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Abstract

Performance engineering is performed in languages that are close to the machine, es-
pecially C and C++, but these languages have little native support for concurrency.
We're deep into the multicore era of computer hardware, however, meaning that scal-
ability is dependent upon concurrent data structures. Contrast this with modern
systems languages, like Go, that provide support for concurrency but incur invisible,
sometimes unavoidable, overheads on basic operations. Many applications, particu-
larly in scientific computing, require something in between. In this thesis, I present
DEF, a language that's close to the machine for the sake of performance engineering,
but which also has features that provide support for concurrency. These features are
designed with costs that don't impede code that doesn't use them, and preserve the
flexibility enjoyed by C programmers in organizing memory layout and operations.
DEF occupies the excluded middle between the two categories of languages and is
suitable for high performance, scalable applications.

Thesis Supervisor: Nir Shavit
Title: Professor of Computer Science
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Chapter 1

Introduction

1.1 Performance Engineering versus Scalability

Inasmuch as a new class of systems languages that use garbage collection (GC) have

emerged at the forefront of high performance programming, the C and C++ pro-

gramming languages, which lack GC, maintain a position of prominence. Part of

this, naturally, is due to the sheer volume of legacy code. Applications and operating

systems are implemented in C, and rewriting them in a higher level language may

be impractical, undesirable, or even impossible. But new applications continue to be

written in these languages. Of the popular languages, today, C and C++ are unique

because they permit performance engineering, the ability to leverage knowledge of

the specific hardware to optimize source code. Performance engineering is a prac-

tice that's only available to programmers of languages that are close to the machine,

with data types and operations that intuitively and directly correspond to hardware

primitives.[81]

A language that's close to the machine doesn't merely run fast in the common

case - it provides the programmer with the tools necessary to organize data layout

in memory, taking into account alignment, packing, and location on the stack or on

the heap. It also doesn't insert hidden operations such as array bounds-checking,

pointer liveness checking, or checking a divisor for zero. In higher level languages all

of these features are provided for the safety of the programmer, but a language that's
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close to the machine eschews them in order to provide the programmer with the tools

necessary to maximize performance.

Paradoxically, however, it's runtime support and the abstraction of a language

that contribute most significantly to scalability through concurrency. Two broad cat-

egories of concurrency are relevant: concurrent data structures and task distribution.

As regards concurrent data structures, when multiple threads traverse a concurrent

object, if one of them removes a node it must regard the other threads as invisible

readers that may be holding references to the node it's trying to remove. In the

presence of a garbage collector, every reachable object is tracked and the thread may

simply drop its reference to the removed node. Not so in the absence of a garbage col-

lector. Merely dropping the reference leaks memory and would eventually cause the

program to crash with enough use. However, garbage collection represents an unac-

ceptable performance cost for certain applications, and it's intentionally disincluded

from languages like C, C++, and Rust. The naive solution in one of these languages

is to lock the data structure, but this is slow because it causes threads to queue up on

the lock, and even reader/writer locks introduce contention on read-heavy workloads.

To the second point, task distribution is a commonly achieved through language

or library extensions like Cilk, OpenMP, TBB, and others.[10, 13, 78] Even here,

however, there is a scalability problem in the way of contention created by commu-

nication between threads. Concurrent memory reclamation hints at this problem,

as solutions for low level languages largely run into this space. But the degree of

contention in a shared object is typically the make-or-break property in any prac-

tical test; memory reclamation notwithstanding. How ever well the load balancer

distributes tasks, if they thrash in the cache, their "communication" is a performance

bottleneck. Modern commercial CPUs include hardware transactional memory, which

is an exceedingly low-contention feature where updates to commonly read memory

are rare. A language may even employ hybrid transactional memory to supplement

hardware transactions when the latter don't provide a forward progress guarantee.

This includes invisible counters, branches, and instructions (in the slow path). But,

whereas a high level language may include synchronization abstractions that are (or

20



could be) implemented using transactions, C and C++ support nothing more than

intrinsics for the hardware. Roll your own hybrid transactions. Every time.

To sum up: the problem for a low level language is two-fold: memory reclama-

tion and contention, and the high level language can easily address both. Memory

reclamation is achieved through GC, and contention can often be addressed with

transactions. A programmer who's willing to accept the cost of these features has a

general solution to concurrency, but these costs are antithetical to the design philoso-

phies of contemporary close to the machine languages.

It is the space in which performance engineering and concurrency meet that I'm

primarily concerned. Languages exist on a spectrum between safety and ease of use

(high level), and closeness to the machine (low level). The distinctions are quantized

in that the difference between the levels comes down to particular features that appear

in runtimes or in the compiled code. But in practice there's an excluded middle. Even

the aforementioned modern systems languages tend not to provide programmers with

fine-grained control over, e.g., memory layout, instead making a best effort to be fast

in the common case. They are highly successful, as evidenced by the widespread

adoption of languages like Go, but applications in which performance engineering is

required could never make the transition.

Contrast this with concurrent data structures implemented in C or C++: the

mere problem of invisible readers has generated an enormous amount of research

with numerous memory reclamation techniques. Even the literature presenting the

concurrent data structures, themselves, tends to paper over the memory reclamation

question. Implementing such a structure in C or C++ directly from a published

research paper is non-trivial for this reason, alone. Not that it isn't done - many

applications use concurrent data structures - merely, the languages provide no native

support for it. Every implementation reinvents the wheel of memory reclamation, and

programming hybrid transactions to deal with contention is a perilous undertaking,

not only difficult to get right, but it's also difficult to debug.

The problem of scalability in low level languages compounds as new features,

like hardware transactional memory, begin to appear in commercial CPUs. Again,
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reimplementing hybrid transactions for each use is a fraught exercise. And as new

and faster techniques for software transactions are developed, source code requires

reimplementation rather than a simple recompile. It's worth observing, here, that

the code transformations for hybrid transactions are fairly rote; merely, it's easy

to make a mistake when done by hand, and acts as the quintessential example of

duplicated code (for the two or more paths) that make such code difficult to maintain

at a correctness level.

1.2 Performance Engineering and Scalability

C and C++ aren't bad languages for making scalability difficult any more than Go

is a bad language for making performance engineering impossible. These are design

decisions. The languages are well suited for the purposes for which they were designed.

But none of these were designed for implementing performance engineered concurrent

data structures.

DEF, introduced in this thesis, is a new programming language with high level

abstractions for concurrency-related features, but it also allows programmers to per-

formance engineer their code. Runtimes and abstractions impose unavoidable over-

heads only insofar as they're explicitly used by applications, and don't impose hidden

costs or impede a programmer's ability to performance engineer their code. The goal

of DEF is to provide high level support for concurrency, particularly in the imple-

mentation of concurrent data structures, in applications that are otherwise geared

towards maximum performance on each CPU core.

DEF provides native support for on demand automatic memory reclamation for

concurrent data structures by way of the retire keyword that stands in where free

would in a serial application. This is an approach to concurrent memory reclamation

that provides some of the benefits of GC without requiring an entire application to pay

the cost of generalized GC. Moreover, the cost of the runtime handing retired memory

is borne by an application only to the degree it's actually used by the application's

concurrent data structures.
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Atomic operations are also natively supported, including atomic blocks of code

implemented as hybrid transactions. As in any low level language, primitives are

available, and nothing prevents a user from specifying specific Read-Modify-Write

(RMW) instructions through intrinsics or manually implementing hybrid transactions

using hardware transaction intrinsics. But the syntax is provided for these atomics in

a way that keeps the code simple, and hybrid transactions as correct as the hardware

fast path written by the programmer.

This thesis includes sample source code and micro-benchmark results for various

concurrent data structures implemented in DEF as compared with C counterparts. As

such, some space is also devoted to the DEF macro language, Interpreted Structural

Macros (ISM), which was crucial for implementing the benchmarks and duplicating

code with minor variations in ways that are difficult to accomplish in C or C++.

DEFISMs are Lisp-like and permit various DEF constructs to be treated as data -

not merely text to be substituted. They also operate at many levels of the parser,

not just at the function or data structure level as C++ templates do.

Last, acknowledgment must to be given to the fact that a tremendous amount of

legacy code is already written in C and C++, and it's unreasonable to expect it to

be rewritten. DEF, therefore, is designed with the goal of transparent C integration,

such that a module written in DEF can be dropped seemlessly into a C application.

C types and functions defined in header files are available to DEF modules, and DEF

types and functions can be made available to C modules as easily as they are to other

DEF modules. The same utility, defghi, that generates DEF interface files (.def i)

from DEF source files (. def ) can generate C header files. This was helpful not only in

the implementation of the micro-benchmarks, but also acts as a principled approach

to language integration in general, as most languages work hard to integrate with

C. DEF is available, not merely as a tool for writing fast concurrent data structures

for itself, nor even just C and C++ as well, but for any language that requires

performance engineered concurrent data structures.
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1.3 Research Contributions in This Thesis

Ample acknowledgement is due to my coauthors, and certainly to Nir Shavit, my

advisor, in the undertaking of the work presented in this document. But the following

is an itemized account of my specific work and the contribution it makes to the field.

To the best of my knowledge, these contributions are new or meaningful improvements

over existing work.

" ThreadScan: I wrote the ThreadScan library, in its entirety, and benchmarked

it. ThreadScan is the first automatic /semi-automatic approach to memory

reclamation for C, apart from general-purpose garbage collection. As with a

garbage collector, it imposes no burden on data structure traversals, no addi-

tional per-node memory requirements in the way that, e.g., reference count-

ing does, and (because of its limited scope) performs at the rate of a "leaky"

implementation. Versus reference counters or hazard pointers, which burden

traversals, ThreadScan is light-weight and low contention for read-heavy work-

loads. Epoch-based mechanisms, which impose strict rules on pointer validity,

don't allow the pointer freedom ThreadScan provides. As against any of these,

ThreadScan is automatic or semi-automatic (depending on how it's used).

• Forkscan: Like ThreadScan, I did the complete implementation of Forkscan

and benchmarked it. Forkscan is an incremental improvement on ThreadScan

in that it maintains the theoretical lock free property of a data structure that

uses it.' Moreover, it solves the general problem of references that escape the

stack. Forkscan provides the same guarantees as a conservative garbage col-

lector, but unlike the latter, tracks only objects flagged by the programmer.

Again, the limited set of objects being tracked creates a multitude of opportuni-

ties for optimizations unavailable to general purpose garbage collectors. Besides

ThreadScan and Forkscan, I am not aware of any prior work with this set of

properties.

'Caveat: From a systems perspective, it's important to note that Forkscan contains a lock, but
Forkscan's lock is not practically different from an allocator's lock - a lock that is generally accepted
as not infringing on the theoretical lock freedom of a data structure.
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* The DEF Programming Language: I designed and implemented the DEF

language and compiler, as well as the defghi utility. I also implemented some

of the concurrent data structures used in the benchmarks. DEF is the only

language, of which I am aware, that exists at the intersection of languages that

are close to the machine (and, therefore, enable performance engineering of

code), and languages with high level native support for the implementation of

concurrent data structures. Existing in this intersection means integration of

concurrent memory reclamation through a retire interface into a close to the

machine language, a technical barrier, and the inclusion of native atomic blocks

into the same, a philosophical barrier. Since these features are inherently high

level, C has neither of them and, as a matter of its design goals, never will. The

Go language, designed for high performance concurrent programming, is not

close to the machine and therefore does not permit performance engineering, by

design. It also has a garbage collector, which is fast but unacceptable for close

to the machine programmers. Rust, the other language typically cited in these

contexts, is designed for safe concurrent computation with no overhead, but is

not designed for implementing concurrent data structures. Its safety features,

on the contrary, prohibit sharing pointers to objects among threads.

1.4 Structure of This Thesis

The chapter on Background is provided as justification of the need for a language in

this space, including relative performance characteristics of C and Go. Go is treated as

the architypal modern systems language designed for performance, since it advertises

comparable speed to C in similar applications, but which trades safety for flexibility

in performance engineering. Additionally, since a good deal of the work that went

into the development of DEF was bound up in addressing the question of concurrent

memory reclamation, space is allotted to explanations of conventional approaches to

this problem.

After that, in the Retire chapter, the semantics of on demand automatic memory
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reclamation are laid out, and my work on ThreadScan and Forkscan are described. As

published, neither work quite fits the required semantics for the retire abstraction,

but Forkscan was adapted to implement that feature in DEF, so an explanation of the

changes that were made (as well as some optimizations to the original implementation)

is necessary.

The language, itself, is described in the DEF Overview chapter. This includes

syntax, the relationship between operations, data, and hardware, and the high level

features that facilitate the development of concurrent data structures. As mentioned

above, it also lays out ISM and compares it to other macro languages. Since the

fundamental contribution of DEF is the synthesis of high level abstractions into a

language that's close to the machine, special attention is given to how they interact

so as not to impose invisible (let alone unavoidable) overheads. One is particularly

interested in the principle of least surprise regarding performance characteristics of a

DEF application.

Examples and empirical microbenchmark results are presented in the Practical

DEF chapter. DEF is designed to be as readable as, e.g., the concurrent data struc-

tures expressed in the literature, and also to provide syntactic structures that could

be ported back into the literature, itself. A couple of specific data structures are

developed and benchmarked, and a wider suite of benchmark results are provided to

demonstrate DEF's performance and ease of development.

Last, although the language is already sufficiently developed for common use in

many applications, there's more work to be done - both in the design of the language

and in the implementation of the compiler. DEF takes a step out into a space that

isn't well-explored, at the intersection of low level and scalable groups of languages,

and opportunities abound for advancement. The Conclusions chapter describes some

of these opportunities and challenges, and summarizes what I believe are the core

contributions DEF makes to the field.
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Chapter 2

Background

Tension exists between a language's ability to do low level manipulations of memory,

and the presence of high level abstractions. To appropriate a Twain-ism, "reports of

C's death have been greatly exaggerated." C hangs on, not just because of legacy

code, but because of its ability to operate in a space ignored by high level languages,

even systems languages. Yet it's missing crucial support for multicore programming

the latter provide.

I argue this excluded middle isn't inherent, but speculate that the philosophies

have generally kept them apart; low level languages don't include high level abstrac-

tions for anything because the abstractions don't give programmers tight control over

sequences of instructions and memory layout. But if the low level primitives exist

that give programmers control, there's no contradiction in providing the abstractions,

too, unless they infringe on the former by design. Paradoxically, actually engineering

scalable code is typically better handled by abstractions than individual programmers

(the case for this, below). DEF is designed to do both, and there have been (and

remain) clear hurdles to this kind of integration.

This chapter is primarily about the state of these two dimensions, and why both

are relevant to modern software development. I want to tell a story, here, about

why the state of programming languages is what it is today, why there's an excluded

middle between these two philosophies, and why anybody cares about that middle.

The answer to these questions provides motivation for thinking about a new kind of
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Figure 2-1: The error in conflating Moore's Law with its popular formulation. Left:

Intel and AMD CPU clock speed over time. Right: Transistor density over time.

progranuning language - not one that tries to be everything for everybody, but merely

tries to fit the excluded niche in which people care about performance engineering and

scalability for their code. The story begins with the traditional way in which programs

attained performance: "free" (from the perspective of the programmer) increases in

hardware clock speed, and non-free tailoring of code to specific architectures.

2.1 The Case For Performance Engineering

For decades, Moore's Law was popularly understood as the idea that the clock speed of

CPU's doubled every year or two. What Moore actually stated was that the number of

components per integrated circuit doubled every year.[74] The erroneous conflation of

the popular notion with the actual statement became apparent as the rate of increase

in CPU clock speeds declined, even as transistor density maintained its trajectory

(fig. 2-1; although even Moore's actual Law appears to be flagging). 1 Increasing clock

speed along with reduction in transistor size led to material limitations in the silicon.

In short, the silicon in which transistors are laid out has a maximum energy density

before it melts.

Note, here, that clock rate is not equivalent to performance, even though the one

could safely be used as a stand-in for the other in days of yore. Increased tran-

'Data up until 2014 acquired from [33]. Subsequent data (2015 and later) was gathered from [27]
and the Intel website. Transistor density is estimated based on limited released data from Intel.
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sistor density continued to allow for performance improvement - just not in the

"free lunch" sense that software developers had come to rely on. As clock speed

leveled off, developers and compiler writers, alike, had to take into consideration

new and ever-increasing-length vector instructions with Single-Instruction-Multiple-

Destination (SIMD) semantics. Memory hierarchies, a perennial double-edged sword

in performance, similarly enjoyed more widespread focus. Knowing something about

the size of a cache line, or the behavior of a branch predictor can make or break the

performance of an application. Before even getting into discussion of the multicore

explosion, there is an increasing potential to exploit architectural subtleties even on

a single core.

This is the grounds for taking performance engineering seriously as a practice

in the modern era. Inasmuch as modern systems languages are optimized for the

common case to be competitive with low level languages, C and C++ provide a degree

of control over the instructions that will be executed and the layout of memory that

these languages don't. C, designed in 1972, was tasked with implementing the AT&T

Unix kernel.[81] Close to the machine, as a design goal, was necessary because an

OS has to be fast, and hiding implementation details presents a hazard to that goal.

C++, in the early 1980's, was designed to fit the same niche, but also provide greater

flexibility for application development by adding classes and other features.[87] As

with C, C++ provides maximal control over instruction sequences and memory layout

for end programmers, but avoids any native abstractions for which programmers don't

have this kind of control.

By contrast, modern systems languages like Go, hide implementation details for

common operations. In Go the location of a newly allocated object, whether on the

stack or heap, is undefined.[43] As an implementation, Go will allocate an object on

the stack unless it can't prove that no references escape. This balances performance

with abstraction in a way that's useful to some kinds of applications. But choosing

where to allocate memory is an incredibly powerful tool for handling performance:

an MCS lock implementation, for example, might allocate a node on a thread's stack

even though other threads will definitely access it.[69] Allocating it on the stack means
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that cleanup is as simple as popping the stack frame. Go doesn't define where neinory

is allocated, or let programmers perform explicit pointer arithmetic, or any number

of other things that are common in high performance C code.

C and C++ offer a degree of control over the generated assembly code that is

missing from modern languages. Abstractions are the conventional approach to lan-

guage design, leading to hidden costs that are neither avoidable, nor consistent across

versions of the compiler. Clearly, low level languages not only have life left in them,

but aren't going to go anywhere unless and until they're displaced by another low

level language. But this story gets more interesting when multicore systems come

into play, as they do since the aforementioned "free lunch" of hardware speedup has

diminished.

2.2 The Multicore Revolution

Go is successful, not in spite of the abstraction it provides to programmers, but

because of it. Abstract representation of common concepts lowers the bar for imple-

menting big programs, and reduces the complexity of the code, reducing bugs. The

obvious question is how one tunes the performance of a program that doesn't give

the programmer access to the nitty-gritty details? But this question is obviated by

the fact that the real increase in performance potential brought about by Moore's

Law (the real one, not the popular one) is multicore CPUs (fig. 2-2). Scalability is
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cache line as the first object.

the name of the game in modern performance brought about, not by making indi-

vidual cores faster, but by increasing the number of shared memory cores in a single

computer. Of course, such systems are harder to program.

Scalability is a non-trivial problem, but well-studied, and language abstractions

that facilitate scalable code are in demand. There are two ways of thinking about

scalability that each warrant discussion: parallelism and concurrency. Parallelism, for

the purposes of this thesis, is concerned with the maximum speedup over sequential

execution that can be achieved, no matter how many cores, floating point units, or

other hardware features are provided. Concurrency is a property of a program: it's

the interaction of independent operations occurring simultaneously, particularly as

many operations are performed on common objects by different threads.

Both of these paradigms have important implications for performance engineering,

especially since the presence of other abstractions representing, e.g., safety features,

can require performance trade-offs that might inhibit scalability. Consider the exam-

ple of a program in which many threads are accessing a shared array, as in fig. 2-3. In

this example, threads write to their own objects in the array and only look at others

on rare occasions. Intuitively, provided each object has its own cache line, perfor-

mance should scale with the number of cores on the system. However, a language

that does array bounds checking may cause cache thrashing by placing the size of
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the array - a value each thread must read on every access - on the same line as the

object belonging to Thread 1. As threads read the array length, they force Thread 1

to flush its writes, and the other threads have to wait for the cache line to be fetched.

We can imagine any number of scenarios in which this case (or something very

much like it) becomes relevant. The natural implementation of hazard pointers uses

this kind of shared array, applications may give threads scratch space for which inter-

mediate values during execution are occasionally needed, histograms, etc. Is this an

implementation bug on the part of the language? Unclear. It represents a trade-off,

since putting the size on a different cache line from any of the objects means increased

space consumption, even for serial applications. Can a programmer work around it?

Sure. But we must acknowledge that a "work around" is precisely what this is, and

that none of this is hidden (let alone subject to change) in a low level language.

We deal with the parallelism and concurrency-related abstractions each in turn

to understand how, and to what degree, they impede performance engineering. For

DEF's purposes, it's important to think about where unavoidable overheads become

visible, particularly if a feature isn't being used. In the shared array example, the

programmer may have known that no access would ever occur out of bounds, so the

safety feature is unnecessary. Nevertheless, the performance cost to the application

is quite high.

2.3 Parallelism

2.3.1 Theory Basics

We are here concerned with the ability to divide an algorithm in such a way as to al-

low parts to execute in parallel. The most intuitive parallelism is the instruction-level

parallelism provided by modern CPUs in the form of vector operations. An instruc-

tion can be applied to an array of values, for example, and since none of the resulting

values depend on one another there's no need to perform them sequentially. There-

fore, hardware exists to process them simultaneously, even on a single core. Modern
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compilers are so good at exploiting this kind of parallelism, they emit vector opera-

tions for programs written in languages that have no special syntax for representing

instruction-level parallelism.

More challenging for programmers is the kind of parallelism that allows instruc-

tions or blocks of code to execute in parallel on different cores, when data dependencies

aren't as obvious. In particular, it isn't always clear how parallelizable an algorithm

truly is. The limitation on parallelism was first clearly articulated by Amdahl, who

observed that the maximum theoretical speedup was limited by the percent of code

that was inherently sequential.[5] Although Amdahl intended this as a critique of par-

allelization, it's since been interpreted and re-expressed as a mathematical property:

Speedup =
ws + W

n

Where w, is the part of the computation that's inherently sequential, wp is the

part that's parallel, and n is the number of cores across which the parallel part of the

code is divided. This doesn't take into account memory hierarchies or other hardware

features that might impact performance, but it's a theoretical upper-bound on what

an algorithm can achieve on n cores. Note that as n -+ oc, the cost of the parallel

part of the program approaches zero, leaving only the serial part. Thus, we can infer

a maximum theoretical speedup, or total parallelism based on how much of the code

is sequential:

.ws + wp
Parallelism = +

Even if much of this serial portion is technically in parallel with everything else,

it's still the limiting factor in attaining speedup. The basis for this is well-explored,

and in the literature w, is sometimes called the critical path or the span of the

computation.[46, 36, 28, 11, 60]

Granularity is the path to parallelism; lots of small tasks that don't depend on

each other lead to low theoretical barriers to speedup. Practical barriers to speedup

are another matter. "Sequential" code, according to Amdahl's Law, is a matter of
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a happens before dependency between tasks. Parallelism, on the other hand, is the

non-imposition of that relation. But as a practial matter, code can serialize itself

without that explicit dependency.

Mutual exclusion, for example, can limit speedup by forcing threads to wait for

each other, even if the tasks they want to perform have no predetermined order - the

operations may not even actually conflict, but use of the mutex is too coarse or the

operations couldn't have been predetermined not to conflict. The obvious example is

memory management: even if knowing when to deallocate memory is a trivial matter

that requires no inter-thread communication, a bad allocator might undo all of the

careful division of tasks that went into development of the algorithm. More broadly,

access to shared resources and the requisite communication (implicit and explicit)

can reduce the scalability of an algorithm.

Time spent holding a lock is factored into consideration of the parallelism of an

algorithm by treating all such critical sections with a particular lock in common as

inherently sequential. Naturally, the less time spent holding locks, the shorter those

sequences. But with the advent of commercially available hardware that supports

transactions, the possibility of lock elision arises.

Transactional memory makes it possible to maximize the granularity of an algo-

rithm in spite of shared (and updated) resources. Tasks that don't actually conflict

don't need to be executed sequentially. More complete discussion of this is presented

in the section on Concurrency, but it's important to recognize that even insofar as par-

allelism primitives have been implemented in low level languages, the matter of hybrid

transactions remains squarely within the purview of high level languages. Therefore,

so does the general realization of maximum granularity.

Compound this with the problem of concurrent memory reclamation, wherein

many conventional methods a thread has of alerting its peers that it's looking at a

particular node require synchronization. Fig. 2-4 shows removal of a node from a

linked list. The removing thread uses a compare-and-set (CAS) RMW operation to

swing A's next pointer from B to C, but whether an invisible reader is looking at B is

unknown. Therefore, B can't be free'd, as it would be in a serial data structure, until
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Figure 2-4: Node B is removed from a lock free linked list. Left: A's next pointer is
swung from B to C. Right: B can't be free'd, so its fate is left to the implementation.

it can be proved that no thread holds a reference to B anymore. This is the problem

of invisible readers, threads that read but don't write in the global state, and are

therefore invisible to other threads. Again, locks are a powerful tool, but they have

a tendency to serialize an algorithm.

Atomic operations are covered in sec. 2.4, and concurrent memory reclamation is

discussed in greater detail in section 2.5, but a more complete analysis of the state of

parallelism is beyond the scope of this thesis. The takeaway is that programmers are

concerned with the ability to express parallelism within their code to achieve speedup,

and it's crucial that languages provide enabling tools. If parallel units of work are

necessarily coarse by virtue of the way they act on data, it doesn't matter how easy

it is to express them.

Nevertheless, expressing parallelism is its own can of worms that requires dis-

cussion. Actually approaching the theoretical speedup for the given work is often

a matter of scheduling the work efficiency, and there are two main models used by

programming languages: the threading model, and the fork-join model.

2.3.2 Threaded Parallelism

Many parallel languages and extensions tend to encourage thinking about their parallelism-

related features as threads. In general, these features aren't actually as primitive as,

e.g., pthreads, Windows threads, or even Java threads, and they provide services that
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make it easier to distribute work across cores.

Go uses goroutines - conceptually cheap threads implemented as mini-stacks that

the Go scheduler multiplexes over a thread pool - that communicate with one another

through channels.[43] Each goroutine is a work unit, and a mini-stack is created in the

process for it to run on. This isn't as coarse as, e.g., Java threads, which are literal

heavy-weight threads typically implemented in the virtual machine on top of system

threads,[45] and instead looks much more like a first-class message passing system

from a very high level language like Erlang.[89] Unlike Erlang, however, load balancing

is performed by the runtime, and every goroutine is running in the same address space

and has access to global variables. The routines, themselves, are multiplexed across

the threads like Windows fibers,[23] except the scheduling is done by Go.

2.3.3 Fork-Join Parallelism

An alternative model is to identify work that can be performed in parallel by con-

ceptually forking some code, and then identifying a join point that defines a prior-to

relationship between the parallel work and what comes after. Cilk, a language exten-

sion to C/C++ (but has also been applied to Java as JCilk[32]), expresses parallelism

using spawn, which identifies a function that may be executed in parallel with its con-

tinuation, and sync, which acts as a barrier until all parallel work in the function

has completed.[10] Work is distributed by the runtime according to a work-stealing

scheduler in which a pool of workers, threads that execute Cilk-augmented code, cre-

ate work and push it onto one end of a deque to be popped off the other end (stolen)

by other workers that have run out of work to do.[12]

As originally implemented, Cilk used a cactus stack in which function frames

were allocated from the heap, much like the mini-stacks used by goroutines; even

more expensive, since mini-stacks are only allocated when a goroutine is spawned,

and every function instantiation was heap allocated in Cilk. But with the relative

infrequency of steals, subsequent Cilk runtimes were implemented by allocating full

stacks at the point of steal, rather than individual frames at the point of spawn

or call.[22] This means that spawns are cheap - only a few instructions with no
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allocations - and the slow path only comes in the infrequent case.

Similarly, OpenMP is a popular extension available in C/C++ (among other

languages) that provides a programmer with compiler directives and library func-

tions that allow a programmer to identify regions of code that can be executed in

parallel.[13] Traditionally, OpenMP required programmers to identify a block and

manually distribute the work among threads using a thread ID - a system somewhat

less advanced and convenient than a goroutine. As the system evolved, however,

OpenMP added a more dynamic scheduler that allowed programmers to identify

blocks that could, but were not required to, execute in parallel (much like Cilk) and

may (depending on implementation) even use work stealing.

Threading Building Blocks (TBB) uses this same technique in library form for

C++.[78] As a library, no language extension is required and facilities have been

created for expressing advanced parallel techniques like pipelining.

The difference between the two conceptual models is important. The former re-

quires programmers to think about threads, no matter how light-weight, if not the

actual scheduling of work. The latter merely identifies computations that may exe-

cute in parallel. Neither can be called "close to the machine," but the abstractions

actually provide the flexibility to expressing parallelism without imposing guaranteed

space, cycle, and scheduling overhead versus the threaded model.

The fork-join model (as implemented in Cilk and TBB) is also more rigidly

structured, computationally, allowing the existence of tools like provably good race

detectors,[38, 59] scalability analyzers that compute work and span, objectively,[50]

and parallelism profilers.[82] In terms of parallelism, at any rate, the problem has

been addressed in satisfactory ways that are applicable to low level languages (or at

least their extensions).

The cost to a program that doesn't need the feature is negligible since even if the

runtime is present, a conventional implementation will park the threads in the thread

pool until there's work to do - whether in fork-join parallelism or threaded parallelism.

The wide availability and use of OpenMP, TBB, and Cilk is a testament to this. At

some level, independent of the readability or expressibility of the syntax (which varies
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from system to system), the problem of parallelism in low level languages has achieved

a measure of success. In spite of the volume of work done on concurrency, however,

the same cannot be said of it.

2.4 Concurrency

Speedup, in a concurrency-sense, of a program depends on design of the common

objects being accessed by threads. Most intuitive methods for synchronization that

avoid data races have performance-inhibiting side effects. For example, merely locking

an object before operating on it doesn't scale if it's being touched by lots of threads

simultaneously because the accesses are serialized. As a consequence, mechanisms

have been devised that avoid locks as much as possible, typically in favor of RMW

hardware primitives that make changes visible to other threads atomically. This

atomicity is crucial, in that it prevents any thread from reading a partial state.

Concurrent data structures are a hot area of research, and concurrent versions

of most popular data structures are known.{40, 49, 52, 86, 76, 70, 61, 2] To go into

any of them in detail is beyond the scope of this thesis, but it suffices to say that

many of them scale linearly with the number of cores in all but the most write-heavy

applications. Naturally, since the data structures themselves are often complicated to

implement, languages designed for scalability will implement their own concurrency

libraries. Go has a synchronized map in its library, and Java's concurrency package is

popular with that community and provides numerous data structures and primitives

that allow programmers to implement their own.[44, 77]

It's worth noting, however, that there's very little work in the way of concurrency

libraries for C or even C++. Although both languages have intrinsics for the hardware

RMW operations,[25, 26] the data structures themselves are in short supply. Even

Boost, which is typically ahead of the curve in terms of C++ functionality, contains

exactly three concurrent data structures (a stack and two queues) in its Lockfree

package.[9] This is not to say that concurrent data structures aren't popular in C

and C++ applications - they are, as discussed below! Moreover, concurrent data
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structure benchmarks in C and C++ are popular for testing performance of one

versus another.[47, 48] But there's a catch, here: the applications modify the data

structures, as presented in the literature, and even though the benchmarks typically

don't, they leak memory and will crash if executed for long enough. Extensive research

has been performed in resolving this dilemma such that it deserves its own section:

Concurrent Memory Reclamation. The point, here, is that conventional close to the

machine languages lack some of the basic infrastructure of high level languages, and

that makes concurrent data structure implementation difficult to generalize across

applications. Such structures tend to be reimplemented, even in C++, from scratch

for each use. Whereas high level languages have resolved this problem, low level

languages haven't.

Sychronization and Atomics A second barrier to implementation in low level

languages is the lack of a symbolic approach to atomicity employed by high level

languages. Languages that represent complex concurrency features symbolically, just

as in parallelism, avoid reinvention of the wheel on the part of programmers and allow

the implementation of those features to improve along with the newest theory.

Java provides the synchronized keyword that can be applied to methods or blocks

of code (See [45], sections 8.4.3.6 and 14.19). When applied it guarantees atomicity

within that method or block against other synchronized operations on the object

(either this in the case of a method, or a specified object in the block case). As of the

writing of this thesis, synchronization is achieved through per-object monitors. Any

programmer who uses it needs to be aware of the possibility of deadlock, wherein one

thread tries to acquire the monitor locks on two objects, and another thread tries to

acquire them in the opposite order. The semantics specify a particular implementation

that imposes these constraints.

But that implementation could change and be replaced by, say, transactions, and

the only change in semantics would be to release the programmer from the burden of

ordering the objects. Such a change would be a simple case of lock elision, and it would

improve performance in cases where simple read, or mostly read, operations were
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allowed to overlap. Moreover, when primitive hardware transactions don't guarantee

forward progress, synchronized code could be implemented with hybrid transactions.

And, again, as the theory around software transactions advances, so too could the

implementation of synchronized.

Clearly, it would be contradictory for a low level language not to provide the

primitives for implementing either a monitor/mutex or intrinsics for hardware trans-

actions. Nevertheless, implementing hybrid transactions by hand is both tedious and

hard to get right, and it makes code difficult to reason about and maintain. More-

over, the presence of such a feature wouldn't adversely impact the performance of

any application that didn't explicitly use it, meaning low level languages don't ben-

efit from its absence. On the contrary, requiring programmers to use the primitives

for such a feature requires reinventing the wheel for every case, making it a barrier

to implementing concurrent data structures in C and C++.

2.5 Concurrent Memory Reclamation

To recap: Concurrent data structures exist in high performance applications and

benchmarks written in low level languages... but they're modified from what's pre-

sented in the literature in the applications, and typically leak memory in the micro-

benchmarks.[47, 48] The dilemma of modifying data structures versus leaking memory

in low level languages is, at its core, the aforementioned problem of invisible readers.

This is a non-issue in high level languages, which clean up their memory through

garbage collection (GC). Detecting that no thread holds a reference to an object is

just another day at the job for GC, and high level languages (especially high level

systems languages) solve this problem trivially.

In low level programming languages, the issue is decidedly non-trivial. The con-

ventional solutions can be classified in the following groups: Conservative GC[34,

721, epoch-based[67, 66], reference counting[35, 42], pointer-based[71, 80, 17], and

Rust[64]. Each of these are described in turn, followed by a section on StackTrack[1]

which makes a significant step towards a principle that's relevant to the research
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presented in this thesis. But I'd be remiss not to observe that the proliferation of so-

lutions draws attention to the complexity of the problem. Unsurprisingly, concurrent

data structures, as presented in the literature, typically drop pointers to removed

objects and leave memory cleanup to the implementation - they avoid the matter

altogether. This works well enough for high level languages that use GC, but we'll

see that even GC isn't without its pitfalls; points that make it unpopular in low level

languages. To speak precisely about this problem, let us establish a few definitions.

Consider a set of n threads, communicating through shared memory via primitive

memory access operations: These operations are applied to shared objects, where

each object occupies a set of (shared) memory locations. A node is a set of memory

locations that can be viewed as a single logical entity by a thread. A node can be in

one of several states [71]:

1. Allocated. The node has been allocated, but not yet inserted in the object.

2. Reachable. The node is reachable by following valid pointers from shared ob-

jects.

3. Removed. The node is no longer reachable, but may still be accessed by some

thread.

4. Retired. The node is removed, and cannot be accessed by any thread, but it

has not yet been freed.

5. Free. The node's memory is available for allocation.

Concurrent memory reclamation is defined as follows [51, 711. We are given a

node (or a set of nodes) which are removed, and we are asked to move them first to

state retired, then to state free. Once in state retired, nodes are no longer accessible

by any thread besides the reclaimer, and therefore cannot lead to access violations.

The key step in the problem is deciding when a node can be retired, i.e., when it is

no longer accessible by concurrent threads.

The properties concerning developers are intuitively all related to performance,

but although such techniques are available, the difficulty in implementing or deploying
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them is a hurdle to the use of the concurrent data structures, at all. Certainly, the

lack of libraries is a testament to this. I identify a few core properties to think about

in the evaluation of any reclamation technique:

" Automatic: A technique is said to be automatic if the compiler can do the

heavy-lifting in terms of tracking references and distinguishing between removed

and retired objects. To satisfy this property it may be that a pointer needs to

be labeled or a lexical scope needs to be cited, but a concurrent data structure

can be implemented as presented in the literature without invasive changes or

the creation of contracts with the structure's users.

" Cheap Reads: Since the problem is motivated by the presence of invisible read-

ers, some techniques render readers visible by publishing what they're looking

at. A technique with cheap reads is one that doesn't burden its reads with

writes or memory fences.

" Low Latency: An application may be sensitive to latency imposed on threads,

particularly threads not directly involved with updating the concurrent data

structure. Threads involved in UI, networking, or drawing may preclude tech-

niques that will cause noticable delays. Low latency typically means that pe-

riodic pauses (if they exist) can either be delayed/ avoided, or are in the low

millisecond or even down into the microsecond range. Some applications re-

quire even less latency.

" Scales: Most techniques will scale linearly up to a handful of threads, but

crossing core or socket boundaries, or even simply growing into the dozens of

threads may lead to extreme contention that causes performance to level off

or even regress with thread count. This property has more to do with relative

scalability between techniques than with objective measurements.
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Figure 2-5: Garbage collection performance impact. Left: BDW scalability on a lock
free linked list with respect to core count. Right: BDW average stop-the-world pause
times on those executions.

2.5.1 Conservative Garbage Collection

Microsoft's DotNet framework contains a garbage collector, and Boehm, Demers, and

Weiser developed BDW as cross-platform GC for C and C++.[72, 34] In high level

languages, GC is integrated with the type system and knows what values are pointers.

This is impossible in low level languages since pointers can be stored anywhere, and

certain operations (like XOR) can obscure them. The implication is that during the

root-finding phase of collection, wherein GC identifies pointers on the stack and in

well-known global memory locations, the collector can't be sure if what it's looking

at is a reference to memory that it cares about. The false positive case - a value, for

example a floating point number, that looks like a pointer is misidentified as a pointer

- happens, but is rare and doesn't lead to significant overhead in general.[15] The false

negative case - when a pointer isn't recognized as such - is far more dangerous because

it can lead to memory corruption.

Conservative collectors don't worry about false positives, and simply take the hit

to memory consumption. Thus, conservative: anything that looks like a pointer is

treated as a pointer. On the other hand, part of the collector's contract is that pointer

manipulation is restricted. Typically, they allow for the bottom couple of bits to be

overloaded, as some data structure implementations tend to do (e.g., node color in

RB-Trees), but the rest of the bits are sacrosanct.
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This system has performance limitations, particularly as the number of cores

increases, and also as heap size grows (fig. 2-5). The fundamental problem is that

there are no short sweeps in modern conservative GC, and each full sweep pauses

all threads and doesn't let them resume until complete. There are no partial sweeps

because the collector needs to scan a snapshot of memory, and without that snapshot,

threads can hide references by moving them from an unscanned region of code to a

scanned one, and removing the original reference causing the collector to reclaim the

memory erroneously. Transferring a reference in a high level language can be tracked,

and Go boasts collection latency in the single-digit millisecond range.[53) But these

tricks aren't available in low level languages.

Performance limitations, including unpredictable, uncontrollable thread latency

make GC unpalatable to most C and C++ applications. Moreover, high performance

programmers may choose allocators based on their specific applications since certain

kinds of workflows benefit from different allocation/deallocation techniques. Many

highly optimized multithreaded allocators exist[8, 41, 37, 57] but GC incorporates its

own memory allocator, thereby making the decision for the programmer. In spite of

the convenience of GC, it has largely been rejected by the C and C++ communities.

" Automatic: Yes. No modification to a data structure is required. It just

works.

" Cheap Reads: Yes. No burden is placed on any individual operation.

" Low Latency: No. Integrated GC can have low latency, but no method of

applying it to low level languages in a way that doesn't impose significant burden

has been discovered.

" Scales: No. Performance tends to level off after a few threads.

2.5.2 Epoch-based

On the other end of the spectrum from GC is an epoch-based system in which there

is generally no measurable overhead for reclamation, but where transfer of references
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to objects is severely restricted. An epoch is a programmer-defined sandbox in which

references can flow freely, but can never escape without causing erroneous reclamation.

Each thread maintains an epoch counter and increments that counter to indicate that

it's about to perform an operation involving shared objects. It increments the counter

again when it's done, asserting that it holds no shared references. Node removal means

unlinking the node from the data structure and placing in a pool of retired objects.

When the pool is full every thread's epoch counter is checked, and all threads that

aren't in epochs can't possibly be holding references to it. Any thread that's in an

epoch may be holding references, so the pool can be put aside until those threads'

counters have been incremented at least once. A subsequent check that discovers that

those threads' counters have been incremented can mark the pool "clean" and reclaim

the memory.

The traditional correctness limitation of epoch schemes has been the ability of a

single thread to hold up all memory reclamation by hanging inside of an epoch and

never updating its counter. More modern schemes like RCU(67] and RLU[66] help

to resolve this problem using a more fine-grained mechanism that tracks individual

references within the coarser data structure operations. Again, the performance is

very good, but special care needs to be taken not to let references to shared objects

escape. Libraries that use epoch-based mechanisms to reclaim memory, for example,

form a contract with programmers that the epochs must be respected.

In constrast with GC, epoch-based memory reclamation is quite popular on ac-

count of its performance, including in the Linux kernel.[68] At the cost of automation,

and a measure of space blowup, application of epoch to concurrent data structures

tends to perform comparably to leaky implementations. An epoch sandbox isn't a

general solution, however, as references may flow freely from one -thread to another

in some applications. Thus, the lack of C and C++ concurrency libraries, even im-

plemented with epochs.

• Automatic: No. It's applied manually because it requires a higher level se-

mantic understanding of the code, and a library imposes a contract on a user

about how references may be handled.
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" Cheap Reads: Yes. No burdening is necessary because the runtime can infer

when no outstanding references remain.

" Low Latency: Yes. RCU/RLU don't require threads to pause for scanning.

" Scales: Yes. In fact, performance is typically comparable to a leaky implemen-

tation.

2.5.3 Reference Counting

Reference counting can be automated, but isn't in C or C++. In such a system,

each object has a counter that stores the number of references to it. Each time a

thread takes a reference to it the counter is incremented. When the thread drops the

reference it decrements the counter, and when the counter reaches zero the object

can be reclaimed.

This is a popular and effective technique for certain kinds of data structures, but

less applicable to others. Overhead is quite low when traversals are few and short,

as in a lightly loaded hash map, but high when traversals are many and long, as in

a linked list or graph-like data structure. In the linked list case, even insertions and

removals require extensive traversal, adding a write to each read and thrashing the

cache when lots of threads are operating on it.

As with epoch-based reclamation, reference counting is used in many applications.

The overhead is not so great on concurrent data structures with short traversals

and low contention. The counter, too, usually introduces acceptable space overhead

when objects are large. Nevertheless, these points limit its applicability. A C/C++

compiler augmented with reference counting wouldn't solve the memory reclamation

problem for the classes of data structures where nodes are small, traversals arelong,

or where counters will cause cache contention.

* Automatic: Yes. In some languages it is, but typically not when languages

are close to the machine. The possibility certainly exists.
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* Cheap Reads: No. Invisible readers broadcast their traversals by adding

[potentially-contentious] writes to every read.

• Low Latency: Yes. No threads ever need to pause.

" Scales: No. In some data structures, yes, but when any nodes receive high

traffic, cache thrashing can impede speedup.

2.5.4 Pointer-based

Two of reference counting's three problems - per-node overhead and cache contention

- are addressed with the various implementations of hazard pointers.[71, 80, 17] In-

stead of keeping a counter per object, each thread has a list of objects it's holding

references to: its hazard pointer. When a node is removed from a concurrent data

structure, each thread's hazard pointer is scanned to see if any outstanding references

remain before freeing the memory. But in general, a thread's hazard pointer is ac-

cessed almost exclusively by its owner, making contention low on highly trafficked

nodes.

Astute readers will identify a potential data race, here. A thread gets a reference

to a node, adds it to its hazard pointer, and then dereferences the node. What if

the thread hung between getting the reference and adding it to its hazard pointer,

and another thread removed the node and freed its memory? The fix is to read,

update hazard pointer, memory fence, and then read a second time to verify. As with

reference counters, this can noticeably increase the cost of lengthy traversals. Efforts

have been made to reduce the need for memory fences,[7, 80] though the read-write-

verify sequence can still undermine the progress guarantees in data structures that

use them in the literature.[18]

Once again, however, pointer-based techniques are not automatic. They have to

be reimplemented for each data structure and they're complicated, making them a

potential vector for bugs. And, as with epoch, a library with data structures with

hazard pointers creates a contract with users of that library in how to protect and

transfer references to internal objects.
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" Automatic: No. Extensive modification has to be made to code presented in

the literature.

• Cheap Reads: No. Even in the absence of a memory fence, the read-write-

verify sequence is costly.

" Low Latency: Yes. There is no pause.

" Scales: Mostly. In cases where reference counting leads to contention, hazard

pointers resolve this. But it's typically decidedly slower than an epoch-based

implementation.

2.5.5 Ownership-based

Rust has a language solution to memory reclamation in concurrent code.[641 It's fully

automatic without requiring GC because a programmer explicitly assigns "ownership"

of memory to a single function at any given time. When a reference is passed to an-

other function, that function receives ownership and the parent can't use the reference

again unless its child relinquishes ownership. Thus, if the reference escapes from the

child, and the child tries to relinquish ownership to its parent, the compiler catches

the semantic error.

This is, of course, very fast because the compiler can statically infer precisely

when to free memory - when the memory has no owner. The limitation, here, is that

the problem has been defined away. Concurrent data structures are objects to which

multiple threads hold references and may write, but Rust's approach is based on

atomic reference counters.[88] Certainly, a programmer may identify a block of code

as unsaf e, and pass references around freely, but now the programmer is responsible,

again, for solving the problem.

Insofar as Rust's model works within an application, this is a low cost method of

achieving memory reclamation in multithreaded code, and no discussion of concur-

rency is complete without mentioning it. However, it addresses only the sub-problem

in which every thread is a reader of shared data structures, or in which reference
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counting is suitable. For this reason, although it's necessary to mention Rust, it

doesn't make sense to evaluate the properties of memory reclamation for comparison

with the other methods discussed.

2.5.6 StackTrack

Alistarh, Eugster, Herlihy, Matveev, and Shavit took a step in a new direction, return-

ing to a compiler-supported, semi-automatic approach to memory reclamation, but

without the burden of GC. The high level observation, here, is that the sub-problem of

automatic concurrent memory reclamation is easier to solve than the broader problem

of automatic memory reclamation as a whole. StackTrack is a model for concurrent

memory reclamation that can be embedded into a compiler that leverages hardware

transactions to atomically search for reclaimable nodes.[1]

A thread that wants to free a node scans the stacks of all other threads to look

for references. Naturally, those threads are all constantly updating their stacks, and

data is hidden in their registers. Operations are augmented, therefore, with hardware

transactions to maintain a consistent view for scanning threads, and registers are

dumped at the beginning of each one. Since operations may be long or contentious,

there's a technique for splitting an operation that's beyond the scope of this thesis.

Aborts and instrumentation, the primary causes of overhead, increase in cost linearly

with the number of threads. But the takeaway is that a flagged function could receive

this augmentation by the compiler, and the overhead to the application is limited

exclusively to use of the concurrent data structure.

This suffers from some of the same contention problems as reference counting, in

that even traversals can be burdened by the instrumentation when scans occur. But

the overhead of an operation has shifted to the stack from the data structure, itself,

without impeding the ability to automate it - a significant advancement. Experimen-

tal results in the paper showed that StackTrack was able to perform competitively

with, or outperform, hazard pointers.

o Automatic: Semi-automatic. StackTrack requires a programmer not to store
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Technique Automatic Cheap Reads Low Latency
Conservative GC
Epoch-based No
Reference counting No No
Pointer-based No No Y s Mostly
StackTrack Semi M Mostly

Table 2.1: A qualitative comparison of conventional concurrent memory reclamation
techniques.

references off the stack.

" Cheap Reads: Yes. Although instrumentation is added to operations, it's

related to the management of hardware transactions. The cost is ammortized

over many reads.

" Low Latency: Yes. No pause is required.

" Scales: Mostly. StackTrack compares favorably against pointer-based tech-

niques, but transactions burden operations as thread count grows.

2.6 Summary

For DEF's purposes, it's clear that extensive work has been done for parallelism,

and development continues on fork-join oriented models. DEF leverages the fork-join

instructions available in the TAPIR[83] branch of LLVM,[58] introducing Cilk-like

parallel semantics, and permitting the use of the various tools.2 The alternative

is threaded parallelism which, fast though modern implementations may be, puts

more than a few instructions on the critical path and passes the headache of work

distribution to the programmer, and precludes the use of tools available to the Cilk-

like model.

Conventional techniques of concurrent memory reclamation (summed up in ta-

ble 2.1) involve trade-offs that make them unsuitable for general purpose concurrent

memory reclamation. Each has its applications, but a general purpose technique
2 LLVM and TAPIR are discussed in greater detail in the DEF Overview chapter.
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would need to meet all of these criteria for a low level programming language. I

contend that this is the reason libraries don't exist for C and C++. Developers must

decide which criteria are essential to their applications, and which are flexible.

In my work, this was the most significant barrier to thinking about concurrency

in DEF. Choosing one of these techniques over the others necessarily limits its ap-

plicability. Moreover, the "automatic" criterion is non-negotiable since DEF has to

interoperate seemlessly with C, and dropping in a general purpose data structure can't

impose non-API-related restrictions on a C module such as pointer-based solutions

would require. But conservative GC has generally been rejected by that community,

and the cost of reference counting is far too great (to say nothing of reference count-

ing not actually being automatic in C). StackTrack, on the other hand, represents

a compelling direction to take memory reclamation because it isn't costly, either in

space or in instrumentation, and it's semi-automatic.
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Chapter 3

Retire

The problem of memory reclamation is an actual theoretical barrier to any generalized

concurrent data structure in conventional low level programming language. My initial

research was on resolving this problem with a library solution that would pull all

of the memory management complexity away from the programmer; no epochs to

track, no inline instrumentation, etc. From StackTrack, it was clear that a semi-

automated solution was possible that didn't excessively burden normal operations.

The important thing was that there was a snapshot to scan.

Removing the instrumentation was necessary for performance, and making it fully

automatic was necessary for general applicability. These two steps were taken in

sequence with the ThreadScan[4 and Forkscan[3] runtime libraries. ThreadScan was

designed to eliminate the burden of instrumentation, except during an actual sweep,

and Forkscan expanded the scan to the whole of memory (as conservative GC would

do) with minimal pause in execution.

Interestingly, these libraries have a common approach to their interface that's both

intuitive and minimally invasive to data structure source code. Generalized, this is a

retire interface, in the sense that an object isn't known to be freeable, but that it's

been removed from its concurrent data structure and is ready to be freed once all

remaining outstanding references have disappeared. In a serial data structure where

one might free a node, in ThreadScan and Forkscan a programmer retires that node,

at which point the runtime system can track it and look for references.
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Going forward, retire represents an approach to concurrent memory reclamation

that's automatic on-demand. It's automatic in the sense that a node that's been

retired is tracked by the system with the same theoretical properties as conservative

GC, but it's on-demand because it tracks only memory that's been retired rather

than all memory that's been allocated. The advantages of this method are discussed

in detail below.

3.1 ThreadScan

3.1.1 Overview

ThreadScan is a compiler-agnostic step towards automatic reclamation without a

garbage collector. It's a library that supports the ThreadScan and ThreadScan+

protocols, described below.

At a high level, ThreadScan works as follows: when a thread deletes a node, it adds

it to a shared delete buffer. When the buffer becomes full, the thread inserting the last

node initiates a Retire procedure, which examines memory for references to nodes in

the delete buffer, and marks the nodes which still have outstanding references. The

reclaiming thread can then free nodes which are no longer referenced.

The key challenge in ThreadScan is the automatic and efficient implementation

of Retire.

Figure 3-1 illustrates the key idea of ThreadScan: when initiating a Retire, the

reclaiming thread sends signals to all threads accessing the data structure, asking

them to scan their own stacks and registers for references to nodes in the delete

buffer, and to mark nodes in the delete buffer which may still be referenced. Threads

execute this procedure as part of their signal handlers. At the end of this process,

each thread replies with an acknowledgment, and resumes its execution. Once all

acknowledgments have been received, the thread reclaims all unmarked nodes and

returns.

There are two main advantages to this design. First, ThreadScan is shielded
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from errors in data structure code, such as infinite loops: these will not prevent

the protocol from progressing, since the handler code always has precedence over

application code[551.

Second, ThreadScan offers strong progress guarantees as long as the operating

system does not starve threads. In particular, notice that, since the reclaiming thread

waits for acknowledgments, the reclamation mechanism could in theory be blocking.

This is not an issue in a standard programming environment, since each participant

must finish executing ThreadScan in the signal handler before returning to its code.

Therefore, the only way a thread may become unresponsive is if it is starved for steps

by the operating system. This phenomenon is highly unlikely in modern operating

systems, which schedule threads fairly: for instance, the Linux kernel avoids thread

starvation by using dynamic priorities[62]. At the same time, we emphasize that

all other data structure operations preserve their progress properties, as ThreadScan

adds a bounded number of steps to their execution.

The cost of the memory scan is amortized among threads by having each thread

scan its own stack and registers, marking referenced nodes in the delete buffer. The

scan is performed word-by-word, checking each chunk against pointers in the delete

buffer. ThreadScan does assume that the programmer will not actively "hide" pointers

to live nodes.1

3.1.2 ThreadScan+

The ThreadScan+ protocol provides a semi-automatic solution for the extended mem-

ory reclamation: it can detect reference exchanges between threads.

An example of reference exchange is shown in Figure 3-2, in which Thread 1 sends

the address of ObjI to Thread 2. In the first step, Thread 1 sets a shared memory

location S1 to the address of Obj1 and then sends a signal (or some indication)

to Thread 2 that S1 is ready to be taken. In the next step, Thread 2 receives this

indication and reads the value of S1. Now Thread 2 can access ObjI that was initially

'This assumption has been addressed and justified as similar to those of conservative garbage
collectors[15], and is necessary for automatic reclamation.
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Figure 3-1: ThreadScan protocol illustration. Thread 1 calls Free(P) and this makes
the delete buffer full. As a result, Thread 1 initiates a reclamation process, that sends
a signal to other threads, and makes each thread to scan its own stack and registers.
After all threads are done, Thread 1 traverses the delete buffer and deallocates nodes
that have no outstanding reference to them.

Figure 3-2: An example of reference exchange between threads via a shared memory
location. In the first step, Thread 1 sets S1 to address of Obj1 and then sends a
signal (or some indication) to Thread 2 that S1 is ready. In the next step, Thread 2
reads S1 and gets the address of ObjI1.

Figure 3-3: In ThreadScan+, the programmer defines a predefined exchange block,
and then uses this block to execute reference exchanges. Then, the ThreadScan+
protocol locks the pages of this block before the scan process and this allows to
intercept any reference exchange that occurs during the scan.
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read by Thread 1. Notice, that the exchange process involves multiple steps. As a

result, in between there may be a state where the value of this reference only resides

in the shared variable S1, so a stack scan of Thread 1 and Thread 2 will not find this

reference anywhere. Moreover, scanning the whole global memory range may also

miss the exchange, since it may happen after the exchange is done, and the value of

the shared variable S1 has already been reset back to zero.

The key idea in ThreadScan+ is to declare a specific shared memory block, called

an exchange block, that the program will use for reference exchanges between threads.

The operating system hardware page read-write protection mechanism will intercept

writes to this block. In this way, the reclaiming thread can lock the pages of the

exchange block before it signals other threads to start scanning their stacks and

registers, and then, during the scan, a thread that tries to perform a reference ex-

change, will receive a page protection interrupt when it tries to write a reference to

the exchange block. Then, after the threads have sent their acknowledgments, the

reclaiming thread can finish by scanning the exchange block for additional references,

while being certain it did not miss any reference exchange during the scan process.

Figure 3-3 depicts the key idea of ThreadScan+, and shows how it intercepts a

reference exchange.

The requirement of ThreadScan+ is to declare the exchange block, once, when

the program starts, and then the program can freely use shared memory locations

from this block to perform exchanges. Notice that this approach is simpler than

using hazard pointers which require the programmer to declare each shared memory

location as a hazard pointer, and then constantly update the tracking information

for each such pointer: a meticulous and inefficient process that requires the use of

memory fences and validation steps, as opposed to a one-time declaration of a memory

block.

In comparison to the basic ThreadScan, the additional costs of ThreadScan+ are

amortized using large delete buffer sizes, and the progress guarantee of ThreadScan+

is OS-based: guaranteed to make progress as long as the operating system has no

bugs and provides a fair scheduler.
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Figure 3-4: Reference types illustation for a linked-list data-structure and a reference
exchange process between two threads.

3.1.3 Model

The abstract formulation of reclamation was described in section 2.5, but how do

these definitions map onto a real data structure implementation? Since we wish to

perform memory reclamation automatically, it is important to describe which code

patterns are disallowed by the above problem definition.

In general, the assumption is that removed nodes are uanrcachable, but to m-

derstand this definition more precisely, we need to categorize the various reference

types.

Reference Types. We categorize references into types to represent the specific

memory access pattern of each reference. The possible types are as follows:

1. Local Reference: A reference that is local to a specific thread and is used only

by this thread.

2. Shared Reference: A reference that is accessed by more than one thread (used

by reference exchanges).

3. Heap Reference: A reference that is used to connect or "structure" objects in a

data-structure (also called internal reference).

Fig. 3-4 shows how this reference type definitions apply to the example execution

that was previously shown in figure 2-4. In the figure, we can see a linked-list data-

structure and two threads that execute a reference exchange. The pointers that
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connect the nodes of a linked-list are the heap references, the local variables on the

stack (and registers) of each thread are the local references, and the shared memory

locations that are used for exchanges are the shared references.

Classical Memory Reclamation. In the classical memory reclamation, the fol-

lowing is assumed.

Assumption 1 (Reachability). An unreachable node has no:

1. Heap References. Pointers to this node from the inside of a data-structure.

2. Shared References. Pointers to this node from shared memory locations that are

used for exchanges.

Practically, the above assumption limits where outstanding references to nodes in

the delete buffer may be located. In particular, notice it implies that nodes may only

hold local references to such nodes in their stacks or registers. Notice however both

statements limit the programming patterns the code can employ. We will show that

these assumptions are not necessary for efficient reclamation.

Extended Memory Reclamation. In the extended memory reclamation, that is

able to detect reference exchanges, the following is assumed.

Assumption 2 (Extended Reachability). An unreachable node has no:

1. Heap References. Pointers to this node from the inside of a data-structure.

Both protocols we propose work under the following conservative assumptions:

Assumption 3. It is assumed the following hold.

1. Reference Matching. Node references are word-aligned, and they can be matched

to node pointers via comparison. Arbitrary memory words will not be matched

to node addresses.

2. Reclamation Rate. There exists a finite bound k on the number of reclaim signals

that a method m may receive during its execution.
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Discussion. The heap references assumption follows from the definition of concur-

rent memory reclamation [51, 71], and in fact is one of the main distinctions from

garbage collection. The absence of shared references appears to be inherently implied

by known memory reclamation schemes, although we revisit it in this paper.

Assumption 3.1 is standard for conservative garbage collection, preventing the pro-

grammer from hiding references from the scan process through arithmetic operations

such as XOR. These assumptions are intuitively necessary for automatic reclamation.

This doesn't change in DEF even though, in principle, compiler support is available,

because the programmer has direct access to the bits that make up a pointer. As-

sumption 3.2 is justified by the fact that we reclaim memory infrequently, by choosing

a large delete buffer size.

3.1.4 The ThreadScan Algorithm

Generic Structure. Our algorithm is based on the following blueprint: once a

thread wishes to reclaim a node, it adds a pointer to this node to a delete buffer,

whose size is fixed by the application. Whenever the buffer is full, the thread which

inserted the last node into the buffer becomes the reclaimer. For simplicity, we assume

that there can only be a single reclaimer at a given point in time. (In practice, this

follows by choosing a buffer of appropriate size)

The chosen thread starts a ThreadScan Retire operation by signaling all other

threads to help with examining references to nodes in the buffer. Thus, the Thread-

Scan algorithm consists of the implementation of the retire procedure on the re-

claimer side, and of the implementation of the scan signal handler for all other threads

accessing the data structure.

The Basic ThreadScan Algorithm

In the following, we describe the implementation of retire which works under As-

sumption 1 and Assumption 3.

The implementation ensures that, at the end of the retire, each node in the buffer
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is either marked or unmarked. Marked nodes may still have outstanding references,

and cannot yet be reclaimed. Unmarked nodes are safe for reclamation, and are freed

by the thread as soon as the retire procedure completes.

The TS-Reclaim procedure, whose pseudocode is given in Algorithm 1, works as

follows. The reclaiming thread first sorts the delete buffer, to speed up the scan

process. Next, the reclaimer signals all other participating threads to start a TS-Scan

procedure, and executes this procedure itself. This procedure will mark all nodes

with outstanding references. The reclaimer then waits for an acknowledgment from

all other threads. Once it receives all thread acknowledgments, it scans the delete

buffer and frees all unmarked nodes.

The TS-scan procedure is called by the signal handler for all participating threads.

Each thread scans its stack and registers word-by-word,2 and checks whether each

chunk is a reference to a node in the delete buffer, via binary search. If a possible

reference is found, the node is marked in the delete buffer, which prevents it from

being deleted in this reclamation phase. At the end of the scan, the thread sends an

acknowledgment to the reclaimer, and returns to its regular execution.

The Extended ThreadScan+ Algorithm

The ThreadScan+ algorithm solves the extended memory reclamation which works

under Assumption 2 and Assumption 3.

Practically, we are given a set of nodes that have been unlinked from the data

structure, i.e., there are no more heap references to these nodes from inside the

data-structure, and we must reclaim a subset of these nodes, which do not have

outstanding references. However, in the extended version, threads may exchange

references between them, and therefore, references to these nodes may still exist in

shared memory locations.

The ThreadScan+'s semi-automatic idea is to define a specific shared memory

range, called an exchange block, that the programmer can use to perform reference

exchanges between threads. In effect, those shared references only reside inside the

2 The details of this procedure are given in the Details subsection.
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Algorithm 1 ThreadScan Pseudocode.

1: function TS-RECLAIM( delete_buffer)
2: sort(delete_ buffer)
3: for each thread t do
4: signal(t, scan)
5: end for
6:
7: TS-Scan(delete_ buffer)

8:
9: wait for ACK from all other threads

10:
11: for each pointer p in delete_ buffer do
12: if delete_ buffer[p].marked == false then
13: free(p)
14: end if
15: end for
16: end function
17:
18: function TS-SCAN( delete_ buffer)
19: for each word chunk in thread's stack and registers do
20: index = binary-search(delete_ buffer, chunk)
21: if index f -1 then
22: delete_ buffer[index].marked = true
23: end if
24: end for
25: signal(reclaimer, ACK)
26: end function
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limits of the exchange block.

Figure 2 shows the pseudo-code for ThreadScan+: the reclaiming thread executes

the TS-Retire procedure, and all threads execute the TSP-Scan signal handler to

scan the stacks and registers.

The only difference between ThreadScan+ and the basic ThreadScan is the need to

handle the exchange block. In the extended version, the reclaiming thread first locks

the exchange block to write-access before signaling threads to scan the stacks and reg-

isters. Then, after all threads have been signalled and have scanned their stacks and

registers, the reclaiming thread scans the exchange block for possible shared shared

references and unlocks the exchange block. As a result, the ThreadScan+ algorithm

cannot miss any reference exchange that could occur during the scan process, since a

thread that tries to perform an exchange is going to be interrupted by a write to the

exchange block.

A possible optimization is to use the design of the Linux signaling mechanism:

it ensures that when the signalO call returns, the signaled thread has received

its signal and cannot continue executing code of the application that may perform

exchanges. This behavior allows the reclaimer to scan of the exchange block and

unlock write-access to this block immediately after all threads are signaled.

Implementation Details

The previous section provides a detailed overview of our technique, but, to simplify

the presentation, omits several important implementation details. We provide these

details here.

Signaling. We use POSIX Signals[90] for inter-thread communication. A thread

that receives a signal is interrupted by the OS and begins running the signal handler

immediately[55]. If the thread is stalled, the signal is delivered as soon as the thread

is resumed. If the thread is running, it is interrupted and the signal is delivered at

the completion of a system call.
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Algorithm 2 ThreadScan+ Pseudocode. The only changes from ThreadScan are
lines: 3, 9, 10, and 18 - 24.

1: function TSP-RECLAIM( deletebuffer)
2: sort(delete buffer)
3: lock exchange block: make each page read-only
4: for each thread t do
5: signal(t, scan)
6: end for
7: TS-Scan(delete_ buffer)
8: wait for ACK from all other threads
9: TSP-Scan-Exchange-Block( delete_buffer)

10: unlock exchange block: make each page read-write
11: for each pointer p in delete_ buffer do
12: if delete_ buffer[p].marked == false then
13: free(p)
14: end if
15: end for
16: end function
17:
18: function TSP-SCAN-EXCHANGE-BLOCK( delete buffer)
19: for each word chunk in exchange-block-range do
20: index = binary-search(delete_ buffer, chunk)
21: if index 5 -1 then
22: delete buffer[index].marked = true
23: end if
24: end for
25: end function
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Progress. Because the signal handler takes precedence over the application code,

anything in the user code that is stalled, including waiting on locks, is preempted.

Although the threads do not operate at the OS level while they are handling signals,

the only things that can cause them to block are in the.ThreadScan code, itself, or

other signals. Therefore, if the OS scheduler is fair, ThreadScan can be analyzed in

isolation from the user code.

Page-Write Access Violations. When a thread attempts to write to a write-

protected page, a seg-fault interrupt is generated. The ThreadScan+ implementation

catches such interrupts and determines which seg-faults are due to its execution, or

whether they are actual application seg-faults. If they are due to the ThreadScan+,

i.e., if the thread was trying to write to an address in the exchange block when it was

locked (read-only pages), then that thread busy-waits for the exchange block to be

scanned and released. Once the exchange block is released (becomes writable), the

busy-waiting thread resumes from the interrupted memory write instruction.

Stack Boundaries. Our implementation assumes a simple stack structure: each

thread's stack is a contiguous memory range for which the base of the stack is the

the same base as when the thread was created, and an RSP register that points to

the top of the active stack. We use this assumption to simplify our proof-of-concept

implementation and note that it is possible to have more complex non-contiguous

stacks that require special customized code to walk the stack correctly.

Reclamation. Our presentation assumed a single shared delete buffer to which

pointers to reclaimed nodes are added. We implement a distributed version of this

buffer to avoid false sharing on the buffer and contention on the index. Specifically,

each thread has its own local buffer to which it adds pointers. When an individual

buffer becomes full, that thread becomes the reclaimer by grabbing a reclamation

lock. The reclaimer aggregates the pointers from all of the threads' buffers into a

master buffer used during the scan. Individual buffers are circular arrays that are

guaranteed to be single-reader, single-writer. Monotonically increasing head and tail
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indices are kept and incremented as elements are added to or removed from a buffer.

Since the indices are absolute, they can always be compared to one another to see if

values are waiting or if the buffer is full. An index can be converted into an address by

masking the low-order bits, since the buffers are powers of two in length. Additionally,

there are no race conditions on the individual buffers. The owning thread adds values

by inserting an element and incrementing the head pointer. If the buffer is full, it

tries to become the reclaimer. The reclaimer empties a queue by caching the head,

performing a memcpy on the range of elements it wants to add to the master delete

list, and updates the tail pointer.

The reclamation lock ensures that there is always at most a single active reclaimer.

In general, large delete buffer sizes ensure that this lock is not contended. Also, the

above buffer construction has the consequence that a thread waiting to become a

reclaimer will discover that its buffer has been drained into the master buffer, and

that it can go back to work.

Pointer Obfuscation. In keeping with conservative GC, ThreadScan assumes that

the underlying code does not use pointer obfuscation beyond using the low order bits.

If the pointer is obfuscated in some other way (like XOR-ing) or if it is not word-

aligned, the reference will not be detected. It also assumes that arbitrary memory

chunks cannot be interpreted as addresses to existing nodes in the delete buffer. While

breaking this assumption does not affect the correctness of our protocol, it could

prevent the reclamation of the target nodes. We did not observe this phenomenon in

practice, and considered it highly unlikely.

3.1.5 ThreadScan Correctness Properties

Linearizability. Applying ThreadScan or ThreadScan+ does not affect the lin-

earizability of method invocations.

Lemma 1. For any correct, linearizable implementation of a method call m, its vari-

ant m', which uses the ThreadScan or ThreadScan+ algorithms to reclaim memory,

is also linearizable.
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Proof. There are two points of interference introduced by ThreadScan/ ThreadScan+:

the static one in which a node is retired during a removal operation, and the dynamic

one in which a thread is interrupted at an arbitrary time.

In the static case, this is a matter of a call to retire from within the operation.

Since the ThreadScan library has no internal knowledge of the data structure, none of

its writes alter it in any way. The only possible exception would be the pointer to the

retired node, but this is only read and never dereferenced unless the thread becomes

the reclaimer. As such, the time ThreadScan might alter the linearizability property

is during reclamation. Therefore, retire is simply a place within the operation like

any other, and the dynamic interruption case covers it.

The dynamic case involves pausing all work in the program. Since m was lin-

earizable before ThreadScan was introduced, m' remains linearizable if ThreadScan

can be modeled, from the data structure's point of view, as an arbitrary delay in any

subset of threads. Indeed, if ThreadScan's operations on any user-reachable memory

is purely reads, then it can be modeled as such. The scan is entirely reads, except

for marking pointers in the delete buffer, which isn't reachable memory from the user

code. Calling free on objects deemed to be truly retired involves writes for most

allocators, but none of those objects are reachable, assuming the algorithm is correct.

Therefore, there is no point at which ThreadScan writes to user-reachable memory,

so it is perceived as an arbitrary delay by m', which is only different from m possibly

by the inclusion of a call to retire. If m is linearizable, then so is m'.

F

Correctness. Under the standard conservative assumptions, any node reclaimed

by our algorithms cannot be accessed by threads.

Lemma 2. Under Assumptions 1 and 3, every node reclaimed by ThreadScan has

already been retired. The same holds for ThreadScan+, under Assumptions 2 and 3.

Proof. Assume, for the sake of contradiction, a node is reclaimed that wasn't retired.

Since ThreadScan and ThreadScan+ pause the process, allowing them to scan a snap-

shot of memory, that would mean that they missed an outstanding reference. That
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reference must have existed as a heap reference or a shared reference by the definitions

in Assumptions 1 and 2, for the respective algorithms. But under Assumption 3.1 all

outstanding references in any region scanned will be detected.

A contradiction. Therefore, no reclaimed node was not retired. El

Progress. Finally, our algorithms ensure termination and reclamation under fair

schedulers.

Lemma 3. Under Assumption 3 and any fair scheduler, the ThreadScan and Thread-

Scan+ calls complete within a finite number of steps, irrespective of the progress con-

ditions of method calls in the original implementation. Moreover, all nodes which can

not be accessed through references in stacks or registers at the beginning of the phase

will be retired.

Proof. We can compute the maximum number of steps t threads take in terms of the

stack size, sS, the number of nodes in the pool waiting to be retired, n, and the average

node size, sn. A thread must scan its own stack, which takes t * ss steps. Recursive

search could, theoretically, reach every node in the pool for an additional n *sn steps.

Threads don't duplicate the recursive search, so n*sn is a fixed maximum, however it's

divided. With t threads, therefore, the maximum number of steps is (t* ss ) + (n* sn).3

Regarding accessability, all nodes for which no references were found are unmarked

and are therefore acknowledged as truly retired. The proof is similar to that of

Correctness. The nodes recognized as retired are subsequently reclaimed.

3.1.6 Experimental Results

Experimental Setup. We tested ThreadScan on an 80-way Intel Xeon 2.4 GHz

processor with 40-cores, where each core can multiplex 2 hardware threads. Thread-

Scan was configured to store up to 16,384 pointers per thread. Threads tended to

have relatively full buffers, so the total number of pointers any reclaimer worked with
3Practically, the number of steps is closer to t * s, since few retired nodes will have outstanding

references. This property is exploited by Forkscan and discussed in that section.
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Figure 3-5: Throughput results for the lock free linked list: X-axis shows the number
of threads, and Y-axis the total number of completed operations. From left to right:
No exchanges, simulated exchanges, and simulated exchanges on an over-subscribed
system (we use an 80-way machine).

was roughly 16,000 times the number of threads in the process. For all tests, we use

the highly scalalable TCMalloc[41] allocator.

Data Structures. The data structures that were tested were a lock-free linked

list[52], the lock-free hash table from Synchrobench[47], and a lock-based skip list

provided as part of StackTrack[1]. The linked list nodes were 172 bytes to simulate

nodes from a data structure of reasonable size and to avoid false sharing between

nodes. It was implemented as a conversion from the Java code provided in[52] within

Synchrobench. The hash table used lock-free linked lists as its buckets, so individual

nodes also were 172 bytes. The StackTrack skip list nodes were all 104 bytes, rep-

resenting their maximum size due to height. No padding was added to the skip list

nodes.

Techniques. We tested the data structures using the following reclamation tech-

niques.

1. Leaky: The original memory leaking data-structure implementation that has

no memory reclamation.

2. Hazard Pointers: As introduced by Michael et al.[71]. The programmer man-

ually declares and constantly updates the hazard pointer tracking information
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for shared memory accesses, and the reclaiming thread scans this information

to determine nodes that can be deallocated.

3. Epoch: As introduced by Harris et al.[491 and McKenney et al.[67]. The

programmer delimits the epoch-start and epoch-end points in the code, and the

reclaimer waits for the epoch to pass, at which point it is safe to deallocate

nodes.

4. Slow Epoch: Represents the sensitivity of Epoch to application code that has

thread delays: simulated by a 10ms busy-wait in the epoch phase, that executes

infrequently, only once per 65,536 epoch phases (operations).

5. TS (ThreadScan): Our new fully automatic technique as described in Sec-

tion 3.1.4, that solves the classical memory reclamation problem.

6. TS+ (ThreadScan+): Our new semi-automatic technique as described in

Section 3.1.4, that solves the extended problem. When both protocols have the

same performance we use the TS/TS+ notation.

Simulating reference exchanges. For each data structure, for each technique, a

variant of the test was run that simulated reference exchanges using the exchange

block, 4KB (one page) in size. The simulation idea is to execute infrequent shared

memory writes to this exchange block, and in this way, simulate page write-access

violations that occur when this block is locked by the reclaimer scan procedure in the

ThreadScan+ protocol.

As we said before, Hazard Pointers and Epoch cannot detect reference exchanges,

and therefore, we are forced to modify these algorithms to provide a comparison

to ThreadScan+. Our modifications are simple and work as follows. For Hazard

Pointers, we set a hazard pointer on the reference, when the exchange starts, and only

release the hazard pointer when the exchange is completed (and there is no concurrent

scan). For Epoch, we delay the epoch-end point to the point where the receiver is

"done" with the reference (simulated using a short 6-10ps busy-wait). Notice that
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these modifications do not apply for the standard executions that have no exchanges,

and that there may be other ways to implement these modifications, which is a topic

for future work but beyond the scope of this thesis.

Methodology. Each data point in the graphs represents the average number of

operations over five executions of 10 seconds. The update ratio was set at 20%, so

about 10% of all operations were node removals. In tests where an exchange was

simulated, those exchanges were performed alongside remove operations, so about

10% of operations included a reference exchange.

Results. Figure 3-5 shows the results for the lock free linked list. Lists were given

an initial length of 256 elements. The only modification made to the code was the

insertion of a call to TS-Collect(node) after an attempted physical removal of the

node in the delete operation.

Linked-list results show that TS/TS+ scale perfectly along with Leaky up to the

full 80 threads, and this indicates that the costs of processing seg-faults, signals and

waiting for scans, are effectively amortized among the TS-Collect calls. However,

this is not the same for the Epoch scheme, that scales well for the execution that has

no exchanges, but incurs severe overheads when the application code has thread delays

or when there are reference exchanges. Recall that for each exchange, an epoch-based

thread must delay the epoch until the receiver is "done" with the reference, and this

penalizes the Epoch's execution that must wait for the epoch to complete.

The linked-list results also show trials in which the system is over-subscribed (right

graph): it executes up to 200 threads. These results demonstrate that Epoch is sen-

sitive to context-switch delays, which effectively introduce delays into the application

code and penalize the Epoch. ThreadScan+, however, is not sensitive to those delays

and maintains full scalability along with Leaky.

The the Leaky hash-table (Fig. 3-6) peaks around 40 threads, and we can see that

the TS/TS+ outperforms the Leaky as the number of threads grows. This advantage

is due to "node re-use": The memory footprint remains relatively small and stable
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(less paging) when new nodes are allocated from existing memory. The benefit of

reusing nodes is visible on the hash table because its operations are inexpensive as

compared with the linked-list operations (expected 0(1) versus 0(n)). As with the

linked list, Epoch scales similarly well, but incurs severe overheads when there are

application delays or reference exchanges.

The locked skip list experiments (Fig. 3-6) were conducted on skip lists initialized

to length 100,000. TS+ remains comparable to the Leaky with or without exchanges,

and we can see that Hazard Pointers, that explicitly update tracking information,

have poor scalability in either case. Notice, that Hazard Pointers experience the

same severe penalties for the linked list and the hash table, as was shown in [1] (we

do not show these results here).

3.1.7 Summary

ThreadScan is an automatic and scalable approach for solving the classical memory

reclamation problem. In addition, it defines the extended memory reclamation prob-

lem: an extension of the classical problem that can also detect reference exchanges

between threads, and have provided the semi-automatic ThreadScan+ extension that

exhibits the same scalability benefits as the original ThreadScan algorithm. Note that

these techniques differ from GC in that they don't track any memory the programmer

hasn't flagged for retirement, but they still track the memory automatically once it

has been flagged.

Empirical results show that the ThreadScan protocols match or outperform con-

ventional memory reclamation techniques, while requiring negligible programming

effort beyond the standard use of Malloc and Free.

However, the algorithm requires the programmer to flag the space used for trans-

fers if such tranfers are expected to occur. The reason for this is simple: ThreadScan

ensures the safety of its scan by pausing all threads for its duration. In a library

setting where references are returned to end-programmers, the safe thing to do is to

flag the whole program heap (excluding the memory used directly by ThreadScan).

Naturally, the resulting delay is proportional to the size of the process and the proof
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that the number of steps is bounded becomes invalid.

We can't side-step this theoretical limitation by arguing the practical delay is

short or system-related. Root-finding on the whole process is time intensive (as we

will see in Forkscan), and although ThreadScan can be categorized as a system in

the same way that an allocator is, nobody tolerates a system that doesn't practically

perform.

ThreadScan is a step forward in concurrent memory reclamation inasmuch as it

solves the interface problem without creating new dependencies on compiler. More-

over, for libraries implemented using it, the contractual burden on library-users is far

lighter than it would be for, e.g., an Epoch-based mechanism. Merely, the contract

still exists, and we transition to Forkscan to examine how to eliminate it altogether.

3.2 Forkscan

3.2.1 Overview

In contrast to ThreadScan, Forkscan is both fully automatic and performs a com-

plete scan of memory. It maintains the same retire as ThreadScan, but scanning all

of memory means the only restrictions on pointer usage are those imposed by con-

servative GC. At a high level, Forkscan has a simple division of labor with execution

structured around collection operations. Each such operation consists of two phases:

freeze-and-fork and scan-and-mark.

The freeze-and-fork phase works as follows. We reserve a reclaiming thread (the

"reclaimer"), whose purpose is to wait for and receive a list of pointers to memory

blocks that are candidates for deletion. Upon receiving such a list from a user thread,

the reclaimer starts a reclamation operation by sending a signal to all other threads.

Upon receipt of this signal, each thread writes out its current stack boundaries and

register contents, replies with an acknowledgment, and waits. When the reclaimer has

received acknowledgments from all threads, the memory is "frozen" of thread activity.

At this time, the reclaimer thread forks off another process (the "scanner"), and then
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immediately signals all threads to resume their regular execution.

Next, the child process performs a parallel scan of memory. Note that the child

inherits a proper memory snapshot at the "freezing" point, whose consistency is main-

tained by the system through the copy-on-write mechanism. The scanner partitions

memory, and spawns siblings which iterate sequentially through each partition, at-

tempting to interpret words as pointers to nodes in a list of reclamation candidates. 4

If a presumed pointer to a node is found, it is marked and recursively searched. This

technique allows Forkscan to detect any cycles between retired nodes. At the end of

the scan, the last forked child notifies its parent and terminates.

The Forkscan implementation involves a few non-trivial observations and tech-

niques:

First, it is important to note that having a retired node list can make collection

significantly more efficient. ForkScan's implementation exploits this fact to perform

a linear scan of memory (as opposed to tracing) comparing each memory location

against the list via a carefully optimized binary search procedure. This is a critical

performance optimization, since most of the memory is "outside" the retired node

list, and this memory is scanned linearly by the first phase, which is friendly for

the CPU pre-fetching, caching, and page-fault mechanisms. As a result, the second

phase, which performs an expensive recursive search and mark and is responsible for

detecting cycles (in GC style), needs to scan much less memory - only memory that

is part of the retired node list.

Second, node de-allocation is carefully piggybacked on top of allocation calls, to

avoid the overheads of bulk deletes while bounding memory usage. A thread which

wants to perform an allocation must first see if nodes are available to be freed. This

allows the user threads to perform cleanup without introducing unpredictable wait

times.

Finally, Forkscan induces blocking thread behaviour in theory; however, the hand-

shake mechanism is implemented through signaling, and each thread must complete

4 Since it always pessimistically assumes that matched pointers are node references, Forkscan is
conservative in the same way as ThreadScan and conservative GC.
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handler code before returning to user-level code. Thus, a thread is unresponsive only

if starved for steps by the operating system, which only occurs in extreme conditions.

Hence, we argue that in practice, Forkscan preserves the non-blocking nature of data

structures.

Forkscan is allocator-agnostic. Whereas garbage collectors tend to own their allo-

cators, Forkscan will sit on top of another allocator, such as [37, 411, and malloc()

and free () from it. This provides some flexibility to low level programming lan-

guages that use it, since programmers often choose allocators tailored to their specific

workloads.

3.2.2 The Forkscan Algorithm

Forkscan uses the following pattern: Each thread maintains a pool of nodes to

be reclaimed. The pool is populated by concurrent data structures, which call

forkscanretire() on nodes as they are removed. In the pattern of popular con-

current data structures, these nodes are unlikely to be seen by other threads. When

a thread's pool becomes full, it consolidates all thread pools and hands it to a spe-

cialized reclaimer thread from the Forkscan runtime. We call the consolidated set of

pools the delete buffer.

The reclaimer then starts a reclamation phase, attempting to purge the delete

buffer. A reclamation phase consists of several steps. We describe these steps in

detail below, and present pseudo-code in Algorithms 3 and 4.

Step 1: Freeze-and-fork. The first step aims to obtain a coherent snapshot of

the application's memory. For this, the reclaimer first broadcasts a signal to all other

threads, which handle the signal by writing out their current stack boundaries and

register contents. Subsequently, each thread sends an acknowledgment, and waits for

confirmation. Once the reclaimer has collected acknowledgments from all application

threads, it forks a new process, whose task will be to scan memory. As soon as

the fork returns, the reclaimer releases all other threads to return to their regular

execution, and waits for the child to complete the scan.
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Two observations are important at this point. The first is that, at the time T when

the reclaimer calls f ork(0, all threads have written their current stack boundaries and

register contents to memory, without executing further. Second, by the semantics of

f ork(0, the child process will observe a consistent snapshot of the program's memory

at time T, including heap, stack, and register contents. Therefore, to determine

whether outstanding references to delete candidates still exist, it is sufficient for this

child process to simply scan the heap, stack, and register contents as it observes them.

Step 2: Scanning. The child process begins by identifying the memory ranges

which need to be scanned, and partitions them into M disjoint ranges, where M ;> 1

is a parameter. It then forks M - 1 sibling processes, such that each has a subrange

that can be scanned in parallel. Scanning is broken into two parts: 1. find roots

and 2. recursive mark. Finding roots means searching through memory for references

outside of the delete buffer to nodes inside of it. The processes scan memory, avoiding

the nodes in the buffer, for references, and marking the pointers in the buffer when

they are found. The delete buffer is in shared memory between the sibling processes,

so writes are visible to all siblings.

After the roots have been found, the delete buffer is broken up into chunks for the

sibling processes, and marked references are recursively searched for further references.

At the end of this phase, all nodes that are visible from the user program have been

discovered and marked. Any unmarked nodes are no longer known to the user, and

are available to be freed. This marking technique allows cycles to be discovered, so

that nodes that point to one another, but are not pointed to from outside can be

freed.

When the scan is complete, the last of the children notifies the reclaimer thread in

the parent (via a pipe) and winds down. The reclaimer thread runs down the buffer

looking for reachable nodes and preserves them for the next round of reclamation.

Step 3: Deletion. The previous step identified a set of nodes which can be safely

deleted. It is tempting to free all these blocks at this time. However, in practice
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this leads to poor performance. If freeing is done by the reclaimer, reclamation

iterations are delayed. If it is done by other internal threads, those threads compete

for time and memory resources with user threads. And if user threads are signaled

again to perform the task, Forkscan introduces high latency (which is what low level

programmers want to avoid).

We therefore delay the free calls by piggybacking them on future malloc calls,

allowing the user threads to perform the deletion phase without introducing high

latency. This amortizes the free calls via malloc calls, while at the same time roughly

matching the frequency of allocation with that of de-allocation.

The delete buffer is preserved, and a user thread that wants to allocate memory will

first free some of the nodes in it. Each thread, when it has no nodes to free, will reserve

a portion of the buffer that it is responsible for freeing. With each allocation, the

thread will traverse part of its range, identify a small number of unmarked references,

and free them. The delete buffer is reference counted, so when it has no more ranges

to reserve, and when its reference count hits zero, it can be reused.

3.2.3 Implementation Details

Allocation and Retirement. forkscanmalloc() is provided as a wrapper for

malloc () and has the same profile. If nodes are available to be freed, it will do

so before returning new memory to the user. The main interface to Forkscan is

forkscanretire(), which behaves like free() from the user's perspective except

that instead of immediately freeing the node, it adds it to the thread's pool, checks to

see if the pool is full, and possibly becomes the consolidator. It should be noted that

f orkscan-retire 0 is a proper-replacement for f ree 0 in that retiring the same node

multiple times or from multiple threads could have the same unpredictable effects as

a double-free. Likewise, both retiring and freeing a node will lead to unpredictable

behavior.

Forkscan is allocator-agnostic and treats the underlying library as a black box.

The je_malloc allocator [37] was selected for experimentation because it had the

best performance in trials on the microbenchmarks. However, Forkscan only requires
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Algorithm 3 Parent Process Pseudocode.
1: function CONSOLIDATEPTRS

"> Called when a user thread pool is full.
c> Aggregate pointers from all threads

2: delete-buffer <- 0
3: for th E threads do
4: delete-buffer U = GET_ PTRS POOL(th)
5: end for
6: SORT(delete-buffer)
7: SIGNAL-CONDITION-VAR(reclaimer-conditional)
8: end function

9: function SNAPSHOTSIGNALHANDLER(Ctx)

> Executed by thread on snapshot signal
10: Spill registers and stack boundaries to stack
11: Send ACK to reclaimer-thread
12: Wait for resume signal
13: end function

14: function RECLAIMERTHREAD(ctx)

15: while 1 do
16: WAIT-ON-CONDITION-VAR(reclaimer-conditional)

c> Signal all threads
17: for th E threads do
18: SIGNAL(th, snapshot)
19: end for
20: wait for ACK from all threads

> At this point, the system is "frozen," so we fork
21: pid 4- FORK()

22: if pid = 0 then
> The child scans the memory snapshot

23: SCAN(ctx)

24: EXIT()
25: end if

E> This is the parent
26: resume all threads via signal
27: wait for child to finish
28: PUSH-BACK(delete-buffer)
29: end while
30: end function

> Freeze point for snapshot

> Child got snapshot

> Free memory
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Algorithm 4 Child Process Pseudocode.
1: function SCAN(CtX)

2: memory-ranges +- GETMAPPED
3: Split memory-ranges into M partit
4: for id e [1..M - 1] do
5: pid +- FORK(
6: if pid = 0 then
7: SCAN _ FORREFS(memory
8: EXIT(
9: end if

10: end for
11: SCANFOR_REFS(memory-ranges

12: Wait for children to finish
13: end function

14:

15:

16:

17:

18:

19:

20:

21:

22:

function SCAN__FOR REFS(memory-ranges)
for each word E memory-ranges do

t> Check if word is a reference to some object
i +- BINARY-SEARCH(word, delete-buffer)
if i = 0 then

r> Found a reference -+ record it
SET-LOW-BIT(delete-buffer[i])
SCAN _ FOR_ REFS(delete-buffer[i])

end if
end for

end function
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the names of malloc (, free(), and mallocusable_size () (the last is a function

that, given a pointer, returns the number of bytes available in that block). It can be

configured at run-time to use any allocator the application developer prefers, as long

as it implements those three functions.

Thread List Consolidation. The per-thread lists of addresses are implemented

as deques: values are pushed on one end by the owner as allocations occur, and are

popped from the other by the consolidating thread. The consolidating thread grabs

a global lock before it begins, so deques are only popped by one thread at any time.

This makes them single-reader, single-writer data structures, even though the popping

thread may be different each time consolidation happens. The implementation is

taken from ThreadScan.

Once the thread buffers have been drained by the consolidator, the thread pushes

the consolidated buffer onto a list of waiting buffers for the reclamation thread to find.

The final delete buffer is created by the reclamation thread as an aggregate of waiting

consolidation buffers and leftover addresses from previous reclamation iterations.

This architecture is highly concurrent, in spite of the global lock, when thread

buffers are big enough to make consolidation rare. Therefore, contention is low. The

thread buffers have a configurable size, but they default to 65,536 (64K) addresses, a

number that was picked based on hand-tuning.

Capping Memory. Without an unreferenced memory limit, a process could grow

unbounded for data structures with frequent writes if write operations, that might

cause fast memory turnover, are exceedingly fast. Forkscan caps the amount of un-

referenced memory by limiting the number of unreferenced pointers. Thus, the cap is

proportional to the average size of allocations. The limit of unreferenced pointers is

enforced by the consolidation system: When a consolidated buffer is pushed onto the

waiting list, the consolidator increments a counter. If the counter exceeds the waiting

limit, the consolidating thread stalls until the counter is reset by the collection thread

when it starts a new iteration. Memory is bounded because no other thread can be-
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come the consolidator until the current one relinquishes its role, thereby throttling

user threads when memory threatens to grow beyond the (configurable) predeter-

mined limits.

Naturally, a lack of memory can lead to massive throttling, thereby introducing

latency. But the user can configure the size of the thread buffers and maximum num-

ber of waiting consolidation buffers, trading off memory for latency (as demonstrated

in the results).

Thread Handling. In order for Forkscan to function, it must know about all

threads that may access the data structures that use f orkscanretire 0. To obtain

this information, Forkscan wraps main() and as well as all user calls to pthreadcreate 0,

storing metadata about the thread ID and stack bounds. At present, it does not allow

threads to opt out. This behavior is similar to that of the classic BDW collector 134].

The Forkscan algorithm does not inherently disallow threads from opting out. But

such threads would have to be restricted from operating on concurrent data structures

or moving pointers to concurrent nodes around in memory, thereby "hiding" them.

Signaling. Signaling is based on pthread-kill 0, an API originally intended for

killing threads, which targets a thread by ID. When the process starts, it registers a

signal handler that catches the signal on the targeted thread. A thread that receives

a signal will be interrupted unless it is in the midst of a system call, in which case

it responds before it returns to user code. With the ID of all of the threads in the

process, the collector is able to iterate through the list and force every thread to pause

its execution and respond through the signal handler.

The signaling mechanism additionally forces the thread to dump its registers to

the stack for the purpose of saving the context. The operating system will use this

context to resume the thread after the signal has been handled. However, having

preserved its register contents, the forked process can see the register contents each

thread had at the time it paused.
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Forking. When the collector thread forks, the children need to communicate a

potentially large amount of data with the parent about the reference counts they

calculate. To make this communication efficient, the delete buffer is allocated on

shared pages. Changes to the reference counts in the delete buffer made by child

processes are visible to the parent without any explicit communication. Since the

reclamation thread in the parent has no work to do, it waits on a pipe for notification

that the scan has completed. The children can exit as they finish scanning their

regions of memory, atomically incrementing a shared scanner-completed counter as

they leave. The last child sends a message to the parent through the pipe, waking it

up and allowing it to proceed.

Finding Memory to Scan. The first f ork() generates a scan child that calculates

how much memory needs to be scanned by reading from the /proc/self /maps file.

It keeps track of memory ranges that might contain references to concurrent nodes,

excluding regions allocated by Forkscan, itself. The latter exclusions are easy to

detect because Forkscan does all of its own internal memory management.

Expedited Scanning. Comparing a range of memory addresses, m, to an arbitrary

list of delete buffer addresses, d, is a O(m x d) problem. Forkscan sorts its delete

buffer to make the scan a O(m x log d) problem. However, accessing the delete buffer

is still slow because it can potentially fill thousands of pages, leading to frequent cache

misses.

Performance is improved by creating a minimap of addresses: a subset of addresses

from the bigger pool. The minimap is created by striding across the overall delete

buffer, a page at a time, and collecting the first address stored on each page. There-

fore, each entry in the minimap corresponds to the first entry of each page in the

delete buffer. When searching for an address, p, the minimap can be queried for the

closest address without going over, q. Since the delete buffer is sorted, the location

of q in the minimap identifies the exact page on which p exists, if it is present in the

delete buffer.
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For 4096-byte pages and 8-byte addresses, this means the minimap represents a

512-fold reduction in space, or the equivalent of 9 steps in a binary search. In general,

it also means that the whole minimap fits in cache. The consequence is that a search

for a particular address typically misses the L3 cache exactly once. In practice, this

optimization reduced Forkscan's overhead to negligible levels in many tests.

Cache-friendly Scanning. In the root finding phase of the scan, potential refer-

ences are collected and not searched in the delete buffer until a threshold has been

reached. Once enough potential references are found, they are sorted, and searched

sequentially. A pointer to the last searched location in the delete buffer is retained

since the next potential reference is likely to be very close. The next reference can

be checked against the rest of that cache line in the delete buffer. This makes binary

searches rare during root finding, and keeps accesses mostly sequential.

Scan Parallelization. The amount of memory to be scanned determines the num-

ber of siblings the first child will fork() to help. In practice, every extra 128 MB

warrants another scanner, up to a system maximum of 16. This number was selected

based on trials run on three different machines (with very different architectures) that

all gave best performance at this number. The subsequent fork() calls are cheap,

and the processes are lightweight, because they modify almost no memory except

for what is in the shared buffer. The memory they scan is treated as read-only, so

copy-on-write is never invoked.

Scan children communicate with one another about what addresses they have seen

using the shared delete buffer. All manipulation of the reference counts are done with

an atomic increment, which is a Read-Modify-Write (RMW) operation. The struct

at the head of the delete buffer is shared, itself, and contains the scanner_ completed

counter.

De-allocation. Our experiments show that deallocating memory via a long se-

quence of free() calls is expensive due to the system calls to madvise() (controls

page release/purge to the Linux OS). Therefore, to avoid contention and latency,
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nodes which are marked for deletion are not freed immediately. Instead, the protocol

pushes the delete buffer onto the back of a list of delete buffers from previous itera-

tions. Threads that want to allocate memory and don't have anything to free query

this list and reserve a subrange from the front delete buffer.

Potentially, a thread that only calls f orkscanmalloc () once could retain a refer-

ence to a delete buffer and keep it from being reused, but no thread could monopolize

more than one delete buffer. And practically, a thread that mutates a concurrent

object once is likely to do so again.

False positives. Nodes from previous iterations that have no outstanding refer-

ences, but are still waiting to be freed, may contain references to nodes in the current

reclamation iteration. In practice, this is a significant source of false positives that

leads to loss of scalability. The reclaimer, therefore, creates a list of dead nodes from

the previous delete buffer to give to the forked children for reference. A child, while

it is scanning memory, uses this list and skips scanning anything from a dead node.

List creation is performed after all threads have acknowledged the signal, but before

the f ork(), making the protocol slightly more costly.

3.2.4 Forkscan Correctness Properties

Forkscan makes the following set of assumptions.

1. (No False Negatives) References to memory blocks in the scanned space are

word-aligned, and can be matched to the interior of allocated blocks by com-

parison. Additionally, Forkscan masks off the low 3 bits of any word it reads

when scanning. This covers the common form of "pointer-hiding" used by many

data structures, and it means those that overload those bits are discovered.

2. (No Thread Crashes) Threads do not crash.

3. (Bounded Allocation Rate) There exists a finite bound on the allocation rate of

the application.
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4. (No False Positives) Arbitrary memory words do not match block addresses.

Under these assumptions, Forkscan provides the following guarantee:

Theorem 1. Forkscan ensures the following.

1. Reachable memory blocks cannot be de-allocated.

2. Every unreachable memory block is eventually de-allocated.

3. There exists a finite bound on the amount of memory employed by the application

at any point in time.

Proof (Sketch). For the proof of the first two statements, consider an arbitrary

collection phase, and let T be the time when the f ork() call completes. A key

invariant is that allocated memory nodes which are not referenced (either in thread

stacks and registers or in the heap) at time T cannot be referenced at later times in

the execution (unless first recycled), as they are currently unreachable. Further, we

rely on the fact that the child thread resulting from the f ork() operation receives a

consistent snapshot of the entire parent process memory at time T. By assumption

(1), every reachable node will have a non-zero reference count at the end of the scan.

By assumption (2), no unreachable node can have non-zero reference count at the end

of the scan. These two properties will imply that no reachable memory blocks can

be allocated. Since Forkscan checks for cycles, every unreachable block is eventually

de-allocated. The third property follows since we assume no false positives, and that

there exists an upper bound on the allocation frequency.

3.2.5 Experimental Results

Setup. Forkscan was tested on an 40-core (4 sockets, 80 threads) Intel Xeon com-

puter at 2.4 GHz with 1TB of RAM running Ubuntu 15.04 with the 3.13.0-57 kernel.

Software threads were scheduled by the operating system, though the Linux ker-

nel tended not to migrate threads very often, but instead scheduled threads on the

same cores, generally. The data structures that were tested were a lock-free linked
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list[49, 70], a lock-free hash table from Synchrobench [47], and a lock-based skip list

from StackTrack [1].

For comparison, we used versions of these structures that leak memory ("Leaky"),

the latest Boehm-Demers-Weiser Garbage Collector 7.4.2 ("BDW-GC") [16], and sim-

ulated a Hazard Pointers [71] implementation by burdening reads during list traver-

sals. StackTrack had an actual Hazard Pointer implementation. We compiled BDW-

GC with parallel mark and thread local optimizations. The Leaky, Forkscan, and

Hazard Pointer tests ran with the JEMalloc 3.6 [37] allocator. BDW-GC uses its own

internal allocator.

The linked list was initialized with 1024 nodes and executed with 2048 possible

values. Nodes were padded to 176 bytes in order to avoid false sharing and prefetching.

This was beneficial for all systems. The skip list was given 12,800,000 nodes and

25,600,000 possible values. Unlike nodes in serial skip lists, which are only as large

as they need to be, ours were made 256 bytes with a maximum height of 20. Again,

eliminating short nodes was necessary to eliminate false sharing. It is worth noting

that at that height, guaranteed O(lgn) access complexity only allows for 1,048,576

nodes, so accesses were slightly more expensive. The total size of the skip list was

about 3.1GB. Last, to test a high performance structure, the hash table was given

32,000,000 initial nodes with a range of 64,000,000 possible values. Buckets were

implemented using the lock-free linked list, with 32 average list length. The hash

table's size was about 5.4GB.

Forkscan was configured for conservative memory usage: each thread had a pool

capacity of 16K nodes, and no more than 4 aggregate lists could queue up before

Forkscan began throttling threads trying to allocate memory. No tests were run with

larger per-thread pools because performance was good with the smaller ones.

Figure 3-7 shows benchmark results on the data structures. Results are averaged

over 3 executions of 4 minutes each. The benchmarks were set to perform 20%

modify operations (reads and writes), a very heavy workload, to show performance

under pressure.

In the linked list case, BDW-GC performed along a similar curve to "Leaky" with
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visible overheads, and the Hazard Pointer simulation showed the cost of adding writes

to every read. However, this structure has slow enough operations that Forkscan's

performance overheads were almost unnoticeable. This is also visible in the mem-

ory usage graph, which has no elbow in the curve. Memory usage is expected to

grow linearly with the number of threads, since each thread has its own pool, and a

consolidation buffer size is proportional to the pool size and the number of threads.

A linear growth shows that Forkscan did not need to allocate extra consolidation

buffers or delete buffers. BDW-GC, on the other hand, has a roughly fixed overhead

and is able to track all of its pointers because it owns its allocator. Snapshot la-

tency was especially low for Forkscan, topping out at 12ms on 80 threads, because

the whole application used very little memory. BDW-GC's latency was roughly 242x

above Forkscan because collection happens inline with the running benchmark. The

extremely high latency, in this case, was likely due to the length of the chain.

The skiplist has cheaper operations overall, even though it is over-filled. Addition-

ally, although StackTrack's skiplist takes out locks during add and remove operations,

there is not very much contention and the skiplist beats the linked list based on its

access time. In this case, Hazard Pointers and Forkscan both outperformed the Leaky

implementation. Leaky performed poorly because, on the 40 and 80 core executions,

the large size caused it to have poor cache performance. BDW-GC took a hit in

about the same place but in this case, it was probably due to excessive scan times on

the large data structure. Even though Forkscan performed better than Leaky, it was

burdened due to throttling. As we demonstrate below, the throttling latency can be

overcome.

Memory usage is again higher for Forkscan than BDW-GC, since Forkscan uses

extra memory proportional to the thread count. The elbow in memory usage happens

early, at 10 threads, as the cheaper operations caused Forkscan to queue consolidation

buffers. It never quite found equilibrium before the queue filled, and throttled user

threads. At 80 threads, it reached 60ms, as high as any of Forkscan's trials. However,

when compared against the average 6.3 second scan time of BDW-GC, Forkscan's

latency was still very low.
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Figure 3-8: Performance results for a hash table with 40% update operations. The
axes are the same as above.

Hash tables have cheaper operations than skiplists. In general, accesses are ex-

pected to be constant-time operations, so the Hazard Pointer simulation performs

very well. From the outset, Forkscan has a difficult time keeping up with it, but con-

tinues to scale linearly (albeit, linearly with a small constant multiplier). Again, the

overhead can be attributed entirely to throttling of user threads as they perform allo-

cations. The time it takes to perform a snapshot, even on this large data set, however.

remains low: reaching a maximum of 54ms on 80 threads. The BDW-GC collector

was unstable on this workload, even when provided with lots of extra memory. so it

could not be tested.

An additional stress test was run on the hash table to demonstrate the breaking

point of Forkscan. Instead of 20% updates, a high value for real world applications,

40% updates was specified. The results are shown in fig. 3-8. As above, read and

write operations are all about the same to Hazard Pointers. However, Forkscan does

not gain appreciably from doubling the number of threads from 40 to 80. At this

point, throttling is significant and almost all of the overhead is attributable to that,

as the snapshot time has not increased appreciably over the 20% update trials.

High latency due to throttling may not be any more palatable to C/C++ users

than if the memory reclamation system simply stopped the world and did all of

its work using the user threads. However, further tests demonstrate that, unlike

stopping the world and recruiting the user's threads for memory scanning, latency

due to throttling can be reduced where additional memory is available. In the cases

above, most overhead was throttling and very little was due to stopping the world to
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Figure 3-9: Forkscan memory usage and memory /latency vs. performance tradeoffs.

take a snapshot.

Figure 3-9 shows how memory is used by Forkscan and how it impacts perfor-

mance. The first graph shows the total memory footprint of Forkscan run on the

hashtable with 20% updates over a 7 minute execution. Forkscan can queue up to 4

consolidation buffers (configurable) at a time before throttling, and delete buffers are

only reused after all freeable nodes are actually freed. These buffers are proportional

to the number of threads and individual thread pool size, and the total overhead

corresponds to the total number of pointers times the average size of nodes.

The second graph is based on the skiplist run with 80 threads and shows that

performance can be bought with more memory, as is typical with other automated

reclamation systems. The Hazard Pointers result on 80 threads from fig. 3-7 is shown

for comparison. This tradeoff is the mechanism by which the user amortizes the

cost of reclamation over the normal cost of performing operations in the application.

The third graph, however, shows the snapshot latency over those same executions.

Whereas, in garbage collectors, increased memory to improve performance increases
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individual thread latency, Forkscan imposes no significant increase in this netric.

This demonstrates that Forkscan is able to provide comparable performance to

manual memory reclamation schemes at a fraction of the latency of traditional auto-

matic reclamation systems. A larger process takes longer to fork than a small one, but

the vast bulk of the cost of doing memory reclamation is invisible to user threads, even

when Forkscan is configured to use large amounts of memory. The maximum 155ms

(at 64K pointers per thread pool) is human noticeable, but it is a short duration

compared with conventional automatic systems.

The last point regarding latency of concern to C and C++ programmers is the

overhead on the burdened allocation. Since forkscanmalloc () attempts to free

nodes from previous iterations, the actual allocation is more costly than in a serial

execution. The overall amount of work is no more than in a serial application since

one free() corresponds to one malloc() in the underlying allocator in both cases.

But a call to f orkscanmalloc() attempts to free multiple nodes per allocation in

order to keep memory low.

The Forkscan library was instrumented to capture the amount of time spent freeing

nodes, and the original hash table trial was rerun with 80 threads. Figure 3-10 shows

a histogram of the amount of time (in tens of nanoseconds) spent on each allocation.

The vast majority of allocations were burdened by no more than 100ns, though there

was an extended tail due to differences in operating system scheduling. Calls with
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overhead of more than half a microsecond were all collected into the last bucket,

causing the apparent bump.

The lack of variance during freeing is expected since the nodes have been sorted,

and for adjacent pointers in the list, those pointers are likely to have good spacial

locality. Therefore, many calls to f ree 0 should not be much more costly than a single

one. Since this experiment is dependent on the implementation of the underlying

allocator (JEMalloc, in this case), the shape of the graph is more interesting than the

specific numbers.

Real-world application Finally, to demonstrate Forkscan's effectiveness in a real-

world application, memcached [39], was modified to create Leaky and Forkscan ver-

sions, replacing its default reference-counting. In the altered versions, the builtin slab

allocator was removed and replaced with je malloc for simplicity.

In the Forkscan version, all accesses to individual item reference counters were

eliminated, and when an item was unlinked from the structure, the thread that suc-

ceeded in unlinking it then retired it. The Leaky version differed only in that the re-

tire call was commented out. Since the memcached implementation was not changed,

apart from how memory was managed, Leaky was intended to act as an upper-bound

for performance.

To test performance, it was necessary to create a large enough database that many

connections would be supported without making contention on individual items a

bottleneck. Such a bottleneck would have masked the best-case (for memcached)

scenario limiting factor. However, this had to be balanced against the ability to

fill the database quickly and force replacements to happen frequently. Therefore,

memcached servers were created with 1GB of memory, storing items of 1024 bytes,

allowing roughly 1 million individual items.

The memcached servers were configured to run locally, avoiding network overhead

and latency. Trials were run using memtierbenchmark [63] with 16 threads for 12

seconds with a set/get ratio of 1:4, and using 40 multi-key gets to inflate the number

of requests through a limited number of connections. Each trial, for each version,
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Default Leaky Forkscan

1 156532 160715 173726
2 233993 276594 227535
4 306870 280548 314001
10 523586 534209 510895
20 245087 277168 259428
40 193803 198706 200100

Table 3.1: memcached performance in operations/ second.

was run 3 times and the average number of operations/ second was computed. Trials

above 40 threads were not run because of performance degradation for all versions.

Table 3.1 shows the results. Performance was comparable in all cases. The high

variance in execution times between trials indicates that other factors are more im-

portant to performance than memory reclamation (or lack thereof), as sometimes

Leaky was outperformed by Forkscan or the Default reference-counted implementa-

tions: A drop-off in operations per second occurred after 10 threads making locks a

likely culprit. The amount of time it took to freeze and fork was typically around

5ms or less, and never exceeded 9ms.

These results indicate that Forkscan works in a practical setting, making the

code simpler without impeding performance. Moreover, the individual data structure

benchmarks, especially the hash table, test Forkscan far more strenuously than mem-

cached. The simplified application code, which no longer needs to count references

nor carefully needs to verify correctness, makes Forkscan a valuable alternative for

reclaiming memory from concurrent data structures.

3.2.6 Summary

Forkscan shows that it is possible to provide fully scalable conservative memory recla-

mation for low level languages like C and C++ by exploiting parallelism and tailoring

it to take advantage of mechanisms that are highly optimized in modern operating

systems. The present library implementation focuses on the Linux operating sys-

tem [20], but we believe the ideas behind it can be applied to other state-of-the-art

operating systems as well.
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Performance of Forkscan is competitive with other automatic reclamation systems

such as the popular BDW garbage collector. On the other hand, although manual

application of certain memory reclamation systems can eliminate unpredictable de-

lays, they are often difficult to apply correctly and impose themselves on the end-

programmers who use the data structure. Forkscan takes a meaningful step in the di-

rection of reduced latency imposed on user threads, while maintaining an automated

interface. Notably, even in applications with large data sets Forkscan's snapshot

causes only brief interruptions.

Our experimental setup was developed for Linux, which offers an efficient copy-on-

write mechanism through fork. In theory, a similar mechanism can be implemented

in Windows via Virtual Memory Functions [73]. An implementation such a copy-

on-write mechanism is described and benchmarked in [84], to provide concurrent

garbage collection for the D programming language. Although in theory this implies

that Forkscan could work on Windows, its implementation would probably be quite

complex.

Forkscan's interface, requiring a retire call, is a feature designed to improve per-

formance (both in time and memory) and give the programmer control over how

memory is handled. Memory that is known to be visible to a single thread can be

free'd directly. That memory need never be tracked by Forkscan, saving time and

resources. A programmer can simulate a GC-style interface by retiring a pointer as

soon as it's allocated - Forkscan even provides an automalloc ( function as an al-

ternate interface - but one expects that low level programmers prefer the control of

the default interface.

Limitations

Conservative Reclamation. Forkscan is conservative, in that memory words which

could be pointers to a memory block are automatically treated as references. It shares

this limitation with other automatic reclamation systems for C/C++ [34, 85]. In the-

ory, this assumption could prevent memory from being de-allocated, e.g. in the case

of a list whose head node has a false reference. A study by Boehm [14] considers
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this issue in detail, and concludes that, in most practical scenarios, the space over-

head of conservatism is bounded by an additive constant. This analysis generalizes

to Forkscan.

We also assume that references are word-aligned, and that the programmer does

not obfuscate references to memory blocks. This assumption is also standard for

conservative reclamation. Forkscan mitigates this, slightly, by masking the low 3 bits

when it reads a word, since some data structures overload those bits to save space.

There are, of course, many ways to hide pointers that are not detectable in a general

sense, but this is the most common and is easy to catch.

Multiple Threads Retiring a Single Node. At present, retiring a node multiple

times from different threads might cause the same node to be tracked (and not found)

in two subsequent iterations, causing a double-free. For this reason, adapting Forkscan

to support this usage model would require fundamental design changes. However, in

each of the microbenchmarks, as well as in memcached, finding the right place in the

code to call f orkscanretire 0 was obvious: the thread that successfully marked the

node removed was responsible for retiring it. A quick look at a variety of concurrent

data structure designs in Herlihy and Shavit [52] shows that this is a common pattern.

Therefore, we think that finding this place is generally easy, so there is no need to

support multiple threads retiring the same node. That said, this is a possible avenue

of future work if many concurrent data structures require or are simplified by that

interface.

Space Usage. Currently, Forkscan introduces a constant multiplicative overhead

by storing a pointer to each retired object. This can be eliminated by directly utilizing

the node information stored in the allocator, which subsumes these lists, by merging

Forkscan with the allocator, itself. Many C/C++ programmers choose an allocator

that suits their specific performance needs, however, and marrying Forkscan to its

allocator makes it less general purpose. For portability, Forkscan is designed to work

with any allocator.
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Cases of Non-trivial Latency. After threads are signalled, they busy-wait until

the fork is complete and they are allowed to continue. There is a cost associated with

responding to the OS signal, as well as time spent waiting. Altogether, this does not

impose significant latency, but the latency increases with thread count. On future

architectures, it may begin to impose an unacceptable burden. The latency could

be reduced if the f ork() procedure, itself, had knowledge of the Forkscan algorithm.

Instead of signalling the threads, Forkscan could simply fork the process, allowing

each thread to continue until it hit a copy-on-write page, at which point the OS

would know to stall it until the fork is complete. The OS also has access to the

contents of the registers, allowing it to spill them into a special location known to

Forkscan. Any thread that has not performed a write when the fork is complete can

be signalled by the OS, and its register state recovered. This optimization would allow

Forkscan to avoid signalling, and threads could run until the last possible moment.

3.3 Discussion

With the development of Forkscan, there exists a library that meets the criteria out-

lined in Chapter 2: automatic, cheap reads, low latency, and scalable. Latency and

scalability require a short explanation, however. f ork ()'s cost is proportional to the

size of the process since pages need to be marked copy-on-write, and the cost of flush-

ing the page table is borne by the whole process. Moreover, as discussed explicitly,

the more threads in the process, the longer synchronization takes. In practice, these

add up to user-detectable latency (>10ms) only in extreme circumstances. But the

caveat exists.

Scalability, likewise, was tested under write-heavy workloads with many threads,

and caused Forkscan to throttle. In comparison with, e.g., Epoch-based techniques,

this may seem heavy weight and limited, but recall that the microbenchmarks repre-

sent the most extreme circumstances. In the case of memcached, the overhead versus

even the Leaky implementation was undetectable and lost in the noise.

Although these limitations warrant further investigation, the pause is bounded
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Algorithm 5 Augmented Remove Method From a Concurrent Linked List
1: function LIST_ REMOVE(list, x)

2: while true do
3: { pred, curr } - WINDOW FIND(list.head, x)
4: if curr.x / x then
5: return false
6: end if
7: succ +- GETUNMARKED REF(curr.next)
8: markedsucc +- GET_ MARKEDREF(succ)
9: if false = CAS(curr.next, succ, markedsucc) then

10: continue
11: end if
12: CAS(pred.next, curr, succ)
13: retire curr
14: return true
15: end while
16: end function

and short, and the scalability is high in real world applications. I argue these aren't

an impediment, and Forkscan represents a meaningful starting point for practical

automatic concurrent memory reclamation in low level programming languages. Ad-

ditionally, what has emerged is an interface that provides automatic reclamation

without imposing compiler-related or contractual burdens on programmers beyond

what's required by conservative GC but without the overheads.

Independent of whether the future is Forkscan or something else, the retire in-

terface has endurance power because of its simplicity and generally applicability in

concurrent data structure methods. In Algorithm 5, the augmented removal method

for Harris's common concurrent linked list[49] is shown. Literally, the only change

is on line 13: retire the node that was removed. If two threads try to perform a

logical remove the same node, only one CAS will succeed on line 9. The one that

fails will try again, and the one that succeeds will try to swing the predecessor's

pointer (whether it succeeds or fails is irrelevant since other threads traversing the

list will try to help). This thread can safely retire the node without worrying about

a double-retire because no other thread will return true (success) for this node's

removal.
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Indeed, in nearly every data structure that's been modified using this interface,

the change has either been this one-liner or a test of the return value of a CAS (that

wasn't tested in the original code) plus the retire statement. I argue that this is

transformative for the way concurrent data structures are able to be expressed in the

literature since a researcher need only express where a thread can uniquely identify

when a node is removed.

5 More examples are provided in the chapter on DEF, since they have actually been implemented
in that language.

99



100



Chapter 4

DEF Overview

4.1 Introduction

DEF is designed to fill a void in programming languages - the intersection of low level

and scalable. This chapter is primarily intended to demonstrate how it fills that void,

centering on the implementation of concurrent data structures. That said, a general-

purpose language is a great beast and one can't avoid explaining and justifying its

various features and design details. It would be inappropriate to hand-wave this

aspect, so justification will be measured against the following criteria:

e Close to the machine by default: DEF must not impose hidden overheads

for basic operations - if you can do it in C, you should be able to do it in DEF.

Differences in performance for equivalent code should be explainable in terms of

back-end compiler optimizations. This is, of course, a big part of the motivation

for the language.

• Principle of least surprise for C programmers: DEF has many similari-

ties to C so that it's easy for C programmers to learn. Where syntax is similar,

semantics must be the same unless there's strong justification for different se-

mantics (or the difference is detected during compilation and a warning or error

is issued by the compiler).
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1 /* Compute the n'th Fibonacci value. Slowly.
2 */

3 def fib (n i32) -> i32
4 begin
5 if n < 2 then // base case.

6 return n;

7 fi

var a i32 = fib(n - 1);

9 var b i32 = fib(n - 2);

10 return a + b;

1 end

Figure 4-1: DEF Fibonacci example code.

" ABI/API bi-directional compatibility with C: Types have equivalents in

C and module ABIs and APIs are compatible except for DEF API features

unavailable to C (e.g., tuples). There are massive bodies of legacy C/C++

code, and DEF should integrate as painlessly and transparently as possible into

existing applications.

" Non-invasive high level features: Where DEF has features that require

runtimes, those runtimes should impose no detectable performance overheads

unless and only insofar as they are used by the application. This excludes, for

example, GC, but permits Forkscan since the latter never runs unless objects

are being retired. Both as its own principle and in light of the aforementioned

prevalence of legacy C code, programmers shouldn't have to think twice about

using or incorporating DEF on account of a performance hit due to runtime

libraries.

4.2 Basic Syntax

4.2.1 Fibonacci

Fig. 4-1 shows the recursive implementation of Fibonacci in DEF. This is generally

intuitive to a C programmer with the most striking difference being the lack of curly

braces for scoping. Keywords are used in their place for readability: the perennial
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Sint (*foo ()) ;

i decl foo () -> 0 -> i32;

Figure 4-2: C (above) and DEF (below) declarations of a function returning a function
pointer that returns an integer. decl is used for function declarations in DEE.

problem of, e.g., inserting code at the end of a scope when there are multiple closing

curlies and having to figure out which one applies to the scope the programmer cares

about, is avoided. Moreover, curly braces can now be reclaimed and repurposed for

another use.1

Another apparent difference is the function profile: the def keyword is used to

define a function, and the return value has been moved to the right-hand-side using

arrow notation, as in ML or Go. This syntax has the benefit that returning a complex

type doesn't lead to indecipherable code. Consider the function declarations in fig. 4-

2 in which a simple function pointer is returned from a function. In general, DEF is

a left-to-right language, as this makes code more comprehensible to humans.

The third notable difference is that the variables a and b are declared with the

var keyword, and their type is declared after the variable name (in keeping with

left-to-rightness). The types of these variables can be omitted and inferred in this

example - they're included for demonstrative purposes.

The last obvious difference is the replacement of int with i32. Integers are

denoted by i or u (signed or unsigned, respectively), and a bit width. Floating point

numbers are f with the bit width. Permitted widths are based on the underlying

hardware.

There is a hidden difference, versus C, that is detected at compile time (slightly

surprising, but in keeping with the principle of least surprise as specified above): f ib

is local to the module in which it was declared. In order for a symbol or type to be

visible to other modules, the keyword export is used. This is the reverse of C (which

uses the static keyword to declare a symbol local to the module) and was changed

for the following practical reasons:

'For completeness, if-statements use the elif syntax (as opposed to else if) for parsing reasons.
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def remainders (n i32) -> { i32, i32 }
2 begin
3 return { n % 3, n % 4};

4 end
5

6 def zeroes (n i32) -> i32
7 begin

switch remainders(n) with

xcase { 0, 0 }:

10 return 2;
11 xcase { 0, - }:

12 ocase { -, 0 }:

13 return 1;
14 xcase _:
15 return 0;

16 esac
17 end

Figure 4-3: DEF toy example of a tuple and a switch statement, including wildcards.

1. Default global visibility tends to pollute the symbol table unnecessarily; doubly

in the absence of namespaces (which C lacks).

2. Local functions, in principle, can sometimes be optimized in ways that exported

ones can't.

3. Being explicit about what's exported makes automatic generation of headers

and interface files easier.

Reason 1 is non-negotiable: DEF can't have namespaces and maintain API com-

patibility with C. Reason 2 is something that expert C programmers know, and they're

always careful about visibility, but less experienced C programmers potentially lose

optimizations (such as knowledge about pointer aliasing from the complete set of

callsites). Therefore, local visibility provides the best optimization opportunities by

default. Reason 3 is discussed along with the defghi utility.

4.2.2 Tuples and Switch Statements

Fig. 4-3's remainders function shows a tuple. The function takes in an integer and

returns a tuple of two integers: the remainders of the input divided by three and four,
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respectively. The return statement is able to create the tuple on the spot or return

a variable that has the correct tuple type. Tuples in DEF are nothing more than

anonymous structs; they have the same allocation and copying properties as native

values, and to keep one alive on the heap it must be declared as a pointer. This

syntax looks like static array definitions in C,2 which might appear to violate the

principle of least surprise, but a tuple of n elements of type t has identical memory

layout semantics as a static array of n elements of type t. Also, any treatment of the

tuple as an array will be caught by the compiler.

The zeroes function calls remainders and returns a count of the number of

zeroes in the tuple using a switch statement. For DEF, switch statements are for

more general pattern matching than in C. In this code, the switch examines the

contents of the tuple and uses the underscore, as a wildcard, to match any value.

Patterns are matched from left to right, and the first successful case is the one that's

executed. A difference from C is that no break is used to exit a switch statement.

Instead, when a case completes, the next kind of case indicates permeability into

its block: ocase means that the case falls through, and xcase means that it does

not. Note that the ocase on line 12 means that the previous case will fall through,

since both cases have exactly one zero. The last case, in this example, is the default

one; there is no def ault keyword because matching a wildcard catches anything that

wasn't caught by a previous case.

Switch statements will also do array comparisons, including strings. Related sets

of string comparisons are extremely common, particularly when reading input, and

leveraging switch syntax improves readability. Note that switch statements in C can't

match any value other than a primitive integer - a category that excludes pointers -

so there are no conflicting expectations on the part of C programmers.

Last, matching a tuple is one thing, but accessing elements from a tuple has

no analog in C. Fig. 4-4 shows the ways elements of a tuple can be read. Given

the remainders function from the previous example, the values can be unpacked

dynamically (lines 3 and 6), or individual elements can be selected with a zero-

2Static arrays in DEF use this syntax except with square brackets instead of curly.
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1 // Dynamic unpacking with existing variables.
2 var a, b i32;
a { a, b } = remainders (10);

I Dynamic unpacking with new variables.
e var { c, d } = remainders(20);
7

8 // Accessing variables from an existing tuple.
9 var tuple = remainders(30);

10 var e = tuple.{0};

ii var f = tuple.{1};

12 tuple.{2} = -1; // out of bounds.

Figure 4-4: Ways in which elements of a tuple can be accessed.

i typedef string = *char;
2 typedef complext = { creal f64, cimaginary f64 };
:a typedef state-t = enum

I STATE_1
5 | STATE_2
6 | STATE_3

Figure 4-5: Examples of defining named types.

indexed syntax (lines 10 and 11). Accessing individual elements is designed to look

like selecting a member from a struct for readability. Line 12 shows trying to select

a field that doesn't exist, but since the tuple layout is known to the compiler it will

issue an error.

4.2.3 Types

Defining a named type uses the typedef keyword, as in fig. 4-5. A string type is

defined (line 1) that shows the left-to-rightness of types: a pointer to a char. A struct

(line 2) is simply a tuple with the field names specified. And an enum (lines 3-7) is

expressed as a set of alternatives, like in ML.

Accessing members of a struct looks like it does in C or Java. There are no arrows

when selecting through a pointer, however, in favor of the dot notation. The rationale

for unifying the two is that the compiler knows whether the object is a pointer or not

and can just do the right thing; two different operators is unnecessary and frees up
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1 var a [10]*i32; // compare to C: int *(a[10]);
2 var b *[10]i32; // compare to C: int (*b)[10];
3 var c * volatile i32; // compare to C: int volatile *c;

Figure 4-6: Types in DEF along their corresponding C code.

the arrow for future use.

Expressing types, generally, is designed to read left to right without the use of

parentheses for associativity. Fig. 4-6 shows a side-by-side comparison of identical

types between DEF and C3 : Lines 1 and 2 show a distinction that, in C, is difficult

for a human to parse. DEF, line 1, reads as, "variable a of an array of ten pointers

to integers." Line 2 is, "variable b of a pointer to an array of ten integers."

In C, by contrast, the trick is to find the variable name, read right, then read left.

Line 1, therefore, requires no parenthases, but representing line 2 requires them. And,

of course, in C it's trivial to generate practical types that become arbitrarily complex

requiring more parenthases, or where a programmer will tend to insert them when

unneeded simply to be explicit (either for their own comprehension or subsequent

readers').

Line 3 is included to show the difference in the usage of volatile, which has the

same semantics in the two languages. The keyword could, in C, be moved to the left

side of int and mean the same thing, but the recommended order is shown. Again,

reading left to right in DEF makes it clearer which part is being specified as a volatile

type. It's easy to distinguish the volatility of the integer versus the pointer to it.

Last, note that DEF arrays (as in C) carry no extra data. They represent primitive

semantic structure around pointers, but they don't carry around length or stride.

There can be no hidden bounds-checking by design.

3The int type in C is not required to be 32 bits, but it is on all major platforms. For the purposes
of this document, int will be treated as equivalent to i32 in DEF even though they would not be
on some systems.
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i decl printf (*char, ... ) -> i32; // get printf from the CRT.

Figure 4-7: Example of making printf available to programmers within a module
without including external files.

4.2.4 Summary

Not only is it important to justify syntactic choices, particularly where DEF is differ-

ent from C, but to recognize that the primitives are similarly close to the machine.

In principle, limiting oneself to these low level features is the same as using a "better

C" in that there is improved readability and some conveniences not available in C.

Writing an application or module in DEF requires no sacrifice in performance or space

usage.

Of course, a "better C" would hardly be a substantial basis for research, but

establishing that DEF is as capable as C by virtue of having equivalent functionality

for performance engineering is a prerequisite to arguing that one can (and should)

write concurrent data structures for C in DEF. DEF satisfies the design goal of "close

to the machine by default." Moreover, with the type definitions discussed above,

it's clear that there is ABI compatibility with C. Types have direct correspondence

between the two languages, so no transformations have to be performed to call one

or the other language.

The remaining question, for compatibility, is the nature of sharing APIs.

4.3 C API Compatibility

4.3.1 From C to DEF

It's established that DEF has C ABI compatibility, and fig. 4-7 shows how to make

a function (in this case, from the C runtime library) available to a DEF module.

Using this code, a programmer can print from DEF functions just as they would in

C. Likewise, defining any type available to a C module is a trivial conversion from C

syntax to DEF. However, this is nothing more than a coating of the ABI. For true
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1import "stdio.h";

Figure 4-8: DEF can import C header files directly.

API compatibility, the DEF compiler understands C code and can import C header

files directly.

Fig. 4-8 shows that C headers can be read using the import keyword. This is

the same syntax used for importing DEF interface (.defi) files. DEF will look for

headers in the same places as the C compiler, and knows about textttstdio.h and

other system headers. This is implemented using the Clang[791 frontend, which reads

the C code and parses it into its abstract syntax tree, which is then converted to the

underlying representation used by the DEF compiler.

At the time of writing this thesis, DEF understands C types, function declarations,

and global variables - including those represented in macros expanded by Clang -

but not the macros, themselves, or inline functions defined in the header file. This

means that anything expanded within the header file is available to a DEF program

that imports it, but using C macros in DEF and inline functions from C are not.

They are read by Clang but not transformed into an intelligible format for DEF, and

are therefore ignored.

4.3.2 From DEF to C

In the other direction, since it is clear that DEF has incompatible syntax versus

C, there can be no direct means of including DEF interface files in C source files.

However, because of ABI compatibility, most global types, functions, and objects

can be translated directly into C, programmatically. Therefore, the same means of

generating DEF interface files (.def i) from DEF source files (.def) can be used to

generate C header files.

A special utility, defghi (DEF Generate Headers and Interface files), accompa-

nies the compiler. Any exported type, function, or object will appear in the header

file unless it involves an unnamed tuple, since C doesn't have them. 4

4 1t is technically possible to generate, e.g., functions that return tuples in C header files using
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export
2 typedef complex-t = { real f64, imaginary f64 };

4 /** Given a complex number, return the real component.

6 export
7 def project-real (n *complex-t) -> f64
s begin
9 return n.real;

10 end
11

12 /** Given a complex number , return the imaginary component.

13 */

14 export
is def projectimaginary (n *complex-t) -> f64

i6 begin

17 return n.imaginary;
is end

1 /* complex.h:

2 * THIS FILE WAS AUTOMATICALLY GENERATED. DO NOT MODIFY IT OR YOUR

3 * CHANGES MAY GET CLOBBERED.

4

6 #pragma once
7 #ifdef __cplusplus

? extern "C" {
, #endif

10

ii typedef struct complext complext;
12

13 struct complext

14 {
is double real;
16 double imaginary;

18

19 /** Given a complex number, return the real component.

20 */

21 double project-real (complex-t *n);

23 /** Given a complex number, return the imaginary component.

24 */

25 double project-imaginary (complex-t *n);

26

27 #ifdef __cplusplus

2 } I// extern "C"

29 #endif

Figure 4-9: Listing for a complex numbers package. Above: The DEF source file.
Below: The automatically generated C header file.
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1 export opaque
2 typedef complex.t = { real f64, imaginary f64 };

/* complex.h:
2 * THIS FILE WAS AUTOMATICALLY GENERATED. DO NOT MODIFY IT OR YOUR

3 * CHANGES MAY GET CLOBBERED.
4 *

5

6 #pragma once

7 #ifdef __cplusplus

extern "C" {
9 #endif

10
it typedef struct complex-t complext;

12

13 /** Given a complex number, return the real component.

14 */

is double project-real (complex.t *n);
16

17 /** Given a complex number, return the imaginary component.

1s */

19 double project-imaginary (complex-t *n);
20

21 #ifdef __cplusplus

22 } // extern "C"
#endif

Figure 4-10: Same example as above, but using the opaque keyword. The original
DEF file is truncated for brevity.

The code in fig. 4-9 provides a trivial example of code generated by def ghi. Lines

7-9 is a standard C-ism for making C header files compatible with C++. Line 11

declares the complex_t struct, and 13-17 define it. The function declarations and

their documentation are emitted below the types.

In some cases the author of a module would want to keep a type opaque to other

modules. To accomplish this, use the opaque keyword when exporting it, as in fig. 4-

10.

The defghi utility has the added benefit of maintaining API/module compatibil-

ity and keeping documentation up to date, since headers and interface files can be

generated as part of the build process. Emphasis is placed on not duplicating code

name mangling, as C++ has. However, using them is no more simple than defining structs in C,
and since a mangled name isn't especially handsome from a readability standpoint, I haven't found
an application where this functionality is desired.
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1 var node = new node;
2

a // Do work.

5 if address-may-bevisible then

6 retire node;

7 else
8 delete node;

9 fi

Figure 4-11: Trivial example of using retire vs. delete.

unnecessarily; as a former colleague of mine once said, -If the same code is in two

places, it's wrong in at least one."

4.4 Support for Concurrency

4.4.1 Retire

DEF has native memory management commands: new, delete, and retire. "Na-

tive," in this context, requires explanation since C doesn't have native memory man-

agement and the question arises of how use of the keywords integrates with C modules.

They are implemented using a modified version of Forkscan, which invokes the default

allocator unless explicitly configured otherwise. Therefore, the keywords, themselves,

can be configured to use custom allocators. The only limitation is that there must

be a mallocusablesize function that takes an object and returns the amount of

space it occupies.

Fig. 4-11 shows a simple example. Line 1 shows the allocation of the pointer to a

node. As in C++, new takes a type and returns a pointer to it.5 The divergence from

C++ is in the alternatives provided in lines 5-9: If the programmer has published

the address of node (such as storing it in a concurrent data structure), and can't

be sure whether another thread is looking at it, the address needs to be retired.

Otherwise, if it's known to be safe to free the memory, delete may be used instead.

5 More complex examples are possible, including inline initializers, array allocations, etc., but

they're for convenience and don't require special treatment in this document. Some of this is used

in sample concurrent data structures in the next chapter and is discussed there.
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1 a atomic += b; // C: atomicfetchadd(&a, b) + b;
2 a atomic - b; // C: atomic-fetch-sub(&a, b) - b;
3 a atomic / b; // No built-in C support.

Figure 4-12: DEF atomic operations and their C counterparts.

The addressmay.bevisible variable is for demonstration in this example and not

part of the language.

As mentioned, Forkscan was modified to bring it in line with the necessary DEF

design goals. The primary change was to burden retire instead of new (imple-

mented by f orkscanretire and f orkscanmalloc, respectively). In anticipation

of producer-consumer model applications in which C code is the producer and DEF

is the consumer, the burden of freeing memory couldn't be placed on new or it might

never get freed at all, since DEF never calls it.

Justification for this change is slightly subtle: It's reasonable to think the shift

of burden doesn't impede performance of an application. The original burden was

generally invisible because likelihood was high that memory that had just been free'd

would be hot in the cache, and was therefore likely to be returned. Burdening retire

is similar in that if retiring and allocating memory are done in close proximity, the

memory is probably in the cache, and if they aren't, then the cost of bringing an

evicted line back into the cache is assessed infrequently. Indeed, in various micro-

benchmarks any difference in performance was unmeasurable.

Last, it should be noted that no known technique for implementing retire on

Windows has been documented. This stands out as the primary limiting factor in

porting DEF to Windows since there is no native fork.

4.4.2 Atomic Operations

Although compiler built-ins for atomic RMW operations exist in DEF, just as in C (as

of C11[25]), additional syntax is provided for readability and future integration with

other features. Individual operations can be marked atomic, indicating sequentially

consistent semantics.
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1 int old;
2 do {
3 old a;
4 } while (atomic-compareexchange.strong(&a, old, old / b));

1 int tmp = b;
2 try-again:
3 if (_xbegin() == _XBEGINSTARTED) {
4 a /= tmp;

5 _xendo;
6 else goto try-again;

Figure 4-13: Two possible implementations of the atomic division operation as coded
in C. Above: the C Atomics Library solution, below: a transactional approach using
Intel RTM.

Fig. 4-12 shows three examples of DEF operations marked atomic and their C

semantic equivalents. Note that an atomic operation is a description of the desired

semantics and not an intrinsic denoting a specific instruction. The difference is that

the latter is guaranteed to generate the RMW instruction specified, while the former

describes the behavior and will use the RMW instruction to implement it if one exists.

Specific instructions may be accessed through intrinsics in both languages, but C

recommends the use of the Atomics Library for portability, and DEF recommends

the atomic keyword.

Lines 1 and 2 show the annotation of the += and -= operations, respectively. The

equivalent C code uses a library function and then adds or subtracts the value of

b from the result. Presumably, the C function was designed to mimic the popular

fetch-and-add instruction semantics which returns the old (dereferenced) value of the

first argument. DEF's atomic annotation is designed to fit with the semantics of

the non-atomic operation which returns the new value. It's a subtle distinction, but

it makes the subexpression transition from non-atomic to atomic intuitive by not

changing any of the other semantics.

Line 3 has no corresponding atomic C code. The operation, itself, isn't supported

as a single RMW instruction on any major architecture.[54, 6, 24] Nevertheless, any

assignment operator can receive the atomic annotation to provide the semantics of

that operation performed atomically.
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Possible implementations in C are in fig. 4-13. There are two obvious concerns

regarding the DEF implementation: 1. a programmer doesn't necessarily know they

aren't getting a native instruction out of the atomic code, and 2. DEF hides the lack

of foward progress guarantee in this and other architecturally non-native implemen-

tations.

To the first concern, DEF uses native RMW instructions that correspond closely

to the operations specified where possible. If an instruction set has the given RMW

instruction, DEF will use it, so the programmer need not worry they are getting less

than what the hardware provides. On the other hand, HPC programmers tend to

know the instruction sets they're using and aren't likely to be surprised that, e.g., /=

has no locked equivalent on x86. If greater specificity is desired, programmers can

use intrinsics and be explicit in the way fig. 4-13 is explicit in C. But DEF provides

a readable short-hand that covers the 90% case.

Regarding the loss of a forward progress guarantee, it is hidden by the DEF

syntax and DEF depends on programmers to know what operations are backed by

RMW instructions. This decision is justified by the fact that C's Atomic Library has

the same limitations on hypothetical architectures that lack certain native atomics.

There's a degree of abstraction in both languages that hides the progress property

in a way that compiler intrinsics don't. However, on the reverse side, if some future

architecture supported a native /= RMW operation, existing C code would have to be

rewritten to take advantage of it, even if that code already used the Atomics Library.

DEF code would require nothing more than a recompile.

4.4.3 Atomic Blocks

An atomic block is one in which all modifications to memory happen atomically with

respect to other threads executing atomic blocks. A thread, while in a block, looking

at the memory being modified by another thread should either see the full change

or none of it: thus, atomic. The simplest implementation of this is to take a global

mutex at the beginning of the block and released at the end, but this doesn't scale

because threads tend to queue on the lock. Practically, this is akin to the naive
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1 atomic begin
2 // Perform operation.
3 end

i atomic begin

2 // Perform operation.
3 xfail TFSPURIOUS:
ofail TFOVERFLOW:

// Reduce the size of the transaction.
e xfail _:
7 // Catch all:
8I/ Do some error handling before trying again.
9// . . . or " goto " out of the block .

end

Figure 4-14: Basic atomic block syntax. Above: trivial atomic block executes until it
succeeds, below: transaction with abort condition detection and error handling.

synchronization used by Java since lots of threads operating on a concurrent object

all use the same object or class lock.

Alternatively, a transaction-based implementation causes contention only when

real cache contention exists in a data structure or algorithm. Hardware transactional

memory (HTM) is increasingly common in commercial microprocessors and threads

that doesn't access the same cache lines don't obstruct one another. The drawback

is that, as implemented by Intel, hardware transactions have no forward progress

guarantee. Locks have that property.

By default, atomic blocks in DEF use Hybrid transactional memory (HyTM)

which has an HTM fast path and a software slow path. A transaction that aborts

some constant number of times falls back onto the slow path that's guaranteed to

complete. This is a well studied problem.[56, 31, 19, 30, 29, 65]

A trivial DEF example is presented in fig. 4-14. The atomic block is simply a

block with the atomic annotation, just as an atomic operation has. The second

listing in the figure has code to match failure conditions before trying again. The

abort value can be checked against a set of possible causes represented by an enum

provided in an interface file. As with the switch statement syntax, pattern matching

has a fallthrough (of ail) and a non-fallthrough (xf ail) alternative.

Fig. 4-15 shows the same code written manually by a programmer using intrinsics
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1 do-transaction:

2 var rtm-status = _builtin-xbegino);

3 if rtm-status == -XBEGINSTARTED then
*1 // Perform operation.

s __builtin_xend();

6 else
7 if rtmstatus I _XABORTRETRY

s | rtmstatus I _XABORTCAPACITY then

9// Reduce the size of the transaction.

10 else

. // Catch all:

12 // Do some error handling before trying again.

13 // ... or "goto" out of the block.

14 fi

15 goto dotransaction;

fi

Figure 4-15: Equivalent explicit code from the bottom example in fig. 4-14 as imple-

mented for Intel RTM.

for Intel's RTM. Clearly, it's possible to control the exact code path, as any low level

programming language requires, but the atomic block syntax catches the bulk of how

transactions tend to be used and presents it in a far more readable way.' This is

the HTM interpretation of the atomic block (which can be activated with a compiler

switch), though by default the compiler emits HyTM.

At present, DEF uses almost the simplest possible HyTM implementation: read

a global mutex value at the end of the fast path and abort if it's being held. In the

slow path, try to acquire the mutex to perform the operation. If that fails, wait until

the mutex is released and, instead of trying to acquire it again, go back to the HTM

fast path. Not waiting to acquire the lock prevents threads that might otherwise be

able to complete their transactions in the hardware from serializing with each other

unnecessarily.

In a future implementation, DEF is likely to employ RHNoRec[65] instead of

using a lock. The code for the present implementation is complex, but requires only a

single path through the user code. Code for RHNoRec (and other non-trivial HyTM

implementations) requires multiple code paths making manual maintenance and even

6For completeness, returning from a function out of an atomic block, or otherwise leaving one,
implicitly commits the transaction.
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1 export
2 def f ib (n i32) -> i32

3 begin
4 if n < 2 then
5 return n;

6 fi
7 var a = spawn fib(n - 1);

var b = fib(n - 2);

9 sync;

return a + b;
i end

Figure 4-16: Fibonacci code in DEF.

value fib(value)

0 0
1 1
n fib(n - 1) + fib(n - 2)

Table 4.1: The recurrence for calculating values in the fibonacci sequence.

minor changes a logistical nightmare. By contrast, the atomic block is simple and

correct. User code looks like any other and is as easy or difficult to modify as non-

atomic code.

4.5 Support for Parallelism

DEF is an LLVM-based compiler[58] that uses the Tapir branch created by Schardl,

Moses, and Leiserson.[83] Tapir adds LLVM instructions for fork-join parallelism using

Cilk or OpenMP. DEF uses Cilk, but if users want an OpenMP option for compati-

bility, Tapir makes creation of the option easy.

A parallel recursive Fibonacci implementation is given in fig. 4-16. f ib takes n as

a parameter and returns the n'th value in the fibonacci sequence as implementing the

recurrence in table 4.1. The base case is given in lines 4-6, and ignoring the spawn and

sync the rest of the code is simply a recursive implementation of the computation.

In fact, this is precisely what happens in the single-thread execution of the parallel

algorithm in Cilk; everything is executed in the serial order as though the parallelism

keywords weren't present.
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1 pfor var i = 0; i < len; ++i do
2 histogram[data(i]] atomic += 1;
3 od

Figure 4-17: Histogram example using a parallel for loop.

S,

Spawning serial work makes a "parallel spine" When spawning parallel work, multiple threads
where only one thread is creating new tasks. act as producers, reducing the span.

Figure 4-18: Two ways of dividing a parallel loop. P-nodes represent parallel work,
and S-nodes represent serial work. Left: spawn individual iterations, right: divide-

and-conquer.

In the multicore execution, however, the spawn expresses that the spawned func-

tion may execute in parallel with its continuation. sync means that all of the paral-

lelism in a function must complete before any code after is able to begin. From this,

it's clear that no spawn is required on line 8 because there's no code in its continuation

before the sync.

The other parallel construct is pf or, as shown in fig. 4-17. pf or is syntactically

like f or, except that iterations are allowed to execute in parallel. The similarity of

expressions to C/C++ is apparent on line 2, where everything except for the atomic

keyword transfers directly. atomic avoids the race condition on the element in the

histogram array.

Tapir will compute the number of iterations in the loop, if it can, and use recursive

divide-and-conquer to maximize parallelism (for most code). Fig. 4-18 shows the two

methods. In the first case, when the number of iterations isn't known to the compiler,

the loop behaves like a loop that spawns each iteration. Parallelism is maximized,

however, when a worker thread can steal about half of the work. Divide-and-conquer
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1 ©[define a "hello world"]
2 ©[define b [parse-stts printf(©a);]]

3

4 def hello-twice () -> void

5 begin
6 ©b ©b

7 end

Figure 4-19: Hello World example using a DEFISM.

provides this behavior when individual iterations have about the same amount of

work each.

DEF reaps the benefits of Tapir. Although it means that it isn't a major contri-

bution to theory of parallelism, it's a crucial feature for a language with a scalabil-

ity design goal. It also means that the various Cilk-related tools all work on DEF

applications.[59, 82]

4.6 Interpreted Structural Macros

Interpreted Structural Macros (ISMs) are Lisp-like code geared towards generating

DEF, being somewhat more powerful than C or C++ macros. They're designed to

fill the role of C++ templates, except operate at more than just the function or type

level, and also provide some processing power to the code generation, itself. Also,

crucially, generating exported symbols can be C-friendly in a way that C++ templates

can't be since the latter depend on name mangling to express the type.

A Hello World example is shown in fig. 4-19. DEFISMs start with an © symbol

and use square brackets instead of parentheses to reduce dependence on the shift key

on most keyboards. Line 1 defines a as the "hello world" string using the def ine

special form, and line 2 uses that definition to define b as a print statement. The

parse-stats function parses one or more DEF statements and terminates with the

closing square bracket. On line 6, the b variable is used twice to print "hello world"

twice.

Defining functions looks very Lisp-like, too. Fig. 4-20 shows the definition of

call-f cn on lines 2-5. In this case, the parse-stts appears inside a function
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1 ©[define fcn-names '["foo" "bar" "baz"]]
2 ©[define (call-fcn fcn]

[parse-stts

©C[emit - ident f cn](;

6

7 def call-fcns () -> void
s begin

9 ©[concat-stmts [map call-fcn fcn-names]]

10 end

Figure 4-20: Mapping a DEFISM function.

definition and the type of the f cn parameter isn't known ahead of time. So we

have to tell the parser what kind of token is being generated using the emit-ident

function. When call-f cn is used, it will do its best to convert the argunient to an

identifier and generate an error if it can't.

call-f cn is used on line 9 along with the map function which applies it to the set

of function names. The result is a list of statements, but DEF doesn't know what to

do with a DEFISM list, so the statements are concatenated using concat-stats to

turn them into a single object. The result of this code is a DEF function that calls

foo, bar, and baz (from line 1).

Naturally, there is a parse-expr function, emit-expr, functions for arranging

statements and expressions in multi-branch if statements, string manipulation util-

ities, etc. The typical Lisp special forms are present, too, including let/let*, if

statements, etc. Math functions are included for precomputing values and dedupli-

cation of numbers when a DEF variable isn't desired. In principle a program could

hang the compiler with an infinite loop in a DEFISM, though the expectation is this

is uncommon since the language is designed to generate DEF.

ISM has the power of the DEF parser, so it's easy to emit comprehensible syntax

errors in the macros themselves. Moreover, since everything represented in a macro

is treated as data by ISM, it's easy to operate on it in ways that aren't possible in

simple text-replacement macros.
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Chapter 5

Practical DEF

Having surveyed the DEF language and justification for various design elements, we

move onto the question of practicality. Although a programmer doesn't have to

reimplement existing C/C++ code in DEF, the ask is still quite large to learn a

new language. DEF has some advantage in this area in that operating close to the

machine isn't that different from C, apart from a few keyword and syntax changes.

Nevertheless, it's another compiler in the build process and a development team or

researcher would like to know that the language buys them something valuable for

the added dependency.

This chapter begins by walking through a series of increasingly complex concurrent

data structures, highlighting the DEF features that make their implementations easier

and more robust, and their interfaces with C trivial. Performance numbers comparing

C and DEF are also presented, even though we understand that any low level language

that targets LLVM is going to be as fast as any other. This is to satisfy lingering

concerns and recapitulate the idea that the LLVM optimizations that matter are

performed on the IR.

5.1 Linked List

We start with a simple concurrent singly-linked list, adapted from the Java imple-

mentation in Herlihy and Shavit.[52] This has the typical bounds of a linked list and
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I /** Concurrent linked list implementation. *
2 export opaque
a typedef linked-list =

4 { head list-node,
5 tail list-node

7

s /** Individual linked list node. */

9 typedef list-node =

to { val i64,
11 next *listnode

12

13

1 /** Create and return a new list.
15
16 export
17 def listcreate () -> *linkedlist

is begin
19 var ret = new linked-list
20 { head: { 0x8000000000000000I64, nil },
21 tail: { Ox7FFFFFFFFFFFFFFFI64, nil }
22

23 ret.head.next = &ret.tail;

2.1 return ret;
2, end
2(.

27 /** Create and return a list node with the given value.

2S

29 def new-node (val i64, next *list-node) -> *listnode

30 begin
31 return new listnode{ val: val, next: next };

end

Figure 5-1: List types and initialization functions.

it has lock-free traversals, insertions, and removals.

Fig. 5-1 shows the type definitions (lines 1-12) and the creation routines (lines 14-

33). The only type that needs to be exported for other modules is the linkedlist

type if the library author wants it to be opaque. Therefore, line 2 exports the opaque

type, and the listnode remains private to the module. Note, here, that the order

of definitions isn't legal in C - linkedlist depends on listnode, but DEF (like

many modern languages) allows types and functions to be defined in any order.

In the same way, listcreate is exported while newnode is only used internally.

Both functions use new to create their return objects, and they have inline initializers.

The linkedlist statically initializes the node objects within. Fields can be named
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1 I** Internal find function: Get the two adjacent nodes in the list
surrounding

2 * val. If val is present in the list, it is the second one.

4 def window-find (head *listnode , val i64)
5 -> { *list-node, *list-node }
6 begin
7 var pred, curr, succ *list-node = nil, nil, nil;

retry:

while true do

1.0 pred = head;

1u curr = getunmarked.ref(pred.next);

12 while true do

13 succ = curr.next;
14 while ismarked(succ) do

15 succ = get-unmarkedref(succ);
16 if !__builtin-cas(&pred.next, curr, succ) then

17 goto retry;
18 ffi

19 curr = succ;

20 succ = curr.next;

21 od

22 if curr.val >= val then

23 return { pred, curr };

24 fi

25 pred = curr;

26 curr = succ;

27 od

28 od

end

Figure 5-2: The window_find function for getting the requested value (or where it

would be if it existed.

or not, but I decided it improved clarity to name the containing object's fields, first

and foremost. nil, on lines 20 and 21, is the null object pointer. This keyword was

used instead of NULL so as not to conflict with the C definition once C macros get

more support in the language.

This is not so different from the original Java code except that the constructors

have been converted into functions.

window-f ind (fig. 5-2) is a function used by other functions to get a "window" on

the location of a value in the list. It returns the predecessor node, and the node itself,

or the one that would come after it if it isn't present. Additionally, it tries to swing

pointers to nodes that have been logically removed (see [52] for data structure details).
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1** Find the given value in the linked list and return
2 * true iff it exists.
3 */

.i export
5 def list-find (list *linkedlist , val i64) -> bool

r begin
7 var curr = &list.head;

var marked = false;

9 while curr.val < val do
10 curr = get.unmarked-ref (curr .next);

1 marked = is-marked(curr.next);

12 od
13 return curr . val == val && ! marked;

14 end

Figure 5-3: The find-function that returns whether the specified value is in the list.

Line 7 declares the variables that are used by the function, and it must specify the

type because no type can be inferred from nil. Line 23 returns a statically defined

struct containing pred and curr.

__builtincas, on line 16, is (as it sounds) a builtin function that emits a CAS

and returns the boolean success status. The functions that deal with pointers with

overloaded bits are defined below. Again, this code looks very much like the Java

code, but the tuple adds a level of convenience.

Fig. 5-3 shows the list_find function that returns whether the value is in the

list. It doesn't need windowf ind, but performs a simple traversal. bool is a builtin

type, as it is in both C++ and Java. The only thing that we haven't seen, yet, is the

& operator, which returns the address of an object as it does in C.

listinsert, in fig. 5-4, shows the insertion code which uses window_f ind. DEF

can unpack tuples as shown on lines 8-9, or access members using a dot followed by

the number in curly braces. This is usually more readable if the tuple doesn't need

to be kept around.

On line 19, the node can be deleted and there's no need for a retire because

its address hasn't been published to other threads. The CAS on line 15 failed, so

its address is known only to the thread that created it. This is the first substantial

difference from Java, which simply drops the reference and lets its garbage collector

clean it up. It takes some thought to prove to oneself that an object need not be
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I** Insert a new value into the list.
2 * If it's already present, return false.
3 */

4 export
5 def list-insert (list *linked-list , val i64) -> bool
f begin
7 while true do
A var { pred *listnode, curr *list-node }
o window.find(&list.head, val);

to if curr.val == val then

11 // Node already present in the list.
12 return false;
13 fi

14 var node *list-node = new-node(val, curr);
is if __builtincas(&pred.next, curr, node) then
16 // Success !
17 return true;
I's fi
19 node.next = nil;
20 delete node;
21 od

end

Figure 5-4: Code for inserting a new value into the linked list.

retired, and this is the piece that a published data structure ought to specify: which

objects have shared their references and which ones haven't? All are treated the same

in the literature, but they aren't the same to the programmer working in a low level

programming language.

The last significant function is the listdelete routine in fig. 5-5 that's essentially

the reverse of insertion. In this case, the node must be retired (line 21) because it

was visible to all threads.

Unlike the previous case, the reason for retiring it here requires more analysis. A

node may be physically removed here or in window_f ind, but it can only be logically

removed here. No other thread will help logically remove a node. Therefore, in

this implementation I've decided that the thread that logically removes the node

retires it. I could have decided otherwise: meaning both functions would have to

retire conditional on the physical swing of the predecessor's pointer. In this case,

only listdelete contains a retire statement, and the return value from the CAS

that swings the pointer is irrelevant. Only the CAS that logically removes the node
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1 /** Delete a value from the list.
2 * If it didn't exist, return false.

4 export
5 def list-delete (list *linked-list , val i64) -> bool

e begin
7 while true do
8 var { pred *listnode, curr *list-node } =

9 window.find(&list.head, val);
10 if curr.val != val then
n1 // Wasn't present in the list. Return failure.

12 return false;
13 fi

var succ = get-unmarked-ref (curr.next);

is var marked-succ = get.marked-ref (succ);

I0 if !__builtin-cas(&curr.next, succ, markedsucc) then

17 continue;
is fi
if __builtin-cas(&pred.next, curr, succ);

20 retire curr;
21 return true;

22 od
end

Figure 5-5: Code that removes a node from the list, highlighting the retire keyword.

matters. That CAS is significant because if it fails, then the pointer was changed,

which may indicate that the node has already been logically removed. Retiring a

node that some other thread logically removed would lead to undefined behavior - in

Forkscan, potentially a double-free.

Last, by this design the listdestroy function knows what can be deleted and

what's already been retired by checking the marked bit. Fig. 5-6 shows this function

and the marking functions. The latter three functions use a shorthand for one-liners

- when the whole function is just an expression to be returned - a function is set

equal to the expression.

It also shows that casting looks slightly different from C, using the cast keyword.

Although alternative kinds of casts are not yet implemented in the compiler, this

allows the programmer to be specific about what kind of conversion between types is

intended.

All of this code is extremely straight-forward... and that's the point. This is not

substantially different from the Java source implementation. retire buys a developer
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1 /** Perform cleanup on a list, freeing all nodes. This is not
2 * thread-safe and should not be done concurrently with any
3 * operations on the list.

4

5 export
6 def list-destroy (list *linked-list) -> void
7 begin

var node *list-node = list.head.next;
9 var prev *list-node;

10 while node != &list.tail do

I if ismarked(node) then
12 prev = get-unmarked-ref(node);
13 node = prev.next;
14 continue;
15 fi

i6 prev = node;
17 node = prev.next;
18 delete prev;

19 od
20 delete list;
21 end
22

23 /** Given a pointer, return the same pointer with its low bit
24 marked. */
25 def get-markedref (ptr *list-node) '-> *list-node =

26 cast *list-node (0x1I64 I cast i64 (ptr));
27

28 /** Given a pointer, return the same pointer without its low bit

29 marked. */
so def get.unmarked.ref (ptr *list-node) -> *list-node =

31 cast *list-node (OxFFFFFFFFFFFFFFFEI64 & cast i64 (ptr));
32

33 /** Return whether the given pointer has its low bit marked. */
31 def is-marked (ptr *list-node) -> bool =

35 cast bool (Ox1I64 & cast i64 (ptr));

Figure 5-6: The destroy function, and functions for handling pointers with the low
bit overloaded for marking.
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18 Linked List 10% Updates

130

C

updat opraioned Liht:10 Spate Linthd25%tupdates.e

3.0 - 3.

2.5L --

G.5

0.0 i0.
20 40 60 s0 100 120 140 20 40 60 80 100 120 140

* Threads * Threads

Figure 5-7s Performance of the DEF linked list versus C . Left Execution werth 1 0

update operations. Right: Same with 25% updates.

the ability to implement the code as presented in the literature, considering only (here

references are implicitly dropped. In principle, the functions could return pointers to

internal nodes instead of booleans (they return booleans because that's what they did

in the reference implementation), and the library's end users wouldn't have to worry

about handling those pointers except for the constraints imposed by any conservative

GC.

Fig. 5-7 shows performance results of the list in DEF versus C. Benchmarks were

run on a 72-core machine with two NUMA nodes. With hyperthreading, I ran tests

up to 144 threads. For consistency, both versions of the data structure were compiled

down to LLVM IR and then converted to object files using the DEF compiler (using

-03), guaranteeing they both had the same optimizations performed on them. With-

out this consistency, the version of LLVM DEE uses is newer than the one Clang uses

and, performs better - but we're not interested in how well LLVM can optimize; we

care about closeness to the machine. Clearly, DEF imposes no hidden costs on any

operations, as designed, and the languages perform comparably.

5.2 Serial B-Tree

The B-Tree is a serial tree that's designed to maintain uniform height among all

leaves. It isn't binary, so node sizes can be tailored to the application... in principle.

lea Linked List 25% Updates



1 [define
2 [make-btree keytype t]

a [let* [[suffix [string-append keytype "_" [string t]]]

4 [leaf [string-append "leaf_-" suffix]]
5 [node [string-append "node_" suffix)]
6

[serial-btree_ create [string-append "serialbtree.create_"
suffix]]

[destroy-node [string-append "destroy-node_" suffix]]
9 [serialbtree.destroy [string-append

serialbtree.destroy_" suffix]]
10 [search-node [string-append "searchnode_" suffix]]

[serialbtreecontains [string-append

serial _btreecontains_" suffix]]

12

12 [nt t]

16 [nt -1 [- t 1]]
17 [n2t [* t 2]]
is [n2t-1 [- [* t 2] 1]]

19 ]
20 [parse-stmts

Figure 5-8: Macro for making custom parameterized B-Trees.

In practice, benchmarking in C to find the right dimension is hard because of code

duplication. Whereas C++ has templates and high level languages have generics, C

is required to use macros, which are hard to debug. And speaking from experience,

the B-Tree is hard to get right - even with pseudocode.

DEFISMs, on the other hand, not only permit debugging, but allow a degree of

freedom templates and generics don't since they allow a developer to programmat-

ically generate code. I therefore present an easily benchmarked B-Tree in DEF, as

implemented according to Cormen, Leiserson, Rivest, and Stein.[211 Unlike the linked

list, and for the sake of brevity, only relevant snippets of the code are shown. But

the purpose is to demonstrate the effectiveness of having a meta-language that's able

to operate on its own data.

To begin, a programmer creates what is essentially a template of the types and

functions. For our purposes, the B-Tree is parameterized on the key type and t,

the minimum number of elements in a node. Fig. 5-8 shows the preamble for the

make-btree ISM function. Line 3 shows the suf f ix added to each function and type
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1 ©[define types '["i64" "f64"]]
2 ©[define dimensions '[2 3 4 5 6 7 8]]

4 ©[concat -stmts
5 [map
C [lambda [t]

7 [concat-stmts
[map [lambda [d] [make-btree t d]]

9 dimensions]

10 ]]
11 types

12 ]]

Figure 5-9: Macro for creating a variety of B-Trees of different sizes and types.

to name-mangle in a human readable way. Most of the rest of the variables defined

in the let* statement are names of types and functions that will be readable to C

programmers (lines 4-11); the B-Tree has a lot of functions, so there are a lot of

variables, and I've omitted many of them for brevity (line 13). Lines 15-18 are values

that will be used repeatedly throughout the code regarding the dimensions. And line

20 opens the parse-stats block where the DEF code will be written.

After this, the implementation of the B-Tree follows, including types and func-

tions, using these variables. make-btree is essentially a glorified C++ template

(albeit with readable function and type names), but ISM can apply it as a function.

Fig. 5-9 shows how to generate a large number of B-Trees while treating the

parameters according to which they're generated as data. Lines 1 and 2 define the

parameters: the types and dimensions of the B-Trees. 1 Lines 4-12 are a common Lisp-

like way of operating on all possible combinations along the two degrees of freedom:

map a lambda onto each of the lists and call the make-btree function. Of course,

concat-stats is required (lines 4 and 7) since the output is an ISM list and DEF

doesn't know what to do with that.

defghi will output all of the exported DEF types and functions generated by the

macro to be used by C or other DEF modules. More than this, in benchmarking

the different sizes and types, the same model can be used to generate driver code,

configuration, and even the -h message for the application, with adding dimensions

'The dimension, called the t-value in CLRS, is the minimum number of keys a node can have.
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i ©[define [big-if body-fcn]

2 [construct-if

3 [apply append

[map

[lambda [t]

[map [lambda [d] [body-fcn t d]]

dimensions

]]
9 types

~O ] ] ]
]

Figure 5-10: Macro for generating if-statements over the key types and dimensions of

the B-Tree.

1es B-Tree Integer Performance 1e6 B-Tree Float Performance

5- 5-

0- 0
2 3 4 5 6 7 8 2 3 4 5 6 7 8

t-value t-value

Figure 5-11: Performance comparison of the B-Tree for various widths. Left: Integer

operations over a 10 second execution with 25% updates. Right: Floating point
operations.

and types updating all of these regions of code automatically.

Fig. 5-10 is an example of a function that generates branches for all of the different

types and dimensions. It takes a body-f cn parameter, a function that takes a key

type and dimension and outputs a pair: an expression (a conditional) and a set of

DEF statements (such as a loop for the benchmark, a printf for the help message,

an insert call for the initialization, etc.). Lines 3-10 simply map the body-f cn onto

all possible combinations and generate a big list of pairs. The construct-if function

(line 2) takes this list and generates the if statement based on it. This is a useful

example because it's a function that can be applied to other macros, and uses a

number of common Lisp/Scheme functions that are built-in.
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Fig. 5-11 shows performance results of the B-Tree generated in this way. It's

a serial data structure, so all results are single-threaded. The results should not be

surprising: for this workload, the most important thing is for nodes to use as few cache

lines as possible. But the thing to take away from this example is that generating

these results used DEFISMs in which little or no code required duplication, and for

which some parameters for the code generation were treated as data by the macros.

5.3 Concurrent Multi Queue

Building on the B-Tree, a serial data structure, the Multi Queue (MQ) is a concur-

rent priority queue implementation that relaxes the correctness constraint in favor

of performance. An MQ is a front-end to a collection of strict priority queues, such

as those based on B-Trees, wherein a queue is randomly selected for insertion or re-

moval. In the case of removal, if two queues are queried with a "peek min" method,

and the lower value is selected, the MQ has probabilistic guarantees on the results.

The particular properties of MQ's are beyond the scope of this thesis but the im-

plementation is interesting for our purposes, particularly if the sub-queues are serial

since they don't allow threads to access them simultaneously.

The conventional implementation protects each sub-queue with a mutex. These

mutexes aren't especially memory intensive since there's only one per sub-queue, but

contention is a problem as thread count grows. As a consequence, on systems with

more cores a MQ is implemented with more sub-queues. We consider a ratio of sub-

queues to threads, c, for measuring the memory cost of a MQ implementation, and

want to know whether lock ellision can achieve the same performance, possibly with

less memory. As we'll see, it won't on this data structure, but DEF's transaction

syntax combined with its macros is well suited to testing the problem. Walking

through the code, consider what would be required to implement this in C or C++.

There are two versions of the code: the locked and the transactional MQs. In

the case of the locked version, I implemented a quick test-and-test-and-set (TTS)

lock which is fast because very little time is spent inside the critical sections, so we

134



1 ©[define [make-mq keytype t is-locked]
2 [ .
3 [parse-stts

. D[emit-stmts
5 [if is-locked
G [parse-stmts
7 typedef ©[emit-ident set] =

S { lock volatile u64,
btree *©[emit-ident btree],

to padding [48]char;

[2 ]

i3 [parse-stts

14 typedef ©O[emit-ident set] = { btree *© [emit-ident btree] };

15

17

is export opaque
19 typedef ©[emit-ident mq] =
20 { count i32,
21 sets [1024]©[emit-ident set]
22 }

Figure 5-12: Macro code for the locked (blocking) MQ types. Some of the variable
definitions have been omitted for brevity.

expect very little spinning. The locks are low-overhead, spacewise, though they re

more than we'd like since the existence of the lock requires the sub-queues to be

spaced out across cache lines.

Fig. 5-12 shows the DEFISM that generates the types based on the various di-

mensions and/or types of B-Trees. There's an interest, again, in testing B-Trees of

different widths because the access pattern on a priority queue is different from that

of random insertion and removal, and we don't know a priori that the same perfor-

mance results will apply. Note that make-mq (line 1) takes an is-locked parameter

that's used on line 5 to define the set type (lines 7 and 14).2

Why is this a valuable way to define the types? Virtually all of the code between

the locked and transactional versions of the data structure is identical. Quite apart

from bugs, we're interested in ensuring that our performance comparisons are apples-

2The set type has been defined as a struct with one member on line 14 because it makes accesses
to the sub-queue the same in routines. But there is no space or performance difference versus setting
the set type equal to a pointer to the btree type.
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1 export
2 def ©[emit-ident mq-add] (seed *u64, mq *©[emit-ident mq], val i64)

-> void

begin
var a = randomval(seed, mq.count);

O ©emit-stmts
7 [if is-locked

[parse-stmts

tts§lock(&mq.sets[a].lock);

10 © [emit-ident btree-add](mq.sets[a].btree, val);

ttsunlock (&mq. sets [a] . lock);

[2 ]
13 [parse-stmts

1. atomic begin
Is ©[emit - ident btree -add] (mq. sets [a] . btree , val) ;
it; end

17 ]

to end

Figure 5-13: Naive insertion code for the MQ, both for locked and transactional
versions of the structure.

to-apples. Really, the only other code that's different between the two kinds of MQs

is the initialization, insertion, and pop-min routines. The initialization is trivial: set

the locks to zero, if they exist, and initialize the sub-queues. Insertion is interesting

because there are a couple of options in how we implement the transaction.

Fig. 5-13 shows how to implement the mq-add routine. The caller passes a seed for

the random number generator, since the struct is probabilistic, the MQ, and the value

to be inserted. A random value is generated using the seed on line 5, and depending

on which kind of MQ this is, it takes a lock (lines 9-11) or performs a transaction

(lines 14-16). This code is somewhat naive in the transactional case because if the

transaction fails, it means that it collided with another transaction on the same

random subqueue. The other thread may have been inserting, or it may have been

performing a pop, but either way the other thread will try again. It behooves us

to perform the random selection, again, in the case of failure so we don't wind up

colliding with the other thread multiple times.

Consider the alternative presented in fig. 5-14. The failure clause on lines 4-5

chooses another random value if the transaction aborts for any reason. With or
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[parse-stmts
2 atomic begin

©[emit-ident btree-add](mq.sets[a] .btree, val);
xfail _:

a = random-val(seed, mq.count);
end

Figure 5-14: Smarter insertion code for the transactional MQ. This is an alternative
to the code presented in lines 13-17 above.

without this clause, it will try until it succeeds, but now it's increased its likelihood

of success if the failure was caused by a collision.

It's worth pausing, here, and examining the difference between this kind of model

versus C macros or C++ templates. For a single MQ, the most obvious benefit of

a DEFISM over a C macro is the parser - the compiler understands what's in the

DEFISM, which is quite different from simple text substitution. This isn't especially

big in the case of the MQ since the code is pretty simple. More subtly, however,

note that we've already mixed DEF data (keytype and dimension) with ISM data

(is-locked). ISM can operate on the data in a way that C macros can't.

As compared with C++ templates, DEFISMs can generate code inline; not merely

at the function or type levels. If there's a substantial overlap in code, and if the dif-

ference is hard to separate out into its own function because it requires significant

parameterization, this leads to less code duplication. And, again, the ability to oper-

ate on the data, itself, can't be overstated. While one could write two versions of a

function that explicitly instantiate an is-locked template parameter, that requires

duplication of the whole function. Perhaps the MQ's insertion code is not such a big

deal, since it's short, but popping the minimum value is somewhat more significant.

Popping the minimum value, again, requires a peek at two random sub-queues,

and selection of the lesser. The boilerplate is in fig. 5-15. Line 6 shows the random

selection of array indices, and popped (line 7) is the return value. The work of

the function is implicit in line 9, and the only difference between the two versions

is whether locks are taken or a transaction is performed. This code assumes the

MQ isn't empty, even if individual sub-queues are, and keeps trying until it finds a
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t export
2 def ©[emit-ident mq-pop-min] (seed *u64, mq *©[emit-ident mq])

-> ©[emit-ident keytype]

I begin
try-again:

var { a, b } = pick-two(seed, mq.count); // a < b

var popped ©(emit-ident keytype];

9// The business goes here.
10

11 return popped;

[2 end

Figure 5-15: Pop-min boilerplate for the MQ.

value to pop. We could, in principle, return a tuple with { success, popped }, but

linearizability in that implementation is costly. Instead we use a try-again label

(line 5) that it can jump to if both selected queues are empty.

If pop-min were serial, fig. 5-16 would solve the problem. The a and b B-Trees are

checked for emptiness - if both are empty, try again (line 25). Peek the min value on

each, and choose the lesser. If this code is in an atomic block, when it jumps out the

transaction commits. But if locks are held. we have to be sure to release them (line

24).

This binding is defined in the initial let statement near the beginning of the

overall ISM function. release-locks is shown in fig. 5-17. Very simply, if there are

locks to be released, release them (lines 6 and 7); otherwise, do nothing (line 9).

The code in fig. 5-16 can, itself, be bound to a variable and placed in the original

boilerplate code with two branches: one locked, and one transactional. Fig. 5-18

shows the versions with pop-min-business as the bound value. Lines 4-8 have the

locked code that acquires the locks in order, and lines 11-16 use the atomic block.

I've added a minor complexity to make the transaction retry without selecting new

sub-queues in case of a spurious failure (line 13).

As with the serial B-Tree, any number of MQs can be generated programmatically

and exported for use in C. Even types defined in C header files can be used in the

MQ and benchmarked.

Fig. 5-19 shows performance results using this code on 72 cores. Observe that the
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var abtree = mq.sets[a].btree;

var bbtree = mq. sets [b] . btree ;

! © [emit -ident btree -empty] (abtree) then

if ! ©[emit -ident btree - empty] (bbtree) then

var amin = ©[emit-ident btree-peek-min](abtree)

var bmin = ©[emit-ident btree-peek-min](bbtree)

if amin <= bmin then

©[emit-ident btree -remove] (abtree, amin);

popped = amin;

4 if

5

7

8
9

10

12

13

14

15

1,

17

i1 E

1.9 e

20

21

22

23

24

25

26

else
©[emit - ident btree -remove] (bbtree , bmin);

popped = bmin;

fi
else

popped = ©[emit-ident btree-peek-min] (abtree)
©[emit-ident btree-remove] (abtree , popped);

f i

if !©[emit-ident btree-empty](bbtree) then
popped = © [emit-ident btree-peek-min] (bbtree)
©[emit-ident btree-remove] (bbtree , popped) ;

else
©[emit-stmts release-locks]
goto try-again;

fi

Figure 5-16: The 'business" part of the code. Peek both B-Trees and pop from the
one that had the lesser value.

1 [let* [

[release-locks

[if is-locked
[parse-stits

ttsunlock(&mq.sets[a).lock);

tts_unlock(&mq.sets[b].lock);

]
[parse-stmts 0; ]

] )

Figure 5-17: release-locks is defined as releasing the locks if and only if this MQ
is a locked data structure. This let* performs all of the bindings in the make-mq
function.
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© [emit-stmts
[if is-locked

[parse -stits
ttsjlock(&mq.sets[a].lock); // Ordered to avoid deadlock. a < b

tts.lock(&mq.sets[b].lock);
©[emit-stmts pop-min-business]
ttsunlock(&mq.sets[a].lock);
ttsunlock(&mq.sets[b].lock);

]
[parse -stits

atomic begin
©[emit-stmts pop-min-business]

xfail TFSPURIOUS:
xfail _:

goto try-again;
end

] ] ]

Figure 5-18: The new "business" part of the function with both locked and transac-
tional versions of the code.
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Figure 5-19: Performance comparison of the MQ using locks vs. atomic transac-
tions. Left: Performance results versus c-value, and Right: the frequency with which
transactions fell back to the STM slow path.
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chart on the left uses a logarithmic scale to compare performance - the locked version

of the structure is orders of magnitude faster than the transactional one. The chart

on the right gives us some clue as to why: conflicts are rampant. Operations fall back

to the software slow path virtually every time.

To understand why this is, if we think back to what a concurrent priority queue is

fundamentally doing, we recognize that lots of threads are trying to get the smallest

item in the set. Even with relaxed semantics, as the MQ has, no matter how big the

set, there's a restricted range of likely candidates for any thread to select. One thread

peeks at the minimum value of two queues and removes the lesser. Over the course

of that operation, it's common for another thread to conflict on at least one of the

cache lines involved.

No harm, no foul, though. The cost of comparing this code was low. Writing

the hybrid transactional code was trivial after implementing the locked version - a

few simple modifications, really. Not so in C. One might be tempted to ask whether

writing a hardware transaction-only version of the program would have been simple

in C; get a rough sense of the behavior of transactions, generally, before writing the

hybrid code? The answer is: there is no hardware-only version of this data structure.

The B-Tree allocates memory for which the allocator will call the OS if it needs more,

causing any hardware transaction to abort. In reality, the software slow path is a

necessary component in the B-Tree based MQ.

To test this data structure in C would require extensive work that's hard to

get right... only to discover it was all for nought. Abstractions for certain kinds of

concurrent operations are the answer to many concurrency questions, even in low level

programming languages. It's certainly true that sometimes a programmer wants to

program even those features close to the machine, but that's not restricted in DEF -

the hybrid transaction library that DEF uses is written in DEF! Merely, the existence

of the abstraction opens up possibilities to HPC programmers that were prohibitively

expensive, before.
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Chapter 6

Conclusions

6.1 Summary

Fundamentally, what I've done is to make a stab at designing the language I'd wished

I'd had back when I was in industry. High performance programming is hard and

it takes a lot of work. Performance engineering requires a lot of meticulous variable

testing, and scalability... well, parallelism and concurrency are so fraught that our

field is still at the stage where a person can get a paper with a single concurrent data

structure accepted to a prestigious conference. This combination is legitimately hard.

But it's harder than it needs to be.

One can do these things in a low level language and fight the language, itself, to

accomplish them. Or one can simply give up on performance engineering and use a

high level language. Or one can develop a new programming language to address the

difficulties. This thesis represents the culmination of that third option.

The two fundamental difficulties we explored with parallel and concurrent pro-

gramming are concurrent memory reclamation and atomicity, primarily in the form

of transactions. The former is unique to low level programming languages because

high level languages use GC to detect what threads can reach. This is a costly so-

lution, both in performance/ latency and in control over instructions and memory

layout. Transactions are not, in principle, unavailable to high level languages, but

it's uncommon even for such a language to support them. A high level language's
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advantage is that if it has good abstractions, it's possible to reimplement synchroniza-

tion features using them. But conventional low level languages like C and C++ are

unlikely ever to integrate either of these things, as both are contrary to their design

philosophies.

Moreover, we observe that the intersection between languages that are designed for

performance engineering, in that they are close to the machine, and ones that provide

high level abstractions for parallelism and concurrency is the null set. Languages don't

necessarily fit into either of these categories, but if they belong to one, they certainly

don't belong to the other. This excluded middle isn't inherent. It took some work to

devise a solution to the concurrent memory reclamation problem that would neither

impede conventional performance engineering on a single core, nor impede the read

operations that are common in many concurrent data structures. But such a solution

exists, so there's no barrier to the existence of a language that fills that void.

And we've established a motivation - a need for a language in that intersection.

Quite apart from my own personal industry woes, insofar as the popular notion of

Moore's Law has decoupled from the technical one (processors have stopped speeding

up at the rate that more transistors fit onto a die), high performance programming

demands scalability, even as the need for performance engineering grows.

DEF targets that void. It's close to the machine in the way that C or C++ is,

but it includes non-intrusive high level abstractions for concurrency. Specifically, it

supports the concept of retire, in addition to the common new and delete allocator

primitives, and it supports hybrid transactions as part of the native atomic syntax.

retire is implemented by Forkscan, which incurs no performance penalties un-

less memory is actively being retired, and even those penalties are limited to the

snapshot it makes of memory - an infrequent operation, on the whole. Clearly, a C

program could (and did, in the original Forkscan paper) use Forkscan's API to retire

memory... but at the cost of abstraction. The abstraction, itself, imposes no cost and

the generality it provides means that as DEF is ported to other platforms, so are

applications that use that feature even if Forkscan is unavailable on them.

Similarly, hybrid transactions with atomic syntax have the benefit of future-
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Figure 6-1: Visualization of the solution to the question: performance engineering or

scalability?

proofing in that the theory behind how to implement them is active. If nothing

else, not requiring a programmer to implement hybrid transactions anew in each ap-

plication means that as the compiler improves, so does performance. But the real win,

here, is the compiler support, itself, independent of the progress of theory. Hybrid

transactions are scary to do by hand, and completely unmaintainable. And for what

benefit? The software transaction is the uncommon slow path. Are programmers

eager to leverage their knowledge of the semantics of the application to optimize that

beyond what a compiler can do without that knowledge? It's a fool's errand. And

it's not easy to get right or maintain. Let the compiler optimize the uncommon slow

path.

These features and the suite of other tools provided by DEF enable programmers

to develop high performance, scalable code. No sacrifice of either is required. DEF

is also transparently compatible with C, so integrating it into an existing C codebase

(or vice versa) is low burden. Its feature set works to benefit C applications, and

itself benefits from C libraries. What's good for DEF is good for C.

Coming full circle, DEF is the language I wanted every time I had to work in

C/C++. Even coming back to school, working with Nir on a concurrency library for
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C, it became apparent that the barriers to scalability were too high. DEF, though

comparatively immature, enables this kind of a project. What remains, now, is to

hone the language for actual applications - not just benchmarks.

6.2 Future Work

Numerous sundries remain unimplemented or unoptimized in the compiler. That work

needs to be done, of course, but it isn't interesting from a research-y perspective and

can be done in bits and pieces as the language develops and evolves to fit the HPC

applications initially implemented in it.

More significant are the applications and tools built in and around DEF that push

the boundaries of high performance computing.

6.2.1 Concurrency Library

As mentioned above, Nir brought me on to write a concurrency library for C, as Java

has. This didn't come to fruition in quite the way we expected. But the goal is

still valid. C lacks such a concurrency library, not least of all because it has nothing

resembling generic types. So even when such an undertaking is attempted using

conventional means of memory reclamation, the result looks more like a benchmark

for or template of concurrent data structures. DEF's native support for memory

reclamation and atomic operations and blocks makes it suitable for writing data

structures that look good and perform well, and its macro language makes those data

structures available to C programmers.

Our field is still in the Wild Wild West, as far as transactions are concerned,

where people don't quite know what will work and low hanging fruit abounds. This

is true not just for lock elision in existing data structures and algorithms (such as

the set data structures used as examples in this thesis), but even in contexts where

operations are relatively simple, but which happen to span multiple words. DEF is

uniquely suited to explore this space, and for the benefit of legacy C applications that

want to parallelize.
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6.2.2 Scientific Computing or Machine Learning Application

Part of becoming a properly developed language is evolving to fit real world appli-

cations. Partnering with researchers in scientific computing or machine learning and

getting a handle on the work they do, and practical experience programming DEF in

an application setting is the necessary next step. I cite these particular areas because

they're hot for HPC research, so it isn't simply developing applications to develop

applications; that will happen on its own as DEF builds a following. These areas

also have some human-oriented work that interests me, in medicine, climate change,

astronomy, etc.

6.2.3 Windows Port

Of all the ports DEF can make, the transition to Windows will be the most challeng-

ing. The primary hurdle is the lack of Forkscan. Without a f ork operating system

primitive, it's not entirely clear how to create the snapshot quickly. Sure, f ork exists

in Cygwin, but it's slow - it's a (from a performance point of view) cheap facsimile

designed to make Unix-like code compile for Windows.

Windows presents a unique difficulty in that the source code for the OS isn't

available to modify. It seems likely that OS support is necessary, so the question is

what can a driver provide in the way of corralling a process's threads and mucking

with the page table? Can a Copy-on-Write driver implementation compete with

Linux-native f ork, for example?

6.2.4 Heterogeneous and Distributed Computing

These two areas feel like they have something in common; like there's a common

abstraction to be discovered. Ultimately, I don't believe that GPUs are the future.

GPUs will turn into light-weight cores on the same die as the main CPU. This phe-

nomenon of farming work out to a special-purpose processor that gets iteratively more

capable, year by year, until it winds up as another fully-featured processor had already

been observed multiple times by 1968, leading to the coining of wheel of reincarnation
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to describe it by Myer and Sutherland.[75] Nevertheless, distinct GPU coprocessors

exist now, and even after they are reintegrated, the wheel will come again.

The interesting thing, to me, looking at CUDA, is that there seems to be a fun-

damental overlap of concepts between GPU computing and distributed (across a

network) computing. Primitives for marshalling and unmarshalling data, shipping

tasks, distribution of work (possibly even load balancing) are common to both, and it

may be that there is a generic way of expressing these concepts that makes it easy to

do either (or both simultaneously). Again, this is another kind of high level feature

that's unlikely to be adopted by conventional low level languages for philosophical

reasons, yet need not impinge on programming close to the machine.

More unexplored territory exists in this area, too, since distributing references

across systems in a low level language is difficult to do automatically. This is an

exciting time to be in high performance computing.

148



Bibliography

[1] Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander Matveev, and Nir
Shavit. Stacktrack: An automated transactional approach to concurrent memory
reclamation. In Proceedings of the Ninth European Conference on Computer
Systems, EuroSys '14, pages 25:1-25:14, New York, NY, USA, 2014. ACM.

[2] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The spraylist: A
scalable relaxed priority queue. In Proceedings of the 20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2015, pages
11-20, New York, NY, USA, 2015. ACM.

[3] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. Forkscan:
Conservative memory reclamation for modern operating systems. In Proceedings
of the Twelfth European Conference on Computer Systems, EuroSys '17, pages
483-498, New York, NY, USA, 2017. ACM.

[4] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. Thread-
scan: Automatic and scalable memory reclamation. ACM Trans. Parallel Com-
put., 4(4):18:1-18:18, May 2018.

[5] Gene M. Amdahl. Validity of the single processor approach to achieving large-
scale computing capabilities. In AFIPS Conference Proceedings, AFIPS FJCC
'67, pages 483-485. AFIPS, 1967.

[6] Arm. Arm a64 instruction set architecture. Technical Report DDI 0596
(ID032719), Arm Limited, 2019.

[7] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi. Fast and
robust memory reclamation for concurrent data structures. In Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
'16, pages 349-359, New York, NY, USA, 2016. ACM.

[8] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.
Hoard: A scalable memory allocator for multithreaded applications. SIGOPS
Oper. Syst. Rev., 34(5):117-128, November 2000.

[9] Tim Blechmann. Boost.lockfree documentation. https : //www .boost .org/doc/
libs/1_69_0/doc/html/lockfree.html, Accessed: 2019-02-15.

149



[10] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. SIGPLAN Not., 30(8):207-216, August 1995.

[11] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46(5):720-748, September 1999.

[12] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46(5):720-748, September 1999.

[13] OpenMP Architecture Review Board. Openmp api, v.5.0. https : //www. openmp.
org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, November
2018.

[141 Hans-J. Boehm. Bounding space usage of conservative garbage collectors. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL '02, pages 93-100, New York, NY, USA, 2002.
ACM.

[151 Hans-Juergen Boehm. Space efficient conservative garbage collection. In Proceed-
ings of the ACM SIGPLAN 1993 Conference on Programming Language Design
and Implementation, PLDI'93, pages 197-206, New York, NY, USA, 1993. ACM.

[16] Hans-Juergen Boehm. Boehmgc, 2015. Available at
http://www.hboehm.info/gc/.

[17] Anastasia Braginsky, Alex Kogan, and Erez Petrank. Drop the anchor:
lightweight memory management for non-blocking data structures. In Proceed-
ings of the 25th A CM symposium on Parallelism in algorithms and architectures,
SPAA '13, pages 33-42, New York., NY, USA, 2013. ACM.

[18] Trevor Alexander Brown. Reclaiming memory for lock-free data structures:
There has to be a better way. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC '15, pages 261-270, New York,
NY, USA, 2015. ACM.

[19] Irina Calciu, Justin Gottschlich, Tatiana Shpeisman, Maurice Herlihy, and Gilles
Pokam. Invyswell: a hybrid transactional memory for haswell's restricted trans-
actional memory. In 2014 23rd International Conference on Parallel Architecture
and Compilation Techniques (PACT), pages 187-199. IEEE, 2014.

[20] Linux Community. Linux 3.13, 2014. Available at
http://kernelnewbies.org/Linux_3.13.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[22] Intel Corporation. Intel cilk runtime source. https://bitbucket.org/
intelcilkruntime/intel-cilk-runtime, Accessed: 2019-02-26.

150



[231 Microsoft Corporation. Microsoft does: Fibers. https: //docs.microsoft . com/
en-us/windows/deskt op/procthread/f ibers, Accessed: 2019-02-28.

[24] NVIDIA Corporation. Cuda toolkit documentation. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/, Accessed: 2019-04-29.

[25] CPPReference. C atomic operations library. https : /en. cppref erence .com/
w/c/atomic, Accessed: 2019-02-15.

[26] CPPReference. C++ atomic operations library. https : //en. cppref erence.
com/w/cpp/atomic, Accessed: 2019-02-15.

[27] CPUWorld. Release dates of desktop microprocessors. http: //www. cpu-world.
com/Releases/Desktop_ CPU-releases_ (2015) . html, Accessed: 2019-09-10.

[28] Robert D. Blumofe and Charles Leiserson. Space-efficient scheduling of mul-
tithreaded computations (extended abstract). SIAM Journal on Computing,
27:202-229, 02 1998.

[29] Luke Dalessandro, Frangois Carouge, Sean White, Yossi Lev, Mark Moir,
Michael L. Scott, and Michael F. Spear. Hybrid norec: A case study in the
effectiveness of best effort hardware transactional memory. SIGPLAN Not.,
47(4):39-52, March 2011.

[301 Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: Streamlining
stm by abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP '10,
pages 67-78, New York, NY, USA, 2010. ACM.

[311 Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir,
and Daniel Nussbaum. Hybrid transactional memory. In Proceedings of the 12th

International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XII, pages 336-346, New York, NY, USA, 2006.
ACM.

[32] John S. Danaher, I-Ting Angelina Lee, and Charles E. Leiserson. The JCilk
language for multithreaded computing. In Synchronization and Concurrency in
Object-Oriented Languages (SCOOL), San Diego, California, October 2005.

[33] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark
Horowitz. Cpu db: Recording microprocessor history. Commun. A CM, 55(4):55-
63, April 2012.

[34] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, and
Scott Shenker. Combining generational and conservative garbage collection:
Framework and implementations. In Proceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL '90, pages
261-269, New York, NY, USA, 1990. ACM.

151



[35] David Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele Jr. Lock-free
reference counting. Distributed Computing, 15(4):255-271, 2002.

[36] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus efficiency in
parallel systems. IEEE Transactions on Computers, 38(3):408-423, March 1989.

[37] Jason Evans. Jemalloc, Retrieved 2018-08-06. Available at
https://github.com/jemalloc/jemalloc.

[38] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy
races in cilk programs. In Proceedings of the Ninth Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA '97, pages 1-11, New York, NY,
USA, 1997. ACM.

[39] Fitzpatrick. Distributed caching with memcached. Linux Journal, 124:5, August
2004.

[40] Keir Fraser and Timothy L. Harris. Concurrent programming without locks.
ACM Trans. Comput. Syst., 25(2), 2007.

[41] Sanjay Ghemawat and Paul Menage. Tcmalloc, Retrieved 2018-08-06. Available
at http://goog-perftools.sourceforge.net/doc/tcmalloc.html.

[42] Anders Gidenstam, Marina Papatriantafilou, Hikan Sundell, and Philippas Tsi-
gas. Efficient and reliable lock-free memory reclamation based on reference count-
ing. IEEE Trans. Parallel Distrib. Syst., 20(8):1173-1187, 2009.

[43] Google. Go language faq. https : //golang. org/doc/f aq, Accessed: 2018-08-03.

[44] Google. Go syncmap package. https://godoc.org/golang.org/x/sync/
syncmap, Accessed: 2019-02-15.

[45] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. Java
language specification (java se 8 edition). https: //docs. oracle. com/j avase/
specs/jls/se8/html/, 2015-02-13.

[46] R. L. Graham. Bounds for certain multiprocessing anomalies. The Bell System
Technical Journal, 45(9):1563-1581, Nov 1966.

[47] V. Gramoli. More than you ever wanted to know about synchronization: Syn-
chrobench. In Proceedings of the 20th Annual ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), 2015.

[48] Andreas Haas, Thomas Hiitter, Christoph M. Kirsch, Michael Lippautz, Mario
Preishuber, and Ana Sokolova. Scal: A benchmarking suite for concurrent data
structures. In Ahmed Bouajjani and Hugues Fauconnier, editors, Networked
Systems, pages 1-14, Cham, 2015. Springer International Publishing.

152



[49] Tim L. Harris. A pragmatic implementation of non-blocking linked-lists. In
Proceedings of the International Conference on Distributed Computing (DISC),
pages 300-314, 2001.

[50] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The cilkview scal-
ability analyzer. In Proceedings of the Twenty-second Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA '10, pages 145-156, New
York, NY, USA, 2010. ACM.

[51] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender prob-
lem: A mechanism for supporting dynamic-sized, lock-free data structures.
In Proceedings of the 16th International Conference on Distributed Computing
(DISC), pages 339-353, 2002.

[52] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[53] Richard L. Hudson. Go: The journey of go's garbage collector. https: //blog.
golang.org/ismmkeynote, Accessed: 2019-02-17.

[54] Intel. Intel 64 and ia-32 architectures software developer's manual: Volume 2.
Technical Report 325383-060US, Intel Corporation, September 2016.

[55] Michael Kerrisk. The Linux Programming Interface. No Starch Press, Inc., San
Francisco, CA 94103, 2010.

[56] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and An-
thony Nguyen. Hybrid transactional memory. In Proceedings of the Eleventh
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP '06, pages 209-220, New York, NY, USA, 2006. ACM.

[57] Bradley C. Kuszmaul. Supermalloc: A super fast multithreaded malloc for 64-
bit machines. In Proceedings of the 2015 International Symposium on Memory
Management, ISMM '15, pages 41-55, New York, NY, USA, 2015. ACM.

[58] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International Sym-
posium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization, CGO '04, pages 75-, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[59] I-Ting Angelina Lee and Tao B. Schardl. Efficiently detecting races in cilk pro-
grams that use reducer hyperobjects. In Proceedings of the 27th A CM Symposium
on Parallelism in Algorithms and Architectures, SPAA '15, pages 111-122, New
York, NY, USA, 2015. ACM.

[60] Charles E. Leiserson. The cilk++ concurrency platform. In Proceedings of the

46th Annual Design Automation Conference, DAC '09, pages 522-527, New York,
NY, USA, 2009. ACM.

153



[61] Jonatan Lind6n and Bengt Jonsson. A skiplist-based concurrent priority queue
with minimal memory contention. In International Conference On Principles Of
Distributed Systems, pages 206-220. Springer, 2013.

[62] Robert Love. Linux System Programming, 2nd Edition. O'Reilly Media, Se-
bastopol, CA 95472, 2013.

[631 Redis Labs Ltd. Memtier benchmark, Retrieved 2016. Available at
https://github.com/RedisLabs/memtierbenchmark.

[64] Nicholas D. Matsakis and Felix S. Klock, II. The rust language. Ada Lett.,
34(3):103-104, October 2014.

[651 Alexander Matveev and Nir Shavit. Reduced hardware norec: A safe and scalable
hybrid transactional memory. SIGARCH Comput. Archit. News, 43(1):59-71,
March 2015.

[66] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. Read-log-
update: A lightweight synchronization mechanism for concurrent programming.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
'15, pages 168-183, New York, NY, USA, 2015. ACM.

[67] P. E. McKenney, J. Appavoo, A. Kleen, 0. Krieger, R. Russell, D. Sarma, , and
M. Soni. Read-copy update. In In Proc. of the Ottawa Linux Symposium, page
338?367, 2001.

168] Paul McKenney. Whatis rcu, fundamentally? https://lwn.net/Articles/
262464/, Accessed: 2019-07-29.

[69] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors. ACM Trans. Comput. Syst.,
9(1):21-65, February 1991.

[70] Maged M. Michael. High performance dynamic lock-free hash tables and list-
based sets. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA '02, pages 73-82, New York, NY, USA,
2002. ACM.

[71] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free
objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491-504, 2004.

[72] Microsoft. .net fundamentals of garbage collection. https : //docs . microsof t.
com/en-us/dotnet/standard/garbage-collection/fundamentals, 2017-03-
29.

[731 Microsoft. Windows virtual memory functions. https://msdn.microsoft.
com/en-us/library/windows/desktop/aa366781(v=vs.85).aspx#virtual_
memory-functions, Accessed: 2017-02-28.

154



[74] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics Magazine, 38(8), 1965.

[75] T. H. Myer and I. E. Sutherland. On the design of display processors. Commun.
ACM, 11(6):410-414, June 1968.

[76] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search
trees. SIGPLAN Not., 49(8):317-328, February 2014.

[77] Oracle. Java concurrency package. https://docs.oracle.com/javase/7/
docs/api/j ava/util/concurrent/package-summary.html, Accessed: 2018-
08-06.

[78] Chuck Pheatt. Intel&reg; threading building blocks. J. Comput. Sci. Coll.,
23(4):298-298, April 2008.

[79] The Clang project. Clang: a c language family frontend for llvm. https : //
clang. llvm. org, Accessed: 2019-04-15.

[80] Pedro Ramalhete and Andreia Correia. Brief announcement: Hazard eras -
non-blocking memory reclamation. In Proceedings of the 29th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA '17, pages 367-369, New
York, NY, USA, 2017. ACM.

[81] Dennis M. Ritchie. The development of the c language. SIGPLAN Not.,
28(3):201-208, March 1993.

[82] Tao B. Schardl, Bradley C. Kuszmaul, I-Ting Angelina Lee, William M. Leiser-
son, and Charles E. Leiserson. The cilkprof scalability profiler. In Proceedings
of the 27th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA '15, pages 89-100, New York, NY, USA, 2015. ACM.

[83] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding
fork-join parallelism into llvm's intermediate representation. In Proceedings of
the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP '17, pages 249-265, New York, NY, USA, 2017. ACM.

[84] Rainer Schuetze. Concurrent garbage collection in D. http: //rainers. github.
io/visuald/druntime/concurrentgc.html, Accessed: 2018-08-06.

[85] Rifat Shahriyar, Stephen M. Blackburn, and Kathryn S. McKinley. Fast conser-
vative garbage collection. In Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages & Applications, OOP-
SLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014,
pages 121-139, 2014.

[86] N. Shavit and I. Lotan. Skiplist-based concurrent priority queues. In Proceedings

14th International Parallel and Distributed Processing Symposium. IPDPS 2000,
pages 263-268, May 2000.

155



[87] Bjarne Stroustrup. Stroustrup faq. http: //www. stroustrup. com/bsf aq. html,
Accessed: 2019-04-29.

[881 The Rust Does Team. The rust reference. https: //doc. rust-lang. org/
reference/, Retrieved 2019-02-25.

[89] Robert Virding, Claes Wikstr6m, Mike Williams, and Joe Armstrong. Concur-

rent Programming in ERLANG (2Nd Ed.). Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK, 1996.

[90] WIKI, Accessed: 2019-03-20. http://en.wikipedia. org/wiki/Unix-.signal.

156


