
Robot Learning with Strong Priors
by

Zi Wang
B.Eng., Tsinghua University (2014)

S.M., Massachusetts Institute of Technology (2016)
Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020
c○Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 30, 2020

Certified by .
Leslie Pack Kaelbling

Panasonic Professor of Computer Science and Engineering
Thesis Supervisor

Certified by .
Tomás Lozano-Pérez

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Robot Learning with Strong Priors

by

Zi Wang

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Embedding learning ability in robotic systems is one of the long sought-after objectives of artificial
intelligence research. Despite the recent advancements in hardware, large-scale machine learning
algorithms and theoretical understanding of deep learning, it is still quite unrealistic to deploy an
end-to-end learning agent in the wild, attempting to learn everything from scratch. Instead, we
identify the importance of imposing strong prior knowledge on capable robotic systems and perform
robot learning with strong priors.

In this thesis, we exemplify the value of imposing strong priors in robot learning (or machine
learning in general) via both practical experiments and theories with mild assumptions. Empirically,
by proposing new algorithms and systems, we show that (active) model learning with strong priors
on model structures makes it feasible to adopt advanced planners to solve complicated long-horizon
robotic manipulation problems that were not possible before. On the other hand, we verify our
theories through mathematical analyses of data efficiency for our active data acquisition strategies
based on Bayesian optimization and systems combining learning and planning. The new approaches
integrate structural prior knowledge with statistical machine learning methods to achieve state-of-
the-art performance on complex long-horizon robot manipulation tasks.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Panasonic Professor of Computer Science and Engineering

Thesis Supervisor: Tomás Lozano-Pérez
Title: Professor of Computer Science and Engineering

3

Acknowledgments

Throughout my PhD training, I was extremely fortunate to have the support of family, mentors,

and peers, enabling me to achieve milestones and overcome hardships. This section is dedicated to

every single one of them.

First, I would like to thank Leslie Kaelbling and Tomas Lozano-Perez, my ardent supporters

and mentors throughout my PhD. It is through their careful guidance and constant encouragement

that I was able to navigate through the maze of research at the intersection of machine learning and

robotics. Despite nearing the completion of my PhD training, I still feel like I have so much to learn

from them. In the whirlwind of academia where publications may often be misconstrued as the only

measure of productivity and success, I have always admired my mentors’ pure pursuit of solving

big research problems without putting publishing pressure on their students. In an age of “publish

or perish” with an explosion of publications on arXiv, it calmed me to be at this group where I had

the support of my mentors and the luxury of time to explore real solutions to big problems and not

to publish incremental improvements prematurely.

I am also extremely grateful for the mentorship and support I received from Stefanie Jegelka.

The reading groups she organized have enriched my knowledge beyond machine learning and

helped so much to broaden my horizons. The collaborations with her pushed my limits and let

me realize my potential. Although there were times when I felt like I could not carry on to complete

my PhD, it was often her belief in me that ultimately resulted in my growth and overcoming some

of the toughest hurdles of my PhD training.

Another important figure throughout my research career is Fei Sha, my research advisor during

my undergraduate internship at USC, whom I never felt hesitant to ask for advice on research and

career decisions even after I entered graduate school. Fei made me realize that a PhD training

followed by research as a career could be a fulfilling career. As a mentor and friend, he never failed

to provide support and helpful advice, for which I am very grateful.

I would also like to thank Marc Toussaint for his valuable inputs on my research together with

reading and giving feedback on the drafts of this thesis. Some of the first papers I read in the

beginning of my PhD training were in fact authored by Marc. Perhaps unsurprisingly, my research

has stepped towards a similar direction to Marc’s. I also feel very fortunate to be able to visit his

lab and learn about the latest research from his group in Stuttgart, Germany.

Besides the wisdom and vision of my mentors, this thesis has also been deeply influenced by var-

5

ious friends and collaborators with their expert knowledge who taught me not only new techniques,

but also research philosophies. Over the years, I have greatly benefited from the discussions and

collaborations with everyone I interacted with, including Jun Zhu, Ning Chen, Jianfei Chen, Xun

Zheng, Zhiyun Lu, Dingchao Lu, Bolei Zhou, Pushmeet Kohli, Matt Staib, Chengtao Li, Keyulu Xu,

Josh Robinson, Ilija Bogunovic, Ariel Anders, Lawson Wong, Patrick Barragan, Gustavo Goretkin,

Kenji Kawaguchi, Clement Gehring, Zelda Mariet, Caelan Garrett, Beomjoon Kim, Anurag Ajay,

Ferran Alet, Rohan Chitnis, Rachel Holladay, Caris Moses, Kelsey Allen, Tom Silver, Peter Karkus,

Evan Pu, Brian Axelrod and Xinkun Nie.

I was also fortunate to have collaborated with and/or mentored a few brilliant undergrads, MEng

students and visiting students at MIT: Victoria Xia, Alex LaGrassa, Michael Amoako, Jiayuan Mao,

Kevin Chen, Skye Thompson, Nishad Gothoskar, Jingxi Xu and Ivan Jutamulia. I would like to

thank all of them for making my PhD experience so special.

Outside of lab, Irene Greif has been my mentor at GWAMIT’s mentorship program since the

second year of my PhD. Her stories of completing a PhD in the early days of computer science

were so inspiring and constantly reminded me of the big picture. The dinner meetups with her and

other mentees including Vibhaa Sivaraman, Manasi Vartak and Xijia Zheng were always pleasant

experiences of showing support for each other. I would like to thank the mentoring group for the

company and Irene for always being available and her kind help in various issues including looking

for internships, attending graduate women events among others.

During my PhD, I also had the special pleasure of being the co-president of Graduate Women

of Course 6 (GW6) together with Mandy Korpusik and Xijia Zheng in 2016. Organizing fun social

events with Mandy and Xijia was perhaps one of the most fulfilling moments in these past few years

as I interacted with other bright colleagues and built a sense of community with them. I am deeply

thankful for being a part of GW6 and the unforgettable memories we shared.

My PhD training wouldn’t be as smooth without the help and support from Leslie Kolodziejski,

Janet Fischer, Teresa Cataldo and Marcia Davidson. The graduate women workshop organized by

Leslie and Janet during my first year was unbelievably helpful. It made me aware of all the key

milestones within the seemingly chaotic PhD life and allowed me to appreciate the joy of being a

graduate student at MIT. I want to specifically thank Leslie, for her understanding and unwavering

confidence in me.

I would also like to thank my good friends for their friendship and company over the years,

including Yurong Lu, Yilian Zhu, Qianru Zhu, Xueying Zhao, Jing Zhang, Sizi Chen, Wei Wei,

6

Jing Huang, Alan Yeo, Xiaoxiao Meng, Biye Jiang, Jiali Mei. If everyone’s life is a straight line in

high-dimensional space, I am so glad that ours crossed.

Lastly, I would like to thank my family members in Shanghai, Xi’an, Beijing, Xiaogan and

Toronto. None of them really expected me to pursue a PhD, not to mention at MIT. Whenever we

have family gathering, they only try to convince me to take better care of my health and enjoy life

more. Special thanks to my mom, Huiyan Wang, for her unconditional love. I would also like to

thank my in-law family in Wisconsin, Xiamen and Jiangxi. Finally and most importantly, I cannot

appreciate my husband Yuliang Leon Sun enough. Thank you for unreservedly sharing this journey

with me and always being my co-pilot no matter what hurdles we met.

Biography

Zi Wang is a researcher at the Learning and Intelligent Systems Group at MIT Computer Science

and Artificial Intelligence Laboratory. Her PhD research focuses on tackling problems related to

robot learning, active learning for planning and Bayesian optimization. She holds the view that

robot learning, machine learning, and artificial intelligence in general need to be assisted by strong

human intelligence in order to be feasible.

Zi received her S.M. in Electrical Engineering and Computer Science from MIT in February

2016 and B.Eng. in Computer Science and Technology from Tsinghua University in July 2014. Zi

is a recipient of the MIT Graduate Women of Excellence Award, Rising Star in EECS, and Google

Anita Borg Scholarship. While at MIT, she served as co-president of Graduate Women in Course

6 (EECS), co-organizer of the first Machine Learning Across MIT Retreat and research mentor for

undergraduate and master students.

7

Contents

1 Introduction 25

1.1 Overview of the problems . 27

1.2 Main contributions . 29

1.2.1 Model learning for planning . 30

1.2.2 Active data acquisition via Bayesian optimization 31

2 Background and related work 35

2.1 Gaussian processes . 35

2.2 Bayesian active learning . 37

2.2.1 Bayesian optimization . 37

2.2.2 Bayesian level set estimation . 38

2.3 Reinforcement learning . 39

2.4 Types of priors in learning . 40

I Learning models for planning 42

3 Active model learning and diverse action sampling for task and motion planning 43

3.1 Problem formulation and background . 45

3.2 Related Work . 46

3.3 Active sampling for learning and planning . 47

3.3.1 Actively learning the constraint with a GP 47

3.3.2 Risk-aware adaptive sampling for constraint satisfaction 48

3.3.3 Diversity-aware sampling for planning . 50

3.4 Experiments . 54

9

3.4.1 Implementation of Kitchen2D . 54

3.4.2 Implementation of Kitchen3D . 56

3.4.3 Active learning for conditional samplers 57

3.4.4 Adaptive sampling and diverse sampling 59

3.4.5 Learning kernels for diverse sampling in planning 61

3.4.6 Integrated system . 63

3.5 Conclusion . 64

4 Learning sparse relational transition models 65

4.1 Problem formulation . 66

4.1.1 Relational domain . 67

4.1.2 Sparse relational transition models . 67

4.1.3 Learning SPAREs from data . 71

4.2 Related work . 72

4.3 Our approach . 73

4.3.1 Distributional prediction . 73

4.3.2 Rule learning . 73

4.3.3 Multiple rules . 75

4.4 Experiments . 77

4.4.1 Object manipulation domain . 77

4.4.2 Baseline methods . 78

4.4.3 Results . 79

4.5 Conclusion . 81

5 Focused Model-Learning and Planning for Non-Gaussian Continuous State-Action

Systems 83

5.1 Problem formulation . 85

5.2 Related Work . 85

5.3 Our method: BOIDP . 87

5.3.1 Estimating transition models in BOIDP 88

5.3.2 Sampling states . 91

5.3.3 Focusing on the relevant states via RTDP 91

5.3.4 Focusing on good actions via BO . 93

10

5.4 Theoretical analysis . 95

5.5 Implementation and Experiments . 101

5.5.1 Importance of learning accurate models 102

5.5.2 Focusing on the good actions and states 104

5.6 Conclusion . 107

II Active data acquisition with Bayesian optimization 108

6 Bayesian Optimization Guided by Max-values 109

6.1 Background . 110

6.1.1 Bayesian models for functions . 110

6.1.2 Acquisition functions . 112

6.1.3 Evaluation Criteria . 114

6.2 Acquisition functions based on max-values . 114

6.2.1 Optimization as argmax estimation (EST) 114

6.2.2 Max-value entropy search (MES) . 116

6.3 Connections among acquisition functions . 120

6.4 Regret Bounds . 123

6.4.1 Regret Bounds for EST and PI . 124

6.4.2 Regret Bounds for MES . 126

6.4.3 Effects of Target Values . 129

6.5 High Dimensional MES with Add-GP . 130

6.6 Experiments . 131

6.6.1 Implementation details . 132

6.6.2 Synthetic Functions . 133

6.6.3 Optimization Test Functions . 134

6.6.4 Tuning Hyper-parameters for Neural Networks 135

6.6.5 Active Learning for Robot Pushing . 136

6.6.6 High Dimensional BO with Add-MES . 137

6.7 Conclusion . 138

7 Bayesian Optimization With Learned Priors 141

7.1 Problem formulation and notations . 142

11

7.2 Related work . 143

7.3 Meta BO and its theoretical guarantees . 145

7.3.1 Function domain is a finite set . 147

7.3.2 Function domain is compact . 149

7.3.3 Bounding the simple regret by the best-sample simple regret 151

7.4 Experiments . 152

7.4.1 Optimizing a continuous synthetic function 154

7.4.2 Optimizing a grasp . 154

7.4.3 Optimizing a grasp, base pose, and placement 155

7.4.4 Sensitivity to missing data . 156

7.5 Discussions and conclusions . 156

7.5.1 Connections and differences to empirical Bayes 157

7.5.2 Connections and differences to hierarchical Bayes 157

7.5.3 Future directions . 157

7.5.4 Broader impact . 158

7.5.5 Caveats . 158

7.6 Conclusion . 159

8 Scaling Up Bayesian Optimization 161

8.1 Background and Challenges . 162

8.2 Related Work . 165

8.3 Learning Additive Kernel Structure . 166

8.4 Ensemble Bayesian Optimization . 167

8.4.1 Partitioning the input space via a Mondrian process 168

8.4.2 Learning a local TileGP via Gibbs sampling 170

8.4.3 Acquisition functions . 172

8.4.4 Filtering, budget allocation and batched BO 172

8.4.5 Efficient data likelihood computation and parameter synchronization 173

8.4.6 An Illustration of EBO . 174

8.4.7 Relations to Mondrian kernels, random binning and additive Laplace kernels 175

8.4.8 Connections to evolutionary algorithms 177

8.5 Experiments . 178

12

8.5.1 Effectiveness of Decomposition Learning 178

8.5.2 Scalability of EBO . 184

8.5.3 Effectiveness of EBO . 185

8.6 Discussion . 191

8.6.1 Failure modes of EBO . 191

8.6.2 Importance of avoiding variance starvation 192

8.6.3 Future directions . 193

8.7 Conclusion . 193

9 Conclusion 195

A Omitted Proofs from Chapter 7 197

A.1 Proofs for Section 7.3.1 . 197

A.2 Proofs for Section 7.3.2 . 207

A.3 Proofs for Section 7.3.3 . 209

13

List of Figures

1-1 We find the balance between expert knowledge encoding and statistical machine

learning. The approaches in this thesis can be viewed as a combination of data for

learning and hard-coded strong priors derived from expert human intelligence. . . . 26

1-2 (a) An illustration of the study of Human Robot Interaction, which focuses on the

interaction between human users and robots. The researchers typically do not con-

sider themselves in the study. (b) An illustration of the focus of this thesis. We study

how to enable robots to do difficult manipulation tasks with strong priors given by

us the researchers. 27

1-3 A PR2 robot is manipulating some objects on a table. 28

2-1 Visualization of a Gaussian process prior for a 1D function 𝑓 (left) and the posterior

for 𝑓 (right) given some observations illustrated by the red circles. The colored lines

are samples from the prior and the posterior. 37

3-1 Several examples of executing a pouring primitive with different settings, including

control parameters, cup sizes, and relative placements. 44

3-2 High-probability super-level-set in black. 49

3-3 Four arrangements of objects in 2D kitchen, including: green coaster, coffee faucet,

yellow robot grippers, sugar scoop, stirrer, coffee mug, small cup with cream, larger

container with pink sugar. 55

3-4 Scenes of a simulated PR2 robot trying to scoop, push and pour. 56

3-5 Our PR2 robot is operating by a table on top of which some blocks, cups and bowls

lie. The goal is to pour from the blue cup to the white bowl. The planner decides to

move away the green block obstacle first and then approach the blue cup. 57

15

3-6 Mean accuracy (with 1/2 stdev on mean shaded) of the first action recommended by

random selection (Random), regression-based neural network (NN𝑟), classification-

based neural network (NN𝑐) and Gaussian process using level-set estimation (GP-

LSE) on (a) a pouring task with 8 parameters (4 are context parameters); (b) a scoop-

ing task with 9 parameters (2 are context parameters) , and (c) a pushing task with

6 parameters (2 are context parameters). 58

3-7 Mean accuracy (with standard error on mean shaded) of the F1 score evaluated

on a set of randomly generated test examples. We compare GP-LSE with Random

selection, which uses random training examples to train a GP instead of using active

learning. (a) A pouring task with 11 parameters (6 are context parameters). (b) A

scooping task with 8 parameters (3 are context parameters). 58

3-8 Comparing the first 5 samples generated by DIVERSE (left) and ADAPTIVE (right)

on one of the experiments for pouring. The more transparent the pose, the later it

gets sampled. 59

3-9 Illustrations of Task IV and V. In Task IV, the robot is tasked to pour from a cup to a

bowl while avoiding the faucet (red structure next to the bowl). In Task V, the goal

is to scoop from a bowl while avoiding collisions with the faucet. 63

4-1 A robot gripper is pushing a stack of 4 blocks on a table. 69

16

4-2 Instead of directly mapping from current state 𝑠 to next state 𝑠′, our prediction

model uses deictic references to find subsets of objects for prediction. In the left

most graph, we illustrate what relations are used to construct the input objects with

two rules for the same action template, 𝑇1 = (𝐴,Γ(1),Δ(1), 𝜑
(1)
𝜃 ,𝑣

(1)
default) and 𝑇2 =

(𝐴,Γ(2),Δ(2), 𝜑
(2)
𝜃 ,𝑣

(2)
default), where the reference list Γ(1) = [(𝛾

(1)
1 , 𝑜2)] applied a

deictic reference 𝛾(1)1 to the target object 𝑜2 and added input features computed by

an aggregator 𝑔 on 𝑜3, 𝑜6 to the inputs of the predictor of rule 𝑇1. Similarly for

Γ(2) = [(𝛾
(2)
1 , 𝑜2), (𝛾

(2)
2 , 𝑜3)], the first deictic reference selected 𝑜3 and then 𝛾(2)2 is

applied on 𝑜3 to get 𝑜1. The predictors 𝜑(1)𝜃 and 𝜑(2)𝜃 are neural networks that map

the fixed-length input to a fixed-length output, which is applied to a set of objects

computed from a relational graph on all the objects, derived from the reference list

Δ(1) = [(𝛿
(1)
1 , 𝑜2)] and Δ(2) = [(𝛿

(2)
1 , 𝑜2)], to compute the whole next state 𝑠′.

Because 𝛿(2)1 (𝑜2) = (𝑜4, 𝑜6) and the 𝜑(2)𝜃 is only predicting a single property, we

use a “de-aggregator” function ℎ to assign its prediction to both objects 𝑜4, 𝑜6. . . 70

4-3 Representative problem instances sampled from the domain. 77

4-4 (a) In a simple 3-block pushing problem instance, data likelihood and learned de-

fault standard deviation both improve as more deictic references are added. (b)

Comparing performance as a function of number of distractors with a fixed amount

of training data. (c) Comparing sample efficiency of SPARE to the baselines. Shaded

regions represent 95% confidence interval. 80

4-5 (a) Shell weights per iteration of our EM-like algorithm. (b) Membership probabil-

ities of training samples per iteration. 81

5-1 A quasi-static pushing problem: the pusher has a velocity controller with low gain,

resulting in non-Gaussian transitions. We show trajectories for object and pusher

resulting from the same push velocity. 84

5-2 Pushing a circular object with a rectangle pusher. 102

5-3 (a) Samples from the single-mode Gaussian transition model (𝐾 = 1) and the two-

component Gaussian mixture transition model (𝐾 = 2) in the free space when

𝑎 = 0. (b) The number of visited states (y-axis) increases with the number of

sampled states |𝑆| (x-axis). Planning with 𝐾 = 2 visits fewer states in RTDP than

with 𝐾 = 1. 103

17

5-4 (a) Samples of 10 trajectories with 𝐾 = 1. (b) Samples of 10 trajectories with

𝐾 = 2. Using the correct number of components for the transition model improves

the quality of the trajectories. 103

5-5 (a): Reward. (b): Success rate. Using two components (𝐾 = 2) performs much

better than using one component (𝐾 = 1) in terms of reward and success rate. . . . 104

5-6 The conditional distribution of Δ𝑠 given 𝑎 = (𝑧, 𝑥,Δ𝑡) = (0.0, 0.3, 2.0) is a multi-

modal Gaussian. 104

5-7 (a) We optimize 𝑄𝑠(𝑎) with BO and Rand by sequentially sampling 10 actions. BO

selects actions more strategically than Rand. (b) BO samples fewer actions than

Rand in the pushing problem for all settings of |𝑆|. 105

5-8 (a) Number of visited states in RTDP. Both of Rand and BO consistently focus on

about 10% states for planning. (b) Learning and planning time of BO and Rand. . . 105

5-9 (a) Reward. (b) Success rate. BO achieves better reward and success rate, with

many fewer actions and slightly more visited states. 106

5-10 (a) 10 samples of trajectories generated via Rand with 1000 states. (b) 10 samples

of trajectories generated via BO with 1000 states. 106

6-1 An example of approximating the cumulative probability of the maximum of inde-

pendent differently distributed Gaussians ̂︁Pr[𝑦* < 𝑦] (Exact) with a Gumbel distri-

bution 𝒢(𝑎, 𝑏) (Approx) via percentile matching. 117

6-2 (a) Inference regret; (b) best-sample simple regret. MES methods are much less

sensitive to the number of maxima 𝑦* sampled for the acquisition function (1, 10 or

100) than PES is to the number of argmaxes 𝑥*. 133

6-3 (a) 2-D eggholder function; (b) 10-D Shekel function; (c) 10-D Michalewicz func-

tion; (d) 5-D Michalewicz function; (e) 2-D Michalewicz function; (f) 6-D Hart-

mann function. The results are mixed, but in general, EST, MES-R and MES-G

performed competitively comparing to other approaches. In particular, MES-G was

able to achieve the lowest best-sample simple regret on 3 out of 6 functions. 135

18

6-4 Tuning hyper-parameters for training a neural network, (a) Boston housing dataset;

(b) breast cancer dataset. MES methods and PES perform better than other methods

on (a), while for (b), MES-G, UCB, PES perform similarly and better than others.

BO for active data selection on two robot pushing tasks for minimizing the distance

to a random goal with (c) 3-D actions and (d) 4-D actions. MES methods perform

better than other methods on the 3-D function. For the 4-D function, MES methods

converge faster to a good regret, while PI achieves lower regret in the very end. . . 136

6-5 best-sample simple regrets for add-GP-UCB and add-MES methods on the synthetic

add-GP functions. Both add-MES methods outperform add-GP-UCB except for

add-MES-G on the input dimension 𝑑 = 100. Add-MES-G achieves the lowest

best-sample simple regret when 𝑑 is relatively low, while for higher 𝑑 add-MES-R

becomes better than add-MES-G. 137

6-6 best-sample simple regrets for add-GP-UCB and add-MES methods on (a) a robot

pushing task with 14 parameters and (b) a planar bipedal walker optimization task

with 25 parameters. Both MES methods perform competitively comparing to add-

GP-UCB. 138

7-1 Our approach estimates the mean function �̂� and kernel 𝑘 from functions sampled

from 𝐺𝑃 (𝜇, 𝑘) in the offline phase. Those sampled functions are illustrated by col-

ored lines. In the online phase, a new function 𝑓 sampled from the same 𝐺𝑃 (𝜇, 𝑘)

is given and we can estimate its posterior mean function �̂�𝑡 and covariance function

𝑘𝑡 which will be used for Bayesian optimization. 147

7-2 Two instances of a picking problem. A problem instance is defined by the arrange-

ment and number of obstacles, which vary randomly across different instances. The

objective is to select a grasp that can pick the blue box, marked with a circle, without

violating kinematic and collision constraints. [97]. 152

7-3 Learning curves (top) and rewards vs number of iterations (bottom) for optimizing

synthetic functions sampled from a GP and two scoring functions from. 153

7-4 Rewards vs. Number of evals for grasp optimization, grasp, base pose, and place-

ment optimization, and synthetic function optimization problems (from top-left to

bottom). 0.6xPEM-BO refers to the case where we have 60 percent of the dataset

missing. 156

19

8-1 We use 1000 Fourier features to approximate a 1D GP with a squared exponential

kernel. The observations are samples from a function 𝑓 (red line) drawn from the

GP with zero mean in the range [−10, 0.5]. (a) Given 100 sampled observations (red

circles), the Fourier features lead to reasonable confidence bounds. (b) Given 1000

sampled observations (red circles), the quality of the variance estimates degrades.

(c) With additional samples (5000 observations), the problem is exacerbated. The

scale of the variance predictions relative to the mean prediction is very small. (d)

For comparison, the proper predictions of the original full GP conditioned on the

same 5000 observations as (c). Variance starvation becomes a serious problem for

random features when the size of data is close to or larger than the size of the features.164

8-2 Graphical model for the structured Gaussian process; 𝜂 is the hyperparameter of the

GP kernel; 𝑧 controls the decomposition for the input space. 167

8-3 The graphical model for TileGP, a GP with additive and tile kernel partitioning

structure. The parameter 𝜆 controls the rate for the number of cuts 𝑘 of the tilings

(inverse of the kernel bandwidth); the parameter 𝑧 controls the additive decomposi-

tion of the input feature space. 170

8-4 Posterior mean function (a, c) and GP-UCB acquisition function (b, d) for an addi-

tive GP in 2D. The maxima of the posterior mean and acquisition function are at the

points resulting from an exchange of coordinates between “good” observed points

(-1,0) and (2,2). 174

8-5 The 2D additive function we optimized in Fig. 8-6. The global maximum is marked

with “+”. 174

8-6 An example of 10 iterations of EBO on a 2D toy example plotted in Fig. 8-5. The

selections in each iteration are blue and the existing observations orange. EBO

quickly locates the region of the global optimum while still allocating budget to

explore regions that appear promising (e.g. around the local optimum (1.0, 0.4)). . 175

8-7 Illustrations of (our version of) tile coding, Mondrian Grid, random binning and

Mondrian feature. 176

20

8-8 The simple regrets (𝑟𝑡) and the averaged cumulative regrets (𝑅𝑡) and for Known

(ground truth partition is given), Gibbs (using Gibbs sampling to learn the parti-

tion), PL-1 (randomly sample the same number of partitions sampled by Gibbs

and select the one with highest data likelihood), PL-2 (randomly sample 5 parti-

tions and select the one with highest data likelihood), FP (fully partitioned, each

group with one dimension) and NP (no partition) on 10, 20, 50 dimensional func-

tions. Gibbs achieved comparable results to Known. Comparing PL-1 and PL-2

we can see that sampling more partitions did help to find a better partition. But

a more principled way of learning partition using Gibbs can achieve much better

performance than PL-1 and PL-2. 179

8-9 An example of a 2 dimensional function component of the synthetic function. . . . 182

8-10 Improvement made by learning the decomposition with Gibbs over optimizing

without partitions (NP). (a) averaged cumulative regret; (b) simple regret. (c) aver-

aged cumulative regret normalized by function maximum; (d) simple regret normal-

ized by function maximum. Using decompositions learned by Gibbs continues to

outperform BO without Gibbs. 183

8-11 Simple regret of tuning the 14 parameters for a robot pushing task. Learning de-

compositions with Gibbs is more effective than partial learning (PL-1, PL-2),

no partitions (NP), or fully partitioned (FP). Learning decompositions with Gibbs

helps BO to find a better point for this tuning task. 184

8-12 (a) Timing for the Gibbs sampler of EBO and SKL. EBO is significantly faster than

SKL when the observation size 𝑁 is relatively large. (b) Speed-up of EBO with

100, 240, 500 cores over EBO with 10 cores on 30,000 observations. Running EBO

with 240 cores is almost 20 times faster than with 10 cores. 185

8-13 Averaged results of the regret of BO-SVI, BO-Add-SVI, PBO and EBO on 4 differ-

ent functions drawn from a 50D GP with an additive Laplace kernel. BO-SVI has

the highest regret for all functions. Using an additive GP within SVI (BO-Add-SVI)

significantly improves over the full kernel. In general, EBO finds a good point much

faster than the other methods. 186

8-14 Comparing BO-SVI, BO-Add-SVI, CEM and EBO on a control parameter tuning

task with 14 parameters. 188

8-15 An example trajectory found by EBO. 189

21

8-16 Comparing BO-SVI, BO-Add-SVI, CEM and EBO on a 60 dimensional trajectory

optimization task. 190

8-17 Comparing different acquisition functions for BO with an additive GP. Our strategy,

BlockOpt, achieves comparable or better results than other methods. 192

22

List of Tables

3.1 Effectiveness of adaptive and diverse sampling. FP: the false positive rate of 50

samples. 𝑇50: the total sampling time of the 50 samples. 𝑁5: number of samples

required to achieve 5 positive ones. Diversity: the diversity rate of the 5 positive

samples. 60

3.2 Effect of distance metric learning on sampling. We compare the performance of

ADAPTIVE, DIVERSE-GK and DIVERSE-LK in terms of their average runtime and

success rate (SR) within a certain time for solving five different tasks. 62

6.1 The runtime of selecting the next input. PES 100 is significantly slower than other

methods. MES-G’s runtime is comparable to the fastest method EI while it performs

better in terms of simple and inference regrets. 133

6.2 Inference regret𝑅𝑇 for optimizing the eggholder function, Shekel function, Michalewicz

function and Hartmann function. 136

6.3 Inference regret 𝑅𝑇 for tuning neural network hyper-parameters on the Boston

housing and breast cancer datasets in Sec. 6.6.4 and for action selection in robot

pushing in Sec. 6.6.5. 137

8.1 Empirical posterior of any two dimensions correctly being grouped together by

Gibbs sampling. 180

8.2 Empirical posterior of any two dimensions correctly being separated by Gibbs sam-

pling. 180

8.3 Rand Index of the decompositions learned by Gibbs sampling for different values

of 𝛼. 181

23

Chapter 1

Introduction

Your life has a limit, but knowledge has none. If you use what is limited to

pursue what has no limit, you will be distressed, and it is going to be

dangerous if you continue doing so.

Chuang Tzu

Robot learning is an emerging field in which we use existing or develop new machine-learning

techniques for robotics problems in the hope that, one day, robots can be deployed in a variety of

environments, capable of completing a range of complex tasks such as doing laundry, cooking meals

or cleaning up rooms.

Under the umbrella of robot learning, our wildest dream is that we humans no longer need to

do the hard work of hand coding behaviors for the robot and the robot can learn everything by itself

through trial and error. However, it has gradually become clear that simply applying tabula rasa

approaches using, for example, end-to-end deep reinforcement learning [120] based approaches,

to complex long-horizon problems with sparse rewards is unfortunately very data inefficient and

impractical in reality, and structures must be imposed on the learning problem to reduce the sam-

ple complexity. Behind the scenes, though not emphasized, human knowledge is still playing an

indispensable role to define some structures or behaviors of the robot.

Instead of “hiding” the usage of human knowledge in learning algorithms, can we make use of

it more explicitly to assist machine learning and artificial intelligence (AI)? Throughout this thesis,

you will find a common theme that tries to answer this question by finding a “sweet spot” balancing

between hard-coded expert knowledge and data-based statistical machine learning approaches. This

thesis embodies a practical mindset of how to enable robot learning: instead of collecting large-scale

25

Tabula rasa
approaches Hard coding

Data

Human knowledge 10

Methods in this thesis

Figure 1-1: We find the balance between expert knowledge encoding and statistical machine learn-
ing. The approaches in this thesis can be viewed as a combination of data for learning and hard-
coded strong priors derived from expert human intelligence.

data with an army of robots operating in parallel, we use expert domain knowledge to define strong

priors to make up for the weakness of our learning robots.

Figure 1-1 illustrates roughly where this dissertation research lies in the spectrum of the mixture

of human knowledge and data. In the leftmost, we do not impose much domain knowledge and

tabula rasa approaches need mega-scale data to achieve good performance. In the rightmost, little

data is required to be collected but an expert human engineer need to hard code the entire framework.

My work in this thesis, in contrast to both extremes, lies in the middle.

Before we proceed to the main contents of this thesis, I would like to point out important dis-

tinctions and possible connections between this thesis and the field of Human Robot Interaction

(HRI) [69], as illustrated by Figure 1-2.

The focus of HRI is to study how robots can interact with human users and vice versa. For

example, the robot can be working on some tasks side by side with human workers, and the goal

is to enable the robots to operate in a way that increases the performance of doing the tasks and/or

potentially give the human workers a natural experience of collaborating with the robots. In addition

to traditional engineering domains, HRI research can touch on many other fields due to studying

both human and robots, e.g. Cognitive Science, Psychology and Social Science. Notably though, the

HRI researchers themselves are usually not the humans whose interactions with robots are studied.

On the contrary, this thesis on robot learning studies how researchers can provide strong priors

through hard-coding, and how those strong priors can make the robots learn and perform well. We

do not study any of the cognitive parts of the human experts (a.k.a. researchers ourselves who un-

derstand relatively well how learning systems work). Our main goal is to study how to make our

26

(a) (b)

Figure 1-2: (a) An illustration of the study of Human Robot Interaction, which focuses on the
interaction between human users and robots. The researchers typically do not consider themselves
in the study. (b) An illustration of the focus of this thesis. We study how to enable robots to do
difficult manipulation tasks with strong priors given by us the researchers.

robot learn with a realistic amount of data and expand its capabilities through integrated learning

and planning. One extension of our work could be to study robot learning through interactions with

human users, in which case we will be studying HRI as well as machine learning. Alternatively, if

we are more lenient with definitions, our work can perhaps also be viewed as human robot interac-

tion on the algorithmic or coding level. However, again, this thesis does not study the human side

of the story.

Stemming from these viewpoints, I will discuss the challenges we are facing and my contribu-

tions towards solving them from both applied and theoretical perspectives. On the practical side,

towards building a capable robotic system, I will present integrated learning and planning algo-

rithms that has both inputs from experts and actively collected data; on the theoretical side, I will

show how to better understand the sample complexity of some active data acquisition algorithms

that assume different forms of priors from human, which in turn guide the development of our robot

learning system.

1.1 Overview of the problems

We view a robot as an autonomous agent that actively engages in an environment. We use states

to describe conditions of the robot and the environment. The way our robot engages with the

environment is formally captured by a potentially infinite set of actions. For example, in Figure 1-3,

a robot called PR2 is operating in an environment that has a table and several objects on that table.

The robot can move its base, move its arms around, lift its torso, and open and close its grippers

attached to the arms; these are typically considered its actions though there can also be higher-level

actions such as push, pick, place. Notice that such actions can be continuously parameterized, e.g.

27

Figure 1-3: A PR2 robot is manipulating some objects on a table.

move forward 0.1 meter; and hence the set of all possible actions is infinite.

Our ultimate goal is to enable robots to solve high-level long-horizon problems as they arise in

the real world. To be capable of accomplishing a range of tasks, our robot needs to have the ability

of solving an important type of problems: given the current state and an objective, find a sequence

of actions that achieve the objective. We as researchers and/or engineers in the lab, on the other

hand, need to figure out how to design such a capable robot before it is delivered out of the lab to

solve those hard problems. In particular, we address one special period of the design process for the

software that is going to be the “brain” of a robot.

While the robot is in the lab, we have many options of what to do with it to build its “brain” and

they mainly fall into two categories: encoding our prior knowledge to the robot or letting the robot

collect its own first-hand experience. We may also anticipate that the robot will keep collecting new

experience once it is delivered out of the lab. Machine learning, as a toolbox of statistical methods,

now comes in handy to capture the algorithmic and theoretical foundations rooted in the software

we design for the robot. This thesis mainly addresses the following robot learning challenges.

∙ Model learning for planning. Planning is necessary for long-horizon problems and it re-

quires models of actions to be planned with. There are several key questions: (1) how to

define the model? (2) how to learn the model? (3) how to use the model in the planner? The

model typically describes the relations among the current state, the action taken by the robot

and the resulting state after the action is completed; however, the descriptions of models could

take different forms depending on the characteristics of the planner. For example, in some

cases, the planner requires generative models that suggest good parameters for the planner to

try out. Hence, depending on how the model is going to be used, we may set our learning

28

objective differently.

∙ Active data acquisition. Learning in general requires data, but data collection for robotics

tasks can be very expensive both in the real-world or in high-fidelity simulations. It is impor-

tant to carefully decide what data to collect to reduce the sample complexity. In particular,

data collection in our robotics tasks typically reduces to the action selection problem: which

action should be chosen to let the robot experiment with its domain. Note that each “exper-

imentation” could take a long time to complete. We formulate this problem as a black-box

function optimization problem where the black-box function is expensive to evaluate, noisy

and no gradient information is available. The goal is to design an active data acquisition strat-

egy so that not many evaluations on the function are necessary to find the global optimum of

the function. This problem is often addressed in the framework of Bayesian optimization.

These two learning challenges are not always exclusive of each other. When we try to learn a

model or use a model for planning, often it is desirable to collect data in an active way so that we

can learn and plan more efficiently. When developing active data acquisition methods, it is typically

very useful to know the objective we are concerned with; for example, the intuitive understand-

ing of whether a transition model tends to be discontinuous or not can potentially give us lots of

information.

It is also possible to characterize a learning problem as how to use existing data generated within

a planner to solve future planning problems more efficiently. This is quite different to learning tran-

sition models, but it is indeed a type of model that models some characteristics of certain statistics

in the planner. Hence one can view this problem as a model learning problem. However, one can

also view this as an active data acquisition problem since this problem can be reframed as how to

actively query the planner in order to get better planning performance.

Next, we will overview the main contributions of this thesis. It is perhaps good to bear in

mind that though we separate the contributions into these two sets of problems corresponding to

model learning and active data acquisition, the detailed solutions we provide in later chapters may

be addressing these two problems jointly.

1.2 Main contributions

There are roughly two categories of key contributions in this thesis. First, we propose new problem

formulations to identify the important learning problems and their possible solutions with the goal

29

of enabling robots to solve complex manipulation tasks that arise in the real world. Second, we

abstract out a mathematical optimization problem that lies in the center of the learning problems we

have identified in robotic manipulation tasks; and we offer theoretical and algorithmic insights into

better solutions for optimizing black-box functions.

1.2.1 Model learning for planning

As opposed to tabular rasa approaches, our focus on robot learning is to build and use structured

models of actions in a planner. We have developed data-efficient learning methods that make use of

strong priors to solve questions in model learning.

Learning what conditions should hold before using an action

Solving long-horizon problems in complex domains requires flexible generative planning that can

combine primitive abilities in novel combinations to solve problems as they arise in the world. In

order to plan to combine primitive actions, we must have models of the preconditions and effects

of those actions: under what conditions will executing this primitive achieve some particular effect

in the world? We present a framework that demonstrates how active learning and hand-designed

abstract models of skills can be integrated to learn abstract pre-condition models of an action. We

use expert domain knowledge to define the model as a constraint on relevant parameters of the ac-

tion. The constraint describes the condition of the parameters under which the action can achieve

the desired effect. Then, the robot learns the constraint by actively gathering data through experi-

mentation on using the action with different parameter settings. We present this work in Chapter 3

which previously appeared as part of [185].

Learning how to sample the skill parameters

Once we obtain models of the actions, we integrate them into an existing domain description for

the other robot skills that is suitable for use with a task and motion planner. We use diversity-aware

samplers (in Chapter 3) and Bayesian optimization with meta-learned priors (in Chapter 7) to solve

the question of how to generate a “good” sequence of action parameters where the goodness depends

on whether the planning problem can be solved efficiently. This work is part of [100, 185, 189].

30

Learning what parameters in the environment are relevant

We introduce SPArse RElational transition models (SPARE), which learn the combinations of rele-

vant parameters for a model of an action. As part of the prior for learning, we assume the availability

of deictic references such as above or close to that defines a sparse set of relations among objects in

the scene. The learning algorithm decides which relations to use in order to find the set of appropri-

ate parameters. This work detailed in Chapter 4 has appeared as part of [199].

Learning non-Gaussian transition models in continuous state-action spaces

We introduce a framework for model learning and planning in stochastic domains with continuous

state and action spaces and non-Gaussian transition models. It is efficient because (1) local models

are estimated only when the planner requires them; (2) the planner focuses on states that are most

relevant to the current planning problem; and (3) the planner focuses on the most informative and/or

high-value actions. Our theoretical analysis shows the validity and asymptotic optimality of the

proposed approach under some prior assumptions. Empirically, we demonstrate the effectiveness

of our algorithm on a simulated multi-modal pushing problem. This work shown in Chapter 5

previously appeared as [188].

1.2.2 Active data acquisition via Bayesian optimization

A key question in robot learning is how to actively acquire data for learning and decision making.

This question appears in many places, e.g. when deciding which experimentation to run to gather

information [185], which action to try in the planner [100, 185, 189], and what actions to focus

on when learning their values [188]. We formulate this problem as a gradient-free optimization

problem for non-convex, multi-peak functions where sample-complexity matters because function

evaluations can be expensive. We study the underlying principles of this problem and use the intu-

itions gained from theoretical studies to help to design algorithms for robot learning.

Bayesian optimization is one way to formulate the gradient-free global optimization problem

in both discrete and continuous input spaces, building on the ideas from Bayesian modeling. We

assume there is a scoring function that measures how good each input is. The goal is to optimize

the scoring function by actively querying the scores of a sequence of inputs. We show solutions

to the critical computational issues of Bayesian optimization in both decision making [187, 191]

and model updating [189] and give insights into the regret bound and connections among a num-

31

ber of existing query selection criteria. We also present new approaches that have made Bayesian

optimization possible for large-scale high-dimensional problems.

Strategies for query selection

We explore the usage of maximum values of target functions in the design of novel Bayesian opti-

mization approaches, and make two main contributions: First, our findings bridge missing pieces

that reveal connections between entropy search methods, upper confidence bounds and probability

of improvement. By exploiting these connections, we establish theoretical regret bounds for vari-

ants of entropy search and probability of improvement guided by max-values. Second, we obtain

a much more efficient version of popular entropy search methods that maintain the good empirical

performance. We demonstrate computational efficiency and effectiveness of Bayesian optimization

approaches guided by max-values on a variety of low and high-dimensional tasks both in machine

learning and simulated robot control. This work is presented in Chapter 6 and it previously appeared

as [187, 191].

Empirical Bayes for model selection

Bayesian optimization usually assumes that a Bayesian prior is given. However, the strong theo-

retical guarantees in Bayesian optimization are often regrettably compromised in practice because

of unknown parameters in the prior. We adopt a variant of empirical Bayes and show that, by

estimating the Gaussian process prior from offline data sampled from the same prior and construct-

ing unbiased estimators of the posterior, variants of both GP-UCB and probability of improvement

achieve a near-zero regret bound, which decreases to a constant proportional to the observational

noise as the number of offline data and the number of online evaluations increase. Empirically, we

have verified our approach on challenging simulated robotic problems featuring task and motion

planning. This work is presented in Chapter 7 and it previously appeared as [189].

Scaling up to higher dimensions and larger data sets

Many cases, such as the ones with high-dimensional inputs, may require a much larger number of

observations for Bayesian optimization. Despite an abundance of observations thanks to parallel

experiments, current Bayesian optimization techniques have been limited to a few thousand obser-

vations. We propose novel approaches to address three current challenges in Bayesian optimization

simultaneously: (1) large-scale observations; (2) high dimensional input spaces; and (3) selections

32

of batch queries that balance quality and diversity. The key idea is to operate on an ensemble of

additive Gaussian process models, each of which possesses a randomized strategy to divide and

conquer. We show unprecedented, previously impossible results of scaling up Bayesian optimiza-

tion to tens of thousands of observations within minutes of computation. This work is detailed in

Chapter 8 and previously appeared as [190, 186].

33

Chapter 2

Background and related work

In this chapter, we review the technical background that lays the foundation for this thesis. In

Section 2.1, we introduce Gaussian processes, a probabilistic model commonly used in machine

learning. In Section 2.2, we describe how Bayesian optimization methods make use of Gaussian

processes to actively acquire data, which is a critical ability for learning robots. In Section 2.3,

we draw connections between our robot learning problem formulation and reinforcement learning.

Lastly in Section 2.4, we explain different types of priors that play important roles in learning.

2.1 Gaussian processes

In many of our robot learning problems, it is crucial to make predictions about unseen data and

model the uncertainty of our predictions. For example, one of our tasks is to model how good a

pouring action is. The action is parameterized by some control parameters of the robot and some

environment parameters that describe the objects (e.g. cups and liquid in the cup) the robot is

interaction with. We denote these parameters as input 𝑥 and we use a function 𝑓 to evaluate how

well the pouring action performs, measured by how much liquid is poured into the target cup. One

nice tool to make predictions and model our uncertainty about the predictions is Gaussian processes.

A Gaussian process (GP) [151] is a distribution over functions and we use it to describe our

prior on our function of interest. We use 𝑓 ∼ 𝐺𝑃 (𝜇, 𝑘) to denote that function 𝑓 is distributed

according to the GP parameterized by mean function 𝜇 and kernel 𝑘. By definition, any finite set of

function values has a multivariate Gaussian distribution, namely, for function inputs 𝑥1, 𝑥2, · · · , 𝑥𝑛,

35

the function evaluations 𝑓(𝑥1), 𝑓(𝑥2), · · · , 𝑓(𝑥𝑛) have the following distribution,

⎡⎢⎢⎢⎢⎢⎢⎣
𝑓(𝑥1)

𝑓(𝑥2)

· · ·

𝑓(𝑥𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦ ∼ 𝒩
⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
𝜇(𝑥1)

𝜇(𝑥2)

· · ·

𝜇(𝑥𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
𝑘(𝑥1, 𝑥1) 𝑘(𝑥1, 𝑥2) · · · 𝑘(𝑥1, 𝑥𝑛)

𝑘(𝑥2, 𝑥1) 𝑘(𝑥2, 𝑥2) · · · 𝑘(𝑥2, 𝑥𝑛)

· · · · · · · · · · · ·

𝑘(𝑥𝑛, 𝑥1) 𝑘(𝑥𝑛, 𝑥2) · · · 𝑘(𝑥𝑛, 𝑥𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
where𝒩 (𝜇,𝐾) denotes a multivariate distribution parameterized by mean vector 𝜇 and covariance

matrix 𝐾.

There are two types of uncertainty involved in modeling our function: epistemic uncertainty

and aleatoric uncertainty. Continuing our example on the pouring action, notice that we are not

modeling some aspects of the physical process of pouring, e.g. the air resistance or the liquid

viscosity, and the execution of actions with the same parameters may not result in exactly the same

movement of the robot due to noise in the control process. As a result, our observations of function

𝑓 will also be noisy, and this is known as the aleatoric uncertainty. For simplicity, we are going

to assume the observations 𝑦 has a normal distribution centered at 𝑓(𝑥) with variance 𝜎2; that is,

𝑦 ∼ 𝒩 (𝑓(𝑥), 𝜎2).

Aleatoric uncertainty models the intrinsic noise in the measurement and cannot be reduced by

collecting more data. While epistemic uncertainty, on the other hand, is reflected on our belief of

what function 𝑓 is. As we collect more observations on function 𝑓 , we can reduce the epistemic

uncertainty as described by the posterior. Given a set of observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, the

posterior on 𝑓 is still a Gaussian process; that is, 𝑓 ∼ 𝐺𝑃 (𝜇𝑡, 𝑘𝑡). We can obtain closed-form

posterior mean

𝜇𝑡(𝑥) = 𝜇(𝑥) + 𝑘(𝑥,𝑥𝑡)(𝐾𝑡 + 𝜎2𝐼)−1(𝑦𝑡 − 𝜇𝑡), (2.1)

and posterior covariance

𝑘𝑡(𝑥, 𝑥
′) = 𝑘(𝑥, 𝑥′)− 𝑘(𝑥,𝑥𝑡)(𝐾𝑡 + 𝜎2𝐼)−1𝑘(𝑥′,𝑥𝑡)

T,

where 𝑦𝑡 = [𝑦𝜏]
𝑇
𝜏=1, 𝑥𝑡 = [𝑥𝜏]

𝑇
𝜏=1, 𝜇(𝑥𝑡) = [𝜇(𝑥𝜏)]

𝑡
𝜏=1, 𝑘(𝑥,𝑥𝑡) = [𝑘(𝑥, 𝑥𝜏)]

𝑇
𝜏=1 and 𝐾𝑡 =

36

μ

σt

t

Figure 2-1: Visualization of a Gaussian process prior for a 1D function 𝑓 (left) and the posterior for
𝑓 (right) given some observations illustrated by the red circles. The colored lines are samples from
the prior and the posterior.

[𝑘(𝑥𝑖, 𝑥𝑗)]𝑖∈[𝑇],𝑗∈[𝑇]. Notice that the posterior variance is given by

𝜎2𝑡 (𝑥) = 𝑘𝑡(𝑥, 𝑥). (2.2)

We visualize a Gaussian process modeling a 1D function 𝑓 in Figure 2-1. The prior mean 𝜇

is a constant and the kernel is a squared exponential kernel 𝑘(𝑥, 𝑥′) = 𝑎 exp 𝑏(𝑥− 𝑥′)2 for some

constant values 𝑎, 𝑏. As more function values are observed, our uncertainty about what the function

looks like also decreases, as reflected by the more constrained samples from the posterior.

2.2 Bayesian active learning

In situations where evaluating functions requires a lengthy experiment on the robot or high-fidelity

simulation, we need to carefully consider what data is worth gathering. The value of the data

depends on our goal of what to do with them. We here introduce two types of closely related goals,

optimization and level set estimation, and show the role of active learning in these two tasks.

2.2.1 Bayesian optimization

Bayesian optimization [163, 169] is a popular framework for sequential decisions making to opti-

mize black-box functions that are expensive to evaluate. This optimization problem is closely related

to experimental design, bandit problems, global optimization and derivative-free optimization.

Problem: maximize
𝑥∈X

𝑓(𝑥)

37

We sequentially select inputs to evaluate 𝑓 and our goal here is to reach the global optimum with

as few evaluations as possible. We assume the search space X is a compact set in R𝑑. In Bayesian

optimization, a common strategy is to model function 𝑓 with a Gaussian process 𝐺𝑃 (𝜇, 𝑘). In each

iteration 𝑡, we use acquisition functions 𝛼𝑡(𝑥) as the cheap surrogate to evaluate how beneficial it

is to evaluate different inputs, and choose to evaluate the input that optimizes acquisition function

𝛼𝑡(𝑥). Once we have the full dataset 𝐷𝑇 , one option is to recommend the input that achieves the

highest observed function value as the argmax. We show the pseudo code in Algorithm 1.

Algorithm 1 A typical paradigm of Bayesian optimization

1: function BAYESIANOPTIMIZATION (𝑓,𝐷0)
2: for 𝑡 = 1, · · · , 𝑇 do
3: 𝜇𝑡−1(·), 𝜎𝑡−1(·)← MODEL(𝐷𝑡−1)
4: 𝛼𝑡−1(·)←ACQUISITION (𝜇𝑡−1, 𝜎𝑡−1)
5: 𝑥𝑡 ← argmax𝑥∈X 𝛼𝑡−1(𝑥)
6: Observe 𝑦𝑡 ∼ 𝒩 (𝑓(𝑥𝑡), 𝜎

2)
7: 𝐷𝑡 ← 𝐷𝑡−1 ∪ {(𝑥𝑡, 𝑦𝑡)}
8: end for
9: end function

There are many options to define the acquisition function. One idea is to use the upper con-

fidence bound (UCB) [8, 171] derived from the Gaussian process posterior model. That is, we

use

𝛼𝑡(𝑥) = 𝜇𝑡(𝑥) + 𝛽𝜎𝑡(𝑥)

where the posterior mean 𝜇𝑡 is defined in Equation (2.1) and the posterior standard deviation in

Equation (2.2). The coefficient 𝛽 is a parameter balancing between exploration and exploitation.

If 𝛽 is high, the standard deviation plays a more important role in the UCB acquisition function.

The standard deviation is high in the regions where we have not obtained many observations yet,

and thus we focus more on exploring the uncharted search space. If 𝛽 is low, we focus more on

exploiting what we have discovered so far, represented by the posterior mean; this typically results

in choosing to evaluate inputs that are close to the best input(s) we have observed so far.

2.2.2 Bayesian level set estimation

Level set estimation [28, 70] is about identifying the boundaries that separate the search space into

two parts: those who have function values above a threshold (super-level set) and those below

38

(sub-level set). For example, when we are scoring the pour action, it is satisfactory as long as the

action parameters result in having at least 95% liquid in the target cup. We would like to identify

the region containing these good kinds of action parameters, which is a super-level set estimation

problem. Note that we can always subtract the threshold from the function.

This problem is slightly different to active learning problems for Gaussian process classification,

in which case a binary or multi-class label is used to describe the function output for each data point.

For level set estimation, the function output can be continuous.

Without loss of generality, we use a threshold of 0 and state the problem below.

Problem: identify {𝑥 ∈ X | 𝑓(𝑥) > 0}

Here we only included identifying the super-level set because the sub-level set is simply the com-

plement of the super-level set.

Similar to Bayesian optimization, we want to evaluate the function on few inputs to recover the

level set. Again, we use a Gaussian process to model function 𝑓 and we use acquisition functions

𝛼𝑡 to guide the selection of inputs in each iteration 𝑡. Once we finish collecting the dataset 𝐷𝑇 , we

can predict the probability of 𝑓(𝑥) > 0 for each 𝑥 ∈ X.

Typical algorithms for Bayesian level set estimation follows the same paradigm as Algorithm 1,

except defining acquisition functions differently. For example, [28] uses

𝛼𝑡(𝑥) = |𝜇𝑡(𝑥)|+ 𝛽𝜎𝑡(𝑥),

which gains high value when the posterior mean 𝜇𝑡(𝑥) is close to the threshold 0 or has high uncer-

tainty reflected by the posterior standard deviation 𝜎𝑡(𝑥).

2.3 Reinforcement learning

Reinforcement learning [173, 175, 123, 86] is a general framework that studies how an autonomous

agent can take actions in an environment to receive as much reward as possible. It is closely related

to optimal control [19, 21, 18]. In the most basic form, we can describe a reinforcement learning

problem with a finite Markov decision process (MDP).

An MDP is specified by a tuple (𝑆,𝐴, 𝑃,𝑅, 𝛾) consisting of a finite set of states 𝑆, a finite set

of actions 𝐴, transition model 𝑃 , reward model 𝑅 and a discount factor 𝛾. The transition model

39

𝑃 (𝑠′ | 𝑠, 𝑎) describes the probability of transitioning to state 𝑠′ after taking action 𝑎 at state 𝑠. The

reward model 𝑅(𝑠, 𝑎, 𝑠′) uses a real value to describe the reward being received at state 𝑠′ after

taking action 𝑎 at state 𝑠. The discount factor 𝛾 satisfies 1 > 𝛾 > 0. Beginning from the start state

𝑠0, the agent follows a policy 𝜋 : 𝑆 ↦→ 𝐴 that defines what action should be taken at any possible

state. The goal here is to find the policy 𝜋 that maximizes the cumulative rewards.

Problem: maximize
𝜋

E
[︁∑︁∞

𝑡=0
𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

]︁
subject to 𝜋(𝑠𝑡) = 𝑎𝑡, 𝑠𝑡+1 ∼ 𝑃 (𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡)

Our robot learning problems can be viewed as a variant of the reinforcement learning problem:

we are also interested in making a sequence of decisions on what actions to take in order to achieve

an objective. It is indeed possible to characterize our objective as a reward function, e.g. setting a

very high reward at a goal state in our objective. However, unlike typical reinforcement learning

paradigms, our states and actions may contain not only discrete variables (e.g. which object to op-

erate with) but also continuous parameters (e.g. the control for grasping an object); our problems

are much more complex (e.g. cook a meal) comparing to typical control problems solved by re-

inforcement learning methods (e.g. low-level control tasks); instead of finding a policy that maps

from every state to an action, it is enough for us to have a “path” that leads the robot from its current

state to a goal state, with the option to replan when necessary; These differences in assumptions

and objectives result in learning strategies different to classic reinforcement learning methods as

exemplified by this thesis.

2.4 Types of priors in learning

Priors are the built-in knowledge that exists in a learning agent before it starts learning by either

acquiring data in the world or training on a given dataset. Typically, priors are hand-designed

by experts, but they can also be learned via meta-learning. Priors can take many forms and we

summarize below.

Model structures

Human experts can also assist machines to learn more efficiently by specifying model structures

a priori while potentially leaving the rest of the model to be learned from data. For example,

40

convolutional structures in neural networks [119, 106] build in translation invariance to the model

and they are especially successful for image recognition tasks. Graphical model approaches such

as topic modeling [22] use expert-provided hypotheses on how data is generated to enable efficient

Bayesian inference. One more example is value iteration network [177] and QMDP-Net [94] type

methods, which construct fully differentiable neural networks with built-in planning capabilities as

part of the model. Humans specified model structures can be viewed as constraints on the search

space of machine learning models, and they typically enable more data-efficient learning. In this

thesis, for example, Chapter 3 describes a method that learns constraints in the descriptions of

models of actions partly specified by human and Chapter 8 uses a special graphical model for

additive Gaussian processes to scale up Bayesian optimization to higher dimensions.

Assumptions on what is given

Sometimes machine learning can be made easier to achieve by utilizing unique assumptions speci-

fied by human experts. These assumptions are given a priori to the learning approaches as guidance

to the model. For example, Andreas et. al. [5] used the assumption that symbolic labels of com-

ponents of a task are available to the learner to ease the learning process of reusable components

in the policies for different tasks. In Chapter 4, we assume the availability of symbolic relations

among objects, which can then be used to build abstract models of actions. These assumptions can

be viewed as a type of prior since they exist before the learning process begins.

Priors in Bayesian modeling

In Bayesian modeling, priors are explicitly specified as initial probabilistic beliefs on certain vari-

ables. For example, in topic modeling [22, 34], probabilistic priors are specified to describe the

distribution of words in each topic and the distribution of topics in each document; in Bayesian op-

timization explained in Section 2.2.1, a Gaussian process prior is used to describe the initial belief

on what the function looks like.

In this thesis, we explore different usages of priors in robot learning to significantly reduce

sample complexity and make it feasible for robots to learn with small data.

41

Part I

Learning models for planning

42

Chapter 3

Active model learning and diverse action

sampling for task and motion planning

For a robot to be effective in a domain that combines novel sensorimotor primitives, such as pouring

or stirring, with long-horizon, high-level task objectives, such as cooking a meal or making a cup

of coffee, it is necessary to acquire models of these primitives to use in planning robot motions

and manipulations. These models characterize (a) conditions under which the primitive is likely to

succeed and (b) the effects of the primitive on the state of the world.

Figure 3-1 illustrates several instances of a parameterized motor primitive for pouring in a sim-

ple two-dimensional domain. The primitive action has control parameters 𝜃 that govern the rate at

which the cup is tipped and target velocity of the poured material. In addition, several properties

of the situation in which the pouring occurs are very relevant for its success: robot configuration

𝑐𝑅, pouring cup pose and size 𝑝𝐴, 𝑠𝐴, and target cup pose and size 𝑝𝐵, 𝑠𝐵 . To model the effects of

the action we need to specify 𝑐′𝑅 and 𝑝′𝐴, the resulting robot configuration and pose of the pouring

cup 𝐴. Only for some settings of the parameters (𝑐𝑅, 𝑝𝐴, 𝑠𝐴, 𝑝𝐵, 𝑠𝐵, 𝜃, 𝑐
′
𝑅, 𝑝

′
𝐴) ∈ 𝜒 is the action

feasible: one key objective of our work is to efficiently learn a representation of the feasible region

𝜒.

For learning this model, each training example requires running the primitive, which is expen-

sive on real robot hardware and even in high-fidelity simulation. To minimize the amount of training

data required, we actively select each setting in which the primitive is executed, with the goal of

Part of this chapter was previously published as
Zi Wang and Caelan Reed Garrett and Leslie Pack Kaelbling and Tomás Lozano-Pérez. Active model learning and diverse
action sampling for task and motion planning. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018.

43

GRIPPER

Figure 3-1: Several examples of executing a pouring primitive with different settings, including
control parameters, cup sizes, and relative placements.

obtaining as much information as possible about how to use the primitive. This results in a dramatic

reduction in required examples over our preliminary work [88] on this problem.

Given a model of a primitive, embodied in 𝜒, we utilize existing sample-based algorithms for

task and motion planning (TAMP) to find plans. To use the model within the planner, it is necessary

to select candidate instances of the primitives for expansion during the search for a plan. The objec-

tive here is not to gain information, but to select primitive instances that are likely to be successful.

It is not enough to select a single instance, however, because there may be other circumstances that

make a particular instance infeasible within a planning context: for example, although the most

reliable way to grasp a particular object might be from the top, the robot might encounter the ob-

ject situated in a cupboard in a way that makes the top grasp infeasible. Thus, our action-sampling

mechanism must select instances that are both likely to succeed and are diverse from one another,

so that the planner has coverage of the space of possible actions.

One difficulty in sampling 𝜒 is that it inhabits a lower-dimensional submanifold of the space

it is defined in, because some relations among robot configurations and object poses, for example,

are functional. The STRIPStream planner [64, 65] introduced a strategy for sampling from such

dimensionality-reducing constraints by constructing conditional samplers that, given values of some

variables, generate values of the other variables that satisfy the constraint. Our goal in this chapter

is to learn and use conditional samplers within the STRIPStream planner.

Our technical strategy for addressing the problems of (a) learning success constraints and (b)

generating diverse samples is based on an explicit representation of uncertainty about an underly-

ing scoring function that measures the quality or likelihood of success of a parameter vector, and

44

uses Gaussian process (GP) techniques to sample for information-gathering during learning and for

success probability and diversity during planning. We begin by describing some basic background,

discuss related work, describe our methods in technical detail, and then present experimental results

of learning and planning with several motor primitives in a two-dimensional dynamic simulator.

3.1 Problem formulation and background

We will focus on the formal problem of learning and using a conditional sampler of the form 𝜑(𝜃 |

𝛼), where 𝛼 ∈ 𝑅𝑑𝛼 is a vector of contextual parameters and 𝜃 ∈ 𝐵 is a vector of parameters

that are to be generated, conditioned on 𝛼. We assume in the following that the domain of 𝜃 is a

hyper-rectangular space 𝐵 = [0, 1]𝑑𝜃 ⊂ 𝑅𝑑𝜃 , but generalization to other topologies is possible. The

conditional sampler generates samples of 𝜃 such that (𝜃, 𝛼) ∈ 𝜒 where 𝜒 ⊂ 𝑅𝑑𝛼+𝑑𝜃 characterizes

the set of world states and parameters for which the skill is feasible. We assume that 𝜒 can be

expressed in the form of an inequality constraint 𝜒(𝜃, 𝛼) = (𝑔(𝜃, 𝛼) > 0), where 𝑔(·) is a scoring

function with arguments 𝜃 and 𝛼 and 𝜒 can be viewed as a classifier based on the scoring function

𝑔.

We denote the super level-set of the scoring function given 𝛼 by 𝐴𝛼 = {𝜃 ∈ 𝐵 | 𝑔(𝜃, 𝛼) > 0}.

For example, the scoring function 𝑔(·) for pouring might be the proportion of poured liquid that

actually ends up in the target cup, minus some target proportion. We assume the availability of

values of such a score function during training rather than just binary labels of success or failure.

In the following, we give basic background on two important components of our method: Gaussian

processes and STRIPStream.

As introduced in Section 2.1, Gaussian processes (GPs) are distributions over functions, and pop-

ular priors for Bayesian non-parametric regression. For compactness, we use slightly different no-

tations. In this chapter, we use the Gaussian process GP(0, 𝑘) which has mean zero and covariance

(kernel) function 𝑘(𝑥, 𝑥′). Let 𝑓 be a true underlying function sampled from GP(0, 𝑘). Given a set

of observations 𝒟 = {(𝑥𝑡, 𝑦𝑡)}|𝒟|
𝑡=1, where 𝑦𝑡 is an evaluation of 𝑓 at 𝑥𝑡 corrupted by i.i.d additive

Gaussian noise 𝒩 (0, 𝜁2), we obtain a posterior GP, with mean 𝜇(𝑥) = 𝑘𝒟(𝑥)T(𝐾𝒟 + 𝜁2𝐼)−1𝑦𝒟

and covariance 𝜎2(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥′) − 𝑘𝒟(𝑥)T(𝐾𝒟 + 𝜁2𝐼)−1𝑘𝑡(𝑥
′) where the kernel matrix

𝐾𝒟 = [𝑘(𝑥𝑖, 𝑥𝑗)]𝑥𝑖,𝑥𝑗∈𝒟 and 𝑘𝒟(𝑥) = [𝑘(𝑥𝑖, 𝑥)]𝑥𝑖∈𝒟 [151]. With slight abuse of notation, we

denote the posterior variance by 𝜎2(𝑥) = 𝜎2(𝑥, 𝑥), and the posterior GP by GP(𝜇, 𝜎).

STRIPStream [65] is a framework for incorporating blackbox sampling procedures in a planning

45

language. It extends the STRIPS planning language [58] by adding streams, declarative specifica-

tions of conditional generators. Streams have previously been used to model off-the-shelf motion

planners, collision checkers, inverse kinematic solvers. In this work, we learn new conditional

generators, such as samplers for pouring, and incorporate them using streams.

3.2 Related Work

Our work draws ideas from model learning, probabilistic modeling of functions, and task and motion

planning (TAMP).

There is a large amount of work on learning individual motor primitives such pushing [107, 77],

scooping [159], and pouring [143, 178, 25, 200, 158]. We focus on the task of learning models of

these primitives suitable for multi-step planning. We extend a particular formulation of planning

model learning [88], where constraint-based pre-image models are learned for parameterized action

primitives, by giving a probabilistic characterization of the pre-image and using these models during

planning.

Other approaches exist to learning models of the preconditions and effects of sensorimotor skills

suitable for planning. One [101] constructs a completely symbolic model of skills that enable purely

symbolic task planning. Our method, on the other hand, learns hybrid models, involving continuous

parameters. Another [108] learns image classifiers for pre-conditions but does not support general-

purpose planning.

We use GP-based level set estimation [28, 70, 151, 23] to model the feasible regions (super level

set of the scoring function) of action parameters. We use the straddle algorithm [28] to actively

sample from the function threshold, in order to estimate the super level set that satisfy the constraint

with high probability. Our methods can be extended to other function approximators that gives

uncertainty estimates, such as Bayesian neural networks and their variants [63, 112].

Alternatively, one can use GP classification methods with active learning [93] to model our

constraints. Active learning of GP classifiers was often used for modeling safety constraints to

help perform safe exploration [161, 54]. The focus of this work, however, is to present a suite of

approaches to address not only how to actively learn a model but also how to use learned models

and solve complex long-horizon manipulation tasks. In this work, we only focus on one setting of

the active model learning problem (level set estimation with GP regression) but other active learning

approaches can certainly be used.

46

Determinantal point processes (DPPs) [110] are typically used for diversity-aware sampling.

However, both sampling from a continuous DPP [74] and learning the kernel of a DPP [1] are chal-

lenging.

Several approaches to TAMP utilize generators to enumerate infinite sequences of values [87,

172, 64]. Our learned samplers can be incorporated in any of these approaches. Additionally, some

recent papers have investigated learning effective samplers within the context of TAMP. Chitnis et

al. [36] frame learning plan parameters as a reinforcement learning problem and learn a randomized

policy that samples from a discrete set of robot base and object poses. Kim et al. [98] proposed

a method for selecting from a discrete set of samples by scoring new samples based on their cor-

relation with previously attempted samples. In subsequent work, they instead train a Generative

Adversarial Network to directly produce a distribution of satisfactory samples [99].

3.3 Active sampling for learning and planning

Our objective in the learning phase is to efficiently gather data to characterize the conditional super-

level-sets𝐴𝛼 with high confidence. We use a GP on the score function 𝑔 to select informative queries

using a level-set estimation approach. Our objective in the planning phase is to select a diverse set

of samples {𝜃𝑖} for which it is likely that 𝜃 ∈ 𝐴𝛼. We do this in two steps: first, we use a novel

risk-aware sampler to generate 𝜃 values that satisfy the constraint with high probability; second, we

integrate this sampler with STRIPStream, where we generate samples from this set that represent its

diversity, in order to expose the full variety of choices to the planner.

3.3.1 Actively learning the constraint with a GP

Our goal is to be able to sample from the super level set 𝐴𝛼 = {𝜃 ∈ 𝐵 | 𝑔(𝜃, 𝛼) > 0} for any given

context 𝛼, which requires learning the decision boundary 𝑔(𝜃, 𝛼) = 0. During training, we select

𝛼 values from a distribution reflecting naturally occurring contexts in the underlying domain. Note

that learning the level-set is a different objective from learning all of the function values well, and

so it must be handled differently from typical GP-based active learning.

For each 𝛼 value in the training set, we apply the straddle algorithm [28] to actively select

samples of 𝜃 for evaluation by running the motor primitive. After we obtain each new evaluation

of 𝑔(𝜃, 𝛼), the data-set 𝒟 is augmented with pair ⟨(𝜃, 𝛼), 𝑔(𝜃, 𝛼)⟩, and used to update the GP. The

straddle algorithm selects 𝜃 that maximizes the acquisition function 𝜓(𝜃;𝛼, 𝜇, 𝜎) = −|𝜇(𝜃, 𝛼)| +

47

1.96𝜎(𝜃, 𝛼). It has a high value for values of 𝜃 that are near the boundary for the given 𝛼 or for

which the score function is highly uncertain. The parameter 1.96 is selected such that if 𝜓(𝜃) is

negative, 𝜃 has less than 5 percent chance of being in the level set. In practice, this heuristic has

been observed to deliver state-of-the-art learning performance for level set estimation [23, 70]. After

each new evaluation, we retrain the Gaussian process by maximizing its marginal data-likelihood

with respect to its hyper-parameters. Alg. 2 specifies the algorithm; GP-predict(·) computes the

posterior mean and variance as explained in Sec. 3.1.

Algorithm 2 Active Bayesian Level Set Estimation
1: Given initial data set 𝒟, context 𝛼, desired number of samples 𝑇

2: for 𝑡 = 1→ 𝑇 do

3: 𝜇, 𝜎← GP-predict(𝒟)

4: 𝜃 ← argmax𝜃 𝜓(𝜃;𝛼, 𝜇, 𝜎)

5: 𝑦 ← 𝑔(𝜃, 𝛼)

6: 𝒟 ← 𝒟 ∪ {((𝜃, 𝛼), 𝑦)}

7: end for

8: return 𝒟

3.3.2 Risk-aware adaptive sampling for constraint satisfaction

Now we can use this Bayesian estimate of the scoring function 𝑔 to select action instances for

planning. Given a new context 𝛼, which need not have occured in the training set—the GP will

provide generalization over contexts—we would like to sample a sequence of 𝜃 ∈ 𝐵 such that with

high probability, 𝑔(𝜃, 𝛼) ≥ 0. In order to guarantee this, we adopt a concentration bound and a

union bound on the predictive scores of the samples. Notice that by construction of the GP, the

predictive scores are Gaussian random variables. The following is a direct corollary of Lemma 3.2

of [191].

Corollary 3.3.1. Let 𝑔(𝜃) ∼ GP(𝜇, 𝜎), 𝛿 ∈ (0, 1) and set 𝛽*𝑖 = (2 log(𝜋𝑖/2𝛿))
1
2 , where

∑︀𝑇
𝑖=1 𝜋

−1
𝑖 ≤

1, 𝜋𝑖 > 0. If 𝜇(𝜃𝑖) > 𝛽*𝑖 𝜎(𝜃𝑖), ∀𝑖 = 1, · · · , 𝑇 , then Pr[𝑔(𝜃𝑖) > 0,∀𝑖] ≥ 1− 𝛿.

Define the high-probability super-level-set of 𝜃 given context 𝛼 as 𝐴𝛼 = {𝜃 | 𝜇(𝜃, 𝛼) >

𝛽* 𝜎(𝜃, 𝛼)} where 𝛽* is picked according to Corollary 3.3.1. If we draw 𝑇 samples from 𝐴𝛼,

then with probability at least 1− 𝛿, all of the samples will satisfy the constraint 𝑔(𝜃, 𝛼) > 0.

In practice, however, for any given 𝛼, using the definition of 𝛽* from Corollary 3.3.1, the set𝐴𝛼

may be empty. In that case, we can relax our criterion to include the set of 𝜃 values whose score is

48

Figure 3-2: High-probability super-level-set in black.

within 5% of the 𝜃 value that is currently estimated to have the highest likelihood of satisfying the

constraint: 𝛽 = Φ−1(0.95Φ(max𝜃∈𝐵 𝜇(𝜃, 𝛼)/𝜎(𝜃, 𝛼))) where Φ is the cumulative density function

of a normal distribution.

Figure 3-2 illustrates the computation of 𝐴𝛼. The green line is the true hidden 𝑔(𝜃); the blue

× symbols are the training data, gathered using the straddle algorithm in [0, 1]; the red line is the

posterior mean function 𝜇(𝜃); the pink regions show the two-standard-deviation bounds on 𝑔(𝜃)

based on 𝜎(𝜃); and the black line segments are the high-probability super-level-set 𝐴𝛼 for 𝛽 = 2.0.

We can see that sampling has concentrated near the boundary, that 𝐴𝛼 is a subset of the true super-

level-set, and that as 𝜎 decreases through experience, 𝐴𝛼 will approach the true super-level set.

To sample from 𝐴𝛼, one simple strategy is to do rejection sampling with a proposal distribution

that is uniform on the search bounding-box 𝐵. However, in many cases, the feasible region of a

constraint is typically much smaller than𝐵, which means that uniform sampling will have a very low

chance of drawing samples within𝐴𝛼, and so rejection sampling will be very inefficient. We address

this problem using a novel adaptive sampler, which draws new samples from the neighborhood of

the samples that are already known to be feasible with high probability and then re-weights these

new samples using importance weights.

The algorithm ADAPTIVESAMPLER takes as input the posterior GP parameters 𝜇 and 𝜎 and

context vector 𝛼, and yields a stream of samples. It begins by computing 𝛽 and sets Θinit to contain

49

the 𝜃 that is most likely to satisfy the constraint. It then maintains a buffer Θ of at least𝑚/2 samples,

and yields the first one each time it is required to do so; it technically never actually returns, but

generates a sample each time it is called. The main work is done by SAMPLEBUFFER, which

constructs a mixture of truncated Gaussian distributions (TGMM), specified by mixture weights 𝑝,

means Θ, circular variance with parameter 𝑣, and bounds 𝐵. Parameter 𝑣 indicates how far from

known good 𝜃 values it is reasonable to search; it is increased if a large portion of the samples from

the TGMM are accepted and decreased otherwise. The algorithm iterates until it has constructed a

set of at least 𝑚 samples from 𝐴𝛼. It samples 𝑛 elements from the TGMM and retains those that are

in𝐴𝛼 as Θ𝑎. Then, it computes “importance weights” 𝑝𝑎 that are inversely related to the probability

of drawing each 𝜃𝑎 ∈ Θ𝑎 from the current TGMM. This will tend to spread the mass of the sampling

distribution away from the current samples, but still concentrated in the target region. A set of 𝑛

uniform samples is drawn and filtered, again to maintain the chance of dispersing to good regions

that are far from the initialization. The 𝑝 values associated with the old Θ as well as the newly

sampled ones are concatenated and then normalized into a distribution, the new samples added to

Θ, and the loop continues. When at least 𝑚 samples have been obtained, 𝑚 elements are sampled

from Θ according to distribution 𝑝, without replacement.

It is easy to see that as 𝑛 goes to infinity, by sampling from the discrete set according to the

re-weighted probability, we are essentially sampling uniformly at random from 𝐴𝛼. This is because

∀𝜃 ∈ Θ, 𝑝(𝜃) ∝ 1
𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝜃)

𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝜃) = 1. For uniform sampling, 𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝜃) = 1
𝑉 𝑜𝑙(𝐵) , where

𝑉 𝑜𝑙(𝐵) is the volume of 𝐵; and for sampling from the truncated mixture of Gaussians, 𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝜃)

is the probability density of 𝜃. In practice, 𝑛 is finite, but this method is much more efficient than

rejection sampling.

3.3.3 Diversity-aware sampling for planning

Now that we have a sampler that can generate approximately uniformly random samples within the

region of values that satisfy the constraints with high probability, we can use it inside a planning

algorithm for continuous action spaces. Such planners perform backtracking search, potentially

needing to consider multiple different parameterized instances of a particular action before finding

one that will work well in the overall context of the planning problem. The efficiency of this process

depends on the order in which samples of action instances are generated. Intuitively, when previous

samples of this action for this context have failed to contribute to a successful plan, it would be

wise to try new samples that, while still having high probability of satisfying the constraint, are as

50

Algorithm 3 Super Level Set Adaptive Sampling
1: function ADAPTIVESAMPLER(𝜇, 𝜎, 𝛼, 𝑛,𝑚,𝐵)
2: 𝛽 ← Φ−1(0.95Φ(max𝜃∈𝐵 𝜇(𝜃, 𝛼)/𝜎(𝜃, 𝛼)))

3: Θ𝑖𝑛𝑖𝑡 ← {argmax𝜃∈𝐵
𝜇(𝜃)
𝜎(𝜃)
}; Θ← ∅

4: while True do
5: if |Θ| < 𝑚/2 then
6: Θ← SAMPLEBUFFER(𝜇, 𝜎, 𝛼, 𝛽,Θ𝑖𝑛𝑖𝑡, 𝑛,𝑚,𝐵)
7: end if
8: 𝜃 ← Θ[0]
9: yield 𝜃

10: Θ← Θ ∖ {𝜃}
11: end while
12: end function
13: function SAMPLEBUFFER(𝜇, 𝜎, 𝛼, 𝛽,Θ𝑖𝑛𝑖𝑡, 𝑛,𝑚,𝐵)
14: 𝑣 ← [1]

𝑑𝜃
𝑑=1; Θ← Θ𝑖𝑛𝑖𝑡; 𝑝← [1]

|Θ|
𝑖=1

15: while True do
16: Θ′ ← SampleTGMM(𝑛; 𝑝,Θ, 𝑣, 𝐵)
17: Θ𝑎 ← {𝜃 ∈ Θ′ | 𝜇(𝜃) > 𝛽𝜎(𝜃)}
18: 𝑝𝑎 ← 1/𝑝TGMM(Θ𝑎; 𝑝,Θ, 𝑣, 𝐵)
19: 𝑣 ← 𝑣/2 if |Θ𝑎| < |Θ′|/2 else 𝑣 × 2
20: Θ′′ ← SampleUniform(𝑛;𝐵)
21: Θ𝑟 ← {𝜃 ∈ Θ′′ | 𝜇(𝜃) > 𝛽𝜎(𝜃)}
22: 𝑝𝑟 ← [𝑉 𝑜𝑙(𝐵)]

|Θ𝑟|
𝑖=1

23: 𝑝← Normalize([𝑝, 𝑝𝑟, 𝑝𝑎])
24: Θ← [Θ,Θ𝑟,Θ𝑎]
25: if |Θ| > 𝑚 then
26: return Sample(𝑚; Θ, 𝑝)
27: end if
28: end while
29: end function

51

different from those that were previously tried as possible. We need, therefore, to consider diversity

when generating samples; but the precise characterization of useful diversity depends on the domain

in which the method is operating. We address this problem by adapting a kernel that is used in the

sampling process, based on experience in previous planning problems.

Diversity-aware sampling has been studied extensively with determinantal point processes (DPPs) [110].

We begin with similar ideas and adapt them to the planning domain, quantifying diversity of a set

of samples 𝑆 using the determinant of a Gram matrix: 𝐷(𝑆) = log det(Ξ𝑆𝜁−2 + 𝐼), where Ξ𝑆𝑖𝑗 =

𝜉(𝜃𝑖, 𝜃𝑗),∀𝜃𝑖, 𝜃𝑗 ∈ 𝑆, 𝜉 is a covariance function, and 𝜁 is a free parameter (we use 𝜁 = 0.1). In

DPPs, the quantity𝐷(𝑆) can be interpreted as the volume spanned by the feature space of the kernel

𝜉(𝜃𝑖, 𝜃𝑗)𝜁
−2 + 1𝜃𝑖≡𝜃𝑗 assuming that 𝜃𝑖 = 𝜃𝑗 ⇐⇒ 𝑖 = 𝑗. Alternatively, one can interpret the quan-

tity 𝐷(𝑆) as the information gain of a GP when the function values on 𝑆 are observed [171]. This

GP has kernel 𝜉 and observation noise𝒩 (0, 𝜁2). Because of the submodularity and monotonicity of

𝐷(·), we can maximize 𝐷(𝑆) greedily with the promise that 𝐷([𝜃𝑖]
𝑁
𝑖=1) ≥ (1− 1

𝑒)max|𝑆|≤𝑁 𝐷(𝑆)

∀𝑁 = 1, 2, · · · , where 𝜃𝑖 = argmax𝜃𝐷(𝜃 ∪ {𝜃𝑗}𝑖−1
𝑗=1). In fact, maximizing 𝐷(𝜃 ∪ 𝑆) is equivalent

to maximizing

𝜂𝑆(𝜃) = 𝜉(𝜃, 𝜃)− 𝜉𝑆(𝜃)T(Ξ𝑆 + 𝜁2𝐼)−1𝜉𝑆(𝜃)

which is exactly the same as the posterior variance for a GP.

The DIVERSESAMPLER procedure is very similar in structure to the ADAPTIVESAMPLER pro-

cedure, but rather than selecting an arbitrary element of Θ, the buffer of good samples, to return, we

track the set 𝑆 of samples that have already been returned and select the element of Θ that is most

diverse from 𝑆 as the sample to yield on each iteration. In addition, we yield 𝑆 to enable kernel

learning as described in Alg 5, to yield a kernel 𝜂.

52

Algorithm 4 Super Level Set Diverse Sampling
1: function DIVERSESAMPLER(𝜇, 𝜎, 𝛼, 𝜂, 𝑛,𝑚,𝐵)

2: 𝛽 ← 𝜆(max𝜃∈𝐵
𝜇(𝜃)
𝜎(𝜃)

); Θ← ∅

3: 𝜃 ← argmax𝜃∈𝐵
𝜇(𝜃)
𝜎(𝜃)

; 𝑆 ← ∅

4: while planner requires samples do

5: yield 𝜃, S

6: if |Θ| < 𝑚/2 then

7: Θ← SAMPLEBUFFER(𝜇, 𝜎, 𝛼, 𝛽,Θ𝑖𝑛𝑖𝑡, 𝑛,𝑚,𝐵)

8: end if

9: 𝑆 ← 𝑆 ∪ {𝜃} ◁ 𝑆 contains samples before 𝜃

10: 𝜃 ← argmax𝜃∈Θ 𝜂𝑆(𝜃)

11: Θ← Θ ∖ {𝜃}

12: end while

13: end function

It is typical to learn the kernel parameters of a GP or DPP given supervised training examples

of function values or diverse sets, but those are not available in our setting; we can only observe

which samples are accepted by the planner and which are not. We derive our notion of similarity

by assuming that all samples that are rejected by the planner are similar. Under this assumption,

we develop an online learning approach that adapts the kernel parameters to learn a good diversity

metric for a sequence of planning tasks.

We use the squared exponential kernel of the form 𝜉(𝜃, 𝛾; 𝑙) = exp(−
∑︀

𝑑 𝑟
2
𝑑), where 𝑟𝑑 =

|𝑙𝑑(𝜃𝑑 − 𝛾𝑑)| is the rescaled “distance” between 𝜃 and 𝛾 on the 𝑑-th feature and 𝑙 is the inverse

lengthscale. Let 𝜃 be the sample that failed and the set of samples sampled before 𝜃 be 𝑆. We define

the importance of the 𝑑-th feature as

𝜏 𝜃𝑆(𝑑) = 𝜉(𝜃𝑑, 𝜃𝑑; 𝑙𝑑)− 𝜉𝑆(𝜃𝑑; 𝑙𝑑)
T(Ξ𝑆 + 𝜁2𝐼)−1𝜉𝑆(𝜃𝑑; 𝑙𝑑) ,

which is the conditional variance if we ignore the distance contribution of all other features except

the 𝑑-th; that is, ∀𝑘 ̸= 𝑑, 𝑙𝑘 = 0. Note that we keep Ξ𝑖 + 𝜁2𝐼 the same for all the features so that

the inverse only needs to be computed once.

The diverse sampling procedure is analogous to the weighted majority algorithm [61] in that

each feature 𝑑 is seen as an expert that contributes to the conditional variance term, which measures

how diverse 𝜃 is with respect to 𝑆. The contribution of feature 𝑑 is measured by 𝜏 𝜃𝑆(𝑑). If 𝜃 was

rejected by the planner, we decrease the inverse lengthscale 𝑙𝑑 of feature 𝑑 = argmax𝑑∈[𝑑𝜃] 𝜏
𝜃
𝑆(𝑑)

53

to be (1− 𝜖)𝑙𝑑, because feature 𝑑 contributed the most to the decision that 𝜃 was most different from

𝑆.

Algorithm 5 Task-level Kernel Learning
1: for task in T do

2: 𝛼← current context

3: 𝜇, 𝜎← GP-predict(𝛼); 𝑆 ← ∅

4: while plan not found do

5: if |𝑆| > 0 then

6: 𝑑← argmax𝑑∈[𝑑𝜃]
𝜏𝜃𝑆(𝑑)

7: 𝑙𝑑 ← (1− 𝜖)𝑙𝑑

8: end if

9: 𝜃, 𝑆 ← DIVERSESAMPLER(𝜇, 𝜎, 𝛼, 𝜉(·, ·; 𝑙), 𝑛,𝑚,𝐵)

10: Check if a plan exist using 𝜃

11: end while

12: end for

Alg. 5 depicts a scenario in which the kernel is updated during interactions with a planner; it

is simplified in that it uses a single sampler, but in our experimental applications there are many

instances of action samplers in play during a single execution of the planner. Given a sequence of

tasks presented to the planner, we can continue to apply this kernel update, molding our diversity

measure to the demands of the distribution of tasks in the domain. This simple strategy for kernel

learning may lead to a significant reduction in planning time, as we demonstrate in the next section.

3.4 Experiments

We show the effectiveness and efficiency of each component of our method independently, and

then demonstrate their collective performance in the context of planning for long-horizon tasks in a

high-dimensional continuous domain. We first construct the experiments in a simple simulated 2D

setting, then extend it to a more complex simulated 3D domain, and finally show promising results

on a real-world physical robot.

3.4.1 Implementation of Kitchen2D

To test our algorithms, we implemented a simulated 2D kitchen based on the physics engine Box2D [32].

Fig. 3-3 shows several scenes indicating the variability of arrangements of objects in the domain.

We use bi-directional RRT [109] to implement motion planning. The parameterized primitive motor

54

SUGARCREAM

GRIPPER
MUG

STIRRER SPOON

COFFEE FAUCET

COASTER

Figure 3-3: Four arrangements of objects in 2D kitchen, including: green coaster, coffee faucet,
yellow robot grippers, sugar scoop, stirrer, coffee mug, small cup with cream, larger container with
pink sugar.

actions are: moving the robot (a simple “free-flying” hand), picking up an object, placing an object,

pushing an object, filling a cup from a faucet, pouring a material out of a cup, scooping material into

a spoon, and dumping material from a spoon. The gripper has 3 degrees of freedom (2D position

and rotation). The material to be poured or scooped is simulated as small circular particles.

We learn models and samplers for three of these action primitives: pouring (4 context parame-

ters, 4 predicted parameters, scooping (2 context parameters, 7 predicted parameters), and pushing

(2 context parameters, 6 predicted parameters). The actions are represented by a trajectory of way

points for the gripper, relative to the object it is interacting with. For pouring, we use the scoring

function 𝑔pour (𝑥) = exp(2*(𝑥*10−9.5))−1, where 𝑥 is the proportion of the liquid particles that

are poured into the target cup. The constraint 𝑔pour (𝑥) > 0 means at least 95% of the particles are

poured correctly to the target cup. The context of pouring includes the sizes of the cups, with widths

ranging from 3 to 8 (units in Box2D), and heights ranging from 3 to 5. For scooping, we use the

proportion of the capacity of the scoop that is filled with liquid particles, and the scoring function is

𝑔scoop(𝑥) = 𝑥− 0.5, where 𝑥 is the proportion of the spoon filled with particles. We fix the size of

the spoon and learn the action parameters for different cup sizes, with width ranging from 5 to 10

and height ranging from 4 to 8. For pushing, the scoring function is 𝑔push(𝑥) = 2 − ‖𝑥 − 𝑥goal‖

where 𝑥 is the position of the pushed object after the pushing action and 𝑥goal is the goal position;

here the goal position is the context. The pushing action learned in Sec. 3.4.3 has the same setting

as [88], viewing the gripper/object with a bird-eye view. The code for the simulation and learning

methods is public at https://ziw.mit.edu/projects/kitchen2d/.

55

https://ziw.mit.edu/projects/kitchen2d/

Figure 3-4: Scenes of a simulated PR2 robot trying to scoop, push and pour.

3.4.2 Implementation of Kitchen3D

Simulation To make the experiments more complete, we also implemented a simulated 3D en-

vironment with a PR2 robot operating by a table with objects on it. This 3D environment aims to

provide a simulated version of our real-world robot operating scenario. Our 3D simulation is based

on the physics engine PyBullet [39]. An illustration of our implementation is shown in Figure 3-4.

We define the following parameterized motion primitives: moving an arm from one pose to

another, grasping an object, picking up an object, placing an object, pouring from a cup, scooping

from a bowl, pushing an object and stirring in a cup with a spoon. All the primitives have their

parameterized policies hand-specified.

Among the pre-specified primitives, pouring and scooping are the ones that we use machine

learning methods to learn the conditional sampler for. Their scoring function is defined in a similar

way to the ones in Kitchen2D in the section above. We define the generators for the parameters

of other primitives by hand, e.g. using uniform sampling in a predefined region. For simplicity,

we parameterize primitives by object poses or robot gripper location relative to an object instead of

robot poses.

For inverse kinematics, we use IKFast [48, 47]. We use Moveit! [37, 142] for pruning points that

collide with the robot. Similar to Kitchen2D, we also use bi-directional RRT [109] to implement

motion planning.

Real-world We use exactly the same set of primitives and their implementations as in the 3D

simulation. We present a demonstration of the PR2 robot operating in the real world in Figure 3-5.

In this chapter we are assuming that states are fully observable. For the real-world setting, we

use the open-sourced Tensorflow Object Detection API [81] and train it with hand-labeled data to

56

Figure 3-5: Our PR2 robot is operating by a table on top of which some blocks, cups and bowls
lie. The goal is to pour from the blue cup to the white bowl. The planner decides to move away the
green block obstacle first and then approach the blue cup.

obtain the detection information of objects on the table. We then use the detection information

(including bounding boxes and labels of object types) to crop out the point cloud of the detected ob-

jects. The poses of the objects are estimated using an optimization based pose estimator built by Dr.

Jared Glover. The pose of the table plane is estimated using the Point Cloud Library (PCL) [156].

We provide the pose estimation with 3D models of all of the objects. Once we obtain the estimated

poses of all the objects, we assume there is no uncertainty in the estimated poses.

We use beads and bead-like small objects as the material to be poured and scooped. In order to

obtain scores on pouring or scooping, we use USB scales underneath the cups and bowls to estimate

the number of beads inside. The USB scales are directly connected to our computer to provide

accurate real-time readings. Once we have the estimated number of beads, the same scoring metric

is used in real world as in the 3D simulator.

3.4.3 Active learning for conditional samplers

We demonstrate the performance of using a GP with the straddle algorithm (GP-LSE) to estimate the

level set of the constraints on parameters for pushing, pouring and scooping. For comparison, we

also implemented a simple method [88], which uses a neural network to map (𝜃, 𝛼) pairs to predict

57

50 100 150 200

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c

Random NN NN GP-LSE

10 20 30 40 50

Iteration

0.0

0.2

0.4

0.6

0.8

1.0
A
c
c

Random NN NN GP-LSE

10 20 30 40 50

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c

Random NN NN GP-LSE

(b) (c)(a)

c r c cr r

Figure 3-6: Mean accuracy (with 1/2 stdev on mean shaded) of the first action recommended by
random selection (Random), regression-based neural network (NN𝑟), classification-based neural
network (NN𝑐) and Gaussian process using level-set estimation (GP-LSE) on (a) a pouring task
with 8 parameters (4 are context parameters); (b) a scooping task with 9 parameters (2 are context
parameters) , and (c) a pushing task with 6 parameters (2 are context parameters).

50 100 150 200 250 300 350 400

0.66

0.68

0.70

0.72

0.74

0.76

0.78

F1
S
co

re

50 100 150 200 250 300 350 400
Training examples

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

F1
S
co

re

Random selection
GP-LSE

Random selection
GP-LSE

Training examples(a) (b)

Figure 3-7: Mean accuracy (with standard error on mean shaded) of the F1 score evaluated on a
set of randomly generated test examples. We compare GP-LSE with Random selection, which uses
random training examples to train a GP instead of using active learning. (a) A pouring task with
11 parameters (6 are context parameters). (b) A scooping task with 8 parameters (3 are context
parameters).

the probability of success using a logistic output. Given a partially trained network and a context

𝛼, the 𝜃* = argmax𝜃 NN(𝛼, 𝜃) which has the highest probability of success with 𝛼 is chosen

for execution. Its success or failure is observed, and then the network is retrained with this added

data point. This method is called NN𝑐 in the results. In addition, we implemented a regression-

based variation that predicts 𝑔(𝜃, 𝛼) with a linear output layer, but given an 𝛼 value still chooses

the maximizing 𝜃. This method is called NN𝑟. We also compare to random sampling of 𝜃 values,

without any training.

GP-LSE is able to learn much more efficiently than the other methods. Figure 3-6 shows the

accuracy of the first action parameter vector 𝜃 (value 1 if the action with parameters 𝜃 is actually

successful and 0 otherwise) recommended by each of these methods as a function of the number

58

Figure 3-8: Comparing the first 5 samples generated by DIVERSE (left) and ADAPTIVE (right) on
one of the experiments for pouring. The more transparent the pose, the later it gets sampled.

of actively gathered training examples. The results are evaluated using Kitchen2D. GP-LSE rec-

ommends its first 𝜃 by maximizing the probability that 𝑔(𝜃, 𝛼) > 0. The neural-network methods

recommend their first 𝜃 by maximizing the output value, while RANDOM always selects uniformly

randomly from the domain of 𝜃.

Figure 3-7 shows the F1 scores evaluated on a set of 1000 randomly selected test examples,

and we compare GP-LSE with the GP model using random selection of training examples. This

experiment is based on the Kitchen3D simulation. The results shows the effectiveness of active

learing with GP.

In every case, the GP-based method achieves perfect or high accuracy well before the others,

demonstrating the effectiveness of uncertainty-driven active sampling methods.

3.4.4 Adaptive sampling and diverse sampling

Given a probabilistic estimate of a desirable set of 𝜃 values, obtained by a method such as GP-

LSE, the next step is to sample values from that set to use in planning. We compare simple rejec-

tion sampling using a uniform proposal distribution (REJECTION), the basic adaptive sampler from

Sec. ssec:adaptive, and the diversity-aware sampler from Sec. 3.3.3 with a fixed kernel: the results

are shown in Table. 3.1. For all the results, we use Φ−1(0.99Φ(𝛽*)) to construct the high probability

super level set.

We report the false positive rate (proportion of samples that do not satisfy the true constraint) on

50 samples (FP), the time to sample these 50 samples (𝑇50), the total number of samples required

to find 5 positive samples (𝑁5), and the diversity of those 5 samples. The experiments are repeated

59

Table 3.1: Effectiveness of adaptive and diverse sampling. FP: the false positive rate of 50 samples.
𝑇50: the total sampling time of the 50 samples. 𝑁5: number of samples required to achieve 5
positive ones. Diversity: the diversity rate of the 5 positive samples.

REJECTION ADAPTIVE DIVERSE

Po
ur

(2
D

) FP (%) 6.45± 8.06* 4.04± 6.57 5.12± 6.94
𝑇50 (s) 3.10± 1.70* 0.49± 0.10 0.53± 0.09
𝑁5 5.51± 1.18* 5.30± 0.92 5.44± 0.67
Diversity 17.01± 2.90* 16.24± 3.49 18.80± 3.38

Sc
oo

p
(2

D
) FP (%) 0.00† 2.64± 6.24 3.52± 6.53

𝑇50 (s) 9.89± 0.88† 0.74± 0.10 0.81± 0.11

𝑁5 5.00† 5.00± 0.00 5.10± 0.41

Diversity 21.1† 20.89± 1.19 21.90± 1.04

Pu
sh

(2
D

) FP (%) 68.63± 46.27‡ 21.36± 34.18 38.56± 37.60

𝑇50 (s) 7.50± 3.98‡ 3.58± 0.99 3.49± 0.81

𝑁5 5.00± 0.00‡ 5.56± 1.51△ 6.44± 2.11♣

Diversity 23.06± 0.02‡ 10.74± 4.92△ 13.89± 5.39♣

Po
ur

(3
D

) FP (%) 0.03± 0.10 0.02± 0.07 0.02± 0.08
𝑇50 (s) 143.56± 176.05 72.84± 71.26 65.93± 72.93
𝑁5 5.14± 0.45 5.10± 0.58 5.15± 0.71
Diversity 15.29± 3.44 15.40± 2.94 18.78± 3.07

Sc
oo

p
(3

D
) FP (%) 0.13± 0.17 0.16± 0.16 0.12± 0.10

𝑇50 (s) 265.57± 118.24 72.84± 71.26 35.11± 18.73
𝑁5 5.77± 1.82 6.11± 1.77 5.66± 1.09
Diversity 10.93± 2.50 11.82± 1.63 14.57± 2.13

*1 out of 50 experiments failed (to generate 50 samples within 10 seconds); †49 out of 50 failed; ‡34
out of 50 failed; 5 out of 16 experiments failed (to generate 5 positive samples within 100 samples);
△7 out of 50 failed; ♣11 out of 50 failed.

60

over 50 such samplers for each method. We limit cpu time for gathering 50 samples to 10 seconds

for 2D experiments and unlimited for 3D simulated experiments (running with Python 2.7.13 and

Ubuntu 14.04 on Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 64GB memory). If no sample

is returned within 10 seconds for 2D experiments, we do not include that experiment in the reported

results except the sampling time. Hence the reported sampling time may be a lower bound on the

actual sampling time. The diversity term is measured by 𝐷(𝑆) = log det(Ξ𝑆𝜁−2 + 𝐼) using a

squared exponential kernel with inverse lengthscale 𝑙 = [1, 1, · · · , 1] and 𝜁 = 0.1. We run the

sampling algorithm for an additional 50 iterations (a maximum of 100 samples in total) until we

have 5 positive examples and use these samples to report 𝐷(𝑆). We also report the total number of

samples needed to achieve 5 positive ones (𝑁𝑝). If the method is not able to get 5 positive samples

within 100 samples, we report failure and do not include them in the diversity metric or the 𝑁𝑝

metric.

DIVERSE uses slightly more samples than ADAPTIVE to achieve 5 positive ones, and its false

positive rate is slightly higher than ADAPTIVE, but the diversity of the samples is notably higher.

The FP rate of diverse can be decreased by increasing the confidence bound on the level set.

As described by Alg. 4, on each iteration DIVERSE tries to sample something different from

the previous samples. This also means that Alg. 4 may sample closer to the boundary of the high-

probability super-level-set 𝐴𝛼 = {𝜃 | 𝜇(𝜃, 𝛼) > 𝛽𝜎(𝜃, 𝛼)}, which may lead to a slightly lower

probability of satisfying the constraint. One may make up for this false positive rate by increasing

𝛽. For example, for the 2D pouring action, we also run DIVERSE with 𝛽 = Φ−1(0.998Φ(𝛽*)). The

false positive rate of DIVERSE is 3.52± 4.74, 𝑁𝑝 is 5.38± 0.56 while the diversity is 18.38± 3.66.

The false positive rate of DIVERSE decreases by almost 2%, but the diversity does not degrade very

much. Similarly for 2D scooping, if we use 𝛽 = Φ−1(0.998Φ(𝛽*)) in DIVERSE, the false positive

rate of DIVERSE is 3.24± 6.76, 𝑁𝑝 is 5.04± 0.20 while the diversity is 21.91± 0.63.

We illustrate the ending poses of the 5 2D pouring actions generated by adaptive sampling with

DIVERSE and ADAPTIVE in Fig. 3-8, illustrating that DIVERSE is able to generate more diverse

action parameters, which may facilitate planning.

3.4.5 Learning kernels for diverse sampling in planning

In the final set of experiments, we explore the effectiveness of the diverse sampling algorithm with

task-level kernel learning We compare ADAPTIVE, DIVERSE-GK with a fixed kernel, and diverse

sampling with learned kernel (DIVERSE-LK), in every case using a high-probability super-level-

61

Table 3.2: Effect of distance metric learning on sampling. We compare the performance of ADAP-
TIVE, DIVERSE-GK and DIVERSE-LK in terms of their average runtime and success rate (SR) within
a certain time for solving five different tasks.

Task I Runtime (ms) 0.2s SR (%) 0.02s SR (%)

ADAPTIVE 8.16± 12.16 100.0± 0.0 87.1± 0.8
DIVERSE-GK 9.63± 9.69 100.0± 0.0 82.2± 1.2
DIVERSE-LK 5.87± 4.63 100.0± 0.0 99.9± 0.1

Task II Runtime (s) 60s SR (%) 6s SR (%)

ADAPTIVE 3.22± 6.51 91.0± 2.7 82.4± 5.6
DIVERSE-GK 2.06± 1.76 95.0± 1.8 93.6± 2.2
DIVERSE-LK 1.71± 1.23 95.0± 1.8 94.0± 1.5

Task III Runtime (s) 60s SR (%) 6s SR (%)

ADAPTIVE 5.79± 11.04 51.4± 3.3 40.9± 4.1
DIVERSE-GK 3.90± 5.02 56.3± 2.0 46.3± 2.0
DIVERSE-LK 4.30± 6.89 59.1± 2.6 49.1± 2.6

Task IV Runtime (s) 60s SR (%) 6s SR (%)

ADAPTIVE 18.41± 8.87 42.0± 10.3 28.0± 15.4
DIVERSE-GK 18.22± 9.70 48.0± 7.5 26.0± 16.6
DIVERSE-LK 17.07± 9.72 53.0± 6.0 40.0± 11.8

Task V Runtime (s) 60s SR (%) 6s SR (%)

ADAPTIVE 44.20± 22.05 23.0± 12.5 5.0± 3.2
DIVERSE-GK 44.85± 23.47 21.0± 9.2 5.0± 3.2
DIVERSE-LK 42.86± 23.34 23.0± 12.1 6.0± 5.8

set estimated by a GP. All the experiments are repeated 5 times with random scene settings. In

DIVERSE-LK, we use 𝜖 = 0.3.

The first set of tasks (Task I) we consider is a simple controlled example where the goal is

to push an object off a 2D table with the presence of an obstacle on either one side of the table

or the other (both possible situations are equally likely). The presence of these obstacles is not

represented in the context of the sampler, but the planner will reject sample action instances that

generate a collision with an object in the world and request a new sample. We use a fixed range of

feasible actions sampled from two rectangles in 2D of unequal sizes. The optimal strategy is to first

randomly sample from one side of the table and if no plan is found, sample from the other side. For

DIVERSE-GK, the kernel inverse is initialized as [1, 1] and if, for example, it sampled on the left side

of the object (pushing to the right) and the obstacle is on the right, it may not choose to sample on

the right side because the kernel indicates that the other feature is has more diversity. However, after

a few planning instances, DIVERSE-LK is able to figure out the right configuration of the kernel and

its sampling strategy becomes the optimal one.

We also tested these three sampling algorithms on several more complicated tasks. For Task

62

Figure 3-9: Illustrations of Task IV and V. In Task IV, the robot is tasked to pour from a cup to a
bowl while avoiding the faucet (red structure next to the bowl). In Task V, the goal is to scoop from
a bowl while avoiding collisions with the faucet.

II and III, we select a fixed test set with 50 task specifications and repeat the evaluation 5 times.

The first one (Task II) involves picking up cup A, getting water from a faucet, move to a pouring

position, pour water into cup B, and finally placing cup A back in its initial position. Cup B is placed

randomly either next to the wall on the left or right. The second task is a harder version of Task II,

with the additional constraint that cup A has a holder and the sampler also has to figure out that the

grasp location must be close to the top of the cup (Task III). Both Task II and III are in Kitchen2D.

For Task IV and V, illustrated in Figure 3-9, we test our methods in the simulated Kitchen3D

environment. Task IV’s goal is to pour from a cup to a bowl while avoiding the faucet next to the

bowl, and Task V is to scoop from a bowl while avoiding the faucet next to the bowl.

We show the timing and success rate results in Tab. 3.2 (after training). Our empirical results

shows that, in general, DIVERSE-LK is able to find a better solution than the alternatives in all the

tasks. Moreover, the two diverse sampling methods achieve lower variance on the success rate and

perform more stably after training.

3.4.6 Integrated system

Finally, we integrate the learned action sampling models for pour and scoop with 7 pre-existing

robot operations (move, push, pick, place, fill, dump, stir) in a domain specification for STRIPStream.

The robot’s goal is to “serve” a cup of coffee with cream and sugar by placing it on the green coaster

near the edge of the table. Accomplishing this requires general-purpose planning, including picking

where to grasp the objects, where to place them back down on the table, and what the pre-operation

poses of the cups and spoon should be before initiating the sensorimotor primitives for pouring

and scooping should be. Significant perturbations of the object arrangements are handled without

63

difficulty1. Some example resulting plans and execution sequences are shown in https://www.

youtube.com/playlist?list=PLoWhBFPMfSzDbc8CYelsbHZa1d3uz-W_c.

This work illustrates a critical ability: to augment the existing competences of a robotic sys-

tem (such as picking and placing objects) with new sensorimotor primitives by learning proba-

bilistic models of their preconditions and effects and using a state-of-the-art domain-independent

continuous-space planning algorithm to combine them fluidly and effectively to achieve complex

goals.

3.5 Conclusion

In this chapter, we augment the basic abilities of a robot by learning to use new sensorimotor primi-

tives to enable the solution of complex long-horizon problems. Our approach combines active learn-

ing and diverse sampling methods with expert-specified structures of action models and efficiently

learns a probabilistic description of the models that can be used for task and motion planning. We

demonstrated state-of-the-art performance of our approach on a set of challenging task and motion

planning problems.

1We use the focused algorithm within STRIPStream, and it solves the task in 20-40 seconds for a range of different
arrangements of objects.

64

https://www.youtube.com/playlist?list=PLoWhBFPMfSzDbc8CYelsbHZa1d3uz-W_c
https://www.youtube.com/playlist?list=PLoWhBFPMfSzDbc8CYelsbHZa1d3uz-W_c

Chapter 4

Learning sparse relational transition

models

Many complex domains are appropriately described in terms of sets of objects, properties of those

objects, and relations among them. We are interested in the problem of taking actions to change

the state of such complex systems, in order to achieve some objective. To do this, we require

a transition model, which describes the system state that results from taking a particular action,

given the previous system state. In many important domains, ranging from interacting with physical

objects to managing the operations of an airline, actions have localized effects: they may change

the state of the object(s) being directly operated on, as well as some objects that are related to those

objects in important ways, but will generally not affect the vast majority of other objects.

In this chapter, we present a strategy for learning state-transition models that embodies these

assumptions. We structure our model in terms of rules, each of which only depends on and affects

the properties and relations among a small number of objects in the domain, and only very few of

which may apply for characterizing the effects of any given action. Our primary focus is on learning

the kernel of a rule: that is, the set of objects that it depends on and affects. At a moderate level

of abstraction, most actions taken by an intentional system are inherently directly parametrized

by at least one object that is being operated on: a robot pushes a block, an airport management

system reschedules a flight, an automated assistant commits to a venue for a meeting. It is clear that

properties of these “direct” objects are likely to be relevant to predicting the action’s effects and that

some properties of these objects will be changed. But how can we characterize which other objects,

Victoria Xia*, Zi Wang*, Kelsey Allen, Tom Silver, and Leslie Pack Kaelbling. Learning sparse relational transition
models. In International Conference on Learning Representations (ICLR), 2019. (* indicates equal contribution.)

65

out of all the objects in a household or airline network, are relevant for prediction or likely to be

affected?

To do so, we make use of the notion of a deictic reference. In linguistics, a deictic (literally

meaning “pointing”) reference, is a way of naming an object in terms of its relationship to the

current situation rather than in global terms. So, “the object I am pushing,” “all the objects on the

table nearest me,” and “the object on top of the object I am pushing” are all deictic references.

This style of reference was introduced as a representation strategy for AI systems by [2], under the

name indexical-functional representations, for the purpose of compactly describing policies for a

video-game agent, and has been in occasional use since then.

We will learn a set of deictic references, for each rule, that characterize, relative to the object(s)

being operated on, which other objects are relevant. Given this set of relevant objects, the problem

of describing the transition model on a large, variable-size domain, reduces to describing a transition

model on fixed-length vectors characterizing the relevant objects and their properties and relations,

which we represent and learn using standard feed-forward neural networks.

Next, we briefly survey related work, describe the problem more formally, and then provide an

algorithm for learning both the structure, in terms of deictic references, and parameters, in terms of

neural networks, of a sparse relational transition model. We go on to demonstrate this algorithm in

a simulated robot-manipulation domain in which the robot pushes objects on a cluttered table.

4.1 Problem formulation

We assume we are working on a class of problems in which the domain is appropriately described

in terms of objects. This method might not be appropriate for a single high-dimensional system

in which the transition model is not sparse or factorable, or can be factored along different lines

(such as a spatial decomposition) rather than along the lines of objects and properties. We also

assume a set of primitive actions defined in terms of control programs that can be executed to make

actual changes in the world state and then return. These might be robot motor skills (grasping or

pushing an object) or virtual actions (placing an order or announcing a meeting). In this section, we

formalize this class of problems, define a new rule structure for specifying probabilistic transition

models for these problems, and articulate an objective function for estimating these models from

data.

66

4.1.1 Relational domain

A problem domain is given by tuple 𝒟 = (ϒ,𝒫,ℱ ,𝒜) where ϒ is a countably infinite universe

of possible objects, 𝒫 is a finite set of properties 𝑃𝑖 : ϒ ↦→ R, 𝑖 ∈ [𝑁𝒫] = {1, · · · , 𝑁𝒫}, and ℱ

is a finite set of deictic reference functions 𝐹𝑖 : ϒ𝑚𝑖 ↦→ ℘(ϒ), 𝑖 ∈ [𝑁ℱ] where ℘(ϒ) denotes the

powerset of ϒ. Each function 𝐹𝑖 ∈ ϒ maps from an ordered list of objects to a set of objects, and

we define it as

𝐹𝑖(𝑜1, . . . , 𝑜𝑚𝑖) = {𝑜 | 𝑓𝑖(𝑜, 𝑜1, . . . , 𝑜𝑚𝑖) = True, 𝑜, 𝑜𝑗 ∈ ϒ, ∀𝑗 ∈ [𝑚𝑖]} ,

where the relation 𝑓𝑖 : ϒ𝑚𝑖+1 ↦→ {True, False} is defined in terms of the object properties in

𝒫 . For example, if we have a location property 𝑃loc and 𝑚𝑖 = 1, we can define 𝑓𝑖(𝑜, 𝑜1) =

1‖𝑃loc(𝑜)−𝑃loc(𝑜1)‖<0.5 so that the function 𝐹𝑖 associated with 𝑓𝑖 maps from one object to the set of

objects that are within 0.5 distance of its center; here 1 is an indicator function. Finally, 𝒜 is a set

of action templates 𝐴𝑖 : R𝑑𝑖 × ϒ𝑛𝑖 ↦→ Ψ, 𝑖 ∈ [𝑁𝒜], where Ψ is the space of executable control

programs. Each action template is a function parameterized by continuous parameters 𝛼𝑖 ∈ R𝑑𝑖

and a tuple of 𝑛𝑖 objects that the action operates on. In this work, we assume that 𝒫,ℱ and 𝒜 are

given.1

A problem instance is characterized by ℐ = (𝒟,𝒰), where 𝒟 is a domain defined above and

𝒰 ⊂ ϒ is a finite universe of objects with |𝒰| = 𝑁𝒰 . For simplicity, we assume that, for a

particular instance, the universe of objects remains constant over time. In the problem instance ℐ, we

characterize a state 𝑠 in terms of the concrete values of all properties in 𝒫 on all objects in 𝒰 ; that is,

𝑠 = [𝑃𝑖(𝑜𝑗)]
𝑁𝒫 ,𝑁𝒰
𝑖=1,𝑗=1 ∈ R𝑁𝒫×𝑁𝒰 = S. A problem instance induces the definition of its action space

A, constructed by applying every action template 𝐴𝑖 ∈ 𝒜 to all tuples of 𝑛𝑖 elements in 𝒰 and all

assignments 𝛼𝑖 to the continuous parameters; namely, A = {𝐴𝑖(𝛼𝑖, [𝑜𝑖𝑗]𝑛𝑖
𝑗=1) | 𝑜𝑖𝑗 ∈ 𝒰 , 𝛼𝑖 ∈ R𝑑𝑖}.

4.1.2 Sparse relational transition models

In many domains, there is substantial uncertainty, and the key to robust behavior is the ability to

model this uncertainty and make plans that respect it. A sparse relational transition model (SPARE)

for a domain𝒟, when applied to a problem instance ℐ for that domain, defines a probability density

function on the resulting state 𝑠′ resulting from taking action 𝑎 in state 𝑠. Our objective is to specify

1There is a direct extension of this formulation in which we encode relations among the objects as well. Doing so
complicates notation and adds no new conceptual ideas, and in our example domain it suffices to compute spatial relations
from object properties so there is no need to store relational information explicitly, so we omit it from our treatment.

67

this function in terms of domain elements 𝒫 , ℛ, and ℱ in such a way that it will apply to any

problem instance, independent of the number and properties of the objects in its universe. We

achieve this by defining the transition model in terms of a set of transition rules, 𝒯 = {𝑇𝑘}𝐾𝑘=1 and

a score function 𝐶 : 𝒯 ×S ↦→ N. The score function takes in as input a state 𝑠 and a rule 𝑇 ∈ 𝒯 ,

and outputs a non-negative integer. If the output is 0, the rule does not apply; otherwise, the rule

can predict the distribution of the next state to be 𝑝(𝑠′ | 𝑠, 𝑎;𝑇). The final prediction of SPARE is

𝑝(𝑠′ | 𝑠, 𝑎; 𝒯) =

⎧⎪⎨⎪⎩
1
|𝒯 |

∑︀
𝑇∈𝒯 𝑝 (𝑠

′ | 𝑠, 𝑎;𝑇) if |𝒯 | > 0

𝒩 (𝑠,Σdefault) otherwise
, (4.1)

where 𝒯 = argmax𝑇∈𝒯 𝐶(𝑇, 𝑠) and the matrix Σdefault = 𝐼𝑁𝒰 ⊗ diag([𝜎𝑖]
𝑁𝒫
𝑖=1) is the default

predicted covariance for any state that is not predicted to change, so that our problem is well-formed

in the presence of noise in the input. Here 𝐼𝑁𝒰 is an identity matrix of size 𝑁𝒰 , and diag([𝜎𝑖]
𝑁𝒫
𝑖=1)

represents a square diagonal matrix with 𝜎𝑖 on the main diagonal, denoting the default variance for

property 𝑃𝑖 if no rule applies. Note that the transition rules will be learned from past experience

with a loss function specified in Section 4.1.3. In the rest of this section, we formalize the definition

of transition rules and the score function.

Transition rule 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default) is characterized by an action template𝐴, two ordered

lists of deictic references Γ and Δ of size 𝑁Γ and 𝑁Δ, a predictor 𝜑𝜃 and the default variances

𝑣default = [𝑣𝑖]
𝑁𝒫
𝑖=1 for each property 𝑃𝑖 under this rule. The action template is defined as operating on

a tuple of 𝑛 object variables, which we will refer to as 𝑂(0) = (𝑂𝑖)
𝑛
𝑖=1, 𝑂𝑖 ∈ 𝒰 , ∀𝑖. A reference list

uses functions to designate a list of additional objects or sets of objects, by making deictic references

based on previously designated objects. In particular, Γ generates a list of objects whose properties

affect the prediction made by the transition rule, while Δ generates a list of objects whose properties

are affected after taking an action specified by the action template 𝐴.

We begin with the simple case in which every function returns a single object, then extend our

definition to the case of sets. Concretely, for the 𝑡-th element 𝛾𝑡 in Γ (𝑡 ∈ [𝑁Γ]), 𝛾𝑡 = (𝐹, (𝑂𝑘𝑗)
𝑚
𝑗=1)

where 𝐹 ∈ ℱ is a deictic reference function in the domain,𝑚 is the arity of that function, and integer

𝑘𝑗 ∈ [𝑛+ 𝑡− 1] specifies that object 𝑂𝑛+𝑡 in the object list can be determined by applying function

𝐹 to objects (𝑂𝑘𝑗)
𝑚
𝑗=1. Thus, we get a new list of objects,𝑂(𝑡) = (𝑂𝑖)

𝑛+𝑡
𝑖=1 . So, reference 𝛾1 can only

refer to the objects (𝑂𝑖)𝑛𝑖=1 that are named in the action, and determines an object𝑂𝑛+1. Then, refer-

ence 𝛾2 can refer to objects named in the action or those that were determined by reference 𝛾1, and so

68

on.

A

B

C

D

Gripper Table

Figure 4-1: A robot gripper is pushing
a stack of 4 blocks on a table.

When the function 𝐹 in 𝛾𝑡 = (𝐹, (𝑂𝑘𝑗)
𝑚
𝑗=1) ∈ Γ

returns a set of objects rather than a single object, this

process of adding more objects remains almost the same,

except that the 𝑂𝑡 may denote sets of objects, and the

functions that are applied to them must be able to oper-

ate on sets. In the case that a function 𝐹 returns a set, it

must also specify an aggregator, 𝑔, that can return a sin-

gle value for each property 𝑃𝑖 ∈ 𝒫 , aggregated over the

set. Examples of aggregators include the mean or maxi-

mum values or possibly simply the cardinality of the set.

For example, consider the case of pushing the bottom

(block 𝐴) of a stack of 4 blocks, depicted in Figure 4-

1. Suppose the deictic reference is 𝐹 =above, which

takes one object and returns a set of objects immediately on top of the input object. Then, by

applying 𝐹 =above starting from the initial set 𝑂0 = {𝐴}, we get an ordered list of sets of

objects (𝑂0, 𝑂1, 𝑂2) where 𝑂1 = 𝐹 (𝑂0) = {𝐵}, 𝑂2 = 𝐹 (𝑂1) = {𝐶}.

Returning to the definition of a transition rule, we now can see informally that if the parameters

of action template 𝐴 are instantiated to actual objects in a problem instance, then Γ and Δ can

be used to determine lists of input and output objects (or sets of objects). We can use these lists,

finally, to construct input and output vectors. The input vector 𝑥 consists of the continuous action

parameters 𝛼 of action 𝐴 and property 𝑃𝑖(𝑂𝑡) for all properties 𝑃𝑖 ∈ 𝒫 and objects 𝑂𝑡 ∈ 𝑂𝑁Γ

that are selected by Γ in arbitrary but fixed order. In the case that 𝑂𝑡 is a set of size greater than

one, the aggregator associated with the function 𝐹 that computed the reference is used to compute

𝑃𝑖(𝑂𝑡). Similar for the desired output construction, we use the references in the list Δ, initialize

�̂�(0) = 𝑂(0), and gradually add more objects to construct the output set of objects �̂� = �̂�(𝑁Δ). The

output vector is 𝑦 = [𝑃 (𝑜)]𝑜∈�̂�,𝑃∈𝒫 where if 𝑜 is a set of objects, we apply a mean aggregator on

the properties of all the objects in 𝑜.

The predictor 𝜑𝜃 is some functional form 𝜑 (such as a feed-forward neural network) with pa-

rameters (weights) 𝜃 that will take values 𝑥 as input and predict a distribution for the output vector

𝑦. It is difficult to represent arbitrarily complex distributions over output values. In this work, we

69

P1, P2, ⋯ Pn
o1
o2

o5

s s′
P1, P2, ⋯ Pn

current state next state

o3
o4

o6

⋯

o1
o2

o5

o3
o4

o6

⋯

action
parameter

g
h

ϕ(2)
θ

ϕ(1)
θ

δ(1)
1

δ(2)
1 o1

o3
o6

o4

o5o2target
γ(1)
1

γ(2)
1 o1

o3
o6

o4

o2 o5

γ(2)
2

target

Figure 4-2: Instead of directly mapping from current state 𝑠 to next state 𝑠′, our prediction model
uses deictic references to find subsets of objects for prediction. In the left most graph, we illustrate
what relations are used to construct the input objects with two rules for the same action template,
𝑇1 = (𝐴,Γ(1),Δ(1), 𝜑

(1)
𝜃 ,𝑣

(1)
default) and 𝑇2 = (𝐴,Γ(2),Δ(2), 𝜑

(2)
𝜃 ,𝑣

(2)
default), where the reference list

Γ(1) = [(𝛾
(1)
1 , 𝑜2)] applied a deictic reference 𝛾(1)1 to the target object 𝑜2 and added input features

computed by an aggregator 𝑔 on 𝑜3, 𝑜6 to the inputs of the predictor of rule 𝑇1. Similarly for
Γ(2) = [(𝛾

(2)
1 , 𝑜2), (𝛾

(2)
2 , 𝑜3)], the first deictic reference selected 𝑜3 and then 𝛾(2)2 is applied on 𝑜3

to get 𝑜1. The predictors 𝜑(1)𝜃 and 𝜑(2)𝜃 are neural networks that map the fixed-length input to a
fixed-length output, which is applied to a set of objects computed from a relational graph on all the
objects, derived from the reference list Δ(1) = [(𝛿

(1)
1 , 𝑜2)] and Δ(2) = [(𝛿

(2)
1 , 𝑜2)], to compute the

whole next state 𝑠′. Because 𝛿(2)1 (𝑜2) = (𝑜4, 𝑜6) and the 𝜑(2)𝜃 is only predicting a single property,
we use a “de-aggregator” function ℎ to assign its prediction to both objects 𝑜4, 𝑜6.

restrict ourselves to representing a Gaussian distributions on all property values in 𝑦, encoded with

a mean and independent variance for each dimension.

Now, we describe how a transition rule can be used to map a state and action into a distribution

over the new state. A transition rule 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default) applies to a particular state-action

(𝑠, 𝑎) pair if 𝑎 is an instance of 𝐴 and if none of the elements of the input or output object lists is

empty. To construct the input (and output) list, we begin by assigning the actual objects 𝑜1, . . . , 𝑜𝑛

to the object variables 𝑂1, . . . , 𝑂𝑛 in action instance 𝑎, and then successively computing references

𝛾𝑖 ∈ Γ based on the previously selected objects, applying the definition of the deictic reference 𝐹

in each 𝛾𝑖 to the actual values of the properties as specified in the state 𝑠. If, at any point, a 𝛾𝑖 ∈ Γ

or 𝛿𝑖 ∈ Δ returns an empty set, then the transition rule does not apply. If the rule does apply,

and successfully selects input and output object lists, then the values of the input vector 𝑥 can be

extracted from 𝑠, and predictions are made on the mean and variance values Pr(𝑦 | 𝑥) = 𝜑𝜃(𝑥) =

𝒩 (𝜇𝜃1(𝑥),Σ𝜃2(𝑥)).

Let
(︁
𝜇
(𝑖𝑗)
𝜃1

(𝑥),Σ
(𝑖𝑗)
𝜃2 (𝑥)

)︁
be the vector entry corresponding to the predicted Gaussian parameters

of property 𝑃𝑖 of 𝑗-th output object set 𝑜𝑗 and denote 𝑠[𝑜, 𝑃𝑖] as the property 𝑃𝑖 of object 𝑜 in state 𝑠,

70

for all 𝑜 ∈ 𝒰 . The predicted distribution of the resulting state 𝑝(𝑠′ | 𝑠, 𝑎;𝑇) is computed as follows:

𝑝(𝑠′[𝑜, 𝑃𝑖] | 𝑠, 𝑎;𝑇) =

⎧⎪⎨⎪⎩
1

|{𝑗:𝑜∈𝑜𝑗}|
∑︀

{𝑗:𝑜∈𝑜𝑗}𝒩 (𝜇
(𝑖𝑗)
𝜃1

(𝑥),Σ
(𝑖𝑗)
𝜃2 (𝑥)) if |{𝑗 : 𝑜 ∈ 𝑜𝑗}| > 0

𝒩 (𝑠[𝑜, 𝑃𝑖], 𝑣𝑖) otherwise

where 𝑣𝑖 ∈ 𝑣default is the default variance of property 𝑃𝑖 in rule 𝑇 . There are two important points

to note. First, it is possible for the same object to appear in the object-list more than once, and

therefore for more than one predicted distribution to appear for its properties in the output vector. In

this case, we use the mixture of all the predicted distributions with uniform weights. Second, when

an element of the output object list is a set, then we treat this as predicting the same single property

distribution for all elements of that set. This strategy has sufficed for our current set of examples,

but an alternative choice would be to make the predicted values be changes to the current property

value, rather than new absolute values. Then, for example, moving all of the objects on top of a tray

could easily specify a change to each of their poses. We illustrate how we can use transition rules

to build a SPARE in Fig. 4-2.

For each transition rule 𝑇𝑘 ∈ 𝒯 and state 𝑠 ∈ S, we assign the score function value to be 0 if

𝑇𝑘 does not apply to state 𝑠. Otherwise, we assign the total number of deictic references plus one,

𝑁Γ + 𝑁Δ + 1, as the score. The more references there are in a rule that is applicable to the state,

the more detailed the match is between the rules conditions and the state, and the more specific the

predictions we expect it to be able to make.

4.1.3 Learning SPAREs from data

We frame the problem of learning a transition model from data in terms of conditional likelihood.

The learning problem is, given a problem domain description 𝒟 and a set of experience ℰ tuples,

ℰ = {(𝑠(𝑖), 𝑎(𝑖), 𝑠′(𝑖))}𝑛𝑖=1, find a SPARE 𝒯 that minimizes the loss function:

ℒ(𝒯 ;𝒟, ℰ) = − 1

𝑛

∑︁𝑛

𝑖=1
log Pr(𝑠′

(𝑖) | 𝑠(𝑖), 𝑎(𝑖); 𝒯) . (4.2)

Note that we require all of the tuples in ℰ to belong to the same domain 𝒟, and require for any

(𝑠(𝑖), 𝑎(𝑖), 𝑠′(𝑖)) ∈ ℰ that 𝑠(𝑖) and 𝑠′(𝑖) belong to the same problem instance, but individual tuples

may be drawn from different problem instances (with, for example, different numbers and types of

objects). In fact, to get good generalization performance, it will be important to vary these aspects

71

across training instances.

4.2 Related work

Rule learning has a long history in artificial intelligence. The novelty in our approach is the com-

bination of learning discrete structures with flexible parametrized models in the form of neural

networks.

Rule learning We are inspired by very early work on rule learning by [50], which sought to

find predictive rules in simple noisy domains, using Boolean combinations of binary input features

to predict the effects of actions. This approach has a modern re-interpretation in the form of schema

networks [92]. The rules we learn are lifted, in the sense that they can be applied to objects, gener-

ally, and are not tied to specific bits or objects in the input representation and probabilistic, in the

sense that they make a distributional prediction about the outcome. In these senses, this work is

similar to that of [144] and methods that build on it ([138], [137], [115].) In addition, the approach

of learning to use deictic expressions was inspired by Pasula et al. and used also by [130] in the

form of object-oriented reinforcement learning and by [20]. [20], however, relies on a full descrip-

tion of the states in ground first-order logic and does not have a mechanism to introduce new deictic

references to the action model. Our representation and learning algorithm improves on the Pasula et

al. strategy by using the power of feed-forward neural networks as a local transition model, which

allows us to address domains with real-valued properties and much more complex dependencies. In

addition, our EM-based learning algorithm presents a much smoother space in which to optimize,

making the overall learning faster and more robust. We do not, however, construct new functional

terms during learning; that would be an avenue for future work for us.

Graph network models There has recently been a great deal of work on learning graph-

structured (neural) network models [16]. There is a way in which our rule-based structure could

be interpreted as a kind of graph network, although it is fairly non-standard. We can understand

each object as being a node in the network, and the deictic functions as being labeled directed

hyper-edges (between sets of objects). Unlike the typical graph network models, we do not condi-

tion on a fixed set of neighboring nodes and edges to compute the next value of a node; in fact, a

focus of our learning method is to determine which neighbors (and neighbors of neighbors, etc.) to

condition on, depending on the current state of the edge labels. This means that the relevant neigh-

borhood structure of any node changes dynamically over time, as the state of the system changes.

72

This style of graph network is not inherently better or worse than others: it makes a different set

of assumptions (including a strong default that most objects do not change state on any given step

and the dynamic nature of the neighborhoods) which are particularly appropriate for modeling an

agent’s interactions with a complex environment using actions that have relatively local effects.

4.3 Our approach

We describe our learning algorithm in three parts. First, we introduce our strategy for learning 𝜑𝜃,

which predicts a Gaussian distribution on 𝑦, given 𝑥. Then, we describe our algorithm for learning

reference lists Γ and Δ for a single transition rule, which enable the extraction of 𝑥 and 𝑦 from ℰ .

4.3.1 Distributional prediction

For a particular transition rule 𝑇 with associated action template 𝐴, once Γ and Δ have been spec-

ified, we can extract input and output features 𝑥 and 𝑦 from a given set of experience samples ℰ .

We would like to learn the transition rule’s predictor 𝜑𝜃 to minimize Eq. (4.2). Our predictor takes

the form 𝜑𝜃(𝑥) = 𝒩 (𝜇𝜃(𝑥),Σ𝜃(𝑥)) and a neural network is used to predict both the mean 𝜇𝜃(𝑥)

and the diagonal variance Σ𝜃(𝑥). We directly optimize the negative data-likelihood loss function

ℒ(𝜃,Γ,Δ;𝒟, ℰ) = 1

𝑛

∑︁𝑛

𝑖=1

(︁
(𝑦(𝑖) − 𝜇𝜃(𝑥(𝑖)))TΣ𝜃(𝑥)

−1(𝑦(𝑖) − 𝜇𝜃(𝑥(𝑖))) + log detΣ𝜃(𝑥
(𝑖))

)︁
.

Let ℰ𝑇 ∈ ℰ be the set of experience tuples to which rule 𝑇 applies. Then once we have 𝜃, we can

optimize the default variance of the rule 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default) by optimizing ℒ({𝑇};𝒟, ℰ𝑇).

It can be shown that these loss-minimizing values for the default predicted variances 𝑣default are

the empirical averages of the squared deviations for all unpredicted objects (i.e., those for which

𝜑𝜃 does not explicitly make predictions), where averages are computed separately for each object

property.

We use 𝜃,𝑣default ← LEARNDIST(𝒟, ℰ ,Γ,Δ) to refer to this learning and optimization proce-

dure for the predictor parameters and default variance.

4.3.2 Rule learning

We consider the setting where only one transition rule 𝑇 exists in our domain 𝒟, we show how

to construct the input and output reference lists Γ and Δ that will determine the vectors 𝑥 and

73

Algorithm 6 Greedy procedure for constructing Γ.

1: procedure GREEDYSELECT(𝒟, ℰ , 𝐴,Δ, 𝑁Γ)
2: train model using Γ0 = ∅, save loss 𝐿0

3: 𝑖← 1
4: while 𝑖 ≤ 𝑁Γ do
5: 𝛾𝑖 ← None ; 𝐿𝑖 ←∞
6: for all 𝛾 ∈ 𝑅𝑖 do
7: Γ𝑖 ← Γ𝑖−1 ∪ {𝛾}
8: 𝜃,𝑣default ← LEARNDIST(𝒟, ℰtrain ,Γ𝑖,Δ)
9: 𝑙← ℒ(𝒯𝛾 ;𝒟, ℰval)

10: if 𝑙 < 𝐿𝑖 then 𝐿𝑖 ← 𝑙 ; 𝛾𝑖 ← 𝛾
11: end if
12: end for
13: if 𝐿𝑖 < 𝐿𝑖−1 thenΓ𝑖 ← Γ𝑖−1 ∪ {𝛾𝑖} ; 𝑖← 𝑖+ 1
14: else break
15: end if
16: end while
17: end procedure

𝑦. Suppose for now that Δ and 𝑣default are fixed, and we wish to learn Γ. Our approach is to

incrementally build up Γ by adding 𝛾𝑖 = (𝐹, (𝑂𝑘𝑗)
𝑚
𝑗=1) tuples one at a time via a greedy selection

procedure. Specifically, let 𝑅𝑖 be the universe of possible 𝛾𝑖, split the experience samples ℰ into a

training set ℰtrain and a validation set ℰval , and initialize the list Γ to be Γ0 = ∅. For each 𝑖, compute

𝛾𝑖 = argmin𝛾∈𝑅𝑖
ℒ(𝒯𝛾 ;𝒟, ℰval), whereℒ in Eq. (4.2) evaluates a SPARE 𝒯𝛾 with a single transition

rule 𝑇 = (𝐴,Γ𝑖−1 ∪ {𝛾},Δ, 𝜑𝜃,𝑣default), where 𝜃 and 𝑣default are computed using the LEARNDIST

described in Section 4.3.12. If the value of the loss function ℒ(𝒯𝛾𝑖 ;𝒟, ℰval) is less than the value

of ℒ(𝒯𝛾𝑖−1 ;𝒟, ℰval), then we let Γ𝑖 = Γ𝑖−1 ∪ {𝛾𝑖} and continue. Else, we terminate the greedy

selection process with Γ = Γ𝑖−1, since further growing the list of deictic references hurts the loss.

We also terminate the process when 𝑖 exceeds some predetermined maximum allowed number of

input deictic references, 𝑁Γ. Pseudocode for this algorithm is provided in Algorithm 6.

In our experiments we set Δ = Γ and construct the lists of deictic references using a single pass

of the greedy algorithm described above. This simplification is reasonable, as the set of objects that

are relevant to predicting the transition outcome often overlap substantially with the objects that are

affected by the action. Alternatively, we could learn Δ via an analogous greedy procedure nested

around or, as a more efficient approach, interleaved with, the one for learning Γ.

2When the rule 𝑇 does not apply to a training sample, we use for its loss the loss that results from having empty
reference lists in the rule. Alternatively, we can compute the default variance Σdefault to be the empirical variances on all
training samples that cannot use rule 𝑇 .

74

4.3.3 Multiple rules

Our training data in robotic manipulation tasks are likely to be best described by many rules instead

of a single one, since different combinations of relations among objects could be present in different

states. For example, we may have one rule for pushing a single object and another rule for pushing a

stack of objects. We now address the case where we wish to learn 𝐾 rules from a single experience

set ℰ , for 𝐾 > 1. We do so via initial clustering to separate experience samples into 𝐾 clusters,

one for each rule to be learned, followed by an EM-like approach to further separate samples and

simultaneously learn rule parameters.

To facilitate the learning of our model, we will additionally learn membership probabilities

𝑍 = ((𝑧𝑖,𝑗)
|ℰ|
𝑖=1)

𝐾
𝑗=1, where 𝑧𝑖,𝑗 represents the probability that the 𝑖-th experience sample is assigned

to transition rule 𝑇𝑗 , and
∑︀𝐾

𝑗=1 𝑧𝑖,𝑗 = 1 for all 𝑖 ∈ [|ℰ|]. We initialize membership probabilities via

clustering, then refine them through EM.

Because the experience samples ℰ may come from different problem instances and involve

different numbers of objects, we cannot directly run a clustering algorithm such as 𝑘-means on the

(𝑠, 𝑎, 𝑠′) samples themselves. Instead we first learn a single transition rule 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default)

from ℰ using the algorithm in Section 4.3.2, use the resulting Γ and Δ to transform ℰ into 𝑥 and 𝑦,

and then run 𝑘-means clustering on the concatenation of 𝑥, 𝑦, and values of the loss function when

𝑇 is used to predict each of the samples. For each experience sample, the squared distance from the

sample to each of the𝐾 cluster centers is computed, and membership probabilities for the sample to

each of the 𝐾 transition rules to be learned are initialized to be proportional to the (multiplicative)

inverses of these squared distances.

Before introducing the EM-like algorithm that simultaneously improves the assignment of ex-

perience samples to transition rules and learns details of the rules themselves, we make a minor

modification to transition rules to obtain mixture rules. Whereas a probabilistic transition rule has

been defined as 𝑇 = (𝐴,Γ,Δ, 𝜑𝜃,𝑣default), a mixture rule is 𝑇 = (𝐴, 𝜋Γ, 𝜋Δ,Φ), where 𝜋Γ rep-

resents a distribution over all possible lists of input references Γ (and similarly for 𝜋Δ and Δ), of

which there are a finite number, since the set of available reference functions ℱ is finite, and there

is an upper bound 𝑁Γ on the maximum number of references Γ may contain. For simplicity of

terminology, we refer to each possible list of references Γ as a shell, so 𝜋Γ is a distribution over

possible shells. Finally, Φ = (Γ(𝑘),Δ(𝑘), 𝜑𝜃(𝑘) ,𝑣
(𝑘)
default)

𝜅
𝑘=1 is a collection of 𝜅 transition rules (i.e.,

predictors 𝜑𝜃(𝑘) , each with an associated Γ(𝑘), Δ(𝑘), and 𝑣
(𝑘)
default). To make predictions for a sam-

75

ple (𝑠, 𝑎) using a mixture rule, predictions from each of the mixture rule’s 𝜅 transition rules are

combined according to the probabilities that 𝜋Γ and 𝜋Δ assign to each transition rule’s Γ(𝑘) and

Δ(𝑘). Rather than having our EM approach learn 𝐾 transition rules, we instead learn 𝐾 mixture

rules, as the distributions 𝜋Γ and 𝜋Δ allow for smoother sorting of experience samples into clusters

corresponding to the different rules, in contrast to the discrete Γ and Δ of regular transition rules.

As before, we focus on the case where for each mixture rule, Γ(𝑘) = Δ(𝑘), 𝑘 ∈ [𝜅], and 𝜋Γ = 𝜋Δ

as well. Our EM-like algorithm is then as follows:

1. For each 𝑗 ∈ [𝐾], initialize distributions 𝜋Γ = 𝜋Δ for mixture rule 𝑇𝑗 as follows. First, use

the algorithm in Section 4.3.2 to learn a transition rule on the weighted experience samples

ℰ𝑍𝑗 with weights equal to the membership probabilities 𝑍𝑗 = (𝑧𝑖,𝑗)
|ℰ|
𝑖=1. In the process of

greedily assembling reference lists Γ = Δ, data likelihood loss function values are computed

for multiple explored shells, in addition to the shell Γ = Δ that was ultimately selected.

Initialize 𝜋Γ = 𝜋Δ to distribute weight proportionally, according to data likelihood, for these

explored shells: 𝜋Γ(Γ) = exp(−ℒ(𝒯Γ;𝒟, ℰ𝑍𝑗))/𝜒, where 𝒯Γ is the SPARE model with a

single transition rule 𝑇 = (𝐴,Γ,Δ = Γ, 𝜑𝜃), and 𝜒 = (1 − 𝜖)
∑︀

Γ exp(−ℒ(𝒯Γ;𝒟, ℰ𝑍𝑗)),

with the summation taken over all explored shells Γ, is a normalization factor so that the total

weight assigned by 𝜋Γ to explored shells is 1 − 𝜖. The remaining 𝜖 probability weight is

distributed uniformly across unexplored shells.

2. For each 𝑗 ∈ [𝐾], let 𝑇𝑗 = (𝐴, 𝜋Γ, 𝜋Δ,Φ), where we have dropped subscripting according to

𝑗 for notational simplicity:

(a) For 𝑘 ∈ [𝜅], train predictor Φ𝑘 = (Γ(𝑘),Δ(𝑘), 𝜑𝜃(𝑘) ,𝑣
(𝑘)
default) using the procedure in

Section 4.3.2 on the weighted experience samples ℰ𝑍𝑗 , where we choose Γ(𝑘) = Δ(𝑘)

to be the list of references with 𝑘-th highest weight according to 𝜋Γ = 𝜋Δ.

(b) Update 𝜋Γ = 𝜋Δ by redistributing weight among the top 𝜅 shells according to a voting

procedure where each training sample “votes” for the shell whose predictor minimizes

the validation loss for that sample. In other words, the 𝑖-th experience sample ℰ(𝑖) votes

for mixture rule 𝑣(𝑖) = 𝑘 for 𝑘 = argmin𝑘∈[𝜅] ℒ(Φ𝑘;𝒟, ℰ(𝑖)). Then, shell weights

are assigned to be proportional to the sum of the sample weights (i.e., membership

probability of belonging to this rule) of samples that voted for each particular shell: the

number of votes received by the 𝑘-th shell is 𝑉 (𝑘) =
∑︀|ℰ|

𝑖=1 1𝑣(𝑖)=𝑘 · 𝑧𝑖,𝑗 , for indicator

function 1 and 𝑘 ∈ [𝜅]. Then, 𝜋Γ(𝑘), the current 𝑘-th highest value of 𝜋Γ, is updated

76

Figure 4-3: Representative problem instances sampled from the domain.

to become 𝑉 (𝑘)/𝜉, where 𝜉 is a normalization factor to ensure that 𝜋Γ remains a valid

probability distribution. (Specifically, 𝜉 = (
∑︀𝜅

𝑘=1 𝜋Γ(𝑘))/(
∑︀𝜅

𝑘=1 𝑉 (𝑘)).)

(c) Repeat Step 2a, in case the 𝜅 shells with highest 𝜋Γ values have changed, in preparation

for using the mixture rule to make predictions in the next step.

3. Update membership probabilities by scaling by data likelihoods from using each of the 𝐾

rules to make predictions: 𝑧𝑖,𝑗 = 𝑧𝑖,𝑗 · exp(−ℒ(𝑇𝑗 ;𝒟, ℰ(𝑖)))/𝜁, where exp(−ℒ(𝑇𝑗 ;𝒟, ℰ(𝑖)))

is the data likelihood from using mixture rule 𝑇𝑗 to make predictions for the 𝑖-th experience

sample ℰ(𝑖), and 𝜁 =
∑︀𝐾

𝑗=1 𝑧𝑖,𝑗 · exp(−ℒ(𝑇𝑗 ;𝒟, ℰ(𝑖))) is a normalization factor to maintain∑︀𝐾
𝑗=1 𝑧𝑖,𝑗 = 1.

4. Repeat Steps 2 and 3 some fixed number of times, or until convergence.

4.4 Experiments

We apply our approach, SPARE, to a challenging problem of predicting pushing stacks of blocks

on a cluttered table top. We describe our domain, the baseline that we compare to and report our

results.

4.4.1 Object manipulation domain

In our domain 𝒟 = (ϒ,𝒫,ℱ ,𝒜), the object universe ϒ is composed of blocks of different sizes

and weight, the property set 𝒫 includes shapes of the blocks (width, length, height) and the position

of the block ((𝑥, 𝑦, 𝑧) location relative to the table). We have one action template, push(𝛼, 𝑜), which

pushes toward a target object 𝑜 with parameters 𝛼 = (𝑥𝑔, 𝑦𝑔, 𝑧𝑔, 𝑑), where (𝑥𝑔, 𝑦𝑔, 𝑧𝑔) is the 3D

position of the gripper before the push starts and 𝑑 is the distance of the push. The orientation of the

gripper and the direction of the push are computed from the gripper location and the target object

location.

77

We simulate this 3D domain using the physically realistic PyBullet [39] simulator. In real-world

scenarios, an action cannot be executed with the exact action parameters due to the inaccuracy in

the motor and hence in our simulation, we add Gaussian noise on the action parameters during

execution to imitate this effect.

We consider the following deictic references in the reference collection ℱ : (1) identity (O),

which takes in an object 𝑂 and returns 𝑂; (2) above (O), which takes in an object 𝑂 and returns

the object immediately above 𝑂; (3) below (O), which takes in an object 𝑂 and returns the object

immediately below 𝑂; (4) nearest (O), which takes in an object 𝑂 and returns the object that is

closest to 𝑂.

4.4.2 Baseline methods

Neural network (NN)

We compare to a neural network function approximator that takes in as input the current state 𝑠 ∈

R𝑁𝒫×𝑁𝒰 and action parameter 𝛼 ∈ R𝑁𝒜 , and outputs the next state 𝑠′ ∈ R𝑁𝒫×𝑁𝒰 . The list of

objects that appear in each state is ordered: the target objects appear first and the remaining objects

are sorted by their poses (first sort by 𝑥 coordinate, then 𝑦, then 𝑧).

Each network was implemented as a fully-connected network with two hidden layers of 64

nodes each in Keras, used ReLU activations between layers, and the Adam optimizer with default

parameters. Predictors for the templates approach were trained for 1000 epochs each with a decay-

ing learning rate starting at 1e-2 and decreasing by a factor of 0.6 every 100 epochs. The baseline

NN predictor was implemented in exactly the same way.

Graph NN

We compare to a fully connected graph NN. Each node of the graph corresponds to an object in

the scene, and the action 𝛼 is concatenated to the state of each object. Bidirectional edges connect

every node in the graph. The graph NN consists of encoders for the nodes and edges, propagation

networks for message passing, and a node decoder to convert back to predict the mean and variance

of the next state of each object.

We used a node encoder and edge encoder to map to latent spaces of 16 dimensions. The

propagation networks consisted of 2 fully connected layers of 16 units each, and the decoder mapped

back to 6 dimensions: 3 for the mean, and 3 for the variance. The GNN was trained using a decaying

78

learning rate starting at 1e-2, and decreasing by a factor of 0.5 every 100 epochs. A total of 900

epochs were used.

4.4.3 Results

Effects of deictic rules

As a sanity check, we start from a simple problem where a gripper is pushing a stack of three blocks

with two extra blocks on the table. We randomly sampled 1250 problem instances by drawing

random block shapes and locations from a uniform distribution within a range while satisfying the

condition that the stack of blocks is stable and the extra blocks do not affect the push. In each

problem instance, we uniformly randomly sample the action parameters and obtain the training

data, a collection of tuples of state, action and next state, where the target object of the push action

is always the one at the bottom of the stack. We held out 20% of the training data as the validation

set. We found that our approach is able to reliably select the correct combinations of the references

that select all the blocks in the problem instance to construct inputs and outputs. In Fig. 4-4(a),

we show how the performance varies as deictic references are added during a typical run of this

experiment. The solid purple curves show training performance, as measured by data likelihood on

the validation set, while the dashed purple curve shows performance on a held-out test set with 250

unseen problem instances. As expected, performance improves noticeably from the addition of the

first two deictic references selected by the greedy selection procedure, but not from the 4th. The

brown curve shows the learned default standard deviations, used to compute data likelihoods for

features of objects not explicitly predicted by the rule. As expected, the learned default standard

deviation drops as deictic references are added, until it levels off after the third reference is added

since at that point the set of references captures all moving objects in the scene.

Sensitivity analysis on the number of objects

We compare our approach to the baselines in terms of how sensitive the performance is to the

number of objects that exist in the problem instance. We continue the setting where a stack of three

blocks lie on a table, with extra blocks that may affect the prediction of the next state. Figure 4-4(b)

shows the performance, as measured by the log data likelihood, as a function of the number of extra

blocks. For each number of extra blocks, we used 1250 training problem instances with 20% as the

validation set and 250 testing problem instances. When there are no extra blocks, SPARE learns a

79

1 2 3 4
deictic references selected

1

2

3

4

5
Lo

g
 d

a
ta

 l
ik

e
lih

o
o
d

validation

test

0.00

0.05

0.10

0.15

0.20

0.25

D
e
fa

u
lt

 s
ta

n
d

a
rd

 d
e
v
ia

ti
o
n
s

0 1 2 5 10

2

3

4

5

6

7

NN (train)

NN (test)

Graph NN (train)

Graph NN (test)

SPARE (train)

SPARE (test)

100 250 500 750 1000 1250

1

2

3

4

5

NN (train)

NN (test)

Graph NN (train)

Graph NN (test)

SPARE (train)

SPARE (test)

extra blocks

Lo
g
 d

a
ta

 l
ik

e
lih

o
o
d

Lo
g

 d
a
ta

 l
ik

e
lih

o
o
d

training samples

Figure 4-4: (a) In a simple 3-block pushing problem instance, data likelihood and learned default
standard deviation both improve as more deictic references are added. (b) Comparing performance
as a function of number of distractors with a fixed amount of training data. (c) Comparing sample
efficiency of SPARE to the baselines. Shaded regions represent 95% confidence interval.

single rule whose 𝑥 and 𝑦 contain the same information as the inputs and outputs for the baselines.

As more objects are added to the table, NN’s performance drops as the presence of these additional

objects appear to complicate the scene and NN is forced to consider more objects when making its

predictions. SPARE outperforms graph NN, as the good predictions for the extra blocks contribute

to the log data likelihood.

Note that, performance aside, NN is limited to problems for which the number of objects in the

scenes is fixed, as the it requires a fixed-size input vector containing information about all objects.

Our SPARE approach does not have this limitation, and could have been trained on a single, large

dataset that is the combination of the datasets with varying numbers of extra objects. However, we

did not do this in our experiments for the sake of providing a more fair comparison against NN.

Sample efficiency

We evaluate our approach on more challenging problem instances where the robot gripper is pushing

blocks on a cluttered table top and there are two additional blocks on the table that do not interfere

or get affected by the pushing action. Fig. 4-4(c) plots the data likelihood as a function of the

number of training samples. We evaluate with training samples varying from 100 to 1250 and in

each setting, the test dataset has 250 samples. Both our approach and the baselines benefit from

having more training samples, but our approach is much more sample efficient and achieves good

performance within only 500 training samples.

80

0 2 4
EM iterations

0.7

0.8

0.9

1.0

A
v
g

.
w

e
ig

h
t

o
n
 t

a
rg

e
t

ru
le

2-block samples

3-block samples

4-block samples

0 2 4
EM iterations

0.0

0.2

0.4

0.6

T
o
ta

l
a
ss

ig
n
e
d

 w
e
ig

h
t 1-block shell

2-block shells

3-block shells

4-block shells

(a) (b)

Figure 4-5: (a) Shell weights per iteration of our EM-like algorithm. (b) Membership probabilities
of training samples per iteration.

Learning multiple transition rules

Now we put our approach in a more general setting where multiple transition rules need to be learned

for prediction of the next state. Our approach adopts an EM-like procedure to assign each training

sample its distribution on the transition rules and learn each transition rule with re-weighted training

samples. First, we construct a training dataset and 70% of it is on pushing 4-block stack. Our EM

approach is able to concentrate to the 4-block case as shown in Fig. 4-5(a).

Fig. 4-5(b) tracks the assignment of samples to rules over the same five runs of our EM proce-

dure. The three curves correspond to the three stack heights in the original dataset, and each shows

the average weight assigned to the “target” rule among samples of that stack height, where the target

rule is the one that starts with a high concentration of samples of that particular height. At iteration

0, we see that the rules were initialized such that samples were assigned 70% probability of be-

longing to specific rules, based on stack height. As the algorithm progresses, the samples separate

further, suggesting that the algorithm is able to separate samples into the correct groups.

4.5 Conclusion

These results demonstrate the power of combining relational abstraction with neural networks, to

learn probabilistic state transition models for an important class of domains from very little training

data. In addition, the structural nature of the learned models will allow them to be used in factored

search-based planning methods that can take advantage of sparsity of effects to plan efficiently.

81

Chapter 5

Focused Model-Learning and Planning

for Non-Gaussian Continuous

State-Action Systems

Most real-world domains are sufficiently complex that it is difficult to build an accurate determin-

istic model of the effects of actions. Even with highly accurate actuators and sensors, stochasticity

still widely appears in basic manipulations, especially non-prehensile ones [203]. The stochasticity

may come from inaccurate execution of actions as well as from lack of detailed information about

the underlying world state. For example, rolling a die is a deterministic process that depends on

the forces applied, air resistance, etc.; however, we are not able to model the situation sufficiently

accurately to plan reliable actions, nor to execute them repeatably if we could plan them. We can

plan using a stochastic model of the system, but in many situations, such as rolling dice or pushing

a can shown in Fig. 5-1, the stochasticity is not modeled well by additive single-mode Gaussian

noise, and a more sophisticated model class is necessary.

In this chapter, we address the problem of learning and planning for non-Gaussian stochastic

systems in the practical setting of continuous state and action spaces. Our framework learns tran-

sition models that can be used for planning to achieve different objectives in the same domain,

as well as to be potentially transferred to related domains or even different types of robots. This

strategy is in contrast to most reinforcement-learning approaches, which build the objective into

Wang, Zi and Jegelka, Stefanie and Kaelbling, Leslie Pack and Lozano-Pérez, Tomás. Focused model learning
and planning for non-Gaussian continuous state-action systems. In IEEE International Conference on Robotics and
Automation (ICRA), 2017.

83

Figure 5-1: A quasi-static pushing problem: the pusher has a velocity controller with low gain,
resulting in non-Gaussian transitions. We show trajectories for object and pusher resulting from the
same push velocity.

the structure being learned. In addition, rather than constructing a single monolithic model of the

entire domain which could be difficult to represent, our method uses a memory-based lazy learning

scheme [157, 6]: it computes localized models on the fly, only when the planner requires them. To

avoid constructing models that do not contribute to improving the policy, the planner should focus

only on states relevant to the current planning problem, and actions that can lead to high reward.

We propose a closed-loop planning algorithm that applies to stochastic continuous state-action

systems with arbitrary transition models. It is assumed that the transition models are represented by

a function that may be expensive to evaluate. Via two important steps, we focus the computation

on the current problem instance, defined by the starting state and goal region. To focus on relevant

states, we use real time dynamic programming (RTDP) [15] on a set of states strategically sampled

by a rapidly-exploring random tree (RRT) [117, 82]. To focus selection of actions from a continuous

space, we develop a new batch Bayesian optimization (BO) technique that selects and tests, in

parallel, action candidates that will lead most quickly to a near-optimal answer.

We show theoretically that the expected accumulated difference between the optimal value func-

tion of the original problem and the value of the policy we compute vanishes to 0 as the number of

actions we test increases, under mild assumptions. Finally we evaluate our approach empirically on

a simulated multi-modal pushing problem, and demonstrate the effectiveness and efficiency of the

proposed algorithm.

84

5.1 Problem formulation

Let the state space 𝑆 ⊂ R𝑑𝑠 with metric 𝑑 and the control space 𝑈 ⊂ R𝑑𝑢 both be compact and

measurable sets. The interior of the state space 𝑆 is 𝑆𝑜 and the boundary is 𝜕𝑆. For the control

space 𝑈 , there exists an open set 𝑈𝑜 in 𝑅𝑑𝑢 such that 𝑈 is the closure of 𝑈𝑜. We assume the state

is fully observed (any remaining latent state will manifest as stochasticity in the transition models).

Actions 𝑎 = (𝑢,Δ𝑡) are composed of both a control on the robot and the duration for which it will

be exerted, so the action space is 𝐴 = 𝑈 × [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], where 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 ∈ R+ ∖ {∞} are the

minimum and the maximum amount of duration allowed. The action space 𝐴 is also a compact set.

The starting state is 𝑠0, and the goal region is denoted as 𝒢 ⊂ 𝑆, in which all states are terminal

states. We assume 𝒢 has non-zero measure, and 𝑆 has finite measure. The transition model has

the form of a continuous probability density function 𝑝𝑠′|𝑠,𝑎 on the resulting state 𝑠′, given previous

state 𝑠 and action 𝑎, such that ∀𝑠′ ∈ 𝑆, 𝑝𝑠′|𝑠,𝑎(𝑠′ | 𝑠, 𝑎) ≥ 0,
∫︀
𝑆 𝑝(𝑠

′ | 𝑠, 𝑎) d𝑠′ = 1.

Given a transition model and a cost function 𝐶 : 𝑆 × 𝑆 × 𝐴 → R associated with a goal

region, we can formulate the problem as a continuous state-action MDP (𝑆,𝐴, 𝑝𝑠′|𝑠,𝑎, 𝑅, 𝛾), where

𝑅(𝑠′ | 𝑠, 𝑎) = −𝐶(𝑠′ | 𝑠, 𝑎) is the immediate reward function and 𝛾 is the discount factor. A high

reward is assigned to the states in the goal region 𝒢, and a cost is assigned to colliding with obstacles

or taking any action. We would like to solve for the optimal policy 𝜋 : 𝑆 → 𝐴, for which the value

of each state 𝑠 is

𝑉 𝜋(𝑠) = max
𝑎∈𝐴

∫︁
𝑠′∈𝑆

𝑝𝑠′|𝑠,𝑎(𝑠
′ | 𝑠, 𝑎)

(︀
𝑅(𝑠′ | 𝑠, 𝑎) + 𝛾Δ𝑡𝑉 𝜋(𝑠′)

)︀
d𝑠′.

5.2 Related Work

Learning The class of problems that we address may be viewed as reinforcement-learning (RL)

problems in observable continuous state-action spaces. It is possible to address the problem through

model-free RL, which estimates a value function or policy for a specific goal directly through ex-

perience. Though the majority of work in RL addresses domains with discrete action spaces, there

has been a thread of relevant work on value-function-based RL in continuous action spaces [73, 11,

149, 183, 141]. An alternative approach is to do direct search in the space of policies [42, 84].

In continuous state-action spaces, model-based RL, where a model is estimated to optimize a

policy, can often be more effective. Gaussian processes (GP) can help to learn the dynamics [44,

153, 140], which can then be used by GP-based dynamic programming [45, 153] to determine a

85

continuous-valued closed-loop policy for the whole state space. More details can be found in the

excellent survey [66].

Unfortunately, the common assumption of i.i.d Gaussian noise on the dynamics is restrictive and

may not hold in practice [203], and the transition model can be multi-modal. It may additionally be

difficult to obtain a good GP prior. The basic GP model is can capture neither the multi-modality

nor the heteroscedasticity of the noise. While more advanced GP algorithms may address these

problems, they often suffer from high computational cost [181, 204].

Moldovan et al. [136] addressed the problem of multi-modality by using Dirichlet process mix-

ture models (DPMMs) to learn the density of the transition models. Their strategies for planning

were limited by deterministic assumptions, appropriate for their domains of application, but po-

tentially resulting in collisions in ours. Kopicki et al. [103, 102, 104] addressed the problem of

learning to predict the behavior of rigid objects under manipulations such as pushing, using kernel

density estimation. In this chapter, we propose an efficient planner that can work with arbitrary,

especially multi-modal stochastic models in continuous state-action spaces. Our learning method in

the experiment resembles DPMMs but we estimate the density on the fly when the planner queries

a state-action pair. We were not able to compare our approach with DPMMs because we found

DPMMs not computationally feasible for large datasets.

Planning We are interested in domains for which queries are made by specifying a starting

state and a goal set, and in which the solution to the given query can be described by a policy that

covers only a small fraction of the state space that the robot is likely to encounter.

Planning only in the fraction of the state-action space that the robot is likely to encounter is,

in general, very challenging. Other related work uses tree-based search methods [194, 129, 201],

where the actions are selected by optimizing an optimistic heuristic. These algorithms are impracti-

cal for our problem because of the exponential growth of the tree and the lack of immediate rewards

that can guide the pruning of the tree.

In contrast to the tree-search algorithms, iMDP [82], which is most related to our work, uses

sampling techniques from RRTs to create successively more accurate discrete MDP approximations

of the original continuous MDP, ultimately converging to the optimal solution to the original prob-

lem. Their method assumes the ability to solve the Bellman equation optimally (e.g. for a simple

stochastic LQR problem), the availability of the backward transition models, and that the dynamics

is modeled by a Wiener process, in which the transition noise is Gaussian with execution-time-

dependent variance. However, the assumptions are too restrictive to model our domains of interest

86

where the dynamics is non-closed-form, costly to evaluate, non-reversible, and non-Gaussian. Fur-

thermore, iMDP is designed for stochastic control problems with multiple starting states and a single

goal, while we are interested in multiple start-goal pairs.

Our work builds on the idea of constructing a sequence of MDPs from iMDP [82], and aims at

practically resolving the challenges of state/action selection faced by both iMDP and tree-search-

based planners [194].

Bayesian optimization There have been a number of applications of BO in optimal control,

although to our knowledge, it has not been previously applied to action-selection in continuous-

action MDPs. BO has been used to find weights in a neural network controller [62], to solve for the

parameters of a hierarchical MDP [27], and to address safe exploration in finite MDPs [182]. To

our knowledge, BO has not been previously applied to action-selection in continuous-action MDPs.

5.3 Our method: BOIDP

We describe our algorithm Bayesian Optimization Incremental-realtime Dynamic Programming

(BOIDP) in this section. At the highest level, BOIDP in Alg. 7 operates in a loop, in which it

samples a discrete set of states 𝑆 ⊂ 𝑆 and attempts to solve the discrete-state, continuous-action

MDP ℳ̃ = (𝑆,𝐴, 𝑃𝑠′|𝑠,𝑎, 𝑅, 𝛾). Here 𝑃𝑠′|𝑠,𝑎(𝑠′ | 𝑠, 𝑎) is the probability mass function for the

transition from state 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴 to a new state 𝑠′ ∈ 𝑆. The value function for the

optimal policy of the approximated MDP ℳ̃ is 𝑉 (𝑠) = max
𝑎∈𝐴

𝑄𝑠(𝑎), where

𝑄𝑠(𝑎) =
∑︁

𝑠′∈𝑆
𝑃𝑠′|𝑠,𝑎(𝑠

′ | 𝑠, 𝑎)
(︀
𝑅(𝑠′ | 𝑠, 𝑎) + 𝛾Δ𝑡𝑉 (𝑠′)

)︀
. (5.1)

If the value of the resulting policy is satisfactory according to the task-related stopping criterion1,

we can proceed; otherwise, additional state samples are added and the process is repeated. Once

we have a policy 𝜋 on 𝑆 from RTDP, the robot can iteratively obtain and execute the policy for the

nearest state to the current state in the sampled set 𝑆 by the metric 𝑑.

There are a number of challenges underlying each step of BOIDP. First, we need to find a way

of accessing the transition probability density function 𝑝𝑠′|𝑠,𝑎 , which is critical for the approxima-

tion of 𝑃𝑠′|𝑠,𝑎(𝑠′ | 𝑠, 𝑎) and the value function. We describe our “lazy access” strategy in Sec. 5.3.1.

Second, we must find a way to compute the values of as few states as possible to fully exploit the

1For example, one stopping criterion could be the convergence of the starting state’s value 𝑉 (𝑠0).

87

Algorithm 7 BOIDP
1: function BOIDP(𝑠0,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎, 𝑁min)
2: 𝑆 ← {𝑠0}
3: loop
4: 𝑆 ← SAMPLESTATES(𝑁min, 𝑆,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
5: 𝜋, 𝑉 = RTDP(𝑠0,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
6: end loop
7: until stopping criteria reached
8: EXECUTEPOLICY(𝜋, 𝑆,𝒢)
9: end function

10: function EXECUTEPOLICY(𝜋, 𝑆,𝒢)
11: loop
12: 𝑠𝑐 ← current state
13: 𝑠← argmin𝑠∈𝑆 𝑑(𝑠, 𝑠𝑐)
14: Execute 𝜋(𝑠)
15: end loop
16: until current state is in 𝒢
17: end function

“lazy access” to the transition model. Our solution is to first use an RRT-like process [117, 82] to

generate the set of states that asymptotically cover the state space with low dispersion (Sec. 5.3.2),

and then “prune” the irrelevant states via RTDP [15] (Sec. 5.3.3). Last, each dynamic-programming

update in RTDP requires a maximization over the action space; we cannot achieve this analytically

and so must sample a finite set of possible actions. We develop a new batch BO algorithm to focus

action sampling on regions of the action space that are informative and/or likely to be high-value,

as described in Sec. 5.3.4.

Both the state sampling and transition estimation processes assume that there exists a colli-

sion checker EXISTSCOLLISION(𝑠, 𝑎, 𝑠′) that checks the path from 𝑠 to 𝑠′ induced by action 𝑎 for

collisions with permanent objects in the map.

5.3.1 Estimating transition models in BOIDP

In a typical model-based learning approach, first a monolithic model is estimated from the data

and then that model is used to construct a policy. Here, however, we aim to scale to large spaces

with non-Gaussian dynamics, a setting where it is very difficult to represent and estimate a single

monolithic model. Hence, we take a different approach via “lazy access” to the model: we estimate

local models on demand, as the planning process requires information about relevant states and

actions.

88

We assume a dataset𝐷 = {𝑠𝑖, 𝑎𝑖, 𝑠′𝑖}𝑁𝑖=0 for the system dynamics and the dataset is large enough

to provide a good approximation to the probability density of the next state given any state-action

pair. If a stochastic simulator exists for the transition model, one may collect the dataset dynam-

ically in response to queries from BOIDP. The “lazy access” provides a flexible interface, which

can accommodate a variety of different density-estimation algorithms with asymptotic theoretical

guarantees, such as kernel density estimators [197] and Gaussian mixture models [135]. In our ex-

periments, we focus on learning Gaussian mixture models with the assumption that 𝑝𝑠′|𝑠,𝑎(𝑠′ | 𝑠, 𝑎)

is distributed according to a mixture of Gaussians ∀(𝑠, 𝑎) ∈ 𝑆 × 𝐴. Note that here although the

action space 𝐴 has infinite elements, our method does not require computing the transition model

for any (𝑠, 𝑎) pairs, as detailed in Section 5.3.4.

Given a discrete set of states 𝑆, starting state 𝑠 and action 𝑎, we compute the approximate dis-

crete transition model𝑃𝑠′|𝑠,𝑎 as shown in Algorithm 8. We use the function HIGHPROBNEXTSTATES

to select the largest set of next states 𝑆 ⊆ 𝑆 such that ∀𝑠′ ∈ 𝑆, 𝑝𝑠′|𝑠,𝑎(𝑠′ | 𝑠, 𝑎) > 𝜖. 𝜖 is a small

threshold parameter, e.g. we can set 𝜖 = 10−5. If 𝑝𝑠′|𝑠,𝑎 does not take obstacles into account, we

have to check the path from state 𝑠 to next state 𝑠′ ∈ 𝑆 induced by action 𝑎 for collisions, and

model their effect in the approximate discrete transition model 𝑃𝑠′|𝑠,𝑎. To achieve this, we add a

dummy terminal state 𝑠𝑜𝑏𝑠, which represents a collision, to the selected next-state set 𝑆. Then, for

any 𝑠, 𝑎, 𝑠′ transition that generates a collision, we move the probability mass 𝑃𝑠′|𝑠,𝑎(𝑠′ | 𝑠, 𝑎) to

the transition to the collision state 𝑃𝑠′|𝑠,𝑎(𝑠𝑜𝑏𝑠 | 𝑠, 𝑎). Finally, 𝑃𝑠′|𝑠,𝑎(𝑆 | 𝑠, 𝑎) is normalized and

returned together with the selected set 𝑆.

These approximated discrete transition models can be indexed by state 𝑠 and action 𝑎 and cached

for future use in tasks that use the same set of states 𝑆 and the same obstacle map. The memory-

based essence of our modeling strategy is similar to the strategy of non-parametric models such

as Gaussian processes, which make predictions for new inputs via smoothness assumptions and

similarity between the query point and training points in the data set.

For the case where the dynamics model 𝑝𝑠′|𝑠,𝑎 is given, computing the approximated transition

𝑃𝑠′|𝑠,𝑎 could still be computationally expensive because of the collision checking. Our planner is

designed to alleviate the high computation in 𝑃𝑠′|𝑠,𝑎 by focusing on the relevant states and actions,

as detailed in the next sections.

89

Algorithm 8 Transition model for discrete states

1: function TRANSITIONMODEL(𝑠, 𝑎, 𝑆, 𝑝𝑠′|𝑠,𝑎)
2: 𝑆 ← HIGHPROBNEXTSTATES(𝑝𝑠′|𝑠,𝑎(𝑆 | 𝑠, 𝑎)) ∪ {𝑠𝑜𝑏𝑠} ◁ 𝑠𝑜𝑏𝑠 is a terminal state
3: 𝑃𝑠′|𝑠,𝑎(𝑆 | 𝑠, 𝑎)← 𝑝𝑠′|𝑠,𝑎(𝑆 | 𝑠, 𝑎)
4: for 𝑠′ in 𝑆 do
5: if 𝑠′ ∈ 𝑆𝑜 and EXISTSCOLLISION(𝑠, 𝑎, 𝑠′) then
6: 𝑃𝑠′|𝑠,𝑎(𝑠𝑜𝑏𝑠 | 𝑠, 𝑎)← 𝑃𝑠′|𝑠,𝑎(𝑠𝑜𝑏𝑠 | 𝑠, 𝑎) + 𝑃𝑠′|𝑠,𝑎(𝑠

′ | 𝑠, 𝑎)
7: 𝑃𝑠′|𝑠,𝑎(𝑠

′ | 𝑠, 𝑎)← 0
8: end if
9: end for

10: 𝑃𝑠′|𝑠,𝑎(𝑆 | 𝑠, 𝑎)← NORMALIZE(𝑃𝑠′|𝑠,𝑎(𝑆 | 𝑠, 𝑎))
11: return 𝑆, 𝑃𝑠′|𝑠,𝑎(𝑆 | 𝑠, 𝑎)
12: end function

Algorithm 9 RRT states sampling for BOIDP

1: function SAMPLESTATES(𝑁𝑚𝑖𝑛, 𝑆,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
2: 𝑆𝑜 ← SAMPLEINTERIORSTATES(⌈𝑁𝑚𝑖𝑛/2⌉, 𝑆,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
3: 𝜕𝑆 ← SAMPLEBOUNDARYSTATES(⌈𝑁𝑚𝑖𝑛/2⌉, 𝑆,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
4: return 𝑆𝑜 ∪ 𝜕𝑆
5: end function

6: function SAMPLEINTERIORSTATES(𝑁𝑚𝑖𝑛, 𝑆,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
7: while | 𝑆 |< 𝑁𝑚𝑖𝑛 or 𝒢 ∩ 𝑆 = ∅ do
8: 𝑠𝑟𝑎𝑛𝑑 ← UNIFORMSAMPLE(𝑆)
9: 𝑠𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← NEAREST(𝑠𝑟𝑎𝑛𝑑, 𝑆)

10: 𝑠𝑛, 𝑎𝑛 ← RRTEXTEND(𝑠𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑠𝑟𝑎𝑛𝑑, 𝑝𝑠′|𝑠,𝑎)
11: if found 𝑠𝑛, 𝑎𝑛 then
12: 𝑆 ← 𝑆 ∪ {𝑠𝑛}
13: end if
14: end while
15: return 𝑆
16: end function

17: function RRTEXTEND(𝑠𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑠𝑟𝑎𝑛𝑑, 𝑝𝑠′|𝑠,𝑎)
18: 𝑑𝑛 =∞
19: while stopping criterion not reached do
20: 𝑎← UNIFORMSAMPLE(𝐴)
21: 𝑠′ ← SAMPLE

(︀
𝑝𝑠′|𝑠,𝑎(· | 𝑠𝑛𝑒𝑎𝑟𝑒𝑠𝑡, 𝑎)

)︀
22: if (not EXISTSCOLLISION(𝑠, 𝑠′, 𝑎)) and 𝑑𝑛 > 𝑑(𝑠𝑟𝑎𝑛𝑑, 𝑠

′) then
23: 𝑑𝑛 ← 𝑑(𝑠𝑟𝑎𝑛𝑑, 𝑠

′)
24: 𝑠𝑛, 𝑎𝑛 ← 𝑠′, 𝑎
25: end if
26: end while
27: return 𝑠𝑛, 𝑎𝑛
28: end function

90

5.3.2 Sampling states

Algorithm 9 describes the state sampling procedures. The input to SAMPLESTATES in Alg. 9 in-

cludes the minimum number of states, 𝑁min, to sample at each iteration of BOIDP. It may be that

more than 𝑁min states are sampled, because sampling must continue until at least one terminal goal

state is included in the resulting set 𝑆. To generate a discrete state set, we sample states both in

the interior of 𝑆𝑜 and on its boundary 𝜕𝑆. Notice that we can always add more states by calling

SAMPLESTATES.

To generate one interior state sample, we randomly generate a state 𝑠𝑟𝑎𝑛𝑑, and find 𝑠𝑛𝑒𝑎𝑟𝑒𝑠𝑡 that

is the nearest state to 𝑠𝑟𝑎𝑛𝑑 in the current sampled state set 𝑆. Then we sample a set of actions from

𝐴, for each of which we sample the next state 𝑠𝑛 from the dataset 𝐷 given the state-action pair

𝑠𝑛𝑒𝑎𝑟𝑒𝑎𝑠𝑡, 𝑎 (or from 𝑝𝑠′|𝑠,𝑎 if given). We choose the action 𝑎 that gives us the 𝑠𝑛 that is the closest

to 𝑠𝑟𝑎𝑛𝑑. To sample states on the boundary 𝜕𝑆, we assume a uniform random generator for states

on 𝜕𝑆 is available. If not, we can use something similar to SAMPLEINTERIORSTATES but only

sample inside the obstacles uniformly in line 8 of Algorithm 9. Once we have a sample 𝑠𝑟𝑎𝑛𝑑 in the

obstacle, we try to reach 𝑠𝑟𝑎𝑛𝑑 by moving along the path 𝑠𝑟𝑎𝑛𝑑 → 𝑠𝑛 incrementally until a collision

is reached.

5.3.3 Focusing on the relevant states via RTDP

We apply our algorithm with a known starting state 𝑠0 and goal region 𝒢. Hence, it is not necessary

to compute a complete policy, and so we can use RTDP [15] to compute a value function focusing

on the relevant state space and a policy that, with high probability, will reach the goal before it

reaches a state for which an action has not been determined. We assume an upper bound of the

values for each state 𝑠 to be ℎ𝑢(𝑠). One can approximate ℎ𝑢(𝑠) via the shortest distance from each

state to the goal region on the fully connected graph with vertices 𝑆. We show the pseudocode in

Algorithm 10. When doing the recursion (TRIALRECURSE), we can save additional computation

when maximizing 𝑄𝑠(𝑎). Assume that the last time argmax𝑎𝑄𝑠(𝑎) was called, the result was

𝑎* and the transition model tells us that 𝑆 is the set of possible next states. The next time we

call argmax𝑎𝑄𝑠(𝑎), if the values for 𝑆 have not changed, we can just return 𝑎* as the result of

the optimization. This can be done easily by caching the current (optimistic) policy and transition

model for each state.

91

Algorithm 10 RTDP for BOIDP

1: function RTDP(𝑠0,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
2: for 𝑠 in 𝑆 do
3: 𝑉 (𝑠) = ℎ𝑢(𝑠) ◁ Compute the value upper bound
4: end for
5: while 𝑉 (·) not converged do
6: 𝜋, 𝑉 ← TRIALRECURSE(𝑠0,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
7: end while
8: return 𝜋, 𝑉
9: end function

10: function TRIALRECURSE(𝑠,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
11: if reached cycle or 𝑠 ∈ 𝒢 then
12: return
13: end if
14: 𝜋(𝑠)← argmax𝑎𝑄(𝑠, 𝑎, 𝑆, 𝑝𝑠′|𝑠,𝑎) ◁ Max via BO
15: 𝑠′ ← SAMPLE(𝑃𝑠′|𝑠,𝑎(𝑆|𝑠, 𝜋(𝑠)))
16: TRIALRECURSE(𝑠′,𝒢, 𝑆, 𝑝𝑠′|𝑠,𝑎)
17: 𝜋(𝑠)← argmax𝑎𝑄(𝑠, 𝑎, 𝑆, 𝑝𝑠′|𝑠,𝑎) ◁ Max via BO
18: 𝑉 (𝑠)← 𝑄(𝑠, 𝜋(𝑠), 𝑆, 𝑝𝑠′|𝑠,𝑎)
19: return 𝜋, 𝑉
20: end function

21: function Q(𝑠, 𝑎, 𝑆, 𝑝𝑠′|𝑠,𝑎)
22: if 𝑃𝑠′|𝑠,𝑎(𝑆|𝑠, 𝑎) has not been computed then
23: 𝑃𝑠′|𝑠,𝑎(𝑆|𝑠, 𝑎) = 0 ◁ 𝑃𝑠′|𝑠,𝑎 is a shared matrix
24: 𝑆, 𝑃𝑠′|𝑠,𝑎(𝑆|𝑠, 𝑎)← TRANSITIONMODEL(𝑠, 𝑎, 𝑆, 𝑝𝑠′|𝑠,𝑎)
25: end if
26: return 𝑅(𝑠, 𝑎) + 𝛾Δ𝑡

∑︀
𝑠′∈𝑆 𝑃𝑠′|𝑠,𝑎(𝑠

′|𝑠, 𝑎)𝑉 (𝑠′)
27: end function

92

5.3.4 Focusing on good actions via BO

RTDP in Algorithm 10 relies on a challenging optimization over a continuous and possibly high-

dimensional action space. Queries to 𝑄𝑠(𝑎) in Eq. (5.1) can be very expensive because in many

cases a new model must be estimated. Hence, we need to limit the number of points queried during

the optimization. There is no clear strategy for computing the gradient of 𝑄𝑠(𝑎), and random

sampling is very sample-inefficient especially as the dimensionality of the space grows. We will

view the optimization of 𝑄𝑠(𝑎) as a black-box function optimization problem, and use batch BO to

efficiently approximate the solution and make full use of the parallel computing resources.

Algorithm 11 Optimization of 𝑄𝑠(𝑎) via sequential GP optimization

1: D0 ← ∅

2: for 𝑡 = 1→ 𝑇 do

3: 𝜇𝑡−1, 𝜎𝑡−1← GP-predict(D𝑡−1)

4: 𝑎𝑡 ← argmin𝑎∈𝐴
ℎ𝑢(𝑠)−𝜇𝑡−1(𝑎)

𝜎𝑡−1(𝑎)

5: 𝑦𝑡 ← 𝑄𝑠(𝑎𝑡)

6: D𝑡 ← D𝑡−1 ∪ {𝑎𝑡, 𝑦𝑡}

7: end for

Algorithm 12 Optimization of 𝑄𝑠(𝑎) via batch GP optimization

1: D0 ← ∅

2: for 𝑡 = 1→ 𝑇 do

3: 𝜇𝑡−1, 𝜎𝑡−1← GP-predict(D𝑡−1)

4: 𝐵 ← ∅

5: for 𝑖 = 1→𝑀 do

6: 𝐵 ← 𝐵 ∪ {argmax𝑎∈𝐴 𝐹𝑠(𝐵 ∪ {𝑎})− 𝐹𝑠(𝐵)}

7: end for

8: 𝑦𝐵 ← 𝑄𝑠(𝐵) ◁ Test 𝑄𝑠 in parallel

9: D𝑡 ← D𝑡−1 ∪ {𝐵,𝑦𝐵}

10: end for

We first briefly review a sequential Gaussian-process optimization method, GP-EST [191],

shown in Algorithm 11. For a fixed state 𝑠, we assume 𝑄𝑠(𝑎) is a sample from a Gaussian pro-

cess with zero mean and kernel 𝜅. At iteration 𝑡, we select action 𝑎𝑡 and observe the function

93

value 𝑦𝑡 = 𝑄𝑠(𝑎𝑡) + 𝜖𝑡, where 𝜖𝑡 ∼ 𝒩 (0, 𝜎2). Given the observations D𝑡 = {(𝑎𝜏 , 𝑦𝜏)}𝑡𝜏=1 up

to time 𝑡, we obtain the posterior mean and covariance of the 𝑄𝑠(𝑎) function via the kernel matrix

𝐾𝑡 = [𝜅(𝑎𝑖, 𝑎𝑗)]𝑎𝑖,𝑎𝑗∈D𝑡
and 𝜅𝑡(𝑎) = [𝜅(𝑎𝑖, 𝑎)]𝑎𝑖∈D𝑡 [151]:

𝜇𝑡(𝑎) = 𝜅𝑡(𝑎)
T(𝐾𝑡 + 𝜎2𝐼)−1𝑦𝑡

𝜅𝑡(𝑎, 𝑎
′) = 𝜅(𝑎, 𝑎′)− 𝜅𝑡(𝑎)

T(𝐾𝑡 + 𝜎2𝐼)−1𝜅𝑡(𝑎
′) .

The posterior variance is given by 𝜎2𝑡 (𝑎) = 𝜅𝑡(𝑎, 𝑎). We can then use the posterior mean function

𝜇𝑡(·) and the posterior variance function 𝜎2𝑡 (·) to select which action to test in the next iteration.

We here make use of the assumption that we have an upper bound ℎ𝑢(𝑠) on the value 𝑉 (𝑠). We

select the action that is most likely to have a value greater than or equal to ℎ𝑢(𝑠) to be the next one

to evaluate. Algorithm 11 relies on sequential tests of 𝑄𝑠(𝑎), but it may be much more effective to

test 𝑄𝑠(𝑎) for multiple values of 𝑎 in parallel. This requires us to choose a diverse subset of actions

that are expected to be informative and/or have good values.

We propose a new batch Bayesian optimization method that selects a query set that has large

diversity and low values of the acquisition function 𝐺𝑠,𝑡(𝑎) =
(︁
ℎ𝑢(𝑠)−𝜇𝑡−1(𝑎)

𝜎𝑡−1(𝑎)

)︁
. The key idea is to

maximize a submodular objective function with a cardinality constraint on 𝐵 ⊂ 𝐴, |𝐵| = 𝑀 that

characterize both diversity and quality:

𝐹𝑠(𝐵) = log det𝐾𝐵 − 𝜆
∑︁

𝑎∈𝐵

ℎ𝑢(𝑠)− 𝜇𝑡−1(𝑎)

𝜎𝑡−1(𝑎)
(5.2)

where 𝐾𝐵 = [𝜅(𝑎𝑖, 𝑎𝑗)]𝑎𝑖,𝑎𝑗∈𝐵 and 𝜆 is a trade-off parameter for diversity and quality. If 𝜆 is large,

𝐹𝑠 will prefer actions with lower 𝐺𝑠,𝑡(𝑎), which means a better chance of having high values. If 𝜆

is low, log det𝐾𝐵 will dominate 𝐹𝑠 and a more diverse subset 𝐵 is preferred. 𝜆 can be chosen by

cross-validation. We optimize the heuristic function 𝐹𝑠 via greedy optimization which yield a 1− 1
𝑒

approximation to the optimal solution. We describe the batch GP optimization in Algorithm 12.

The greedy optimization can be efficiently implemented using the following property of the

94

determinant:

𝐹𝑠(𝐵 ∪ {𝑎})− 𝐹𝑠(𝐵) (5.3)

= log det𝐾𝐵∪{𝑎} − log det𝐾𝐵 −
ℎ𝑢(𝑠)− 𝜇𝑡−1(𝑎)

𝜎𝑡−1(𝑎)
(5.4)

= log(𝜅𝑎 − 𝜅T
𝐵𝑎𝐾

−1
𝐵 𝜅𝐵𝑎)−

ℎ𝑢(𝑠)− 𝜇𝑡−1(𝑎)

𝜎𝑡−1(𝑎)
(5.5)

where 𝜅𝑎 = 𝜅(𝑎, 𝑎),𝜅𝐵𝑎 = [𝜅(𝑎𝑖, 𝑎)]𝑎𝑖∈𝐵 .

5.4 Theoretical analysis

In this section, we characterize the theoretical behavior of BOIDP. Thm. 5.4.1 establishes the error

bound for the value function on the �̂�*-relevant set of states [15], where �̂�* is the optimal policy

computed by BOIDP. A set 𝐵 ⊆ 𝑆 is called 𝜋-relevant if all the states in 𝐵 is reachable via finite

actions from the starting state 𝑠0 under the policy 𝜋. We denote | · |𝐵 as the 𝐿∞ norm of a function

· over the set 𝐵.

We assume the existence of policies whose relevant sets intersect with 𝒢. If there exists no

solution to the continuous state-action MDPℳ, our algorithm will not be able to generate an RRT

whose vertices contain a state in the goal region 𝒢, and hence no policy will be generated. We use

the reward setup described in Sec. 5.1. For the simplicity of the analysis, we set the reward for

getting to the goal large enough such that the optimal value function 𝑉 *(𝑠) = max𝑎∈𝐴𝑄𝑠(𝑎) is

positive for any state 𝑠 on the path to the goal region under the optimal policy 𝜋*.

We denote the measure for the state space 𝑆 to be 𝜌 and the measure for the action space 𝐴 to

be 𝜓. Both 𝜌 and 𝜓 are absolutely continuous with respect to Lebesgue measure. The metric for

𝐴 is 𝑔, and for 𝑆 is 𝑑. We also assume the transition density function 𝑝𝑠′|𝑠,𝑎 is not a generalized

function and satisfies the property that if
∫︀
ℱ 𝑝𝑠′|𝑠,𝑎(𝑠

′|𝑠, 𝑎) d𝑠′ > 0, then 𝜌(ℱ) > 0. Without loss of

generality, we assume minΔ𝑡 = 1 and maxΔ𝑡 = 𝒯 .

Under mild conditions on𝑄𝑠(𝑎) specified in Thm. 5.4.1, we show that with finitely many actions

selected by BO, the expected accumulated error expressed by the difference between the optimal

value function 𝑉 * and the value function 𝑉 of the policy computed by BOIDP in Alg. 7 on the

�̂�*-relevant set decreases to 0 as the number of actions selected for optimizing 𝑄𝑠(·) in Eq. (5.1)

increases.

Theorem 5.4.1 (Error bound for BOIDP). Let 𝐷 = {𝑠𝑖, 𝑎𝑖, 𝑠′𝑖}𝑁𝑖=0 be the dataset that is collected

95

from the true transition probability 𝑝𝑠′|𝑠,𝑎, ∀(𝑠, 𝑎) ∈ 𝑆 × 𝐴. We assume that the transition model

𝑝𝑠′|𝑠,𝑎 estimated by the density estimator asymptoticly converges to the true model. ∀𝑠 ∈ 𝑆, we

assume 𝑄𝑠(𝑎) =
∫︀
𝑠′∈𝑆 𝑝𝑠′|𝑠,𝑎(𝑠

′ | 𝑠, 𝑎)
(︀
𝑅(𝑠′ | 𝑠, 𝑎) + 𝛾Δ𝑡𝑉 *(𝑠′)

)︀
d𝑠′ is a function locally con-

tinuous at argmax𝑎∈𝐴𝑄𝑠(𝑎), where 𝑉 *(·) = max𝑎∈𝐴𝑄·(𝑎) is the optimal value function for the

continuous state-action MDPℳ = (𝑆,𝐴, 𝑝𝑠′|𝑠,𝑎, 𝑅, 𝛾). 𝑉 *(·) is associated with an optimal policy

whose relevant set contains at least one state in the goal region 𝒢. At iteration 𝑘 of RTDP in Alg. 10,

we define 𝑉𝑘 to be the value function for ℳ̃ = (𝑆,𝐴, 𝑃𝑠′|𝑠,𝑎, 𝑅, 𝛾) approximated by BOIDP, �̂�𝑘 to

be the policy corresponding to 𝑉𝑘, and 𝐵𝑘 to be the �̂�𝑘-relevant set. We assume that

𝑄𝑠,𝑘(𝑎) =
∑︁

𝑠′∈𝑆
𝑃𝑠′|𝑠,𝑎(𝑠

′ | 𝑠, 𝑎)
(︁
𝑅(𝑠′ | 𝑠, 𝑎) + 𝛾Δ𝑡𝑉𝑘−1(𝑠

′)
)︁

is a function sampled from a Gaussian process with known priors and i.i.d Gaussian noise𝒩 (0, 𝜎).

If we allow Bayesian optimization for 𝑄𝑠,𝑘(𝑎) to sample 𝑇 actions for each state and run RTDP

in Alg. 10 until it converges with respect to the Cauchy’s convergence criterion [33] with 𝒦 < ∞

iterations, in expectation,

lim|𝑆|,|𝐷|→∞ |𝑉𝒦(·)− 𝑉
*(·)|𝐵𝒦 ≤

𝜈

1− 𝛾

√︃
2𝜂𝑇

𝑇 log(1 + 𝜎2)
,

where 𝜂𝑇 is the maximum information gain of the selected actions [171, Theorem 5], 𝜈 = max
𝑠,𝑡,𝑘

min
𝑎∈𝐴

𝐺𝑠,𝑡,𝑘(𝑎),

and 𝐺𝑠,𝑡,𝑘(·) is the acquisition function in [191, Theorem 3.1] for state 𝑠 ∈ 𝑆, iteration 𝑡 =

1, 2, · · · , 𝑇 in Alg. 1 or 12, and iteration 𝑘 = 1, 2, · · · ,𝒦 of the loop in Alg. 10.

Proof. To prove Thm. 5.4.1, we first show the following facts: (1) The state sampling procedure

in Alg. 9 stops in finite steps; (2) the difference between the value function computed by BOIDP

and the optimal value function computed via asynchronous dynamic programming with an exact

optimizer is bounded in expectation; (3) the optimal value function of the approximated MDP ℳ̃

asymptotically converges to that of the original problem defined by the MDPℳ.

Claim 5.4.1.1: The expected number of iterations for the set of sampled states 𝑆 computed by Alg. 9

to contain one state in 𝒢 is finite.

Proof of Claim 5.4.1.1: Let 𝑆𝑔𝑜𝑜𝑑 be the set of states with non-zero probability to reach the goal

region via finite actions. Clearly, 𝒢 ⊂ 𝑆𝑔𝑜𝑜𝑑. Because there exists a state in the goal region that

is reachable with finite steps following the policy 𝜋* starting from 𝑠0, we have 𝑠0 ∈ 𝑆𝑔𝑜𝑜𝑑. Hence

𝑆 ∩ 𝑆𝑔𝑜𝑜𝑑 is non-empty in any iteration of SAMPLEINTERIORSTATES of Alg. 9. We can show

96

that if the nearest state selected in Line 8 of Alg. 9 is in 𝑆𝑔𝑜𝑜𝑑, there is non-zero probability to

extend another state in 𝑆𝑔𝑜𝑜𝑑 with the RRT procedure. To prove this, we first show for every state

𝑠 ∈ 𝑆𝑔𝑜𝑜𝑑 ∩ 𝑆 there exists a set of actions with non-zero measure, in which each action 𝑎 satisfies∫︀
𝑆𝑔𝑜𝑜𝑑

𝑝𝑠′|𝑠,𝑎(𝑠
′ | 𝑠, 𝑎) d𝑠′ > 0.

For every state 𝑠 ∈ 𝑆𝑔𝑜𝑜𝑑∩𝑆, because𝑄𝑠(𝑎) is locally continuous at 𝑎 = 𝜋*(𝑠), for any positive

real number 𝜁, there exists a positive real number 𝛿 such that ∀𝑎 ∈ {𝑎 : 𝑔(𝑎, 𝜋*(𝑠)) < 𝛿, 𝑎 ∈ 𝐴},

we have

|𝑄𝑠(𝑎)−𝑄𝑠(𝜋*(𝑠))| < 𝜁. (5.6)

Notice that by the design of the reward function 𝑅, we have

𝑄𝑠(𝑎) =

∫︁
𝑆𝑔𝑜𝑜𝑑∪(𝑆∖𝑆𝑔𝑜𝑜𝑑)

𝑝𝑠′|𝑠,𝑎(𝑠
′ | 𝑠, 𝑎)

(︀
𝑅(𝑠′ | 𝑠, 𝑎) + 𝛾Δ𝑡𝑉 *(𝑠′)

)︀
d𝑠′ (5.7)

≤
∫︁
𝑆𝑔𝑜𝑜𝑑

𝑝𝑠′|𝑠,𝑎(𝑠
′ | 𝑠, 𝑎)

(︀
𝑅(𝑠′ | 𝑠, 𝑎) + 𝛾Δ𝑡𝑉 *(𝑠′)

)︀
d𝑠′

+
𝐶𝑎

1− 𝛾𝒯

∫︁
𝑆∖𝑆𝑔𝑜𝑜𝑑

𝑝𝑠′|𝑠,𝑎(𝑠
′ | 𝑠, 𝑎) d𝑠′ (5.8)

where −𝐶𝑎 > 0 is the smallest cost for either executing one action or colliding with obstacles. The

inequality is because ∀𝑠′ ∈ 𝑆 ∖ 𝑆𝑔𝑜𝑜𝑑,

𝑅(𝑠′ | 𝑠, 𝑎) + 𝛾Δ𝑡𝑉 *(𝑠′) ≤ 𝐶𝑎
1− 𝛾𝒯

< 0. (5.9)

Because 𝜋*(𝑠) = argmax𝑎∈𝐴𝑄𝑠(𝑎) and the reward for the goal region is set large enough

so that 𝑄𝑠(𝜋*(𝑠)) > 0, there exists 𝑟 > 0 such that ∀𝑞 ∈ R satisfying 𝑞 > 𝑄𝑠(𝜋
*(𝑠)) − 𝑟, we

have 𝑞 > 0. Let the arbitrary choice of 𝜁 in Eq. (5.6) be 𝜁 = 𝑟. Because 𝑄𝑠(𝜋*(𝑠)) − 𝜁 =

𝑄𝑠(𝜋
*(𝑠))− 𝑟 < 𝑄𝑠(𝑎), we have

𝑄𝑠(𝑎) > 0, ∀𝑎 ∈ {𝑎 : 𝑔(𝑎, 𝜋*(𝑠)) < 𝛿, 𝑎 ∈ 𝐴},

and

∫︁
𝑆𝑔𝑜𝑜𝑑

𝑝𝑠′|𝑠,𝑎(𝑠
′ | 𝑠, 𝑎)

(︀
𝑅(𝑠′ | 𝑠, 𝑎) + 𝛾Δ𝑡𝑉 *(𝑠′)

)︀
d𝑠′ > − 𝐶𝑎

1− 𝛾𝒯

∫︁
𝑆∖𝑆𝑔𝑜𝑜𝑑

𝑝𝑠′|𝑠,𝑎(𝑠
′ | 𝑠, 𝑎) d𝑠′ > 0

Hence
∫︀
𝑠′∈𝑆𝑔𝑜𝑜𝑑

𝑝𝑠′|𝑠,𝑎(𝑠
′ | 𝑠, 𝑎) d𝑠′ > 0 must hold for any action 𝑎 ∈ {𝑎 : 𝑔(𝑎, 𝜋*(𝑠)) < 𝛿, 𝑎 ∈ 𝐴}.

97

Recall that one dimension of 𝑎 = (𝑢,Δ𝑡) is the duration Δ𝑡 of the control 𝑢. Because the dynamics

of the physics world is continuous, for any 𝑎 = (𝑢,Δ𝑡′) ∈ 𝐴 such that 𝑔((𝑢,Δ𝑡), 𝜋*(𝑠)) < 𝛿 and

1 ≤ Δ𝑡′ ≤ Δ𝑡, we have
∫︀
𝑆𝑔𝑜𝑜𝑑

𝑝𝑠′|𝑠,𝑎(𝑠
′ | 𝑠, 𝑎) d𝑠′ > 0. Let 𝐴𝑠 = {(𝑢,Δ𝑡′) : 𝑔((𝑢,Δ𝑡), 𝜋*(𝑠)) <

𝛿, 1 ≤ Δ𝑡′ ≤ Δ𝑡} ∩𝐴.

What remains to be shown is 𝜓(𝐴𝑠) > 0. Because there exists an open set 𝐴𝑜 such that 𝐴

is the closure of 𝐴𝑜, 𝜋*(𝑠) is either in 𝐴𝑜 or a limit point of 𝐴𝑜. If 𝜋*(𝑠) is in the open set 𝐴𝑜,

there exist 0 < 𝛿′ ≤ 𝛿 such that {𝑎 : 𝑔(𝑎, 𝜋*(𝑠)) < 𝛿′} ⊂ 𝐴, and so we also have 𝜓(𝐴𝑠) > 0.

If 𝜋*(𝑠) is a limit point of the open set 𝐴𝑜, there exist 𝑎′ ∈ 𝐴𝑜 such that 𝑔(𝑎′, 𝜋*(𝑠)) < 𝛿/2 and

𝑎′ ̸= 𝜋*(𝑠). Because 𝑎′ ∈ 𝐴𝑜, there exist 0 < 𝛿′ ≤ 𝛿/2 such that {𝑎 : 𝑔(𝑎′, 𝑎) < 𝛿′} ⊂ 𝐴. For any

𝑎 ∈ {𝑎 : 𝑔(𝑎′, 𝑎) < 𝛿′}, we have 𝑔(𝑎, 𝜋*(𝑠)) ≤ 𝑔(𝑎, 𝑎′) + 𝑔(𝑎′, 𝜋*(𝑠)) < 𝛿′ + 𝛿/2 ≤ 𝛿. Hence

{𝑎 : 𝑔(𝑎′, 𝑎) < 𝛿′} ⊂ 𝐴𝑠, and so 𝜓(𝐴𝑠) > 0. Thus for any 𝜋*(𝑠) ∈ 𝐴, we have 𝜓(𝐴𝑠) > 0.

So, for every state 𝑠 ∈ 𝑆𝑔𝑜𝑜𝑑 ∩ 𝑆 and action 𝑎 ∈ 𝐴𝑠 with 𝜓(𝐴𝑠) > 0,
∫︀
𝑆𝑔𝑜𝑜𝑑

𝑝𝑠′|𝑠,𝑎(𝑠
′ |

𝑠, 𝑎) d𝑠′ > 0. As a corollary, 𝜌({𝑠′ : 𝑝(𝑠′ | 𝑠, 𝑎) > 0} ∩ 𝑆𝑔𝑜𝑜𝑑) > 0 holds ∀𝑠 ∈ 𝑆𝑔𝑜𝑜𝑑 ∩ 𝑆, 𝑎 ∈ 𝐴𝑠.

Now we can show that there is non-zero probability to extend a state on the near-optimal path

in 𝑆𝑔𝑜𝑜𝑑 with the RRT procedure in one iteration of SAMPLEINTERIORSTATES in Alg. 9. Let

𝜃 = min𝑠∈𝑆∩𝑆𝑔𝑜𝑜𝑑,𝑎∈𝐴𝑠
𝜌({𝑠′ : 𝑝(𝑠′ | 𝑠, 𝑎) > 0} ∩ 𝑆𝑔𝑜𝑜𝑑) > 0. With the finite 𝑆 for some

iteration, we can construct a Voronoi diagram based on the vertices from the current set of sampled

states 𝑆. ∀𝑠 ∈ 𝑆𝑔𝑜𝑜𝑑 ∩ 𝑆, there exists a Voronoi region Vor(𝑠) associated with state 𝑠. We can

partition this Voronoi region Vor(𝑠) to one part, Vor(𝐴𝑠) ⊂ Vor(𝑠), containing states in 𝑆𝑔𝑜𝑜𝑑

generated by actions in 𝐴𝑠 and its complement, Vor(𝐴 ∖ 𝐴𝑠) = Vor(𝑠) ∖ Vor(𝐴𝑠). Notice that

𝐴𝑠 includes actions with the minimum duration, and the unit for the minimum duration can be

set small enough so that 𝜌({𝑠′ : 𝑝(𝑠′ | 𝑠, 𝑎) > 0, 𝑎 ∈ 𝐴𝑠, 𝑠
′ ∈ 𝑆𝑔𝑜𝑜𝑑} ∩ Vor(𝑠)) > 02. Since

{𝑠′ : 𝑝(𝑠′ | 𝑠, 𝑎) > 0, 𝑎 ∈ 𝐴𝑠}∩𝑆𝑔𝑜𝑜𝑑∩Vor(𝑠) ⊂ Vor(𝐴𝑠), we have 𝜌(Vor(𝐴𝑠)) > 0,∀𝑠 ∈ 𝑆. We

denote 𝑝𝑠 = min𝑠
𝜌(Vor(𝐴𝑠))

𝜌(𝑆) > 0 and 𝑝𝑎 = min𝑠
𝜓(𝐴𝑠)
𝜓(𝐴) > 0. With probability at least 𝑝𝑠, there is a

random state sampled in Vor(𝐴𝑠) in this iteration. With probability at least 𝑝𝑎, at least an action in

𝐴𝑠 is selected to test distance, and with probability at least 𝜃, a state in 𝑆𝑔𝑜𝑜𝑑 can be sampled from

the transition model conditioned on the state 𝑠 and the selected action in 𝐴𝑠.

Next we show that SAMPLEINTERIORSTATES in Alg. 9 constructs an RRT whose finite set of

sampled states 𝑆 contains at least one goal state in expectation.

By assumption, the goal state is reachable with finite actions. For any 𝑠 ∈ 𝑆𝑔𝑜𝑜𝑑 ∩ 𝑆, the goal

2This is because Vor(𝑠) is a neighborhood of 𝑠, and there exists an action 𝑎 ∈ 𝐴𝑠 such that a next state 𝑠′ ∈ 𝑆𝑔𝑜𝑜𝑑 is
in the interior of Vor(𝑠) given the current state 𝑠. So there exists a small ball in 𝑆 with 𝑠′ as the center such that this ball
is a subset of both Vor(𝑠) and {𝑠′ : 𝑝(𝑠′ | 𝑠, 𝑎) > 0, 𝑎 ∈ 𝐴𝑠, 𝑠

′ ∈ 𝑆𝑔𝑜𝑜𝑑} (by the continuity of 𝑝𝑠′|𝑠,𝑎).

98

region is reachable from 𝑠 in finite steps. Notice that once a new state in {𝑠′ : 𝑝(𝑠′ | 𝑠, 𝑎) > 0, 𝑎 ∈

𝐴𝑠} ∩ 𝑆𝑔𝑜𝑜𝑑 is sampled, 𝑠′ uses one less step than 𝑠 to reach the goal region. Let 𝐾 be the largest

finite number of actions necessary to reach the goal region 𝒢 from the initial state 𝑠0. Hence, with

at most a finite number of 𝐾
𝜃𝑝𝑠𝑝𝑎

iterations in expectation (including both loops for sampling actions

and loops for sampling states), at least a goal state will be added to 𝑆.

Q.E.D.

Claim 5.4.1.2: Let 𝑉 * be the optimal value function computed via asynchronous dynamic program-

ming with an exact optimizer. If Alg. 10 converges with 𝒦 <∞ iterations,

|𝑉𝒦(·)− 𝑉 *(·)|𝐵𝒦 ≤
𝜈

1− 𝛾

√︃
2𝜂𝑇

𝑇 log(1 + 𝜎2)
.

Proof of Claim 5.4.1.2: The RTDP process of BOIDP in Alg. 10 searches for the relevant set 𝐵𝒦

of BOIDP’s policy �̂� via recursion on stochastic paths (trials). If BOIDP converges, all states

in 𝐵�̂� should have been visited and their values 𝑉 (𝑠),∀𝑠 ∈ 𝐵𝒦 have converged. Compared to

asynchronous dynamic programming (ADP) with an exact optimizer, our RTDP process introduces

small errors at each trial, but eventually the difference between the optimal value function computed

by ADP and the value function computed by BOIDP is bounded.

In the following, the order of states to be updated in ADP is set to follow RTDP. This order does

not matter for the convergence of ADP as any state in 𝐵�̂� will eventually be visited infinitely often

if 𝒦 → ∞ [173]. We denote the value for the 𝑖-th state updated at iteration 𝑘 of RTDP to be 𝑉𝑘𝑖,

the corresponding value function updated by RTDP with an exact optimizer only for this update to

be 𝑉 *
𝑘𝑖, and the difference between them to be 𝜖𝑘𝑖 = |𝑉 *

𝑘𝑖 − 𝑉𝑘𝑖|.

According to [191, Theorem 3.1], in expectation, for any 𝑖-th state 𝑠𝑘𝑖 to be updated at iteration

𝑘, the following inequality holds:

𝜖𝑘𝑖 ≤ 𝜈𝑘𝑖

√︃
2𝜂𝑇

𝑇 log(1 + 𝜎2)
,

where

𝜈𝑘𝑖 = max
𝑡∈[1,𝑇]

min𝑎∈𝐴𝐺𝑠𝑖,𝑡,𝑘(𝑎),

99

and

𝐺𝑠𝑖,𝑡,·(𝑎) =
ℎ𝑢(𝑠𝑖)− 𝜇𝑡−1(𝑎)

𝜎𝑡−1(𝑎)

is the acquisition function in [191, Theorem 3.1], which makes use of the assumed upper bound

ℎ𝑢(·) on the value function. Let the sequence of states to be updated at iteration 𝑘 be 𝑠𝑘1, 𝑠𝑘2, · · · , 𝑠𝑘𝑛𝑘

and 𝜈 = max𝑘∈[1,𝒦],𝑖∈[1,𝑛𝑘] 𝜈𝑘𝑖. For any iteration 𝑘 and state 𝑠𝑘𝑖, we have

𝜖𝑘𝑖 ≤ 𝜈

√︃
2𝜂𝑇

𝑇 log(1 + 𝜎2)
= 𝜖.

So our optimization introduces error of at most 𝜖 to the optimization of the Bellman equation at any

iteration. Furthermore, we can bound the difference between the value for the 𝑖-th state updated

at iteration 𝑘 of RTDP (𝑉𝑘𝑖) and the corresponding value function updated by ADP (𝑉 *
𝑘𝑖). More

specifically, the following inequalities hold for any 𝒦 = 1, 2, · · · ,∞:

|𝑉11 − 𝑉 *
11| ≤ 𝜖,

|𝑉12 − 𝑉 *
12| ≤ 𝜖+ 𝛾𝜖,

· · ·,

|𝑉1𝑛1 − 𝑉 *
1𝑛1
| ≤

∑︁𝑛1

𝑖=1
𝛾𝑖−1𝜖,

· · ·,

· · ·,

|𝑉𝒦1 − 𝑉 *
𝒦1| ≤ 𝜖+ 𝛾

∑︁𝑛1+···+𝑛𝒦−1

𝑖=1
𝛾𝑖−1𝜖,

|𝑉𝒦2 − 𝑉 *
𝒦2| ≤ 𝜖+ 𝛾𝜖+ 𝛾2

∑︁𝑛1+···+𝑛𝒦−1

𝑖=1
𝛾𝑖−1𝜖,

· · ·,

|𝑉𝒦𝑛𝒦 − 𝑉
*
𝒦𝑛𝒦 | ≤

∑︁𝑛1+···+𝑛𝒦

𝑖=1
𝛾𝑖−1𝜖 <

𝜖

1− 𝛾
=

𝜈

1− 𝛾

√︃
2𝜂𝑇

𝑇 log(1 + 𝜎2)
.

Notice that 𝑉𝑘𝑖 converges because it monotonically decreases for any state index 𝑖 and it is lower

bounded by
(︁

𝐶
1−𝛾𝒯

)︁
where 𝐶 < 0 is the highest cost, e.g. colliding with obstacles. Since we use

Cauchy’s convergence test [33], we can set the threshold for the convergence test to be negligible.

Hence for some 𝒦 <∞, both 𝑉𝑘 and 𝑉𝑘 converge according to Cauchy’s convergence test, and we

100

have

|𝑉𝒦(·)− 𝑉 *(·)|𝐵𝒦 ≤
𝜈

1− 𝛾

√︃
2𝜂𝑇

𝑇 log(1 + 𝜎2)
.

Q.E.D.

Claim 5.4.1.3: 𝑉 *, the optimal value function of the approximated MDP ℳ̃, asymptotically con-

verges to 𝑉 *, the optimal value function of the original problem defined by the MDPℳ.

Proof of Claim 5.4.1.3: We consider the asymptotic case where the size of the dataset |𝐷| → ∞

and the number of states sampled |𝑆| → ∞. Notice that these two limit does not contradict Claim

1.1 because BOIDP operates in a loop and we can iteratively sample more states by calling SAM-

PLESTATES in Alg. 7. When |𝐷| → ∞, 𝑝𝑠′|𝑠,𝑎 converges to the true transition model.

Because the states are sampled uniformly randomly from the state space 𝑆 in Line 8 of Alg. 9,

when |𝑆| → ∞, the set 𝑆 can be viewed as uniform random samples from the reachable state

space3. So the value function for the optimal policy of ℳ̃ asymptotically converges to that ofℳ:

lim|𝑆|,|𝐷|→∞ |𝑉
* − 𝑉 *|∞ = 0.

Q.E.D.

Thm. 5.4.1 directly follows Claim 1.1, 1.2, and 1.3. By the triangle inequality of 𝐿∞, we have

lim|𝑆|,|𝐷|→∞ |𝑉𝒦 − 𝑉
*|𝐵𝒦 ≤ lim|𝑆|,|𝐷|→∞ |𝑉𝒦 − 𝑉

*|𝐵𝒦 + lim|𝑆|,|𝐷|→∞ |𝑉
* − 𝑉 *|𝐵𝒦

≤ 𝜈

1− 𝛾

√︃
2𝜂𝑇

𝑇 log(1 + 𝜎2)

holds in expectation.

5.5 Implementation and Experiments

We tested our approach in a quasi-static problem, in which a robot pushes a circular object through

a planar workspace with obstacles in simulation4. We represent the action by the robot’s initial

3Alg. 9 does not necessarily lead to uniform samples of states in the state space. However, as the number of states
sampled approaches infinity, |𝑆| → ∞, we can construct a set of finite and arbitrarily small open balls that cover the
(reachable) state space such that there exists at least one sampled state in any of those balls. Such a cover exists because
the state space is compact. If the samples are not uniform, we can simply adopt a uniform sampler on top of Alg. 9, and
throw away a fixed proportion of states so that the remaining set of states are uniform samples from the state space 𝑆.

4All experiments were run with Python 2.7.6 on Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 64GB memory.

101

Figure 5-2: Pushing a circular object with a rectangle pusher.

relative position 𝑥 to the object (its distance to the object center is fixed), the direction of the push 𝑧,

and the duration of the push Δ𝑡, which are illustrated in Fig. 5-2. The companion video shows the

behavior of this robot, controlled by a policy derived by BOIDP from a set of training examples.

In this problem, the basic underlying dynamics in free space with no obstacles are location

invariant; that is, that the change in state Δ𝑠 resulting from taking action 𝑎 = (𝑢,Δ𝑡) is independent

of the state 𝑠 in which 𝑎was executed. We are given a training dataset𝐷 = {Δ𝑠𝑖, 𝑎𝑖}𝑁𝑖=0, where 𝑎𝑖 is

an action and Δ𝑠𝑖 is the resulting state change, collected in the free space in a simulator. Given a new

query for action 𝑎, we predict the distribution of Δ𝑠 by looking at the subset 𝐷′ = {Δ𝑠𝑗 , 𝑎𝑗}𝑀𝑗=0 ⊆

𝐷 whose actions 𝑎𝑗 are the most similar to 𝑎 (in our experiments we use 1-norm distance to measure

similarity), and fit a Gaussian mixture model on Δ𝑠𝑗 using the EM algorithm, yielding an estimated

continuous state-action transition model 𝑝𝑠′|𝑠,𝑎(𝑠+Δ𝑠 | 𝑠, 𝑎) = 𝑝Δ𝑠|𝑎(Δ𝑠 | 𝑎).We use the Bayesian

information criterion (BIC) to determine the number of mixture components.

5.5.1 Importance of learning accurate models

Our method was designed to be appropriate for use in systems whose dynamics are not well modeled

with uni-modal Gaussian noise. The experiments in this section explore the question of whether

a uni-modal model could work just as well, using a simple domain with known dynamics 𝑠′ =

𝑠 + 𝑇 (𝑎)𝜌, where the relative position 𝑥 = 0 and duration Δ𝑡 = 1 are fixed, the action is the

direction of motion, 𝑎 = 𝑧 ∈ [0, 2𝜋), 𝑇 (𝑎) is the rotation matrix for angle, and the noise is

𝜌 ∼ 0.6𝒩 (

⎡⎣5.0
5.0

⎤⎦ ,
⎡⎣2.0 0.0

0.0 2.0

⎤⎦) + 0.4𝒩 (

⎡⎣ 5.0

−5.0

⎤⎦ ,
⎡⎣2.0 0.0

0.0 2.0

⎤⎦).

We sample 𝜌 from its true distribution and fit a Gaussian (𝐾 = 1) and a mixture of Gaussians

(𝐾 = 2). The samples from𝐾 = 1 and𝐾 = 2 are shown in Fig. 5-3 (a). We plan with both models

102

−20−15−10 −5 0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

s
[1
]

K=1

K=2

1500 2000 2500 3000 3500 4000 4500 5000 5500

|S̃|

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f
v
is
it
a
e
d
 s

ta
te

s
 i
n
 R

T
D

P

K=1

K=2

(a) (b)s[0]

Figure 5-3: (a) Samples from the single-mode Gaussian transition model (𝐾 = 1) and the two-
component Gaussian mixture transition model (𝐾 = 2) in the free space when 𝑎 = 0. (b) The
number of visited states (y-axis) increases with the number of sampled states |𝑆| (x-axis). Planning
with 𝐾 = 2 visits fewer states in RTDP than with 𝐾 = 1.

−40 −20 0 20 40

−40

−20

0

20

40

Start

Obstacle

Obstacle

Goal

−40 −20 0 20 40

−40

−20

0

20

40

Start

Obstacle

Obstacle

Goal

(a) (b)

Figure 5-4: (a) Samples of 10 trajectories with 𝐾 = 1. (b) Samples of 10 trajectories with 𝐾 =
2. Using the correct number of components for the transition model improves the quality of the
trajectories.

where each action has an instantaneous reward of −1, hitting an obstacle has a reward of −10, and

the goal region has a reward of 100. The discount factor 𝛾 = 0.99. To show that the results are

consistent, we use Algorithm 9 to sample 1500 to 5000 states to construct 𝑆, and plan with each of

them using 100 uniformly discretized actions within 1000 iterations of RTDP.

To compute the Monte Carlo reward, we simulated 500 trajectories for each computed policy

with the true model dynamics, and for each simulation, at most 500 steps are allowed. We show

10 samples of trajectories for both 𝐾 = 1 and 𝐾 = 2 with |𝑆| = 5000, in Fig 5-4. Planning

with the right model 𝐾 = 2 tends to find better trajectories, while because 𝐾 = 1 puts density

on many states that the true model does not reach, the policy of 𝐾 = 1 in Fig 5-4 (a) causes the

robot to do extra maneuvers or even choose a longer trajectory to avoid obstacles that it actually has

103

1500 2000 2500 3000 3500 4000 4500 5000

−150

−100

−50

0

50

100

R
e
w

a
rd

K=1

K=2

1500 2000 2500 3000 3500 4000 4500 5000

|S̃|

0.990

0.995

1.000

1.005

S
u

c
c
e
s
s
 R

a
te

K=1

K=2

|S̃|
(a) (b)

Figure 5-5: (a): Reward. (b): Success rate. Using two components (𝐾 = 2) performs much better
than using one component (𝐾 = 1) in terms of reward and success rate.

2 4 6 8 10 12 14 16 18

s[0]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

S
[1
]

Samples from data

Samples from model

Figure 5-6: The conditional distribution of Δ𝑠 given 𝑎 = (𝑧, 𝑥,Δ𝑡) = (0.0, 0.3, 2.0) is a multi-
modal Gaussian.

very low probability of hitting. As a result, the reward and success rate for 𝐾 = 2 are both higher

than 𝐾 = 1, as shown in Fig. 5-5. Furthermore, because the single-mode Gaussian estimates the

noise to have a large variance, it causes RTDP to visit many more states than necessary, as shown

in Fig. 5-3 (b).

5.5.2 Focusing on the good actions and states

In this section we demonstrate the effectiveness of our strategies for limiting the number of states

visited and actions modeled. We denote using Bayesian optimization in Lines 14 and 17 in Algo-

rithm 10 as BO and using random selections as Rand.

We first demonstrate why BO is better than random for optimizing 𝑄𝑠(𝑎) with the simple ex-

ample from Sec. 5.5.1. We plot the 𝑄𝑠(𝑎) in the first iteration of RTDP where 𝑠 = [−4.3, 33.8],

and let random and BO in Algorithm 1 each pick 10 actions to evaluate sequentially as shown in

104

N
u
m

b
er

 o
f
se

le
ct

ed
 a

ct
io

n
s

200 400 600 800 1000 1200

|S̃|

0

200

400

600

800

1000

1200

1400

1600

Rand

BO

0 1 2 3 4 5 6
a

20

0

20

40

60

80

100

Q
s(
a
)

0
1

2 3456

7

8 910

0 123 4

5

6

7 8

9

10

Qs(a)

Rand

BO

(b)(a)

Figure 5-7: (a) We optimize 𝑄𝑠(𝑎) with BO and Rand by sequentially sampling 10 actions. BO
selects actions more strategically than Rand. (b) BO samples fewer actions than Rand in the pushing
problem for all settings of |𝑆|.

200 400 600 800 1000 1200

0

20

40

60

80

100

120

L
ea

rn
in

g
an

d
pl

an
ni

ng
 T

im
e

(s
)

Rand

BO

(a) (b)

200 400 600 800 1000 1200

|S̃|

0

20

40

60

80

100

120

140

N
um

be
r

of
 v

is
it
ed

 s
ta

te
s

in
 R

T
D

P

Rand

BO

|S̃|

Figure 5-8: (a) Number of visited states in RTDP. Both of Rand and BO consistently focus on about
10% states for planning. (b) Learning and planning time of BO and Rand.

Fig 5-7 (a). We use the GP implementation and the default Matern52 kernel implemented in the

GPy module [71] and optimize its kernel parameters every 5 selections. The first point for both

BO and Rand is fixed to be 𝑎 = 0.0. We observe that BO is able to focus its action selections

in the high-value region, and BO is also able to explore informative actions if it has not found a

good value or if it has finished exploiting a good region (see selection 10). Random action selection

wastes choices on regions that have already been determined to be bad.

Next we consider a more complicated problem in which the action is the high level control of

a pushing problem 𝑎 = (𝑧, 𝑥,Δ𝑡), 𝑧 ∈ [0, 2𝜋], 𝑥 ∈ [−1.0, 1.0],Δ𝑡 ∈ [0.0, 3.0] as illustrated in

Fig. 5-2. The instantaneous reward is −1 for each free-space motion, −10 for hitting an obstacle,

and 100 for reaching the goal; 𝛾 = 0.99. We collected 1.2 × 106 data points of the form (𝑎,Δ𝑠)

with 𝑥 and Δ𝑡 as variables in the Box2D simulator [32] where noise comes from variability of the

executed action. We make use of the fact that the object is cylindrical (with radius 1.0) to reuse data.

An example of the distribution of Δ𝑠 given 𝑎 = (0.0, 0.3, 2.0) is shown in Fig. 5-6.

We compare policies found by Rand and BO with the same set of sampled states (|𝑆| =

105

200 300 400 500 600 700 800 900 1000

|S̃|

200

150

100

50

0

50

R
e
w

a
rd

Rand

BO

(a)

200 300 400 500 600 700 800 900 1000

|S̃|

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
u
c
c
e
ss

 R
a
te

Rand

BO

(b)

Figure 5-9: (a) Reward. (b) Success rate. BO achieves better reward and success rate, with many
fewer actions and slightly more visited states.

−20 −10 0 10 20

−20

−10

0

10

20

Start

Obstacle

Goal

−20 −10 0 10 20

−20

−10

0

10

20

Start

Obstacle

Goal

(a) (b)

Figure 5-10: (a) 10 samples of trajectories generated via Rand with 1000 states. (b) 10 samples of
trajectories generated via BO with 1000 states.

106

200, 400, 600, 800, 1000) within approximately the same amount of total computation time. They

are both able to compute the policy in 30 ∼ 120 seconds, as shown in Fig. 5-8 (b). In more realistic

domains, it is possible that learning the transition model will take longer and dominate the action-

selection computation. We simulate 100 trajectories in the Box2D simulator for each planned policy

with a maximum of 200 seconds. We show the result of the reward and success rate in Fig. 5-9,

and the average number of actions selected for visited states in Fig. 5-7(b). In our simulations, BO

consistently performs approximately the same or better than Rand in terms of reward and success

rate while BO selects fewer actions than Rand. We show 10 simulated trajectories for Rand and BO

with |𝑆| = 1000 in Fig. 5-10.

From Fig. 5-8 (a), it is not hard to see that RTDP successfully controlled the number of visited

states to be only a small fraction of the whole sampled set of states. Interestingly, BO was able

to visit slightly more states with RTDP and as a result, explored more possible states that it is

likely to encounter during the execution of the policy, which may be a factor that contributed to its

better performance in terms of reward and success rate in Fig. 5-9. We did not compare with pure

value iteration because the high computational cost of computing models for all the states made it

infeasible.

BOIDP is able to compute models for only around 10% of the sampled states and about 200

actions per state. If we consider a naive grid discretization for both action (3 dimension) and state

(2 dimension) with 100 cells for each dimension, the number of models we would have to compute

is on the order of 1010, compared to our approach, which requires only 104.

5.6 Conclusion

An important class of robotics problems are intrinsically continuous in both state and action space,

and may demonstrate non-Gaussian stochasticity in their dynamics. We have provided a framework

to plan and learn effectively for these problems. We achieve efficiency by focusing on relevant

subsets of state and action spaces, while retaining guarantees of asymptotic optimality.

107

Part II

Active data acquisition with Bayesian

optimization

108

Chapter 6

Bayesian Optimization Guided by

Max-values

Data collection can be very expensive for robotics tasks in high-fidelity simulation or real world. In

Part II of this thesis, we build the theoretical and algorithmic foundations on active data acquisition

and we specifically focus on the zero-th order optimization problem using Bayesian optimization

(BO). This problem is also called the blackbox function optimization problem, and the functions

of interest typically have multiple peaks and are expensive to evaluate. In fact, this problem does

not only appear in robot learning. The success of BO was witnessed by applications in many areas

of science and engineering including robotics [30, 125, 188], chemistry [79], aerospace engineer-

ing [114] and machine learning [169, 179], among others.

BO techniques pose a prior on the unknown objective function, and the uncertainty given by the

associated posterior is the basis for an acquisition function that guides the selection of the next point

to query the function. The selection of query points and hence the acquisition function is critical for

the success of the method. A vast amount of research has been devoted to the design of acquisition

functions. The earliest work that we know of is by [111], who proposed to use the probability of

improvement over a certain threshold as the acquisition function. However, the algorithm is very

sensitive to the choice of threshold. Since then, more robust and theoretically justified acquisition

functions appeared such as expected improvement [134] and upper confidence bounds [7, 171].

This chapter contains contents from the following two publications.
Zi Wang, Bolei Zhou, and Stefanie Jegelka. Optimization as estimation with Gaussian processes in bandit settings.

In International Conference on Artificial Intelligence and Statistics (AISTATS), 2016.
Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In International

Conference on Machine Learning (ICML), 2017.

109

Particularly successful recent additions are entropy search [75] and predictive entropy search [78]

that aim to maximize the mutual information between the queried points and the location of the

global optimum.

Despite the development of a variety of acquisition functions, we have very little understanding

about the relations between them, and how to choose the “right one” in practice. In this chap-

ter, we study these questions from the perspective of BO methods guided by the optimal value of

the objective function. For consistency and without loss of generality, we assume throughout the

chapter that the objective function is to be maximized. Hence we use max-value and optimal value

interchangeably.

Our motivating intuition is that max-values may provide enough information about the location

of the global maximizer. By analyzing acquisition functions that rely on max-values from both

greedy and information-theoretic viewpoints, we reveal previously unknown connections among

entropy search methods, upper confidence bounds and probability of improvement, bridged by max-

value based approaches. Building upon these connections, we establish regret bounds for variants of

entropy search and probability of improvement that are guided by max-values. Our empirical eval-

uations demonstrate that the BO methods guided by max-values identify good points as quickly or

better than the state-of-the-art approaches, while retaining computational efficiency and robustness

to unspecified hyper-parameters.

6.1 Background

Our goal is to maximize a black-box function 𝑓 : X→ R where X ⊂ R𝑑 and X is compact. For each

iteration 𝑡, we select an input 𝑥𝑡 and observe a possibly noisy function evaluation 𝑦𝑡 = 𝑓(𝑥𝑡) + 𝜖𝑡,

where 𝜖𝑡 ∼ 𝒩 (0, 𝜎2) are i.i.d. Gaussian variables. The key idea of BO is to build a probabilistic

model of function 𝑓 using current observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1 and define an acquisition

function 𝛼𝑡 : X → R based on the model. The probabilistic model is typically represented by a

mean prediction 𝜇𝑡(·) and confidence level 𝜎𝑡(·). The input 𝑥𝑡 to evaluate is the maximizer of the

acquisition function 𝛼𝑡(·). A common paradigm of BO is given in Alg. 1

6.1.1 Bayesian models for functions

A Gaussian process (GP) [151] is a distribution over functions. In BO, GPs are typically used to

build a probabilistic model of black-box function 𝑓 if input dimension 𝑑 is small (for example,

110

smaller than 10). For high dimensional cases, it was shown that modeling function 𝑓 with a variant

of additive Gaussian processes (add-GPs) [51, 91] could boost the performance of BO [190]. The

methods introduced in this chapter can be extended to other function approximation approaches that

predicts uncertainties; for example, Bayesian neural networks and their variants [63, 112]. In this

chapter, we use GPs and add-GPs.

Gaussian processes In a GP, any finite set of function values has a multivariate Gaussian dis-

tribution. A Gaussian Process 𝐺𝑃 (𝜇, 𝑘) is fully specified by a mean function 𝜇(𝑥) and covariance

(kernel) function 𝑘(𝑥,𝑥′).

Let 𝑓 be a function sampled from a Gaussian process 𝐺𝑃 (𝜇, 𝑘). Given the observations 𝐷𝑡 =

{(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, we obtain the posterior mean

𝜇𝑡(𝑥) = 𝑘𝑡(𝑥)
T(𝐾𝑡 + 𝜎2𝐼)−1𝑦𝑡

and posterior covariance

𝑘𝑡(𝑥,𝑥
′) = 𝑘(𝑥,𝑥′)− 𝑘𝑡(𝑥)

T(𝐾𝑡 + 𝜎2𝐼)−1𝑘𝑡(𝑥
′)

of the function via the kernel matrix 𝐾𝑡 = [𝑘(𝑥𝑖,𝑥𝑗)]𝑥𝑖,𝑥𝑗∈𝐷𝑡
and 𝑘𝑡(𝑥) = [𝑘(𝑥𝑖,𝑥)]𝑥𝑖∈𝐷𝑡 [151].

The posterior variance is given by 𝜎2𝑡 (𝑥) = 𝑘𝑡(𝑥,𝑥).

Additive Gaussian processes Additive Gaussian processes (add-GP) were proposed in [51],

and first analyzed in the BO setting in [91]. Following the latter, we assume that the function 𝑓 is a

sum of independent functions sampled from Gaussian processes that are active on disjoint sets 𝐴𝑚

of input dimensions. Precisely,

𝑓(𝑥) =
∑︁𝑀

𝑚=1
𝑓 (𝑚)(𝑥𝐴𝑚)

, with 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for all 𝑖 ̸= 𝑗, | ∪𝑀𝑖=1 𝐴𝑖| = 𝑑, and 𝑓 (𝑚) ∼ 𝐺𝑃 (𝜇(𝑚), 𝑘(𝑚)), for all 𝑚 ≤ 𝑀

(𝑀 ≤ 𝑑 < ∞). As a result of this decomposition, the function 𝑓 is distributed according to

𝐺𝑃 (
∑︀𝑀

𝑚=1 𝜇
(𝑚),

∑︀𝑀
𝑚=1 𝑘

(𝑚)).

Given a set of noisy observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1 where 𝑦𝜏 ∼ 𝒩 (𝑓(𝑥𝜏), 𝜎
2), the posterior

mean and covariance of the function component 𝑓 (𝑚) can be inferred as

𝜇
(𝑚)
𝑡 (𝑥) = 𝑘

(𝑚)
𝑡 (𝑥)T(𝐾𝑡 + 𝜎2𝐼)−1𝑦𝑡

111

and

𝑘
(𝑚)
𝑡 (𝑥,𝑥′) = 𝑘(𝑚)(𝑥,𝑥′)− 𝑘

(𝑚)
𝑡 (𝑥)T(𝐾𝑡 + 𝜎2𝐼)−1𝑘

(𝑚)
𝑡 (𝑥′),

where 𝑘
(𝑚)
𝑡 (𝑥) = [𝑘(𝑚)(𝑥𝑖,𝑥)]𝑥𝑖∈𝐷𝑡 and 𝐾𝑡 =

[︁∑︀𝑀
𝑚=1 𝑘

(𝑚)(𝑥𝑖,𝑥𝑗)
]︁
𝑥𝑖,𝑥𝑗∈𝐷𝑡

. For simplicity,

we use the shorthand 𝑘(𝑚)(𝑥,𝑥′) = 𝑘(𝑚)(𝑥𝐴𝑚 ,𝑥′𝐴𝑚).

Other notations Throughout the chapter, we use 𝜓 to denote the probability density function,

Ψ the cumulative density function of a normal distribution,𝑄(·) = 1−Ψ(·), and 𝛾(𝑡)𝜃 (𝑥) = 𝜃−𝜇𝑡(𝑥)
𝜎𝑡(𝑥)

,

unless otherwise mentioned.

6.1.2 Acquisition functions

Active data acquisition in BO is guided by an acquisition function 𝛼𝑡 : X → R, which indicates

how prominent a function input is. Usually the prominence of an input is high if it potentially has

high output value or it is informative or both. The design of acquisition functions plays a key role

in the performance of BO. In the following, we review historical landmarks of the development of

acquisition functions.

Probability of improvement (PI) [111] introduced the first BO acquisition function, PI, that

maximizes the probability of improving over a threshold 𝜃:

𝛼PI
𝑡 (𝑥) = Pr[𝑓(𝑥) > 𝜃] = 1−Ψ(𝛾

(𝑡)
𝜃 (𝑥)),

which is equivalent to selecting

𝑥𝑡 = argmin𝑥∈X 𝛾
(𝑡)
𝜃 (𝑥).

For each iteration, the threshold is set to be 𝜃 = max𝜏∈[1,𝑡] 𝑦𝜏 + 𝜂𝑡. In practice, PI is very sensitive

to the choice of 𝜂𝑡 and choosing 𝜂𝑡 can be very difficult in practice [85].

Expected improvement (EI) [134] proposed an alternative acquisition function called EI that

alleviated the problem of selecting the hyper-parameter 𝜂𝑡 in PI. The EI criterion selects the input

maximizing the expected improvement over the best observation 𝜃 = max𝜏∈[1,𝑡] 𝑦𝜏 ; namely,

𝛼EI
𝑡 (𝑥) = E[(𝑓(𝑥)− 𝜃)+].

112

For GPs, this improvement is given in closed form as

𝛼EI
𝑡 (𝑥) =

[︁
𝜓(𝛾

(𝑡)
𝜃 (𝑥))− 𝛾(𝑡)𝜃 (𝑥)𝑄(𝛾

(𝑡)
𝜃 (𝑥))

]︁
𝜎𝑡(𝑥).

[29] showed that EI may not converge to the global optimum, but a more sophisticated 𝜖-greedy

version of EI can converge to near-optimality.

Upper confidence bound (GP-UCB) The idea of using upper confidence bounds for bandit

problems was introduced by [8]. The upper confidence bound on the quality of each candidate is

calculated, and the candidate with the highest upper confidence bound is evaluated. [171] provided

a detailed analysis for using upper confidence bounds with GP bandits. They propose the upper

confidence bound for 𝑥 to be

𝛼GP−UCB
𝑡 (𝑥) = 𝜇𝑡(𝑥) + 𝜆𝑡𝜎𝑡(𝑥),

where 𝜆𝑡 =
(︀
2 log(|X|𝜋2𝑡2/(6𝛿))

)︀ 1
2 if X is discrete1. However, [171] also admitted that the theo-

retically derived value of 𝜆𝑡 may be suboptimal for practical performance.

Entropy search (ES) and predictive entropy search (PES) Entropy search methods use an

information-theoretic perspective to select where to evaluate. They find a query point that maxi-

mizes the information about the location 𝑥* = argmax𝑥∈X 𝑓(𝑥) whose value 𝑦* = 𝑓(𝑥*) achieves

the global maximum of the function 𝑓 . Using the negative differential entropy of 𝑝(𝑥*|𝐷𝑡) to char-

acterize the uncertainty about 𝑥*, ES [75] and PES [78] use the acquisition functions

𝛼
ES/PES
𝑡 (𝑥) = 𝐼({𝑥, 𝑦};𝑥* | 𝐷𝑡) (6.1)

= 𝐻 (𝑝(𝑥* | 𝐷𝑡))− E [𝐻(𝑝(𝑥* | 𝐷𝑡 ∪ {𝑥, 𝑦}))] (6.2)

= 𝐻(𝑝(𝑦 | 𝐷𝑡,𝑥))− E [𝐻(𝑝(𝑦 | 𝐷𝑡,𝑥,𝑥
*))] . (6.3)

ES uses formulation (6.2), in which the expectation is over 𝑝(𝑦|𝐷𝑡,𝑥), while PES uses the equiv-

alent, symmetric formulation (6.3), where the expectation is over 𝑝(𝑥*|𝐷𝑡). Unfortunately, both

𝑝(𝑥*|𝐷𝑡) and its entropy is analytically intractable and have to be approximated via expensive

computations. Moreover, the optimum may not be unique, adding further complexity to this distri-

bution.

1Please refer to [171] for continuous X.

113

6.1.3 Evaluation Criteria

We study two types of the evaluation criteria for BO, best-sample simple regret and inference regret.

In each iteration, we choose to evaluate one input 𝑥𝑡 to “learn” where the argmax of the function

is. The best-sample simple regret 𝑟𝑇 = max𝑥∈X 𝑓(𝑥) − max𝑡∈[1,𝑇] 𝑓(𝑥𝑡) measures the value

of the best queried point. After all queries, we may infer an argmax of the function, which is

usually chosen as �̃�𝑇 = argmax𝑥∈X 𝜇𝑇 (𝑥) [75, 78]. We denote the inference regret as 𝑅𝑇 =

max𝑥∈X 𝑓(𝑥)− 𝑓(�̃�𝑇) which characterizes how satisfying our inference of the argmax is.

6.2 Acquisition functions based on max-values

We study a group of acquisition functions that rely on the maximum value 𝑦* = 𝑓(𝑥*). These

acquisition functions are derived from the intuition that the max-value 𝑦* may provide enough

information to guide data acquisition. One simple idea (Sec. 6.2.1) is to greedily evaluate inputs

that are most likely to achieve the max-value 𝑦*, while the other acquisition function introduced in

Sec. 6.2.2 makes use of the max-value 𝑦* by analyzing information gain. We will see in Sec. 6.3

that, despite their different viewpoints, these two approaches are closely connected.

6.2.1 Optimization as argmax estimation (EST)

Consider the probability of event 𝑀𝑥: a fixed 𝑥 ∈ X is an argmax of 𝑓 . The event 𝑀𝑥 is equivalent

to the event that for all 𝑥′ ∈ X, we have 𝑣𝑥(𝑥′) := 𝑓(𝑥′) − 𝑓(𝑥) ≤ 0. Given observations

𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, the difference 𝑣𝑥(𝑥′) between two Gaussian variables is Gaussian:

𝑣𝑥(𝑥
′) ∼ 𝒩 (𝜇𝑡(𝑥

′)− 𝜇𝑡(𝑥), 𝜎𝑡(𝑥)2 + 𝜎𝑡(𝑥
′)2 − 2𝑘𝑡(𝑥,𝑥

′)).

The covariance for any 𝑥′,𝑥′′ ∈ X is

Cov(𝑣𝑥(𝑥
′), 𝑣𝑥(𝑥

′′)) = 𝜎𝑡(𝑥)
2 + 𝑘𝑡(𝑥

′,𝑥′′)− 𝑘𝑡(𝑥,𝑥′)− 𝑘𝑡(𝑥,𝑥′′).

The random variables {𝑣𝑥(𝑥′)}𝑥′∈X determine the cumulative probability

Pr[𝑀𝑥|𝐷𝑡] = Pr[∀𝑥′ ∈ X, 𝑣(𝑥′) ≤ 0|𝐷𝑡]. (6.4)

114

This probability may be specified via limits as e.g. in [75, App.A]. Moreover, due to the assumed

smoothness of 𝑓 , it is reasonable to work with a discrete approximation and restrict the set of

candidate points to be finite for now. So the quantity in Eqn. (6.4) is well-defined. However, the

computation of Eq. 6.4 requires integrating over a |X|-dimensional multivariate Gaussian. The

complexity of a numerical integration approach using Fubini’s theorem grows exponentially as |X|

increases.

Suppose the max-value of the function 𝑓 is given as 𝑦* , 𝑓(𝑥*) = 𝜃, can we estimate the

probability of 𝑀𝑥 more efficiently? The answer is yes. We approximate {𝑓(𝑥)}𝑥∈X by indepen-

dent Gaussian random variables with means 𝜇𝑡(𝑥) and variances 𝜎𝑡(𝑥)2 for all 𝑥 ∈ X. Our first

acquisition function, EST, is the probability of event 𝑀𝑥|𝑦*, 𝐷𝑡:

𝛼EST
𝑡 (𝑥) = Pr[𝑀𝑥|𝑦* = 𝜃,𝐷𝑡] ≈ 𝑄

(︁
𝛾
(𝑡)
𝜃 (𝑥)

)︁∏︁
𝑥′ ̸=𝑥

Ψ
(︁
𝛾
(𝑡)
𝜃 (𝑥′)

)︁
,

which is the probability that 𝑓(𝑥) ≥ 𝜃 and 𝑓(𝑥′) < 𝜃. Intuitively, our estimation strategy EST

chooses to evaluate the function input that is approximately most likely to achieve the highest func-

tion value 𝑦* = 𝜃. Evaluating Pr[𝑀𝑥|𝑦* = 𝜃,𝐷𝑡] takes only 𝑂(|X|) time2, and as we will see in

Sec. 6.3, the complexity of evaluating this acquisition function can be reduced to 𝑂(1) time.

It is important to point out that similar ideas on greedily evaluating the input that achieves best

value have inspired other existing acquisition functions. For example, Jones [85] presented “one-

stage approach for goal seeking” which assumes that the max-value of the function 𝑓 is known. This

approach (or “Method 6” refered in [85]) uses the likelihood of max-value 𝑦* under the predictive

distribution as the acquisition function: 𝑝(𝑓(𝑥) = 𝑦* | 𝐷𝑡). In essence, Method 6 of [85] is also

trying to compute the probability of event 𝑀𝑥|𝑦*, 𝐷𝑡. The approach we showed above, however,

uses a different approximation for the event 𝑀𝑥. Intuitively, our approximation can be more stable

because it also considers that other inputs have values less than max-value 𝑦*. If one uses the

probability density function (PDF) 𝑝(𝑓(𝑥) = 𝑦* | 𝐷𝑡) and have an input 𝑥 that has been estimated

to have higher value than 𝑦*, Method 6 of [85] will unlikely choose to evaluate 𝑥, because the

evaluation 𝑓(𝑥) could have a very low PDF for 𝑦*.

We will show both theoretically and empirically that this max-value parameter 𝜃 does not have

to be exactly the (often unknown) max-value of the function 𝑓 in order for EST to perform well. The

theoretical justification in Sec. 6.4.1 allows 𝜃 to be an upper bound on the max-value and removed

2This is excluding the time complexity of Gaussian process posterior inference.

115

the assumption that X is a discrete set. The tightness of the bound 𝜃 determines the magnitude of the

expected regret (Sec. 6.4.3). Moreover, using an upper bound on the max-value also yields good

experimental results, as shown in Sec. 6.6.4 and 6.6.5.

6.2.2 Max-value entropy search (MES)

The above observations suggest that the max-value 𝑦* plays a critical role in deciding where the

argmax of a function could be. If the max-value 𝑦* is unknown, we can adopt the same information-

theoretic idea as entropy search to gather information about the max-value 𝑦*. That means, instead

of measuring the information about the maximizing argument 𝑥*, we compute the information about

the maximum value 𝑦* = 𝑓(𝑥*). Our second acquisition function is the gain in mutual information

between the max-value 𝑦* and the next point we query, which can be approximated analytically by

evaluating the entropy of the predictive distribution:

𝛼MES
𝑡 (𝑥) = 𝐼({𝑥, 𝑦}; 𝑦* | 𝐷𝑡) (6.5)

= 𝐻(𝑝(𝑦 | 𝐷𝑡,𝑥))− E[𝐻(𝑝(𝑦 | 𝐷𝑡,𝑥, 𝑦
*))] (6.6)

≈ 1

𝐾

∑︁
𝑦*∈𝑌 *

𝑡

⎡⎣𝛾(𝑡)𝑦* (𝑥)𝜓(𝛾(𝑡)𝑦* (𝑥))
2Ψ(𝛾

(𝑡)
𝑦* (𝑥))

− log(Ψ(𝛾
(𝑡)
𝑦* (𝑥)))

⎤⎦ . (6.7)

Recall that 𝛾(𝑡)𝑦* (𝑥) = 𝑦*−𝜇𝑡(𝑥)
𝜎𝑡(𝑥)

(Sec. 6.1.1). The expectation in Eq. (6.6) is over 𝑝(𝑦*|𝐷𝑛),

which is approximated using Monte Carlo estimation by sampling a set of 𝐾 function maxima.

Notice that the probability in the first term 𝑝(𝑦|𝐷𝑡,𝑥) is a Gaussian distribution with mean 𝜇𝑡(𝑥)

and variance 𝑘𝑡(𝑥,𝑥). The probability in the second term 𝑝(𝑦|𝐷𝑛,𝑥, 𝑦
*) is a truncated Gaussian

distribution: given 𝑦*, the distribution of 𝑦 needs to satisfy 𝑦 ≤ 𝑦*. Importantly, while ES and

PES rely on the expensive, 𝑑-dimensional distribution 𝑝(𝑥*|𝐷𝑡), here, we use the one-dimensional

𝑝(𝑦*|𝐷𝑛), which is computationally much easier.

It remains to determine how to sample the max-value 𝑦* in MES. We propose two approaches

to sample 𝑦*: (a) sampling from an approximation via a Gumbel distribution; and (b) sampling

functions from the posterior Gaussian distribution and maximizing the functions to obtain samples

of 𝑦*. We present the MES algorithm in Alg. 13.

116

y

8 10 12
P
r[
ŷ
∗
<

y
]

0

0.2

0.4

0.6

0.8

1

Exact
Approx

Figure 6-1: An example of approximating the cumulative probability of the maximum of inde-
pendent differently distributed Gaussians ̂︁Pr[𝑦* < 𝑦] (Exact) with a Gumbel distribution 𝒢(𝑎, 𝑏)
(Approx) via percentile matching.

Gumbel sampling

The marginal distribution of 𝑓(𝑥) for any 𝑥 is a one-dimensional Gaussian, and hence the distribu-

tion of 𝑦* may be viewed as the maximum of an infinite collection of dependent Gaussian random

variables. Since this distribution is difficult to compute, we make two simplifications. First, we

replace the continuous set X by a discrete (finite), dense subset X̂ of representative points. If we

select X̂ to be an 𝜖-cover of X and the function 𝑓 is Lipschitz continuous with constant 𝐿, then we

obtain a valid upper bound on 𝑓(X) by adding 𝜖𝐿 to any upper bound on 𝑓(X̂).

Second, we use a “mean field” approximation and treat the function values at the points in X̂

as independent. If posterior covariance 𝑘𝑡(𝑥,𝑥′) ≥ 0, this “mean field” approximation tends to

over-estimate the maximum by Slepian’s lemma [165, 131].

We sample from the approximation 𝑝(𝑦*|𝐷𝑛) via its cumulative distribution function (CDF)̂︁Pr[𝑦* < 𝑧 | 𝐷𝑡] =
∏︀

𝑥∈X̂Ψ(𝛾
(𝑡)
𝑧 (𝑥)). That means we sample 𝑟 uniformly from [0, 1] and find 𝑧

such that Pr[𝑦* < 𝑧 | 𝐷𝑡] = 𝑟. A binary search for 𝑧 to accuracy 𝛿 requires 𝑂(log 1
𝛿) queries to the

CDF, and each query takes 𝑂(|X̂|) ≈ 𝑂(𝑛𝑑) time, so we obtain an overall time of 𝑂(𝑀 |X̂| log 1
𝛿)

for drawing 𝑀 samples.

To sample more efficiently, we propose a𝑂(𝑀+ |X̂| log 1
𝛿)-time strategy, by approximating the

CDF by a Gumbel distribution: ̂︁Pr[𝑦* < 𝑧 | 𝐷𝑡] ≈ 𝒢(𝑎, 𝑏) = 𝑒−𝑒
− 𝑧−𝑎

𝑏 . This choice is motivated by

the Fisher-Tippett-Gnedenko theorem [59], which states that the maximum of a set of i.i.d. Gaussian

variables is asymptotically described by a Gumbel distribution. This does not in general extend to

non-i.i.d. Gaussian variables, but we nevertheless observe that in practice, this approach yields a

good and fast approximation. Figure 6-1 shows an example of the approximation for the distribution

117

Algorithm 13 Max-value Entropy Search (MES)

1: function MES (𝑓,𝐾,𝐷0)
2: for 𝑡 = 1, · · · , 𝑇 do
3: 𝜇𝑡−1(·), 𝜎𝑡−1(·)← MODEL(𝐷𝑡−1)
4: 𝑌 *

𝑡 ←SAMPLEMAXVALUE (𝐾,𝐷𝑡−1)
5: 𝛼𝑡−1(·)← Eq. (6.7)
6: 𝑥𝑡 ← argmax𝑥∈X 𝛼𝑡−1(𝑥)
7: 𝑦𝑡 ← 𝑓(𝑥𝑡) + 𝜖𝑡, 𝜖𝑡 ∼ 𝒩 (0, 𝜎2)
8: 𝐷𝑡 ← 𝐷𝑡−1 ∪ {𝑥𝑡, 𝑦𝑡}
9: end for

10: end function

11: function SAMPLEMAXVALUE (𝐾,𝐷𝑡)
12: if Sample with Gumbel then
13: approximate Pr[𝑦* < 𝑧 | 𝐷𝑡] with 𝒢(𝑎, 𝑏)
14: sample a 𝐾-length vector 𝑟 ∼ Unif([0, 1])
15: 𝑌 *

𝑡 ← 𝑎− 𝑏 log(− log 𝑟)
16: else
17: for 𝑖 = 1, · · · ,𝐾 do
18: sample 𝑓 ∼ 𝐺𝑃 (𝜇𝑡, 𝑘𝑡 | 𝐷𝑡)
19: 𝑦*(𝑖) ← max𝑥∈X 𝑓(𝑥)
20: end for
21: 𝑌 *

𝑡 ← [𝑦*(𝑖)]
𝐾
𝑖=1

22: end if
23: return 𝑌 *

𝑡

24: end function

118

of the maximum of a 1-D function 𝑓𝑡 ∼ 𝐺𝑃 (𝜇𝑡, 𝑘𝑡); 50 observed data points are randomly selected

from a function sampled from a GP with mean zero and Gaussian kernel.

We sample from the Gumbel distribution via the Gumbel quantile function: we sample 𝑟 uni-

formly from [0, 1], and let the sample be 𝑦 = 𝒢−1(𝑎, 𝑏) = 𝑎 − 𝑏 log(− log 𝑟). We set the ap-

propriate Gumbel distribution parameters 𝑎 and 𝑏 by solving the two-variable linear equations

𝑎 − 𝑏 log(− log 𝑟1) = 𝑦1 and 𝑎 − 𝑏 log(− log 𝑟2) = 𝑦2, where Pr[𝑦* < 𝑦1] = 𝑟1 and Pr[𝑦* <

𝑦2] = 𝑟2. In practice, we use 𝑟1 = 0.25 and 𝑟2 = 0.75 so that the scale of the approximated

Gumbel distribution is proportional to the interquartile range of the CDF P̂r[𝑦* < 𝑧].

Optimizing posterior functions

For an alternative sampling strategy we follow [78]: we draw functions from the posterior GP and

then maximize each of the sampled functions. Given the observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)𝑡𝜏=1}, we can

approximate the posterior Gaussian process using a 1-hidden-layer neural network 𝑓(𝑥) = 𝑎T
𝑡𝜑(𝑥)

where 𝜑(𝑥) ∈ R𝐷 is a vector of feature functions [139, 150] and the Gaussian weight 𝑎𝑡 ∈ R𝐷 is

distributed according to a multivariate Gaussian 𝒩 (𝜈𝑡,Σ𝑡).

Computing 𝜑(𝑥). By Bochner’s theorem [155], the Fourier transform 𝑘 of a continuous and

translation-invariant kernel 𝑘 is guaranteed to be a probability distribution. Hence we can write the

kernel of the GP to be 𝑘(𝑥,𝑥′) = E𝜔∼𝑘(𝜔)[𝑒
𝑖𝜔T(𝑥−𝑥′)] = E𝑐∼𝑈 [0,2𝜋]E𝑘[2 cos(𝜔

T𝑥+ 𝑐) cos(𝜔T𝑥′+

𝑐)] and approximate the expectation by 𝑘(𝑥,𝑥′) ≈ 𝜑T(𝑥)𝜑(𝑥′) where 𝜑𝑖(𝑥) =
√︁

2
𝐷 cos(𝜔T

𝑖 𝑥+𝑐𝑖),

𝜔𝑖 ∼ �̂�(𝜔), and 𝑐𝑖 ∼ 𝑈 [0, 2𝜋] for 𝑖 = 1, . . . , 𝐷.

Computing 𝜈𝑡,Σ𝑡. By writing the GP as a random linear combination of feature functions

𝑎𝑇𝑡 𝜑(𝑥), we are defining the mean and covariance of the GP to be 𝜇𝑡(𝑥) = 𝜈T𝜑(𝑥) and 𝑘(𝑥,𝑥′) =

𝜑(𝑥)TΣ𝑡𝜑(𝑥
′). Let 𝑍 = [𝑧1, · · · , 𝑧𝑡] ∈ R𝐷×𝑡, where 𝑧𝜏 := 𝜑(𝑥𝜏) ∈ R𝐷. The GP posterior

mean and covariance in Section 6.1.1 become 𝜇𝑡(𝑥) = 𝑧T𝑍(𝑍T𝑍 + 𝜎2𝐼)−1𝑦𝑡 and 𝑘𝑡(𝑥,𝑥′) =

𝑧T𝑧′−𝑧T𝑍(𝑍T𝑍+𝜎2𝐼)−1𝑍T𝑧′. Because 𝑍(𝑍T𝑍+𝜎2𝐼)−1 = (𝑍𝑍T+𝜎2𝐼)−1𝑍, we can simplify

the above equations and obtain 𝜈𝑡 = 𝜎−2Σ𝑡𝑍𝑡𝑦𝑡 and Σ𝑡 = (𝑍𝑍T𝜎−2 + 𝐼)−1.

To sample a function from this random 1-hidden-layer neural network, we sample �̃� from

𝒩 (𝜈𝑡,Σ𝑡) and construct the sampled function 𝑓 = �̃�T𝜑(𝑥). Then we optimize 𝑓 with respect

to its input to get a sample of the maximum of the function max𝑥∈X 𝑓(𝑥).

119

Optimizing by iterative sampling

Numerical gradient-based optimization methods typically all adopt an iterative strategy and require

a sequence of function evaluations and corresonding gradient values of the form [𝑓(𝑥𝑖), 𝑓
′(𝑥𝑖)]

𝐾
𝑖=0

where 𝐾 is the number of steps that the optimizer takes. Using this property, we can derive an

iterative sampling approach to obtain a max-value sample of a GP.

More specifically, we start with the posterior GP 𝐺𝑃 (𝜇𝑡, 𝑘𝑡) conditioned on the current obser-

vations 𝐷𝑡 at the 𝑡-th iteration of BO. At step 0 of the optimization process for the max-value, We

can sample the function and gradient values [𝑓(𝑥0), 𝑓
′(𝑥0)] from the joint distribution over function

and gradient values, i.e.

⎡⎣𝑓(𝑥0)

𝑓 ′(𝑥0)

⎤⎦ ∼ 𝒩
⎛⎝⎡⎣𝜇(𝑥0)

𝜇′(𝑥0)

⎤⎦ ,
⎡⎣ 𝑘(𝑥0,𝑥0)

d𝑘(𝑥0,𝑥0)
d𝑥0

(d𝑘(𝑥0,𝑥0)
d𝑥0

)𝑇 d2𝑘(𝑥0,𝑥0)
d𝑥2

0

⎤⎦⎞⎠ .

Here 𝑥0 is an initial guess and the optimization process can be restarted using different 𝑥0. The sam-

pled [𝑓(𝑥0), 𝑓
′(𝑥0)] becomes our pseudo-observations. At step 𝑖 of the optimization, We sample

from a GP conditioned on both 𝐷𝑡 and all the previous pseudo-observations [𝑓(𝑥𝑗), 𝑓
′(𝑥𝑗)]

𝐾
𝑗=𝑖−1

to obtain [𝑓(𝑥𝑖), 𝑓
′(𝑥𝑖)]. Each 𝑥𝑖 is chosen by the numerical optimizer.

Once the optimizer converges, we will obtain a sample of the max-value. In the next iteration

of BO, we can discard all the pseudo-observations from the last iteration.

If we use 𝐾 steps in this approach, for iteration 𝑡 of BO, the optimization for sampling a max-

value has a time complexity of 𝑂((𝑡 + 𝐷)3𝐾4). This approach is an exact sampling method to

obtain a max-value if the underlying function we are optimizing is concave. However, a function

sampled from a GP can often be multi-peak, which makes this approach very sensitive to the initial

guess 𝑥0. We did not implement this method or compare with it in the experiment, but encourage

interested readers to try.

6.3 Connections among acquisition functions

In Sec. 6.2, we introduced two acquisition functions, EST and MES, to enable max-values to guide

BO. In particular, MES resembles ES and PES from the information-theoretic viewpoint, and ex-

tends the entropy search family of methods by using the entropy of the maximum value 𝑦*. Next,

we show that the max-value viewpoint also leads to new connections between known acquisition

functions in the literature. In particular, EST is equivalent to a variant of MES, and they connect

120

entropy search approaches with GP-UCB and PI. Note that the equivalence between GP-UCB and

PI was pointed out in [85], which also included part of the proof. We show a complete proof of the

relations among the methods in this section.

Lemma 6.3.1. The following methods are equivalent:

1. MES with 𝐾 = 1 and a single max-value sample 𝑦* for 𝛼MES
𝑡 (𝑥);

2. EST with max-value parameter 𝜃 = 𝑦*;

3. GP-UCB with parameter 𝜆𝑡 = min𝑥∈X 𝛾
(𝑡)
𝑦* (𝑥), where 𝛾(𝑡)𝑦* (𝑥) =

𝑦*−𝜇𝑡(𝑥)
𝜎𝑡(𝑥)

;

4. PI with threshold parameter 𝜃 = 𝑦*.

Proof. We first prove the equivalence between 2 and 4. Let 𝑏 be the input selected by EST. Without

loss of generality, we assume 𝑏 is unique. For all 𝑥 ∈ X and 𝑡 = 0, · · · , 𝑇 − 1, we have

Pr[𝑀𝑏|𝑦* = 𝑦*, 𝐷𝑡]

Pr[𝑀𝑥|𝑦* = 𝑦*, 𝐷𝑡]
∝∼
𝑄(𝛾

(𝑡)
𝑦* (𝑏))

∏︀
𝑥′ ̸=𝑏Ψ(𝛾

(𝑡)
𝑦* (𝑥

′))

𝑄(𝛾
(𝑡)
𝑦* (𝑥))

∏︀
𝑥′ ̸=𝑥Ψ(𝛾

(𝑡)
𝑦* (𝑥

′))
=
𝑄(𝛾

(𝑡)
𝑦* (𝑏))Ψ(𝛾

(𝑡)
𝑦* (𝑥))

𝑄(𝛾
(𝑡)
𝑦* (𝑥))Ψ(𝛾

(𝑡)
𝑦* (𝑏))

≥ 1,

and so,
Ψ(𝛾

(𝑡)
𝑦* (𝑏))

1−Ψ(𝛾
(𝑡)
𝑦* (𝑏))

≤
Ψ(𝛾

(𝑡)
𝑦* (𝑥))

1−Ψ(𝛾
(𝑡)
𝑦* (𝑥))

. This inequality holds if and only if 𝛾(𝑡)𝑦* (𝑏) ≤ 𝛾
(𝑡)
𝑦* (𝑥) for all

𝑥 ∈ X because Ψ monotonically increases and 0 < Ψ(𝛾) < 1 for any −∞ < 𝛾 < ∞. Hence,

EST chooses 𝑏 = argmin𝑥∈X 𝛾
(𝑡)
𝑦* (𝑥). On the other hand, PI chooses argmin𝑥∈X 𝛾

(𝑡)
𝜃 (𝑥), where

𝜃 = 𝑦*. Hence EST and PI are equivalent under the parameterization specified in the lemma.

We next prove the equivalence between 2 and 3. Assume 𝑎 is the unique input selected by GP-

UCB. By the definition of 𝜆𝑡, we have 𝜆𝑡 = min𝑥∈X 𝛾
(𝑡)
𝑦* (𝑥) = 𝛾

(𝑡)
𝑦* (𝑏) ≤ 𝛾

(𝑡)
𝑦* (𝑎). This implies that

𝜇𝑡(𝑏) + 𝜆𝑡𝜎𝑡(𝑏) = 𝑦* ≥ 𝜇𝑡(𝑎) + 𝜆𝑡𝜎𝑡(𝑎) ≥ 𝜇𝑡(𝑏) + 𝜆𝑡𝜎𝑡(𝑏), because by the input selection rule

of GP-UCB, we also have 𝜇𝑡(𝑎) + 𝜆𝑡𝜎𝑡(𝑎) = max𝑥∈X 𝜇𝑡(𝑥) + 𝜆𝑡𝜎𝑡(𝑥). Hence, by uniqueness of

𝑎 and 𝑏, we have 𝑎 = 𝑏. So GP-UCB and EST select the same input.

What remains to be shown is the equivalence between 1 and 2. When using a single 𝑦* in MES,

the next point to evaluate is chosen by maximizing 𝛼𝑡(𝑥) = 𝛾
(𝑡)
𝑦* (𝑥)

𝜓(𝛾
(𝑡)
𝑦* (𝑥))

2Ψ(𝛾
(𝑡)
𝑦* (𝑥))

− log(Ψ(𝛾
(𝑡)
𝑦* (𝑥))).

For EST with 𝜃 = 𝑦*, the next point to evaluate is chosen by minimizing 𝛾(𝑡)𝑦* (𝑥). Let us define

a function 𝑔(𝑢) = 𝑢 𝜓(𝑢)
2Ψ(𝑢) − log(Ψ(𝑢)), 𝑢 ∈ R. Clearly, 𝛼𝑡(𝑥) = 𝑔(𝛾

(𝑡)
𝑦* (𝑥)). Because 𝑔(𝑢) is

a monotonically decreasing function, maximizing 𝑔(𝛾(𝑡)𝑦* (𝑥)) is equivalent to minimizing 𝛾(𝑡)𝑦* (𝑥).

Hence 1 and 2 are equivalent.

Notice that, despite the fact that GP-UCB typically uses 𝜆𝑡 > 0, the proof of Lemma 6.3.1

does not depend on the sign of 𝜆𝑡. Corollary 6.3.2 shows that, no matter what value is used for

121

𝜆𝑡 in GP-UCB, there is a corresponding parameterization for PI and other methods so that they are

equivalent to GP-UCB.

Corollary 6.3.2. The following methods are equivalent:

1. MES with 𝐾 = 1 and a single sample 𝑦* = max𝑥∈X 𝜇𝑡(𝑥) + 𝜆𝑡𝜎𝑡(𝑥) for 𝛼MES
𝑡 (𝑥);

2. EST with max-value parameter 𝜃 = max𝑥∈X 𝜇𝑡(𝑥) + 𝜆𝑡𝜎𝑡(𝑥);

3. GP-UCB with parameter 𝜆𝑡 ∈ R;

4. PI with threshold parameter 𝜃 = max𝑥∈X 𝜇𝑡(𝑥) + 𝜆𝑡𝜎𝑡(𝑥).

Proof. The equivalence of 1,2 and 4 directly follows Lemma 6.3.1. So we only need to show the

equivalence between 2 and 3. Assume 𝑎 is the unique input selected by GP-UCB and 𝑏 is the

unique input selected by EST. By definition, 𝜃 = max𝑥∈X 𝜇𝑡(𝑥)+𝜆𝑡𝜎𝑡(𝑥) = 𝜇𝑡(𝑎)+𝜆𝑡𝜎𝑡(𝑎). By

Lemma 6.3.1, we have 𝜃−𝜇𝑡(𝑏)
𝜎𝑡(𝑏)

≤ 𝜃−𝜇𝑡(𝑎)
𝜎𝑡(𝑎)

= 𝜆𝑡. Combining both equations, we have

𝜇𝑡(𝑎) + 𝜆𝑡𝜎𝑡(𝑎) = 𝜃 ≤ 𝜇𝑡(𝑏) + 𝜆𝑡𝜎𝑡(𝑏) ≤ 𝜇𝑡(𝑎) + 𝜆𝑡𝜎𝑡(𝑎).

Hence, by the uniqueness of 𝑎 and 𝑏, we have 𝑎 = 𝑏, so 2 and 3 are equivalent.

Alg. 14 compares the pseudocode for all the methods mentioned in Lemma 6.3.1. At the 𝑡-th it-

eration, we compute the target value, 𝑦*, with different strategies. Then, 𝑥𝑡 = argmin𝑥∈X
𝑦*−𝜇𝑡−1(𝑥)
𝜎𝑡−1(𝑥)

serves as the next input to evaluate.

Algorithm 14 A unified BO algorithm for MES, EST, GP-UCB and PI

1: function BO-UNIFIED (𝑓,𝐷0)

2: for 𝑡 = 1, · · · , 𝑇 do

3: 𝜇𝑡−1(·), 𝜎𝑡−1(·)← MODEL(𝐷𝑡−1)

4: 𝜃 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

SAMPLEMAXVALUE(1, 𝐷𝑡−1) MES with K=1

𝑦* EST

max𝑥∈X 𝜇𝑡−1(𝑥) + 𝜆𝑡−1𝜎𝑡−1(𝑥) GP-UCB

max𝜏∈[1,𝑡−1] 𝑦𝜏 + 𝜂𝑡−1 PI

5: 𝑥𝑡 ← argmin𝑥∈X
𝜃−𝜇𝑡−1(𝑥)
𝜎𝑡−1(𝑥)

6: 𝑦𝑡 ← 𝑓(𝑥𝑡) + 𝜖𝑡, 𝜖𝑡 ∼ 𝒩 (0, 𝜎2)

7: 𝐷𝑡 ← 𝐷𝑡−1 ∪ {𝑥𝑡, 𝑦𝑡}

8: end for

9: end function

122

One interpretation of Lemma 6.3.1 is that all these acquisition functions (MES, EST, GP-UCB

and PI) share the same idea of reaching a target value (𝑦* in this case), and thereby trading off

exploration and exploitation. GP-UCB in [171] can be interpreted as setting the target value to be

a loose upper bound max𝑥∈X 𝜇𝑡−1(𝑥) + 𝜆𝑡𝜎𝑡−1(𝑥) with 𝜆𝑡 = (2 log(|X|𝜋2𝑡2/6𝛿))
1
2 , as a result of

applying a union bound on all the members of X3. PI applies a upwards shift of 𝜂𝑡−1 to the current

best observation max𝜏∈[1,𝑡−1] 𝑦𝜏 . In both cases, the exploration-exploitation tradeoff depends on

the parameter to be set.

On the other hand, MES and EST implicitly and automatically balance exploration and ex-

ploitation guided by the maximum value of the function. Viewed as GP-UCB or PI, MES and EST

adaptively set the respective parameter in a data-dependent way. If we write EST or MES as PI, we

see that target value used in PI becomes 𝜃 = 𝑦* > max𝜏∈[1,𝑡−1] 𝑦𝜏 . Having a target value larger

than the current best observation is known to be advantageous in practice [124]. These analogies

likewise suggest that the target value 𝜃 = max𝜏∈[1,𝑡] 𝑦𝜏 in PI corresponds to a very small coeffi-

cient 𝜆𝑡 in GP-UCB, and results in very little exploration, offering an explanation for the known

shortcomings of this target value 𝜃.

From an information-theoretic view, we can also interpret Lemma 6.3.1 as a bridge between

modern entropy search methods and classic BO acquisition functions: PI and GP-UCB are approxi-

mately maximizing the information gain about the function max-value if their parameters are set as

in Lemma 6.3.1.

Note that max-value based acquisition functions are not only intuitively reasonable, but they

also enable us to prove the first regret bounds for special cases of PI and entropy search methods, as

detailed in Sec. 6.4.

6.4 Regret Bounds

In this section, we analyze regret bounds for EST with known max-value parameter 𝜃 and MES

with a single max-value 𝑦* sampled. By the connections analyzed in Sec. 6.3, EST with known

max-value parameter 𝜃 is exactly the same method as PI with a given threshold parameter 𝜃; MES

with a single max-value sample 𝑦* is a point estimate of the information gain in Eq. 6.5. To the best

of our knowledge, the results shown in this section are the first regret bound for a variant of PI and

3Since Pr[|𝑓(𝑥)−𝜇(𝑥)| > 𝜆𝑡𝜎(𝑥)] ≤ 𝑒
−𝜆2

𝑡
2 , applying the union bound results in Pr[|𝑓(𝑥)−𝜇(𝑥)| > 𝜆𝑡𝜎(𝑥), ∀𝑥 ∈

X] ≤ |X|𝑒
−𝜆2

𝑡
2 . This means 𝑓(𝑥) ≤ max𝑥∈X 𝜇(𝑥) + 𝜆𝑡𝜎(𝑥) with probability at least 1− |X|𝑒

−𝜆2
𝑡

2 [171, Lemma 5.1].

123

a variant of ES, both of which are guided by max-values.

6.4.1 Regret Bounds for EST and PI

We begin with a high-probability bound on the best-sample simple regret 𝑟𝑇 . In particular, Theo-

rem 6.4.1 establishes that EST and PI asymptotically achieves no regret if its max-value/threshold

parameter 𝜃 is a strict upper bound on the maximum function value. Notice that this upper bound 𝜃

does not have to be the same across iterations. Hence in the following, we add subscript 𝑡 and use

𝜃𝑡 for 𝑡-th iteration of EST and PI.

Theorem 6.4.1. Assume the objective function 𝑓 ∼ 𝐺𝑃 (𝜇, 𝑘) where 𝑘(𝑥,𝑥′) ≤ 1,∀𝑥,𝑥′ ∈ X and

the observations on 𝑓 have iid additive Gaussian noise 𝒩 (0, 𝜎2). If in each iteration 𝑡 ∈ [1, 𝑇],

the query point is chosen as 𝑥𝑡 = argmin𝑥∈X 𝛾
(𝑡−1)
𝜃𝑡

(𝑥), where 𝛾(𝑡−1)
𝜃𝑡

(𝑥) , 𝜃𝑡−𝜇𝑡−1(𝑥)
𝜎𝑡−1(𝑥)

and 𝜃𝑡 ≥

max𝑥∈X 𝑓(𝑥), then with probability at least 1− 𝛿, the best-sample simple regret up to 𝑇 iterations

is bounded as

𝑟𝑇 ≤ (𝜈𝑡* + 𝜁𝑡*)

√︂
𝐶𝜌𝑇
𝑇

,

where 𝐶 = 2/ log(1 + 𝜎−2) and 𝜁𝑡 = (2 log(𝜋𝑡2𝛿))
1
2 , 𝜋𝑡 satisfy

∑︀𝑇
𝑡=1 𝜋

−1
𝑡 ≤ 1, and 𝜋𝑡 > 0;

𝑡* = argmax𝑡(𝜈𝑡 + 𝜁𝑡) with 𝜈𝑡 , min𝑥∈X 𝛾
(𝑡−1)
𝜃𝑡

(𝑥), and 𝜌𝑇 is the maximum information gain of

at most 𝑇 selected points (Eq. (6.8)).

Let 𝑓𝐴 = [𝑓(𝑥)]𝑥∈𝐴 be the function values at an input set 𝐴 and 𝑦𝐴 be the observations at the

same inputs. The information gain 𝜌𝑇 after 𝑇 rounds is the maximum mutual information between

function values 𝑓𝐴 and observations 𝑦𝐴.

𝜌𝑇 = max𝐴⊆X,|𝐴|≤𝑇 𝐼(𝑦𝐴,𝑓𝐴) = max𝐴⊆X,|𝐴|≤𝑇
1

2
log det(𝐼 + 𝜎−2𝐾𝐴). (6.8)

If 𝑘(𝑥,𝑥) ≤ 1 and X ⊂ R𝑑, then we can bound 𝜌𝑇 = 𝑂((log 𝑇)𝑑+1) for the Gaussian kernel, and

𝜌𝑇 = 𝑂(𝑇 𝑑(𝑑+1)/(2𝜉+𝑑(𝑑+1)) log 𝑇) for the Matérn kernel, where 𝜉 is the roughness parameter of

the Matérn kernel [171, Theorem 5].

Before proving Theorem 6.4.1, we state a few lemmas that we will need.

Lemma 6.4.2. Pick 𝛿 ∈ (0, 1) and set 𝜁𝑡 = (2 log(𝜋𝑡2𝛿))
1
2 , where

∑︀𝑇
𝑡=1 𝜋

−1
𝑡 ≤ 1, 𝜋𝑡 > 0. Then it

holds that Pr[𝜇𝑡−1(𝑥𝑡)− 𝑓(𝑥𝑡) ≤ 𝜁𝑡𝜎𝑡−1(𝑥𝑡)] ≥ 1− 𝛿, for all 𝑡 ∈ [1, 𝑇].

124

Proof. Let 𝑧𝑡 =
𝜇𝑡−1(𝑥𝑡)−𝑓(𝑥𝑡)

𝜎𝑡−1(𝑥𝑡)
∼ 𝒩 (0, 1). It holds that

Pr[𝑧𝑡 > 𝜁𝑡] =

∫︁ +∞

𝜁𝑡

1√
2𝜋
𝑒−𝑧

2/2 d𝑧 =

∫︁ +∞

𝜁𝑡

1√
2𝜋
𝑒−(𝑧−𝜁𝑡)2/2−𝜁2𝑡 /2−𝑧𝜁𝑡 d𝑧

≤ 𝑒−𝜁2𝑡 /2
∫︁ +∞

𝜁𝑡

1√
2𝜋
𝑒−(𝑧−𝜁𝑡)2/2 d𝑧 =

1

2
𝑒−𝜁

2
𝑡 /2.

A union bound extends this bound to all rounds: Pr[𝑧𝑡 > 𝜁𝑡 for some 𝑡 ∈ [1, 𝑇]] ≤
∑︀𝑇

𝑡=1
1
2𝑒

−𝜁2𝑡 /2.

With 𝜁𝑡 = (2 log(𝜋𝑡2𝛿))
1
2 and

∑︀𝑇
𝑡=1 𝜋

−1
𝑡 = 1, this implies that with probability at least 1− 𝛿, it holds

that 𝜇𝑡−1(𝑥𝑡) − 𝑓(𝑥𝑡) ≤ 𝜁𝑡𝜎𝑡−1(𝑥𝑡) for all 𝑡 ∈ [1, 𝑇]. One may set 𝜋𝑡 = 1
6𝜋

2𝑡2, or 𝜋𝑡 = 𝑇 , in

which case 𝜁𝑡 = 𝜁 = (2 log(𝑇2𝛿))
1
2 .

Lemma 6.4.3 (Lemma 5.3 in [171]). The information gain for the selected points can be expressed

in terms of the predictive variances:

𝐼(𝑦𝑇 ;𝑓𝑇) =
1

2

∑︁𝑇

𝑡=1
log(1 + 𝜎−2𝜎2𝑡−1(𝑥𝑡))).

The proof of Theorem 6.4.1 now follows from the above lemmas.

Proof. (Theorem 6.4.1) Let 𝜁𝑡 = 2 log(𝜋𝑡2𝛿), 𝜋𝑡 = 𝜋2𝑡2

6 . By Lemma 6.4.2, 𝜇𝑡−1(𝑥𝑡) − 𝑓(𝑥𝑡) ≤

𝜁𝑡𝜎𝑡−1(𝑥𝑡) ∀𝑡 ∈ [1, 𝑇] holds with probability at least 1 − 𝛿. We define immediate regret at 𝑡-th

iteration as 𝑟𝑡 , max𝑥∈X 𝑓(𝑥)− 𝑓(𝑥𝑡). If 𝜇𝑡−1(𝑥𝑡)− 𝑓(𝑥𝑡) ≤ 𝜁𝑡𝜎𝑡−1(𝑥𝑡), 𝑟𝑡 is upper bounded as

𝑟𝑡 ≤ 𝜃𝑡 − 𝑓(𝑥𝑡) ≤ 𝜃𝑡 − 𝜇𝑡−1(𝑥𝑡) + 𝜁𝑡𝜎𝑡−1(𝑥𝑡) = (𝜈𝑡 + 𝜁𝑡)𝜎𝑡−1(𝑥𝑡),≤ (𝜈𝑡* + 𝜁𝑡*)𝜎𝑡−1(𝑥𝑡)

where 𝜈𝑡 , min𝑥∈X
𝜃𝑡−𝜇𝑡−1(𝑥)
𝜎𝑡−1(𝑥)

, 𝜃𝑡 ≥ max𝑥∈X 𝑓(𝑥) and 𝑡* = argmax𝑡(𝜈𝑡 + 𝜁𝑡). The best-sample

simple regret 𝑟𝑇 satisfies

𝑟𝑇 ≤
1

𝑇

∑︁𝑇

𝑡=1
𝑟𝑡 ≤

1

𝑇

∑︁𝑇

𝑡=1
𝜎𝑡−1(𝑥𝑡)(𝜈𝑡* + 𝜁𝑡*).

To bound the sum of variances, we first use that (1+𝑎)𝑥 ≤ 1+𝑎𝑥 for 0 ≤ 𝑥 ≤ 1 and the assumption

𝜎𝑡−1(𝑥𝑡) ≤
√︀
𝑘(𝑥𝑡,𝑥𝑡) ≤ 1 to obtain

𝜎2𝑡−1(𝑥𝑡) ≤
log(1 + 𝜎−2𝜎2𝑡−1(𝑥𝑡))

log(1 + 𝜎−2)
. (6.9)

Lemma 6.4.3 now implies that
∑︀𝑇

𝑡=1 𝜎
2
𝑡−1(𝑥𝑡) ≤ 2

log(1+𝜎−2)
𝐼(𝑦𝑇 ;𝑓𝑇). Using the shorthand 𝜌𝑇 =

125

𝐼(𝑦𝑇 ;𝑓𝑇) and the Cauchy-Schwarz inequality leads to

∑︁𝑇

𝑡=1
𝜎𝑡−1(𝑥𝑡) ≤

√︂
𝑇
∑︁𝑇

𝑡=1
𝜎2𝑡−1(𝑥𝑡) ≤

√︃
2𝑇

log(1 + 𝜎−2)
𝜌𝑇 . (6.10)

Therefore, with probability at least 1− 𝛿,

𝑟𝑇 ≤ (𝜈𝑡* + 𝜁𝑡*)

√︃
2𝑇𝜌𝑇

log(1 + 𝜎−2)
.

The derivation of the above regret bound for EST is similar to that for GP-UCB in [171], due to

the connections between the two methods. Yet, the obviation of applying union bound over all of X,

and the freedom of choosing the function maximum upper bound makes our bounds more flexible

and adaptive to EST/PI with different choices of target values 𝜃𝑡.

Consistency In order for this regret bound to be consistent, a.k.a. converging to 0, however,

it is important to choose the target value 𝜃𝑡 in such a way that the regret bound’s coefficient 𝜈𝑡* =

max𝑡min𝑥
𝜃𝑡−𝜇𝑡−1(𝑥)
𝜎𝑡−1(𝑥)

is 𝑜(1). Admittedly, the choice of GP-UCB reflected by Corrollary 6.3.2 will

ensure having a consistent bound by setting the target value 𝜃𝑡 to be max𝑥 𝜇𝑡−1(𝑥) + 𝜆𝑡𝜎𝑡−1(𝑥)

and appropriately setting 𝜆𝑡, e.g. setting 𝜆𝑡 to be a constant. Alternatively, if we set 𝜃𝑡 to be the

exact max-value 𝑓*, we can also ensure that 𝜈𝑡 is bounded by a constant with high probability by

applying Lemma 6.4.2 to the function argmax 𝑥*. It is unclear if a consistent regret bound exists for

target values strictly larger than the function max-value, but empirically, as shown in Section 6.6,

our method stills works well with approximate estimates of max-value 𝑓*.

6.4.2 Regret Bounds for MES

The connection with EST and PI directly leads to a bound on the best-sample simple regret of MES,

when using a single max-value sample 𝑦*𝑡 in the 𝑡-th iteration of the algorithm.

Theorem 6.4.4. Assume the objective function 𝑓 ∼ 𝐺𝑃 (𝜇, 𝑘) where 𝑘(𝑥,𝑥′) ≤ 1, ∀𝑥,𝑥′ ∈ X

and the observations on 𝑓 have iid additive Gaussian noise 𝒩 (0, 𝜎2). Let 𝐹 be a cumulative

density function such that 𝐹 (𝑦*) ≤ 𝑤 ∈ [0, 1), 𝑦* = max𝑥∈X 𝑓(𝑥). If in each iteration 𝑡, the

query point is chosen as 𝑥𝑡 = argmax𝑥∈X 𝛾
(𝑡−1)
𝑦*𝑡

(𝑥)
𝜓(𝛾

(𝑡−1)

𝑦*𝑡
(𝑥))

2Ψ(𝛾
(𝑡−1)

𝑦*𝑡
(𝑥))
− log(Ψ(𝛾

(𝑡−1)
𝑦*𝑡

(𝑥))), where

𝛾
(𝑡−1)
𝑦*𝑡

(𝑥) =
𝑦*𝑡 −𝜇𝑡−1(𝑥)
𝜎𝑡−1(𝑥)

and 𝑦*𝑡 is independently drawn from 𝐹 , then with probability at least 1− 𝛿,

126

in 𝑇 ′ =
∑︀𝑇

𝑖=1 log𝑤
𝛿

2𝜋𝑖
number of iterations, the best-sample simple regret satisfies

𝑟𝑇 ′ ≤
√︂
𝐶𝜌𝑇
𝑇

(𝜈𝑡* + 𝜁𝑡*) (6.11)

where 𝐶 = 2/ log(1 + 𝜎−2) and 𝜁𝑖 = (2 log(𝜋𝑖𝛿))
1
2 , 𝜋𝑖 satisfies

∑︀𝑇
𝑖=1 𝜋

−1
𝑖 ≤ 1 and 𝜋𝑖 > 0,

𝑖 ∈ [1, 𝑇]; 𝑡* = argmax𝑖∈[1,𝑇](𝜈𝑖+𝜁𝑖) with 𝜈𝑖 , min𝑥∈X,𝑦*𝑡𝑖>𝑦
* 𝛾

(𝑡𝑖−1)
𝑦*𝑡𝑖

(𝑥), and 𝜌𝑇 is the maximum

information gain of at most 𝑇 selected points.

Proof. (Theorem 6.4.4) By Lemma 6.3.1, we know that the theoretical results from Theorem 6.4.1

can be adapted to MES if 𝑦*𝑡 ≥ 𝑦*. The key question is when a sampled 𝑦*𝑡 that can satisfy this

condition. Because the cumulative density 𝐹 (𝑦*) ≤ 𝑤 ∈ [0, 1) and 𝑦*𝑡 are independent samples

from 𝐹 , there exists at least one 𝑦*𝑡 that satisfies 𝑦*𝑡 ≥ 𝑦* with probability at least 1 − 𝑤𝑘𝑖 in 𝑘𝑖

iterations.

Let 𝑇 ′ =
∑︀𝑇

𝑖=1 𝑘𝑖 be the total number of iterations. We split these iterations to 𝑇 parts where

each part have 𝑘𝑖 iterations, 𝑖 = 1, · · · , 𝑇 . By union bound, with probability at least 1−
∑︀𝑇

𝑖=1𝑤
𝑘𝑖 ,

in all the 𝑇 parts of iterations, we have at least one iteration 𝑡𝑖 which samples 𝑦*𝑡𝑖 satisfying 𝑦*𝑡𝑖 ≥

𝑦*, ∀𝑖 = 1, · · · , 𝑇 .

Let
∑︀𝑇

𝑖=1𝑤
𝑘𝑖 = 𝛿

2 , we can set 𝑘𝑖 = log𝑤
𝛿

2𝜋𝑖
for any

∑︀𝑇
𝑖=1(𝜋𝑖)

−1 = 1. A convenient choice

for 𝜋𝑖 is 𝜋𝑖 = 𝜋2𝑖2

6 . Hence with probability at least 1 − 𝛿
2 , there exist a sampled 𝑦*𝑡𝑖 satisfying

𝑦*𝑡𝑖 ≥ 𝑦
*, ∀𝑖 = 1, · · · , 𝑇 .

Now let 𝜁𝑖 = (2 log 𝜋𝑖
𝛿)

1
2 . By Lemma 6.4.2, the immediate regret 𝑟𝑡𝑖 = 𝑦* − 𝑓(𝑥𝑡𝑖) can be

bounded as 𝑟𝑡𝑖 ≤ (𝜈𝑖 + 𝜁𝑖)𝜎𝑡𝑖−1(𝑥𝑡𝑖). Note that by assumption 0 ≤ 𝜎2𝑡𝑖−1(𝑥𝑡𝑖) ≤ 1, so we have

𝜎2𝑡𝑖−1 ≤
log(1+𝜎−2𝜎2

𝑡𝑖−1(𝑥𝑡𝑖))

log(1+𝜎−2)
. Then by Lemma 6.4.3, we have

∑︀𝑇
𝑖=1 𝜎

2
𝑡𝑖−1(𝑥𝑡𝑖) ≤ 2

log(1+𝜎−2)
𝐼(𝑦𝑇 ;𝑓𝑇)

where 𝑓𝑇 = (𝑓(𝑥𝑡𝑖))
𝑇
𝑖=1 ∈ R𝑇 ,𝑦𝑇 = (𝑦𝑡𝑖)

𝑇
𝑖=1 ∈ R𝑇 . From assumptions, we have 𝐼(𝑦𝑇 ;𝑓𝑇) ≤

𝜌𝑇 . By Cauchy-Schwarz inequality,
∑︀𝑇

𝑖=1 𝜎𝑡𝑖−1(𝑥𝑡𝑖) ≤
√︁
𝑇
∑︀𝑇

𝑖=1 𝜎
2
𝑡𝑖−1(𝑥𝑡𝑖) ≤

√︁
2𝑇𝜌𝑇

log(1+𝜎−2)
. It

follows that with probability at least 1− 𝛿,

∑︁𝑇

𝑖=1
𝑟𝑡𝑖 ≤ (𝜈𝑡* + 𝜁𝑡*)

√︃
2𝑇𝜌𝑇

log(1 + 𝜎−2)
.

As a result, the best-sample simple regret is bounded as

𝑟𝑇 ′ ≤ 1

𝑇

∑︁𝑇

𝑖=1
𝑟𝑡𝑖 ≤ (𝜈𝑡* + 𝜁𝑡*)

√︃
2𝜌𝑇

𝑇 log(1 + 𝜎−2)
,

127

where 𝑇 ′ =
∑︀𝑇

𝑖=1 𝑘𝑖 =
∑︀𝑇

𝑖=1 log𝑤
𝛿

2𝜋𝑖
is the total number of iterations.

Notice that Theorem 6.4.4 removed the assumption in [187, Theorem 3.2] that 𝐹 is the ground

truth probability density function of the function maximum 𝑦*. The only requirement on 𝐹 is that

there is non-zero probability to sample 𝑦* ≥ 𝑦*. Together with Lemma 6.4.6, we can show that

the regret bound in Theorem 6.4.4 holds for the sampling approach described in Section 6.2.2 with

some additional assumptions on function 𝑓 . The proof of Lemma 6.4.6 uses Slepian’s comparison

lemma stated in Lemma 6.4.5.

Lemma 6.4.5 (Slepian’s Comparison Lemma [165, 131]). Let 𝑢,𝑣 ∈ R𝑛 be two multivariate Gaus-

sian random vectors with the same mean and variance, such that

E[𝑣𝑖𝑣𝑗] ≤ E[𝑢𝑖𝑢𝑗], ∀𝑖, 𝑗.

Then for every 𝑦

Pr[sup𝑖∈[1,𝑛] 𝑣𝑖 ≤ 𝑦] ≤ Pr[sup𝑖∈[1,𝑛] 𝑢𝑖 ≤ 𝑦].

Lemma 6.4.6. In addition to the assumptions made in Theorem 6.4.4, we assume 𝑓 is a Lipschitz

continuous function with Lipschitz constant 𝐿. Let X̂ be an 𝜖-covering of X. For any iteration

𝑡 ∈ [1, 𝑇], if 𝑧* ∼ 𝐹𝑡(𝑦) =
∏︀

𝑥∈X̂Ψ(𝛾
(𝑡−1)
𝑦 (𝑥)) and 𝑘𝑡(𝑥,𝑥′) ≥ 0,∀𝑥,𝑥′ ∈ X̂, then there exists

𝑤 ∈ [0, 1) such that Pr[𝑧* + 𝜖𝐿 < 𝑦*] ≤ 𝑤.

Proof. If 𝑘𝑡(𝑥,𝑥′) ≥ 0, ∀𝑥,𝑥′ ∈ X̂, we have 𝐹𝑡(𝑦) = Pr[sup𝑥∈X̂ 𝑔(𝑥) ≤ 𝑦] where 𝑔(𝑥) ∼

𝒩 (𝜇𝑡(𝑥), 𝜎
2
𝑡 (𝑥)) and Cov(𝑔(𝑥), 𝑔(𝑥′)) = 0 ≤ 𝑘𝑡(𝑥,𝑥

′), ∀𝑥,𝑥′ ∈ X̂. By Lemma 6.4.5, the

cumulative density function 𝐹𝑡 satisfies 𝐹𝑡(𝑦) ≤ Pr[sup𝑥∈X̂ 𝑓(𝑥) < 𝑦 | 𝐷𝑡]. Let 𝑧* be the ground

truth maximizer of 𝑓(𝑥),𝑥 ∈ X̂. Because 𝑧* ∼ Pr[sup𝑥∈X̂ 𝑓(𝑥) < 𝑦 | 𝐷𝑡], Pr[sup𝑥∈X̂ 𝑓(𝑥) <

𝑧* | 𝐷𝑡] ∈ (0, 1) by the sampling procedure: uniformly randomly sample 𝑝 from Unif[0, 1] and find

𝑧* such that Pr[sup𝑥∈X̂ 𝑓(𝑥) < 𝑧* | 𝐷𝑡] = 𝑝; 𝑝 ̸= 1 w.p. 1. Hence, 𝐹𝑡(𝑧*) ≤ 𝑤 and 𝑤 ∈ [0, 1).

Because X̂ is an 𝜖-covering of X, for any 𝑥 ∈ X, there exists 𝑥′ ∈ X̂ such that ‖𝑥′ − 𝑥‖ ≤ 𝜖.

By Lipschitz assumption on 𝑓 , we have |𝑓(𝑥)− 𝑓(𝑥′)| ≤ 𝐿𝜖,∀‖𝑥−𝑥′‖ ≤ 𝜖. So there exist 𝑥 ∈ X̂

such that |𝑓(𝑥)− 𝑦*| ≤ 𝐿𝜖. This implies that 𝑦* ≤ 𝑓(𝑥) + 𝐿𝜖,∃𝑥 ∈ X̂ and 𝑦* ≤ 𝑧* + 𝐿𝜖.

By assumption, we have 𝑧* ∼ 𝐹𝑡(·). Because we have 𝐹𝑡(𝑧*) ≤ 𝑤 and 𝑤 ∈ [0, 1), 𝑧* satisfies

Pr[𝑧* ≤ 𝑧*] ≤ 𝑤, and so Pr[𝑧* ≤ 𝑦* − 𝐿𝜖] ≤ 𝑤.

Thus, a regret bound for MES with max-values sampled according to Section 6.2.2 directly

follows by using 𝑤 in Lemma 6.4.6 in Theorem 6.4.4.

128

Comparing Theorem 6.4.4 and Theorem 6.4.1, it might seem like MES with a single max-value

sample does not have a converging rate as good as EST or GP-UCB. However, as we will see in

Lemma 6.4.7, min𝑥∈X 𝛾
(𝑡−1)
𝑦1 (𝑥) < min𝑥∈X 𝛾

(𝑡−1)
𝑦2 (𝑥) if 𝑦1 < 𝑦2. Here min𝑥∈X 𝛾

(𝑡−1)
· (𝑥) decides

the rate of convergence in Eq. 6.11. So larger 𝑦*𝑡 may lead to worse regret bound. If we use 𝑦*𝑡 that

is smaller than 𝑦*, however, its value is not count in the total regret in our proof and its effect in

terms of reducing the regret is unknown. With no easy way of setting 𝑦*𝑡 since 𝑦* is unknown, our

regret bound in Theorem 6.4.4 is a randomized trade-off between sampling large and small 𝑦*𝑡 .

6.4.3 Effects of Target Values

In both Section 6.4.1 and Section 6.4.2, we have seen how the target value 𝜃 in Algorithm 14 influ-

ences the theoretical analyses of regrets. In this section, we focus on one iteration of Algorithm 14

and investigate the effects of different target values.

Lemma 6.4.7. For any iteration 𝑡 in Algorithm 14, suppose we have two target values 𝜃(1) < 𝜃(2).

Let 𝑥(𝑖) = argmin𝑥∈X 𝛾
(𝑡−1)

𝜃(𝑖)
(𝑥) be the selected input when using 𝜃(𝑖) and 𝑟(𝑖) = 𝑦* − 𝑓(𝑥(𝑖)) be

the immediate regret, 𝑖 = 1, 2. Then E[𝑟(1)] ≤ E[𝑟(2)], 𝜇𝑡−1(𝑥
(1)) ≥ 𝜇𝑡−1(𝑥

(2)), 𝜎𝑡−1(𝑥
(1)) ≤

𝜎𝑡−1(𝑥
(2)) and 𝛾(𝑡−1)

𝜃(1)
(𝑥(1)) < 𝛾

(𝑡−1)

𝜃(2)
(𝑥(2)).

Proof. We use the shorthands 𝜇𝑖 = 𝜇𝑡−1(𝑥
(𝑖)), 𝜎𝑖 = 𝜎𝑡−1(𝑥

(𝑖)) and 𝜃𝑖 = 𝜃(𝑖), 𝑖 = 1, 2. By

definition of 𝑥(1), we have 𝜃1−𝜇1
𝜎1
≤ 𝜃1−𝜇2

𝜎2
< 𝜃2−𝜇2

𝜎2
=⇒ 𝛾

(𝑡−1)

𝜃(1)
(𝑥(1)) < 𝛾

(𝑡−1)

𝜃(2)
(𝑥(2)).

The expected immediate regret is E[𝑟(𝑖)] = max𝑥∈X 𝑓(𝑥) − 𝜇𝑖, so 𝜇1 ≥ 𝜇2 directly implies

E[𝑟(1)] ≤ E[𝑟(2)]. We prove 𝜇1 ≥ 𝜇2 by contradiction.

Case 1: Assume 𝜇1 < 𝜇2 and 𝜎1 ≤ 𝜎2. This implies 𝜃1−𝜇1
𝜎1

> 𝜃1−𝜇2
𝜎2

, but it contradicts with the

definition of 𝑥(1). Hence the assumptions in Case 1 do not hold.

Case 2: Assume 𝜇1 < 𝜇2 and 𝜎1 > 𝜎2. This implies 𝜎1
𝜎2
− 1 > 0. By definition of 𝑥(1),

𝜃1 − 𝜇1
𝜎1

≤ 𝜃1 − 𝜇2
𝜎2

=⇒
(︂
𝜎1
𝜎2
− 1

)︂−1(︂𝜎1
𝜎2
𝜇2 − 𝜇1

)︂
≤ 𝜃1 < 𝜃2 =⇒ 𝜃2 − 𝜇1

𝜎1
<
𝜃2 − 𝜇2
𝜎2

.

However, by definition of 𝑥(2), 𝜃2−𝜇1𝜎1
≥ 𝜃2−𝜇2

𝜎2
. So the assumptions in Case 2 do not hold.

Since both Case 1 and Case 2 do not hold, 𝜇1 ≥ 𝜇2 and E[𝑟(1)] ≤ E[𝑟(2)] must hold.

We next prove 𝜎1 ≤ 𝜎2 by contradiction. Suppose 𝜎1 > 𝜎2 is true. Then we must have
𝜃2−𝜇1
𝜎1

< 𝜃2−𝜇2
𝜎2

, but this contradicts with the definition of 𝑥(2). So 𝜎1 ≤ 𝜎2.

An implication of this lemma is that using smaller target values leads to less exploration and

129

smaller expected one-step regret. While a higher target value lets Algorithm 14 explore inputs with

higher variance. These explanations are consistent with the connection to GP-UCB. By Lemma 6.3.1,

Algorithm 14 with target value 𝜃(𝑖) corresponds to GP-UCB with parameter 𝜆𝑡 = 𝛾
(𝑡)

𝜃(𝑖)
(𝑥(𝑖)). So

from Lemma 6.4.7 we know that a larger target value corresponds to a larger 𝜆𝑡 in GP-UCB, which

is known to emphasize more on exploration than exploitation.

6.5 High Dimensional MES with Add-GP

The high-dimensional input setting has been a challenge for many BO methods. We extend MES

to this setting via additive Gaussian processes (Add-GP). In the past, Add-GP has been used and

analyzed for GP-UCB by [91], who assumed the high dimensional black-box function is a summa-

tion of several disjoint lower dimensional functions: 𝑓(𝑥) =
∑︀𝑀

𝑚=1 𝑓
(𝑚)(𝑥𝐴𝑚), with 𝐴𝑖 ∩𝐴𝑗 = ∅

for all 𝑖 ̸= 𝑗, | ∪𝑀𝑖=1 𝐴𝑖| = 𝑑. Utilizing this special additive structure, we overcome the statistical

problem of having insufficient data to recover a complex function, and the difficulty of optimizing

acquisition functions in high dimensions.

Since the function components 𝑓 (𝑚) are operating on disjoint lower dimensional space, we can

maximize the mutual information between the input in the active dimensions 𝐴𝑚 and maximum

of 𝑓 (𝑚) for each component separately. Hence, we have a separate acquisition function for each

function component, where 𝑦(𝑚) is the evaluation of 𝑓 (𝑚):

𝛼
(𝑚)
𝑡 (𝑥) = 𝐼({𝑥𝐴𝑚 , 𝑦(𝑚)}; 𝑦*𝑚 | 𝐷𝑡) (6.12)

= 𝐻(𝑝(𝑦(𝑚) | 𝐷𝑡,𝑥
𝐴𝑚))− E[𝐻(𝑝(𝑦(𝑚) | 𝐷𝑡,𝑥

𝐴𝑚 , 𝑦*𝑚))] (6.13)

≈
∑︁

𝑦*∈𝑌 *
(𝑚)

𝛾
(𝑚)
𝑦* (𝑥)

𝜓(𝛾
(𝑚)
𝑦* (𝑥))

2Ψ(𝛾
(𝑚)
𝑦* (𝑥))

− log(Ψ(𝛾
(𝑚)
𝑦* (𝑥))) (6.14)

where 𝛾(𝑚)
𝑦* (𝑥) =

𝑦*𝑚−𝜇(𝑚)
𝑡 (𝑥)

𝜎
(𝑚)
𝑡 (𝑥)

. Analogously to the non-additive case, we sample the function max-

value 𝑦*𝑚, but now we do it separately for each function component. We select the final 𝑥𝑡 by

choosing a sub-vector 𝑥(𝑚)
𝑡 = argmax𝑥(𝑚)∈𝐴𝑚

𝛼
(𝑚)
𝑡 (𝑥(𝑚)) and concatenating the components.

Sampling 𝑦*𝑚 with a Gumbel distribution The Gumbel sampling approach from Section 6.2.2

directly extends to sampling 𝑦*𝑚. We can use the same “mean-field” independence assumption and

sample from the component-wise CDF ̂︁Pr[𝑦(𝑚)
* < 𝑧] =

∏︀
𝑥∈X̂Ψ(𝛾

(𝑚)
𝑦 (𝑥))). We can also use the

same Gumbel approximation to further speed up the computations.

130

Sampling 𝑦*𝑚 via posterior functions The additive structure removes some connections of the

input-to-hidden weight layer of our 1-hidden-layer neural network approximation 𝑓(𝑥) = 𝑎T
𝑡𝜑(𝑥).

Namely, for each feature function 𝜑 there exists a unique group 𝑚 such that 𝜑 is only active on

𝑥𝐴𝑚 , and 𝜑(𝑥) =
√︁

2
𝐷 cos(𝜔T𝑥𝐴𝑚 + 𝑐) where R|𝐴𝑚| ∋ 𝜔 ∼ �̂�(𝑚)(𝜔) and 𝑐 ∼ 𝑈 [0, 2𝜋]. Similar

to the non-additive case, we may draw a posterior sample 𝑎𝑡 ∼ 𝒩 (𝜈𝑡,Σ𝑡) where 𝜈𝑡 = 𝜎−2Σ𝑡𝑍𝑡𝑦𝑡

and Σ𝑡 = (𝑍𝑍T𝜎−2+𝐼)−1. Let 𝐵𝑚 = {𝑖 : 𝜑𝑖(𝑥) is active on 𝑥𝐴𝑚}. The posterior sample for the

function component 𝑓 (𝑚) is 𝑓 (𝑚)(𝑥) = (𝑎𝐵𝑚
𝑡)T𝜑𝐵𝑚(𝑥𝐴𝑚). Then we can maximize 𝑓 (𝑚) to obtain

a sample for 𝑦*𝑚.

The algorithm for the additive max-value entropy search method (add-MES) is shown in Al-

gorithm 15. The function SAMPLEMAXVALUE samples max-values for approximating the mutual

information in a similar way as in Algorithm 13, except that it only acts on the active dimensions in

the 𝑚-th group.

Algorithm 15 Additive Max-value Entropy Search

1: function ADD-MES(𝑓,𝐷0)
2: for 𝑡 = 1, · · · , 𝑇 do
3: for 𝑚 = 1, · · · ,𝑀 do
4: 𝑌 *

(𝑚) ←SAMPLEMAXVALUE (𝑚)(𝐾,𝐷𝑡−1)

5: 𝛼
(𝑚)
𝑡−1(·)← Eq. (6.14)

6: 𝑥𝐴𝑚
𝑡 ← argmax𝑥𝐴𝑚∈X𝐴𝑚 𝛼

(𝑚)
𝑡−1(𝑥)

7: end for
8: 𝑦𝑡 ← 𝑓(𝑥𝑡) + 𝜖𝑡, 𝜖𝑡 ∼ 𝒩 (0, 𝜎2)
9: 𝐷𝑡 ← 𝐷𝑡−1 ∪ {𝑥𝑡, 𝑦𝑡}

10: end for
11: end function

6.6 Experiments

In this section, we probe the empirical performance of acquisition functions guided by max-value

on a variety of tasks. To avoid confusion, we assume MES, EST, GP-UCB, and PI use their default

ways of setting parameters. Here, MES-G denotes MES with 𝑦* sampled from the approximate

Gumbel distribution, and MES-R denotes MES with 𝑦* computed by maximizing a sampled func-

tion represented by random features.

131

6.6.1 Implementation details

We evaluate BO performance according to the best-sample simple regret and inference regret de-

fined in Section 6.1.3. We used the open source Matlab implementation of PES, ES [75, 78]. Our

Matlab code and test functions are available at

https://github.com/zi-w/Max-value-Entropy-Search/.

Choice of GP priors Following [78], we adopt the zero mean function and non-isotropic

squared exponential kernel as the prior for the GP.

Model adaptation In practice we do not know the hyper-parameters of the GP, so we must

adapt our GP model as we observe more data. A standard way to learn the GP hyper-parameters is

to optimize the marginal data likelihood with respect to the hyper-parameters. As a full Bayesian

treatment, we can also draw samples of the hyper-parameters using slice sampling [184], and then

marginalize out the hyper-parameters in our acquisition function in Eq. (6.7). Namely, if we use 𝐸

to denote the set of sampled settings for the GP hyper-parameters, our acquisition function becomes

𝛼𝑡(𝑥) =
∑︁

𝜂∈𝐸

∑︁
𝑦*∈𝑌 *

[︃
𝛾𝜂𝑦*(𝑥)𝜓(𝛾

𝜂
𝑦*(𝑥))

2Ψ(𝛾𝜂𝑦*(𝑥))
− log(Ψ(𝛾𝜂𝑦*(𝑥)))

]︃
,

where 𝛾𝜂𝑦*(𝑥) =
𝑦*−𝜇𝜂𝑡 (𝑥)
𝜎𝜂
𝑡 (𝑥)

and the posterior inference on the mean function 𝜇𝜂𝑡 and 𝜎𝜂𝑡 depends on

the GP hyper-parameter setting 𝜂. Similar approaches have been used by [78, 169].

Hyper-parameters of acquisition functions We compare to methods from the entropy search

family, i.e., ES and PES, and to other popular Bayesian optimization methods including GP-UCB

(denoted by UCB), PI, EI and EST. For EST, we use the function maximum value as the max-

value parameter if it is available; otherwise we use an estimation method described by [191] to

estimate the max-value. The parameter for GP-UCB was set according to Theorem 2 in [171]; the

parameter 𝜂𝑡 for PI was set to be the observation noise 𝜎. For the functions with unknown GP

hyper-parameters, every 10 iterations, we learn the GP hyper-parameters using the same approach

as was used by [78] for PES. For the high dimensional tasks, we follow [91]; when the additive

decomposition is unknown, we sample 104 additive structures/GP parameters and use a fixed one

with the highest data likelihood based on 500 data points uniformly randomly sampled from the

search space X.

Global optimization of acquisition functions Because acquisition functions are by them-

selves non-concave non-convex functions, optimizing them accurately can be challenging. We fol-

132

https://github.com/zi-w/Max-value-Entropy-Search/

(a) (b)
50 100 150 200

t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
g

1
0
 R

t

50 100 150 200

t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
g

1
0
 r

t

UCB

PI

EI

EST

ES

PES 100

PES 10

PES 1

MES-R 100

MES-R 10

MES-R 1

MES-G 100

MES-G 10

MES-G 1

Figure 6-2: (a) Inference regret; (b) best-sample simple regret. MES methods are much less sensitive
to the number of maxima 𝑦* sampled for the acquisition function (1, 10 or 100) than PES is to the
number of argmaxes 𝑥*.

METHOD TIME (S) METHOD TIME (S) METHOD TIME (S)

UCB 0.08± 0.05 PES 100 15.24± 4.44 MES-R 1 0.13± 0.03
PI 0.10± 0.02 PES 10 1.61± 0.50 MES-G 100 0.12± 0.02
EI 0.07± 0.03 PES 1 0.20± 0.06 MES-G 10 0.09± 0.02
EST 0.15± 0.02 MES-R 100 5.85± 0.86 MES-G 1 0.09± 0.03
ES 8.07± 3.02 MES-R 10 0.67± 0.11

Table 6.1: The runtime of selecting the next input. PES 100 is significantly slower than other
methods. MES-G’s runtime is comparable to the fastest method EI while it performs better in terms
of simple and inference regrets.

low a simple approach PES [78] adopted: select a random set of inputs to evaluate their acquisition

function values and then run an optimization algorithm, such as the interior point method [24],

starting from the input with the highest acquisition function value.

6.6.2 Synthetic Functions

We begin with a comparison on synthetic functions sampled from a 3-dimensional GP, to probe

our conjecture that MES is much more robust to the number of 𝑦* sampled to estimate the acqui-

sition function than PES is to the number of 𝑥* samples. For PES, we sample 100 (PES 100), 10

(PES 10) and 1 (PES 1) argmaxes for the acquisition function. Similarly, we sample 100, 10, 1 𝑦*

values for MES-R and MES-G. We average the results on 100 functions sampled from the same

Gaussian kernel with scale parameter 5.0 and bandwidth parameter 0.0625, and observation noise

𝒩 (0, 0.012).

133

Figure 6-2 shows the simple and inference regrets. For both regret measures, PES is very sensi-

tive to the the number of 𝑥* sampled for the acquisition function: 100 samples lead to much better

results than 10 or 1. In contrast, MES-G and MES-R perform competitively even with 1 or 10

samples. Overall, MES-G is slightly better than MES-R, and both MES methods performed better

than other ES methods. MES methods performed better than all other methods with respect to best-

sample simple regret. For inference regret, MES methods performed similarly to EST, and much

better than all other methods including PES and ES.

In Table 6.1, we show the runtime of selecting the next input per iteration4 using GP-UCB, PI,

EI, EST, ES, PES, MES-R and MES-G on the synthetic data with fixed GP hyper-parameters. EST

used the max-value estimation method introduced by [191] so it was not as fast as PI. For PES

and MES-R, every 𝑥* or 𝑦* requires running an optimization sub-procedure, so their running time

grows noticeably with the number of samples. MES-G avoids this optimization, and competes with

the fastest methods EI and UCB.

In the following experiments, we set the number of 𝑥* sampled for PES to be 200, and the

number of 𝑦* sampled for MES-R and MES-G to be 100 unless otherwise mentioned.

6.6.3 Optimization Test Functions

We test on 6 challenging optimization test functions: the 2-D eggholder function, the 10-D Shekel

function, the 2-D, 5-D, and 10-D Michalewicz function and the 6-D Hartmann function. All of

these functions have many local optima. We randomly sample 1000 points to learn a good GP

hyper-parameter setting, and then run the BO methods with the same hyper-parameters. The first

observation is the same for all methods. We repeat the experiments 10 times.

The averaged best-sample simple regret is shown in Fig. 6-3, and the inference regret is shown

in Table 6.2. On the 2-D eggholder function and 2-D Michalewicz function, PES was able to achieve

good function values in a fast manner, which verified the good performance of PES when sufficiently

many 𝑥* are sampled. However, for higher-dimensional test functions, MES and EST methods

performed much better than PES. Overall MES-G performed better than all of other methods on

3 out of 6 functions. Both EST and MES-G achieved (overall) better inference regrets than other

methods.

4All the timing experiments were run exclusively on an Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. The function
evaluation time is excluded.

134

t
50 100 150 200

r t

5

6

7

8

9

10

11
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

t
50 100 150 200

r t

4

5

6

7

8

9
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

t
50 100 150 200

r t

0

200

400

600

800

1000
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

(a) (b) (c)

t
50 100 150 200

r t

0

0.5

1

1.5

2

2.5

3
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

t
50 100 150 200

r t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

t
50 100 150 200

r t

1.5

2

2.5

3

3.5

4

4.5
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

(d) (e) (f)

Figure 6-3: (a) 2-D eggholder function; (b) 10-D Shekel function; (c) 10-D Michalewicz function;
(d) 5-D Michalewicz function; (e) 2-D Michalewicz function; (f) 6-D Hartmann function. The
results are mixed, but in general, EST, MES-R and MES-G performed competitively comparing to
other approaches. In particular, MES-G was able to achieve the lowest best-sample simple regret on
3 out of 6 functions.

6.6.4 Tuning Hyper-parameters for Neural Networks

Next, we experiment with Levenberg-Marquardt optimization for training a 1-hidden-layer neural

network. The 4 parameters we tune with BO are the number of neurons, the damping factor 𝜇,

the 𝜇-decrease factor, and the 𝜇-increase factor. We test regression on the Boston housing dataset

and classification on the breast cancer dataset [9]. The experiments are repeated 20 times, and the

neural network’s weight initialization and all other parameters are set to be the same to ensure a fair

comparison. Both of the datasets were randomly split into train/validation/test sets. We initialize the

observation set to have 10 random function evaluations which were set to be the same across all the

methods. The averaged best-sample simple regret for the regression L2-loss on the validation set of

the Boston housing dataset is shown in Fig. 6-4(a), and the classification accuracy on the validation

set of the breast cancer dataset is shown in Fig. 6-4(b). For the classification problem on the breast

cancer dataset, MES-G, PES and UCB achieved a similar best-sample simple regret. On the Boston

housing dataset, MES methods and PES achieved a lower best-sample simple regret. We also show

the inference regrets for both datasets in Table 6.3.

135

METHOD EGGHOLDER SHEKEL 10-D MICH 5-D MICH 2-D MICH 6-D HART

UCB 141.00± 70.96 9.40± 0.26 6.07± 0.53 2.55± 0.45 0.02± 0.01 0.76± 0.11
PI 52.04± 39.03 6.64± 2.00 4.97± 0.39 1.68± 0.43 0.01± 0.00 0.01± 0.04
EI 71.18± 59.18 6.63± 0.87 4.80± 0.60 1.74± 0.22 0.06± 0.19 0.17± 0.32
EST 55.84± 24.85 5.57± 2.56 5.33± 0.46 1.72± 0.39 0.00± 0.00 0.03± 0.06
ES 48.85± 29.11 6.43± 2.73 5.11± 0.73 1.94± 0.42 0.01± 0.00 0.02± 0.05
PES 37.94± 26.05 8.73± 0.67 5.17± 0.74 1.95± 0.36 0.03± 0.02 0.42± 0.21
MES-R 54.47± 37.71 6.17± 1.80 4.97± 0.59 1.88± 0.64 0.01± 0.00 0.21± 0.27
MES-G 46.56± 27.05 5.45± 2.07 4.49± 0.51 1.72± 0.66 0.00± 0.00 0.21± 0.30

Table 6.2: Inference regret𝑅𝑇 for optimizing the eggholder function, Shekel function, Michalewicz
function and Hartmann function.

t
10 20 30 40

r t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

t
10 20 30 40

r t

0

1

2

3

4

5

6

7

8
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

t
50 100 150

r t

1

1.5

2

2.5

3

3.5

4
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

t
50 100 150

r t

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052
UCB
PI
EI
EST
ES
PES
MES-R
MES-G

(c) (d)(b)(a)

Figure 6-4: Tuning hyper-parameters for training a neural network, (a) Boston housing dataset; (b)
breast cancer dataset. MES methods and PES perform better than other methods on (a), while for
(b), MES-G, UCB, PES perform similarly and better than others. BO for active data selection on
two robot pushing tasks for minimizing the distance to a random goal with (c) 3-D actions and (d)
4-D actions. MES methods perform better than other methods on the 3-D function. For the 4-D
function, MES methods converge faster to a good regret, while PI achieves lower regret in the very
end.

6.6.5 Active Learning for Robot Pushing

We use BO to do active learning for the pre-image learning problem for pushing [89]. The function

we optimize takes as input the pushing action of the robot, and outputs the distance of the pushed

object to the goal location. We use BO to minimize the function in order to find a good pre-image for

pushing the object to the designated goal location. The first function we tested has a 3-dimensional

input: robot location (𝑟𝑥, 𝑟𝑦) and pushing duration 𝑡𝑟. We initialize the observation size to be one,

the same across all methods. The second function has a 4-dimensional input: robot location and

angle (𝑟𝑥, 𝑟𝑦, 𝑟𝜃), and pushing duration 𝑡𝑟. We initialize the observation to be 50 random points

and set them the same for all the methods. We select 20 random goal locations for each function

to test if BO can learn where to push for these locations. We show the best-sample simple regret in

Fig. 6-4 (c,d) and the inference regret in Table 6.3. MES methods performed on a par with or better

than their competitors.

136

METHOD BOSTON CANCER (%) 3-D ACTION 4-D ACTION

UCB 1.64± 0.43 3.83± 0.01 1.10± 0.66 0.56± 0.44
PI 2.15± 0.99 4.40± 0.01 2.03± 1.77 0.16± 0.20
EI 1.99± 1.03 4.40± 0.01 1.89± 1.87 0.30± 0.33
EST 1.65± 0.57 3.93± 0.01 0.70± 0.90 0.24± 0.17
ES 1.79± 0.61 4.14± 0.00 0.62± 0.59 0.25± 0.20
PES 1.52± 0.32 3.84± 0.01 0.81± 1.27 0.38± 0.38
MES-R 1.54± 0.56 3.96± 0.01 0.61± 1.23 0.16± 0.10
MES-G 1.51± 0.61 3.83± 0.01 0.61± 1.26 0.24± 0.25

Table 6.3: Inference regret 𝑅𝑇 for tuning neural network hyper-parameters on the Boston housing
and breast cancer datasets in Sec. 6.6.4 and for action selection in robot pushing in Sec. 6.6.5.

t

200 400

r t

20

40

60

80
Add-GP-UCB

Add-MES-R

Add-MES-G

t

200 400

r t

0

20

40

60
Add-GP-UCB

Add-MES-R

Add-MES-G

t

200 400

r t

0

10

20

30

40
Add-GP-UCB

Add-MES-R

Add-MES-G

t

200 400

r t

0

5

10

15

20

25
Add-GP-UCB

Add-MES-R

Add-MES-G

d=10 d=20 d=30 d=50 d=100

t

200 400

r t

40

60

80

100

120

140
Add-GP-UCB

Add-MES-R

Add-MES-G

Figure 6-5: best-sample simple regrets for add-GP-UCB and add-MES methods on the synthetic
add-GP functions. Both add-MES methods outperform add-GP-UCB except for add-MES-G on the
input dimension 𝑑 = 100. Add-MES-G achieves the lowest best-sample simple regret when 𝑑 is
relatively low, while for higher 𝑑 add-MES-R becomes better than add-MES-G.

6.6.6 High Dimensional BO with Add-MES

In this section, we test our add-MES algorithm on high dimensional black-box function optimiza-

tion problems. First we compare add-MES and add-GP-UCB [91] on a set of synthetic additive

functions with known additive structure and GP hyper-parameters. Each function component of

the synthetic additive function is active on at most three input dimensions, and is sampled from a

GP with zero mean and Gaussian kernel (bandwidth = 0.1 and scale = 5). For the parameter of

add-GP-UCB, we follow [91] and set 𝛽(𝑚)
𝑡 = |𝐴𝑚| log 2𝑡/5. We set the number of 𝑦(𝑚)

* sampled

for each function component in add-MES-R and add-MES-G to be 1. We repeat each experiment

for 50 times for each dimension setting. The results for best-sample simple regret are shown in

Fig. 6-5. Add-MES methods perform much better than add-GP-UCB in terms of best-sample sim-

ple regret. Interestingly, add-MES-G works better in lower dimensional cases where 𝑑 = 10, 20, 30,

while add-MES-R outperforms both add-MES-G and add-GP-UCB for higher dimensions where

𝑑 = 50, 100. In general, MES-G tends to overestimate the maximum of the function because of the

independence assumption, and MES-R tends to underestimate the maximum of the function because

of the imperfect global optimization of the posterior function samples. Hence, intuitively, MES-R

137

t

200 400
r
t

3

4

5

6

7

8

9

Add-GP-UCB

Add-MES-R

Add-MES-G

t

200 400

r
t

0.5

1

1.5

2

2.5

3

3.5

4

Add-GP-UCB

Add-MES-R

Add-MES-G

(a) (b)

Figure 6-6: best-sample simple regrets for add-GP-UCB and add-MES methods on (a) a robot push-
ing task with 14 parameters and (b) a planar bipedal walker optimization task with 25 parameters.
Both MES methods perform competitively comparing to add-GP-UCB.

may perform better for settings where exploitation is preferred over exploration (e.g., not too many

local optima), and MES-G may work better if exploration is preferred.

To further verify the performance of add-MES in high dimensional problems, we test on two

real-world high dimensional experiments. One is a function that returns the distance between a goal

location and two objects being pushed by a robot which has 14 parameters. We implemented the

function in Box2D [32]. The other function returns the walking speed of a planar bipedal robot, with

25 parameters to tune [196]. In Fig. 6-6, we show the best-sample simple regrets achieved by add-

GP-UCB and add-MES. Add-MES methods performed competitively compared to add-GP-UCB on

both tasks.

6.7 Conclusion

We explore a new family of acquisition functions in BO that are guided by the maximum value of

the function to be optimized, instead of e.g. the maximizing argument. This new approach bridges

historically significant ideas in BO including probability of improvement, upper confidence bounds

and entropy search. Building upon the connections we show, we establish the first regret bounds

for a variant of entropy search methods and probability of improvement. Empirically, on a variety

of target functions, we show that our BO methods guided by max-values are significantly faster

to compute than their entropy search counterparts and perform competitively compared to other

state-of-the-art BO approaches.

One important implication of this chapter are the deep connections among existing BO methods,

138

and how they reduced to the simple PI approach. Although perhaps less recognized in the recent

literature, it was visionary of [111] to use the simple yet elegant probability of improvement as the

data acquisition criterion in the early days. This work made use of max-values to fill in the missing

piece of how this improvement needs to be measured.

139

Chapter 7

Bayesian Optimization With Learned

Priors

Bayesian optimization (BO) adopts a Bayesian perspective and assumes that there is a prior on the

function; typically, we use a Gaussian process (GP) prior. Then, the information collection strategy

can rely on the prior to focus on good inputs, where the goodness is determined by an acquisition

function derived from the GP prior and current observations. In past literature, it has been shown

both theoretically and empirically that if the function is indeed drawn from the given prior, there are

many acquisition functions that BO can use to locate the function maximizer quickly [171, 23, 187].

However, in reality, the prior we choose to use in BO often does not reflect the distribution

from which the function is drawn. Hence, we sometimes have to estimate the hyper-parameters of a

chosen form of the prior on the fly as we collect more data [169]. One popular choice is to estimate

the prior parameters using empirical Bayes with, e.g., the maximum likelihood estimator [151] .

Despite the vast literature that shows many empirical Bayes approaches have well-founded theo-

retical guarantees such as consistency [145] and admissibility [96], it is difficult to analyze a version

of BO that uses empirical Bayes because of the circular dependencies between the estimated param-

eters and the data acquisition strategies. The requirement to select the prior model and estimate its

parameters leads to a BO version of the chicken-and-egg dilemma: the prior model selection de-

pends on the data collected and the data collection strategy depends on having a “correct” prior.

Theoretically, there is little evidence that BO with unknown parameters in the prior can work well.

Zi Wang*, Beomjoon Kim*, and Leslie Pack Kaelbling. Regret bounds for meta Bayesian optimization with an
unknown Gaussian process prior. In Advances in Neural Information Processing Systems (NeurIPS), 2018. (* indicates
equal contribution.)

141

Empirically, there is evidence showing it works well in some situations, but not others [122, 90],

which is not surprising in light of no free lunch results [198, 83].

In this chapter, we propose a simple yet effective strategy for learning a prior in a meta-learning

setting where training data on functions from the same Gaussian process prior are available. We

use a variant of empirical Bayes that gives unbiased estimates for both the parameters in the prior

and the posterior given observations of the function we wish to optimize. We analyze the regret

bounds in two settings: (1) finite input space, and (2) compact input space in R𝑑. We clarify

additional assumptions on the training data and form of Gaussian processes of both settings in

Sec. 7.3.1 and Sec. 7.3.2. We prove theorems that show a near-zero regret bound for variants of

GP-UCB [7, 171] and probability of improvement (PI) [111, 187]. The regret bound decreases to a

constant proportional to the observational noise as online evaluations and offline data size increase.

From a more pragmatic perspective on Bayesian optimization for important areas such as robotics,

we further explore how our approach works for problems in task and motion planning domains [97],

and we explain why the assumptions in our theorems make sense for these problems in Sec. 7.4.

Indeed, assuming a common kernel, such as squared exponential or Matérn, is very limiting for

robotic problems that involve discontinuity and non-stationarity. However, with our approach of

setting the prior and posterior parameters, BO outperforms all other methods in the task and motion

planning benchmark problems.

The contributions of this chapter are (1) a stand-alone BO module that takes in only a multi-task

training data set as input and then actively selects inputs to efficiently optimize a new function and

(2) analysis of the regret of this module. The analysis is constructive, and determines appropriate

hyperparameter settings for the GP-UCB acquisition function. Thus, we make a step forward to

resolving the problem that, despite being used for hyperparameter tuning, BO algorithms themselves

have hyperparameters.

7.1 Problem formulation and notations

Unlike the standard BO setting, we do not assume knowledge of the mean or covariance in the GP

prior, but we do assume the availability of a dataset of iid sets of potentially non-iid observations

on functions sampled from the same GP prior. Then, given a new, unknown function sampled from

that same distribution, we would like to find its maximizer.

More formally, we assume there exists a distribution 𝐺𝑃 (𝜇, 𝑘), and both the mean 𝜇 : X →

142

R and the kernel 𝑘 : X × X → R are unknown. Nevertheless, we are given a dataset �̄�𝑁 =

{[(�̄�𝑖𝑗 , 𝑦𝑖𝑗)]𝑀𝑖
𝑗=1}𝑁𝑖=1, where 𝑦𝑖𝑗 is drawn independently from 𝒩 (𝑓𝑖(�̄�𝑖𝑗), 𝜎

2) and 𝑓𝑖 : X → R is

drawn independently from 𝐺𝑃 (𝜇, 𝑘). The noise level 𝜎 is unknown as well. We will specify inputs

�̄�𝑖𝑗 in Sec. 7.3.1 and Sec. 7.3.2.

Given a new function 𝑓 sampled from 𝐺𝑃 (𝜇, 𝑘), our goal is to maximize it by sequentially

querying the function and constructing 𝐷𝑇 = [(𝑥𝑡, 𝑦𝑡)]
𝑇
𝑡=1, 𝑦𝑡 ∼ 𝒩 (𝑓(𝑥𝑡), 𝜎

2). We study two

evaluation criteria: (1) the best-sample simple regret 𝑟𝑇 = max𝑥∈X 𝑓(𝑥) −max𝑡∈[𝑇] 𝑓(𝑥𝑡) which

indicates the value of the best query in hindsight, and (2) the simple regret, 𝑅𝑇 = max𝑥∈X 𝑓(𝑥)−

𝑓(�̂�*𝑇) which measures how good the inferred maximizer �̂�*𝑇 is.

Notation We use 𝒩 (𝑢, 𝑉) to denote a multivariate Gaussian distribution with mean 𝑢 and

variance 𝑉 and use𝒲(𝑉, 𝑛) to denote a Wishart distribution with 𝑛 degrees of freedom and scale

matrix 𝑉 . We also use [𝑛] to denote [1, · · · , 𝑛], ∀𝑛 ∈ Z+. We overload function notation for

evaluations on vectors 𝑥 = [𝑥𝑖]
𝑛
𝑖=1,𝑥

′ = [𝑥𝑗]
𝑛′
𝑗=1 by denoting the output column vector as 𝜇(𝑥) =

[𝜇(𝑥𝑖)]
𝑛
𝑖=1, and the output matrix as 𝑘(𝑥,𝑥′) = [𝑘(𝑥𝑖, 𝑥

′
𝑗)]𝑖∈[𝑛],𝑗∈[𝑛′], and we overload the kernel

function 𝑘(𝑥) = 𝑘(𝑥,𝑥).

7.2 Related work

BO optimizes a black-box objective function through sequential queries. We usually assume knowl-

edge of a Gaussian process [151] prior on the function, though other priors such as Bayesian neural

networks and their variants [63, 112] are applicable too. Then, given possibly noisy observations

and the prior distribution, we can do Bayesian posterior inference and construct acquisition func-

tions [111, 134, 7] to search for the function optimizer.

However, in practice, we do not know the prior and it must be estimated. One of the most popular

methods of prior estimation in BO is to optimize mean/kernel hyper-parameters by maximizing data-

likelihood of the current observations [151, 75]. Another popular approach is to put a prior on the

mean/kernel hyper-parameters and obtain a distribution of such hyper-parameters to adapt the model

given observations [78, 169]. These methods require a predetermined form of the mean function

and the kernel function. In the existing literature, mean functions are usually set to be 0 or linear

and the popular kernel functions include Matérn kernels, Gaussian kernels, linear kernels [151] or

additive/product combinations of the above [51, 91].

Meta BO aims to improve the optimization of a given objective function by learning from

143

past experiences with other similar functions. Meta BO can be viewed as a special case of transfer

learning or multi-task learning. One well-studied instance of meta BO is the machine learning (ML)

hyper-parameter tuning problem on a dataset, where, typically, the validation errors are the functions

to optimize [55]. The key question is how to transfer the knowledge from previous experiments on

other datasets to the selection of ML hyper-parameters for the current dataset.

To determine the similarity between validation error functions on different datasets, meta-

features of datasets are often used [26]. With those meta-features of datasets, one can use contextual

Bayesian optimization approaches [105] that operate with a probabilistic functional model on both

the dataset meta-features and ML hyper-parameters [14]. Feurer et al. [57], on the other hand,

used meta-features of datasets to construct a distance metric, and to sort hyper-parameters that are

known to work for similar datasets according to their distances to the current dataset. The best k

hyper-parameters are then used to initialize a vanilla BO algorithm. If the function meta-features

are not given, one can estimate the meta-features, such as the mean and variance of all observations,

using Monte Carlo methods [174], maximum likelihood estimates [202] or maximum a posteriori

estimates [148, 147].

As an alternative to using meta-features of functions, one can construct a kernel between func-

tions. For functions that are represented by GPs, Malkomes et al. [128] studied a “kernel kernel”, a

kernel for kernels, such that one can use BO with a “kernel kernel” to select which kernel to use to

model or optimize an objective function [127] in a Bayesian way. However, [128] requires an initial

set of kernels to select from. Instead, Golovin et al. [67] introduced a setting where the functions

come in sequence and the posterior of the former function becomes the prior of the current function.

Removing the assumption that functions come sequentially, Feurer et al. [56] proposed a method to

learn an additive ensemble of GPs that are known to fit all of those past “training functions”.

Theoretically, it has been shown that meta BO methods that use information from similar func-

tions may result in an improvement for the cumulative regret bound [105, 164] or the simple regret

bound [147] with the assumptions that the GP priors are given. If the form of the GP kernel is

given and the prior mean function is 0 but the kernel hyper-parameters are unknown, it is possible

to obtain a regret bound given a range of these hyper-parameters [192]. In this chapter, we prove

a regret bound for meta BO where the GP prior is unknown; this means, neither the range of GP

hyper-parameters nor the form of the kernel or mean function is given.

A more ambitious approach to solving meta BO is to train an end-to-end system, such as a

recurrent neural network [80], that takes the history of observations as an input and outputs the next

144

point to evaluate [35]. Though it has been demonstrated that the method in [35] can learn to trade-off

exploration and exploitation for a short horizon, it is unclear how many “training instances”, in the

form of observations of BO performed on similar functions, are necessary to learn the optimization

strategies for any given horizon of optimization. In this chapter, we show both theoretically and

empirically how the number of “training instances” in our method affects the performance of BO.

Our methods are most similar to the BOX algorithm [97], which uses evaluations of previous

functions to make point estimates of a mean and covariance matrix on the values over a discrete

domain. Our methods for the discrete setting (described in Sec. 7.3.1) directly improve on BOX by

choosing the exploration parameters in GP-UCB more effectively. This general strategy is extended

to the continuous-domain setting in Sec. 7.3.2, in which we extend a method for learning the GP

prior [146] and the use the learned prior in GP-UCB and PI.

Learning how to learn, or “meta learning”, has a long history in machine learning [160]. It

was argued that learning how to learn is “learning the prior” [17] with “point sets” [133], a set of iid

sets of potentially non-iid points. We follow this simple intuition and present a meta BO approach

that learns its GP prior from the data collected on functions that are assumed to have been drawn

from the same prior distribution.

Empirical Bayes [152, 96] is a standard methodology for estimating unknown parameters of

a Bayesian model. Our approach is a variant of empirical Bayes. We can view our computations

as the construction of a sequence of estimators for a Bayesian model. The key difference from

traditional empirical Bayes methods is that we are able to prove a regret bound for a BO method

that uses estimated parameters to construct priors and posteriors. In particular, we use frequentist

concentration bounds to analyze Bayesian procedures, which is one way to certify empirical Bayes

in statistics [168, 53].

7.3 Meta BO and its theoretical guarantees

Instead of hand-crafting the mean 𝜇 and kernel 𝑘, we estimate them using the training dataset �̄�𝑁 .

Our approach is fairly straightforward: in the offline phase, the training dataset �̄�𝑁 is collected and

we obtain estimates of the mean function �̂� and kernel 𝑘; in the online phase, we treat 𝐺𝑃 (�̂�, 𝑘)

as the Bayesian “prior” to do Bayesian optimization. We illustrate the two phases in Fig. 7-1. In

Alg. 16, we depict our algorithm, assuming the dataset �̄�𝑁 has been collected. We use ESTI-

MATE(�̄�𝑁) to denote the “prior” estimation and INFER(𝐷𝑡; �̂�, 𝑘) the “posterior” inference, both of

145

Algorithm 16 Meta Bayesian optimization

1: function META-BO(�̄�𝑁 , 𝑓)
2: �̂�(·), 𝑘(·, ·)← ESTIMATE(�̄�𝑁)
3: return BO(𝑓, �̂�, 𝑘)
4: end function

5: function BO (𝑓, �̂�, 𝑘)
6: 𝐷0 ← ∅
7: for 𝑡 = 1, · · · , 𝑇 do
8: �̂�𝑡−1(·), 𝑘𝑡−1(·)← INFER(𝐷𝑡−1; �̂�, 𝑘)
9: 𝛼𝑡−1(·)←ACQUISITION (�̂�𝑡−1, 𝑘𝑡−1)

10: 𝑥𝑡 ← argmax𝑥∈X 𝛼𝑡−1(𝑥)
11: 𝑦𝑡 ← OBSERVE(𝑓(𝑥𝑡))
12: 𝐷𝑡 ← 𝐷𝑡−1 ∪ [(𝑥𝑡, 𝑦𝑡)]
13: end for
14: return 𝐷𝑇

15: end function

which we will introduce in Sec. 7.3.1 and Sec. 7.3.2. For acquisition functions, we consider special

cases of probability of improvement (PI) [187, 111] and upper confidence bound (GP-UCB) [171, 7]:

𝛼PI
𝑡−1(𝑥) =

�̂�𝑡−1(𝑥)− 𝑓*

𝑘𝑡−1(𝑥)
1
2

, 𝛼GP-UCB
𝑡−1 (𝑥) = �̂�𝑡−1(𝑥) + 𝜁𝑡𝑘𝑡−1(𝑥)

1
2 .

Here, PI assumes additional information1 in the form of the upper bound on function value 𝑓* ≥

max𝑥∈X 𝑓(𝑥). For GP-UCB, we set its hyperparameter 𝜁𝑡 to be

𝜁𝑡 =

(︁
6(𝑁 − 3 + 𝑡+ 2

√︁
𝑡 log 6

𝛿 + 2 log 6
𝛿)/(𝛿𝑁(𝑁 − 𝑡− 1))

)︁ 1
2
+ (2 log(3𝛿))

1
2

(1− 2(1
𝑁−𝑡 log

6
𝛿)

1
2)

1
2

,

where 𝑁 is the size of the dataset �̄�𝑁 and 𝛿 ∈ (0, 1). With probability 1− 𝛿, the regret bound

in Thm. 7.3.2 or Thm. 7.3.4 holds with these special cases of GP-UCB and PI. Under two different

settings of the search space X, finite X and compact X ∈ R𝑑, we show how our algorithm works in

detail and why it works via regret analyses on the best-sample simple regret. Finally in Sec. 7.3.3

we show how the simple regret can be bounded. The proofs of the analyses can be found in

Appendix A.

1Alternatively, an upper bound 𝑓* can be estimated adaptively [187]. Note that here we are maximizing the PI
acquisition function and hence 𝛼PI

𝑡−1(𝑥) is a negative version of what was defined in [187].

146

Figure 7-1: Our approach estimates the mean function �̂� and kernel 𝑘 from functions sampled from
𝐺𝑃 (𝜇, 𝑘) in the offline phase. Those sampled functions are illustrated by colored lines. In the online
phase, a new function 𝑓 sampled from the same 𝐺𝑃 (𝜇, 𝑘) is given and we can estimate its posterior
mean function �̂�𝑡 and covariance function 𝑘𝑡 which will be used for Bayesian optimization.

7.3.1 Function domain is a finite set

We first study the simplest case, where the function domain X = [�̄�𝑗]
𝑀
𝑗=1 is a finite set with cardi-

nality |X| = 𝑀 ∈ Z+. For convenience, we treat this set as an ordered vector of items indexed by

𝑗 ∈ [𝑀]. We collect the training dataset �̄�𝑁 = {[(�̄�𝑗 , 𝛿𝑖𝑗𝑦𝑖𝑗)]𝑀𝑗=1}𝑁𝑖=1, where 𝑦𝑖𝑗 are independently

drawn from 𝒩 (𝑓𝑖(�̄�𝑗), 𝜎
2), 𝑓𝑖 are drawn independently from 𝐺𝑃 (𝜇, 𝑘) and 𝛿𝑖𝑗 ∈ {0, 1}. Because

the training data can be collected offline by querying the functions {𝑓𝑖}𝑁𝑖=1 in parallel, it is not un-

reasonable to assume that such a dataset �̄�𝑁 is available. If 𝛿𝑖𝑗 = 0, it means the (𝑖, 𝑗)-th entry of

the dataset �̄�𝑁 is missing, perhaps as a result of a failed experiment.

Estimating GP parameters If 𝛿𝑖𝑗 < 1, we have missing entries in the observation matrix

𝑌 = [𝛿𝑖𝑗𝑦𝑖𝑗]𝑖∈[𝑁],𝑗∈[𝑀] ∈ R𝑁×𝑀 . Under additional assumptions specified in [31], including that

rank(𝑌) = 𝑟 and the total number of valid observations
∑︀𝑁

𝑖=1

∑︀𝑀
𝑗=1 𝛿𝑖𝑗 ≥ 𝑂(𝑟𝑁

6
5 log𝑁), we can

use matrix completion [31] to fully recover the matrix 𝑌 with high probability. In the following, we

proceed by considering completed observations only.

Let the completed observation matrix be 𝑌 = [𝑦𝑖𝑗]𝑖∈[𝑁],𝑗∈[𝑀]. We use an unbiased sample

mean and covariance estimator for 𝜇 and 𝑘; that is, �̂�(X) = 1
𝑁 𝑌

T1𝑁 and 𝑘(X) = 1
𝑁−1(𝑌 −

1𝑁 �̂�(X)
T)T(𝑌 − 1𝑁 �̂�(X)

T), where 1𝑁 is an 𝑁 by 1 vector of ones. It is well known that �̂� and 𝑘

are independent [4] and

�̂�(X) ∼ 𝒩 (𝜇(X),
1

𝑁
(𝑘(X) + 𝜎2𝐼)), 𝑘(X) ∼ 𝒲(

1

𝑁 − 1
(𝑘(X) + 𝜎2𝐼), 𝑁 − 1).

Constructing estimators of the posterior Given noisy observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, we

147

can do Bayesian posterior inference to obtain 𝑓 ∼ 𝐺𝑃 (𝜇𝑡, 𝑘𝑡). By the GP assumption, we get

𝜇𝑡(𝑥) = 𝜇(𝑥) + 𝑘(𝑥,𝑥𝑡)(𝑘(𝑥𝑡) + 𝜎2𝐼)−1(𝑦𝑡 − 𝜇(𝑥𝑡)), ∀𝑥 ∈ X (7.1)

𝑘𝑡(𝑥, 𝑥
′) = 𝑘(𝑥, 𝑥′)− 𝑘(𝑥,𝑥𝑡)(𝑘(𝑥𝑡) + 𝜎2𝐼)−1𝑘(𝑥𝑡, 𝑥

′), ∀𝑥, 𝑥′ ∈ X, (7.2)

where 𝑦𝑡 = [𝑦𝜏]
𝑇
𝜏=1, 𝑥𝑡 = [𝑥𝜏]

𝑇
𝜏=1 [151]. The problem is that neither the posterior mean 𝜇𝑡

nor the covariance 𝑘𝑡 are computable because the Bayesian prior mean 𝜇, the kernel 𝑘 and the noise

parameter 𝜎 are all unknown. How to estimate 𝜇𝑡 and 𝑘𝑡 without knowing those prior parameters?

We introduce the following unbiased estimators for the posterior mean and covariance,

�̂�𝑡(𝑥) = �̂�(𝑥) + 𝑘(𝑥,𝑥𝑡)𝑘(𝑥𝑡,𝑥𝑡)
−1

(𝑦𝑡 − �̂�(𝑥𝑡)), ∀𝑥 ∈ X, (7.3)

𝑘𝑡(𝑥, 𝑥
′) =

𝑁 − 1

𝑁 − 𝑡− 1

(︁
𝑘(𝑥, 𝑥′)− 𝑘(𝑥,𝑥𝑡)𝑘(𝑥𝑡,𝑥𝑡)

−1
𝑘(𝑥𝑡, 𝑥

′)
)︁
, ∀𝑥, 𝑥′ ∈ X. (7.4)

Notice that unlike Eq. (7.1) and Eq. (7.2), our estimators �̂�𝑡 and 𝑘𝑡 do not depend on any unknown

values or an additional estimate of the noise parameter 𝜎. In Lemma 7.3.1, we show that our

estimators are indeed unbiased and we derive their concentration bounds.

Lemma 7.3.1. Pick probability 𝛿 ∈ (0, 1). For any nonnegative integer 𝑡 < 𝑇 , conditioned on

the observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, the estimators in Eq. (7.3) and Eq. (7.4) satisfy E[�̂�𝑡(X)] =

𝜇𝑡(X),E[𝑘𝑡(X)] = 𝑘𝑡(X) + 𝜎2𝐼. Moreover, if the size of the training dataset satisfies 𝑁 ≥ 𝑇 + 2,

then for any input 𝑥 ∈ X, with probability at least 1− 𝛿, both

|�̂�𝑡(𝑥)− 𝜇𝑡(𝑥)|2 < 𝑎𝑡(𝑘𝑡(𝑥) + 𝜎2) and 1− 2
√︀
𝑏𝑡 < 𝑘𝑡(𝑥)/(𝑘𝑡(𝑥) + 𝜎2) < 1 + 2

√︀
𝑏𝑡 + 2𝑏𝑡

hold, where 𝑎𝑡 =
4
(︁
𝑁−2+𝑡+2

√
𝑡 log (4/𝛿)+2 log (4/𝛿)

)︁
𝛿𝑁(𝑁−𝑡−2) and 𝑏𝑡 = 1

𝑁−𝑡−1 log
4
𝛿 .

Regret bounds We show a near-zero upper bound on the best-sample simple regret of meta

BO with GP-UCB and PI that uses specific parameter settings in Thm. 7.3.2. In particular, for both

GP-UCB and PI, the regret bound converges to a residual whose scale depends on the noise level 𝜎

in the observations.

Theorem 7.3.2. Assume there exists constant 𝑐 ≥ max𝑥∈X 𝑘(𝑥) and a training dataset is available

whose size is 𝑁 ≥ 4 log 6
𝛿 + 𝑇 + 2. Then, with probability at least 1 − 𝛿, the best-sample simple

148

regret in 𝑇 iterations of meta BO with special cases of either GP-UCB or PI satisfies

𝑟UCB
𝑇 < 𝜂UCB

𝑇 (𝑁)𝜆𝑇 , 𝑟PI
𝑇 < 𝜂PI

𝑇 (𝑁)𝜆𝑇 , 𝜆2𝑇 = 𝑂(𝜌𝑇 /𝑇) + 𝜎2,

where 𝜂𝑈𝐶𝐵𝑇 (𝑁) = (𝑚+𝐶1)(
√
1+𝑚√
1−𝑚+1), 𝜂PI

𝑇 (𝑁) = (𝑚+𝐶2)(
√
1+𝑚√
1−𝑚+1)+𝐶3,𝑚 = 𝑂(

√︁
1

𝑁−𝑇),

𝐶1, 𝐶2, 𝐶3 > 0 are constants, and 𝜌𝑇 = max
𝐴∈X,|𝐴|=𝑇

1
2 log |𝐼 + 𝜎−2𝑘(𝐴)|.

This bound reflects how training instances 𝑁 and BO iterations 𝑇 affect the best-sample simple

regret. The coefficients 𝜂UCB
𝑇 and 𝜂PI

𝑇 both converge to constants (more details in Appendix A, with

components converging at rate 𝑂(1/(𝑁 − 𝑇)
1
2). The convergence of the shared term 𝜆𝑇 depends

on 𝜌𝑇 , the maximum information gain between function 𝑓 and up to 𝑇 observations 𝑦𝑇 . If, for

example, each input has dimension R𝑑 and 𝑘(𝑥, 𝑥′) = 𝑥T𝑥′, then 𝜌𝑇 = 𝑂(𝑑 log(𝑇)) [171], in

which case 𝜆𝑇 converges to the observational noise level 𝜎 at rate 𝑂(

√︁
𝑑 log(𝑇)

𝑇). Together, the

bounds indicate that the best-sample simple regret of both our settings of GP-UCB and PI decreases

to a constant proportional to noise level 𝜎.

7.3.2 Function domain is compact

For compact X ⊂ R𝑑, we consider the primal form of GPs. We further assume that there exist basis

functions Φ = [𝜑𝑠]
𝐾
𝑠=1 : X→ R𝐾 , mean parameter 𝑢 ∈ R𝐾 and covariance parameter Σ ∈ R𝐾×𝐾

such that 𝜇(𝑥) = Φ(𝑥)T𝑢 and 𝑘(𝑥, 𝑥′) = Φ(𝑥)TΣΦ(𝑥′). Notice that Φ(𝑥) ∈ R𝐾 is a column vector

and Φ(𝑥𝑡) ∈ R𝐾×𝑡 for any 𝑥𝑡 = [𝑥𝜏]
𝑡
𝜏=1. This means, for any input 𝑥 ∈ X, the observation satisfies

𝑦 ∼ 𝒩 (𝑓(𝑥), 𝜎2), where 𝑓 = Φ(𝑥)T𝑊 ∼ 𝐺𝑃 (𝜇, 𝑘) and the linear operator 𝑊 ∼ 𝒩 (𝑢,Σ) [139].

In the following analyses, we assume the basis functions Φ are given.

We assume that a training dataset �̄�𝑁 = {[(�̄�𝑗 , 𝑦𝑖𝑗)]𝑀𝑗=1}𝑁𝑖=1 is given, where �̄�𝑗 ∈ X ⊂ R𝑑,

𝑦𝑖𝑗 are independently drawn from 𝒩 (𝑓𝑖(�̄�𝑗), 𝜎
2), 𝑓𝑖 are drawn independently from 𝐺𝑃 (𝜇, 𝑘) and

𝑀 ≥ 𝐾.

Estimating GP parameters Because the basis functions Φ are given, learning the mean func-

tion 𝜇 and the kernel 𝑘 in the GP is equivalent to learning the mean parameter 𝑢 and the covariance

parameter Σ that parameterize distribution of the linear operator 𝑊 . Notice that ∀𝑖 ∈ [𝑁],

𝑦𝑖 = Φ(�̄�)T𝑊𝑖 + 𝜖𝑖 ∼ 𝒩 (Φ(�̄�)T𝑢,Φ(�̄�)TΣΦ(�̄�) + 𝜎2𝐼),

where 𝑦𝑖 = [𝑦𝑖𝑗]
𝑀
𝑗=1 ∈ R𝑀 , �̄� = [�̄�𝑗]

𝑀
𝑗=1 ∈ R𝑀×𝑑 and 𝜖𝑖 = [𝜖𝑖𝑗]

𝑀
𝑗=1 ∈ R𝑀 . If the matrix

149

Φ(�̄�) ∈ R𝐾×𝑀 has linearly independent rows, one unbiased estimator of 𝑊𝑖 is

�̂�𝑖 = (Φ(�̄�)T)+𝑦𝑖 = (Φ(�̄�)Φ(�̄�)T)−1Φ(�̄�)𝑦𝑖 ∼ 𝒩 (𝑢,Σ+ 𝜎2(Φ(�̄�)Φ(�̄�)T)−1).

Let W = [�̂�𝑖]
𝑁
𝑖=1 ∈ R𝑁×𝐾 . We use the estimator �̂� = 1

𝑁WT1𝑁 and Σ̂ = 1
𝑁−1(W − 1𝑁 �̂�)

T(W −

1𝑁 �̂�) to the estimate GP parameters. Again, �̂� and Σ̂ are independent and

�̂� ∼ 𝒩
(︀
𝑢, 1

𝑁 (Σ + 𝜎2(Φ(�̄�)Φ(�̄�)T)−1)
)︀
, Σ̂ ∼ 𝒲

(︁
1

𝑁−1

(︀
Σ+ 𝜎2(Φ(�̄�)Φ(�̄�)T)−1

)︀
, 𝑁 − 1

)︁
[4].

Constructing estimators of the posterior We assume the total number of evaluations 𝑇 <

𝐾. Given noisy observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, we have 𝜇𝑡(𝑥) = Φ(𝑥)T𝑢𝑡 and 𝑘𝑡(𝑥, 𝑥′) =

Φ(𝑥)TΣ𝑡Φ(𝑥
′), where the posterior of 𝑊 ∼ 𝒩 (𝑢𝑡,Σ𝑡) satisfies

𝑢𝑡 = 𝑢+ΣΦ(𝑥𝑡)(Φ(𝑥𝑡)
TΣΦ(𝑥𝑡) + 𝜎2𝐼)−1(𝑦𝑡 − Φ(𝑥𝑡)

T𝑢), (7.5)

Σ𝑡 = Σ− ΣΦ(𝑥𝑡)(Φ(𝑥𝑡)
TΣΦ(𝑥𝑡) + 𝜎2𝐼)−1Φ(𝑥𝑡)

TΣ. (7.6)

Similar to the strategy used in Sec. 7.3.1, we construct an estimator for the posterior of 𝑊 to be

�̂�𝑡 = �̂�+ Σ̂Φ(𝑥𝑡)(Φ(𝑥𝑡)
TΣ̂Φ(𝑥𝑡))

−1(𝑦𝑡 − Φ(𝑥𝑡)
T𝑢), (7.7)

Σ̂𝑡 =
𝑁 − 1

𝑁 − 𝑡− 1

(︁
Σ̂− Σ̂Φ(𝑥𝑡)(Φ(𝑥𝑡)

TΣ̂Φ(𝑥𝑡))
−1Φ(𝑥𝑡)

TΣ̂
)︁
. (7.8)

We can compute the conditional mean and variance of the observation on 𝑥 ∈ X to be �̂�𝑡(𝑥) =

Φ(𝑥)T�̂�𝑡 and 𝑘𝑡(𝑥) = Φ(𝑥)TΣ̂𝑡Φ(𝑥). For convenience of notation, we define

�̄�2(𝑥) = 𝜎2Φ(𝑥)T(Φ(�̄�)Φ(�̄�)T)−1Φ(𝑥).

Lemma 7.3.3. Pick probability 𝛿 ∈ (0, 1). Assume Φ(�̄�) has full row rank. For any nonnega-

tive integer 𝑡 < 𝑇 , 𝑇 ≤ 𝐾, conditioned on the observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, E[�̂�𝑡(𝑥)] =

𝜇𝑡(𝑥),E[𝑘𝑡(𝑥)] = 𝑘𝑡(𝑥) + �̄�2(𝑥). Moreover, if the size of the training dataset satisfies 𝑁 ≥ 𝑇 + 2,

then for any input 𝑥 ∈ X, with probability at least 1− 𝛿, both

|�̂�𝑡(𝑥)− 𝜇𝑡(𝑥)|2 < 𝑎𝑡(𝑘𝑡(𝑥) + �̄�2(𝑥))

150

and

1− 2
√︀
𝑏𝑡 < 𝑘𝑡(𝑥)/(𝑘𝑡(𝑥) + �̄�2(𝑥)) < 1 + 2

√︀
𝑏𝑡 + 2𝑏𝑡

hold, where 𝑎𝑡 =
4
(︁
𝑁−2+𝑡+2

√
𝑡 log (4/𝛿)+2 log (4/𝛿)

)︁
𝛿𝑁(𝑁−𝑡−2) and 𝑏𝑡 = 1

𝑁−𝑡−1 log
4
𝛿 .

Regret bounds Similar to the finite X case, we can also show a near-zero regret bound for

compact X ∈ R𝑑. The following theorem clarifies our results. The convergence rates are the same

as Thm. 7.3.2. Note that 𝜆2𝑇 converges to �̄�2(·) instead of 𝜎2 in Thm. 7.3.2 and �̄�2(·) is proportional

to 𝜎2 .

Theorem 7.3.4. Assume all the assumptions in Thm. 7.3.2 and that Φ(�̄�) has full row rank. With

probability at least 1 − 𝛿, the best-sample simple regret in 𝑇 iterations of meta BO with either

GP-UCB or PI satisfies

𝑟UCB
𝑇 < 𝜂UCB

𝑇 (𝑁)𝜆𝑇 , 𝑟PI
𝑇 < 𝜂PI

𝑇 (𝑁)𝜆𝑇 , 𝜆2𝑇 = 𝑂(𝜌𝑇 /𝑇) + �̄�(𝑥𝜏)
2,

where 𝜂𝑈𝐶𝐵𝑇 (𝑁) = (𝑚+𝐶1)(
√
1+𝑚√
1−𝑚+1), 𝜂PI

𝑇 (𝑁) = (𝑚+𝐶2)(
√
1+𝑚√
1−𝑚+1)+𝐶3,𝑚 = 𝑂(

√︁
1

𝑁−𝑇),

𝐶1, 𝐶2, 𝐶3 > 0 are constants, 𝜏 = argmin𝑡∈[𝑇] 𝑘𝑡−1(𝑥𝑡) and 𝜌𝑇 = max
𝐴∈X,|𝐴|=𝑇

1
2 log |𝐼+𝜎

−2𝑘(𝐴)|.

7.3.3 Bounding the simple regret by the best-sample simple regret

Once we have the observations𝐷𝑇 = {(𝑥𝑡, 𝑦𝑡)}𝑇𝑡=1, we can infer where the argmax of the function

is. For all the cases in which X is discrete or compact and the acquisition function is GP-UCB or

PI, we choose the inferred argmax to be �̂�*𝑇 = 𝑥𝜏 where 𝜏 = argmax𝜏∈[𝑇] 𝑦𝜏 . We show in

Lemma 7.3.5 that with high probability, the difference between the simple regret 𝑅𝑇 and the best-

sample simple regret 𝑟𝑇 is proportional to the observation noise 𝜎.

Lemma 7.3.5. With probability at least 1− 𝛿, 𝑅𝑇 ≤ 𝑟𝑇 + 2(2 log 1
𝛿)

1
2𝜎.

Together with the bounds on the best-sample simple regret from Thm. 7.3.2 and Thm. 7.3.4, our

result shows that, with high probability, the simple regret decreases to a constant proportional to the

noise level 𝜎 as the number of iterations and training functions increases.

151

Figure 7-2: Two instances of a picking problem. A problem instance is defined by the arrangement
and number of obstacles, which vary randomly across different instances. The objective is to select
a grasp that can pick the blue box, marked with a circle, without violating kinematic and collision
constraints. [97].

7.4 Experiments

We evaluate our algorithm in four different black-box function optimization problems, involving

discrete or continuous function domains. One problem is optimizing a synthetic function in R2, and

the rest are optimizing decision variables in robotic task and motion planning problems that were

used in [97]2.

At a high level, our task and motion planning benchmarks involve computing kinematically fea-

sible collision-free motions for picking and placing objects in a scene cluttered with obstacles. This

problem has a similar setup to experimental design: the robot can “experiment” by assigning values

to decision variables including grasps, base poses, and object placements until it finds a feasible

plan. Given the assigned values for these variables, the robot program makes a call to a planner3

which then attempts to find a sequence of motions that achieve these grasps and placements. We

score the variable assignment based on the results of planning, assigning a very low score if the

problem was infeasible and otherwise scoring based on plan length or obstacle clearance. An ex-

ample problem is given in Figure 7-2.

Planning problem instances are characterized by arrangements of obstacles in the scene and the

2Our code is available at https://github.com/beomjoonkim/MetaLearnBO.
3We use Rapidly-exploring random tree (RRT) [118] with predefined random seed, but other choices are possible.

152

https://github.com/beomjoonkim/MetaLearnBO

0 20 40 60 80 100 120 140 160

Number of evaluations

3.4

3.2

3.0

2.8

2.6

2.4

2.2

R
e
w

a
rd

s
Random

Plain-UCB

PEM-BO-UCB

TLSM-BO-UCB

0 5 10 15 20 25 30

Number of evaluations

6

5

4

3

2

R
e
w

a
rd

s

Random

Plain-UCB

PEM-BO-UCB

TLSM-BO-UCB

0 20 40 60 80

Number of evaluations

0

25

50

75

100

125

150

R
e
w

a
rd

s

Random

Plain-UCB

PEM-BO-UCB

TLSM-BO-UCB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Portions of N

70

75

80

85

90

95

100

105

R
e
w

a
rd

s

PEM-BO-UCB

Plain-UCB

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Portions of N

3.4

3.2

3.0

2.8

2.6

2.4

R
e
w

a
rd

s

PEM-BO-UCB

Plain-UCB

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Portions of N

6

5

4

3

2

R
e
w

a
rd

s

PEM-BO-UCB

Plain-UCB

Number of evaluations Number of evaluations Number of evaluations

Proportion of training dataset Proportion of training dataset Proportion of training dataset

R
e
w

a
rd

s

R
e
w

a
rd

s

R
e
w

a
rd

s
R

e
w

a
rd

s

R
e
w

a
rd

s

R
e
w

a
rd

s

(a) (b) (c)

(d) (e)

Figure 7-3: Learning curves (top) and rewards vs number of iterations (bottom) for optimizing
synthetic functions sampled from a GP and two scoring functions from.

shape of the target object to be manipulated, and each problem instance defines a different score

function. Our objective is to optimize the score function for a new problem instance, given sets of

decision-variable and score pairs from a set of previous planning problem instances as training data.

In two robotics domains, we discretize the original function domain using samples from the

past planning experience, by extracting the values of the decision variables and their scores from

successful plans. This is inspired by the previous successful use of BO in a discretized domain [40]

to efficiently solve an adaptive locomotion problem.

We compare our approach, called point estimate meta Bayesian optimization (PEM-BO), to

three baseline methods. The first is a plain Bayesian optimization method that uses a kernel function

to represent the covariance matrix, which we call Plain. Plain optimizes its GP hyperparameters by

maximizing the data likelihood. The second is a transfer learning sequential model-based optimiza-

tion [202] method, that, like PEM-BO, uses past function evaluations, but assumes that functions

sampled from the same GP have similar response surface values. We call this method TLSM-BO.

The third is random selection, which we call Random. We present the results on the UCB acquisi-

tion function here and results on the PI acquisition function are available in the appendix.

In all domains, we use the 𝜁𝑡 value as specified in Sec. 7.3. For continuous domains, we use

Φ(𝑥) = [cos(𝑥𝑇𝛽(𝑖) + 𝛽
(𝑖)
0)]𝐾𝑖=1 as our basis functions. In order to train the weights 𝑊𝑖, 𝛽

(𝑖),

and 𝛽(𝑖)0 , we represent the function Φ(𝑥)𝑇𝑊𝑖 with a 1-hidden-layer neural network with cosine

activation function and a linear output layer with function-specific weights 𝑊𝑖. We then train this

153

network on the entire dataset �̄�𝑁 . Then, fixing Φ(𝑥), for each set of pairs (𝑦𝑖, �̄�𝑖), 𝑖 = {1 · · ·𝑁},

we analytically solve the linear regression problem 𝑦𝑖 ≈ Φ(𝑥𝑖)
𝑇𝑊𝑖 as described in Sec. 7.3.2.

For Plain and TLSM-BO with UCB in our experiments, we used the same 𝜁𝑡 as PEM-BO.

7.4.1 Optimizing a continuous synthetic function

In this problem, the objective is to optimize a black-box function sampled from a GP, whose domain

is R2, given a set of evaluations of different functions from the same GP. Specifically, we consider a

GP with a squared exponential kernel function. The purpose of this problem is to show that PEM-

BO, which estimates mean and covariance matrix based on �̄�𝑁 , would perform similarly to BO

methods that start with an appropriate prior. We have training data from 𝑁 = 100 functions with

𝑀 = 1000 sample points each.

Figure 7-3(a) shows the learning curve, when we have different portions of data. The x-axis

represents the percentage of the dataset used to train the basis functions, 𝑢, and W from the training

dataset, and the y-axis represents the best function value found after 10 evaluations on a new func-

tion. We can see that even with just ten percent of the training data points, PEM-BO performs just

as well as Plain, which uses the appropriate kernel for this particular problem. Compared to PEM-

BO, which can efficiently use all of the dataset, we had to limit the number of training data points

for TLSM-BO to 1000, because even performing inference requires 𝑂(𝑁𝑀) time. This leads to its

noticeably worse performance than Plain and PEM-BO.

Figure 7-3(d) shows the how max𝑡∈[𝑇] 𝑦𝑡 evolves, where 𝑇 ∈ [1, 100]. As we can see, PEM-

BO using the UCB acquisition function performs similarly to Plain with the same acquisition func-

tion. TLSM-BO again suffers because we had to limit the number of training data points.

7.4.2 Optimizing a grasp

In the robot-planning problem shown in Figure 7-2, the robot has to choose a grasp for picking the

target object in a cluttered scene. A planning problem instance is defined by the poses of obstacles

and the target objects, which changes the feasibility of a grasp across different instances.

The reward function is the negative of the length of the picking motion if the motion is fea-

sible, and −𝑘 ∈ R otherwise, where −𝑘 is a suitably lower number than the lengths of possible

trajectories. We construct the discrete set of grasps by using grasps that worked in the past planning

problem instances. The original space of grasps is R58, which describes position, direction, roll, and

depth of a robot gripper with respect to the object, as used in [48]. For both Plain and TLSM-BO,

154

we use squared exponential kernel function on this original grasp space to represent the covariance

matrix. We note that this is a poor choice of kernel, because the grasp space includes angles, making

it a non-vector space. These methods also choose a grasp from the discrete set. We train on dataset

with 𝑁 = 1800 previous problems, and let 𝑀 = 162.

Figure 7-3(b) shows the learning curve with 𝑇 = 5. The x-axis is the percentage of the dataset

used for training, ranging from one percent to ten percent. Initially, when we just use one percent

of the training data points, PEM-BO performs as poorly as TLSM-BO, which again, had only 1000

training data points. However, PEM-BO outperforms both TLSM-BO and Plain after that. The

main reason that PEM-BO outperforms these approaches is because their prior, which is defined by

the squared exponential kernel, is not suitable for this problem. PEM-BO, on the other hand, was

able to avoid this problem by estimating a distribution over values at the discrete sample points that

commits only to their joint normality, but not to any metric on the underlying space. These trends

are also shown in Figure 7-3(e), where we plot max𝑡∈[𝑇] 𝑦𝑡 for 𝑇 ∈ [1, 100]. PEM-BO outperforms

the baselines significantly.

7.4.3 Optimizing a grasp, base pose, and placement

We now consider a more difficult task that involves both picking and placing objects in a cluttered

scene. A planning problem instance is defined by the poses of obstacles and the poses and shapes

of the target object to be pick and placed. The reward function is again the negative of the length of

the picking motion if the motion is feasible, and−𝑘 ∈ R otherwise. For both Plain and TLSM-BO,

we use three different squared exponential kernels on the original spaces of grasp, base pose, and

object placement pose respectively and then add them together to define the kernel for the whole

set. For this domain, 𝑁 = 1500, and 𝑀 = 1000.

Figure 7-3(c) shows the learning curve, when 𝑇 = 5. The x-axis is the percentage of the dataset

used for training, ranging from one percent to ten percent. Initially, when we just use one percent

of the training data points, PEM-BO does not perform well. Similar to the previous domain, it

then significantly outperforms both TLSM-BO and Plain after increasing the training data. This is

also reflected in Figure 7-3(f), where we plot max𝑡∈[𝑇] 𝑦𝑡 for 𝑇 ∈ [1, 100]. PEM-BO outperforms

baselines. Notice that Plain and TLSM-BO perform worse than Random, as a result of making

inappropriate assumptions on the form of the kernel.

155

7.4.4 Sensitivity to missing data

In the following, we include more experiments that we performed with PI acquisition function and

matrix completion for the missing entry case in the discrete domains. The PI approach uses the

maximum function value in the training dataset �̄�𝑁 as the target value. These results show that

our approach is resilient to missing data. BO with the PI acquisition function performs similarly to

UCB.

0 20 40 60 80 100 120 140 160
Number of evaluations

3.4

3.2

3.0

2.8

2.6

2.4

2.2

Re
wa

rd
s

Random
Plain-UCB
Plain-PI
0.6xPEM-BO-UCB
0.6xPEM-BO-PI
TLSM-BO-UCB
TLSM-BO-PI

0 5 10 15 20 25 30
Number of evaluations

6

5

4

3

2

Re
wa

rd
s

Random
Plain-UCB
Plain-PI
0.6xPEM-BO-UCB
0.6xPEM-BO-PI
TLSM-BO-UCB
TLSM-BO-PI

0 20 40 60 80
Number of evaluations

25

0

25

50

75

100

125

150

Re
wa

rd
s

Random
Plain-UCB
Plain-PI
0.6xPEM-BO-UCB
0.6xPEM-BO-PI
TLSM-BO-UCB
TLSM-BO-PI

Figure 7-4: Rewards vs. Number of evals for grasp optimization, grasp, base pose, and placement
optimization, and synthetic function optimization problems (from top-left to bottom). 0.6xPEM-
BO refers to the case where we have 60 percent of the dataset missing.

7.5 Discussions and conclusions

In this section, we discuss related topics to our approach. Both theoreticians and practitioners may

find this section useful in terms of clarifying theoretical insights and precautions.

156

7.5.1 Connections and differences to empirical Bayes

In classic empirical Bayes [152, 96], we estimate the unknown parameters of the Bayesian model

and usually use a point estimate to proceed any Bayesian computations. One very popular approach

to estimate those unknown parameters is by maximizing the data likelihood. There also exit other

variants of empirical Bayes; for example, oracle Bayes, which “shows empirical Bayes in its most

frequentist mode” [53].

In this chapter, we use a variant of empirical Bayes that constructs estimators for both the prior

distribution and the posterior distribution. For the estimators of the posterior, we do not use a

plug-in estimate like classic empirical Bayes but we construct them through Lemma. A.1.6, which

establishes the unbiasedness and concentration bounds for those estimates.

7.5.2 Connections and differences to hierarchical Bayes

Hierarchical Bayes is a Bayesian hierarchical model that places priors on priors. For both of our

finite X case and continuous and compact X ∈ R𝑑 case, we can write down a hierarchical Bayes

model that puts a normal inverse Wishart prior on 𝜇(X), 𝑘(X) or 𝑢,Σ.

Our approach can be viewed as a special case of the hierarchical Bayes model using point

estimates to approximate the posterior. Neither our estimators nor our regret analyses depend on the

prior parameters of those hierarchical Bayes models. But one may analyze the regret of BO with a

better approximation from a full Bayesian perspective using hierarchical Bayes.

7.5.3 Future directions

Due to the limited space, we only give the formulation of meta BO in its simple and basic set-

tings. Our setting restricts the evaluated inputs in the training data to follow certain norms, such as

where they are and how many they are, but one may certainly extend our analyses to less restrictive

scenarios.

Missing entries We did not consider any bounds in matrix completion [31] in our regret anal-

yses, and proceeded with the assumption that there is no missing entry in the training data. But if

missing data is a concern, one should definitely consider adapting bounds from [31] or use better

estimators [126] that take into account missing entries when bounding the estimates.

157

7.5.4 Broader impact

We developed a statistically sound approach for meta BO with an unknown Gaussian process prior.

We verified our approach on simulated task and motion planning problems. We showed that our

approach is able to guide task and motion planning with good action recommendations, such that

the resulting plans are better and faster to compute. We believe the theoretical guarantees may

support better explanations for more practical BO approaches. In particular, our method can serve

as a building block of artificial intelligence systems, and our analyses can be combined with the

theoretical guarantees of other parts of the system to analyze an integrated system.

7.5.5 Caveats

We did not expand the experiment sections to include applications other than task and motion plan-

ning in simulation. But there are many more scenarios that this meta BO approach will be useful.

For example, our finite X formulation can be used to adaptively recommend advertisements, movies

or songs to Internet users, by learning a mean and kernel for those discrete items.

Optimization objectives Like other bandit algorithms, our approach only treats objective

functions or any metrics to be optimized as given. Practitioners need to be very careful about

what exactly they are optimizing with our approach or other optimization algorithms. For exam-

ple, maximizing number of advertisement clicks or corporation profits may not be a good metric in

recommendation systems; maximizing a poorly designed reward function for robotic systems may

result in unexpected hazards.

Guarantees with assumptions In real-world applications, practitioners need to be extra cau-

tious with our algorithm. We provided detailed assumptions and analyses, that are only based those

assumptions, in Section 3 and Section 4. Outside those assumptions, we do not claim that our analy-

ses will hold in any way. For example, in robotics applications, it may not be true that the underlying

reward/cost functions are actually sampled from a GP, in which case using our method may harm

the physical robot; even if those objective functions are in fact from a GP, because our regret bounds

only hold with high probability, meta BO may still give dangerous actions with certain probabilities

(as in frequency).

In addition, please notice that we did not provide any theoretical guarantees for using basis

functions trained with neural networks. We assume those basis functions are given, which is usually

not the case in practice. To the best of our knowledge, proving bounds for neural networks is very

158

hard [95].

7.6 Conclusion

We proposed a new framework for meta BO that estimates its Gaussian process prior based on

past experience with functions sampled from the same prior. We established regret bounds for

our approach without the reliance on a known prior and showed its good performance on task and

motion planning benchmark problems.

159

Chapter 8

Scaling Up Bayesian Optimization

Despite recent successes, Bayesian optimization still remains somewhat impractical, since it is typ-

ically coupled with expensive function estimators (Gaussian processes) and non-convex acquisition

functions that are hard to optimize in high dimensions and sometimes expensive to evaluate. To al-

leviate these difficulties, recent work explored the use of random feature approximations [170, 113]

and sparse Gaussian processes [132], but, while improving scalability, these methods still suffer

from misestimation of confidence bounds (an essential part of the acquisition functions), and ex-

pensive or inaccurate Gaussian process (GP) hyperparameter inference. Indeed, to the best of our

knowledge, Bayesian optimization is typically limited to a few thousand evaluations [113]. Yet,

reliable search and estimation for complex functions in very high-dimensional spaces may well

require more evaluations. With the increasing availability of parallel computing resources (e.g.

running simulations in parallel), large number of function evaluations are possible if the underly-

ing approach can leverage the parallelism. Comparing to the millions of evaluations possible (and

needed) with local methods like stochastic gradient descent, the scalability of global Bayesian op-

timization leaves large room for desirable progress. In particular, the lack of scalable uncertainty

estimates to guide the search is a major roadblock for huge-scale Bayesian optimization.

In this chapter, we propose ensemble Bayesian optimization (EBO), a global optimization

method targeted to high dimensional, large scale parameter search problems whose queries are

parallelizable. Such problems are abundant in hyper and control parameter optimization in machine

learning and robotics [30, 169]. EBO relies on two main ideas that are implemented at multiple

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional Bayesian optimization via
structural kernel learning. In International Conference on Machine Learning (ICML), 2017.

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale Bayesian optimization in
high-dimensional spaces. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

161

levels: (1) we use efficient partition-based function approximators (across both data and features)

that simplify and accelerate search and optimization; (2) we enhance the expressive power of these

approximators by using ensembles and a stochastic approach. We maintain an evolving (posterior)

distribution over the (infinite) ensemble and, in each iteration, draw one member to perform search

and estimation.

In particular, we use a new combination of three types of partition-based approximations: (1-

2) For improved GP estimation, we propose a novel hierarchical additive GP model based on tile

coding (a.k.a. random binning or Mondrian forest features). We learn a posterior distribution over

kernel width and the additive structure; here, Gibbs sampling prevents overfitting. (3) To accelerate

the sampler, which depends on the likelihood of the observations, we use an efficient, random-

ized block approximation of the Gram matrix based on a Mondrian process. Sampling and query

selection can then be parallelized across blocks, further accelerating the algorithm.

As a whole, this combination of simple, tractable structure with ensemble learning and ran-

domization improves efficiency, uncertainty estimates and optimization. Moreover, we show that

our realization of these ideas offers an alternative explanation for global optimization heuristics

that have been popular in other communities, indicating possible directions for further theoretical

analysis. Our empirical results demonstrate that EBO can speed up the posterior inference by 2-3

orders of magnitude (400 times in one experiment) compared to the state-of-the-art, without sac-

rificing quality. Furthermore, we demonstrate the ability of EBO to handle sample-intensive hard

optimization problems by applying it to real-world problems with tens of thousands of observations.

8.1 Background and Challenges

Consider a simple but high-dimensional search space 𝒳 = [0, 𝑅]𝐷 ⊆ R𝐷. We aim to find a

maximizer 𝑥* ∈ argmax𝑥∈𝒳 𝑓(𝑥) of a black-box function 𝑓 : 𝒳 → R.

Gaussian processes. Gaussian processes (GPs) are popular priors for modeling the function 𝑓

in Bayesian optimization. They define distributions over functions where any finite set of function

values has a multivariate Gaussian distribution. A Gaussian process 𝒢𝒫(𝜇, 𝜅) is fully specified

by a mean function 𝜇(·) and covariance (kernel) function 𝜅(·, ·). Let 𝑓 be a function sampled

from 𝒢𝒫(0, 𝜅). Given observations 𝒟𝑛 = {(𝑥𝑡, 𝑦𝑡)}𝑛𝑡=1 where 𝑦𝑡 ∼ 𝒩 (𝑓(𝑥𝑡), 𝜎), we obtain the

162

posterior mean and variance of the function as

𝜇𝑛(𝑥) = 𝜅𝑛(𝑥)
T(𝐾𝑛 + 𝜎2𝐼)−1𝑦𝑛, (8.1)

𝜎2𝑛(𝑥) = 𝜅(𝑥,𝑥)− 𝜅𝑛(𝑥)
T(𝐾𝑛 + 𝜎2𝐼)−1𝜅𝑛(𝑥) (8.2)

via the kernel matrix 𝐾𝑛 = [𝜅(𝑥𝑖,𝑥𝑗)]𝑥𝑖,𝑥𝑗∈𝒟𝑛
and 𝜅𝑛(𝑥) = [𝜅(𝑥𝑖,𝑥)]𝑥𝑖∈𝐷𝑛 [151]. The log data

likelihood for 𝒟𝑛 is given by

log 𝑝(𝒟𝑛) = −
1

2
𝑦T
𝑛(𝐾𝑛 + 𝜎2𝐼)−1𝑦𝑛

− 1

2
log |𝐾𝑛 + 𝜎2𝐼| − 𝑛

2
log 2𝜋. (8.3)

While GPs provide flexible, broadly applicable function estimators, the 𝑂(𝑛3) computation of the

inverse (𝐾𝑛 + 𝜎2𝐼)−1 and determinant |𝐾𝑛 + 𝜎2𝐼| can become major bottlenecks as 𝑛 grows, for

both posterior function value predictions and data likelihood estimation.

Additive structure. To reduce the complexity of the vanilla GP, we assume a latent decompo-

sition of the input dimensions [𝐷] = {1, . . . , 𝐷} into disjoint subspaces, namely,
⋃︀𝑀
𝑚=1𝐴𝑚 = [𝐷]

and 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for all 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ [𝑀]. As a result, the function 𝑓 decomposes as 𝑓(𝑥) =∑︀
𝑚∈[𝑀] 𝑓𝑚(𝑥

𝐴𝑚) [91]. If each component 𝑓𝑚 is drawn independently from 𝒢𝒫(𝜇(𝑚), 𝜅(𝑚)) for

all 𝑚 ∈ [𝑀], the resulting 𝑓 will also be a sample from a GP: 𝑓 ∼ 𝒢𝒫(𝜇, 𝜅), with 𝜇(𝑥) =∑︀
𝑚∈[𝑀] 𝜇𝑚(𝑥

𝐴𝑚), 𝜅(𝑥, 𝑥′) =
∑︀

𝑚∈[𝑀] 𝜅
(𝑚)(𝑥𝐴𝑚 , 𝑥′𝐴𝑚).

The additive structure reduces sample complexity and helps BO to search more efficiently and

effectively since the acquisition function can be optimized component-wise. But it remains chal-

lenging to learn a good decomposition structure {𝐴𝑚}. Recently, [190] proposed learning via Gibbs

sampling. This sampler takes hours for merely a few hundred points, because it needs a vast number

of expensive data likelihood computations.

Random features. It is possible use random features [150] to approximate the GP kernel and

alleviate the 𝑂(𝑛3) computation in Eq. (8.1) and Eq. (8.3). Let 𝜑 : 𝒳 ↦→ R𝐷𝑅 be the (scaled)

random feature operator and Φ𝑛 = [𝜑(𝑥1), · · · ,𝜑(𝑥𝑛)]T ∈ R𝑛×𝐷𝑅 . The GP posterior mean and

variance can be written as

𝜇𝑛(𝑥) = 𝜎−2𝜑(𝑥)TΣ𝑛Φ
T
𝑛𝑦𝑛, (8.4)

𝜎2𝑛(𝑥) = 𝜑(𝑥)TΣ𝑛𝜑(𝑥), (8.5)

163

x
0 0.5 1

f(
x
)

-10

-5

0

5

10

3σ
µ
f

x
0 0.5 1

f(
x
)

-150

-100

-50

0

50

3σ
µ
f

x
0 0.5 1

f(
x
)

-10

-5

0

5

10

3σ
µ
f

x
0 0.5 1

f(
x
)

-20

0

20

3σ
µ
f

(a) (b) (c) (d)

Figure 8-1: We use 1000 Fourier features to approximate a 1D GP with a squared exponential kernel.
The observations are samples from a function 𝑓 (red line) drawn from the GP with zero mean in
the range [−10, 0.5]. (a) Given 100 sampled observations (red circles), the Fourier features lead
to reasonable confidence bounds. (b) Given 1000 sampled observations (red circles), the quality
of the variance estimates degrades. (c) With additional samples (5000 observations), the problem
is exacerbated. The scale of the variance predictions relative to the mean prediction is very small.
(d) For comparison, the proper predictions of the original full GP conditioned on the same 5000
observations as (c). Variance starvation becomes a serious problem for random features when the
size of data is close to or larger than the size of the features.

where Σ𝑛 = (ΦT
𝑛Φ𝑛𝜎

−2 + 𝐼)−1. By the Woodbury matrix identity and the matrix determinant

lemma, the log data likelihood becomes

log 𝑝(𝒟𝑛) =
𝜎−4

2
𝑦T
𝑛Φ𝑛Σ𝑛Φ

T
𝑛𝑦𝑛

− 1

2
log |Σ−1

𝑛 | −
𝜎−2

2
𝑦T
𝑛𝑦𝑛 −

𝑛

2
log 2𝜋𝜎2. (8.6)

The number of random features necessary to approximate the GP well in general increases with the

number of observations [154]. Hence, for large-scale observations, we cannot expect to solely use a

fixed number of features. Moreover, learning hyperparameters for random features is expensive: for

Fourier features, the computation of Eq. (8.6) means re-computing the features, plus 𝑂(𝐷3
𝑅) for the

inverse and determinant. With Mondrian features [113], we can learn the kernel width efficiently

by adding more Mondrian blocks, but this procedure is not well compatible with learning additive

structure, since the whole structure of the sampled Mondrian features will change. In addition, we

typically need a forest of trees for a good approximation.

Tile coding. Tile coding [173, 3] is a 𝑘-hot encoding widely used in reinforcement learning

as an efficient set of non-linear features. In its simplest form, tile coding is defined by 𝑘 partitions,

referred to as layers. An encoded data point becomes a binary vector with a non-zero entry for each

bin containing the data point. There exists methods for sampling random partitions that allow to

approximate various kernels, such as the ‘hat’ kernel [150], making tile coding well suited for our

purposes.

164

Variance starvation. It is probably not surprising that using finite random features to learn

the function distribution will result in a loss in accuracy [60]. For example, we observed that, while

the mean predictions are preserved reasonably well around regions where we have observations,

both mean and confidence bound predictions can become very bad in regions where we do not have

observations, once there are more observations than features. We refer to this underestimation of

variance scale compared to mean scale, illustrated in Fig. 8-1, as variance starvation.

8.2 Related Work

There has been a series of works addressing the three big challenges in BO: selecting batch eval-

uations [38, 46, 68, 190, 41], high-dimensional input spaces [193, 49, 121, 91, 190, 187], and

scalability [170, 113, 132]. Although these three problems tend to co-occur, this work is the first (to

the best of our knowledge) to address all three challenges jointly in one framework.

Other parts of our framework are inspired by the Mondrian forest [113], which partitions the

input space via a Mondrian tree and aggregates trees into a forest. The closely related Mondrian

kernels [12] use random features derived from Mondrian forests to construct a kernel. Such a

kernel, in fact, approximates a Laplace kernel. In fact, Mondrian forest features can be considered a

special case of the popular tile coding features widely used in reinforcement learning [173, 3]. [113]

showed that, in low-dimensional settings, Mondrian forest kernels scale better than the regular GP

and achieve good uncertainty estimates in many low-dimensional problems.

Besides Mondrian forests, there is a rich literature on sparse GP methods to address the scal-

ability of GP regression [162, 167, 180, 76]. However, these methods are mostly only shown to

be useful when the input dimension is low and there exist redundant data points, so that inducing

points can be selected to emulate the original posterior GP well. However, data redundancy is usu-

ally not the case in high-dimensional Bayesian optimization. Recent applications of sparse GPs

in BO [132] only consider experiments with less than 80 function evaluations in BO and do not

show results on large scale observations. Another approach to tackle large scale GPs distributes the

computation via local experts [43]. However, this is not very suitable for the acquisition function

optimization needed in Bayesian optimization, since every valid prediction needs to synchronize

the predictions from all the local experts. This work is also related to [72]. While [72] focuses

on modeling non-stationary functions with treed partitions, our work integrates tree structures and

Bayesian optimization in a novel way.

165

8.3 Learning Additive Kernel Structure

We take a Bayesian view on the task of learning the latent structure of the GP kernel. The decom-

position of the input space 𝒳 will be learned simultaneously with optimization as more and more

data is observed. Our generative model draws mixing proportions 𝜃 ∼ DIR(𝛼). Each dimension

𝑗 is assigned to one out of 𝑀 groups via the decomposition assignment variable 𝑧𝑗 ∼ MULTI(𝜃).

The objective function is then 𝑓(𝑥) =
∑︀𝑀

𝑚=1 𝑓𝑚(𝑥
𝐴𝑚), where 𝐴𝑚 = {𝑗 : 𝑧𝑗 = 𝑚} is the set of

support dimensions for function 𝑓𝑚, and each 𝑓𝑚 is drawn from a Gaussian Process. Finally, given

an input 𝑥, we observe 𝑦 ∼ 𝒩 (𝑓(𝑥), 𝜎). Figure 8-2 illustrates the corresponding graphical model.

Given the observed data 𝒟𝑛 = {(𝑥𝑡, 𝑦𝑡)}𝑛𝑡=1, we obtain a posterior distribution over possible

decompositions 𝑧 (and mixing proportions 𝜃) that we will include later in the BO process:

𝑝(𝑧, 𝜃 | 𝒟𝑛;𝛼) ∝ 𝑝(𝒟𝑛 | 𝑧)𝑝(𝑧 | 𝜃)𝑝(𝜃;𝛼).

Marginalizing over 𝜃 yields the posterior distribution of the decomposition assignment

𝑝(𝑧 | 𝒟𝑛;𝛼) ∝ 𝑝(𝒟𝑛 | 𝑧)
∫︁
𝑝(𝑧 | 𝜃)𝑝(𝜃;𝛼) d𝜃

∝ 𝑝(𝒟𝑛 | 𝑧)
Γ(

∑︀
𝑚 𝛼𝑚)

Γ(𝐷 +
∑︀

𝑚 𝛼𝑚)

∏︁
𝑚

Γ(|𝐴𝑚|+ 𝛼𝑚)

Γ(𝛼𝑚)

where 𝑝(𝒟𝑛|𝑧) is the data likelihood (8.3) for the additive GP given a fixed structure defined by 𝑧.

We learn the posterior distribution for 𝑧 via Gibbs sampling, choose the decomposition among the

samples that achieves the highest data likelihood, and then proceed with BO. The Gibbs sampler

repeatedly draws coordinate assignments 𝑧𝑗 according to

𝑝(𝑧𝑗 = 𝑚 | 𝑧¬𝑗 ,𝒟𝑛; 𝛼) ∝ 𝑝(𝒟𝑛 | 𝑧)𝑝(𝑧𝑗 | 𝑧¬𝑗)

∝ 𝑝(𝒟𝑛 | 𝑧)(|𝐴𝑚|+ 𝛼𝑚) ∝ 𝑒𝜑𝑚 ,

where

𝜑𝑚 = −1

2
𝑦T(𝐾

(𝑧𝑗=𝑚)
𝑛 + 𝜎2𝐼)−1𝑦

− 1

2
log |𝐾(𝑧𝑗=𝑚)

𝑛 + 𝜎2𝐼|+ log(|𝐴𝑚|+ 𝛼𝑚)

and 𝐾
(𝑧𝑗=𝑚)
𝑛 is the gram matrix associated with the observations𝒟𝑛 by setting 𝑧𝑗 = 𝑚. We can use

166

Figure 8-2: Graphical model for the structured Gaussian process; 𝜂 is the hyperparameter of the GP
kernel; 𝑧 controls the decomposition for the input space.

𝛼 𝜃 𝑧 𝑓

𝜂

𝑦

𝑥

d

the Gumbel trick to efficiently sample from this categorical distribution. Namely, we sample a vector

of i.i.d standard Gumbel variables 𝜔𝑖 of length 𝑀 , and then choose the sampled decomposition

assignment 𝑧𝑗 = argmax𝑖≤𝑀 𝜑𝑖 + 𝜔𝑖.

With a Dirichlet process, we could make the model nonparametric and the number𝑀 of possible

groups in the decomposition infinite. Given that we have a fixed number of input dimension 𝐷, we

set 𝑀 = 𝐷 in practice.

8.4 Ensemble Bayesian Optimization

Next, we describe an approach that scales Bayesian Optimization when parallel computing re-

sources are available. We name our approach, outlined in Alg.17, Ensemble Bayesian optimization

(EBO). At a high level, EBO uses a (stochastic) series of Mondrian trees to partition the input space,

learn the kernel parameters of a GP locally, and aggregate these parameters. Our forest hence spans

across BO iterations.

In the 𝑡-th iteration of EBO in Alg. 17, we use a Mondrian process to randomly partition the

search space into 𝐽 parts (line 4), where 𝐽 can be dependent on the size of the observations 𝒟𝑡−1.

For the 𝑗-th partition, we have a subset 𝒟𝑗𝑡−1 of observations. From those observations, we learn a

local GP with random tile coding and additive structure, via Gibbs sampling (line 6). For concise-

ness, we refer to such GPs as TileGPs. The probabilistic tile coding can be replaced by a Mondrian

grid that approximates a Laplace kernel [13]. Once a TileGP is learned locally, we can run BO with

the acquisition function 𝜂 in each partition to generate a candidate set of points, and, from those,

select a batch that is both informative (high-quality) and diverse (line 14).

Since, in each iteration, we draw an input space partition and update the kernel width and the

additive structure, the algorithm may be viewed as implicitly and stochastically running BO on an

ensemble of GP models. In the following, we describe our model and the procedures of Alg. 17 in

detail. In the Appendix, we show an illustration how EBO optimizes a 2D function.

167

Algorithm 17 Ensemble Bayesian Optimization (EBO)
1: function EBO (𝑓,𝒟0)
2: Initialize 𝑧, 𝑘
3: for 𝑡 = 1, · · · , 𝑇 do
4: {𝒳𝑗}𝐽𝑗=1 ←MONDRIAN([0, 𝑅]𝐷, 𝑧, 𝑘, 𝐽)
5: parfor 𝑗 = 1, · · · , 𝐽 do
6: 𝑧𝑗 , 𝑘𝑗 ← GIBBSSAMPLING(𝑧, 𝑘 | 𝒟𝑗

𝑡−1)

7: 𝜂𝑗𝑡−1(·)←ACQUISITION (𝒟𝑗
𝑡−1, 𝑧

𝑗 , 𝑘𝑗)
8: {𝐴𝑚}𝑀𝑚=1 ← DECOMPOSITION(𝑧𝑗)
9: for 𝑚 = 1, · · · ,𝑀 do

10: 𝑥𝐴𝑚
𝑡𝑗 ← argmax𝑥∈𝒳𝐴𝑚

𝑗
𝜂𝑗𝑡−1(𝑥)

11: end for
12: end parfor
13: 𝑧 ← SYNC({𝑧𝑗}𝐽𝑗=1), 𝑘 ← SYNC({𝑘𝑗}𝐽𝑗=1)

14: {𝑥𝑡𝑏}𝐵𝑏=1 ← FILTER ({𝑥𝑡𝑗}𝐽𝑗=1 | 𝑧, 𝑘)
15: parfor 𝑏 = 1, · · · , 𝐵 do
16: 𝑦𝑡𝑏 ← 𝑓(𝑥𝑡𝑏)
17: end parfor
18: 𝒟𝑡 ← 𝒟𝑡−1 ∪ {𝑥𝑡𝑏, 𝑦𝑡𝑏}𝐵𝑏=1

19: end for
20: end function

8.4.1 Partitioning the input space via a Mondrian process

When faced with a “big” problem, a natural idea is to divide and conquer. For large scale Bayesian

optimization, the question is how to divide without losing the valuable local information that gives

good uncertainty measures. In EBO, we use a Mondrian process to divide the input space and

the observed data, so that nearby data points remain together in one partition, preserving locality.

Alg. 18 shows the full ‘Mondrian partitioning” algorithm.

168

Algorithm 18 Mondrian Partitioning
1: function MONDRIANPARTITIONING (𝑉,𝑁𝑝, 𝑆)

2: while |𝑉 | < 𝑁𝑝 do

3: 𝑝𝑗 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑗) ·𝑚𝑎𝑥(0, |𝒟𝑗 | − 𝑆),∀𝑣𝑗 ∈ 𝑉

4: if 𝑝𝑗 = 0,∀𝑗 then

5: break

6: end if

7: Sample 𝑣𝑗 ∼ 𝑝𝑗∑︀
𝑗 𝑝𝑗

, 𝑣𝑗 ∈ 𝑉

8: Sample a dimension 𝑑 ∼ ℎ𝑗
𝑑−𝑙𝑗𝑑∑︀

𝑑 ℎ𝑗
𝑑−𝑙𝑗𝑑

, 𝑑 ∈ [𝐷]

9: Sample cut location 𝑢𝑗𝑑 ∼ 𝑈 [𝑙𝑗𝑑, ℎ
𝑗
𝑑]

10: 𝑣𝑗(𝑙𝑒𝑓𝑡) ← [𝑙𝑗1, ℎ
𝑗
1]× · · · × [𝑙𝑗𝑑, 𝑢

𝑗
𝑑]× · · · × ×[𝑙

𝑗
𝐷, ℎ

𝑗
𝐷]

11: 𝑣𝑗(𝑟𝑖𝑔ℎ𝑡) ← [𝑙𝑗1, ℎ
𝑗
1]× · · · × [𝑢𝑗𝑑, ℎ

𝑗
𝑑]× · · · × ×[𝑙

𝑗
𝐷, ℎ

𝑗
𝐷]

12: 𝑉 ← 𝑉 ∪ {𝑣𝑗(𝑙𝑒𝑓𝑡), 𝑣𝑗(𝑟𝑖𝑔ℎ𝑡)} ∖ 𝑣𝑗
13: end while

14: return 𝑉

15: end function

In particular, we denote the maximum number of Mondrian partitions by𝑁𝑝 (usually the worker

pool size in the experiments) and the minimum number of data points in each partition to be 𝑆. The

set of partitions computed by the Mondrian tree (a.k.a. the leaves of the tree), 𝑉 , is initialized

to be the function domain 𝑉 = {[0, 𝑅]𝐷}, the root of the tree. For each 𝑣𝑗 ∈ 𝑉 described by a

hyperrectangle [𝑙𝑗1, ℎ
𝑗
1]×· · ·×[𝑙

𝑗
𝐷, ℎ

𝑗
𝐷], the length of 𝑣𝑗 is computed to be 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑗) =

∑︀𝐷
𝑑=1(ℎ

𝑗
𝑑−

𝑙𝑗𝑑). The observations associated with 𝑣𝑗 is 𝒟𝑗 . Here, for all (𝑥, 𝑦) ∈ 𝒟𝑗 , we have 𝑥 ∈ [𝑙𝑗1 − 𝜖, ℎ
𝑗
1 +

𝜖]× · · · × [𝑙𝑗𝐷 − 𝜖, ℎ
𝑗
𝐷 + 𝜖], where 𝜖 controls the how many neighboring data points to consider for

the partition 𝑣𝑗 . In our experiments, 𝜖 is set to be 0. Alg. 18 is different from Algorithm 1 and 2

of [113] in the stop criterion. [113] uses an exponential clock to count down the time of splitting

the leaves of the tree, while we split the leaves until the number of Mondrian partitions reaches 𝑁𝑝

or there is no partition that have more than 𝑆 data points. We designed our stop criterion this way to

balance the efficiency of EBO and the quality of selected points. Usually EBO is faster with larger

number of partitions 𝑁𝑝 (i.e., more parallel computing resources) and the quality of the selections

are better with larger size of observations on each partition (𝑆).

The Mondrian process uses axis-aligned cuts to divide the input space [0, 𝑅]𝐷 into a set of

partitions {𝒳𝑗}𝐽𝑗=0 where ∪𝑗𝒳𝑗 = [0, 𝑅]𝐷 and 𝒳𝑖 ∩ 𝒳𝑗 = ∅, ∀𝑖 ̸= 𝑗. Each partition 𝒳𝑗 can be

conveniently described by a hyperrectangle [𝑙𝑗1, ℎ
𝑗
1] × · · · × [𝑙𝑗𝐷, ℎ

𝑗
𝐷], which facilitates the efficient

169

𝛽 𝜆 𝑘

𝑓

𝑧 𝜃 𝛼

𝑦 𝑥

DL

D

Figure 8-3: The graphical model for TileGP, a GP with additive and tile kernel partitioning structure.
The parameter 𝜆 controls the rate for the number of cuts 𝑘 of the tilings (inverse of the kernel
bandwidth); the parameter 𝑧 controls the additive decomposition of the input feature space.

use of tile coding and Mondrian grids in a TileGP. In the next section, we define a TileGP and

introduce how its parameters are learned.

8.4.2 Learning a local TileGP via Gibbs sampling

For the 𝑗-th hyperrectangle partition 𝒳𝑗 = [𝑙𝑗1, ℎ
𝑗
1] × · · · × [𝑙𝑗𝐷, ℎ

𝑗
𝐷], we use a TileGP to model the

function 𝑓 locally. We use the acronym “TileGP” to denote the Gaussian process model that uses

additive kernels, with each component represented by tilings. We show the details of the genera-

tive model for TileGP in Alg. 19 and the graphical model in Fig. 8-3 with fixed hyper-parameters

𝛼, 𝛽0, 𝛽1. The main difference to the additive GP model used in [190] is that TileGP constructs a

hierarchical model for the random features (and hence, the kernels), while [190] do not consider the

kernel parameters to be part of the generative model. The random features are based on tile coding

or Mondrian grids, with the number of cuts generated by 𝐷 Poisson processes on [𝑙𝑗𝑑, ℎ
𝑗
𝑑] for each

dimension 𝑑 = 1, · · · , 𝐷. On the 𝑖-th layer of the tilings, tile coding samples the offset 𝛿 from

a uniform distribution 𝑈 [0,
ℎ𝑗𝑑−𝑙

𝑗
𝑑

𝑘𝑑𝑖
] and places the cuts uniformly starting at 𝛿 + 𝑙𝑗𝑑. The Mondrian

grid samples 𝑘𝑑𝑖 cut locations uniformly randomly from [𝑙𝑗𝑑, ℎ
𝑗
𝑑]. Because of the data partition, we

always have more features than observations, which can alleviate the variance starvation problem

described in Section 8.1.

We can use Gibbs sampling to efficiently learn the cut parameter 𝑘 and decomposition parameter

𝑧 by marginalizing out 𝜆 and 𝜃. Notice that both 𝑘 and 𝑧 take discrete values; hence, unlike other

continuous GP parameterizations, we only need to sample discrete variables for Gibbs sampling.

170

Algorithm 19 Generative model for TileGP
1: Draw mixing proportions 𝜃 ∼ DIR(𝛼)

2: for 𝑑 = 1, · · · , 𝐷 do

3: Draw additive decomposition 𝑧𝑑 ∼ MULTI(𝜃)

4: Draw Poisson rate parameter 𝜆𝑑 ∼ GAMMA(𝛽0, 𝛽1)

5: for 𝑖 = 1, · · · , 𝐿 do

6: Draw number of cuts 𝑘𝑑𝑖 ∼ POISSON(𝜆𝑑(ℎ
𝑗
𝑑 − 𝑙

𝑗
𝑑))

7:

⎧⎪⎨⎪⎩Draw offset 𝛿 ∼ 𝑈 [0,
ℎ𝑗
𝑑−𝑙𝑗𝑑
𝑘𝑑𝑖

] Tile Coding

Draw cut locations 𝑏 ∼ 𝑈 [𝑙𝑗𝑑, ℎ
𝑗
𝑑] Mondrian Grids

8: end for

9: end for

10: Construct the feature projection 𝜑 and the kernel 𝜅 = 𝜑T𝜑 from 𝑧 and sampled tiles

11: Draw function 𝑓 ∼ 𝒢𝒫(0, 𝜅)

12: Given input 𝑥, draw function value 𝑦 ∼ 𝒩 (𝑓(𝑥), 𝜎)

Given the observations 𝒟𝑡−1 in the 𝑗-th hyperrectangle partition, the posterior distribution of

the (local) parameters 𝜆, 𝑘, 𝑧, 𝜃 is

𝑝(𝜆, 𝑘, 𝑧, 𝜃 | 𝒟𝑡−1;𝛼, 𝛽)

∝ 𝑝(𝒟𝑡−1 | 𝑧, 𝑘)𝑝(𝑧 | 𝜃)𝑝(𝑘 | 𝜆)𝑝(𝜃;𝛼)𝑝(𝜆;𝛽).

Marginalizing over the Poisson rate parameter 𝜆 and the mixing proportion 𝜃 gives

𝑝(𝑘, 𝑧 | 𝒟𝑡−1;𝛼, 𝛽)

∝ 𝑝(𝒟𝑡−1|𝑧, 𝑘)
∫︁
𝑝(𝑧|𝜃)𝑝(𝜃;𝛼) d𝜃

∫︁
𝑝(𝑘|𝜆)𝑝(𝜆;𝛽) d𝜆

∝ 𝑝(𝒟𝑡−1 | 𝑧, 𝑘)
∏︁

𝑚

Γ(|𝐴𝑚|+ 𝛼𝑚)

Γ(𝛼𝑚)

×
∏︁

𝑑

Γ(𝛽1 + |𝑘𝑑|)
(
∏︀𝐿
𝑖=1 𝑘𝑑𝑖!)(𝛽0 + 𝐿)𝛽1+|𝑘𝑑|

where |𝑘𝑑| =
∑︀𝐿

𝑖=1 𝑘𝑑𝑖. Hence, we only need to sample 𝑘 and 𝑧 when learning the hyperparameters

of the TileGP kernel. For each dimension 𝑑, we sample the group assignment 𝑧𝑑 according to

𝑝(𝑧𝑑 = 𝑚 | 𝒟𝑡−1, 𝑘, 𝑧¬𝑑;𝛼) ∝ 𝑝(𝒟𝑡−1 | 𝑧, 𝑘)𝑝(𝑧𝑑 | 𝑧¬𝑑)

∝ 𝑝(𝒟𝑡−1 | 𝑧, 𝑘)(|𝐴𝑚|+ 𝛼𝑚). (8.7)

171

We sample the number of cuts 𝑘𝑑𝑖 for each dimension 𝑑 and each layer 𝑖 from the posterior

𝑝(𝑘𝑑𝑖 | 𝒟𝑡−1, 𝑘¬𝑑𝑖, 𝑧;𝛽) ∝ 𝑝(𝒟𝑡−1 | 𝑧, 𝑘)𝑝(𝑘𝑑𝑖 | 𝑘¬𝑑𝑖)

∝ 𝑝(𝒟𝑛 | 𝑧, 𝑘)Γ(𝛽1 + |𝑘𝑑|)
(𝛽0 + 𝐿)𝑘𝑑𝑖𝑘𝑑𝑖!

. (8.8)

If distributed computing is available, each hyperrectangle partition of the input space is assigned

a worker to manage all the computations within this partition. On each worker, we use the above

Gibbs sampling method to learn the additive structure and kernel bandwidth jointly. Conditioned

on the observations associated with the partition on the worker, we use the learned posterior TileGP

to select the most promising input point in this partition, and eventually send this candidate input

point back to the main process together with the learned decomposition parameter 𝑧 and the cut

parameter 𝑘. In the next section, we introduce the acquisition function we used in each worker and

how to filter the recommended candidates from all the partitions.

8.4.3 Acquisition functions

In this chapter, we mainly focus on parameter search problems where the objective function is

designed by an expert and the global optimum or an upper bound on the function is known. While

any BO acquisition functions can be used within the EBO framework, we use an acquisition function

from [187] to exploit the knowledge of the upper bound. Let 𝑓* be such an upper bound, i.e.,

∀𝑥 ∈ 𝒳 , 𝑓* ≥ 𝑓(𝑥). Given the observations 𝒟𝑗𝑡−1 associated with the 𝑗-th partition of the input

space, we minimize the acquisition function 𝜂𝑗𝑡−1(𝑥) =
𝑓*−𝜇𝑗𝑡−1(𝑥)

𝜎𝑗
𝑡−1(𝑥)

. Since the kernel is additive,

we can optimize 𝜂𝑗𝑡−1(·) separately for each additive component. Namely, for the 𝑚-th component

of the additive structure, we optimize 𝜂𝑗𝑡−1(·) only on the active dimensions 𝐴𝑚. This resembles a

block coordinate descent, and greatly facilitates the optimization of the acquisition function.

8.4.4 Filtering, budget allocation and batched BO

In the EBO algorithm, we first use a batch of workers to learn the local GPs and recommend potential

good candidate points from the local information. Then we aggregate the information of all the

workers, and use a filter to select the points to evaluate from the set of points recommended by all

the workers based on the aggregated information on the function.

There are two important details here: (1) how many points to recommend from each local

worker (budget allocation); and (2) how to select a batch of points from the Mondrian partition on

172

each worker (filtering). Usually in the beginning of the iterations, we do not have a lot of Mondrian

partitions (since we stop splitting a partition once it reaches a minimum number of data points). It

is very likely that the number of partitions 𝐽 is smaller than the size of the batch. Hence, we need

to allocate the budget of recommendations from each worker properly and use batched BO for each

Mondrian partition.

Budget allocation In our current version of EBO, we did the budget allocation using a heuris-

tic, where we would like to generate at least 2𝐵 recommendations from all the workers, and each

worker gets the budget proportional to a score, the sum of the Mondrian partition volume (volume

of the domain of the partition) and the best function value of the partition.

Filtering. Once we have a proposed query point from each partition, we select 𝐵 of them

according to the scoring function 𝜉(𝑋) = log det𝐾𝑋 −
∑︀𝐵

𝑏=1 𝜂(𝑥𝑏) where 𝑋 = {𝑥𝑏}𝐵𝑏=1. We use

the log determinant term to force diversity and 𝜂 to maintain quality. We maximize this function

greedily. In some cases, the number of partitions 𝐽 can be smaller than the batch size 𝐵. In this

case, one may either use just 𝐽 candidates, or use batch BO on each partition. We use the latter

detailed below.

Batched BO For batched BO, we also use a heuristic where the points achieving the top 𝑛 ac-

quisition function values are always included and the other ones come from random points selected

in that partition. For the optimization of the acquisition function over each block of dimensions,

we sample 1000 points in the low dimensional space associated with the additive component and

minimize the acquisition function via L-BFGS-B starting from the point that gives the best acqui-

sition value. We add the optimized argmin to the 1000 points and sort them according to their

acquisition values, and then select the top 𝑛 random ones, and combine with the sorted selections

from other additive components. Other batched BO methods can also be used and can potentially

improve upon our results.

8.4.5 Efficient data likelihood computation and parameter synchronization

For the random features, we use tile coding due to its sparsity and efficiency. Since non-zero features

can be found and computed by binning, the computational cost for encoding a data point scales

linearly with dimensions and number of layers. The resulting representation is sparse and convenient

to use. Additionally, the number of non-zero features is quite small, which allows us to efficiently

compute a sparse Cholesky decomposition of the inner product (Gram matrix) or the outer product

of the data. This allows us to efficiently compute the data likelihoods.

173

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

1 observation 3 observations

(a) (b) (c) (d)

Figure 8-4: Posterior mean function (a, c) and GP-UCB acquisition function (b, d) for an additive
GP in 2D. The maxima of the posterior mean and acquisition function are at the points resulting
from an exchange of coordinates between “good” observed points (-1,0) and (2,2).

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

−3.244
−2.707
−2.170
−1.633
−1.096
−0.559
−0.023
0.514
1.051
1.588

Figure 8-5: The 2D additive function we optimized in Fig. 8-6. The global maximum is marked
with “+”.

In each iteration 𝑡, after the batch workers return the learned decomposition indicator 𝑧𝑏 and

the number of tiles 𝑘𝑏, 𝑏 ∈ [𝐵], we synchronize these two parameters (line 13 of Alg. 17). For the

number of tiles 𝑘, we set 𝑘𝑑 to be the rounded mean of {𝑘𝑏𝑑}𝐵𝑏=1 for each dimension 𝑑 ∈ [𝐷]. For

the decomposition indicator, we use correlation clustering to cluster the input dimensions.

8.4.6 An Illustration of EBO

We give an illustration of the proposed EBO algorithm on a 2D function shown in Fig. 8-5. This

function is a sample from a 2D TileGP, where the decomposition parameter is 𝑧 = [0, 1], the cut

parameter is (inverse bandwidth) 𝑘 = [10, 10], and the noise parameter is 𝜎 = 0.01.

The global maximum of this function is at (0.27, 0.41). In this example, EBO is configured to

have at least 20 data points on each partition, at most 50 Mondrian partitions, and 100 layers of

174

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t=1 t=2 t=3 t=4 t=5

t=6 t=7 t=8 t=9 t=10

Figure 8-6: An example of 10 iterations of EBO on a 2D toy example plotted in Fig. 8-5. The
selections in each iteration are blue and the existing observations orange. EBO quickly locates the
region of the global optimum while still allocating budget to explore regions that appear promising
(e.g. around the local optimum (1.0, 0.4)).

tiles to approximate the Laplace kernel. We run EBO for 10 iterations with 20 queries each batch.

The results are shown in Fig. 8-6. In the first iteration, EBO has no information about the function;

hence it spreads the 10 queries (blue dots) “evenly” in the input domain to collect information. In

the 2nd iteration, based on the evaluations on the selected points (yellow dots), EBO chooses to

query batch points (blue dots) that have high acquisition values, which appear to be around the

global optimum and some other high valued regions. As the number of evaluations exceeds 20, the

minimum number of data points on each partition, EBO partitions the input space with a Mondrian

process in the following iterations. Notice that each iteration draws a different partition (shown as

the black lines) from the Mondrian process so that the results will not “over-fit” to one partition

setting and the computation can remain efficient. In each partition, EBO runs the Gibbs sampling

inference algorithm to fit a local TileGP and uses batched BO select a few candidates. Then EBO

uses a filter to decide the final batch of candidate queries (blue dots) among all the recommended

ones from each partition as described in Sec. 8.4.4.

8.4.7 Relations to Mondrian kernels, random binning and additive Laplace kernels

Our model described in Section 8.4.2 can use Mondrian grids or (our version of) tile coding to

achieve efficient parameter inference for the decomposition 𝑧 and the number of cuts 𝑘 (inverse of

kernel bandwidth). Tile coding and Mondrian grids are also closely related to Mondrian Features

175

Tile coding Mondrian Grid Random Binning Mondrain Feature

Figure 8-7: Illustrations of (our version of) tile coding, Mondrian Grid, random binning and Mon-
drian feature.

and Random Binning: All of the four kinds of random features attempt to find a sparse random

feature representation for the raw input 𝑥 based on the partition of the space with the help of layers.

But there are some subtle differences.

We illustrate the differences between one layer of the features constructed by tile coding, Mon-

drian grid, Mondrian features and random binning in Fig. 8-7. For each layer of (our version of) tile

coding, we sample a positive integer 𝑘 (number of cuts) from a Poisson distribution parameterized

by 𝜆𝑅, and then set the offset to be a constant uniformly randomly sampled from [0, 𝑅𝑘]. For each

layer of the Mondrian grid, the number of cuts 𝑘 is sampled tile in coding, but instead of using an

offset and uniform cuts, we put the cuts at locations independently uniformly randomly from [0, 𝑅].

Random binning does not sample 𝑘 cuts but samples the distance 𝛿 between neighboring cuts by

drawing 𝛿 ∼ GAMMA(2, 𝜆𝑅). Then, it samples the offset from [0, 𝛿] and finally places the cuts. All

of the above-mentioned three types of random features can work individually for each dimension

and then combine the cuts from all dimensions. The Mondrian feature (Mondrian forest features to

be exact), contrast, partitions the space jointly for all dimensions. More details of Mondrian features

can be found in [113, 12]. For all of these four types of random features and for each layer of the

total 𝐿 layers, the kernel is 𝜅𝐿(𝑥,𝑥′) = 1
𝐿

∑︀𝐿
𝑙=1 𝜒𝑙(𝑥,𝑥

′) where

𝜒𝑙(𝑥,𝑥
′) =

⎧⎪⎨⎪⎩
1 𝑥 and 𝑥′ are in the same cell on the layer 𝑙

0 otherwise
(8.9)

For the case where the kernel has 𝑀 additive components, we simply use the tiling for each decom-

position and normalize by𝐿𝑀 instead of𝐿. More precisely, we have 𝜅𝐿(𝑥,𝑥′) = 1
𝐿𝑀

∑︀𝑀
𝑚=1

∑︀𝑀
𝑙=1 𝜒𝑙(𝑥

𝐴𝑚 ,𝑥′𝐴𝑚).

Mondrian grids, Mondrian features and random binning all converge to the Laplace kernel as

the number of layers 𝐿 goes to infinity. The tile coding kernel, however, does not approximate a

176

Laplace kernel. Our model with Mondrian grids approximates an additive Laplace kernel:

Lemma 8.4.1. Let the random variable 𝑘𝑑𝑖 ∼ POISSON(𝜆𝑑𝑅) be the number of cuts in the Mon-

drian grids of TileGP for dimension 𝑑 ∈ [𝐷] and layer 𝑖 ∈ [𝐿]. The TileGP kernel 𝜅𝐿 satisfies

lim
𝐿→∞

𝜅𝐿(𝑥,𝑥
′) = 1

𝑀

∑︀𝑀
𝑚=1 𝑒

𝜆𝑑𝑅|𝑥𝐴𝑚−𝑥′𝐴𝑚 |, where {𝐴𝑚}𝑀𝑚=1 is the additive decomposition.

Proof. When constructing the Mondrian grid for each layer and each dimension, one can think of

the process of getting another cut as a Poisson point process on the interval [0, 𝑅], where the time

between two consecutive cuts is modeled as an exponential random variable. Similar to Proposition

1 in [12], we have

lim
𝐿→∞

𝜅
(𝑚)
𝐿 (𝑥𝐴𝑚 ,𝑥′𝐴𝑚) = E[no cut between 𝑥𝑑 and 𝑥′

𝑑,∀𝑑 ∈ 𝐴𝑚] = 𝑒−𝜆𝑑𝑅|𝑥𝐴𝑚−𝑥′𝐴𝑚 |.

By the additivity of the kernel, we have lim
𝐿→∞

𝜅𝐿(𝑥,𝑥
′) = 1

𝑀

∑︀𝑀
𝑚=1 𝑒

𝜆𝑑𝑅|𝑥𝐴𝑚−𝑥′𝐴𝑚 |.

[12] showed that in practice, the Mondrian kernel constructed from Mondrian features may

perform slightly better than random binning in certain cases. Although it would be possible to use a

Mondrian partition for each layer of tile coding, we only consider uniform, grid based binning with

random offests because this allows the non-zero features to be computed more efficiently (𝑂(1)

instead of 𝑂(log 𝑘)). Note that as more dimensions are discretized in this manner, the number

of features grows exponentially. However, the number of non-zero entries can be independently

controlled, allowing to create sparse representations that remain computationally tractable.

8.4.8 Connections to evolutionary algorithms

Next, we make some observations that connect our randomized ensemble BO to ideas for global

optimization heuristics that have successfully been used in other communities. In particular, these

connections offer an explanation from a BO perspective and may aid further theoretical analysis.

Evolutionary algorithms [10] maintain an ensemble of “good” candidate solutions (called chro-

mosomes) and, from those, generate new query points via a number of operations. These methods

too, implicitly, need to balance exploration with local search in areas known to have high function

values. Hence, there are local operations (mutations) for generating new points, such as random

perturbations or local descent methods, and global operations. While it is relatively straightforward

to draw connections between those local operations and optimization methods used in machine

learning, we here focus on global exploration.

177

A popular global operation is crossover: given two “good” points 𝑥, 𝑦 ∈ R𝐷, this operation

outputs a new point 𝑧 whose coordinates are a combination of the coordinates of 𝑥 and 𝑦, i.e.,

𝑧𝑖 ∈ {𝑥𝑖, 𝑦𝑖} for all 𝑖 ∈ [𝐷]. In fact, this operation is analogous to BO with a (randomized) additive

kernel: the crossover strategy implicity corresponds to the assumption that high function values

can be achieved by combining coordinates from points with high function values. For comparison,

consider an additive kernel 𝜅(𝑥, 𝑥′) =
∑︀𝑀

𝑚=1 𝜅
(𝑚)(𝑥𝐴𝑚 , 𝑥′𝐴𝑚) and 𝑓(𝑥) =

∑︀𝑀
𝑚=1 𝑓

𝑚(𝑥𝐴𝑚).

Since each sub-kernel 𝜅(𝑚) is “blind” to the dimensions in the complement of 𝐴𝑚, any point 𝑥′ that

is close to an observed high-value point 𝑥 in the dimensions 𝐴𝑚 will receive a high value 𝑓𝑚(𝑥),

independent of the other dimensions, and, as a result, looks like a “good” candidate.

We illustrate this reasoning with a 2D toy example. Figure 8-4 shows the posterior mean pre-

diction and GP-UCB criterion 𝑓(𝑥) + 0.1𝜎(𝑥) for an additive kernel with 𝐴1 = {1}, 𝐴2 = {2}

and 𝜅𝑚(𝑥𝑚, 𝑦𝑚) = exp(−2(𝑥𝑚 − 𝑦𝑚)
2). High values of the observed points generalize along

the dimensions “ignored” by the sub-kernels. After two good observations (−1, 0) and (2, 2), the

“crossover” points (−1, 2) and (2, 0) are local maxima of GP-UCB and the posterior mean.

In real data, we do not know the best fitting underlying grouping structure of the coordinates.

Hence, crossover does a random search over such partitions by performing random coordinate com-

binations, whereas our adaptive BO approach maintains a posterior distribution over partitions that

adapts to the data.

8.5 Experiments

First, we verify the effectiveness of using our Gibbs sampling algorithm to learn the additive struc-

ture of the unknown function. We then empirically show the scalability of EBO and its effectiveness

of using random adaptive Mondrian partitions, and finally evaluate EBO on two real-world prob-

lems.1

8.5.1 Effectiveness of Decomposition Learning

We first probe the effectiveness of using the Gibbs sampling method described in Section 8.3 to

learn the decomposition of the input space.

Recovering Decompositions First, we sample test functions from a known additive Gaussian

Process prior with zero-mean and isotropic Gaussian kernel with bandwidth = 0.1 and scale = 5

1Our code is publicly available at https://github.com/zi-w/Ensemble-Bayesian-Optimization.

178

https://github.com/zi-w/Ensemble-Bayesian-Optimization

100 200 300 400 500

t

0

0.2

0.4

0.6

0.8

1

R
t

D=2

Known

NP

FP

PL-1

PL-2

Gibbs

100 200 300 400 500

t

5

10

15

20

25

30

35

R
t

D=5

Known

NP

FP

PL-1

PL-2

Gibbs

100 200 300 400 500

t

5

10

15

20

25

30

35

R
t

D=10

Known

NP

FP

PL-1

PL-2

Gibbs

100 200 300 400 500

t

10

20

30

40

50

60

R
t

D=20

Known

NP

FP

PL-1

PL-2

Gibbs

100 200 300 400 500

t

0

20

40

60

80

R
t

D=30

Known

NP

FP

PL-1

PL-2

Gibbs

200 400 600

t

20

40

60

80

100

120

R
t

D=50

Known

NP

FP

PL-1

PL-2

Gibbs

100 200 300 400 500

t

-0.2

0

0.2

0.4

0.6

0.8

r
t

D=2

Known

NP

FP

PL-1

PL-2

Gibbs

100 200 300 400 500

t

0

10

20

30

40

r
t

D=5

Known

NP

FP

PL-1

PL-2

Gibbs

100 200 300 400 500

t

0

10

20

30

40

r
t

D=10

Known

NP

FP

PL-1

PL-2

Gibbs

100 200 300 400 500

t

0

10

20

30

40

50

60

r
t

D=20

Known

NP

FP

PL-1

PL-2

Gibbs

100 200 300 400 500

t

0

20

40

60

80

r
t

D=30

Known

NP

FP

PL-1

PL-2

Gibbs

200 400 600

t

0

20

40

60

80

100

120

r
t

D=50

Known

NP

FP

PL-1

PL-2

Gibbs

Averaged Cumulative Regret

Simple Regret

Figure 8-8: The simple regrets (𝑟𝑡) and the averaged cumulative regrets (𝑅𝑡) and for Known (ground
truth partition is given), Gibbs (using Gibbs sampling to learn the partition), PL-1 (randomly
sample the same number of partitions sampled by Gibbs and select the one with highest data
likelihood), PL-2 (randomly sample 5 partitions and select the one with highest data likelihood), FP
(fully partitioned, each group with one dimension) and NP (no partition) on 10, 20, 50 dimensional
functions. Gibbs achieved comparable results to Known. Comparing PL-1 and PL-2 we can
see that sampling more partitions did help to find a better partition. But a more principled way of
learning partition using Gibbs can achieve much better performance than PL-1 and PL-2.

179

Table 8.1: Empirical posterior of any two dimensions correctly being grouped together by Gibbs
sampling.

D
N

50 150 250 450

5 0.81± 0.28 0.91± 0.19 1.00± 0.03 1.00± 0.00
10 0.21± 0.13 0.54± 0.25 0.68± 0.25 0.93± 0.15
20 0.06± 0.06 0.11± 0.08 0.20± 0.12 0.71± 0.22
50 0.02± 0.03 0.02± 0.02 0.03± 0.03 0.06± 0.04
100 0.01± 0.01 0.01± 0.01 0.01± 0.01 0.02± 0.02

Table 8.2: Empirical posterior of any two dimensions correctly being separated by Gibbs sampling.

D
N

50 150 250 450

2 0.30± 0.46 0.30± 0.46 0.90± 0.30 1.00± 0.00
5 0.87± 0.17 0.80± 0.27 0.60± 0.32 0.50± 0.34
10 0.88± 0.05 0.89± 0.06 0.89± 0.07 0.94± 0.07
20 0.94± 0.02 0.94± 0.02 0.94± 0.02 0.97± 0.02
50 0.98± 0.00 0.98± 0.00 0.98± 0.01 0.98± 0.01
100 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00

for each function component. For 𝐷 = 2, 5, 10, 20, 50, 100 input dimensions, we randomly sample

decomposition settings that have at least two groups in the decomposition and at most 3 dimensions

in each group.

We set the burn-in period to be 50 iterations, and the total number of iterations for Gibbs sam-

pling to be 100. In Tables 8.1 and 8.2, we show two quantities that are closely related to the learned

empirical posterior of the decompositions with different numbers of randomly sampled observed

data points (𝑁). Table 8.1 shows the probability of two dimensions being correctly grouped to-

gether by Gibbs sampling in each iteration of Gibbs sampling after the burn-in period, namely,

(
∑︀

𝑖<𝑗≤𝐷 1𝑧𝑔𝑖 ≡𝑧
𝑔
𝑗∧𝑧𝑖≡𝑧𝑗)/(

∑︀
𝑖<𝑗≤𝐷 1𝑧𝑖≡𝑧𝑗). Table 8.2 reports the probability of two dimensions

being correctly separated in each iteration of Gibbs sampling after the burn-in period, namely,

(
∑︀

𝑖<𝑗≤𝐷 1𝑧𝑔𝑖 ̸=𝑧
𝑔
𝑗∧𝑧𝑖 ̸=𝑧𝑗)/(

∑︀
𝑖<𝑗≤𝐷 1𝑧𝑖 ̸=𝑧𝑗). The results show that the more data we observe, the

more accurate the learned decompositions are. They also suggest that the Gibbs sampling procedure

can converge to the ground truth decomposition with enough data for relatively small numbers of

dimensions. The higher the dimension, the more data we need to recover the true decomposition.

Sensitivity Analysis for 𝛼 Empirically, we found that the quality of the learned decomposi-

180

Table 8.3: Rand Index of the decompositions learned by Gibbs sampling for different values of 𝛼.

𝛼
N

50 150 250 350 450

0.2 0.87811± 0.019002 0.90126± 0.022394 0.95284± 0.047111 0.98811± 0.02602 0.98811± 0.026322
0.5 0.88211± 0.019893 0.90305± 0.024574 0.95295± 0.046232 0.98947± 0.025872 0.99505± 0.013881
1 0.88211± 0.016947 0.90326± 0.024935 0.95305± 0.043878 0.98558± 0.034779 0.98053± 0.035843
2 0.88084± 0.016972 0.9± 0.023489 0.95463± 0.042968 0.97989± 0.038818 0.98832± 0.023592
5 0.88337± 0.015784 0.90158± 0.02203 0.96126± 0.037045 0.98716± 0.030949 0.99316± 0.015491

tions is not very sensitive to the scale of 𝛼 (see Table 8.3), because the log data likelihood plays a

much more important role than log(|𝐴𝑚|+ 𝛼) when 𝛼 is less than the total number of dimensions.

The reported results correspond to alpha = 1 for all the partitions.

Effectiveness of Learning Decompositions for Bayesian Optimization To verify the effec-

tiveness of the learned decomposition for Bayesian optimization, we tested on 2, 10, 20 and 50

dimensional functions sampled from a zero-mean Add-GP with randomly sampled decomposition

settings (at least two groups, at most 3 dimensions in each group) and isotropic Gaussian kernel

with bandwidth = 0.1 and scale = 5. Each experiment was repeated 50 times. An example of a

2-dimensional function component is shown in Fig. 8-9. Because of the numerous local maxima, it

is very challenging to achieve the global optimum even for 2 dimensions, let alone maximizing an

additive sum of them, only by observing their sum.

For Add-GP-UCB, we used 𝛽
(𝑚)
𝑡 = |𝐴𝑚| log 2𝑡 for lower dimensions (𝐷 = 2, 5, 10), and

𝛽
(𝑚)
𝑡 = |𝐴𝑚| log 2𝑡/5 for higher dimensions (𝐷 = 20, 30, 50). We show averaged cumulative

regret and simple regret in Fig. 8-8. We compare Add-GP-UCB with known additive structure

(Known), no partitions (NP), fully partitioned with one dimension for each group (FP) and the

following methods of learning the decomposition: Gibbs sampling (Gibbs), randomly sampling

the same number of decompositions sampled by Gibbs and select the one with the highest data

likelihood (PL-1), randomly sampling 5 decompositions and selecting the one with the highest data

likelihood (PL-2). For the latter two learning methods are referred to as “partial learning” in [91].

The learning of the decomposition is done every 50 iterations. Fig. 8-10 shows the improvement of

learning decompositions with Gibbs over optimizing without partitions (NP). For 𝐷 = 20, 30, it

is quite obvious that when a new partition is learned from the newly observed data (e.g. at iteration

100 and 150), the simple regret gets a boost.

Overall, the results show that Gibbs outperforms both of the partial learning methods, and for

higher dimensions, Gibbs is sometimes even better than Known. Interestingly, similar results can

181

1

0.5

x
1

00

0.5

x
2

0

5

-5

10

1

f(
m
) (
x
)

Figure 8-9: An example of a 2 dimensional function component of the synthetic function.

be found in Fig. 3 (c) of [91], where different decompositions than the ground truth may give better

simple regret. We conjecture that this is because Gibbs is able to explore more than Known, for

two reasons:

1. Empirically, Gibbs changes the decompositions across iterations, especially in the begin-

ning. With fluctuating partitions, even exploitation leads to moving around, because the sup-

posedly “good” points are influenced by the partition. The result is an implicit “exploration”

effect that is absent with a fixed partition.

2. Gibbs sometimes merges “true” parts into larger parts. The parameter 𝛽𝑡 in UCB depends

on the size of the part, |𝐴𝑚|(log 2𝑡)/5 (as in [91]). Larger parts hence lead to larger 𝛽𝑡 and

hence more exploration.

Of course, more exploration is not always better, but Gibbs was able to find a good balance be-

tween exploration and exploitation, which leads to better performance. Our preliminary experiments

indicate that one solution to ensure that the ground truth decomposition produces the best result is

to tune 𝛽𝑡. Hyperparameter selection (such as choosing 𝛽𝑡) for BO is, however, very challenging

and an active topic of research (e.g. [191]).

Next, we test the decomposition learning algorithm on a real-world function, which returns the

distance between a designated goal location and two objects being pushed by two robot hands,

whose trajectory is determined by 14 parameters specifying the location, rotation, velocity, moving

direction etc. This function is implemented with a physics engine, the Box2D simulator [32]. We

use add-GP-UCB with different ways of setting the additive structure to tune the parameters for the

robot hand so as to push the object closer to the goal. The regrets are shown in Fig. 8-11. We observe

182

10 20 30 40 50

D

-20

0

20

40

60

80

R
t

Im
p

r
o
v
e
m

e
n

t

r
t

Im
p

r
o
v
e
m

e
n

t

-20

0

20

40

60

80

10 20 30 40 50
-20

0

20

40

60

80

-20

0

20

40

60

80

10 20 30 40 50 10 20 30 40 50

D

D D

R
t

Im
p

r
o
v
e
m

e
n

t
 %

r
t

Im
p

r
o
v
e
m

e
n

t
 %

(a) (b)

(c) (d)

Figure 8-10: Improvement made by learning the decomposition with Gibbs over optimizing with-
out partitions (NP). (a) averaged cumulative regret; (b) simple regret. (c) averaged cumulative regret
normalized by function maximum; (d) simple regret normalized by function maximum. Using de-
compositions learned by Gibbs continues to outperform BO without Gibbs.

183

t

100 200 300 400 500

r
t

2

3

4

5

6

7

8

9

10

NP

FP

PL-1

PL-2

Gibbs

Figure 8-11: Simple regret of tuning the 14 parameters for a robot pushing task. Learning decom-
positions with Gibbs is more effective than partial learning (PL-1, PL-2), no partitions (NP), or
fully partitioned (FP). Learning decompositions with Gibbs helps BO to find a better point for this
tuning task.

that the performance of learning the decomposition with Gibbs dominates all existing alternatives

including partial learning. Since the function we tested here is composed of the distance to two

objects, there could be some underlying additive structure for this function in certain regions of the

input space, e.g. when the two robots hands are relatively distant from each other so that one of the

hands only impacts one of the objects. Hence, it is possible for Gibbs to learn a good underlying

additive structure and perform effective BO with the structures it learned.

8.5.2 Scalability of EBO

We compare EBO with the approach described in Section 8.3, abbreviated as Structural Kernel

Learning (SKL). EBO can make use of parallel resources for Gibbs sampling, while SKL cannot.

Because the kernel learning part is the computationally dominating factor of large scale BO, we

compare the time each method needs to run 10 iterations of Gibbs sampling with 100 to 50000

observations in 20 dimensions. For EBO, the maximum number of Mondrian partitions is set to be

1000 and the minimum number of data points in each Mondrian partition is 100. The function that

we used to test was generated from a fully partitioned 20 dimensional GP with an additive Laplace

kernel (|𝐴𝑚| = 1, ∀𝑚).

184

10 100 240 500
Num ber of Cores

1

5

10

15

20

25

S
p

e
e

d
-u

p
 o

v
e

r
1

0
 C

o
re

s

0 100 200 300 400 500
Observat ion size (x100)

0

20

40

60

80

100

120

140

160

G
ib

b
s
 s

a
m

p
li

n
g

 t
im

e
 (

m
in

u
te

s
)

SKL

EBO

We stopped SKL after 2 hours

EBO average runtime = 61 seconds

(a) (b)

Figure 8-12: (a) Timing for the Gibbs sampler of EBO and SKL. EBO is significantly faster than
SKL when the observation size𝑁 is relatively large. (b) Speed-up of EBO with 100, 240, 500 cores
over EBO with 10 cores on 30,000 observations. Running EBO with 240 cores is almost 20 times
faster than with 10 cores.

We show the timing results for the Gibbs samplers in Fig. 8-12(a), where EBO uses 240 cores

via the Batch Service of Microsoft Azure. Due to a time limit we imposed, we did not finish SKL for

more than 1500 observations. EBO runs more than 390 times faster than SKL when the observation

size is 1500. Comparing the quality of learned parameter 𝑧 for the additive structure, SKL has a

Rand Index of 96.3% and EBO has a Rand Index of 96.8%, which are similar. In Fig. 8-12(b), we

show speed-ups for different number of cores. EBO with 500 cores is not significantly faster than

with 240 cores because EBO runs synchronized parallelization, whose runtime is decided by the

slowest core. It is often the case that most of the cores have finished while the program is waiting

for the slowest 1 or 2 cores to finish.

8.5.3 Effectiveness of EBO

Optimizing synthetic functions We verify the effectiveness of using ensemble models for BO

on 4 functions randomly sampled from a 50-dimensional GP with an additive Laplace kernel. The

lengthscale parameter of the Laplace kernel is set to be 0.1, variance scale to be 1 and active dimen-

sions are around 1 to 4. Namely, the kernel we used is 𝜅(𝑥, 𝑥′) =
∑︀𝑀

𝑖=1 𝜅
(𝑚)(𝑥𝐴𝑚 , 𝑥′𝐴𝑚) where

𝜅(𝑚)(𝑥𝐴𝑚 , 𝑥′𝐴𝑚) = 𝑒
|𝑥𝐴𝑚−𝑥′𝐴𝑚 |

0.1 ,∀𝑚. The domain of the function is [0, 1]50. We implemented the

BO-SVI and BO-Add-SVI using the same acquisition function and batch selection strategy as EBO

but with SVI-GP [76] and SVI-GP with additive kernels instead of TileGPs. We used the SVI-GP

implemented in [71] and defined the additive Laplace kernel according to the priors of the tested

functions. For both BO-SVI and BO-Add-SVI, we used 100 batchsize, 200 inducing points and the

185

0 10 20 30 40 50 60

Tim e (m inutes)

0

1

2

3

4

5

6

7

R
e

g
re

t

BO-SVI

BO-Add-SVI

PBO

EBO

Figure 8-13: Averaged results of the regret of BO-SVI, BO-Add-SVI, PBO and EBO on 4 different
functions drawn from a 50D GP with an additive Laplace kernel. BO-SVI has the highest regret for
all functions. Using an additive GP within SVI (BO-Add-SVI) significantly improves over the full
kernel. In general, EBO finds a good point much faster than the other methods.

186

parameters were optimized for 100 iterations. For EBO, we set the minimum size of data points on

each Mondrian partition to be 100. We set the maximum number of Mondrian partitions to be 1000

for both EBO and PBO.

In each iteration, each algorithm evaluates a batch of parameters of size𝐵 in parallel. We denote

𝑟𝑡 = max𝑥∈𝒳 𝑓(𝑥)−max𝑏∈[𝐵] 𝑓(𝑥𝑡,𝑏) as the immediate regret obtained by the batch at iteration 𝑡,

and 𝑟𝑇 = min𝑡≤𝑇 𝑟𝑡 as the regret, which captures the minimum gap between the best point found

and the global optimum of the black-box function 𝑓 .

We compare BO using SVI [76] (BO-SVI), BO using SVI with an additive GP (BO-Add-SVI)

and a distributed version of BO with a fixed partition (PBO) against EBO with a randomly sampled

partition in each iteration. PBO has the same 1000 Mondrian partitions in all the iterations while

EBO can have at most 1000 Mondrian partitions. BO-SVI uses a Laplace isotropic kernel without

any additive structure, while BO-Add-SVI, PBO, EBO all use the known prior. Our experimental

results in Fig. 8-13 shows that EBO is able to find a good point much faster than BO-SVI and

BO-Add-SVI; and, randomization and the ensemble of partitions matters: EBO is much better than

PBO. Note that the evaluations of the test functions are negligible, so the timing results in Fig. 8-13

reflect the actual runtime of each method.

Optimizing control parameters for robot pushing We follow [190] and test our approach,

EBO, on a 14 dimensional control parameter tuning problem for robot pushing.

We implemented the simulation of pushing two objects with two robot hands in the Box2D

physics engine [32]. The 14 parameters specifies the location and rotation of the robot hands, push-

ing speed, moving direction and pushing time. The lower limit of these parameters is [−5,−5,−10,−10, 2, 0,−5,−5,−10,−10, 2, 0,−5,−5]

and the upper limit is [5, 5, 10, 10, 30, 2𝜋, 5, 5, 10, 10, 30, 2𝜋, 5, 5]. Let the initial positions of the

objects be 𝑠𝑖0, 𝑠𝑖1 and the ending positions be 𝑠𝑒0, 𝑠𝑒1. We use 𝑠𝑔0 and 𝑠𝑔1 to denote the goal loca-

tions for the two objects. The reward is defined to be 𝑟 = ‖𝑠𝑔0−𝑠𝑖0‖+‖𝑠𝑔1−𝑠𝑖1‖−‖𝑠𝑔0−𝑠𝑒0‖−

‖𝑠𝑔1 − 𝑠𝑒1‖, namely, the progress made towards pushing the objects to the goal.

We compare EBO, BO-SVI, BO-Add-SVI and CEM [176] with the same 104 random obser-

vations and repeat each experiment 10 times. All the methods choose a batch of 100 parameters

to evaluate at each iteration. CEM uses the top 30% of the 104 initial observations to fit its initial

Gaussian distribution. At the end of each iteration in CEM, 30% of the new observations with top

values were used to fit the new distribution. For all the BO based methods, we use the maximum

value of the reward function in the acquisition function. The standard deviation of the observation

noise in the GP models is set to be 0.1. We set EBO to have Modrian partitions with fewer than

187

10k 15k 20k 25k 30k
Number of Samples

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

R
e
w

a
rd

BO-SVI

BO-Add-SVI

CEM

EBO

Figure 8-14: Comparing BO-SVI, BO-Add-SVI, CEM and EBO on a control parameter tuning task
with 14 parameters.

150 data points and constrain EBO to have no more than 200 Mondrian partitions. In EBO, we set

the hyper parameters 𝛼 = 1.0, 𝛽 = [5.0, 5.0], and the Mondrian observation offset 𝜖 = 0.05. In

BO-SVI, we used 100 batchsize in SVI, 200 inducing points and 500 iterations to optimize the data

likelihood with 0.1 step rate and 0.9 momentum. BO-Add-SVI used the same parameters as BO-

SVI, except that BO-Add-SVI uses 3 outer loops to randomly select the decomposition parameter

𝑧 and in each loop, it uses an inner loop of 50 iterations to maximize the data likelihood over the

kernel parameters. The batch BO strategy used in BO-SVI and BO-Add-SVI is identical to the one

used in each Mondrian partition of EBO.

We run all the methods for 200 iterations, where each iteration has a batch size of 100. In total,

each method obtains 2 × 104 data points in addition to the 104 initializations. We plot the median

of the best rewards achieved by CEM and EBO at each iteration in Fig. 8-14.

Overall CEM and EBO performed comparably and much better than the sparse GP methods

(BO-SVI and BO-Add-SVI). We noticed that among all the experiments, CEM achieved a maximum

reward of 10.19 while EBO achieved 9.50. However, EBO behaved slightly better and more stable

than CEM as reflected by the standard deviation on the rewards.

Optimizing rover trajectories

To further explore the performance of our method, we consider a trajectory optimization task

188

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 8-15: An example trajectory found by EBO.

in 2D, meant to emulate a rover navigation task. We describe a problem instance by defining a

start position 𝑠 and a goal position 𝑔 as well as a cost function over the state space. Trajectories are

described by a set of points on which a BSpline is to be fitted. By integrating the cost function over a

given trajectory, we can compute the trajectory cost 𝑐(𝑥) of a given trajectory solution 𝑥 ∈ [0, 1]60.

We define the reward of this problem to be 𝑓(𝑥) = 𝑐(𝑥) + 𝜆(‖𝑥0,1 − 𝑠‖1 + ‖𝑥59,60 − 𝑔‖1) + 𝑏.

This reward function is non smooth, discontinuous, and concave over the first two and last two

dimensions of the input. These 4 dimensions represent the start and goal position of the trajectory.

We illustrate the problem in Fig. 8-15 with an example trajectory found by EBO. We set the

trajectory cost to be −20.0 for any collision, 𝜆 to be −10.0 and the constant 𝑏 = 5.0. This reward

function is non smooth, discontinuous, and concave over the first two and last two dimensions of

the input. These 4 dimensions represent the start and goal position of the trajectory. We maximize

the reward function 𝑓 over the points on the trajectory. All the methods choose a batch of 500

trajectories to evaluate. Each method is initialized with 104 trajectories randomly uniformly selected

from [0, 1]60 and their reward function values. We again compare EBO with BO-SVI, BO-Add-SVI

and CEM [176]. All the methods choose a batch of 500 trajectories to evaluate. Each method is

initialized with 104 trajectories randomly uniformly selected from [0, 1]60 and their reward function

values. The initializations are the same for each method, and we repeat the experiments 5 times.

189

10k 15k 20k 25k 30k 35k
Number of Samples

6

4

2

0

2

4

R
e
w

a
rd

BO-SVI

BO-Add-SVI

CEM

EBO

Figure 8-16: Comparing BO-SVI, BO-Add-SVI, CEM and EBO on a 60 dimensional trajectory
optimization task.

CEM uses the top 30% of the 104 initial observations to fit its initial Gaussian distribution. At the

end of each iteration in CEM, 30% of the new observations with top values were used to fit the new

distribution. For all the BO based methods, we use the maximum value of the reward function, 5.0,

in the acquisition function. The standard deviation of the observation noise in the GP models is set

to be 0.01. We set EBO to attempt to have Modrian partitions with fewer than 100 data points, with

a hard constraint of no more than 1000 Mondrian partitions. In EBO, we set the hyper parameters

𝛼 = 1.0, 𝛽 = [2.0, 5.0], and the Mondrian observation offset 𝜖 = 0.01. In BO-SVI, we used 100

batchsize in SVI, 200 inducing points and 500 iterations to optimize the data likelihood with 0.1

step rate and 0.9 momentum. BO-Add-SVI used the same parameters as BO-SVI, except that BO-

Add-SVI uses 3 outer loops to randomly select the decomposition parameter 𝑧 and in each loop, it

uses an inner loop of 50 iterations to maximize the data likelihood over the kernel parameters. The

batch BO strategy used in BO-SVI and BO-Add-SVI is identical to the one used in each Mondrian

partition of EBO.

The results in Fig. 8-16 showed that CEM was able to achieve better results than the BO methods

on these functions, while EBO was still much better than the BO alternatives using SVI.

Verifying the acquisition function As introduced in Section 8.4.3, we used a different acqui-

190

sition function optimization technique from [91, 187]. In [91, 187], the authors used the fact that

each additive component is by itself a GP. Hence, they did posterior inference on each additive com-

ponent and Bayesian optimization independently from other additive components. In this work, we

use the full GP with the additive kernel to derive its acquisition function and optimize it with a block

coordinate optimization procedure, where the blocks are selected according to the decomposition of

the input dimensions. One reason we did this instead of following [91, 187] is that we observed the

over-estimation of variance for each additive component if inferred independently from others. We

conjecture that this over-estimation could result in an invalid regret bound for Add-GP-UCB [91].

Nevertheless, we found that using the block coordinate optimization for the acquisition function

on the full GP is actually very helpful. In Figure. 8-17, we compare the acquisition function we

described in Section 8.4.3 (denoted as BlockOpt) with Add-GP-UCB [91], Add-MES-R and Add-

MES-G [187] on the same experiment described in the first experiment of Section 6.5 of [187],

averaging over 20 functions. Notice that we used the maximum value of the function as part of our

acquisition function in our approach (BlockOpt). Add-GP-UCB, ADD-MES-R and ADD-MES-G

cannot use this max-value information even if they have access to it, because then they don’t have a

strategy to deal with “credit assignment”, which assigns the maximum value to each additive com-

ponent. We found that BlockOpt is able to find a solution as well as or even better than the best of

the three competing approaches.

8.6 Discussion

8.6.1 Failure modes of EBO

EBO is a general framework for running large scale batched BO in high-dimensional spaces. Ad-

mittedly, we made some compromises in our design and implementation to scale up BO to a degree

that conventional BO approaches cannot deal with. In the following, we list some limitations and

aspects that we can improve in EBO in our future work.

∙ EBO partitions the space into smaller regions {[𝑙𝑗 , ℎ𝑗]}𝐽𝑗=1 and only uses the observations

within [𝑙𝑗 − 𝜖, ℎ𝑗 + 𝜖] to do inference and Bayesian optimization. It is hard to determine the

value of 𝜖. If 𝜖 is large, we may have high computational cost for the operations within each

region. But if 𝜖 is very small, we found that some selected BO points are on the boundaries

of the regions, partially because of the large uncertainty on the boundaries. We used 𝜖 = 0 in

our experiments, but the results can be improved with a more appropriate 𝜖.

191

d=10 d=20 d=30

d=50 d=100

100 200 300 400 500

t

-10

0

10

20

30
r t

100 200 300 400 500

t

-20

0

20

40

60

r t

100 200 300 400 500

t

0

20

40

60

80

r t

100 200 300 400 500

t

0

20

40

60

80

100

r t

100 200 300 400 500

t

0

50

100

150

200

r t
Add-GP-UCB

Add-MES-R

Add-MES-G

BlockOpt

Figure 8-17: Comparing different acquisition functions for BO with an additive GP. Our strategy,
BlockOpt, achieves comparable or better results than other methods.

∙ Because of the additive structure, we need to optimize the acquisition function for each addi-

tive component. As a result, EBO has increased computational cost when there are more than

50 additive components, and it becomes harder for EBO to optimize functions more than a

few hundred dimensions. One solution is to combine the additive structure with a low dimen-

sional projection approach [193]. We can also simply run block coordinate descent on the

acquisition function, but it is harder to ensure that the acquisition function is fully optimized.

8.6.2 Importance of avoiding variance starvation

Neural networks have been applied in many applications and received success for tasks including

regression and classification. While researchers are still working on the theoretical understanding,

one hyoothesis is that neural networks “overfit” [205]. Due to the similarity between the test and

training set in the reported experiments in, for example, the computer vision community, overfitting

may seem to be less of a problem. However, in active learning (e.g. Bayesian optimization), we do

not have a “test set”. We require the model to generalize well across the search space, and using

the classic neural network may be detrimental to the data selection process, because of variance

starvation (see Section 2). Gaussian processes, on the contrary, are good at estimating confidence

bounds and avoid overfitting. However, the scaling of Gaussian processes is hard in general. We

192

would like to reinforce the awareness about the importance of estimating confidence of the model

predictions on new queries, i.e., avoiding variance starvation.

8.6.3 Future directions

Possible future directions include analyzing theoretically what should be the best input space par-

tition strategy, batch worker budget distribution strategy, better ways of predicting variance in a

principled way (not necessarily GP), better ways of doing small scale BO and how to adapt it to

large scale BO. Moreover, add-GP is only one way of reducing the function space, and there could

be others suitable ones too.

8.7 Conclusion

Many black box function optimization problems are intrinsically high-dimensional and may require

a huge number of observations in order to be optimized well. In this chapter, we propose a novel

framework, ensemble Bayesian optimization, to tackle the problem of scaling Bayesian optimization

to both large numbers of observations and high dimensions. To achieve this, we propose a new

framework that jointly integrates randomized partitions at various levels: our method is a stochastic

method over a randomized, adaptive ensemble of partitions of the input data space; for each part, we

use an ensemble of TileGPs, a new GP model we propose based on tile coding and additive structure.

We also developed an efficient Gibbs sampling approach to learn the latent variables. Moreover, our

method automatically generates batch queries. We empirically demonstrate the effectiveness and

scalability of our method on high dimensional parameter search tasks with tens of thousands of

observation data.

193

Chapter 9

Conclusion

People who value Tao all turn to books. But books are nothing more than

words. Words have value; what is of value in words is meaning. Meaning

has something it is pursuing, but the thing that it is pursuing cannot be put

into words and handed down. The world values words and hands down

books but, though the world values them, I do not think them worth valuing.

What the world takes to be values is not real value.

Chuang Tzu

In this thesis, we have mainly explored robot learning from two perspectives: learning useful

models for planning and active data acquisition with Bayesian optimization. We have identified and

explored solutions to several critical problems in model learning, including

∙ identifying what environment parameters are relevant to a skill;

∙ identifying what conditions should hold before using a skill;

∙ how to sample skill parameters that satisfy those conditions;

∙ how to handle non-Gaussian transition models in continuous state-action systems.

We have shown that embedding strong prior knowledge in learning approaches is a key to reducing

sample complexity and making robot learning feasible. The forms of the prior knowledge can

be expressed in various ways, including structures of the model, compositionality of the planning

problem, Bayesian prior, etc.

The other important factor in our approaches is Bayesian optimization which guides autonomous

agents to acquire data in a principled way. We have presented methods and theories for

195

∙ designing query selection criteria based on Gaussian processes;

∙ estimating the Gaussian process prior via meta-learning;

∙ scaling up to high-dimensional inputs and large-scale observations.

On one hand, these new methods provide valuable insights for active data acquisition; while on

the other hand, we also demonstrate the possibility of building in strong priors that is meta-learned

instead of hand designed.

Given the complexity of learning for robotics tasks, especially for long-horizon problems, find-

ing good ways to build in strong priors will continue to be one of the most important subject of

study. This thesis is only a starting point.

196

Appendix A

Omitted Proofs from Chapter 7

A.1 Proofs for Section 7.3.1

Recall that we assume X is a finite set. The posterior given observations 𝐷𝑡 is 𝐺𝑃 (𝜇𝑡, 𝑘𝑡) where

𝜇𝑡(𝑥) = 𝜇(𝑥) + 𝑘(𝑥,𝑥𝑡)(𝑘(𝑥𝑡) + 𝜎2𝐼)−1(𝑦𝑡 − 𝜇(𝑥𝑡)), ∀𝑥 ∈ X

𝑘𝑡(𝑥, 𝑥
′) = 𝑘(𝑥, 𝑥′)− 𝑘(𝑥,𝑥𝑡)(𝑘(𝑥𝑡) + 𝜎2𝐼)−1𝑘(𝑥𝑡, 𝑥

′), ∀𝑥, 𝑥′ ∈ X.

We use the following estimators to approximate 𝜇𝑡, 𝑘𝑡:

�̂�𝑡(𝑥) = �̂�(𝑥) + 𝑘(𝑥,𝑥𝑡)𝑘(𝑥𝑡,𝑥𝑡)
−1

(𝑦𝑡 − �̂�(𝑥𝑡)), ∀𝑥 ∈ X, (A.1)

𝑘𝑡(𝑥, 𝑥
′) =

𝑁 − 1

𝑁 − 𝑡− 1

(︁
𝑘(𝑥, 𝑥′)− 𝑘(𝑥,𝑥𝑡)𝑘(𝑥𝑡,𝑥𝑡)

−1
𝑘(𝑥𝑡, 𝑥

′)
)︁
, ∀𝑥, 𝑥′ ∈ X. (A.2)

We will prove a bound on the best-sample simple regret 𝑟𝑇 = max𝑥∈X 𝑓(𝑥)−max𝑡∈[𝑇] 𝑓(𝑥𝑡).

The evaluated inputs 𝑥𝑡 = [𝑥𝜏]
𝑡
𝜏 are selected either by a special case of GP-UCB using the acquisi-

tion function

𝛼GP-UCB
𝑡−1 (𝑥) = �̂�𝑡−1(𝑥) + 𝜁𝑡𝑘𝑡−1(𝑥)

1
2 , (A.3)

𝜁𝑡 =

(︁
6(𝑁 − 3 + 𝑡+ 2

√︁
𝑡 log 6

𝛿 + 2 log 6
𝛿)/(𝛿𝑁(𝑁 − 𝑡− 1))

)︁ 1
2
+ (2 log(3𝛿))

1
2

(1− 2(1
𝑁−𝑡 log

6
𝛿)

1
2)

1
2

, 𝛿 ∈ (0, 1)

(A.4)

197

or by a special case of PI using the acquisition function

𝛼PI
𝑡−1(𝑥) =

�̂�𝑡−1(𝑥)− 𝑓*

𝑘𝑡−1(𝑥)
1
2

.

This special case of PI assumes additional information of the upper bound on function value 𝑓* ≥

max𝑥∈X 𝑓(𝑥).

Corollary A.1.1 ([171]). Let 𝛿0 ∈ (0, 1). For any Gaussian variable 𝑥 ∼ 𝒩 (𝜇, 𝜎2), 𝑥 ∈ R,

Pr[𝑥− 𝜇 ≤ 𝜁0𝜎] ≥ 1− 𝛿0, Pr[𝑥− 𝜇 ≥ −𝜁0𝜎] ≥ 1− 𝛿0

where 𝜁0 = (2 log(1
2𝛿0

))
1
2 .

Proof. Let 𝑧 = 𝜇−𝑥
𝜎 ∼ 𝒩 (0, 1). We have

Pr[𝑧 > 𝜁0] =

∫︁ +∞

𝜁0

1√
2𝜋
𝑒−𝑧

2/2 d𝑧

=

∫︁ +∞

𝜁0

1√
2𝜋
𝑒−(𝑧−𝜁0)2/2−𝜁20/2−𝑧𝜁0 d𝑧

≤ 𝑒−𝜁20/2
∫︁ +∞

𝜁0

1√
2𝜋
𝑒−(𝑧−𝜁0)2/2 d𝑧

=
1

2
𝑒−𝜁

2
0/2.

Similarly, Pr[𝑧 < −𝜁0] ≤ 1
2𝑒

−𝜁20/2. We reach the conclusion by rearranging the constants.

Lemma A.1.2. Assume 𝑋1, · · · , 𝑋𝑛 ∈ R𝑚 are sampled i.i.d. from 𝒩 (𝑢, 𝑉). Suppose we estimate

the sample mean to be �̂� = 1
𝑛𝑋

T1𝑛 and the sample covariance to be 𝑉 = 1
𝑛−1(𝑋 − 1𝑛�̂�

T)T(𝑋 −

1𝑛�̂�
T) where 𝑋 = [𝑋𝑖]

𝑛
𝑖=1 ∈ R𝑛×𝑚. Then, �̂� and 𝑉 are independent, and

�̂� ∼ 𝒩 (𝑢,
1

𝑛
𝑉), 𝑉 ∼ 𝒲(

1

𝑛− 1
𝑉, 𝑛− 1).

Lemma A.1.2 is a combination of Theorem 3.3.2 and Corollary 7.2.3 of [4]. Interested readers

can find the proof of Lemma A.1.2 in [4]. Corollary A.1.3 directly follows Lemma A.1.2.

Corollary A.1.3. �̂� and 𝑘 are independent and

�̂�(X) ∼ 𝒩 (𝜇(X),
1

𝑁
(𝑘(X) + 𝜎2𝐼), 𝑘(X) ∼ 𝒲(

1

𝑁 − 1
(𝑘(X) + 𝜎2𝐼), 𝑁 − 1).

198

Corollary A.1.4. For any 𝑋 ∼ 𝒲(𝑣, 𝑛), 𝑣 ∈ R and 𝑏 > 0, we have

Pr[
𝑋

𝑣𝑛
≥ 1 + 2

√
𝑏+ 2𝑏] ≤ 𝑒−𝑏𝑛, Pr[

𝑋

𝑣𝑛
≤ 1− 2

√
𝑏] ≤ 𝑒−𝑏𝑛.

Proof. Let 𝑋 be a random variable such that 𝑋 ∼ 𝒲(𝑣, 𝑛). So 𝑋
𝑣 is distributed according to a

chi-squared distribution with 𝑛 degrees of freedom; namely, 𝑋𝑣 ∼ 𝜒
2(𝑛). By Lemma 1 in [116], we

have

Pr[
𝑋

𝑣
− 𝑛 ≥ 2

√
𝑛𝑎+ 2𝑎] ≤ 𝑒−𝑎, Pr[

𝑋

𝑣
− 𝑛 ≤ −2

√
𝑛𝑎] ≤ 𝑒−𝑎.

As a result, if 𝑎 = 𝑏𝑛,

Pr[
𝑋

𝑣𝑛
≥ 1 + 2

√
𝑏+ 2𝑏] ≤ 𝑒−𝑏𝑛, Pr[

𝑋

𝑣𝑛
≤ 1− 2

√
𝑏] ≤ 𝑒−𝑏𝑛.

Lemma A.1.5. Let 𝑋 ∈ R𝑑 be a sample from 𝒩 (𝑤, 𝑉) and define 𝑍 = (𝑋 − 𝑤)T𝑉 −1(𝑋 − 𝑤).

Then, we have 𝑍 ∼ 𝜒2(𝑑). With probability at least 1− 𝛿0, 𝑍 < 𝑑+ 2
√︁
𝑑 log 1

𝛿0
+ 2 log 1

𝛿0
.

Proof. By [166], 𝑍 ∼ 𝜒2(𝑑). The bound on 𝑍 follows Lemma 1 in [116].

Lemma A.1.6. Pick 𝛿1 ∈ (0, 1) and 𝛿2 ∈ (0, 1). For any fixed non-negative integer 𝑡 < 𝑇 ,

conditioned on the observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, our estimators �̂�𝑡 and 𝑘𝑡 satisfy

E[�̂�𝑡(X)] = 𝜇𝑡(X), E[𝑘𝑡(X)] = 𝑘𝑡(X) + 𝜎2𝐼.

Suppose 𝑁 ≥ 𝑇 + 2. Then, for any fixed inputs 𝑥, 𝑧 ∈ X,

Pr
[︁
�̂�𝑡(𝑥)− 𝜇𝑡(𝑥) < 𝜄𝑡

√︀
(𝑘𝑡(𝑥) + 𝜎2) ∧ �̂�𝑡(𝑧)− 𝜇𝑡(𝑧) > −𝜄𝑡

√︀
(𝑘𝑡(𝑧) + 𝜎2)

]︁
≥ 1− 𝛿1, (A.5)

Pr[
𝑘𝑡(𝑥)

𝑘𝑡(𝑥) + 𝜎2
< 1 + 2

√︀
𝑏𝑡 + 2𝑏𝑡] ≥ 1− 𝛿2, Pr[

𝑘𝑡(𝑥)

𝑘𝑡(𝑥) + 𝜎2
> 1− 2

√︀
𝑏𝑡] ≥ 1− 𝛿2. (A.6)

where 𝜄𝑡 =

√︂
2
(︁
𝑁−2+𝑡+2

√︁
𝑡 log 2

𝛿1
+2 log 2

𝛿1

)︁
𝛿1𝑁(𝑁−𝑡−2) and 𝑏𝑡 = 1

𝑁−𝑡−1 log
1
𝛿2

.

Proof. By assumption, all rows of the observation 𝑌 = [𝑦𝑖𝑗]𝑖∈[𝑁],𝑗∈[𝑀] are sampled i.i.d. from

199

𝒩 (𝜇(X), 𝑘(X) + 𝜎2𝐼). By Corollary A.1.3,

�̂�(X) ∼ 𝒩 (𝜇,
1

𝑁
(𝑘(X) + 𝜎2𝐼)), 𝑘(X) ∼ 𝒲(

1

𝑁 − 1
(𝑘(X) + 𝜎2𝐼), 𝑁 − 1).

By Proposition 8.7 in [52], we have

𝑘(𝑥, 𝑥′)− 𝑘(𝑥,𝑥𝑡)𝑘(𝑥𝑡,𝑥𝑡)
−1
𝑘(𝑥𝑡, 𝑥

′) ∼ 𝒲(
1

𝑁 − 1
(𝑘𝑡(𝑥, 𝑥

′) + 𝜎21𝑥=𝑥′), 𝑁 − 𝑡− 1).

Hence, the estimate 𝑘𝑡 satisfy

𝑘𝑡(𝑥) ∼ 𝒲(
1

𝑁 − 𝑡− 1
(𝑘𝑡(𝑥) + 𝜎2), 𝑁 − 𝑡− 1) (A.7)

Clearly, E[𝑘𝑡(𝑥)] = 𝑘𝑡(𝑥)+𝜎
2. Now it is easy to show Eq. (A.6). By Corollary A.1.4, for any fixed

𝑡 ∈ [𝑇] ∪ 0 and 𝑥, ∀14 ≥ 𝑏𝑡 > 0,

Pr[
𝑘𝑡(𝑥)

𝑘𝑡(𝑥) + 𝜎2
≥ 1 + 2

√︀
𝑏𝑡 + 2𝑏𝑡] ≤ 𝑒−𝑏𝑡(𝑁−𝑡−1),

Pr[
𝑘𝑡(𝑥)

𝑘𝑡(𝑥) + 𝜎2
≤ 1− 2

√︀
𝑏𝑡] ≤ 𝑒−𝑏𝑡(𝑁−𝑡−1). (A.8)

where 𝑏𝑡 = 1
𝑁−𝑡−1 log

1
𝛿2
> 0 and 𝛿2 ∈ (0, 1). Thus, we have shown Eq. (A.6).

We next prove the second half of the results for 𝜇𝑡 in Eq. (A.5). We use the shorthand 𝑆 =

1
𝑁−1(𝑘(X) + 𝜎2𝐼). By definition of the Wishart distributions in [52] (Definition 8.1), there exist

random vectors 𝑋1, · · · , 𝑋𝑁−1 ∈ R𝑀 sampled iid from 𝒩 (0, 𝑆),∀𝑖 = 1, · · · , 𝑁 − 1, and 𝑘(X) =∑︀𝑛−1
𝑖=1 𝑋𝑖𝑋

T
𝑖 . We denote 𝑋 ∈ R(𝑁−1)×𝑀 as a matrix whose 𝑖-th row is 𝑋𝑖. Clearly, 𝑘(X) = 𝑋T𝑋

and 𝑘(X𝑎,X𝑏) = 𝑋T
·,𝑎𝑋·,𝑏, ∀𝑎, 𝑏 ⊆ [𝑀]. Let the indices of 𝑥𝑡 in X be Θ𝑡 ⊆ [𝑀] and the index of 𝑥

in X be 𝜃 ∈ [𝑀]. Thus we have 𝑥𝑡 = XΘ𝑡 and 𝑥 = X𝜃.

Conditional on �̂�(𝑥𝑡) and 𝑋·,Θ𝑡 , the term 𝑘(𝑥,𝑥𝑡)𝑘(𝑥𝑡)
−1(𝑦𝑡 − �̂�(𝑥𝑡)) is a weighted sum

of independent Gaussian variables, because 𝑋T
·,𝜃 consists of independent Gaussian variables and

𝑘(𝑥,𝑥𝑡)𝑘(𝑥𝑡)
−1(𝑦𝑡− �̂�(𝑥𝑡)) = 𝑋T

·,𝜃𝑃 where 𝑃 = 𝑋·,Θ𝑡

(︁
𝑋T

·,Θ𝑡
𝑋·,Θ𝑡

)︁−1
(𝑦𝑡− �̂�(𝑥𝑡)). Recall that

𝑋𝑖 ∼ 𝒩 (0, 𝑆); hence, we have

𝑋·,𝜃 | 𝑋·,Θ𝑡 ∼ 𝒩 (𝑋·,Θ𝑡𝑆
−1
Θ𝑡
𝑆Θ𝑡,𝜃, 𝐼𝑁−1 ⊗ 𝑆𝜃|Θ𝑡

),

200

where 𝑆𝜃|Θ𝑡
= 𝑆𝜃 − 𝑆𝜃,Θ𝑡𝑆

−1
Θ𝑡
𝑆T
𝜃,Θ𝑡

. As a result, the Gaussian variable 𝑋T
·,𝜃𝑃 has mean

E[𝑋T
·,𝜃𝑃 | �̂�(𝑥𝑡), 𝑋·,Θ𝑡] = 𝑆𝜃,Θ𝑡𝑆

−1
Θ𝑡

(𝑦𝑡 − �̂�(𝑥𝑡))

and variance

V[𝑋T
·,𝜃𝑃 | �̂�(𝑥𝑡), 𝑋·,Θ𝑡] = (𝑦𝑡 − �̂�(𝑥𝑡))T𝑘(𝑥𝑡)

−1(𝑦𝑡 − �̂�(𝑥𝑡))𝑆𝜃|Θ𝑡
.

By independence between 𝑘(X) and �̂�(X) shown in Corollary A.1.3, we can show that 𝑘(𝑥,𝑥𝑡)

and �̂�(𝑥) are independent conditional on �̂�(𝑥𝑡) and 𝑘(𝑥𝑡), by noting that

𝑝(�̂�(X), 𝑘(X)) = 𝑝(�̂�(X))𝑝(𝑘(X))

⇒𝑝(�̂�(𝑥𝑡 ∪ {𝑥}), 𝑘(𝑥𝑡 ∪ {𝑥})) = 𝑝(�̂�(𝑥𝑡 ∪ {𝑥}))𝑝(𝑘(𝑥𝑡 ∪ {𝑥}))

⇒𝑝(�̂�(𝑥𝑡 ∪ {𝑥}), 𝑘(𝑥𝑡 ∪ {𝑥})) = 𝑝(�̂�(𝑥𝑡 ∪ {𝑥}) | 𝑘(𝑥𝑡))𝑝(𝑘(𝑥𝑡 ∪ {𝑥}) | �̂�(𝑥𝑡))

⇒𝑝(�̂�(𝑥), 𝑘(𝑥), 𝑘(𝑥,𝑥𝑡) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡)) = 𝑝(�̂�(𝑥) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡))𝑝(𝑘(𝑥), 𝑘(𝑥,𝑥𝑡) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡))

⇒𝑝(�̂�(𝑥), 𝑘(𝑥,𝑥𝑡) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡)) = 𝑝(�̂�(𝑥) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡)))𝑝(𝑘(𝑥,𝑥𝑡) | �̂�(𝑥𝑡)), 𝑘(𝑥𝑡)).

Hence, �̂�(𝑥) and 𝑋T
·,𝜃𝑃 = 𝑘(𝑥,𝑥𝑡)𝑘(𝑥𝑡)

−1(𝑦𝑡 − �̂�(𝑥𝑡)) are independent conditional on �̂�(𝑥𝑡) and

𝑘(𝑥𝑡). Moreover, 𝑋T
·,𝜃𝑃 is dependent on 𝑋·,Θ𝑡 only through 𝑘(𝑥𝑡) = 𝑋T

·,Θ𝑡
𝑋·,Θ𝑡 ; hence, we have

�̂�𝑡(𝑥) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡) ∼ 𝒩 (�̄�, 𝑆), (A.9)

By linearity of expectation and the Bienaymé formula,

�̄� = E[�̂�(𝑥) | �̂�(𝑥𝑡)] + 𝑘(𝑥,𝑥𝑡)(𝑘(𝑥𝑡) + 𝜎2𝐼)−1(𝑦𝑡 − �̂�(𝑥𝑡)) (A.10)

= 𝜇(𝑥) + 𝑘(𝑥,𝑥𝑡)(𝑘(𝑥𝑡) + 𝜎2𝐼)−1(𝑦𝑡 − 𝜇(𝑥𝑡))

= 𝜇𝑡(𝑥),

𝑆 = V[�̂�(𝑥) | �̂�(𝑥𝑡)] +
(𝑦𝑡 − �̂�(𝑥𝑡))T𝑘(𝑥𝑡)

−1(𝑦𝑡 − �̂�(𝑥𝑡))(𝑘𝑡(𝑥) + 𝜎2)

𝑛− 1
, (A.11)

=
𝑘𝑡(𝑥) + 𝜎2

𝑁
+

(𝑦𝑡 − �̂�(𝑥𝑡))T𝑘(𝑥𝑡)
−1(𝑦𝑡 − �̂�(𝑥𝑡))(𝑘𝑡(𝑥) + 𝜎2)

𝑁 − 1
.

201

In Eq. (A.10) and Eq. (A.11), we use the conditional Gaussian distribution for �̂�(𝑥) as follows

�̂�(𝑥) | �̂�(𝑥𝑡) ∼ 𝒩 (𝜇(𝑥) + 𝑘(𝑥,𝑥𝑡)(𝑘(𝑥𝑡) + 𝜎2𝐼)−1(�̂�(𝑥𝑡)− 𝜇(𝑥𝑡)),
𝑘𝑡(𝑥) + 𝜎2

𝑁
).

By the law of total expectation,

E[�̂�𝑡(𝑥)] = E
[︁
E[�̂�𝑡(𝑥) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡)]

]︁
= 𝜇𝑡(𝑥). (A.12)

By the law of total variance,

V[�̂�𝑡(𝑥)] = E
[︁
V[�̂�𝑡(𝑥) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡)]

]︁
+ V

[︁
E[�̂�𝑡(𝑥) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡)]

]︁
= E

[︀
𝑆
]︀
+ V [�̄�]

=

(︀
𝑁 − 2 + (𝑦𝑡 − 𝜇(𝑥𝑡))T(𝑘(𝑥𝑡) + 𝜎2𝐼)−1(𝑦𝑡 − 𝜇(𝑥𝑡))

)︀
(𝑘𝑡(𝑥) + 𝜎2)

𝑁(𝑁 − 𝑡− 2)

=
(𝑁 − 2 +𝐾𝑥𝑡,𝑦𝑡) (𝑘𝑡(𝑥) + 𝜎2)

𝑁(𝑁 − 𝑡− 2)
.

where 𝐾𝑥𝑡,𝑦𝑡 = (𝑦𝑡 − 𝜇(𝑥𝑡))T(𝑘(𝑥𝑡) + 𝜎2𝐼)−1(𝑦𝑡 − 𝜇(𝑥𝑡)).

Notice that �̂�𝑡(𝑥) | �̂�(𝑥𝑡), 𝑘(𝑥𝑡) in Eq. (A.9) is a normal distribution centered at 𝜇𝑡(𝑥) regard-

less of the conditional distribution. So the distribution of �̂�𝑡(𝑥) must be symmetric with a center at

𝜇𝑡(𝑥). Hence, applying Chebyshev’s inequality, we have

Pr

[︃
�̂�𝑡(𝑥)− 𝜇𝑡(𝑥) <

√︃
(𝑁 − 2 +𝐾𝑥𝑡,𝑦𝑡) (𝑘𝑡(𝑥) + 𝜎2)

2𝛿′1𝑁(𝑁 − 𝑡− 2)

]︃
≥ 1− 𝛿′1,

Pr

[︃
�̂�𝑡(𝑥)− 𝜇𝑡(𝑥) > −

√︃
(𝑁 − 2 +𝐾𝑥𝑡,𝑦𝑡) (𝑘𝑡(𝑥) + 𝜎2)

2𝛿′1𝑁(𝑁 − 𝑡− 2)

]︃
≥ 1− 𝛿′1.

Notice that the randomness of 𝐾𝑥𝑡,𝑦𝑡 is from 𝑦𝑡 and 𝑦𝑡 ∼ 𝒩 (𝜇(𝑥𝑡), 𝑘(𝑥𝑡) + 𝜎2𝐼). So we can

further bound 𝐾𝑥𝑡,𝑦𝑡 ≤ 𝑡 + 2
√︁
𝑡 log 1

𝛿′′1
+ 2 log 1

𝛿′′1
with probability at most 𝛿′′1 by Corollary A.1.4.

Hence, if we set 𝛿′1 =
𝛿1
4 and 𝛿′′1 = 𝛿1

2 , with probability at least 1− 𝛿1, we have

�̂�𝑡(𝑥)− 𝜇𝑡(𝑥) < 𝜄𝑡
√︀

(𝑘𝑡(𝑥) + 𝜎2) ∧ �̂�𝑡(𝑧)− 𝜇𝑡(𝑧) > −𝜄𝑡
√︀

(𝑘𝑡(𝑧) + 𝜎2),

for fixed inputs 𝑥, 𝑥′.

Combining this result and the results in Eq. (A.7), Eq. (A.8), Eq. (A.12), we proved the lemma.

202

Lemma A.1.7 (Lemma 7.3.1 in Chapter 7). Pick probability 𝛿 ∈ (0, 1). For any nonnegative

integer 𝑡 < 𝑇 , conditioned on the observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, the estimators in Eq. (A.1)

and Eq. (A.2) satisfy E[�̂�𝑡(X)] = 𝜇𝑡(X),E[𝑘𝑡(X)] = 𝑘𝑡(X) + 𝜎2𝐼. Moreover, if the size of the

training dataset satisfy 𝑁 ≥ 𝑇 + 2, then for any input 𝑥 ∈ X, with probability at least 1− 𝛿, both

|�̂�𝑡(𝑥)− 𝜇𝑡(𝑥)|2 < 𝑎𝑡(𝑘𝑡(𝑥) + 𝜎2) and 1− 2
√︀
𝑏𝑡 < 𝑘𝑡(𝑥)/(𝑘𝑡(𝑥) + 𝜎2) < 1 + 2

√︀
𝑏𝑡 + 2𝑏𝑡

hold, where 𝑎𝑡 =
4
(︁
𝑁−2+𝑡+2

√
𝑡 log (4/𝛿)+2 log (4/𝛿)

)︁
𝛿𝑁(𝑁−𝑡−2) and 𝑏𝑡 = 1

𝑁−𝑡−1 log
4
𝛿 .

Proof. By a union bound on Eq. (A.8) of Lemma A.1.6, we have

Pr
[︁
1− 2

√︀
𝑏𝑡 < 𝑘𝑡(𝑥)/(𝑘𝑡(𝑥) + 𝜎2) < 1 + 2

√︀
𝑏𝑡 + 2𝑏𝑡

]︁
≥ 1− 2𝑒−𝑏𝑡(𝑁−𝑡−1)

where 𝑏𝑡 = 1
𝑁−𝑡−1 log

1
𝛿2
> 0 and 𝛿2 ∈ (0, 1). By Lemma A.1.6, we also have

Pr
[︁
�̂�𝑡(𝑥)− 𝜇𝑡(𝑥) < 𝜄𝑡

√︀
(𝑘𝑡(𝑥) + 𝜎2) ∧ �̂�𝑡(𝑧)− 𝜇𝑡(𝑧) > −𝜄𝑡

√︀
(𝑘𝑡(𝑧) + 𝜎2)

]︁
≥ 1− 𝛿1,

where 𝜄𝑡 =

√︂
2
(︁
𝑁−2+𝑡+2

√︁
𝑡 log 2

𝛿1
+2 log 2

𝛿1

)︁
𝛿1𝑁(𝑁−𝑡−2) . We get the conclusion of this lemma by setting 𝑎𝑡 =

𝜄𝑡, 𝛿1 = 𝛿2 =
𝛿
2 , and 𝑧 = 𝑥.

Corollary A.1.8 (Corollary of Bernoulli’s inequality). For any 0 ≤ 𝑥 ≤ 𝑐 and 𝑎 > 0, we have

𝑥 ≤ 𝑐 log(1+𝑎𝑥
𝑐
)

log(1+𝑎) .

Proof. By Bernoulli’s inequality, (1 + 𝑎)
𝑥
𝑐 ≤ 1 + 𝑎𝑥

𝑐 . Because log(1 + 𝑎) > 0, by rearranging, we

have 𝑥 ≤ 𝑐 log(1+𝑎𝑥
𝑐
)

log(1+𝑎) .

Lemma A.1.9. For any 0 ≤ 𝑥 ≤ 𝑐 and 𝑎 > 0, we have
√
𝑥 <
√
𝑥+ 𝑎− 𝑎

2
√
𝑐+𝑎

.

Proof. Numerically, for any 𝑛 ≥ 1, 1√
𝑛
< 2
√
𝑛− 2

√
𝑛− 1 [195]. Let 𝑛 = 𝑥

𝑎 + 1. Then, we have

1√︀
𝑥
𝑎 + 1

< 2

√︂
𝑥

𝑎
+ 1− 2

√︂
𝑥

𝑎

𝑎√
𝑎+ 𝑐

<
𝑎√
𝑎+ 𝑥

< 2
√
𝑥+ 𝑎− 2

√
𝑥

√
𝑥 <
√
𝑥+ 𝑎− 𝑎

2
√
𝑎+ 𝑐

.

203

Lemma A.1.10 (Lemma 5.3 of [171]). Let 𝑥𝑇 = [𝑥𝑡]
𝑇
𝑡=1 ⊆ X. The mutual information between

the function values 𝑓(𝑥𝑇) and their observations 𝑦𝑇 = [𝑦𝑡]
𝑇
𝑡=1 satisfy

𝐼(𝑓(𝑥𝑇);𝑦𝑇) =
1

2
log det(𝐼 + 𝜎−2𝑘(𝑥𝑡)) =

1

2

∑︁𝑘

𝑡=1
log(1 + 𝜎−2𝑘𝑡−1(𝑥𝑡)).

Theorem A.1.11. Assume there exist constant 𝑐 ≥ max𝑥∈X 𝑘(𝑥) and a training dataset is available

whose size is 𝑁 ≥ 4 log 6
𝛿 + 𝑇 + 2. Define

𝜄𝑡−1 =

⎯⎸⎸⎷6
(︁
𝑁 − 3 + 𝑡+ 2

√︁
𝑡 log 6

𝛿 + 2 log 6
𝛿

)︁
𝛿𝑁(𝑁 − 𝑡− 1)

, 𝑏𝑡−1 =
1

𝑁 − 𝑡
log

6

𝛿
, for any 𝑡 ∈ [𝑇],

and 𝜌𝑇 = max
𝐴∈X,|𝐴|=𝑇

1
2 log |𝐼 + 𝜎−2𝑘(𝐴)|. Then, with probability at least 1 − 𝛿, the best-sample

simple regret in 𝑇 iterations of meta BO with GP-UCB that uses Eq. (A.4) as its hyperparameter

satisfies

𝑟GP-UCB
𝑇 ≤ 𝜂GP-UCB

√︃
2𝑐𝜌𝑇

𝑇 log(1 + 𝑐𝜎−2)
+ 𝜎2 −

(2 log(3𝛿))
1
2𝜎2

√
𝑐+ 𝜎2

,

where 𝜂GP-UCB = (
𝜄𝑇−1+(2 log(3

𝛿
))

1
2√︁

1−2
√
𝑏𝑇−1

√︁
1 + 2

√︀
𝑏𝑇−1 + 2𝑏𝑇−1 + 𝜄𝑇−1 + (2 log(3𝛿))

1
2).

With probability at least 1− 𝛿, the best-sample simple regret in T iterations of meta BO with PI

that uses 𝑓* ≥ max𝑥∈X 𝑓(𝑥) as its target value satisfies

𝑟PI
𝑇 < 𝜂PI

√︃
2𝑐𝜌𝑇

𝑇 log(1 + 𝑐𝜎−2)
+ 𝜎2 −

(2 log(3
2𝛿))

1
2𝜎2

2
√
𝑐+ 𝜎2

,

where 𝜂PI = (𝑓*−𝜇𝜏−1(𝑥*)√
𝑘𝜏−1(𝑥*)+𝜎2

+𝜄𝜏−1)

√︃
1+2𝑏

1
2
𝜏−1+2𝑏𝜏−1

1−2𝑏
1
2
𝜏−1

+𝜄𝜏−1+(2 log(3
2𝛿))

1
2 , 𝜏 = argmin𝑡∈[𝑇] 𝑘𝑡−1(𝑥𝑡).

Proof. We first show the regret bound for GP-UCB with our estimators of prior and posterior. All

of the probabilities mentioned in the proofs need to be interpreted in a frequentist manner. Let

𝜏 = argmin𝑡∈[𝑇] 𝑘𝑡−1(𝑥𝑡). By Corollary A.1.1, with probability at least 1− 𝛿
3 ,

𝑟GP-UCB
𝑇 = 𝑓* −max𝑡∈[𝑇] 𝑓(𝑥𝑡)

≤ 𝑓* − 𝑓(𝑥𝜏)

≤ 𝑓* − 𝜇𝜏−1(𝑥𝜏) + 𝜇𝜏−1(𝑥𝜏)− 𝑓(𝑥𝜏)

≤ 𝜇𝜏−1(𝑥*) + 𝜁 ′
√︀
𝑘𝜏−1(𝑥*)− 𝜇𝜏−1(𝑥𝜏) + 𝜁 ′

√︀
𝑘𝜏−1(𝑥𝜏),

204

where 𝜁 ′ = (2 log(3𝛿))
1
2 . By Lemma A.1.6, with probability at least 1− 𝛿

3 ,

𝜇𝜏−1(𝑥*)− 𝜇𝜏−1(𝑥𝜏) < �̂�𝜏−1(𝑥*)− �̂�𝜏−1(𝑥𝜏) + 𝜄𝜏−1

√︀
𝑘𝜏−1(𝑥*) + 𝜎2 + 𝜄𝜏−1

√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2,

where 𝜄𝑡 =

√︂
6
(︁
𝑁−2+𝑡+2

√︁
𝑡 log 6

𝛿
+2 log 6

𝛿

)︁
𝛿𝑁(𝑁−𝑡−2) ≤ 𝜄𝑇−1.

Lemma A.1.6 and Lemma A.1.9 also show that with probability at least 1− 𝛿
6 , we have

√︀
𝑘𝜏−1(𝑥*) ≤

√︀
𝑘𝜏−1(𝑥*) + 𝜎2 − 𝜎2

2
√
𝑐+ 𝜎2

<

√︃
𝑘𝜏−1(𝑥*)

1− 2
√︀
𝑏𝜏−1

− 𝜎2

2
√
𝑐+ 𝜎2

where 𝑏𝑡 = 1
𝑁−𝑡−1 log

6
𝛿 ≤ 𝑏𝑇−1 ∈ (0, 14). Notice that because of the input selection strategy of

GP-UCB with 𝜁𝑡 =
𝜄𝑡−1+𝜁′√︁
1−2
√
𝑏𝑡−1

, the following inequality holds with probability at least 1− 𝛿
6 ,

�̂�𝜏−1(𝑥*) + (𝜄𝑡−1 + 𝜁 ′)
√︀
𝑘𝜏−1(𝑥*) + 𝜎2 ≤ �̂�𝜏−1(𝑥*) + 𝜁𝑡

√︁
𝑘𝜏−1(𝑥*)

≤ �̂�𝜏−1(𝑥𝜏) + 𝜁𝑡

√︁
𝑘𝜏−1(𝑥𝜏).

Hence, with probability at least 1− 𝛿,

𝑟GP-UCB
𝑇 ≤ 𝜇𝜏−1(𝑥*) + 𝜁 ′

√︀
𝑘𝜏−1(𝑥*) + 𝜎2 − 𝜇𝜏−1(𝑥𝜏) + 𝜁 ′

√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2 − 𝜁 ′𝜎2√

𝑐+ 𝜎2

< �̂�𝜏−1(𝑥*)− �̂�𝜏−1(𝑥𝜏) + (𝜄𝑡−1 + 𝜁 ′)(
√︀
𝑘𝜏−1(𝑥*) + 𝜎2 +

√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2)− 𝜁 ′𝜎2√

𝑐+ 𝜎2

≤ 𝜁𝑡
√︁
𝑘𝜏−1(𝑥𝜏) + (𝜄𝑡−1 + 𝜁 ′)

√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2 − 𝜁 ′𝜎2√

𝑐+ 𝜎2

< (𝜁𝑡

√︁
1 + 2

√︀
𝑏𝑡−1 + 2𝑏𝑡−1 + 𝜄𝑡−1 + 𝜁 ′)

√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2 − 𝜁 ′𝜎2√

𝑐+ 𝜎2

< 𝜂GP-UCB
√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2 − 𝜁 ′𝜎2√

𝑐+ 𝜎2
,

where 𝜂GP-UCB = (
𝜄𝑇−1+𝜁

′√︁
1−2
√
𝑏𝑇−1

√︁
1 + 2

√︀
𝑏𝑇−1 + 2𝑏𝑇−1 + 𝜄𝑇−1 + 𝜁 ′). By Corollary A.1.8 and the

205

fact that 𝜏 = argmin𝑡∈[𝑇] 𝑘𝑡−1(𝑥𝑡), we have

𝑘𝜏−1(𝑥𝜏) ≤
1

𝑇

∑︁𝑇

𝑡=1
𝑘𝑡−1(𝑥𝑡)

≤ 1

𝑇

∑︁𝑇

𝑡=1

𝑐 log(1 + 𝑐𝜎−2𝑘𝑡−1(𝑥𝑡)
𝑐)

log(1 + 𝑐𝜎−2)

=
𝑐

𝑇 log(1 + 𝑐𝜎−2)

∑︁𝑇

𝑡=1
log(1 + 𝜎−2𝑘𝑡−1(𝑥𝑡)).

Notice that here Corollary A.1.8 applies because 0 ≤ 𝑘𝜏−1(𝑥𝜏) ≤ 𝑐.

By Lemma A.1.10, 𝐼(𝑓(𝑥𝑇);𝑦𝑇) = 1
2

∑︀𝑇
𝑡=1 log(1 + 𝜎−2𝑘𝑡−1(𝑥𝑡)) ≤ 𝜌𝑇 , so

𝑘𝜏−1(𝑥𝜏) ≤
2𝑐𝜌𝑇

𝑇 log(1 + 𝑐𝜎−2)
,

which implies

𝑟GP-UCB
𝑇 < 𝜂

√︃
2𝑐𝜌𝑇

𝑇 log(1 + 𝑐𝜎−2)
+ 𝜎2 − 𝜁 ′𝜎2√

𝑐+ 𝜎2
.

Next, we show the proof for a special case of PI with 𝑓*, an upper bound on 𝑓 , as its target

value. Again, by Corollary A.1.1, with probability at least 1− 𝛿
3 ,

𝑟PI
𝑇 = 𝑓* −max𝑡∈[𝑇] 𝑓(𝑥𝑡)

≤ 𝑓* − 𝑓(𝑥𝜏)

≤ 𝑓* − 𝜇𝜏−1(𝑥𝜏) + 𝜇𝜏−1(𝑥𝜏)− 𝑓(𝑥𝜏)

≤ 𝑓* − 𝜇𝜏−1(𝑥𝜏) + 𝜁 ′
√︀
𝑘𝜏−1(𝑥𝜏),

where 𝜁 ′ = (2 log(3
2𝛿))

1
2 and 𝜏 = argmin𝑡∈[𝑇] 𝑘𝑡−1(𝑥𝑡). By Lemma A.1.6 and the selection

206

strategy of PI, with probability at least 1− 2𝛿
3 ,

𝑓* − 𝜇𝜏−1(𝑥𝜏) < 𝑓* − �̂�𝜏−1(𝑥𝜏) + 𝜄𝜏−1

√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2

≤ 𝑓* − �̂�𝜏−1(𝑥*)√︁
𝑘𝜏−1(𝑥*)

√︁
𝑘𝜏−1(𝑥𝜏) + 𝜄𝜏−1

√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2

≤
𝑓* − 𝜇𝜏−1(𝑥*) + 𝜄𝜏−1

√︀
𝑘𝜏−1(𝑥*) + 𝜎2√︁

𝑘𝜏−1(𝑥*)

√︁
𝑘𝜏−1(𝑥𝜏) + 𝜄𝜏−1

√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2

<

⎛⎜⎝(
𝑓* − 𝜇𝜏−1(𝑥*)√︀
𝑘𝜏−1(𝑥*) + 𝜎2

+ 𝜄𝜏−1)

⎯⎸⎸⎸⎷1 + 2𝑏
1
2
𝜏−1 + 2𝑏𝜏−1

1− 2𝑏
1
2
𝜏−1

+ 𝜄𝜏−1

⎞⎟⎠√︀
𝑘𝜏−1(𝑥𝜏) + 𝜎2.

Hence, with probability at least 1− 𝛿, the best-sample simple regret of PI satisfy

𝑟PI
𝑇 < 𝜂PI

√︃
2𝑐𝜌𝑇

𝑇 log(1 + 𝑐𝜎−2)
+ 𝜎2 − 𝜁 ′𝜎2

2
√
𝑐+ 𝜎2

,

where 𝜂PI = (𝑓*−𝜇𝜏−1(𝑥*)√
𝑘𝜏−1(𝑥*)+𝜎2

+ 𝜄𝜏−1)

√︃
1+2𝑏

1
2
𝜏−1+2𝑏𝜏−1

1−2𝑏
1
2
𝜏−1

+ 𝜄𝜏−1 + 𝜁 ′.

Theorem A.1.12 (Theorem 7.3.2 in Chapter 7). Assume there exist constant 𝑐 ≥ max𝑥∈X 𝑘(𝑥) and

a training dataset is available whose size is 𝑁 ≥ 4 log 6
𝛿 + 𝑇 + 2. Then, with probability at least

1−𝛿, the best-sample simple regret in 𝑇 iterations of meta BO with special cases of either GP-UCB

or PI satisfies

𝑟UCB
𝑇 < 𝜂UCB

𝑇 (𝑁)𝜆𝑇 , 𝑟PI
𝑇 < 𝜂PI

𝑇 (𝑁)𝜆𝑇 , 𝜆2𝑇 = 𝑂(𝜌𝑇 /𝑇) + 𝜎2,

where 𝜂𝑈𝐶𝐵𝑇 (𝑁) = (𝑚+𝐶1)(
√
1+𝑚√
1−𝑚+1), 𝜂PI

𝑇 (𝑁) = (𝑚+𝐶2)(
√
1+𝑚√
1−𝑚+1)+𝐶3,𝑚 = 𝑂(

√︁
1

𝑁−𝑇),

𝐶1, 𝐶2, 𝐶3 > 0 are constants, and 𝜌𝑇 = max
𝐴∈X,|𝐴|=𝑇

1
2 log |𝐼 + 𝜎−2𝑘(𝐴)|.

Proof. This theorem is a condensed version of Thm. A.1.11 with big O notations.

A.2 Proofs for Section 7.3.2

Recall that we assume X is a compact set which is a subset of R𝑑. We only considers a special case

of GPs that assumes 𝑓(𝑥) = Φ(𝑥)T𝑊 , 𝑊 ∼ 𝒩 (𝑢,Σ) and the basis functions Φ(𝑥) ∈ R𝐾 are

207

given. The mean function and kernel are defined as

𝜇(𝑥) = Φ(𝑥)T𝑢 and 𝑘(𝑥) = Φ(𝑥)TΣΦ(𝑥).

Given noisy observations 𝐷𝑡 = {(𝑥𝜏 , 𝑦𝜏)}𝑡𝜏=1, 𝑡 ≤ 𝐾, we have

𝜇𝑡(𝑥) = Φ(𝑥)T𝑢𝑡 and 𝑘𝑡(𝑥, 𝑥
′) = Φ(𝑥)TΣ𝑡Φ(𝑥

′),

where the posterior of 𝑊 ∼ 𝒩 (𝑢𝑡,Σ𝑡) satisfies

𝑢𝑡 = 𝑢+ΣΦ(𝑥𝑡)(Φ(𝑥𝑡)
TΣΦ(𝑥𝑡) + 𝜎2𝐼)−1(𝑦𝑡 − Φ(𝑥𝑡)

T𝑢),

Σ𝑡 = Σ− ΣΦ(𝑥𝑡)(Φ(𝑥𝑡)
TΣΦ(𝑥𝑡) + 𝜎2𝐼)−1Φ(𝑥𝑡)

TΣ.

Our estimators for 𝑢𝑡 and Σ𝑡 are

�̂�𝑡 = �̂�+ Σ̂Φ(𝑥𝑡)(Φ(𝑥𝑡)
TΣ̂Φ(𝑥𝑡))

−1(𝑦𝑡 − Φ(𝑥𝑡)
T𝑢),

Σ̂𝑡 =
𝑁 − 1

𝑁 − 𝑡− 1

(︁
Σ̂− Σ̂Φ(𝑥𝑡)(Φ(𝑥𝑡)

TΣ̂Φ(𝑥𝑡))
−1Φ(𝑥𝑡)

TΣ̂
)︁
.

We can compute the approximated conditional mean and variance of the observation on 𝑥 ∈ X to

be

�̂�𝑡(𝑥) = Φ(𝑥)T�̂�𝑡 and 𝑘𝑡(𝑥) = Φ(𝑥)TΣ̂𝑡Φ(𝑥).

Again, we prove a bound on the best-sample simple regret 𝑟𝑇 = max𝑥∈X 𝑓(𝑥)−max𝑡∈[𝑇] 𝑓(𝑥𝑡).

The evaluated inputs 𝑥𝑡 = [𝑥𝜏]
𝑡
𝜏 are selected either by a special case of GP-UCB using the acquisi-

tion function

𝛼GP-UCB
𝑡−1 (𝑥) = �̂�𝑡−1(𝑥) + 𝜁𝑡𝑘𝑡−1(𝑥)

1
2 , with

𝜁𝑡 =

(︁
6(𝑁 − 3 + 𝑡+ 2

√︁
𝑡 log 6

𝛿 + 2 log 6
𝛿)/(𝛿𝑁(𝑁 − 𝑡− 1))

)︁ 1
2
+ (2 log(3𝛿))

1
2

(1− 2(1
𝑁−𝑡 log

6
𝛿)

1
2)

1
2

, 𝛿 ∈ (0, 1),

or by a special case of PI using the acquisition function

𝛼PI
𝑡−1(𝑥) =

�̂�𝑡−1(𝑥)− 𝑓*

𝑘𝑡−1(𝑥)
1
2

.

208

This special case of PI assumes additional information of the upper bound on function value 𝑓* ≥

max𝑥∈X 𝑓(𝑥).

For convenience of the notations, we define �̄�2(𝑥) = 𝜎2Φ(𝑥)T(Φ(�̄�)Φ(�̄�)T)−1Φ(𝑥).

Corollary A.2.1 combines Lemma A.1.2 and basic properties of the Wishart distribution [52].

Corollary A.2.1. Assume the matrix Φ(�̄�) ∈ R𝐾×𝑀 has linearly independent rows. Then, �̂� and

Σ̂ are independent and

�̂� ∼ 𝒩
(︂
𝑢,

1

𝑁
(Σ + 𝜎2(Φ(�̄�)Φ(�̄�)T)−1)

)︂
, Σ̂ ∼ 𝒲

(︂
1

𝑁 − 1

(︀
Σ+ 𝜎2(Φ(�̄�)Φ(�̄�)T)−1

)︀
, 𝑁 − 1

)︂
.

For finite set of inputs 𝑥 ⊂ X, �̂�(𝑥) and 𝑘(𝑥) are also independent; they satisfy

�̂�(𝑥) ∼ 𝒩
(︂
𝜇,

1

𝑁
(𝑘(𝑥) + �̄�2(𝑥))

)︂
, 𝑘(𝑥) ∼ 𝒲

(︂
1

𝑁 − 1

(︀
𝑘(𝑥) + �̄�2(𝑥)

)︀
, 𝑁 − 1

)︂
.

The proofs of Lemma 7.3.3 and Theorem 7.3.4 in Chapter 7 directly follow Corollary A.2.1 and

proofs of Lemma A.1.6, Theorem A.1.11 in this appendix.

A.3 Proofs for Section 7.3.3

We show that the simple regret with �̂�*𝑇 = 𝑥𝜏 , 𝜏 = argmax𝑡∈[𝑇] 𝑦𝑡 is very close to the best-sample

simple regret.

Lemma A.3.1. With probability at least 1− 𝛿, 𝑅𝑇 − 𝑟𝑇 ≤ 2(2 log 1
𝛿)

1
2𝜎.

Proof. Let 𝜏 ′ = argmax𝑡∈[𝑇] 𝑓(𝑥𝑡) and 𝜏 = argmax𝑡∈[𝑇] 𝑦𝑡. Note that 𝑦𝜏 ≥ 𝑦𝜏 ′ . By Corol-

lary A.1.1, with probability at least 1 − 𝛿, 𝑓(𝑥𝜏) + 𝐶𝜎 ≥ 𝑦𝜏 ≥ 𝑦𝜏 ′ ≥ 𝑓(𝑥𝜏 ′) − 𝐶𝜎, where

𝐶 = (2 log 1
𝛿)

1
2 . Hence 𝑅𝑇 − 𝑟𝑇 = 𝑓(𝑥𝜏 ′)− 𝑓(𝑥𝜏) ≤ 2𝐶𝜎.

209

Bibliography

[1] Raja Hafiz Affandi, Emily Fox, Ryan Adams, and Ben Taskar. Learning the parameters
of determinantal point process kernels. In International Conference on Machine Learning
(ICML), 2014.

[2] Philip E Agre and David Chapman. Pengi: An implementation of a theory of activity. In
AAAI Conference on Artificial Intelligence, volume 87, pages 286–272, 1987.

[3] James S Albus et al. A new approach to manipulator control: The cerebellar model articula-
tion controller (CMAC). Journal of Dynamic Systems, Measurement and Control, 97(3):220–
227, 1975.

[4] Theodore Wilbur Anderson. An Introduction to Multivariate Statistical Analysis. Wiley New
York, 1958.

[5] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning
with policy sketches. In International Conference on Machine Learning (ICML), 2017.

[6] Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning.
Artificial Intelligence Review, 11(1-5):11–73, 1997.

[7] Peter Auer. Using confidence bounds for exploitation-exploration tradeoffs. Journal of Ma-
chine Learning Research, 3:397–422, 2002.

[8] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

[9] Kevin Bache and Moshe Lichman. UCI machine learning repository, 2013.

[10] Thomas Back. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evo-
lutionary Programming, Genetic Algorithms. Oxford University Press, 1996.

[11] Leemon C. Baird, III and A. Harry Klopf. Reinforcement learning with high-dimensional
continuous actions. Technical report, Wright Laboratory, Wright Patterson Air Force Base,
1993.

[12] Matej Balog, Balaji Lakshminarayanan, Zoubin Ghahramani, Daniel M Roy, and Yee Whye
Teh. The Mondrian kernel. In Uncertainty in Artificial Intelligence (UAI), 2016.

[13] Matej Balog and Yee Whye Teh. The Mondrian process for machine learning. arXiv preprint
arXiv:1507.05181, 2015.

[14] Rémi Bardenet, Mátyás Brendel, Balázs Kégl, and Michele Sebag. Collaborative hyperpa-
rameter tuning. In International Conference on Machine Learning (ICML), 2013.

211

[15] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using real-time
dynamic programming. Artificial Intelligence, 72(1):81–138, 1995.

[16] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra,
P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep
learning, and graph networks. ArXiv e-prints, June 2018.

[17] J Baxter. A Bayesian /information theoretic model of bias learning. In Conference on Learn-
ing Theory (COLT), New York, New York, USA, 1996.

[18] Richard Bellman. A Markovian decision process. Journal of Mathematics and Mechanics,
pages 679–684, 1957.

[19] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[20] Scott S Benson. Learning action models for reactive autonomous agents. Technical report,
Stanford University, Stanford, CA, USA, 1997.

[21] Dimitri P Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Bel-
mont, MA, 1995.

[22] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3(Jan):993–1022, 2003.

[23] Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher. Truncated variance
reduction: A unified approach to Bayesian optimization and level-set estimation. In Advances
in Neural Information Processing Systems (NeurIPS), 2016.

[24] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[25] Sascha Brandi, Oliver Kroemer, and Jan Peters. Generalizing pouring actions between objects
using warped parameters. In Humanoids, 2014.

[26] Pavel Brazdil, Joāo Gama, and Bob Henery. Characterizing the applicability of classifica-
tion algorithms using meta-level learning. In European Conference on Machine Learning
(ECML), 1994.

[27] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical reinforce-
ment learning. Technical Report TR-2009-023, University of British Columbia, 2009.

[28] Brent Bryan, Robert C Nichol, Christopher R Genovese, Jeff Schneider, Christopher J Miller,
and Larry Wasserman. Active learning for identifying function threshold boundaries. In
Advances in Neural Information Processing Systems (NeurIPS), 2006.

[29] Adam D Bull. Convergence rates of efficient global optimization algorithms. Journal of
Machine Learning Research, 12:2879–2904, 2011.

[30] Roberto Calandra. Bayesian Modeling for Optimization and Control in Robotics. PhD thesis,
Technische Universität, 2017.

212

[31] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717, 2009.

[32] Erin Catto. Box2D, a 2D physics engine for games. http://box2d.org, 2011.

[33] Augustin Louis Cauchy. Cours d’analyse de l’Ecole Royale Polytechnique, volume 1. Im-
primerie Royale, 1821.

[34] Jianfei Chen, Jun Zhu, Zi Wang, Xun Zheng, and Bo Zhang. Scalable inference for logistic-
normal topic models. In Advances in Neural Information Processing Systems (NeurIPS),
2013.

[35] Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P
Lillicrap, Matt Botvinick, and Nando de Freitas. Learning to learn without gradient descent
by gradient descent. In International Conference on Machine Learning (ICML), 2017.

[36] Rohan Chitnis, Dylan Hadfield-Menell, Abhishek Gupta, Siddharth Srivastava, Edward Gro-
shev, Christopher Lin, and Pieter Abbeel. Guided search for task and motion plans using
learned heuristics. In IEEE International Conference on Robotics and Automation (ICRA),
2016.

[37] Sachin Chitta, Ioan Sucan, and Steve Cousins. MoveIt! IEEE Robotics & Automation
Magazine, 19(1):18–19, 2012.

[38] Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel Gaussian
process optimization with upper confidence bound and pure exploration. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, 2013.

[39] Erwin Coumans and Yunfei Bai. Pybullet, a Python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2019.

[40] A. Cully, J. Clune, D. Tarapore, and J. Mouret. Robots that adapt like animals. Nature, 2015.

[41] Erik A Daxberger and Bryan Kian Hsiang Low. Distributed batch Gaussian process opti-
mization. In International Conference on Machine Learning (ICML), 2017.

[42] Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient approach
to policy search. In International Conference on Machine Learning (ICML), pages 465–472,
2011.

[43] Marc Peter Deisenroth and Jun Wei Ng. Distributed Gaussian processes. In International
Conference on Machine Learning (ICML), 2015.

[44] Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters. Model-based reinforcement
learning with continuous states and actions. In European Symposium on Artificial Neural
Networks (ESANN), pages 19–24, 2008.

[45] Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters. Gaussian process dynamic
programming. Neurocomputing, 72(7):1508–1524, 2009.

[46] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization. Journal of Machine Learning
Research, 2014.

213

http://box2d.org
http://pybullet.org

[47] Rosen Diankov. Automated Construction of Robotic Manipulation Programs. PhD thesis,
Robotics Institute, Carnegie Mellon University, 2010.

[48] Rosen Diankov and James Kuffner. OpenRAVE: A Planning Architecture for Autonomous
Robotics. Technical Report CMU-RI-TR-08-34, Robotics Institute, Carnegie Mellon Uni-
versity, 2008.

[49] Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional Gaussian process
bandits. In Advances in Neural Information Processing Systems (NeurIPS), 2013.

[50] Gary L Drescher. Made-up Minds: A Constructivist Approach to Artificial Intelligence. MIT
Press, 1991.

[51] David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. Additive Gaussian processes.
In Advances in Neural Information Processing Systems (NeurIPS), 2011.

[52] M. L. Eaton. Multivariate Statistics: A Vector Space Approach. Beachwood, Ohio, USA:
Institute of Mathematical Statistics, 2007.

[53] Bradley Efron. Bayes, oracle Bayes, and empirical Bayes. Statistical Science, 2019.

[54] Peter Englert and Marc Toussaint. Combined optimization and reinforcement learning for
manipulation skills. In Robotics: Science and Systems Conference (RSS), volume 2016,
2016.

[55] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2015.

[56] Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scalable meta-learning for Bayesian
optimization. arXiv preprint arXiv:1802.02219, 2018.

[57] Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing Bayesian hyperparameter
optimization via meta-learning. In AAAI Conference on Artificial Intelligence, 2015.

[58] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[59] Ronald Aylmer Fisher. The Genetical Theory of Natural Selection: A Complete Variorum
Edition. Oxford University Press, 1930.

[60] Malcolm R Forster. Notice: No free lunches for anyone, Bayesians included. Department of
Philosophy, University of Wisconsin–Madison Madison, USA, 2005.

[61] Dean P Foster and Rakesh Vohra. Regret in the on-line decision problem. Games and Eco-
nomic Behavior, 29(1-2), 1999.

[62] Marcus Frean and Phillip Boyle. Using Gaussian processes to optimize expensive functions.
In Australasian Joint Conference on Artificial Intelligence, pages 258–267. Springer, 2008.

[63] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning
(ICML), 2016.

214

[64] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Sample-based meth-
ods for factored task and motion planning. In Robotics: Science and Systems Conference
(RSS), 2017.

[65] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Sampling-based
methods for factored task and motion planning. The International Journal of Robotics Re-
search, 37(13-14):1796–1825, 2018.

[66] Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian rein-
forcement learning: A survey. Foundations and Trends in Machine Learning, 8(5–6):359–
483, 2015.

[67] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Elliot Karro,
and D. Sculley. Google Vizier: A service for black-box optimization. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), 2017.

[68] Javier González, Zhenwen Dai, Philipp Hennig, and Neil D Lawrence. Batch Bayesian op-
timization via local penalization. International Conference on Artificial Intelligence and
Statistics (AISTATS), 2016.

[69] Michael A Goodrich, Alan C Schultz, et al. Human–robot interaction: A survey. Foundations
and Trends in Human–Computer Interaction, 1(3):203–275, 2008.

[70] Alkis Gotovos, Nathalie Casati, Gregory Hitz, and Andreas Krause. Active learning for level
set estimation. In International Conference on Artificial Intelligence (IJCAI), 2013.

[71] GPy. GPy: A Gaussian process framework in python. http://github.com/
SheffieldML/GPy, since 2012.

[72] Robert B Gramacy and Herbert K H Lee. Bayesian treed Gaussian process models with
an application to computer modeling. Journal of the American Statistical Association,
103(483):1119–1130, 2008.

[73] V. Gullapalli, J. A. Franklin, and H. Benbrahim. Acquiring robot skills via reinforcement
learning. IEEE Control Systems, 14(1):13–24, 1994.

[74] Raja Hafiz Affandi, Emily B Fox, and Ben Taskar. Approximate inference in continu-
ous determinantal point processes. In Advances in Neural Information Processing Systems
(NeurIPS), 2013.

[75] Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global opti-
mization. Journal of Machine Learning Research, 13:1809–1837, 2012.

[76] James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. In
Uncertainty in Artificial Intelligence (UAI), 2013.

[77] Tucker Hermans, Fuxin Li, James M Rehg, and Aaron F Bobick. Learning contact locations
for pushing and orienting unknown objects. In Humanoids, 2013.

[78] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. In Advances in Neural
Information Processing Systems (NeurIPS), 2014.

215

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

[79] José Miguel Hernández-Lobato, James Requeima, Edward O Pyzer-Knapp, and Alán
Aspuru-Guzik. Parallel and distributed thompson sampling for large-scale accelerated ex-
ploration of chemical space. In International Conference on Machine Learning (ICML),
2017.

[80] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[81] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi,
Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and others. Speed/accuracy
trade-offs for modern convolutional object detectors. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 7310–7311, 2017.

[82] Vu Anh Huynh, Sertac Karaman, and Emilio Frazzoli. An incremental sampling-based
algorithm for stochastic optimal control. The International Journal of Robotics Research,
35(4):305–333, 2016.

[83] Christian Igel and Marc Toussaint. A no-free-lunch theorem for non-uniform distributions of
target functions. Journal of Mathematical Modelling and Algorithms, 3(4):313–322, 2005.

[84] Hunor S Jakab and Lehel Csató. Reinforcement learning with guided policy search using
Gaussian processes. In International Joint Conference on Neural Networks (IJCNN). IEEE,
2012.

[85] Donald R Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of Global Optimization, 21(4):345–383, 2001.

[86] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[87] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning in
the now. In IEEE International Conference on Robotics and Automation (ICRA), 2011.

[88] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Learning composable models of parame-
terized skills. In IEEE International Conference on Robotics and Automation (ICRA), 2017.

[89] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Learning composable models of primitive
actions. In IEEE International Conference on Robotics and Automation (ICRA), 2017.

[90] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P
Xing. Neural architecture search with Bayesian optimisation and optimal transport. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2018.

[91] Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimensional Bayesian
optimisation and bandits via additive models. In International Conference on Machine Learn-
ing (ICML), 2015.

[92] Ken Kansky, Tom Silver, David A. Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla,
Xinghua Lou, Nimrod Dorfman, Szymon Sidor, D. Scott Phoenix, and Dileep George.
Schema networks: Zero-shot transfer with a generative causal model of intuitive physics.
In International Conference on Machine Learning (ICML), 2017.

216

[93] Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active learning with
Gaussian processes for object categorization. In International Conference on Computer Vi-
sion (ICCV). IEEE, 2007.

[94] Peter Karkus, David Hsu, and Wee Sun Lee. Qmdp-net: Deep learning for planning un-
der partial observability. In Advances in Neural Information Processing Systems (NeurIPS),
2017.

[95] Kenji Kawaguchi, Bo Xie, Vikas Verma, and Le Song. Deep semi-random features for non-
linear function approximation. In AAAI Conference on Artificial Intelligence, 2017.

[96] Robert W Keener. Theoretical Statistics: Topics for a Core Course. Springer, 2011.

[97] Beomjoon Kim, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning to guide task
and motion planning using score-space representation. In IEEE International Conference on
Robotics and Automation (ICRA), 2017.

[98] Beomjoon Kim, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning to guide task
and motion planning using score-space representation. In IEEE International Conference on
Robotics and Automation (ICRA), 2017.

[99] Beomjoon Kim, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Guiding Search in Contin-
uous State-action Spaces by Learning an Action Sampler from Off-target Search Experience.
In AAAI Conference on Artificial Intelligence, 2018.

[100] Beomjoon Kim, Zi Wang, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning to
guide task and motion planning using score-space representation. The International Journal
of Robotics Research, 2019.

[101] George Konidaris, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. From Skills to Symbols:
Learning Symbolic Representations for Abstract High-Level Planning. Journal or Artificial
Intelligence Research, 2018.

[102] Marek Kopicki. Prediction Learning in Robotic Manipulation. PhD thesis, University of
Birmingham, 2010.

[103] Marek Kopicki, Jeremy Wyatt, and Rustam Stolkin. Prediction learning in robotic pushing
manipulation. In International Conference on Advanced Robotics. IEEE, 2009.

[104] Marek Kopicki, Sebastian Zurek, Rustam Stolkin, Thomas Mörwald, and Jeremy Wyatt.
Learning to predict how rigid objects behave under simple manipulation. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2011.

[105] Andreas Krause and Cheng S Ong. Contextual Gaussian process bandit optimization. In
Advances in Neural Information Processing Systems (NeurIPS), 2011.

[106] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2012.

[107] Oliver Kroemer and Gaurav Sukhatme. Meta-level priors for learning manipulation skills
with sparse features. In International Symposium on Experimental Robotics (ISER), 2016.

217

[108] Oliver Kroemer and Gaurav S Sukhatme. Learning spatial preconditions of manipulation
skills using random forests. In Humanoids, 2016.

[109] James J. Kuffner, Jr. and Steven M. LaValle. RRT-Connect: An efficient approach to single-
query path planning. In IEEE International Conference on Robotics and Automation (ICRA),
2000.

[110] Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. Foun-
dations and Trends in Machine Learning, 5(2–3), 2012.

[111] Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. Journal of Fluids Engineering, 86(1):97–106, 1964.

[112] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

[113] Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mondrian forests for large-
scale regression when uncertainty matters. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2016.

[114] Rémi Lam, Matthias Poloczek, Peter Frazier, and Karen E Willcox. Advances in Bayesian
optimization with applications in aerospace engineering. In 2018 AIAA Non-Deterministic
Approaches Conference, 2018.

[115] Tobias Lang and Marc Toussaint. Planning with noisy probabilistic relational rules. Journal
or Artificial Intelligence Research, 39:1–49, 2010.

[116] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model
selection. Annals of Statistics, pages 1302–1338, 2000.

[117] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical
Report TR 98-11, Computer Science Dept., Iowa State University, 1998.

[118] Steven M LaValle and James J Kuffner Jr. Rapidly-exploring random trees: Progress and
prospects. In Workshop on the Algorithmic Foundations of Robotics (WAFR), 2000.

[119] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The Handbook of Brain Theory and Neural Networks, 3361(10):1995, 1995.

[120] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 2016.

[121] Chun-Liang Li, Kirthevasan Kandasamy, Barnabás Póczos, and Jeff Schneider. High di-
mensional Bayesian optimization via restricted projection pursuit models. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

[122] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. In International
Conference on Learning Representations (ICLR), 2016.

[123] Michael Lederman Littman. Algorithms for Sequential Decision Making. Brown University
Providence, RI, 1996.

218

[124] Daniel J Lizotte, Russell Greiner, and Dale Schuurmans. An experimental methodology
for response surface optimization methods. Journal of Global Optimization, 53(4):699–736,
2012.

[125] Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuurmans. Automatic gait
optimization with Gaussian process regression. In International Conference on Artificial
Intelligence (IJCAI), 2007.

[126] Karim Lounici et al. High-dimensional covariance matrix estimation with missing observa-
tions. Bernoulli, 20(3):1029–1058, 2014.

[127] Gustavo Malkomes and Roman Garnett. Towards automated Bayesian optimization. In ICML
AutoML Workshop, 2017.

[128] Gustavo Malkomes, Charles Schaff, and Roman Garnett. Bayesian optimization for auto-
mated model selection. In Advances in Neural Information Processing Systems (NeurIPS),
2016.

[129] Christopher R Mansley, Ari Weinstein, and Michael L Littman. Sample-based planning for
continuous action Markov decision processes. In International Conference on Automated
Planning and Scheduling (ICAPS), 2011.

[130] Ofir Marom and Benjamin Rosman. Zero-shot transfer with deictic object-oriented repre-
sentation in reinforcement learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[131] Pascal Massart. Concentration Inequalities and Model Selection, volume 6. Springer, 2007.

[132] Mitchell McIntire, Daniel Ratner, and Stefano Ermon. Sparse Gaussian processes for
Bayesian optimization. In Uncertainty in Artificial Intelligence (UAI), 2016.

[133] T P Minka and R W Picard. Learning how to learn is learning with point sets. Technical
report, MIT Media Lab, 1997.

[134] J. Moc̆kus. On Bayesian methods for seeking the extremum. In Optimization Techniques
IFIP Technical Conference, 1974.

[135] Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of Gaus-
sians. In IEEE Symposium on Foundations of Computer Science (FOCS), 2010.

[136] Teodor Mihai Moldovan, Sergey Levine, Michael I Jordan, and Pieter Abbeel. Optimism-
driven exploration for nonlinear systems. In IEEE International Conference on Robotics and
Automation (ICRA), 2015.

[137] Kira Mourão. Learning probabilistic planning operators from noisy observations. In Pro-
ceedings of the Workshop of the UK Planning and Scheduling Special Interest Group, 2014.

[138] Kira Mourão, Luke S. Zettlemoyer, Ronald P. A. Petrick, and Mark Steedman. Learning
STRIPS operators from noisy and incomplete observations. In Uncertainty in Artificial In-
telligence (UAI), pages 614–623, 2012.

[139] R.M. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics 118.
Springer, 1996.

219

[140] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: A survey. Cognitive
Processing, 12(4):319–340, 2011.

[141] Barry D. Nichols. Continuous action-space reinforcement learning methods applied to the
minimum-time swing-up of the acrobot. In IEEE International Conference on Systems, Man,
and Cybernetics, 2015.

[142] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: A general purpose library for collision and
proximity queries. In IEEE International Conference on Robotics and Automation (ICRA),
2012.

[143] Zherong Pan, Chonhyon Park, and Dinesh Manocha. Robot motion planning for pouring
liquids. In International Conference on Automated Planning and Scheduling (ICAPS), 2016.

[144] Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling. Learning symbolic models
of stochastic domains. Journal of Artificial Intelligence Research, pages 309–352, 2007.

[145] Sonia Petrone, Judith Rousseau, and Catia Scricciolo. Bayes and empirical Bayes: Do they
merge? Biometrika, 101(2):285–302, 2014.

[146] John C Platt, Christopher JC Burges, Steven Swenson, Christopher Weare, and Alice Zheng.
Learning a Gaussian process prior for automatically generating music playlists. In Advances
in Neural Information Processing Systems (NeurIPS), 2002.

[147] Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optimization.
In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[148] Matthias Poloczek, Jialei Wang, and Peter I Frazier. Warm starting Bayesian optimization.
In Winter Simulation Conference (WSC), 2016.

[149] D. V. Prokhorov and D. C. Wunsch. Adaptive critic designs. IEEE Transactions on Neural
Networks, 8(5):997–1007, 1997.

[150] Ali Rahimi, Benjamin Recht, et al. Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems (NeurIPS), 2007.

[151] Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[152] Herbert Robbins. An empirical Bayes approach to statistics. In Third Berkeley Symp. Math.
Statist. Probab., 1956.

[153] Axel Rottmann and Wolfram Burgard. Adaptive autonomous control using online value itera-
tion with Gaussian processes. In IEEE International Conference on Robotics and Automation
(ICRA), 2009.

[154] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Generalization properties
of learning with random features. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[155] Walter Rudin. Fourier Analysis on Groups. John Wiley & Sons, 2011.

[156] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA), 2011.

220

[157] Claude Sammut and Geoffrey I Webb. Encyclopedia of Machine Learning. Springer Science
& Business Media, 2011.

[158] Connor Schenck and Dieter Fox. Visual closed-loop control for pouring liquids. In IEEE
International Conference on Robotics and Automation (ICRA), 2017.

[159] Connor Schenck, Jonathan Tompson, Dieter Fox, and Sergey Levine. Learning robotic ma-
nipulation of granular media. In Conference on Robot Learning (CoRL), 2017.

[160] J Schmidhuber. On learning how to learn learning strategies. Technical report, FKI-198-94
(revised), 1995.

[161] Jens Schreiter, Duy Nguyen-Tuong, Mona Eberts, Bastian Bischoff, Heiner Markert, and
Marc Toussaint. Safe exploration for active learning with Gaussian processes. In Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases, pages
133–149. Springer, 2015.

[162] Matthias Seeger, Christopher Williams, and Neil Lawrence. Fast forward selection to speed
up sparse Gaussian process regression. In Artificial Intelligence and Statistics 9, 2003.

[163] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking
the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2015.

[164] Alistair Shilton, Sunil Gupta, Santu Rana, and Svetha Venkatesh. Regret bounds for transfer
learning in Bayesian optimisation. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2017.

[165] David Slepian. The one-sided barrier problem for Gaussian noise. Bell System Technical
Journal, 41(2):463–501, 1962.

[166] Mlnoru Slotani. Tolerance regions for a multivariate normal population. Annals of the Insti-
tute of Statistical Mathematics, 16(1):135–153, 1964.

[167] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs.
In Advances in Neural Information Processing Systems (NeurIPS), 2006.

[168] Suzanne Sniekers, Aad van der Vaart, et al. Adaptive Bayesian credible sets in regression
with a Gaussian process prior. Electronic Journal of Statistics, 9(2):2475–2527, 2015.

[169] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of ma-
chine learning algorithms. In Advances in Neural Information Processing Systems (NeurIPS),
2012.

[170] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sun-
daram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable Bayesian optimization
using deep neural networks. In International Conference on Machine Learning (ICML),
2015.

[171] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. In International
Conference on Machine Learning (ICML), 2010.

221

[172] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter
Abbeel. Combined task and motion planning through an extensible planner-independent
interface layer. In IEEE International Conference on Robotics and Automation (ICRA), 2014.

[173] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[174] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian optimization. In
Advances in Neural Information Processing Systems (NeurIPS), 2013.

[175] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 4(1):1–103, 2010.

[176] István Szita and András Lörincz. Learning tetris using the noisy cross-entropy method. Neu-
ral Computation, 18(12):2936–2941, 2006.

[177] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration
networks. In Advances in Neural Information Processing Systems (NeurIPS), 2016.

[178] Minija Tamosiunaite, Bojan Nemec, Aleš Ude, and Florentin Wörgötter. Learning to pour
with a robot arm combining goal and shape learning for dynamic movement primitives.
Robotics and Autonomous Systems, 59(11), 2011.

[179] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-WEKA:
Combined selection and hyperparameter optimization of classification algorithms. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2013.

[180] Michalis K Titsias. Variational learning of inducing variables in sparse Gaussian processes.
In International Conference on Artificial Intelligence and Statistics (AISTATS), 2009.

[181] Michalis K Titsias and Miguel Lázaro-Gredilla. Variational heteroscedastic Gaussian process
regression. In International Conference on Machine Learning (ICML), 2011.

[182] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration in finite Markov
decision processes with Gaussian processes. In Advances in Neural Information Processing
Systems (NeurIPS), 2016.

[183] Hado van Hasselt and Marco A. Wiering. Reinforcement learning in continuous action
spaces. In IEEE Symposium on Approximate Dynamic Programming and Reinforcement
Learning, 2007.

[184] Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville Tolvanen, and Aki
Vehtari. Gpstuff: Bayesian modeling with Gaussian processes. Journal of Machine Learning
Research, 14:1175–1179, 2013.

[185] Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Active
model learning and diverse action sampling for task and motion planning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2018.

[186] Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale
Bayesian optimization in high-dimensional spaces. In International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), 2018.

222

[187] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization.
In International Conference on Machine Learning (ICML), 2017.

[188] Zi Wang, Stefanie Jegelka, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Focused model-
learning and planning for non-Gaussian continuous state-action systems. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2017.

[189] Zi Wang, Beomjoon Kim, and Leslie Pack Kaelbling. Regret bounds for meta Bayesian
optimization with an unknown Gaussian process prior. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[190] Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional
Bayesian optimization via structural kernel learning. In International Conference on Machine
Learning (ICML), 2017.

[191] Zi Wang, Bolei Zhou, and Stefanie Jegelka. Optimization as estimation with Gaussian pro-
cesses in bandit settings. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2016.

[192] Ziyu Wang and Nando de Freitas. Theoretical analysis of Bayesian optimisation with un-
known Gaussian process hyper-parameters. In NIPS workshop on Bayesian Optimization,
2014.

[193] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas. Bayesian
optimization in a billion dimensions via random embeddings. Journal or Artificial Intelli-
gence Research, 55:361–387, 2016.

[194] Ari Weinstein and Michael L Littman. Bandit-based planning and learning in continuous-
action Markov decision processes. In International Conference on Automated Planning and
Scheduling (ICAPS), 2012.

[195] Eric W. Weisstein. Square root inequality. MathWorld–A Wolfram Web Resource. http:
//mathworld.wolfram.com/SquareRootInequality.html, 1999-2018.

[196] Eric R Westervelt, Jessy W Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin
Morris. Feedback Control of Dynamic Bipedal Robot Locomotion, volume 28. CRC Press,
2007.

[197] Dominik Wied and Rafael Weißbach. Consistency of the kernel density estimator: A survey.
Statistical Papers, 53(1):1–21, 2012.

[198] David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[199] Victoria Xia, Zi Wang, Kelsey Allen, Tom Silver, and Leslie Pack Kaelbling. Learning
sparse relational transition models. In International Conference on Learning Representations
(ICLR), 2019.

[200] Akihiko Yamaguchi and Christopher G Atkeson. Differential dynamic programming for
graph-structured dynamical systems: Generalization of pouring behavior with different skills.
In Humanoids, 2016.

223

http://mathworld.wolfram.com/SquareRootInequality.html
http://mathworld.wolfram.com/SquareRootInequality.html

[201] Timothy Yee, Viliam Lisy, and Michael Bowling. Monte carlo tree search in continuous ac-
tion spaces with execution uncertainty. In International Conference on Artificial Intelligence
(IJCAI), 2016.

[202] Dani Yogatama and Gideon Mann. Efficient transfer learning method for automatic hy-
perparameter tuning. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2014.

[203] Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez. More than a million
ways to be pushed: A high-fidelity experimental data set of planar pushing. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2016.

[204] Chao Yuan and Claus Neubauer. Variational mixture of Gaussian process experts. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2009.

[205] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. In International Conference on
Learning Representations (ICLR), 2017.

224

	Introduction
	Overview of the problems
	Main contributions
	Model learning for planning
	Active data acquisition via Bayesian optimization

	Background and related work
	Gaussian processes
	Bayesian active learning
	Bayesian optimization
	Bayesian level set estimation

	Reinforcement learning
	Types of priors in learning

	I Learning models for planning
	Active model learning and diverse action sampling for task and motion planning
	Problem formulation and background
	Related Work
	Active sampling for learning and planning
	Actively learning the constraint with a GP
	Risk-aware adaptive sampling for constraint satisfaction
	Diversity-aware sampling for planning

	Experiments
	Implementation of Kitchen2D
	Implementation of Kitchen3D
	Active learning for conditional samplers
	Adaptive sampling and diverse sampling
	Learning kernels for diverse sampling in planning
	Integrated system

	Conclusion

	Learning sparse relational transition models
	Problem formulation
	Relational domain
	Sparse relational transition models
	Learning spares from data

	Related work
	Our approach
	Distributional prediction
	Rule learning
	Multiple rules

	Experiments
	Object manipulation domain
	Baseline methods
	Results

	Conclusion

	Focused Model-Learning and Planning for Non-Gaussian Continuous State-Action Systems
	Problem formulation
	Related Work
	Our method: BOIDP
	Estimating transition models in BOIDP
	Sampling states
	Focusing on the relevant states via RTDP
	Focusing on good actions via BO

	Theoretical analysis
	Implementation and Experiments
	Importance of learning accurate models
	Focusing on the good actions and states

	Conclusion

	II Active data acquisition with Bayesian optimization
	Bayesian Optimization Guided by Max-values
	Background
	Bayesian models for functions
	Acquisition functions
	Evaluation Criteria

	Acquisition functions based on max-values
	Optimization as argmax estimation (EST)
	Max-value entropy search (MES)

	Connections among acquisition functions
	Regret Bounds
	Regret Bounds for EST and PI
	Regret Bounds for MES
	Effects of Target Values

	High Dimensional MES with Add-GP
	Experiments
	Implementation details
	Synthetic Functions
	Optimization Test Functions
	Tuning Hyper-parameters for Neural Networks
	Active Learning for Robot Pushing
	High Dimensional BO with Add-MES

	Conclusion

	Bayesian Optimization With Learned Priors
	Problem formulation and notations
	Related work
	Meta BO and its theoretical guarantees
	Function domain is a finite set
	Function domain is compact
	Bounding the simple regret by the best-sample simple regret

	Experiments
	Optimizing a continuous synthetic function
	Optimizing a grasp
	Optimizing a grasp, base pose, and placement
	Sensitivity to missing data

	Discussions and conclusions
	Connections and differences to empirical Bayes
	Connections and differences to hierarchical Bayes
	Future directions
	Broader impact
	Caveats

	Conclusion

	Scaling Up Bayesian Optimization
	Background and Challenges
	Related Work
	Learning Additive Kernel Structure
	Ensemble Bayesian Optimization
	Partitioning the input space via a Mondrian process
	Learning a local TileGP via Gibbs sampling
	Acquisition functions
	Filtering, budget allocation and batched BO
	Efficient data likelihood computation and parameter synchronization
	An Illustration of EBO
	Relations to Mondrian kernels, random binning and additive Laplace kernels
	Connections to evolutionary algorithms

	Experiments
	Effectiveness of Decomposition Learning
	Scalability of EBO
	Effectiveness of EBO

	Discussion
	Failure modes of EBO
	Importance of avoiding variance starvation
	Future directions

	Conclusion

	Conclusion
	Omitted Proofs from Chapter 7
	Proofs for Section 7.3.1
	Proofs for Section 7.3.2
	Proofs for Section 7.3.3

