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Abstract

Public transportation ridership analysis in the United States has traditionally cen-
tered around the tracking and reporting of the count of trips taken on the system.
Such analysis is valuable but incomplete. This work presents a ridership analysis
framework that keeps the rider, rather than the trip, as the fundamental unit of anal-
ysis, aiming to demonstrate to transit agencies how to leverage data sources already
available to them in order to capture the various behavior patterns existing on their
transit network and the relative prevalence of each at any given moment and over
time. In examining year over year changes as well as the impacts of the COVID-19
pandemic on ridership, this analysis highlights the complex landscape of behaviors
underlying trip counts. It keeps riders’ mobility patterns and needs as the focal point
and, in doing so, creates a more direct line between results of analysis and policies
geared toward making the system better for its riders.

This work makes use of two primary methodological tools: the k-means clustering
algorithm to identify behavioral patterns, and linear and spatial regression to model
metrics of urban mobility across the city. The former is chosen because of its estab-
lished history in the literature as a technique for classifying smart cards, and because
its simplicity and efficiency in clustering high numbers of cards made it an attractive
option for a framework that could be adopted and customized by various transit agen-
cies. Spatial regression is employed in conjunction with classic linear regression to
capture spatial dependencies inherent in but often ignored in the modeling of urban
mobility data.

Chapter 3 of this work identifies the behavioral dynamics underlying top-level
ridership decreases between 2017 and 2018 on the Chicago Transit Authority (CTA)
and finds that riders decreasing the frequency with which they ride, rather than
leaving the system, is the primary driver behind the loss of trips on the system, despite
growth in the number of frequent riders using the system for commuting travel. The
following chapter applies a similar framework to understand the precipitous ridership
drop due to COVID-19 and discovers distinct responses on the part of two frequent
rider groups, with peak rail riders abandoning the system at rates of 93% while
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half of off-peak bus riders continued to ride during the pandemic. Chapter 5 uses
linear and spatial regression to model the percent change in trips due to COVID by
census tract and finds that even when controlling for demographics, pre-pandemic
behavior is predictive of the percent loss in trips. Specifically, high rates of bus
usage and transfers, along with pass usage, are associated with smaller drops in trips,
while riding during the peak is predictive of larger decreases in trips. Chapter 6
presents preliminary thoughts on employing a spatial regression framework on high-
dimensional data to learn urban mobility patterns.

This work highlights the insights to be gained from an analysis framework that re-
veals the complex behavioral dynamics present on a transit network at any given time.
It further connects these behaviors to other rider characteristics such as home location
and response to the COVID-19 pandemic, painting a rich picture of an agency’s riders
with their existing data and allowing for informed, targeted policy creation. A key
finding was that frequent, off-peak bus riders who frequently have to transfer are one
of the largest groups of riders and the group most associated with continued ridership
during the pandemic. Future policies should recognize that this group uses the system
when and where overall ridership is low, and direction of resources away from these
parts of the system will disproportionately hurt riders who are most reliant on public
transit and therefore have the most to gain from increased investment. The CTA
should work in conjunction with other stakeholders to ensure that as public transit
ridership recovers from the pandemic, attention is paid not only to those riders who
need to be brought back onto the system, but also those who never left it.

Thesis Supervisor: Jinhua Zhao
Title: Associate Professor

Thesis Supervisor: John Attanucci
Title: Research Associate
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Chapter 1

Introduction

1.1 Background

As recently as five years ago, the story looked promising for public transit ridership

in America. Except for a couple relatively minor dips in trip numbers following the

economic recessions in 2001 and 2008, from which public transit ridership recovered

in about three years’ time, yearly counts of unlinked passenger trips had enjoyed two

decades of steady of growth [American Public Transportation Association, 2020, Mal-

lett, 2018]. In 2010, the United States Government Accountability Office delivered a

report to the U.S. Senate Committee on Banking, Housing, and Urban Affairs enti-

tled "Transit Agencies’ Actions to Address Increased Ridership Demand and Options

to Help Meet Future Demand" [Wise, 2010]. The report notes that ridership growth

between 1998 and 2008 outpaced the growth in service provision for all modes —

light rail, heavy rail, and bus — and attributes the growth in ridership to population

increases, employment growth, higher prices for gasoline and parking, as well as addi-

tional measures taken by individual agencies, such as the creation of partnerships with

local businesses to encourage commuting by public transit. As the title suggests, the

report is primarily concerned with recommending changes to public transportation

funding that could best help transit agencies meet a continued growth in demand.

Just one decade later, it is hard to imagine such a time in the public discourse

surrounding mass transit in America. A few years ago, as it became clear that the dip
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Figure 1-1: Yearly Public Transportation Ridership in the United States, 1998 - 2018

Source: 2020 APTA Fact Book

in ridership from 2014 to 2015 was not a blip but rather the beginning of a sustained

downward trend, the conversation around mass transit in the U.S. changed markedly.

News publications and transit blogs around the county adopted language that ranged

from colorful to apocalyptic to describe the current state of affairs. The Washington

Post used a headline quoting experts describing the situation as an "emergency"

[Siddiqui, 2018] while The Los Angeles Times ran a story describing the city’s bus

system as "hemorrhaging" riders [Laura J. Nelson, 2019].

These stories in turn quickly came to feel like historical documents after March of

2020 and the spread of the COVID-19 virus in America. As schools shut, businesses

closed down or turned to remote work, and state and local governments urged people

to remain home as much as possible and avoid crowded indoor areas, public transit

ridership plummeted across the world [Transit, 2020]. According to the mobile app

Transit, which allows users to track locations of trains and buses in their city, demand

for public transit as measured by use of their app was down 75% in the month of

April. Headlines on articles addressing transit ridership in America spoke about the

end times for mass transit: Time Magazine published an article in July whose title

asserted that "COVID-19 Has Been ’Apocalyptic’ for Public Transit" [De la Garza,

2020] and Forbes published a piece posing the question "Will COVID-19 Sound The
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Permanent Death Knell For Public Transit?" [Templeton, 2020].

The sudden and precipitous drop in ridership that occurred in US cities made the

fluctuations in trip numbers over the previous few decades seem incredibly stable.

The temporal and spatial distribution of trips within cities changed shape almost

overnight, and many things that had once felt like accepted facts about transit usage

in a city had to be re-investigated and re-learned.

As cities and transit agencies across the country are re-grouping and attempting

to learn all they can about what is likely to be a new normal of significantly reduced

transit ridership for some time, they have an opportunity to rethink and enrich how

they measure and track ridership on their systems. This work offers one potential

avenue for doing so. Specifically, it puts forth a ridership analysis framework that

centers around the rider instead of around trip counts. It demonstrates the usefulness

of such a framework for, first, understanding the mobility needs of riders at any given

time, for example during a global pandemic, and, second, crafting policy based on

these needs.

1.2 Motivation

Public transportation ridership analysis in the United States has traditionally cen-

tered around the tracking and reporting of the count of trips taken on the system.

These numbers can be disaggregated spatially to the zone, census tract, line, or stop,

or disaggregated temporally to weekends, weekdays, peak periods, and off-peak pe-

riods. They can be normalized by capita or by revenue vehicle mile or available

capacity, and they can be tracked across months and years. Such analysis provides

valuable information about the health of public transit systems within and across US

cities and how this is trending over time. The value of analysis based on counts of

trips will never be supplanted, but it is incomplete. By using the passenger trip as the

fundamental unit of analysis, it obscures the reality of a city as a place full of people

who are living, working, visiting, and, to various extents, making use of the public

transit system to get them where they need to go. A ridership analysis framework
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that keeps the rider, rather than the trip, as the fundamental unit of analysis, on the

other hand, seeks to understand the patterns in which trips across hours, days, or

months and across neighborhoods, lines, and modes are tied to an individual person.

Its aim should be to capture the patterns of behavior that exemplify how people typ-

ically use their transit network and the relative prevalence of these behaviors. This

type of analysis re-centers the question on the people rather than the trips, and leads

to answers that are focused around “who?” instead of “how many?” It keeps riders’

mobility patterns and needs as the focal point and, in doing so, creates a more direct

line between results of analysis and policies geared toward making the system better

for its riders.

1.3 Research Aims

The primary aim of this work is to demonstrate to transit agencies how to leverage

data sources already available to them in order to better understand who their riders

are and how they use the system. I furthermore seek to show how this knowledge

can form the baseline of deeper analysis that addresses a few crucial questions facing

American transit agencies today, and how, by keeping the rider as the fundamental

unit of analysis, the results can directly inform policies aimed at riders. This work was

begun in pre-pandemic times and as such, I first demonstrate how to track changing

behaviors across years to uncover the behavioral dynamics underlying relatively minor

top-level changes in trip counts. Next, I leverage this framework to explore the distinct

ridership responses to the COVID-19 pandemic by behavior group and use this rider-

centric knowledge to craft policy recommendations for ridership recovery. Then I

employ linear and spatial regression to identify the behavioral and demographic traits

most predictive of COVID-related ridership loss. Lastly, I offer some initial thoughts

on how to better understand the urban mobility landscape of a city by leveraging high

dimensional data to capture the dynamics among multiple modes’ usage patterns.
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1.4 Data and Methods

This work was sponsored by and done in conjunction with the Chicago Transit Au-

thority (CTA) and thus uses Chicago as the case study for all analyses. All data

on public transit usage comes from the CTA’s account-based fare payment system

Ventra, but the framework could be applied by any agency with a widely used smart

card fare payment system in place.

The primary methodology employed for the identification of key behavioral pat-

terns on the CTA’s network was the k-means algorithm applied to a dataset in which

each point to be clustered was a single Ventra card whose behavior was captured by

a vector of unit-standardized attributes summarizing key aspects of the card’s us-

age, such as the percent of trips taken during peak hours or the average number of

weekly trips taken on that card. The k-means algorithm was chosen because of its

established history in the literature as a technique for classifying smart cards, and

because its simplicity and efficiency in clustering high numbers of cards made it an

attractive option for a framework that will ideally be adopted and customized by

various transit agencies. This work’s contribution lies not within the realm of rider

segmentation methodologies, but in establishment of a framework for segmentation

that is accessible to transit agencies and can easily serve as the foundation for deeper

analysis and informed policy creation.

The other methodology employed in this work is that of linear and spatial regres-

sion. Spatial regression models, and particularly spatial lag models, are employed as

alternatives to linear regression that should be explored in the modeling of mobility

data that is located in space. The use of such models in ridership analysis within a

single city has been limited, and this work does not seek to definitively establish its

usefulness in the urban mobility context, as much more research is needed on this

front, but it does offer it as a model worth considering, at least in the situations in

which I employ it. The first such situation is a model in which aggregate traits of

individuals assigned to a census tract based on inferred home location are used to

explain ridership changes in that tract. Here, the likely tract spillover of transit use
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due to people using multiple stops near their home, as well as the interconnectedness

and resulting lack of independence of the network in general, motivated an explo-

ration of a spatial lag model that used nearby ridership loss to explain tract-specific

transit ridership loss. One can easily imagine other models of trip volume or ridership

changes by geographic area that could benefit from the inclusion of spatially lagged

dependent or independent variables. One such example is from the final analytical

chapter of this work, which is motivated by the hypothesis that TNCs are in com-

petition with public transit systems, and seeks to provide a set of models that can

be used to explore the relationship between usage of the two modes across spatial

and temporal dimensions. A straightforward way to explore this question is to model

TNC trips as a linear combination of public transit trips in and around the TNC

trips’ origin locations. Such a model involves a spatial lag of public transit usage.

Capturing the dynamics between modes is a situation that could likely benefit from

exploration of spatial regression models, definitions of “neighborhoods,” and other

related topics. This work begins to explore these questions.

1.5 Organization of Thesis

Chapter 2 provides background on relevant topics, specifically public transit ridership

behaviors in America, the city of Chicago and the CTA system, and the COVID-19

pandemic and the response of transit agencies and riders across the United States.

Chapter 3 offers a framework for transit agencies with account-based fare systems

to capture changing behavior dynamics on their systems using smart card clustering

on data from multiple years. The CTA is used as a case study, with the data coming

from their account-based Ventra system. The behavior changes on the system from

2017 to 2018 are identified and summarized, and then used to pinpoint particular

rider groups of interest, who are then investigated in greater depth, using the fact

that the Ventra system is rich with data that can be layered onto each card at any

point in the analysis. Specifically, the additional analysis at the end of Chapter 3 is

performed in order to more deeply understand the impacts of the January 2018 fare

22



increase on the CTA system.

In Chapter 4, the same clustering technique is applied (in a slightly modified

fashion) to establish the baseline behaviors present on the CTA system in the months

just prior to the stay-at-home order issued in Chicago in response to the COVID-19

outbreak. Ridership data from the beginning of the stay-at-home order and from two

months after is then analyzed to paint a picture of how the pandemic has affected

transit ridership in America’s third largest city. This section concludes with policy

recommendations for the CTA in light of the findings.

Motivated by the findings from Chapter 4, Chapter 5 employs a different method-

ology to understand the factors associated with the steepest declines in transit rid-

ership during the COVID period when compared with the baseline. This section

employs classic linear regression as well as spatial regression models to quantify the

relationship between demographics and baseline ridership behavior as the explanatory

variables and ridership decline as the dependent variable at the census tract level.

Chapter 6 presents preliminary work applying spatial regression concepts to higher

dimensional data and begins to explore models that incorporate both the space and

time dimension to capture the dynamics of Transportation Network Company (TNC)

trips in Chicago. This chapter also lays out ways that this structure could be used

to more deeply understand the extent to which TNC ridership is related to transit

ridership.

Chapter 7 summarizes the findings and offers concluding thoughts regarding rec-

ommendations for the CTA and directions for future work.
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Chapter 2

Background

This work is motivated by the idea that a deep and continually evolving understanding

of how public transit riders make use of their cities’ transit systems is a crucial part of

providing good service as a transit agency. Analyses of trip counts tell an incomplete

story about the state of transit ridership. Beneath these trip numbers are thousands

or millions of people moving about their city, living their lives. Some of them have no

other option but to use mass transit. Some use it only to commute, opting for other

modes on the weekends or in the evenings. Some use it every day, others once a month.

From only aggregate trip counts, one cannot deduce the set of behaviors existing on

a system. Yet, knowing these behaviors can inform policies in very valuable ways.

Policies aimed at increases in ridership or revenue will be more effective if the target

is not merely "more trips" but a person whose mobility needs and challenges are

well-understood. Furthermore, if several dominant behaviors can be uncovered, more

targeted policies can be directed to each in turn. Transit agencies can meet riders

where they are, and then get them where they need to go.

This is not novel thinking — transit agencies have understood this for a long time.

But up until recently, their primary method of learning about their riders was surveys,

which capture ridership behaviors at a (often very brief) snapshot in time. Longitudi-

nal tracking of riders via surveys is expensive, and the validity of the conclusions that

can be drawn is sensitive to the sample that is reached and the accurate reporting

on the part of the survey takers. While these methods undoubtedly provide valuable
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insights, in part because they have the benefit of capturing rich demographic data

along with ridership behavior, the picture they capture of an individual’s ridership

behavior is limited, either in terms of detail or duration.

With the emergence of Automated Fare Collection (AFC) smart card technology,

however, transit agencies can now connect each trip to a fare card, and observe

behaviors on cards that are used for an extended duration. In cities such as Chicago,

where the fare payment system is account-based, meaning that even replacement

cards can be tied to the same person, the implications are especially powerful. Multi-

year ridership trends can be analyzed in terms of underlying changing behaviors,

weighing these against volumes of churned riders versus new riders. The impacts of

service changes or disruptions can be looked at through the lens of the people affected.

Changes to fare policies can be evaluated based on which groups prove most or least

elastic. In short, transit agencies now have the ability to more fully understand and

meet the needs of the riders they serve.

In the next section, I will offer a review of work that has looked at travel behaviors

among public transit riders and work that has studied changes in these behaviors over

time. Next I will offer some context on the city of Chicago and CTA system, as that

will be the subject of the case studies in this work. Lastly, I will give background

on the COVID-19 pandemic, which motivates the analysis in chapters 4 and 5, and

explain the ways in which transit agencies, riders, and analysts had responded to the

outbreak at the time of this writing.

2.1 How Americans Use Public Transit

Within the realm of travel behavior research, the primary question for the past several

decades has been that of mode choice: what makes someone choose one mode over the

other? The methodology employed to answer this question is typically a logit model

that takes in the riders’ demographics and the trip’s attributes for each mode and

outputs the mode that such a traveler would most likely choose. Implicit in this is

the idea that individuals make several trips throughout the course of the day, some of
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which may be on public transit, some via private automobile, some using a rideshare

service, etc. These models try to capture the context in which someone lives their

life and makes travel decisions. The insights such studies can provide are incredibly

valuable, as they shed light on the factors riders weigh before setting off on their

mode of choice, but the downside is that these models are incredibly data-intensive,

requiring information on the decision-maker and each of the travel modes available to

her. Studying travel behavior as observed on only a single mode removes much of this

rich context but is, with smart card data, readily possible for public transportation

agencies. Looking at only public transit ridership behavior can by itself communicate

a lot about a person and, coupled with knowledge about how much daily travel the

average person engages in, give us a good idea of the extent to which people are using

mass transit for all or most of their travel needs.

The mode choice literature helps inform decisions about how to entice more people

and trips onto public transit— an extremely important goal, but not the sole objective

of a public transit agency. How people currently use the system contains a wealth of

information regarding the mobility needs of riders, and understanding these needs so

that they can be best met should be an equally important, if not more important,

goal of public transit agencies. Thus, an understanding of existing public transit rider

behavior is crucial. Furthermore, insight into how these behaviors change over time

can shed light on where transit systems need to become more competitive, and where

resources should be invested.

Capturing predominant public transit ridership behaviors has received less atten-

tion than understanding factors driving mode choice, or determining the demographic

profile of transit riders, but with the advent of AFC technology, the question has

gained more attention. In Chapter 3 I provide a literature review specifically on how

smart card data has been mined to uncover transit ridership behaviors, but none of

the studies use data from an American city, so here I will present details on how we

currently understand Americans to use public transit and how that is changing over

time.

A January 2017 report from the American Public Transportation Association
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entitled "Who Rides Public Transportation: The Backbone of a Multimodal Lifestyle"

drew on ridership reports from 163 transit systems in the U.S. that surveyed over

650 thousand riders in total [Clark, 2017]. This report found that fully half of all

respondents used public transit five times per week. It also found that half of the

survey respondents’ most typical transit trips involved a transfer. Among all riders,

29% had been using transit for under two years, and 53% had been using transit

for more than five years. Rail riders were more likely to be long-term users of mass

transit than bus riders.

TransitCenter’s 2016 report "Who’s On Board" summarized findings from focus

groups and online surveys of public transit riders in 17 large and medium-sized cities

[Higashide, 2016]. The report found three general behaviors to be predominant on

public transit systems: occasional riders, commuters, and all purpose riders. The

latter group was most prevalent in cities with strong transit networks offering frequent

service to many destinations. This report stressed that all riders were sensitive to

transit quality and that the traditional distinction of "choice" and "captive" riders

was detrimental.

Using a similar methodology, TransitCenter followed this report up three years

later with "Who’s On Board 2019: How To Win Back America’s Transit Riders"

[Higashide and Buchanan, 2019]. In it, they determine that declining public transit

ridership is driven by people scaling back their use of public transit systems and

largely replacing trips with private vehicles, rather than abandoning mass transit

altogether. This was reflected in the fact that more riders fell into the "occasional"

category than had in 2016.

Despite the outcry over declining public transportation ridership over the past few

years, few studies besides the TransitCenter reports mentioned above have examined

the behavioral trends underlying these declines. Chapter 3 of this thesis outlines a

framework for how transit agencies with access to smart card data can leverage it

to answer the same questions answered by the 2019 TransitCenter report: Who is

on board their buses and trains, and how are those people shifting their behavior

over time? Our analysis demonstrates that many of the nationwide findings from
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TransitCenter’s report hold in Chicago as well, with overall ridership declines being

driven by people using the system less, rather than fewer people using the system at

all.

2.2 Chicago and the CTA

The case studies in this work all focus on the city of Chicago, as all of the public

transit ridership data comes from the CTA’s account-based fare payment system,

Ventra.

Chicago is located on the coast of Lake Michigan in Illinois and is the third largest

city in the United States with a population of 2.6 million, surpassed only by New York

City (8.3 million) and Los Angeles (4 million). The CTA is the second largest transit

agency in the country behind the Metropolitan Transportation Authority (MTA) in

New York in terms of unlinked passenger trips in 2018. Broken out by mode, the

CTA provided more trips on heavy rail than any agency other than the MTA and

the Washington Metropolitan Area Transportation Authority (WMATA) in 2018,

and provided more bus trips than all agencies other than the MTA and the Los An-

geles County Metropolitan Transportation Authority (LACMTA) [American Public

Transportation Association, 2020].

Outside of the CTA, the Chicago metropolitan area is also home to Metra, the

largest commuter rail network outside of the New York City area as measured by

unlinked passenger trips, and Pace, a large suburban bus and regional paratransit

network. These services exist to complement rather than compete with the CTA,

however, and largely bring people from the suburbs into the city or to other areas

outside the city. Within the city boundaries, the CTA is the primary provider of mass

transit services, and thus analysis using CTA data provides a nearly complete picture

of public transit usage in the urban area.

Public transit has been an integral part of Chicago for a long time, with the first

rapid transit line opening in 1888. The unique structure of the rail network gave the

downtown core of the city its now official name — "The Loop." The CTA’s eight rail
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lines are arranged in a spoke-hub formation, all feeding into the dense downtown area

(except the Yellow line, which acts as a feeder branch to the Red and Purple lines

in the north). Five of the seven lines that reach the downtown area traverse at least

some portion of the 1.79 mile long elevated loop of rail tracks running above Lake

Street in the north, Wabash Avenue in the east, Van Buren Street in the south and

Wells Street in the west. The other two lines— the Blue line and the Red line — are

underground at this point. Figure 2-1 shows the layout of the CTA rail network.

This network structure has contributed to the continued concentration of jobs in

and around the Loop. More than half of Chicago’s jobs are located in the downtown

area, and the total number of downtown jobs as well as the proportion of jobs located

in downtown has been growing since 2010 (Figure 2-2). Patterns of usage on the

CTA’s rail system reflect its role as a connection to jobs: in 2019, just over half of

all Ventra card taps on CTA’s rail system occurred between the hours of 6AM and

10AM or between 4PM and 8PM on weekdays.

The bus network structure, on the other hand, largely reflects the city’s grid layout,

with most routes running north-south or east-west, many along a single street. Bus

ridership on the system also exhibits peak patterns, but to a lesser extent than rail.

About 45% of Ventra card taps of bus occurred during weekday peak hours during

2019.

Ridership by year for each mode between 2006 and 2018 is shown in Figure 2-3.

While bus ridership has declined each year since 2012, rail mostly continued to grow

ridership until 2015. Since then, until the COVID pandemic, total ridership on the

system had declined by about 3% yearly, with slightly steeper losses coming from

bus rather than rail [Chicago Transit Authority, 2020b]. This is largely in line with

nationwide trends in transit ridership, which have been declining since a peak in 2014

[American Public Transportation Association, 2020].

This work began as an effort to explain the CTA’s ridership decreases through

the lens of changing individual behaviors. This topic is the focus of Chapter 3 and

explores the system’s changing behavioral dynamics between the fall of 2017 and the

fall of 2018. Several months after that analysis was completed, however, the COVID-
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Figure 2-1: CTA Rail Map Network

19 pandemic abruptly and dramatically changed daily life for nearly everyone in the

world. One element of these changes was people’s travel needs and behaviors. Chap-
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Figure 2-2: Number of Jobs in Chicago by Location (Downtown or Elsewhere)

Source: Chicago Sun Times

ters 4 and 5 of this work build off the foundations set forth in Chapter 3 to capture

the heterogeneous individual behaviors underlying the massive drop in overall transit

trips occurring in Chicago due to the pandemic. Before concluding this chapter, I

provide some context on the timeline of the COVID-19 pandemic and what we know

about reactions of transit agencies and riders as of July 2020.

2.3 The COVID-19 Pandemic

At the time of this writing, the United States is four months removed from the initial

escalation in COVID-19 cases that occurred in the second half of March. We now know

that the virus is spread primarily via respiratory droplets, such as those produced

when someone coughs, sneezes, or talks, and that people exhibiting no symptoms can

still spread the virus [Center for Disease Control and Prevention, 2020a]. There is

still much that is unknown about the virus, however, including how unsafe an activity

like riding public transit really is for the general population. The body of research on

that is growing, and a brief summary of it will be provided here, along with accounts
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Figure 2-3: Count of Yearly Trips on CTA

Source: Chicago Open Data Portal

of transit ridership responses across the country.

In April, an MIT economics professor published a study claiming that the New

York City subway was “a major disseminator—if not the principal transmission vehi-

cle” of the disease in the city and the reason the outbreak was so much worse there

than elsewhere in the country [Harris, 2020]. His methodology, which involved over-

laying declines in subway ridership with infection rates by zip code, quickly drew many

critics, who noted his failure to account for any of the obvious cofounders, such as the

decline in activities that was driving the decline in transit use [Bliss, 2020]. They also

noted that many zip codes with the highest density of transit stations had some of

the lowest infection rates [Levy, 2020]. Transit analysts, epidemiologists, and mathe-

maticians alike have concluded that the paper provides no concrete evidence that the

subway explains why the outbreak was so much worse in New York than elsewhere

in the country in the early days of the pandemic [Sadik-Khan and Solomonow, 2020].
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Since this paper, several other studies have provided evidence that subway systems

are not, in general, responsible for a significant portion of disease spread. Epidemi-

ologists found that in Paris, none of the 150 identified coronavirus infection clusters

between early May and early June were traced to public transit usage or transmission

[Berrod, 2020]. Likewise, researchers investigating the outbreak in Austria in April

and May found that none of the 355 clusters could be connected to transit [Austrian

Agency for Health and Food Safety, 2020]. Furthermore, several cities, particularly

in Asia, with transit use on par with or higher than New York’s and smaller declines

in that usage saw outbreaks that were much more successfully contained [Mahtani

et al., 2020]. Hong Kong, for example, had only 1,655 confirmed cases as of this

writing or about as many as Duplin County, North Carolina, whose population is

just over 59,000, compared with Hong Kong’s 7.5 million [Johns Hopkins University

and Medicine, 2020]. Japan, home to the world’s busiest rail network in Tokyo, along

with several other major transit systems, has had just over 25,000 confirmed cases

compared to the U.S.’s 3.8 million.

While there is growing evidence that public transit systems are not a unique evil in

terms of risk of transmission, there is no question that Americans with the option to

stay home or use another mode have abandoned it in droves. According to the mobile

app Transit, public transit usage was down 77% across the country [Transit, 2020].

The app surveyed the remaining riders and found that they were overwhelmingly

(92%) using transit to get to work, and that they were predominantly women of

color and 70% of them made under $50,000 a year. Meanwhile, Transit app users in

higher paying jobs had been able to shift to working from home. The Eno Center

for Transportation analyzed news reports from transit agencies across the country

and showed that the drop in transit ridership due to COVID differed significantly by

mode, with commuter rail lines seeing the largest drops, followed by urban heavy rail,

and then bus [Puentes, 2020]. The difference between commuter rail and bus is stark,

with commuter rail ridership down more than 90% in many places, while major bus

systems were maintaining up to two-thirds of their baseline ridership. These findings

are consistent with those from the survey of Transit app users, as it is well-established
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in the literature that bus riders more likely to be lower income than rail riders [Maciag,

2014].

Transit agencies have responded to the disease and resulting drops in ridership in

various ways. Many have significantly reduced their service in order to save money

and accommodate staff shortages. New York City’s MTA cut subway service by

25%. WMATA in Washington, D.C. shut down 19 rail stations in response to the

pandemic in March, reopening them at the end of June [Washington Metropolitan

Area Transit Authority, 2020]. The San Francisco Municipal Transportation Agency

(SFMTA) closed all subway stations and replaced all Muni Metro and light rail routes

with buses in order to “redirect custodial resources to other, higher-use facilities,”

specifically those on routes connecting people to essential jobs and services [Fowler,

2020]. The CTA, on the other hand, made no permanent service cuts despite drops

in ridership around 80%, canceling trips only as a result of staff shortages. The

CTA also replaced 40-foot buses with 60-foot buses on certain routes that maintained

particularly high ridership [Chicago Transit Authority, 2020a]. Aside from changes

to service volumes, many transit systems have implemented rear-door boarding for

buses to limit passenger contact with operators, rendering bus travel essentially free

in these cities. Several have also authorized their bus drivers to maintain capacity

caps on buses. In addition, nearly all have increased communication about how to

ride safely during COVID, suggesting or requiring masks, advising maintaining a safe

distance between passengers, and recommending frequent hand sanitation, among

other guidelines.

Figure 2-4 shows the daily count of Ventra taps by mode on the CTA from the

start of 2020 through July 19, along with key dates in Chicago’s management of

the disease spread. Although a Chicago woman on January 24 became the second

confirmed case of COVID-19 in the United States, the city, like the rest of the country,

maintained business as usual until the early part of March. On March 9, the Governor

of Illinois, J. B. Pritzker, issued a disaster proclamation, allowing the state to take

advantage of additional state and federal resources to fight the disease. Over the next

two weeks, in quick succession, the governor banned gatherings of over 1,000 people,
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ordered all bars and restaurants closed, shut down public and private schools, and

on March 21, issued a stay-at-home order [Tribune staff, 2020]. Over the same time

frame, the number of rides occurring on the CTA dropped by more than 80%. On

April 9, the CTA implemented rear-door boarding on buses, leading to effectively

free bus service in Chicago. On June 3, after two and a half months, the stay-at-

home order was lifted in Chicago as part of "Phase III" of reopening, which allowed

some non-essential businesses to resume operations with capacity limitations [Munks

and Anderson, 2020]. Restaurants and coffee shops were permitted to allow outdoor

dining, and personal services such as hair salons reopened [NBC Chicago, 2020a]. On

June 26, Chicago moved on to Phase IV, which allowed indoor dining at restaurants

as long as tables were more than six feet apart, museums were permitted to operate

at 25% capacity, and gatherings could occur of up to 50 people, up from 10 in Phase

III [NBC Chicago, 2020b].

Figure 2-4: Daily Ventra Taps in 2020 with Key Dates from COVID-19 Management
in Chicago

Source: Chicago Tribune, City of Chicago

At the time of this writing, despite being deeply uneasy about the massive revenue

drops they are are sure to see for some time, transit agencies are still largely following

the suggestions of the CDC and urging riders not to travel unless necessary, so that

public transit is as safe as possible for those who need it [Center for Disease Control

and Prevention, 2020b]. Eventually, however, transit agencies will need to recover a
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significant portion of their baseline ridership; otherwise, U.S. cities will be gridlocked

with private vehicles as people begin moving again. Charting a path forward will

require an understanding of who riders were before the pandemic, how their travel

behavior shifted in response, and what this information tells us about their mobility

needs and the challenges to bringing them back on board. Chapters 4 and 5 of this

work use Chicago as a case study to examine the differential impacts of the pandemic

on the ridership of a few key groups, and Chapter 4 uses this analysis to craft a

multi-pronged policy approach to meet the mobility needs of riders using the service

during the pandemic, to get riders back on buses and trains, and to help the CTA be

more reflective of the needs of its riders going forward.
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Chapter 3

Customer Segmentation Framework

The introduction of account-based automated fare collection technology has given

transit agencies a new level of depth in their data, allowing for deeper analysis and

understanding of the underlying ridership trends present on their system. Whereas

before, most transit agencies could only quantify the number of trips made by time

of day, day of week, mode, route, or stop, now they can quantify the number of trips

made by person, as well as the spatio-temporal distribution of those trips. This allows

and, I would argue, demands full recognition of the fact that a transit system is built

for people, and that every trip occurs because of the person who decided to make

it. This section will demonstrate how to leverage AFC data to uncover how behavior

trends are driving top-level ridership changes. The framework presented here will

enable transit agencies to answer questions such as whether a ridership decline was

due more to riders churning from the system altogether or decreasing the number of

trips they took. Which ridership behaviors are most stable? Most unstable? Having

identified some key behavior groups of interest, what else can we learn about these

riders? And finally, how can we use these insights to inform policy analysis?

3.1 Background

Since the emergence of AFC data, a robust literature on methodologies for mining this

data for ridership behavior patterns has emerged. This particular work draws heavily
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from that of Basu, who used k-means to cluster cards from Hong Kong’s Mass Transit

Railway (MTR) system [Basu, 2018]. He used one month of data and characterized

ridership using both temporal and spatial features with the goal of allowing MTR to

target system information to only the riders for whom that information was relevant.

The literature on this topic has grown to cover not only a large range of clustering

methodologies but also types of systems analyzed and sets of input features. I will

touch on only some of them here.

Many of the studies in this body of literature leverage unsupervised learning al-

gorithms to uncover patterns in the data. The two most popular within this body

of work are k-means and Density-Based Spatial Clustering of Application with Noise

(DBSCAN), and they are applied to a variety of different types of input data at

various steps in the customer segmentation process. Morency et al., for example,

apply k-means in a comparison of just two individuals, and use the algorithm to un-

cover days of travel with similar patterns [Morency et al., 2006]. Agard et al. use

k-means along with Hierarchical Agglomerative Clustering (HAC) on binary features

indicating day of week and time of day to explore the relationship between temporal

ridership patterns and fare type [Agard et al., 2006]. To separate infrequent from

frequent passengers, Kieu et al. apply k-means to the number of trip chains evident

from card usage, and then apply DBSCAN to the frequent group to refine the differ-

entiation by spatial and regularity metrics [Kieu et al., 2013]. In a later paper, Kieu

et al. employ DBSCAN to separate transit riders into 4 groups using data on typical

times of travel and origin and destination locations [Kieu et al., 2015]. DBSCAN is

also used by Ma et al. on identified trip chains made by riders in Beijing [Ma et al.,

2013] to classify behaviors there.

Others have explored different methods of classifications to attempt to capture

even more nuance in the data. El Mahrsi et al. apply two clustering approaches to

two problems: they use Poisson mixture models to cluster transit stations by their

usage problems, modeled after similar work on bike share stations by Come et al., and

they cluster passengers by estimating a mixture of unigram models, based on work by

Nigam et al. on document classification [El Mahrsi et al., 2017, Côme and Oukhellou,
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2014, Nigam et al., 2000]. Ghaemi et al. propose a technique for projecting high

dimensional binary data onto the three-dimensional plane and then applying HAC

to cluster the vectors [Ghaemi et al., 2017]. Gaussian Mixture Models were used by

Briand et al. in order to group riders based on temporal features while maintaining

the continuous nature of temporal data [Briand et al., 2016]. More recently, He et al.

have explored the tradeoffs between cross-correlation distance (CCD) and Dynamic

Time Warping (DTW) for assessing the difference in travel patterns represented by

time-series data, and found that CCD outperforms DTW [He et al., 2020].

Most of the work mentioned above relies upon around one month’s worth of data

for a transit agency, thus providing an informative glimpse into transit behavior at

a point in time. Less work has been focused on applying these clustering techniques

longitudinally as a way of understanding how behavior is changing. Briand et al. have

followed up their work with Gaussian Mixture Models with a paper that analyzes

behavior changes by investigating year-to-year cluster membership changes over five

years using data from a medium sized transit agency serving Gatineau, Canada. They

then used HAC on the clusters, and found that there was higher switching from year

to year among clusters that were more similar in temporal patterns, as judged by

the HAC output [Briand et al., 2017]. Additionally, Viallard et al. studied the same

transit system to understand behavioral evolution on a week-to-week basis, using k-

means on 7 features summarizing behavior for each day of the week [Viallard et al.,

2019].

As researchers probe the frontier of classification algorithms, there is much that

we can learn from what they uncover to be differentiating factors among riders in

their data sets, and it is helpful to see how they have used knowledge on how transit

systems work and what the key features of urban mobility are to inform their work.

The framework presented here, however, is not intended to push forward that frontier

but rather to bring the fruits of these labors within the grasps of American transit

agencies. It aims to employ a tried and tested method— k-means— on input features

deemed important by the CTA and validated as informative based on the literature

above, in order to uncover the dominant behaviors among cards in the Ventra system.
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This framework is flexible regarding the duration of time on which to calculate the

input features as well as the set of cards that are clustered. In this chapter, we use

four months of data for each clustering period and apply the algorithm to all cards

in the system, thus demonstrating the usefulness of such a practice for the scale of

data available to a large American city’s transit agency. It aims to be easy and

quick to reproduce as well as straightforward to interpret. In this way, we hope to

offer similar agencies a process for identifying behavioral archetypes within the their

ridership database and uncovering the types of behavioral shifts that are leading to

overall changes in the number of trips or riders in their system.

3.2 Data

The data used in this analysis is from the CTA’s Ventra account-based automated

fare collection database, which houses the sale and use history of all Ventra cards. As

of 2017, the first year considered in this analysis, the Ventra system captured 95%

of all rides taken on the CTA [Vaishnav, 2019]. The database houses information on

each card transaction, which encompasses each trip taken. The tap-in station and

time are recorded for each trip, along with other information such as the cost of the

trip, the fare product used to pay for it, and whether it was considered a transfer.

In addition to information on trips, the database also contains information on

the purchase of fare products, including the time of purchase, the payment method,

and whether it occurred via the Ventra mobile application, at a vendor located in

the city, or via some other method, such as through an employer. While one could

feasibly leverage all this information for input features and allow characteristics such

as typical payment to contribute to the definition of the various clusters, this analysis

opts to limit the input features to a small set of values that describe the temporal

dimensions of each card’s transit ridership. The additional information available from

the Ventra database can later be layered on top of cluster assignments in order to

observe how other rider characteristics, such as inferred home location or payment

method, break down along behavioral lines.
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We consider a transit account ID to be equivalent to one person. This is not a

perfectly accurate assumption, as people who do not register their Ventra card are

given a new transit account ID if they replace it. Thus, this analysis will count as

separate people those who are issued a new transit account ID. While further work

should address this issue, we believe it is not substantial enough to change the overall

picture of behavior trends in the city. Cards that were completely free of cost were

removed from consideration because these cards are frequently passed around among

many users and inflate the number of riders who appear to be using the system with

an extremely high frequency.

Notably, the Chicago system has only tap-in data, and thus the data points used

to capture and distill riders’ behaviors are limited to information that can be obtained

from a tap-in system. As will be discussed in more depth in the next section, selection

of the input features which will determine the dimensions along which the clusters

are defined is a crucial step in this process, but one for which there is no clear correct

answer. Each transit agency must decide on input features based on the data they

have available and the goal of their analysis.

3.3 Methods

3.3.1 K-Means Clustering

The k-means clustering algorithm is a well-known and widely used machine learning

algorithm for uncovering structure in large data sets. Within the realm of machine

learning, it falls under the umbrella of "unsupervised learning" because it does not

require a set of observation inputs and labels to learn the structure it is trying to

uncover. Rather, the data, with each observation summarized by its values for the

chosen input features, is taken in by the algorithm, which then outputs the labels for

us.

The k-means algorithm works as follows [Lloyd, 1957]:

1. A pre-specified number (𝑘) of cluster centroids are each assigned random values
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for each input feature, locating them at random in m-dimensional space, where

𝑚 is the number of input features.

2. Each data point is assigned to the nearest centroid, resulting in 𝑘 clusters.

3. New centroids are calculated by taking the mean value of the data points within

each cluster.

4. Steps 2-3 are repeated until the iteration in which no data point changes cluster

assignment.

K-means works best when data across input features have similar scales. This

is typically achieved by standardizing the data for each feature so that the values

approximate a normal distribution, or by scaling the data for each feature so that all

data falls along the unit scale. In this analysis, we choose the latter approach. We

then match cluster assignment by transit account ID to the original data in order to

investigate the results using the true values of the input features.

The k-means algorithm has some shortcomings that should be noted. First, it

tends to bias results towards clusters that are roughly similar in size. Secondly, it

assigns each data point to a cluster, regardless of how significant of an outlier that

data point is. In this work, where all revenue-generating riders are included, this could

lead to some non-intuitive cluster results for very infrequent riders. Further work on

this topic should experiment with other clustering algorithms, including those that

either do not assign every data point to a cluster, or those that allow for "fuzzy"

cluster membership, where each data point can be associated with more than one

cluster. For our goal of capturing the predominant behavioral archetypes present in

a large transit system and investigating the stability of these behaviors over time, in

aggregate and individually, k-means offers a quick and interpretable method of doing

so.
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Feature Description
Weeks Rode Number of weeks in which the rider used the system at

least once
Percent Peak Percent of all rides taken between 6AM and 10AM or

between 3PM and 7PM on weekdays
Percent AM Peak Percent of all rides taken between 6AM and 10AM on a

weekday
Percent Weekend Percent of all trips taken on a weekend
Range Number of days between the riders’ first and last trip

during the study period
Average Weekly Rides The average number of trips taken in weeks where at least

one trip was taken
Note: Journeys involving a transfer are counted as one trip

Table 3.1: Description of Input Features for Longitudinal Cluster Analysis

3.3.2 Input Feature Selection

The selected features are outlined in Table 3.1. These six features were settled on by

drawing upon the literature, specifically Basu’s work on clustering groups of cards that

included infrequent riders [Basu, 2018], as well as in consultation with the CTA. Addi-

tional temporal features were investigated, such as average daily rides, but ultimately

excluded due to the low variability in this value across riders and the subsequently

small role they played in dictating cluster assignment.

The set of features used in this section is rather limited, and excludes some, such

as mode share and transfer rate, that will be used in the next chapter, which applies

customer segmentation analysis to understand the transit ridership impacts of the

COVID-19 pandemic. For the purposes of establishing the framework, we stick with

including only temporal features in our clustering algorithm, but stress that this same

procedure could be followed with a wide variety of feature sets.

3.3.3 Segmentation

To perform this analysis, we first clustered cards that were present in the Ventra

system in the 17 complete weeks (Monday-Sunday) preceding December 31, 2017.

The last day of 2017 happened to be a Sunday, so the study period for 2017 ran from
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Monday, September 4 until Sunday, December 31. Each observation corresponded to

a single transit account ID and consisted of a vector of six values, one corresponding

to each of the six input features.

To determine the optimal number of clusters, the Elbow Method was used. This

practice involves running the algorithm using multiple different values of 𝑘, plotting

the intra-cluster variation as a function of the number of clusters, and selecting the

number at which this variation begins to flatten out. This, combined with investiga-

tion of the outputs for various numbers of clusters and a desire for the clusters to be

easy to digest and interpret, led us to settle on using 10 clusters.

3.3.4 Establishing Stability

Next, the cards from the analogous time period in 2018 were clustered. Again we used

the 17 complete weeks of data preceding December 31. For 2018, this led to a study

period beginning on Monday, September 3, 2018, and ending on Sunday, December

30, 2018.

We then explored the stability of the clusters. We matched each 2017 cluster to

the closest 2018 cluster, as measured by the Euclidean distance between the centers.

Next, we quantified the percent change in the shifts of the centers for each cluster

and observed that they were uniformly very small (<1%). We further plotted the

distribution of the true values of the features in each cluster and compared these

across the two years. Figures 3-1 and 3-2 show the comparison between the 2017

and 2018 distributions for each feature and illustrates the nearly identical shapes

and quantiles of the two years’ data. These comparisons convinced us of the clusters’

stability across these two years, and justified the following step, in which we fix cluster

centers to be the same for both years so that a “cluster” has a single definition and

we are able to perform longitudinal analysis.
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(a) Weeks Rode

(b) Percent Peak

(c) Percent AM Peak

Figure 3-1: Distribution of Cluster Values for 2017 and 2018 (Part 1)

3.3.5 Longitudinal Comparison

To allow for straightforward comparison across years, we fixed the center of each

of the behavioral clusters to be the mean of the 2017 and 2018 centroids for that
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(a) Percent Weekend

(b) Range

(c) Average Weekly Rides

Figure 3-2: Distribution of Cluster Values for 2017 and 2018 (Part 2)

cluster. All cards from both years were then reassigned based on these new, fixed

centroids. Only 0.6% of all cards changed cluster assignment as a result, providing

further evidence of the stability of the clusters.
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Establishing a fixed definition for these behavioral clusters across years allowed

us to use them as a basis for comparing the distribution of behaviors between the

two time frames. Investigating which clusters grew in number and which clusters

decreased in size gave us insights into the behavioral dynamics behind the overall

drop in trips that occurred on the system from the fall of 2017 to the fall of 2018.

It also allowed us to identify the cards that churned from the system after 2017, the

cards that entered the system in 2018, the cards that were present in both years but

exhibited changing behavior, and the cards that exhibited consistent behavior in both

years.

In this chapter, we performed the clustering algorithm on all of the cards in the

system (except the free cards mentioned earlier). Because of the relatively small

number of features and output clusters, this process was not time-intensive (taking

fewer than 10 minutes). An alternative method, however, is to cluster several smaller

random samples from each year, determine the inter- and intra-year stability, assign

fixed centroids based on some combination of the random samples, and then assign

each card from the entire set to a cluster determined by the centroid to which it is

nearest. Depending on the extent to which stability can be assumed or proven, this

method would likely be the most expedient for transit agencies looking to implement

this analysis, as assigning each card to the nearest centroid can be accomplished in

seconds.

3.4 Results

In the end, we clustered 1,698,851 accounts that were active in 2017 and 1,692,086

accounts that were active in 2018 (including those that were also present in 2017).

This section begins with a description of the 2017 clusters themselves and moves on

to discuss findings from the longitudinal comparison.
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Cluster
Group

Cluster
No. Cluster Name % of All

Riders
% of All

Trips

Infrequent

0 Infrequent PM Peak 7.9% 0.5%

1 Infrequent Weekday Off
Peak 8.3% 0.6%

2 Infrequent Weekend 8.7% 0.7%
3 Infrequent AM Peak 7.2% 1.1%

Occasional
4 Occasional Off-Peak 10.4% 3.7%
5 Occasional Peak 9.6% 4.6%

6 Short Term High
Frequency 10.3% 4.7%

Regular
7 Regular Off-Peak 10.7% 15.8%
8 All Day 5% 25.2%
9 Regular Peak 13.5% 27.6%

Table 3.2: Percent of Riders and Trips Belonging to Each Cluster - 2018

3.4.1 2017 Clusters

The ten behavioral clusters can be categorized into three groups based on the per-

centage of all trips that they represent. Aggregating up to this higher level allows

for initial analysis that approximates work done by the CTA in the past, in which

cards are classified exclusively by the frequency of their usage. Having the underlying

clusters enables us to deepen the understanding of behavioral dynamics within each

of these groups. Figure 3-3 provides a depiction of the relative centroid location for

the features within each cluster, and Table 3.2 lists the clusters, identified by cluster

group, as well as the percent of all trips and riders represented by each.

The Infrequent group encapsulates four clusters of infrequent or short term riders

who together represent about 3% of all trips taken on paid cards in the fall of 2018.

They are differentiated by the time at which these trips are typically taken. These

four clusters account for 32.1% of all riders considered in the analysis.

The next group contains three clusters, each of which accounts for between 3.5%

and 5% of all trips taken by riders in this analysis. Two of these clusters represent

occasional riders—– their first and last rides in the study period are nearly as far

apart as the first and last rides of a regular rider, but they typically average only

about four rides per week. The last of the three clusters in this group contains riders
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(a) Infrequent Clusters

(b) Occasional Clusters

(c) Frequent Clusters

Figure 3-3: Relative Centroid Values by Cluster

whose first and last rides are much closer together in time (the average is about 19

days – for reference, the study period is 17 weeks), but who average slightly more

rides per week than a regular commuter. We call these “Short Term High Frequency”

riders, but for the sake of simplicity refer to the group as a whole as “Occasional”

riders. Together this group accounts for 13% of trips and 30.3% of riders.

The final group contains the high frequency or regular riders: Regular Commuters

ride often and at peak hours, Regular Off-Peak riders ride similarly frequently but
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at off-peak hours, and All Day riders ride very frequently both on and off peak. The

latter of these three, which we also call Super Users, is the smallest of the three. This

group accounts for 5% of all riders but 25% of all trips. The Regular Commuters, on

the other hand, account for 13.5% of all riders and 27.6% of all trips. The Regular

Off-Peak riders are less numerous and account for fewer trips (15.8%).

As mentioned, there are limitations to this straightforward application of k-means.

In order to get as holistic a picture of paying customers as possible, we did not filter

out any riders based on usage criteria. Thus, someone who moved to the city at the

end of the study period and began using the system regularly might be classified as

a Short Term High Frequency rider when in reality their longer term behavior fits

more appropriately with the Regular Commuter group. Despite these drawbacks, our

clustering output is largely consistent with previous customer segmentation work done

by the CTA using different methods and time frames. In addition, by incorporating

the maximum number of cards, we have made it easier to translate the outputs of the

analysis into intuition about what is going on system wide at the CTA.

3.4.2 Change in Cluster Groups Over Time

The goal of this exercise is to provide deeper insight into the often-reported top-level

trends in the number of trips and riders on a given system. For the CTA during this

time frame, the analyzed cards revealed a 0.4% drop in riders on the system and a 1.3%

drop in trips taken. This section explores how an agency can use the methodology

outlined above to uncover the underlying behavioral trends driving these numbers.

Our first step is to investigate change at the highest level of aggregation – the

three cluster groups that correspond to volume of trips. Overall, there was a drop of

about 0.4% in the number of cards in the analysis in 2018 compared with 2017. This

drop was not uniform across the three cluster groups, however. Both the Infrequent

and the Regular groups grew in size, the former by 1.7% and the latter by 0.7%. The

Occasional group, however, dropped in size by 3.6%.

The set of factors contributing to the changing size of each of these groups is

twofold. First, how does the number of new riders to the system entering this group
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compare with the number of riders churning? And secondly, how does the number

of riders shifting their behavior away from this group compare with the number of

riders shifting their behavior to this group?

Figure 3-4: Number of Riders By Cluster Group and Observed Behavior Shift

Figure 3-4 illustrates that different trends are at work within each of the groups

to yield the top-level losses and gains that we observe. “New” riders refer to those

who were in the system in 2018 but not in 2017, “Churned” riders refer to those who

were in the system in 2017 but not 2018, “Entered” and “Left” both refer to riders

who were in the system both years but different cluster groups. The dark green bars

indicate the riders who entered that cluster group in 2018 from a different cluster

group, and the light green bars indicate the riders who were in that cluster group in

2017 but a different one in 2018. “Stayed” refers to riders who were in that particular

cluster group in both years. Taken together, the light blue, light green, and yellow

represent all the riders in each cluster group in 2017, while the dark blue, dark green,

and yellow represent all the riders in each cluster group in 2018.

In the Infrequent group, more riders are churning from the system entirely than
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new riders are entering that group. This is offset, however, by the fact that more

riders are shifting to this behavior from other behaviors than are shifting away from

this behavior. This leads to a slight gain in the number of Infrequent riders in 2018

compared with 2017. The Occasional group, however, is losing on both fronts, which

drives the overall decline we see in this group in 2018. Regular riders, like Infrequent

riders, are growing in number, but for the opposite reason. While more people are

shifting away from this behavior than towards it, the number of new riders entering

these groups not only is larger than the number churning, but makes up for the loss

from the first type of shift.

These numbers hint at the complicated dynamics behind the relatively small over-

all changes in trip and ridership numbers presented at the top of this section. On

the brighter side, the growth of regular riders is a positive sign for the agency, as this

group accounts for about 79% of all revenue. The ability to attract new riders to

this group at rates higher than those churning from the system bodes well for future

revenue streams.

At the same time, however, there is a clear trend of riders who remain in the

system decreasing their usage of it. While most riders who were present in both 2017

and 2018 were in the same behavior group both years (51%), of those who changed

behavior, 56% moved to a less frequent cluster group compared with 44% who moved

to one characterized by more frequent ridership. These shifts are the reason behind

the absolute growth in infrequent riders —- their gain comes from riders decreasing

their frequency and falling into the bottom tier of riders.

These trends hold both in terms of the absolute numbers of riders switching be-

haviors and the fraction of riders from each group that are switching. For example,

12.5% of Occasional riders (72,590) moved to the Infrequent group, while only 9.8%

of Infrequent riders (56,817) made the opposite switch. In fact, we see very similar

rates of exchange between Occasional and Regular riders: 12.5% of Regular riders

(67,328) became Occasional riders while 10% of Occasional riders became Regular

(58,173). The volumes are smaller for the exchange between Regular and Infrequent,

but the imbalance holds: 6.2% of Regular riders (33,349) dropped all the way down
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to infrequent riders, while only 4% (23,411) of infrequent riders climbed to Regular.

A depiction of the volume of riders switching between groups is given in Figure 3-2b.

Figure 3-5: Size of Rider Behavior Shifts from 2017 to 2018

Taken together, we see two clear phenomena emerging. First, the CTA system is

largely replacing churning riders with new ones. While the number of new riders is

slightly below that of churned riders (0.7%), the distribution of new riders is slightly

more in favor of regular riders than was the distribution of the churned riders, leading

to an overall increase in the number of trips from this group, as well as revenue.

Secondly, and oppositely, the CTA is seeing a general trend toward decreased
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usage among those who stay in the system. Those cards which were present in both

2017 and 2018 collectively took 6.7% fewer trips during the fall of 2018 as compared

with 2017.

3.4.3 Change in Clusters Over Time

We now turn to investigate the individual clusters in order to gain deeper insight.

Table 3 shows the percent change in size of each of the individual clusters from 2017

to 2018. This reveals that while all the clusters in the Infrequent group are growing in

size and all clusters in the Occasional group are shrinking in size, the overall growth

in the Regular group is driven entirely by growth in the Regular Commuters group,

which is compensating for decreases among Super Users and Regular Off-Peak riders.

We also note that in general, clusters characterized by ridership in the peak hours

are faring better than those characterized by off peak ridership. Aside from the growth

in Regular Commuters, we also see relatively small losses in Occasional Peak riders

compared with the other Occasional clusters, and we see noticeably more growth

in the Infrequent AM Peak cluster than in the other Infrequent clusters. This is

validated by the fact that the 1.3% drop in overall trips noted above is not uniform.

Rather, weekend trips dropped by 1.9%, weekday off peak trips by 3%, and peak

trips by only 0.1%. By looking more closely at what is happening within each of

these clusters, we can understand how rider behavior is behind these numbers.

Figure 3-6 shows the count of new and churned riders by cluster, and Figure 3-7

shows the counts of people shifting to and from each of the clusters. The darker blues

and greens represent the people that were in that cluster in 2018, while the lighter

colors represent the people that were in that cluster in 2017.

We see that within each of the three larger cluster groups, the tradeoffs between

new and churned or between shifts to and away from clusters are directionally consis-

tent among the member clusters. That is, all the Infrequent clusters see more churned

than new riders and more shifts to them than away from them; all the Occasional

clusters see more churned than new riders and more shifts away than to; and all

the Regular clusters see more new riders than churned and more shifts away than to

56



Cluster
Group

Cluster
No. Cluster Name Change in Number

of Riders

Infrequent

0 Infrequent PM Peak +0.5%

1 Infrequent Weekday
Off Peak +0.5%

2 Infrequent Weekend +2.8%
3 Infrequent AM Peak +5.2%

Occasional
4 Occasional Off-Peak -4.2%
5 Occasional Peak -1.7%

6 Short Term High
Frequency -4.6%

Regular
7 Regular Off-Peak -2.6%
8 All Day -1.5%
9 Regular Peak +3.1%

Table 3.3: Change in Cluster Membership Size from 2017 to 2018

them. The differences in cluster size changes among these groups then comes down

to the relative size of each of the gaps – between new and churned riders and between

behavior change and behavior adoption.

The Regular Commuter group is growing while the Super Users and Regular Off-

Peak group shrink, for example, because the gap between new and churned riders is

larger than the gap between those shifting away from being Regular Commuters and

those adopting that behavior. In the other Regular clusters, the gain of new over

churned riders is not enough to make up the loss from people changing behaviors.

We can also investigate in detail from which cluster those who change behavior

are coming. Figure 3-8 has 2018 cluster membership on the x-axis and shows the

breakdown of 2017 behaviors among riders that entered that cluster in 2018.

Each cluster pulls from all of the other clusters to some extent, though we note

that in almost every case, the largest share came from a cluster characterized by

the same peak level but a different frequency level. Exceptions are Infrequent PM

Peak, which drew about equally from Occasional Peak and Occasional Off-Peak, and

Regular Commuters, which adopted Regular Off-Peak riders at about the same rate

that it adopted Occasional Peak riders.
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Figure 3-6: Count of Churned and New Riders by Cluster

Figure 3-7: Count of Riders Shifting To and Away from Each Cluster

3.5 Case Study: January 2018 Fare Increase

Beyond helping transit agencies uncover the behavioral trends driving overall ridership

loss (or gain) on their systems, this analysis can also aid in the diagnosis of policy

interventions by breaking down the responses by cluster to see how various groups

reacted. Here we take the January 2018 fare increase on the CTA as a case study

and offer an example of how this framework can be used to explain the better-than-
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Figure 3-8: Percent of Non-New Riders in Each 2018 Cluster by 2017 Cluster

predicted results of the fare increase, enable deeper analysis into specific rider groups

of interest, and inform future policies. This analysis was done in collaboration with

Maulik Vaishnav at the CTA.

3.5.1 Fare Increase Outcome and Diagnosis

CTA ridership in 2018 declined for a third consecutive year. In January 2018, the

agency increased the base fare by $0.25 and 30-Day Pass price by $5. The agency

budgeted annual ridership of 462 million, down from 479 million in 2017 and antic-

ipated revenue to grow by $23 million. At year end, ridership reached 468 million

and CTA generated $27 million in additional revenue. Our clustering segmentation

analysis helps shed light on these better-than-anticipated results: growth in Regular

Commuters due to a robust downtown economy helped increase revenue and rider-

ship. Their growth offset losses seen in other larger segments, such as super users and

off-peak users.
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3.5.2 Deeper Investigation of Regular Commuters

Because this segmentation methodology assigns a cluster label to each account in

the system, we were able to delve into more detail about Regular Commuters to

understand that group. As anticipated, many Regular Commuters begin their trips

(their inferred home location) on the north-side of the Chicago. These relatively price-

inelastic 80,000 riders accounted for 15% of fare revenue in 2018. When compared

with other 2017 Regular Commuters who were geographically stable (did not change

inferred home location) between 2017 and 2018, north-siders were significantly more

behaviorally stable (did not change cluster assignment). Fully half of north-side

Regular Commuters remained Regular Commuters. In other regions, the share of

Regular Commuters maintaining their behavior only reached as high as 42% but was

as low as 25% in some places. This may speak to the many transit-rich neighborhoods

in the north, as well as the fact that these neighborhoods are typically wealthier and

home to individuals commuting to and from downtown. Furthermore, the share of

riders using a 30-Day Pass increased slightly even as the price increased.

3.5.3 Policy Implications

Many large cities in the US have seen similar growth in population and employment

along transit-rich corridors. Our analysis indicates that this market is using transit

mainly during the morning and evening peaks on weekdays for commuting, and they

are relatively price-inelastic. However, as in Chicago’s case, most other major groups

decreased their membership numbers or use over the year. While many reasons may

have contributed to these declines, it is important to design future policies that target

growing vs. declining segments differently. For example, a future fare increase may

be more successful if peak rail fare was introduced that mostly targets this inelastic

market more than other segments.

We also examined the change of behavior in people who switched their pass type

in response to the fare increase. We found that regular commuters who switched

from pay-per-use fares to a 30-Day Pass increased their ridership by an average of 30
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percent, while the group doing the reverse decreased their use by 16 percent. Their

use increased on weekends as well as both peak and off-peak periods on weekdays,

but increased by a higher proportion in off-peak and on weekends. Notably, 7.8% of

this cohort with no pass use in 2017 moved up to become super-users with a 30-Day

Pass in 2018. Fare policies that prioritize pass use and keep their prices affordable

relative to base fare can therefore anticipate an increase in ridership, not only in peak

times, but also in off-peak and weekends when transit travel times are slower.

3.6 Conclusion

This chapter develops a framework for using AFC data to identify the behavioral shifts

and trends that are underlying the change of top-level ridership and trip numbers

frequently reported by transit agencies. The analysis focuses on a comparison between

fall of 2017 and 2018 data in Chicago to illustrate the amount of insight that can be

gained from data that is even just a single year apart.

In this chapter, we start with the fact that the number of cards in the system

has declined by 0.4% and the number of trips has declined by 1.3% We then examine

the three cluster groups to determine that these numbers can be explained more by

remaining riders decreasing their usage than by new riders using the system less than

churning riders. By diving deeper into the individual clusters, we learn that new

riders entering the system as Regular Commuters are largely responsible for limiting

the drop in trips on the system. We also noted a slight shift toward peak travel and

a tendency for people to change the frequency with which they ride at higher rates

than they change the time of their typical travel during a given week (peak/off-peak).

Evaluating this information in the context of the January 2018 fare increase reveals

that continued growth of the Regular Commuter group helps explain why the CTA

outperformed revenue and ridership predictions for this year. Delving deeper into

this slice of the ridership offered insights that can help inform future fare policies at

the agency.

The framework provided in this chapter offers several advantages for transit agen-
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cies hoping to make ridership behavior a fundamental part of their regular analysis.

First, it uses a well-established and computationally efficient algorithm to create be-

havioral profiles that contain multiple relevant dimensions and are easily digestible.

In other words, it is straightforward both to implement and to interpret. Next, it can

easily be replicated in the future to investigate how these trends progress. Once fixed

cluster centroids have been determined, cards can easily be assigned to a behavior

group for discretized time frames. Periodic re-clustering is advised to ensure that the

fixed clusters remain close to independent clustering on a newer set of data. Third,

the output of this methodology can be easily layered with other analyses. We have

captured temporal behavior in a single variable, which can now be interacted with a

host of other aspects of the ridership experience, such as mode choice, location choice,

or pass purchase behavior. Lastly, it enables analysis that is rider-centric. Issues of

decreasing ridership, whether they be across the system, on certain modes, on certain

lines, or in certain regions, are ultimately the result of individuals choosing to alter

their ridership behavior. This method puts the question of “who?” at the forefront of

investigating such issues.

In the following chapter, we employ a similar framework to understand the impli-

cations of a shock to the system much larger than a fare increase— the COVID-19

pandemic. Because of the magnitude of the change in ridership behavior, we do

not attempt to establish stable clusters, but rather only segment clusters based on

pre-pandemic behavior and examine behavior changes by group. Such an extreme

alteration to typical transit behavior patterns suggests an extension of this work that

does not seek to establish the same behavioral clusters over time, but rather identifies

the behavioral segments most indicative of riders in each specific time frame. While

this approach will be more complex to interpret and analyze, as the number of behav-

ioral profiles will be much larger if not consistent over time, it will likely be necessary

for the time being as urban areas deal with the repercussions of the pandemic.
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Chapter 4

Customer Segmentation Case Study:

Ridership Impacts of COVID-19

On January 20, 2020, the Center for Disease Control and Prevention confirmed the

first positive test for COVID-19 in the United States, a 35-year-old man in Snohomish

County, Washington [Holshue et al., 2020]. Over the course of the next two months,

the number of confirmed cases increased slowly but steadily, reaching 100 on March 2

[Johns Hopkins University and Medicine, 2020]. In early March, as the United States

began to greatly increase its testing capacity, the number of confirmed cases grew

more rapidly, jumping from 100 on March 2 to 4,604 two weeks later. On March 11,

the World Health Organization officially declared the outbreak to be a pandemic, and

US state and local governments that had not already done so began to enact sweeping

restrictions regarding which establishments could remain open, how large gatherings

could be, and to what extent citizens should spend time outside their residences.

Along with these restrictions came a dramatic drop in the number of trips taken

on public transport as people’s workplaces closed, nearly all events were canceled,

and many large cities issued "shelter in place" orders. The latter half of March, along

with April and May saw public transit trips at 10-30% of their typical levels, though

there was heterogeneity in the size of the drop by city, mode, and demographics. At

the time of this writing, the future of public transit in American cities is still very

much unknown as people grapple with changing employment circumstances and the
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public health implications of riding mass transit. At the end of April, 30 million

Americans had filed for unemployment [Tappe, 2020] and several major companies

have announced that their employees may continue working from home indefinitely

[Kelly, 2020], eliminating the need for millions of commuting trips that would have

occurred on public transit. Additionally, as cities begin to slowly reopen, many

urban dwellers are likely to opt for modes of travel that do not require being in

close proximity to strangers, such as personal vehicles and biking.

The challenges to recuperating public transit ridership losses are immense. Having

a deep understanding of who public transit riders were and how they responded to

the COVID-19 crisis is critical as agencies attempt to chart a path forward. With

such steep obstacles to recovering ridership, agencies will be well-served to learn what

they can about their riders and craft policies with their needs in mind.

This chapter uses the customer segmentation methodology presented in the pre-

vious chapter and the city of Chicago as a case study for how a transit agency might

analyze the impacts of COVID-19 on ridership and use this to inform policies geared

at recovering lost riders and trips. First, we present context on the impact of COVID-

19 on the CTA system as a whole. Then we establish the baseline behavior of CTA

riders and examine the ridership responses to COVID-19 of each of the behavioral

groups, highlighting findings related to ridership characteristics that are particularly

predictive of COVID-19 ridership and what this may mean for policy going forward.

Lastly, we offer policy recommendations for the revival of transit usage in Chicago,

considering several behavioral groups in turn and developing policy suggestions that

pay specific attention to the circumstances and needs of each group.

4.1 Structure of the Analysis

To study the impacts of COVID-19 on CTA ridership, we use Ventra fare card tap-in

data. We establish the pre-COVID baseline behavior of riders on the system based on

the eight complete weeks between Monday, January 13 and Sunday, March 8, 2020.

To differentiate baseline behavior across different types of riders, we assign all Ventra
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cards that were used at least once during the baseline period (about 1.3 million cards)

to one of fourteen behavioral clusters.

Two of these clusters are define heuristically instead of algorithmically. The first

such cluster includes all cards that were used only for a single day in the baseline

period. Because these riders have often taken only a single trip, their extremely brief

presence on the system is their behavioral attribute of the most interest and the other

attributes of interest, which are largely calculated as the percent of trips taken that

meet some criteria, are forced to the extremes which could lead to outcomes from the

clustering algorithm that are less robust.

The second group consists of cards with a type of pass that allows the user to ride

free. Individuals holding these passes are significantly more likely to share their card

with others, making it harder to stand by the assumption that one card equals one

person, which underlies this analysis. Because many of these riders are lower income,

however, we did not want to exclude them from consideration altogether, so they are

assigned their own cluster heuristically, like the one-day riders. The remaining cards

(about 900,000) are then clustered using the k-means algorithm on the scaled values

of the input features seen in Table 4.1. The elbow method was used to settle on 12

clusters based on these input features.

Having established a pre-COVID baseline categorization of CTA riders and their

travel, we then track how their travel patterns change through the COVID-19 pan-

demic period. We define an early stage COVID period using the two complete weeks

from Monday, March 23 until Sunday, April 5 and a late stage COVID period using

the four complete weeks from Monday, June 22 until Sunday, July 19. The early stage

COVID period spans between the implementation of Chicago’s stay-at-home order

on Saturday, March 21, and the implementation of the CTA’s rear-door boarding

policy on all buses on April 9. The late stage COVID period comes after the lifting of

Illinois’s stay-at-home order at the end of May and after the CTA resumed front-door

boarding on buses on Sunday, June 21.

To characterize the ridership response to COVID-19 from each group, we investi-

gate the percent of riders that used the system even once during each of the during-
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Feature Description
Weeks Rode Number of weeks in which the rider used the system at

least once
Percent Peak Percent of all rides taken between 6AM and 10AM or be-

tween 3PM and 7PM on weekdays
Percent Weekend Percent of all trips taken on a weekend
Range Number of days between the riders’ first and last trip dur-

ing the study period
Average Weekly Rides The average number of trips taken in weeks where at least

one trip was taken
Percent Bus Percent of all trips taken on bus
Percent Transfer Percent of all trips involving a transfer (rail to rail transfers

not captured)
Note: Journeys involving a transfer are counted as one trip

Table 4.1: Description of Input Features for COVID Cluster Analysis

COVID-19 analysis periods. Because we are interested in individual-level behavior,

it is possible we are missing people who rode during the rear-door boarding period

but not either of our analysis periods. Additionally, in this analysis we do not deal

with the cards that did not appear in our baseline period but did appear during one

or both of the COVID analysis periods. This group is not insignificant – it is about

25% of the riders in the late stage period, although many could simply be previous

riders who have started using a new Ventra card – but because we were not able to

establish baseline behavior for them, we set them aside for this analysis.

4.2 Context: COVID-19 and Public Transit Rider-

ship in Chicago

Before discussing individual behavior changes due to COVID-19, it is useful to under-

stand at an aggregate level the decrease in trip volume observed during the COVID-19

pandemic. Figure 4-1 shows the daily count of Ventra card taps by mode from early

January 2020 until mid July. We note that trip volume appears largely consistent

starting in the second week of January until the week of March 9, in which we note

slightly lower than normal trip volume on rail, especially in the early part of the week,
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and a steep drop off for both modes on Thursday and Friday and into the weekend.

The week starting on Monday, March 16 appears to be a transition week, in which

transit trips continued to drop. The Saturday of that week, March 21, marks the start

of Chicago’s stay-at-home order. The following two weeks show consistently low trip

volumes, appearing to plateau at a new normal. On April 9, the CTA implemented

a rear door boarding policy, meaning that all riders were required to board the back

door to provide some protection for their operators. Because the vast majority of

CTA buses did not have Ventra card readers installed at the rear door at the time,

this policy essentially equated to free bus rides. As a result, as can be seen in the

figure, during this time there is virtually no smart card data from bus trips. Front

door boarding was re-instated at the end of June.

Figure 4-1: Daily Ventra Taps by Mode Since First Monday of 2020

The CTA saw a massive drop in trips across the board, down from almost 5 million

average weekly trips to about 940,000 in the early stage and 1.3 million in the late

stage. The drop was more pronounced on rail, which dropped from 2.5 million average

weekly trips to 310,000 in the early stage, a drop of 88%. The count of rail trips has

since risen to 490,000 in the late stage, or 20% of baseline volume. Bus, on the other

hand, had baseline volumes just below those of rail (2.4 million average weekly trips),

but early stage trip volumes more than double that of rail, at 630,000. Late stage

bus ridership is at 840,000 average weekly rides, or 35% of baseline levels. Rail has

seen a greater percentage increase in trips between the early and late stages of the

pandemic compared with bus (+59% compared with +34%), but is still drawing trips
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in numbers below even early stage bus trip counts.

4.2.1 Temporal Patterns

We also investigate the loss of trips along temporal and spatial dimensions. With

regard to the temporal dimension, Figure 4-2 shows the hourly distribution of trips

by mode for a typical weekday and weekend in each time frame. We note that trip

volumes have decreased for every hour on both weekdays and weekends, but most

dramatically during the weekday peak hours. COVID-19 has largely eliminated the

strong peak pattern of weekday travel, with fully 50% of the initial lost trips in an

average week coming from the hours of 7-10AM and 4-7PM on weekdays. This is

likely due to a combination of these trips no longer being taken at all due to office

jobs moving to remote work, as well as people shifting travel to other times for fear

of crowded conditions on transit during these hours.

Figure 4-2: Temporal Distribution of Daily Trips by Mode, Weekend/Weekday, and
Time Period

4.2.2 Geographical Patterns

When looking at the spatial distribution of trip loss, we see clear geographical pat-

terns. Figure 3 shows the percentage decrease in average weekly trips by commu-
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nity area in Chicago. The steepest declines are in the areas north of downtown,

close to the coast of Lake Michigan. These neighborhoods have a greater percentage

of white/Caucasian residents and are more affluent than the neighborhoods in the

south and west of the city, which are majority minority and much lower income. The

pattern of public transit usage dropping more in wealthier neighborhoods has been

observed in other cities, and seems to be strongly related to the fact that “essential

workers” are more likely to be lower income and people of color than the population

as a whole [Valentino-DeVries et al., 2020, Goldbaum and Cook, 2020, Rho et al.,

2020]. As Chicago has opened up, the percentage increase in rides from the early

stage to the late stage has been greater on the north side, though the overall decline

from the baseline remains much higher in the north (Figure 4-3).

This initial analysis allows us to see that the drop in trips due to COVID-19, while

unprecedentedly large across all modes, time periods, and neighborhoods, was most

pronounced on rail, during peak hours, and in wealthier, majority white communi-

ties. In later sections, we will show that this is a product of the distinct behavioral

responses from different groups of riders.

4.3 Behavioral Baseline

We begin by establishing a behavioral baseline using data from the eight weeks leading

up to the escalation of the pandemic and the response to it. Using the methodology

described in detail in the previous chapter, we can describe the status quo of ridership

behavior using 14 clusters, including one-day riders and free riders.

Table 4.2 gives the average value of each of the key features for the 14 clusters,

including one-day riders and free riders, which can be interpreted as the re-scaled

center of each cluster. We first note the clear delineation between riders who were

active for only a small part of the baseline period (clusters 0, 1, 2, 3, 5, 12) and those

that were active for the entirety (clusters 6, 7, 8, 9, 10, 11). We can deduce that the six

clusters with mean ranges around 7 weeks consist of riders who live in Chicago. It is

harder to draw definitive conclusions about the riders in one of the five clusters with a
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Figure 4-3: Percent Change in Average Weekly Trips Between Pre-COVID and Early
Stage (Left), Between Early Stage and Late Stage (Middle), and Between Pre-COVID
and Late Stage (Right) by Community Area

shorter range. It is possible that they were visiting the city, or perhaps made a lifestyle

change toward the beginning or end of the study period that led to them appearing

in or disappearing from the CTA system. This could also capture riders who had to

replace an unregistered Ventra card, or riders who ride infrequently enough that they

would not appear in the system for several consecutive weeks. These riders have on

average fewer weekly rides than those who appear in the system for the duration of

the study period, suggesting a combination of visitors and very low frequency riders.
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The details of when they ride can provide some clues as to which clusters are which,

with the first two clusters, which have a high percentage of weekend rides, being more

likely to correspond to visitors, while those with a high percentage of trips taken at

peak perhaps corresponding to very infrequent commuters.

Two slight exceptions to the general correlation between range and average weekly

rides are clusters 4 and 5. The first of these, Medium Range Infrequent Semi-Peak

Rail, consists of riders with a relatively long range on average, of over 5 weeks, but

only about 2.5 rides per week. Additionally, despite having a range of over 5 weeks,

typically ride during only 3 or 4 of those weeks. This suggests riders who live in

Chicago but only use transit every once in awhile. These riders overwhelmingly opt

for rail over bus and have a higher percentage of weekend trips and lower percentage

of peak trips than the average rider. This group likely uses the CTA occasionally

for leisure trips, for special purpose trips like getting to or from the airport, or when

their primary mode is unavailable. When they do use the CTA, they avoid the bus

and trips that require transfers.

The other exception is the Low Range Occasional Weekday Mixed Modes cluster,

whose range is only a little more than two weeks on average, but typically takes

around 4.5 rides per week. This group uses bus more than rail and has a high rate of

transfers. This group is likely to be capturing some of those riders who are replacing

unregistered Ventra cards, maybe because they purchase 7-Day Passes with cash.

The last six clusters are all high range clusters, with riders present in the system

throughout the entire eight-week baseline period. The first of these, High Range

Occasional Semi-Peak Bus, is classified as occasional because of the relatively low

number of average weekly rides when compared with the remaining five clusters. All

of the last five have similar values for average range, average weekly rides, and weeks

rode. They differ by primarily by mode and the percentage of rides taken at peak, as

well as their transfer rate.

The first of these five is characterized by the high percentage of trips taken on bus

and during the peak. These riders take on average just over 6 trips per week, which

are focused during the peak hours, likely for commuting, and do not involve transfers.
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They almost never ride on the weekends. The next group is again characterized by a

concentration of trips taken during peak hours, but these riders use both modes and

transfer often. Like the other groups characterized by ridership at the peak, they take

very few trips on the weekend. The third group rides primarily on rail and mostly in

the off-peak. They take about a quarter of their trips on the weekend, which is more

than the average rider. This behavior could capture rail commuters who work jobs

that do not operate on a 9-5 schedule, students, or individuals who work from home

but use rail for errands and other recreational needs, among other groups.

For our analysis of COVID-19 impacts by rider type, we will focus on the final

two of these clusters. This is because, aside from one-day riders and free riders, these

two groups represent the largest percentages of pre-COVID trips and riders on the

entire CTA system. Further, apart from the frequency with which the riders use the

system, they are different in every way and thus, as we will see, have very different

responses to COVID-19. The High Range Frequent Off-Peak Bus Transfer cluster

represents 7% of riders and 15% of trips. Only about one-third of these riders’ trips

are taken during peak hours, while nearly three-quarters are on bus and most involve

a transfer. This group has the highest mean value among all the clusters for average

weekly rides, at nearly eight. The High Range Frequent Peak Rail cluster, on the

other hand, travels nearly exclusively via rail on weekdays during peak hours and

almost never transfers. Of the twelve algorithmically defined clusters, this last group

represents the largest share of riders (10%) and trips (20%) in the baseline period by

a significant margin.

We can also examine the spatial distribution of the inferred home locations of

riders (Figure 4-4, left panel). We note that the system’s riders in general are con-

centrated largely along the north coast. Mapping the spatial distribution of the High

Range, Frequent clusters separately mostly mirrors this trend—with the notable ex-

ception of the Off-Peak Bus Transfer group, which is spread more evenly among the

community areas, with more riders living in the south and west parts of the city than

we see in the other clusters (Figure 4-4, right panel). These areas of Chicago are dis-

proportionately low income and overwhelmingly black. This suggests that riders from
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these neighborhoods, who are more likely to be lower-income and black, have travel

behavior characteristics — off-peak rather than peak, bus rather than rail, frequent

transfers—which are typically associated with lower levels of service. Even apart from

COVID-19 responses, this suggests that a system that allocates resources according

to where and when the majority of trips occur could overlook one of the largest blocs

of riders responsible for 15% of all trips in pre-COVID times. This speaks to the

importance of analysis that keeps the rider rather than the trip at the center, as it

allows us to recognize a group of riders that is crucial to overall ridership numbers

but typically uses the system at times when overall trip volume is relatively low.

Figure 4-4: Inferred Home Locations for All Riders (Left) and by Cluster for Most
Frequent Clusters (Right)

The Peak Rail group offers the other side to this story. These riders are heavily

concentrated in the wealthiest and majority white areas of the city, and they exclu-

sively use the system where and when its service levels are highest — on rail and

in the peak hours. These travel patterns, coupled with demographics based on their

inferred home locations, suggest that these riders opt for other modes when it comes

to their non-commuting trips.
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4.4 COVID-19’s Impact on Ridership Behavior

The acceleration of the COVID-19 pandemic in America and the subsequent public

health measures including the enactment of the stay-at-home order in Chicago led to

an over 80% decrease in the number of CTA trips occurring during a typical week.

This was closer to 90% for rail, and around 75% for bus. The weekday peak hours

alone were responsible for about half of the lost trips. These statistics tell us a good

deal about what types of trips were no longer considered essential, but they are not

the complete story. Using the lens of the behavioral clusters, we can understand more

about who in the city was making these essential trips, who was able to abandon public

transit altogether, and what that means for the road to recovery. Most importantly,

this knowledge can inform policies that will not only bring riders back onto the system

but also make the system better than ever for the people who need it the most.

4.4.1 Ridership Churn

In this section, we aim to answer the question of who ceased riding public transit

altogether during the pandemic (i.e., “churned”).

Figure 4-5 gives a bar chart of the count of riders in each cluster pre-COVID,

colored by whether they rode only during the early stage COVID period (Eventually

Churned), only the late stage COVID period (Returned - July), both (Continual

Rider), or neither (Completely Churned). Furthermore, Table 4 gives the percent of

riders from each group riding during each of the COVID analysis phases. We note

right away large variation in the percent of riders who completely churned from each

group. Churn occurred in higher rates in clusters characterized by more infrequent

or shorter term ridership. A glaring exception to this, however, is the Frequent Peak

Rail cluster, whose riders completely churned at a rate of about 80%. The lowest

complete churn rate belonged to the Frequent Off-Peak Bus Transfer group, which

had only a third of its riders abandon the system altogether.

When looking at the system as a whole, we see a complete churn rate of 73%,

with another 13% of riders not appearing in the early stage but riding in the late
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stage, 10% riding in both, and the remaining 4% riding in the early stage but not

the late stage. The clusters with churn rates significantly lower than the average

are High Range Occasional Off-Peak Bus, High Range Frequent Off-Peak Rail, High

Range Frequent Off-Peak Bus Transfer, and Free riders. It is notable that all four

of these are characterized by High Range, Off-Peak travel. This further corroborates

our finding that while off-peak hours see significantly fewer trips overall compared

with peak hours, off-peak trips are taken by individuals who rely on the CTA for

much of their travel and likely do not have other options for getting around. This is

evident from their continued use of the service even during a global pandemic when

use of public transit systems was discouraged.

The clusters with churn rates significantly lower than the average are Low Range

Infrequent Weekend Rail, Low Range Infrequent Peak Bus (No Transfer), Low Range

Infrequent Peak Rail, High Range Frequent Peak Rail, and One-Day riders. Again,

we note that the unifying characteristic of these clusters, except for the High Range

Frequent Rail cluster, is their infrequent usage of the system. This is unsurprising,

as we expect visitors to the city to be captured within these groups, as well as people

who use CTA one in awhile to supplement their primary travel modes, or for specific

purposes. The fact that the High Frequency Peak Rail group churned at rates on par

with the infrequent groups, and higher than some, suggests a fundamental difference

between this group and the other high range or frequent groups of riders that goes

beyond simply differing typical travel patterns. These individuals were almost entirely

able to stop taking trips altogether or replace all transit trips with another mode.

4.4.2 Initial Ridership Recovery

All clusters saw an increase in the percent of their riders using the system between

the early and late COVID analysis periods, as we would expect given that the city

was under a stay-at-home order during the early phase but had begun phased re-

opening of economic activities by June and July (Table 4.3). Among the Frequent

rider clusters (clusters 7-11), all had returned at least a quarter of their riders to the

system, except for the Peak Rail group, which remained at 17%, a rate more in line
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Figure 4-5: Number of Riders in Each Cluster Group by 2018 to 2017 Behavioral
Shift

with some of the lowest frequency groups. These numbers help identify which groups

will be most challenging to get back on transit. They also hint at which groups are

responsible for the trips currently being taken on the CTA’s system. In fact, during

the early stage of the pandemic, just clusters 10 (High Range Frequent Off-Peak Bus

Transfer) and 13 (Free Riders) accounted for over half of all trips on the system, with

each accounting for about an equal proportion. In the late stage, their share has

lessened somewhat as more other riders have returned. During this period, cluster

10 accounted for 19% of all trips and cluster 13 for 22%. Cluster 11, meanwhile,

accounted for 4% of trips in the early stage and 5% in the late stage.

4.4.3 Bringing in Geographic, Pass, and Payment Information

Investigating the Free Rider group poses an opportunity to learn a little more about

who has continued riding during the pandemic, as we can examine the pass makeup

of this group before and after mid-March. We see that whereas the pre-COVID group

of Free Riders was comprised of 24% Disabled Ride Free passes, 25% Senior Ride Free

passes, and 48% University student passes, in the COVID period, this group was 49%

Disabled Ride Free, 35% Senior Ride Free, and only 12% U-Pass holders. Again we
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Cluster
No. Cluster Name

% Riding in
COVID

Early Stage

% Riding in
COVID

Late Stage

%
Completely
Churned

0 LR Inf Weekend
Bus 10% 19% 76%

1 LR Inf Weekend
Rail 4% 9% 89%

2 LR Inf Peak Bus
(No Transfer) 6% 13% 84%

3 LR Inf Peak Rail 2% 7% 91%

4 MR Inf Off-Peak
Rail 6% 17% 80%

5
LR Occ
Weekday Mixed
Modes

13% 20% 74%

6 HR Occ
Off-Peak Bus 24% 39% 54%

7
HR Freq Peak
Bus (No
Transfer)

13% 25% 72%

8 HR Freq Peak
Mixed Modes 20% 32% 62%

9 HR Freq
Off-Peak Rail 25% 39% 53%

10
HR Freq
Off-Peak Bus
Transfer

47% 54% 33%

11 HR Freq Peak
Rail 7% 17% 80%

12 One-Day Riders 2% 6% 93%
13 Free Riders 31% 41% 54%

Table 4.3: Percent of Riders from Each Cluster Active by COVID Analysis Period
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see a clear trend of more disadvantaged riders being the ones who need to continue

using the system during the pandemic.

This is borne out when examining the churn rate by community area of inferred

home location. Riders living in the south and west parts of the city continued riding at

rates of up to 40% by community area, while only about 10% of riders living along the

north coast continued to ride. These basic geographic patterns hold regardless of the

cluster, showing that not only do clusters that have more disadvantaged riders exhibit

lower pandemic-related churn rates, within these clusters, the more disadvantaged

riders are the ones more likely to continue riding.

Lastly, we also examine the change in the makeup of riders before and during

COVID along some dimensions not included in the clusters, namely pass usage and

history of paying with cash. We see that COVID riders are more likely to use a pass

and to have paid with cash than pre-COVID riders.

4.5 Policy Implications

4.5.1 Universal Measures

First, we acknowledge that there are some policies which, during a pandemic, benefit

riders and the system universally. These include the continuation of public health

guidelines already in place, namely the requirement that all operators and riders

wear masks, the regular cleaning of vehicles and enforcement of vehicle capacity caps,

as well as the effective communication of these policies to all agency staff and riders.

Additionally, as public health officials continue to advise maintaining several feet of

distance between people, adding capacity where possible is an important goal to have,

regardless of the population in mind. For rail, this means the addition of cars to trains

that typically run with fewer than the maximum number of cars and the addition of

trains where there is the signal and track capacity for added service. For bus, this

means running more vehicles and improving the efficiency of service via dedicated bus

lanes, queue jumps, and traffic signal priority. While these public health measures

79



and capacity increases are important for everyone, they should be seen as baseline

needs rather than panacea policies. Absent other interventions crafted with specific

populations in mind, they will likely not be enough to bring all the necessary riders

and trips back to the system. To accomplish this, the path forward must consider

policies tailored towards key groups of riders.

4.5.2 Targeted Measures

High Range, Frequent Peak Rail Riders

The first group of riders that we consider is the High Range, Frequent Peak Rail

Riders. We have seen that these riders are concentrated along the north coast of

the city in neighborhoods that are largely higher incomes and majority white. They

nearly entirely abandoned the system once the pandemic hit and have yet to recover

significant ridership during the initial reopening of the city. These facts suggest

that these riders have the means to opt for non-transit modes and the flexibility

to work from home. As the economy re-opens, this group will be difficult to get

back on transit, as they typically only used the system at times and places where

it was particularly crowded and impossible to maintain distance from fellow riders.

These riders will likely be aware of the health risks associated with riding transit, and

be tempted to choose another mode or continue working remotely if their employer

allows it, as early evidence suggests many will continue to do [Akala, 2020].To get

these riders back on transit will require an acknowledgement of their situation and

creative thinking. This group uses the mobile Ventra app at particularly high rates,

meaning that tech-based interventions may be particularly effective in reaching them.

This fact can be leveraged; smart design and use of mobile notifications letting riders

know what to expect and how to prepare for transit trips, may be able to make these

riders feel comfortable returning to the system. Additionally, accurate information

about the crowding level of trains, or even specific rail cars, communicated via the

Ventra app would likely help bring back riders in this group. Particularly effective

would be prediction of crowding levels at their station of origin sufficiently far enough
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in advance, so that they could plan a trip before leaving their home. If they feel that

they have the proper information to make smart choices about how and when to use

public transit in a way that makes them feel safe, they are more likely to do so than

if they feel they are taking a big risk each time.

We also know that these High Range, Frequent Peak Rail Riders very rarely ride

the bus, despite the fact that many live in areas that are well-served by bus. It

is quite possible that these riders are unaware of bus routes that would serve them

just as well as rail and would be open to using them if they felt it was a safer (less

crowded) option during the pandemic. The CTA could inform residents who typically

use rail of these alternate routes, using posters or announcements at rail stations or

via targeted app notifications based on riders’ travel history and inferred origins and

destinations of their historical trips. These interventions would be most effective if

combined with some of the other interventions already mentioned, such as dedicated

bus lanes and more buses to increase capacity on those routes, as well as accurate

information on the crowding level of buses and trains.

High Range, Frequent, Off-Peak Bus Transfer

When considering the High Range, Frequent Off-Peak Bus Transfer group, however,

the objectives, challenges, and opportunities are somewhat different. This group did

not abandon transit like the peak rail riders, suggesting a deeper reliance on the

system for their travel needs. This is likely a group that largely overlaps with what

has often been referred to in the literature as "captive riders." When defining policies

aimed at ridership recovery, one might be tempted to ignore this group, as they will

have few other options for how to make trips, and are likely to return without much

enticement. But this ignores the fact that, as this analysis has revealed, this group

— which was responsible for 15% of pre-COVID trips, a proportion smaller than

only the Frequent Peak Rail riders and the Free riders—typically uses the aspects

of the system associated with lower levels of service. They are reliant on buses

that run less frequently at the times when they need them and often at low speeds

[Wisniewski, a]. Furthermore, they regularly need to transfer between two such buses.
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The CTA and the city of Chicago had already begun significant work to speed up

their buses [Wisniewski, b] but the CTA’s ability to increase service frequency is

limited by laws such as an antiquated farebox recovery mandate, currently being

fought by activists [Whitehead, 2020]. Despite obstacles, the CTA should make sure

to specifically consider this group of riders when prioritizing investment to the system,

doing what they can to more fully orient the system around the mobility needs of its

riders. Furthermore, research has shown that joblessness resulting from the pandemic

has hit lower income, minority communities the hardest [Mohammadian et al., 2020]

and this analysis has shown that these riders are disproportionately located in such

communities. More so than in the peak rail group, the loss of riders within this group

may be attributed to a loss of jobs and therefore trip purposes. The re-employment

of these groups is key to an equitable economic rebound for the city, and thus, better

connecting these riders to jobs is a practical aim for the city of Chicago and the CTA.

In the short term, making sure these riders have access to Ventra cards is an

important step. This group purchases and refills Ventra cards using cash and from

vendors at higher rates that the average rider, meaning that during a global pandemic

when many vendor shops are closed, their access to Ventra tickets may be cut off.

Working with local businesses to distribute Ventra cards, or stocking them on buses,

could help get them to the riders who need them. Furthermore, the CTA could make

it cheaper for these riders to use the system, at least for the time being. Many of

those still riding regularly are essential workers. Eliminating the transfer fee and

discounting 7-Day passes, which are used by this group at higher than average rates,

would help ease the financial burden on disadvantaged riders already hit hardest by

the pandemic.

Additionally, better bus service is particularly important for this group. Many

of these riders live in areas of the city not served by rail, leaving bus as the only

option. Leveraging dedicated bus lanes, traffic signal priority, and additional vehicles

to increase the efficiency of these routes would have a compounding effect of improving

service for this group, as it would improve not only each leg of their bus travel, but

decrease transfer times as well.
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Lastly, the travel patterns of this group should be explicitly considered when

determining where to prioritize bus infrastructure improvements. We have seen that

these riders don’t necessarily travel when overall volume is highest, and thus are at risk

of being overlooked when ridership analysis is done at the trip level only and service

improvements prioritized accordingly. This pandemic, and what it has revealed about

who truly keeps Chicago running, should lead to more explicit consideration of the

needs of these riders when designing policies and system investments.

4.6 Conclusion

Analyzing the differential impacts on transit ridership by key rider groups, as defined

by pre-pandemic behavior, reveals significant heterogeneity in how Chicago transit

riders changed their use of the system in response to COVID-19. Notably, frequent

peak rail riders stopped riding the CTA altogether at rates on par with some of the

lowest frequency pre-pandemic riders, while nearly half of regular off-peak bus riders

with frequent transfers continued to ride the system, accounting for 20% of trips in

July. While individuals’ travel needs are likely to change in dramatic ways going

forward, knowledge of how riders previously used the system can provide valuable

insight into the distinct challenges facing different groups, and this should inform

policies aimed at helping transit agencies recover ridership. In the case of the CTA,

targeted policies at the two groups mentioned above will be more effective than only

pursuing broad tactics for welcoming riders back to the system.

COVID-19 has affected transit agencies in unprecedented ways, and as such, there

is no clear roadmap for recovery. As transit agencies develop and implement strate-

gies, rather than taking for granted the riders that have continued to use the system

even throughout the pandemic, they must ask what this says about their system

and who it prioritizes. Those who continue using the CTA’s system at the highest

rates during the pandemic were much more likely to be disadvantaged riders. Any

path forward must use this knowledge to aid these riders in improving the level of

service they receive. This should be a focus not only of pandemic-time policies, rec-
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ognizing that these are the essential workers helping to keep cities running, but also

of continuing policies that focus on recovery and beyond. This will require support

from lawmakers, who must recognize the limitations of current public transportation

funding mechanisms and revise them in ways that acknowledge the crucial role public

transit has to play in our societies.

Across the country, the COVID crisis has laid bare the fact that those most reliant

on public transit are too often those who are not always provided the highest levels

of service. A failure to consider the people making transit trips during such a critical

time along with their distinct challenges and situations, will lead to a recovery plans

that are short-sighted at best and harmful at worst. The CTA benefits from having a

fare card system such as Ventra, which allows the individual pass holders to be used

as a fundamental unit of analysis. The approach used in this work should be adopted

by agencies and cities who have the requisite data to guide policy formation during

this critical time.
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Chapter 5

Determining Factors Related to

COVID-19 Transit Ridership: A

Linear and Spatial Regression

Approach

The previous chapter provided an in-depth example for how to apply a clustering

framework, rooted in the desire to keep riders as the focal point of analysis, to under-

stand a major shock to the public transit system and guide policy evaluation. The

findings indicated that individuals whose typical ridership behavior consists of pre-

dominantly bus trips, with transfers, taken during off-peak hours were significantly

more likely to continue using the CTA during the stay-at-home order than individ-

uals whose ridership is largely limited to rail trips at peak hours. A geographical

analysis also suggested that those in the former group had inferred home locations

in the South and West parts of the cities at far higher rates than the latter group,

indicating that these riders are more likely to be Black and Hispanic, as well as lower

income. These findings were consistent with what reports on transit ridership during

this period from across America have shown— that much of the remaining transit

ridership is from people serving as essential workers, who tend to be lower income
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and non-white.

Having uncovered a clear relationship between pre-COVID ridership behavior,

sociodemographics, and ridership behavior during the pandemic, in this chapter, we

aim to tease out the relative importance of individual variables in predicting COVID-

related ridership loss. Specifically, we employ linear regression techniques, using the

percent change in average weekly trips at the census tract level as the dependent

variable. Our main explanatory variables of interest here are demographics and pre-

COVID ridership behavior of residents, which can be aggregated to the census tract

and transit stop respectively. Because the latter nests within the former, we simply

choose census tracts as the unit of analysis.

The goal of this analysis is to demonstrate first the benefit of including typical

ridership characteristics of an area along with sociodemographics in explaining the

change in trip counts observed after the stay-at-home order was issued, using the

baseline and early COVID stage from the previous chapter. The second goal is to

illustrate how a spatial regression approach can be used in this analysis to take into

account the spatial autocorrelation present in the data.

5.1 Background

Estimation of transportation demand at the level of a spatial unit, for example a city,

neighborhood, or station, is one objective of a large family of models often called

"direct demand models," which typically rely on linear regression techniques. They

gained prominence in the public transportation realm in part as a response to the

industry standard four-step model’s failure to capture or consider neighborhood-level

characteristics, such as walkability and density, and their impacts on transit ridership

[Cervero, 2007]. They grew in popularity due to their relative simplicity, compared

with the four-step model or discrete choice models, in terms of implementation and

interpretation, and have been used numerous times since in contexts such as deter-

mining drivers of BRT ridership in Los Angeles [Cervero et al., 2010] and estimating

the role of TOD on rail ridership in Taipei [Lin and Shin, 2008]. The work in this
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chapter inherits from this body of work, as it investigates ridership at a spatial unit

and uses attributes of that space as the dependent variables. Unlike direct demand

models, however, this work is interested in the percent change of ridership due to a

particular event — the implementation of the stay-at-home order in Chicago — in-

stead of the absolute volume of transit ridership. As such, variables typically included

in direct demand models of the type discussed above, such as physical qualities of

the neighborhoods, are excluded from this analysis due to the fact that, while they

have been shown to impact transit ridership in general, they are unlikely to impact

the magnitude of the transit ridership response to a global pandemic.

In addition to land use characteristics, sociodemographics have proven to be pre-

dictive of transit ridership in a wide variety of studies, and, as suggested by the

previous chapter, are likely to play a role in explaining which groups were more likely

to continue using public transit in Chicago during the pandemic. While the demo-

graphic traits in and of themselves, such as primary language, for example, do not

impact travel behavior, these aspects of identity are closely associated with variables

that are harder to capture, such as type or location of job, working hours, and parental

obligation [Lu and Pas, 1999]. Therefore, the sociodemographics of an area have long

been considered an important component of understanding travel demand, especially

due to the wide availability of such data.

Demographic data has proven to be predictive in both cross-sectional studies of

transit ridership and in studies that have modeled changes in transit ridership over

time. Dill et al investigated stop-level bus and rail ridership in three Oregon cities

and conclude that being white and college educated corresponds with less transit

ridership [Dill, 2013]. Mucci and Erhardt find that high incomes are associated with

lower ridership in San Francisco [Mucci and Erhardt, 2018], and Pasha et al. have a

similar finding in Calgary [Pasha et al., 2016]. Giuliano finds that African-Americans

use transit at higher rates, though mainly via their lower levels of access to vehicles

[Giuliano, 2005]. Studies have also explored the role of demographics in the ridership

decreases that occurred in the second part of the 2010s. Manville et al. found that

increased vehicle ownership was the primary determinant of declining transit ridership
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in Southern California [Michael Manville et al., 2018], while Berrebi et al. found an

increased percentage of white residents in the vicinity of a bus stop corresponded with

a reduction in ridership at that stop [Berrebi and Watkins, 2020]. When investigating

the correlations between demographics and ridership at a fixed point in time, Berrebi

et al. found that high proportions of non-white, carless, and high school educated

riders were associated with higher levels of transit ridership. Looking at ridership

changes across 14 years in 25 cities, Boisjoly et al. also find car ownership to be a

primary driver of transit ridership loss [Boisjoly et al., 2018].

While there is significant precedent for using demographics to explain transit

ridership by spatial unit— at one point in time as well as changes to ridership— I

could find no examples of the ridership behavior typical of residents of an area being

used as explanatory variables for changes in ridership. There are examples of habitual

ridership behavior being included in mode choice models for emerging modes using

stated preference data [Asgari and Jin, 2020], but in terms of modeling ridership

changes or future demand at a set of locations, details on existing ridership behavior

are absent.

It would of course be unnecessary to use transit ridership behavior as explana-

tory variables in a model of current trip volumes, but the question of whether the

ridership behaviors typical of an area can tell us something about the trajectory of

ridership trends seems to be a question that would be of interest to transit agencies.

It is possible that this has not yet been studied because, when considering ridership

changes over a longer period of time, one must consider the migration of urban resi-

dents, and thus the establishment of a baseline behavioral profile for each area may

be less meaningful for changes studied over years, by which time the baseline popu-

lation may have changed substantially. In our case, however, we are concerned with

the behavioral response to an event that was extreme and abrupt. We can safely

assume that people did not move to another location in the city within the one-week

transition period separating our baseline period and early COVID stage as outlined

in CHapter 4. Furthermore, in the previous chapter we demonstrated the strong

relationship between behavior and ridership response to the COVID pandemic. By

88



including baseline ridership behavior alongside demographic variables, we can deepen

our understanding of the dynamics at play by teasing out which individual variables

prove to be most predictive of ridership response while controlling for all other vari-

ables. In doing so, we can understand if the patterns we saw in Chapter 4 were just an

artifact of the correlation between certain behaviors and a set of demographic traits,

or if each independently has predictive power in the question of who continued to use

transit during the pandemic.

Models predicting ridership or ridership changes at the level of a spatial unit often

employ linear regression techniques, as mentioned before. One assumption of linear

regression models is the independence of error terms. Spatial correlation in OLS

residuals can be indicative of an omitted spatially lagged explanatory variable, in

which case the OLS estimates will be biased, failure to account for spatial correlation

in the error structure, in which case the OLS standard errors will be wrong, or both,

in which case the model will have both issues [Anselin, 1988b]. This concern is

often not addressed in the transportation literature, perhaps in the hopes that the

demographic data or other data associated with each location will account for all

spatial variation in the data and result in residuals that are, in fact, random in space.

Despite this being easy to check by investigating the spatial distribution of the OLS

model residuals, this part is often skipped in transportation demand literature that

employs linear regression. The second part of this analysis concerns the exploration

of spatial dependencies in our model and the appropriateness of the spatial lag model

in particular.

In recent years, some studies have begun to explore the role of space more explicitly

when modeling transit demand. Gan et al. compared an OLS model estimating

rapid transit ridership in Nanjing to a spatial lag model, a spatial error model, and

a geographic weighted regression model using the same data, and found that all

the spatial models fit the data better than the OLS model [Gan et al., 2019]. In

addition, Chow et al., Cardozo et al., Zhao et al., and Ma et al. have all used

geographically weighted regression or, in the latter case, geographic and temporally

weighted regression, to explore the ways in which coefficients on explanatory variables

89



may vary as a function of space [Chow et al., 2006, Cardozo et al., 2012, Zhao et al.,

2013, Ma et al., 2018]. As geographically weighted regression is more controversial

than spatial lag or spatial error models in the research community, we limit our

consideration in this chapter to the latter two [Chi and Zhu, 2020].

5.2 Data

The data used in this section comes from two sources: The CTA’s Ventra database

and the 2013-2018 American Community Survey [United States Census Bureau, 2020].

The former was used to calculate the average weekly public transit trips before and

after the stay-at-home order, using the same time frames for baseline and COVID

analysis as seen in Chapter 4. The Ventra database was also used to calculate typical

ridership features for each Ventra card in the baseline period, and match each Ventra

card to an inferred home location, defined, as in Chapters 3 and 4, as the stop most

often used for the first trip of the day. Based on this stop assignment, each card in

the baseline period is matched to a "home" census tract, and the ridership features

for these cards are averaged to summarize the typical ridership behavior of riders

associated with each census tract. While the use of the data is different in this

chapter compared with previous chapters — the cards are not clustered at all in this

analysis — the data used for this portion of the analysis is the same as the data used

in Chapter 4.

We also use information on the location of rail stations to indicate if the census

tract contains a stop on a rail line. The locations of rail stops were also obtained from

the Ventra database, which holds information on the location of all stops. Lastly, we

employ dummy variables indicating the membership of each census tract to one of

nine regions in the city of Chicago. We drew the definitions of the regions from

delineations used sometimes in the real estate market [The Chicago 77, 2008]. These

region definitions are useful because each of the 77 community areas belong to exactly

one region, and each census tract belongs to exactly one community area. The regions

are shows in Figure 5-1.
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Figure 5-1: Chicago Regions

5.3 Descriptive Statistics

The unit of analysis for this section is the census tract. There are 801 census tracts

in the city of Chicago. After removing tracts that have no public transit stops or

are missing data for any of our attributes, we were left with 779 tracts on which to

perform are analysis. Figure 5-2 shows a histogram of the percent changes by tract, as

well as the map of values for all tracts. We see that the distribution of percent changes

is roughly normally distributed, justifying our use of linear regression to model this

as the dependent variable. When looking at the map, however, we note clear spatial

patterns in the value of the dependent variable, which motivates our exploration of

spatial models for this problem.

(a) Histogram of Tract-level Percent Changes (b) Percent Change by Tract

Figure 5-2: Percent Change in Average Weekly Trip Volume by Tract after Stay-at-
Home Order

Regarding explanatory variables, as mentioned above, these analyses use two main
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categories of explanatory variables: sociodemographics and baseline ridership behav-

iors, along with dummies indicating the presence of a rail station and the region of

the city. We saw in Chapter 4 indications that ridership behavior was not indepen-

dent of demographics. Notably, one of the behavior clusters that we focused our

analysis around — frequent off-peak bus riders — seemed to contain a disproportion-

ate number of riders from areas of the city with lower incomes and higher minority

populations. Entering our ridership attributes alongside demographic information in

a linear regression model will enable us to determine the extent to which each of

the factors is significant while controlling for the others. In other words, while the

clustering approach in Chapter 4 enabled us to tell a story about the different groups

that constitute CTA’s ridership and their distinct needs and challenges during and

as ridership recovers, this approach will enable us to quantify the relevance of the

various sociodemographic and ridership attributes in explaining the ridership dropoff

after the stay-at-home order.

We first explore the correlation levels among our potential variables of interest.

While it is accepted practice and indeed, even the goal, to include variables which are

correlated with one another in multiple linear regression models so as to determine

the unique explanatory contributions of each and avoid omitted variable bias, it is

useful to explore extreme correlations to determine pairs of variables that may cause

multicolinearity issues. If we decide to include variables that are highly correlated,

it is important that we feel they are measuring different things. The correlation

heatmap is shown in Figure 5-3

First, we note that correlations are stronger between demographic variables and

between behavioral variables than across these two groups in general. A few values

stick out as being particularly high in magnitude: the correlation between the percent

of black residents and the percent of white residents is −0.92, the correlation between

average weekly rides and range is 0.87, and the correlation between the presence of a

rail station and the percent of rides typically taken on bus is −0.97.

Regarding the first, because the correlation is so strong and they are both cap-

turing the racial makeup of the tract, we opt to include only the percent of black
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Figure 5-3: Pearson Correlations Among Explanatory Variables

residents as an explanatory variable. For the second, we opt to include only average

weekly rides, as regularity of use is the behavioral attribute of more interest and less

subject to arbitrary values based on the definition of the study period. The final high

correlation value poses a particular problem, in that these values should, in theory,

measure very different things, and we would like to be able to control for the pres-

ence of a rail station when evaluating the importance of the typical percent of rides

taken on bus among residents. The fact that the negative correlation is so strong is

informative in itself, however, suggesting that people whose typical first ride of the

day occurs on a rail station almost exclusively ride rail rather than bus. We opt to

include only the pct_bus explanatory variable and, when interpreting our results,

keep in mind that high values of this variable are strongly associated with the lack of
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a rail station in that census tract.

Table 5.1 gives the final set of independent variables included in the regressions

along with their descriptions.

Category Variable Name Description

Behavior

pct_peak Average share among riders of rides taken
during peak hours

pct_wkend Average share among riders of rides taken
on the weekend

avg_wkly_rides Mean value among riders of average weekly
rides

pct_bus Average share among riders of rides taken
on bus

pct_transfer Average share among riders of rides involv-
ing a transfer

used_cash Percent of riders who used cash for a ticket
or pass transaction during the baseline pe-
riod

pct_pass Percent of riders who spent more money
on pass products than pay per use rides
during the baseline period

Demographic

pct_black Percent of residents who are black only
pct_colgrad Percent of residents with a college degree
pct_25_34 Percent of residents between the ages of 25

and 34
log_medinc Logged median household income
pct_speakspan Percent of residents speaking Spanish at

home
pct_forborn Percent of residents that are foreign born
pct_noveh Percent of households without a vehicle

Other region_X Boolean equal to 1 if the tract is in Region
1 through 8, leaving 0 as the base

*Behavior variables take the average value of the variable among all riders with inferred
home locations in the given tract.

Table 5.1: Independent Variable Descriptions
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5.4 OLS Regressions

5.4.1 Model Formulation

In the first part of this analysis, we ignore any issues that may arise from spatial

autocorrelation in our data, and instead run traditional OLS regression models. Here,

we are assuming that the census tracts represent independent observations, where the

values of our variables in one census tract exert no influence on the dependent variable

in a nearby tract, and there is no correlation in the error terms across tracts.

The models can be formulated generally as follows:

𝑃𝑐𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗 = 𝛼𝑅𝑗 + 𝛽𝑋𝑗 + 𝛾𝑍𝑗 + 𝜖𝑗

where 𝑃𝑐𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗 is the percent change in average weekly trips observed between

the baseline period and the early analysis period in census tract 𝑗, 𝑅𝑗 is the set of

region dummies, 𝑋𝑗 is a vector of sociodemographics associated with census tract

𝑗, 𝑍𝑗 is a vector of average ridership behavior characteristics among CTA riders in

census tract 𝑗, and 𝜖𝑗 is a normally distributed error term. In our first model, we

include only the region dummies, restricting 𝛽 = 𝛾 = 0. In the second model we

keep the regional dummies and investigate the impact of sociodemographics only on

ridership change, restricting 𝛾 = 0. In our third model, we investigate the impact of

typical ridership behavior only, including the region dummies and restricting 𝛽 = 0.

Our final model allows 𝛼, 𝛾, and 𝛽 to be nonzero.

Aside from the assumption that our error terms are independent and identically

distributed, which we will address later, we are also ignoring the fact that that our

dependent variable is limited. Because we are modeling the percent change, the

dependent variable cannot, in reality, assume a value below −1. While this could

lead to some predicted values that are infeasible, since we are not concerned with

prediction accuracy but rather capturing the relationship among variables, we set

this issue aside. Furthermore, despite being limited, the distribution of the dependent

variable does appear to be approximately normal as shown in Figure 5-2a, rather than
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having many variables clustered around −1, which reassures us that a true relationship

will be captured by the OLS model.

5.4.2 Results

Table 5.1 gives the results from the four regressions described above. We note that

even the regression containing only the regional dummies explains about half of the

variation in the dependent variable, confirming the strength of the geographical pat-

terns observed in the reaction to COVID.

In the second regression, which controls for region and examines sociodemographic

characteristics of census tracts as explanatory variables for ridership loss due to

COVID, we see that the percent of black residents and percent of residents who

speak Spanish at home both have a positive impact on ridership change, meaning

that higher values of those variables are associated with smaller (less negative) de-

clines in trip numbers. The percent of residents between the ages of 25 and 34 and the

percent of foreign born residents both negatively impact the change in trip volume,

with younger tracts and tracts with larger immigrant populations seeing a steeper

decline in ridership. This may suggest that, when controlling for Spanish speakers,

more foreign residents were more able to stop traveling or use other modes after the

stay-at-home order. Lastly, the percent of college educated residents, the logged me-

dian income of residents, and the percent of households without access to a vehicle

all have impacts on ridership changes that are indistinguishable from zero. This is

surprising, as we would have expected these variables to explain one’s ability to work

from home or use other modes during the pandemic.

Regression 3 also maintains the region dummies but considers only average rider-

ship characteristics as explanatory variables. As described above, the values for the

variables associated with each census tract come from the average among all riders

with that tract as an inferred home census tract. Our method for inference leaves

room for some error, especially in the case of infrequent riders. As a result, it is likely

that infrequent riders, including tourists, are largely assigned to tracts that see a lot

of transit volume typically, such as tracts in and around the Loop.
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We see that riders’ share of trips taken on bus and share of trips that involve a

transfer, as well as the percent of riders that use cash and the percent that spent more

money on a pass than on pay per use rides are all associated with smaller ridership

declines. This largely fits with what we saw in Chapter 4: the group of riders most

likely to continue riding in COVID were those whose ridership patterns were typified

by frequent bus trips with high transfer rates. We note that the percent of rides

taken at both peak times and weekends by riders are associated with larger drops in

the number of trips for a census tract. The former is also likely explained in part

by the near-complete abandonment of the system by peak rail riders, who also tend

to be geographically concentrated. The latter is likely due to the fact that a high

percentage of trips of the weekend corresponds to tourists or other leisure riders who

are likely to drop off after a stay-at-home order. Lastly, and most surprisingly, the

mean value of riders’ average weekly trips by census tract is not significant in the

model, suggesting that how frequently riders in an area typically used transit was not

predictive of how much ridership dropped during the early COVID stage. This is at

odds with our finding in the previous Chapter that in general, clusters characterized

by lower frequencies saw more churn than those characterized by high usage, with the

exception of the Peak Rail group. This may be due to the fact that the distribution of

values for typical average weekly rides by census tract skews toward the low end with

census tracts with larger values tending to be located near rail lines. Perhaps, after

controlling for modal split, this variable, at least as aggregated here to the census

tract, was not predictive of ridership changes.

Finally, we examine the results when both sets of explanatory variables are in-

cluded together. We note that the percent of rides typically taken on a weekend

becomes insignificant and the percent of riders using cash becomes only marginally

significant. On the other hand, the percent of households without a vehicle becomes

significantly predictive of a smaller drop in ridership, as we would expect.

The significant demographic attributes include vehicle ownership, the percent of

black residents and the percent of Spanish speakers, all associated with lower ridership

drops, and the percent of residents between the ages of 25 and 34 and the share of
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foreign born residents, which both predict larger drops. In terms of ridership behavior

attributes, percent of trips taken at peak remains the only significant predictor of

larger drops in ridership. The percent of trips taken on bus, percent of trips involving

a transfer, and percent of riders spending more money on passes than pay per use are

predictive of smaller drops in ridership.

We can also examine the change in the coefficient estimates associated with the

Region dummies as each set of explanatory variables was added. These are given

in Table 5.3. We see that regions one through 4 are associated with steeper drops

in ridership, while regions 5-8, which are located in the Southern half of the city,

are associated with smaller drops in ridership. This is consistent with Figure 5-2.

The fact that many of the regional dummies remained significant motivates further

explorations of spatial dependency in the data.

5.4.3 Conclusion

The sustained significance of most sociodemographic and ridership behavior attributes

when combined into a single model, along with the increase in the adjusted 𝑅2 value

suggests that it is worth exploring including both groups of explanatory variables

together when seeking to understand the impact of COVID on transit ridership. It

also implies that the type of transit ridership that is typical in an area is worthwhile

to include in analyses seeking to understand ridership changes, though issues with

multicolinearity must be considered. It is possible that some of our non-intuitive

results, such as lack of significance on the part of income and typical ride frequency,

may be explained by their relationships to other variables in the model. Further

work on this front should explore other ways of assigning behavioral attributes to

census tracts, for example, as the one employed here is simplistic and may over-assign

infrequent riders to rail stations, for example.

Regardless, some variables stand out as being clearly predictive of transit ridership

after the stay-at-home order. If we view continued riding during COVID as a rough

proxy for transit reliance, this study is illuminating because it reveals that, even

when controlling for other factors, a high percentage of peak travel is indicative of
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(1) (2) (3) (4)
Region Dummies Yes Yes Yes Yes

pct_black 0.144*** 0.125***

(0.020) (0.018)

pct_colgra −0.081 0.002
(0.054) (0.049)

pct_25_34 −0.149*** −0.107**

(0.050) (0.044)

log_medinc −0.0004 0.001
(0.014) (0.012)

pct_spansp 0.122*** 0.102***

(0.023) (0.021)

pct_forbor −0.109*** −0.081**

(0.037) (0.033)

pct_noveh −0.002 0.066**

(0.034) (0.032)

pct_peak −0.382*** −0.227***

(0.053) (0.047)

pct_wkend −0.202*** −0.094
(0.065) (0.057)

avg_weekly −0.009 −0.003
(0.007) (0.006)

pct_bus 0.167*** 0.104***

(0.026) (0.024)

pct_transf 0.212*** 0.255***

(0.037) (0.034)

used_cash 0.148*** 0.067*

(0.045) (0.039)

more_pass_ 0.720*** 0.393***

(0.098) (0.088)

Constant −0.767*** −0.709*** −0.835*** −0.865***

(0.009) (0.155) (0.050) (0.143)

Adjusted R2 0.459 0.630 0.608 0.709
Note: *p<0.1; **p<0.05; ***p<0.01

Table 5.2: OLS Regression Results on Percent Change in Average Weekly Trips
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(1) (2) (3) (4)
region_1 −0.067*** −0.047*** −0.048*** −0.048***

(0.013) (0.013) (0.011) (0.012)

region_2 0.014 −0.025* −0.003 −0.023*

(0.014) (0.013) (0.013) (0.012)

region_3 0.051*** −0.032*** 0.049*** −0.015
(0.012) (0.012) (0.010) (0.011)

region_4 −0.088*** −0.065*** −0.015 −0.026
(0.019) (0.019) (0.018) (0.017)

region_5 0.138*** 0.029** 0.120*** 0.034***

(0.013) (0.012) (0.011) (0.011)

region_6 0.128*** 0.026* 0.086*** 0.024**

(0.012) (0.013) (0.011) (0.012)

region_7 0.172*** 0.050*** 0.117*** 0.043***

(0.016) (0.016) (0.014) (0.014)

region_8 0.183*** 0.035** 0.139*** 0.042***

(0.014) (0.015) (0.013) (0.014)

Note: *p<0.1; **p<0.05; ***p<0.01

Table 5.3: Region Dummies for OLS Regression

less reliance on this system. This underscores our conclusions from the Chapter 4,

where we determined that systems for allocating transit funds that focus only on the

highest absolute volume of ridership will systematically miss the riders that need the

system the most.

5.5 Spatial Regression

Based on Figure 5-2, we can see clear spatial patterns to the data, meaning that it

is likely that classic OLS assumptions are violated, specifically the assumption that

error terms are independent of one another. We can check this directly by mapping

the residuals of the OLS regression and using Moran’s I statistic to test for spatial

autocorrelation.

For the remaining portion of this analysis, we will be comparing the OLS model

to models that take into account spatial dependence. The spatial models require
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the specification of spatial weights matrix, which specifies how the "neighborhood"

of a census tract might be defined. In other words, it dictates what relationship a

census tract has to have to another tract to exert an influence on it. We will use a

Queen weighting mechanism, which says that any tract sharing an edge or vertex with

another tract is considered a neighbor, and each neighbor for a given census tract is

weighted equally. This form of weighting matrix is very common, though future work

may explore other varieties, such as one that counts tracts as neighbors if they lie on

the same transit line.

5.5.1 OLS Residual Analysis

As mentioned before, the maintained significance of the regional dummies in the

OLS regression suggests spatial dependence in the model not explained away by the

demographic variables alone. We take this as one motivation for exploring spatial

regression models. Additionally, we explore the level of spatial autocorrelation in the

residuals from two OLS models: The one presented above in column 4 of Table 4.2 and

the same regression but without the regional dummies. Because we would not include

regional dummies in our spatial models, we want to have a baseline comparison for

spatial autocorrelation of residuals when spatial regression is employed. This will

allow us to gauge how much better our spatial regression model is at eliminating

spatial autocorrelation in the residuals than simply including regional dummies in

the OLS model.

Figure 5-4 shows the map of residuals from the OLS model without regional

dummies, along with a graph which plots each residual by the weighted combination

of the neighboring residuals. While spatial clustering of residuals is not very evident

from the map, the plot shows the small but positive correlation between a tract’s

residual and that of its neighbors. Finally, we also calculate Moran’s I statistic for the

map, which is 0.13, and test it against the null hypothesis that the data is randomly

distributed across space. We find our test to soundly reject the null with a p-value of

2.76× 10−10.

Turning to the model with regional dummies, we see that adding the dummies
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(a) OLS Residual by Census Tract (b) OLS Residual vs. Spatially Lagged OLS
Residuals

Figure 5-4: Residual Analysis for OLS Model with No Region Dummies

has significantly reduced but not eliminated the spatial autocorrelation of the resid-

uals. Figure 5-5 shows the residual map and Moran plot for the model with regional

dummies. Calculating the Moran’s I statistic, we find that it is 0.05 but that a sta-

tistical test still rejects the null hypothesis of no autocorrelation in the residuals with

a p-value of 0.004. Thus, we accept the OLS model with the regional dummies as a

good approximation of a model with independent error terms, but we turn to spatial

regression models to see if we can improve on this.

(a) OLS Residual by Census Tract (b) OLS residual vs. Spatially Lagged OLS
Residuals

Figure 5-5: Residual Analysis for OLS Model with Region Dummies
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5.5.2 Spatial Lag vs. Spatial Error Model

Spatial Lag Model

The two most popular spatial regression models are the spatial lag model and the

spatial error model. The spatial lag model in our case would take the following form:

𝑦 = 𝜌𝑊𝑦 +𝑋𝛽 + 𝑍𝛾 + 𝜖

where 𝑦 is the dependent variable of interest, in this case percent change of average

weekly trips, 𝑊 is the spatial weights matrix, 𝜌 is the spatial autoregressive parameter,

to be estiamted, 𝑋 is an 𝑛 × 𝑘 matrix of 𝑘 behavioral explanatory variables for 𝑛

observations, 𝛽 is a 𝑘×1 vector of the parameters to be estimated for each behavioral

explanatory variable, 𝑍 is an 𝑛×𝑚 matrix of 𝑚 demographic explanatory variables

for 𝑛 observations, and 𝛾 is a 𝑚×1 vector of the parameters to be estimated for each

demographic explanatory variable. Lastly, 𝜖 is a vector of random error terms.

The inclusion of the spatially lagged dependent variable in the model implies a re-

lationship between the explanatory variables of neighboring tracts and the dependent

variable of the tract of interest, because the lagged dependent variables can instead

be written as the linear combination of their explanatory variables and their lagged

dependent variables. This makes particular intuitive sense in our case, specifically for

demographic explanatory variables, since it is quite possible that someone we have

assigned to a given census tract due to their use of a transit station in that tract may

very well actually reside in a neighboring tract. Thus, relating the demographics of

neighboring tracts to ridership in a given tract makes sense for our purposes.

This also makes sense for the behavioral variables, as transit riders may occasion-

ally use other transit stops around their home other than their most frequent first

origin stop, thus impacting the change in ridership in neighboring tracts.
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Spatial Error Model

Spatial error models, on the other hand, posit that spatial correlation in the OLS

residuals is not due to the omission of spatially lagged dependent variables, but rather

due to some unobserved factor leading to residuals that demonstrate spatial patterns.

The model can be written as

𝑌 = 𝑋𝛽 + 𝑍𝛾 + 𝑢

𝑢 = 𝜆𝑊𝑢+ 𝜖

where 𝑌,𝑋,𝑊,𝑍, 𝛾, and 𝛽 are as before, and the error term is decomposed into

a random component, 𝜖, and a weighted combination of neighboring error terms

multiplied by some error autocorrelation parameter 𝜆, which is estimated by the

model.

For our purposes, it is logical to test a spatial error model as well as a spatial lag

model. In spatial econometrics, in the presence of clear spatial patterns to the data,

it is common to test both models to ascertain whether the patters can be explained

by spatial relationships among variables for which we have data (spatial lag model)

or variables for which we do not have data (spatial error model).

Comparison

There are a couple ways to compare which spatial regression structure is a better fit

for our data. The first is to use the log-likelihood or the Akaike Information Criteria

(AIC). In our case, to do both would be redundant, as the AIC is a measurement of

the log-likelihood that adjusts for the number of parameters. Specifically, the formula

for AIC is given as follows:

𝐴𝐼𝐶 = 2𝑘 − 2 ln(�̂�)

where 𝑘 is the number of parameters estimated in the model and ln(�̂�) is the log-

likelihood. The lower (more negative) the AIC, the better the model fits the data.

Calculating the AIC for each, we get a value of −1978.718 for the Spatial Lag
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model and a value of −1953.581 for the Spatial Error model. By this criteria, the

Spatial Lag model is a better fit.

We can also perform Lagrange Multiplier tests to compare the two models. The

Lagrange Multiplier Test tests different spatial regression formulations against the

traditional OLS formulation. In our case, this is our OLS model without regional

dummies. Remember that we can write the formula for a regression model accounting

for spatial dependence as follows:

𝑌 = 𝜌𝑊𝑦 +𝑋𝛽 + 𝑢

𝑢 = 𝜆𝑊𝑢+ 𝜖

where 𝜖 is a serially uncorrelated error term. The spatial lag model is obtained by

setting 𝜆 = 0 and the spatial error model is obtained by setting 𝜌 = 0. We can

perform 4 different Lagrange Multiplier Tests to determine the best model to capture

the spatial dependence in our data:

∙ A simple LM test for error dependence, which restricts 𝜌 = 0 and then tests the

alternative hypothesis 𝜆 ̸= 0 against the null hypothesis 𝜆 = 0 (LMerr)

∙ A simple LM test for a missing spatially lagged dependent variable, which re-

stricts 𝜆 = 0 and then tests the alternative hypothesis 𝜌 ̸= 0 against the null

hypothesis 𝜌 = 0 (LMlag)

∙ A robust LM test for error dependence robust to the presence of a missing

spatially lagged dependent variable (RLMerr)

∙ A robust LM test for a missing spatially lagged dependent variable robust to

the presence of error dependence (RLMlag)

The test statistic is given by 𝑑′(𝜃)𝐼 ′(𝜃)𝑑(𝜃) where 𝑑(𝜃) = 𝜕𝐿
𝜕𝜃

evaluated at the null

with 𝐿 the log-likelihood for the spatial model and 𝜃 the parameter of interest, and

𝐼(𝜃) is the information matrix for the spatial model evaluated at the null [Anselin,
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1988a]. We perform these tests using R’s lm.LMtests command from the "spdep"

package. The results are in Table 5.4.

Test Test Statistic p-value

LMerr 37.336 9.945× 10−10

LMlag 67.975 2.2× 10−16

RLMerr 0.47 0.4909
RLMlag 31.114 2.433× 10−8

Table 5.4: Lagrange Multiplier Test Results

We see that the null is soundly rejected in both the simple tests, so we look

to the robust tests. The Robust LM error test fails to reject the null, suggesting

that, allowing for the possibility of a missing spatially lagged dependent variable, we

cannot reject the hypothesis that the error terms are not spatially correlated and

indeed random in space. However, even allowing for potential spatial correlation of

the error terms, we cannot reject the hypothesis that the spatially lagged dependent

variable should not be included in the model. Thus, in accordance with the AIC, we

determine that the spatial lag model is the best fit for this data.

5.5.3 Spatial Lag vs. OLS with Regional Dummies

Spatial Lag Model Results

Table 5.5 gives the results of the Spatial Lag model next to the results from our OLS

model. We see that 𝜌 is estimated at 0.29, indicating positive correlation between a

tract’s ridership loss and the ridership loss of surrounding tracts. This value is also

used to calculate the direct and indirect effects of each of the explanatory variables

in the spatial lag model. Because of the lagged dependent variable within the spatial

lag model, the interpretation of the reported coefficients is not as straightforward as

the interpretation of OLS coefficients. The direct, indirect, and total impacts of each

explanatory variable is shown in Table 5.6. Direct effects should be very close to

those reported in Table 5.5.
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OLS Spatial Lag

Region dummies Yes No
𝜌 0.29***

pct_black 0.125*** 0.100***

(0.018) (0.018)

pct_colgra 0.002 0.003
(0.049) (0.045)

pct_25_34 −0.107** −0.122***

(0.044) (0.042)

log_medinc 0.001 0.0001
(0.012) (0.011)

pct_spansp 0.102*** 0.053***

(0.021) (0.019)

pct_forbor −0.081** −0.024
(0.033) (0.029)

pct_noveh 0.066** 0.062**

(0.032) (0.029)

pct_peak −0.227*** −0.231***

(0.047) (0.046)

pct_wkend −0.094 −0.097*

(0.057) (0.056)

avg_weekly −0.003 −0.005
(0.006) (0.006)

pct_bus 0.104*** 0.101***

(0.024) (0.023)

pct_transf 0.255*** 0.232***

(0.034) (0.033)

used_cash 0.067* 0.069*

(0.039) (0.038)

more_pass_ 0.393*** 0.380***

(0.088) (0.086)

Constant −0.865*** −0.592***

(0.143) (0.136)

Akaike Inf. Crit. -1,988.043 -1,978.718
Note: *p<0.1; **p<0.05; ***p<0.01

Table 5.5: Spatial Lag and OLS Model Results
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Direct Indirect Total

pct_black 0.102 0.048 0.151
pct_colgrad 0.003 0.002 0.005
pct_25_34 −0.124 −0.058 −0.183
log_medinc 0.000 0.000 0.000
pct_spansp 0.055 0.026 0.080
pct_forbor −0.024 −0.011 −0.036
pct_noveh 0.063 0.030 0.093
pct_peak −0.236 −0.111 −0.347
pct_wkend −0.099 −0.047 −0.145
avg_weekly −0.005 −0.002 −0.007
pct_bus 0.103 0.048 0.152
pct_transf 0.236 0.111 0.358
used_cash 0.070 0.033 0.103
more_pass_ 0.388 0.182 0.571

Table 5.6: Spatial Lag Variable Impacts

All in all, the results of the spatial lag model are very similar to that of the OLS

model in terms of significance and magnitude of the direct impact of the explanatory

variables. The percent of foreign born residents ceases to be important in the spatial

lag model, but other than this and an intensification of the effect of the percent of

young people in a tract, the spatial lag presents direct effects that are slightly lesser

in magnitude than the OLS variables, with some of the impact of each variable being

handed off to neighboring tracts.

Model Comparison

Figure 5-6 gives the map of residuals from the Spatial Lag Model and the Moran

plot. The Moran’s I statistic for the spatial autocorrelation of the residuals is −0.03

with a p-value of 0.925, showing that this model does succeed in eliminating spatial

autocorrelation from the model residuals. However, looking at Table 5.6, we note

that the AIC for the OLS model is actually better than for the spatial lag model,

indicating that the OLS model with regional dummies fits the data slightly better

than a spatial lag model without regional dummies.

It is unclear which of these models is objectively better than the other. While
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(a) Spatial Lag Residual by Census Tract (b) Model Residual vs. Spatially Lagged
Residuals

Figure 5-6: Residual Analysis for Spatial Lag Model

the Spatial Lag model successfully eliminated concerns about autocorrelation of the

residuals, the OLS model with regional dummies exhibited residual spatial autocorre-

lation that was very small, albeit significantly non-zero. Furthermore, the OLS model

demonstrated a slightly better fit for the data, and has an interpretation that is more

straightforward.

This exercise demonstrates that, if spatial correlation of model residuals is of signif-

icant concern, spatial regression models offer a way of accounting for this. Specifically

in the case of spatial lag models, they offer a possible way to eliminate some bias from

coefficient estimates by accounting for variables that would be omitted in a straight-

forward OLS application. The usefulness and interpretability of the model depends

on the types of variables used and the structure of the spatial weights matrix. Here,

we have a model that indicates that neighboring demographics and ridership behavior

attributes explain ridership decline due to COVID. This does make intuitive sense.

Transit riders do not ride only from one single transit station, and we would expect

the attributes associated with a census tract to spillover and impact the ridership

numbers of a neighboring tract.

Because the estimates of the impacts of each variable did not change much between

the spatial lag model and the OLS model, however, we can draw many of the same

high-level conclusions from either of them. This experiment was intended to tease

out which demographic and behavioral variables were most predictive of ridership
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changes due to COVID in light of our findings from the previous chapter, and the

conclusions are much the same regardless of the model one chooses to examine.

5.5.4 Discussion of Findings

While some of the variables we expected to be highly predictive of ridership decline

due to the COVID stay-at-home order proved insignificant in our models, there are

still important takeaways we can draw. First, we have identified several strong pre-

dictors of smaller levels of ridership drop. The largest in terms of magnitude is the

percentage of riders living in that tract who spend more on passes than on pay-

per-use rides. This is likely explained in a couple different ways. First, people who

purchase passes may do so because of their lack of other options for getting around

and subsequent certainty that they will ride enough to warrant a pass. If a pass is an

indication of transit reliance, it makes sense that it would be correlated with higher

ridership during COVID. Secondly, for people who needed to make a trip during the

early COVID analysis phase, having a pass may have been an incentive to use transit

for that trip since they had already paid for it. Regardless of the reason, a history

of buying transit passes being predictive of ridership after shocks to the system may

be useful for transit agencies hoping to understand ridership repercussions of serious

delays or other incidents on transit networks.

Rate of transfers and percent of trips taken on bus are also strongly predictive of

higher levels of COVID ridership. Because these remained predictive despite control-

ling for several demographic variables, it suggests that the behaviors themselves tell

us something about the riders not captured by their home tract’s racial and socioe-

conomic makeup. While it is harder to connect the dots and explain the particular

thread between these behavioral explanatory variables and the ultimate outcome of

continued ridership during COVID, it is nonetheless useful to recognize that riders on

the system who use the bus and take routes requiring transfers have needed to con-

tinue using the system during the pandemic, and underscores the necessity to invest

in these parts of the system, as was stressed in the previous chapter.

These variables in particular may also tell us, as we discussed earlier when ex-
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ploring the correlation between percent of trips taken on the bus and presence of a

rail station, something about the geography of where these tracts are. The fact that

high levels of bus use indicate distance from rail stops may also indicate distance

from other amenities, such as grocery stores. These people may have continued to

use transit during the pandemic both because they have no other option for how to

get around and because they are not within walking distance of the essential activi-

ties they need to undertake. Further work should seek to include information on the

density of errand destinations.

On the other side of the coin, peak ridership was strongly predictive of steeper

drops in ridership, confirming what we saw in the previous chapter. This may be

because high levels of peak usage communicate both 9-5 jobs that may have easily

switched online but also historic choices to use other modes at off-peak times, indi-

cating more choice in how these individuals get around. This again should speak to

the importance of investing in transit systems at times other than the peak if the goal

is to reach those most in need of the system.

Finally, we see that high proportions of black residents, Spanish speakers, and

households without cars are predictive of smaller drops in ridership. While it is sur-

prising that income was insignificant when including these controls, it is no question

that income is correlated with each of these. Leaving these variables out of the model

leads to a significant negative coefficient on income, as we would expect, so it is possi-

ble that the effect of income is obscured by that of the percent of black residents, for

example, which tends toward the extremes on the unit scale. This finding suggests

that special attention should be paid to these communities to ensure that they have

the ability to get around the city during this time. As was suggested in the previous

chapter, dissemination of Ventra cards is an important step, as is ensuring that im-

portant information about service updates and public health on the system is readily

available in Spanish.
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5.6 Conclusion

This chapter expanded upon the previous and attempted to parse out the important

variables in explaining COVID ridership decline. We demonstrated that combining

demographic data and aggregate behavioral traits led to a more powerful model and

suggested that behavior was an important predictor of ridership changes even when

controlling for sociodemographics.

The findings reinforced many of those from the previous chapter and could serve

as added justification for any of the policy recommendations outlined in depth at the

end of Chapter 4. They are also consistent with patterns that have been observed in

other cities.

This section shows that including baseline behavior can be helpful in understand-

ing changes in ridership. In this case, the changes were the result of a sudden and

extreme event, but similar data could be used to understand more gradual changes, or

changes that are smaller in magnitude. Such an approach could help transit agencies

target policies or interventions more appropriately by relying on some key aspects of

past behavior.

Further research should refine models such as these in a few ways. First, deeper

thought to how behaviors are assigned to an area is warranted. The approach taken

here is simplistic and only truly appropriate for regular riders, though it was applied

to all riders. Assigning each stop a behavioral profile based on the type of riders

that typically use it, perhaps even broken down by time of day, might be one way

to approach the problem. Second, depending on the question, including more land

use attributes could be worthwhile. This particular model would have benefited from

information on the quantity and quality of grocery stores in each area, for example.

Next, other spatial weight matrix constructions should be explored to reflect the

structure of the transit network. There are likely insights to be had about how

changing ridership levels are linked across the system in a way that cannot be captured

with weights matrices that consider only local influence. Lastly, different spatial

weight matrices for different types of variables may be an avenue worth pursuing, as
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we may have enough knowledge about how different variables interact to impose more

complex structures that reflect this.
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Chapter 6

Exploration of Application of Spatial

Regression Frameworks to High

Dimensional Data

Urban areas are complicated places upon which countless attributes can be measured

and mapped and the relationships among them modeled. The question of the impact

of the COVID-19 pandemic on public transit trips lent itself to a model that could

use cross-sectional data to explain the magnitude of the change in trip volumes due

to a particular event in different areas. In many urban mobility questions, however,

the temporal dimension is just as if not more important that the spatial dimen-

sion, as travel needs differ significantly throughout the course of the day. Significant

aggregation in the temporal dimension, while often necessary due to data or compu-

tational limitations, loses information about the ebb and flow of travel demand over

the course of a day, which may be important for the design of policy, infrastructure,

or technology, depending on the circumstance. In this chapter, we offer preliminary

thoughts on and exploration of how rich spatial and temporal urban mobility data

can be mined for insights within a flexible framework that allows for any spatial,

temporal, or spatio-temporal data the modeler may have access to. We leverage some

of the tools and lessons from spatial regression to capture some parameters that de-

scribe urban mobility dynamics in Chicago. The applications in this chapter focus
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on modeling TNC use, but could be adapted for any mode.

One motivation for this chapter comes from the desire to leverage high-dimensional

data to understand the interplay between usage patterns of different travel modes.

The analysis in Chapter 3 revealed that year over year losses in trip volumes on the

CTA were due more to people using the system less frequently than to a decrease in

the number of riders. A natural follow-up would be to ask why this was occurring—

was it that people were taking fewer trips? Were they driving more, or walking more?

A popular hypothesis for the decline in public transit trips across US cities is that

people are opting for TNCs in place of public transit, specifically in the evenings and

on weekends. Many studies have examined this, either using surveys or by examining

the change in the number of transit rides after the entrance of TNCs into a city [Feigon

et al., 2018, Murphy et al., 2016, Michael Graehler et al., 2019]. The exploration in

this chapter is motivated in part by a desire to understand the extent to which TNCs

and public transit exhibit similar spatio-temporal patterns in a city and identify the

times and places when usage of each are most in line or most divergent. While

this would not allow us to know which Ventra cards were replacing public transit

rides with TNC rides, it could shed light on times and places public transit could be

improved to be more competitive with TNCs, or what areas and time frames should

be targeted in the formulation of a TNC fee, for example. This work does not answer

these questions specifically, but potential extensions of the initial work presented here

that may achieve such aims are discussed at the end.

The exploration in this chapter does not explicitly build off the rider-centric anal-

ysis in the previous chapters, as the public transit data used here is trip counts

disaggregated across space and time. It can, however, aid in the understanding of

public transit rider behaviors by filling in details on the context in which those be-

haviors are occurring. Customer segmentation using smartcard data is by definition

limited to capturing behaviors only on public transit, but many urban-dwellers live

multi-modal lives, and many public transit users also use TNCs [Gehrke et al., 2018].

TNCs are unlikely to release data to cities in which multiple trips are tied to an in-

dividual, so similar customer segmentation for TNC riders is infeasible for an outside
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party. Using trip counts for both modes, however, to obtain a rich picture of how

the usage patterns of these modes relate to one another and identify axes of high

spatio-temporal correlation could point to public transit behaviors that are regularly

supplemented by TNC use.

6.1 Context

This chapter can be framed as the beginning of an exploration into bringing together

the realms of spatial regression and machine learning in order to capture complicated

dynamics occurring in the world of urban mobility. Linear regression in general, as

well as the expansion of linear regression methods to deal with spatial dependency,

have the distinct benefit of offering parameter estimates that purport to describe

something about how the world operates. For example, in the previous chapter, our

parameter estimates communicated the relative importance of each of the independent

variables in explaining the level of decline in trips seen across the city of Chicago in

the early stages of the COVID-19 pandemic. The ability to glean such insight is the

ultimate objective of models from the perspective of the policy-maker.

On the other hand, the volume of data now available from smartcard systems such

as Ventra has made urban mobility into a playground for some researchers focused

on the other possible objective of models— prediction. Prediction of public transit

usage has become a common task in the development of new architectures for machine

learning algorithms and deep neural networks [Cheng et al., 2019, Ma et al., 2017, Ma

et al., 2019]. These models take full advantage of the rich data available, and often

have incredible prediction power, but are of little use to people hoping to uncover

insight into urban mobility patterns.

This chapter offers preliminary thoughts and examples for how a city or transit

agency with access to rich, high-dimensional data could leverage it using models that

lend themselves to interpretation but taking advantage of flexible, machine-learning

based estimation frameworks.
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6.2 Spatio-Temporal Regressions, Data, and Exper-

iment Setup

In this section, I outline the types of data I compiled for these experiments as well

as the framework for building the models. As mentioned earlier, this is preliminary

work, and I do not have robust results for all of the model configurations outlined

here. This section is meant as a methodological explanation that can serve as a guide

for furture work.

6.2.1 Data

The data for this study can be categorized into 3 main groups: temporal, spatial, and

spatio-temporal. In order to perform the regression, each variable was transformed

into a 𝑇 × 𝐼 × 𝐽 array, representing a grid of the city of shape 𝐼 × 𝐽 at each of the

𝑇 total timesteps. We will now explain each group of data in further detail.

Temporal data

The first group of data is temporal data— data that varies only along the temporal

dimension. Variables of this type take the form of an array in which each 𝐼 × 𝐽 slice

of the 𝑇 × 𝐼×𝐽 array contains the same value in each cell. In other words, if 𝑐𝑧𝑑𝑧𝑡′,𝑖′,𝑗′ is

the value of z𝑑𝑧 ,𝑡′ in grid cell 𝑖′, 𝑗′, then 𝑐
𝑧𝑑𝑧
𝑡′,𝑖′,𝑗′ = 𝑐

𝑧𝑑𝑧
𝑡′,𝑖,𝑗∀𝑖 ∈ {1, 2, ..., 𝐼}, 𝑗 ∈ {1, 2, ..., 𝐽},

and 𝑡′ ∈ {1, 2, ..., 𝑇}. The spatial data in this study include hour of day and day of

the week dummies, as well as dummies indicating if it snowed on that day or if it

rained on that day. The weather data was provided by the CTA for each day of the

study, so no finer temporal granularity could be achieved.

Spatial data

The spatial data group contains variables that vary over space but not time, such

as land use and demographic data that do not change over the course of our one

month study period. Each of these variables takes the form of a 𝑇 × 𝐼 × 𝐽 array in
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which the same 𝐼 × 𝐽 grid is repeated 𝑇 times. Mathematically, 𝑐𝑥𝑑𝑥

𝑡′,𝑖′,𝑗′ = 𝑐
𝑥𝑑𝑥

𝑡,𝑖′,𝑗′∀𝑡 ∈

{1, 2, ..., 𝑇}, 𝑖′ ∈ {1, 2, ..., 𝐼}, 𝑗′ ∈ {1, 2, ..., 𝐽}. Data of this type comes from a

variety of sources. Demographic data other than job counts comes from the 2014-2018

American Community Survey (ACS), which provides sociodemographic information

at the block group level. These estimates are then mapped onto the grid by allocating

counts of people proportionally by area. Slightly more consideration had to be given

to non-count data, such as median income per capita and travel time to work. In the

former case, the value for a cell is achieved by taking the population-weighted average

of the median incomes for the overlapping block groups, where the population used

for the weights is that of the overlapping area, determined by the count allocation

method described above. In the latter case, data is provided in the ACS in the form

of counts of people whose commute time falls within each of several buckets of travel

time ranges. Here we took a population-weighted average of the median value of each

bucket, with the population weights determined once again by the count allocation.

We took information on the number of jobs from the Longitudinal Employer-

Household Dynamics (LEHD) data, which is compiled yearly by states from unem-

ployment insurance earnings and available via the US Census. The job counts are at

the block level, and we mapped them to the grid proportionally by area, in the same

way that population counts from the ACS were mapped to the grid. We used the

most recent jobs LEHD data available, which was from 2017.

Land use information was obtained in the form of points of interest data from Open

Street Maps. Data on restaurants, bars, shops, public attractions, hotels, schools, and

services were retained and their point locations mapped to the corresponding grid cell.

Additionally, information on the location of bus and rail stations came from the city

of Chicago’s Open Data portal.

Spatio-temporal data

The last group of data is that which varies along all dimensions. In this category are

public transit and TNC usage counts, as well as measures of the frequency of public

transit, which is used as a level of service control.
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The public transit data comes from the Ventra database. The CTA rail and bus

networks are tap-on only, so the activity captured in this data are only boardings.

For each tap, we know the exact time stamp and boarding station, as well as the

mode, so public transit usage can be mapped precisely to the 𝑇 × 𝐼×𝐽 array, though

observations are constrained to those grids cells containing a public transit stop.

The TNC data comes from the city of Chicago, which requires quarterly reports

from all TNCs operating in the city. The city aggregates the trip information to 15-

minute intervals and census-based origin and destination geographic areas and make

this data publicly available. Trip counts were allocated to the grid in the same way as

the other census block and block group-based count data in this study, and 2 separate

𝑇 × 𝐼 × 𝐽 arrays were created— one for origins and one for destinations.

The final spatio-temporal piece of data is that which captures the frequency of

transit service, measured as the length of the headways between transit trips. This

was calculated using public General Transit Feed Specification (GTFS) data which

provides information on scheduled trips. To deal with the fact that headways in many

parts of the city are of similar length or longer than the smallest time interval used for

our analysis (15 minutes), we calculated average headways separately for weekdays,

Saturday, and Sunday, and within these days for 4 time frames whose headways

differ from one another but are largely consistent within groups: Peak service (6AM

- 10AM, 4PM - 8PM), Midday (10AM - 4PM), Evening (8PM - 11PM), and Night

(11PM - 6AM). Each 𝑡 ∈ {1, 2, ..., 𝑇} is mapped to the corresponding time of day

and day of week and given that average headway. Average headways within grid cells

were weighted by the number of trips occurring at that headway, which we use as a

proxy for demand.

6.2.2 Spatio-Temporal Regressions

This study uses three types of variables: spatial, temporal, and spatio-temporal

variables. Formally, let 𝑖, 𝑗 indicate the geographical index 𝑖 ∈ {1, 2, ..., 𝐼} and

𝑗 ∈ {1, 2, ..., 𝐽}. Hence 𝐼𝐽 is the total number of urban grids. Let X ∈ R𝐼𝐽×𝐷𝑥

denote the spatial variables, in which 𝐷𝑥 represents the number of spatial variables.
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Y(𝑜),Y(𝑑) ∈ 𝑍𝑇×𝐼𝐽 and y
(𝑜)
𝑡 ,y

(𝑑)
𝑡 ∈ 𝑍𝐼𝐽×1 denote the spatio-temporal variables. In

this study, the OD counts and the public transit level of service metrics are the only

inherently spatio-temporal variables, but we can create others by interacting a purely

temporal variable, such as hour of day, with a purely spatial variable, such as presence

of a rail station. Z𝑡 ∈ R𝐼𝐽×𝐷𝑧 denote the temporal variables, in which 𝐷𝑧 represents

the number of temporal variables. By using 𝑣𝑒𝑐() as an operator that vectorizes an

urban grid from R𝐼×𝐽 to R𝐼𝐽×1, then

∙ We use 𝑍𝑡 = [𝑣𝑒𝑐(z1,𝑡), ..., 𝑣𝑒𝑐(z𝑑𝑧 ,𝑡), ..., 𝑣𝑒𝑐(z𝐷𝑧 ,𝑡)] to represent the temporal

variables, where each z𝑑𝑧 ,𝑡 ∈ R𝐼×𝐽 represents a matrix of a temporal variable.

Note that the temporal variables are often dummy variables and don’t have spa-

tial variations, so the 𝑣𝑒𝑐(z𝑑𝑧 ,𝑡) is typically full zero or one vectors: [0, 0, ..., 0]𝑇

or [1, 1, ..., 1]𝑇 . The temporal variables include the weekday vs. weekend dum-

mies, time of day dummies, and weather dummies.

∙ Spatial variables can be represented as X = [𝑣𝑒𝑐(x1), ..., 𝑣𝑒𝑐(x𝑑𝑥), ..., 𝑣𝑒𝑐(x𝐷𝑥)],

in which each x𝑑𝑥 ∈ R𝐼×𝐽 represents a matrix of a spatial variable, such as the

average incomes of the urban grids. Note that each x𝑑𝑥 has spatial variation

since x𝑑𝑥,𝑖𝑗 varies with the spatial indicators 𝑖, 𝑗. The spatial variables include

the socio-economic, land use, built environment, and locations of subway and

bus stations.

∙ The spatio-temporal OD counts Y(𝑜),Y(𝑑),y
(𝑜)
𝑡 ,y

(𝑑)
𝑡 vary across time and space.

Note both y
(𝑜)
𝑡 and y

(𝑑)
𝑡 have been vectorized from the urban grids R𝐼×𝐽 to a

vector R𝐼𝐽×1. The target variables to explain are the OD counts y
(𝑜)
𝑡 and y

(𝑑)
𝑡 .

Using the origin trip counts for an arbitrary mode as an example dependent vari-

able, a general regression form can be established for investigating the spatiotemporal

patterns of usage:

y
(𝑜)
𝑡 = 𝛽01𝐼𝐽 + Z𝑡𝛽𝑧⏟  ⏞  

temporal

+X𝛽𝑥 +WX𝛽𝑥𝑤⏟  ⏞  
spatial

+Y𝑡−1𝛽𝑦 +WY𝑡−1𝛽𝑦𝑤⏟  ⏞  
spatio-temporal

+𝜖𝑡 (6.1)
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In equation 6.1, 1𝐼𝐽 represents an one vector with 𝐼𝐽 length, Y𝑡−1 = [y
(𝑜)
𝑡−1,y

(𝑑)
𝑡−1] is

a 𝐼𝐽 × 2 matrix that combines the OD counts at time 𝑡 − 1. The coefficients to be

estimated include a constant 𝛽0, the coefficients for temporal variables 𝛽𝑧 ∈ R𝐷𝑧 ,

the coefficients for spatial variables 𝛽𝑥,𝛽𝑥𝑤 ∈ 𝑅𝐷𝑧 , and the coefficients for spatio-

temporal variables 𝛽𝑦,𝛽𝑦𝑤 ∈ 𝑅2. The W ∈ R𝐼𝐽×𝐼𝐽 is defined as the spatial weighting

matrix that captures the spatial correlation. There are many ways to define the

spatial weighting matrix, and we only use the simplest version that uses ones to

denote the connectivity of neighbouring four urban cells. To predict y𝑡, the lags

of the spatio-temporal variables can be more than degree 1, but here we write the

general regression formula with only one lag for simplicity. The last term 𝜖𝑡 represents

a random Gaussian vector with 𝐼𝐽 × 1 dimension.

To train the spatio-temporal regression model, we use the least square estimation.

Particularly, the empirical risk function is represented as:

L(𝛽;X,Y,Z) =
1

𝐼 × 𝐽 × 𝑇

∑︁
𝑡=1,...,𝑇

(y
(𝑜)
𝑡 − ŷ

(𝑜)
𝑡 )′(y

(𝑜)
𝑡 − ŷ

(𝑜)
𝑡 ) (6.2)

in which ŷ
(𝑜)
𝑡 := y

(𝑜)
𝑡 − 𝜖𝑡 is the predicted vector of origin counts. The trained coeffi-

cients are defined as the minimum to the empirical risk:

�̂� = argmin
𝛽

L(𝛽;X,Y,Z) (6.3)

Computationally, we use the stochastic gradient descents to train the model. The

variance 𝑉 𝑎𝑟(�̂�) can be estimated by using analytical methods or bootstrap.

6.2.3 Experiment Design

For computational expediency, the dimensions of the urban grid used here are 86 ×

76 with each cell’s size roughly 500m in length. When running models employing

spatial weight matrices, we focus on an inset of the grid that is 30× 25 and contains

the downtown area. We use data from the month of October 2019 to model the

relationship between various temporal and spatial factors and the volume of TNC
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trip origins across the city.

As mentioned previously, this chapter offers a framework for analysis and prelimi-

nary results. Though not completed here, one could use the general regression formula

seen in equation 6.1 to successively explore the temporal, spatial, and spatio-temporal

patterns of TNC usage, answering such questions as:

∙ Temporal. What are the temporal patterns of the relative prevalence of TNCs?

When during the week are they most favored to public transit? How is this

affected by the weather or special events?

∙ Spatial. What are the spatial patterns of the relative prevalence of TNCs?

Specifically, how does their prevalence relate to aspects of the built environment,

sociodemographics, and the location of the transit network?

∙ SpatioTemporal. How do the answers of each of the previous questions vary

with the other? Are there areas that exhibit different temporal patterns than

others? How strongly do the spatiotemporal patterns of one mode relate to

another?

Six models, each suited for a different question, can be derived from the general

regression formula and are outlines in Table 6.1 .

Models Restrictions Goals
Model 1 𝛽𝑧 ̸= 0; 𝛽𝑥 = 𝛽𝑥𝑤 = 𝛽𝑦 = 𝛽𝑦𝑤 = 0 temporal
Model 2 𝛽𝑥 ̸= 0; 𝛽𝑧 = 𝛽𝑥𝑤 = 𝛽𝑦 = 𝛽𝑦𝑤 = 0 spatial
Model 3 𝛽𝑥,𝛽𝑥𝑤 ̸= 0; 𝛽𝑧 = 𝛽𝑦 = 𝛽𝑦𝑤 = 0 spatial
Model 4 𝛽𝑦 ̸= 0; 𝛽𝑧 = 𝛽𝑥 = 𝛽𝑥𝑤 = 𝛽𝑦𝑤 = 0 spatio-temporal
Model 5 𝛽𝑦,𝛽𝑦𝑤 ̸= 0; 𝛽𝑧 = 𝛽𝑥,𝛽𝑥𝑤 = 0 spatio-temporal
Model 6 𝛽𝑧,𝛽𝑥,𝛽𝑥𝑤,𝛽𝑦,𝛽𝑦𝑤 ̸= 0 a joint model

Table 6.1: High Dimensional Spatio-Temporal Regression Experiment Design

6.3 Preliminary Data Analysis

We begin by exploring some of the spatial and temporal patterns evident in the data.
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6.3.1 Public Transit and TNC Usage

Temporal

First, it is helpful to get a sense of the scale of usage for the modes we are interested

in. Figure 6-1 shows the hourly count of trips broken down by mode (rail, bus, or

TNC) for a typical week in October. We note that on weekends there are similar

numbers of trips on each of these modes. During the week, except in the very early

and late parts of the day, both public transit modes are used in much greater numbers

than TNCs. Rail in particular, during the peak periods, sees almost twice the trip

count as bus and nearly five times the trip count of TNCs. TNCs, on the other hand,

are used in much greater volume on Friday and Saturday evenings. This confirms the

importance of the temporal dimension when exploring the demand of an individual

mode or the dynamics of demand of among multiple modes.

Figure 6-1: Hourly Trips by Mode: Oct. 19 - Oct. 25

Spatial

Second, we can investigate the spatial distribution of demand for each mode. Figure

6-2 shows the maximum hourly value for each grid cell, separated by mode and, in

the case of TNCs, whether origins or destinations are being counted. This figure’s

scale is capped at 2000 trips so that the distribution is visible on each image. Rail

has values that are much higher than this, due to the fact that it provides more trips

124



than the other modes, it is far more concentrated spatially due to the limited number

of rail stations, and, as we saw above, it is more concentrated temporally as well.

The grid cells in the loop all have max usage values higher than the threshold, as do

a few in the north that hold stations for the Brown, Purple, and Red lines. Figure

6-3 shows the average value for each grid cell, separate by mode. This image’s scale

is capped much lower, at 200 trips. The story is much the same for rail in this figure,

with high values in the loop, to the north and northwest, and at the ends of lines.

Figure 6-2: Maximum Hourly Usage by Grid Cell for Each Mode

Figure 6-3: Average Hourly Usage by Grid Cell for Each Mode

Looking at the pair of images for the bus, as with rail, we see the shape of the

network, though the stations cover much more of the city than the rail network.

They also see much lower trip volumes, with the highest values for both maximum

and average trips in the loop, along the north coast, and in grid cells that also contain

rail stations.

The images depicting TNC usage show, as we would expect, a general region with

significant activity as opposed to a network. The heart of the activity is the loop,
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and it radiates outward, primarily in two directions: to the north along the coast,

and to the northwest along Milwaukee Avenue and the Blue Line. There is much less

activity in the south. The image showing the max values for origins and destinations

each show a small number of cells that meet the maximum threshold. Interestingly,

these are different for origins and destinations. This may suggest that large spikes in

demand for TNCs are more associated with events than for rail or bus, at least for

destinations. The places with very high values for maximum usage in terms of origins

largely seem to be in the West Loop. This may correspond to events, or to the fact

that this is where many of the restaurants and bars are located in the city, and we

know from the temporal analysis that TNCs are particularly popular on Friday and

Saturday evenings.

Spatio-Temporal

Next, we can investigate the typical spatial distribution of trips on each mode through-

out the course of a weekday or a weekend. Figures 6-4 - 6-7 show the average count

of trip origins per grid cell by hour of the day for TNCs on a weekday, TNCs on a

Saturday, public transit on a weekday, and public transit on a Saturday. First, we

note that the concentration of public transit origins on weekdays in the downtown

area during the PM peak drowns out all other demand, rendering it invisible. On the

graph of public transit origins on Saturdays, we can see trips beginning along the rail

lines especially in the north in the afternoon and evening, but the few grid cells in

the heart of the loop still dominate the visualization. In the TNC visualizations, the

maximum value is not quite so high to utterly drown out all other areas of activity,

and we see that the area radiating out from downtown in the northwestern direction

remains consistently active, especially in the very early morning (12AM - 3AM). This

mode too is dominated by activity in the downtown core, however.

To get a better sense of how these mode are operating simultaneously to one

another, we can map the distribution of trip origins for each mode at any given 15

minute increment in the month of October 2019. A few select 15 minute intervals

are shows in Figures 6-8 - 6-12 First, we note that in general, the volume of trips

126



Figure 6-4: Average TNC Trip Origins by Hour for Weekdays in October 2019
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Figure 6-5: Average TNC Trip Origins by Hour for Saturdays in October 2019

128



Figure 6-6: Average Public Transit Trip Origins by Hour for Weekdays in October
2019
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Figure 6-7: Average Public Transit Trip Origins by Hour for Saturdays in October
2019
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occurring on public transit is significantly higher than the volume of trips occurring

on TNCs. This is particularly noticeable during peak periods on weekdays, such

as Wednesday, October 2 from 8:00-8:15AM and the same day from 6:00-6:15PM.

During each of these, there is only a small pocket of noticeable TNC trips clustered

around the downtown area. On public transit, from 8:00-8:15AM we see significant

demand further out on the rail lines, especially in the north, while from 6:00-6:15PM

we note the heavy concentration in the loop as people head home from work. During

these times, it seems that TNC trips represent a small fraction of the trips occurring

in Chicago, though the ones that are occurring are mainly happening where public

transit trips are also happening. The story is a little different if we look much later

in the evening, specifically between 2:00-2:15AM on Thursday, October 3. Here we

see TNC activity around downtown and to the north and west of the loop. We see

public transit usage there as well, though the highest public transit trip volume is

occurring in the south, where we see no TNC trips.

Continuing through the week, we look at the TNC and public transit usage on

Friday at 6PM, and notice markedly fewer public transit trips occurring in the loop

than at the same time on Wednesday. Furthermore, the number of TNC trips is

much more comparable to public transit volume than on Wednesday, suggesting a

different dynamic between the two modes depending on the day of the week. Later

that evening, at 11PM, we see comparable volumes of public transit and TNC trips,

occurring in largely the same locations in the city, except for the usage along the red

line in the south that has no TNC counterpart. Finally, investigating demand on

Saturday morning at 2AM, we see much more TNC demand as people likely leave

bars downtown and in neighborhoods in the north, while public transit usage is very

low on the lines that are still running. We also note that public transit usage at this

time seems to be pretty similar to usage at the same time on Thursday morning, but

TNC usage is much higher here. This suggests that public transit is not being used

for the same purposes as TNCs at this time.

Lastly, we can explore the share of public transit and TNC rides taken on public

transit rides each hour of each day. We note that many grid cells do not contain any
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Figure 6-8: Public Transit and TNC Trip Origin Volumes on Wednesday, October 2,
from 8:00-8:15AM

Figure 6-9: Public Transit and TNC Trip Origin Volumes on Wednesday, October 2,
from 6:00-6:15PM
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Figure 6-10: Public Transit and TNC Trip Origin Volumes on Thursday, October 3,
from 2:00-2:15AM

Figure 6-11: Public Transit and TNC Trip Origin Volumes on Friday, October 4, from
6:00-6:15PM
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Figure 6-12: Public Transit and TNC Trip Origin Volumes on Saturday, October 5,
from 2:00-2:15AM

public transit stops at all, so the share of public transit trips originating from these

cells will always be zero. If there are no TNC trips either, the cell will not be graphed

in the figure. Furthermore, because bus stops provide good coverage of the city, there

is a dense enough grid of transit stops to generally communicate via the visualization

whether public transit trip volumes are dominating TNC trips in an area, or if TNCs

are providing more service.

We turn first to Thursday, October 3, and look at the share of trips on public

transit across the city each hour, as shown in Figure 6-13. We see that until 4am,

TNCs are providing more trips in the areas where any trips are occurring via either

mode. After that, public transit starts to take over in the outskirts of the city, and

then moves inward until public transit is the dominant mode during the AM peak.

The one area that is an exception is the area just surrounding and to the north of

the loop, where TNCs have a strong presence. In the middle of the day, this area of

TNC presence gets slightly larger, while public transit remains dominant in the south

and west. In the PM peak, we see TNCs continue to have a presence surrounding

downtown, which grows stronger in terms of share of rides and larger in terms of
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geographic area as the night progresses. This hour by hour picture of the share of

public transit rides illustrates the spatial and temporal dimensions to the dynamics

between the modes.

Looking at Saturday, October 5, as seen in Figure 6-14, we see a slightly different

picture. As with Thursday, the early hours show TNC being the dominant mode until

the public transit system starts to run fully in the morning. Unlike Thursday, however,

public transit never completely overtakes TNC trips, especially on the northside.

Public transit is the primary mode in the south and west, but there is more of an

overall balance on Satruday than on Thursday. Starting around 5PM, TNCs become

more dominant downtown and in the north, and the area of their prevalence widens

as the hours go on. In general, public transit never comes to dominate the TNC-PT

demand on this Saturday as it did two days previously.

6.3.2 Spatial Covariates

In our models, we will seek to capture relationships between spatial attributes of the

city of Chicago and some measures of these modal usages. Aside from information

about the location of rail and bus stations in the CTA system, our spatial variables of

interest fall into two main categories: demographic and land use. In this section, we

will explore the spatial distribution of each of our variables as well as their correlations

with one another and with our dependent variables of interest to determine which to

prioritize as we build our models.

Figures 6-15 and 6-16 shows the spatial distribution of the 12 demographic vari-

ables and ten land use variables, respectively. Within the demographic variables,

many seem potentially useful, particularly those relating to education, race, and in-

come. The percent of residents between the age of 35 and 50 and the percent of

residents over 65 seem potentially too uniform across the city to be useful, as does

the average travel time to work.

Fewer of the land use variables collected seem promising, and future work should

look into other sources of this data. Furthermore, many seem to be highly correlated

with one another. We can examine this more deeply by calculating the pairwise
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Figure 6-13: Public Transit Share of Public Transit and TNC Trip Origins on Thurs-
day, October 3
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Figure 6-14: Public Transit Share of Public Transit and TNC Trip Origins on Satur-
day, October 5
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Pearson’s correlation coefficient for all demographic and land use variables. The

heatmap of these correlation coefficients is shown in Figure 6-17.

Indeed, within the land use category, we note that the count of bars is highly

correlated with the count of restaurants and the count of all points of interest. In

our models, we will use only the count of all points of interest as a control variable

to isolate other relationships as best we can.

We note several correlations among the demographic variables of which we should

be wary. Specifically, the correlation of the percent of white alone residents and the

percent of black alone residents is nearly -1, so we will use only one of these. Income

per capita and percent of residents with college graduates are also highly correlated.

6.3.3 Relationships between Spatial Covariates and Trip Vol-

umes

We also explore the fundamental relationship between these spatial covariates and

trip volumes by calculating the correlation coeffiecients between each covariate and,

in turn, average weekday public transit trips per grid cell, average Saturday public

transit trips, average weekday TNC origins, average Saturday TNC origins, average

weekday TNC destinations, and average Saturday TNC destinations. The correlations

for each are shown in Figure 6-18.

We note the highest correlations between bars, restaurants, and all points of inter-

est and TNC trip counts (origins and destinations). Interestingly, the only correlations

that approach being negative are that of the percent of black residents and all the

trip volume measures, specifically TNC counts. Among the demographic variables,

income, percent of college educated residents, percent of peopled between 25 and 34,

and total population are most highly correlated with TNC trip volume counts. For

each spatial attribute, correlation values tend to be similar for all mode trip count

variables, though there is often separation between the TNC measures and the public

transit measures.
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Figure 6-15: Spatial Distribution of Demographic Variables
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Figure 6-16: Spatial Distribution of Land Use Variables
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Figure 6-17: Correlation Heatmap for Demographic and Land Use Variables

Figure 6-18: Correlations Between Spatial Covariates and Trip Count Volumes by
Mode and Time of Week
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6.4 Initial Model Results

In this section, we will present results for a set of initial models run with TNC origin

counts as the dependent variable. The aim of this section is to demonstrate the

flexibility of this framework and present some preliminary findings about the spatio-

temporal patterns of the origins of TNC trips.

6.4.1 Temporal Model

In this first model, we regress TNC origin counts at each hour and location on only

temporal data. Specifically, we include dummies for each hour of the day and dummies

for each hour of the day multiplied by a dummy indicating if it is a weekday or not.

The model is as follows:

𝑇𝑁𝐶𝑖,𝑗,𝑡 = 𝛽0 +
23∑︁
ℎ=1

𝑤ℎ𝐻𝑂𝐷𝑡 +
23∑︁
ℎ=1

𝑤𝑤ℎ(𝐻𝑂𝐷𝑡 ×𝑊𝐾𝑡) (6.4)

In equation 6.4 𝑇𝑁𝐶𝑡 is the number of TNC origins at hour 𝑡. Because there are no

spatial inputs to this model, the output will be the same value for every grid cell.

𝐻𝑂𝐷ℎ is a dummy variable indicating if it is the h-th hour of the day, leaving the

0th hour (12AM-1AM) as the base, 𝑊𝐾𝑡 is a dummy variable indicating if the t-th

hour occurs on a weekday, and 𝑤ℎ and 𝑤𝑤ℎ are the parameter estimates. Specifically,

𝑤ℎ is a 23 × 1 vector giving the relative change in mean trip totals by each hour of

the day, and 𝑤𝑤ℎ is a 23× 1 vector showing the impact that it being a weekday has

on the corresponding hour parameter for 𝑤ℎ.

The model results are given in Table 6.2. The model output for each time point

is the average count of TNC origins across all cells in the grid. This explains the

small magnitudes, as most grid cells have a count of 0 TNC trip origins at any given

time, as well as the very low R-squared, which is extremely close to 0 because the

spatial dimension of the data (86× 76 = 6, 536) is so much higher than the temporal

dimension (31 days times 24 hours = 744). We have confidence that the temporal

patterns detected by the model represent truth, however, because of how closely the
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predicted trip volume summed over space matches with true trip volume summed over

space (Figure 6-19) We can still learn from this model, even though the prediction

performance would be very poor. We can interpret the 𝛽0 coefficient as the average

number of trip origins across all cells between 12AM and 1AM, the 𝑤ℎ vector as the

change in mean relative to 𝛽0 by hour for weekends, and the 𝑤𝑤ℎ vector as the change

to 𝑤ℎ when it is a weekday.

Figure 6-19: Predicted vs. Real Total TNC Trip Counts for 1 Week - HOD dummies
for Week and Weekend

We see that, on weekends, volume is lowest between 4AM and 7AM and highest

from the afternoon into the evening and night, with the peak between 7PM and 8PM.

On weekdays, volume is lower at most hours, except between 5AM and 10AM and

between 6PM and 7PM. This biggest difference is between 12AM and 2AM.

6.4.2 Spatial Model

Next, we run a model where the only inputs are spatial data. The result is that the

outputs vary only along the spatial dimension, predicting the same trip count at every

time point. More specifically, the outputs are the average TNC trip counts for each

grid cell. The model is given in equation 6.5.

𝑇𝑁𝐶𝑖,𝑗,𝑡 = 𝛽0 +𝐷𝑖,𝑗𝑤𝑑 + 𝑃𝑂𝐼𝑖,𝑗𝑤𝑃𝑂𝐼 + 𝑃𝑇𝐷𝐸𝑁𝑆𝑖,𝑗𝑤𝑃𝑇𝑑𝑒𝑛𝑠 (6.5)

In Model 6.5, 𝛽01𝐼𝐽 is the same as before, 𝐷𝑖,𝑗 in this case is a 6536 × 3 ma-

trix representing the vectorized values of three demographic variables— population,
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𝛽0 = 0.82

Hour 𝑤ℎ 𝑤𝑤ℎ

1 1.30 −1.68
2 0.70 −1.23
3 0.11 −0.69
4 −0.19 −0.26
5 −0.23 0.04
6 −0.12 0.43
7 0.10 1.04
8 0.39 1.23
9 0.76 0.47
10 1.14 −0.35
11 1.29 −0.51
12 1.39 −0.58
13 1.37 −0.55
14 1.47 −0.63
15 1.63 −0.60
16 1.66 −0.29
17 2.09 −0.35
18 1.92 0.18
19 2.21 −0.37
20 1.80 −0.34
21 1.76 −0.40
22 1.73 −0.59
23 1.44 −0.76

𝑅2 0.004

Table 6.2: Temporal Model Parameter Estimates
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percent of black residents, and income— in each grid cell, and 𝑤𝑑 is a 3 × 1 vector

of parameter values for each of those variables. 𝑃𝑂𝐼𝑖,𝑗 is a 6536 × 1 vector of the

normalized count of all types of points of interest variables by grid cell, with 𝑤𝑃𝑂𝐼 the

scalar parameter estimate for this. Lastly, 𝑃𝑇𝐷𝐸𝑁𝑆𝑖,𝑗 is a 6536 × 2 matrix giving

the density of rail and bus stops respectively in each grid cell, and 𝑤𝑃𝑇𝑑𝑒𝑛𝑠 is the 2×1

parameter vector.

𝛽0 = −1.11

Variable Estimate

Population 7.57
Percent Black −2.29
Median Income 10.49
POI count 111.30
Rail stop density 30.61
Bus stop density 32.24

𝑅2 0.425

Table 6.3: Spatial Model Parameter Estimates

The results are shows in Table 6.3. We note a negative value of 𝛽0, while hints

at one of the issues of these models. Every grid cell is included in the model, even

though we only have data for a fraction of them, with several being located outside

the city bounds or even in Lake Michigan. Because most of them have a value of zero

for all variables, we are still able to capture relationships between our independent

and dependent variables, but it obscures the meaning of some of the spatial variables.

For example, the coefficient on percent black here is negative, as we would expect,

but very small, which is likely because cells with a 0 value for this variable are often

places with no trips, because there is no data at all, but are also frequently places

where all or nearly all residents are not black, and these may be places with high

volumes of trips. This strongly biases the parameter estimate toward zero. The same

will happen for other demographic variables where 0 values may occur within the

city bounds in a way that is meaningfully associated with trip volumes. Future work

should make sure to correct this, perhaps by only including cells within city bounds.
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This model does reveal the importance of the concentration of points of interest,

however. In future models we will remember to control for this value. Furthermore,

both rail and bus stop density are associated with significantly more TNC trips. The

demographic variables are less important.

6.4.3 Spatio-Temporal Model

Next, we can combine spatial and temporal variables to capture some of the more

complicated dynamics in the mobility data. In this example, we control for the

number of points of interest and whether or not in rained on the day in question

and investigate how TNC trips vary by hour of day and how this changes based on

whether a rail or bus station is nearby. The model is given in equation 6.6.

𝑇𝑁𝐶𝑖,𝑗,𝑡 =𝛽0 + 𝑃𝑂𝐼𝑖,𝑗𝑤𝑃𝑂𝐼 +𝑅𝐴𝐼𝑁𝑡𝑤𝑟𝑎𝑖𝑛

+
23∑︁
ℎ=1

𝐻𝑂𝐷𝑡𝑤ℎ +
23∑︁
ℎ=1

𝐻𝑂𝐷𝑡𝐹𝑅𝐼𝑡𝑤_𝑓𝑟𝑖ℎ

+
23∑︁
ℎ=1

𝐻𝑂𝐷𝑡𝑊𝐾𝐸𝑁𝐷𝑡𝑤_𝑤𝑘𝑒𝑛𝑑ℎ

+
23∑︁
ℎ=1

𝐻𝑂𝐷𝑡𝑅𝐴𝐼𝐿_𝐵𝑂𝑂𝐿𝑖,𝑗𝑤_𝑟ℎ

+
23∑︁
ℎ=1

𝐻𝑂𝐷𝑡𝑅𝐴𝐼𝐿_𝐵𝑂𝑂𝐿𝑖,𝑗𝐹𝑅𝐼𝑡𝑤_𝑟_𝑓𝑟𝑖ℎ

+
23∑︁
ℎ=1

𝐻𝑂𝐷𝑡𝑅𝐴𝐼𝐿_𝐵𝑂𝑂𝐿𝑖,𝑗𝑊𝐾𝐸𝑁𝐷𝑡𝑤_𝑟_𝑤𝑘𝑒𝑛𝑑ℎ

+
23∑︁
ℎ=1

𝐻𝑂𝐷𝑡𝐵𝑈𝑆_𝐵𝑂𝑂𝐿𝑖,𝑗𝑤_𝑏ℎ

+
23∑︁
ℎ=1

𝐻𝑂𝐷𝑡𝐵𝑈𝑆_𝐵𝑂𝑂𝐿𝑖,𝑗𝐹𝑅𝐼𝑡𝑤_𝑏_𝑓𝑟𝑖ℎ

+
23∑︁
ℎ=1

𝐻𝑂𝐷𝑡𝐵𝑈𝑆_𝐵𝑂𝑂𝐿𝑖,𝑗𝑊𝐾𝐸𝑁𝐷𝑡𝑤_𝑏_𝑤𝑘𝑒𝑛𝑑ℎ

(6.6)
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Once again, 𝐻𝑂𝐷𝑡 is a dummy variable that is 1 if the time period 𝑡 corresponds

to the hour of day ℎ from the summation. 𝐹𝑅𝐼𝑡 is a dummy variable that is 1 if the

time period 𝑡 falls on a Friday, and 𝑊𝐾𝐸𝑁𝐷𝑡 is a dummy variable that is 1 if the

time period 𝑡 falls on a weekend. 𝑅𝐴𝐼𝐿_𝐵𝑂𝑂𝐿𝑖,𝑗 is a dummy variable that is 1 if

grid cell (𝑖, 𝑗) contains a rail station, and 𝐵𝑈𝑆_𝐵𝑂𝑂𝐿𝑖,𝑗 is a dummy variable that is

1 if grid cell (𝑖, 𝑗) contains a bus station. 𝑃𝑂𝐼𝑖,𝑗 is as before, and 𝑅𝐴𝐼𝑁𝑡 is a dummy

variable equal to 1 if 𝑡 fell on a day where rain was recorded.

This model allows us to estimate, while controlling for points of interest and rain,

the impact that each hour of the day has on the number of TNC trip origins observed

in the following cases:

∙ On a Monday-Thursday when there are no public transit stations in the same

grid cell (𝑤ℎ)

∙ On a Friday when there are no public transit stations in the same grid cell

(𝑤_𝑓𝑟𝑖ℎ)

∙ On a Saturday or Sunday when there are no public transit stations in the same

grid cell (𝑤_𝑤𝑘𝑒𝑛𝑑ℎ)

∙ On a Monday-Thursday when there is a rail station in the same grid cell (𝑤_𝑟ℎ)

∙ On a Friday when there is a rail station in the same grid cell (𝑤_𝑟_𝑓𝑟𝑖ℎ)

∙ On a Saturday or Sunday when there is a rail station in the same grid cell

(𝑤_𝑟_𝑤𝑘𝑒𝑛𝑑ℎ)

∙ On a Monday-Thursday when there is a bus station in the same grid cell (𝑤_𝑏ℎ)

∙ On a Friday when there is a bus station in the same grid cell (𝑤_𝑏_𝑓𝑟𝑖ℎ)

∙ On a Saturday or Sunday when there is a bus station in the same grid cell

(𝑤_𝑟_𝑤𝑘𝑒𝑛𝑑ℎ)
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Figure 6-20: Hour of Day Coefficients for Each Day of Week and Station Presence
Interaction

The resulting model has an R-squared of 0.43 and estimates 𝛽0 at −0.67, 𝑤𝑃𝑂𝐼

at 170.7, and 𝑤𝑟𝑎𝑖𝑛 at 0.17. The estimates for 𝑤ℎ, 𝑤_𝑓𝑟𝑖ℎ, and 𝑤_𝑤𝑘𝑒𝑛𝑑ℎ are all

under 0.25. The remaining coefficients are plotted by the value of ℎ in Figure 6-20

We note the biggest change throughout the course of the day for grid cells with

rail stations on Monday-Thursday. In the morning on these days, grid cells with rail

stations see fewer TNC trips. As the morning peak approaches, the effect becomes

neutral and remains slightly negative through the midday until the beginning of the

afternoon peak, and which point grid cells with rail stations see significantly more

TNC trips, suggesting that people may be opting for TNC trips over public transit

at the end of the workday.

On Friday, grid cells with rail stations see a different pattern, not seeing signifi-

cantly more TNC trips until around 5PM, at which point the number of trips grows

for a few hours, drops around 8PM, and then climbs sharply through midnight, reveal-

ing that throughout Friday nights, TNC trips become more and more concentrated

around rail stations.

The early morning Saturday and Sunday coefficients for grids with rail stations
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picks up very close to where the Friday evening one drops off, then drops steadily

until becoming associated with fewer TNC trips around 8AM, and then remaining

mostly neutral for the remainder of the day until the late evening.

The coefficients for grid cells with bus stations are smaller, but we do observe

more subdued versions of the same patterns as rail for each set of days. All in all,

this model shows that, even when controlling for points of interest, TNC trips tend

to congregate around rail stations in the early evenings during the week and the late

evenings on weekends. While we cannot conclude from this model alone that these

trips could be taken on rail, their origins being so close to a rail station makes it

likely. This model provides some evidence that particularly in the evenings, TNCs

are being used to replace rail trips. On the other hand, there is also evidence that

people opt for TNCs over public transit particularly when frequency is likely to be

low, or perhaps service has stopped completely. Further investigation controlling for

frequency may explain this further.

6.4.4 Spatio-Temporal Models with a Spatial Lag

We can also investigate the extent to which TNC demand is related to TNC demand in

neighboring areas or public transit demand in neighboring areas. For these models,

we use only a 30 × 25 inset of our original grid containing the downtown area for

computational efficiency.

The first model uses only the spatial lag of the dependent variable as the explana-

tory variable. Mathematically, the model is given in equation 6.7

𝑇𝑁𝐶𝑡 = 𝛽0 + 𝜌𝑊 * 𝑇𝑁𝐶𝑡 + 𝜖𝑡 (6.7)

where 𝑇𝑁𝐶𝑡 is the 𝐼 × 𝐽 grid of TNC origin counts at time 𝑡, 𝑊 is the spatial

weighting matrix (in this case the normalized Rook’s spatial weights matrix, where

each grid cell has as its neighbors the at most four with which it shares an edge), and

𝜌 is the spatial correlation coefficient estimated by the model.
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This simple model performs rather well, yielding an R-squared of 0.74. The es-

timated value of 𝛽0 is −0.50 and the estimated value of the correlation coefficient 𝜌

is 1.04, suggesting that the number of TNC trips originating from a grid cell at any

given hour is typically about the average of the trip origin counts in neighboring cells.

The predicted and real values for total trip counts in this inset for a week are shown

in Figure 6-21.

Figure 6-21: Predicted vs. Real Total TNC Trip Counts for 1 Week - Spatially Lagged
Dependent Variable

We can furthermore explore the relationship between TNC origin trips counts in

a cell and public transit trip counts in that cell and neighboring cells. The model is

as follows:

𝑇𝑁𝐶𝑡 = 𝛽0 + 𝑤1𝑃𝑇𝑡 + 𝜆𝑊 * 𝑃𝑇𝑡 + 𝜖𝑡 (6.8)

where 𝑇𝑁𝐶𝑡 is the 𝐼 × 𝐽 grid of TNC origin counts at time 𝑡, 𝑃𝑇𝑡 is the 𝐼 × 𝐽

grid of public transit (rail + bus) origin counts at time 𝑡, 𝑊 is the spatial weighting

matrix, and 𝜆 is the spatial correlation coefficient estimated by the model.

This model performs markedly worse than the model with a lagged dependent

variable, yielding an R-squared value of only 0.26. The estimated value for 𝛽0 is

6.67, and the estimated values for 𝑤1 and 𝜆 are 0.012 and 0.107 respectively. These

parameter estimates indicate that TNC demand is positively correlated with the

public transit demand occurring around it, but the relationship only explains about a

quarter of the variation in TNC trip count usage, and TNCs see typically much smaller
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volumes of trips that public transit does. Figure 6-22 illustrates the performance

of this model on a spatially aggregated level for a week, revealing that this model

performs much better on weekdays than on weekends. Further exploration of the

prediction power of models interacting public transit demand and temporal variables

would be interesting.

Figure 6-22: Predicted vs. Real Total TNC Trip Counts for 1 Week - Spatially Lagged
Public Transit Usage

6.5 Thoughts on Future Directions

This chapter offers only a few preliminary models exploring the spatio-temporal pat-

terns of TNC trips in Chicago and how those relate to public transit usage. There

are many potential extensions to this work, including improvements to data quality

and handling as well as extensions of the model formulations.

6.5.1 Data Improvements

There are several opportunities to improve the data used in these models, which we

will list here.

∙ Land Use Data The information on land use obtained from Open Street Maps

for these analyses is sparse. While the total counts of points of interest do seem

to capture the activity centers of the city and provide substantial predictive

power, other land use data regarding design elements such as the width of

sidewalks, amount of green space, and number of intersections could be included
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to understand how these variables impact TNC ridership or TNC ridership vis

a vis public transit ridership.

∙ Special Events Information on major events in the area would be important

to include in these models to capture modal responses to irregular occurrences.

Included in this should be data on public transit service disruptions.

∙ Public Transit Level of Service Frequency is only one element of the level

of service of the public transit system at any given point in space and time.

Furthermore, scheduled frequency, as is used here, is less useful than actual

frequency in summarizing how a rider likely perceives the level of service to be.

Reliability and capacity would also be valuable dimensions to add to a level

of service metric. Understanding the role of public transit service levels in the

relative volume of usage on TNCs would be a valuable question to use this

framework to answer.

∙ Handling of Grid Cells Outside City A way to leverage the matrix-based

implementation of these models while ignoring the cells in the grid with missing

data would greatly benefit the performance of the model by not falsely corre-

lating zero TNC rides with zero values for other explanatory variables. Because

the grid is vectorized at each time point for the model estimation anyway, this

likely amounts to including in the vector only those cells within the city bounds.

6.5.2 Model Formulations

In addition to improving data quality and handling, certain adjustments to the model

formulations may allow for deeper insights into how public transit and TNCs coexist

in a given city. I outline a few ideas here.

Temporal and Spatial Lags

Spatial Lags
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In the models presented here that use a spatial lag, only a very simple version of

the spatial weights matrix is used: namely, one that considered the (typically) four

grid cells with which any individual cell shares an edge to be a "neighbor" and thus

capable of exerting direct influence on the dependent variable of the cell of interest.

While this likely approximates local effects across variables, there is no reason to

believe it is the best representation of the spatial dependencies among any set of

variables.

A worthwhile expansion of these models would explore various formations of spa-

tial weighting matrices, including perhaps different weights matrices for different inde-

pendent variable. One example would be a weights matrix that captures the network

structure of the transit system, considering cells to be "neighbors" if they are on the

same transit line, for example, or weighting the correlation by the travel time between

the two cells on public transit. Such a formulation would be particularly interesting

for independent variables related to the transit network.

Temporal Lags

This chapter did not offer results for any models containing temporal lags, but

they have a clear role to play within the goal of exploring the relationship between

demands for different modes. Further work should explore various lengths of temporal

lags on the dependent variable or the usage of other modes.

Additionally, exploration of the combination of spatial and temporal lags could

protentially prove fruitful. A systematic exploration of various formulations in this

fashion could lead to significant insight into the ways one or many modes’ demands

exhibit spatio-temporal correlation, and perhaps suggest ways in which people use

TNCs to supplement public transit.

Longitudinal Analysis

The models presented here used data from a single month to describe dimensions

of TNC usage patterns as they existed on average in October 2019. They could

be extended to investigate longitudinal changes in parameters by incorporating data

from multiple time periods and using dummy variable to indicate from which period
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each data point comes. This could be used year over year to identify times and areas

where public transit is losing out to TNCs, for example, or the time frames could

be from before and during the COVID pandemic to capture how the dynamics of a

single mode or the relationship between modes changed as a result of the virus.

Modeling Origin-Destination Flows

Instead of using just origin or destination counts as the dependent variable, the model

could be structured so that the dependent variable was O-D flows. Depending on the

question one hoped to answer, this would require reliable inferences of destinations

to public transit origins, but such algorithms exist. Furthermore, it would greatly

increase the size of the input data, and the modeler would need to have the requisite

computing power. Nevertheless, it would allow for a much more complete picture of

the interaction between modes, as it would highlight the corridors and times where

usage patterns were most in line and where and when they were most divergent.

Specifically, it could illuminate when and where and to what extent TNC trips occur

on corridors served by transit, and what variables lead to more or fewer TNC trips

along such routes. This knowledge could inform policy in a powerful way.

Machine Learning

Many of the examples mentioned above require exploration of dozens, if not hundreds

of model formulations as one begins to consider the number of combinations of spatial

lags and temporal lags and included variables. To systematically explore them all,

one should employ machine learning methods to learn the most appropriate structure

of the model, as measured by some criteria set by the modeler.

6.6 Conclusion

This chapter demonstrates the potential for insights on urban mobility patterns in an

urban context given appropriate data. All spatial and temporal data in this chapter is

available to the public, as is information on public transit scheduled frequencies. The

154



granularity of the public transit ridership data is easily accessible to analysts within a

transit agency, though access to TNC data at this level is still relatively uncommon.

It is likely that more cities will follow Chicago’s lead and require data from TNCs in

exchange for the opportunity to operate in those cities, which would open up this type

of analysis to many more agencies. The modes in consideration need not be public

transit and TNCs, however, and similar analysis could be conducted with scooter or

bike share data.

The analysis conducted here regarding TNC origins in Chicago indicated that they

are largely concentrated in the downtown, with significant numbers also originating

along the coast in the north and along Milwaukee Avenue/the Blue Line. They

typically occur in much lower numbers than public transit trips, except late on Fridays

and in the afternoon and evening on Saturdays. TNC trip origins are largely co-

located with points of interest, and are more likely to occur where there is high rail

or bus station density. Compared with grid cells with no public transit stations,

the presence of a rail station is associated with fewer TNC trip origins in the early

morning Monday-Thursday and more TNC trips between 4PM and 9PM. The times

and places in the week most associated with higher numbers of TNC trips are late

Friday night into Saturday morning in grid cells containing rail stops, suggesting that

TNCs may prove particularly popular when public transit frequency is low.

When exploring the relationship between TNC trip origin counts and the counts

from neighboring grid cells, we find that TNC trip origins are very spatially correlated,

and that taking the average value of trips from the neighboring cells alone provides

very strong predictive power. TNC trips are less correlated with public transit trips

from the same or neighboring grid cells, but the correlation is still positive. The

relationship appears stronger during the week than on weekends.

This framework can be used, as it was here, to explore parameters describing the

dynamics of TNC usage patterns in Chicago, or the formulation and variables can

be selected to answer a specific question. Regardless, there is significant potential

to apply this framework in new ways to deepen our collective understanding of the

usage patterns of new mobility modes.
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Chapter 7

Conclusion

The initial impetus for this work was to develop a framework that would allow transit

agencies to leverage the rich data available to them in order to develop a deeper

understanding of their riders and use this to inform policy. The underlying philosophy

is that analysis based solely on counts of trips, be it by hour or day or mode or route,

only tells part of the story. With this as the only analytical tool, a dip in trip counts

is just that. There is no differentiation between a drop due to riders leaving the

system entirely, or one due to riders remaining in the system by decreasing their

use of it. Despite the result being the same, these types of ridership loss could lead

to quite distinct policy interventions. In truth, the behavioral dynamics behind a

drop in ridership on a major urban mass transit system are likely quite complex, but

with the proper data and tools, the dominant forces can be teased out and policies

tailored accordingly. Thus, this work makes the case that, in conjunction with an

understanding of aggregate trip volumes must come a partner analysis that keeps

the rider as the fundamental unit of analysis, as the rider will ultimately be the one

observing and responding to any policy intervention.

After the COVID-19 virus began to spread quickly in America, cities and states

imposed stay-at-home orders across the country and workplaces, schools, and non-

essential businesses were ordered to close. The result was a sudden and sustained

drop in public transit ridership across the country to a degree never before seen. As

transit agencies continue to learn about the new ridership dynamics on their system
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and craft creative policies to entice riders safely back onto trains and buses, the

framework offered here, specifically in chapter 4, can be used as a model for how an

agency can orient policy around the needs of its riders.

7.1 Summary of Findings

7.1.1 Year Over Year Ridership Behavior Changes

Chapter 3 of this work addresses the question of who is driving the top-level year

to year trip loss observed on the CTA. We cluster data from four months of 2017

and 2018 each and observe changes in the number of cards exhibiting each of 10

key behaviors. We also investigate the number of cards exhibiting different kinds of

behavior changes. The key findings are as follows:

∙ The decrease in the number of trips taken on the system between 2017 and

2018 is driven more by individuals taking fewer trips in 2018 compared with

2017 than it is due to riders leaving the system altogether.

∙ There is a trend of riders tending to ride less often over time, regardless of their

initial behavior.

∙ Regular ridership during weekday peak hours has decreased to a lesser extent

than during other periods of the day or week.

∙ The group of riders whose behavior is characterized by regular peak ridership

was the only group of occasional or regular riders to grow between 2017 and

2018, and it was due to the number of riders new to the system with this

behavior outnumbering the number of riders churning/leaving the system or

changing their behavior.

∙ These regular peak riders were a key reason why the CTA outperformed rider-

ship and revenue projections for the year despite implementing a fare increase

in January of 2018.
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7.1.2 Public Transit Ridership in Chicago During the COVID-

19 Pandemic

After March of 2020 and the growth of the COVID-19 outbreak within US borders,

the goal of explaining a 2% change in ridership between years began to seem quaint as

transit agencies across the country saw ridership plummet by 70%-90%. Chapter 4 of

this work applied the same customer segmentation framework established in Chapter

3 to analyze which groups of riders were more or less responsible for the precipitous

drop in trips taken on the CTA by investigating rates of complete churn by behavioral

group. Chapter 5 then built on this work by using linear and spatial regression to

identify which behavioral and demographic variables were most predictive of transit

ridership loss at the census tract level. The explanatory variables were the demo-

graphic traits of the census tracts and average behavioral attributes for riders with

inferred home locations in that tract. The summarized behavioral attributes were

largely the same ones used as inputs to the clustering algorithm in previous chapters.

The key findings are as follows:

∙ Two key behavioral groups – frequent peak rail riders and frequent off-peak

bus riders with high transfer rates – exhibited drastically different ridership

responses to the pandemic and subsequent stay-at-home order. The former saw

93% of its riders stop riding initially, while only about half of the latter group

stopped riding.

∙ Frequent peak rail riders were more likely to live in higher income, white neigh-

borhoods, while frequent off-peak bus riders with high transfer rates were more

likely to live in lower income, majority-minority neighborhoods.

∙ Including both summary behavioral and demographic attributes in a model

predicting ridership drops due to COVID significantly improved the model fit

compared with models using either but not both of these groups of explanatory

variables.

∙ Even when controlling for demographics, the typical behavior of riders in a tract

159



was important in predicting the COVID ridership response.

∙ The decrease in ridership intensified as the share of rides typically taken at

traditional peak times among riders grew. Conversely, the decrease in ridership

lessened with higher usage of bus and higher rates of transfer, as well as a higher

proportion of riders using a pass product as opposed to pay-per-use.

∙ Demographically, the percent of black residents, Spanish-speakers, and percent

of households without a vehicle were associated with smaller drops in ridership,

while the percent of young people and foreign-born residents was associated

with larger drops in ridership.

7.1.3 Usage Patterns of TNCs in Chicago

The final analytical portion of this work offered initial thoughts on how to consider

the potential influence of other modes on people’s use of public transit and behavior

changes over time when the available data are public transit usage and non-identified

trips of an alternate mode, in this case TNCs. We offer a systematic way of capturing

the spatial, temporal, and spatio-temporal attributes of usage patterns of a given

mode and offer preliminary results describing TNC usage in Chicago in October of

2019:

∙ TNC trip origins in Chicago are heavily concentrated downtown, with significant

numbers also originating along the north coast of Lake Michigan and Milwaukee

Avenue/the Blue Line to the northwest.

∙ TNC trips only outnumber public transit trips late on Friday evenings and on

Saturday in the afternoon and evening. During the weekdays there are far more

public transit trips occurring at any given time between 6AM and 8PM than

TNC trips.

∙ Even controlling for count of points of interest, which is consistently a very

strong predictor of the number of TNC origins, density of rail and bus stops are

associated with higher numbers of TNC trip origins.
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∙ For Monday-Thursday, grid cells with rail stations see fewer TNC trips, but the

presence of a rail station in the afternoon is associated with significantly higher

numbers of TNC trips. Late night hours on Friday into Saturday mornings see

many more TNC trips in areas where there is a rail station.

∙ TNC trips are highly spatially correlated and 74% of the variation is explained

by averaging the counts of TNCs in neighboring cells. On the other hand, 26%

of the variation is explained by the public transit usage in and around the cell.

The modeling framework presented in this chapter could be extended in numerous

ways, such as modifying the spatial weights matrix and adding temporal lags to

locate the strongest spatio-temporal correlations between TNC and public transit

usage, or by adding data from a subsequent month or year to capture how the inter-

modal dynamics have changed over time. Such information could inform simultaneous

changes in public transit ridership behavior and suggest what types of changes might

be related to competition with TNCs.

7.2 Recommendations

Out of this work emerges several recommendations for the CTA, who funded this

research and offered its data for the myriad analyses presented here. The recommen-

dations offered here, separated into analysis recommendations and policy recommen-

dations, are focused on helping the CTA understand and recover ridership as Chicago

and the world continue to deal with the COVID-19 virus, recognizing this to be the

preeminent challenge facing transit agencies today.

7.2.1 Analysis Practices

The overarching suggestion for the CTA is to incorporate the customer segmentation

framework into regular ridership analysis, when possible establishing stable behaviors

on the system as was done in Chapter 3, or, as was done in Chapter 4, using baseline

behavior groups to track ridership changes over time by segment. The latter option
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is the most relevant now as transit agencies continue to face unprecedentedly low

ridership, but can be supplemented by periodic clustering of riders using the most

recent data to understand what pandemic-era ridership looks like as it evolves. This

analysis will not only continue to offer valuable insights into how people are using

the system and what behaviors are behind overall trip counts, but will also center

people in such a way that facilitates the formation of policy geared at riders, as the

connection between the results of the analysis and the person that is the target of a

policy become stronger and more obvious, as was seen in Chapter 4.

Specific actions the CTA can take include the following:

∙ Using the baseline clustering results from Chapter 4 or a modified version of

their choosing, assign all Ventra cards present during the baseline period a

cluster label and store this information in a data table that can be linked to

other tables on the account ID. This will facilitate continued monitoring of

COVID ridership behavior rooted in knowledge of individuals’ pre-pandemic

behaviors.

∙ Using the same set of inputs as the baseline clusters, run the k-means clus-

tering algorithm on all cards active during different phases of the pandemic.

Because of the much smaller number of active cards, there may not need to be

as many clusters. Use the resulting clusters to understand the new predominant

behaviors on the system. Investigate the number of cards by pre-pandemic and

pandemic cluster assignment to determine patterns in how people have altered

their ridership behavior.

∙ Periodically re-cluster cards on the system based on data from more recent time

frames. Investigate the extent to which the resulting clusters are similar to those

from the previous time period. If they are, analysis like that in Chapter 3 can

be done to gauge which behaviors are most prevalent among riders re-entering

the system, and whether people who have been riding during the pandemic are

exhibiting significant behavior changes.
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∙ Overlay information on inferred home location and other data points of interest

to identify geographic patterns to behaviors, as this will allow for more targeted

policies.

Analysis along this vein will enable the CTA to understand how people first re-

turning to the system are interacting with it and potentially glean information about

their mobility needs. This could inform decisions on fare policy structures; for exam-

ple, new passes could be designed that better reflect the behaviors of people using

the system.

7.2.2 Policy Design

The analysis from Chapters 4 and 5 revealed two crucial but distinct ridership chal-

lenges facing the CTA going forward. The first is the need to bring people with other

travel options back onto the system, such as the frequent peak rail group. This is im-

portant not only because of the size of this contingent but also because these individ-

uals will likely be opting for less sustainable modes of transportation to replace public

transit, especially as temperatures get colder and active modes of transportation be-

come less appealing. Policy recommendations rooted in this analysis— specifically

that this group is more likely to be younger, live on the northside, predominantly use

rail, and make use of the Ventra app — include

∙ Outreach via smartphone notification or app-based information. Information

on CTA’s sanitation procedures, crowding level of trains, and the lack of ev-

idence that riding transit puts one at significant risk of transmission may be

particularly useful.

∙ Undertaking education campaigns about alternate routes available, specifically

between the northside and downtown, which is well-served by bus as well as

rail. These would be particularly effective if coupled with crowding information

for these buses and trains.
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∙ Exploring partnerships with local businesses and restaurants who may be eager

to attract patrons and willing to offer discounts to people who ride the CTA.

The other major ridership challenge facing the CTA is to make the system feel

safe and efficient for those who have needed it all along. A key finding of this work

is that those most reliant on public transit—so much so that they continued to use

it during a global pandemic when citizens were advised against taking mass transit

– were riders who, despite riding often, did not use the system at its busiest times.

A significant implication of this is that policies that direct resources to places and

times when the system is busiest, or make it difficult to add service in the off-peak,

systematically harm riders who are most reliant on the system. Thus, policies geared

toward this group must not only seek to improve the system for them during the

pandemic when they constitute the majority of riders, but going forward, as they no

doubt continue to be reliable users of the system.

Specific policy actions the CTA can take include:

∙ Continuing to shift resources during the pandemic to provide as much capacity

to routes that are seeing relatively high volumes.

∙ Work with the city of Chicago to capitalize on the low levels of car traffic during

the pandemic to add more bus lanes in order to increase speed and reliability

on bus routes. As many of the riders remaining on the system rely primarily

on bus and frequently have to transfer among buses, improved service on bus

routes will have a compounding effect for these riders.

∙ Ally with activists to lobby the state to revise outdated public transit funding

mechanisms, particularly mandated recovery ratios that lead to significantly

longer headways in the off-peak and on weekends. Use this work as evidence

that the most frequent users of the system ride when few other people are

on the network, so direction of resources away from these parts of the system

hurts exactly those individuals who stand to benefit the most from increased

investment.
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If the CTA is able to improve bus speeds and reliability via bus lanes and offer

more frequent service in the off-peak, the whole city stands to benefit tremendously,

not only the riders who have historically used these aspects of the service. These are

exactly the steps that need to happen for rail riders to be enticed to use the bus when

it is available, or for occasional riders to increase the frequency with which they use

the service. Closing the gap between the level of service on bus and rail will make

transit more competitive with other travel modes and help ensure its continued place

as an essential facet of urban life in America. While there are many aspects of the

transit funding picture that are out of the CTA’s control, opportunities for collective

action with other stakeholders to demonstrate the necessity of these steps and lobby

lawmakers should be sought after and capitalized upon.

7.3 Limitations and Future Work

7.3.1 Limitations

Despite the several strong findings highlighted above, there are several limitations to

this study worth pointing out before offering thoughts on future work. First, all the

customer segmentation in this work relies on the assumption that one Ventra card is

equivalent to one person. We know that this is not universally true, and that there

are likely patterns to where this assumption is more or less true. This study could

be improved by a systematic plan for connecting multiple Ventra cards to the same

person if possible or using all available knowledge to account for biases in levels of

churn related to higher turnover of cards.

Furthermore, while the data from Ventra is generally very comprehensive and

complete, the location of card taps on buses is occasionally undetermined, leading to

a portion of primarily bus users having unidentified inferred home locations and being

left out of analysis that required home locations of each rider. Because of this, bus

riders would be undercounted in these analyses, or aggregations across riders would

only include the bus riders with inferred home locations. If there was systematic bias
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as to which buses logged locations and which did not, this could skew the results.

Future work should, to the extent possible, use other trip information to infer a home

location for each rider and determine if calculations need to correct for biases.

Lastly, in the COVID analysis, because of the rear-door boarding policy on buses,

after two and a half weeks of the stay-at-home order, all bus Ventra tap data disap-

peared. As a result, our analysis of COVID ridership is limited to the two complete

weeks immediately following the stay-at-home order and four additional weeks a few

months later after front-door boarding was reinstated. Therefore, conclusions drawn

about COVID-era ridership may be biased due to the limited time frame available

for analysis.

7.3.2 Future Work

The Analysis Practices portion of the Recommendations section above outlines spe-

cific ways for the CTA to continue the work begun in this thesis. More broadly, the

findings presented here suggest research questions that should be the focus of future

work. These include:

∙ What are the driving forces behind the behavior changes observed due to

COVID-19? How do different attitudes and changing life circumstances mani-

fest in changed travel behavior, and do these vary by cluster? Surveys that can

be linked back to cluster membership can address these research questions.

∙ What are the typical features of ridership behavior as one returns to the transit

system after not riding for a significant duration of the pandemic? Does it

happen gradually or all at once? What policies are successful in enticing people

back to the system?

∙ What percent of behavior changes exhibited after the pandemic are/will be due

to hesitancy to use public transit versus fundamental changes in one’s mobility

needs? Can past behaviors or other attributes of a rider predict which will be

a more dominant factor in their changed behavior?
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∙ How do land use characteristics relate to how much one reduced their travel on

public transit during the pandemic, and in what ways?

∙ How did TNC use change due to the pandemic? In what ways was it similar or

different to how public transit usage changed? Can this tell us anything about

times and places absolute travel was down versus when people were more likely

to be hesitant to use public transit and opt for a different mode?

The advent of the COVID-19 pandemic in the final quarter of the time frame for

this work dramatically changed the public transportation landscape in America and

shifted the goals of this analysis. What started as a framework for understanding

the behavioral dynamics underlying a slow but steady dip in public transit usage

each year became a way to capture the impact of the pandemic on public transit use

in a major US city. At the time of this writing, America is still very much in the

midst of grappling with the virus and its implications for the economy, schooling,

transportation, and so many other things. A clear extension of this work should be

the continued analysis of public transit ridership in a way that centers on the rider.

Such analysis will not only help transit agencies craft policies aimed at helping their

riders, but will also offer valuable information to society at large about the evolving

mobility needs of different segments of the population and what this says about where

urban life and mass transit ridership may be headed. Facing such uncertainty, there

are a million things we can and should be doing to monitor the evolving situation and

help bring into place versions of the future that are beneficial rather than harmful. In

the case of public transportation, this framework offers a way to monitor which and

how people are or are not re-entering the system, reach out to communities in need of

extra resources, reassure riders wary of returning to mass transit, and inform policies

that will promote a future where transportation is more sustainable and equitable

than it was before.
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