead of the traffic simulator ŷ(·). The calculation of the metamodel
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gradient is detailed in Section 3.1. This gradient is then used to calculate the Kalman

gain and update the state estimate to incorporate the new measurement yℎ in the

measurement update.

In summary, within the extended Kalman filter algorithm, replacing the traffic

simulator with an analytical metamodel leads to the following changes:

∙ Many evaluations of the stochastic traffic simulator can be run offline. (It

may be run online some number of times around the current state estimate to

ensure better fit of the metamodel; this component of the experimental design

can be adapted to the specific problem context.) The offline evaluations of the

simulator are used to generate calibration parameter points with which to fit

the metamodel during the online phase.

∙ At each time interval ℎ in the EKF, the components 𝑚𝑗(·) of the metamodel

are re-fit before the linearization and measurement update steps to the current

set of simulator-evaluated points.

∙ The linearization step is done analytically for the fitted metamodel m(·) instead

of numerically for the traffic simulator ŷ(·). Similarly, the measurement update

is completed using the fitted metamodel instead of the simulator.

2.4 Conclusion

The Metamodel EKF algorithm proposed in this chapter aims to create significant

gains in the efficiency and accuracy of online calibration methods by utilizing the

network-specific structure of the problem. The algorithm solves the online calibra-

tion problem formulated in Equation (2.1) using a hybrid approach that embeds a

metamodel approximation of the traffic simulator in place of the simulator within

an extended Kalman filter approach. As detailed above, embedding this analytically

differentiable metamodel approximation in the extended Kalman filter decreases the

computational cost of the linearization step at each time step ℎ. In the following chap-

ter, details of the metamodel form and estimation are given. Examples of how the
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Algorithm 2 Metamodel EKF for Online Calibration
Offline Phase
Offline Point Generation: generate a set of calibration parameter candidates
x1, x2, . . ., and evaluate with simulator ŷ(·) and analytical traffic model q(·) to
create a bank of simulator-evaluated points (x1, ŷ(x1), q(x1)), (x2, ŷ(x2), q(x2)), . . .

Online Phase
Initialization:

x0|0 = x0 (2.19)
P0|0 = P0 (2.20)

for ℎ = 1 to 𝑁 do
Time Update:

xℎ|ℎ−1 = xℎ−1|ℎ−1 (2.21)
Pℎ|ℎ−1 = Pℎ−1|ℎ−1 + Qℎ (2.22)

Online Point Generation: generate a set of local parameter candidates
xℎ,1, xℎ,2, . . ., close to xℎ|ℎ−1 and evaluate with simulator ŷ(·) and analytical
traffic model q(·)

Metamodel Update: fit 𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , and 𝛾ℎ
𝑗 for 𝑗 ∈ 𝒥

Analytical Model Evaluation: compute q(xℎ|ℎ−1) and 𝜕q(x)
𝜕x

⃒⃒⃒⃒
x=xℎ|ℎ−1

Linearization:
Hℎ = 𝜕m(x)

𝜕x

⃒⃒⃒⃒
x=xℎ|ℎ−1

(2.23)

Measurement Update:

Gℎ = Pℎ|ℎ−1(Hℎ)ᵀ
(︁
HℎPℎ|ℎ−1(Hℎ)ᵀ + Rℎ

)︁−1
(2.24)

xℎ|ℎ = xℎ|ℎ−1 + Gℎ
[︁
yℎ − m(xℎ|ℎ−1)

]︁
(2.25)

Pℎ|ℎ = Pℎ|ℎ−1 − GℎHℎPℎ|ℎ−1 (2.26)

end for
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metamodel can be adapted for different calibration parameters and measurements are

given, and the application of the proposed online calibration approach to the online

O-D demand calibration problem is detailed at length.
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Chapter 3

Metamodel Development and

Algorithmic Considerations

In the previous chapter, a broad outline of the proposed Metamodel Extended Kalman

Filter (Metamodel EKF) algorithm was described. In addition, the relationship be-

tween the Metamodel EKF approach and other extended Kalman filter approaches

for the online calibration problem was delineated. In this chapter, the components

of the Metamodel EKF algorithm are elaborated upon in full, particularly the for-

mulation and fitting of the metamodel approximation, as well as practical considera-

tions for the application of the proposed algorithm in various contexts. To illustrate

how the general Metamodel EKF framework can be applied to a specific online cali-

bration problem, the online origin-destination (O-D) demand calibration problem is

formulated and an explicit implementation of the Metamodel EKF algorithm for the

problem is given. A macroscopic analytical network model for the O-D calibration

problem is presented and subsequently validated in the case studies presented in later

chapters.

3.1 Metamodel formulation

The goal of the metamodel is to create a tractable and analytically differentiable

approximation of the relationship between calibration parameters and network at-
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tributes as represented by the stochastic traffic simulator ŷ(·), and thus requires a

formulation that can be adapted to any set of parameters or network measurements.

Metamodels can generally be classified as either functional models, which are general-

purpose functions that can approximate any arbitrary function (e.g., polynomials), or

physical models, which are functions that incorporate problem-specific information.

The metamodel formulation in the Metamodel EKF algorithm combines ideas from

both functional and physical models, an approach that has seen success in offline

calibration [72].

In order to achieve this, the formulation of the metamodel m(·) makes use of

information from a problem-specific macroscopic network model denoted by q(·).

The analytical network model is chosen to provide a computationally tractable and

differentiable relationship between the calibration parameters and the observed field

measurements and contains structural information about the traffic network being

simulated. For each measurement 𝑗 in set 𝒥 , the metamodel formulation is given by

𝑚𝑗(xℎ, 𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , 𝛾ℎ
𝑗 ) = 𝛼ℎ

𝑗 𝑞𝑗(xℎ) + 𝜑(xℎ, 𝛽ℎ
𝑗 , 𝛾ℎ

𝑗 ) (3.1)

which gives the observed measurement 𝑗 at time step ℎ as a function of the cali-

bration parameters xℎ and metamodel parameters 𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , and 𝛾ℎ
𝑗 . The 𝑚𝑗(·) are

the components that make up the metamodel m(·). Each 𝑚𝑗(·) gives an analytical

approximation for the simulated observation 𝑦ℎ
𝑗 corresponding to field measurement

𝑦ℎ
𝑗 . Note that a separate metamodel component is formulated for each measurement

𝑗 in set 𝒥 . The metamodel parameters 𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , and 𝛾ℎ
𝑗 are re-fit at each calibration

interval according to the method detailed in Section 3.2.

The metamodel formulation is comprised of two components. The first compo-

nent 𝛼ℎ
𝑗 𝑞𝑗(xℎ) emulates a physical metamodel by deriving problem-specific informa-

tion from the analytical macroscopic traffic model denoted by q(·) with components

𝑞𝑗(·). The expression 𝑞𝑗(xℎ) represents the estimated measurement 𝑗 found using the

analytical traffic model with parameters set to xℎ. The traffic model provides the

metamodel with a high-level analytical approximation of the relationship between
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calibration parameters and observed measurements output by the simulator. The

second component 𝜑(xℎ, 𝛽ℎ
𝑗 , 𝛾ℎ

𝑗 ) is a functional (i.e., general-purpose) term, with pa-

rameters 𝛽ℎ
𝑗 and 𝛾ℎ

𝑗 , used as a local error correction around the calibration parameter

values xℎ. This component emulates a functional metamodel and can be a polynomial

or another general-purpose function of the calibration parameters xℎ. Depending on

the problem setting, the functional component is adaptable to the needs and model-

ing constraints and can even incorporate problem-specific information (e.g., network

topology, time-delay characteristics of the network) as well, so long as it is analytically

differentiable.

The general form of the metamodel laid out in Equation 3.1 can be interpreted as

a problem-specific analytical model of the simulator 𝑞𝑗(·) that is corrected by a scaling

parameter 𝛼ℎ
𝑗 and an additive local correction term 𝜑(·). The aim of the analytical

traffic model is to provide a good global approximation of the traffic measurement

on the network, while the functional component of the metamodel is formulated to

provide a good local approximation around the current state. Given the metamodel

formulation in Equation 3.1, the gradient calculation found in Equation 2.23 of Al-

gorithm 2 is

𝜕𝑚𝑗(x)
𝜕x

⃒⃒⃒⃒
x=xℎ|ℎ−1

= 𝛼ℎ
𝑗

𝜕𝑞𝑗(x)
𝜕x

⃒⃒⃒⃒
x=xℎ|ℎ−1

+
𝜕𝜑(x; 𝛽ℎ

𝑗 , 𝛾ℎ
𝑗 )

𝜕x

⃒⃒⃒⃒
x=xℎ|ℎ−1

(3.2)

where both 𝜕𝑞𝑗

𝜕x and 𝜕𝜑
𝜕x have analytical expressions since both are analytically differ-

entiable.

3.1.1 Analytical traffic model

The analytical traffic model is a crucial component of the metamodel in that it is

the primary contributor of problem-specific information, which is used to contribute

structure to a general-purpose black box calibration method and improve the com-

putational efficiency of the algorithm. While there is some flexibility in how the

analytical traffic model is formulated, there are several requirements that must be

satisfied. First, it must be an analytically tractable and differentiable model relat-
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ing every calibration parameter in state vector xℎ to every simulation-based network

metric (with corresponding field measurement) in ŷℎ. For calibration problems that

involve intricate traffic behaviors on a large-scale urban road network, building a

custom analytical model for the specific problem setting (e.g., choice of calibration

parameters and performance metrics) can be difficult, and thus is a limitation of

the proposed algorithm. The primary reason to use an analytical metamodel is to

avoid the computational costs of numerical differentiation during the linearization

step of the extended Kalman Filter algorithm; calculating the gradient of the analyti-

cal model (as well as solving the analytical model) should be computationally feasible.

Second, in order for the Metamodel EKF approach to be scalable for high-dimensional

problems and large-scale networks, the traffic model should also be scalable in terms

of evaluation and differentiation.

As long as it satisfies these requirements, the analytical traffic model can incor-

porate a number of different concepts from traffic flow theory or queueing theory in

its representation of the road network, as well as problem-specific information from

the traffic simulator being calibrated. For the offline calibration problem considered

by Zhang et al. [72], the road network is modeled as a probabilistic queueing network

where each link is represented by a stochastic point queue. An example of an analyt-

ical traffic model for the online origin-destination (O-D) demand calibration problem

is presented in Section 3.3.

3.2 Fitting the metamodel

Since the metamodel is used in the Metamodel EKF algorithm as a local analytical

approximation of the simulator, it is essential that the procedure for fitting the meta-

model to the traffic simulator provides the best local fit at the current state estimate

given all available simulator information at each point in time. The fitting process

is comprised of two steps—first information about the simulator-based relationship

between calibration parameters and measurement outputs must be gathered, then the

metamodel parameters must be fit to best approximate this relationship. As more
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information from the traffic simulator is gained through the accumulation of simula-

tor observations and as the current state estimate changes, the fit of the metamodel

parameters should be updated.

3.2.1 Generating simulator-evaluated observations

Observations of the relationship between calibration parameters xℎ and simulator

outputs ŷℎ as governed by the stochastic traffic simulator are generated and accumu-

lated to improve the fit of the metamodel approximation. These observations can be

evaluated either in the offline phase or in the online phase immediately before esti-

mating the metamodel parameters. The two phases of generating simulator-evaluated

observations serve different purposes. In the offline phase, there is less of a constraint

on the computational budget, and the simulator can be evaluated for a set of trial

calibration parameters with the aim of improving the metamodel fit during the online

phase. The sampling method for these trial points may be adapted to the problem-

specific context, but should provide a bank of simulator-evaluated observations that

span the space of realistic parameter settings. In the online phase, the computational

budget is limited; the series of steps encompassing (1) generating simulator-evaluated

observations, (2) re-fitting the metamodel parameters, (3) calculating the gradient of

the metamodel must all occur in the time interval ℎ, which is realistically on the or-

der of 5 to 30 minutes. Any simulator-evaluated observations generated in the online

phase are in the service of building a good local approximation of the simulator. As

such, the parameter candidates should be focused on the sample space around the

current state estimate.

Particularly for the offline phase, some consideration must be taken in how the

trial points are evaluated by the traffic simulator, and how simulator outputs are

measured. More specifically, the simulator-evaluated points may have been gener-

ated with different initial conditions than the current conditions of the simulator

being approximated by the metamodel. There are a few options for generating these

simulator-evaluated observations. In the first case, the traffic simulator may be evalu-

ated in a time-independent sense. The initial conditions of the simulator are controlled
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through the use of a pre-specified warm-up period and fixed warm-up demand. In

using these points to approximate the simulator during online calibration, the result-

ing metamodel will be less reflective of the specific initial conditions at the current

time interval but more points may be available with which to fit the metamodel. In

the second case, the metamodel can be fit using only points generated during the on-

line phase, with traffic conditions mirroring those in the traffic simulator. The exact

starting conditions are replicated, but the metamodel is fit to fewer points and the

computational benefit of evaluating simulator points offline is lessened. Finally, in the

third case, all simulator-evaluated observations are used but a metric to characterize

the similarity of initial conditions to the current conditions of the traffic simulator

is used to weight the importance of each observation in fitting the metamodel. This

concept of identifying and quantifying the similarity of different transient states of

the traffic simulator may be an interesting direction for future analysis.

3.2.2 Estimating the metamodel parameters

Given a bank of simulator-evaluated observations, the parameters 𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , and 𝛾ℎ
𝑗

of each metamodel component 𝑚𝑗(xℎ, 𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , 𝛾ℎ
𝑗 ) are estimated at time interval ℎ to

best fit the simulator before being used in the linearization and measurement update

steps. At each time step ℎ, the metamodel component for each measurement 𝑗 is fit to

the current set of simulator-evaluated points. By fitting the metamodel parameters

at each time step, the approximation of the traffic simulator continues to improve

with the availability of each new simulation evaluation. In addition, the metamodel

parameters are updated to provide a local approximation of the simulator at the cur-

rent state estimate xℎ|ℎ−1. If at time step ℎ the set of calibration parameters that

have been evaluated by the simulator is given by {x1, x2, . . . , x𝑁} with corresponding

simulator output for measurement 𝑗 of {𝑦𝑗(x1), 𝑦𝑗(x2), . . . , 𝑦𝑗(x𝑁)}, the metamodel

parameters 𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , and 𝛾ℎ
𝑗 are fit by solving the weighted least-squares minimiza-

tion problem minimizing the distance between simulator estimates and metamodel
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estimates:

min
𝛼ℎ

𝑗 ,𝛽ℎ
𝑗 ,𝛾ℎ

𝑗

𝑁∑︁
𝑖=1

𝛿ℎ
𝑖

(︁
𝑦𝑗(x𝑖) − 𝑚𝑗(x𝑖, 𝛼ℎ

𝑗 , 𝛽ℎ
𝑗 , 𝛾ℎ

𝑗 )
)︁2

(3.3)

where 𝛿ℎ
𝑖 is the weight assigned to point x𝑖 at time interval ℎ. The weights 𝛿ℎ

𝑖 are

inversely proportional to the 𝐿2 distance of the simulated point x𝑖 to the current state

estimate; that is, 𝛿ℎ
𝑖 = 1/

(︁
1 +

⃦⃦⃦
x𝑖 − xℎ|ℎ−1

⃦⃦⃦)︁
. The weighted least-squares approach

emphasizes calibration parameter points closer to the current state estimate xℎ|ℎ−1

to prioritize that the metamodel is a local approximation of the simulator and its

gradient. In the case where the number of simulator-evaluated points is fewer than

the number of metamodel parameters being estimated, regularization is used to ensure

the least-squares matrix is always full rank.

3.3 Online O-D demand calibration

In the previous sections, a general framework for the Metamodel EKF algorithm has

been laid out including broad specifications of algorithmic steps and construction of

the metamodel. In order to illustrate the flexibility of the approach to accommodate

any set of calibration parameters and field measurements, the descriptions are given

at a high level and the adaptability of the metamodel is emphasized. In this section,

a specific implementation of the Metamodel EKF is provided for the online origin-

destination (O-D) demand calibration problem. In applying the algorithm to this

specific setting, concrete examples of the analytical network model, the metamodel

formulation, and the metamodel fitting process are presented.

As summarized in Section 1.3, the online O-D demand calibration problem is

a well-studied problem in the literature. In general, the aim is to identify time-

dependent O-D matrices as inputs to the traffic simulator that minimize the distance

between network attributes (often link counts) obtained from real-time field measure-

ments and those output by the simulator. In the formulation given in Section 2.1,
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the online O-D calibration problem is:

min
0≤xℎ≤xmax

1
|𝒥 |

∑︁
𝑗∈𝒥

(𝑦ℎ
𝑗 − 𝑦𝑗(xℎ))2 + 𝑤

1
𝑛

⃦⃦⃦
xℎ − xℎ

𝑎

⃦⃦⃦2
for ℎ = 1, 2, 3, . . . (3.4)

The notation is defined as follows:

xℎ vector of O-D demand for time period ℎ;
xℎ

𝑎 vector of prior O-D demand for time period ℎ;
𝑦ℎ

𝑗 observed field measurement 𝑗 for time period ℎ;
𝑦𝑗(xℎ) expected simulator estimate of measurement 𝑗

with input O-D demand parameters xℎ;
𝑤 weight parameter for prior O-D demand;
𝑛 number of O-D pairs in xℎ;
xmax upper bound vector for O-D demand;
𝒥 set of field measurements observed.

For calibrating O-D demand in an online setting, the most common field measure-

ments used are link counts gathered from a set of sensors deployed through the road

network. The formulation above allows for other types of field measurements as well.

The prior O-D demand xℎ
𝑎 in this scenario is often generated with an offline calibra-

tion algorithm and should provide a set of realistic (i.e., consistent with historical

traffic patterns for the network) baseline parameter values. The weight parameter 𝑤

can adjust the relative importance of the prior O-D demand values prior to the online

calibration process, depending on the reliability or recency of the offline calibration

values on a problem-specific basis.

3.3.1 Analytical traffic model for O-D calibration

In this section, an analytical traffic model for the online O-D demand calibration

problem is formulated. This model provides an analytical and differentiable map-

ping of O-D demand parameters to network metrics, specifically link flows, densities,

speeds, and travel times. For an online O-D demand calibration problem where the

field measurements are a subset of these metrics, this analytical model can be used

in the formulation of the metamodel. It also contributes to a general understanding
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of the type of problem-specific structural information that can be incorporated in the

metamodel approximation of the simulator.

The analytical model is implemented as a system of 𝑛 nonlinear equations for a

network with 𝑛 links, which makes it scalable for high-dimensional online O-D cali-

bration problems. The model considers the impact of endogenous traffic assignment

(route choice probabilities are defined as a function of the O-D demands), which allows

for a more realistic model, and is constructed using a multinomial logit route choice

model and an approximation of the fundamental diagram relationship. These com-

ponents introduce problem-specific information about network topology and traffic

flow into the analytical model. While the model is solved as a system of 𝑛 nonlin-

ear equations, one for each link in the network, the following discussion breaks each

nonlinear equation into six distinct components (represented by Equation 3.5 through

Equation 3.10) for clarity’s sake. Thus, for each link 𝑖 in the network, the formulation

of the analytical model is given by the following equations:

𝑦𝑖 = 1
𝑛𝑖

∑︁
𝑟∈ℛ1(𝑖)

𝑃 (𝑟)𝑑𝒪(𝑟) (3.5)

𝑃 (𝑟) = 𝑒𝜃𝑡𝑟∑︀
𝑗∈ℛ2(𝒪(𝑟))

𝑒𝜃𝑡𝑗
(3.6)

𝑡𝑟 =
∑︁

𝑖∈ℒ(𝑟)
𝜏𝑖 (3.7)

𝜏𝑖 = ℓ𝑖

𝑣𝑖

(3.8)

𝑣𝑖 = 𝑣max
𝑖

(︃
1 −

(︃
𝑘𝑖

𝑘jam
𝑖

)︃𝛼1,𝑖
)︃𝛼2,𝑖

(3.9)

𝑘𝑖 = 𝑐
𝑘jam

𝑖

𝑞cap 𝑦𝑖 (3.10)
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Endogenous variables
𝑑𝑠 expected hourly demand for O-D pair 𝑠;
𝑦𝑖 expected hourly demand per lane for link 𝑖;
𝑘𝑖 expected density per lane for link 𝑖;
𝑣𝑖 expected (space-mean) speed for link 𝑖;
𝜏𝑖 expected travel time for link 𝑖;
𝑡𝑟 expected travel time for route 𝑟;
𝑃 (𝑟) route choice probability for route 𝑟.

Exogenous variables
𝑘jam

𝑖 jam density per lane of link 𝑖;
𝑣max

𝑖 maximum speed of link 𝑖;
𝑞cap lane flow capacity;
ℓ𝑖 average lane length of link 𝑖;
𝑛𝑖 number of lanes of link 𝑖;
𝛼1,𝑖, 𝛼2,𝑖 fundamental diagram parameters of link 𝑖;
𝜃 travel time coefficient in the route choice model;
𝑐 scaling parameter common to all links;
𝒪(𝑟) O-D pair of route 𝑟;
ℛ1(𝑖) set of routes that include link 𝑖;
ℛ2(𝑠) set of routes of O-D pair 𝑠;
ℒ(𝑟) set of links of route 𝑟.

The equations of the analytical model are discussed one by one. Equation 3.5 defines

the expected hourly demand per lane on link 𝑖, 𝑦𝑖, as the sum of the expected route

demand across all routes that include link 𝑖. The expected route demand is defined

as the expected O-D demand for the O-D pair corresponding to the route multiplied

by the probability of demand for the O-D pair choosing that route, given by the route

choice probability 𝑃 (𝑟). The route choice probability is calculated in Equation 3.6

using a simple multinomial logit model with utility functions that only depend on

route travel time 𝑡𝑟. Note that the route choice set for each O-D pair is fixed; the

set ℛ2(𝑠) is exogenous. In Equation 3.7, the route travel time 𝑡𝑟 is defined as the

sum of the expected travel times for all links that comprise route 𝑟. The expected

travel time 𝜏𝑖 of link 𝑖 is calculated as the average link length, as averaged over all

lanes of the link, divided by the expected space-mean speed of the link, denoted 𝑣𝑖

(Equation 3.8). Equation 3.9 defines the relationship between expected speed and

expected density per lane on link 𝑖. The equation is a differentiable approximation of
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the fundamental diagram used by the mesoscopic simulator used in the case studies in

the following chapters (DynaMIT-R). A differentiable approximation of the equation

is used to maintain the differentiability of the analytical traffic model. In the final

equation, Equation 3.10, the expected density per lane for link 𝑖, 𝑘𝑖, is assumed to

follow a linear relationship with the expected demand per lane for link 𝑖, given as 𝑦𝑖.

The ratio of the expected density 𝑘𝑖 to the jam density 𝑘jam
𝑖 is assumed to be equal

to the ratio of expected demand 𝑦𝑖 to flow capacity 𝑞cap, to a scaling factor 𝑐 common

to all links. The scaling factor is fit based on validation experiments for the network.

For the case studies detailed in the thesis, 𝑐 is set to 1
6 .

Outputs of the analytical traffic model are obtained by simultaneously solving the

system of equations for each link given by Equation 3.5 through Equation 3.10 for all

links in the network. The analytical derivatives of each of the nonlinear equations have

also been derived, so calculating the gradient is just a matter of evaluating another

system of nonlinear equations. Given O-D demand parameters as inputs (given by

𝑑𝒪(𝑟) in Equation 3.5) and specifying the exogenous variables, the analytical model

solution derives estimates for network attributes that correspond to both simulator

outputs and field measurements—link counts (𝑦𝑖), densities (𝑘𝑖), space-mean speeds

(𝑣𝑖), and route travel times (𝑡𝑟). While the formulation represented by Equation 3.5

through Equation 3.10 separates the mapping of O-D demand to network attributes

into six distinct equations, they can be consolidated into a single nonlinear equation

per link. Thus, a road network with 𝑛 links can be implemented as a system of 𝑛

nonlinear equations. More specifically, it scales linearly with the number of links in

the network and independently of network attributes like link length, the dimension

of the route choice set, or the number of O-D pairs (the dimension of the online

calibration problem). As a result, the analytical traffic model is suitable for online

calibration on large-scale networks, as demonstrated in case studies in the following

chapters.
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3.4 Conclusion

In this chapter, the Metamodel EKF algorithm framework first detailed in Section 2.3

has been expanded upon to fill out important details on how the metamodel is con-

structed as an approximation of the traffic simulator. Necessary requirements for

the metamodel formulation are given, as well as specifics on estimating metamodel

parameters. To demonstrate how the Metamodel EKF algorithm can be used to solve

an online calibration problem, the online O-D demand calibration problem is intro-

duced. The implementation of the algorithm for the online O-D calibration problem is

specified, of which the most significant contribution is the analytical traffic model for

O-D demand calibration. In the next two chapters, the Metamodel EKF algorithm is

used to solve the online O-D demand calibration problem for a synthetic toy network

and a large-scale network for the city of Singapore.
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Chapter 4

Florian Network Case Study

In the previous chapters, a novel algorithm for the online calibration of stochastic traf-

fic simulators was proposed and developed in detail, and algorithmic specifications

were discussed. In this chapter, the performance of the Metamodel EKF (MM-EKF)

algorithm is evaluated in a case study on the Florian toy network, as measured both by

the ability to identify parameter values that lead to simulator outputs similar to field

measurements and by computational performance in a real-time context. The per-

formance of the approach is compared to several other online calibration algorithms

from the literature. Through this case study on a toy network, specific capabilities

and advantages of the Metamodel EKF approach are highlighted. In particular, the

Florian network case study aims to achieve the following three objectives.

First, the case study is used to validate the analytical model developed in Sec-

tion 3.3. In doing so, the analytical traffic model relating O-D demand to link mea-

surements is shown to reproduce traffic behaviors modeled by the simulator at a high

level. The validation shows a close fit to sensor counts as measured by the correlation

coefficient and as seen graphically; likewise, correlation with density measurements is

strongly linear, though off by a constant factor for some sensors.

Second, the case study demonstrates the effectiveness of the algorithm for online

calibration on a small-scale traffic network with performance comparable to several

well-known benchmark algorithms in the literature. Performance is evaluated across

multiple metrics, focusing specifically on the algorithm’s ability to replicate observed
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count and density measurements from the field. Metrics evaluating predictive per-

formance are also analyzed and discussed, as these are a major argument for the

importance of online calibration of traffic simulators.

Third, the case study evaluates specific contexts under which the Metamodel EKF

provides a tangible advantage as compared to other online calibration methods. In

particular, an experiment on the Florian network is conducted to demonstrate the

flexibility of the Metamodel EKF approach to incorporate multiple measurement

types (i.e., sensor counts and densities) in a unified online calibration framework. In

this objective, the added capability of the proposed approach to perform calibration

with multiple data sources is confirmed, whereas the generalized least-squares bench-

mark is only able to accommodate sensor counts as measurements. Additionally, the

impact of simulator stochasticity on calibration performance is addressed in the com-

parison of the Metamodel EKF algorithm to other Kalman filtering methods utilizing

different gradient estimation techniques. The trade-off between accuracy of the gra-

dient estimation for black-box EKF methods and computational efficiency is made

explicit, and empirical results show the benefits of the gradient estimation approach

used by the MM-EKF algorithm.

The case study in this chapter focuses specifically on online O-D demand cali-

bration for the Florian network. The online calibration algorithms have been imple-

mented with the DynaMIT-R traffic simulator, Version 2.1.0 [15], and their perfor-

mance across various demand scenarios is presented. Section 4.1 gives the specifica-

tions and experimental set-up of the case study, including a description of the network,

the data generation process, performance metrics, and benchmark algorithms. Sec-

tion 4.2 presents the experimental results in detail. Finally, Section 4.3 describes a

specific experimental design used to evaluate the flexibility of the Metamodel EKF

to incorporate and improve on the use of multiple data sources for online calibration.
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4.1 Case study specifications

4.1.1 DynaMIT-R

For the case studies presented in this chapter and the following chapter, the online

calibration algorithms are evaluated using Version 2.1.0 of DynaMIT-R, a Dynamic

Traffic Assignment (DTA) system developed within the Intelligent Transportation

Systems (ITS) Lab at MIT [15]. A high-level schematic of the DynaMIT-R system

is provided in Figure 4-1 depicting the inputs, outputs, and various steps taken by

the DTA system. DynaMIT-R relies on a real-time stochastic traffic simulator, which

couples a detailed network representation with traveler behavior models in a rolling

horizon framework to provide real-time traffic state estimation and prediction capa-

bilities, as well as real-time generation of guidance information. As seen in Figure 4-1,

the inputs to the simulator are the network representation and databases of histori-

cal information, along with a priori parameter values usually provided by an offline

calibration phase, and surveillance information that provide metrics of network per-

formance. A microscopic demand simulator component generates individual travelers

and simulates their travel behavior in response to network information both pre-trip

and en-route. A mesoscopic supply simulator component explicitly represents traffic

dynamics like congestion, queueing, and spillback. The demand and supply simula-

tor components are run in two main phases—state estimation and state prediction.

The state estimation phase provides estimates of the current network state through

metrics like O-D flows, link flows, queue lengths, and link speeds. Once the demand

and supply simulators have been calibrated so that these network state estimates are

congruent with the most recent information available from the surveillance system,

the simulator creates predictions for the network state based on traffic behavior in the

current state during the state prediction phase. The outputs of the state estimation

and prediction phases are network performance metrics, which are then provided as

input for the next time interval of the traffic simulator in a rolling horizon framework.

The DynaMIT-R framework laid out in Figure 4-1 provides a good environment for an

online calibration case study; the calibration module can be added to the state estima-
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Figure 4-1: DynaMIT-R framework [3]

tion and model calibration phase. Among the various simulator inputs, DynaMIT-R

provides the capability for specification of time-dependent origin-destination (O-D)

demand matrices, which is the focus of the online calibration problem in this case

study.

4.1.2 Florian network

The Florian network topology is shown in Figure 4-2. The Florian network is a simple

synthetic toy network adapted from Astarita et al. [12]. The network includes 28

links with three origin nodes (labeled 𝑜1, 𝑜2, 𝑜3 in Figure 4-2) and three destination

nodes (labeled 𝑑1, 𝑑2, 𝑑3 in Figure 4-2), for a total of nine origin-destination (O-D)

pairs. Table 4.1 gives a summary of the O-D pairs and their corresponding origin and

destination nodes. The network essentially consists of two parallel roads: one multi-

lane highway with a higher flow capacity, free-flow speed, and a shorter free-flow travel

time, and one arterial road with a single lane, a lower flow capacity, a lower free-flow
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O-D Pair Index Origin Destination
1 𝑜1 𝑑1
2 𝑜1 𝑑2
3 𝑜1 𝑑3
4 𝑜2 𝑑1
5 𝑜2 𝑑2
6 𝑜2 𝑑3
7 𝑜3 𝑑1
8 𝑜3 𝑑2
9 𝑜3 𝑑3

Table 4.1: Summary of origin-destination pairs in the Florian network

speed, and a longer free-flow travel time. The highway route is accessible by a one-

lane on-ramp and can be exited using a one-lane off-ramp. All links are one-way. For

the origin-destination pairs 1, 2, 3, 4, and 7, there is only one possible route to choose

from. For origin-destination pairs 5, 6, 8, and 9, vehicles can choose to take either

the highway route or the local route. Free-flow route travel times for the network,

calculated as the sum of the free-flow link travel times (link length divided by free-

flow speed parameter) of links comprising the route, range from 3.9 minutes to 6.9

minutes. In comparison with the 15-minute time intervals set in the online calibration

case study, the shorter free-flow route travel times indicate the impact of the time-

dependent O-D demand will be observed in link measurements of the same interval

with little time-delay. There are 12 link sensors spread throughout the network that

are able to provide real-time traffic information (i.e., counts, densities). The sensors

are identified with labels 𝑆1, 𝑆2, . . . , 𝑆12, and their positions are indicated in Figure 4-

2. For the experiments described, demand parameters are calibrated for all nine O-D

pairs.

4.1.3 Data description

The objective of the Florian network case study is to calibrate O-D demand parame-

ters for all nine O-D pairs across a typical morning peak period. In order to achieve

this, a synthetic demand scenario is created for the simulation period of 3:00am to

10:00am. O-D demand is specified for every 15-minute period and mimics rush hour
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Figure 4-2: Florian network adapted from Astarita et al. [12]

traffic conditions, with total network demand increasing until the 15-minute period

from 7:30am to 7:45am and then gradually decreasing from the morning peak. The

O-D demand parameters represent the number of vehicles in each 15-minute time

interval that depart from the origin node for the destination node for every O-D pair.

Figure 4-3 shows the synthetic demand scenario for the Florian network. The 𝑥-

axis spans the entire simulation period from 3:00am to 10:00am, and the 𝑦-axis plots

the O-D demand for each 15-minute interval for each of the nine O-D pairs, labeled

according to Table 4.1. In the demand scenario, there are three possible demand pro-

files each of the O-D pairs can follow—“High,” “Medium,” and “Zero” demand. O-D

pairs 1 and 4 follow the “High” demand setting depicted by the blue line, which sees

demand for each O-D pair start around 50 vehicles per 15-minute interval, increas-

ing to a peak of approximately 250 vehicles per 15-minute interval, then decreasing

to approximately 150 vehicles per 15 minutes. O-D pairs 2, 3, 5, and 8 follow the

“Medium” demand setting depicted by the red line, which has a similar shape but

at much smaller levels of demand for each O-D pair ranging from 25 vehicles per 15

minutes to 125 vehicles per 15 minutes. Finally, O-D pairs 6, 7, and 9 follow the

“Zero” demand setting depicted by the yellow line and do not see any demand for the

entire simulation period.

In addition to the synthetic “true” demand scenario, a set of prior O-D demands

is constructed for the same simulation period of 3:00am to 10:00am to reproduce

a realistic baseline of offline-calibrated demand parameters taken as input for the
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Figure 4-3: Synthetic O-D demand profile for Florian case study
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Figure 4-4: Synthetic prior O-D demand for Florian case study

online calibration problem. Each component of the synthetic prior O-D demand

profile is derived from the “true” O-D demand scenario by adding an independent

randomly drawn and normally distributed error term with an expectation of zero and

a standard deviation of 20% of the “true” O-D demand value. Figure 4-4 shows the

resulting synthetic prior demand for the Florian network. The axes and plotted lines

have the same definitions as in Figure 4-3. As constructed, the trends of the prior

demand are similar to those of the true demand with demand peaking at morning

rush hour, as desired, but with substantial deviation due to the Gaussian noise to

observe differences in sensor measurements between the two demand scenarios.

As both demand profiles are synthetic, sensor measurements observed in the field

must also be computed synthetically. For each demand profile, sensor measurements
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are created using the supply-only traffic simulator of DynaMIT (called DynaMIT-P

[15]) by running 50 independent replications with the specified O-D demand param-

eters as input and calculating average simulator outputs across the 50 replications.

Through this process, sensor count and density measurements for the 12 link sensors

marked in Figure 4-2 are acquired and taken to be the “observed” field data for both

the true demand and the prior demand scenarios.

Figures 4-5 and 4-6 plot the count and density sensor measurements for each 15-

minute interval obtained from this process for a subset of the link sensors. Each

subplot shows sensor measurements for one sensor, with the index number corre-

sponding to the sensor labels in Figure 4-2. The 𝑥-axis spans the entire simulation

period, and the 𝑦-axis measures sensor counts in vehicles per 15-minute interval in

Figure 4-5 and sensor densities in vehicles per mile per lane in Figure 4-6. The blue

solid line plots sensor measurements for the true demand profile, and the red dashed

line plots sensor measurements for the prior demand profile. As seen in the figures,

sensor measurements for the demand profiles show a similar trend to the underlying

O-D demand. “Observed” counts for both true and prior demand scenarios increase

until peak period then start to dissipate. Discrepancies between the true and prior

demand scenarios are also greatest during morning peak period. Sensor densities

show mild congestion on the network especially at Sensor 6 (particularly for the prior

demand scenario) that dissipates after peak period.

4.1.4 Experimental design

In the implementation of the online calibration algorithms for the Florian network

case study, several experimental specifications are made. All algorithms start with

an initialization period of 15 minutes where O-D parameters are estimated using gen-

eralized least-squares (GLS). This estimate is used as the initial state x0 as defined

in Equation 2.19 from Algorithm 2 in each of the Kalman filtering algorithms. Since

the GLS only provides a single point estimate for the initial state vector, an ad-hoc

covariance matrix is estimated for P0 to initialize the Kalman filter algorithms. The

initial covariance matrix P0 is assumed to be a diagonal matrix, and each diagonal

83



Figure 4-5: Synthetic sensor counts for Florian case study
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Figure 4-6: Synthetic sensor densities for Florian case study
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entry (representing the variance of each O-D demand parameter estimate) is calcu-

lated as proportional to the magnitude of the corresponding initial state vector value.

More specifically, 𝑃 0
𝑖,𝑖 = (max (𝑎 |𝑥0

𝑖 | , 𝑞0))2 where 𝑎 and 𝑞0 are tunable parameters of

the Kalman filter algorithm.

For the underlying state-space model, a simple random walk with an auto-regressive

degree of 1 is assumed for the transition equation. The indirect and direct measure-

ment equations are specified in Section 2.2. Thus the state-space model for the case

study is

xℎ+1 = xℎ + uℎ for ℎ = 0, 1, 2, 3, . . . (4.1)

yℎ = ŷ(xℎ) + vℎ
1 for ℎ = 0, 1, 2, 3, . . . (4.2)

xℎ
𝑎 = xℎ + vℎ

2 for ℎ = 0, 1, 2, 3, . . . (4.3)

The random error covariance matrices for the transition equation (Qℎ) and measure-

ment equations (Rℎ
1 and Rℎ

2 ) are fit offline from simulator data and shared by all

online calibration algorithms using the state-space model formulation. Similar to the

initial covariance matrix, the state-space model covariance matrices are parameterized

by 𝑎 and 𝑞0 for Qℎ, 𝑏1 and 𝑟0,1 for Rℎ
1 , and 𝑏2 and 𝑟0,2 for Rℎ

2 . These six parameters of

the Kalman filter algorithm, along with the weight parameter 𝑤 from Equation 2.1,

were tuned prior to the online calibration process using a simple grid search from a set

of time-independent O-D demand scenarios. For each set of Kalman filter parameter

values, the assignment matrix EKF algorithm detailed below in Section 4.1.5 was run

to calibrate the time-independent O-D demand parameters; the parameter settings

with the best fit to sensor counts for these offline experiments were 𝑎 = 0.4, 𝑞0 = 1,

𝑏1 = 0.03, 𝑟0,1 = 1, 𝑏2 = 0.6, 𝑟0,2 = 1, and 𝑤 = 100. More discussion about the

implications of the state-space model formulation can be found in Section 6.2.1.

For the proposed Metamodel EKF approach, the analytical network model de-

tailed in Section 3.3 and a linear polynomial functional component are used in the

metamodel formulation. An independent metamodel is fit for each simulator output

corresponding to each of the available field measurements. For each field measurement
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𝑗 in 𝒥 , the metamodel approximation is given by

𝑚𝑗(xℎ; 𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , 𝛾ℎ
𝑗 ) = 𝛼ℎ

𝑗 𝑞𝑗(xℎ) +
(︁
𝛽ℎ

𝑗

)︁𝑇
xℎ + 𝛾ℎ

𝑗 , (4.4)

for time interval ℎ. For this case study, no offline points are simulated beforehand for

the Metamodel EKF algorithm.

4.1.5 Performance benchmarks

The Metamodel EKF (MM-EKF) algorithm is compared to several online calibration

benchmarks in the case study to separate out the relative performance of various

aspects of the proposed approach. The first benchmark algorithm is the standard

generalized least-squares (GLS) approach adapted from the dynamic O-D estimation

problem [22]. As discussed in Section 1.3, the generalized least-squares algorithm

is a well-known and effective method for solving the problem of online calibration

of dynamic O-D matrices using link count measurements, though one restriction of

the approach is its inability to incorporate other types of field measurements into

its online calibration framework. It is often used as a benchmark in the literature

[18, 51]. The GLS algorithm is chosen as a benchmark to compare the performance

of the Metamodel EKF algorithm to an online calibration algorithm that does not

rely on a state-space model framework.

The proposed algorithm is also compared to two extended Kalman filter algo-

rithms for online calibration that use different methods for gradient estimation in

the linearization step. The first, called the assignment matrix EKF (Assign-EKF),

utilizes the empirical assignment matrix as an approximation of the gradient ma-

trix [8]. The assignment matrix Aℎ provides a mapping of O-D demand flows to

link flows in time interval ℎ. For the online calibration of O-D demand parameters

from link counts, the dynamic traffic assignment matrix provides a closed-form linear

measurement equation in the state-space model: yℎ = Aℎxℎ + vℎ
1 .

In the context of DTA systems, the assignment matrix is generated by the traffic

simulator as an output of the dynamic network loading model [3, 51]. The entries
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of the assignment matrix are empirically observed assignment fractions based on

the route choice decisions made by simulated travelers. In the implementation of the

Assign-EKF algorithm for this case study, the dynamic traffic assignment matrix Aℎ is

treated as an exogenous variable provided by DynaMIT. As such, a standard Kalman

filter can be applied since there is no need for linearization or computation of the

gradient estimate. The main limitation of this approach is that it is only applicable for

calibrating O-D demand parameters from link flow measurements, as this is the sole

content of the dynamic assignment matrix. Additionally, the assignment matrix (i.e.,

gradient) is empirically derived, so if the simulator does not generate a potential route,

the assignment matrix (gradient) will not represent it. As a result, this method relies

heavily on all demand possibilities being simulated; divergence between the empirical

and theoretical assignment fractions will introduce errors into the O-D calibration

process, which will lead to biased and inconsistent estimates [11].

The second EKF algorithm used as a performance benchmark approximates the

gradient using central finite differences of the simulator in the linearization step. This

method was suggested in the original framework for the EKF approach proposed by

Antoniou [3], but relies on a purely numerical and computationally costly method for

gradient estimation. As discussed in Section 1.3, the number of simulator evaluations

required to estimate the gradient at each time step scales linearly with the dimension

of the underlying state, so for large-scale problems this method becomes unwieldy. In

addition, the method of central finite differences is impacted by simulator noise when

used to estimate the gradient of a stochastic traffic simulator. Other methods for

numerical gradient estimation exist in the literature, specifically simultaneous per-

turbation [56], which shows a significant computational advantage compared to finite

differences for large-scale problems [7]. At the same time, central finite differences is

expected to provide a more accurate and reliable gradient estimation than simulta-

neous perturbation through the use of more simulator evaluations [7]. Thus for the

toy network case study where the computational budget is less constricting, the finite

differences method for gradient estimation is chosen over simultaneous perturbation,

which also introduces noise from uncorrelated measurements and can be difficult to
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tune properly [4]. The central finite differences benchmark method is referred to as

the FD-EKF algorithm. The Assign-EKF and FD-EKF algorithms are chosen as

benchmarks to compare the relative performance of the gradient estimation step in

the Metamodel EKF algorithm to other gradient estimation methods. As the state-

space model formulation and Kalman filter parameters are kept in common across

algorithms, the only difference in these online calibration methods is in how they

approximate the gradient in the linearization step.

Both the GLS and Assign-EKF benchmarks are specific approaches for the O-D

demand calibration problem using sensor count observations. The FD-EKF bench-

mark is a general-purpose framework that can be used to calibrate a variety of different

parameters using several different sources of field data, similar to the MM-EKF algo-

rithm. For the initial case study, the only field data used is sensor count data, so all

algorithms rely on the same inputs.

To get a sense of the effect of simulator stochasticity on each online calibration

algorithm, each method is run three separate times, with the same random seed used

to start each set of runs. While a set of three runs per algorithm gives some sense of the

variation due to stochasticity, more runs are highly recommended in future analyses

to reach conclusions with stronger statistical significance. In addition, all algorithms

tested are compared to a baseline performance given by the prior O-D demand profile

with no online calibration component, which represents the performance of offline-

calibrated data in an online setting for this synthetic case study.

One metric for the performance of each algorithm that is assessed is fit to the

observed field measurements, both in estimation and prediction. The goodness of fit

is quantified using the root-mean-square normalized (RMSN) error metric, defined as

RMSN =

√︃
1
𝑁

𝑁∑︀
𝑗=1

(𝑦𝑗 − 𝑦𝑗)2

1
𝑁

𝑁∑︀
𝑗=1

𝑦𝑗

(4.5)

where 𝑁 is the number of measurements, 𝑦𝑗 denotes the estimated (or predicted)

output from the traffic simulator for measurement 𝑗, and 𝑦𝑗 denotes the true, or
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observed, measurement 𝑗. Using the O-D calibration parameters estimated by each

algorithm as inputs to DynaMIT-R, traffic state estimation and prediction data is

collected as output from the simulator and compared to the corresponding data from

DynaMIT-R output for the underlying synthetic true demand scenario. Since the only

field data used for this case study is sensor count data, the RMSN error metrics for

sensor counts, both for the current time interval and for 1-step and 2-step predictions,

are used to evaluate the performance of the proposed MM-EKF algorithm against the

benchmarks described above. As this demand profile is synthetic and the “true” sensor

densities and O-D demand parameters are also known, the RMSN error metrics for

both sensor densities and the underlying O-D demand parameters are also reported.

The root-mean-square normalized error metric is an often reported performance

metric in the online calibration literature [6, 18, 52], as it is unitless and allows for

comparison between datasets and models with different scales. Because the normal-

ization factor is the average observed measurement, the error metric is also referred

to as coefficient of variation of the root-mean-square deviation. In noting the per-

formance of various online calibration algorithms in the literature, benchmark values

for the RMSN error metric calculated for link counts reported as good performance

in the literature range from 14% for GLS on an Irvine network case study [18], and

for FD-EKF, 10-13% on a Southampton, UK case study [3] to numbers as large as

24-33% for the larger Singapore expressway network case study [52, 73], a variation

of which is used as a case study in the following chapter.

4.1.6 Summary

To summarize, the online calibration experiments for the Florian network case study

have the following attributes:

∙ Simulation period from 3:00am to 10:00am with 15-minute calibration intervals,

∙ State vector of calibration parameters is of dimension 9 consisting of O-D de-

mand parameters,

∙ Measurement vector is of dimension 12 consisting of sensor counts,
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∙ Algorithms run are the proposed MM-EKF and benchmarks GLS, Assign-EKF,

and FD-EKF,

∙ Estimated and predicted (both 1 time interval into the future and 2 time in-

tervals into the future) sensor counts are generated for all online calibration

results,

∙ Performance is evaluated using the root mean-square normalized (RMSN) error

metric.

4.2 Results

This section presents the results of the case study. Validation of the analytical traffic

model on the Florian network is presented in Section 4.2.1 to illustrate the mod-

eling power of the network-specific traffic model for O-D demand detailed in Sec-

tion 3.3. Summary results for online calibration are then shown in Section 4.2.2 for

the proposed MM-EKF approach and benchmark algorithms. A deeper dive into the

algorithm’s performance is then provided in Sections 4.2.3 and 4.2.5.

4.2.1 Validation of analytical model

The analytical traffic model for O-D demand detailed in Section 3.3 is validated

on the Florian network for the time-dependent O-D demand scenario presented in

Section 4.1.3. For each 15-minute time interval in the simulation period from 3:00am

to 10:00am, the analytical traffic model is solved for link counts and densities with

the input of O-D demand and then compared to the “true” sensor observations for

the synthetic demand scenario output by the simulator. Figures 4-7 through 4-10

show the validation results graphically.

In Figure 4-7, analytical model counts are plotted on the 𝑦-axis and compared to

“true” simulator counts (generated according to the process described in Section 4.1.3)

plotted on the 𝑥-axis. Each point on the scatterplot represents a sensor count obser-

vation for a 15-minute interval in the simulation period. Each of the 12 link sensors
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is plotted in a different color. The solid blue diagonal line, known as the “45-degree

line”, gauges what a perfect fit (correlation coefficient of 1) would look like. As can be

seen on the scatterplot, the analytical traffic model is able to replicate the transient

simulator counts very closely. The correlation coefficient for the analytical model

and simulator sensor count datasets is 0.9992, extremely close to 1. This correlation

can be seen in more detail in Figure 4-8, where the sensor counts for a subset of the

sensors on the Florian network are plotted. Each subplot graphs the sensor counts

over time for a particular link sensor. The 𝑥-axis spans the entire simulator period,

while the 𝑦-axis measures vehicle counts. The “true” simulator counts are given by

the solid blue line, while the analytical model counts are given by the dashed red line.

For sensors 4, 6, and 8, the fit of the analytical model is near perfect; the analytical

traffic model estimates the increase in flow to morning peak period followed by a slow

decrease almost exactly. For sensor 12, the analytical model overestimates the flow on

the link and does not seem to account for small fluctuations in flow during morning

peak period. Even so, the analytical model follows the general shape of the simulator

output.

Figures 4-9 and 4-10 give similar plots but for sensor density outputs. The setup

of the two plots follows the same setup as for Figures 4-7 and 4-8. Whereas the fit

for sensor counts was very close to a correlation of 1, Figure 4-9 illustrates that the

relationship between simulated densities and analytical model densities more often

differs by a constant factor depending on the sensor. The correlation for each individ-

ual sensor is still strongly linear, but correction using a scaling factor is necessary for

some sensors. Figure 4-10 provides a similar conclusion. For each of the subplots, the

general shape of the solid blue curve graphing simulator densities is replicated by the

dashed red curve graphing the analytical model densities. Yet for sensor 4, the ana-

lytical model consistently overestimates simulator densities; the opposite is true for

sensors 6 and 8. For sensor 12, the magnitude of the density measurements is correct,

but the simulator density measurements show more noise over the simulation period

than the analytical model. These scalar discrepancies indicate bias in the analytical

traffic model, which can be corrected with further tuning of the exogenous parameters
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Figure 4-7: Scatterplot of simulated vs. analytical sensor counts for Florian network
case study
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Figure 4-8: Comparison of simulated and analytical counts for subset of Florian
network sensors
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Figure 4-9: Scatterplot of simulated vs. analytical sensor densities for Florian network
case study

of the model for the particular case study. In addition, this bias can be corrected in

the metamodel formulation presented in Equation 3.1 using the parameter 𝛼ℎ
𝑗 . As

a separate metamodel is fit for each measurement, the different linear relationships

between the analytical model output and simulator output for sensor densities can

be individually corrected during the fitting of the metamodel in the EKF algorithm.

4.2.2 Online calibration performance

Tables 4.2 and 4.3 show performance metrics for estimation of sensor counts, sen-

sor densities, and O-D parameters across all online calibration experiment results.

In Table 4.2, each row of the table reports results for one online calibration algo-
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Figure 4-10: Comparison of simulated and analytical densities for subset of Florian
network sensors

counts densities O-D
Algorithm Run RMSN % improv RMSN % improv RMSN % improv
Baseline 0.091 - 0.326 - 0.243 -

MM-EKF
1 0.046 49.8 0.111 65.9 0.124 48.9
2 0.048 48.1 0.106 67.4 0.137 43.5
3 0.047 48.7 0.109 66.6 0.135 44.5

FD-EKF
1 0.055 39.6 0.123 62.2 0.161 33.8
2 0.061 33.2 0.116 64.3 0.183 24.7
3 0.062 32.4 0.120 63.1 0.179 26.3

Assign-EKF
1 0.049 46.1 0.122 62.7 0.146 39.9
2 0.051 44.5 0.145 55.4 0.149 38.7
3 0.047 48.1 0.126 61.5 0.137 43.7

GLS
1 0.028 69.6 0.138 57.7 0.154 36.7
2 0.029 68.7 0.192 41.0 0.160 34.3
3 0.031 66.6 0.178 45.4 0.163 32.8

Table 4.2: Estimation metrics for Florian network case study experiments
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counts densities O-D
Algorithm RMSN % improv RMSN % improv RMSN % improv
Baseline 0.091 - 0.326 - 0.243 -

MM-EKF 0.047 48.9 0.109 66.6 0.132 45.6
FD-EKF 0.059 35.1 0.120 63.2 0.174 28.3

Assign-EKF 0.049 46.2 0.131 59.8 0.144 40.8
GLS 0.029 68.3 0.169 48.0 0.159 34.6

Table 4.3: Estimation results for Florian network case study averaged across three
experiment runs

rithm run. “Baseline” reports error metrics for using prior O-D demand with no

online calibration component as the estimated O-D parameters; the other algorithm

runs are the proposed MM-EKF algorithm and the FD-EKF, Assign-EKF, and GLS

benchmark algorithms, which are each run three times. The first set of two columns

reports RMSN values for the fit to sensor counts. The next pair of columns reports

the same metrics for fit to observed sensor densities, followed by a pair of columns

for fit to the underlying true O-D demand parameters. The second column in each

pair shows the percent improvement of the algorithm run results over the “Baseline”

RMSN. Table 4.3 summarizes the results of Table 4.2. The table setup is the same,

but the performance metrics reported for each online calibration algorithm are the

average across three algorithm runs in Table 4.2. The percent improvement is again

calculated off the “Baseline” RMSN.

The primary objective of the online calibration problem is to minimize the dif-

ference in sensor measurements output by the calibrated traffic simulator and sensor

measurements observed in the field, as was formulated in Section 2.1. For the Florian

network case study, the observed field measurements are sensor counts, so the primary

performance metric is RMSN error for estimated sensor counts. As seen in Table 4.3,

the estimation of sensor counts for the proposed MM-EKF algorithm gives a RMSN

value of 4.7%, which is a 48.9% improvement over the baseline of prior O-D demand.

A 95% confidence interval for the RMSN error metric for the MM-EKF algorithm as

calculated using the results of the three algorithm runs as samples is (4.5%, 4.9%), so

the improvement over the baseline is statistically significant.
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Results for the three benchmark algorithms also show improvement over the base-

line in estimating sensor counts. Of the three, the generalized least-squares bench-

mark shows the greatest improvement over the baseline, with an average RMSN error

of 2.9% which is an improvement of 68.3%. To determine if the difference in perfor-

mance for the MM-EKF and GLS algorithms is statistically significant, a one-sided

Mann-Whitney test is run using the three RMSN errors from the algorithm runs as

the two samples for comparison. The Mann-Whitney test is a non-parametric test of

the null hypothesis that the distributions of the two populations being sampled are

equal. The Mann-Whitney test is used instead of a two-sample t-test in order to avoid

making unnecessary assumptions about the population distributions of the error met-

rics. For all statistical tests of significance run in the case studies, the significance

level used is 𝛼 = 0.05. For the comparison of estimation results for the MM-EKF

and GLS algorithms, a one-sided test is run for the alternative hypothesis that the

RMSN error metric for the GLS algorithm is less than the RMSN error metric for the

MM-EKF algorithm, giving a 𝑝-value of 0.05 and indicating the result is significant.

The other two extended Kalman filter benchmarks also perform well compared to

the baseline, with average RMSN errors of 5.9% for FD-EKF and 4.9% for Assign-

EKF. As seen in Table 4.2, the variation in RMSN values for estimated sensor counts

is small among runs of the same algorithm, which points to consistent performance

and small replication variability. Again using one-sided Mann-Whitney tests for the

alternative hypothesis that the MM-EKF algorithms performs better than the bench-

mark algorithms, the 𝑝-value for the comparison to the FD-EKF algorithm is 0.05

and the 𝑝-value for the comparison to the Assign-EKF algorithm is 0.1. Thus, in es-

timating sensor counts, the proposed MM-EKF algorithm shows better performance

than FD-EKF but is statistically indistinguishable from the Assign-EKF benchmark.

Overall, all four online calibration algorithms improve over the baseline with the GLS

algorithm providing the best estimates for the observed sensor counts. For a small

experiment on the Florian toy network, the estimation performance of the proposed

MM-EKF algorithm has been validated and shown to be competitive with benchmark

algorithms.
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1-step prediction 2-step prediction
counts densities counts densities

Algorithm Run RMSN % improv RMSN % improv RMSN % improv RMSN % improv
Baseline 0.138 - 0.370 - 0.202 - 0.440 -

MM-EKF
1 0.120 13.1 0.189 48.9 0.146 27.5 0.250 43.2
2 0.111 19.6 0.167 54.8 0.132 34.4 0.230 47.7
3 0.116 16.1 0.196 47.1 0.141 30.4 0.240 45.4

FD-EKF
1 0.122 11.3 0.185 50.1 0.140 30.4 0.243 44.7
2 0.120 13.3 0.170 54.0 0.146 27.8 0.239 45.7
3 0.128 7.0 0.192 48.2 0.148 26.5 0.234 46.7

Assign-EKF
1 0.115 16.4 0.190 48.6 0.156 22.5 0.270 38.6
2 0.115 16.3 0.185 50.1 0.145 28.3 0.245 44.4
3 0.119 13.5 0.189 49.0 0.151 25.3 0.241 45.1

GLS
1 0.109 21.4 0.221 40.3 0.154 23.9 0.269 38.7
2 0.119 13.9 0.267 27.9 0.156 22.9 0.283 35.6
3 0.114 17.6 0.262 29.3 0.151 25.2 0.268 39.1

Table 4.4: Prediction metrics for Florian network case study experiments

1-step prediction 2-step prediction
counts densities counts densities

Algorithm RMSN % improv RMSN % improv RMSN % improv RMSN % improv
Baseline 0.138 - 0.370 - 0.202 - 0.440 -

MM-EKF 0.116 16.3 0.184 50.3 0.140 30.7 0.240 45.4
FD-EKF 0.123 10.6 0.182 50.8 0.145 28.2 0.239 45.7

Assign-EKF 0.117 15.4 0.188 49.2 0.151 25.4 0.252 42.7
GLS 0.114 17.6 0.250 32.5 0.153 24.0 0.273 37.8

Table 4.5: Prediction results for Florian network case study averaged across three
experiment runs

Tables 4.4 and 4.5 show experiment results for the prediction stages. The setup

of both tables is the same as for Tables 4.2 and 4.3, respectively, except the columns

now show performance metrics for one-step and two-step prediction for sensor counts

and densities. Since the online calibration algorithms are run in 15-minute time

steps for this case study, this means one-step prediction metrics correspond to fit

of predicted measurements for 15 minutes into the future, while two-step prediction

metrics correspond to fit of predicted measurements for 30 minutes into the future.

In both tables, the raw RMSN values are reported as well as percent improvement

for each algorithm run over the baseline case.

For the online calibration problem, RMSN error metrics for 1-step prediction and

2-step prediction are also crucial, as the ability to provide prediction and guidance

capabilities in a real-time setting is a driving motivation for practitioners to imple-
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ment online calibration methods. The Metamodel EKF algorithm shows an average

RMSN of 11.6% for 1-step prediction and 14.0% for 2-step prediction, resulting in a

percent improvement over the baseline of 16.3% and 30.7%, respectively. The bench-

mark algorithm that performed the best for estimation of sensor counts was GLS;

here it shows an average RMSN of 11.4% for 1-step prediction and 15.3% for 2-step

prediction. Noticeably, the performance metrics for prediction of sensor counts for

MM-EKF and GLS are more similar than for estimation; the average 2-step predic-

tion RMSN is actually smaller for the MM-EKF algorithm. Statistical tests bear out

this conclusion—a Mann-Whitney test for 1-step prediction finds the two approaches

statistically indistinguishable (𝑝 = 0.35). For 2-step prediction, the MM-EKF is

shown to have better performance than the GLS benchmark, with a 𝑝-value of 0.05.

The comparative advantage of the GLS benchmark in estimating sensor count obser-

vations is lost in the prediction stage. This may be due to overfitting by the GLS

algorithm for the estimation phase, resulting in poor predictive performance, while

the reliance of MM-EKF on state-space model assumptions leads to better prediction

results.

The performance metrics for prediction of sensor counts for the other two EKF

benchmarks show similar values to the MM-EKF algorithm. This similarity is con-

firmed by statistical tests—none of the comparisons of the Assign-EKF and FD-EKF

algorithms to the MM-EKF algorithm produce statistically significant results. For

1-step prediction and 2-step prediction of sensor counts, the EKF algorithms all per-

form similarly, and all show a marked improvement over the baseline of prior O-D

demand parameters. This indicates that regardless of the gradient estimation method,

accuracy in the prediction stages is largely dictated by the EKF framework and the

underlying state-space model.

Tables 4.2 through 4.5 also report results for two performance metrics that are

not the direct objective of the online calibration problem—fit to sensor densities in

both estimation and prediction and fit to the underlying O-D demand parameters. In

the estimation phase, the proposed MM-EKF algorithm shows an average RMSN of

10.9% for fit to sensor densities and 13.2% for fit to the O-D demand parameters, for

100



Figure 4-11: Average performance metrics for sensor count measurements for MM-
EKF algorithm and benchmarks in Florian case study

improvements of 66.6% and 45.6%, respectively, over the baseline. Each of the three

benchmark algorithms show a smaller percent improvement over the baseline with

RMSN values ranging from 11.6% to 19.2% for estimated sensor densities across runs

for all benchmark algorithms and RMSN values ranging from 13.7% to 18.3% for esti-

mated O-D parameters. Statistical tests confirm the significance of these differences;

the 𝑝-values for all but one of these pairwise comparisons to the proposed MM-EKF

algorithm are 0.05. Only the fit to estimated O-D demand for the Assign-EKF and

MM-EKF algorithms is statistically indistinguishable (𝑝-value of 0.1). For prediction,

the results are much more similar. All of the EKF algorithms show average RMSN

values for 1-step prediction of sensor densities between 18% and 19%, while the GLS

benchmark has an average RMSN value for 1-step prediction of sensor densities close

to 25%. Overall, all online calibration algorithms show a significant improvement

over the baseline case for both estimation and prediction of these secondary perfor-

mance metrics (fit to sensor densities and O-D demand parameters). Whereas the

GLS benchmark showed the greatest improvement in estimation of observed sensor

counts, it performs less well for these secondary metrics, with the worst performance

of the four online calibration algorithms in estimating and predicting sensor densities.
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Figure 4-12: Average performance metrics for sensor density measurements for MM-
EKF algorithm and benchmarks in Florian case study

Figures 4-11 and 4-12 show the experiment results graphically. Figure 4-11 sum-

marizes the performance of the different online calibration algorithms for estimation,

1-step prediction, and 2-step prediction of sensor counts, as labeled on the 𝑥-axis.

Each bar represents the average RMSN error across the three runs of that algorithm,

given numerically in Tables 4.3 and 4.5. The error bars give the 95% confidence inter-

vals as calculated from each three-run sample. Given the small sample size of three

runs per algorithm, the confidence intervals reported here and in later results have a

wide range, and more runs are recommended for a clearer statistical picture of the

comparisons.

The conclusions reached above are supported by what is shown in Figure 4-11.

All algorithms perform better than the baseline of no online calibration, with RMSN

metrics for estimation well below 10% (a benchmark stated in Section 4.1.5 to signify

good performance) and approaching the error level for stochasticity of the simulator.

The MM-EKF algorithm also outperforms the FD-EKF benchmark even accounting

for the 95% confidence intervals, although the GLS benchmark definitively performs

the best overall. Even so, there is a relative deterioration in performance for the

GLS algorithm going from estimation to prediction, signaling a level of overfitting
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to sensor measurements that leads to worse predictive performance. All online cali-

bration algorithms also improve on the baseline of prior O-D demand parameters by

a statistically significant amount, as measured by the 95% confidence intervals, for

1-step and 2-step prediction.

Figure 4-12 gives the same type of bar graph as in Figure 4-11, but for perfor-

mance metrics for sensor densities across estimation and prediction. As measured

by the 95% confidence intervals in the figure, all online calibration algorithms sta-

tistically outperform the baseline of prior O-D demand parameters. For estimation

of sensor densities, the 95% confidence intervals for all algorithms overlap; the same

is true for 1-step and 2-step prediction metrics. The wider 95% confidence intervals

of the GLS algorithm point to the higher variability among the three runs of the

algorithm. As seen in Section 4.2.3, the worse performance of the GLS algorithm

in estimating and predicting sensor densities is due to its inability to calibrate for

increased congestion during peak period, while the other EKF algorithms perform

comparatively to each other. As mentioned, the RMSN errors reported in Figure 4-

12 show an auxiliary metric for performance that is not directly optimized for in

the online calibration problem. Still, these auxiliary metrics can provide a sense of

whether the online calibration algorithms are just overfitting to the field observations

or ultimately estimating the true parameters of the underlying traffic state.

4.2.3 Results by time interval

To further analyze the relative performance of the various online calibration algo-

rithms in the Florian network case study, several performance metric results are

decomposed into performance for each hour of the simulation period. The hourly

breakdown provides a better map of the temporal aspects of each algorithm in cal-

ibrating the Florian demand scenario from starting at low congestion through the

morning peak period. Figures 4-13 through 4-16 gives average RMSN error metrics

for estimation and prediction of sensor counts, and estimation of sensor densities.

The RMSN values were calculated by averaging RMSN values across the four 15-

minute time intervals comprising each hour, and then averaging across all three runs
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Figure 4-13: RMSN error metrics by hour for estimated sensor counts for Florian case
study

of the algorithm. Error bars signifying 95% confidence intervals were calculated for

the averaged hourly RMSN values among each three-run sample.

As noted in the previous section, the primary goal of online calibration is to fit the

observed sensor counts. Figure 4-13 gives a bar graph for RMSN error metrics of the

estimated sensor counts compared to field measurements per hour. Each grouping of

bars is an hour of the simulation period as labeled on the 𝑥-axis; the MM-EKF algo-

rithm (orange bar) is compared to the four benchmarks and 95% confidence intervals

are reported. The overall performance results still hold; all algorithms outperform

the baseline, a strong argument for the necessity of online calibration in adjusting to

real-time observations. Of the online calibration algorithms, GLS has the smallest

average RMSN values for the majority of hours and shows consistent performance

below 5% RMSN across all hours of the simulation period. For the hours of 4am to

5am, 6am to 7am, and 9am to 10am in the simulation period, the average RMSN

error for the GLS benchmark is significantly smaller than the average RMSN error

for each of the EKF algorithms, particularly FD-EKF, as seen by the 95% confidence

interval error bars. A set of pairwise Mann-Whitney statistical tests confirms this.

Among the EKF algorithms, the FD-EKF algorithm generates wide confidence in-
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Figure 4-14: RMSN error metrics by hour for 1-step predicted sensor counts for
Florian case study

Figure 4-15: RMSN error metrics by hour for 2-step predicted sensor counts for
Florian case study

105



tervals especially in the first half of the simulation period, indicating considerable

variability among experiment runs. The Assign-EKF and MM-EKF algorithms per-

form comparatively across all hours of the simulation period, and both have their

smallest RMSN errors in the hours after the morning peak period.

Figures 4-14 and 4-15 show the same hourly metrics for fit to sensor counts for the

1-step prediction and 2-step prediction stages. Note that the first set of bars in each

figure are for the period 3:15am to 4:00am and 3:30am to 4:00am, respectively, since

1-step and 2-step predictions are not available for the periods 3:00am to 3:15am and

3:00am to 3:30am, respectively. The RMSN values per hour are more closely clustered

for prediction among the different calibration algorithms than for estimation. In

particular, the observation that the GLS algorithm has more similar performance to

the EKF algorithms in prediction of sensor counts compared to estimation still holds

in the hourly breakdown. In the hours of 4am to 5am and 9am to 10am, the baseline

of prior O-D demand parameters produces small values for RMSN in 1-step and 2-

step prediction. This is due to the specific shape of the synthetic demand profile

used. In both of these hours, the demand profile is relatively flat so O-D parameters

from the previous time interval (for 1-step prediction) or the time interval before that

(for 2-step prediction) prove to be a good prediction. While the online calibration

algorithms do not perform better than the baseline in every hour of the simulation

period, the overall RMSN error metric for the entire simulation period as seen in

Table 4.4 is still smaller than the baseline.

Figure 4-16 shows similar hour-by-hour performance metrics for estimated sensor

densities. The layout of the figure is the same as for Figure 4-13. For the hours

from 3am to 7am and from 8am to 10am, the performance metrics for all online

calibration algorithms are of the same order of magnitude, and smaller on average

than the baseline RMSN value. On the other hand, the overall worse performance of

the Assign-EKF algorithm and particularly the GLS algorithm in estimating sensor

densities (average RMSN of 13.1% for Assign-EKF and 16.9% for GLS compared to

10.9% for MM-EKF from Table 4.3) is due to their calibration performance during the

hour of 7am to 8am. During this hour, which coincides with the morning peak period
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Figure 4-16: RMSN error metrics by hour for estimated sensor densities for Florian
case study

demand, the synthetic prior demand shows a significant overestimation of the true de-

mand scenario, with a total network demand in this hour of 3746 vehicles for the true

demand scenario and 4029 vehicles for the prior demand scenario. This disparity is

reflected in the large RMSN value for “Baseline” in estimated sensor counts from 7am

to 8am in Figure 4-13, but more so in the RMSN value for “Baseline” for estimated

sensor densities (RMSN of 131% from 7am to 8am). The larger prior demand leads

to higher levels of congestion observed at link sensors; this can be seen in Figure 4-6.

The poor performance of the baseline prior O-D demand parameters for this hour

influences the calibration performance of the GLS and Assign-EKF algorithms. More

specifically, both benchmark algorithms overestimate congestion during this hour by

relying too much on prior parameter values, even while maintaining a close fit to

sensor counts. This is reflected in the average RMSN metrics for estimated sensor

densities. The GLS algorithm reports an average RMSN error of 60.4% for the hour

from 7am to 8am and the Assign-EKF average RMSN is 22.7%. Likewise, the MM-

EKF reports an average RMSN of 7.6% and the FD-EKF an average RMSN of 7.8%

for the same hour. The difference in performance for the GLS algorithm may be due

to the underlying state-space model assumption of the EKF algorithms; whereas the
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GLS method has fewer constraints on the evolution of calibration parameters from

one time period to the next, the parameters estimated by EKF methods are based on

the transition equation of the state-space model which counterbalances the influence

of the prior demand. For the Assign-EKF algorithm, the relative poor performance

among EKF algorithms may be due to the empirical assignment matrix output by the

simulator. As explained in Section 4.1.5, the Assign-EKF algorithm relies on the prior

O-D demand parameters to generate the assignment matrix; discrepancies between

the true and prior demand scenarios can lead to inaccurate gradient estimations using

the Assign-EKF approach.

4.2.4 Computational performance

In addition to comparing the calibration accuracy of the different algorithms in terms

of estimation and prediction of sensor count observations, analysis of the computa-

tional efficiency of the algorithms through runtime statistics is crucial to evaluating

the relative performance of online calibration methods in this case study. A fun-

damental metric for the success of an online calibration algorithm is the ability to

estimate the model parameters within the limited computational budget of one time

step. While all of the algorithms run quickly due to the size of the Florian toy net-

work, the computational results as measured by runtime (in seconds) and number

of simulator evaluations still provide an important component in the assessment of

the online calibration methods. Table 4.6 shows several statistics of the relative com-

putational cost for the MM-EKF and benchmark algorithms. Each row of the table

reports statistics for one algorithm run; the rows labeled “Avg” represent the average

statistics across all three runs of the algorithm. The first column of metrics measures

the average runtime (in seconds) of the online calibration algorithm in calculating pa-

rameter estimates for one 15-minute time interval, where the average is taken across

the entire simulation period. The second column reports the portion of that runtime

specifically taken to calculate the gradient. For the MM-EKF algorithm, this encom-

passes the “Metamodel Update,” “Analytical Model Evaluation,” and “Linearization”

steps of Algorithm 2. For the FD-EKF algorithm, this is just the linearization step
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but includes the total computation time across all simulator evaluations used to es-

timate the gradient. For the Assign-EKF algorithm, this just involves reading the

assignment matrix from the traffic simulator, while the GLS algorithm does not re-

quire a gradient calculation. The final column of Table 4.6 gives the average number

of times the traffic simulator is evaluated per 15-minute time interval, averaged across

all time intervals in the simulation period. For the MM-EKF and Assign-EKF algo-

rithms, this is just once each interval at the current state estimate. For the FD-EKF

algorithm, simulator evaluations are used to numerically estimate the gradient. For

the GLS, the simulator is not evaluated during the online calibration procedure.

The main takeaway from Table 4.6 is that all of the EKF methods have approxi-

mately the same average runtime (26.9 seconds for MM-EKF, 27.9 for FD-EKF, and

26.7 for Assign-EKF). As mentioned above, this is substantially less time than the

computational budget of 15 minutes, given that the dimension of the problem is only

9. The similarity in computation runtimes implies that each of the gradient approx-

imation methods also take about the same amount of time to run. As seen in the

second column of the table, this is true. In fact, the portion of the runtime used

for the gradient approximation step is almost negligible; most of the computational

runtime of the algorithms is taken up by the other steps. For the GLS benchmark,

the average runtime per interval is 10.0 seconds, which is less than half the runtime

of the other algorithms. The FD-EKF benchmark algorithm also requires multiple

simulator evaluations to compute the gradient approximation. On average, the FD-

EKF algorithm uses 17.6 simulator evaluations per gradient approximation. Because

of the small size of the network, these evaluations take a very small amount of time

so the number of evaluations needed does not pose a large computational burden for

the algorithm.

4.2.5 Analysis of calibrated parameters and estimated state

Since the demand scenario used in the Florian network case study is synthetic, it is

possible to compare the O-D demand parameters estimated by the MM-EKF algo-

rithm to the “true” O-D demand parameters. Figure 4-17 makes this comparison.

109



Algorithm Run

Average
Runtime Per
Interval (sec)

Average Gradient
Calculation Time
Per Interval (sec)

Average Simulator
Evaluations
Per Interval

MM-EKF

1 22.7 1.6 1
2 29.2 2.1 1
3 28.9 2.1 1

Avg 26.9 1.9 1

FD-EKF

1 24.1 1.5 17.6
2 29.4 2.0 17.5
3 30.1 2.0 17.7

Avg 27.9 1.8 17.6

Assign-EKF

1 26.4 0.01 1
2 27.1 0.01 1
3 26.5 0.01 1

Avg 26.7 0.01 1

GLS

1 13.9 N/A N/A
2 8.1 N/A N/A
3 8.1 N/A N/A

Avg 10.0 N/A N/A

Table 4.6: Summary of computational metrics for Florian case study

The four subplots show a subset of the nine O-D pairs in the network (labeled ac-

cording to Table 4.1) with non-zero demand in the true demand scenario. The 𝑥-axis

spans the entire simulation period, and the 𝑦-axis plots the O-D demand for the O-D

pair in vehicles per 15 minutes. The blue line shows the true O-D demand over time,

the red line show the prior O-D demand, and the remaining three colors graph the

three calibration runs of the MM-EKF algorithm. From this subset of O-D pairs, it is

seen that the proposed MM-EKF algorithm generally estimates the correct underly-

ing trends in the O-D demand parameters. The three lines representing the different

runs are clustered closely together, which suggests a level of robustness in the face of

simulator and algorithm stochasticity.

Figures 4-18 and 4-19 show the fit of the counts for each 15-minute interval (in

vehicles) and densities (in vehicles per mile per lane) estimated by the MM-EKF

algorithm compared to the observed field measurements. The 𝑥-axis for both figures

shows the “true” values of the field measurements, while the 𝑦-axis for both figures
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Figure 4-17: Estimated O-D demand parameters over time from MM-EKF calibration
runs for Florian case study
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shows the estimated values output by the MM-EKF algorithm. Each colored shape

represents a separate run of the algorithm. A perfect fit, which would give a RMSN

error of 0, is represented on the scatterplots by the blue “45-degree line” that cor-

responds to exact correlation. The fit for sensor counts seen in Figure 4-18 is very

close with not a large difference among the three runs of the MM-EKF algorithm.

As given in Table 4.2, the RMSN errors for the three runs are 4.6%, 4.8%, and 4.7%,

indicating a very good fit. In the sensor density figure, the fit between true measure-

ments and estimated measurements is more diffuse, and there is a higher variance for

larger densities. The RMSN errors for the three runs are 11.1%, 10.6%, and 10.9%,

which still indicates a strong fit to the field measurements, especially since density

measurements were not used in the online calibration process. This comparison be-

tween sensor count data and sensor density data also matches what was seen in the

validation of the analytical traffic model. Overall, the proposed MM-EKF algorithm

is validated for a small-scale case study; it is able to successfully replicate real-time

sensor count observations from the network in an online calibration setting for the

Florian network case study, clearly outperforming the baseline case of no online cali-

bration and generally maintaining similar or better performance to other benchmark

algorithms in the literature.

4.3 Incorporation of multiple data sources

4.3.1 Data description

One significant advantage that the MM-EKF algorithm has over the benchmark al-

gorithms Assign-EKF and GLS is its ability to calibrate parameters besides O-D

demand parameters and incorporate other sources of field measurements than just

sensor counts. Among the online calibration algorithms discussed for this case study,

only the MM-EKF and FD-EKF are able to incorporate additional measurement

types into their framework. To demonstrate this flexibility, another set of experi-

ments was designed for the Florian network in which sensor densities were used as
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Figure 4-18: Scatterplot of field sensor counts vs. MM-EKF estimated sensor counts
for Florian case study
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Figure 4-19: Scatterplot of field sensor densities vs. MM-EKF estimated sensor
densities for Florian case study
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input to the online calibration in addition to sensor counts. The proposed MM-EKF

algorithm was run along with the same benchmark algorithms in order to demon-

strate a twofold advantage—(1) the ability to fit both sensor count and density data

under a common framework that is not possible for the Assign-EKF and GLS ap-

proaches, (2) the improved performance of the MM-EKF algorithm in estimation of

sensor counts and densities compared to other flexible frameworks like FD-EKF due

to the added robustness of the MM-EKF approach to simulator stochasticity provided

by the analytical traffic model in the gradient estimation step.

A key concept in traffic flow theory is the idea that the same observed link counts

may occur in both the uncongested regime and the congested regime due to the

natural shape of the flow-density relationship. The synthetic demand profile for the

new experiments takes advantage of this. The new demand profile has a simulation

period of 3am to 10am, with sensor measurements (counts and densities) observed

every 15 minutes. The parameters to be calibrated remain demand for the nine O-

D pairs of the Florian network enumerated in Table 4.1; O-D demand is calibrated

for every 15-minute time interval. For this set of experiments, only four sensors on

the network are used, chosen as a subset of the twelve sensors from the previous

experiment (S6, S7, S8, and S12 in Figure 4-2).

For the “true” demand scenario, the O-D demand parameters for all nine of the

O-D pairs are set to the same level, and take one of two values during the simulation

period. For the uncongested period of the demand profile, from 3:00am to 6:30am,

each O-D pair sees a demand of 85 vehicles per 15-minute interval. Then for the

congested period of the demand profile, from 6:30am to 10:00am, each O-D pair sees

a demand of 140 vehicles per 15-minute interval. The demand scenario is created in

this manner in order to simulate the transition from an uncongested network to a very

congested network caused by a sudden onslaught of demand. In both the uncongested

and congested periods, the sensors report similar link flows but the underlying net-

work state has changed. Online calibration algorithms with a flexible framework able

to accommodate multiple data sources like MM-EKF and FD-EKF can then glean

additional information about the network state from further field measurements (link
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densities). The synthetic “true” demand scenario is not a realistic demand profile; an

immediate jump in the demand of every O-D pair in the network would not occur in

a real-world setting. More specifically, the demand scenario as described violates the

simple random walk assumptions of the transition equation in the state-space model

formulation used for this case study (Equation 4.3). Even though the demand profile

does not adhere to the modeling assumptions of the Kalman filtering approaches, it

was created expressly to demonstrate the ability of the MM-EKF algorithm to fit both

sensor count and density information in an online calibration setting. The proposed

MM-EKF algorithm is still able to achieve good calibration results, whereas each of

the benchmark algorithms fails to do the same.

For the prior demand profile, a constant setting of 85 vehicles per 15-minute

interval for each O-D pair is chosen, matching the true demand profile during the

uncongested period. As explained previously in Section 4.1.3, because both demand

profiles are synthetic, sensor measurements must also be computed. The same process

is followed. For each demand profile, sensor measurements were created using the

supply-only simulator of DynaMIT by running 50 replications for the specified O-

D demand and averaging the simulator outputs across all replications. Figure 4-20

shows the resulting sensor counts and densities recorded by the four sensors over the

whole simulation period. Each column shows sensor measurements for one of the

four sensors in the network. The first row gives sensor counts (𝑦-axis) graphed over

time (𝑥-axis). Note that the red dashed line, which is the prior demand profile, stays

relatively constant across the whole simulation period as to be expected since the

O-D demand is time-independent. The blue solid line, which is the true demand

profile that switches from uncongested to congested at 6:30am, registers an initial

sharp increase in sensor counts as demand floods the network. Yet after the initial

increase in sensor counts occurs, once congestion has propagated through the network

the sensor counts settle back to values close to the uncongested sensor counts. Given

just sensor counts as field measurements, it may seem as if the network has settled

back to its original state. The second row of Figure 4-20 gives sensor densities (𝑦-

axis) graphed over time (𝑥-axis). The red dashed line represents the prior demand

116



Figure 4-20: Sensor counts and densities over time for synthetic experiment on Florian
network incorporating multiple data sources

profile, and the blue solid line represents the true demand profile. The impact of the

additional O-D demand on the network can be observed in the density measurements

at sensors 6 and 8. In the second half of the simulation period, densities for these two

sensors remain near jam density, indicating congested links even with sensor counts

settling back to lower numbers.

4.3.2 Experimental design

The objective of this specialized case study is to calibrate O-D demand parameters for

all nine O-D pairs for every 15-minute interval in the simulation period. The majority

of the experimental design is the same as for the previous experiment detailed for the

Florian network in Section 4.1.4. The initialization period, algorithm parameters, un-

derlying state-space model, and metamodel specifications remain the same. In fitting

the random error parameters (𝑎, 𝑞0, 𝑏1, 𝑟0,1, 𝑏2, 𝑟0,2) of the state-space model offline

from simulator data, the parameters for the indirect measurement equation (𝑏1, 𝑟0,1)

for sensor counts and sensor densities are tuned independently due to the disparity in

magnitude of measurements and the difference in units. For count observations, the

parameters are set to 𝑏1 = 0.03 and 𝑟0,1 = 1. For density observations, the parameters
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are set to 𝑏1 = 0.015 and 𝑟0,1 = 0.5. In addition, the weight parameter 𝑤 is set to 10

instead of 100 for this set of experiments.

The main difference in experimental design is the use of density measurements in

addition to count measurements. For both the MM-EKF and FD-EKF algorithms,

two versions are run—one version utilizing only count measurements, to put the

algorithms on equal footing with the GLS and Assign-EKF benchmark algorithms,

and one version utilizing both count and density measurements. Each algorithm

is again run three times, and performance is evaluated using the root mean-square

normalized (RMSN) error defined in Equation 4.5. The goal of these experiments is to

determine if the general-purpose online calibration algorithms (MM-EKF, FD-EKF)

can successfully incorporate the new surveillance data and provide an accurate fit to

both types of measurements, a capability that the GLS and Assign-EKF algorithms

lack. A secondary goal is to analyze differences in performance between the MM-EKF

and FD-EKF algorithms provided both sensor count and density data due to their

different methods for gradient estimation.

4.3.3 Results

Tables 4.7 and 4.8 report the performance metrics for estimation of sensor counts,

sensor densities, and O-D demand parameters for all online calibration algorithms

over the entire simulation period. The layout and relationship between the two ta-

bles is the same as for Tables 4.2 and 4.3. Each row of Table 4.7 shows results for

one algorithm run. “Baseline” denotes the prior O-D demand profile, while the online

calibration algorithms that use both count and density field data are categorized as

“Counts+Densities” and those that use only count data are categorized as “Counts.”

The Assign-EKF and GLS algorithms can only handle count data. The RMSN error

metrics reported in Table 4.7 are averaged across the entire simulation period. Ta-

ble 4.8 provides a summary of the results in Table 4.7; each row shows results for the

average of all three runs of each online calibration algorithm. Percent improvements

are calculated off the “Baseline” row.

The main takeaway from this set of experiments is in the relative improvement
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counts densities O-D
Algorithm Run RMSN % improv RMSN % improv RMSN % improv
Baseline 0.070 - 0.573 - 0.196 -

MM-EKF
Counts+Densities

1 0.041 41.3 0.083 85.6 0.283 -43.8
2 0.057 18.2 0.169 70.5 0.334 -69.8
3 0.064 8.2 0.306 46.6 0.270 -37.5

FD-EKF
Counts+Densities

1 0.097 -38.7 0.373 34.9 0.392 -99.6
2 0.115 -63.8 0.448 21.8 0.404 -105.7
3 0.100 -41.8 0.464 19.1 0.423 -115.2

MM-EKF
Counts

1 0.038 46.1 0.381 33.6 0.201 -2.1
2 0.037 46.7 0.534 6.8 0.208 -5.9
3 0.036 48.1 0.561 2.2 0.202 -3.0

FD-EKF
Counts

1 0.032 54.9 0.552 3.8 0.202 -2.9
2 0.033 52.9 0.552 3.8 0.208 -5.9
3 0.037 46.7 0.558 2.6 0.215 -9.5

Assign-EKF
1 0.035 50.7 0.562 2.0 0.230 -16.9
2 0.031 56.4 0.551 3.8 0.224 -14.0
3 0.036 48.8 0.559 2.5 0.218 -10.7

GLS
1 0.022 68.9 0.550 4.1 0.212 -7.8
2 0.022 68.9 0.557 2.9 0.200 -1.6
3 0.022 68.1 0.548 4.4 0.193 1.5

Table 4.7: Estimation performance metrics for experimental results across full simu-
lation period for Florian case study incorporating multiple data sources

counts densities O-D
Algorithm RMSN % improv RMSN % improv RMSN % improv
Baseline 0.070 - 0.573 - 0.196 -

MM-EKF
Counts+Densities 0.054 22.6 0.186 67.6 0.295 -50.4

FD-EKF
Counts+Densities 0.104 -48.1 0.429 25.3 0.406 -106.8

MM-EKF
Counts 0.037 47.0 0.492 14.2 0.204 -3.7

FD-EKF
Counts 0.034 51.5 0.554 3.4 0.208 -6.1

Assign-EKF 0.034 52.0 0.558 2.8 0.224 -13.9
GLS 0.022 68.7 0.552 3.8 0.202 -2.6

Table 4.8: Average RMSN error metrics for estimation across all three runs for full
simulation period for Florian case study incorporating multiple data sources
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in RMSN error for estimated densities for the MM-EKF Counts+Densities algorithm

compared to the baseline of prior O-D demand and to all other online calibration algo-

rithms tested. At the same time, the proposed MM-EKF Counts+Densities algorithm

is able to improve fit to estimated counts compared to the baseline, finding param-

eter estimates that fit both count and density measurements simultaneously. The

average RMSN error for fit to estimated sensor counts is 5.4%, a 22.6% improvement

over the baseline, while the average RMSN error for fit to estimated sensor densities

is 18.6%, a 67.6% improvement over the baseline. While on average the MM-EKF

Counts+Densities algorithm improves over the baseline, the 95% confidence intervals

for the two metrics for the three-run samples are (2.5%, 8.4%) for estimated sensor

counts and (0%, 46.6%) for estimated sensor densities. The baseline RMSN for densi-

ties falls outside of the confidence interval, meaning the improvement is statistically

significant, but the baseline RMSN for counts is 7.0%, which falls in the 95% con-

fidence interval. Still, the 95% confidence interval for RMSN values for estimated

sensor counts falls entirely below 10%, which has been noted to be a satisfactory fit

to sensor counts as discussed in Section 4.1.5.

Among the benchmark algorithms, there are two comparisons to make with the

MM-EKF Counts+Densities algorithm results. The first is to algorithms that only

use counts data. For fit to estimated sensor counts, the GLS benchmark shows the

greatest improvement over the baseline with a very small average RMSN error of

2.2%. This matches what was observed in Section 4.2.2. The average RMSN error

for the three benchmark EKF algorithms fall between 3% and 4%. Running pairwise

Mann-Whitney tests, all comparisons with the MM-EKF Counts+Densities algorithm

conclude that the algorithms fitting only to counts have a better performance in

estimating sensor counts than the MM-EKF Counts+Densities algorithm, with 𝑝-

values smaller than 0.05. For fit to estimated sensor densities, the opposite is true.

Since these benchmark algorithms only calibrate to count data, the performance

metrics for fit to sensor densities is only slightly better than the baseline, as expected.

The average RMSN values range from 49.2% to 55.8%. Another set of statistical

tests conclude that the MM-EKF Counts+Densities algorithm performs significantly
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better than these benchmarks in fit to sensor densities. A worse performance in the

RMSN metric for sensor counts for the MM-EKF Counts+Densities algorithm is to be

expected as new measurements (link densities) are incorporated, since the objective

function of the online calibration problem must now accommodate for a minimization

of a larger number of terms across both counts and densities. Still, the loss in fit to

sensor counts is counterbalanced by the large improvement in fit to sensor densities.

The second comparison to make with the MM-EKF Counts+Densities algorithm

is to the only other algorithm able to incorporate density observations, FD-EKF

Counts+Densities. The FD-EKF Counts+Densities algorithm actually produces a

worse fit to sensor counts than the baseline, with an average RMSN value of 10.4%.

For fit to sensor densities, the 25.3% improvement over the baseline (average RMSN

error of 42.9%) is less than that for the MM-EKF Counts+Densities algorithm, a

significant difference confirmed by a Mann-Whitney test (𝑝 < 0.05). As the only

difference between the MM-EKF and FD-EKF algorithms is in the gradient approx-

imation in the linearization step of the EKF algorithm (all parameters are kept the

same in the experimental design), the divergence in performance must lie in that step.

As discussed in Section 2.3.1, the finite differences approach to gradient estimation

is significantly affected by simulator stochasticity. For the MM-EKF algorithm, the

use of an analytical traffic model may make the gradient calculation more robust to

the effects of simulator stochasticity, leading to improved performance for the online

calibration problem. This is discussed further in Section 4.3.4.

The simulation period central to analysis of the performance of the online calibra-

tion algorithms is the congested period from 6:30am to 10:00am, where the density

observations provide crucial information about the network state and the prior O-D

parameters differ significantly from the true O-D parameters. Tables 4.9 and 4.10

provide experiment results in the same format as Tables 4.7 and 4.8, but limited to

the congested period from 6:30am to 10:00am. The takeaways are similar for the

analysis of the congested period as they were for the overall simulation period, but

the magnitude of the improvements are more pronounced. The proposed MM-EKF

Counts+Densities algorithm shows improvement over the baseline for both fit to sen-
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counts densities O-D
Algorithm Run RMSN % improv RMSN % improv RMSN % improv
Baseline 0.105 - 1.068 - 0.393 -

MM-EKF
Counts+Densities

1 0.050 52.3 0.093 91.3 0.502 -27.7
2 0.075 28.6 0.254 76.2 0.532 -35.4
3 0.093 11.6 0.537 49.8 0.486 -23.7

FD-EKF
Counts+Densities

1 0.158 -50.8 0.678 36.5 0.657 -67.3
2 0.196 -86.6 0.834 21.9 0.694 -76.7
3 0.163 -55.5 0.855 19.9 0.733 -86.6

MM-EKF
Counts

1 0.046 56.5 0.688 35.6 0.351 10.6
2 0.043 59.1 1.004 6.0 0.352 10.4
3 0.039 62.9 1.036 3.0 0.356 9.5

FD-EKF
Counts

1 0.034 67.7 1.029 3.7 0.356 9.3
2 0.038 63.8 1.043 2.4 0.355 9.7
3 0.044 58.1 1.038 2.9 0.344 12.5

Assign-EKF
1 0.032 69.6 1.038 2.8 0.357 9.1
2 0.032 70.0 1.031 3.5 0.359 8.7
3 0.040 61.5 1.027 3.8 0.358 8.8

GLS
1 0.022 78.9 1.033 3.3 0.357 9.2
2 0.022 79.5 1.029 3.7 0.354 9.9
3 0.026 75.1 1.024 4.1 0.355 9.8

Table 4.9: Estimation performance metrics for experimental results for congested
period for Florian case study incorporating multiple data sources

sor counts and densities. The average RMSN error for the proposed algorithm is 7.3%

(30.8% improvement) for sensor counts and 29.5% (72.4% improvement) for sensor

densities. While the results for density measurements are statistically significant,

the baseline RMSN of 10.5% for sensor counts falls in the 95% confidence interval

for MM-EKF Counts+Densities results. This is reasonable, since the “true” demand

scenario was designed to show similar sensor counts in both the uncongested and

congested periods, and the prior demand scenario is just the O-D demand param-

eters from the uncongested period. Thus, improvement over the baseline for fit to

counts is not the primary metric of success. The comparative advantage of the MM-

EKF Counts+Densities algorithm over the corresponding FD-EKF Counts+Densities

algorithm still holds when constrained to the congested period. The FD-EKF algo-

rithm shows an average RMSN error of 17.2% for sensor counts and 78.9% for sensor

densities; both results are significantly worse than the corresponding results for the

proposed algorithm as confirmed by statistical tests.
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counts densities O-D
Algorithm RMSN % improv RMSN % improv RMSN % improv
Baseline 0.105 - 1.068 - 0.393 -

MM-EKF
Counts+Densities 0.073 30.8 0.295 72.4 0.506 -28.9

FD-EKF
Counts+Densities 0.172 -64.3 0.789 26.1 0.695 -76.9

MM-EKF
Counts 0.042 59.5 0.909 14.9 0.353 10.2

FD-EKF
Counts 0.039 63.2 1.036 3.0 0.352 10.5

Assign-EKF 0.035 67.0 1.032 3.4 0.358 8.9
GLS 0.023 77.8 1.029 3.7 0.355 9.6

Table 4.10: Average RMSN error metrics for estimation across all three runs for
congested period for Florian case study incorporating multiple data sources

Figures 4-21 through 4-23 show the experimental results graphically. Figure 4-21

summarizes the performance metrics for sensor counts for the different online calibra-

tion algorithms for the whole simulation period (3:00am to 10:00am), the uncongested

“control” period (3:00am to 6:30am), and the congested period (6:30am to 10:00am).

Each bar represents the average RMSN error across the three independent runs, and

the error bars give the 95% confidence interval from the three-run sample. For all

of the confidence intervals, a sample size of only three runs leads to wide ranges

that more experiments would alleviate. The uncongested regime provides a general

ground truth since the prior demand is the same as true demand in this period, and

predictably all algorithms do very well with RMSN values below 5%. The figure

shows the same conclusions as were discussed above.

Overall, GLS has the best performance in fit to counts but all algorithms improve

over the baseline for the congested period except for the FD-EKF Counts+Densities

algorithm. In fact, the baseline RMSN falls below the 95% confidence interval of the

FD-EKF Counts+Densities algorithm, indicating that performance shows significant

deterioration compared to the baseline. This may partially be due to a need for better

tuning of EKF algorithm parameters, but the impact of simulator stochasticity is

also a factor to be discussed in Section 4.3.4. The wide confidence intervals for both

the MM-EKF and FD-EKF approaches in the congested regime also point to the

123



Figure 4-21: Average performance metrics for estimated sensor count measurements
for MM-EKF algorithm and benchmarks for Florian case study incorporating multiple
data sources

variability among the limited number of experiment runs.

Figure 4-22 presents the same performance metrics, but for fit to sensor densi-

ties. Again the uncongested regime provides a general ground truth with all algo-

rithms performing very well with RMSN values below 10%. Overall, the MM-EKF

Counts+Densities algorithm performs better than the baseline as well as the online

calibration algorithms fit only to count measurements. For the congested regime, after

the algorithms adjust to the initial spike in sensor count and density measurements,

the benchmark algorithms fitting only to counts perform similarly to the baseline of

prior O-D demand. The MM-EKF Counts algorithm does see some improvement in

average RMSN in the congested period, perhaps by finding a different set of esti-

mated O-D parameters with more similar density observations to the true scenario.

The FD-EKF Counts+Densities algorithm performs better than the baseline but does

not compare to the performance of the MM-EKF Counts+Densities algorithm.

Finally, Figure 4-23 presents one last set of performance metrics for fit to the

underlying estimated O-D demand parameters. These metrics are also reported in

Tables 4.7 and 4.9. Interestingly, the two “Counts+Densities” algorithms do not es-

timate O-D demand parameters similar to the true demand parameters, even though
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Figure 4-22: Average performance metrics for estimated sensor density measurements
for MM-EKF algorithm and benchmarks for Florian case study incorporating multiple
data sources

the MM-EKF Counts+Densities algorithm is able to fit both sensor counts and

densities well. The average RMSN error for fit to O-D demand for the MM-EKF

Counts+Densities algorithm is 29.5%, compared to a RMSN error of 19.6% for the

baseline of prior O-D demand. The plotted 95% confidence intervals show that for this

metric, all of the online calibration algorithms given only sensor count measurements

demonstrate improved performance over the baseline during the congested period.

The wide confidence intervals for the “Counts+Densities” algorithms imply a large

variation in estimated O-D parameters across the three experiment runs, suggesting

that in the aim of calibrating both counts and densities, the algorithm runs show

divergence in the underlying states estimated by the Kalman filter. While fit to the

“true” O-D parameters is not the explicit objective of the online calibration problem,

accurately estimating the underlying state is a secondary goal. The poor perfor-

mance presented here possibly arises from the imprecision of the state-space model

assumptions, particularly the simple random walk transition equation, mentioned in

Section 4.3.1.
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Figure 4-23: Average performance metrics for estimated O-D demand parameters for
MM-EKF algorithm and benchmarks for Florian case study incorporating multiple
data sources

4.3.4 Simulator stochasticity and gradient estimation

The results of this case study point to a sharp difference in performance between the

proposed MM-EKF algorithm and the FD-EKF benchmark algorithm, even though

the only difference between the algorithms is in the gradient estimation methods of

the linearization step of the EKF algorithm. For the FD-EKF benchmark, estimating

the gradient of the stochastic traffic simulator using central finite differences implies

a trade-off between increased accuracy from methodological adjustments to control

for simulator stochasticity and increased computational efficiency of minimizing the

number of simulator evaluations required during each time step of the online calibra-

tion process. There are many factors that play into the accuracy of the central finite

differences approximation of the gradient, from the step size of the perturbation to the

number of simulator replications averaged at each perturbation. Since the accuracy of

the gradient estimate plays a significant role in the performance of the Kalman filter,

this decision of how to systematically address the trade-off between noise stemming

from simulator stochasticity and a limited computational budget is crucial for practi-

tioners to answer in implementation of the FD-EKF algorithm. These considerations
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are especially important when applying FD-EKF to a high-dimensional problem as

computational costs grow linearly with problem size.

Simulator stochasticity also plays a role in the gradient estimation step of the

proposed MM-EKF algorithm, but only through the generation of simulator-evaluated

points used to estimate the metamodel parameters as discussed in Section 3.2. For

simulator-evaluated points generated offline, the additional computational cost of

running multiple simulator replications and averaging the results to decrease the effect

of simulator stochasticity does not impact the limited computational budget in the

online phase. For those generated online, some consideration does need to be given to

the effect of simulator stochasticity on the simulator outputs for the sampled points

used to fit the metamodel. Yet the simulator points are only used to estimate the

metamodel parameters and not directly for the calculation of the gradient. Once the

simulator-evaluated points have been generated, the gradient estimation step of the

MM-EKF algorithm is entirely analytical and not impacted by simulator stochasticity.

In addition, the metamodel formulation is such that it relies on the use of problem-

specific structural information from a macroscopic traffic model; this global structural

information can provide a counterbalance to the stochasticity of the simulator.

Though some methodological adjustments have been proposed to control for sim-

ulator stochasticity in the context of gradient estimation (for instance, masking the

H matrix with prior knowledge about network structure [73]), a straightforward ap-

proach to minimize stochasticity is to average the estimation results from multiple

replications of the simulator. This approach is tested for the above experiment, but

first the impact of simulator stochasticity on the gradient approximation in the FD-

EKF algorithm is illustrated with a simple example.

For one of the runs of the FD-EKF Counts+Densities algorithm presented in

Section 4.3.3, the gradient of the simulator during the calibration interval from 3:15am

to 3:30am, denoted as H, is estimated using 50 separate replications. That is, 50

different estimates of the simulator gradient at the same point are produced. The

gradient H is an 8x9 matrix since the online calibration problem uses eight field

measurements (four sensor counts and four sensor densities) to calibrate nine O-D
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Quantile Min 25% 50% 75% Max
CV -447.61 0.40 1.96 5.88 107.83

Table 4.11: Distribution of coefficients of variation for 50 replications of FD-EKF
gradient estimate

demand parameters. To quantify the variation among the different gradient estimates,

the coefficient of variation (defined as the standard deviation divided by the mean)

is calculated for each of the 72 elements of the gradient. The quantiles of the 72

coefficients of variation (CV) are listed in Table 4.11. As seen in the table, the

coefficients of variation span a very wide range with some significant outliers. The

coefficient of variation is a standardized metric of dispersion; the median CV of the

elements of the gradient estimates being equal to 1.96 suggests significant variability

among the 50 replications of the same simulator gradient. While this exploratory

analysis is only one example of the calculation of the gradient estimate, it does indicate

that addressing simulator stochasticity is a major consideration for the FD-EKF

algorithm. More work on the topic of quantifying simulator stochasticity can been

found in the literature along with guidance on how best to control for simulator

stochasticity, particularly in the work of Zhang [73].

For the experimental design laid out in Section 4.3.2, one method to minimize

simulator error using multiple replications averaged for the gradient estimate is pur-

sued. For the case study, the FD-EKF Counts+Densities algorithm is run using 1

replication (same results as in Section 4.3.3), 10 replications, and 50 replications aver-

aged to estimate the gradient at each linearization step of the EKF algorithm. Each

variation of the FD-EKF Counts+Densities algorithm is run three separate times.

Figures 4-24 through 4-26 show the results of this analysis. Figure 4-24 shows

average RMSN errors for sensor counts during the entire simulation period (3:00am

to 10:00am), the uncongested period (3:00am to 6:30am), and the congested period

(6:30am to 10:00am). Within each grouping, the three variations of the FD-EKF algo-

rithm are compared to the baseline of prior O-D demand, and to the MM-EKF results

from Section 4.3.3. The error bars show 95% confidence intervals as calculated across

the three algorithm runs. The average RMSN value for estimation of sensor counts
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Figure 4-24: Average performance metrics for estimated sensor count measurements
for gradient estimation experiments for FD-EKF algorithm

Figure 4-25: Average performance metrics for estimated sensor density measurements
for gradient estimation experiments for FD-EKF algorithm
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Figure 4-26: Average performance metrics for estimated O-D demand parameters for
gradient estimation experiments for FD-EKF algorithm

is 10.4% for the FD-EKF algorithm using 1 replication, 6.9% for the version using

10 replications, and 7.8% for the version using 50 replications. The 95% confidence

intervals for the FD-EKF versions are wide, which suggests sizable variation among

runs, but on average the RMSN metric shows improvement in fit to sensor counts

with more replications in estimating the gradient. One-sided Mann-Whitney tests

confirm that the improvement in performance for both the 10 replications version

and 50 replications version are statistically significant. The difference in performance

between using 10 and 50 replications to estimate the gradient in terms of fit to sensor

counts is statistically insignificant.

Figure 4-25 has the same format as Figure 4-24 but shows results for the fit to

sensor densities. There is little difference among the FD-EKF versions in regard to

this performance metric. Pairwise Mann-Whitney tests among the three FD-EKF

versions are all statistically insignificant. Simulator stochasticity has been shown to

have varying effects on different measurement outputs [73], and coupled with incor-

rect tuning of the algorithm parameters, this might lead to the inconclusive results

seen here. Finally, Figure 4-26 shows results for the fit to the underlying O-D de-

mand parameters. Mann-Whitney tests show the improvement of the 10 replications
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version and 50 replications version over the 1 replication version in fitting O-D de-

mand parameters (𝑝 < 0.05). The difference in performance between using 10 and 50

replications is statistically insignificant. The 95% confidence intervals in the figure

also corroborate the benefit of additional replications in estimating the gradient, seen

especially for the congested period.

Although increasing the number of replications used to estimate the gradient for

the FD-EKF method leads to improved performance in terms of average RMSN er-

ror metrics, it also increases the runtime of the algorithm. While each algorithm

run for this case study on the Florian toy network is able to estimate the next set

of parameters well within each 15-minute time interval, the relative computational

costs as measured by runtime (in seconds) and number of simulator evaluations still

provide a sense of the impact of using multiple replications to improve the accuracy

of gradient approximations. Table 4.12 shows several statistics of the relative compu-

tational cost for the MM-EKF and FD-EKF Counts+Densities algorithms. The set

up is similar to Table 4.6. Each row of the table reports statistics for one algorithm

run; the four algorithms shown in the table are the same four algorithms plotted in

Figures 4-24 through 4-26. The first column of metrics measures the average runtime

(in seconds) of the online calibration algorithm in calculating parameter estimates

for one 15-minute time interval of the simulation period. The second column re-

ports the portion of that runtime specifically taken to calculate the gradient. For the

MM-EKF algorithm, this encompasses the “Metamodel Update,” “Analytical Model

Evaluation,” and “Linearization” steps of Algorithm 2. For the FD-EKF algorithms,

this is just the linearization step but includes the computation time for across all

replications used to estimate the gradient. The final column of Table 4.12 gives the

average number of times the traffic simulator is evaluated per 15-minute time inter-

val. For the MM-EKF algorithm, this is just once each interval at the current state

estimate. For the FD-EKF algorithms, simulator evaluations are used to numerically

estimate the gradient—the number of evaluations scales linearly with the number of

replications.

As expected, increasing the number of replications used by the FD-EKF algorithm
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to approximate the gradient also increases each of the computational cost metrics as

well. For the FD-EKF version using only one replication, the metrics are on the same

order of magnitude as for the MM-EKF algorithm. The average runtime per interval

across all three runs is 29.1 seconds for MM-EKF and 32.1 seconds for FD-EKF 1

Rep; similarly, the average runtime for the gradient calculation step is 2.1 seconds

for MM-EKF and 4.0 seconds for FD-EKF 1 Rep. The majority of the runtime for

both of these algorithms is taken up by the other steps of the EKF algorithm, and

both gradient calculation methods are relatively fast for the small toy network. As

the number of replications increases for the FD-EKF algorithm, gradient calculation

takes up a larger proportion of the total runtime; the other EKF algorithm steps are

essentially a fixed computational cost per time interval calibrated. Even for a low-

dimensional case study, running the FD-EKF algorithm with 50 replications takes

on average 112 seconds per 15-minute time interval, though the runtimes reported

are for running the replications sequentially. While increased parallelization and even

hardware enhancements can improve this metric, this added computational cost for

the sake of minimizing simulator stochasticity in the gradient estimation step will be a

significant limitation in the implementation of the FD-EKF algorithm on a large-scale

network, as seen in Section 5.2.4.

These experimental results support using the proposed MM-EKF algorithm to in-

corporate multiple sources of field measurements in calibration of the simulator over

the FD-EKF benchmark, especially in situations where the ability or budget to tune

algorithm parameters is limited. As the availability of real-time data from urban road

network expands, this added functionality is important for providing accurate esti-

mation of the traffic state for prediction and guidance capabilities. Also, in situations

that experience large variations in demand or are prone to significant fluctuations

in driver behavior or environmental circumstances (e.g., weather conditions), the use

of more types of field data than just sensor counts is crucial in delineating the true

state of the traffic network. For these situations, a more flexible online calibration

framework like MM-EKF that is able to find parameters that fit multiple sources of

data is advantageous to benchmarks like GLS.
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Algorithm Run

Average
Runtime Per
Interval (sec)

Average Gradient
Calculation Time
Per Interval (sec)

Average Simulator
Evaluations
Per Interval

MM-EKF

1 26.3 1.8 1
2 31.5 2.4 1
3 29.5 2.1 1

Avg 29.1 2.1 1

FD-EKF
1 Rep

1 30.6 3.8 18.2
2 37.1 5.9 18.1
3 28.7 2.4 18.3

Avg 32.1 4.0 18.2

FD-EKF
10 Reps

1 45.0 19.5 175
2 44.9 19.8 179
3 45.4 20.2 174

Avg 45.1 19.8 176

FD-EKF
50 Reps

1 106 81.4 877
2 109 84.2 888
3 121 95.7 888

Avg 112 87.1 884

Table 4.12: Summary of computational metrics for gradient estimation experiments
for MM-EKF and FD-EKF algorithms for Florian case study
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4.4 Conclusion

The proposed algorithm and relevant benchmarks were run for a simple demand

scenario on a toy network. The relative accuracy of the approach was measured

for estimation, 1-step prediction, and 2-step prediction of sensor counts. All online

calibration algorithms performed better than the baseline of offline-estimated prior

information for all metrics, confirming the importance of online calibration to adjust

parameters for real-time field measurements. In addition, the reported RMSN errors

for the MM-EKF were small, lower than 15% for both estimation and prediction

of sensor counts. RMSN errors for estimated O-D parameters and sensor densities,

which are both auxiliary performance metrics, were also lower than 15%. This set of

experiments validates the proposed approach as a viable algorithm for online calibra-

tion.

In the analysis on the Florian network case study, the algorithm performance on a

few demand settings was able to draw out the relative strengths of the proposed Meta-

model EKF algorithm, especially relative to widely-used online calibration algorithms

like generalized least-squares for the real-time OD calibration problem. The general

algorithm framework described in the previous chapters was successfully incorporated

into a specific online calibration problem context, for a particular Dynamic Traffic

Assignment system. Results showed comparable performance to various benchmarks,

and improvement in its ability to incorporate multiple data sources. The following

chapter shows the performance of the proposed algorithm for a high-dimensional cali-

bration problem on a large-scale network, and the results and challenges are discussed.
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Chapter 5

Singapore Expressway Case Study

The Florian network case study demonstrated the performance of the proposed Meta-

model EKF (MM-EKF) algorithm on a small toy network, and highlighted advanta-

geous characteristics of the algorithm compared to benchmark algorithms in the field

of online calibration. In this chapter, the feasibility of the Metamodel EKF algorithm

is evaluated on the Singapore expressway network in order to show an application of

the algorithm in a large-scale case study. The presented online O-D demand calibra-

tion problem on the Singapore network is one of largest seen in the current literature,

as detailed in Section 1.3. The performance of the approach is measured against

suitable benchmarks, the feasibility of the method in terms of computational cost

in a real-time context is shown, and practical considerations for the scalability and

deployment of the algorithm are discussed.

The case study in this chapter addresses a few research questions. First, the an-

alytical traffic model presented in Section 3.3 is validated on a high-dimensional and

time-dependent demand scenario. The model is able to accurately reproduce link

characteristics output by the stochastic traffic simulator for a set of transient origin-

destination (O-D) demand matrices on the large-scale Singapore expressway network,

and the analytical model solution is found in a matter of seconds. Second, and most

importantly, the performance of the proposed Metamodel EKF algorithm is evalu-

ated in a real-world setting and compared to several benchmark online calibration

methods. It performs favorably against black-box Kalman filter methods in terms
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of ease of implementation, performance accuracy, and computational cost. The em-

pirical results validate that the proposed algorithm can be implemented in real-time

for a problem of dimension 4050 and produce accurate estimates of the traffic state.

Third, algorithmic considerations detailed in the previous chapters are explored in

a real-world context, leading to initial empirical observations of the importance of

algorithm development in practical settings. In particular, the impact of generating

a bank of simulator-evaluated points offline for fitting the metamodel is observed on

performance of the algorithm in estimating model parameters.

Section 5.1 gives the specifications and experimental set-up of the case study,

including a description of the Singapore expressway network, the data generation

process, the experimental design, performance metrics, and benchmark algorithms.

Section 5.2 presents the results of the case study in detail, starting with the vali-

dation of the analytical traffic model, followed by analysis of the online calibration

results both in terms of the accuracy of fit to field measurements and the online

computational cost of the proposed algorithm.

5.1 Case study specifications

As in the Florian network case study, the online calibration problem for the Singapore

network case study is to calibrate time-dependent O-D demand parameters provided

sensor count measurements from the field. The online calibration algorithms have

been implemented with DynaMIT-R, described in Section 4.1.1.

5.1.1 Network description

The case study detailed in this chapter is run on the network of major expressways

and arterials in the city of Singapore, seen in a high-level summary in Figure 5-1.

A schematic of the road network representation in the DynaMIT-R traffic simulator

is given in Figure 5-2. The network features 1150 links, over 2300 lanes, 924 total

nodes, 127 origin nodes, and 141 destination nodes. This leads to a total of 4050 O-D

pairs to calibrate demand for, with over 18,000 routes. There are 172 link sensors
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Figure 5-1: High-level map of the Singapore expressway network [52]

spread throughout the network that provide real-time traffic information (i.e., sensor

counts). For the experiments described, demand parameters are calibrated for all

4050 O-D pairs.

5.1.2 Data description

The objective of the Singapore expressway network case study is to calibrate O-D

demand parameters across a typical morning peak period in time intervals of 15 min-

utes. The calibration parameter vector in this case study has dimension 4050, and the

measurement vector has dimension 172 consisting of sensor counts for every 15-minute

time interval. Due to a lack of access to real-world traffic data for this network, a

synthetic demand scenario is created for the simulation period of 6:00am to 1:00pm.

O-D demand is specified for every 15-minute period and mimics a general traffic pat-

tern of morning peak period demand, with total network demand increasing until the

hour from 8:00am to 9:00am and then gradually decreasing from the morning peak.

Total network demand stabilizes around 10:30am after peak demand has dissipated

and remains steady until the end of the simulation period at 1:00pm. The O-D de-

mand parameters represent the number of vehicles in each 15-minute time interval
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Figure 5-2: DynaMIT-R representation of the Singapore expressway network [73]

that depart from the origin node for the destination node.

In addition to the synthetic “true” demand scenario created, a set of prior O-

D demand parameters is also created for the same simulation period to represent

the input of offline-calibrated parameter values in the online calibration problem.

To create prior demand parameter values that realistically resemble the result of an

offline calibration process, the same set of O-D demand parameter values is assumed

for each of four smaller time windows of equal length in the simulation period. The

four time windows across which O-D demand parameters are assumed constant are

6:00am to 7:45am, 7:45am to 9:30am, 9:30am to 10:45am, and 10:45am to 1:00pm,

which partition the full simulation period. This set-up for prior demand models

a situation where offline calibration would provide average parameter settings over

longer periods of time for the traffic network. These prior parameter values would

have been calibrated using a database of historical information. For this synthetic

demand scenario, the numerical values of the prior demand parameters for each O-D

pair are calculated by averaging the “true” demand parameter values for that O-D

pair across every time window.

Figure 5-3 plots the total demand summed across all 4050 O-D pairs (𝑦-axis) for

each 15-minute time interval in the simulation period (𝑥-axis) for both the synthetic

“true” demand profile and the synthetic “prior” demand profile. The blue solid line
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Figure 5-3: Comparison of total network O-D demand for true and prior demand
scenarios for Singapore case study
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Figure 5-4: Comparison of true and prior O-D demand for subset of Singapore O-D
pairs
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represents the true demand, while the red dashed line represents the prior demand.

The true demand curve follows the shape described above, with morning peak period

demand occurring between 8:00am and 9:00am and smooth fluctuations across time.

The trends for the prior demand profile are similar to those of the true demand

profile, with total demand at its largest during the 7:45am to 9:30am time window

that encompasses morning peak period. Notice that the prior demand is essentially

a step function, with constant demand values across each of the four sub-periods as

was constructed. Figure 5-4 shows a more granular view of the two demand profiles

for a subset of the 4050 O-D pairs. The subset was chosen by determining the nine

O-D pairs with the largest demand as summed over the entire simulation period.

Each subplot shows demand (in vehicles per 15-minute interval on the 𝑦-axis) for a

single O-D pair in the network across the whole simulation period. The blue solid line

represents true demand, and the red dashed line represents prior demand. As can be

seen, there is a lot of variation in demand profiles for the 4050 individual O-D pairs

in the network across time both in magnitude and in shape. For each O-D pair, while

the prior demand curve follows the same general trends as the true demand curve,

it often misses the exact peaks and valleys of the true demand due to it averaging

demand across the four longer time windows.

Since both the true and prior demand profiles are synthetic, field measurements

must also be synthetically generated for the case study. For each demand profile,

sensor measurements are created using the supply-only simulator of DynaMIT by

running 50 replications for the specified O-D demand and averaging the simulator out-

puts across the 50 replications, just as with the Florian network case study. Through

this process, sensor count measurements for the 172 link sensors are acquired and

taken to be the “observed” field data.

Figure 5-5 plots count measurements (in vehicles) obtained from this process on

the 𝑦-axis for each 15-minute interval on the 𝑥-axis for a subset of the 172 link sensors.

The subset was chosen by determining the nine sensors with the largest count volume

as summed over the entire simulation period. Each subplot graphs the measurements

for a different sensor. The observed measurements for the true demand profile are
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Figure 5-5: Comparison of sensor counts for true and prior demand profiles for subset
of sensors in Singapore case study

142



Figure 5-6: Comparison of sensor densities for true and prior demand profiles for
subset of sensors in Singapore case study

143



given by the blue solid line, while the observed measurements for the prior demand

are given by the red dashed line. Figure 5-6 provides the same plots but for density

measurements (in vehicles per mile per lane) for the same subset of link sensors.

While the plotted densities provide a useful snapshot of the demand scenarios, note

that sensor densities are not used as field measurements in the online calibration

process of this case study. As the figures show, both sensor counts and densities for

the two demand profiles show similar trends to the trends of the O-D demand. More

specifically, “observed” counts for both true and prior demand scenarios increase until

peak period then start to dissipate.

Figure 5-5 also indicates that the sensor counts observed for the prior demand

scenario already provide a good fit to the observed sensor counts for the true demand

scenario, though they underestimate the exact peaks of the true counts. Still, this

indicates that the baseline performance of the “offline-calibrated” prior demand may

be difficult to improve upon for this case study. An online calibration algorithm

given field measurements not radically different from those corresponding to the prior

demand will not need to make very large adjustments to the parameter estimates.

Figure 5-6 shows a similar situation in terms of link densities. The link densities at

the same subset of sensors range from close to zero to a maximum of approximately

28 vehicles per mile per lane. These observed densities indicate very little to zero

congestion on the network. In addition, the difference between the densities for the

true and prior demand scenarios is small. It is interesting to note that even with

a synthetically constructed prior demand that shows large deviations from the true

demand, the sensor counts and densities on the Singapore network remain similar—

the difficulties of creating a large-scale case study using synthetic demand and its

implications on performance evaluation are discussed in more detail in Section 6.2.2.

5.1.3 Experimental design

Many of the same experimental design specifications from the Florian network case

study detailed in Section 4.1.4 directly apply to the Singapore expressway network

case study as well. One major difference is a one-hour warm-up period (from 5:00am to
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6:00am) is used to ensure that the network is adequately loaded before the simulation

period for online calibration begins at 6:00am. Once the warm-up period ends, all

algorithms start with an initialization period of 15 minutes where O-D parameters are

estimated using the generalized least-squares (GLS) approach. The Kalman filtering

approaches are initialized in the same manner as for the Florian case study. The same

state-space model formulation given in Equation 4.3 is used, as are the same EKF

algorithm parameters (𝑎 = 0.4, 𝑞0 = 1, 𝑏1 = 0.03, 𝑟0,1 = 1, 𝑏2 = 0.6, 𝑟0,2 = 1, and

𝑤 = 100).

For the Metamodel EKF approach, the analytical network model detailed in Sec-

tion 3.3 and a linear polynomial correction component are used in the formulation.

In order to limit the number of metamodel parameters that need to be estimated and

to avoid overfitting due to overparameterization, only O-D demand parameters that

have a possible route through the sensor corresponding to measurement 𝑗 are included

in the linear polynomial component of the metamodel formulation corresponding to

observed measurement 𝑗. Unless specified (Section 5.2.5), no simulator-evaluated

points are generated during the offline phase of the MM-EKF algorithm to fit the

metamodel.

5.1.4 Performance benchmarks

The Metamodel EKF algorithm (MM-EKF) is compared to the same benchmarks

(GLS, Assign-EKF, FD-EKF) as in the Florian network case study, detailed in Sec-

tion 4.1.5. Since the Singapore network case study calibrates O-D demand parameters

given sensor count field measurements, the GLS and Assign-EKF benchmarks can be

applied. Still, as addressed in the previous chapter in Section 4.3, both of these

methods are specialized (and thus perform well) for this particular online calibration

problem and are not generalizable to other online calibration problems with differ-

ent calibration parameters or field measurements in the same way the Metamodel

EKF algorithm is. This aspect of the comparison with benchmark algorithms is not

addressed in this chapter.

One additional benchmark algorithm is shown for this case study. As discussed in
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Section 1.3, the Limiting EKF (LimEKF) algorithm, first proposed by Antoniou [3],

is derived from the FD-EKF benchmark algorithm and is motivated by the difficulty

in scaling the FD-EKF algorithm for use on a high-dimensional problem due to the

computational cost of the central finite differences numerical gradient approximation

method. The Limiting EKF algorithm calculates an average gradient matrix offline

from previously estimated numerical gradients and applies the same average gradient

matrix at each time step of the EKF calibration. For the Singapore network case

study, the average gradient matrix is computed from the gradient matrix estimates

produced online during the FD-EKF calibration run. In comparing the proposed

Metamodel EKF algorithm to both the FD-EKF and LimEKF algorithms, the diffi-

culties in scaling an extended Kalman filter approach for use on a large-scale network

are illustrated. The two benchmarks represent opposite poles on the spectrum of

numerical gradient estimation techniques. The FD-EKF algorithm has a high online

computational cost and can be difficult to tune with respect to simulator stochas-

ticity, but theoretically provides the best localized gradient approximation. On the

other hand, the LimEKF algorithm shifts the computationally expensive gradient

approximation step offline with a trade-off of worse online performance in calibration

accuracy. Note that the proposed MM-EKF algorithm, along with the other Kalman

filter algorithms (Assign-EKF, FD-EKF, LimEKF), are identical in implementation

except for how they each approximate the gradient in the linearization step of the

Kalman filter. Comparisons among these online calibration algorithms will illuminate

the pros and cons of each gradient approximation technique.

For the Singapore network case study, the only field data used to perform the

online calibration is sensor count data. Calibration performance is measured using the

same experimental design as the Florian network case study, specified in Section 4.1.4,

though the FD-EKF and LimEKF benchmarks are each only run once, due to time

limitations. The performance of each algorithm is assessed using the root mean-square

normalized (RMSN) error given in Equation 4.5.
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5.1.5 Summary

To summarize, the online calibration experiments for the Singapore network case

study have the following attributes:

∙ Simulation period from 6:00am to 1:00pm with 15-minute calibration intervals

and an hourlong warm-up from 5:00am to 6:00am,

∙ State vector of calibration parameters is of dimension 4050 consisting of O-D

demand parameters,

∙ Measurement vector is of dimension 172 consisting of sensor counts,

∙ Algorithms run are the proposed MM-EKF and benchmarks GLS, Assign-EKF,

FD-EKF, and LimEKF,

∙ Estimated and predicted (both 1 time interval into the future and 2 time in-

tervals into the future) sensor counts and densities are generated for all online

calibration results,

∙ Performance is evaluated using the root mean-square normalized (RMSN) error

metric.

5.2 Results

This section presents the results of the case study. Validation of the analytical model

on the Singapore network is presented in Section 5.2.1 to illustrate the modeling

power of the network-specific traffic model for O-D demand detailed in Section 3.3

on a large-scale network. Summary results for online calibration are then shown in

Section 5.2.2 to demonstrate the overall performance of the proposed MM-EKF ap-

proach in estimation and prediction compared to benchmarks. A deeper dive into

the algorithm’s performance is then provided, with results broken down by hour in

Section 5.2.3, and computational results are shown in Section 5.2.4. Some initial

147



empirical results for different methods of fitting the metamodel are provided in Sec-

tion 5.2.5 before the chapter concludes with final results for the Metamodel EKF

algorithm in Section 5.2.6 and some discussion of the challenges of applying the al-

gorithm to a large-scale problem.

5.2.1 Validation of analytical model

The analytical traffic model presented in Section 3.3 is validated on the Singapore

expressway network in order to evaluate how it performs on a large-scale network.

While there are 924 nodes and 1150 links in the simulator model of the Singapore

expressway network, the analytical traffic model for O-D demand on the network only

models a subset of them (265 nodes and 860 links). The link subset is chosen based on

the links comprising a pre-determined route choice set used by the analytical model;

each of the 172 sensored links falls within the subset of links modeled by the analytical

model. The fixed route choice set was created from DynaMIT parameter files of

the Singapore network representation. This model is validated on the Singapore

network using the time-dependent O-D demand scenario presented in Section 5.1.2.

For each 15-minute time interval in the simulation period from 6:00am to 1:00pm,

the analytical traffic model is solved with the O-D demand as input, and both link

count and density outputs are recorded.

Figures 5-7 through 5-10 show the comparison of the analytical traffic model out-

puts with the “true” observations for the synthetic demand scenario output by the

simulator. Figure 5-7 shows the fit of analytical counts on the 𝑦-axis (in vehicles)

to the simulator output on the 𝑥-axis (in vehicles). Each sensor in the network is

represented by a different color; the blue line gives the 45-degree line that represents

perfect correlation. The correlation coefficient for sensor counts is 0.98, which in-

dicates a strong linear relationship between the two datasets. The scatterplot also

confirms this; most points are clustered tightly around the 45-degree line while a few

sensors seem to be mis-estimated by a constant factor, although the relationship is

still linear. The analytical traffic model is able to replicate the transient simulator

counts very closely although it does not model transient dynamics itself. Figure 5-8
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confirms this analysis in greater detail for the same subset of link sensors as in Fig-

ure 5-5. Each plot graphs sensor counts on the 𝑦-axis output by both the simulator

and analytical model for the simulation period represented on the 𝑥-axis. The blue

solid curve gives simulator-generated counts, and the red dashed curve graphs ana-

lytical counts. For the majority of the sensors shown in Figure 5-8, the two curves are

near-identical. For sensor 104, the analytical traffic model is able to reproduce the

overall shape of the simulator counts but systematically overestimates the magnitude;

the scaling factor difference can be corrected in the metamodel formulation with the

parameter 𝛼ℎ
𝑗 in Equation 3.1. From this comparison of simulator and analytical

model sensor counts, it can be expected that the metamodel approximation, if not

the analytical traffic model by itself, can successfully reproduce simulator outputs for

the Singapore network.

Similar plots for sensor densities are given in Figures 5-9 and 5-10. Figure 5-9

shows several sensors with density observation points clustered around the blue 45-

degree line, though there are several other sensors which diverge from this trend.

For any specific sensor (color of point), the relationship between the simulator and

analytical model densities looks to be strongly linear, even when not in line with

the 45-degree line and instead off by a constant scaling factor. The overall correla-

tion coefficient for the density measurement datasets is 0.79, which implies less of

an overall linear relationship than for count measurements. In general, the biggest

discrepancies between the analytical model and the simulator are caused by cases

where link densities are overestimated by the analytical model. As seen in the subset

of sensors plotted in Figure 5-10, there are a few sensors that largely get the trend

and magnitude correct (sensor indices 17, 63, 76). For the other sensors, the shape

of the analytical model curve mirrors that of the simulator curve; the affine scaling

discrepancy can be corrected through the fitting of the metamodel parameters. For a

more systematic correction, the bias of the analytical model can also be corrected by

fine-tuning the network parameters (i.e., jam density) of the analytical traffic model

as formulated in Equations 3.5 through 3.10. While the case study in this chapter

does not use sensor densities as field measurements, in general a better calibration
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Figure 5-7: Scatterplot of simulated vs. analytical model sensor counts for Singapore
case study
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Figure 5-8: Comparison of observed counts for true and prior demand profiles on a
subset of Singapore sensors
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Figure 5-9: Scatterplot of simulated vs. analytical model sensor densities for Singa-
pore case study

of the analytical model to the network may lead to less bias in the Metamodel EKF

approach. Overall, the analytical traffic model does an impressive job of approximat-

ing traffic measurements output by the simulator on a large-scale network, even with

such a high-level macroscopic representation of traffic behavior on the network.

5.2.2 Summary across simulation period

Since the primary stated objective of online calibration is accuracy of fit to field

measurements, the algorithm performance for estimation of sensor counts is analyzed

first. Tables 5.1 and 5.2 shows a summary of performance metrics for the estimation

and prediction of sensor counts across all online calibration algorithms tested. The
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Figure 5-10: Comparison of observed densities for true and prior demand profiles on
a subset of Singapore sensors

Estimation 1-step prediction 2-step prediction
Algorithm Run RMSN % improv RMSN % improv RMSN % improv
Baseline 0.143 - 0.150 - 0.184 -

MM-EKF
1 0.082 42.7 0.152 -1.2 0.219 -19.1
2 0.086 40.1 0.153 -2.0 0.224 -21.4
3 0.085 41.0 0.150 0.1 0.220 -19.5

Assign-EKF
1 0.068 52.6 0.139 7.2 0.222 -20.8
2 0.069 51.7 0.137 8.6 0.225 -22.1
3 0.070 50.9 0.142 5.8 0.224 -21.4

GLS
1 0.039 73.0 0.149 1.1 0.214 -16.1
2 0.037 74.0 0.143 5.1 0.170 7.6
3 0.037 74.4 0.143 4.8 0.168 8.8

FD-EKF 1 0.288 -100.8 0.317 -111.1 0.345 -87.3
LimEKF 1 0.304 -111.9 0.336 -123.8 0.367 -99.5

Table 5.1: Performance metrics for estimation and prediction of sensor counts for
online calibration algorithms in Singapore network case study
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Estimation 1-step prediction 2-step prediction
Algorithm RMSN % improv RMSN % improv RMSN % improv
Baseline 0.143 - 0.150 - 0.184 -

MM-EKF 0.084 41.3 0.152 -1.0 0.221 -20.0
Assign-EKF 0.069 51.7 0.139 7.2 0.224 -21.4

GLS 0.038 73.8 0.145 3.7 0.184 0.1
FD-EKF 0.288 -100.8 0.317 -111.1 0.345 -87.3
LimEKF 0.304 -111.9 0.336 -123.8 0.367 -99.5

Table 5.2: Summary of estimation and prediction metrics for sensor counts in Singa-
pore network case study

layout is similar to that of Tables 4.2 and 4.4 but focused specifically on sensor count

fit. Each row of the table reports results for one calibration run of an algorithm;

results for three runs of the MM-EKF, Assign-EKF, and GLS algorithms are reported,

as well as one run of both FD-EKF and LimEKF algorithms. Table 5.2 shows the

average performance metrics across all three algorithm runs of a particular algorithm.

The RMSN values and percent improvement (calculated off of the “Baseline” row)

are reported for fit to sensor counts in the estimation, 1-step prediction, and 2-step

prediction stages.

First note that the performance of using the baseline of prior O-D demand pa-

rameters to fit sensor counts is already quite good, with a RMSN error of 14.3% for

estimation. This was suggested in the discussion of Figure 5-5, as sensor counts for

the true and prior demand scenarios were shown to be close for a subset of the link

sensors. Given the good performance of the baseline to start, the online calibration

algorithms may be motivated to only make small adjustments based on the observed

sensor counts and estimate O-D parameters near the prior values. Still, several of

the algorithms show an improvement over the baseline in estimating sensor counts.

The average RMSN error for the MM-EKF algorithm in fitting observed counts is

8.4%, compared to average RMSN values of 6.9% for Assign-EKF and 3.8% for GLS;

the corresponding percent improvements are 41.3% for MM-EKF, 51.7% for Assign-

EKF, and 73.8% for GLS. To gauge the statistical significance of these improvements,

a 95% confidence interval for each algorithm is calculated for the three-run sample.
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The confidence interval for the MM-EKF error metrics is (7.9%, 8.9%), which implies

the improvement shown by the proposed algorithm over the prior O-D parameters in

estimating sensor counts is statistically significant. One-sided Mann-Whitney tests

also confirm that for estimation, the GLS algorithm performs the best followed by

the Assign-EKF algorithm and then the MM-EKF algorithm. In terms of absolute

RMSN error, all three of these algorithms show good performance with averages less

than 10%, a threshold indicating a close fit as discussed in Section 4.1.5.

This corroborates what was seen in the Florian case study. In terms of estimating

observed measurements from the field, the GLS algorithm produces smaller error

metrics than the Kalman filter algorithms for the O-D calibration problem. This is

not entirely surprising—for the Singapore network, the optimization problem involves

estimating 4050 O-D parameters given 172 sensor count measurements, which is a

very under-determined problem. The generalized least-squares algorithm is able to

identify parameter values that minimize this objective with an average error of 3.8%.

On the other hand, the Assign-EKF and MM-EKF algorithms impose structural

restrictions on the optimization problem that the GLS algorithm does not through

the state-space model formulation and specifically the transition equation. While both

EKF algorithms still produce good solutions in fit to measurements, the parameters

are estimated based on the estimates and covariance matrix of the parameters from

the previous time step in addition to sensor count measurements from the current

time step. As a result, the GLS algorithm has more of a tendency to overfit to

measurements than the Kalman filtering approaches, which leads to good performance

in estimation but worse performance in prediction. This is confirmed in the discussion

below.

More interestingly, the Assign-EKF algorithm shows better performance than the

proposed MM-EKF algorithm in estimation of sensor counts. The sole difference in

the algorithms is in the gradient estimation method, though bias in the case study

experimental design mentioned in Section 4.1.4 may also help explain this trend. The

bias is introduced in the tuning of the Kalman filter parameters. The Kalman filter

parameters for the case studies were tuned prior to the online calibration experiments
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using the Assign-EKF algorithm, primarily due to the faster runtime of the algorithm.

Thus the grid search used to tune the Kalman filter parameters found the optimal

setting for the Assign-EKF algorithm, which is not necessarily the optimal param-

eter setting for the MM-EKF (or FD-EKF or LimEKF, for that matter) algorithm.

Ideally, the Kalman filter parameters would be tuned for each individual algorithm,

though other considerations like overfitting and data availability should also be taken

into account, some of which are addressed in Section 6.2.2. Still, the divergence in

performance between the Assign-EKF and MM-EKF approaches points to differences

in the gradient estimation methods. In particular, it seems the metamodel approach

for approximating the gradient does not perform as well for the large-scale Singapore

network. Contrasting this with the strong performance of the analytical traffic model

in fitting sensor counts in Section 5.2.1, it may be that the metamodel can replicate

simulator output well but not the gradient. Since the metamodel is fit using only sim-

ulator output and no first-order information from the simulator, there is no explicit

guarantee that the analytical gradient of the metamodel is an accurate approxima-

tion of the simulator gradient. As the extended Kalman filter approach needs a good

estimate of the gradient at each time step to perform optimally, further exploration of

the attributes of the metamodel gradient approximation and methods for improving

the first-order fit of the metamodel should be considered in future research.

On the other hand, the performance metrics for the FD-EKF and LimEKF algo-

rithms in estimating sensor count measurements are worse than the baseline of prior

O-D demand. The RMSN error for the FD-EKF algorithm run is 28.8%, while the

RMSN error for the LimEKF algorithm run is 30.4%. As expected from the discus-

sion in Section 5.1.4, the LimEKF algorithm shows a slightly worse performance in

calibration accuracy compared to the FD-EKF but the online computational cost is

significantly reduced (see Section 5.2.4). As for the poor performance of these two al-

gorithms in comparison to the baseline and other online calibration algorithms, there

are a few possible reasons for this deterioration in performance. First, there was

difficulty in fine-tuning the FD-EKF algorithm for the large-scale Singapore network.

Whereas the MM-EKF and Assign-EKF methods for estimating the gradient were
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straightforward to apply and achieved good performance without much testing of

the gradient calculation procedure, the algorithm parameters for the finite differences

gradient estimation used by FD-EKF were more difficult to calibrate. Coupled with

the high computational cost of running even one pass of the FD-EKF algorithm, im-

plementation of the algorithm for a network of this size proved much more unwieldy

than comparable EKF algorithms.

The other element that may factor into the poor performance of the FD-EKF

algorithm is the impact of simulator stochasticity on the gradient approximation

method. This has been detailed already in Section 4.3.4, but the effect is felt more

strongly in the Singapore network case study as only one replication of the gradient

estimation step is taken due to the computational limitations of the problem. While

the FD-EKF does produce an unbiased estimate of the gradient where the MM-EKF

does not, it is also an especially noisy estimate due to its reliance on thousands of

evaluations of the stochastic traffic simulator. As a result, the FD-EKF algorithm,

as well as the LimEKF algorithm, which relies on the gradient estimations from FD-

EKF, suffer in performance accuracy. Ultimately, for the Kalman filter parameter

settings that were used for this case study, the Assign-EKF and MM-EKF algorithms

were able to achieve an improvement in performance compared to the baseline as

measured by the RMSN error metric in estimating sensor counts. The FD-EKF and

LimEKF benchmarks were not able to achieve similar results. Better performance

for the FD-EKF and LimEKF algorithms may be possible with further adjustments,

though compared to other Kalman filter approaches like the Assign-EKF and MM-

EKF algorithms, they seem to require more effort to achieve favorable results for

a large-scale application. Given the difficulty of implementing the finite differences

approach for gradient estimation, it would also be interesting to apply other numerical

gradient estimation methods (i.e., simultaneous perturbation) in future case studies

of this scale as a benchmark for the proposed MM-EKF approach.

Tables 5.1 and 5.2 also show experiment results for the 1-step and 2-step prediction

stages. Since the online calibration algorithms are run for 15-minute time intervals in

this case study, one-step prediction statistics correspond to prediction for 15 minutes
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into the future, while two-step prediction statistics correspond to prediction for 30

minutes into the future. Positive values in the percent improvement columns indicate

performance better than the baseline, while negative values indicate performance

worse than the baseline.

Overall, the online calibration algorithms show little to no improvement over the

baseline. The proposed MM-EKF algorithm reports an average error metric of 15.2%

for one-step prediction, marginally (1%) worse than the baseline, and 22.1% for two-

step prediction, 20% worse than the baseline. The corresponding 95% confidence

intervals are calculated to be (14.8%, 15.6%) and (21.5%, 22.7%), respectively, which

indicate the performance of the MM-EKF algorithm is statistically indistinguishable

from the baseline for 1-step prediction and significantly worse for 2-step prediction.

The Assign-EKF and GLS benchmarks outperform the MM-EKF in the 1-step pre-

diction stage, with statistical tests confirming the relative best performance of Assign-

EKF (average RMSN error of 13.9%), followed by GLS (14.5%). Though the GLS

algorithm shows a 3.7% improvement over the baseline, the 95% confidence interval

is calculated to be (13.6%, 15.3%), which indicates the difference is not statistically

significant. In predicting further into the future (2-step prediction), the two primary

EKF algorithms (MM-EKF and Assign-EKF) show considerable deterioration in per-

formance compared to the baseline. The GLS algorithm (RMSN error of 18.4%) shows

comparable results to the baseline. On the other hand, the FD-EKF and LimEKF

benchmark algorithms continue to show poor performance in the prediction stages,

with RMSN values of 31.7% and 33.6% for 1-step prediction, respectively, with worse

performance for 2-step prediction.

There are a couple of takeaways to note from the prediction results. First, while

the GLS benchmark performs better than the MM-EKF algorithm for prediction of

sensor counts on the Singapore network, the magnitude of the divergence in perfor-

mance shrinks considerably between estimation metrics and 1-step prediction metrics.

This speaks to the over-performance of GLS in estimation compared to prediction due

to overfitting to field measurements. Whereas the GLS benchmark shows a 73.8%

improvement on the baseline for estimation, it only shows a (not statistically sig-
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nificant) 3.7% improvement for 1-step prediction. Second, as mentioned previously,

some of the better performance of Assign-EKF compared to MM-EKF may be due to

experimental design bias. In looking at the 2-step prediction results for Assign-EKF

and MM-EKF, where the Kalman filter parameter tuning bias has less effect, both

algorithms perform comparatively. The poor performance of these Kalman filter ap-

proaches in prediction is discussed more below, and also in Section 6.2.1. Finally,

the algorithm parameters were tuned according to a grid search based on estimation

performance, not predictive performance. The degradation of the performance of the

online calibration algorithms in the prediction stages signals that the algorithm pa-

rameters may be overfit for performance in estimation of sensor counts and should

instead be better tuned for predictive performance.

For this set of prediction metrics, the baseline of prior O-D demand parameters

also proves to be a difficult one to improve upon. The RMSN values for 1-step and

2-step prediction of sensor counts for the baseline are 15.0% and 18.4%, respectively.

These are already good results for prediction; similar case studies found in the liter-

ature report prediction errors for historical parameters in the range of 36% to 42%

[52, 73]. Part of the reason the baseline performs well is due to the specific nature of

how the prior demand scenario was constructed—since the prior demand values are

kept constant across four broad time windows that partition the simulation period,

predictions using the prior demand are very similar to estimations (as confirmed by

the RMSN values), and there is less deterioration in performance moving from the

estimation stage to the prediction stages for the baseline. The impact of the prior

demand on predictive performance was also seen in other experiments done for this

case study, which are not reported. Using a different prior demand scenario for the

same set of true O-D parameter values led to improved predictive performance rela-

tive to the baseline of prior demand. While these results are largely exploratory, the

effect of prior information on algorithm performance is worth further analysis.

Most significantly, it is crucial to note that while predictive performance of the

MM-EKF algorithm is an important objective in order to provide accurate prediction

and guidance capabilities in a real-time setting (which is why it is reported), the
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proposed algorithm makes no claim to improve forecasting power compared to other

online calibration Kalman filtering algorithms. The metamodel approximation, the

main development of the MM-EKF algorithm, is expressly used to embed structural

information and reduce the computational burden of the gradient approximation in

the EKF approach. While better predictive performance would be a welcome auxiliary

effect of using the metamodel to estimate the underlying parameters, most of the

predictive performance of EKF methods can be attributed to the assumptions made

in the state-space model formulation. Prediction for a Kalman filtering approach is

carried out by running the state estimates (i.e., O-D demand parameters) through the

transition equation, which in this case is a simple random walk. For the results of this

case study reported in Tables 5.1 and 5.2, the deterioration of both the Assign-EKF

and MM-EKF algorithms in average RMSN error values shifting from estimation to

prediction (and particularly 2-step prediction) confirms the influence of the state-

space model on performance.

While broader state-space model considerations are addressed in Section 6.2.1,

a simple random walk transition equation has major limitations for the Singapore

network case study. As noted by Zhou and Mahmassani [75], the simple random

walk can be effective for processes that change slowly but may not be rich enough

of a model to capture the non-linear trends in dynamic O-D flow. In addition, for

a large-scale network where trips take significantly longer than the time step of the

online calibration problem, vehicles represented in the O-D demand parameters of one

time interval have an impact on link measurements for several subsequent time steps.

A simple random walk transition equation is unable to model this behavior in the

Singapore network. This is in contrast to the prediction results for the Florian network

in the previous chapter. In the Florian toy network, trip travel times fell within 15-

minute calibration time interval, so a simple random walk transition equation was an

adequate model and able to produce good results for predictive performance. The

same is not seen to be true in the Singapore network case study, and the failure of the

model to represent those dynamics leads to worse performance in the empirical results.

As discussed in the Section 1.3, several methods for dealing with this complication
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densities O-D
Estimation 1-step prediction 2-step prediction Estimation

Algorithm Run RMSN % improv RMSN % improv RMSN % improv RMSN % improv
Baseline 0.364 - 0.376 - 0.397 - 1.172 -

MM-EKF
1 0.329 9.8 0.368 2.1 0.466 -17.4 1.387 -18.4
2 0.322 11.7 0.384 -2.2 0.462 -16.3 1.518 -29.6
3 0.335 8.0 0.370 1.5 0.435 -9.7 1.532 -30.7

Assign-EKF
1 0.329 9.8 0.372 1.0 0.447 -12.5 1.150 1.8
2 0.322 11.7 0.368 2.1 0.436 -9.9 1.155 1.4
3 0.327 10.3 0.362 3.8 0.425 -7.2 1.154 1.5

GLS
1 0.327 10.4 0.380 -1.1 0.454 -14.3 1.762 -50.4
2 0.324 11.0 0.385 -2.5 0.416 -4.9 1.106 5.6
3 0.320 12.2 0.394 -4.8 0.423 -6.6 1.105 5.7

FD-EKF 1 0.453 -24.3 0.496 -32.0 0.530 -33.5 2.161 -84.4
LimEKF 1 0.475 -30.3 0.507 -35.0 0.561 -41.4 2.094 -78.7

Table 5.3: Performance metrics for estimation and prediction of sensor densities and
O-D parameters in Singapore network case study

densities O-D
Estimation 1-step prediction 2-step prediction Estimation

Algorithm RMSN % improv RMSN % improv RMSN % improv RMSN % improv
Baseline 0.364 - 0.376 - 0.397 - 1.172 -

MM-EKF 0.329 9.9 0.374 0.5 0.454 -14.5 1.479 -26.3
Assign-EKF 0.326 10.6 0.367 2.3 0.436 -9.9 1.153 1.6

GLS 0.324 11.2 0.386 -2.8 0.431 -8.6 1.324 -13.0
FD-EKF 0.453 -24.3 0.496 -32.0 0.530 -33.5 2.161 -84.4
LimEKF 0.475 -30.3 0.507 -35.0 0.561 -41.4 2.094 -78.7

Table 5.4: Summary of estimation and prediction metrics for sensor densities and
O-D parameters in Singapore network case study

have been proposed, including using a transition equation with a higher autoregressive

degree in the state-space model formulation and expanding the state to include O-

D demand parameters for both the current time interval and several previous time

intervals. Both of these methodologies increase the online computational burden of

the solution algorithm, but for a large-scale network like the Singapore network, the

trade-off should be considered and may be worth it for better predictive performance.

Tables 5.3 and 5.4 report experiment results for both link density estimation and

prediction and O-D parameter estimation. For density estimation metrics, the MM-

EKF algorithm produces similar results to the Assign-EKF and GLS benchmarks, and

all three algorithms show a small improvement over the baseline. The corresponding

average RMSN values for estimated density measurements are 32.9% for MM-EKF,

32.6% for Assign-EKF, and 32.4% for GLS. In addition, Mann-Whitney tests show
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no statistically significant difference among the performance of the three algorithms,

though all three show significant improvement over the baseline. Again, the FD-

EKF and LimEKF algorithms show poor performance compared to the baseline.

Similarly to with the sensor count metrics, all online calibration algorithms deteriorate

in performance moving from estimation to prediction. While some of this is due to

a good baseline to start, the factors mentioned previously that impact predictive

performance also hold in this case. In addition, the algorithms do not explicitly

calibrate for link density measurements, so fit to densities in estimation is an auxiliary

metric for performance.

The performance metrics in the rightmost columns of Tables 5.3 and 5.4 for fit to

the underlying O-D parameters show that the MM-EKF algorithm does not improve

on the baseline of prior O-D parameters. The average RMSN error for MM-EKF

is 147.9%, compared to 117.2% for the baseline. Comparatively, the average RMSN

error for the benchmarks algorithms are 115.3% for Assign-EKF (a slight improvement

over the baseline), 132.4% for GLS, 216.1% for FD-EKF, and 209.4% for LimEKF.

Interestingly, while both the MM-EKF and GLS algorithms significantly improve over

the baseline in terms of fit to sensor count measurements, they do so by identifying

O-D parameter values with larger error metrics. Since fit to the underlying true

parameter values is not an explicit objective of the online calibration optimization,

and for real-world problems the true parameter values would not be known anyway,

this result is not necessarily a red flag. Regardless, it does point to poor predictive

performance seen in these empirical results. As the dynamic O-D matrices estimated

by these methods do not resemble the true O-D matrices, the state-space model does

not model the temporal evolution of demand on the network accurately, which leads

to worse performance in traffic state prediction.

Figure 5-11 summarizes the performance of the different algorithms for estimation,

1-step prediction, and 2-step prediction of sensor counts in a bar graph. The format

is the same as Figure 4-11. Each bar represents the RMSN error averaged across the

three runs of the algorithm (for the MM-EKF, Assign-EKF, and GLS algorithms).

Error bars provide 95% confidence intervals calculated from the three algorithm runs;
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Figure 5-11: Average performance metrics for sensor counts for MM-EKF algorithm
and benchmarks for Singapore case study

note that there are no confidence intervals for FD-EKF and LimEKF since each is

only run once. The orange bar in each grouping represents the results of the proposed

MM-EKF algorithm. The main takeaways from the above analysis are illustrated

in Figure 5-11. For estimation of sensor counts, the GLS algorithm performs the

best among all online calibration approaches, though the MM-EKF and Assign-EKF

algorithms also improve on the baseline. For prediction, the baseline deteriorates the

slowest as explained previously; among the online calibration algorithms GLS loses

the comparative advantage it shows in estimation. The error metric for the GLS

algorithm in 2-step prediction of sensor counts exhibits a wide confidence interval,

indicating variability among the three algorithm runs in predictive performance. The

deterioration in predictive performance is especially stark as shown in the figure, as

well as the poor performance of the FD-EKF and LimEKF benchmark algorithms.

Figure 5-12 presents a similar bar graph for density metrics. For density error

metrics, the bars are more closely clustered than the corresponding results for sensor

counts, and differences between algorithms are much smaller. In terms of estimated

densities, the MM-EKF algorithm outperforms the baseline, but as noted previously,

its performance is statistically indistinguishable from the two benchmark algorithms,
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Figure 5-12: Average performance metrics for sensor densities for MM-EKF algorithm
and benchmarks for Singapore case study

GLS and Assign-EKF. In general, the results for prediction of sensor densities show

little to no improvement over the baseline, though the FD-EKF and LimEKF al-

gorithms continue to perform poorly compared to the other online calibration algo-

rithms. As seen in Figure 5-6, density measurements for the true and prior demand

scenarios are generally very similar for the subset of sensors plotted, and given that

the online calibration algorithms do not receive density measurements as field data,

improvement on those prior density values is not expected.

5.2.3 Results by time interval

A closer look at the hour-by-hour breakdown of the performance in estimation and

prediction of sensor counts provides a little more clarity on the accuracy of the pro-

posed MM-EKF algorithm. Hourly RMSN metrics, calculated in the same manner

as in Section 4.2.3, highlight the temporal aspects of each algorithm’s performance.

Figure 5-13 gives average RMSN metrics per hour for estimation of sensor counts

for each of the online calibration algorithms. Each group of bars represents an hour

of the simulation period as labeled on the 𝑥-axis, and each bar reports the average

RMSN value for the algorithm. Error bars give the 95% confidence intervals calcu-
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Figure 5-13: RMSN error metrics by hour for estimated sensor counts for Singapore
case study

lated for each set of three algorithm runs for the MM-EKF, Assign-EKF, and GLS

algorithms. As seen in the figure, the GLS algorithm is the best performer across every

hour of the simulation period, followed by the MM-EKF and Assign-EKF algorithms.

The proposed MM-EKF algorithm outperforms the baseline in every hour and shows

consistent performance across the entire simulation period, as do the Assign-EKF

and GLS algorithms. While the FD-EKF and LimEKF algorithms perform poorly

across the simulation period, the FD-EKF algorithm shows more temporal variability.

Errors for the FD-EKF algorithm peak during the hour from 8am to 9am, represent-

ing morning peak period, before decreasing to more reasonable RMSN values. The

LimEKF, which also shows poor performance, uses a fixed average gradient estimate

across all time intervals and thus shows more consistent RMSN values. Both FD-EKF

and LimEKF algorithms show better performance than the baseline during the hour

from 6am to 7am before divergence of the EKF algorithm due to poor gradient ap-

proximation leads to poor performance in estimation during the rest of the simulation

period.

Figures 5-14 and 5-15 show similar metrics for the 1-step and 2-step prediction

stages. The graph is set up similarly to Figure 5-13. Note that the first set of bars in
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each figure are for the periods 6:15am to 7:00am and 6:30am to 7:00am, respectively,

since 1-step and 2-step predictions are not available for the periods 6:00am to 6:15am

and 6:00am to 6:30am, respectively. The general trends are similar for the two graphs.

The better performance of the GLS algorithm in estimation has largely disappeared in

the 1-step prediction results, and the algorithm performs similarly to the Assign-EKF

algorithm. In most hours of the simulation period, the MM-EKF algorithm performs

as well as the GLS and Assign-EKF benchmarks but in others, particularly from

10am to 11am, it does poorly even compared to the baseline. The baseline predictions

alternate between low and high errors due to the manner in which the prior demand

profile was constructed, with a substantial amount of variation across the simulation

period. The predictive performance of the baseline is especially good from 12pm

to 1pm, when the true demand profile has largely stabilized as seen in Figure 5-3,

and the prior demand is very similar to the true demand. The 2-step prediction

metrics make these takeaways even more apparent. The MM-EKF and Assign-EKF

algorithms behave similarly, as performance in prediction is largely dependent on the

shared state-space model formulation, and perform worse on average than GLS and

often the baseline as well. Again, the MM-EKF algorithm has particular trouble with

the hour from 10am to 11am, but otherwise performance is consistent across hours.

Overall, the performance of the online calibration algorithms for prediction on the

Singapore expressway network has major limitations, and the considerations outlined

above should be addressed to improve the predictive performance of these methods.

5.2.4 Computational performance

A significant motivator for the development of the Metamodel EKF algorithm was to

improve the computational efficiency of the black-box EKF framework as originally

proposed by Antoniou [3] by avoiding the need for numerical gradient calculations

during the linearization step of the algorithm. Computational performance is an

important consideration for online calibration algorithms, especially in considering

feasibility of the approach for high-dimensional problems. This section considers the

computational performance of the proposed MM-EKF algorithm against the perfor-
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Figure 5-14: RMSN error metrics by hour for 1-step predicted sensor counts for
Singapore case study

Figure 5-15: RMSN error metrics by hour for 2-step predicted sensor counts for
Singapore case study
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Algorithm Run
Avg Runtime

Per Interval (min)
Avg Simulator

Eval Time (min)

Avg Gradient
Calc Time

Per Interval (min)

MM-EKF

1 4.3 3.3 0.39
2 4.4 3.4 0.39
3 4.3 3.3 0.38

Avg 4.4 3.3 0.38

Assign-EKF

1 1.8 1.1 < 0.01
2 1.7 1.1 0.01
3 1.7 1.0 0.01

Avg 1.8 1.1 0.01

GLS

1 6.5 N/A N/A
2 4.5 N/A N/A
3 5.9 N/A N/A

Avg 5.6 N/A N/A
FD-EKF 1 921 1.2 918
LimEKF 1 2.1 1.2 0.01

Table 5.5: Summary of computational metrics for online calibration algorithms in
Singapore network case study

mance of the benchmark algorithms for the large-scale Singapore network. In doing

so, it validates that the MM-EKF approach can be used to calibrate parameters for a

problem of dimension 4050 on a real-world network. As discussed in Section 1.3, this

case study on the Singapore network ranks as one of the largest online calibration case

studies seen in the literature reviewed. While analysis of computational performance

for the Florian network in the previous chapter was largely a theoretical discussion

given the fast runtime of all of the algorithms considered, analysis for the Singapore

network has practical implications. Given the limited computational budget as de-

fined by the 15-minute calibration intervals in this case study, the feasibility of the

various algorithms is evaluated in terms of computational runtime in minutes.

Table 5.5 shows runtime statistics for the different online calibration algorithms

run in this case study. Each row of the table reports runtime statistics for one

algorithm run; the rows labeled “Avg” report the average results across the three al-

gorithm runs for each of MM-EKF, Assign-EKF, and GLS. The results for FD-EKF

and LimEKF are reported for the only run done for the case study. The first column

of metrics measures the average total runtime (in minutes) of the online calibration
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algorithm to identify parameter estimates for the 15-minute time interval, where the

average is taken over the entire simulation period. The second column measures the

average runtime (in minutes) for a single simulator evaluation (the time it takes to

run the simulator for a set of O-D parameter values for a 15-minute time interval and

record simulator measurements); the average is taken over all simulator evaluations

run by the algorithm during the calibration process. The last column measures the

portion of the total runtime (in minutes) specifically taken to calculate the gradi-

ent during the linearization step. For the Assign-EKF algorithm, this just requires

reading the empirical assignment matrix from DynaMIT; similarly, for the LimEKF

algorithm, this just requires reading the average gradient that was estimated offline

from a data file. For the proposed MM-EKF algorithm, this gradient estimation run-

time is comprised of two main components—estimating the metamodel parameters

(𝛼ℎ
𝑗 , 𝛽ℎ

𝑗 , 𝛾ℎ
𝑗 ) and solving the analytical traffic model at the current state estimate.

Finally, for the FD-EKF algorithm, this gradient estimation runtime involves evalu-

ating the simulator at every perturbation of the state vector to numerically calculate

the gradient. Note that only one replication of the gradient estimation step is used

for the FD-EKF results.

The most striking result shown in Table 5.5 is the runtime of the FD-EKF algo-

rithm. The average total runtime to calibrate parameters for a single 15-minute time

interval is 921 minutes, or over 15 hours, which is orders of magnitude larger than

the runtime for any of the other online calibration algorithms. This is not a realistic

runtime for using the algorithm in practice for a high-dimensional calibration prob-

lem comparable to the size of this case study. While this runtime can realistically

be brought down with additional parallelization (the gradient estimation step for the

FD-EKF algorithm is easily parallelizable) or better hardware, the vast difference in

computational cost between the FD-EKF algorithm and the other algorithms should

play a significant role for practitioners in deciding on an online calibration algorithm.

Many practitioners may have limited resources as well, so the use of FD-EKF for a

large-scale problem could prove to be infeasible. Each of the other four algorithms

is able to estimate calibration parameters for the Singapore case study within the
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allotted time frame of 15 minutes. The Assign-EKF algorithm is quite fast, with an

average runtime of 1.8 minutes per time interval that is mostly comprised of evaluating

the simulator once at the current state estimate, since the gradient calculation cost is

negligible. The LimEKF algorithm is similarly fast due to there being no online cost

to estimating the gradient, but it also relies on computing an average gradient matrix

offline from the FD-EKF algorithm, so similar scrutiny is needed in implementing the

algorithm for a high-dimensional problem. Interestingly, the GLS algorithm has the

slowest average runtime of the benchmark algorithms, excluding FD-EKF, with an

average across all three algorithm runs of 5.6 minutes. Still, it identifies parameter

values well within the 15-minute time step. As the GLS algorithm does not require

any simulator evaluations or gradient information, no runtime values are reported for

those metrics.

The proposed MM-EKF algorithm has an average total runtime of 4.4 minutes,

comfortably within the computational time budget and even faster than the GLS

approach. The majority of this time is spent evaluating the simulator once at the

current time estimate to add to the bank of simulator-evaluated points used to fit

the metamodel. Note that the average simulator evaluation time for the MM-EKF

algorithm is approximately three times that of the benchmark approaches—this is

due to the simulator being evaluated in a time-independent sense with a fixed warm-

up period of one hour, as outlined in Section 3.2.1, instead of just for the current

15-minute time interval. The gradient calculation step takes less than one minute on

average; further computational cost analysis shows that about half of this runtime

is used to estimate the metamodel parameters, while the other half is used to solve

the analytical traffic model at the current state estimate. That is, the analytical

traffic model can solve the system of nonlinear equations given by Equations 3.5

through 3.10 for the Singapore network in approximately 0.2 minutes. For the MM-

EKF algorithm, the remaining computational budget per 15-minute time interval

can be used to generate more simulator-evaluated points in the local neighborhood

of the current state estimate to provide a better localized fit of the metamodel to

the simulator. With additional parallelization, even more points could be evaluated
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by the simulator. This may help improve the gradient approximation step of the

proposed MM-EKF algorithm and lead to improved calibration accuracy.

Another performance metric for the computational cost of an online calibration

algorithm is the number of times the simulator is evaluated per calibration interval,

particularly as used by the gradient approximation method. For a simulation-based

Dynamic Traffic Assignment system, evaluating the simulator during the online cali-

bration process is by far the most computationally intensive task and thus consumes

the largest proportion of the computational budget. This can be seen in the average

simulator evaluation runtimes reported in Table 5.5. For the MM-EKF, Assign-EKF,

and LimEKF algorithms, the simulator is only evaluated once per calibration interval

(at the current state estimate) in Equation 2.15 of Algorithm 1. The GLS algorithm

requires no evaluations of the simulator. On the other hand, for the one run of the

FD-EKF algorithm reported in this case study, the simulator is evaluated an average

of 6042 times per calibration interval, as averaged across all calibration intervals in

the simulation period. While theoretically central finite differences requires 2𝑛 simu-

lator evaluations, where 𝑛 is the dimension of the state vector, the FD-EKF algorithm

evaluates the simulator fewer than 2 × 4050 = 8100 times due to the non-negativity

boundary constraints on O-D demand parameters. Still, the number of simulator

evaluations required per interval by the FD-EKF algorithm is on the order of the

dimension of the state vector of calibration parameters, a significant issue for high-

dimensional calibration problems. As mentioned previously, it would be interesting

to compare the proposed MM-EKF algorithm to other EKF algorithms from the lit-

erature that use different numerical gradient estimation techniques (i.e., simultaneous

perturbation), both in terms of calibration accuracy and computational performance.

5.2.5 Impact of offline simulated points

There are several aspects of the proposed Metamodel EKF algorithm design that

can be further explored with case studies, including different metamodel formula-

tions, metamodel fitting techniques, and robustness to the quality of prior parameter

estimates. The framework proposed in Chapters 2 and 3 of this thesis allows for
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counts densities O-D
Algorithm Run RMSN % improv RMSN % improv RMSN % improv
Baseline 0.143 - 0.364 - 1.172 -

MM-EKF with
Offline Points

1 0.088 38.3 0.334 8.4 1.176 -0.3
2 0.092 35.7 0.328 9.9 1.168 0.3
3 0.090 36.9 0.327 10.3 1.184 -1.1

Avg 0.090 37.0 0.330 9.5 1.176 -0.4

MM-EKF

1 0.082 42.7 0.329 9.8 1.387 -18.4
2 0.086 40.1 0.322 11.7 1.518 -29.6
3 0.085 41.0 0.335 8.0 1.532 -30.7

Avg 0.084 41.3 0.329 9.9 1.479 -26.3

Table 5.6: Summary of estimation results for experiments on impact of offline
simulator-evaluated points

considerable fine-tuning and experimentation with the algorithm depending on the

problem structure and context. As an example, one final set of experiments for this

case study show a direction for future refinement in developing the Metamodel EKF

algorithm. The experiment results show some added benefit to the use of simulator-

evaluated points generated during the offline phase in fitting the metamodel online,

an algorithm step that has not been utilized in any of the case study results shown

thus far.

A database of 100 simulator-evaluated points is generated offline prior to the on-

line calibration process. Each of these 100 points, chosen from the space of possible

parameter values (the set 0 ≤ xℎ ≤ xmax in the formulation of the O-D calibration

problem defined by Equation 3.4) was created by adding an independent randomly

drawn and normally distributed error term with an expectation of zero and a stan-

dard deviation of 20% of the prior O-D demand values. The MM-EKF algorithm

is re-run three times for the Singapore expressway demand profile, though in these

algorithm runs the online phase of the MM-EKF approach detailed in Algorithm 2 is

initialized with the bank of 100 simulator-evaluated points. These points are used in

each interval of the calibration process to help fit the metamodel to the simulator, in

addition to the usual points generated during the online calibration process. Table 5.6

shows initial results for this analysis comparing estimated sensor counts, sensor den-

sities, and O-D demand parameters for the new set of runs (denoted “MM-EKF with
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Offline Points”) compared to the previous MM-EKF algorithm runs from Tables 5.1

and 5.3. The format of the table is the same as for Table 4.2. While there is not a

large difference in performance in fit to sensor counts or densities, the calibration runs

with the database of 100 offline points do significantly improve in the RMSN metric

for estimated O-D demand parameters—the significance of the improvement is con-

firmed with a one-sided Mann-Whitney test (𝑝-value of 0.05). Whereas the MM-EKF

algorithm with no offline simulator-evaluated points shows a worse performance than

the baseline (average RMSN of 147.9%), the same MM-EKF algorithm starting with

100 offline points reports performance essentially equivalent to the baseline (average

RMSN of 117.6%). Figure 5-16 shows error metrics for the estimated O-D parame-

ters graphically in an hour-by-hour breakdown. In every hour after the initial hour of

6:00am to 7:00am, the version of the algorithm with a bank of 100 offline points for

fitting the metamodel approximation (purple bar) has a lower average RMSN than

the version with no offline points (orange bar). Although fit to the underlying O-D

demand parameters is not the explicit objective of the online calibration problem,

this set of preliminary results shows a statistically significant difference in estimation

through the use of offline-generated simulator-evaluated points to fit the metamodel

in the MM-EKF algorithm. It is possible that the additional points used to fit the

metamodel parameters provide a better understanding of the global relationship be-

tween the simulator parameters and output. While this does not improve the local fit

of the metamodel in estimating the gradient and fitting sensor measurements, perhaps

this additional knowledge leads to a better estimation of the underlying parameters.

A more detailed exploration of this aspect of the algorithm design, such as which con-

texts for generating these points has the biggest impact on calibration performance,

is worth investigating in future research.
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Figure 5-16: Impact of offline simulator-evaluated points on estimation of O-D pa-
rameters by the MM-EKF algorithm for Singapore case study

5.2.6 Analysis of calibrated measurements and O-D param-

eters

This section summarizes the performance of the proposed MM-EKF algorithm in es-

timating sensor count observations, in addition to estimation of other traffic state

measurements like sensor densities and the underlying O-D demand parameters. In

previous sections, the proposed algorithm has been analyzed in terms of calibration

performance compared to benchmark online calibration algorithms and computa-

tional performance. Here, focus is brought back to the primary goal of the proposed

MM-EKF algorithm, which is to tune simulator parameters so the simulator output

replicates measurements observed in the field. The figures shown below illustrate

these results for the Singapore network case study.

Figures 5-17 and 5-18 show the fit of the counts (in vehicles per 15 minute interval)

and densities (in vehicles per mile per lane) estimated by the three runs of the MM-

EKF algorithm, respectively, to the true sensor count and density measurements.

The 𝑥-axis for both figures shows the “true” values of the field measurements, while

the 𝑦-axis for both figures shows the corresponding values estimated by the MM-

EKF algorithm. Each colored shape in the scatterplot represents a separate run of
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the algorithm. A perfect fit of estimated measurements to true measurements, which

would give a RMSN error of 0, is represented on the scatterplots by the blue “45-degree

line” that corresponds to exact correlation. The fit for sensor counts in Figure 5-17 is

very closely clustered around the 45-degree line, and does not show a large difference

among the three runs of the MM-EKF algorithm. As reported in Table 5.1, the

average RMSN values for the three runs are 8.2%, 8.6%, and 8.5%, all of which

are below 10% indicating a good fit to observations. As illustrated, the proposed

MM-EKF algorithm is able to identify O-D parameter values that produce simulator

outputs replicating real-time field data from the Singapore network. In Figure 5-

18 for estimated sensor densities, the fit between true measurements and MM-EKF

estimated measurements is more diffuse, and it seems like there is a higher variance

for larger density values, though the points are still generally clustered around the

45-degree line. While sensor densities were not provided as field data to the MM-EKF

algorithm, it still does a reasonable job of replicating density measurements within

the network.

It is worthwhile to note that for the Singapore network case study, the 4050 O-D

demand parameters were calibrated only using sensor counts from 172 sensors in the

network. In the literature review provided in Section 1.3, this falls on both the larger

side of networks consider by the case study and the sparse side of field data available

for use in online calibration. For their case studies on a slightly different representation

of the Singapore expressway network, Prakash [52] and Zhang [73] use 357 and 650

sensor counts to calibrate 4121 O-D parameters, respectively. In discussing the limits

of effective O-D matrix calibration using traffic counts, Marzano et al. [41] argue

that sensor coverage as measured by the ratio of sensors to calibration parameters

should be close to one for satisfactory O-D estimation results. They corroborate this

claim with a set of experiments on large-scale synthetic networks. For this case study,

the ratio of sensors to parameters is less than 5%. Considering this, the MM-EKF

algorithm is able to show good performance in replicating real-time field observations

from the network in an online calibration setting for the Singapore network case study.

Since the demand scenario used for the Singapore expressway network case study
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Figure 5-17: Scatterplot of field measurement sensor counts vs. MM-EKF estimated
sensor counts for Singapore case study
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Figure 5-18: Scatterplot of field measurement sensor densities vs. MM-EKF estimated
sensor densities for Singapore case study
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is synthetic, it is also possible to compare the O-D demand parameters estimated

by the MM-EKF algorithm with the “true” O-D demand parameters. Figures 5-19

and 5-20 make this comparison. Figure 5-19 shows a scatterplot of the true O-D

demand parameters (in vehicles per 15 minute interval) on the 𝑥-axis and the O-D

demand parameters estimated by the MM-EKF algorithm (in vehicles per 15 minute

interval) on the 𝑦-axis. Each colored shape represents a separate run of the MM-

EKF algorithm. From the plot, it seems the estimated O-D parameters are broadly

clustered around the 45-degree line. The correlation coefficients of the relationship

between estimated O-D parameters and true O-D parameters are 0.93 for the first

run, 0.92 for the second run, and 0.92 for the third run, indicating a strongly linear

fit. For the larger O-D demand parameter values, there does seem to be a slight bias

in estimation, with the estimated values being larger than the corresponding true

values.

Figure 5-20 gives a grouping of nine subplots that show true and estimated O-D

demand parameters over time for the same subset of O-D pairs as in Figure 5-4. For

each subplot (O-D pair), the 𝑥-axis plots the entire simulation period, and the 𝑦-axis

plots the demand for the O-D pair in vehicles per 15 minutes. The blue solid line shows

the true O-D demand over time, the red dashed line shows the prior O-D demand

over time, and the remaining colors graph the three runs of the MM-EKF algorithm.

Across the plotted subset of O-D pairs, the estimated parameters generally follow

the same trends as the true O-D demand. The three different calibration runs are

clustered closely together, which suggests some consistency among algorithm runs in

the face of simulator stochasticity. Even though the general trends may be correct, the

estimated parameter values differ noticeably from the true parameter values. This

is not surprising given that many combinations of O-D demand parameter values

can lead to the same sensor count measurements, but it does emphasize that the

underlying parameter values may not be estimated accurately. As discussed, this can

lead to poor predictive performance since the evolution of O-D demand will not be

modeled accurately. In addition, the MM-EKF algorithm seems to weight the prior

parameter values heavily, as estimated O-D demand plateaus at certain values before
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Figure 5-19: Scatterplot of true O-D demand parameters vs. MM-EKF estimated
O-D demand parameters for Singapore case study

shifting whenever the prior demand changes for some of the O-D pairs. This can

be observed particularly for O-D Pair 138 and 1668. This confirms the significant

influence of the prior demand values on the MM-EKF calibration results; the quality

of the O-D demand calibration is strongly related to the quality of the prior O-D

demand parameters. Observations from these case study experiments may be used to

re-tune the online calibration algorithm parameters (specifically the prior information

weight parameter), perhaps to de-emphasize the influence of the prior demand on the

resulting parameter estimates.

179



Figure 5-20: Estimated O-D demand parameters from MM-EKF online calibration
for a subset of O-D pairs for Singapore network case study
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5.3 Conclusion

In the application of the Metamodel EKF algorithm to a large-scale online calibra-

tion problem formulated on the Singapore expressway network, certain performance

attributes of the proposed algorithm were highlighted. In particular, its feasibility

was demonstrated on a real-world case study with relative improvement in estima-

tion of field measurements over the baseline of prior values for calibration parameters.

The computational advantages of using an analytically tractable metamodel in the

gradient estimation step of the extended Kalman filter, as compared to numerical ap-

proximation methods, are shown for a large-scale problem. Limitations of the EKF

modeling approach were demonstrated and discussed. The improvements seen in the

Florian toy network case study did not fully translate to the larger real-world net-

work, particularly in predictive performance, but further refinements of the MM-EKF

algorithm implementation may potentially lead to better results. Through the case

study, several avenues for further algorithm development are highlighted, which are

discussed in more detail in the following chapter.
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Chapter 6

Conclusion

In this thesis, a new algorithm for online calibration called the Metamodel EKF (MM-

EKF) was proposed, developed, and then evaluated on several case studies. The

general framework was laid out in Chapter 2, followed by extensive discussion of the

algorithmic details and the flexibility of the approach in Chapter 3. An application of

the algorithm to the online origin-destination (O-D) demand calibration problem was

also presented. In Chapters 4 and 5, the proposed algorithm was validated on two

different road networks—a small toy network called the Florian network and a large-

scale urban road network of the major expressways and arterials of Singapore. The

calibration accuracy and computational cost of the approach were assessed in com-

parison to other online calibration approaches from the literature. The feasibility for

real-world applications, along with specific strengths, of the proposed algorithm were

highlighted through experiments. In this concluding chapter, the major findings are

summarized. Useful learnings from the algorithm development and implementation

are discussed, as well as avenues for future exploration.
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6.1 Major findings

6.1.1 Analytical traffic model for O-D demand

The case studies in the two previous chapters on the Florian and Singapore networks

validated the analytical model presented in Section 3.3 for modeling the relationship

between O-D demand and link attributes (counts, densities). The analytical model

incorporates concepts from traffic flow theory like the fundamental diagram relation-

ship and a multinomial route choice model within a system of nonlinear equations

representing the traffic network. For the two case studies, fit of analytical model sen-

sor counts to simulator outputs was very good with correlation coefficients of 0.999

and 0.984, respectively. In general, the fit for sensor densities also showed a strong

linear relationship, though for some sensors in the case study networks the estimates

differed from the simulator output by a constant scaling factor. The analytical traffic

model provided a good estimate of the traffic state on the network as modeled by a

stochastic traffic simulator, and proved to be both analytically tractable and scalable

for a problem the size of the Singapore expressway network. For the large-scale urban

network, the analytical model was able to be solved for a set of O-D demand flows

in a matter of seconds. In addition, the MM-EKF algorithm was used successfully

for online calibration in Section 4.3 for a demand scenario that showed high levels of

congestion and rapid changes in demand with the help of the embedded analytical

traffic model.

6.1.2 Metamodel extended Kalman filter algorithm

The main finding of this thesis is the development of a new algorithm for online cali-

bration that embeds problem-specific structural information from an analytical traffic

model in a general-purpose extended Kalman filter framework. The primary goal of

the new algorithm is to improve the computational efficiency of the extended Kalman

filter approach proposed by Antoniou [3] through the use of an analytical gradient

calculation instead of computationally expensive numerical gradient approximation
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methods. The algorithm is flexible in that it is able to jointly calibrate different types

of simulator parameters and incorporate multiple sources of field measurements under

one common framework. The main limitation of the approach is the need to construct

an analytical model relating the calibration parameters to field measurements that is

analytically differentiable. The Metamodel EKF algorithm was also shown to be more

robust to the impact of simulator stochasticity than other general-purpose methods

due to its avoidance of numerical gradient approximation methods. Finally, through

the case study in Chapter 5, the proposed online calibration algorithm was shown

to be tractable for high-dimensional calibration problems, and demonstrated better

calibration accuracy and computational efficiency than other online calibration algo-

rithms in the literature. The Metamodel EKF algorithm aims to fill the gap between

general-purpose online calibration approaches and those that exploit problem struc-

ture.

6.1.3 Performance compared to benchmark algorithms

In validating the performance of the Metamodel EKF algorithm in Chapters 4 and 5,

the proposed algorithm was compared to various benchmark algorithms from the lit-

erature in terms of both calibration accuracy and computational efficiency. Through

the empirical case studies, advantages of the Metamodel EKF algorithm over each

of the benchmark algorithms were demonstrated. Table 6.1 summarizes the main

takeaways. Each row of the table outlines a desirable characteristic for online calibra-

tion, and the corresponding algorithms that demonstrated those characteristics in the

case studies are marked. Only the MM-EKF algorithm demonstrates all of the de-

sired characteristics listed in the table. The proposed algorithm is compared to three

benchmarks that also utilize a state-space model formulation and extended Kalman

filtering algorithm, and differ only in the method used for gradient approximation—

(1) finite differences EKF, (2) limiting EKF, and (3) assignment matrix EKF. These

are denoted in Table 6.1 as FD-EKF, LimEKF, and Assign-EKF, respectively. The

generalized least-squares (GLS) algorithm is also used as a performance benchmark.

The MM-EKF algorithm, along with benchmarks FD-EKF and LimEKF, is able
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MM-EKF FD-EKF LimEKF Assign-EKF GLS
Calibrates parameters of all types X X X

Accepts multiple types of field data X X X
Analytical gradient calculation X N/A
Computationally efficient for
high-dimensional problems X X X X

Table 6.1: Comparison of the Metamodel EKF approach to benchmark online cali-
bration algorithms

to handle the joint calibration of multiple parameter types (i.e., demand and supply

model parameters) using multiple types of data. The advantage of being able to

calibrate using multiple sources of field data is illustrated in the Florian network case

study described in Section 4.3. The MM-EKF and FD-EKF algorithms calibrate

O-D demand parameters to sensor counts and densities to varying outcomes. The

MM-EKF algorithm is able to adjust the model parameters in response to a sudden

increase in traffic congestion as observed in link densities. The Assign-EKF and GLS

benchmarks are unable to accommodate density field measurements and thus miss

the spike in demand, while the FD-EKF benchmark has difficulty incorporating the

density observations into its calibration framework. Due to the impact of simulator

stochasticity on the FD-EKF gradient approximation, the FD-EKF benchmark does

not produce accurate estimates of the sensor count and density measurements, while

the MM-EKF is more successful.

Among the online calibration algorithms, only the MM-EKF algorithm utilizes

an analytical gradient calculation. The FD-EKF and LimEKF benchmarks rely on

numerical gradient calculation techniques, while the Assign-EKF benchmark uses the

empirical assignment matrix output by the traffic simulator. The GLS benchmark

algorithm does not require a gradient. The analytical gradient used by the MM-EKF

algorithm allows for incorporation of structural information through an analytical

traffic model. Another impact of the analytical gradient is observed in the case

study on the Singapore network in Chapter 5. The use of an analytical gradient

significantly reduces the online computational cost of the extended Kalman filter

algorithm framework for high-dimensional problems. The computationally expensive

numerical gradient approximation used by FD-EKF prevents it from being tractable
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for high-dimensional problems. The MM-EKF algorithm does not have the same

scaling issues. The Assign-EKF and GLS benchmarks are also able to scale for high-

dimensional problems, though only for the special case of O-D demand parameter

calibration using traffic flow counts.

6.2 Limitations and insights

Through implementing the Metamodel EKF algorithm for the Florian toy network

and Singapore expressway network case studies, several insights were gained about the

process of adapting the MM-EKF algorithm to specific online calibration problems.

A few of the complications and learnings are summarized in this section.

6.2.1 State-space modeling assumptions

In the large-scale Singapore network experiments, several difficulties were encoun-

tered related to the state-space modeling assumptions of the MM-EKF algorithm.

The performance of the extended Kalman filter approach relies on several strong as-

sumptions about the dynamics and evolution of the system being calibrated, from

imposing a functional evolution of the state vector through the transition equation to

expecting the random error terms to have a Gaussian distribution. For a real-world

problem, these assumptions need to be examined, and decisions should be made about

whether they are realistic enough or not. As with any model, divergence of the model

from the actual network behavior leads to discrepancies in performance and for a

dynamical system, these errors propagate through time. Inherent in this problem

of model specification is the trade-off between model complexity and computational

cost. A simpler state-space model, which may show larger divergence from reality, is

less computationally costly than a more intricate modeling of the system. Both of

these factors must be considered in formulating the state-space model, since both the

calibration accuracy and computational efficiency of an algorithm are crucial in an

online calibration context.

This is particularly true with regard to the transition equation in the state-space
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model, as was seen in the empirical results of the Singapore network case study in

Chapter 5. Transition equation modeling is especially important for the calibration

of dynamic O-D flows, as they have a intricate spatial and temporal relationship with

network observations. The Metamodel EKF approach in the case study used a simple

random walk transition equation, which proved to be too reductive of a model of the

evolution of dynamic O-D demand for the network and its effect on traffic flows. The

largest impact of this overly simplified modeling assumption was seen in the poor pre-

dictive performance of the Kalman filtering algorithms. As discussed in Sections 1.3

and 5.2.2, a more detailed autoregressive transition equation can be used for the O-D

demand calibration problem with a higher autoregressive degree. This modification

is able to represent temporal delays in the relationship between O-D demand and link

counts, improving the validity of the state-space model, but it requires extensive cali-

bration to determine the best values for the autoregressive degree and autocorrelation

coefficients. The augmented transition equation also increases the computational cost

of the approach.

Another consideration in the state-space model formulation is how prior infor-

mation is incorporated, and what effect that modeling assumption will have on the

outcomes of the online calibration algorithm. For the Metamodel EKF algorithm, the

state vector is defined in terms of the absolute parameter values; prior information

is incorporated using direct measurement equations in the state-space model which

allows for more sensitive tuning of the influence of the prior depending on its qual-

ity. On the other hand, more exploration into the use of deviations, as proposed by

Ashok and Ben-Akiva [9], as the state may improve the legitimacy of the state-space

modeling assumptions.

In considering these state-space model assumptions, a rigorous experimental de-

sign can help in testing various model formulations. Yet these adjustments require a

sizable amount of historical data, a topic which is discussed next.
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6.2.2 Practical considerations

In parallel with the considerations that must be taken in modeling a real-world sce-

nario as a state-space model, there were a few practical issues that had to be addressed

in the case studies. First, the EKF algorithm parameters (i.e., error covariance matri-

ces, prior demand weight parameter) proved to be difficult to tune offline. Historical

data is generally needed to tune these parameters, as well as a systematic method for

finding optimal algorithm parameters. Overfitting can also be an issue in the calibra-

tion of the algorithm parameters. Several of these issues are addressed by Antoniou

in Chapter 5 of his thesis [3], but rely on a considerable amount of historical data.

For the Singapore network case study, there was a lack of offline historical data, so

more ad hoc methods had to be used, and the parameter settings found can be further

fine-tuned. Better calibration of these parameters may lead to improved performance

in estimation and prediction.

A significant difficulty encountered during the Singapore case study was in cre-

ating synthetic true and prior demand scenarios for testing the online calibration

algorithms. No real-world data was available for the network, and the obstacles in

creating a realistic but challenging case study quickly became apparent. For the syn-

thetic demand scenarios constructed for the Singapore network, it was difficult to

create a set of prior demand parameters that modeled realistic demand on the net-

work, but left enough room for improvement so that online calibration methods would

be able to show significant change over the baseline of prior demand. For several de-

mand scenarios that were tried and eventually for the demand scenario ultimately

used in the case study, prior O-D demand values that deviated observably from the

true O-D demand led to sensor measurements (counts, densities) that remained rel-

atively similar. On the other hand, case studies with real-world data have their own

set of complications, namely unknown true values for the parameters.
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6.3 Further research directions

6.3.1 Metamodel development and refinement

While the case studies demonstrate one application of the Metamodel EKF algorithm

to the O-D demand calibration problem and validate the performance of the algo-

rithm in several contexts, many aspects of the proposed algorithm framework have

not been fully explored and are worth looking into. Chapter 3 of the thesis lays much

of the groundwork for these future research questions, specifically in developing and

testing different variations in the metamodel formulation (i.e., different analytical

models, higher degree polynomial functional component), procedures for fitting the

metamodel to the simulator, and methods for generating simulator-evaluated points.

The performance of these refinements of the MM-EKF algorithm should be demon-

strated in empirical studies, both in terms of calibration accuracy and computational

efficiency. Future real-world applications of the MM-EKF approach should also con-

sider joint calibration of demand and supply parameters, as well as the incorporation

of different sources of field data. In addition, there are several outstanding issues

that might be addressed with extensions of the current MM-EKF framework. Some

examples include modeling temporal dynamics explicitly within the metamodel for-

mulation, how this could possibly be used to improve predictive performance, and an

explicit approximation of the simulator gradient using the metamodel.

6.3.2 Applications of analytical traffic model

Given the promising validation results in Chapters 4 and 5 for the analytical traffic

model developed in Section 3.3, there may be applications for the model in online

calibration methods. Though the analytical model is effectively utilized by the Meta-

model EKF algorithm to improve the computational efficiency of the baseline EKF

approach, the observed effects of the embedded structural information in the Kalman

filtering method are limited. The strong performance of the analytical model in

validation experiments does not show that significant of an impact on the online cal-
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ibration performance in the case studies, and there may be alternative methods that

better exploit the analytical model. It seems like the added value of the analytical

model may be hampered by the extended Kalman filtering framework, as the two

approaches are somewhat at odds with one another. The analytical model provides a

good high-level approximation of network attributes but the extended Kalman filter

requires a good local approximation (of the gradient) in order to perform well. An

interesting avenue for future research would be looking to develop an online calibra-

tion approach that takes advantage of the global properties of the analytical model,

while remaining scalable for high-dimensional problems.
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Appendix A

List of Notation

A.1 Online calibration formulation

xℎ vector of calibration parameters for time period ℎ;
xℎ

𝑎 vector of prior calibration parameter values for time period ℎ;
yℎ vector of observed field measurements for time period ℎ;
𝑦ℎ

𝑗 observed field measurement 𝑗 for time period ℎ;
ŷ(·) vector of expected simulator estimates for measurements

given input parameters;
𝑦𝑗(·) expected simulator estimate of measurement 𝑗

given input parameters;
𝑤 weight parameter for prior information;
𝑛 dimension of parameter vector xℎ;
ℎ time period being calibrated;
Ω set of constraints on the vector of calibration parameters;
𝒥 set of field measurements observed in real time.
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A.2 State-space model

xℎ state vector of calibration parameters for time interval ℎ;
yℎ measurement vector of observed field data for time interval ℎ;
uℎ Gaussian error term for transition equation for time interval ℎ;
Qℎ covariance matrix of error term in transition equation

for time interval ℎ;
F𝑞

ℎ+1 parameter of autoregressive transition equation relating
the state at time 𝑞 to the state at time ℎ + 1;

ŷ(·) vector of expected simulator estimates for measurements;
vℎ

1 Gaussian error term for indirect measurement equation
for time interval ℎ;

Rℎ
1 covariance matrix of error term in indirect measurement equation

for time interval ℎ;
xℎ

𝑎 vector of prior calibration parameter values for time interval ℎ;
vℎ Gaussian error term for direct measurement equation

for time interval ℎ;
Rℎ covariance matrix of error term in direct measurement equation

for time interval ℎ;
ℎ time interval in state-space model;
𝑝 degree of autoregressive transition equation;

A.3 Metamodel Extended Kalman Filter

x0 initial estimate of state vector of calibration parameters;
P0 initial covariance matrix of state vector x0;
xℎ|ℎ−1 estimate of state vector for time interval ℎ

based on measurements up to time ℎ − 1;
Pℎ|ℎ−1 estimate of covariance matrix for time interval ℎ

based on measurements up to time ℎ − 1;
xℎ|ℎ estimate of state vector for time interval ℎ

based on measurements up to time ℎ;
Pℎ|ℎ estimate of covariance matrix for time interval ℎ

based on measurements up to time ℎ;
Hℎ approximation of gradient at state estimate xℎ|ℎ−1;
Gℎ Kalman gain matrix for time interval ℎ;
ℎ time interval in state-space model;
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A.4 Metamodel approximation

m(·) vector of metamodel estimates for measurements
given input parameters;

𝑚𝑗(·) metamodel estimate of measurement 𝑗
given input parameters;

q(·) vector of analytical traffic model estimates for measurements
given input parameters;

𝑞𝑗(·) analytical traffic model estimate of measurement 𝑗
given input parameters;

𝜑(·) functional component of metamodel formulation;
𝛼ℎ

𝑗 parameter of metamodel for measurement 𝑗 at time interval ℎ;
𝛽ℎ

𝑗 parameter of metamodel for measurement 𝑗 at time interval ℎ;
𝛾ℎ

𝑗 parameter of metamodel for measurement 𝑗 at time interval ℎ;
x𝑖 calibration parameter candidate (i.e., simulator-evaluated point)

from offline phase;
xℎ,𝑖 calibration parameter candidate (i.e., simulator-evaluated point)

from online phase;
𝛿ℎ

𝑖 weight assigned to point x𝑖 at time interval ℎ
during metamodel parameter estimation;

ℎ time period being calibrated;
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A.5 Online O-D demand calibration

xmax upper bound vector for O-D demand;

Endogenous variables of analytical model
𝑑𝑠 expected hourly demand for O-D pair 𝑠;
𝑦𝑖 expected hourly demand per lane for link 𝑖;
𝑘𝑖 expected density per lane for link 𝑖;
𝑣𝑖 expected (space-mean) speed for link 𝑖;
𝜏𝑖 expected travel time for link 𝑖;
𝑡𝑟 expected travel time for route 𝑟;
𝑃 (𝑟) route choice probability for route 𝑟.

Exogenous variables of analytical model
𝑘jam

𝑖 jam density per lane of link 𝑖;
𝑣max

𝑖 maximum speed of link 𝑖;
𝑞cap lane flow capacity;
ℓ𝑖 average lane length of link 𝑖;
𝑛𝑖 number of lanes of link 𝑖;
𝛼1,𝑖, 𝛼2,𝑖 fundamental diagram parameters of link 𝑖;
𝜃 travel time coefficient in the route choice model;
𝑐 scaling parameter common to all links;
𝒪(𝑟) O-D pair of route 𝑟;
ℛ1(𝑖) set of routes that include link 𝑖;
ℛ2(𝑠) set of routes of O-D pair 𝑠;
ℒ(𝑟) set of links of route 𝑟.

A.6 Kalman filter implementation for case studies

𝑎 parameter used to calculate initial covariance matrix P0

and transition equation random error covariance matrix Qℎ;
𝑞0 parameter used to calculate initial covariance matrix P0

and transition equation random error covariance matrix Qℎ;
𝑏1 parameter used to calculate indirect measurement equation

random error covariance matrix Rℎ
1 ;

𝑟0,1 parameter used to calculate indirect measurement equation
random error covariance matrix Rℎ

1 ;
𝑏2 parameter used to calculate direct measurement equation

random error covariance matrix Rℎ
2 ;

𝑟0,2 parameter used to calculate direct measurement equation
random error covariance matrix Rℎ

2 ;
𝑤 weight parameter of prior O-D demand;
Aℎ assignment matrix used by Assign-EKF benchmark algorithm

for mapping O-D demand flows to link flows in time interval ℎ;
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