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for Applied Image Synthesis

by Amy (Xiaoyu) Zhao
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Doctor of Philosophy

Abstract
Much of the recent research in machine learning and computer vision focuses on ap-
plications with large labeled datasets. However, in realistic settings, it is much more
common to work with limited data. In this thesis, we investigate two applications of
image synthesis using small datasets.

First, we demonstrate how to use image synthesis to perform data augmentation,
enabling the use of supervised learning methods with limited labeled data. Data aug-
mentation - typically the application of simple, hand-designed transformations such as
rotation and scaling - is often used to expand small datasets. We present a method
for learning complex data augmentation transformations, producing examples that are
more diverse, realistic, and useful for training supervised systems than hand-engineered
augmentation. We demonstrate our proposed augmentation method for improving few-
shot object classification performance, using a new dataset of collectible cards with
fine-grained differences. We also apply our method to medical image segmentation,
enabling the training of a supervised segmentation system using just a single labeled
example.

In our second application, we present a novel image synthesis task: synthesizing
time lapse videos of the creation of digital and watercolor paintings. Using a recurrent
model of paint strokes and a novel training scheme, we create videos that tell a plausible
visual story of the painting process.
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Chapter 1

Introduction

"Data! Data! Data! I can't make bricks without clay."

The Adventure in the Copper Beaches
Sir Arthur Conan Doyle

As machine learning techniques are developed and incorporated into systems around

the world, our reliance on data continues to grow. The most powerful learning-based

methods - integrated into products for speech recognition [176], facial recognition [156],
and content recommendation [21,57], to name a few - are trained on thousands to

millions of labeled examples.

Since the renaissance of deep learning, much of the research in computer vision has

focused on applications where large datasets are available. These applications include

image classification [42], object segmentation [98], or human pose estimation [7]. In

many areas, the largest advancements have been presented by companies with large

repositories of application-specific data, such as Facebook [156]. Outside of these few

application areas, the need for large amounts of labeled training data is a major barrier

to the use of learning-based methods.

Researchers have devised a variety of ways of hurdling these barriers and learning

from small datasets. These approaches fall into several major categories: crowd-sourced

data annotation, novel learning methods, novel network architectures, and data aug-

mentation.

Crowd-sourced data annotation has become a popular avenue for collecting labeled

data at large scales. Amazon Mechanical Turk [5], which provides a platform for out-

sourcing digital tasks, is often leveraged for obtaining common knowledge labels such

as scene [192] or action classes [83]. However, there are many real-world applications

where expertise, time, or cost requirements preclude the use of crowd-sourcing. In this

work, we discuss two such areas: specialized object classification, and medical image

segmentation.

A rich area of novel learning methods that deal with small datasets is transfer learn-

ing. In transfer learning, knowledge learned from larger datasets is used to help with

learning on more specialized tasks with limited data [25, 65, 124, 184]. Another area of

a novel training schemes is meta-learning [50, 150,164], where the model optimization

procedure is designed to facilitate learning from related tasks. Aside from using in-



Figure 1.1: We present a learning-based data augmentation method that transforms
existing examples (top) into new examples (bottom) differing in spatial configuration

(e.g., shape, rotation) and appearance (e.g. specular effects).

novative training schemes, researchers have designed specialized network architectures
such as multiple modules for foreground and background synthesis [15], or boundary
prediction modules for one-shot object segmentation in videos [24]. These modules can
be seen as a way of incorporating prior knowledge about the problem into the model,
helping it to learn from fewer training examples.

In learning-based tasks, data augmentation is widely used to increase the amount
of training data and to reduce overfitting. Most methods utilize simple, parameterized
transformation functions such as rotation and scaling [67, 92]. Recently, there has been
some interest in learning how to perform data augmentation more effectively by creating
combinations of transformations [37,135]. Several works explore the synthesis of more
examples by learning from existing data [60], or using image synthesis techniques [125].

In this thesis, we explore ways to utilize the latter two approaches to learn from
small datasets. We design image synthesis models that incorporate prior knowledge in
their design, facilitating learning on small datasets. We apply some of these approaches
to data augmentation. We demonstrate the utility of our methods in several areas where
the scarcity of labeled data presents a barrier to the use of modern machine learning
and computer vision techniques.

N 1.1 Few-shot object classification

One such area is the classification of specialized objects. While there are many large-
scale image classification datasets focusing on animals and common objects [42,91, 98],
obtaining labeled examples for more specialized objects (e.g., automobile or aircraft
models [89,103,181]) can be challenging, often resulting in just a few examples of each
class.

In Chapter 2, we consider the problem of few-shot object classification, in which only
a few labeled examples of each class are available as training data. We focus on identify-
ing collectible cards with fine-grained differences, under various spatial orientations and
lighting conditions. When working with small labeled datasets, it is common to rely
on hand-engineered data augmentation functions to synthesize more labeled examples.
However, these functions are often too simple to produce realistic and diverse new ex-
amples. We present a novel data augmentation method that learns to synthesize varied
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Figure 1.2: We design a learning-based data augmentation method that leverages un-

labeled examples to synthesize realistic and varied new examples. This method enables

supervised segmentation using just a single labeled example.

and realistic examples from a small labeled dataset. We show some sample results from

our method in Figure 1.1. We then demonstrate that training a supervised classifier

with these examples produces more accurate results than traditional hand-tuned data

augmentation.

N 1.2 Medical image segmentation

Another area that suffers from the scarcity of labeled data is biomedical imaging. In

many biomedical imaging tasks such as diagnoses or treatment planning, a core task is to

quickly and accurately delineate anatomical structures in images. This task is referred

to as segmentation. When enough labeled data is available for a particular modality

and anatomical region, supervised deep learning-based segmentation methods produce

state-of-the-art results. However, obtaining manual segmentation labels for medical

images requires considerable expertise and time. In most clinical image datasets, very

few manually labeled images are available.
In Chapter 3, we use a variant of our learned data augmentation approach to synthe-

size training data for segmenting magnetic resonance images (MRIs) of human brains.

Our method requires only a single labeled example, and leverages unlabeled examples

to synthesize examples with realistic anatomical and intensity variations. We show

that our synthesized examples enable the training of a convolutional neural network for

MRI segmentation, even when only a single labeled example is available. The trained

segmentation model outperforms existing state-of-the-art methods for one-shot segmen-
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Figure 1.3: We design a recurrent model to synthesize time lapse videos that tell a
visual story of how a painting might have been created. The model receives only the
completed painting (the rightmost patch) as input. Here, we show two examples of
videos synthesized by our method.

tation [190]. We show some examples of segmentation results in Figure 1.2.

* 1.3 Stochastic video synthesis

Chapters 2 and 3 illustrate how to use image synthesis techniques to perform data
augmentation more effectively, with applications in classification and segmentation.
In Chapter 4, we introduce a new image synthesis task: creating time lapse videos
depicting the creation of paintings. There are no large-scale datasets of such videos.
Furthermore, there is significant variability in how people paint; different artists might
complete parts of a scene in different orders, using different brush sizes and strokes.

We present a method for synthesizing videos that mimic the painting process of hu-
man artists. We decompose time lapse videos into spatial patches and short temporal
segments, facilitating training with a small video dataset. We show that our model
captures a distribution of plausible time lapse videos; some examples are shown in Fig-
ure 1.3. To our knowledge, ours is the first work that attempts to predict distributions
of videos of the past, given a single current image as input.

M 1.4 Contributions

In this thesis, we present the following contributions:

Image synthesis through transformations. We approach image synthesis through
the successive application of transformations. Many existing image synthesis techniques
take an image as input and create a new image as a direct output of a neural network
[55, 73, 169, 194]. Applying these direct synthesis approaches to downstream tasks such
as data augmentation can be challenging, since these methods do not necessarily pre-
serve the semantic content of the original input image [97,146]. In contrast, we use
neural networks to output functions that we use to transform existing images in label-
preserving ways. We show that using transformations can help to leverage the original
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image content in the synthesis process, which can be useful for preserving important in-
formation such as anatomical structures in medical images, or class-related information
in objects.

Domain knowledge-constrained transformations. We show how to use domain
knowledge to design useful constraints for transformations. We use separate spatial and
appearance transformations to capture viewing angle and lighting variations in pho-
tographs of planar objects, and to capture anatomical and intensity variations in brain
MRI scans. We use a recurrent model of appearance transformations to capture the
repetitive and additive nature of paint strokes. By restricting the space of transfor-
mations in a meaningful way, we facilitate the learning of transformation distributions
from small datasets.

Leveraging distributions of transformations. We demonstrate that sampling
transformations from our learned distributions can be used to synthesize diverse ex-
amples, which are useful for the downstream tasks of augmenting training datasets for
classification and segmentation, and for creating visually interesting time lapse videos.

11
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Chapter 2

Data Augmentation
for Object Classification

* 2.1 Introduction

Humans are adept at learning new visual concepts. Even young children can iden-
tify novel objects after seeing just a few examples [93,177]. Contrast this with the
most powerful modern machine learning systems, which are often trained on millions
of examples. What makes humans excel at this task?

Studies in human object perception indicate that people tend to encode object
information from consistent viewpoints, often called canonical views [23, 126, 174]. One
model of human visual perception suggests that humans recognize shapes from different
angles by imagining transformations being applied to a canonical, upright representation
- essentially performing "mental rotations" [32, 110, 157].

Data augmentation can be seen as an analog to this process. When designing
recognition and prediction systems for natural images, researchers often use simple,
hand-engineered transformations such as rotation, flipping and scaling to create more
training examples. In a sense, these new examples mimic what an existing training ex-
ample might look like from different viewing positions. However, these hand-engineered
transformations have limited ability to simulate more complex realistic effects.

We propose a data augmentation method that is more inspired by the human percep-
tual process. We learn a distribution of realistic label-preserving transformations from
a small number of similarly-shaped examples. We then synthesize new training images
by applying transformations to canonical examples in the training set. We describe
transformations as a sequential application of a spatial warp field and an pixel-wise
color change. This modular approach enables us to model a complex space of realistic
effects including non-linear deformations, 3D rotations, and varied lighting effects.

We target a common but challenging application: classifying objects using limited
training examples. We demonstrate our method on improving object classification
performance compared to standard hand-engineered augmentation in an extreme case
of limited data - during training, our classifiers see multiple examples of each training
class, but only one exemplar image of each test class. We show that the concept
of transforming exemplars is an effective tool for augmenting training sets. We use
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two datasets: the MNIST dataset of handwritten digits [95], and a new dataset of
collectible cards called Augmented Magic Images (AMI). The AMI dataset contains
computer-generated images of the collectible cards, as well as realistic labeled examples
such as photos of cards under specular lighting. We demonstrate that our method
learns to synthesize non-linear warps representing variations in writing style in MNIST
digits. Our method also learns 3D transformations and complex lighting effects from
the AMI dataset. For both datasets, we show that augmenting training using our
synthesized examples can significantly improve classification performance compared to
baseline approaches.

* 2.2 Related work

* 2.2.1 Data augmentation
In image-based supervised learning tasks, it is common to perform data augmentation
using simple parameterized transforms such as rotation and scaling. These transforms
can reduce overfitting and improve test performance [67, 92]. However, the performance
gains can vary greatly with the selection of transformation functions and parameter
settings [47].

Recent works have proposed learning data augmentation transformations from data.
Hauberg et al. [60] focus on data augmentation for classifying MNIST digits. They learn
digit-specific spatial transformations, and sample training images and transformations
to create new examples aimed at improving MNIST classification performance. In
contrast, we learn class-independent transformations, and we do not require multiple
examples for each class. Other recent works focus on learning combinations of simple
transformation functions (e.g., rotation and contrast enhancement) to perform data
augmentation for natural images [37,135]. Cubuk et al. [37] use a search algorithm to
find augmentation policies that maximize classification accuracy. Ratner et al. [135]
learn to create combinations of basic transformation functions by training a generative
adversarial network on user input. The simple transformations explored by these works
are insufficient for capturing many of the variations in realistic photographs of objects.

Other data augmentation approaches use domain-specific knowledge and implemen-
tations. For example, several works on pose-invariant face recognition make use of
3D models or domain-specific loss terms, which can be time-consuming to engineer
[36,68,108]. Our system leverages more general domain knowledge in its decomposi-
tion of transformations into spatial and appearance components. It learns to use these
components to implicitly represent relevant information (e.g., handwriting stroke width,
3D structure).

* 2.2.2 Domain adaptation
In image-to-image domain adaptation, the goal is to learn transformations from one
image domain to another. This approach can be useful for data augmentation when
translating from a source domain in which it is easy to obtain labels (e.g., computer-
generated images) to a target domain where it is hard (e.g., realistic photos) [54,147].

14
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For supervised learning tasks, it is imperative that the applied transformation is label-
preserving. Pairwise similarity metrics have been used with generative adversarial net-
works (GANs) to help preserve labels during unsupervised domain adaptation [183].
In contrast to these unsupervised domain adaptation approaches, our approach learns
transformations that are label-preserving from a small number of examples. Class-
conditional or categorical GANs have been used to synthesize new examples of specific
classes, but must typically be trained on large datasets with many examples per class
[114,152]. In contrast, we tackle tasks that include a small set of labeled images, and
does not require pairs for every class.

Several recent works focus on transforming computer-generated images to realistic
images [97, 146]. These approaches directly synthesize the output images and rely on
additional loss terms to encourage label preservation. We build upon this concept of
synthesizing realistic images from canonical representations, using a learned distribution
of label-preserving transformations.

E 2.2.3 Few-shot learning
Several approaches have been proposed to improve few-shot and one-shot classification
performance on datasets such as MNIST, Omniglot and ImageNet [118, 164,173]. Our
work does not assume a typical few-shot learning setup - rather than learning from a
few examples of each class, we learn a distribution of transformations from a subset
of classes, and use these transformations to improve one-shot classification of held-out
classes. Furthermore, we focus on creating more data, which is an orthogonal task to
designing systems that can learn from limited data. Our data augmentation approach
could likely be combined with few-shot learning methods for further improvements in
classification performance.

E 2.3 Method

We tackle the task of assigning class labels to images of objects. Let {x('), l(i)} be a
collection of labeled images, where each image x() is a sample from the distribution
p(xll; I = l()). Let T(k) be a transformation sampled from a distribution of label-
preserving transforms p(T). Data augmentation aims to apply transformations r(k) to

examples in the training set, yielding transformed images T(k) ()) that also have a
high probability under the distribution p(xl1; = 1(0)). We introduce a generative model
for p(T). We learn this model from pairs of same-class examples in the dataset, and
then use the model to generate new labeled examples.

M 2.3.1 Conditional generative model

We describe transformations of objects in images as a combination of label-preserving
spatial and appearance changes. More precisely, we model a transformation T as a
composition of two functions: a spatial transformation T, and an appearance transfor-
mation ra: T(-) = Ta(Ts(.)). Intuitively, the spatial transform describes differences in

15



Figure 2.1: In a dataset with no color variations, we

X X model spatial differences between examples as a trans-
formation function -r. that is generated from a random
latent variable z. We use circles to represent random

ZS variables and boxes to represent parameters. Shaded cir-

sS cles represent observed variables.

shape (caused, e.g., by varied viewing angles), while the appearance transform describes
differences in color (caused, e.g., by different lighting). We designed this decomposi-
tion to be expressive enough to describe many of the transformations one might observe
from realistic objects. Furthermore, using a modular representation leads to explainable
transformations.

Spatial model

We first describe the spatial transformation T7, which is applied to an input image x to
produce a warped image r,(x). Suppose for now that we have a dataset without color
variations. For example, in MNIST, examples of the same digit class only differ from
one another by spatial changes. We let x represent a canonical example of a digit, and
let x, represent non-canonical examples of the same digit class. We let T, be a dense
flow field generated from the latent variable zo, that depends on the input image x.
We design this dependence on x to capture a variety of complex transformations; for
instance, transformations that vary a digit's thickness migth depend on properties of
the original image. We assume z, is generated from the multivariate standard normal
distribution. We model x, as noisy observations of the warped image T8 (x):

pos (xw zs; x) = .A(xw; Ts (x), o2I[) (2.1)

where a, represents fixed noise in the image space. We use r,(x) = x o f to denote the
application of a dense flow field f, and compute f = go, (z,, x) where g(.) is a function
parameterized by 03. This model is summarized in Figure 2.1.

Learning

We want to find the parameters 0. that maximize the likelihood of each same-class pair

(x, x):

arg max po, (Xz, x) = arg max p, (xz; x)
61 O,

=argmax po,(x iz8 ;x)p(zs)dz,. (2.2)
0, JZ8

This integral is intractable, and the posterior p(Zs xW; x) is also intractable, preventing
the use of the EM algorithm. We instead use variational inference and introduce a

16



distribution qe,(zsIxW; x) that approximates the posterior p(zs,xw; x) [86, 179, 180]. We
derive:

argrmax po,(xw z s ;x)p(z,)dz,
01 Jz,

= arg max log po,(xwlzs; x)p(z8 ) qO,(zs xw; z) dzs
0.,4, Jz8 q$,, (zs5 xw; x)

- arg max log Ez,~qo, (z, Ixw;x) [po, (x I Zs; X) p(zs)

01,$, q4, (z, x.; x)

= arg max Ez,~q, (z, Ix,;x) [log po, (xzIzs; x) + log p(zs) - log q4, (zsI x; x)]
0",$,

arg max Ez,~qO,(z,xw;x) [logpo, (xwlz,; x)] - KL[q4,(zs~xw; x)|p(zs)], (2.3)
Os,4,

where KL[-|.] denotes the Kullback-Liebler divergence. This derived expression is the
negative evidence lower bound [86,179,180]. We choose the approximate posterior
distribution to be a multivariate normal with a diagonal covariance matrix:

q, (zsIX, xw) = K(z; p , (x, xw), o, (x, xw)]I),

where yt,(X, zw), o-4(x, x) are functions parametrized by #0.
We maximize the variational lower bound in Equation (2.3) using stochastic gradient

descent. For each image pair (x), x$j), we obtain z) (k) as follows:

zk) ~ qO, (zsIxw; x)

r(k) = go"(z k) (2.4)

and combine Equation (2.3) with Equation (2.1) to obtain the loss function:

L(0S, #s; , 2 , z k)) =; x()||p(zs)] - AS|rS() ( _ X) - 11
2 , (2.5)

where As 1 .

Spatial and appearance model

So far, we described a model for spatial differences in a dataset. We next model a dataset
that contains images of objects under different spatial orientations and different lighting
conditions. We describe the appearance transform model that we use to capture these
lighting differences.

Similarly to the spatial model described above, we let x represent a canonical ex-
ample of an object, and let y represent other examples of the same object class. We
let ra represent an appearance transformation, which is applied to an input image x
to produce a transformed image Ta(x). This transformation is generated from a latent
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Figure 2.2: A graphical representation
of our joint model for data augmenta-
tion. Circles indicate random variables

ZS Z while rectangles represent parameters.
Shaded circles depict observed quanti-

s a ties.

variable za and is dependent on the input image x. For instance, the shadows in an
object depend on the shape of the object. Similarly to Section 2.3.1, we assume za is
generated from the multivariate standard normal distribution.

In most realistic images, spatial and appearance transformations occur together.
Compared to a canonical representation of an object, a realistic photo might have a
different viewing angle as well as different lighting. One way to learn separate models of
spatial and appearance transformations is to use some method of correcting for spatial
transformations while we learn appearance transformations, and vice versa. We explore
this approach in Chapter 3, and show that it is effective for learning transformations in
cases with limited training data. In this work, we design a joint model for spatial and
appearance transformations, outlined in Figure 2.2.

The joint model is an extension of the spatial model we presented earlier. We let
x represent a noisy observation of a spatially warped image as in Equation (2.1), and
let y represent a noisy observation of a transformed image:

pos'O. (Y l za, Zs; X) = NV(y; a (Ts x)), o I), (2.6)

9-a represents fixed noise in the image space, and -r is as defined earlier. We similarly
define -ra(rs(x)) = r,(x) + c, where c = ho,(Za, r(x)) is a per-pixel color change, com-

puted using the function h(.) that is parameterized by Oa. We extend Equation (2.2),
and learn the parameters Os, Oa that maximize the likelihood:

arg max PO,, a(y, x) = arg max po s,Oa (y; x)
0.s,0. Os,Oa

= argmax po,(xwz; X)P(zs)Po,(Yza, xw)p(za)dzsdzadxw
0s,0a Zs,Za,Xw

= arg max JzExwp0. (xw Izs;X) [POa(y IZa, Xw)p(Zs)p(Za)] dzs dZa
Os,Oa Zs,Za

(2.7)

For simplicity, we approximate the expectation over po,(xW IzS; x) using a point estimate
of the mean. We assume that po,(x lzS; x) is as defined in Equation (2.1). This gives:

arg max pO,,Oa (y; x) :: arg maxf POs,a (YZa, Ts (X))P(Zs)P(Za)dzsdZa (2.8)
.,Oa O.,,Oa JZs,za

18



As before, this integral is intractable, and the posterior p(Zs, zaly; x) is also in-
tractable. We use variational inference and introduce the approximate posterior distri-
bution q4,,4,(zs, zaly; x) [86,179, 180]. We assume that this distribution decomposes as

q$,,4a (zS, za ly; X) = q0, (zs ly; x)q4a(za ly, Ts (x)). Similarly to Equation (2.3), we derive:

arg max PO,,Oa (Y Za, Ts (X))P(zs)P(za)dzsdza
0110. JZs,Za

/ ~q4, (z8 ly;x) q4, (za ly,rs (x))=arg max pos, 0. (Y lza, Ts (X))p (zs)p(za) q0 z ;x 0 Z ,T )dzs dza
o0, fzs,za q$, (zs ly; x) q4,, (za IlY, rs W))

= arg max log Ez,~q, (z,[y;x) [Eza~q a(zaIY'Tr(x)) [p08 ,0 (y1Za, Trs(X)) P(Zs) P(Za)
0s,9a,4,,4a q4, (z8 ly; x) q4, (za ly, Ts())

= arg max Ezs~q0,(z,8 y;x)Eza~q, (zaIy,Ts(X)) [1 ogpo,Oa(y I za, Ts(x))]
0,,0,,4,,a

- KL [q4, (zsIy; x)I|p(zs)] - KL [qwa (za Iy, Ts W))||p(za)]. (2.9)

We maximize this variational lower bound using stochastic gradient descent. For each

image pair (X(W, y(i)), we obtain samples:

zS* qo,, (zs I y; x), q4, (zS Ily; x) = N"(z,; po, (x, y), go, (x, y)R) (2. 10)

z () ~q4a (za l Y, rs (x)), q4a (za lTs x), Y) = A'(za; P,,(rsx), Y), 00. (rs x), Y) ), (2. 11)

where po, (x, y), o,, (x, y) are functions parameterized by #s, and pa(TS(X) IY), Oa(TS(X) Y)
are functions parameterized by #a. We apply spatial and appearance transformations

as follows:

T(k)(X) =x o f(k), f(k) = go,(Z k),

r( + =, c) - hoa (z), T, (x)).

Rearranging Equation (2.9) and combining it with Equation (2.6), we obtain the joint

loss terms:

L (63',08I #, a;X z(0 , y) z1)) =KL [q,(z8 lys, x(O)| p(zS)]

+ KL [q, (za Iy(U), T(k) (X(i))) |p(za)]

- Aa|| Ta) (rs(k) (X(i))) - y(j) 2,   (2.12)

where Aa =   is a reconstruction loss weight. Intuitively, the KL terms encourage

the approximate posterior distributions to be close to the priors, while the L2 term
encourages accurate reconstruction of the transformed example.

One challenge of optimizing the presented joint model is balancing the relative

contributions of the spatial and appearance transformations. In our early experiments,
we found that it was easy for the joint model to represent all of the differences between

x and y through pixel-wise changes in Ta, while applying no change through r. Such a

19



solution does not represent a meaningful decomposition of the transformation from x
and y, and is likely to produce unrealistic outputs when we sample new transformations.
As a way to regularize ra and encourage a meaningful spatial transformation rF, we
introduce a normalized local cross-correlation loss Lec(r8(x), y). This loss encourages
Ts(x) to be spatially aligned to y, while being robust to lighting and color changes.

Let y(p) represent the pixel intensity in image y at location p, and let (p) represent
the pixel intensity in image y at location p with the local mean subtracted out. We
compute the local mean over a region of n2 pixels centered at p, and we choose n = 5
in our experiments. Then, using t in place of r(x) in the interest of readability:

p(t(p) - f(p)) (y(p)- p)
Lcc(t, y) = , / / (2.13)

PEQ (Y, (t(p) - i(p)2) Ep (y(p) - 9(p))2

where Q is the set of all pixel locations in the image.
In addition, to encourage spatial consistency, we encourage spatial smoothness of

the spatial and appearance transformation volumes that are produced by our model, f
and c. We use the losses Lsm,s(f) = ||V2 f 2 and Lsm,a(c) = ||Vc1| 2 . Our final loss is
therefore:

L (6s, Oa, Os, Oa; X, y Z) z(1 f)) =K L[q, (z, lys, z |pz)

+ KL [q,(za ly(), r(k) (X(i)))Ip(Za)1

- Aa| rc)(r(k)(X(i)) _ y(j)2

+ AsLcc(r(k) (X), Y(J))

+ Asm,sLsm(f(k)) + Asm,aLsm(c1), (2.14)

where A., Aa, Asm,s, Asm,a are loss hyper-parameters.

* 2.3.2 Network architecture

We implement the joint spatial and appearance transform model described above using

two connected conditional variational autoencoders (CVAEs) [86,166,180]. We model

q$,(zSly; x) and qw,a(zalTs(x), y) as encoders with network parameters #s, #a, and model

p0. (Xw Ix, zs), Poa(YIXw, Za) as decoders with network parameters 6, Oa. The two CVAEs

can be seen as capturing the spatial and appearance transformations in a modular way.

Given two input images (either x, y for the spatial transformation or rs(x), y for the

appearance transformation), each encoder outputs the mean p4o and variance E4 of

the distribution of the latent variable z, and then samples from the distribution [87].
We use a separate encoder to capture the dependence of the transformation on the

input image x. The encoded image is concatenated with the sampled latent vector, and

then decoded into the final transformation volume. We illustrate the architecture of a

single transform CVAE in Figure 2.3. The spatial transform CVAE can be used alone on

datasets containing only spatial variations. In the full model, the spatial and appearance
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Figure 2.3: Architecture of a transform conditional variational autoencoder. Each
encoding branch is implemented using a series of 3 x 3 strided convolutions, each followed
by a leaky ReLU activation. The decoder is similar.

Appearance transform model

Spatial transform model

x Ic

.dung aining

Figure 2.4: In the sequential transform CVAE network, the spatial transform model
applies the flow field f to the input x using a spatial transformer layer [16, 74]. The
appearance model applies c to the warped image r(x) through an elementwise addition.
At test time, the upper encoding branch of each transform CVAE is discarded and zo,

Za are each sampled from the multivariate standard normal.

transformations are each captured using a CVAE, and are joined sequentially as shown
in Figure 2.4.

For an input RGB image of size H x W x 3, the spatial transform model captures
-s using a displacement field f of size H x W x 2. For a warped image r,(x), the value
at pixel location i, j is T,(x)(i, j) = x(i + fu(i, j), j + fv(i, j)), where fu, fv represent
the horizontal and vertical displacement components respectively. The appearance
transform CVAE receives as input the resulting T(x) along with the target image y.
The appearance transformation ra is implemented as a volume c of size H x W x 3.
The application of ra is implemented as a per-pixel additive transform for each color
channel: Ta(rs (X)(i, j)) = Ts(X)(i,j) + c(i, j).

We train these neural networks on same-class pairs from a dataset to capture distri-
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butions of spatial and appearance transformations. Then, we sample transformations
from our learned distributions and apply them to existing examples to create new la-
beled training examples. We describe our experiments in the following section.

N 2.4 Experiments

We use our data augmentation method to improve few-shot classification performance.
We present two datasets that pose challenging few-shot learning problems. In each
dataset, only a single canonical example is available for some classes, while several
examples are available for other classes.

We first demonstrate our spatial transform model on a subset of the MNIST dataset,
a simple dataset of handwritten digits. We present examples of the images synthesized
by our method, and show that our method is effective for synthesizing new examples
even in the face of limited training data. We also introduce a new dataset of colorful
collectible cards, the Augmented Magic Images (AMI).

* 2.4.1 Datasets

MNIST To emulate realistic scenarios with limited labeled examples, we first reduce
the standard MNIST training set to include 200 random examples images of each digit.
We hand-select one image of each digit as canonical. We construct 5 dataset splits:
in each split, we designate 2 classes as one-shot classes, where only the canonical is
available at train time. We make 200 examples available for each of the other 8 classes.
We design this experiment to use a similar number of training examples to our AMI
dataset, which we describe below.

We use our spatial transform model to synthesize new examples of each digit, and
then train a classifier on the augmented training set. We tune hyperparameters on a
validation set of 100 held-out examples of each class.

Augmented Magic images (AMI) We introduce a new dataset consisting of images
of collectible cards from the card game Magic: The Gathering. Each unique card
appearance in the game is represented by a unique card ID. We downloaded a dataset
of canonical card images from the Gatherer database [122], which contains computer-
generated representations of what is printed on each card. We show several examples
in Figure 2.5.

Our dataset consists of 315 card IDs, with one canonical example (downloaded from
the Gatherer database) per ID. In addition, we took 2062 photographs of the 315 card
IDs in realistic foreground conditions, with approximately 7 photos per card. These
photographs show real Magic cards from various angles, and under different lighting
conditions caused by flash, varied exposure, and varied lighting colors. We used a
semi-automated method to segment the card in each photo from the background. We
manually segmented the cards in 350 photos, and trained a foreground/background
segmentation network using the VGG19 architecture [148] to segment the rest. Some
segmented photos are shown in Figure 2.5. While synthesizing realistic backgrounds is
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Figure 2.5: Our dataset contains

images of computer-rendered
Magic cards (column 1), as well

as actual cards photographed in

realistic conditions (columns 2-4)

including 2D and 3D rotations

and specular lighting.

Table 2.1: Distribution of card appearances in the AMI dataset, representing 315 dis-

tinct card IDs. A sample train-test split is shown. The photographs feature cards with

2D rotations, 3D rotations, and varied lighting.

Transform Classifier Classifier
Appearance Total CVAE training set test set

training set

Computer-generated 315 210 315 0
Real photos 2062 1384 1384 678

an important problem in data augmentation, we focus on the complex transforms of

the objects themselves in this work.

To evaluate how our method improves few-shot classification, we design an exper-

iment where for some one-shot classes, only the canonical card is available at training

time. For the remaining classes, the canonical example and the segmented photographs

are included in the training set. We evaluate our dataset with a 3-fold split, where we

designate approximately a third of the classes as one-shot classes in each split. The

distribution of appearances in the training and test sets are shown in Table 2.1.

N 2.4.2 Synthesis results

In this section, we show that our method can be used to synthesize realistic and varied

new examples. We train our transform models on same-class image pairs from each

training set, where each pair consists of a canonical example and a randomly chosen

example of the same class. We then sample transformations from our learned models

and use them to synthesize new examples.
We first demonstrate our method on the MNIST dataset. Since MNIST exhibits

no color variations, we train only a spatial transform CVAE using L2 as the recon-

struction loss, with a reconstruction weight of __1 with o-, = 0.01. For AMI, we use

a full transform CVAE to capture spatial and appearance variations. For the spa-

tial transform hyperparameters, we use reconstruction and smoothness regularization

weights A, = 2000, Asm,s = A8, and a cross-correlation neighborhood size of 5 x 5. We

pre-train the spatial transform model to facilitate convergence, using normalized local
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cross-correlation as the reconstruction loss. During joint training, we use the same
spatial transform hyperparameters. For the appearance transform hyperparameters,
we use a reconstruction weight of Aa = , -a= 0.01 and smoothness regularization
weight Asm,a = 5Aa.

Figure 2.6: Our method learns to transform existing examples (top) into new examples
(bottom) differing in spatial configuration (e.g., shape, rotation) and appearance (e.g.
specular effects).

Figure 2.6 and Figure 2.7 show examples of the class-independent transforms learned
by our model. We show two different techniques for obtaining the spatial and ap-
pearance transform encodings z, and za. Figure 2.6 shows results from sampling the
encodings from the standard normal distribution. Figure 2.7 presents results when
obtaining the encodings from a random training image pair. The transform CVAEs
learn transforms from training pairs that are generalizable to new test examples. The
synthesized transforms are realistic and label-preserving, making them appropriate for
data augmentation.

Finally, Figure 2.8 shows that in the AMI dataset, sampling from the full transform
CVAE produces new views of input images rather than simply memorizing existing
transformations in the training set.

* 2.4.3 Classification performance

We now evaluate the utility of our synthesized examples for improving classification
performance. For MNIST, we construct a classifier using a smaller version of the VGG19
architecture [148]. For AMI, we use a VGG19 network pre-trained on ImageNet [43].
Each classifier is trained on only the canonical example of each one-shot class, and all
examples of the remaining classes.

We evaluate several methods of training the classifier: no augmentation (no aug),
hand-tuned augmentation (hand-aug), our automated augmentation (flow-synth and
full-synth), and a mix of hand-tuned and our augmentation (flow-synth + hand-aug
and full-synth + hand-aug).

The hand-aug baseline for both MNIST and AMI is implemented using hand-
engineered transformation functions: random rotations, translations, shearing, and
spatial scaling - a common process for image-based learning systems. For AMI, we
include additional random blurring and global color intensity scaling. The parameters
of the transformations were tuned to match the range of appearances in each dataset as
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(b) AMI

training pair, our network learns a transform em-
to held-out classes. On MNIST, these generalized

transforms include slanting to the left or right, and decreasing the stroke width. Some
digits appear as both test inputs and training inputs in different dataset folds. From
AMI, our flow transform CVAE learns to apply 3D rotations, and the color transform
CVAE learns to simulate varied lighting. The last AMI example shows a potential fail-
ure case where the synthesized cool-toned lighting appears to change the color content
of the card.

All same-label target domain training images

I

II..*.*6la#
U.

Figure 2.8: Given an input image from the training set and random z8 , za, the full
transform model can produce transformed cards that are different from all existing
images of that label in the AMI dataset.

accurately as possible. For each dataset, we evaluated several parameter settings and
selected the best one. This is representative of how data augmentation parameters are
tuned in practice. During training, we create a random hand-augmented example for
each real example.
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Figure 2.9: Our transform CVAE models learn to produce meaningful examples that
help classification accuracy. Flow-synth indicates training with synthetic examples
produced only by our flow transform CVAE with no color transforms, while full-synth
indicates synthesis by our full transform CVAE.

In the synth experiments, each canonical example x() with label 1 ) is passed as

input to our transform model with randomly sampled z(k), zM; the transformed image

r(r.i ) ))) is then assigned the label 1) and used to train the classifier. We train
the classifier on a ratio of one synthesized example to each real example.

Results For MNIST, we train a classifier on each of the 5-fold dataset splits, and report
the average top-1 and top-5 classification accuracy on the non-canonical examples of
the one-shot digits; none of these examples were seen during training. To reduce noise
due to fluctuating model accuracy over the course of training, we compute the average
classification accuracy over 10 sets of model weights from the last 50 epochs of training.
For the AMI dataset, we train a classifier on each of the 3-fold dataset splits. We
evaluate these classifiers in terms of top 1, 5, and 10 accuracy on the photographs of
the one-shot card IDs; none of the photographs were seeing during training. For both
datasets, we train each classifier until convergence.

Figure 2.9 shows that a baseline classifier with no augmentation performs barely
better than chance on this difficult task. Hand-tuned augmentation performs better,
attaining top-1 accuracies of 50.6% ± 16.5 and 5.74% ± 1.93 respectively on MNIST and
AMI. However, the hand-tuned functions cannot capture the full range of variations
in our datasets. Training the classifier using only augmented examples synthesized by
our model results in the best performance, with top-1 accuracies of 72.5% ± 13.4 and
16.6% ± 2.4 respectively. This improvement over the synth + hand-aug model (with
accuracies of 62.1% + 15.2 and 13.0% ± 1.12 respectively) is explained by the fact these
classifiers are trained on the same number of augmented examples, so the synth + hand-
aug is trained on a lower proportion of synthetic examples. These results indicate that
our model learns label-preserving transforms that are relevant to the dataset, and that
synthesizing new training examples using these transformations produces the highest
quality of data augmentation.
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Table 2.2: We compare the use of our approach after training on 500 examples of each
digit for performning data augmentation. We report the error rate on the full MNIST
test set.

Method ConvNet Test Error in %
(std)

InfiMNIST500 [60, 100] 1.04 (0.07)
AlignMNIST500 [60] 0.84 (0.05)
Ours (flow transform CVAE) 1.0 (0.06)

N 2.5 Comparison with previous work

Hauberg et al. present a data augmentation approach on the MNIST dataset that is
similar to ours [60]. They learn a distribution of transformations on a per-class basis
from 500 examples of each MNIST digit, and demonstrate the use of these transforma-
tions for creating new examples of each class for data augmentation.

We analogously train a spatial transform CVAE to learn the distribution of trans-
formations between all same-class pairs, using 500 examples of each digit. We then
perform data augmentation as described in Section 2.4.3 to train a convolutional classi-
fier with the architecture described in [60]. In Table 2.2, we compare our augmentation
approach to that of Hauberg et al. (AlignMNIST500) as well as the baseline Infinite
MNIST algorithm (InfiMNIST500) [100]. Our approach attains a comparable level of
test error, despite not being designed to learn class-specific transformation distribu-
tions. As shown in the previous section, our method has the additional advantage of
not requiring multiple examples of every class.

* 2.6 Discussion

We presented a novel learning-based approach to image synthesis for data augmentation.
Our model learns a distribution of label-preserving transformations from labeled pairs
of images, and is capable of producing new images of an object that are unlike any other
examples in the training set. For instance, our model learns non-linear deformations to
vary writing style and stroke thickness for handwritten digits. It also learns to apply
3D rotations and specular lighting effects to collectible cards; these effects are likely to
be useful for other planar objects such as books, CDs, etc. Finally, we demonstrated
that our approach is useful for training object classifiers with limited data, particularly
in few-shot scenarios where only one example is available for some classes, and only a
few examples were available for the other classes. There are some limitations of this
work that could be addressed to expand its utility in other areas:

Limited datasets. Our method makes assumptions about the input images that do
not apply to many classification datasets. For instance, the 2D flow field is effective
at warping images of objects without backgrounds or occlusions. This limits us to
simplified datasets of natural images that do not contain realistic backgrounds. However,
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this approach could be applied to 3D volumes, which we show in the next chapter.
Another interesting extension to this work might incorporate a mechanic for applying
transformations only to foreground objects in images containing backgrounds.

Hyperparameter tuning. Using joint CVAEs requires us to tune 4 hyperparameters
that control the weights on the reconstruction and smoothing loss of each transforma-
tion. Selecting appropriate values for these hyperparameters can require a significant
amount of time and computational resources.

Other transformations. In this work, we used smooth flow fields and per-pixel color
changes to capture spatial and appearance variations within a dataset. It might be
interesting to explore other forms of transformations such as piece-wise flow fields or
physically-motivated lighting transformations.

In the following chapter, we discuss a related project in which we address the first
two limitations.
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Chapter 3

Data Augmentation
for Medical Image Segmentation

M 3.1 Introduction

In this chapter, we explore how to use data augmentation to improve medical image
segmentation. This chapter builds on our work presented in [190]. Medical image
segmentation is the task of identifying anatomically relevant regions or structures in
images. This task is crucial to many biomedical imaging applications, such as perform-
ing population analyses, diagnosing disease, and planning treatments. When enough
labeled data is available, supervised deep learning-based segmentation methods produce
state-of-the-art results. However, obtaining manual segmentation labels for medical im-
ages requires considerable expertise and time. In most clinical image datasets, there are
very few manually labeled images. The problem of limited labeled data is exacerbated
by differences in image acquisition procedures across machines and institutions, which
can produce wide variations in resolution, image noise, and tissue appearance [96].

To overcome these challenges, many supervised biomedical segmentation methods
focus on hand-engineered preprocessing steps and architectures [116,129]. It is also
common to use hand-tuned data augmentation to increase the number of training ex-
amples [4,123,129,137,139]. Data augmentation functions such as random image ro-
tations or random nonlinear deformations are easy to implement, and are effective at
improving segmentation accuracy in some settings [123, 129,137,139]. However, these
functions have limited ability to emulate real variations [48], and can be highly sensitive
to the choice of parameters [47].

We address the challenges of limited labeled data by learning to synthesize diverse
and realistic labeled examples. Our automated approach to data augmentation lever-
ages unlabeled images. Using learning-based registration methods, we model the set of
spatial and appearance transformations between images in the dataset. These models
capture the anatomical and imaging diversity in the unlabeled images. We synthe-
size new examples by sampling transformations and applying them to a single labeled
example.

We demonstrate the utility of our method on the task of one-shot segmentation
of brain magnetic resonance imaging (MR.I) scans. We use our method to synthe-
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size new labeled training examples, enabling the training of a supervised segmentation
network. This strategy outperforms state-of-the art one-shot biomedical segmenta-
tion approaches, including single-atlas segmentation and supervised segmentation with
hand-tuned data augmentation.

* 3.2 Related work

N 3.2.1 Medical image segmentation

We focus on the segmentation of brain MR images, which is challenging for several
reasons. Firstly, human brains exhibit substantial anatomical variations [52,131,161].
Secondly, MR image intensity can vary as a result of subject-specific noise, scanner
protocol and quality, and other imaging parameters [96]. This means that a tissue
class can appear with different intensities across images - even images of the same MRI
modality.

Many existing segmentation methods rely on scan pre-processing to mitigate these
intensity-related challenges. Pre-processing methods can be costly to run, and devel-
oping techniques for realistic datasets is an active area of research [31, 153]. Our aug-
mentation method tackles these intensity-related challenges from another angle: rather
than removing intensity variations, it enables a segmentation method to be robust to
the natural variations in MRI scans.

A large body of classical segmentation methods use atlas-based or atlas-guided seg-
mentation, in which a labeled reference volume, or atlas, is aligned to a target volume
using a deformation model, and the labels are propagated using the same deformation
[11, 30,41, 61]. When multiple atlases are available, they are each aligned to a target vol-
ume, and the warped atlas labels are fused [70, 88,142,167]. In atlas-based approaches,
anatomical variations between subjects are captured by a deformation model, and the
challenges of intensity variations are mitigated using pre-processed scans, or intensity-
robust metrics such as normalized cross-correlation. However, ambiguities in tissue
appearances (e.g., indistinct tissue boundaries, image noise) can still lead to inaccurate
registration and segmentations. We address this limitation by training a segmentation
model on diverse realistic examples, making the model more robust to such ambigui-
ties. We focus on having a single atlas, and demonstrate that our strategy outperforms
atlas-based segmentation. If more than one segmented example is available, our method
can leverage them.

Supervised learning approaches to biomedical segmentation have gained popularity
in recent years. To mitigate the need for large labeled training datasets, these methods
often use hand-engineered pre-processing steps and architectures. Data augmentation
has also been shown to be essential in some tasks. Similarly to data augmentation in
classification tasks, which we discussed in the last chapter, researchers often use random
rotations, flipping and translations [4,81,116,129,137,139,188]. Random smooth warp
fields can also help to simulate deformations in tissues [137].

Semi-supervised and unsupervised approaches have also been proposed to combat
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the challenges of small training datasets. These methods do not require paired image
and segmentation data. Rather, they leverage collections of segmentations to build

anatomical priors [40], to train an adversarial network [80], or to train a novel semantic
constraint [53]. In practice, collections of images are more readily available than seg-
mentations. Rather than rely on segmentations, our method leverages a set of unlabeled
images.

N 3.2.2 Spatial and appearance transform models

Models of shape and appearance have been used in a variety of image analyses. We
discussed some models that were designed for natural images in the previous chapter.
Here, we focus on spatial and appearance transform models in medical applications.

In medical image registration, a spatial deformation model is used to establish se-
mantic correspondences between images. This mature field spans optimization-based
methods [8, 12, 141, 145, and recent learning-based methods [16, 17, 39, 90, 136, 151, 182].
We build upon VoxelMorph, an unsupervised registration method that we presented in
[16,17], to learn spatial transformations.

Many medical image registration methods focus on intensity-normalized images or
intensity-independent objective functions, and do not explicitly account for variations
in image intensity. For unnormalized images, models of intensity transformations have
been used to remove bias field effects from MRI [94,171]. Spatial and appearance
transform models have been used together to register objects that differ in shape as
well as texture. Many works build upon the framework of Morphable Models [79] or
Active Appearance Models (AAMs) [34, 35], in which statistical models of shape and
texture are constructed. AAMs have been used to localize anatomical landmarks [33,
130] and perform segmentation [115,128,163]. We build upon these concepts by using
convolutional neural networks to learn models of spatial and intensity transformations.
Rather than learning transform models for the end goal of registration or segmentation,
we sample from these models to synthesize new training examples. As we show in our
experiments, augmenting a segmenter's training set in this way can produce more robust
segmentations than performing segmentation using the transform models directly.

* 3.2.3 Few-shot segmentation of natural images

Few-shot segmentation is a challenging task in semantic segmentation and video ob-
ject segmentation. Existing approaches focus mainly on natural images. Methods for
few-shot semantic segmentation incorporate information from prototypical examples of
the classes to be segmented [45,144]. Few-shot video segmentation is frequently imple-
mented by aligning objects in each frame to a labeled reference frame [75,159]. Other
approaches leverage large labeled datasets of supplementary information such as ob-
ject appearances [24], or incorporate additional information such as human input [133].
Medical images present different challenges from natural images; for instance, the vi-
sual differences between tissue classes are very subtle compared to the typical differences
between objects in natural images.
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Figure 3.1: An overview of the proposed method. We learn independent spatial and
appearance transform models to capture the variations in our image dataset. We then
use these models to synthesize a dataset of labeled examples. This synthesized dataset
is used to train a supervised segmentation network.

* 3.2.4 Data augmentation

As discussed in Section 2.2, data augmentation is commonly performed for natural
images using simple parameterized transformations such as rotation and scaling. For
medical images, some works have similarly used rotations [129], translations and flip-
ping [3]. Other works have used random smooth flow fields to simulate anatomical
variations [113,137,138]. Like data augmentation transformations for natural images,
these random flow fields can improve test performance, but have limited ability to
simulate the complex anatomical differences in medical images.

In Section 2.2, we also reviewed recent works that proposed to learn data augmen-
tation transformations [37, 60,135]. These existing methods focus on natural images,
and are ill-suited to capture the subtle differences in MRI scans.

E 3.3 Method

* 3.3.1 Transform models for augmentation

We propose to improve one-shot biomedical image segmentation by combining our
transformation learning system from Chapter 2 with the registration capabilities of
VoxelMorph in a semi-supervised framework.
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Let {y(')} be a set of biomedical image volumes, and let the pair (x, lx) represent a
labeled reference volume, or atlas, and its corresponding segmentation map. In brain
MRI segmentation, each x and y is a grayscale 3D volume. We focus on the challenging
case where only one labeled atlas is available, since it is often difficult in practice
to obtain many segmented volumes. Our method can be easily extended to leverage
additional segmented volumes.

To perform data augmentation, we apply transformations r(k) to the labeled at-
las x. As in Chapter 2, we decompose transformations into spatial and appearance
changes. Here, we learn separate spatial and appearance transform models to capture
the distribution of anatomical and appearance differences between the labeled atlas and
each unlabeled volume. Using the two learned models, we synthesize labeled volumes

{(Q(k), (*))} by applying a spatial transformation and an appearance transformation to
the atlas volume, and by warping the atlas label maps using the spatial transformation.
Compared to traditional single-atlas segmentation [11,30,41, 61], which suffers from
uncertainty or errors in the spatial transform model, we use the same spatial transfor-
mation to synthesize the volume and label map. This ensures that the warped label
map matches the newly synthesized volume. These synthetic examples form a labeled
dataset that characterizes the anatomical and appearance variations in the unlabeled
dataset. Along with the atlas, this new training set enables us to train a supervised
segmentation network. This process is outlined in Fig. 3.1.

* 3.3.2 Spatial and appearance transform models

We describe the differences between scans using a combination of spatial and inten-
sity transformations. Specifically, we define a transformation r(.) from one volume to
another as a composition of a spatial transformation T(.) and an intensity or appear-
ance transformation Ta( ), i.e., T(.) = Ts(Ta(-)). In contrast to Chapter 2, we apply the
appearance transformation rather than the spatial transformation first in this decom-
position. We discuss this change in Section 3.3.3.

We assume a spatial transformation takes the form of a smooth voxel-wise displace-
ment field u. Following the medical registration literature, we define the deformation
function # = id + u, where id is the identity function. We use x o # to denote the appli-
cation of the deformation # to x. To model the distribution of spatial transformations
in our dataset, we compute the deformation that warps atlas x to each volume yN()
using ) = go,(x, y(')), where go,(-, -) is a parametric function that we describe later.

We write the approximate inverse deformation of y() to x as #-1() = go, (y), x).
We model the appearance transformation Ta(-) as per-voxel addition in the spatial

frame of the atlas. We compute this per-voxel volume using the function

-ho (X,Y() 0 0# ),

where y(') o #-1(') is a volume that has been registered to the atlas space using our
learned spatial model. In practice, we found the registration accuracy to be better
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Figure 3.2: We use a convolutional neural network based on the U-Net architecture
[137] to learn each transform model. The application of the transformation is a spatial
warp for the spatial model, and a voxel-wise addition for the appearance model. Each
convolution uses 3 x 3 x 3 kernels, and is followed by a LeakyReLU activation layer.
The encoder uses max pooling layers to reduce spatial resolution, while the decoder
uses upsampling layers.

when we trained a separate subject-to-atlas spatial transform model. In summary, our
spatial and appearance transformations are:

r,i) (X) =x o #0,# ,x,(y0)(31

rf) (X) = x + -= hea(X,y) o #- ). (3.2)

* 3.3.3 Learning

We aim to capture the distributions of the transformations r, and Ta between the atlas
and the unlabeled volumes. We estimate the functions go, (-, .) and h6O(., -) in Eqs. (3.1)

and (3.2) using separate convolutional neural networks, with each network using the
general architecture outlined in Fig. 3.2. Inspired by the success of recent unsupervised
registration methods, we optimize the spatial and appearance models independently.
Independent training has also been demonstrated with Morphable Models [79] and
Active Appearance Models [33,35]. This contrasts with our approach in Chapter 2,
where we train the spatial and appearance models jointly.

For our spatial model, we leverage our previous work, VoxelMorph [16,17, 39]. Vox-
elMorph learns to output a smooth displacement vector field that registers one image to
another by jointly optimizing an image similarity loss and a displacement field smooth-
ness term. We use a variant of VoxelMorph with normalized cross-correlation as the
image similarity loss, enabling the estimation of go, (., .) with unnormalized input vol-
umes.

We use a similar approach to learn the appearance model. Naively, one might
define ho (-, -) from Eq. (3.2) as a simple per-voxel subtraction of the volumes in the
atlas space. While this transformation would perfectly reconstruct the target image,
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it would include extraneous details when the registration function #-1 is imperfect,
resulting in image details in x + 4 that do not match the anatomical labels. We
instead design h, (-, .) as a neural network that produces a per-voxel intensity change
in an anatomically consistent manner. Specifically, during training, we use an image
similarity loss as well as a semantically-aware smoothness regularization. Given the
network output OW = h,(X, y(') o#-1), we define a smoothness regularization function

based on the atlas segmentation map:

Lsmooth(cz,4@) (1 - c)V4V, (3.3)

where cx is a binary image of anatomical boundaries computed from the atlas segmenta-
tion labels l, and V is the spatial gradient operator. Intuitively, this term discourages
dramatic intensity changes within the same anatomical region. Although the appear-
ance model never receives segmentation labels as input, this regularization term helps
to train the model to make anatomically-consistent predictions.

Since this semantically-aware regularization term leverages the atlas labels, it mo-
tivates the application of the appearance transformation in the spatial frame of the
atlas. Unlike our previously presented decomposition in Chapter 2, in this project we
apply the appearance transformation first, before warping the example using a spatial
transformation.

In the total appearance transform model loss La, we use mean squared error for
the image similarity loss Lsim(0, y) = ||9 - y| 2. We experimented with applying this
image similarity loss in the spatial frame of the atlas, and in the spatial frame of the
subject. Even though we compute the appearance transformation using inputs in the
spatial frame of the atlas, we found that applying the final image similarity loss in the
spatial frame of the subject was helpful for improving the final segmentation model's
accuracy.

We balance the similarity loss with the regularization term £smooth:

L(x, y M, 0#(N, #- 1 *(i), ,cX)

= Lsim((X + 00) 0 #(i), y)) + AaLsmooth(Cx, '0),

where Aa is a hyperparameter.

N 3.3.4 Synthesizing new examples

The models described in Eqs. (3.1) and (3.2) enable us to sample spatial and appearance
transformations M ,0)a by sampling target volumes y), y() from an unlabeled dataset.
Since the spatial and appearance targets can be different subjects, our method can
combine the spatial variations of one subject with the intensities of another into a
single synthetic volume 9. We create a labeled synthetic example by applying the
transformations computed from the target volumes to the labeled atlas:

j(,J) -,( (J)
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This process is visualized in steps 3 and 4 in Fig. 3.1. These new labeled training exam-
ples are then included in the labeled training set for a supervised segmentation network.
While we modeled continuous distributions of transformations in Chapter 2, here, we
show that sampling from discrete distributions of transformations is also effective for
data augmentation.

N 3.3.5 Segmentation network

The newly synthesized examples are useful for improving the performance of a super-
vised segmentation network. We demonstrate this using a network based on the state-
of-the-art segmentation architecture described in [140]. To account for GPU memory
constraints, the network is designed to segment one slice at a time. We train the
network on random slices from the augmented training set. We select the number of
training epochs using early stopping on a validation set. We emphasize that the exact
segmentation network architecture is not the focus of this work, since our method can
be used in conjunction with any supervised segmentation network.

N 3.3.6 Implementation

We implemented all models using Keras [28] and Tensorflow [1]. The application of
a spatial transformation to an image is implemented using a differentiable 3D spatial
transformer layer [16]; a similar layer that uses nearest neighbor interpolation is used
to transform segmentation maps. For simplicity, we capture the forward and inverse
spatial transformations described in Section 3.3.2 using two identical neural networks.
For the appearance transform model, we use the hyperparameter setting Aa = 0.02. We
train our transform models with a single pair of volumes in each batch, and train the
segmentation model with a batch size of 16 slices. All models are trained with a learning
rate of 5e- 4 . Our code is available at https: //github. com/xayzhao/brainstorm.

* 3.4 Experiments

We demonstrate that our automatic augmentation method can be used to improve
brain MRI segmentation. We focus on one-shot segmentation of unnormalized scans
- a challenging but practical scenario. Intensity normalization methods such as bias
field correction [51, 149, 154] can work poorly in realistic situations (e.g., clinical-quality
scans, or scans with stroke [153] or traumatic brain injury).

E 3.4.1 Data

We use the publicly available dataset of Ti-weighted MRI brain scans described in [16].
The scans are compiled from eight databases: ADNI [119], OASIS [105], ABIDE [107],
ADHD200 [112], MCIC [56], PPMI [106], HABS [38], and Harvard GSP [64]; the seg-
mentation labels are computed using FreeSurfer [51]. As in [16], we resample the brains
to 256 x 256 x 256 with 1mm isotropic voxels, and affinely align and crop the im-
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ages to 160 x 192 x 224. We do not apply any intensity corrections, and we perform
skull-stripping by zeroing out voxels with no anatomical label. For evaluation, we use
segmentation maps of the 30 anatomical labels described in [16].

We focus on the task of segmentation using a single labeled example. We randomly
select 101 brain scans to be available at training time. In practice, the atlas is usually
selected to be close to the anatomical average of the population. We select the most
similar training example to the anatomical average computed in [16], and designate it
as the atlas. This atlas is the single labeled example that is used to train our transform
models; the segmentation labels of the other 100 training brains are not used. We use
an additional 50 scans as a validation set for hyperparameter tuning, and an additional
100 scans as a held-out test set.

* 3.4.2 Segmentation baselines

Single-atlas segmentation (SAS): We use the same state-of-the-art registration
model [16] that we trained for our method's spatial transform model in a single-atlas
segmentation framework. We register the atlas to each test volume, and warp the atlas
labels using the computed deformation field [11, 30, 41, 61, 88]. That is, for each test

image y(i), we compute #W = go, (x, Y()) and predict labels [7W lx o #(i.

Data augmentation using single-atlas segmentation (SAS-aug): We use SAS
results as labels for the unannotated training brains, which we then include as training
examples for supervised segmentation. This adds 100 new training examples to the
segmenter training set.

Hand-tuned random data augmentation (rand-aug): Similarly to [113,137,138],
we create random smooth deformation fields by sampling random vectors on a sparse
grid, and then applying bilinear interpolation and spatial blurring. We evaluated sev-
eral settings for the amplitude and smoothness of the deformation field, including the
ones described in [137], and selected the settings that resulted in the best segmentation
performance on the validation set. We synthesize variations in imaging intensity using
a global intensity multiplicative factor sampled uniformly from the range [0.5,1.5], sim-
ilarly to [69, 81]. We selected the range to match the intensity variations in the dataset.
This is representative of how augmentation parameters are tuned in practice. This
augmentation method synthesizes a new randomly transformed brain in each training
iteration.

Supervised: We train a fully-supervised segmentation network that uses ground truth
labels for all 101 examples (the training examples plus the atlas) in our training dataset.
Apart from the atlas labels, these labels are not available for any of the other methods.
This method serves as an upper bound.
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Table 3.1: Segmentation performance in terms of Dice score [44], evaluated on a held-
out test set of 100 scans. We report the mean Dice score (and standard deviation in
parentheses) across all 30 anatomical labels and 100 test subjects. We also report the
mean pairwise improvement of each method over the SAS baseline.

Method Dice score Pairwise Dice
improvement

SAS 0.759 (0.137)
SAS-aug 0.775 (0.147) 0.016 (0.041)
Rand-aug 0.765 (0.143) 0.006 (0.088)
Ours-coupled 0.795 (0.133) 0.036 (0.036)
Ours-indep 0.804 (0.130) 0.045 (0.038)
Ours-indep + rand-aug 0.815 (0.123) 0.056 (0.044)
Supervised (upper bound) 0.849 (0.092) 0.089 (0.072)

* 3.4.3 Variants of our method

Independent sampling (ours-indep): As described in Section 3.3.4, we sample

spatial and appearance target images independently to compute rs , r1 . With 100

unlabeled targets, we obtain 100 spatial and 100 appearance transformations, enabling
the synthesis of 10, 000 different labeled examples. Because of memory constraints, we
synthesize a random labeled example in each training iteration, rather than adding all
10, 000 new examples to the training set.

Coupled sampling (ours-coupled): To highlight the efficacy of our independent
transform models, we compare ours-indep to a variant of our method where we sample
each of the spatial and appearance transformations from the same target image. This
results in 100 possible synthetic examples. As in ours-indep, we synthesize a random
example in each training iteration.

Ours-indep + rand-aug: When training the segmenter, we alternate between ex-
amples synthesized using ours-indep, and examples synthesized using rand-aug. The
addition of hand-tuned augmentation to our synthetic augmentation could introduce
additional variance that is unseen even in the unlabeled set, improving the robustness
of the segmenter.

* 3.4.4 Evaluation metrics

We evaluate the accuracy of each segmentation method in terms of Dice score [44],
which quantifies the overlap between two anatomical regions. A Dice score of 1 indicates
perfectly overlapping regions, while 0 indicates no overlap. The predicted segmentation
labels are evaluated relative to anatomical labels generated using FreeSurfer [51].
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Figure 3.3: Pairwise improvement in mean Dice score (with the mean computed across

all 30 anatomical labels) compared to the SAS baseline, shown across all test subjects.
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Figure 3.4: Pairwise improvement in mean Dice score (with the mean computed across

all 30 anatomical labels) compared to the SAS baseline, shown for each test subject.

Subjects are sorted by the Dice improvement of ours-indep-+rand-aug over SAS.

M 3.4.5 Results

Segmentation performance

Table 3.1 shows the segmentation accuracy attained by each method. Our methods

outperform all baselines in mean Dice score across all 30 evaluation labels, showing

significant improvements over the next best baselines rand-aug (p < le-15 using a

paired t-test) and SAS-aug (p < le-20).
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Figure 3.5: Segmentation accuracy of each method across various brain structures.
Labels are sorted by the volume occupied by each structure in the atlas (shown in
parentheses), and labels consisting of left and right structures (e.g., Hippocampus) are
combined. We abbreviate the labels: white matter (WM), cortex (CX), ventricle (vent),
and cerebrospinal fluid (CSF).

In Figs. 3.3 and 3.4, we compare each method to the single-atlas segmentation
baseline. Fig. 3.3 shows that our methods attain the most improvement on average,
and are more consistent than hand-tuned random augmentation. Fig. 3.4 shows that
ours-indep + rand-aug is consistently better than each baseline on every test subject.
Ours-indep alone is always better than SAS-aug and SAS, and is better than rand-aug
on 95 of the 100 test scans.

Fig. 3.5 shows that rand-aug improves Dice over SAS on large anatomical struc-
tures, but is detrimental for smaller ones. In contrast, our methods produce consistent
improvements over SAS and SAS-aug across all structures. We show several examples
of segmented hippocampi in Fig. 3.6.

Synthesized images

Our independent spatial and appearance models enable the synthesis of a wide variety
of brain appearances. Fig. 3.7 shows some examples where combining transformations
produces realistic results with accurate labels.

* 3.5 Discussion

Why do we outperform single-atlas segmentation? Our methods rely on the same spatial
registration model that is used for SAS and SAS-aug. Both ours-coupled and SAS-aug
augment the segmenter training set with 100 new images.
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Figure 3.6: Hippocampus segmentation predictions for two test subjects (rows). Our

method (column 2) produces more accurate segmentations than the baselines (columns

3 and 4).

To understand why our method produces better segmentations, we examine the

augmented images. Our method warps the image in the same way as the labels, ensuring

that the warped labels match the transformed image. On the other hand, SAS-aug

applies the warped labels to the original image, so any errors or noise in the registration

results in a mis-labeled new training example for the segmenter. Fig. 3.8 highlights

examples where our method synthesizes image texture within the hippocampus label

that is more consistent with the texture of the ground truth hippocampus, resulting in

a more useful synthetic training example.

Extensions Our framework lends itself to several plausible future extensions. In Chap-

ter 2, we modeled a continuous distributions of transformations using latent variable

models, which we implemented using CVAEs. In this chapter, we showed that sam-

pling discrete transformations is effective for data augmentation for segmentation. An
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Figure 3.7: Since we model spatial and appearance transformations independently, we
are able to synthesize a variety of combined effects. We show some examples synthesized
using transformations learned from the unlabeled set; these transformations form the
bases of our augmentation model. Notably, the top row shows a synthetic image where
the appearance transformation produced a darkening effect, and the spatial transfor-
mation enlarged the ventricles. In the second row, the atlas is brightened slightly and
the ventricles have shrunk.

interesting extension to this work could investigate continuous distributions of trans-
formations, which could enable interpolation between transformations in the training
set. In our early experiments, we found that balancing the hyperparameters of CVAEs
was more challenging for MRI data than for Magic cards or handwritten digits. This
difference is likely related to the more complex variations between MRI scans. Select-
ing useful hyperparameters for CVAEs is a known challenge [49,104], and it would be
interesting to explore this avenue further.

In Section 3.3.2, we discussed the use of an approximate inverse deformation func-
tion for learning the appearance transformation in the reference frame of the atlas.
Rather than learning a separate inverse spatial transform model, future extensions
should leverage existing work in diffeomorphic registration [9, 10,20,39, 186].

In this chapter, we demonstrated our data augmentation approach on brain MRIs.
Since the method uses no brain- or MRI-specific information, it is feasible to extend it
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Figure 3.8: Synthetic training examples produced by SAS-aug (column 2) and ours-
coupled (column 3). When the spatial model (used by both methods) produces im-
perfect warped labels, SAS-aug pairs the warped label with incorrect image textures.
Our method still produces a useful training example by matching the synthesized image
texture to the label.

to other anatomy or imaging modalities, such as CT.

* 3.6 Conclusion

We presented a learning-based method for data augmentation, and demonstrated it on
one-shot medical image segmentation.

We start with one labeled image and a set of unlabeled examples. Using learning-
based registration methods, we model the set of spatial and appearance transformations
between the labeled and unlabeled examples. These transformations capture effects
such as non-linear deformations and variations in imaging intensity. We synthesize
new labeled examples by sampling transformations and applying them to the labeled
example, producing a wide variety of realistic new images.

We use these synthesized examples to train a supervised segmentation model. The
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segmenter out-performs existing one-shot segmentation methods on every example in
our test set, approaching the performance of a fully supervised model. This framework
enables segmentation in many applications, such as clinical settings where time con-
straints permit the manual annotation of only a few scans.

In summary, this work shows that:

" learning independent models of spatial and appearance transformations from un-
labeled images enables the synthesis of diverse and realistic labeled examples, and

" these synthesized examples can be used to train a segmentation model that out-
performs existing methods in a one-shot scenario.
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Chapter 4

Stochastic Video Synthesis

M 4.1 Introduction

In the previous two chapters, we showed how to design machine learning systems to
model distributions of shapes and appearances within a dataset. Here we explore a
related but different question: can we design a machine learning system that captures
stochastic decisions made by humans?

We are interested in modeling how human artists create paintings. Many of us have
perhaps imagined how Johannes Vermeer might have laid down paint, stroke by stroke,
to achieve the striking contrasts of Girl with a Pearl Earring. While we cannot know
the exact process that Vermeer followed, we can learn much from the work of modern
artists. We present a learning-based model for how human artists create digital and
watercolor paintings. We use the model to synthesize time lapse videos that tell a visual
story of how a painting may have been created.

This problem presents two main challenges for learning-based approaches. Firstly,
there is a great deal of variation in how people create art. Suppose two artists are asked
to paint the same scene. One artist might start with the sky, while another might start
with the mountains in the distance. Some artists might prefer to finish each object
before moving onto the next, while others might lay down the base color of each object
before moving onto finer details. Secondly, there is stochasticity in the decision made
at each time step. As artists work on paintings, many of them will alternate between
working on various objects in the scene. In a scene full of partially-completed objects,
there are often no visual cues indicating what an artist will spend the next stroke on.

In this chapter, we present an exploration of the time lapse video synthesis problem.
We identify the challenges of modeling time lapses of paintings, and address individual
challenges through experiments on synthetic datasets. We present a recurrent model
that synthesizes human painter-like strokes on small patches from images. We then
discuss several next steps for extending the method to full images.

M 4.2 Related work

To the best of our knowledge, ours is the first work on modeling and synthesizing
distributions of videos representing the past, given a single current frame. Our task of
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synthesizing time lapse videos of art is also novel. Here, we review the literature in two
main areas: video synthesis and prediction, and art synthesis.

* 4.2.1 Future frame prediction

Future video frame prediction is the problem of synthesizing the next frame or next
few frames of a video, given a sequence of past frames. Most existing approaches
train convolutional neural networks on large collections of natural videos, to predict a
single frame [99], predict a future sequence as a volume [109,165], or predict a future
sequence recurrently [134, 162]. Zhou et al. focus on synthesizing short time lapse
videos of physical processes such as melting, rotting and flowers blooming, given an
initial frame [193]. These existing methods focus on capturing the single most likely
future sequence, while we aim to capture a distribution of plausible past sequences. In
[179], a conditional variational autoencoder is used to model a distribution of possible
future frames. In contrast, we model a distribution of past videos.

Many of the existing methods for future frame prediction focus on natural videos,
where the primary challenge is accurately extrapolating the motions of objects. The
inputs to these methods often contain visual cues about the direction of the motion
and the action that is being performed. On our work, we model the addition of color
in paintings, which often has many more plausible outcomes.

N 4.2.2 Frame interpolation

A classical problem in video processing is frame interpolation, in which the goal is
to temporally interpolate between two frames. Classical approaches often estimate
dense flow fields [13, 172,185] or phase [111] to guide the interpolation process. More
recent methods use convolutional neural networks to directly synthesize the interpolated
frame [121], or combine flow fields with estimates of scene information [76, 120]. In our
problem of time lapse synthesis, only the end frame is provided as input; we rely on the
model to capture the distribution of initial frames. Our problem also differs from frame
interpolation in that we focus on long-term predictions, while most frame interpolation
methods predict a single or a few intermediate frames.

* 4.2.3 Art synthesis

The graphics community has long been interested in simulating physically realistic paint
strokes in digital media. Many existing methods focus on physics-based models of fluids
or brush bristles [18, 19, 26, 29, 170,178]. More recent learning-based methods leverage
datasets of real paint strokes [85, 101, 191], often posing the artistic stroke synthesis
problem as a texture transfer or style transfer problem [6,102], which we discuss in
further detail below. Several works focus on simulating watercolor-specific effects such
as edge darkening [117,168]. In our synthesis problem, we do not focus on representing
individual brush strokes in a physically realistic way; rather, we focus on capturing the
progression of paint strokes over the course of creating a painting.
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Another relevant research area is style transfer, where images are transformed to
simulate a painting-like style [62, 66] or a cartoon-like style [189]. More recently, neural
networks have been used for generalized artistic style transfer [55, 194]. Style transfer
methods present some useful techniques for using neural networks to synthesize artistic
images; however, they do not deal with the challenges of synthesizing the temporal
aspect of the art creation process.

Some works model parts of the art creation process, including simple tasks such as
hatching or other repetitive strokes [77,175]. Recently, there has been some interest in
designing robots to mimic the art creation process through sketching portraits [158] or
drawing graffiti [22]. We present a more general model of digital and watercolor paint
strokes that is learned rather than engineered.

N 4.3 Overview

This chapter presents a preliminary exploration of the time lapse video synthesis prob-
lem. We start in Section 4.4 by introducing the time lapse datasets we collected, and
the challenges that they present. We design several synthetic time lapse datasets to
illustrate some specific challenges.

With the dataset and task in mind, we formalize the video synthesis problem in
Section 4.5, and then derive a recurrent probabilistic model for capturing changes at
each time step. We evaluate our model in Section 4.6. We first present experiments on
our synthetic datasets, and use them to illustrate limitations and design decisions in our
model. Then, we present qualitative and quantitative experiments on our digital and
watercolor painting datasets. Finally, we conclude the chapter in Section 4.7, where we
discuss a road map for future work that could contribute to a more complete solution
to the time lapse synthesis problem.

N 4.4 Datasets

We first introduce our real datasets, and then describe how we design synthetic datasets
to help examine the challenges of the real data.

* 4.4.1 Real datasets

Digital paintings

We collected 115 recordings of digital painting time lapse videos from YouTube. We
selected videos that showed digital painting processes (using digital brushes that mimic
physical brush textures, as opposed to, say, photo editing) where the content mainly
depicted landscapes or still lifes. We chose videos with minimal zooming and panning.
Many of the videos were produced by the time lapse recording feature in some digital
drawing applications, which automatically excludes zooming and panning. Each video
was downloaded at 360 x 640 resolution and cropped spatially around the painting
area. We visually inspected videos and manually removed segments that contained
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Figure 4.1: We show several digital painting sequences, where each row is a temporal
sequence from a 50 x 50 patch. Each sequence spans 21 seconds, with frames spaced
3 seconds apart. These sequences show a variety of ways to add paint, including fine
strokes (row 1), broad strokes (rows 2 and 4), and filling (row 1). Some challenges of
this dataset include erasing (row 3), and drastic changes in color and composition (row
4).

movements such as translations, flipping and zooming. We also cropped each video in
time to show only the painting process (without any introductions or other animations).
Figure 4.1 shows some example video sequences. We split this dataset in an approximate
70:15:15 ratio into training, validation and test sets by video. Since there were only
approximately 20 artists in this dataset, with a high imbalance (some artists contributed
close to 20 paintings each, while other artists contributed only one) to we chose to allow
some artists to appear across the training, validation and test sets.

Watercolor paintings

Similarly to the digital paintings, we collected 109 recordings of watercolor painting time
lapse videos from YouTube. We chose paintings of landscapes, still lifes and portraits.
We selected only videos containing very little movement of the watercolor paper. Again,
we downloaded the videos in 360 x 640 resolution, cropped each frame to the painting
area, and cropped each video in time to only show the painting process (excluding any
introductions, animations or sketching that might have preceded the painting). We
show some examples in Figure 4.2. As in the digital paintings dataset, we also split this
dataset in a 70:15:15 ratio by video into training, validation and test sets.

A challenge with videos of physical paintings is the presence of the hand, paintbrush
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Figure 4.2: We show several watercolor painting sequences, with each row representing
a temporal sequence in a 50 x 50 patch. These sequences span approximately 5 - 10
minutes each, with frames spaced roughly 1 minute apart. These sequences illustrate
some watercolor-specific challenges, including diffusion of paint (row 1), changes in the
lighting on the paper (row 2), dramatic fading effects as paint dries (row 3), and specular
effects on wet paint (row 4).

and shadows in many video frames. Since these things do not belong to the content
of the painting, we decided to remove any frames that contained these intrusions. We
manually annotated approximately 1000 images to train a binary classifier. We designed
the classifier as a simple convolutional neural network that predicted 1 for the presence
of a hand, paintbrush or large shadow, and 0 otherwise. We used this classifier to remove
these undesired frames from each video, and then manually removed any frames that
the classifier missed.

Patch extraction

Both the digital and watercolor painting datasets contain a relatively small number
of examples for machine learning purposes. To facilitate learning with small numbers
of videos, we use 50 x 50 image patches from each video. We first scaled each video
spatially by a factor of 0.7, to a maximum size (if the background was not cropped out)
of 126 x 224. We then extracted as many 50 x 50 patches as could be tiled across the frame
with minimal overlap, resulting in a maximum of 15 patches per video. We selected this
scaling factor such that most patches contained visually interesting content and some
spatial context (e.g., half of a tree instead of a single leaf). This process produced 1183
digital patch videos and 815 watercolor patch videos.
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N 4.4.2 Challenges of real painting datasets

Although there is much variability in how individual artists complete paintings, there
are also some high-level patterns in our painting datasets. Below, we discuss some
patterns that could present challenges for learning-based systems. Figures 4.1 and 4.2
also illustrate some of these challenges.

Variable video lengths: Artists complete paintings at different rates. This is affected
by the complexity of the painting, and how quickly the artist applies paint.

Stochastic trajectories: Different artists might paint similar scenes in different orders.
For instance, one artist might paint the sky, a house, and then the ground, while another
artist might work in the reverse order. This variance might also occur with the same
artist during different painting sessions.

Variable scales and shapes Over the course of a painting, an artist often makes
strokes that vary dramatically in size and shape. Early on, an artist might use broad
strokes that cover the entire sky, while later, they might use a small brush to add fine
details.

Erasing and undoing in digital paintings: In digital art programs, artists have
the option to undo past actions. The amount of undoing varies from artist to artist -
some artists might completely change the composition of a piece several times during
the course of a time lapse video.

Non-paint effects in digital paintings In digital paintings, the artist has access to
many effects beyond simply filling in color. Tools that apply local blurring, smudging,
or specialized paintbrush shapes are common in digital art applications such as Adobe
Photoshop [155] or Procreate [71]. Artists can also apply global effects simulating varied
lighting or tones. Many artists use a variety of such tools to complete each painting.

Physical effects in watercolor paintings: Watercolor paintings exhibit several dis-
tinctive effects resulting from the physical interaction of paint, water, and paper. These
effects include specular lighting on wet paint, pigments fading as they dry, and water
spreading outwards on the paper from the point of contact with the brush.

* 4.4.3 Synthetic datasets

We design several synthetic datasets to simulate these challenges mentioned above. We
summarize these datasets in Table 4.1.

Checkerboards-basic

We create a simple simulated dataset by filling in tiles in a colorful checkerboard accord-
ing to a fixed pattern in time. Each video frame is 24 x 24, with 3 randomly colored
squares along each edge. We fill in 1 or 2 squares in each time step in a snake-like
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Shape variability "Painting" rate variability
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Trajectory variabilityDataset
Checkerboards-basic - 1-2 blocks filled per step -

Checkerboards-warped Low 1-2 blocks filled per step -
Chekebord-wape Lw -2 loksfile peromsuprptepfile

Superpixels High Variable superpixel sizes Random superpixel filled
per step

Table 4.1: We synthesize video datasets to mimic some of the challenges of working

with real paintings. Here, we present how each dataset was designed to mimic certain

challenges.

Figure 4.3: In the checkerboards dataset, we synthesize videos in which a colorful

checkerboard is filled in over several time steps.

pattern, moving left to right in the first row, right to left in the second row, and left

to right in the next row. We show the frames of an example video in Figure 4.3. This

dataset simulates the challenges of variable painting rates, and variable shapes.

Checkerboards-warped

We warp each video in checkerboards-basic with a random smooth flow field, creating a

video of a distorted checkerboard that is filled in section-by-section in the same trajec-

tory. This effect helps to simulate the challenges of variable painting rates, with more

variable shapes.

Superpixels

To create a more challenging dataset, we synthesize videos based on filling in irregular

shapes in a semi-randomized pattern. We compute superpixels on images from the

CIFAR10 dataset of natural images[91]. We use the SLIC superpixel segmentation

function in scikit-image [2,160], which essentially performs k-means clustering in RGB-

(x,y) space, dividing each image into irregularly-shaped regions of similar colors. To

turn this information into a video, we scan the image from top-to-bottom, filling in a

Figure 4.4: In the warped checkerboards dataset, we synthesize videos in which a ran-

domly warped colorful checkerboard is filled in over several time steps.



Figure 4.5: In the superpixels dataset, we compute coarse superpixels from images
that we randomly selected from CIFAR10. We fill in superpixels from top to bottom,
randomly selecting superpixels that are at the same height.

random empty superpixels in the current row of pixels. Each superpixel is filled with
the average color in the region. This simulates the challenge of stochastic trajectories
and variable shapes. We show examples in Figure 4.5.

In the following sections, we design a model for synthesizing time lapses of digital and
watercolor paintings. We then demonstrate our model first on our synthetic datasets,
and then on our real painting datasets.

* 4.5 Method

N 4.5.1 Problem definition

Suppose we have a collection of time lapse videos {x(')}, where each video consists
of a sequence of frames Xi ,.-. , x originally collected at 30 frames per second, or
f, = 30. Our goal is to synthesize new time lapse videos that:

(1) show realistic painting dynamics,

(2) are computationally feasible to synthesize, and

(3) are visually interesting.

To address goals (1) and (2), we choose to synthesize time lapse videos at an approxi-
mate frequency of f frames per second. We select this synthesis frame rate f for each
dataset to be sufficiently high to capture interesting changes such as individual strokes
or several strokes at once, but sufficiently low to complete each painting in a reason-
able number of time steps. To address goal (3), we enforce that a noticeable, non-zero
change is made at each time step. We elaborate on these criteria in Section 4.5.3, where
we discuss our training procedure.

To synthesize new time lapse videos, we first model the distribution of true time lapse
videos, and then sample from that model. Our modeled distribution should capture each
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XT
Figure 4.6: We model each paint stroke

ot as being generated from the latent

Xt-1 Z &t variable z. Circles represent random
variables, with shaded circles denoting
observed variables. Rounded rectangles

represent model parameters.

true video, sampled approximately at our defined rate f: x0 , XA+E , . .. XT,
where A = I is the synthesis period in number of frames, and e represents somef
allowable variance in time.

E 4.5.2 Model

We propose a temporally recurrent paint stroke model that can learn from videos of
variable lengths. Later, in our evaluations, we demonstrate how this design produces
superior results compared to baseline methods that produce fixed-length videos.

Our recurrent paint stroke model predicts a stroke ot at each time instance t. ot
represents the pixel-wise change that should be added to the previous frame xt_1 to
produce the current frame xt; that is, in the training data, xt = xt_1 + oS. We model

ot as being generated from a random latent variable z. The random latent variable
is conditioned on the completed piece XT and the image content at the previous time
step, xt_1. We show a diagram of this model in Figure 4.6. Note that each stroke by
our definition does not necessarily correspond to a single paint stroke - a stroke could
represent one or multiple physical or digital paint strokes.

We wish to maximize the likelihood:

arg max po (t, xt_1, xT) = arg max pe (JtIxt-1; xT) = arg max pe(JtIz, xt_1; XT)dz.
0 0 0 Jz

Similarly to the model presented in Chapter 2, the integral is intractable, so we use
variational inference [87]. We introduce the distribution q4(zjxt_1, St; XT). We obtain
the following expression:

arg max PO(JtIz, xt1; XT)dz

= arg max Ezq,(zlxt ,6t;xT) [logpe(JtIz, xt.1; XT)] - KL[q4(zjxt_1, 6t; XT)IIp(Z)],
9,$K

where KL[-||-] denotes the Kullback-Liebler divergence. We propose that the distribu-
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tions pO(6tjz, Xt_1; XT), qO(zjt_1, 6 t; xT),p(z) take the form of multivariate normals:

q#(zlot_i, IT, ) = N(z; pp5(Xt-i, Ot, T), E#(Xt-1, 0t, T)11),

p(zIt-1, XT) = N/(z; 0, 1),

where pe(-), O4(-) are learned functions parameterized by <, and o-6 is a hyperparameter.

Then, we can write the loss optimization for our model as:

argmin ALL2(t-1, XT,6t) + LKL(Xt-1,x T,0t),
0,$

where LL2(t-1, XT, 6t) t - (t - t-1) 2 and LKL (t-1, XT, 2t) = ( log O +
E4 + p ), and A is a hyperparameter.

In image synthesis tasks, using L2 as an image similarity loss often produces blurry

results [72]. We instead optimize the Li distance in pixel space as well as the L2

distance in a perceptual feature space, which we denote as LL1 and LVGG respectively.

Perceptual losses are commonly used in image synthesis and processing tasks to produce

sharper and more visually pleasing results [46, 72, 78,121,187]. We use the L2 distance

between normalized VGG features as described in [187].

* 4.5.3 Training

We use two stages of training to facilitate convergence: pre-training, and sequential

training. In each stage, we train on short sequences of frames from our video dataset.

We discuss our sequence selection criteria below.

Sequence selection

As discussed in Section 4.5.1, we wish to produce time lapse videos at a synthesis frame

rate f, such that the synthetic videos capture painting-like dynamics, are sufficiently

short to be feasible to synthesize, and contain a noticeable stroke at each time step. We

choose f based on each dataset's stroke statistics.

As defined in Section 4.5.1, a stroke is the pixel-wise change that occurs in a patch

over some time step A. We compute strokes from true video patches taking the pixel-

wise difference in time. We define a "noticeable stroke" to occupy at least 10% of

each patch by area. To compute true stroke areas, we binarize each true stroke using

an experimentally determined pixel intensity threshold, and then apply erosion and

dilation operators to reduce the effect of noise. We compute the stroke area by summing

the resulting binary stroke mask. Figure 4.7 shows the distribution of the smallest time

step A that produces a noticeable stroke, for each painting dataset.

Based on these distributions, we select the synthesis period for digital paintings to

be Ad = 45 frames = 1.5s with an allowable variance Ed E [-40,40]. For watercolors,
we choose a synthesis period of A, = 600 frames = 20s with an allowable variance

Em C [-400, 400]. The difference in these periods is largely because the digital paintings

dataset contains videos that have already been sped up significantly from real time.
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Figure 4.7: Statistics of "noticeable" strokes for each training dataset. In the first row,

we show the distribution of time differences that result in noticeable strokes. In the

digital paintings dataset, the median and mean time steps are 1 frame and 56 frames

respectively. In the watercolors dataset, the median and mean time step are 210 and

668 respectively. In both datasets, the mean time step is much higher than the median

due to long tails in the distributions. We also count the number of noticeable strokes

in each dataset (bottom row). The mean and median number of strokes in the digital

paintings dataset are 78 and 87 respectively. In the watercolor paintings dataset, they

are 56 and 53 respectively.

Pre-training

We first train the recurrent paint stroke model on short sequences from each video.

Since the model only requires information from the previous time step as input, we

sample all sequences of length 2 from the video dataset that satisfy the above criteria.

We denote training examples as (input, target) tuples. The model is pre-trained on

(Xt-1, XT; Xt), t = 1, .. - , T. This is illustrated in Figure 4.8. We also include sequences

(Xblank, XT; XO) from videos that start with a blank or approximately uniformly-colored

frame, where Xblank is a completely white patch. These starter sequences are important

for teaching our model how to start a painting at test time.
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Figure 4.8: We define a recur-
rent paint stroke model that
predicts the stroke at each
time step, which is added to
the previous frame to predict
the current frame. This model
is trained on adjacent frames
from our video dataset.

Reconstruction loss
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.. t+s- FiZ t+s

KL loss

N(z; 0,1)

Figure 4.9: In sequential CVAE training, the paint stroke model is trained to reconstruct
the correct frame by building on its previous predictions, for a given number of time
steps S.

Sequential CVAE and sampling training

To synthesize a video, we must run our recurrent model for multiple time steps, building
upon its own predictions. It is common when making sequential predictions to observe
compounding errors or artifacts over time [162]. We use a sequential training scheme to
enforce that the outputs of the model are accurate over multiple time steps. We alter-
nate between two sequential training modes: sequential CVAE training and sequential
sampling training.

In the sequential CVAE trainer, the paint stroke model is trained to produce the true
frames for several time steps S, while building upon its own predictions in previous time
steps. This helps to control the divergence of the model's outputs due to compounding
errors. We illustrate this training scheme in Figure 4.10.

In the sequential sampling trainer, the paint stroke model is trained to produce
reasonable strokes by decoding latent samples from the prior distribution. This training
mode is designed to account for a limitation of CVAEs and VAEs. CVAEs and VAEs
typically offer a trade-off between sharp training reconstructions with unreasonable
samples, and blurry training reconstructions with plausible samples [49]. A proposed
explanation is that the decoder portion of the network is trained only on samples from
the distribution q4(zIxt_1, 6t; XT), which might have a high KL divergence from the prior
distribution p(z) that we sample from at test time [49,104]. In other words, the typical
CVAE training scheme does not ensure that all samples from the prior distribution
decode to frames that are likely under the training distribution.

Our system relies on sampling latent vectors from the prior distribution to pro-
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Figure 4.10: In sequential sampling training, we use a conditional frame critic to en-
courage all frame samples from our model to look reasonable. We use a reconstruction
loss on the final frame to ensure that our model completes the painting within the
specified number of time steps T.

duce realistic frames at test time. We use a conditional critic [59] to encourage the
distribution of sampled strokes to match the distribution of true strokes. The critic re-
ceives samples of (xt_1, Xt, XT) as "real" examples, and (xt-1, It, xT) as "fake" examples,
where i2T denotes frames predicted by our model. Although critics and discriminators
are most commonly used in generative adversarial networks [58, 59, 132], they have also
been used to map an imposed prior to a data distribution [104], or as an additional im-
age reconstruction loss in a VAE [84]. Our sequential sampling trainer can be thought
of as a sequential application of [104], which uses an image discriminator in place of a
KL divergence loss to encourage sampled images to be likely under the training image
distribution. In addition to the critic loss, we also introduce a frame similarity loss after
a specified number of time steps r, to encourage the sequential model to eventually pro-
duce the completed painting. Based on the dataset statistics presented in Figure 4.7,
we select r = 40.

M 4.5.4 Network architecture

We use a CVAE similar to the appearance transform model discussed in Chapter 2. As
shown in Figure 4.11, we use implement conditional information through concatenation
operations. This reduces the number of parameters required in the network, and ensures
that information at various spatial scales is incorporated to the network's prediction of
6t.

* 4.5.5 Network training

We implement our model using Keras [28] and Tensorflow [1]. We pre-train our recurrent
model on sequences of length 2 until the validation loss plateaus. We select the hyper-
parameter controlling the reconstruction loss weight to be A = 50. We then alternate
between sequential CVAE training and sequential sampling training, on odd and even
iterations repectively, for approximately 200 epochs, which we determined through vi-
sual inspection of the synthesized validation videos. When we perform sequential CVAE
training, we use sequence lengths of S = 3, 5. For our sequential sampling trainer, we
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Figure 4.11: We implement our recurrent painter model using a conditional variational
autoencoder (CVAE). At training time, the network is encouraged to reconstruct the
current frame xt, while sampling the latent z from a distribution that is close to the
standard normal. At test time, the auto-encoding branch is removed, and z is sampled
from the standard normal.

use WGAN-GP [59] with the default gradient penalty weight of 10, and a critic model
based on [27], with 5 critic training iterations for every generator training iteration. In
all stages of training, we use a batch size of 16 and a learning rate of le- 4 .

* 4.6 Experiments

* 4.6.1 Synthetic results

We first demonstrate the utility of the different training schemes presented in Sec-
tion 4.5.3 on our synthetic datasets. In image and video synthesis tasks, artifacts and
compounding errors are common challenges [27, 162,194]. We show in Figure 4.12 that
even on a simple dataset such as checkerboards-basic, our pre-trained recurrent model
produces artifacts and errors that compound over time (e.g., squares being filled with
faded colors). Sequential CVAE training reduces some of these errors.

We show predicted videos from more complex synthetic datasets (checkerboards-
warped, superpixels) in Figures 4.13 and 4.14. These figures show that even sequential
CVAE training is insufficient for consistently producing artifact-free strokes, or for com-
pleting each image in the expected number of steps. Alternating between a sequential
CVAE trainer and a sequential sampling trainer helps with both of these issues.
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(a) Pre-trained

(b) After sequential CVAE training

Figure 4.12: Predicted videos from the checkerboards-basic dataset, after pre-training,

and after sequential CVAE training. a) Pre-training alone produce errors such as

squares filled with the wrong color (all rows), or too many squares being filled in one

time step (rows 2-3). b) Sequential CVAE training helps to fill in the correct number

of squares, although some squares are still partially filled.
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(a) Pre-trained

(b) After sequential CVAE training

(c) After alternating (sequential CVAE and sequential sampling) training

Figure 4.13: Predicted videos from the checkerboards-warped dataset, after pre-training,
sequential CVAE training, and alternating sequential training. a) The pre-trained
model produces many artifacts such as partially-filled regions, and regions filled in
an incorrect order. b) Sequential CVAE training helps to alleviate some of these issues.
c) Alternating between sequential CVAE training and sequential sampling training pro-
duces the most accurate region filling trajectory, with only a few errors in the form of
partially-filled regions.
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(a) Pre-trained

(b) After sequential CVAE training

(c) After alternating (sequential CVAE and sequential sampling) training

Figure 4.14: Predicted videos from the superpixels dataset, which contains complex
shapes and a more stochastic filling pattern. a) The pre-trained model produces many
artifacts, and often does not fill superpixels in order from top to bottom (highlighted).
The model also does not complete the "painting". b) Sequential CVAE training also
produces artifacts, incorrect filling orders (highlighted), and does not complete the
frame. c) Our alternating sequential training scheme reduces the number of artifacts,
and also reduces instances of superpixels being filled in the wrong order.



U 4.6.2 Digital and watercolor painting results

We evaluate our predicted painting time lapses both qualitatively and quantitatively.
The stochastic nature of our task makes it challenging to compare our predicted videos
to ground truth videos. We do not expect our model to always create paintings the way
that the original human artist did. However, our model should capture a distribution
of plausible painting time lapses - that is, we expect our model to consistently produce
time lapse videos that look like they were created by human artists. We elaborate on
these qualities in the following sections. We also expect the ground truth time lapse
videos to be captured as a part of our model's learned video distribution.

We investigate some related baseline methods:

" Linear interpolation (interp): As a simple baseline, we simply linearly inter-
polate each pixel value in the frame from white (a blank canvas) to its value in
the completed piece of art.

• Deterministic video synthesis (unet): In image synthesis tasks, it is common
to use a simple encoder-decoder architecture with skip connections, similar to U-
Net [137], to synthesize each image [72]. We adapt this technique to synthesize
the entire video at once.

" Stochastic video synthesis (vdp): In our visual deprojection work [14], we
demonstrate how to synthesize distributions of videos of a fixed length. We apply
this technique to the synthesis of time lapse videos.

We experiment with training each method on digital or watercolor paintings only
(-digital and -watercolors respectively), as well as on the combined paintings dataset
(-paintings).

Qualitative results

In Figures 4.15 and 4.16, we examine time lapse videos created for digital and water-
color paintings respectively. These results are sampled coarsely in time to show the
progression of the painting over 30 steps. In the interest of space, we only compare our
method to the unet and vdp baselines, omitting the simpler interp baseline in this qual-
itative evaluation. We present only models trained on the combined paintings dataset,
since these models produce the most visually consistent results across the digital and
watercolor validation sets. The ground truth videos in these figures show how human
painters tend to work in a coarse-to-fine manner, using broad strokes near the start
of a painting, and finer strokes near the end. Our method produces more plausible
paint strokes than the baselines. These figures also show the most similar predictions
made by each baseline to the ground truth video. Our prediction often shows a similar
trajectory to the ground truth painting, indicating that our model captures realistic
trajectories in its distribution of videos.

In Figure 4.18, we show several short sequences at a finer time scale. In addition
to working in a coarse-to-fine manner of time, the human artist tends to work within a
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single object or a few object boundaries in each time step, making strokes that spatially
and semantically coherent. Our method also makes localized changes compared to the
baseline vdp, which changes the entire patch in each time step. In Figure 4.17, we
demonstrate that our model can be used to synthesize a variety of plausible painting
trajectories.

Quantitative results

We also quantitatively evaluate how well each method captures the distribution of
realistic time lapse videos. For our evaluation videos, we extract sequences from the
patches in each test set, using the temporal sampling rates defined in Section 4.5.3. We
filter these sequences using the same criteria that we use for the training sets of each
method, removing frames that exhibit no change from the previous frame. We then
crop or pad (using the last frame) each video in time to be 40 frames long. We evaluate
several video similarity metrics:

" Best (across k samples) overall video similarity: As in [14], for each test
patch, we draw k sample videos from our model and evaluate the most similar
predictions to the true video. We show how this loss changes for varying values of
k. This metric measures whether a time lapse video is likely under the distribution
modeled by our system.

Accurately evaluating image similarity is still an open challenge [73,143]. Apart
from common per-pixel measures such as mean absolute error (LI), the literature
in image and video synthesis uses human evaluations [73, 127, 165,194] and deep
perceptual similarity metrics such as LPIPS [187]. Works that use GANs for image
synthesis often use Inception Score [143], or more recently, the Fr chet Inception
Distance (FID) [63], to evaluate the similarity of the synthesized and real image
distributions [82,127]. We use Li and LPIPS [187] measures to evaluate frame
similarity. We do not report distribution similarity metrics such as FID, as it is
unclear how these metrics can be adapted to videos.

• Best (across k samples) stroke shape similarity: We compare the shapes
of strokes made in the ground truth video to those made in our predicted videos,
to show that our model paints in similar semantic regions. As discussed in Sec-
tion 4.5.3, we define stroke area as a binary map of the changes made in each time
step. We show some examples of stroke areas in Figure 4.19. For each test video,
we compare each true stroke to the most similar predicted stroke, as measured
by intersection-over-union (IOU). We report the average IOU over all non-empty
ground truth strokes. Intuitively, this metric describes whether the collection of
ground truth stroke shapes exists in the predicted video, regardless of the order in
which they were performed.

In Figures 4.20 and 4.21, we show the effect of the number of sampled videos on
several video similarity metrics. We summarize some of these results in Tables 4.2
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Figure 4.15: Videos predicted using input patches from the digital paintings test set. Each group
of 4 rows shows the input patch on the left, the ground truth video in the first row, and predictions
made by unet-paintings, vdp-paintings and ours-paintings in the subsequent rows. For the stochastic
methods vdp-paintings and ours-paintings, we show the best video (with the lowest Li error compared
to the ground truth video) out of 2000 samples. The baselines (unet-paintings, vdp-paintings) appear
to gradually interpolate between a grey frame and the completed patch. In contrast, our method uses
strokes that vary from coarse to fine spatial scales over time. In the first three examples, our method
fills in similar regions in each time step compared to the ground truth video.

Eu
U

H,
U,
U
Eu--

I

mom
Fit"

i 
I



U.....
U.....
MEEE

U1
Er IF

,-iiI
Figure 4.16: Videos predicted using input patches from the watercolor paintings test set. Each group

of 4 rows shows the input patch on the left, the ground truth video in the first row, and predictions

made by unet-paintings, vdp-paintings and ours-paintings in the subsequent rows. For the stochastic

methods vdp-paintings and ours-paintings, we show the best video (with lowest Li error compared to

the ground truth video) out of 2000 samples. Our method uses fewer interpolation-like effects than the

baseline methods, painting in regions rather than everywhere at once. In all four examples, our method

uses a similar painting trajectory to the ground truth video.
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(a) Digital paintings

(b) Watercolor paintings

Figure 4.17: Several videos created by sampling from our model. Each group of 4 rows
shows 4 different time lapse video samples created from the same input patch. Our
method produces diverse and plausible painting trajectories.
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(b) Watercolor painting

Figure 4.18: A close-up of short sequences from the digital and watercolor test sets.

In each group of 3 sequences, we show the ground truth (top), predictions made by

vdp (middle), and predictions made by our model (bottom). Our model makes coarser

changes near the start of the sequence, and adds layers of finer details near the end.

Our model also makes changes that are spatially localized, working mostly on the jar

in the first video, and on the building in the second. This produces an effect that is

more similar to the ground truth process than the baseline.



I
Figure 4.19: Examples of stroke areas computed from a video, with the true video
frames (top) and computed stroke areas between each pair of frames (bottom).

Method Best video similarity (top 10)
Li LPIPS

interp 0.52 (0.12) 0.25 (0.06)
unet-digital 0.15 (0.08) 0.10 (0.05)
unet-paintings 0.15 (0.07) 0.10 (0.05)
vdp-digital 0.15 (0.07) 0.10 (0.05)
vdp-paintings 0.14 (0.07) 0.10 (0.05)
ours-digital 0.13 (0.06) 0.10 (0.04)
ours-paintings 0.13 (0.06) 0.09 (0.04)

Table 4.2: We compare 2000 samples from our predicted video distributions to the
videos in our digital paintings test set.

and 4.3. As the results indicate, the baselines are much more capable of accurately
representing watercolor paintings compared to digital paintings. This is likely caused by
differences in dataset size. While we have approximately the same number of videos in
the digital and watercolor painting datasets, there are fewer sequences in the watercolors
dataset that satisfy our sequence criteria compared to the digital paintings dataset (by
about a factor of 5); thus, the watercolor dataset is relatively easier for video-based
methods compared to our recurrent method.

E 4.7 Summary and discussion

In this chapter, we explored a novel video synthesis problem: creating time lapse videos
that depict the creation of paintings. We designed a recurrent probabilistic model to
capture the seemingly random decisions of human painters. We demonstrated limi-
tations and design decisions of our model on several synthetic datasets. Finally, we
applied our model to digital and watercolor paintings, and sampled from it to synthe-
size realistic and varied paint strokes. Our results indicate that a recurrent probabilistic
model is a powerful tool for capturing stochastic effects from small video datasets.

Our work in this chapter presents a first look at how to tackle this video synthesis
problem. Here, we present a road map for addressing limitations of our approach, with
the goal of formulate a more complete solution.
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Figure 4.20: Best video similarity (across multiple samples) compared to the digital

paintings test set. We show the average similarity across the top 10 best sample videos

(left) and the single best sample video (right) compared to each test video. Dotted lines

indicate deterministic methods. We show standard deviations as shaded regions for our
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Method Best video similarity (top 10)
Li LPIPS

interp 0.41 (0.11) 0.22 (0.04)
unet-watercolors 0.11 (0.07) 0.09 (0.05)
unet-paintings 0.11 (0.07) 0.09 (0.05)
vdp-watercolors 0.10 (0.06) 0.09 (0.05)
vdp-paintings 0.10 (0.05) 0.09 (0.05)
ours-watercolors 0.13 (0.04) 0.10 (0.04)
ours-paintings 0.12 (0.05) 0.10 (0.05)

Table 4.3: We compare 2000 samples from our predicted video distributions to the
videos in our watercolor paintings test set.

Patch-based approach. We demonstrated our method on 50 x 50 patches from each
piece of art. A clear next step would be to adapt this method to synthesize time lapse
videos of full paintings. However, our method is designed to always synthesize noticeable
strokes within each patch. Naively applying it to every patch in a painting would likely
produce unrealistic progressions where every patch changes in each time step. Capturing
the movement of the painter's attention throughout the scene will likely be crucial to
the realism of a time lapse of a painting. This might be implemented using an explicit
attention mechanism, such as predicting a probability map of which object the artist
will focus on next, and only synthesizing strokes within that object. A multi-scale critic
[127, 169] might also be useful for encouraging realistic changes across coarse and fine
spatial scales.

Limited evaluation of model design. We presented qualitative evaluations of our
training schemes in Section 4.6.1. A more complete analysis should include ablation
studies of these training schemes on the real painting datasets as well. It would also be
interesting to examine other design decisions such as modeling paint strokes ot instead
of frames xt, or the choice of the number of latent dimensions.

Limited evaluation of distributions. Many of the evaluations presented in this
chapter focus on select samples from our learned distribution of videos (e.g., Figures 4.15
and 4.16), or the closest sample to the ground truth video (e.g., Figures 4.20 and 4.21).
It is unclear how to quantitatively evaluate the quality of our learned video distributions,
since the ground truth videos represent sparse samples from a difficult-to-define space of
realistic time lapse videos. Human evaluations have been used to quantify the realism
of one synthetic video distribution compared to another [165]. We should also use a
human study to compare the realism of videos randomly sampled from our method to
those generated by baseline methods.

Limited evaluation metrics. Although our qualitative results in Figures 4.15 and 4.16
show that our method produces strokes with a distinctly different visual quality from the
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baselines, the difference is not as pronounced in our quantitative metrics. Developing
representative metrics is an active area of research for image synthesis [72]. A human
study (as described above) might be useful for quantifying these differences.
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Chapter 5

Discussion and Conclusion

In this thesis, we tackled the challenge of learning from small image and video datasets.
In Chapters 2 and 3, we focused on learning to synthesize images for the downstream
tasks of improving few-shot object classification and one-shot medical image segmenta-
tion. In contrast to hand-engineered data augmentation transformations that synthesize
examples with limited realism, we learned a distribution of transformations from exist-
ing data. We applied sampled transformations to existing examples, creating realistic
and varied new labeled examples. We showed that training supervised systems with our
synthesized examples improves classification and segmentation performance compared
to existing data augmentation techniques.

In Chapter 4, we presented a novel image synthesis task: synthesizing time lapse
videos depicting the creation of paintings. We collected a small dataset of a few hundred
time lapse videos of digital and watercolor paintings being created, with each video
representing a single example of the myriad ways to paint a scene. We presented a
recurrent model along with a novel training strategy, and showed that our model could
be used to synthesize plausible visual stories of how a painting might have been created.

A major contribution of this thesis is highlighting the usefulness of learned trans-
formations for applied image synthesis tasks, particularly when training examples are
scarce. We showed how to learn transformations from existing data to avoid the costly
process of hand-engineering data augmentation transformations. At first glance, this
proposal seems circular: how can we train a model to produce transformations when
we don't have enough data to train a supervised classification or segmentation system?
The answer, as we describe below, is that transformation models can be easier to train.

There are several key advantages to learning transformations that enable learning
from limited data. The first is that some transformations are generalizable across
examples. In Chapter 2, we learned rotations and lighting changes. In the context
of classifying Magic: The Gathering cards, these transformations are applicable to all
examples, regardless of their class label. Secondly, the space of transformations might
require less application- and dataset-specific expertise, and can be easier to define. For
example, while we might have a hard time describing the space of all Magic: The
Gathering cards we would like to classify, we know that photographs of the same card
can differ from each other by spatial translations and rotations, as well as lighting
intensity and color. We incorporate this outside knowledge of the classification task
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into our model using constraints on the space of transformations: we encourage our
model to learn smooth flow fields to represent rotations, and smooth color changes to
represent changes in lighting. The third advantage of transformations is that they do not
always need to be learned from labeled examples. In Chapter 2, we used training pairs
that belonged to the same class, which requires class labels. However, in Chapter 3, we
demonstrated how to learn dense flow fields and intensity changes from un-segmented
examples.

A theme throughout this work is the synthesis of images using transformations.
Rather than directly outputting synthetic images, our models output transformation
functions that are then applied to existing images. This approach has two major advan-
tages compared to direct synthesis. Firstly, using transformations reduces the burden
on the model to accurately capture details of the input image, helping to preserve se-
mantic content (which is crucial in data augmentation), and image sharpness (which is
helpful for creating visually pleasing art). Secondly, transformations provide an avenue
for imposing interpretable constraints on the space of synthesized images. For instance,
in Chapter 3, by encouraging our model to learn smooth flow fields, we synthesized
brain MRI scans and label maps that are anatomically consistent.

In each project we presented, it was important to synthesize examples that were
realistic and diverse. We synthesized realistic examples using transformations that
we learned from real examples. This is in contrast to most existing data augmenta-
tion methods that use simple, hand-engineered transformations. These transformation
functions can be insufficient for simulating realistic effects such as anatomical differ-
ences between MRI scans, or realistic lighting on objects. We demonstrated several
techniques for synthesizing diverse examples, such as decomposing transformations into
independent spatial and appearance components that we could mix-and-match (Chap-
ters 2 and 3) and probabilistic modeling of distributions of transformations (Chapters 2
and 4). We hope this thesis inspires future work that combines human knowledge with
data-driven models to extend the power of machine learning to less-explored applica-
tions.
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