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Abstract

Precise control of coherent quantum systems could enable new generations of sensing,
communication and computing technologies. Such systems, however, are typically
noisy and difficult to stabilize. One promising technique to this end is called quantum
error correction, which encodes quantum states in such a way that errors can be
detected and corrected, much like in classical error-correcting codes.

Quantum error-correcting codes usually cast a wide net, in that they are designed
to correct errors regardless of their physical origins. In large-scale devices, this is
an essential feature. It comes at a cost, however: conventional quantum codes are
typically resource-intensive in terms of both the system size and the control operations
they require. Yet, in smaller-scale devices the main error sources are often well-
understood. In the near term, it may therefore be advantageous to cast a more
targeted net through specialized codes.

This thesis presents new families of such quantum error-correcting codes, which
are adapted either for leading candidate devices, or for near-term applications. The
device-adapted codes require exponentially less overhead than conventional codes
to achieve the same level of protection, whereas the application-adapted codes can
enhance quantum sensors, in which conventional codes cannot readily be used.

The new techniques presented in this thesis adapt cornerstones of conventional
theory in light of key experimental challenges and opportunities. The ultimate goal of
this research is to help bridge the gap between the exacting requirements of proposed
quantum technologies and the realities of emerging quantum devices. Bridging this
gap is critical, if quantum technologies are to realize their full potential.

Thesis Supervisor: Paola Cappellaro
Title: Professor of Nuclear Science and Engineering
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Preface

“After growing wildly for years, the field . . . appears to be reaching its infancy.”

– John R. Pierce

Quantum mechanics has been revolutionized in recent decades by two comple-

mentary advances. The first advance is theoretical: a number of protocols have been

proposed wherein a coherent quantum system, through careful control, could be made

to output useful information that a classical system of equivalent size could not pro-

duce. Among these protocols are quantum algorithms with dramatically better scal-

ing than their known classical counterparts on a number of important computational

problems, as well as schemes for measuring physical quantities with unprecedented

sensitivity and resolution. Other related protocols enable encrypted communication

whose security relies on the laws of quantum physics rather than on computational

complexity.

The second advance is experimental. The phenomena of quantum superposi-

tion and entanglement, which underlie the protocols above, were largely confined to

gedanken experiments for much of the 20th century. As a result of steady, interdisci-

plinary progress, however, researchers can now create, control, and measure coherent

quantum systems of appreciable size with impressive precision. There are several

different types of such quantum systems, based on superconducting circuits, trapped

ions, neutral atoms, nuclear and electronic spins, and photons, to name a few, as well

as combinations thereof. To some extent, these different platforms are equivalent; for

instance, the same quantum algorithm run on any two of them should produce the

same output, regardless of the underlying device and its physics. This has allowed

15



the two aforementioned advances to occur largely in parallel, requiring relatively little

close interaction between the communities responsible for each.

As we progress along the path towards implementing these protocols and realiz-

ing true quantum-coherent technologies (henceforth simply “quantum technologies”),

however, a new paradigm is emerging. It is not yet clear on which types of devices

these technologies will ultimately rely; yet, some of the physics and engineering chal-

lenges with which they will likely contend have become apparent. These include

the dominant error mechanisms in leading candidate systems, as well as challenges

inherent in specific applications, such as quantum sensing. Incorporating these exper-

imental concerns directly into theory—using a level of abstraction somewhere between

those typical in the theoretical and experimental communities—is a promising way

to shorten the path towards useful quantum technologies.

This device- and application-adapted approach is timely, as many quantum de-

vices are entering a gray area wherein they are neither obviously useful, nor obviously

useless. That is, they are too small and too noisy for most proposed protocols, and

yet, they are increasingly hard to mimic classically. For instance, a fledgling quantum

computer recently outperformed a supercomputer on an ad hoc problem (with few

clear applications) [1]. Theory closely informed by experiment can provide a power-

ful means for getting the most out of these limited—yet increasingly substantive—

devices. Therefore, barring an unexpected hardware breakthrough, it will likely be

a critical ingredient in moving from proof-of-principle demonstrations to useful early

applications in the coming years.

An important area where this approach could have a substantial impact is in noise

suppression, and in quantum error correction (QEC) more specifically. As mentioned

above, noise sets an important—if not the main—limit on current quantum devices.

Not only are quantum systems often highly susceptible to small disturbances, but

their manifestly quantum nature prohibits straightforward feedback stabilization, as

this would collapse their state. QEC encompasses a family of noise-suppression tech-

niques which use encoding and (typically) feedback based on partial measurements to

stabilize quantum systems without completely collapsing their states. In effect, it is

16



a method of making a noisy quantum device behave like a smaller, but less noisy one;

that is, of trading off size for reduced noise. It is a remarkably powerful tool, which

conventionally requires little physical knowledge of the noise afflicting a device. In

fact, this feature underpins QEC’s envisioned role as the main tool to reduce noise to

tolerable levels for large-scale quantum technologies. Characterizing the noise mecha-

nisms in a quantum device can be exponentially hard in the device size; conventional

QEC casts a wide enough net to avoid this eventual bottleneck.

Of course, casting such a wide net comes at a price: conventional QEC is very

resource-intensive. Stated differently, it trades device size for reduced noise at a rate

too exacting to be useful in most current and emerging devices [2]. This thesis in-

stead takes a more targeted approach to QEC, which is directly informed by current

experiments. Part I deals with device-adapted QEC, and shows that one can dramat-

ically improve QEC’s efficiency in leading candidate devices by incorporating their

underlying physics from the start. Part II focuses on the specific QEC challenges

posed by quantum sensing, rather than on a particular physical device, and devel-

ops application-adapted QEC schemes where conventional ones do not work. Taken

together, both parts aim to help bridge the gap between the long-term plans for han-

dling noise in large quantum devices, and the reality of current experiments. This is

a critical task, if the long-term plans for quantum technologies are to be realized at

all.

17



Part I

Device-Adapted Quantum Error

Correction

“All models are wrong, but some are useful.” – George E. P. Box
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Chapter 1

Introduction

1.1 Formalism

This thesis deals exclusively with finite-dimensional quantum systems; that is, those

with a finitely many energy eigenstates. These ubiquitous systems underlie many

current candidate realizations of quantum technologies. Their states are most simply

represented by a vector |𝜓⟩ in a complex vector space H = C𝑑 (𝑑 < ∞), called the

system’s Hilbert space. Since most envisioned quantum technologies involve many

interacting subsystems, we will often be concerned with the aggregate Hilbert space

arising from those of various subsystems. If subsystems 1 and 2 have Hilbert spaces

H1 and H2 of dimensions 𝑑1 and 𝑑2 respectively, their combined Hilbert space is the

tensor product of H1 and H2, written H = H1 ⊗ H2, of dimension 𝑑 = 𝑑1𝑑2. For

our purposes, states in H1 ⊗ H2 and matrices on it can be constructed in any basis

by using as a definition

𝐴⊗𝐵 =

⎛⎜⎜⎜⎝
𝑎11𝐵 · · · 𝑎1𝑛𝐵
...

. . .
...

𝑎𝑚1𝐵 · · · 𝑎𝑚𝑛𝐵

⎞⎟⎟⎟⎠ , (1.1)

for arbitrary matrices/vectors 𝐴 = (𝑎𝑖𝑗) (taken here to be 𝑚 by 𝑛) and 𝐵. For

instance, if the subsystems are in states |𝜓1⟩ ∈ H1 and |𝜓2⟩ ∈ H2, their aggregate
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state |𝜓1⟩ ⊗ |𝜓2⟩ ∈ H , often written as |𝜓1⟩ |𝜓2⟩ or |𝜓1 𝜓2⟩, can be constructed using

Eq. (1.1). We will largely be concerned with two-level systems, whose basis states

are often denoted as |0⟩ and |1⟩ ∈ C2. As such systems are the quantum analogs

of classical bits of information, they are often called qubits (pronounced “Q-bits”).

The aggregate Hilbert space for 𝑛 qubits is H = C2𝑛 , a convenient basis for which

is the set of states corresponding to classical 𝑛-bit strings, e.g., |010 . . . 0⟩. This is

often called the computational basis. Note that not all states in C2𝑛 can be factored

into an 𝑛-fold tensor product; those that can are said to be separable, and those that

cannot are said to be entangled. The latter are distinctly non-classical, and form a

key ingredient for most quantum technologies.

Calculating quantum measurement outcomes in this description often involves

taking inner products—here, simply the dot product on C𝑑. It is useful to define

the dual space H * to H , comprising the set of linear maps ⟨𝜓| from H to C. H *

is also a vector space, and it has the same structure as H (more precisely, they

are isomorphic). In fact, if |𝜓⟩ is written out as a 𝑑-dimensional column vector, ⟨𝜓|
is simply the corresponding row vector with each element replaced by its complex

conjugate. In this notation, the inner product between |𝜓⟩ and |𝜑⟩ is simply ⟨𝜓|𝜑⟩.
For |𝜓⟩ to encode a valid quantum state, we will demand that it have unit length,

i.e., that ⟨𝜓|𝜓⟩ = 1. Moreover, states which represent mutually-exclusive classical

outcomes, such as computational basis states, are taken to be orthogonal.

Quantum measurements are described by a set of linear operators (for 𝑑 < ∞,

simply matrices) {𝑀𝑗}, where 𝑀𝑗 encodes the 𝑗th potential measurement outcome.

The probability of getting this outcome for a system in state |𝜓⟩ is

𝑝𝑗 = ⟨𝜓|𝑀 †
𝑗𝑀𝑗 |𝜓⟩ = ||𝑀𝑗 |𝜓⟩ ||2, (1.2)

where𝑀 †
𝑗 is called the adjoint of𝑀𝑗 and denotes its conjugate transpose, and || |𝑥⟩ || =√︀

⟨𝑥|𝑥⟩. To ensure that these probabilities sum to unity for all |𝜓⟩, the measurement

operators must satisfy
∑︀

𝑗𝑀
†
𝑗𝑀𝑗 = 𝐼. If a measurement returns the 𝑗th outcome, the

system will be left in the post-measurement state𝑀𝑗 |𝜓⟩ /√𝑝𝑗 (provided 𝑝𝑗 ̸= 0; when

20



𝑝𝑗 = 0 the corresponding post-measurement state is irrelevant). Physically, this means

that measurements are typically destructive in quantum mechanics. For instance, the

most common measurements involve 𝑀𝑗 = |𝑗⟩⟨𝑗| for some orthogonal basis of states

{|𝑗⟩}. Before the measurement, the system’s state can be a general superposition of

these |𝑗⟩’s, i.e., |𝜓⟩ =
∑︀

𝑗 𝑐𝑗 |𝑗⟩, but interaction with the measurement device causes

the system to collapse to a particular state |𝑗⟩ with probability 𝑝𝑗 = |𝑐𝑗|2. This

collapse makes straightforward feedback stabilization impossible; if a generic state

|𝜓⟩ has been subject to an unknown disturbance, there is no general way to measure

the impact on the system and correct accordingly without collapse.

The dynamics of a closed quantum system is described by the Schrödinger equa-

tion:

𝑖~
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ = 𝐻(𝑡) |𝜓(𝑡)⟩ , (1.3)

where 𝐻(𝑡) is the system’s Hamiltonian, the matrix encoding its energy levels. This

dynamics can equivalently be written as |𝜓(𝑡)⟩ = 𝑈(𝑡) |𝜓(0)⟩, where the matrix-valued

function 𝑈(𝑡) satisfies the same differential equation as |𝜓(𝑡)⟩:

𝑖~
𝑑

𝑑𝑡
𝑈(𝑡) = 𝐻(𝑡)𝑈(𝑡). (1.4)

To simplify the notation, we will often leave the time dependence implicit in this and

similar equations. Moreover, throughout this thesis we will use units in which ~ = 1,

unless otherwise stated. Since 𝐻 is Hermitian/self-adjoint (𝐻 = 𝐻†), 𝑈 is unitary

(𝑈 † = 𝑈−1). This ensures that 𝑈 preserves the length of state vectors, and therefore

represents a valid evolution.

The Hamiltonian of a single qubit can always be written as a real linear combina-

tion of 𝐼 (the identity matrix) and the “Pauli matrices”

𝑋 = |0⟩⟨1| + |1⟩⟨0| 𝑌 = 𝑖
(︀
|1⟩⟨0| − |0⟩⟨1|

)︀
𝑍 = |0⟩⟨0| − |1⟩⟨1| , (1.5)
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which have the form

𝑋 =

⎛⎝0 1

1 0

⎞⎠ 𝑌 =

⎛⎝0 −𝑖
𝑖 0

⎞⎠ 𝑍 =

⎛⎝1 0

0 −1

⎞⎠ (1.6)

in the computational basis. These matrices are sometimes denoted as 𝜎𝑥, 𝜎𝑦 and

𝜎𝑧, although in this thesis our notation will prove more convenient. The reason

𝐼, 𝑋, 𝑌 and 𝑍 span all possible qubit Hamiltonians is that they form a basis for

matrices on C2. More precisely, any 2 × 2 Hermitian matrix can be expressed as

as a linear combination of 𝐼,𝑋, 𝑌 and 𝑍 with real coefficients, and any general 2 ×
2 matrix can be expressed as a complex combination thereof. Furthermore, Pauli

matrices have a natural geometric interpretation: the eigenstates of 𝑋, 𝑌 , and 𝑍

encode the possible outcomes of measuring a spin-1
2
system in the spatial 𝑥, 𝑦, and 𝑧

directions respectively. More generally, a generic Hamiltonian for 𝑛 non-interacting

qubits (which does not produce entanglement) is in span{𝐼,𝑋𝑗, 𝑌𝑗, 𝑍𝑗}, where for

instance

𝑋3 = 𝐼 ⊗ 𝐼 ⊗𝑋 ⊗ 𝐼 ⊗ · · · ⊗ 𝐼⏟  ⏞  
𝑛−3

(1.7)

acts as 𝑋 on qubit 3 and trivially on the others. A key property of tensor products is

(𝐴⊗𝐵)(𝐶 ⊗𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷), (1.8)

for matrices/vectors 𝐴, 𝐵, 𝐶 and 𝐷 of compatible sizes. This means that we can

write more general Hamiltonians describing coupled subsystems (which produce en-

tanglement) compactly, e.g.:

𝐻 =
𝜔1

2
𝑍 ⊗ 𝐼 +

𝜔2

2
𝐼 ⊗ 𝑍 + 𝐽𝑋 ⊗𝑋

=
𝜔1

2
𝑍1 +

𝜔2

2
𝑍2 + 𝐽𝑋1𝑋2.

(1.9)

Note that it is common to drop certain 𝐼’s and ⊗ symbols to simplify the notation,

when such shorthand introduces no ambiguity.

We will make occasional use of “rotating frames” in this thesis. That is, when
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𝐻 = 𝐻0+𝐻1 has well-understood part 𝐻0, and a part 𝐻1 to be analyzed more closely,

one can absorb the effects of 𝐻0 into the frame of reference, therefore isolating those

of 𝐻1. More precisely, a state |𝜓⟩ in the “lab frame” becomes 𝑒𝑖𝐻0𝑡 |𝜓⟩ in this rotating

frame. One can easily show that this rotating frame state satisfies the Schrödinger

equation, but with 𝐻 replaced by �̃�1(𝑡) = 𝑒𝑖𝐻0𝑡𝐻1𝑒
−𝑖𝐻0𝑡. Similarly, an operator 𝑀 in

the lab frame, such as a measurement operator, becomes �̃�(𝑡) = 𝑒𝑖𝐻0𝑡𝑀𝑒−𝑖𝐻0𝑡 in the

rotating frame. When [𝐻0,𝑀 ] := 𝐻0𝑀−𝑀𝐻0 = 0, however,𝑀 is not affected by the

change of frame; a common reason for choosing 𝐻0 to commute with the measurement

operators one plans to implement. Note that we have implicitly assumed 𝐻0 to be

time-independent here. This is not strictly necessary, although it is the relevant case

for this thesis.

It is often convenient to coarse-grain quantum dynamics into lumped unitaries

𝑈 , describing a system’s net evolution over some time interval, and thus abstracting

away the fine-grained description of how this evolution occurred. This is an efficient

way to describe quantum control sequences and algorithms; one can specify a desired

sequence of lumped operations (often in a rotating frame) whose effect is readily

understood, which can then be translated into a more opaque time-dependent Hamil-

tonian to be implemented. Common examples of such 𝑈 ’s acting on single qubits are

Pauli matrices (which are both unitary and Hermitian) and Hadamard matrices:

𝐻 =
1√
2

⎛⎝1 1

1 −1

⎞⎠ . (1.10)

Unfortunately Hadamard matrices and Hamiltonians share the same symbol; however,

the intended meaning of 𝐻 is usually clear from context. Another important type of

lumped 𝑈 is that of controlled operations, which act on a qubit (called the target)

only if another (called the control) is in the state |1⟩. One common example is the

controlled-𝑍 or controlled-phase operation, denoted 𝑐𝑍, which acts as

𝑐𝑍 = |0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑍, (1.11)
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qubit 1 |0⟩ 𝐻

qubit 2 |0⟩ 𝑍

qubit 3 |1⟩ 𝐻

Figure 1-1: An example of a quantum circuit, showing three qubits initially prepared
in the state |001⟩, which are then subject to: (i) 𝐻⊗𝐼⊗𝐻 where 𝐻 is the Hadamard
operation, (ii) a 𝑐NOT with qubits 1 and 2 as the control and target respectively, (iii)
𝑍2, and (iv) a controlled-𝑍, whose action is symmetric under the exchange of control
and target qubits, which are therefore denoted with the same symbol. Finally, the
qubits are measured in the computational basis, producing various 3-bit strings with
known probabilities. The circuits in this thesis were made using Ref. [3].

where the first qubit is the control and the second is the target. Note that since both

qubits may start in superposition states, this is an entangling operation that can

produce non-classical effects; in particular, it can modify the control qubit’s state. A

closely related operation is the controlled-𝑋 or controlled-NOT, whose name derives

from the fact that the Pauli 𝑋 acts like a NOT gate in classical logic. It has the effect

𝑐NOT = |0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗𝑋. (1.12)

It is often useful to represent these and other operations using circuit diagrams,

inspired by classical logic circuits, as illustrated in Fig. 1-1. These circuits can be

used to represent quantum control sequences (at a high level) and algorithms.

The framework introduced so far is that of pure states, which have zero entropy.

We now introduce the more general formalism of density matrices, which can describe

both pure and mixed states, the latter having non-zero entropy. This thesis will

use both formalisms; while that of density matrices is more powerful in principle,

that of pure states provides an easier means of understanding aspects of quantum

error correction. To motivate the definition of density matrices, we note that the

dynamics of a quantum system may not be identical in every run of an experiment,

e.g., due to random variations in the system’s environment. For instance, rather than
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evolving each time by the same unitary 𝑈 , a system may evolve by different 𝑈(𝜃)’s,

each occurring with probability 𝑝(𝜃). One might expect the average dynamics to be

described by
∫︀
𝑝(𝜃)𝑈(𝜃)𝑑𝜃, but upon substituting this into Eq. (1.2), one sees that it

does not give the correct averaged probabilities of measurement outcomes.

A more general description of a quantum state, which can encompass such uncer-

tainty, is as a density matrix 𝜌 = 𝜌† with tr(𝜌) = 1 and with non-negative eigenvalues.

In this description, a state vector |𝜓⟩ becomes 𝜌 = |𝜓⟩⟨𝜓|. If a density matrix 𝜌 can be

written as |𝜓⟩⟨𝜓| (i.e., if it has a rank of 1), it is said to represent pure state; otherwise,
it represents a mixed state with nonzero entropy. Any mixed state can be expressed

as a probabilistic mixture of orthogonal pure states, 𝜌 =
∑︀

𝑗 𝜆𝑗 |𝜓𝑗⟩⟨𝜓𝑗|, where the

𝜆𝑗’s can be interpreted as probabilities. It is this decomposition that will allow us

to move smoothly between the density matrix and state vector formalisms. For den-

sity matrices, Eq. (1.2) becomes instead 𝑝𝑗 = tr(𝑀 †
𝑗𝑀𝑗𝜌), and the post-measurement

state for outcome 𝑗 is given by 𝑀𝑗𝜌𝑀
†
𝑗 /𝑝𝑗 (provided again 𝑝𝑗 ̸= 0; when 𝑝𝑗 = 0 the

corresponding post-measurement state is irrelevant). Notice that an average of den-

sity matrices (e.g., over noise realizations) gives the correct averaged measurement

probabilities, as desired. Moreover, if a quantum system becomes entangled with its

environment, the system’s effective (mixed) state can always be expressed as a density

matrix.

In the language of density matrices, the Schrödinger equation takes the form

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻, 𝜌], (1.13)

which is sometimes called the quantum Liouville equation. It can be written more

compactly by introducing the notion of a superoperator: a linear function on the space

of matrices, which in turn act on H . In effect, a superoperator is to a density matrix

𝜌 what a matrix is to a state vector |𝜓⟩. In particular, defining the Hamiltonian

superoperator ℋ by its action on a density matrix as ℋ(𝜌) := [𝐻, 𝜌], Eq. (1.13) takes

the simple form of �̇� = −𝑖ℋ(𝜌). Just as a unitary matrix 𝑈 encoded the evolution

of a state vector under the Schrödinger equation, the same evolution of a density
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matrix is described by the superoperator 𝒰 , defined as 𝒰(𝜌) := 𝑈𝜌𝑈 †, which can be

found by integrating the quantum Liouville equation (or equivalently, the Schrödinger

equation).

The Schrödinger and quantum Liouville equations describe unitary dynamics (so

called because 𝑈 † = 𝑈−1). Such dynamics underpins most proposals for quantum

technologies. In experiments, however, dynamics are seldom exactly unitary. Instead,

they typically also have an irreversible character, in which information encoded in a

quantum state is gradually lost, due to growing entanglement with an environment

or classical noise processes affecting the system’s Hamiltonian. We will refer to such

imperfect systems as being open. The gradual loss of information in open quantum

systems is broadly called decoherence, and it is arguably the central obstacle to

developing useful quantum technologies. The aim of quantum error correction is

to effectively suppress decoherence, so as to make real open quantum systems behave

almost like ideal closed ones, in effect.

In principle it is possible to write an equation of motion for any open quantum

system, analogous to the Schrödinger/quantum Liouville equations for closed systems

[4, 5]. In practice this is rarely useful for two reasons: First, one often has little

knowledge of the environment’s internal dynamics, nor the exact nature of its coupling

to the system. Second, even if one had this knowledge, the system’s resulting equation

of motion would almost surely be too complex to solve. Instead, one is typically forced

to use a more empirically-motivated, effective description of open system dynamics

in order to make progress. This can be as much an art as it is a science; there are

many ways to model open quantum systems, and a model well-suited for one system

and purpose can fail to capture important details of others.

Just as we can coarse-grain unitary quantum dynamics into a lumped matrix 𝑈 , we

can encode the net effect of both unitary and non-unitary quantum dynamics into a

superoperator 𝒦 called a quantum channel (under the reasonable assumption that the

system was not initially correlated with its environment), whose name derives from

classical information theory. Whereas 𝑈 must be unitary to describe a valid closed

quantum dynamics, 𝒦 must be completely positive and trace-preserving (CPTP, as
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well as Hermiticity preserving). For our purposes, it suffices to say that any 𝒦 admits

a “Kraus decomposition,” that is, it can be written as a sum

𝒦(𝜌) =
∑︁
𝑗

𝐾𝑗𝜌𝐾
†
𝑗 , (1.14)

where {𝐾𝑗} are matrices known as Kraus operators of 𝒦, which have the property that∑︀
𝑗𝐾

†
𝑗𝐾𝑗 = 𝐼. This expression generalizes the unitary superoperator 𝒰 encoding the

dynamics of the Schrödinger/Liouville equations, which has a single Kraus operator

𝑈 . It is important to note that Kraus decompositions are not unique in general;

rather, the same generic quantum channel 𝒦 could be written in terms of different

Kraus operators {𝐾 ′
𝑗} ̸= {𝐾𝑗}. In fact, quantum channels generally admit infinitely

many Kraus decompositions, and we are free to pick the most convenient one—a fact

that is important for quantum error correction.

1.2 Quantum Error Correction

The ubiquity of decoherence, together with the destructive nature of quantum mea-

surements, would seem to prohibit the building of useful, controllable large-scale

quantum devices. Mathematically, this difficulty is reflected in part by the fact that

most quantum channels 𝒦 describing non-unitary dynamics do not have an inverse

channel. That is, there is generally no physically realizable 𝒦−1—even in principle—

such that 𝒦−1𝒦 = ℐ, where ℐ denotes the identity channel (i.e., ℐ(𝜌) = 𝜌 for all

𝜌). More broadly, there is generally no channel 𝒢 such that 𝒢𝒦 represents a unitary

evolution.

Thankfully, there is a loophole which could allow decoherence to be effectively

suppressed through quantum error correction (QEC). It relies on two key observations:

First, we don’t necessarily need to reverse decoherence on all quantum states; instead,

we could realize quantum technologies by doing so only on a subset of them. Second,

measurement need not completely collapse a quantum state. Rather than measuring

whether a system is in some particular state |𝑗⟩, one can instead measure whether it
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|𝜓⟩

|0⟩

Figure 1-2: A parity measurement performed indirectly on the top two qubits,
which realizes the measurement operators 𝑀0 = |00⟩⟨00| + |11⟩⟨11| and 𝑀1 =
|01⟩⟨01| + |10⟩⟨10|. For an initial state |𝜓⟩ = 𝑐00 |00⟩ + 𝑐01 |01⟩ + 𝑐10 |10⟩ + 𝑐11 |11⟩,
the measurement returns 0 with probability 𝑝0 = |𝑐00|2 + |𝑐11|2, and returns 1 with
probability 𝑝1 = |𝑐01|2 + |𝑐10|2. In either case, the state of the top two qubits is not
totally collapsed, but instead projected into the even or odd parity subspaces respec-
tively (namely, onto span{|00⟩ , |11⟩} or span{|01⟩ , |10⟩}). In particular, these qubits
remain entangled after the measurement for a generic |𝜓⟩.

is in some larger set of states. An example of such a measurement, which is usually

performed indirectly with the help of an ancillary qubit (called an ancilla), is shown

in Fig. 1-2.

To see how QEC exploits these observations, we will start with an abstract picture,

and then gradually build up a more concrete description until we can finally meld in

the physics of certain quantum devices. QEC makes use of states within a special

subspace C0 of H , called the codespace, over which 𝒦 can be reversed. (At least

approximately.) Typically, on a system of 𝑛 qubits the codespace has dimension

dim(C0) = 2𝑘 for 𝑘 < 𝑛, meaning it has the same structure as (i.e., is isomorphic to)

the Hilbert space of a smaller, 𝑘-qubit system1. We can therefore define a basis of

orthogonal codeword states {|0 . . . 00l⟩ , |0 . . . 01l⟩ , . . . , |1 . . . 11l⟩} for C0, labeled by

𝑘-bit strings with a subscript l for “logical.” Ultimately, QEC will provide a method

by which 𝑛 noisy qubits can be made to behave like 𝑘 less noisy ones, at the cost of an

𝑛− 𝑘 qubit overhead, as well as additional control operations. The 𝑘 effective qubits

encoded in C0 ⊂ H are called logical qubits, in contrast to the 𝑛 physical qubits.

The idea is to prepare some initial logical state |𝜓l⟩ ∈ C0, and to perform opera-

tions and measurements on the 𝑛 physical qubits which effectively enact desired ones

at the logical level, i.e., on the 𝑘 logical qubits. The typical QEC strategy is to peri-

1Of course, dim(H ) and dim(C0) need not be powers of 2—nor even finite—in general [6].
However, we will focus on the qubit case here for concreteness, as it will be the most relevant for
this thesis.
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odically detect and correct errors from decoherence (and perhaps also from imperfect

control and measurements) all the while. For this latter part to be possible, we must

choose an appropriate codespace C0 for the channel 𝒦 representing the decoherence

we aim to reverse. Ideally, it should be chosen such that each of the Kraus operators

𝐾𝑗 of 𝒦 maps states in C0 to mutually orthogonal subspaces C𝑗 without distortion.

Let’s unpack this statement and make it more precise.

1.2.1 Knill-Laflamme Condition

Much like classical error correction, QEC requires one to identify “which error oc-

curred” in a quantum system (or whether an error occurred at all), in the typical

parlance. The meaning of this phrase will be explained shortly. Unlike in classi-

cal error correction, however, in QEC one must take care to identify errors without

destroying the encoded state. To see how this is possible, consider the action of a

channel 𝒦 describing decoherence on an initial logical state 𝜌l = |𝜓l⟩⟨𝜓l|:

𝒦(𝜌l) = 𝐾1 |𝜓l⟩⟨𝜓l|𝐾†
1 +𝐾2 |𝜓l⟩⟨𝜓l|𝐾†

2 + . . . . (1.15)

Suppose that each 𝐾𝑗 mapped a generic |𝜓l⟩ out of C0 and into some new subspace

C𝑗 (independent of |𝜓l⟩), and that all of these subspaces were mutually orthogo-

nal, as illustrated in Fig. 1-3a. Then, measuring which subspace the system was in

would produce a pure post-measurement state 𝐾𝑗 |𝜓l⟩⟨𝜓l|𝐾†
𝑗/𝑝𝑗—or, written as a

state vector, 𝐾𝑗 |𝜓l⟩ /√𝑝𝑗 ∈ C𝑗—with probability 𝑝𝑗 = ⟨𝜓l|𝐾†
𝑗𝐾𝑗 |𝜓l⟩. (If 𝑝𝑗 = 0

the corresponding post-measurement state is irrelevant and undefined.) Therefore,

even though 𝒦 encompassed all of the Kraus operators {𝐾𝑗} at once, this choice of

codespace would allow us to only worry about correcting one at a time. In fact, it

would allow us to think of the 𝐾𝑗’s as mutually-exclusive errors, each occurring with

some probability 𝑝𝑗; and of the measurement as revealing only the “error syndrome”

𝑗, telling us which error occurred without fully collapsing the system’s state.

Mathematically, to find such a codespace we demand that any two logical states

|𝜓l⟩ and |𝜑l⟩ ∈ C0 be mapped to different orthogonal subspaces C𝑗 and C𝑘 by different
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Hilbert space 

codespace

error subspace

error subspace

(a) Orthogonal subspaces

codespace error subspace

(b) No distortion

Figure 1-3: Our two requirements for QEC codes. Left: Distinct Kraus operators 𝐾𝑗

and 𝐾𝑘 (𝑗 ̸= 𝑘) must map all states in the codespace C0 into orthogonal subspaces
C𝑗 and C𝑘 respectively. Right: Each 𝐾𝑗 must preserve the angle between any two
logical states |𝜓l⟩ , |𝜑l⟩ ∈ C0 (or cause both to vanish).

errors 𝐾𝑗 and 𝐾𝑘:

⟨𝜓l|𝐾†
𝑗𝐾𝑘 |𝜑l⟩ = 0 (𝑗 ̸= 𝑘), (1.16)

as in Fig. 1-3a. This will allow us to identify which error occurred through measure-

ment. However, simply identifying an error is not enough to reverse its effect. For

instance, knowing that a qubit emitted a photon and decayed to state |0⟩ does not
enable one to restore its full initial state 𝛼 |0⟩+𝛽 |1⟩. Additionally, we must insist that
𝐾𝑗 not distort states as it maps them from C0 to C𝑗. For starters, this means that if

𝑝𝑗 = 0 for some |𝜓l⟩ ∈ C0 (that is, if 𝐾𝑗 |𝜓l⟩ = 0), 𝑝𝑗 must be identically zero for all

logical states. More broadly, when 𝑝𝑗 ̸= 0, we must demand that the angle between

arbitrary initial states and that between the corresponding post-measurement states

be the same, as illustrated in Fig. 1-3b, that is:

⟨𝜓l|𝜑l⟩ =
1

||𝐾𝑗 |𝜓l⟩ || ||𝐾𝑗 |𝜑l⟩ ||
⟨𝜓l|𝐾†

𝑗𝐾𝑗 |𝜑l⟩ , (1.17)

for all |𝜓l⟩ , |𝜑l⟩ ∈ C0. This will allow us to correct the post-measurement states

through a unitary operation, even though 𝐾𝑗 need not be unitary, nor even invert-
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ible. In particular, if two logical states are orthogonal, their corresponding post-

measurement states must be too. It follows immediately that 𝑝𝑗 must be independent

of the initial state. This was to be expected; were it not the case, the error syndrome

measurement would reveal information about the encoded state, thus damaging it.

In aggregate, our requirement that 𝐾𝑗 cause no distortion amounts to demanding

⟨𝜓l|𝐾†
𝑗𝐾𝑗 |𝜑l⟩ = 𝜆𝑗⟨𝜓l|𝜑l⟩, (1.18)

for all |𝜓l⟩ , |𝜑l⟩ ∈ C0, where 𝜆𝑗 is some constant that depends only on 𝑗.

Combined, the two requirements derived above become

⟨𝜓l|𝐾†
𝑗𝐾𝑘 |𝜑l⟩ = 𝜆𝑗𝛿𝑗𝑘⟨𝜓l|𝜑l⟩ for all |𝜓l⟩ , |𝜑l⟩ ∈ C0. (1.19)

We can re-write this expression in a more useful form by defining the orthogonal

projector 𝑃 onto the codespace:

𝑃 =
2𝑘−1∑︁
𝑖=0

|𝑖l⟩⟨𝑖l| , (1.20)

where |𝑖l⟩ denotes the binary representation of 𝑖 (for instance |2l⟩ = |0 . . . 010l⟩). In
terms of 𝑃 , Eq. (1.19) becomes simply

𝑃𝐾†
𝑗𝐾𝑘𝑃 = 𝜆𝑗𝛿𝑗𝑘 𝑃. (1.21)

One step remains. We mentioned in Section 1.1 that a quantum channel generically

admits infinitely many Kraus decompositions. More precisely, if {𝐾𝑗} are Kraus

operators for 𝒦, then so too are {𝐾 ′
𝑗 =

∑︀
𝑘 𝑣𝑗𝑘𝐾𝑘} for any unitary matrix 𝑉 = (𝑣𝑗𝑘).

In this derivation we have implicitly chosen a convenient set of Kraus operators which

highlighted the underlying structure of QEC. Of course, all Kraus decompositions for

𝒦 are physically equivalent, so our result should not depend on having chosen a

particular one. Rather, in terms of the generic Kraus operators {𝐾 ′
𝑗}, the previous
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equation becomes

𝑃𝐾 ′†
𝑗 𝐾

′
𝑘𝑃 = 𝑚𝑗𝑘 𝑃. (1.22)

where𝑀 = (𝑚𝑗𝑘) is known as the code matrix, and has eigenvalues2 spec(𝑀) = {𝜆𝑗}.
Eq. (1.22) is the famous Knill-Laflamme condition [7], which can equivalently be

written as

𝑃𝐾 ′†
𝑗 𝐾

′
𝑘𝑃 ∝ 𝑃. (1.23)

While we have derived it as a sufficient condition for QEC, it is in fact both sufficient

and necessary for the existence of a quantum channel that reverses 𝒦 over a subspace

C0 ⊂ H [7]. To simplify the notation, we will henceforth drop the prime marks (′)

on the 𝐾 ′
𝑗’s, and use {𝐾𝑗} to denote a generic set of Kraus operators for the channel

𝒦.

As presented here, QEC looks very much like classical error correction, in the sense

that both use clever encodings to identify and reverse discrete errors. However, the

state space of 𝑛 qubits is much broader than that of 𝑛 classical bits. Quantum systems

can therefore be affected by noise in a wide range of ways which have no classical

analogs. Fortunately, QEC is a remarkably powerful tool for reversing such a contin-

uum of decoherence processes. Specifically, a QEC code that can reverse some channel

𝒦 over a codespace C0 ⊂ H will do the same for any other channel �̃� ≠ 𝒦 whose

Kraus operators are linear combinations of 𝐾𝑗’s (not necessarily related through a

unitary). This follows immediately from the Knill-Laflamme condition. There is no

reason to view the Kraus operators of 𝒦 as being more natural or fundamental to the

code than those of �̃�, even though they are not generally equivalent. This suggests

that we ought not think of QEC as necessarily correcting a discrete set of physical

errors, each of which afflicting the system with some probability per unit time, nor as

being tied to any particular channel. Rather, we should think of it as casting a “net”

which can catch a continuum of possible errors, and of this net’s precise shape as

being specified through a list of discrete errors. More specifically, imagine designing

2Choosing different Kraus decompositions for 𝒦 amounts to expressing 𝑀 in different bases. Our
initial choice of {𝐾𝑗} diagonalizes 𝑀 .
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a QEC code such that 𝑃𝐸†
𝑗𝐸𝑘𝑃 ∝ 𝑃 for some desired set of “error operators” {𝐸𝑗},

which one is free to choose. Then, the effect of any matrix in E = span{𝐸𝑗}—the

continuous “net” cast by the code in this metaphor—on a logical state can be reversed.

One has wide discretion in specifying these error operators {𝐸𝑗} when designing a

QEC code; for instance, they need not accurately describe the decoherence in a par-

ticular device, so long as the true Kraus operators for this decoherence are contained

in E . (Since we care only about the “net” E resulting from {𝐸𝑗}, we can equivalently

pick different error operators with the same span.) A central theme of this thesis,

however, is that QEC codes designed around an E which closely reflects the actual

decoherence mechanisms in a device—that is, casting a targeted net— can provide

substantial benefits.

Example 1: Idealized Bit Flips

Consider for illustration 𝑛 = 3 qubits subject to the decoherence channel

𝒦(𝜌) = (1 − 3𝑝)𝜌+ 𝑝(𝑋1𝜌𝑋1 +𝑋2𝜌𝑋2 +𝑋3𝜌𝑋3); (1.24)

a highly idealized model in which a bit-flip error (|0⟩ ↔ |1⟩) occurs on at most one

qubit with some probability 𝑝. While there is no inverse channel 𝒦−1, we can reverse

𝒦 over a two-dimensional subspace, i.e., encode 𝑘 = 1 logical qubit in this system

using the code C0 = span{|0l⟩ , |1l⟩}, where |0l⟩ = |000⟩ and |1l⟩ = |111⟩. The Kraus
operators 𝐾𝑗 =

√
𝑝𝑋𝑗 (for 1 ≤ 𝑗 ≤ 3) map states in the codespace to the error

subspaces

C1 = span{|100⟩ , |011⟩} C2 = span{|010⟩ , |101⟩} C3 = span{|001⟩ , |110⟩}
(1.25)
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without distortion, and 𝐾0 =
√

1 − 3𝑝 𝐼 acts trivially. That is, 𝑃 = |000⟩⟨000| +

|111⟩⟨111| satisfies the Knill-Laflamme condition as required, with a code matrix

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 − 3𝑝 0 0 0

0 𝑝 0 0

0 0 𝑝 0

0 0 0 𝑝

⎞⎟⎟⎟⎟⎟⎟⎠ (1.26)

with respect to {𝐾𝑗}3𝑗=0. This code casts a net defined by the error operators {𝐸𝑗} =

{𝐼,𝑋1, 𝑋2, 𝑋3}, whose span is E . In this first example, the Kraus operators 𝐾𝑗

describing the decoherence are simply proportional to these abstract error operators

around which the code is designed. We will see in later examples how this need not

be the case.

One can reverse the action of 𝒦 over C0 by majority vote. As we have argued,

however, it is imperative that the error detection process reveal only whether the

state is in C0, C1, C2 or C3, but nothing about the encoded information. This can

be done by measuring the parity between each pair of qubits, as in Fig. 1-2, rather

than measuring any individual qubit’s state. If each pair of qubits has even parity

then no error occurred, and there is no need for feedback. Otherwise, one can infer

which error occurred—or in this case, simply on which qubit it occurred—using the

syndrome measurement outcomes for each of the three pairs, and by applying 𝑋 to

the errant qubit. In fact, it is not necessary to measure the parity of all three qubit

pairs; one gets the same information from measuring only two of them. The complete

process of error detection and correction, which we will call the recovery, is shown in

Fig. 1-4.

This code is called the bit-flip code. Notice that if the Kraus operators described

phase-flip errors instead (𝐾𝑗 ∝ 𝑍𝑗, producing |1⟩ ↔ − |1⟩ on qubit 𝑗), one could

instead use |0l⟩ = |+++⟩ and |1l⟩ = |−−−⟩, where |±⟩ := 1√
2
(|0⟩±|1⟩) and 𝑍 |±⟩ =

|∓⟩. Errors could be detected by measuring parity in the |±⟩ basis, and corrected

by applying 𝑍𝑗’s rather than 𝑋𝑗’s. This latter code is called the “phase flip code.”

Because both these codes are the same up to a change of basis, they are sometimes
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|𝜓⟩
𝒦 𝑋𝑗

|𝜓⟩

|0⟩ |0⟩

|0⟩ |0⟩

|0⟩ 𝐻 𝐻

|0⟩ 𝐻 𝐻

controlled-(𝑍1𝑍2)

controlled-(𝑍2𝑍3)

recovery

Figure 1-4: A circuit showing: (i) the encoding of a physical qubit into the bit-
flip code, (ii) exposure to the channel 𝒦, (iii) a recovery consisting of two parity
measurements followed by the application of 𝐼, 𝑋1, 𝑋2 or 𝑋3 as needed, and (iv) the
mapping of the encoded state back to the first physical qubit. Note that double wires
denote the transmission of classical information, and that we have expressed the same
parity measurements found in Fig. 1-2 in terms of Hadamard and c𝑍 operations, for
reasons that will be explained in Section 1.2.4. Finally, in practice one may want to
avoid converting between physical and logical states as shown here, and instead work
only with encoded states at every step.
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both simply called repetition codes, after the family of classical error-correcting codes

which encode each bit into 𝑛 ≥ 3 copies (i.e., 0 ↦→ 0 . . . 0 and 1 ↦→ 1 . . . 1). Like their

classical counterparts, these quantum error-correcting codes are the smallest instances

in a family of codes. The 𝑛 = 3 repetition code can correct single 𝑋𝑗 errors (or linear

combinations of these) at the cost of an 𝑛 − 𝑘 = 2 qubit overhead. One can instead

encode a logical qubit (𝑘 = 1) into 𝑛 = 5 physical qubits through |𝑖l⟩ = |𝑖𝑖𝑖𝑖𝑖⟩ for
𝑖 = 0/1 and correct for arbitrary bit flips on up to two qubits through a majority

vote (similarly for the phase-flip code). This increased protection, which leads to a

wider “net” E = span{𝐼,𝑋𝑗, 𝑋𝑗𝑋𝑘} comes at the expense of an increased overhead of

𝑛 − 𝑘 = 4. More generally, correcting for arbitrary bit or phase flips on ≤ 𝑤 qubits

with a repetition code requires an overhead of 𝑛− 𝑘 = 2𝑤 qubits.

1.2.2 Role of Quantum Error-Correcting Codes

Notice that the circuit in Fig. 1-4 represents a multi-step procedure, whereas the

Knill-Laflamme condition specifies only an abstract codespace C0 = range(𝑃 ). There

are two reasons why we will often treat such QEC codespaces as fundamental in

this thesis, and focus on them accordingly. First, a QEC code satisfying the Knill-

Laflamme condition automatically implies the form of an appropriate feedback cor-

rection scheme. Second, a QEC code can also be used to implement open-loop error

suppression.

Let us briefly expand on the first point. Suppose {𝐸𝑗} are error operators for a

QEC code that have been chosen to produce a diagonal code matrix, i.e., 𝑃𝐸†
𝑗𝐸𝑘𝑃 =

𝛿𝑗𝑘𝜆𝑗𝑃 . Such 𝐸𝑗’s exist for any appropriate E . For each nonzero 𝜆𝑗, one can define

a unitary 𝑈𝑗 by performing a polar decomposition of 𝐸𝑗𝑃 to give

𝐸𝑗𝑃 =
√︀
𝜆𝑗𝑈𝑗𝑃. (1.27)

We can then define orthogonal projectors 𝑃𝑗 := 𝑈𝑗𝑃𝑈
†
𝑗 onto the error subspaces

C𝑗. Note that 𝑃𝑗𝑃𝑘 = 𝑃𝑗 𝛿𝑗𝑘, as expected from our derivation of the Knill-Laflamme
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condition. Finally, it is straightforward to show that the channel

ℛ(𝜌) :=
∑︁
𝑗 |𝜆𝑗 ̸=0

𝑈 †
𝑗𝑃𝑗𝜌𝑃𝑗𝑈𝑗 (1.28)

reverses any channel 𝒦 with Kraus operators in E on a logical state 𝜌l:

ℛ
[︀
𝒦(𝜌l)

]︀
= 𝜌l, (1.29)

Note that ℛ describes the process of measuring operators {𝑃𝑗}, then applying the

unitary 𝑈 †
𝑗 in the event of outcome 𝑗. Therefore, as claimed above, a QEC code

C0 and a set of error operators {𝐸𝑗} together imply a closed-loop correction scheme

[7, 8].

Now the second point. Rather than correct errors explicitly, one could think of

making them energetically unfavorable and thus unlikely to occur, instead of correct-

ing them when they do [9]. This could be done by engineering a system Hamiltonian

with low-energy eigenstates forming a desired error-correcting code3, separated from

higher-energy states by a large energy gap. Such a Hamiltonian could be realized

through strong, carefully designed couplings between qubits, for instance. The result

would be a system with a low-energy subspace in which decoherence is exponentially

suppressed in the size of the energy gap (under quite general assumptions about the

environment) [10–12]. For instance, a register of qubits with a Hamiltonian

𝐻 =
1

2

∑︁
𝑗

𝜔𝑗𝑍𝑗 −
∑︁
𝑗𝑘

𝐽𝑗𝑘𝑍𝑗𝑍𝑘, (1.30)

with sufficiently strong couplings 𝐽𝑗𝑘 > 0 will have a protected subspace corresponding

to the bit-flip code. We will not deal explicitly with such open-loop error suppression

techniques in this thesis. However, it is natural to think of some of the results

presented here in this context. Since both the closed- and open-loop control schemes

discussed above are ultimately specified by a codespace C0 ⊂ H , we will often treat

3In fact, an error-detecting code, which reveals when an error occurs though not necessarily which
one occurred, is sufficient for this.
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the latter as the core of QEC.

Example 2: Local Phase Flips

Let us build up towards more realistic decoherence models by considering the single-

qubit channel

𝒦1(𝜌) = (1 − 𝑝)𝜌+ 𝑝𝑍𝜌𝑍, (1.31)

representing a phase error with probability 𝑝. The aggregate channel4 for 𝑛 qubits

undergoing 𝒦1 simultaneously (and independently) is denoted 𝒦⊗𝑛
1 = 𝒦1 ⊗ · · · ⊗ 𝒦1.

Notice that for 𝑛 = 3 this is not the same (contrived) channel as in Example

1 with 𝑋 ↔ 𝑍. Here we do not artificially impose that errors can occur only on

one qubit at once; rather, since each qubit is subject to an independent decoherence

process, errors can occur on 𝑤 qubits with probability 𝑂(𝑝𝑤). For 𝑛 = 3, 𝒦⊗𝑛
1 has

Kraus operators

𝐾0 = (1 − 𝑝)3/2𝐼

𝐾1 =
√
𝑝(1 − 𝑝)𝑍1 𝐾2 =

√
𝑝(1 − 𝑝)𝑍2 𝐾3 =

√
𝑝(1 − 𝑝)𝑍3

𝐾4 = 𝑝
√︀

1 − 𝑝𝑍1𝑍2 𝐾5 = 𝑝
√︀

1 − 𝑝𝑍2𝑍3 𝐾6 = 𝑝
√︀

1 − 𝑝𝑍1𝑍3

𝐾7 = 𝑝3/2𝑍1𝑍2𝑍3,

(1.32)

describing errors on 0 to 3 qubits by descending rows. We can still use the repeti-

tion code (this time for phase-flips) to suppress the decoherence described by this

channel; however, we cannot hope to reverse it exactly, even over the codespace, as

the number of Kraus operators grows too fast with 𝑛. This follows from a simple

counting argument: 𝒦⊗𝑛
1 has 2𝑛 distinct Kraus operators in general. To have one

perfect logical qubit, we would need to decompose the total Hilbert space H into

2𝑛 orthogonal 2-dimensional subspaces5 C0,C1, . . . ,C2𝑛−1. Since dim(H ) = 2𝑛, this

is clearly impossible. Instead, we must make due with reversing the most damaging

4In general a density matrix for a bipartite system can be decomposed into a linear combination
of separable matrices 𝜌𝑖⊗𝜌𝑗 . The overall action of subsystem superoperators 𝒜 and ℬ, described by
the joint superoperator 𝒜⊗ℬ can be understood through its action (𝒜⊗ℬ)(𝜌𝑖⊗𝜌𝑗) = 𝒜(𝜌𝑖)⊗ℬ(𝜌𝑗).

5Unless one can find a “degenerate code,” in which distinct Kraus operators act identically on
the codespace. We will seldom encounter such codes in this thesis.
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Kraus operators; here, those of largest magnitude. Note that this means the error

“net” E can no longer simply coincide with span{𝐾𝑗}7𝑗=0; this example therefore begins

to illustrate the distinction between the Kraus operators of a physical decoherence

process {𝐾𝑗}, and the more abstract error operators {𝐸𝑗} = {𝐼, 𝑍1, 𝑍2, 𝑍3} around

which the code is built.

For 𝑛 = 3, the effect of 𝒦⊗𝑛
1 followed by a recovery using the repetition code is

𝜌l ↦→ ℛ
[︀
𝒦⊗3

1 (𝜌l)
]︀

= (1 − 𝑝eff)𝜌+ 𝑝eff𝑋l𝜌𝑋l, (1.33)

where 𝑝eff = 𝑝2(3− 2𝑝) is smaller than the physical error probability 𝑝 when 𝑝 < 1/2,

and 𝑋l maps |0l⟩ ↔ |1l⟩. That is, at the logical level, the system behaves not like a

noiseless qubit, but like a less noisy one, provided the physical noise strength is below

a threshold value. While {𝐾𝑗}𝑗≥1 can be viewed as describing physical errors, 𝑋l

describes a “logical error” occurring with probability 𝑝eff. For 𝑛 = 3 𝑝eff = 𝑂(𝑝2), and

more generally 𝑝eff = 𝑂(𝑝
𝑛+1
2 ) with these codes, reflecting the fundamental trade-off

of QEC: decreased space for reduced noise.

Example 2 illustrates a common reality. A channel describing the open dynamics

of a real quantum device is generally too complex (i.e., has too many Kraus oper-

ators, with too complicated a time dependence) to be exactly reversed over some

codespace—even in principle. In this sense, all QEC is approximate QEC in practice.

We will therefore aim to get the best logical error rates using the fewest possible

resources in this thesis, by targeting the dominant decoherence mechanisms inherent

in specific devices and applications.

1.2.3 Lindblad Equation

Moving closer yet to a picture of QEC in real devices, we introduce a simple model

for the dynamics of open quantum systems called the Lindblad equation [13]:

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻, 𝜌] +

∑︁
𝑗𝑘≥1

𝑑𝑗𝑘

(︁
𝐴𝑗𝜌𝐴

†
𝑘 −

1

2
{𝐴†

𝑘𝐴𝑗, 𝜌}
)︁
. (1.34)
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Here 𝐻 is the system’s Hamiltonian, 𝐷 = (𝑑𝑗𝑘) is a positive semidefinite matrix (i.e.,

Hermitian with non-negative eigenvalues), {𝐴𝑗} are arbitrary matrices on H , and

{𝐴,𝐵} := 𝐴𝐵 + 𝐵𝐴 is an anti-commutator. There are numerous ways to derive the

Lindblad equation. For instance, by postulating that the quantum channel which

propagates a system from time 𝑡 to 𝑡+ 𝛿𝑡 depend only on 𝛿𝑡, one arrives at Eq. (1.34)

from the channel’s Kraus decomposition in the 𝛿𝑡→ 0 limit. More physically, one can

arrive at the same equation by considering a system weakly coupled to an environment

in which information about the system dissipates quickly compared to the system

dynamics of interest [14, 15]. In Part II we will arrive at Eq. (1.34) differently still by

analyzing the effect of a classical noise process on a quantum sensor. Suffice it to say

that the Lindblad equation is an important tool for modeling open quantum systems.

It therefore behooves us to connect it with the QEC formalism introduced thus far.

Eq. (1.34) can be written compactly as

𝑑𝜌

𝑑𝑡
= −𝑖ℋ(𝜌) + 𝒟(𝜌) (1.35)

in terms of the Hamiltonian superoperator ℋ(𝜌) := [𝐻, 𝜌] and the “dissipator”

𝒟(𝜌) =
∑︁
𝑗𝑘≥1

𝑑𝑗𝑘

(︁
𝐴𝑗𝜌𝐴

†
𝑘 −

1

2
{𝐴†

𝑘𝐴𝑗, 𝜌}
)︁
. (1.36)

One can go a step further and define the superoperator ℒ = −𝑖ℋ + 𝒟, often called

the Lindbladian superoperator, which has both Hamiltonian and dissipative parts, ℋ
and 𝒟 respectively. The Lindblad equation then becomes �̇� = ℒ(𝜌). If 𝒟 = 0, the

Lindblad equation reduces to the quantum Liouville equation for a closed system.

As the name would suggest, however, a non-vanishing 𝒟 generally introduces a non-

unitary, irreversible character to the dynamics.

Notice that the sum in Eq. (1.34) runs over 𝑗 and 𝑘. It is an important fact that

one can always get rid of the 𝑗 ̸= 𝑘 cross-terms in this sum by expressing 𝒟 in terms

of new operators. Concretely, let 𝑊 be a unitary matrix which diagonalizes 𝐷:

𝑊 †𝐷𝑊 = diag(𝛾1, 𝛾2, . . . ), (1.37)
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where {𝛾𝑗} are the eigenvalues of 𝐷. Such a 𝑊 is guaranteed to exist. Then, one can

re-write 𝒟 as

𝒟(𝜌) =
∑︁
𝑗≥1

(︁
𝐿𝑗𝜌𝐿

†
𝑗 −

1

2
{𝐿†

𝑗𝐿𝑗, 𝜌}
)︁
, (1.38)

in terms of the “jump operators”

𝐿𝑗 =
√
𝛾𝑗

∑︁
𝑘≥1

𝑤𝑘𝑗𝐴𝑗. (1.39)

These are so named because one can interpret each 𝐿𝑗𝜌𝐿
†
𝑗 term in 𝒟 as describing

the occurrence of a discrete jump/error 𝐿𝑗 on the system with some probability per

unit time, determined by 𝛾𝑗, within an otherwise-unitary dynamics [16, 17]. (The

−1
2
{𝐿†

𝑗𝐿𝑗, 𝜌} terms ensure proper normalization when no such jump occurs.)

This “diagonal” (i.e., having no cross-terms) form of 𝒟 allows us to straightfor-

wardly understand QEC in the language of Lindblad dynamics. To do so, consider

the channel 𝒦 describing Lindblad evolution for some short time 𝑡, which is given for-

mally by 𝒦 = 𝑒ℒ𝑡 (assuming ℒ is time-independent, otherwise the expression should

include a time-ordered integral). In general, Kraus operators of 𝒦 will depend on

𝑡 in complicated ways. However, we can expand them in powers of 𝑡 and solve for

the leading-order parts quite easily. Consider some initial state 𝜌 evolving under

Eq. (1.34) for a short time 𝑡. To first order in the evolution time 𝑡 the state becomes

𝒦(𝜌) = 𝜌+ 𝑡

[︂(︁
− 𝑖𝐻 − 1

2

∑︁
𝑗≥1

𝐿†
𝑗𝐿𝑗

)︁
𝜌+ 𝜌

(︁
− 𝑖𝐻 − 1

2

∑︁
𝑗≥1

𝐿†
𝑗𝐿𝑗

)︁†
+
∑︁
𝑗≥1

𝐿𝑗𝜌𝐿
†
𝑗

]︂
⏟  ⏞  

ℒ(𝜌)

+𝑂(𝑡2)

= 𝐾0𝜌𝐾
†
0 +

∑︁
𝑗≥1

𝐾𝑗𝜌𝐾
†
𝑗 +𝑂(𝑡2), (1.40)

where

𝐾0 = 𝐼 − 𝑡
(︁
𝑖𝐻 +

1

2

∑︁
𝑗≥1

𝐿†
𝑗𝐿𝑗

)︁
+𝑂(𝑡2) and 𝐾𝑗≥1 =

√
𝑡𝐿𝑗 +𝑂(𝑡3/2). (1.41)

(If ℒ were time-dependent, e.g., when expressed in a rotating frame, we would simply
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get time-averaged operators in the expressions above.) Because Kraus operators

always act on 𝜌 from both sides as 𝐾𝑗𝜌𝐾
†
𝑗 , expanding 𝒦 = 𝑒ℒ𝑡 = ℐ + ℒ𝑡 + . . . in

powers of 𝑡 produces Kraus operators in integer powers of
√
𝑡. We cannot generally

hope to correct 𝒦 to all orders in 𝑡, just as we could not do so for all powers of 𝑝 in

Example 2. As in that example though, we can aim to correct the most damaging

errors perturbatively, to order 𝑂(𝑡). This amounts to demanding that

𝑃𝐾†
0𝐾𝑗𝑃 ∝ 𝑃 +𝑂(𝑡3/2), (1.42)

𝑃𝐾†
𝑗𝐾𝑘𝑃 ∝ 𝑃 +𝑂(𝑡3/2), (1.43)

and

𝑃𝐾†
0𝐾0𝑃 ∝ 𝑃 +𝑂(𝑡3/2), (1.44)

for all 𝑗, 𝑘 ≥ 1. In terms of operators appearing in the Lindblad equation, these

requirements are equivalent to

𝑃𝐿𝑗𝑃 ∝ 𝑃, (1.45)

𝑃𝐿†
𝑗𝐿𝑘𝑃 ∝ 𝑃, (1.46)

and

𝑃𝐻𝑃 ∝ 𝑃, (1.47)

respectively [18, 19]. This means that to suppress the dissipative part of a Lindblad

dynamics to leading order in time, one should use a code for which {𝐼, 𝐿𝑗} ⊂ E .

If one also wants to suppress the Hamiltonian part of the dynamics through QEC,

one also needs 𝐻 ∈ E . (This may or may not be desirable, and can also be done

e.g., through dynamical decoupling, as we will see in Part II.) The idea is to perform

QEC recoveries frequently as compared to the relevant timescale set by {𝐿𝑗} and/or

𝐻 (often in a rotating frame), so as to keep uncorrected 𝑂(𝑡2) terms from becoming

important. One could also use a code which corrects to higher orders in 𝑡 through

a broader E , thus further reducing—though never completely nullifying—the logical

error rate.
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Example 3.1: Independent Dephasing

Consider for illustration the purely dissipative Lindblad equation

𝑑𝜌

𝑑𝑡
=

1

2𝑇 *
2

3∑︁
𝑗=1

(︁
𝑍𝑗𝜌𝑍𝑗 − 𝜌

)︁
(1.48)

on 𝑛 = 3 qubits. One can easily show that the resulting dynamics coincides with the

channel 𝒦⊗3
1 from Example 2, with 𝑝 = (1−𝑒−𝑡/𝑇 *

2 )/2. The 3-qubit repetition code can

therefore largely suppress this decoherence when recoveries are repeated frequently

compared to the dephasing time 𝑇 *
2 . Over longer timescales, however, higher-order

errors start to become significant, causing substantial decoherence at the logical level.

Example 3.2: Independent Dephasing with a Hamiltonian

Suppose there is also a Hamiltonian component to the above dynamics, namely:

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻, 𝜌] +

1

2𝑇 *
2

3∑︁
𝑗=1

(︁
𝑍𝑗𝜌𝑍𝑗 − 𝜌

)︁
. (1.49)

for 𝐻 = 1
2
(𝜔1𝑍1 +𝜔2𝑍2 +𝜔3𝑍3). An initial logical state of the repetition code 𝜌l that

is corrected after a time 𝑡 will become

𝜌l ↦→ ℛ(𝑒ℒ𝑡𝜌l) = 𝜌l +𝑂(𝑡2), (1.50)

regardless of the exact values of 𝜔𝑗 and 1/𝑇 *
2 , provided all are sufficiently small com-

pared to 𝑡−1 for this perturbative expansion to be meaningful. This insensitivity of

the code to the precise dynamics is because the Kraus operators of 𝑒ℒ𝑡, truncated

to order 𝑂(𝑡), are contained in the code’s error “net” E = span{𝐼, 𝑍1, 𝑍2, 𝑍3}. Note
however, that these short-time Kraus operators are now not equal to—nor propor-

tional to—the error operators 𝐼, 𝑍1, 𝑍2, and 𝑍3; they only have the same span. This

illustrates a further separation between the two.
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Example 3.3: Correlated Dephasing with a Hamiltonian

Finally, consider the Lindblad equation

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻, 𝜌] +

1

2𝑇 *
2

3∑︁
𝑗,𝑘=1

(︁
𝑍𝑗𝜌𝑍𝑘 −

1

2
{𝑍𝑗𝑍𝑘, 𝜌}

)︁
, (1.51)

where

𝐻 =
𝜔

2

(︀
𝑍1 + 𝑍2 + 𝑍3). (1.52)

We will see how such dynamics can arise in Part II. Upon diagonalizing 𝒟, one finds

that it has but a single non-vanishing jump operator, 𝐿1 ∝ 𝑍1 + 𝑍2 + 𝑍3 ∝ 𝐻. Of

course, the repetition code can still reverse this dynamics to leading order in time

for logical states. Here, however, not only are 𝐻 and 𝐿1 not Pauli operators, they

(together with 𝐼) do not span E for this code. Rather, they span only a subset of

E (namely, span{𝐼, 𝑍1 + 𝑍2 + 𝑍3}), suggesting that the repetition code might be

overkill here; i.e., that its error “net” is bigger than needed. This is indeed the case.

Consider instead the following code on any two qubits: |0l⟩ = |01⟩ and |1l⟩ = |10⟩.
Not only does this code satisfy the Knill-Laflamme condition, it is a “decoherence-free

subspace” (DFS) of this dynamics, meaning that there is no need to actually correct

errors (i.e., ℛ = ℐ), since the codespace is immune to them from the start. Note

that this code/DFS does not correct for single-qubit phase flips, by design. Rather,

it uses our knowledge of the dynamics to cast a more targeted “net” Ẽ , and achieves

(in principle) a vanishing logical error rate while reducing the overhead by half. This

example illustrates clearly the distinction between the error operators around which

a code is designed and the physical Kraus operators to be corrected. Moreover, it

shows that choosing error operators carefully in light of the decoherence at hand, and

designing new QEC codes from these error operators, can be quite beneficial. We will

expand broadly on this approach in later chapters.
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1.2.4 Choosing Error Operators

Based on this last example, the reader may wonder why most of the codes we have

considered so far were constructed using bit or phase flips as error operator. As-

suming nature has no special affinity for Pauli matrices, why are they so central to

these and many other QEC codes? It is not because they are the Kraus operators

describing decoherence in all leading quantum devices. Rather, it is because they

have convenient mathematical properties, which in turn, lead to QEC codes with

nice features; notably, these codes require remarkably little knowledge of the deco-

herence mechanisms against which they protect. This is a potentially critical feature

for implementing QEC in large systems, where fully characterizing decoherence is all

but impossible. Of course, this generality comes at a cost: the Pauli-centric approach

to QEC can require prohibitive overheads in many devices, and can be largely in-

compatible with near-term applications like quantum sensing. This would seem to

severely limit the utility of these codes in existing and emerging quantum devices.

In this thesis we will largely consider codes built around non-Pauli errors, designed

specifically for such devices. Before getting into these, however, it is useful to establish

a baseline by briefly discussing Pauli-based QEC codes.

Strong, many-body interactions are rare in quantum systems. This means we

generically expect quantum devices to couple to their environments in a predomi-

nantly local way; that is, through an interaction Hamiltonian that acts non-trivially

on only one qubit (or perhaps few qubits) at a time, e.g.,

𝐻int ≈
∑︁
𝑗

(︀
𝐼 ⊗ · · · ⊗ 𝐼 ⊗ 𝐻𝑗⏟ ⏞ 

qubit 𝑗

⊗𝐼 · · · ⊗ 𝐼
)︀

⊗ 𝐻𝐸𝑗⏟ ⏞ 
environment

. (1.53)

Recall that {𝐼,𝑋, 𝑌, 𝑍} is a basis for all Hermitian matrices on single qubits, of which

𝐻𝑗 is one. Similarly, any 2-qubit Hermitian matrix can be written as a linear combi-

nation of tensor products of 𝐼,𝑋, 𝑌 and 𝑍, and so on for multi-qubit Hamiltonians.

This means that, quite generally, a QEC code built around an error “net” E compris-

ing all single-qubit Paulis can suppress the effects of local coupling to an environment,
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as in Eq. (1.53), to leading order in time. More broadly, if E includes all Paulis on

≤ 𝑤 qubits (i.e., of weight ≤ 𝑤), the resulting code can suppress the effects of 𝑤-local

environmental couplings to leading order in time, and those of single-qubit couplings

to higher orders. Such a code could also potentially suppress unwanted interactions

between qubits, or control imperfections, due to a similar argument.

It is worth pausing for a moment to reflect on this remarkable result. It means

that QEC codes designed to correct local Pauli errors could suppress decoherence

in quantum devices without one ever knowing precisely how this decoherence arose,

provided it was not pathologically nonlocal. Of course, the rates and types of logical

errors would generally depend on the nature of the decoherence in question.

Let us briefly discuss an important family of QEC codes based on Pauli error

operators, called stabilizer codes [7, 19, 20]. First, notice that any 𝑛-fold tensor

product of 𝐼, 𝑋, 𝑌 and 𝑍 (e.g., 𝑋⊗𝐼⊗𝑍⊗𝐼 for 𝑛 = 4) has at most two eigenspaces,

with eigenvalues ±1. Moreover, any two such operators either commute and anti-

commute. In stabilizer codes, the codespace C0 is defined as the intersection of

𝜆 = +1 eigenspaces of several such operators 𝑆1, 𝑆2, . . . , all of which commute with

one another. That is,

C0 =
{︀
|𝜓⟩ : 𝑆𝑗 |𝜓⟩ = |𝜓⟩ ∀𝑆𝑗

}︀
. (1.54)

If one can find {𝑆𝑗} such that either 𝐸†
𝑘𝐸ℓ anti-commutes with some 𝑆𝑗, or 𝐸

†
𝑘𝐸ℓ

is in the group generated by {𝑆𝑗} under multiplication, for all Pauli error oper-

ators 𝐸𝑘, 𝐸ℓ ∈ E , the resulting C0 will satisfy the Knill-Laflamme condition for

E = span{𝐸𝑘}. Repetition codes are stabilizer codes: the 𝑛 = 3 bit-flip code, for

instance, is specified by 𝑆1 = 𝑍1𝑍2 and 𝑆2 = 𝑍2𝑍3, and the corresponding phase-flip

code by 𝑆1 = 𝑋1𝑋2 and 𝑆2 = 𝑋2𝑋3. The smallest code that can correct arbitrary

single-qubit errors is also a stabilizer code, which uses 𝑛 = 5 physical qubits to encode

𝑘 = 1 logical qubit [21, 22], as specified by

𝑆1 = 𝑋1𝑍2𝑍3𝑋4 𝑆2 = 𝑋2𝑍3𝑍4𝑋5 (1.55)

𝑆3 = 𝑋1𝑋3𝑍4𝑍5 𝑆4 = 𝑍1𝑋2𝑋4𝑍5.
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Note that it is common not to include ancillas when reporting the number of qubits

𝑛 in a code. We will follow this convention throughout this thesis.

Stabilizers codes have a number of desirable properties, besides casting a wide

net E . For one, they provide a very efficient description of the codespace itself. For

instance, the operators in Eq. (1.55) are quite simple, whereas the logical states they

imply are rather cumbersome. Stabilizer codes also provide a nice framework for en-

coded operations, and for analyzing fault tolerance: self-stabilizing QEC which can

also handle control and measurement imperfections, and ancilla errors [19]. In this

thesis we will focus on a limited family of encoded operations, and often assume a

regime in which decoherence on idling qubits is the dominant error source. Accord-

ingly, we will not elaborate on these two features here.

One final feature of stabilizer codes that will be directly relevant to us is the way in

which one can detect/correct errors. The detection step of measuring which subspace

C0,C1,C2, . . . the system is in corresponds to measuring whether it is in the +1 or

−1 eigenspace of each 𝑆𝑗. There is a common trick for doing this: one performs a

controlled-𝑆𝑗 operation using an ancilla in state |+⟩ as the control. Because 𝑆𝑗 is a

tensor product of Paulis, this controlled-𝑆𝑗 can be straightforwardly be decomposed

into a sequence of two-qubit controlled operations. For a general system state 𝛼 |𝜓+⟩+
𝛽 |𝜓−⟩, where 𝑆𝑗 |𝜓±⟩ = ± |𝜓±⟩, the combined effect on ancilla⊗ system is:

|+⟩
(︁
𝛼 |𝜓+⟩ + 𝛽 |𝜓−⟩

)︁
=

1√
2

[︂
|0⟩

(︁
𝛼 |𝜓+⟩ + 𝛽 |𝜓−⟩

)︁
+ |1⟩

(︁
𝛼 |𝜓+⟩ + 𝛽 |𝜓−⟩

)︁]︂

↦→

controlled-𝑆𝑗 (1.56)

1√
2

[︂
|0⟩

(︁
𝛼 |𝜓+⟩ + 𝛽 |𝜓−⟩

)︁
+ |1⟩

(︁
𝛼 |𝜓+⟩ − 𝛽 |𝜓−⟩

)︁]︂
= 𝛼 |+⟩ |𝜓+⟩ + 𝛽 |−⟩ |𝜓−⟩ .

One then applies a Hadamard gate to the ancilla (which maps |0⟩ ↔ |+⟩ and

|−⟩ ↔ |1⟩), and measures it in the {|0⟩ , |1⟩} basis. With probability |𝛼|2 one gets 0

and projects the system into the +1 eigenspace of 𝑆𝑗, otherwise the system is pro-

jected into the −1 eigenspace. This trick is sometimes called a “phase kickback,” and

it constitutes a simple instance of a more general procedure called quantum phase esti-

mation [23]. The full error syndrome can be found by performing such measurements
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for each 𝑆𝑗 (the order is immaterial since [𝑆𝑗, 𝑆𝑘] = 0). One can then correct the

inferred error by applying appropriate Pauli operators to the errant system qubit(s).

Notice that this is precisely how the recovery is implemented in Fig. 1-4. The main

appeal of this procedure, for our purposes, is that it gives the recovery an explicit

form in terms of 1- and 2-qubit operations. In devising and analyzing QEC codes

tailored to physical decoherence processes in subsequent chapters, we will see that

certain features of stabilizer codes, such as simple recoveries using phase kickbacks,

carry over straightforwardly in some settings and less so in others.
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Chapter 2

Efficient QEC of Dephasing Induced

by a Common Fluctuator

Consider a register of 𝑛 qubits for which the dominant decoherence mechanism is

independent relaxation of each qubit to its ground state |0⟩. This might occur, for

instance, due to thermalization with an environment at low temperature compared to

the qubits’ energy gaps. To leading order in time, one could understand this process

as 𝜎− = |0⟩⟨1| acting independently on each qubit with some probability per unit time.

What is the smallest number of qubits 𝑛 required to correct the resulting decoherence

through QEC? One can easily check that no 𝑛 = 3 repetition code will work; a 𝜎−

error is somehow more damaging than a bit or phase flip (for one, 𝜎− has no inverse).

Notice, though, that 𝜎− ∝ 𝑋 + 𝑖𝑌 . Therefore as per the previous chapter, one could

realize a protected logical qubit with 𝑛 = 5 physical qubits through the code defined

by Eq. (1.55). However, this code is overkill to some extent: it can correct arbitrary

(complex) linear combinations of 𝑋, 𝑌 , and 𝑍 acting locally, whereas the physics here

specifies a fixed combination 𝑋+𝑖𝑌 . This additional structure suggests that one look

for a QEC code tailored to the errors that actually occur, rather than hypothetical

combinations of 𝑋, 𝑌 , and 𝑍. Indeed, such a code was discovered in Ref. [24], which

uses only 𝑛 = 4 qubits. It has since been generalized to efficiently encode multiple

logical qubits for larger 𝑛 [25].

More recently, it has been shown that the surface code, a promising type of large-
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scale QEC code, can have a substantially higher fault-tolerance threshold when errors

along 𝑍 occur at higher rates than those along 𝑋 and 𝑌 , and one exploits this

structure [26, 27]. This is a welcome discovery, since dephasing (broadly, 𝑍 errors) is

the strongest form of decoherence in many types of qubits. (Whether this can remain

meaningfully true also during gates is less clear [28].) Similarly, codes based on field

excitations in microwave resonators which deal efficiently with photon loss—often

the dominant decoherence mechanism in such devices—have been very successful

of late [29]. These three examples illustrate an important point: while QEC does

not necessarily require a detailed understanding of the decoherence in a device, it

can nevertheless be very advantageous to exploit whatever understanding one has.

In large devices implementing the surface code, for instance, one may know fairly

little about the decoherence mechanisms—perhaps simply that 𝑍 errors are more

common than others. In smaller, nearer-term devices, however, one often has a good

understanding of the physics underlying the dominant decoherence mechanisms. In

either regime, it is likely worthwhile to tailor the code for the decoherence at hand in

proportion to one’s understanding of it.

This is not a new idea; for instance, Nielsen and Chuang counsel ([7] §10.6.4):

“A simple but important guiding principle is to choose your codes well.

. . . It may pay handsome dividends at the first level of concatenation1 to

use a code optimized to protect against the type of noise known to occur

in the particular physical system being used for implementation.”

While this idea may be uncontroversial, few concrete instances of such codes are

known beyond the aforementioned ones. In this chapter we will construct and analyze

a new family of such codes. They are designed to correct a particular decoherence

mechanism that dominates in many nitrogen-vacancy (NV) center experiments, and

can be important in several other platforms as well. They are fundamentally different

than the 5-qubit or repetition codes from the previous chapter, in that they are

1One can create larger QEC codes by “concatenating” smaller ones to achieve better protection,
by treating the logical qubits of a first code as physical qubits of a second one. We will touch on
this approach only briefly in this thesis, focusing instead on the first level mentioned here.
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not applicable in all devices, i.e., they are not one-size-fits-all. In fact, that is the

point. We will find them to be far more efficient than conventional codes precisely

because they correct the narrow range of errors describing the dominant decoherence

mechanism in these devices. In the language of Chapter 1, these new codes cast a

targeted net.

2.1 Decoherence Mechanism

The decoherence mechanism we will seek to correct is one in which a register of qubits

dephases primarily due to energy-eigenstate-preserving (i.e., longitudinal) coupling of

each qubit to a common fluctuator, which in turn exchanges energy with an external

environment. That is, we consider a Hamiltonian

𝐻 = 𝐻0
𝑓 +

1

2

𝑛∑︁
𝑗=1

𝜔𝑗𝑍𝑗 +𝐻 int
𝑓 ⊗

𝑛∑︁
𝑗=1

𝑔𝑗𝑍𝑗 (2.1)

for the fluctuator (labeled 𝑓) and the register qubits (labeled by 1 ≤ 𝑗 ≤ 𝑛), where

[𝐻0
𝑓 , 𝐻

int
𝑓 ] = 0. This type of coupling arises often as an effective description of a more

general interaction. Consider, for instance, a qubit coupled to the fluctuator through

some generic interaction Hamiltonian. In the interaction picture (i.e., the rotating

frame generated by 𝐻0
𝑓 +

𝜔𝑗

2
𝑍𝑗), the eigenstate-preserving term in Eq. (2.1) would

remain time-independent, whereas the other terms would be oscillatory. If the qubit-

fluctuator coupling is weak compared to 𝜔𝑗 and to the energy eigenvalue differences of

𝐻0
𝑓 , these oscillating terms would average out quickly (on a timescale determined by

the two latter energy scales), and have little impact. We could therefore neglect them

to a good approximation—regardless of our choice of frames—leading to Eq. (2.1).

As described above, the fluctuator in this model jumps incoherently between its

energy eigenstates {|ℓ⟩𝑓}, e.g., as

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻, 𝜌] +

∑︁
𝑘ℓ

𝛾𝑘ℓ

(︁
𝐴𝑘ℓ𝜌𝐴

†
𝑘ℓ −

1

2
{𝐴†

𝑘ℓ𝐴𝑘ℓ, 𝜌}
)︁
, (2.2)
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where 𝐴𝑘ℓ = |𝑘⟩⟨ℓ|𝑓 ⊗ 𝐼 describes a jump from the fluctuator state |ℓ⟩𝑓 to |𝑘⟩𝑓 with

rate 𝛾𝑘ℓ, and acts trivially on the register qubits. We will assume throughout that the

fluctuator begins in some ensemble of energy eigenstates, rather than in a coherent

superposition thereof, and therefore does not become entangled with the register.

Notice that these Lindblad jump operators do not directly decohere the qubits; rather,

they do so indirectly through the fluctuator. For this model to describe the dominant

decoherence mechanism on the qubits, these must interact weakly with the broader

environment, but strongly with the common fluctuator, which in turn couples strongly

to said broader environment. Indeed, this is often true of nuclear spin qubits near an

NV center in diamond at room temperature—the setting that motivated this work.

In this platform, the nuclear spins are often used as a long-lived quantum memory,

while the NV is used for sensing or to establish remote entanglement. The motivation

here is to extend the lifetime of this quantum memory.

Carbon-13 nuclei in diamond have spin-1/2 and small magnetic dipole moments;

they are therefore well-isolated in the absence of nearby defects in the diamond lattice.

This gives them long coherence times even at room temperature, but also makes

them slow to control and difficult to polarize at this temperature (i.e., to prepare

in a pure, or nearly pure, state). The NV center is a type of defect in diamond

with an effective spin-1 electronic degree of freedom, together with higher-energy

states that will not be of direct concern here. Unlike the nuclear spin-1
2
’s, it can be

controlled rapidly and can easily be polarized, but it has much shorter coherence times

(𝑇 * (𝑒)
2 ∼ 4𝜇s [30]). An NV center can couple strongly to nearby 13C nuclear spins

(. 10MHz [31]), allowing one to polarize and control these latter spins indirectly

via the NV electronic spin (henceforth simply called the NV). Unfortunately, the NV

often then becomes the limiting source of decoherence for these nuclear spins at room

temperature. Specifically, coupling to the broader environment causes the NV to

jump stochastically between its |0⟩, |−1⟩ and |1⟩ energy eigenstates on a timescale

𝑇
(𝑒)
1 ∼ 5ms [30]. These jumps perturb the nearby nuclear spins, setting the main limit

on their coherence times. This reflects a central challenge in quantum engineering:

the speed with which one can control quantum systems and the speed at which they
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decohere are often closely related. This challenge will be a central theme in Part II.

The Hamiltonian for an NV coupled to 𝑛 nearby 13C nuclear spins can be expressed

as

𝐻 = ∆𝑆2
𝑧 + 𝛾𝑒𝐵𝑆𝑧⏟  ⏞  

𝐻0
𝑓

+
𝛾𝐶𝐵

2

𝑛∑︁
𝑗=1

𝑍𝑗 +
1

2
𝑆𝑧 ⊗

𝑛∑︁
𝑗=1

(𝐴(𝑗)
𝑧𝑥𝑋𝑗 + 𝐴(𝑗)

𝑧𝑧 𝑍𝑗), (2.3)

where 𝑆𝑧 = |1⟩⟨1| − |−1⟩⟨−1| is the spin-1 equivalent of 𝑍 on the NV, ∆ is the

NV zero-field splitting, 𝛾𝑒 and 𝛾𝐶 are the electronic and nuclear gyromagnetic ratios

respectively, 𝐵 is the magnetic field component along an axis defined by the NV,

and 𝐴(𝑗)
𝑧𝑥 and 𝐴(𝑗)

𝑧𝑧 are the hyperfine coupling strengths between the NV and the 𝑗th

13C nuclear spin. If one has nuclear spins with 𝐴
(𝑗)
𝑧𝑥 ≪ 𝐴

(𝑗)
𝑧𝑧 , the previous equation

immediately reduces to Eq. (2.1). Otherwise, one could use a strong magnetic field so

that 𝛾𝐶𝐵 ≫ 𝐴𝑧𝑥, to the same effect. (We will revisit this point later in the chapter.)

Indeed, the reason why the NV couples to the nearby nuclei only via 𝑆𝑧 here is because

one can neglect interaction terms which don’t commute with 𝐻0
𝑓 (called non-secular

terms) due to the large zero-field splitting ∆, as per the argument above [32]. When

𝐴
(𝑗)
𝑧𝑥 is negligible, the main form of decoherence in these carbon nuclei is dephasing

due to the incoherent NV jumps, with a characteristic timescale 𝑇 * (𝑛)
2 = 1.5𝑇

(𝑒)
1 [33].

Therefore, from the NV’s point of view, the diamond is the environment. From the

point of view of the nearby 13Cs, however, the environment is essentially just the

NV—a highly structured environment.

The model in Eqs. (2.1) and (2.2), which we call common-fluctuator dephasing

(CFD), can also be a significant source of decoherence in quantum dots and in super-

conducting qubits dispersively coupled to a common resonator2 with non-zero effective

temperature [33–46]. In these settings, as with spins in diamond, the register qubits

are often read out and/or initialized via the fluctuator, imposing a lower limit on the

desirable fluctuator-qubit coupling strengths, and making CFD a potentially impor-

tant decoherence mode. Note that CFD does not generally produce a decoherence-free

subspace (DFS).

2Such coupling induces an effective 𝜎+𝜎− + 𝜎−𝜎+ interaction between qubits, which could be
suppressed through dynamical decoupling or through large detunings between qubits.
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For the sake of generality, we now revert to the language of Eqs. (2.1) and (2.2).

Moving to the interaction picture, the Hamiltonian (2.1) becomes

�̃� =
∑︁
ℓ

𝜆ℓ |ℓ⟩⟨ℓ|𝑓 ⊗𝐻𝐸, (2.4)

where 𝐻 int
𝑓 =

∑︀
ℓ 𝜆ℓ |ℓ⟩⟨ℓ|𝑓 and 𝐻𝐸 :=

∑︀𝑛
𝑗=1 𝑔𝑗𝑍𝑗. When the fluctuator is in state

|ℓ⟩𝑓 , qubit 𝑗 has an effective Hamiltonian 𝜆ℓ 𝑔𝑗𝑍𝑗 in the rotating frame. Jumps of the

fluctuator therefore induce spatially-correlated random telegraph noise in the register,

which causes dephasing [47, 48]. We will mostly be concerned here with the spatial

correlations inherent in this noise. It is also interesting, however, to reflect on its

temporal correlations for a moment. The noise source here—a single fluctuator—

represents the opposite extreme of a large diffuse environment producing Gaussian

noise through the central limit theorem, often with a 1/𝑓 -like spectrum. (This is

true at least when the couplings are strong compared to the rate of jumps in the

fluctuator, which is the relevant regime with NV centers.) Indeed, the register qubits

in this model have a highly structured environment. We will discuss temporal noise

correlations in more detail in Chapter 4.

The standard QEC approach to correct dephasing is with the repetition code, built

around error operators 𝐸𝑗’s which are Pauli 𝑍 operators on at most 𝑤 qubits (and

𝐼 on the rest). There are
∑︀𝑤

𝑚=0

(︀
𝑛
𝑚

)︀
such matrices; a simple counting argument (the

quantum Hamming bound applied to phase noise) therefore suggests that 𝑛 ≥ 2𝑤+ 1

physical qubits are required to protect 𝑘 = 1 logical qubit from arbitrary phase errors

of weight ≤ 𝑤 [7]. Indeed, the repetition code saturates this bound: the smallest

instance uses 𝑛 = 3 for 𝑤 = 1, has logical states |0l⟩ = |+++⟩ and |1l⟩ = |−−−⟩
where |±⟩ := 1√

2
(|0⟩ ± |1⟩), and corrects for E = span{𝐼, 𝑍1, 𝑍2, 𝑍3} as we have seen

in the previous chapter. It can correct CFD as follows: In any run of the experiment,

the register evolves over time 𝛿𝑡 as

𝑈(𝜃) = 𝑒−𝑖𝜃𝐻𝐸 (2.5)
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for some random variable 𝜃 ∈ [𝛿𝑡 𝜆min, 𝛿𝑡 𝜆max] that depends on the fluctuator’s tra-

jectory. Specifically, if we define the stochastic process 𝜆(𝑡) such that 𝜆(𝑡) = 𝜆ℓ when

the fluctuator is in state ℓ at time 𝑡, then

𝜃 =

∫︁ 𝛿𝑡

0

𝜆(𝑡)𝑑𝑡. (2.6)

For small 𝜃 = 𝑂(𝛿𝑡) (often reducible through dynamical decoupling3 [33, 49–51],

discussed further in Chapter 4), 𝑈(𝜃) can be approximated as

𝑈(𝜃) = 𝐼 − 𝑖𝜃𝐻𝐸 +𝑂(𝜃2). (2.7)

Since 𝜃𝐻𝐸 ∈ E regardless of 𝜃, the 3-qubit repetition code recovery performed after

a time 𝛿𝑡 corrects dephasing at order 𝑂(𝜃) = 𝑂(𝛿𝑡). More generally, 𝐻𝑞
𝐸 contains

Paulis of weight ≤ 𝑞, so correcting to order 𝑂(𝜃𝑞) = 𝑂(𝛿𝑡𝑞) with the repetition code

requires 𝑛 = 2𝑞 + 1 qubits (for 𝑘 = 1).

While the value of 𝜃 is unknown and varies from one run to the next, the coupling

strengths 𝑔𝑗 are often fixed and well characterized. This suggests designing a code

that corrects expressly for E = span{𝐼,𝐻𝐸, 𝐻
2
𝐸, . . . , 𝐻

𝑞
𝐸}, and depends on the {𝑔𝑗}

in a particular device. As per the previous chapter, such a code would cast a more

targeted net by exploiting our understanding of the dominant decoherence mechanism.

A similar counting argument as above suggests that such a code would require 𝑞 + 1

subspaces to protect a logical qubit to order 𝑂(𝜃𝑞) = 𝑂(𝛿𝑡𝑞) in the time between

recoveries, and therefore require

𝑛 = ⌈1 + log2(𝑞 + 1)⌉ (2.8)

qubits—an exponentially smaller overhead. We now proceed to construct a family of

such codes for general 𝑞 and arbitrary coupling strengths {𝑔𝑗}. We focus in particular

on the 𝑞 = 1 case, where one logical qubit is encoded in two physical qubits rather

than three. We also construct recovery and logical operations for this code, which

3This could be on the register qubits and/or on the fluctuator itself.
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can be implemented using a constant number of one- and two-qubit operations, much

like in stabilizer codes.

2.2 Code Construction

We will construct these device-adapted QEC codes by enforcing the Knill-Laflamme

condition for 𝑘 = 1 logical qubit, in terms of as-yet-unknown codewords |0l⟩ and |1l⟩.
For 𝑘 = 1 and E = span{𝐻𝑗

𝐸}𝑞𝑗=0, this amounts to demanding

⟨0l|𝐻𝑚
𝐸 |0l⟩ = ⟨1l|𝐻𝑚

𝐸 |1l⟩ (2.9)

⟨0l|𝐻𝑚
𝐸 |1l⟩ = 0 (2.10)

for 0 ≤ 𝑚 ≤ 2𝑞, where we consider values of 𝑞 that saturate the ceiling in Eq. (2.8)

(that is, 𝑞 = 2𝑛−1 − 1). Finding a QEC code that corrects this E therefore requires

finding logical states |0l⟩ and |1l⟩ that satisfy Eqs. (2.9) and (2.10). We begin with

the ansatz

|0l⟩ =
2𝑛−1∑︁
𝑗=0

𝑟𝑗𝑒
𝑖𝜃𝑗 |𝑗⟩ |1l⟩ =

2𝑛−1∑︁
𝑗=0

𝑟(2𝑛−1−𝑗)𝑒
𝑖𝜑𝑗 |𝑗⟩ , (2.11)

for 𝑟𝑗, 𝜃𝑗, 𝜑𝑗 ∈ R, where we use |𝑗⟩ to denote the 𝑛-bit binary representation of the

integer 𝑗. That is, we fix the amplitudes of |1l⟩ to be those of |0l⟩ in reverse order.

Notice that Eq. (2.11) always satisfies (2.9) for even 𝑚 ≥ 0, since 𝑋⊗𝑛𝐻𝑚
𝐸𝑋

⊗𝑛 =

(−1)𝑚𝐻𝑚
𝐸 . For odd 𝑚:

⟨0l|𝐻𝑚
𝐸 |0l⟩ = −⟨1l|𝐻𝑚

𝐸 |1l⟩ = �⃗� · �⃗�𝑚, (2.12)

where �⃗�, �⃗�𝑚 ∈ R𝑞+1 are defined as 𝑧𝑖 = ⟨𝑖|𝑍l |𝑖⟩, with 𝑍l := |0l⟩⟨0l| − |1l⟩⟨1l|, and
(�⃗�𝑚)𝑖 = ⟨𝑖|𝐻𝑚

𝐸 |𝑖⟩ for 𝑖 ∈ [0, 𝑞] and odd 𝑚 ∈ [0, 2𝑞]. Therefore, Eq. (2.9) is satisfied

for all relevant 𝑚 if �⃗� ⊥ span{�⃗�𝑚}. We can always find such a �⃗� (̸= 0⃗) since the �⃗�𝑚’s

have dimension 𝑞 + 1 but there are only 𝑞 of them, so they cannot form a complete

basis. One approach is to construct a matrix 𝑉 with �⃗�𝑚’s as columns; then, 𝐼−𝑉 𝑉 +
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projects onto span{�⃗�𝑚}⊥ (where + and ⊥ denote the pseudoinverse and orthogonal

complement, respectively) and therefore has at least one real eigenvector �⃗� with unit

eigenvalue4. Taking �⃗� = �⃗�/||�⃗�||1 satisfies Eq. (2.9) since �⃗� · �⃗�𝑚 = 0 automatically.

Finally, building upon a technique developed in Ref. [52] for optimization, we pick

𝑟𝑗’s as

(𝑟𝑗, 𝑟(2𝑛−1−𝑗)) =

⎧⎪⎨⎪⎩(0,
√
𝑧𝑗), if 𝑧𝑗 ≥ 0

(
√−𝑧𝑗, 0), if 𝑧𝑗 < 0.

(2.13)

This choice ensures that ⟨𝑗|0l⟩ or ⟨𝑗|1l⟩ vanishes for every 𝑗, thus satisfying Eq. (2.10).
We now have normalized logical states that form a valid QEC code for all 𝑞 ≥ 1.

Notice that the components of |0l⟩ and |1l⟩ generically have unequal amplitudes 𝑟𝑗

by necessity, in marked contrast with classical error-correcting codes and most known

QEC codes. The phases 𝜃𝑗 and 𝜑𝑗 can be chosen arbitrarily—we demonstrate a

convenient choice below. The performance of these codes on 𝑛 ≤ 5 qubits is shown

in Fig. 2-1 using an illustrative model of a normally-distributed 𝜃 (which could arise,

e.g., by approximating the random telegraph noise here as a Gaussian process, see

Chapter 4). In addition, we give the pseudothresholds for 𝑛 = 2 and 3 under the same

model in Section 2.3. Note that while these codes correct only for phase noise (which

is classical, in a sense), they are nonetheless quantum error-correcting codes, as they

protect quantum states by a means which has no classical analog, to our knowledge.

The remarkable performance of device-adapted codes in Fig. 2-1 reflects two un-

derlying effects. First, a generic 𝑛-qubit state decoheres faster with larger 𝑛, as a

rule of thumb. Since our adapted codes correct errors to the same order in 𝛿𝑡 (or

equivalently, 𝜃) as repetition codes using smaller 𝑛, they are less vulnerable to deco-

herence from the start. Second, the 𝑦-axis in Fig. 2-1 is the effective error probability

𝑝 averaged over all coupling strengths 𝑔𝑗 ∈ [0, 1]. Unlike repetition codes, our codes

can yield a DFS when one exists, in which case 𝑝 = 0. Such DFS’s become more

common for larger 𝑛, since it becomes more likely that two elements of a random

(𝑔1, . . . , 𝑔𝑛) ∈ [0, 1]𝑛 be nearly equal. This further drives down the average 𝑝 as 𝑛

4Alternatively, the modified Gram-Schmidt procedure provides a less intuitive but more numeri-
cally stable method.
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Figure 2-1: We assume that the effect of the quantum fluctuator is to impart a
random phase, 𝜃, which follows a Gaussian distribution 𝜃 ∼ 𝒩 (0, 𝜎) with standard
deviation 𝜎. By normalizing the 𝑔𝑗’s to lie in [0, 1]𝑛, 𝜎 describes the noise strength.
CFD followed by a QEC recovery (if applicable) results in an effective phase- or bit-
flip channel 𝜌 ↦→ (1 − 𝑝)𝜌 + 𝑝𝐴𝜌𝐴, where 𝐴 = 𝑍 for the physical qubits, 𝑋l =
|0l⟩⟨1l| + |1l⟩⟨0l| for the repetition codes, and 𝑍l for hardware-efficient codes. The
average infidelity, average trace distance and diamond distance to 𝐼 are all ∝ 𝑝. As
the performance of all strategies shown depends on {𝑔𝑗}, we plot the average of 𝑝 over
{𝑔𝑗} ∈ [0, 1]𝑛. The error bands for the hardware-efficient codes denote the standard
error of the mean from Monte Carlo integration. More details on the numerical
implementation are given in Section 2.3 and Appendix A.
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|0⟩
|𝜓l⟩

|0⟩

ancilla |𝜓⟩ |0⟩

Figure 2-2: An encoding procedure for the toy model code in Eq. (2.14), where
|𝜓l⟩ = 𝛼 |0l⟩ + 𝛽 |1l⟩ for arbitrary 𝛼 and 𝛽.

grows.

To understand the smallest, i.e., 𝑛 = 2 qubit version of this code, it is useful first

to consider a toy model in which decoherence arises entirely differently. Consider a

2-qubit register where the first qubit is subject only to 𝑋1 errors, and the second qubit

experiences no errors. Of course, the easiest approach would be to simply not use the

first, noisy qubit. For our purposes, however, imagine dealing with E = span{𝐼,𝑋1}
using a stabilizer QEC code with 𝑆 = 𝑍1𝑍2, whose codewords we can choose as

|0l⟩ = |00⟩ |1l⟩ = |11⟩ . (2.14)

An unknown state |𝜓⟩ on an ancilla could then be encoded using the circuit in Fig. 2-2
(and the process could be reversed by applying the operations backwards). A parity

(i.e., 𝑍1𝑍2 = 𝑆) measurement on the two qubits would reveal whether an error oc-

curred, that is, whether the state is in C0 = span{|0l⟩ , |1l⟩} or C1 = span{|0e⟩ , |1e⟩},
where

|0e⟩ := |10⟩ = 𝑋1 |0l⟩ |1e⟩ := |01⟩ = 𝑋1 |1l⟩ . (2.15)

One could then apply 𝑋1 if needed, as shown in Fig. 2-3.

We now analyze explicitly the smallest case of our QEC code, which uses 𝑛 = 2

qubits. As we will see, the encoding and recovery operations are very similar to those

in the toy example above, even though the underlying decoherence is completely

different. We will label the register qubits 1 and 2 such that |𝑔1| ≥ |𝑔2|. Note

that here—and in general—𝐻𝐸 = 𝑔1𝑍1 + 𝑔2𝑍2 is a combination of weight-1 Pauli

operators, not a weight-2 Pauli. This 𝐻𝐸 gives �⃗�1 = (𝑔1 + 𝑔2, 𝑔1 − 𝑔2)
⊤. The matrix
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ancilla |0⟩

|𝜓l⟩ or 𝑋1 |𝜓l⟩
𝑋

|𝜓l⟩

𝐻 𝐻

controlled-(𝑍1𝑍2)

Figure 2-3: A recovery procedure for the toy model code in Eq. (2.14), where |𝜓l⟩ =
𝛼 |0l⟩ + 𝛽 |1l⟩ for arbitrary 𝛼 and 𝛽, and 𝐻 denotes a Hadamard gate.

𝐼 − 𝑉 𝑉 + has only a 1-dimensional eigenspace with unit eigenvalue, spanned by �⃗� =

(−𝑔1 + 𝑔2, 𝑔1 + 𝑔2)
⊤, where �⃗� · �⃗�1 = 0. If 𝑔1 > 0 we find 𝑟1 = 𝑟3 = 0 and

𝑟0 = 𝑐
√
𝑔1 − 𝑔2 𝑟2 = 𝑐

√
𝑔1 + 𝑔2, (2.16)

where 𝑐 = 1/
√︀

||�⃗�||1. This gives logical states

|0l⟩ = |𝜒0⟩ |0⟩ |1l⟩ = |𝜒1⟩ |1⟩ (2.17)

with

|𝜒0⟩ = 𝑐
(︁√︀

|𝑔1 − 𝑔2| 𝑒𝑖𝜃0 |0⟩ +
√︀
|𝑔1 + 𝑔2| 𝑒𝑖𝜃2 |1⟩

)︁
|𝜒1⟩ = 𝑐

(︁√︀
|𝑔1 + 𝑔2| 𝑒𝑖𝜑1 |0⟩ +

√︀
|𝑔1 − 𝑔2| 𝑒𝑖𝜑3 |1⟩

)︁
.

(2.18)

The 𝑔1 < 0 case gives the same result up to a relabeling of |0l⟩ ↔ |1l⟩. This code

corrects for E = span{𝐼,𝐻𝐸}; by design, however, it does not correct for 𝑍1𝑍2, nor 𝑍1

or 𝑍2 individually, none of which are in E . Rather, it corrects CFD with fewer qubits

than the smallest repetition code precisely because we have chosen not to correct

individual Pauli operators.

Observe that Eqs. (2.17) and (2.18) reduce to a DFS in the limit where one exists

(|𝑔1| = |𝑔2|), but this is in practice rare. More generally, notice that the choice

𝜃0 = 𝜑1 + 𝜋 = −𝜃2 = −𝜑3 = 𝜗 for arbitrary 𝜗 proves convenient: First, it gives

⟨𝜒0|𝜒1⟩ = 0, which means an ancilla state |𝜓⟩ can be encoded onto the register
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through a circuit like that in Fig. 2-2, but with 𝑋1 replaced by

𝑈𝑥 := |𝜒0⟩⟨𝜒1| + |𝜒1⟩⟨𝜒0| , (2.19)

a 𝜋 rotation about some axis determined by 𝑔1, 𝑔2 and 𝜗, as shown in Fig. 2-4.

Moreover, this choice of phases results in a simple action of 𝐻𝐸 on logical states:

𝐻𝐸 |0l⟩ ∝ |𝜒1⟩ |0⟩ =: |0e⟩

𝐻𝐸 |1l⟩ ∝ |𝜒0⟩ |1⟩ =: |1e⟩ ,
(2.20)

which closely resembles the effect of 𝑋1 in the toy model, but in the {|𝜒0⟩ , |𝜒1⟩} basis
on qubit 1. Both lines have the same proportionality constant, and we have defined

the error states |0e⟩ and |1e⟩. We emphasize that since 𝐻𝐸 cannot generically be

decomposed as a tensor product, it maps most separable states to entangled states;

Eq. (2.20)—wherein the first qubit is “flipped” by 𝐻𝐸—is due to our choice of |0l⟩
and |1l⟩. Second, consider the orthogonal projectors 𝑃 = |0l⟩⟨0l| + |1l⟩⟨1l| and 𝑃e =

|0e⟩⟨0e| + |1e⟩⟨1e| onto C0 = span{|0l⟩ , |1l⟩} and C1 = span{|0e⟩ , |1e⟩} respectively

(H = C0 ⊕ C1). One can detect an error non-destructively by measuring parity in

the |𝜒𝑖⟩ |𝑗⟩ basis, which can be done by performing phase estimation/kickback on

𝑆 = 𝑃 − 𝑃e = 𝑈𝑧 ⊗ 𝑍 (2.21)

with an ancilla, rather than on 𝑍⊗𝑍 as in the toy example [23]. Crucially, the choice

of phases in |0l⟩ and |1l⟩ makes 𝑆 separable here, where 𝑈𝑧 := |𝜒0⟩⟨𝜒0| − |𝜒1⟩⟨𝜒1| is
a 𝜋 rotation about a different axis. This means that the controlled-𝑆 (c𝑆) operation

used to measure the error syndrome can be implemented through a pair of two-qubit

operations (c𝑈𝑧 and c𝑍), rather than a more challenging 3-qubit operation. If an

error is detected, it can be corrected by applying 𝑈𝑥 to qubit 1. (Both 𝑈𝑥 and 𝑈𝑧

could be synthesized out of a constant number of Pauli rotations, or implemented

directly, e.g., by driving qubit 1 off resonance [53].) The full recovery procedure,

which corrects CFD to leading order, is shown in Fig. 2-5. It is identical to that in
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|𝜒0⟩ 𝑈𝑥
|𝜓l⟩

|0⟩

ancilla |𝜓⟩ |0⟩

Figure 2-4: An encoding procedure for 𝑛 = 2 qubits where |𝜓l⟩ = 𝛼 |0l⟩ + 𝛽 |1l⟩ for
arbitrary 𝛼 and 𝛽. The unitaries 𝑈𝑥 is a 𝜋 rotation about an axis on the Bloch sphere
determined by 𝑔1, 𝑔2 and 𝜗. Notice that if the NV electronic spin is used an ancilla,
the only 2-qubit gates in this circuit are between it and the nuclear spins (as opposed
to between two weakly-coupled nuclear spins).

ancilla |0⟩

𝑒−𝑖𝜃𝐻𝐸 |𝜓l⟩
𝑈𝑧 𝑈𝑥 |𝜓l⟩ +𝑂(𝜃2)

𝐻 𝐻

controlled-𝑆

Figure 2-5: A recovery procedure for 𝑛 = 2 qubits where 𝐻 denotes a Hadamard
gate, and 𝜃 is a random variable. Notice, as in Fig. 2-4, that if the NV electronic spin
is used an ancilla, the only 2-qubit gates in this circuit are between it and the nuclear
spins (as opposed to between two weakly-coupled nuclear spins) [32]. Note that in
NV implementations it may be advantageous to avoid measuring the NV through
repetitive readout to detect errors, as this can be disruptive to nearby nuclear spins.
Instead, one could perform a controlled-𝑈𝑥 followed by an NV reset.

Fig. 2-3, but with 𝑋1 → 𝑈𝑥 and 𝑍1 → 𝑈𝑧. Note that 𝑆 behaves like a stabilizer, in the

sense of its action on C0 and C1. It does not, however, fit in the usual QEC stabilizer

formalism since {𝐻𝐸, 𝑆} ≠ 0 generically, because {𝐻𝐸, 𝑆}|𝜓⟩ = 0 for |𝜓⟩ ∈ C0 but

not for |𝜓⟩ ∈ C1 [20]. This is because 𝐻𝐸 maps C0 to C1 without distortion, but not

vice-versa, as 𝐻𝐸 is not generically a tensor product of Paulis. (Neither is 𝑆.) In spite

of these unusual features, the procedure for feeding back on 𝑆 in Fig. 2-5 is largely

the same as that of the usual stabilizer formalism. Finally, there is a simple way to

implement any logical unitary 𝑈l in this code: apply the corresponding physical 𝑈

to qubit 2 followed by a recovery.

The logical states derived above are also valid for all 𝑞 > 1 (i.e., 𝑛 > 2 qubits),

but the corresponding recovery and logical operations are generally more involved.
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Generically, the analogues5 of 𝑆 in (2.21) need not be separable for any choice of 𝜃𝑗

and 𝜑𝑗. One might still synthesize them with one- and two-qubit operations, perform

phase kickback through optimal control, or implement a QEC recovery via more

general channel-engineering techniques [54–57]. More efficient solutions could even

be found by analyzing specific experimental scenarios. One approach could be for

example to use devices with {𝑔𝑗} chosen so that the recovery and logical operations

(or good approximations of them, at least) can be conveniently implemented. One

could also correct to a slightly lower order 𝑞 [i.e., maintaining 𝑛 = 𝑂(log 𝑞) but not

saturating the ceiling in Eq. (2.8)]; this would yield a continuous family of possible �⃗� ’s

[cf. Eq. (2.13)], among which one might find codes with convenient QEC operations.

2.3 Code Performance

We now turn our attention to evaluating the codes we have constructed. We will

compare their effective error rates to those of bare physical qubits and repetition

codes, and examine how they perform under various imperfections and uncertainties.

Like all QEC codes under this noise model, ours will perform differently for different

values of the fluctuator-qubit coupling strengths {𝑔𝑗}. As part of our experimental

efforts, we have simulated specific candidate 𝑔𝑗’s. Here, however, it will often be

more useful to report average performance over all possible coupling strengths for

an idealized fluctuator, as we have done in Fig. 2-1. Monte Carlo integration is

by far the most effective technique we found to perform this averaging. It involves

constructing codewords and recoveries automatically for many random {𝑔𝑗}. As the
number of qubits 𝑛 grew, this process was limited not by the usual exponential growth

in complexity, but by numerical instabilities. Even if numerical errors arose only in

narrow regions of {𝑔𝑗}-space, these could bias our Monte Carlo results. We have

therefore taken great care to fend off such numerical issues for 𝑛 ≤ 5. In large part

this has meant extensive analytical manipulations, which allowed us to avoid numerics

5e.g., 𝑆1 = 𝑃 + 𝑃1 − 𝑃2 − 𝑃3 and 𝑆2 = 𝑃 − 𝑃1 + 𝑃2 − 𝑃3, which could be measured sequentially
to identify an error for 𝑛 = 3
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until the very last step. We present the details of this process below. Wherever

possible, we have also compared our Monte Carlo results with exact or asymptotic

expressions found (often with some difficulty) in Mathematica. These comparisons

can be found in Appendix A, together with further details concerning our Monte

Carlo integration.

2.3.1 Probability Distribution of 𝜃 and Effective Channel Form

In the interaction picture, CFD causes the register of qubits to evolve by 𝑈(𝜃) =

𝑒−𝑖𝜃𝐻e in any run of the experiment, where 𝜃 is a random variable that depends on

the fluctuator’s dynamics, its coupling to the register, and the elapsed time. The

fluctuator can behave differently in each run of the experiment, producing a different

value of 𝜃 in each realization, and thus causing decoherence in the register.

As far as the register is concerned, the fluctuator’s behavior can be fully captured

by specifying a (classical) probability distribution for 𝜃. Generically, this distribution

will depend on the underlying physics of the fluctuator. For instance, a fluctuator

consisting of an NV at room temperature under dynamical decoupling can produce

a somewhat different distribution for 𝜃 than a fluctuator consisting of a microwave

resonator at cryogenic temperature. This variation between different systems pre-

cludes a fully general performance analysis not just of the QEC codes introduced

here, but also of existing codes under CFD. Instead we consider a simple probability

distribution for 𝜃 for the sake of illustration, both here and in Fig. 2-1 of the previous

section.

In Fig. 2-1 we choose 𝜃 ∼ 𝒩 (0, 𝜎) to be normally distributed with zero mean

and standard deviation 𝜎. (A non-zero mean of 𝜃 could always be absorbed into the

rotating frame to give the aforementioned distribution.) This choice has two main

motivations:

1. It depends only on a single parameter 𝜎 that can straightforwardly be inter-

preted as the noise strength, since we normalize the coupling strengths to lie in

[0, 1].
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2. It induces a generally monotonic loss of coherence in the register with the noise

strength 𝜎. In contrast, more complicated distributions, such as those arising

from random telegraph noise in certain regimes, can induce an oscillating loss

of coherence. Such oscillations would becloud some of the analyses below. (For

instance, there is some ambiguity in defining pseudothresholds when the phys-

ical and logical infidelities, or the like, display small oscillations and intersect

several times.)

For the sake of comparison, however, we plot in Fig. 2-6 quantities analogous to

those in Fig. 2-1, but with a different underlying distribution of 𝜃. Notice that the

curves are deformed slightly from those in Fig. 2-1, but are qualitatively similar.
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Figure 2-6: We assume that the effect of the quantum fluctuator is to impart a
random phase, 𝜃. In contrast with Fig. 2-1, we consider here a uniformly distributed
𝜃 ∼ unif(−𝜃max, 𝜃max) for some maximum rotation angle 𝜃max ≥ 0. To simplify the
comparison with Fig. 2-1, we plot ⟨𝑝⟩ versus the standard deviation 𝜎 = 𝜃max/

√
3,

rather than versus 𝜃max directly. By normalizing the 𝑔𝑗’s to lie in [0, 1]𝑛, 𝜎 describes
the noise strength. CFD followed by a QEC recovery (if applicable) results in an
effective phase- or bit-flip channel 𝜌 ↦→ (1 − 𝑝)𝜌 + 𝑝𝐴𝜌𝐴, where 𝐴 = 𝑍 for the
physical qubits, 𝑋l for the repetition codes, and 𝑍l for hardware-efficient codes. The
average infidelity, average trace distance and diamond distance to 𝐼 are all ∝ 𝑝. As
the performance of all strategies shown depends on {𝑔𝑗}, we plot the average of 𝑝 over
{𝑔𝑗} ∈ [0, 1]𝑛. The error bands for the hardware-efficient codes denote the standard
error of the mean from Monte Carlo integration.
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Returning to 𝜃 ∼ 𝒩 (0, 𝜎), we now show that the effective logical channel describ-

ing CFD followed by a recovery has the form

𝜌l ↦→ (1 − 𝑝)𝜌l + 𝑝𝑍l𝜌l𝑍l, (2.22)

where 𝑝 depends on 𝜎, 𝑛 and {𝑔𝑗}. The average effect of 𝑈(𝜃) can be readily calculated

for 𝜃 ∼ 𝒩 (0, 𝜎). First, we define the superoperators ℋe and 𝒰𝜃 by their action on a

generic matrix 𝐴 asℋe(𝐴) := [𝐻e, 𝐴] and 𝒰𝜃(𝐴) := 𝑈(𝜃)𝐴𝑈(𝜃)† = 𝑒−𝑖𝜃ℋe(𝐴). To find

⟨𝒰⟩ :=
∫︀
R 𝒰𝜃 𝑝(𝜃) 𝑑𝜃, the superoperator describing the register’s average evolution, we

begin by diagonalizing ℋe. Notice that if 𝐻e |𝑗⟩ = 𝐸𝑗 |𝑗⟩, then {|𝑗⟩⟨𝑘|}2𝑛−1
𝑗,𝑘=0 is a

complete eigenbasis for ℋe. In particular:

ℋe

(︀
|𝑗⟩⟨𝑘|

)︀
= (𝐸𝑗 − 𝐸𝑘) |𝑗⟩⟨𝑘| , (2.23)

and so the spectral decomposition of ℋe reads

ℋe(𝐴) =
2𝑛−1∑︁
𝑗,𝑘=0

(𝐸𝑗 − 𝐸𝑘) ⟨𝑗|𝐴 |𝑘⟩ |𝑗⟩⟨𝑘| . (2.24)

Therefore,

⟨𝒰⟩(𝐴) =
2𝑛−1∑︁
𝑗,𝑘=0

⟨𝑒−𝑖𝜃(𝐸𝑗−𝐸𝑘)⟩ ⟨𝑗|𝐴 |𝑘⟩ |𝑗⟩⟨𝑘| . (2.25)

Finally, we use that the characteristic function of 𝜃 ∼ 𝒩 (0, 𝜃) is ⟨𝑒𝑖𝜃𝑥⟩ = 𝑒−
𝜎2𝑥2

2 for

any 𝑥 ∈ R to arrive at

⟨𝒰⟩(𝐴) =
2𝑛−1∑︁
𝑗,𝑘=0

𝑒−𝜎
2(𝐸𝑗−𝐸𝑘)

2/2 ⟨𝑗|𝐴 |𝑘⟩ |𝑗⟩⟨𝑘| , (2.26)

or more compactly: ⟨𝒰⟩ = exp(−𝜎2ℋ2
e
/2). This last expression is convenient for

numerical analyses, as it removes the need to average over many realizations of 𝜃 nu-

merically. For 𝜃 ∼ unif(−𝜃max, 𝜃max), a similar calculation gives ⟨𝒰⟩ = sinc(ℋe 𝜃max).

We consider throughout the usual (i.e., transpose) recovery channel ℛ(𝜌) =
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∑︀
𝑗 𝑈

†
𝑗𝑃𝑗𝜌𝑃𝑗𝑈𝑗, where 𝑈𝑗 and 𝑃𝑗 are defined as in Section 1.2.2. A straightforward

calculation allows one to express ℛ directly in terms of 𝑃 and 𝐻e as

ℛ(𝜌) =

𝑞∑︁
𝑗,𝑘=0

(𝑀+)𝑗𝑘𝑃𝐻
𝑗
e
𝜌𝐻𝑘

e
𝑃, (2.27)

where 𝑀 = (𝑚𝑗𝑘)
𝑞
𝑗,𝑘=0 is the code matrix 𝑃𝐻𝑗

e
𝐻𝑘

e
𝑃 =: 𝑚𝑗𝑘𝑃 and 𝑀+ is the Moore-

Penrose pseudoinverse of 𝑀 (which reduces to 𝑀−1 when 𝑀 is invertible). By con-

struction, 𝑚𝑗𝑘 = 0 when 𝑗 + 𝑘 is odd, i.e., when 𝑗 and 𝑘 have different parities.

Furthermore, the 𝑚𝑗𝑘’s are equal along anti-diagonal bands of 𝑀 with 𝑗+ 𝑘 = const.

It follows that every eigenvector �⃗� of 𝑀 can be chosen such that 𝑢𝑖 = 0 either for all

even 𝑖 or for all odd 𝑖. This implies that (𝑀+)𝑗𝑘 = 0 when 𝑗 and 𝑘 have different

parities, so the only non-vanishing terms in Eq. (2.27) will have 𝑗 and 𝑘 both even or

both odd6.

Notice that (ℛ𝒰 𝜃)(𝜌l) will comprise a weighted sum of terms with the form

ℛ(𝐻ℓ
e
𝜌l𝐻

𝑚
e

). Using that

𝑃𝐻𝑚
e
𝑃 =

1

2
tr(𝑍𝑚

l
𝐻𝑚

e
)𝑍𝑚

l
(2.28)

from Eqs. (2.11)–(2.13), and that 𝜌l = 𝑃𝜌l𝑃 for encoded states, we find

ℛ(𝐻ℓ
e
𝜌l𝐻

𝑚
e

) =
1

4

𝑞∑︁
𝑗,𝑘=0

(𝑀+)𝑗𝑘 tr(𝑍𝑗+ℓ
l

𝐻𝑗+ℓ
e

) tr(𝑍𝑘+𝑚
l

𝐻𝑘+𝑚
e

)𝑍𝑗+ℓ
l

𝜌l𝑍
𝑘+𝑚
l

. (2.29)

It follows immediately that ℛ⟨𝒰⟩ = ⟨ℛ𝒰 𝜃⟩ must have the form

⟨ℛ𝒰 𝜃⟩(𝜌l) = 𝑎0𝜌l + 𝑎1𝑍l𝜌l + 𝑎2𝜌l𝑍l + 𝑎3𝑍l𝜌l𝑍l (2.30)

6One can also use this observation to separate 𝑀 into two submatrices with (𝑗, 𝑘) = (even, even)
or (odd, odd), for which the pseudoinverses can be computed separately and then combined to give
𝑀+. This is not only faster, tends to be more numerically stable for larger 𝑛.
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for appropriate 𝑎𝑗’s. In particular,

⟨ℛ𝒰 𝜃⟩(𝜌l) =
∞∑︁

ℓ,𝑚=0

(−1)ℓ 𝑖ℓ+𝑚 ⟨𝜃ℓ+𝑚⟩
ℓ!𝑚!

ℛ(𝐻ℓ
e
𝜌l𝐻

𝑚
e

). (2.31)

For 𝜃 ∼ 𝒩 (0, 𝜎), ⟨𝜃ℓ+𝑚⟩ = 0 if ℓ + 𝑚 is odd, i.e., if ℓ and 𝑚 have different parities.

Therefore, the only non-vanishing terms in Eq. (2.31) have ℓ and 𝑚 both even or both

odd. Comparing with Eq. (2.29), one immediately sees that the 𝑎1 and 𝑎2 cross-terms

vanish. Finally, since ⟨ℛ𝒰𝜃⟩ is completely positive and trace-preserving (CPTP), we

can write 𝑎0 = 1 − 𝑝 and 𝑎3 = 𝑝 for some 𝑝 ∈ [0, 1], as claimed7 in Eq. (2.22). For

𝑛 = 2 the resulting function 𝑝 is

𝑝 =
1

4𝑔21
𝑒−2(𝑔1+𝑔2)2𝜎2

[︁
2𝑔21𝑒

2(𝑔1+𝑔2)2𝜎2

+ (𝑔1 − 𝑔2)𝑔2 − 2(𝑔21 − 𝑔22)𝑒2𝑔1(𝑔1+2𝑔2)𝜎2

− 𝑒8𝑔1𝑔2𝜎
2

𝑔2(𝑔1 + 𝑔2)
]︁
, (2.32)

where we have assumed |𝑔1| ≥ |𝑔2| ≥ 0 without loss of generality. The expressions for

𝑝 quickly become complicated for larger 𝑛.

More straightforwardly, the effect of CFD on the physical qubit 𝑗 can be shown to

have the same form, except with 𝑝 = [1 − ⟨cos(2𝑔𝑗𝜃)⟩]/2, where ⟨cos(2𝑔𝑗𝜃)⟩ = 𝑒−2𝑔2𝑗𝜎
2

for 𝜃 ∼ 𝒩 (0, 𝜎). Similarly, the logical channels for the 𝑛 = 3 and 𝑛 = 5 qubit

repetition codes (i.e., phase-flip codes) can be shown to have the form of a bit-flip

channel 𝜌l ↦→ (1−𝑝)𝜌l +𝑝𝑋l𝜌l𝑋l, for different functions 𝑝. Alternatively, they could

be expressed as phase-flip channels with the same 𝑝’s by using the labeling convention

|±l⟩ = |±⟩⊗𝑛. For 𝑛 = 3,

𝑝 =
1

16

(︁
8−4𝑒−2𝑔21𝜎

2−4𝑒−2𝑔22𝜎
2−4𝑒−2𝑔23𝜎

2

+𝑒−2(𝑔1+𝑔2+𝑔3)2𝜎2

+𝑒8(𝑔1+𝑔2)𝑔3𝜎
2−2(𝑔1+𝑔2+𝑔3)2𝜎2

+ 𝑒8𝑔2(𝑔1+𝑔3)𝜎
2−2(𝑔1+𝑔2+𝑔3)2𝜎2

+ 𝑒8𝑔1(𝑔2+𝑔3)𝜎
2−2(𝑔1+𝑔2+𝑔3)2𝜎2

)︁
. (2.33)

7The same argument holds for symmetric distributions about 𝜃 = 0 more generally, such as
𝜃 ∼ unif(−𝜃max, 𝜃max).
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The corresponding expression for 𝑛 = 5 is more complicated. Notice that while the

codewords for the repetition code do not depend on {𝑔𝑗}, Eq. (2.33) does, via ⟨𝒰⟩.
Many common measures of performance, e.g., average infidelity, average trace

distance or diamond distance from the identity channel, have the form 𝑝× const. for

bit- or phase-flip channels. It is therefore highly convenient that the channels above

have this form, as one can capture all of these performance measures at once (up to

constant pre-factors) simply by considering 𝑝. This avoids any ambiguity in choosing

one performance measure over others.

2.3.2 Pseudothresholds and Non-Commuting Interaction Terms

We now examine the pseudothresholds for our hardware-efficient codes with 𝜃 ∼
𝒩 (0, 𝜎). That is, for a given 𝑛, we find the largest 𝜎 for which 𝑝 of our codes is

smaller than the 𝑝’s of all physical qubits. Naturally, this pseudothreshold value,

which we denote 𝜎th, depends on {𝑔𝑗}. As discussed above, the pseudothresholds

derived from 𝑝 are the same as those from average infidelity, and average trace and

diamond distance from the identity.

The left panel of Fig. 2-7 shows the pseudothresholds for the efficient code with

𝑛 = 2. Notice that 𝜎th diverges around the region where 𝑔1 = 𝑔2, as the codespace be-

comes a decoherence-free subspace (DFS) here. In order to put these values of 𝜎th in

perspective, we repeat this analysis for the 3-qubit repetition code. Its pseudothresh-

old under CFD will depend on {𝑔1, 𝑔2, 𝑔3}, making it difficult to visualize. To get

around this difficulty, we fix max{𝑔𝑗} = 1 and leave the other coupling strengths free.

One could interpret this as expressing 𝜎th and {𝑔𝑗} ∖ {𝑔max} in units of 𝑔max. To sim-

plify comparison between two- and three-qubit codes, the right panel of Fig. 2-7 shows

𝜎th in this way for the 𝑛 = 2 efficient code. Fig. 2-8 then shows the pseudothresholds

for the 𝑛 = 3 repetition code (left) and efficient code (right) under CFD. We used

different color maps to emphasize that these plots depict very different ranges of 𝜎th,

since their features would be obscured if they were shown on a single shared color

map with the same scale. The pseudothresholds in Figs. 2-7 and 2-8 assume perfect

operations, exact knowledge of {𝑔𝑗}, and no other decoherence besides the CFD.
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Figure 2-7: The pseudothresholds for the 𝑛 = 2 efficient code. Without loss of gen-
erality, we consider 𝑔1, 𝑔2 ≥ 0. Left: the pseudothreshold vs. the coupling strengths
(𝑔1, 𝑔2). Right: a slice of the left panel with 𝑔1 fixed to 1, for comparison with Fig. 2-8.
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Figure 2-8: Left: the pseudothresholds for the 𝑛 = 3 repetition code. Right: the
pseudothresholds for the 𝑛 = 3 efficient code. In both panels 𝑔max = 𝑔1 is fixed to 1.
Without loss of generality, we consider 𝑔1, 𝑔2 ≥ 0.

As discussed Section 2.1, there are experimental settings in which the fluctuator’s

state affects not only the energy gaps of the register qubits, but also their quantization

axes (e.g., due to nonzero 𝐴(𝑗)
𝑧𝑥 in Eq. (2.3)). This not only dephases the qubits, but

more generally depolarizes them. Our hardware-efficient codes do not correct such

decoherence at present; instead, the underlying interaction terms can be suppressed

at the hardware level by increasing the qubits’ free energy gaps, as we have discussed.

Or, they could be corrected at the “software” level by concatenating these codes with

a more conventional QEC code. Fig. 2-9 shows the impact of such terms on the
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pseudothresholds of the 𝑛 = 2 efficient code.

We model the effect of these depolarizing terms (here for 2 qubits) by the Hamil-

tonian

𝐻e = 𝑔⊥1 𝑋1 + 𝑔
‖
1𝑍1 + 𝑔⊥2 𝑋2 + 𝑔

‖
2𝑍2, (2.34)

choosing the non-commuting (⊥) components to lie along 𝑋1 and 𝑋2, without loss

of generality, as in Eq. (2.3). In the interaction picture, the total Hamiltonian (cf.

Eq. (2.4)) takes the form

�̃�int(𝑡) =
∑︁
ℓ

𝜆ℓ |ℓ⟩⟨ℓ|𝑓 ⊗
(︁
𝑔⊥1

[︀
cos(𝜔1𝑡)𝑋1 − sin(𝜔1𝑡)𝑌1

]︀
+ 𝑔

‖
1𝑍1

+ 𝑔⊥2
[︀

cos(𝜔2𝑡)𝑋2 − sin(𝜔2𝑡)𝑌2
]︀

+ 𝑔
‖
2𝑍2

)︁
. (2.35)

In each run of the experiment, the register’s dynamics is therefore generated by

�̃�eff(𝑡)=𝜆(𝑡)
(︁
𝑔⊥1

[︀
cos(𝜔1𝑡)𝑋1−sin(𝜔1𝑡)𝑌1

]︀
+𝑔

‖
1𝑍1+𝑔

⊥
2

[︀
cos(𝜔2𝑡)𝑋2−sin(𝜔2𝑡)𝑌2

]︀
+𝑔

‖
2𝑍2

)︁
,

(2.36)

where the stochastic process 𝜆(𝑡) is defined such that 𝜆(𝑡) = 𝜆ℓ when the fluctuator is

in state ℓ at time 𝑡. When 𝑔⊥𝑗 = 0, this reduces to the case from the previous sections,

with 𝑔𝑗 ↔ 𝑔
‖
𝑗 and 𝜃 =

∫︀ 𝛿𝑡
0
𝜆(𝑡)𝑑𝑡, where 𝛿𝑡 is the elapsed time between recoveries. In

the more general setting here, however, the 𝑈 from Eq. (2.5) can instead be expressed

as a Magnus series, which we truncate to leading order under the assumption that

the couplings are weak compared to 𝛿𝑡−1:

𝑈 ≈ exp
[︁
− 𝑖

∫︁ 𝛿𝑡

0

�̃�eff(𝑡) 𝑑𝑡
]︁
. (2.37)

For the sake of illustration, we take 𝜔1 = 𝜔2 =: 𝜔 and 𝑔⊥1 /𝑔
‖
1 = 𝑔⊥2 /𝑔

‖
2. Moreover,

as per the hardware-level approach described above, we will assume that 𝜔 is made

large compared to the coupling strengths and 𝛿𝑡−1. We do not, however, make any

assumptions about the relative strengths of 𝑔⊥𝑗 and 𝑔‖𝑗 .

The integral in Eq. (2.37) contains two kinds of terms: (i) those considered in the
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previous sections, of the form 𝜃 (𝑔
‖
1𝑍1 +𝑔

‖
2𝑍2), and (ii) rapidly oscillating terms of the

form

𝑔⊥𝑗

∫︁ 𝛿𝑡

0

𝜆(𝑡)
[︀

cos(𝜔𝑡)𝑋𝑗 − sin(𝜔𝑡)𝑌𝑗
]︀
𝑑𝑡. (2.38)

As with 𝜃, here we want to describe these integrals, 𝜉𝑥 =
∫︀ 𝛿𝑡
0
𝜆(𝑡) cos(𝜔𝑡)𝑑𝑡 and

𝜉𝑦 =
∫︀ 𝛿𝑡
0
𝜆(𝑡) sin(𝜔𝑡)𝑑𝑡, as random variables with a given distribution. Defining the

Hamiltonian and propagator superoperators, ℋ and 𝒰 , as done Section (2.3.1), we

would find that the 𝑋𝑗 and 𝑌𝑗 components (normalized by 𝛿𝑡) give quadratures of the

power spectral density of 𝜆 at 𝜔, 𝑆𝜆(𝜔). (We will review the formalism of stochastic

processes in more detail in Chapter 4.) As they represent quadratures of the spectrum

at a (shifted) frequency 𝜔, we can thus model 𝜉𝑥,𝑦 as independent of 𝜃 and of each

other, identically distributed, and as both following a normal distribution with zero

mean and variance 𝑆𝜆(𝜔)𝛿𝑡/2 (so that the total power 𝑆𝜆(𝜔) is split evenly between

both quadratures). Concretely, we take

𝑈 = exp

{︃
−𝑖

[︁ 2∑︁
𝑗=1

𝑔⊥𝑗
(︀
𝜉𝑥𝑋𝑗 + 𝜉𝑦𝑌𝑗

)︀
+ 𝜃

2∑︁
𝑗=1

𝑔
‖
𝑗𝑍𝑗

]︁}︃
, (2.39)

and average over 𝜃 ∼ 𝒩 (0, 𝜎) and 𝜉𝑥, 𝜉𝑦 ∼ 𝒩 (0,
√︁

𝑆𝜆(𝜔)𝛿𝑡
2

) (all independent). Notice

that the non-commuting terms’ importance depends not only on the relative strengths

of 𝑔⊥𝑗 and 𝑔‖𝑗 , but also on 𝑆𝜆(𝜔), which is a property of the fluctuator. In fact, using

the scaling property of normal distributions, Eq. (2.39) can be re-written as

𝑈 = exp

{︃
−𝑖

2∑︁
𝑗=1

𝑔
‖
𝑗

[︁
Ξ𝑥𝑋𝑗 + Ξ𝑦𝑌𝑗 + 𝜃𝑍𝑗

]︁}︃
, (2.40)

where Ξ𝑥,Ξ𝑦 ∼ 𝒩
(︂

0,
√︁

𝑆𝜆(𝜔)𝛿𝑡
2

𝑔⊥𝑗
𝑔
‖
𝑗

)︂
. Therefore, just as 𝜎 sets the strength of the com-

muting noise,
√︀
𝑆𝜆(𝜔)𝛿𝑡 𝑔⊥𝑗 /𝑔

‖
𝑗 (which is independent of 𝑗) sets the strength of the

non-commuting (i.e., non-secular) noise8. Fig 2-9 shows the resulting pseudothresh-

8The factor of 1/
√
2 drops out since there are two independent quadratures that contribute.
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olds for different ratios

𝑟 =

√︀
𝑆𝜆(𝜔)𝛿𝑡 𝑔⊥𝑗 /𝑔

‖
𝑗

𝜎
(2.41)

of these two quantities. The ratio 𝑟 describes the relative importance of the two noise

types: 𝑟 ≪ 1 when commuting (‖) noise dominates, while 𝑟 ≫ 1 when non-commuting

(⊥) noise dominates.

0 0.2 0.4 0.6 0.8 1
g2

∥
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2

3
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σth

g1
∥=1

⊥ to ∥ noise ratio
r=0

r=10-2

r=10-1

r=1

Figure 2-9: The analogous pseudothresholds to Fig. 2-7, but under non-commuting
interaction terms of various strengths. The 𝑟 = 0 curve is the same as in Fig. 2-7.
The 𝑟 > 0 curves were calculated using the average infidelity (as opposed to ⟨𝑝⟩), as
their logical channels no longer have a simple phase-flip form. These curves appear to
diverge like the 𝑟 = 0 curve, but at larger values of 𝑔‖2. Only when the non-commuting
(⊥) terms become dominant (i.e., when 𝑟 > 1, not shown) do the pseudothresholds
start to behave erratically and become ill-defined. The pseudothresholds for 𝑟 > 0
were computed at discrete intervals; the interpolating curves serve to guide the eye.

Pseudothresholds under CFD become difficult to visualize for 𝑛 ≥ 4. Moreover,

since those of efficient codes diverge around DFS’s, we cannot average 𝜎th over {𝑔𝑗}.
Therefore, in order to analyze the sensitivity of efficient codes to calibration errors

(i.e., uncertainty) in {𝑔𝑗} versus 𝑛, we will revert to plotting ⟨𝑝⟩ versus 𝜎, as in Fig. 2-

1. 𝑝 is always bounded, so the average ⟨𝑝⟩ over {𝑔𝑗} is always well-defined, in contrast

with 𝜎th.
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2.3.3 Sensitivity to Calibration Errors

We now analyze the effects of calibration error (i.e., uncertainty) in {𝑔𝑗}. Since the
encoding and recovery operations for our codes depend explicitly on {𝑔𝑗}, error in
measuring these coupling strengths will generally hurt overall performance. We model

such errors through additive Gaussian noise on 𝑔𝑗: that is, if 𝑔𝑗 is the true coupling

strength, we suppose that one instead estimates 𝑔𝑗 + 𝛿𝑔𝑗, where 𝛿𝑔𝑗 ∼ 𝒩 (0,∆𝑔𝑗). For

the sake of illustration, we assume furthermore that the errors 𝛿𝑔𝑗 are independent

across qubits, and that the measurement precision ∆𝑔𝑗 is the same for all 𝑗. We then

estimate ⟨𝑝⟩ through Monte Carlo averaging both over �⃗� ∈ [0, 1]𝑛 and 𝛿𝑔𝑗.

Our goal is to analyze the sensitivity of efficient codes to measurement precision

∆𝑔𝑗 as a function of 𝑛. To this end, we begin by computing analogues of Fig. 2-1

(which assumes ∆𝑔𝑗 = 0) with increasing calibration error. The results are shown in

Fig. 2-10. Notice that at ∆𝑔𝑗 = 0.01 our efficient codes all perform only slightly worse

than in Fig. 2-1. As ∆𝑔𝑗 increases further, however, we begin to see saturation: that is,

there is an 𝑛max (decreasing with ∆𝑔𝑗) above which there is no further improvement.

Finally, when one has almost no knowledge of the coupling strengths at ∆𝑔𝑗 = 0.5,

the efficient codes are no longer effective for any 𝑛. This behavior is expected: our

codes achieve a high level of protection by exploiting knowledge of the noise. In the

limit where we lose this knowledge, we necessarily also lose the protection. Note that

the measurement precision reported in Ref. [31] for nuclear spins near an NV center

corresponds to ∆𝑔𝑗 ∼ 0.01.

Fig. 2-11 presents similar information in a different way. It shows explicitly the

behavior of ⟨𝑝⟩ vs 𝑛 at different representative noise strengths and levels of calibration

error. In each panel, we fix 𝑛 and examine the dependence of ⟨𝑝⟩ on ∆𝑔𝑗. In the low-

and intermediate-noise regimes, this dependence is well-described by ⟨𝑝⟩ = 𝐴𝑛 ∆𝑔2𝑗 +

𝐵𝑛, whereas at high noise ⟨𝑝⟩ = 𝐴𝑛 ∆𝑔𝑗 + 𝐵𝑛 gives a better fit. The coefficients

𝐴𝑛 (which correspond to 𝑑⟨𝑝⟩/𝑑(∆𝑔2𝑗 ) and 𝑑⟨𝑝⟩/𝑑(∆𝑔𝑗) respectively, and were found

using smaller steps of ∆𝑔𝑗 than shown in Figs. 2-10 and 2-11) are plotted versus 𝑛

in Fig. 2-12. Notice that the sensitivity to calibration uncertainty always increases
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Figure 2-10: The quantities analogous to those in Fig. 2-1, but where with increasing
measurement uncertainty ∆𝑔𝑗 in the coupling strengths between register qubits and
the common resonator. Error bands denote standard error of the mean from Monte
Carlo integration.

with 𝑛. This is expected, since adding more qubits with ∆𝑔𝑗 > 0 introduces more

uncertainty to the system. The asymptotic behavior of the sensitivity versus 𝑛 is

less clear. In the high-noise regime, for instance, it is consistent with an exponential

increase. In the low- and intermediate-noise regimes, however, the scaling appears

sub-exponential (and perhaps even sub-linear in the latter regime).

The upper limit of 𝑛 = 5 in these plots is due to numerical instabilities during

Monte Carlo averaging. When the coupling strengths {𝑔𝑗} admit a DFS, the matrix

𝑀 pertaining to Eq. (2.27) becomes trivial, as does the recovery ℛ. Physically, this

is a very fortunate situation, as it gives a good quantum memory without the need

for active error correction. The same is true when {𝑔𝑗} give only an approximate

DFS. However, while physically convenient, this latter case is problematic for the
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Figure 2-11: Average performance of efficient QEC codes by ∆𝑔𝑗 in three illustrative
noise strength regimes. Error bars denote standard error of the mean from Monte
Carlo integration, and lines are to guide the eye.
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Monte-Carlo averaging we perform here, as it gives an ill-conditioned code matrix𝑀 .

This, in turn, can produce large numerical errors in 𝑝 when generated and inverted

automatically as a subroutine of Monte Carlo integration. Such approximate DFS’s

become more frequent as 𝑛 increases (since it becomes more likely that two elements

of a random �⃗� ∈ [0, 1]𝑛 be nearly equal), thus making it difficult to compute average

𝑝’s for 𝑛 & 6.

2.4 Discussion

The noise-adapted QEC codes we introduced involve a trade-off: they correct CFD

very efficiently at the cost of leaving most other errors uncorrected. For instance,

errors during gates, due to miscalibration of 𝑔𝑗’s, or from decoherence beyond CFD

will generally affect the logical state. Accordingly, these codes are manifestly not

fault-tolerant in their current form [58]. Crucially though, they offer such a large

error budget under strong CFD—as evidenced by the gaps between QEC codes and

physical qubits in Fig. 2-1—that this trade-off can easily be worthwhile, much like the

targeted correction of photon loss in Ref. [29]. Indeed, as we showed in Section 2.3, the

gap survives even in the presence of large miscalibration of the 𝑔𝑗’s. Fault-tolerance

could still be achieved using implementation-specific methods as in Ref. [59]. In

the long-term, concatenation could potentially reach fault-tolerance, using our noise-

adapted codes at the lowest level of encoding to protect against the dominant error

source, and more conventional codes at higher levels. This is precisely the strategy

described in the quote from Nielsen and Chuang [7] at the start of this chapter.

Even more importantly, our codes could have a near-term impact in applications

such as quantum sensing and communication, where long-lived quantum memories

are useful even when they are not fault-tolerant. We emphasize, however, that these

codes are designed expressly for small- and medium-scale qubit registers, and that the

exponential reduction in overhead should be understood to apply only in such devices.

For one, there is typically a maximum 𝑛 above which CFD no longer dominates.

Also, while the error budget always increases with 𝑛 in principle, so too do the
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effects of gate errors, miscalibration of 𝑔𝑗’s and decoherence beyond CFD, as more

qubits introduce more error channels. Conversely, this growing sensitivity suggests an

unconventional quantum sensing scheme to measure {𝑔𝑗} for large 𝑛, by variationally

adjusting one’s estimates to maximize code performance. In the nearer term, however,

these imperfections will likely set a maximum 𝑛 in any particular device beyond which

one achieves no further gains, depending on their relative importance compared to

CFD, as observed in Section 2.3.

The QEC codes presented in this chapter could be generalized in several ways.

First, they can readily be made to correct dephasing due to multiple common fluctua-

tors given enough qubits, at the cost of correcting to lower order in 𝛿𝑡. Similarly, they

can correct spatially-correlated phase noise beyond that arising from common fluctu-

ators. As we will see in Part II for instance, classical white noise in the energy gaps

of register qubits leads to Lindblad jump operators 𝐿𝑗 =
√︀
𝜆𝑗 �⃗�𝑗 · (𝑍1, . . . , 𝑍𝑛), where

{
√︀
𝜆𝑗 �⃗�𝑗} describes the noise’s normal modes9 [60]. In the limit of spatially uncorre-

lated noise the 𝐿𝑗’s become Pauli 𝑍 operators; however, correlated noise produces 𝐿𝑗’s

with unequal amplitudes
√︀
𝜆𝑗. When the noise correlations are appreciable, it could

be advantageous to use a QEC code that corrects the stronger noise modes (those

with large 𝜆𝑗’s) to higher order in 𝛿𝑡 than the weaker ones (smaller 𝜆𝑗’s) through an

appropriate choice of 𝑉 .

It may also be possible to extend the codes presented here for the setting where a

fluctuator’s state affects not only the energy gap of each qubit, but also the direction

of its Hamiltonian (i.e., its quantization axis), as in Eq. (2.3) [61]. As discussed

previously, eigenstate-preserving coupling arises frequently in practice because a large

detuning between a weakly-coupled qubit and fluctuator suppresses non-commuting

parts of their interaction Hamiltonian. However, when the coupling to the fluctuator is

comparable to the internal Hamiltonian, such as for some nuclear spins near defects

in diamond, there can remain significant non-commuting terms leading to 𝐻𝐸 ∼

9One could approximate the CFD considered in this chapter by instead defining a single non-
vanishing jump operator 𝐿 ∝ 𝐻𝐸 acting directly on the register. This would capture the spatial
correlations inherent in CFD, though not the temporal correlations in general. (Specifically, it would
approximate random telegraph noise as white noise.)
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∑︀
𝑗 �⃗�𝑗 · �⃗�𝑗 in Eq. (2.4). We have analyzed this effect’s impact on code performance

in Section 2.3. Extending the codes introduced here to this more general setting

would make them even more widely applicable to near-term experiments, but at the

cost of larger overheads, since they would need to contend with a substantially larger

space of possible errors. It may be more practical instead to suppress non-commuting

interaction terms at the hardware level by increasing the energy gaps 𝜔𝑗 of the register

qubits, or at the “software” level through concatenation.

Another interesting generalization would be to efficiently encode 𝑘 > 1 logical

qubits, which seems plausible based on the counting argument used throughout in-

volving the dimension of H versus E . (Note, however, that this counting argument

should be taken only as a guide to where new QEC codes might exist, rather than as a

guarantee that they will exist. For instance, this argument suggests the possibility of

a 3-qubit amplitude damping code, cf. the 4-qubit version discussed at the beginning

of this chapter. However, numerical evidence suggests that no such code exists [62].)

Finally, it would be interesting to use the tools presented here to design codes for other

common error sources, such as other types of decoherence or control/measurement

errors.

Our results demonstrate that it is possible to find noise-adapted QEC codes with

a well-defined advantage (here exponential) over known, general codes. It is com-

monly argued that QEC will be of little use in Noisy Intermediate-Scale Quantum

(NISQ) devices due to its prohibitive overhead [2]. Device-adapted QEC codes are a

promising way to reduce this overhead, although to date they have mostly relied on

numerical and variational techniques discussed in more detail in Chapter 3. These

codes can therefore lack transparency in terms of what advantage they offer, and

when [63–67] (see also [19] Ch. 13 and [68]). In contrast, the codes introduced here

exhibit a clear reduction in overhead under a well-characterized and common type of

noise. New QEC codes of this type could provide a middle ground between small-scale

uncorrected devices and large-scale fault-tolerant ones, where the dominant decoher-

ence mechanisms are tamed through specialized codes with only modest overheads.

This view of near-term QEC as quantum “firmware” rather than “software” suggests
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a possible interplay between theory and experiment, whereby NISQ hardware and

efficient QEC codes both guide each other’s development.
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Chapter 3

Robustness-Optimized QEC

As we saw in the last chapter, it can be advantageous in the near-term to trade the

wide net of conventional QEC for a more tailored approach, which exploits knowledge

of the dominant error mechanisms to achieve better error suppression [24, 69–72].

Chapter 2 and Part II focus on adapting QEC protocols to the intrinsic decoherence

in idling quantum devices. Of course, errors can also arise in other ways, due to faulty

controls or measurements, for instance, whose structure could also be exploited. In

this chapter, we will therefore take preliminary steps in developing tailored QEC

protocols for these latter types of errors.

In Chapter 2, we constructed tailored QEC codes analytically. A more common

approach, called optimization-based QEC, aims to do so numerically [25, 63, 64, 66–

68, 73–81] (see also Ref. [19], Chapter 13, for a review). It works by mapping the

search for good QEC protocols (i.e., codes and recoveries) to an optimization problem,

whose solution gives a protocol tailored for a particular type of noise. There are several

ways to perform this mapping, some of which enable efficient optimization, as well

as a degree of robustness to uncertainties in the error model [19, 65, 82]. While the

resulting protocols often lack an intuitive structure, they hold promise for near-term

devices, and perhaps as a first level of encoding in larger devices [74].

To date, optimization-based QEC has been largely synonymous with channel-

adapted QEC; that is, the focus has been on adapting QEC protocols to the quan-

tum channels describing intrinsic decoherence in idling devices. A notable feature
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in some recent, pre-fault-tolerant experiments, however, is that errors due to imper-

fect QEC recoveries (i.e., measurement and feedback operations) comprise a signif-

icant share of the logical errors [29, 83]. In other words, there is ample room to

improve QEC performance in near-term experiments by minimizing the impact of

such recovery errors, in the spirit of Refs. [84, 85]. This suggests a new type of

optimization-based QEC, orthogonal to channel-adapted QEC: rather than tailoring

QEC protocols to the intrinsic decoherence between recoveries, one could instead find

protocols which are optimally robust against imperfections in the recoveries them-

selves. This is a fundamentally different task; instead of finding an optimal way

to suppress errors inherent to a device, it involves devising protocols that perform

optimally under imperfect implementation. We demonstrate this latter approach,

which we call robustness-optimized QEC, by maximizing the robustness of the 𝑛 = 3

repetition code to syndrome measurement errors in the associated recovery.

3.1 Setting

We consider, for illustration, the task of preserving a logical qubit using three physical

qubits subject to phase noise, which is the dominant kind of decoherence in many

types of quantum devices [51, 86–90]. For simplicity, we will not let the QEC code

itself vary in the optimization here; rather, we will use the phase-flip code, with

codewords

|0l⟩ = |+++⟩ |1l⟩ = |−−−⟩ , (3.1)

where |±⟩ = 1√
2
(|0⟩ ± |1⟩) [91–94] (see also Ref. [19] Ch. 21 and references therein).

That is, we will not tailor the code itself, but rather the associated control opera-

tions. For the sake of generality, then, we will assume decoherence with no particular

spatial structure akin to that in the previous chapter, and focus simply on the impact

of 𝜎𝑧 errors on the qubits. These can be detected non-destructively by measuring

{𝑃, 𝑃1, 𝑃2, 𝑃3}, where 𝑃 = |0l⟩⟨0l| + |1l⟩⟨1l| and 𝑃𝑗 = 𝑍𝑗𝑃𝑍𝑗 are rank-2 orthogonal

projectors. (𝑍𝑗 denotes the Pauli matrix 𝜎𝑧 on qubit 𝑗.) A 𝑍𝑗 error will transform

the logical state |𝜓l⟩ = 𝛼 |0l⟩ + 𝛽 |1l⟩ into range(𝑃𝑗) in a way that can be reversed
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by applying 𝑍𝑗. The quantum channel describing this ideal recovery procedure is

ℛideal(𝜌) =
3∑︁
𝑗=0

𝑈 †
𝑗𝑃𝑗𝜌𝑃𝑗𝑈𝑗, (3.2)

where 𝑃0 = 𝑃 , 𝑈0 = 𝐼, 𝑈𝑗 = 𝑍𝑗 for 𝑗 ≥ 1 [7], as introduced in Chapter 1. Note

that throughout this thesis we consider the conceptually-simple QEC strategy in

which errors are physically corrected upon detection, as opposed to more sophisti-

cated strategies using Pauli/Clifford frames [95, 96]. Moreover, we will assume that

syndrome measurements are not repeated multiple times as part of the same recovery,

e.g., due to the time this would take.

Suppose, however, that the measurement process is imperfect, and reports the

wrong result uniformly with some probability 𝑝meas, e.g., due to an error on an un-

corrected ancilla. That is, a general state may be projected into range(𝑃𝑗) in the

usual way, but the measurement device sometimes reports it to be in range(𝑃𝑘) for

𝑘 ̸= 𝑗. Feeding back on this faulty syndrome would cause a logical error. The channel

describing this imperfect recovery is1:

ℛfaulty(𝜌) = (1 − 𝑝meas)ℛideal(𝜌) +
𝑝meas

3

3∑︁
𝑖,𝑗=0
𝑖 ̸=𝑗

𝑈 †
𝑗𝑃𝑖𝜌𝑃𝑖𝑈𝑗. (3.3)

Note that 𝑝meas is the total measurement error probability, which may encompass the

individual error probabilities from measurements on several ancilla qubits.

How can the phase-flip code be made more robust to such imperfections in the

recovery? One can imagining two extreme strategies which work well in different

regimes:

Strategy A - Conventional QEC If 𝑝meas is sufficiently small, a good strategy is

to periodically perform ℛfaulty, and simply accept the performance degradation

due to non-zero 𝑝meas.

1Note that a syndrome measurement error is not equivalent to a 𝑍𝑗 error on a data qubit, since
it has no effect in the absence of feedback.

83



Strategy B - Quantum Zeno Effect If 𝑝meas is sufficiently large, it may be bet-

ter not to actively correct phase errors at all. Instead, one could suppress

them—independent of 𝑝meas—through the quantum Zeno effect by repeatedly

measuring {𝑃𝑗} without feedback [97–100].

Which of these represents the better approach will depend both on 𝑝meas and on the

total amount of time, ∆𝑡, for which one wants to preserve the logical state.

More generally, however, one could interpolate between Strategies A and B as

follows: with probability 𝑝fb perform ℛfaulty, and with probability 1−𝑝fb measure the

parity {𝑃𝑗} but do not feed back. This corresponds to the channel

ℛopt(𝜌) = 𝑝fbℛfaulty(𝜌) + (1 − 𝑝fb)
3∑︁
𝑗=0

𝑃𝑗𝜌𝑃𝑗. (3.4)

Strategies A and B then correspond to 𝑝fb = 1 and 0 respectively. Instead of adopting

either strategy entirely, we will treat 𝑝fb as a free parameter, and find the optimal value

which maximizes robustness to recovery imperfections. For certain values of 𝑝meas and

∆𝑡, we find that intermediate values of 𝑝fb outperform both extreme strategies.

3.2 Decoherence Model and Objective Function

A common and simple model for the phase noise is a Lindblad equation with 𝑍𝑗 jumps,

as in Example 3.1 of Chapter 1. This would be equivalent to the qubits’ energy

gaps being subject to a zero-mean Gaussian white noise process (see Chapter 4),

and would suppress single-qubit coherence as
⃒⃒
⟨0| 𝜌𝑗 |1⟩

⃒⃒
∝ exp(−𝑡/𝑇 *

2 ) for some

characteristic dephasing time 𝑇 *
2 [60, 101]. While this is a common idealization of

realistic decoherence, it is unsuitable here. The quantum Zeno effect—which has

been observed in several experiments, including some which preserve subspaces of

dimension ≥ 1, see e.g., [102–106]—does not occur in the pathological limit where

the phase noise has infinite power at high frequencies. This is precisely the limit

described by the aforementioned Lindblad model, and so repeated measurements

of {𝑃𝑗}, no matter how frequent, would not preserve a logical state in this model.
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Adopting such a model would make it largely pointless to optimize 𝑝fb.

A more realistic model for some experiments, which displays a Zeno effect and in

turn a rich landscape in 𝑝fb, is dephasing due to low-frequency noise in the qubits’

energy gaps. Such noise suppresses single-qubit coherence as exp[−(𝑡/𝑇 *
2 )2], which

is more typical in many experiments with slowly-evolving environments2 [107, 108].

Concretely, we assume that in a suitable frame the qubits evolve as

𝐻(𝑡) =
1

2

3∑︁
𝑗=1

𝜔𝑗(𝑡)𝑍𝑗, (3.5)

where the 𝜔𝑗’s are independent quasi-static noise processes that are approximately

constant over [0,∆𝑡] but vary between runs of the experiment. More precisely, we

take 𝜔𝑗 to be a zero-mean, stationary Gaussian stochastic process with a constant

autocorrelation function

⟨𝜔𝑗(𝑡)𝜔𝑗(0)⟩ =
2

(𝑇 *
2 )2

, (3.6)

where ⟨·⟩ denotes a (classical) average over realizations of 𝜔𝑗. That is, the power

spectrum of 𝜔𝑗 goes as 𝑆𝜔𝑗
(𝜈) ∝ 𝛿(𝜈). While the dynamics in each run of the exper-

iment is unitary, the average dynamics is not, which leads to dephasing. Note that

dynamical decoupling could refocus this noise, although we will not consider it here

in order to isolate the effects of QEC [49, 50, 109]. In practice, however, it could be

beneficial to use dynamical decoupling in conjunction with the present QEC scheme.

We suppose that one can perform ℛopt 𝑁 ≥ 1 times, equally spaced, during

the interval [0,∆𝑡] (with the first ℛopt occurring at time 𝛿𝑡 = ∆𝑡/𝑁 and the last

at ∆𝑡). To describe the effect of this procedure, we first define the superoperator

𝒱𝑡(𝜌) := 𝑉𝑡 𝜌 𝑉
†
𝑡 , where

𝑉𝑡 := exp

[︂
−𝑖

∫︁ 𝑡

0

𝐻(𝑡′) 𝑑𝑡′
]︂
. (3.7)

Then, if the system is prepared in the initial logical state 𝜌l = |𝜓l⟩⟨𝜓l|, its final state

2This is the same Ramsey decay as produced by 1/𝑓 -type noise, where most of the noise power
is at low frequencies. See Chapter 4 for an introduction.
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after performing 𝑁 repetitions of ℛopt in the interval [0,∆𝑡] is

𝜌𝑓 =
⟨ (︀

ℛopt 𝒱Δ𝑡/𝑁

)︀𝑁 ⟩
(𝜌l). (3.8)

We will use the quantum fidelity 𝐹 = ⟨𝜓l| 𝜌𝑓 |𝜓l⟩ as a measure of performance. More

precisely, we use the fidelity averaged over all initial logical states, 𝐹 , as a figure of

merit/objective function when optimizing the robustness. For 𝑁 = 1 recovery (at a

final time ∆𝑡), we have

𝐹 1 =
1

6

[︀
1 + 𝑝fb(3 − 4𝑝meas)

]︀
+

1

2
𝑒−2(Δ𝑡/𝑇 *

2 )
2

(1 − 𝑝fb) (3.9)

+
1

4
𝑒−(Δ𝑡/𝑇 *

2 )
2[︀

1 + 𝑝fb(1 − 2𝑝meas)
]︀

+
1

12
𝑒−3(Δ𝑡/𝑇 *

2 )
2[︀

1 + 𝑝fb(2𝑝meas − 3)
]︀
.

We were able to find analytic expressions for 𝐹𝑁 with 1 ≤ 𝑁 ≤ 10, although for

𝑁 ≥ 2 the expressions quickly become lengthy. (The expression for 𝐹 10, for instance,

contains 4588 terms. It, along with the other 𝐹𝑁 ’s, can be found in the Mathematica

notebook included in the supplementary material of Ref. [110].). Average fidelities for

𝑁 ≥ 11 are not only difficult to compute, but they are of limited relevance to near-

term experiments where control limitations and other sources of error impose a limit

on 𝑁 . Moreover, even in the longer term, the number of recoveries within an interval

[0,∆𝑡] must be limited if there is to be time left over to perform logical operations

on the encoded state (since recoveries will not be instantaneous in practice).

3.3 Results

We will treat ∆𝑡 and 𝑝meas as fixed in any given experiment, which leaves the param-

eters 𝑁 and 𝑝fb to be optimized. The dependence of 𝐹𝑁 on these parameters, for a

particular ∆𝑡 and 𝑝meas, is illustrated in Fig. 3-1. For this ∆𝑡 and 𝑝meas, the most ro-

bust strategy is a hybrid of Strategies A and B, which outperforms the two extremes.

Perhaps counter-intuitively, this means that the average fidelity is increased here by

introducing extra randomness into ℛopt through the choice of 0 < 𝑝fb < 1.
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Figure 3-1: The average fidelity versus 𝑝fb and 𝑁 for ∆𝑡 = 2𝑇 *
2 and 𝑝meas = 0.22.

The solid lines denote 𝐹𝑁 for 𝑁 ≥ 4; the curves for 𝑁 ≤ 3 are not visible as
they are too low. The dashed line is the fidelity of single physical qubit under the
same noise. The optimal strategy of those considered, that is, the 𝑁 ∈ [1, 10] and
𝑝fb ∈ [0, 1] combination producing the highest fidelity, uses 𝑁 = 10 (bold red line)
and 𝑝fb = 0.488 to achieve a fidelity of 𝐹max = 0.674.

More generally, for each (∆𝑡, 𝑝meas), we optimize 𝐹𝑁 over both 𝑁 and 𝑝fb. The

optimal 𝑝fb, shown in Fig. 3-2, has three distinct “phases” in the parameter range

considered. As anticipated above, when 𝑝meas is sufficiently small the optimal strategy

is to perform conventional recoveries (𝑝fb = 1) and simply accept the occasional

faults that these introduce. Conversely, when 𝑝meas is sufficiently large (and/or ∆𝑡

is sufficiently small), it is better to avoid feedback entirely and simply preserve the

logical state using a Zeno effect from repeated parity measurements. We observe a

sharp transition between these two optimal strategies in much of the parameter space.

Mathematically, this is due to the maxima of 𝐹𝑁 often occurring on the boundary

of {𝑝fb ∈ [0, 1]} rather than in the interior. Remarkably, however, there is a finite

region where the transition is not sharp, which exhibits a third “phase” corresponding

to optimal 𝑝fb’s near 0.5 (though not always exactly equal to 0.5, see e.g., Fig. 3-1).

The ∆𝑡 and 𝑝meas from Fig. 3-1 are from this region.

The maximum values of 𝐹𝑁 and the optimal 𝑁 ’s resulting from this same opti-

mization are shown in the left and center panels of Fig. 3-3. As one might expect,

the fidelity decays gradually with increasing ∆𝑡 and 𝑝meas. The choice of 𝑁 is more

complex, as the same optimal 𝑁 can represent different strategies depending on the
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Figure 3-2: The optimal 𝑝fb for different values of ∆𝑡 and 𝑝meas, after encoding. The
best 𝑝(𝑁)

fb for each 𝐹𝑁 was found separately; this figure shows the one giving the
highest value of 𝐹𝑁 . 𝑝fb = 1 gives the conventional QEC strategy of measurement
and feedback, whereas 𝑝meas = 0 uses no feedback, relying instead on a quantum Zeno
effect from repeated parity measurements.

corresponding 𝑝fb. For instance, using a large 𝑁 is optimal both when 𝑝meas is small

and when it is large (compared to ∆𝑡). In the former regime one has 𝑝fb = 1, so a

large 𝑁 reduces the buildup of uncorrectable errors of weight 2 and 3 due to phase

noise. In the latter regime 𝑝fb = 0, so a large 𝑁 means frequent measurements and

therefore a stronger Zeno effect. Between these two regimes, moderate values of 𝑁 are

optimal, as they provide some correction without too many recovery faults. Finally,

for large ∆𝑡 and large 𝑝meas we find small 𝑁 to be optimal. This is likely an artifact

of considering only 𝑁 ≤ 10: lim𝑁→∞ 𝐹𝑁 = 1 for all ∆𝑡 and 𝑝meas, so if we allowed

unbounded 𝑁 the Zeno strategy would always be optimal in principle. However, for

large ∆𝑡, 𝑁 ≤ 10 measurements are insufficient to produce a strong Zeno effect, so the

next-best strategy is to use faulty recoveries sparingly. Note finally that for large ∆𝑡

and/or 𝑝meas, including some values where a hybrid strategy is shown to be optimal

in Fig. 3-2, it may be better not to perform encoding at all (see Appendix B).
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Figure 3-3: Top left: The maximum fidelity achievable by optimizing over 𝑝fb ∈ [0, 1]
and 1 ≤ 𝑁 ≤ 10. Top right: The optimal 𝑁 which gives this maximum fidelity.
Bottom: For comparison, the fidelity for a single physical qubit subject to the same
noise.
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3.4 Discussion

We have shown that one can optimize the robustness of small, pre-fault-tolerant QEC

protocols to recovery errors, in analogy to how such protocols have previously been

optimized for specific decoherence channels. Whereas the latter approach is often

called channel-adapted QEC, we term ours robustness-optimized QEC. Errors from

QEC recoveries have formed an appreciable fraction of the total logical errors in recent

experiments [29, 83]. This suggests that there is much to be gained by optimizing for

robustness against such errors in addition to optimizing for the decoherence inherent

in particular devices. While fault-tolerant methods could handle such errors in the

longer term, the present strategy is specifically intended for nearer-term, pre-fault-

tolerant experiments [111, 112].

These results raise a number of further questions and possibilities, which we divide

into technical points and points of strategy. First the technical points. As in previous

works on optimization-based QEC, there is some ambiguity here in choosing a figure

of merit. We have used average fidelity for convenience; however, the optimization

could give slightly different results/strategies if we had chosen a different objective

function, e.g., trace distance to the identity [113]. Moreover, there is often little reason

to favor one particular performance measure over another a priori (see [19], Chapter

13). It would be useful to better understand how such effects affect schemes of the sort

considered here. Similarly, the robust QEC strategies found here are robust against

a particular type of error during recovery, which we chose as a generic illustration—

they are not a panacea3. Different types of recovery errors will likely require different

models and optimization mappings than the ones used here, which may need to be

worked out case-by-case. Fortunately, there is less ambiguity with this choice, since

the dominant error sources in current experiments are often well-understood (see,

e.g., [29, 83]). There is likely more room for optimization in more detailed fault

models, e.g., where the probability of measurement errors is outcome-dependent, or

when such errors are predominantly due to decoherence of ancillas (rather than limited

3In particular, our fault model is different—and simpler—than the dominant recovery imperfec-
tions in [29, 83].
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measurement fidelity, for instance) [91, 94]. Indeed, noise that is highly structured can

often be dealt with more efficiently in general [24, 26, 27, 69, 70, 72, 109]. Finally,

previous works on channel-adapted QEC have introduced sophisticated mappings

which result in convex/bi-convex optimization problems that are efficiently solvable.

Developing analogous tools for robustness-optimized QEC would enable the analysis

of more complex codes and even more realistic noise models (such as 1/𝑓 noise) than

those analyzed here (see [114] and references therein).

As for the points of strategy: First, rather than optimizing the probability of per-

forming feedback, one could instead optimize over deterministic strategies of the form

“feedback, no feedback, feedback, . . . ”. This would most likely improve performance,

but at the cost of transforming a continuous optimization problem into a potentially

more expensive combinatorial one. Second, while we have only optimized the form

of the recovery here, it may be advantageous to optimize both the code and the re-

covery, as is common in channel-adapted QEC [114]. Indeed, it would be interesting

to combine the distinct approaches taken in this chapter and in the previous one.

Moreover, one could think of changing the recovery’s structure more generally, e.g.,

by using different 𝑈𝑗’s in Eqs. (3.2) and (3.3). (However, we have had limited success

with this approach to date.) Finally, it may be possible to build upon the existing

machinery of channel-adapted QEC by incorporating tools from robust or stochas-

tic optimization, which can find near-optimal solutions to problems that are robust

against imperfections in implementation [115] (see also [116] for an introduction).

There appears to be ample room for new approaches to optimization-based QEC in

light of recent experimental progress.
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Part II

Application-Adapted Quantum Error

Correction

“In order to seek truth, it is necessary once in the course

of our life to doubt, as far as possible, of all things.”

– René Descartes
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Chapter 4

Introduction

In the second part of this thesis we will develop and analyze QEC codes that are

adapted for quantum sensing applications. We begin here by introducing two topics

that will be of central importance in Chapters 5 and 6: dephasing due to classical

noise, and quantum sensing.

4.1 Dephasing From Classical Noise

A common explanation for why quantum systems decohere is that they become entan-

gled with their environment [14]. Since we can’t generally measure this environment,

a gradual buildup of system-environment entanglement looks to us like gradual de-

coherence of the system. Strictly speaking, this picture should always be correct if

one defines the environment broadly enough (assuming quantum mechanics gives an

accurate description of nature at all relevant scales). Often, however, it is overkill.

For many quantum devices, the environment (or at least part of it) is effectively

classical, and its impact on the system can be effectively captured by environment-

dependent scalar parameters in the system Hamiltonian. For instance, the energy

gap of a spin-1
2
system depends on the external magnetic field, which can usually be

modeled classically.

The catch is that, in practice, even a classical environment is typically noisy,

meaning it exhibits random fluctuations which are manifest as random changes in
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the system Hamiltonian. As we mentioned briefly in Chapter 1, this results in a

system dynamics that is unitary in any run of an experiment, but which varies from

one run to the next, leading to a non-unitary dynamics on average. Since we typically

repeat experiments many times to build up measurement statistics, it is this average

dynamics that we see. Therefore, while decoherence is in part a manifestly quantum

phenomenon, it is also in part a consequence simply of living in a noisy (and largely

classical) world. In fact, a broad family of decoherence processes can understood

classically in this way, see, e.g., Refs. [117–120].

In this section we will introduce the basic tools for analyzing decoherence due to

classical noise. Such physical details of decoherence may be of little relevance for

conventional quantum error correction (QEC). As in Part I, however, we will find

that these details open the door to powerful noise suppression schemes which could

not have been discovered from coarser noise models.

In general, classical noise from the environment can impact quantum systems in a

wide range of ways. We will mostly be concerned with the common case where clas-

sical fluctuations in each qubit’s energy gap induce dephasing [101, 121]. Concretely,

we consider for now a single qubit whose energy gap depends on the environment

(say, the 𝑧 component of the local magnetic field):

𝐻(𝑡) =
𝜔0 + 𝛿𝜔(𝑡)

2
𝑍. (4.1)

Here 𝜔0 is the average energy gap, and 𝛿𝜔(𝑡) encodes the fluctuations in the envi-

ronment during a given run of the experiment. Without loss of generality, we will

assume 𝛿𝜔(𝑡) to have zero mean. Moreover, we will assume for simplicity that 𝜔0 is

constant, although the results below can easily be generalized for a time-dependent

𝜔0.

Solving the Schrödinger equation for Eq. (4.1), we find that the qubit evolves as

⎛⎝𝑎 𝑏

𝑏* 𝑐

⎞⎠
⏟  ⏞  

𝜌(0)

↦→

⎛⎝ 𝑎 𝑏 𝑒−𝑖𝜔0 Δ𝑡𝐸(∆𝑡)

𝑏* 𝑒𝑖𝜔0 Δ𝑡𝐸(∆𝑡)* 𝑐

⎞⎠
⏟  ⏞  

𝜌𝛿𝜔(Δ𝑡)

(4.2)

94



in the computational basis, where

𝐸(∆𝑡) = exp

[︂
−𝑖

∫︁ Δ𝑡

0

𝛿𝜔(𝑡)𝑑𝑡

]︂
(4.3)

is the excess phase accumulated due to 𝛿𝜔 over [0,∆𝑡]. If we repeat this experiment

many times to gather measurement statistics, resetting the qubit to the same initial

state 𝜌(0) each time, we will get a different function 𝛿𝜔 with every run. This will

produce a different excess phase 𝐸(∆𝑡) and therefore a different state 𝜌𝛿𝜔(∆𝑡) each

time. The measurement statistics, however, depend not just on a single 𝜌𝛿𝜔(∆𝑡) from

one repetition, but rather, on the average state

⟨𝜌(∆𝑡)⟩ =

⎛⎝ 𝑎 𝑏 𝑒−𝑖𝜔0 Δ𝑡⟨𝐸(∆𝑡)⟩
𝑏* 𝑒𝑖𝜔0 Δ𝑡⟨𝐸(∆𝑡)⟩* 𝑐

⎞⎠ , (4.4)

where ⟨ · ⟩ denotes an average over realizations (rather than a quantum-mechanical

expectation value). To see why, note that the probability of getting a measurement

outcome described by an operator 𝑀𝑗 is formally

𝑝𝑗 =

∫︁
all 𝛿𝜔

Pr(outcome 𝑗 | 𝛿𝜔) 𝑝(𝛿𝜔) 𝑑(𝛿𝜔) (4.5)

=

∫︁
all 𝛿𝜔

tr
[︀
𝑀𝑗 𝜌𝛿𝜔(∆𝑡)

]︀
𝑝(𝛿𝜔) 𝑑(𝛿𝜔) = tr

[︀
𝑀𝑗 ⟨𝜌(∆𝑡)⟩

]︀
,

where 𝑝(𝛿𝜔) is the probability density of getting a particular 𝛿𝜔 in an experiment, and

where the meaning of this integral will be made more precise below. Since ⟨𝐸(∆𝑡)⟩ is
the average of many complex numbers on the unit circle, we expect that it will tend

towards zero, suppressing the qubit’s phase coherence as 𝑡 grows.

4.1.1 Gaussian Noise

There is no exact closed-form expression for ⟨𝐸(∆𝑡)⟩ in general. One approach instead
is to calculate it case-by-case for different noise processes. For instance, one can find

an exact expression for ⟨𝐸(∆𝑡)⟩ under random telegraph noise [where 𝛿𝜔(𝑡) jumps

at random between a discrete set of values] of the kind encountered in Chapter 2
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[47, 48, 122]. Fortunately, there is a simple expression for ⟨𝐸(∆𝑡)⟩ for a broad and

common type of noise; namely, that where 𝛿𝜔 is a Gaussian process [123, 124]. Such

noise can arise, for instance, as the aggregate of many independent and identically

distributed (IID) noise processes affecting a qubit, due to the central limit theorem.

We will focus on such Gaussian noise in Chapters 5 and 6, for which calculating

⟨𝐸(∆𝑡)⟩ will involve three steps:

1. Breaking the interval [0,∆𝑡] into 𝑁 small timesteps 𝛿𝑡, and computing a dis-

cretized approximation to ⟨𝐸(∆𝑡)⟩.

2. Finding the exact ⟨𝐸(∆𝑡)⟩ by taking the continuum limit 𝛿𝑡→ 0.

3. Expressing ⟨𝐸(∆𝑡)⟩ in terms of the noise power spectral density.

Finding the average excess phase involves averaging over all possible 𝛿𝜔’s, weighted

by the probability of each, as in Eq. (4.5). Formally:

⟨𝐸(∆𝑡)⟩ =

∫︁
all 𝛿𝜔

exp

[︂
−𝑖

∫︁ Δ𝑡

0

𝛿𝜔(𝑡)𝑑𝑡

]︂
⏟  ⏞  
𝐸(Δ𝑡) for a particular 𝛿𝜔

𝑝(𝛿𝜔) 𝑑(𝛿𝜔). (4.6)

This is very similar to a path integral, except that we need not impose any particular

boundary conditions on 𝛿𝜔. To make Eq. (4.6) well-defined, we will discretize time

so as to integrate over vectors rather than functions, before ultimately taking the

continuum limit. Concretely, we divide [0,∆𝑡] into 𝑁 intervals of length 𝛿𝑡 = ∆𝑡/𝑁 ,

and define points in time 𝑡𝑘 = 𝑘 𝛿𝑡. We also define a vector
−→
𝛿𝜔 whose elements are

the values of a realization 𝛿𝜔 at these discrete points:

−→
𝛿𝜔 =

[︁
𝛿𝜔(𝑡1), 𝛿𝜔(𝑡2), . . . , 𝛿𝜔(𝑡𝑁)

]︁⊤
. (4.7)

In this discretized picture, each run of the experiment gives a vector
−→
𝛿𝜔 with proba-

bility (density) 𝑝(
−→
𝛿𝜔) rather than a function 𝛿𝜔(𝑡) with probability (density) 𝑝(𝛿𝜔).

The key step is to assume that
−→
𝛿𝜔 follows a multivariate Gaussian distribution, e.g.,

arising from the central limit theorem. This is what we mean by “Gaussian” noise.

Recall that a scalar 𝑥 follows a zero-mean Gaussian/normal distribution if the
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probability density function is given by

𝑝(𝑥) =
1√

2𝜋𝜎2
exp

(︂
− 𝑥2

2𝜎2

)︂
, (4.8)

where 𝜎2 is the variance. Similarly, a vector �⃗� is normally distributed (with zero

mean) if it has a probability density

𝑝(�⃗�) =
1√︀

det(2𝜋Σ)
exp

(︂
−1

2
�⃗�⊤Σ−1�⃗�

)︂
, (4.9)

where Σ is the covariance matrix, defined as

Σ𝑖𝑗 = ⟨𝑥𝑖𝑥𝑗⟩, (4.10)

which generalizes the variance 𝜎2 = ⟨𝑥2⟩ in the 1-dimensional case.

We can approximate the excess phase in a given run through a Riemann sum:

𝐸(∆𝑡) = exp

[︃
−𝑖

𝑁∑︁
𝑗=1

𝛿𝜔(𝑡𝑗) 𝛿𝑡+𝑂(1/𝑁)

]︃
= exp(−𝑖𝛿𝑡 1⃗ · −→𝛿𝜔) +𝑂(1/𝑁), (4.11)

where 1⃗ := (1, . . . , 1)⊤. The discretized version of Eq. (4.6) is therefore

⟨𝐸(∆𝑡)⟩ ≈
∫︁
R𝑁

𝑒−𝑖𝛿𝑡
−→
𝛿𝜔·⃗1

⏟  ⏞  
≈𝐸(Δ𝑡)

1√︀
det(2𝜋Σ)

𝑒−
−→
𝛿𝜔⊤Σ−1−→𝛿𝜔/2

⏟  ⏞  
𝑝(
−→
𝛿𝜔)

𝑑(
−→
𝛿𝜔), (4.12)

where we get exact equality in the continuum limit. This integral can be easily

evaluated through the substitution
−→
𝛿𝜔 = �⃗�− 𝑖𝛿𝑡 Σ1⃗, which gives

⟨𝐸(∆𝑡)⟩ ≈ 𝑒−𝛿𝑡
2 1⃗⊤Σ1⃗/2 1√︀

det(2𝜋Σ)

∫︁
R𝑁+𝑖𝛿𝑡Σ1⃗

𝑒−�⃗�
⊤Σ−1�⃗�/2 𝑑�⃗�, (4.13)

where we use the shorthand

R𝑁 + 𝑖𝛿𝑡Σ1⃗ := {�⃗�+ 𝑖𝛿𝑡Σ1⃗ | �⃗� ∈ R𝑁}. (4.14)

97



One can show (e.g., by diagonalizing Σ−1) that the remaining integral in Eq. (4.13)

is independent of 𝛿𝑡; we are therefore free to integrate over R𝑁 (i.e., take 𝛿𝑡 = 0

in the domain of integration) rather than R𝑁 + 𝑖𝛿𝑡Σ1⃗. Comparing with Eq. (4.9),

normalization dictates that this integral equal
√︀

det(2𝜋Σ), so

⟨𝐸(∆𝑡)⟩ ≈ 𝑒−𝛿𝑡
2 1⃗⊤Σ1⃗/2, (4.15)

where we get equality in the 𝑁 → ∞ limit. Notice that

𝛿𝑡2 1⃗⊤Σ1⃗ =
𝑁∑︁

𝑖,𝑗=1

Σ𝑖𝑗 𝛿𝑡
2 =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

⟨𝛿𝜔(𝑡𝑖) 𝛿𝜔(𝑡𝑗)⟩ 𝛿𝑡2 →
∫︁ Δ𝑡

0

∫︁ Δ𝑡

0

⟨𝛿𝜔(𝑡1)𝛿𝜔(𝑡2)⟩ 𝑑𝑡1𝑑𝑡2

(4.16)

in this limit. Taking 𝑁 → ∞ (or equivalently 𝛿𝑡→ 0) in Eq. (4.15), we arrive at the

exact expression for the average excess phase due to Gaussian noise:

⟨𝐸(∆𝑡)⟩ = exp

[︂
−1

2

∫︁ Δ𝑡

0

∫︁ Δ𝑡

0

⟨𝛿𝜔(𝑡1) 𝛿𝜔(𝑡2)⟩ 𝑑𝑡1𝑑𝑡2
]︂
. (4.17)

⟨𝛿𝜔(𝑡1) 𝛿𝜔(𝑡2)⟩ is called the autocorrelation function of 𝛿𝜔, and it quantifies how

strongly correlated the fluctuations are at different times 𝑡1 and 𝑡2. One could inter-

pret this function—cautiously1—as quantifying how much “memory” the environment

has. We can simplify things a bit by assuming that the noise is stationary, meaning

that it depends only on time differences, not on absolute time [125]. (This is a com-

mon, though sometimes questionable assumption.) The previous expression can then

be rewritten as

⟨𝐸(∆𝑡)⟩ = exp

[︂
−1

2

∫︁ Δ𝑡

0

∫︁ Δ𝑡

0

𝐴𝛿𝜔(𝑡1 − 𝑡2) 𝑑𝑡1𝑑𝑡2

]︂
= exp

[︂
−
∫︁ Δ𝑡

0

(︀
∆𝑡− 𝑡

)︀
𝐴𝛿𝜔(𝑡)𝑑𝑡

]︂
,

(4.18)

where we use 𝐴𝛿𝜔(𝑡) = ⟨𝛿𝜔(𝑡)𝛿𝜔(0)⟩ to denote the autocorrelation, which is even in 𝑡.

Notice that 𝐴𝛿𝜔 is real-valued, so ⟨𝐸(∆𝑡)⟩ does not contribute to the qubit’s phase—it

1One must keep in mind, however, that in this model the environment never acquires any in-
formation about the system’s state. Therefore, even an environment with an autocorrelation that
decays slowly with |𝑡1 − 𝑡2| has no knowledge of prior system states.
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just suppresses the coherences. This is not always true for non-Gaussian noise, such

as random telegraph noise, where even zero-mean fluctuations can contribute a net

phase [126, 127].

It is convenient to convert this expression to the frequency domain, and express

the average excess phase in terms of the noise power spectral density [125], often

simply called 𝛿𝜔’s power spectrum, which we define as the Fourier transform of 𝐴𝛿𝜔:

𝑆𝛿𝜔(𝜈) =
1

2𝜋

∫︁ ∞

−∞
𝐴𝛿𝜔(𝑡)𝑒−𝑖𝜈𝑡𝑑𝑡. (4.19)

Eq. (4.18) can expressed in terms of 𝑆𝛿𝜔 (by writing 𝐴𝛿𝜔 as the inverse Fourier trans-

form of 𝑆𝛿𝜔) as

⟨𝐸(∆𝑡)⟩ = exp

[︂
−
∫︁ ∞

0

𝑆𝛿𝜔(𝜈)𝐹Δ𝑡(𝜈) 𝑑𝜈

]︂
, (4.20)

where

𝐹Δ𝑡(𝜈) =
4

𝜈2
sin2

(︂
𝜈∆𝑡

2

)︂
(4.21)

is called the filter function for the evolution. (We have made use here of the fact that

the Fourier transform of a real even function is also real and even.) This frequency-

domain expression is convenient for two main reasons: First, 𝑆𝛿𝜔 has a nice physical

interpretation. Second, 𝐹Δ𝑡 can be modified by applying control pulses to the qubit

in the interval [0,∆𝑡], so as to suppress dephasing. We will treat the first point here,

and the second in Section 4.1.3.

Imagine decomposing 𝛿𝜔(𝑡) for a given run of the experiment into a Fourier series

𝛿𝜔(𝑡) =
∞∑︁

𝑚=−∞
𝑎𝑚 𝑒

𝑖𝜈𝑚𝑡, (4.22)

where the coefficients are given by

𝑎𝑚 =
1

∆𝑡

∫︁ Δ𝑡

0

𝛿𝜔(𝑡) 𝑒−𝑖𝜈𝑚𝑡𝑑𝑡 (4.23)

for frequencies 𝜈𝑚 = 2𝜋𝑚/∆𝑡. Since 𝛿𝜔 will be different from one run to the next,

we should think of the Fourier coefficients as random variables. We can quantify how
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important the coefficients around some frequency 𝜈 are, on average, by the mean

squared magnitude of the Fourier coefficients in a frequency band [𝜈, 𝜈 + ∆𝜈]:

1

∆𝜈

∑︁
𝑚 in band

⟨|𝑎𝑚|2⟩, (4.24)

In the limit of large ∆𝑡 (so the spacing between Fourier modes vanishes) and ∆𝜈 → 0,

Eq. (4.24) is equal to 𝑆𝛿𝜔(𝜈) by the Wiener–Khinchin theorem [128, 129]. In brief:

⟨𝑎*𝑚𝑎𝑚⟩ =
1

∆𝑡2

∫︁ Δ𝑡

0

∫︁ Δ𝑡

0

⟨𝛿𝜔(𝑡1)𝛿𝜔(𝑡2)⟩ 𝑒−𝑖𝜈𝑚(𝑡1−𝑡2)𝑑𝑡1𝑑𝑡2 (4.25)

=
1

∆𝑡2

∫︁ Δ𝑡

−Δ𝑡

(︀
∆𝑡− |𝑡|

)︀
𝐴𝛿𝜔(𝑡) 𝑒−𝑖𝜈𝑚𝑡𝑑𝑡

=

∫︁ ∞

−∞
𝑆𝛿𝜔(𝜈 ′) sinc2

[︂
(𝜈 ′ − 𝜈𝑚)∆𝑡

2

]︂
𝑑𝜈 ′,

where we expressed 𝐴𝛿𝜔 as the inverse Fourier transform of 𝑆𝛿𝜔 to arrive at the last

line. The Fourier series frequencies 𝜈𝑚 are all spaced apart by 2𝜋/∆𝑡, so there are on

average ∆𝑡∆𝜈/2𝜋 of them in the band [𝜈, 𝜈 + ∆𝜈]. Therefore:

lim
Δ𝜈→0
Δ𝑡→∞

1

∆𝜈

∑︁
𝑚 in band

⟨|𝑎𝑚|2⟩ = lim
Δ𝑡→∞

∆𝑡

2𝜋

∫︁ ∞

−∞
𝑆𝛿𝜔(𝜈 ′) sinc2

[︂
(𝜈 ′ − 𝜈)∆𝑡

2

]︂
𝑑𝜈 ′. (4.26)

Note finally that ∆𝑡 sinc2(𝑥∆𝑡/2) approaches 2𝜋𝛿(𝑥) for large ∆𝑡, meaning the ex-

pression above equals 𝑆𝛿𝜔(𝜈) in the large ∆𝑡 limit, as claimed.

4.1.2 Common Power Spectra

Every reasonably well-behaved stochastic process has a power spectrum. (For in-

stance, random telegraph noise has a Lorentzian spectrum.) In general, however,

stochastic processes can also have non-trivial polyspectra, which are higher-order

generalizations of 𝑆𝛿𝜔 [126, 127]. Gaussian noise is unique in that all of its higher-

order spectra vanish, meaning that it is completely determined by 𝑆𝛿𝜔 (and also by

its mean, which we have absorbed here into 𝜔0). It is therefore common to refer to

certain noise processes simply by the shape of 𝑆𝛿𝜔, which tacitly assumes the noise
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to be stationary and Gaussian in the sense of the derivation above.

In practice, the power spectrum of phase noise in many experiments is complicated,

and difficult to accurately model ab initio. Instead, one must often measure it to

achieve a detailed understanding of the noise. As a first approximation, however, it

is useful to analyze certain archetypal power spectra, and their resulting coherence

decay functions ⟨𝐸(∆𝑡)⟩.

White noise

Consider first the case of a flat power spectrum: 𝑆𝛿𝜔(𝜈) = const. This is called

white noise, in analogy to white light, because all frequencies are equally important.

Plugging this into Eq. (4.20), we find that it leads to an exponential decay in qubit

coherence

⟨𝐸(𝑡)⟩ = 𝑒−𝑡/𝑇
*
2 , (4.27)

for some characteristic timescale 𝑇 *
2 that depends on the noise strength. We use 𝑡

here for simplicity to denote the duration of each repetition, now that there is no risk

of confusion.

Putting this into Eq. (4.4), we see that the average dynamics is also the solution

to the Lindblad equation with 𝑍 jumps, as claimed in Chapter 3:

𝑑𝜌

𝑑𝑡
= −𝑖[𝐻0, 𝜌 ] +

1

2𝑇 *
2

(︁
𝑍𝜌𝑍 − 𝜌

)︁
, (4.28)

where 𝐻0 = 𝜔0

2
𝑍 is the average Hamiltonian. (We will write simply 𝜌 rather than ⟨𝜌⟩

when the intended meaning is clear.) This is not a coincidence. Moving back into the

time domain [cf. Eq.(4.17)], white noise has an autocorrelation function 𝐴𝛿𝜔(𝑡) ∝ 𝛿(𝑡),

meaning that there is no memory at all, i.e., the noise is totally local in time. Likewise,

the Lindblad equation is also local in time, as we saw in Chapter 1.

White noise is inherently unphysical. One way of seeing this is that the area

under a flat power spectrum is infinite, meaning that the noise has infinite power at

arbitrarily high frequencies. We could deal with this by imposing an artificial cutoff

on 𝑆𝛿𝜔(𝜈) at high frequencies, which would give the same decay shape of ⟨𝐸(𝑡)⟩ up
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to a correction that scales inversely with the cutoff frequency. For our purposes,

however, it suffices to note that while white noise provides a useful model, one should

take care not to use it—and the Lindblad equation more broadly—in calculations

where the answer depends critically on the noise’s unphysical features. For instance,

this is why we could not use white noise to examine Zeno-like effects in Chapter 3.

1/𝑓𝛼 noise

A ubiquitous type of noise in many quantum and classical devices is 1/𝑓 noise, where

the power spectrum goes as 1/|𝜈|, or more generally as 1/|𝜈|𝛼 for some 𝛼 ∼ 1. [We

use 𝜈 rather than 𝑓 for noise frequencies. Also, it is customary to write simply

𝑆𝛿𝜔(𝜈) ∝ 1/𝜈𝛼 and leave the absolute value implicit.] Such noise can arise when

𝛿𝜔 is a linear combination of many weak random telegraph processes, for instance

[130, 131]. It is interesting to note that this model is the opposite extreme of that

which arose in Chapter 2, where dephasing was primarily due to a single, strongly-

coupled fluctuator, rather than a diffuse bath of weakly-coupled ones.

Unfortunately, plugging 𝑆𝛿𝜔(𝜈) directly into Eq. (4.20) generally gives a divergent

integral. For 𝛼 ≥ 1 the problem is the opposite of that with white noise: divergent

noise power at low frequencies. A common way to address this is to argue that in an

experiment of duration 𝑡, we can’t possibly be sensitive to noise at frequencies much

lower than 1/𝑡. Accordingly, we are justified in imposing a low-frequency cutoff at

𝑐/𝑡, where 𝑐 is some unitless constant. Integrating 𝑆𝛿𝜔(𝜈) × 𝐹𝑡(𝜈) over 𝜈 ≥ 𝑐/𝑡 gives

an average excess phase of

⟨𝐸(𝑡)⟩ = 𝑒−(𝑡/𝑇 *
2 )

𝛼+1

, (4.29)

where 𝑇 *
2 is a complicated function of the noise strength, 𝑐 and 𝛼, that we can fit

empirically.

Some remarks are in order. First, notice that for “pure” 1/𝑓 noise (𝛼 = 1), the

qubit loses phase coherence as 𝑒−(𝑡/𝑇 *
2 )

2
. Unfortunately, this common decay profile

is sometimes colloquially called “Gaussian” dephasing [as opposed to the exponential

dephasing in Eq. (4.27)]. It is crucial to remember that “Gaussian” in this sense has
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virtually nothing to do with the underlying assumption of Gaussian noise. Second,

observe that pure 1/𝑓 noise gives the same coherence decay profile as the quasi-static

noise [i.e., 𝑆𝛿𝜔(𝜈) ∝ 𝛿(𝜈)] considered in Chapter 3, which is why we used the latter as

a rough approximation to more realistic noise. Finally, note that 1/𝑓𝛼 noise reduces

to white noise for 𝛼 = 0.

4.1.3 Dynamical Decoupling

Consider dephasing due to stationary Gaussian noise with power predominantly at low

frequencies. To a good approximation, such noise would cause a qubit’s energy gap

to vary between runs of an experiment, but would not cause it to change significantly

during any given run. The qubit would dephase approximately as ⟨𝐸(𝑡)⟩ ≈ 𝑒−(𝑡/𝑇 *
2 )

2

over [0, 𝑡] if allowed to evolve freely. Suppose instead that one applied an 𝑋 gate2 at

time 𝑡/2, and another at 𝑡. (We will assume all such pulses to be instantaneous.) The

net effect of these pulses would be to effectively reverse the direction of rotation over

[𝑡/2, 𝑡], so that any phase acquired in the first half of the interval would be canceled out

(or “echoed” out, or “refocused”) during the second half, thus suppressing dephasing.

Consider now this same approach but for noise with a generic power spectrum.

The low-frequency components would still be largely suppressed; in fact, they could

be suppressed more effectively by adding more pulses during the interval. The high

frequency noise components, on the other hand, would not generally be suppressed.

Rather, certain high-frequency components could be amplified if they are resonant

with the pulse spacings.

The strategy described here is a simple instance of a technique called dynamical

decoupling (DD) [49, 50], which could be used as a first line of defense before quan-

tum error correction. As mentioned above, it has a nice interpretation in terms of the

frequency-domain expression for ⟨𝐸(𝑡)⟩ in Eq. (4.20). If one repeats the derivation in

Section 4.1.1 but with 𝜋 pulses interleaved in [0, 𝑡], one would get extra functions mul-

tiplying the integrand of Eq. (4.17), which toggle between ±1 at times that coincide

with the pulses. The net result in the frequency domain would be a different filter

2Or equivalently 𝑌 , or any other 𝜋 rotation around an axis on the equator of the Bloch sphere.
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function 𝐹𝑡 in Eq. (4.20), which depends on the number of pulses applied and their

timing. This allows one to engineer a filter function through a careful choice of pulse

sequence so that 𝐹𝑡 is small at frequencies where 𝑆𝛿𝜔 is large [and vice versa, since

the area under the curve 𝐹𝑡(𝜈) is independent of the pulse sequence], thus minimizing

the overlap in Eq. (4.20) and lengthening the coherence time [108, 109]. One could

think of this process as creating an effective, smoothed power spectrum, defined by

the overlap of the physical power spectrum 𝑆𝛿𝜔 and the engineered filter function 𝐹𝑡.

Notice that the channel described by Eq. (4.2) is exactly equivalent to a unitary

evolution by 𝐻0 for a time 𝑡 and an application of the phase-flip channel 𝜌 ↦→ (1 −
𝑝)𝜌 + 𝑝𝑍𝜌𝑍 with 𝑝 = [1 − ⟨𝐸(𝑡)⟩]/2. Yet, without considering the physical origins

of the aggregate channel, as we have just done, it would be quite difficult to see

the potential of DD. This would be a costly oversight: take for example an NV

electronic spin, whose dephasing time under a simple DD sequence (denoted 𝑇2) can

be ∼ 103 times longer than that under free evolution (denoted 𝑇 *
2 ) [132]. One could

argue that the device-adapted QEC codes in Chapter 2 are analogous to the picture

of DD introduced here; they key difference being that the latter exploits temporal

noise correlations, while the former exploit spatial correlations. We will develop this

analogy further in Chapters 5 and 6 as we compare the roles of QEC and DD in

quantum sensing.

4.2 Quantum Sensing

Quantum sensing refers to the use of quantum phenomena to measure external phys-

ical quantities. It exploits what is otherwise a central weakness of many quantum

systems: their strong susceptibility to external disturbances. Much like quantum

computers, quantum sensors can be realized using a number of different physical

platforms; in fact, there is substantial overlap in the platforms used for both. Specif-

ically, quantum sensors can be realized using certain spin qubits (such as NV cen-

ters), trapped ions, and superconducting qubits, among others. They can measure

several different quantities depending on the platform used, including electromag-
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netic fields, temperature and rotation, with remarkable sensitivity. In contrast with

quantum computers, however, quantum sensors are expected to be a relatively near-

term quantum technology. A thorough review of quantum sensing can be found in

Ref. [108].

The typical strategy for quantum sensing is to estimate some parameter affecting

the sensor’s dynamics, which depends on its local environment. This could be, for

instance, the local magnetic field, which affects the sensor’s energy eigenvalues. In

this approach, the sensor is prepared in some known initial state, allowed to evolve,

and the unknown quantity is ultimately inferred from measurements of the sensor’s

final state through many repetitions [133, 134].

Like quantum computers, quantum sensors can comprise subsystems of varied

dimensionality, although most commonly both are composed of multiple qubits. We

will assume this structure throughout. Not only are many types of qubits inherently

sensitive to their environments, but the performance of an 𝑛-qubit sensor can improve

faster with 𝑛 than classical physics would allow. Moreover, such sensors can offer other

practical advantages: for instance, the small size of certain quantum sensors can allow

for exceptional spatial resolution.

We will begin by discussing how a single qubit can be used for quantum sensing,

and later extend our results to various multi-qubit strategies. There are two canonical

single-qubit strategies: one in which the quantity of interest becomes manifest as a

relative phase between energy eigenstates (often called Ramsey sensing), and another

in which it is manifest in the transition rate between energy eigenstates (often called

Rabi sensing) [108]. We will focus on the former strategy, which is both common and

flexible, although the results derived in this chapter and subsequent ones could be

generalized to the latter strategy as well.

Concretely, the sensing scheme we consider allows one to measure an external

quantity which couples to a sensing qubit via its energy gap. That is, suppose the

qubit’s Hamiltonian is

𝐻(𝑡) =
𝛾𝜔(𝑡)

2
𝑍, (4.30)
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where 𝜔(𝑡) is a variable, extrinsic quantity to be measured (e.g., a local magnetic

field component), and 𝛾 is a constant, intrinsic parameter—sometimes called the

transduction parameter—quantifying the sensor’s susceptibility to changes in 𝜔(𝑡)

(e.g., the qubit’s magnetic dipole moment). The strategy is to

1. Prepare an initial state |+⟩ = (|0⟩+ |1⟩)/
√

2, perhaps by first preparing |0⟩ and
performing a Hadamard gate.

2. Let the sensor evolve by 𝐻(𝑡) for a time ∆𝑡, which leads to a time-evolved state

1√
2

(︂
|0⟩ + exp

[︂
𝑖𝛾

∫︁ Δ𝑡

0

𝜔(𝑡)𝑑𝑡

]︂
|1⟩

)︂
. (4.31)

up to a global phase.

3. Apply a control pulse to rotate the state by 𝜋/2 about some axis on the equator

of the Bloch sphere. The optimal choice of this axis depends on the accumulated

phase, meaning that it may need to be chosen adaptively. We will assume here

instead that one has an initial estimate of 𝜔(𝑡), which is to be refined through

quantum sensing. One can then define a rotating frame based on this initial

estimate, in which the Hamiltonian keeps the form of that in Eq. (4.30) but

with
∫︀ Δ𝑡

0
𝜔(𝑡)𝑑𝑡 ≪ 1. In this frame the 𝜋/2 pulse should rotate about 𝑋. A

measurement in the computational basis then returns 1 with probability

𝑝1 =
1

2
− 1

2
sin

[︂
𝛾

∫︁ Δ𝑡

0

𝜔(𝑡)𝑑𝑡

]︂
(4.32)

and 0 otherwise.

One repeats this process many times to estimate 𝑝1, which in turn yields an estimate

for
∫︀ Δ𝑡

0
𝜔(𝑡)𝑑𝑡.

Notice that one needs3 a large 𝛾 so that 𝑝1 depends strongly on 𝜔(𝑡). A large 𝛾

comes at a cost, however. In practice, the form of 𝑝1 will gradually deviate from that

3Cf. Eq. (2.3), where the gyromagnetic ratio of an NV electronic spin is ∼103 times larger than
that of a 13C nuclear spin. We therefore expect an NV to be a far better magnetometer than a 13C
nuclear spin, which is indeed true.
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in Eq. (4.32) due to decoherence in the qubit; we expect that for ∆𝑡 much longer than

the decoherence timescale, the value of 𝑝1 will carry little information about 𝜔, thus

limiting sensitivity. A priori there could be many physical processes contributing to

such decoherence, which might vary greatly based on the device in question. When 𝛾

is large, however, background fluctuations in 𝜔(𝑡), of the type analyzed in Section 4.1,

induce rapid dephasing, which is often the limiting source of decoherence in quantum

sensors. That is, in practice 𝜔(𝑡) could be decomposed as

𝜔(𝑡) = 𝜔0(𝑡) + 𝛿𝜔(𝑡), (4.33)

where 𝜔0(𝑡) := ⟨𝜔(𝑡)⟩ is the deterministic part and 𝛿𝜔(𝑡) is the stochastic part causing

dephasing. [Without loss of generality we can choose 𝛿𝜔(𝑡) to have zero mean.] This

latter part is present to some extent in all qubits, although it need not be the dominant

source of decoherence in general. The rate of dephasing due to 𝛿𝜔 grows with 𝛾,

however. This means that for large enough 𝛾 such dephasing becomes the dominant

kind of decoherence, regardless of other device physics. This is the case in a wide range

of quantum devices used for sensing, precisely because of their intended application.

In this chapter, as well as Chapters 5 and 6, we will therefore assume background

noise in 𝜔 to be the limiting source of decoherence. Under this assumption, 𝑝1 is

well-approximated by

𝑝1 =
1

2
− 1

2
⟨𝐸(∆𝑡)⟩ sin

[︂
𝛾

∫︁ Δ𝑡

0

𝜔(𝑡)𝑑𝑡

]︂
(4.34)

when one accounts for decoherence, assuming that ⟨𝐸(∆𝑡)⟩ ≥ 0 (as is the case for

stationary Gaussian noise). We will explore in Chapters 5 and 6 how application-

adapted QEC codes can be used to suppress such decoherence.

4.2.1 Sensitivity

There are quantum sensing schemes both for time-dependent and static, i.e., DC

signals 𝜔0(𝑡). We will discuss the time-dependent case in Section 4.2.4, focusing here
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instead on the DC case in which
∫︀ Δ𝑡

0
𝜔0(𝑡)𝑑𝑡 = 𝜔0 ∆𝑡, where we have used 𝜔0 to

denote the constant average value of 𝜔(𝑡).

The sensitivity4 𝜂 offered by a sensor is typically defined as the smallest 𝜔0 that

gives a signal-to-noise ratio (SNR) of at least 1, normalized by the total measurement

time. This means (somewhat unfortunately) that a lower sensitivity is better. We

now calculate the sensitivity offered by the Ramsey measurement scheme above under

the assumption that the dominant source of decoherence is background noise in 𝜔(𝑡)

producing ⟨𝐸(𝑡)⟩ ∈ R≥0 (such as Gaussian noise).

Suppose that one repeats the Ramsey sensing scheme with a single qubit 𝑁tot

times so as to estimate 𝑝1, and ultimately 𝜔0. The number of measurements yielding

1, 𝑁1, follows a binomial distribution with mean 𝜇 = 𝑁tot 𝑝1 and standard deviation

𝜎 =
√︀
𝑁tot 𝑝1(1 − 𝑝1). It is natural to estimate 𝑝1 with the maximum likelihood

estimator 𝑝1 = 𝑁1/𝑁tot. We will take as the “signal” in the SNR the absolute mean of

𝑝1−1/2, namely
⃒⃒
𝑝1−1/2|, where the 1/2 offset is because ⟨𝑝1⟩|𝜔0=0 = 1/2. Similarly,

we will take the “noise” to be the standard deviation in 𝑝1 − 1/2, which is

𝜎

𝑁tot
=

√︃
𝑝1(1 − 𝑝1)

𝑁tot
. (4.35)

Note that the choice of rotation axis in the Ramsey scheme discussed above affects

both the signal and noise strengths. Our choice gives the optimal compromise.

The SNR is therefore

SNR =

⃒⃒⃒⃒
𝑝1 −

1

2

⃒⃒⃒⃒ √︃
𝑁tot

𝑝1(1 − 𝑝1)
(4.36)

= 𝜔0𝛾∆𝑡 ⟨𝐸(∆𝑡)⟩
√︀
𝑁tot +𝑂

[︀
(𝜔0𝛾∆𝑡)3

]︀
,

so the smallest 𝜔0 giving unit SNR is approximately

𝜔0,min =
1

𝛾∆𝑡 ⟨𝐸(∆𝑡)⟩√𝑁tot

=
1

𝛾∆𝑡 ⟨𝐸(∆𝑡)⟩

√︂
∆𝑡

𝑡tot
, (4.37)

4In other contexts this is called the noise-equivalent power.
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where we have expressed the number of cycles 𝑁tot in terms of the cycle duration

∆𝑡 and the total sensing period 𝑡tot = 𝑁tot ∆𝑡. Note that this expression assumes

𝜔0,min 𝛾∆𝑡 ≪ 1, or equivalently, 𝑁tot ≫ ⟨𝐸(∆𝑡)⟩−2. Moreover, we are assuming

instantaneous state preparation and measurement, and neglecting any measurement

error; relaxing these idealizations leads to simple corrections in the expression above

[108].

While 𝜔0,min tells us something about the sensor’s performance, it is, by itself,

a flawed figure of merit because it depends explicitly on 𝑡tot. This means one can

achieve an arbitrarily low 𝜔0,min in any (unbiased) sensor through a long enough 𝑡tot.

Instead, we get a better figure of merit by normalizing 𝜔0,min by 𝑡tot; here this means

multiplying by
√
𝑡tot rather than dividing by 𝑡tot, as one might have initially expected.

The resulting quantity is the sensitivity:

𝜂1(∆𝑡) := 𝜔0,min

√
𝑡tot =

1

𝛾
√

∆𝑡 ⟨𝐸(∆𝑡)⟩
, (4.38)

which has units of [𝜔0] ×
√
time, or more commonly [𝜔0]/

√
frequency, which is why,

e.g., the sensitivity of magnetometers is often reported in otherwise-mysterious units

of T/
√
Hz. The subscript “1” here refers to the use of a single qubit. Again, note that

this expression for 𝜂1(∆𝑡) only makes sense when 𝑁tot ≫ ⟨𝐸(∆𝑡)⟩−2.

It remains to calculate how long each cycle should be. We will denote the optimal

sensitivity as

𝜂1 := min
Δ𝑡

𝜂1(∆𝑡), (4.39)

here and as 𝜂 (with no ∆𝑡 dependence) more broadly. A longer ∆𝑡 means more

time for 𝜔0 to imprint on the sensor, but also more decoherence, and a smaller 𝑁tot

for any given 𝑡tot. Assuming 1/𝑓𝛼 noise as in Section 4.1.2 for 𝛼 ≥ 0, so that at

⟨𝐸(𝑡)⟩ = exp[−(𝑡/𝑇 *
2 )𝛼+1], the optimal (i.e., minimal) sensitivity is

𝜂1 =
(2𝑒𝛽)1/2𝛽

𝛾
√︀
𝑇 *
2

, (4.40)
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where 𝛽 := 1 + 𝛼, which uses a cycle length of

∆𝑡opt = 𝑇 *
2 (2𝛽)−1/𝛽. (4.41)

This expression for 𝜂1 is therefore valid for 𝑁tot ≫ 𝑒𝛼+1. We will be particularly

concerned with white noise (𝛼 = 0) in the coming chapters, for which these quantities

reduce to 𝜂1 = 𝛾−1
√︁

2𝑒
𝑇 *
2
and ∆𝑡opt = 𝑇 *

2 /2, assuming 𝑁tot ≫ 1.

These results highlight an important feature of quantum sensing: it works best in

a relatively high-noise regime. That is, the optimal duration of each cycle, ∆𝑡opt, is

comparable to the coherence time 𝑇 *
2 . In particular, for 1/𝑓 noise and white noise, the

best sensitivity is achieved by letting the qubit coherence decay by 1 − ⟨𝐸(∆𝑡opt)⟩ =

22% and 39% respectively in each cycle. This holds true regardless of 𝑇 *
2 ; that is,

if one increased 𝑇 *
2 (e.g., through QEC), the corresponding ∆𝑡opt would increase

accordingly. The fact that quantum sensors naturally tolerate some noise is very

appealing, especially when one considers the gap between current noisy devices and

the ultra-low noise rates required for many quantum computing applications.

4.2.2 Quantum Cramér-Rao Bound

A quantum sensor’s capacity to estimate 𝜔0 can also be quantified in a more formal

way. In general, consider estimating an unknown quantity 𝜔0 through 𝑁tot repeated

independent measurements of duration ∆𝑡, using a sensor that outputs a number 𝑥𝑗

in each run depending on 𝜔0. Let �̂�0 = �̂�0(𝑥1, . . . , 𝑥𝑁tot
) be an unbiased estimator of

𝜔0, meaning that ⟨�̂�0⟩ = 𝜔0. Then, the variance of �̂�0, which formally quantifies how

well one can estimate 𝜔0 from the measurement results, is bounded as

var(�̂�0) ≥
1

𝑁tot 𝐹
, (4.42)

where 𝐹 is called the Fisher information [135], and is defined as

𝐹 = −
⟨ 𝜕2

𝜕𝜔2
0

lnPr(𝑥𝑗|𝜔0)
⟩
, (4.43)
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where Pr(𝑥𝑗|𝜔0) is the likelihood of the sensor outputting 𝑥𝑗 in the 𝑗th measurement

given an underlying value of 𝜔0. Eq. (4.42) is called the Cramér-Rao bound [136, 137].

If one takes as �̂�0 the maximum likelihood estimator (that is, if �̂�0 is taken as the

value most likely to produce the observed data), which we will assume from now on,

then the bound is asymptotically saturated for large 𝑁tot. That is [138, 139]:

var(�̂�0) =
1

𝑁tot 𝐹

[︀
1 +𝑂(1/𝑁tot)

]︀
. (4.44)

For a quantum sensor, the Fisher information 𝐹 , and in turn var(�̂�0), depends on

which measurement one performs on the time-evolved sensor state. By optimizing

𝐹 over all possible measurements one gets the quantum Fisher information ℱ [140].

For a time-evolved sensor state 𝜌𝜔0 = 𝜌𝜔0(∆𝑡) which depends on 𝜔0, this quantity is

given by [141]

ℱ = 2

∫︁ ∞

0

tr

[︃(︂
𝑒−𝜆 𝜌𝜔0

𝜕𝜌𝜔0

𝜕𝜔0

)︂2
]︃
𝑑𝜆. (4.45)

Substituting 𝐹 for ℱ in the Cramér-Rao bound gives the quantum Cramér-Rao

bound. For a sensing qubit under stationary Gaussian phase noise, as we consid-

ered in Section 4.2.1, the quantum Fisher information for an initial state 𝜌0 = |+⟩⟨+|
that has evolved for time ∆𝑡 is

ℱ =
[︀
⟨𝐸(∆𝑡)⟩ 𝛾∆𝑡

]︀2
. (4.46)

Note that here the implicit optimization over possible measurements in ℱ is equivalent

to our earlier choice of the optimal 𝜋/2 rotation axis in the Ramsey scheme.

When devising quantum sensing schemes, one may be inclined to maximize ℱ .

However, this is usually a flawed objective function in practice, i.e., when there is

decoherence. Fundamentally, the quantity to be optimized (here, minimized) is

var(�̂�0) ∼
1

𝑁totℱ
=

∆𝑡

ℱ 𝑡−1
tot, (4.47)

assuming𝑁tot ≫ 1. As in our earlier derivation of the sensitivity 𝜂, we see that var(�̂�0)
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can be made arbitrarily small by making the total sensing time 𝑡tot sufficiently large,

regardless of sensor performance. For a fixed 𝑡tot, minimizing var(�̂�0) amounts not to

maximizing ℱ , but rather ℱ/∆𝑡, which here is equal to

ℱ
∆𝑡

=
[︁
⟨𝐸(∆𝑡)⟩ 𝛾

√
∆𝑡

]︁2
. (4.48)

While we have arrived at this quantity in a fairly abstract way, it has a simple physical

interpretation. Namely, notice here by comparing with Eq. (4.38) that ℱ/∆𝑡 =

𝜂1(∆𝑡)
−2, so maxΔ𝑡(ℱ/∆𝑡) = 𝜂−2

1 .

4.2.3 Scaling with 𝑛

The two derivations in Sections 4.2.1 and 4.2.2 both suggested the same figure of

merit 𝜂. Accordingly, we will mostly treat this quantity as the natural figure of

merit in Chapters 5 and 6. There is however, one limiting situation in which 𝜂 is

not a useful metric: that where there is no decoherence. Notice in Eqs. (4.38) and

(4.48) that if ⟨𝐸(∆𝑡)⟩ does not decrease with ∆𝑡, 𝜂(∆𝑡) can be made arbitrarily

small (or ℱ/∆𝑡 arbitrarily large) by using a long ∆𝑡. In principle, this eventually

makes 𝑁tot = 𝑡tot/∆𝑡 too small for the derivations in Sections 4.2.1 and 4.2.2—which

assumed some decoherence—to make sense. Rather, in this idealized case where the

quantum Fisher information grows as ℱ = (𝜉∆𝑡)2, it is natural to use the coefficient

𝜉 as a figure of merit instead. For a single noiseless qubit, for instance, 𝜉 = 𝛾. In

introducing multi-qubit sensing schemes below we will begin by briefly examining the

scaling of 𝜉 with the number of qubits 𝑛, before ultimately returning to the more

broadly relevant 𝜂 as a figure of merit.

The quantum Fisher information has the important property that ℱ(𝜌⊗𝑛𝜔0
) =

𝑛ℱ(𝜌𝜔0) [108]. This means that if one performs Ramsey sensing on 𝑛 identical noise-

less qubits in parallel, one gets an
√
𝑛-fold enhancement in 𝜉. This is the same scaling

as one gets using 𝑛 classical sensors in parallel. Such scaling is often called (somewhat

confusingly) the standard quantum limit. If instead, however, one prepares a GHZ
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state on 𝑛 such qubits, the dynamics will be

1√
2

(︁
|0 . . . 0⟩ + |1 . . . 1⟩

)︁
↦→ 1√

2

(︁
|0 . . . 0⟩ + 𝑒𝑖𝛾𝑛𝜔0Δ𝑡 |1 . . . 1⟩

)︁
, (4.49)

which looks like that of a single qubit but with an effective 𝑛-fold enhancement in the

transduction parameter 𝛾, resulting in an 𝜉 = 𝑛𝛾; a distinctly quantum-mechanical

scaling that is sometimes called Heisenberg scaling. We now return to the more

realistic case where there is decoherence, in which the sensitivity 𝜂 is the natural

figure of merit.

All of the multi-qubit sensing schemes considered in this thesis will involve a

relative phase accumulating between two orthogonal states at a rate proportional to

𝜔0, and a loss of phase coherence between these states on a timescale proportional

to 𝑇 *
2 . Rather than calculate the sensitivity 𝜂 offered by each scheme from scratch,

we can map them to effective single-qubit dynamics from which 𝜂 can be found

immediately. Concretely, suppose the effective dynamics arising from an 𝑛-qubit

sensing scheme looks like that of a single qubit with an average energy gap 𝐴𝛾𝜔0,

and which dephases under 1/𝑓𝛼 noise (𝛼 ≥ 0) on a timescale 𝑇 *
2 /𝐵 for constants 𝐴

and 𝐵 that depend on the scheme. The optimal sensitivity for general 𝐴 and 𝐵 is

then

𝜂 =

√
𝐵

𝐴
𝜂1, (4.50)

which can represent a net enhancement or degradation compared to 𝜂1 depending on

the relative values of 𝐴 and 𝐵. As noted above, a GHZ sensing scheme gives 𝐴 = 𝑛.

Unfortunately, as we will see in Chapter 5, states like those in Eq. (4.49) dephase on

a timescale of 𝑛𝑇 *
2 (i.e., 𝐵 = 𝑛) under spatially-uncorrelated phase noise, which leads

only to a 1/
√
𝑛 enhancement in sensitivity compared to a single physical qubit. Like-

wise, one can see from Section 4.2.1 that using 𝑛 qubits in parallel produces the same

1/
√
𝑛 enhancement in sensitivity. In other words, even weak spatially-uncorrelated

phase noise destroys the Heisenberg scaling offered by GHZ states, instead reducing

it to the standard quantum limit. (We will see in subsequent chapters that these

two schemes do not generally give the same 𝜂 when the noise has non-trivial spatial
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correlations).

This result highlights one of the central challenges in quantum sensing: it is not

enough to simply amplify the signal if the noise is also amplified by a corresponding

amount [142]. The same goes for attenuating the noise. Rather, one must find

methods to carefully filter noise from the signal, so as to produce a net improvement

in sensitivity.

4.2.4 AC Signals

A common way to performing such filtering is with dynamical decoupling, as intro-

duced in Section 4.1.3. That is, rather than allow the sensor to evolve freely over

[0,∆𝑡], one instead applies a series of control pulses (or continuous controls) during

this interval.

To see how such pulses interact with the deterministic part of 𝜔(𝑡), namely 𝜔0(𝑡),

consider the AC signal

𝜔0(𝑡) = Ω sin(2𝜋𝑓𝑡+ 𝜑), (4.51)

where 𝑓 and 𝜑 are known and the amplitude Ω is to be measured. Notice first that in

the absence of control pulses, 𝜔0(𝑡) does not lead to a steady accumulation of phase

in the sensor like a DC signal; rather,
∫︀ Δ𝑡

0
𝜔(𝑡)𝑑𝑡 oscillates with ∆𝑡. Instead, one

could rectify the signal by applying 𝜋 pulses about some axis in the 𝑥𝑦-plane at times

𝑡⋆ where 𝜔0(𝑡⋆) = 0, which amounts to a form of DD. The effects would be twofold.

First, these added pulses would lead to a gradual accumulation of phase in the sensor

as
∫︀ Δ𝑡

0
|𝜔0(𝑡)|𝑑𝑡. Second, they would define a filter function 𝐹Δ𝑡 which suppresses

some noise frequencies and amplifies others [108, 143]. (This strategy can easily be

generalized for situations when the signal’s phase is not known [144].)

In fact, the interaction of such pulse sequences with a general 𝜔0(𝑡) can be under-

stood using a similar formalism to that of filter functions for 𝛿𝜔. Broadly, one can

design sequences which amplify both signal and noise in certain frequency bands on

the sensor, while suppressing both at other frequencies. A simple and powerful way

to sense AC signals at known frequencies, then, is to use DD sequences which create
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an effective bandpass filter around the signal frequency, and which (approximately)

reject most other frequencies. One can use this approach more broadly to measure

Fourier components of time-dependent signals.

While this approach can give remarkably good sensitivity, it has some notable

limitations. First, it is mostly incompatible with DC and low-frequency signals, since

the DD passband cannot be placed at arbitrarily low frequencies. Second, DD cannot

suppress high-frequency noise components, so these continue to limit sensitivity [109].

Third, this technique of creating an effective narrow frequency filter is cumbersome

when measuring wideband signals arising in some applications.

In Chapters 5 and 6 we will develop application-adapted QEC codes for sensing

which filter noise from signal in order to enhance sensitivity. They work in a way

that is analogous to DD, albeit with an essential difference: they act as filters in the

spatial domain, whereas DD acts as a filter in the time/frequency domain. That is,

DD exploits temporal noise correlations, whereas our QEC codes exploit spatial noise

correlations. As we will see, QEC constitutes a complementary—or perhaps even an

alternative—technique to DD for sensing; since the two exploit different properties of

the signal and noise, they have both different strengths and different limitations.
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Chapter 5

Spatial Noise Filtering through QEC

for Quantum Sensing

Noise in candidate systems for quantum technologies often has structure. In small-

and intermediate-scale systems, this structure can often be measured or derived from

first principles, at least in part. A central theme in this thesis so far has been that

while conventional QEC works regardless of such structure (mostly), it can be very

advantageous to incorporate any known noise structure into QEC schemes from the

start. In this chapter and in Chapter 6, we will apply this principle in the context

of quantum sensing. Rather than adapt QEC codes to particular devices to maxi-

mize noise suppression (as in Chapter 2), we will instead adapt codes for the unique

challenges posed by sensing applications, across many devices, so as to optimize sen-

sitivity.

5.1 Error-Corrected Quantum Sensing

As we discussed in Chapter 4, one can improve the sensitivity of a quantum sensor

through control schemes in which the signal gets amplified more than the noise, or, the

noise gets attenuated more than the signal. We can think of such schemes as filters.

Dynamical decoupling (DD) sequences provide a family of such filters, which separate

signal from noise based on their respective temporal structures. A complementary
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family of filters based instead on quantum error correction (QEC) has been proposed

more recently, which do not suppress noise on the basis of frequency, and therefore

do not share the same limitations as DD [145–148].

The canonical scheme for error-corrected quantum sensing (ECQS), illustrated

here with a Lindblad description, is: (i) to prepare a superposition of logical energy

eigenstates, (ii) to let the sensor evolve for a time 𝛿𝑡 under the Liouvillian ℒ =

−𝑖ℋ0 + 𝒟, where the Hamiltonian superoperator ℋ0(𝜌) = [𝐻0, 𝜌] is proportional to

the parameter one wants to estimate, and (iii) to apply a recovery operation ℛ which

seeks to correct the effects of the noise from

𝒟(𝜌) =
∑︁
𝑖

𝐿𝑖𝜌𝐿
†
𝑖 −

1

2
{𝐿†

𝑖𝐿𝑖, 𝜌}, (5.1)

where {𝐿𝑖} are the Lindblad jump operators describing decoherence. (The recovery

is approximated as being instantaneous.) Steps (ii) and (iii) are repeated until (iv)

the final state is read out after a total time ∆𝑡. In the limit where (ii)–(iii) are fast

and repeated many times (𝛿𝑡→ 0 with ∆𝑡 finite), the sensor evolves stroboscopically

as

ℒeff = −𝑖ℛℋ0 + ℛ𝒟 +𝑂
(︀
||ℒ|| 𝛿𝑡

)︀
(5.2)

according to Chernoff’s theorem (Ref. [149] p. 241, see also Ref. [150]). If ℛ𝒟 = 0

but ℛℋ0 ̸= 0 on logical states then ECQS can approach a noiseless sensing limit by

making 𝛿𝑡 sufficiently short compared to the noise strength. As in Chapter 4, one

then repeats this overall scheme 𝑁tot ≫ 1 times.

For ECQS to provide such a noiseless 𝛿𝑡 → 0 limit (ℛ𝒟|code = 0), the jump op-

erators for the sensor must satisfy the Knill-Laflamme condition applied to Lindblad

operators as in Eqs. (1.45) and (1.46), namely:

𝑃𝐿𝑖𝑃 ∝ 𝑃 𝑃𝐿†
𝑖𝐿𝑗𝑃 ∝ 𝑃 (5.3)

for all 𝑖 and 𝑗, where 𝑃 = 𝑃 † projects onto the codespace. For the signal to survive

in this limit (ℛℋ0|code ̸= 0), however, 𝐻0 must not be fully correctable; that is, it
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must not satisfy the Knill-Laflamme condition applied to the Hamiltonian part of ℒ
in Eq. (1.47), namely:

𝑃𝐻0𝑃 ̸∝ 𝑃. (5.4)

Naturally then, 𝐻0 must not be a linear combination of 𝐿𝑖, 𝐿
†
𝑖 and 𝐿†

𝑖𝐿𝑗 terms.

Indeed, it was recently proven that there exists a code with projector 𝑃 satisfying

these ECQS conditions, Eqs. (5.3) and (5.4), if and only if 𝐻0 /∈ S where

S = span{𝐼, 𝐿𝑖, 𝐿†
𝑖 , 𝐿

†
𝑖𝐿𝑗} (5.5)

is the so-called Lindblad span [151, 152].

An archetypal example of ECQS to measure a DC signal 𝜔0 was proposed in

Refs. [147, 148, 153]: it involves a three-qubit sensor with 𝐻0 =
∑︀3

𝑖=1
𝛾𝜔0

2
𝑍𝑖 subject

to independent bit-flip errors on each qubit (𝐿𝑖 ∝ 𝑋𝑖). Initializing the sensor in

|+l⟩ = 1√
2
(|0l⟩ + |1l⟩), where |0l⟩ = |000⟩ and |1l⟩ = |111⟩, the errors can be

detected and corrected by the bit-flip code recovery ℛ [154], while the signal 𝜔0

imprints through 𝐻0 as a relative phase in the encoded state. The signal is unimpeded

by the frequent applications of ℛ as it couples to the qubits through a different

operator than the noise, giving 𝐻0 /∈ S , and hence ℛ𝒟 = 0 but ℛℋ0 ̸= 0 on logical

states. Therefore, the scheme enables near-noiseless sensing of 𝜔0 for short 𝛿𝑡. To our

knowledge, all explicit ECQS schemes for multi-qudit sensors prior to Ref. [60] (on

which this chapter is based) operate similarly, correcting only for noise which couples

to the sensor via different operators than the signal [145–148, 153, 155–162].

It is useful to recall the analogy from Chapter 1, of QEC codes as defining a

“net” which catches (and ultimately undoes) a family of disturbances on the system,

both unitary and non-unitary. Eq. (5.3) tells us what this net should encompass if

it is to correct all errors to order 𝑂(𝛿𝑡). Quantum sensing applications, however,

pose an additional constraint in the form of Eq. (5.4), which also tells us what this

net must not encompass. These conditions are easily satisfied when the signal and

the dominant decoherence act on the sensor through different operators, as in the

previous example. Suppose instead, however, that 𝐻0 were the same but the jump
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operators were 𝐿𝑖 ∝ 𝑍𝑖. In this case Eqs. (5.3) and (5.4) could not be satisfied, as no

code could filter noise from signal since 𝐻0 ∈ S . The issue here is that the signal

and the noise are too similar, and cannot be completely distinguished at order 𝑂(𝛿𝑡)

by QEC, even in principle.

This issue illustrates a deficiency in many ECQS schemes, of both practical and

fundamental importance. As we discussed in Chapter 4, quantum sensors gener-

ally require large transduction parameters 𝛾. This, however, makes them sensitive

to background fluctuations in the quantity they seek to measure, which causes de-

phasing. When 𝛾 is sufficiently large, this dephasing becomes the dominant type of

decoherence, independent of other device physics. Indeed, such dephasing, in which

the noise couples through the same operators as the signal, is the dominant type of

decoherence in many quantum sensors by several orders of magnitude [51, 86–90].

While DD can suppress certain frequency components of this noise when sensing AC

signals, most early ECQS schemes could not address it at all, to our knowledge. This

apparent Achilles’ heel would seem to severely limit the practical potential of QEC

in many quantum sensors.

In this chapter we will show how application-adapted QEC could be used to filter

out noise which couples to each qubit in a quantum sensor identically to the signal,

and therefore improve sensitivity. Like DD, our QEC codes will exploit structure—

specifically, correlations—that can be present in this background noise. In both cases,

stronger noise correlations typically enable better sensitivity. While DD exploits

temporal correlations, however, our codes will exploit spatial correlations. In a sense,

our scheme is dual to dynamical decoupling for quantum sensing; its strengths and

limitations are therefore “orthogonal” to those of DD. The key insight is that Eqs.

(5.3) and (5.4) can be viewed not only as a condition on how signal and noise couple to

the sensor, as with earlier ECQS codes, but also as a condition on the spatial profiles

of each in the sensor. In the sections that follow, we will show how QEC could filter

phase noise in sensors based on its spatial correlations, and illustrate this concept

with representative examples. In Chapter 6 we will then develop a broad family

application-adapted QEC codes to exploit the opportunity identified here. This final
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step will allow us to systematically quantify the sensitivity enhancement offered by

QEC in this setting.

5.2 Noise Model

We consider the task of measuring a DC signal 𝜔0, inaccessible through DD, un-

der decoherence that is predominantly from background noise 𝛿𝜔. For simplicity,

we assume a sensor comprising 𝑛 identical qubits, although this requirement could

easily be relaxed at the cost of more cumbersome calculations. Concretely, following

Section 4.2, we take the sensor’s Hamiltonian to be

𝐻(𝑡) =
𝛾

2

𝑛∑︁
𝑖=1

𝜔𝑖(𝑡)𝑍𝑖 (5.6)

in a suitable reference frame, where 𝜔𝑖(𝑡) = 𝜔0 + 𝛿𝜔𝑖(𝑡). As in the previous chapter,

𝜔0 = ⟨𝜔𝑖(𝑡)⟩ is the small, deterministic part of this unknown quantity (assumed

to be the same on all qubits), and 𝛿𝜔𝑖 describes zero-mean fluctuations on qubit 𝑖

(which can be different on each qubit). We will assume each qubit to have the same

transduction parameter 𝛾 to simplify the calculation, although we will comment on

the more general case below. Moreover, we are tacitly assuming that 𝛾 is sufficiently

large that these fluctuations are the dominant source of decoherence.

Furthermore, we will assume that 𝛿𝜔𝑖 is a stationary Gaussian white noise process

with strength Γ across all qubits. There are three reasons for this choice: First, it

will allow us to easily move between the languages of classical dephasing and QEC.

Second, it is a pessimistic assumption, since it is the canonical noise type that cannot

be suppressed through DD. Third, our QEC codes will filter out noise based on its

spatial correlations; assuming a complete lack of temporal correlations will therefore

allow us to isolate the effects of QEC. Concretely, we take the noise autocorrelation

function to be ⟨︀
𝛿𝜔𝑖(𝑡) 𝛿𝜔𝑖(0)

⟩︀
= 2Γ𝛿(𝑡) (5.7)

on all qubits 𝑖 ∈ {1, . . . , 𝑛}. As we saw in Chapter 4, each qubit therefore loses phase
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coherence as ⟨𝐸(𝑡)⟩ = 𝑒−𝑡/𝑇
*
2 , with the same characteristic timescale

𝑇 *
2 =

1

𝛾2Γ
. (5.8)

This means that when operated alone, each qubit would give an optimal sensitivity

of

𝜂1 = 𝛾−1

√︃
2𝑒

𝑇 *
2

=
√

2𝑒Γ, (5.9)

which depends on the noise strength Γ but not on the transduction parameter 𝛾, in

principle. Similarly, the 𝑛 qubits operated in parallel would give a sensitivity of

𝜂par =
1√
𝑛
𝜂1. (5.10)

Although we assume temporally-uncorrelated noise, we will allow general spatial

correlations between 𝛿𝜔𝑖(𝑡) and 𝛿𝜔𝑗(𝑡). To make progress, we must make additional

assumptions about the noise that are natural extensions of our assumptions so far:

First, that 𝛿𝜔𝑖(𝑡) and 𝛿𝜔𝑗(𝑡) are jointly Gaussian and jointly stationary [163]. More

concretely, we are assuming that not only is 𝛿𝜔𝑖(𝑡) a Gaussian process, but so is

𝛿𝜔𝑖(𝑡) ± 𝛿𝜔𝑗(𝑡). Moreover, we assume not just that the autocorrelation functions

⟨𝛿𝜔𝑖(𝑡1) 𝛿𝜔𝑖(𝑡2)⟩ depend only on |𝑡1 − 𝑡2|, but that the same be true of the cross-

correlation functions ⟨𝛿𝜔𝑖(𝑡1) 𝛿𝜔𝑗(𝑡2)⟩. Furthermore, since we have assumed that the

noise 𝛿𝜔𝑖 on each qubit has no temporal correlations, we also naturally assume that

⟨𝛿𝜔𝑖(𝑡) 𝛿𝜔𝑗(0)⟩ ∝ 𝛿(𝑡) for 𝑖 ̸= 𝑗.

What range of cross-correlation strengths makes sense? The extreme cases are

when 𝛿𝜔𝑖(𝑡) = ±𝛿𝜔𝑗(𝑡); that is, when the fluctuations are exactly the same or exactly

opposite on two different qubits. This leads to ⟨𝛿𝜔𝑖(𝑡) 𝛿𝜔𝑗(0)⟩ = ±2Γ𝛿(𝑡). Intermedi-

ate cases are possible too; e.g., if the fluctuations are independent on different qubits

we get ⟨𝛿𝜔𝑖(𝑡) 𝛿𝜔𝑗(0)⟩ = 0. Naturally then, the possible cross-correlation strengths

between 𝛿𝜔𝑖 and 𝛿𝜔𝑗 are in the range [−Γ,Γ]. We can therefore write the auto/cross-
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correlation functions compactly as

⟨︀
𝛿𝜔𝑖(𝑡) 𝛿𝜔𝑗(0)

⟩︀
= 𝑐𝑖𝑗 2Γ𝛿(𝑡) (5.11)

in terms of the overall noise strength Γ and the coefficients 𝑐𝑖𝑗 ∈ [−1, 1] describing the

noise correlations between qubits 𝑖 and 𝑗. The extreme values of 𝑐𝑖𝑗 = ±1 describe

identical (+1) or opposite (−1) fluctuations on either qubit, whereas 𝑐𝑖𝑗 = 0 means

no correlation. Naturally 𝑐𝑖𝑖 = 1. Note that while this noise is separate from 𝜔0, it

may still arise from within the experimental device, e.g., from the surrounding nuclear

bath in the case of spin qubits.

To see when and how QEC can enhance sensitivity, it will be useful to convert

the average dynamics resulting from this noise model to a more explicit equation

of motion. As we saw in Chapter 4, each qubit, when taken individually, evolves

according to the Lindblad equation �̇� = ℒ(𝜌), where

ℒ(𝜌) = −𝑖 [𝐻0, 𝜌]⏟  ⏞  
ℋ0(𝜌)

+
1

2𝑇 *
2

(︀
𝑍𝜌𝑍 − 𝜌

)︀
⏟  ⏞  

𝒟(𝜌)

(5.12)

and 𝐻0 = 𝛾𝜔0

2
𝑍 is the average Hamiltonian. When there are no spatial noise correla-

tions (i.e., when 𝑐𝑖𝑗 = 𝛿𝑖𝑗), the overall equation of motion will simply be a Lindblad

equation with this ℒ acting separately on each qubit. For a more general noise corre-

lation matrix 𝐶 = (𝑐𝑖𝑗), though, we expect to get additional terms whose effects are

visible in the dephasing rates of multi-qubit states. It turns out, in general, that the

average 𝑛-qubit dynamics can be written as a Lindblad equation �̇� = ℒ(𝜌) where

ℒ(𝜌) = −𝑖 [𝐻0, 𝜌]⏟  ⏞  
ℋ0(𝜌)

+
1

2𝑇 *
2

𝑛∑︁
𝑖,𝑗=1

𝑐𝑖𝑗

(︁
𝑍𝑖𝜌𝑍𝑗 −

1

2
{𝑍𝑖𝑍𝑗, 𝜌}

)︁
⏟  ⏞  

𝒟(𝜌)

(5.13)

and 𝐻0 = 𝛾𝜔0

2

∑︀𝑛
𝑖=1 𝑍𝑖.

Proof. To see why this is, note first that a general 𝑛-qubit state 𝜌 can always be
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decomposed as

𝜌 =
∑︁
�⃗��⃗�

𝜚�⃗��⃗� |�⃗�⟩⟨�⃗�| , (5.14)

where |�⃗�⟩ and |�⃗�⟩ are computational basis states and 𝜚�⃗��⃗� ∈ C are coefficients. In the

following proof, it will be convenient to label computational states not by bit-strings,

but rather by their 𝑍𝑗 eigenvalues. For instance, we will temporarily write the state

|01101⟩ as |1,−1,−1, 1,−1⟩. Accordingly, we will take �⃗�, �⃗� ∈ R𝑛 to have elements of

±1.

First, note that

ℋ0

(︀
|�⃗�⟩⟨�⃗�|

)︀
=
𝛾𝜔0

2

𝑛∑︁
𝑗=1

(𝑥𝑗 − 𝑦𝑗) |�⃗�⟩⟨�⃗�| . (5.15)

Similarly,

𝒟
(︀
|�⃗�⟩⟨�⃗�|

)︀
=

1

2𝑇 *
2

𝑛∑︁
𝑖,𝑗=1

𝑐𝑖𝑗

[︂
𝑥𝑖𝑦𝑗 −

1

2

(︀
𝑥𝑖𝑥𝑗 + 𝑦𝑖𝑦𝑗

)︀]︂
|�⃗�⟩⟨�⃗�|

=
1

2𝑇 *
2

[︂
�⃗�⊤𝐶�⃗� − 1

2

(︀
�⃗�⊤𝐶�⃗�+ �⃗�⊤𝐶�⃗�

)︀]︂
|�⃗�⟩⟨�⃗�| (5.16)

= − 1

4𝑇 *
2

(�⃗�− �⃗�)⊤𝐶(�⃗�− �⃗�) |�⃗�⟩⟨�⃗�| ,

since 𝐶⊤ = 𝐶. We can therefore write compactly

ℒ
(︀
|�⃗�⟩⟨�⃗�|

)︀
=

[︂
−𝑖𝛾𝜔0

2
1⃗⊤(�⃗�− �⃗�) − 1

4𝑇 *
2

(�⃗�− �⃗�)⊤𝐶(�⃗�− �⃗�)

]︂
⏟  ⏞  

:=𝛽�⃗�𝑦

|�⃗�⟩⟨�⃗�| , (5.17)

where 1⃗ := (1, . . . , 1)⊤ and 𝛽�⃗��⃗� ∈ C. We now carry on from the other direction, so

as to meet in the middle. Defining 𝒰𝑡 = 𝑒−𝑖
∫︀ 𝑡
0 ℋ(𝜏)𝑑𝜏 in terms of the Hamiltonian

superoperator ℋ(𝑡) = [𝐻(𝑡), · ], each component of 𝜌 evolves in a given run of the
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experiment as

𝒰𝑡
(︀
|�⃗�⟩⟨�⃗�|

)︀
= 𝑒−𝑖

∫︀ 𝑡
0 𝐻(𝜏)𝑑𝜏 |�⃗�⟩⟨�⃗�| 𝑒𝑖

∫︀ 𝑡
0 𝐻(𝜏)𝑑𝜏

= exp

[︃
−𝑖𝛾

2

𝑛∑︁
𝑗=1

∫︁ 𝑡

0

𝜔𝑗(𝜏)𝑥𝑗 𝑑𝜏

]︃
|�⃗�⟩⟨�⃗�|

[︃
𝑖𝛾

2

𝑛∑︁
𝑘=1

∫︁ 𝑡

0

𝜔𝑘(𝜏)𝑦𝑘 𝑑𝜏

]︃
(5.18)

= exp

[︃
−𝑖𝛾𝜔0𝑡

2

𝑛∑︁
𝑗=1

(𝑥𝑗 − 𝑦𝑗) −
𝑖𝛾

2

∫︁ 𝑡

0

𝑛∑︁
𝑗=1

𝛿𝜔𝑗(𝜏)(𝑥𝑗 − 𝑦𝑗)𝑑𝜏

]︃
⏟  ⏞  

:= 𝑒𝑖𝜃

|�⃗�⟩⟨�⃗�|

We therefore get the average time-evolved version of each component by averaging

𝑒𝑖𝜃 over realizations:

⟨𝑒𝑖𝜃⟩ = exp

[︂
−𝑖𝛾𝜔0𝑡

2
1⃗ · (�⃗�− �⃗�)

]︂
⟨exp

[︂
−𝑖

∫︁ 𝑡

0

𝑓�⃗��⃗�(𝜏)𝑑𝜏

]︂
⟩, (5.19)

where

𝑓�⃗��⃗�(𝜏) =
𝛾

2

𝑛∑︁
𝑗=1

𝛿𝜔𝑗(𝜏)(𝑥𝑗 − 𝑦𝑗) (5.20)

is a stationary Gaussian stochastic process because of our earlier assumptions. We

can therefore calculate ⟨𝑒𝑖𝜃⟩ using Eq. (4.17), substituting 𝑓�⃗��⃗� for 𝛿𝜔. By inspection

𝑓�⃗��⃗� has zero mean, and its autocorrelation function is

⟨𝑓�⃗��⃗�(𝑡)𝑓�⃗��⃗�(0)⟩ =
𝛾2

4

𝑛∑︁
𝑗,𝑘=1

(𝑥𝑗 − 𝑦𝑗)(𝑥𝑘 − 𝑦𝑘) ⟨𝛿𝜔𝑗(𝑡) 𝛿𝜔𝑘(0)⟩

=
𝛾2Γ

2

𝑛∑︁
𝑗,𝑘=1

(𝑥𝑗 − 𝑦𝑗)𝑐𝑗𝑘(𝑥𝑘 − 𝑦𝑘) 𝛿(𝑡) (5.21)

=
1

2𝑇 *
2

(�⃗�− �⃗�)⊤𝐶(�⃗�− �⃗�) 𝛿(𝑡).

Therefore, components of 𝜌 evolve on average as

⟨𝒰𝑡⟩
(︀
|�⃗�⟩⟨�⃗�|

)︀
= exp

[︂
−𝑖𝛾𝜔0𝑡

2
1⃗⊤(�⃗�− �⃗�) − 𝑡

4𝑇 *
2

(�⃗�− �⃗�)⊤𝐶(�⃗�− �⃗�)

]︂
|�⃗�⟩⟨�⃗�| (5.22)

= 𝑒𝑡 𝛽�⃗�𝑦 |�⃗�⟩⟨�⃗�| .
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It follows immediately from Eqs. (5.17) and (5.22) that the average time-evolved state

⟨𝒰𝑡(𝜌)⟩ = ⟨𝒰𝑡⟩(𝜌) satisfies

𝑑

𝑑𝑡
⟨𝒰𝑡⟩(𝜌) =

∑︁
�⃗��⃗�

𝜚�⃗��⃗�
𝑑

𝑑𝑡
⟨𝒰𝑡⟩

(︀
|�⃗�⟩⟨�⃗�|

)︀
=

∑︁
�⃗��⃗�

𝜚�⃗��⃗� 𝛽�⃗�,�⃗� ⟨𝒰𝑡⟩
(︀
|�⃗�⟩⟨�⃗�|

)︀
=

∑︁
�⃗��⃗�

𝜚�⃗��⃗� ℒ
[︁
⟨𝒰𝑡⟩

(︀
|�⃗�⟩⟨�⃗�|

)︀]︁
= ℒ

[︁
⟨𝒰𝑡⟩

(︀
𝜌
)︀]︁
,

for the Liouvillian ℒ in Eq. (5.13), as claimed. We now return to labeling computa-

tional basis states using bit-strings, rather than ±1’s. �

5.3 Exploiting Spatial Noise Correlations

Having expressed the dynamics as a Lindblad equation allows us to use the framework

introduced in Section 1.2.3. Specifically, we can remove the cross-terms of 𝒟 in

Eq. (5.13), thus expressing it in the form of Eq. (5.1)—that is, in terms of jumps

𝐿𝑖—by diagonalizing the correlation matrix 𝐶 ≥ 0 to yield operators 𝐿𝑖 =
√
𝜆𝑖�⃗�𝑖 · �⃗�.

Here, 𝐶�⃗�𝑖 = 𝜆𝑖�⃗�𝑖 and �⃗� = (𝑍1, . . . , 𝑍𝑛). These 𝐿𝑖’s can be interpreted as the sensor’s

quantum jumps, while the 𝑍𝑖’s in (5.13) cannot [19]. (This means that the no-go

example in Section 5.1 with 𝐿𝑖 ∝ 𝑍𝑖 implicitly made a very strong assumption: that

the phase noise was completely devoid of spatial correlations.) One could also think

of the 𝐿𝑖’s as describing “normal modes” of the noise. Crucially, the ECQS conditions,

(5.3) and (5.4), deal with the quantum jump operators 𝐿𝑖’s, not the bare 𝑍𝑖’s. This

distinction is critical because it opens the possibility of engineering a sensor such that

𝐶 has a vanishing eigenvalue 𝜆𝑘 = 0, thus suppressing 𝐿𝑘. Generically, the Lindblad

span S will then fail to contain 𝐻0 due to this “missing” jump operator, opening the

door for ECQS.

The requirement that 𝐻0 /∈ S for conditions (5.3) and (5.4) can be restated for

signal and noise which couple identically to the sensor [in the sense of Eq. (5.6)] as

�⃗� /∈ col(𝐶), (5.23)
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where �⃗� := (𝛾, . . . , 𝛾)⊤ ∈ R𝑛 is defined so that 𝐻0 = 𝜔0

2
�⃗� ·�⃗�, and col(𝐶) is the column

space of 𝐶. Eq. (5.23) enforces two things: (i) that det(𝐶) = 0 and thus 𝐿𝑘 = 0 for

some 𝑘, and (ii) that 𝐻0 is not composed only of non-vanishing 𝐿𝑖’s. It ensures that

the signal and noise can be fully distinguished by the recovery operation on the basis

of their respective spatial profiles (a requirement we will later relax).

Proof. We show here that Eq. (5.23) is equivalent to 𝐻0 /∈ S for the background

noise described in Eq. (5.13), where S is the Lindblad span. Let {�⃗�𝑖} ⊂ R𝑛 be an

orthonormal eigenbasis of 𝐶 such that 𝐶�⃗�𝑖 = 𝜆𝑖�⃗�𝑖, and define �̃�𝑖 := �⃗�𝑖 · �⃗� = �̃�†
𝑖 and

𝐿𝑖 :=
√
𝜆𝑖�̃�𝑖 = 𝐿†

𝑖 . Notice that ⟨�̃�𝑖, 𝐼⟩ = ⟨�̃�𝑖, �̃�𝑗�̃�ℓ⟩ = 0 under ⟨𝐴,𝐵⟩ = tr(𝐴†𝐵),

so S can be decomposed into orthogonal subspaces as S = S1 ⊕ S2 where S1 :=

span{𝐿𝑖}𝑖≥1 and S2 := span{𝐼, 𝐿𝑖𝐿𝑗}𝑖,𝑗≥1. Having diagonalized 𝐶, we can express

𝐻0 in terms of �̃�𝑖’s (rather than 𝑍𝑖’s) as 𝐻0 =
∑︀𝑛

𝑖=1 𝛼𝑖�̃�𝑖 for unique coefficients

𝛼𝑖 = 2−𝑛 tr(�̃�𝑖𝐻0) = 𝜔0

2
�⃗�𝑖 · �⃗�, implying that 𝐻0 ⊥ S2. Therefore, 𝐻0 /∈ S if and only

if (iff) 𝐻0 /∈ S1. This happens iff there is a 𝑘 such that 𝜆𝑘 = 𝐿𝑘 = 0 and 𝛼𝑘 ̸= 0,

or equivalently, iff �⃗�𝑘 · �⃗� ̸= 0 for some 𝑣𝑘 ∈ ker(𝐶). Finally, since 𝐶 = 𝐶⊤ we have

col(𝐶) ⊕ ker(𝐶) = R𝑛, and so 𝐻0 /∈ S iff �⃗� /∈ col(𝐶). �

While we have assumed for simplicity that each qubit has the same transduction

parameter 𝛾 [i.e., that �⃗� = (𝛾, . . . , 𝛾)⊤], the Lindblad span condition𝐻0 /∈ S is equiv-

alent to Eq. (5.23) more generally. This can be seen by noting that the proof above

does not assume �⃗� to be uniform. Indeed, while the results here and in Chapter 6

do not require a uniform �⃗�, we will generally focus on this case. As we mentioned

above, one reason for this choice is simplicity. A more important reason, however,

is that in analyzing the impact of distinct 𝛾𝑗’s on each qubit, one risks taking the

current noise model too seriously. For instance, if a sensor’s dynamics were described

perfectly by Eqs. (5.6) and (5.11), one would expect that doubling 𝛾𝑗 on qubit 𝑗 would

increase its dephasing rate by exactly a factor of 4, as per Eq. (5.8). More broadly,

it would mean that whether or not 𝐻0 is in the Lindblad span S is independent of

the transduction parameters (assuming they are non-zero). In other words, it would

mean that 𝐻0 /∈ S is a potential property of the noise {𝛿𝜔𝑗}𝑗, not of the qubits’

response to this noise.
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Proof. Suppose that a sensor’s dynamics is exactly described by Eqs. (5.6) and

(5.11), and that each qubit has its own (potentially distinct) transduction parameter

𝛾𝑖 ̸= 0, leading to an overall average Hamiltonian𝐻 ′
0 = 𝜔0

2
�⃗� ′·�⃗� for �⃗� ′ := (𝛾1, . . . , 𝛾𝑛)⊤.

Defining a matrix 𝑊 = 𝛾−1diag(�⃗� ′), we can write �⃗� ′ = 𝑊�⃗� for �⃗� = (𝛾, . . . , 𝛾)⊤.

This change in transduction parameters would also change the non-unitary part of

the sensor’s dynamics in a very specific way, in principle. Concretely, the Lindblad

coefficients in Eq. (5.13) would not longer be the elements of 𝐶, but rather, would

be those of 𝐶 ′ = 𝑊𝐶𝑊 . (Unfortunately the elements 𝑐′𝑖𝑗 of 𝐶
′ are not bounded in

general by ±1, so they lack a nice interpretation as correlation coefficients.) Observe,

however, that ker(𝐶 ′) = {𝑊−1�⃗� | �⃗� ∈ ker(𝐶)}, so �⃗� ′ /∈ col(𝐶 ′) ⇐⇒ �⃗� /∈ col(𝐶). �

In practice, of course, there could be other sources of dephasing beyond {𝛿𝜔𝑗}, in
which case 𝐶 would not transform with the 𝛾𝑗’s exactly as in the last proof. Such

scaling is not of direct interest here; the critical piece for QEC is simply that a

dynamics described by Eq. (5.13) with a non-diagonal 𝐶 can easily arise. (Note, for

instance, that the more general case where the qubits have different 𝑇 *
2 ’s can readily be

treated in the present framework by using an adjusted—and less intuitive—definition

of 𝐶.) In order to avoid pushing our noise model too far, we will therefore avoid

questions of how 𝒟 in Eq. (5.13) transforms with �⃗� by focusing on the case where the

qubit transduction parameters are all equal. Accordingly, we leave the simple task of

adapting some of the calculations below for more general �⃗�’s to the interested reader,

depending on how 𝒟 changes with �⃗� in their physical system of interest.

5.3.1 Negative Noise Correlations

Consider for example 𝑛 = 3 sensing qubits with uniform negative noise correlations

of 𝑐𝑖𝑗 = −𝜙/2 on each pair (𝑖 ̸= 𝑗), forming the correlation matrix

𝐶neg =

⎛⎜⎜⎜⎝
1 −𝜙/2 −𝜙/2

−𝜙/2 1 −𝜙/2
−𝜙/2 −𝜙/2 1

⎞⎟⎟⎟⎠ , (5.24)
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where 𝜙 ∈ [0, 1] encodes the noise correlation strength. (Specifically, 𝜙 = 0 produces

vanishing correlations whereas 𝜙 = 1 gives the strongest correlations possible.) The

eigenpairs of 𝐶neg are given by

𝜆1 = 1 + 𝜙/2 �⃗�1 =
1√
2

(1, 0,−1)⊤

𝜆2 = 1 + 𝜙/2 �⃗�2 =
1√
6

(1,−2, 1)⊤ (5.25)

𝜆3 = 1 − 𝜙 �⃗�3 =
1√
3

(1, 1, 1)⊤.

Notice that the eigenvectors of 𝐶neg do not depend on 𝜙, and that 𝜆3 is subdominant

for any 𝜙 > 0, as shown in the left panel of Fig. 5-1. In the limiting case of 𝜙 = 1,

we see that 𝐶neg�⃗� = 0⃗ for �⃗� = (𝛾, 𝛾, 𝛾), and so �⃗� /∈ col(𝐶neg).
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Figure 5-1: Left: The eigenvalues of 𝐶neg as a function of 𝜙. Right: The achievable
sensitivity with different schemes for a 3-qubit sensor under noise correlations 𝑐𝑖𝑗 =
−𝜙/2, for all 𝑖 ̸= 𝑗. The active recovery and GHZ schemes use codewords (5.27)
and (5.35) respectively, whereas the parallel scheme operates the qubits individually,
without entanglement. The active and GHZ schemes give identical performance (in
the regime of 𝛿𝑡→ 0 for the former), and both outperform parallel sensing by a factor
that grows with the correlation strength 𝜙.

The jump operators in the ECQS conditions are not 𝑍1, 𝑍2 and 𝑍3, but rather

𝐿1 =

√
2 + 𝜙

2
(𝑍1 − 𝑍3), 𝐿2 =

√︂
2 + 𝜙

12
(𝑍1 − 2𝑍2 + 𝑍3), (5.26)

𝐿3 =

√︂
1 − 𝜙

3
(𝑍1 + 𝑍2 + 𝑍3),

found by diagonalizing 𝐶neg. Observe that the global noise mode, 𝐿3, becomes sub-
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dominant for larger values of 𝜙, until it vanishes completely when 𝜙 = 1, at which

point 𝐻0 /∈ S as expected. Notice also that 𝑃 = |0l⟩⟨0l|+ |1l⟩⟨1l| with logical states

|0l⟩ =
1√
3

(︀
|100⟩+ |010⟩+ |001⟩

)︀
|1l⟩ =

1√
3

(︀
|011⟩+ |101⟩+ |110⟩

)︀
(5.27)

satisfies the conditions (5.3) and (5.4) when 𝜙→ 1, despite the signal and noise both

coupling to each sensing qubit identically. Contrast this with the 𝑛 = 3 repetition

code, which corrects for 𝑍1, 𝑍2, 𝑍3 and all linear combinations thereof, including 𝐻0.

Eq. (5.27) instead defines a weakened version of the repetition code, which corrects

for linear combinations of 𝐿1 and 𝐿2, but not for �⃗�3 ·�⃗� ∝ 𝑍1+𝑍2+𝑍3. In the language

of Chapter 1, it forms a targeted “net,” carefully chosen to catch the dominant noise

but allow the signal to pass through. As per the derivation of the Knill-Laflamme

condition in Chapter 1, the code in Eq. (5.27) partitions the sensor’s Hilbert space

into four orthogonal subspaces, C0, C1, C2 and C3, spanned by |0l⟩ and |1l⟩, and

|01⟩ =
1√
2

(︁
|100⟩ − |001⟩

)︁
|02⟩ =

1√
6

(︁
|001⟩ − 2 |010⟩ + |100⟩

)︁
|03⟩ = |000⟩

|11⟩ =
1√
2

(︁
|110⟩ − |011⟩

)︁
|12⟩ =

1√
6

(︁
− |011⟩ + 2 |101⟩ − |110⟩

)︁
|13⟩ = |111⟩

(5.28)

respectively. As described in Chapter 1, the recovery associated with this code can

be cast in the form of a projective measurement with unitary feedback. It can also

be written as

ℛ(𝜌) = 𝑃𝜌𝑃 +
3∑︁
𝑗=1

𝐾𝑗𝜌𝐾
†
𝑗 , (5.29)

where 𝐾𝑗 = |0l⟩⟨0𝑗| + |1l⟩⟨1𝑗|. One can show (see, e.g., [152]) that ℛℒ acting on

logical states has a Hamiltonian term ℛℋ0(𝜌l) = [𝐻eff, 𝜌l] with

𝐻eff = 𝑃𝐻0𝑃 =
𝛾𝜔0

2
𝑍l, (5.30)
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where 𝑍l = |0l⟩⟨0l| − |1l⟩⟨1l|, and a dissipative term ℛ𝒟 with Lindblad operators

{𝐿(𝑖,𝑗)
eff }𝑖,𝑗 = {𝑃𝐿𝑗𝑃, 𝐾𝑖𝐿𝑗𝑃}𝑖,𝑗. (5.31)

A direct calculation shows that the only nontrivial Lindblad jump operator (i.e., not

proportional to 𝑃 ) is

𝐿eff =

√︃
1 − 𝜙

6𝑇 *
2

𝑍l, (5.32)

dropping the index labels to simplify the notation. The effective dynamics at the

logical level, as 𝛿𝑡→ 0, is therefore generated by ℒeff = ℛℒ|code where

ℒeff(𝜌l) = −𝑖[𝐻eff, 𝜌l] + 𝐿eff 𝜌l 𝐿eff −
1

2

{︀
𝐿2
eff, 𝜌l

}︀
. (5.33)

Notice that 𝐿eff → 0 but 𝐻eff remains constant as 𝜙 → 1, so the logical dynamics

becomes less noisy for stronger correlations. In fact, in the limiting 𝜙 → 1 case this

code can fully correct the noise (ℛ𝒟|code = 0) while allowing the signal to still imprint

on the logical states (ℛℋ0|code ̸= 0), resulting in a signal-dependent effective unitary

dynamics.

More broadly, notice that for any positive 𝜙 the code in Eq. (5.27) corrects all but

the subdominant noise mode, and could therefore be expected to enhance performance

even if 𝜙 is smaller than 1. As we saw in Chapter 4, the performance of an imperfect

quantum sensor is naturally quantified by the sensitivity it achieves; that is, the

smallest signal it can detect per unit time. Sensitivity therefore also provides a way

to benchmark ECQS schemes: a more effective scheme allows one to resolve a smaller

signal per unit time, thus giving lower (i.e., better) sensitivity. Since the limiting

logical dynamics in Eq. (5.33) can be mapped to the single-qubit case analyzed in

Section 4.2.3, with 𝐴 = 1 and 𝐵 = (1 − 𝜙)/3, we immediately find that this code

offers a sensitivity of

𝜂QEC =

√︂
1 − 𝜙

3
𝜂1, (5.34)

for general 𝜙 ∈ [0, 1] as shown in the right panel of Fig. 5-1, using an initial state of
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|𝜓0⟩ = (|0l⟩ + |1l⟩)/
√

2. Notice that the sensitivity vanishes (i.e., approaches that of

an ideal sensor) as 𝜙→ 1, and outperforms the parallel sensing strategy for all 𝜙 > 0.

Another possible code for this 𝐶neg uses

|0′
l
⟩ = |000⟩ |1′

l
⟩ = |111⟩ . (5.35)

When 𝜙→ 1 it also satisfies the ECQS conditions, although its recovery procedure is

trivial because span{|0′
l
⟩ , |1′

l
⟩} is a decoherence-free subspace (DFS) within which 𝐻0

acts non-trivially [164]. (When 𝜙 < 1 it becomes an approximate DFS.) ECQS with

this code is therefore a Greenberger-Horne-Zeilinger (GHZ) sensing scheme [165]. An

analogous calculation to the one above shows that under 𝐶neg, (|0′
l
⟩+|1′

l
⟩)/

√
2 evolves

like a single qubit with 𝐴 = 3 and 𝐵 = 3(1 − 𝜙). The optimal sensitivity offered

by this GHZ/DFS scheme is therefore identical to that in Eq. (5.34) as shown in the

right panel of Fig. 5-1, although this coincidence is particular to the present example,

and will not occur more broadly (see, e.g., Section 5.3.2).

In general, a DFS is a code for which |0l⟩ and |1l⟩ are degenerate eigenvectors

of all 𝐿𝑖. This means that 𝐸𝑃 = 𝜇𝐸𝑃 for coefficients 𝜇𝐸, for all 𝐸 ∈ S , immedi-

ately satisfying condition (5.3). For states within the DFS to be sensitive to 𝜔0 we

also need |0l⟩ and |1l⟩ to be non-degenerate energy eigenstates, so that 𝐻0𝑃 ̸∝ 𝑃 ,

satisfying condition (5.4). Such a DFS satisfies the ECQS conditions—accordingly,

our discussion of general ECQS encompasses DFS-enhanced sensing as a special case.

In terms of the Knill-Laflamme condition, a DFS is a QEC code in which the code

matrix has a rank of one. DFS-enhanced sensing is only possible for a small family

of correlation matrices 𝐶 which we discuss below. A code designed for some general

𝐶, in contrast, will usually necessitate an active recovery ℛ. This can be imple-

mented as described in Chapter 1, with details given in Chapter 6. For a logical

state 𝜌l = 𝑃𝜌l𝑃 of a code satisfying Eqs. (5.3) and (5.4), such a recovery gives

ℛ𝒟(𝜌l) = 0 and ℛℋ0(𝜌l) = [𝐻eff, 𝜌l] ̸= 0 as desired, where 𝐻eff = 𝑃𝐻0𝑃 [152]. In

other words, the sensor approaches noiseless evolution by 𝐻eff in the limit of frequent

error detection/correction (i.e., 𝛿𝑡→ 0).
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5.3.2 Positive Noise Correlations

The codes in Section 5.3.1 [namely Eqs. (5.27) and (5.35)] exploit negative noise

correlations to enhance sensitivity. However, quantum error correction can also en-

hance sensitivity under positive noise correlations (or indeed, a mix of positive and

negative). Consider for illustration a 3-qubit sensor with positive noise correlations

between each pair of qubits, described by

𝐶pos =

⎛⎜⎜⎜⎝
1 3𝜙/4 3𝜙/4

3𝜙/4 1 𝜙/8

3𝜙/4 𝜙/8 1

⎞⎟⎟⎟⎠ . (5.36)

Here, 𝜙 ∈ [0, 1] parameterizes the correlation strength in the same way as in Sec-

tion 5.3.1. Positive noise correlations which are uniform across all qubit pairs yield

subdominant noise modes orthogonal to 𝐻0, and are therefore not straightforwardly

amenable to ECQS. (Gradiometry schemes are a notable exception.) Accordingly,

we choose for illustration here 𝐶pos describing non-uniform noise correlations, where

the noise between qubits 2 and 3 is more weakly correlated than that between other

pairs.

The eigenpairs of 𝐶pos are given by

𝜆1 = 1 − 𝜙/8 �⃗�1 =
1√
2

(0, 1,−1)⊤

𝜆2 = 1 + 9𝜙/8 �⃗�2 =
1√
34

(4, 3, 3)⊤ (5.37)

𝜆3 = 1 − 𝜙 �⃗�3 =
1√
17

(−3, 2, 2)⊤.

As with 𝐶neg, the eigenvectors above are independent of 𝜙. Furthermore, the eigen-

value 𝜆3 is subdominant for all 𝜙 > 0, and vanishes in the limit of strong noise cor-

relations (𝜙 → 1), as shown in the left panel of Fig. 5-2. In this limit �⃗� /∈ col(𝐶pos).

Note that 𝐶pos does not have a DFS when 𝜙 → 1, unlike 𝐶neg, so we are limited to

ECQS schemes with active recoveries for this noise profile.

133



One can show that

|0l⟩ =
√
𝑥
(︁
|001⟩ + |010⟩

)︁
+

√︂
−7𝑥

3
+

5

6
|100⟩ +

√︂
𝑥

3
+

1

6
|111⟩ (5.38)

|1l⟩ =

√︂
𝑥

3
+

1

6
|000⟩ +

√︂
−7𝑥

3
+

5

6
|011⟩ +

√
𝑥
(︁
|101⟩ + |110⟩

)︁
is a valid ECQS code for any 𝑥 ∈ [0, 5/14] ∖ {1/4}, in that it satisfies the Knill-

Laflamme condition for 𝐿𝑗 =
√︀
𝜆𝑗 �⃗�𝑗 · �⃗�, 𝑗 = 1, 2, but not for 𝐻0. (The free parameter

𝑥 could be chosen, for instance, so that the resulting code yields the simplest possible

recovery ℛ.) As in Section 5.3.1, this code defines four 2-dimensional subspaces

spanned here by the codewords and by

|01⟩ =
1√
2

(︁
|010⟩ − |001⟩

)︁
|11⟩ =

1√
2

(︁
|110⟩ − |101⟩

)︁
,

|02⟩ =
2√

5 + 14𝑥

[︁√
𝑥
(︁
|001⟩ + |010⟩

)︁
+

√︂
5

24
− 7𝑥

12
|100⟩ − 5

2

√︂
2𝑥+ 1

6
|111⟩

]︁
|12⟩ =

2√
5 + 14𝑥

[︁5

2

√︂
2𝑥+ 1

6
|000⟩ −

√︂
5

24
− 7𝑥

12
|011⟩ − √

𝑥
(︁
|101⟩ + |110⟩

)︁]︁
(5.39)

|03⟩ =
1√

42𝑥+ 15

[︃√︂
15

2
− 6𝑥(1 + 7𝑥)

(︀
|001⟩ + |010⟩

)︀
− 7

√︀
𝑥(1 + 2𝑥) |100⟩ +

√︀
𝑥(5 − 14𝑥) |111⟩

]︃

|13⟩ =
1√

42𝑥+ 15

[︃
−

√︀
𝑥(5 − 14𝑥) |000⟩ + 7

√︀
𝑥(1 + 2𝑥) |011⟩

−
√︂

15

2
− 6𝑥(1 + 7𝑥)

(︀
|101⟩ + |110⟩

)︀]︃
.

One can use these states to construct the Kraus operators of ℛ, as given in Eq. (5.29),
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from which one finds

𝐻eff =

(︂
1 − 4𝑥

3

)︂
𝛾𝜔0

2
𝑍l, (5.40)

and a single non-trivial jump operator

𝐿eff =

√︃(︂
17(1 − 4𝑥)2(1 − 𝜙)

9

)︂
1

2𝑇 *
2

𝑍𝐿 (5.41)

at the logical level when 𝛿𝑡 → 0. Comparing with Section 4.2.3, one can identify for

this family of codes

𝐴 =
1 − 4𝑥

3
𝐵 =

17(1 − 4𝑥)2(1 − 𝜙)

9
, (5.42)

giving a sensitivity bound of

𝜂QEC =
√︀

17(1 − 𝜙) 𝜂1 (5.43)

for an initial state of (|0l⟩ + |1l⟩)/
√

2, independent of 𝑥, as shown in the right panel

of Fig. 5-2. For comparison, the GHZ scheme gives

𝜂GHZ =

√
12 + 13𝜙

6
𝜂1 (5.44)

for 𝐶pos, which is worse than the parallel scheme for all 𝜙 > 0. Like in the previous

example, the sensitivity offered by ECQS approaches the ideal case (𝜂QEC → 0)

as 𝜙 → 1. Unlike the previous example, however, the codes presented here only

outperform simpler schemes for very strong noise correlations 𝜙 = 50/51 ≈ 0.98. It

is unclear at present whether this high threshold is due to the choice of code, the

spatial noise profile 𝐶pos itself, or both.

5.3.3 Robustness Analysis

Sections 5.3.1 and 5.3.2 examined the effects of the noise correlation strength (𝜙)

on code performance. Before moving on from these two examples, let us consider
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Figure 5-2: Left: The eigenvalues of 𝐶pos as a function of 𝜙. Right: The optimal
sensitivity achievable through ECQS with codewords (5.38), compared with that from
parallel and GHZ schemes.

the question of robustness against uncertainty/errors in the measured 𝐶. That is, if

the true noise correlation profile is given by 𝐶, but experimental imperfections lead

one to measure 𝐶 ′ ̸= 𝐶 and design a code accordingly, how much will the sensor’s

performance suffer?

To address this question in the context of the two previous examples, we consider

the family of correlation profiles

𝐶𝜑 =

⎛⎜⎜⎜⎝
1 𝜑 𝜑

𝜑 1 2𝜑2 − 1

𝜑 2𝜑2 − 1 1

⎞⎟⎟⎟⎠ . (5.45)

Here, 𝜑 ∈ [−1, 1] does not describe the strength of the correlations. Rather, it

parameterizes a family of strongly-correlated noise profiles. In particular, 𝜑 = −1/2

and 𝜑 = 3/4 give 𝐶neg and 𝐶pos respectively with 𝜙 = 1.

The eigenpairs of 𝐶𝜑 are given by

𝜆1 = 2𝜑2 + 1 �⃗�1 =
1√︀

2𝜑2 + 1
(1, 𝜑, 𝜑)⊤

𝜆2 = 2(1 − 𝜑2) �⃗�2 =
1√
2

(0, 1,−1)⊤ (5.46)

𝜆3 = 0 �⃗�3 =
1√︀

4𝜑2 + 2
(2𝜑,−1,−1)⊤.
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Unlike in previous sections, the subdominant eigenvalue 𝜆3 is identically zero here,

as shown in the left panel of Fig. 5-3. However, the eigenvectors—i.e., the “shapes”

of the noise modes—depend on 𝜑.

To analyze the robustness of the codes from previous sections, we apply them to

noise with a spatial profile 𝐶𝜑, where 𝜑 is not necessarily the value for which they were

designed. The codewords from Eq. (5.27) (designed for use with 𝐶neg, i.e., 𝜑 = −1/2)

give

𝐻eff =
𝛾𝜔0

2
𝑍l 𝐿eff =

√︃(︂
2𝜑+ 1

3

)︂2
1

2𝑇 *
2

𝑍l (5.47)

in the presence of noise with correlations 𝐶𝜑. Those from Eq. (5.38) (designed for use

with 𝐶pos, i.e., 𝜑 = 3/4) give

𝐻eff =

(︂
1 − 4𝑥

3

)︂
𝛾𝜔0

2
𝑍l 𝐿eff =

√︃(︂
(4𝑥− 1)(4𝜑− 3)

3

)︂2
1

2𝑇 *
2

𝑍l, (5.48)

and thus a sensitivity independent of 𝑥. Comparing with Section 4.2.3, the factors 𝐴

and 𝐵, as well as the achievable sensitivities for these codes, are listed in the table

below as functions of 𝜑. The sensitivities are also plotted in the right panel of Fig.

5-3.

Scheme 𝐴 𝐵 𝜂

Parallel - -
√︁

1
3
𝜂1

GHZ 3 (2𝜑+ 1)2
⃒⃒
2𝜑+1
3

⃒⃒
𝜂1

Active ECQS, Eq. (5.27) 1
(︀
2𝜑+1
3

)︀2 ⃒⃒
2𝜑+1
3

⃒⃒
𝜂1

Active ECQS, Eq. (5.38) 1−4𝑥
3

(︁
(4𝑥−1)(4𝜑−3)

3

)︁2

|4𝜑− 3| 𝜂1

Some remarks are in order: (i) The active recovery using (5.27) performs identi-

cally to the GHZ scheme here, much like in Section 5.3.1. (ii) The performance of the

codes in (5.38) is independent of 𝑥, as in Section 5.3.2. (iii) All codes perform best

at the value of 𝜑 for which they were designed, and their performance deteriorates

gradually away from this intended value. For reasons that are not clear at present,

the code in (5.27) is more robust in 𝜑 than that in (5.38).
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Figure 5-3: Left: The eigenvalues of 𝐶𝜑 as a function of 𝜑. Right: The optimal sen-
sitivity offered by codes (5.27), (5.35), and (5.38) for arbitrary values of 𝜑, compared
with a parallel sensing scheme.

5.4 Range of Applicability

Conditions (5.3) and (5.4) seem to impose a stringent requirement on the 𝐶’s amenable

to ECQS under signal and noise which are “parallel,” in that they couple to the sen-

sor through the same operators (along the 𝑧 direction, i.e., the qubits’ energy gaps,

here). This need not be the case, however, since error correction can enhance quantum

sensing even if it does not give a strictly noiseless limit. Notice in the right panels

of Figs. 5-1 and 5-2, for instance, that ECQS can enhance sensitivity for 𝜙 < 1,

even though conditions (5.3) and (5.4) are only satisfied exactly when 𝜙 = 1. More

generally, if instead of satisfying (5.3) exactly, 𝑃𝐿†
𝑖𝐿𝑗𝑃 = 𝑚𝑖𝑗𝑃 + 𝑂(𝜖) (defining as

shorthand 𝐿0 := 𝐼), then ℛ𝒟(𝜌l) = 𝑂(𝜖) for a logical 𝜌l instead of vanishing exactly

[152]. If the time between successive recoveries is nonzero (𝛿𝑡 > 0) as in most ex-

periments, then decoherence will appear in the logical dynamics at order1 𝑂(𝛿𝑡/𝑇 *
2 )

in ℒeff. Provided 𝜖 ≪ 𝛿𝑡/𝑇 *
2 , then, small violations of condition (5.3) will not ap-

preciably change the degree to which quantum error correction suppresses noise in a

sensor. This is true for generic ECQS schemes. When correcting noise which couples

like the signal, in particular, allowing 𝜖 ̸= 0 enables codes which—by design—do not

correct for errors 𝐿𝑘 with ||𝐿𝑘|| ≈ 0, corresponding to an eigenvalue 𝜆𝑘 of 𝐶 which is

small but not exactly zero. Therefore in the present setting, relaxing condition (5.3)

1We write 𝑂(𝑡/𝑇 *
2 ) rather than 𝑂(||ℒ|| 𝛿𝑡) to simplify notation, assuming 𝜔0 to be a small com-

pared to 1/𝑇 *
2 . If 𝜔0 is not small, 𝑂(𝛿𝑡/𝑇 *

2 ) should be taken to mean 𝑂(||ℒ|| 𝛿𝑡).
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reduces the need for fine-tuned noise correlations.

For quantum error correction to filter noise from signal when 𝛿𝑡/𝑇 *
2 is finite,

ℛ must suppress the former more than the latter. Choosing |0l⟩ and |1l⟩ to be

eigenstates of 𝐻eff with energies 𝐸0 > 𝐸1, the effective Hamiltonian takes the form

𝐻eff = 𝛼𝑃 + 𝐴𝛾𝜔0

2
𝑍l, where 𝑃 acts as 𝐼 over the codespace (i.e., trivially). Just as

𝜖 and 𝛿𝑡/𝑇 *
2 describe the extent to which noise is suppressed through frequent error

correction, 𝐴 (cf. Section 4.2.3) describes the signal gain; that is, the fraction of the

physical signal that survives at the logical level. Together with previous arguments

about (5.3), we arrive at sufficient conditions in terms of this signal gain for error

correction to enhance quantum sensing: 𝑃𝐿†
𝑖𝐿𝑗𝑃 = 𝑚𝑖𝑗𝑃 +𝑂(𝜖), and 𝐴≫ 𝜖. We will

make this more precise in Chapter 6. There is an analogy with dynamical decoupling

to be drawn here: both quantum error correction and DD can significantly enhance

sensing by partially filtering noise from the signal—they need not remove the noise

entirely to be useful.

This analogy goes further: Just as DD sequences must be tailored to sense in a

particular frequency band of interest, error-correcting codes must be tailored to 𝐶

and �⃗� for a sensor to measure only in a particular spatial “mode,” in order to correct

for noise which couples locally in the same way as the signal. That is, a particular

𝛿𝜔 and arrangement of sensing qubits (likely “baked in” to a device) will require a

unique 𝑃 . This is because the scheme depends on a code not correcting for �⃗�𝑘 · �⃗� with

𝜆𝑘 ∼ 0, thus allowing the component of 𝐻0 along �⃗�𝑘 · �⃗� to affect the logical states.

Therefore, we expect that in experiment, codes will need to be tailored for individual

devices, much like control sequences must be. We present here an initial method of

doing so.

5.4.1 Numerical Code Search

When �⃗� /∈ col(𝐶), Refs. [151, 152] provide recipes for codes which exactly satisfy the

ECQS conditions, although these may require the sensor to contain up to 𝑛 noiseless

ancilla qubits which do not couple to 𝜔, in addition to the 𝑛 sensing qubits. Here

we take a different approach which naturally tolerates small violations of the ECQS
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conditions, such as those discussed above. That is, it allows one to find codes which

enhance sensitivity, irrespective of whether they provide a noiseless limit in theory.

In contrast with several previous works [151, 152], our approach does not require the

overhead of additional ancillas as part of the code. Specifically, for a given 𝐶, we

map the task of finding a 𝑃 for (5.3) and (5.4) to an optimization problem, whose

solutions are codes satisfying 𝑃𝐿†
𝑖𝐿𝑗𝑃 = 𝑚𝑖𝑗𝑃 +𝑂(𝜖) for some code matrix𝑀 = 𝑀 †,

and giving a minimum signal gain of 𝐴min that is freely adjustable:

Minimize 𝐹tot =
∑︁
𝐸∈S

𝐹𝐸 subject to 𝐹𝐺 > 𝐴2
min and ⟨𝑥|𝑦⟩ = 𝛿𝑥𝑦, (5.49)

where 𝐺 := 1
2
�⃗� · �⃗� = 𝐻0/𝜔0 and

𝐹𝐸
(︀
|𝑥⟩ , |𝑦⟩

)︀
=

⃒⃒
⟨𝑥|𝐸 |𝑥⟩ − ⟨𝑦|𝐸 |𝑦⟩

⃒⃒2
+ 4

⃒⃒
⟨𝑥|𝐸 |𝑦⟩

⃒⃒2
. (5.50)

Notice that 𝐹tot is non-negative with zeros where 𝑃 = |𝑥⟩⟨𝑥|+ |𝑦⟩⟨𝑦| satisfies condition
(5.3). In fact, solutions to 𝐹tot = 0 with 𝐴min = 0 exactly satisfy the ECQS conditions

and vice versa. Relaxing these conditions slightly, one can find codes approximately

satisfying (5.3) and (5.4) by using 𝐹tot ≤ 𝜖2 as a convergence criterion and 𝐴min ≫ 𝜖.

Note that the resulting codes can be quite general; for instance, they need not be

stabilizer codes.

The objective function 𝐹tot may have several distinct zeros satisfying the con-

straints with 𝐴min = 0; for instance, the logical states in Eq. (5.27) and (5.35). [In

other words, there can be more than one 𝑃 exactly satisfying Eqs. (5.3) and (5.4).]

On the other hand, it will have no such zeros when �⃗� ∈ col(𝐶). More generally, for

given 𝜖 and 𝐴min ≥ 0, there may exist multiple regions where 𝐹tot ≤ 𝜖2 subject to

the constraints, or there may exist none for 𝐶 not amenable to ECQS with 𝑛 sensing

qubits.

A similar approach to finding codes was recently used in Ref. [80], although to our

knowledge it has not previously been used for ECQS. The factor of 4 in Eq. (5.50) was

included specifically for the purpose of finding codes for sensing: While this factor is
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irrelevant for enforcing that 𝐸 ∈ S be corrected, a simple calculation shows that 𝐹𝐺

for a code gives exactly its signal gain squared. Therefore, requiring that 𝐹𝐺 > 𝐴2
min

and 𝐹tot ≤ 𝜖2 for some 𝐴min ≫ 𝜖 is a transparent way of demanding that quantum

error correction suppress noise much more strongly than the signal.

For a two-qubit sensor, 𝐶 has a zero eigenvalue only when 𝑐12 = ±1. The 𝑐12 = 1

case has �⃗� ∈ col(𝐶) and is therefore not amenable to ECQS. The 𝑐12 = −1 case,

on the other hand, has �⃗� /∈ col(𝐶). Therefore, 𝑛 = 2 sensing qubits under strongly

anti-correlated noise (𝑐12 ≈ −1) can benefit from ECQS—in fact, they can be used

for DFS-enhanced sensing. (𝑐12 ≈ 1, however, could be useful for gradiometry, i.e., to

measure a mean difference between the energy gap of each qubit.) For a three-qubit

sensor a much broader family of 𝐶’s can satisfy the ECQS conditions. Using the

mapping described above, the 𝐶’s for which Eq. (5.49) yielded codes approximately

satisfying conditions (5.3) and (5.4) with no ancillas are shown in Fig. 5-4. Notice

that DFS-enhanced sensing with 𝑛 = 3 qubits is only possible for a small family of

𝐶’s. Therefore, while such schemes may be powerful [166–169], it could be exceedingly

difficult to engineer the spatial noise correlations they require in many devices. Codes

with active recoveries, in contrast, are much more broadly applicable. Chapter 6 will

be devoted to finding closed-form QEC codes like those in Eqs. (5.27), (5.35) and

(5.38), as a function of 𝐶 more generally. This will remove the need to rely on

numerics to find ECQS protocols as we have done here, and will allow us to analyze

the potential of QEC for phase noise filtering in quantum sensors with relative ease.

In an experiment, finding an appropriate code for ECQS first requires knowledge

of the noise correlations encoded in 𝐶. For qubits 𝑖 and 𝑗, the coefficient 𝑐𝑖𝑗 can

be inferred by preparing the Bell state 1√
2
(|0𝑖⟩ |0𝑗⟩ + |1𝑖⟩ |1𝑗⟩) and measuring its pure

dephasing rate 𝜏−1
𝑖𝑗 , which is related to 𝑐𝑖𝑗 through 𝜏

−1
𝑖𝑗 = 2

𝑇 *
2

(1+𝑐𝑖𝑗), after subtracting

the dephasing due to any relaxation that might also be present in practice. Note that

the spatial noise correlations in our simple model can be described by a single matrix

𝐶 because we have assumed a lack of temporal noise correlations. More generally,

these spatial correlations will be encoded in cross-correlation functions/cross-spectra,

for which one would need to adapt the idealized framework used here.

141



c12

−1.0
−0.5

0.0
0.5

1.0

c 23

−1.0

−0.5

0.0

0.5

1.0

c13

−1.0

−0.5

0.0

0.5

1.0

Active DFS No ECQS

Figure 5-4: Values of 𝑐12, 𝑐23 and 𝑐13 for which there exists a three-qubit code satisfying
the ECQS conditions to a tolerance of 𝜖 = 10−5 and 𝐴min = 10−1, and not requiring
noiseless ancillas. The points (𝑐12, 𝑐23, 𝑐13) approximately satisfying conditions (5.3)
and (5.4) form a tetrahedron-like surface. The portions of the surface in blue denote
𝐶’s for which ECQS is possible with an active (i.e., non-trivial) recovery. The red
regions (enlarged for visibility) denote 𝐶’s for which DFS-enhanced sensing is possible,
and the white regions denote 𝐶’s for which the optimization in Eq. (5.49) failed to
converge to within the specified tolerance, either because the achievable signal gain is
too small, or because of poor local minima in 𝐹tot. The continuous red band comprises
𝐶’s for which noise on a pair of qubits is perfectly anti-correlated (𝑐𝑖𝑗 = −1). Notice
that ECQS is generically possible for both positive and negative noise correlations;
it fails here only when 𝑐𝑖𝑗 ≈ 1 for some pair of qubits (𝑖 ̸= 𝑗), since this gives a
missing/subdominant jump operator orthogonal to 𝐻0.

5.5 Discussion

We have shown how error-corrected quantum sensing can filter noise from a signal

when both couple to a sensor locally through the same operators. This stands in

contrast with earlier explicit ECQS schemes, which were limited to correcting noise

separate from the quantity to be measured, in that it couples differently to the sensor.

In many quantum sensors such noise is sub-dominant, while the type of noise con-

sidered here is the limiting source of decoherence, and can only be partially filtered

through DD. Our scheme relies on the observation that Eqs. (5.3) and (5.4) can be

viewed as a condition on the spatial correlations of the signal and noise. This view
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raises a close parallel between ECQS and DD: for signal and noise which couple iden-

tically to a sensor [in the sense of Eq. (5.6)], ECQS and DD can enhance sensitivity

by acting as filters in the spatial and frequency domains, respectively. However, since

these two schemes separate noise from signal on totally separate grounds, they are

complementary, in that the limitations of one are not shared by the other. Finally, we

proposed a numerical method of tailoring ECQS codes to the noise observed in spe-

cific devices. It yields not just codes that correct noise perfectly in the 𝛿𝑡→ 0 limit,

but also codes which can more generally improve sensitivity. We applied this method

to sensors comprising 2 and 3 qubits—with no extra ancillas in the code—and showed

how our error correction scheme could provide an advantage even in relatively small

devices. We will introduce more sophisticated methods to this end in the following

chapter.

Both ECQS and DD filter noise which couples locally like the signal by exploiting

correlations in it: spatial correlations in the case of ECQS, and temporal correlations

for DD. Accordingly, the effectiveness of both schemes depends on the degree to

which noise in a sensor can made to have suitable correlations. (Note that different

spatial noise correlations may lend themselves best to different sensing tasks. For

instance, uniform positive correlations yield a dominant noise mode proportional to

𝐻0. This makes them ill-suited for measuring small field values through ECQS,

but well-suited for gradiometry.) Engineering appropriate spatial noise correlations

is likely to be highly implementation-dependent, as it is with temporal correlations

[132]. This is because the main sources of noise can be entirely different in different

types of quantum sensors. While an analysis of achievable noise correlations in various

types of sensors is beyond the scope of the present work, we note here simply that

strong spatial correlations have been reported already in several experiments, e.g.,

Refs. [93, 166, 167, 170–172]. They also underlie the device-adapted QEC codes in

Chapter 2.

The scheme presented here exploits spatial correlations to extract signal from a

noisy background, which generically causes dephasing. (Of course, the signal and

noise in question need not couple to the sensor via 𝑍; in general, the qubits could
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be decohered along any axis.) A similar approach may be possible with generalized

amplitude-damping (𝑇1-type) errors, which are second only to phase errors as the

dominant decoherence mode in many quantum sensors. That is, a sensor with qubits

made to thermalize collectively, rather than individually, could be amenable to quan-

tum error correction. The approach presented here could be combined with such a

scheme—or with previous ECQS schemes—raising the intriguing prospect of a quan-

tum sensor that is error-corrected against noise in all three spatial directions. While

this is the norm in QEC proposals for quantum computing, it might have seemed a

priori impossible for quantum sensing were it not for the results presented here.
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Chapter 6

QEC Codes for Dephasing in

Quantum Sensors

As we saw in the last chapter, quantum error correction (QEC) has the potential

to enhance quantum sensing. This application, however, poses unique challenges for

QEC. The main issue is that sensitivity is often limited by noise which acts on a

sensor in a very similar way as the signal. In particular, when the signal imprints on

the sensor as a relative phase, the dominant type of decoherence is often dephasing.

This makes it difficult for QEC to suppress the latter without also suppressing the

former by a corresponding amount. For most other applications, the goal of QEC is

to effectively decouple a quantum system from its environment (while still allowing

for certain control operations, of course). For sensing applications, however, the goal

is fundamentally different: one wants to effectively decouple a sensor only from the

parts of the environment that cause decoherence, while leaving it sensitive to those

one wishes to measure. In other words, QEC should not act as an effective barrier

between the system and its environment for quantum sensing, but rather, as a filter.

Fortunately, as we saw in Chapter 5, spatial correlations in background noise

provide a means by which QEC could distinguish signal from noise, and preferentially

suppress the latter. Specifically, the Lindblad jump operators arising from phase noise

are only 𝑍𝑗 phase flips in the limit where the noise has no spatial correlations. In

the presence of spatial noise correlations, these jumps are instead linear combinations

145



of 𝑍𝑗’s—analogous to normal modes—with unequal amplitudes. Remarkably, this is

true even when the noise couples locally to each qubit, and is identically distributed on

each. Such details are largely irrelevant for conventional QEC; for instance, repetition

codes correct such noise to the same order in time regardless of its spatial correlations.

For quantum sensing, however, this correlation-induced structure is critical.

There is a natural analogy between QEC and dynamical decoupling (DD) in this

setting. DD can enhance sensitivity by allowing only signal and noise within a nar-

row frequency band to affect the sensor (roughly). Provided there is not too much

noise power in the pass-band, this strategy can provide a substantial enhancement

in sensitivity. Similarly, QEC could allow only signal and noise with a particular

spatial structure to imprint at the logical level. That is, it could correct all but a

subdominant normal mode of the noise, thus reducing dephasing without equally sup-

pressing the signal. Like in DD, the net effect could be a substantial enhancement in

sensitivity.

In Chapter 5 we identified this potential strategy, and analyzed some simple ex-

amples. We did not, however, take on the more difficult problem of finding suitable

closed-form QEC codes (which do not require a large number of ancillas) beyond those

specific examples. We will do so in this chapter. In particular, we will find application-

adapted QEC codes as a function of the spatial noise correlations in quantum sensors.

This will allow us to find a simple expression for the sensitivity offered by our scheme.

To do so, we will first consider the ideal case of maximally strong spatial noise corre-

lations (wherein the weakest normal mode of the noise vanishes entirely) to develop

candidate codes, then generalize our results for realistic noise.

6.1 Closed-Form Codes

We will take two different approaches to developing QEC codes for sensing applica-

tions in this chapter. The first, covered in this section, involves transforming known

QEC codes. The second, taken in Section 6.2, will instead involve developing efficient

techniques to search for QEC codes numerically. Ultimately both techniques will be
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successful, and will converge to produce the same codes.

We will use the same noise model as in Chapter 5, encompassed in Eq. (5.13), as

a starting point for developing QEC codes. Recall that the associated Lindblad jump

operators are

𝐿𝑗 =
√︀
𝜆𝑗 �⃗�𝑗 · �⃗� (6.1)

where 𝐶 = (𝑐𝑗𝑘) is the noise correlation matrix and 𝐶�⃗�𝑗 = 𝜆𝑗 �⃗�𝑗, where {�⃗�𝑗} are chosen
to be real and orthonormal, and �⃗� = (𝑍1, . . . , 𝑍𝑛). In this same notation

𝐻0 =
𝜔0

2
�⃗� · �⃗� (6.2)

for some appropriate �⃗� ∈ R𝑛 encoding each qubit’s transduction parameter. We will

begin by assuming that 𝐻0 is outside the Lindblad span S , and construct codes

initially for this limiting case. That is, we assume �⃗� /∈ col(𝐶), meaning that 𝐶 has

at least one vanishing eigenvalue 𝜆𝑢 = 0 associated with an eigenvector �⃗�𝑢 which is

not orthogonal to �⃗�. (More precisely, if there are several vanishing eigenvalues, we

assume �⃗� has a non-trivial component in the span of the corresponding eigenvectors.)

We use the index 𝑢 to mean “uncorrected,” because we will seek to design QEC codes

which cannot correct for �⃗�𝑢 · �⃗� by design, and in fact need not do so because the

corresponding Lindblad jump operator 𝐿𝑢 =
√
𝜆𝑢�⃗�𝑢 · �⃗� = 0 vanishes.

6.1.1 Transforming the Dicke Code

Mathematically, the task at hand is to construct a QEC code with a single logical

qubit such that the ECQS conditions in Eqs. (5.3) and (5.4) are satisfied for all

𝑖, 𝑗 ̸= 𝑢. (Equivalently, we can enforce these equations for all 𝑖 and 𝑗 since 𝐿𝑢 = 0.)

The resulting logical states should be functions of the correlation matrix 𝐶 and the

transduction parameters �⃗�.

The first breakthrough to this end was due to Zhou [173], who generalized the

code in Eq. (5.27). The codewords used there are sometimes known as Dicke states,

and they can be viewed as describing a single excitation in the case of |0l⟩, or a
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single “hole,” i.e., lack of excitation, in the case of |1l⟩ [174]. We will therefore

informally refer to it as the Dicke code. Zhou’s insight was to generalize this code

by constructing codewords with one excitation/hole shared between 𝑛 qubits more

generally, with weights/coefficients that depend on 𝐶 and �⃗�.

As per the previous chapter, the task of designing codes for this sensing application

becomes non-trivial when dealing with 𝑛 ≥ 3 sensing qubits. For 𝑛 ≥ 3 then, the

idea is to use as codewords

|0l⟩ = 𝑠1 |100 · · · 0⟩ + 𝑠2 |010 · · · 0⟩ + · · · + 𝑠𝑛 |000 · · · 1⟩ (6.3)

|1l⟩ = 𝑠1 |011 · · · 1⟩ + 𝑠2 |101 · · · 1⟩ + · · · + 𝑠𝑛 |111 · · · 0⟩ = 𝑋⊗𝑛 |0l⟩ ,

where �⃗� = (𝑠1, . . . , 𝑠𝑛)⊤ are coefficients to be determined. Notice first that |0l⟩ and
|1l⟩ are orthogonal, and that for any vectors �⃗�, �⃗� ∈ R𝑛

⟨0l| (�⃗� · �⃗�)(�⃗� · �⃗�) |1l⟩ = 0 (6.4)

by inspection. Moreover, a direct calculation immediately reveals that

⟨0l| (�⃗� · �⃗�)(�⃗� · �⃗�) |0l⟩ = ⟨1l| (�⃗� · �⃗�)(�⃗� · �⃗�) |1l⟩ . (6.5)

Therefore, the ansatz in Eq. (6.3) automatically gives 𝑃 (�⃗� · �⃗�)(�⃗� · �⃗�)𝑃 ∝ 𝑃 for

𝑃 = |0l⟩⟨0l|+ |1l⟩⟨1l|, for any choice of coefficients �⃗�. Similarly, this ansatz also gives

⟨0l| (�⃗� · �⃗�) |1l⟩ = 0 (6.6)

for any real �⃗�. To correct the effects of {𝐿𝑗}𝑗 ̸=𝑢 to leading order in time, it remains

only to enforce that

⟨0l| (�⃗� · �⃗�) |0l⟩ = ⟨1l| (�⃗� · �⃗�) |1l⟩ (6.7)

through an appropriate choice of coefficients �⃗�. Indeed, a simple calculation shows
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that

⟨0l| (�⃗� · �⃗�) |0l⟩ =
𝑛∑︁
𝑗=1

𝑥𝑗
(︀
1 − 2|𝑠𝑗|2

)︀
= −⟨1l| (�⃗� · �⃗�) |1l⟩ (6.8)

for this ansatz. In order for Eq. (6.7) to hold, the left- and right-hand sides must

therefore both vanish; that is, we need the vector �⃗� with elements 𝑟𝑗 := (1 − 2|𝑠𝑗|2)
to be orthogonal to �⃗�. To correct {𝐿𝑗}𝑗 ̸=𝑢, we therefore need �⃗� ⊥ �⃗�𝑗 for all 𝑗 ̸= 𝑢;

that is, �⃗� ∈ ker(𝐶).

We must also ensure, however, that 𝑃𝐻0𝑃 ̸∝ 𝑃 , which requires that �⃗� · �⃗� ̸= 0. As

per the results in Chapter 5, such an �⃗� is guaranteed to exist when 𝐻0 is outside the

Lindblad span, as we have assumed for now. The most straightforward choice is to

take �⃗� parallel to the projection of �⃗� onto ker(𝐶):

�⃗� ∝ projker(𝐶)�⃗� = (𝐼 − 𝐶𝐶+)�⃗�, (6.9)

where the superscript + denotes the Moore-Penrose pseudoinverse1, as in Chapter 2.

We can find the right proportionality constant by enforcing normalization. Then,

choosing the amplitudes of the coefficients in Eq. (6.3) as

|𝑠𝑗|2 =
1

2

{︁
1 − 𝑛− 2

1⃗⊤ (𝐼 − 𝐶𝐶+)�⃗�

[︀
(𝐼 − 𝐶𝐶+)�⃗�

]︀
𝑗

}︁
, (6.10)

for any complex phases, where 1⃗ := (1, . . . , 1)⊤, would seem to give a QEC code

satisfying Eqs. (5.3) and (5.4).

Notice, for instance, that this recipe immediately gives Eq. (5.27) upon plugging

in 𝐶neg from Section 5.3.1 with maximally strong spatial correlations (𝜙 = 1). Doing

the same for 𝐶pos in 5.3.2 reveals a problem, however: it gives the nonsensical solution

|𝑠1|2 = 2 |𝑠2|2 = −1/2 |𝑠3|2 = −1/2, (6.11)

meaning that the ansatz in Eq. (6.3) does not work for this correlation matrix. Fortu-

nately, there is an easy fix in this particular case: one can simply flip the quantization

1Note that 𝐶𝐶+ is the orthogonal projector onto col(𝐶), so 𝐼 − 𝐶𝐶+ is that onto ker(𝐶).
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axes of some qubits (i.e., swap our definitions of |0𝑗⟩ and |1𝑗⟩ for certain qubits 𝑗)

and try again.

Mathematically, this procedure is described by a diagonal matrix 𝑄, with 𝑞𝑗𝑗 = −1

if the 𝑗th qubit is to be “flipped” (in terms of our labeling that is—nothing happens

to the physical qubit), and +1 otherwise. This relabeling transforms �⃗� and 𝐶 as

�⃗� ↦→ �⃗� ′ = 𝑄�⃗� 𝐶 ↦→ 𝐶 ′ = 𝑄𝐶𝑄. (6.12)

The coefficients in Eq. (6.10) accordingly transform as

|𝑠𝑗|2 ↦→ |𝑠′𝑗|2 =
1

2

{︁
1 − 𝑛− 2

1⃗⊤𝑄(𝐼 − 𝐶𝐶+)�⃗�

[︀
𝑄(𝐼 − 𝐶𝐶+)�⃗�

]︀
𝑗

}︁
. (6.13)

We can then attempt to choose 𝑄 (i.e., choose whether the ground state of each

qubit is labeled |0⟩ or |1⟩) so that each |𝑠′𝑗|2 is non-negative, and therefore describes

a realizable QEC code. For 𝐶pos from Section 5.3.2 with 𝜙 = 1, the 23 = 8 choices of

𝑄 yield three distinct solutions (up to permutations of qubit and codeword labels).

The first is the nonsensical solution in Eq. (6.11). The second, from flipping qubit 1,

is

|𝑠′1|2 = 2/7 |𝑠′2|2 = 5/14 |𝑠′3|2 = 5/14. (6.14)

The third, from flipping qubit 2 or qubit 3, is

|𝑠′1|2 = 0 |𝑠′2|2 = 1/6 |𝑠′3|2 = 5/6. (6.15)

Plugging these into the ansatz in Eq. (6.3), one finds that they correspond to the code

in Eq. (5.38) for 𝑥 = 5/14 and 𝑥 = 0 respectively. Therefore, the more general QEC

code introduced in this section (up to qubit relabeling) reduces to some of the codes

found “by hand” in the previous chapter. Of course, it is clearly not the only possible

code [cf. Eqs. (5.35) and (5.38) for general 𝑥, which are not captured here]. This is

fortunate, since the code developed in this section—even with qubit relabeling—is not

defined for arbitrary correlation matrices 𝐶, even when 𝐻0 is outside the Lindblad
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span.

To see the limitations of the code introduced here, recall first the earlier definition

𝑟𝑗 := 1 − 2|𝑠𝑗|2 for the coefficients in Eq. (6.3). Notice that 0 ≤ |𝑠𝑗|2 ≤ 1 if and only

if ||�⃗�||∞ ≤ 1, where the “infinity” norm is defined as ||�⃗�||∞ = max𝑗 |𝑟𝑗|. Allowing for

arbitrary flipping/relabeling of the qubits, and substituting into Eq. (6.13), we can

re-write this condition as

(𝑛− 2)
||𝑄(𝐼 − 𝐶𝐶+)�⃗�||∞
|⃗1⊤𝑄(1 − 𝐶𝐶+)�⃗�|

≤ 1. (6.16)

Eq. (6.16) can be interpreted as follows: qubit flipping/relabeling can yield a valid

QEC code of the type introduced in this section if and only if there exists a diag-

onal 𝑄 = (±𝛿𝑗𝑘) which satisfies the inequality. It can be simplified by noting that

||𝑄�⃗�||∞ = ||�⃗�||∞, and that the inequality is most easily satisfied when the denomi-

nator is largest, which occurs when we pick a 𝑄 such that 1⃗⊤𝑄 = (±1, . . . ,±1) has

elements with the same signs2 as (𝐼 −𝐶𝐶+)�⃗� (so that they all add “constructively”).

That is:

max
𝑄

⃒⃒⃒⃗
1⊤𝑄(𝐼 − 𝐶𝐶+)�⃗�

⃒⃒⃒
= ||(𝐼 − 𝐶𝐶+)�⃗�||1, (6.17)

where ||�⃗�||1 :=
∑︀

𝑗 |𝑥𝑗|. Combining these observations, we conclude that the QEC

code introduced above—even with spin flipping/relabeling—is well-defined if and only

if

𝑛− 2 ≤ ||(𝐼 − 𝐶𝐶+)�⃗�||1
||(𝐼 − 𝐶𝐶+)�⃗�||∞

. (6.18)

Roughly speaking, then, one expects this code to become ill-defined more often for

larger 𝑛, even when 𝐻0 is outside the Lindblad span. Indeed, consider for instance a

2Equivalently, we could pick 𝑄 to have the opposite signs; the result is the same.
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sensor with 𝑛 = 5 qubits for which �⃗� = (𝛾, 𝛾, 𝛾, 𝛾, 𝛾)⊤ and

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝛼 𝛼 𝛼 𝛼

𝛼 1 𝛼 𝛼 𝛼

𝛼 𝛼 1 𝛼 𝛼

𝛼 𝛼 𝛼 1 𝛽

𝛼 𝛼 𝛼 𝛽 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.19)

for 𝛼 = (1 +
√

61)/60 and 𝛽 = −9/10. Here 𝐻0 is outside the Lindblad span, which

guarantees the existence of a QEC code that can perfectly filter signal from noise in

principle. However, it violates the inequality in (6.18). This means—and indeed, one

can check—that the code introduced in this section breaks down here, and cannot be

fixed by relabeling any number of qubits.

Of course, the previous example is highly contrived, and the QEC code from this

section could still often be useful in practice. The point, however, is that we are not

justified in using this code to gauge the potential of error-corrected quantum sensing

(ECQS) for arbitrary 𝑛, �⃗� and 𝐶, because it is not always defined. To this end, we will

instead develop a new code using a similar technique, which is always well-defined.

It is with this new code that we will ultimately arrive at a general expression for the

sensitivity offered by QEC.

6.1.2 Transforming the Repetition Code

Rather than using the Dicke code in Eq. (5.27) as a starting point for a new QEC

code, we will instead use the repetition code. Consider now the ansatz (with 𝑛 ≥ 3)

|0l⟩=
𝑛⨂︁
𝑗=1

[︁
cos(𝜃𝑗) |0𝑗⟩ + 𝑖 sin(𝜃𝑗) |1𝑗⟩

]︁
|1l⟩ = 𝑋⊗𝑛 |0l⟩ . (6.20)

These codewords have the same form as those of the repetition code, except that each

qubit has been rotated3 by some to-be-determined angled 𝜃𝑗.

3One could equivalently rotate about another axis, i.e., choose a different phase between |0𝑗⟩ and
|1𝑗⟩, provided the relation between |0l⟩ and |1l⟩ is adjusted accordingly.
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Let us verify that this code corrects all noise to order 𝑂(𝛿𝑡), where 𝛿𝑡 is the time

between QEC recoveries, when 𝐻0 is outside the Lindblad span for an appropriate

choice of 𝜃 = (𝜃1, . . . , 𝜃𝑛)⊤. We begin by showing that |0l⟩ and |1l⟩ are orthonormal.

Normalization is clear. Orthogonality is apparent by noting that the components of

|0l⟩ and |1l⟩ on qubit 𝑗 are

|0l,𝑗⟩ = cos(𝜃𝑗) |0𝑗⟩ + 𝑖 sin(𝜃𝑗) |1𝑗⟩ , |1l,𝑗⟩ = 𝑖 sin(𝜃𝑗) |0𝑗⟩ + cos(𝜃𝑗) |1𝑗⟩ (6.21)

respectively, so that |0l⟩ = ⊗𝑛
𝑗=1 |0l,𝑗⟩ and |1l⟩ = ⊗𝑛

𝑗=1 |1l,𝑗⟩. Clearly |0l,𝑗⟩ and |1l,𝑗⟩
are orthogonal for all 𝑗, so |0l⟩ and |1l⟩ are also orthogonal.

Next, we examine terms of the form 𝑃 (�⃗� · �⃗�)𝑃 for an arbitrary �⃗� ∈ R𝑛. For 𝑛 ≥ 2,

the orthogonality of |0l,𝑗⟩ and |1l,𝑗⟩ implies that ⟨0l|𝑍𝑖 |1l⟩ = 0. On the other hand,

⟨0l|𝑍𝑖 |0l⟩ = cos(2𝜃𝑖). (6.22)

Likewise,

⟨1l|𝑍𝑖 |1l⟩ = ⟨0l|𝑋⊗𝑛𝑍𝑖𝑋
⊗𝑛 |0l⟩ = −⟨0l|𝑍𝑖 |0l⟩ = − cos(2𝜃𝑖). (6.23)

Therefore

𝑃 (�⃗� · �⃗�)𝑃 = �⃗� · cos(2𝜃)𝑍l, (6.24)

where the cosine is taken element-wise and 𝑍l = |0l⟩⟨0l| − |1l⟩⟨1l|. We can therefore

enforce that 𝑃𝐿𝑗𝑃 ∝ 𝑃 for all non-vanishing 𝐿𝑗 by enforcing that cos(2𝜃) ⊥ �⃗�𝑗 for

all eigenvectors �⃗�𝑗 with nonzero eigenvalues; that is, by taking cos(2𝜃) ∈ ker(𝐶). To

ensure that the signal survives at the logical level we also need 𝑃𝐻0𝑃 ̸∝ 𝑃 , meaning

that �⃗� · cos(2𝜃) ̸= 0. Mirroring our approach in Section 6.1.1, we can satisfy both

conditions when 𝐻0 is outside the Lindblad span by picking

cos(2𝜃) ∝ projker(𝐶)�⃗� = (𝐼 − 𝐶𝐶+)�⃗�. (6.25)

[Compare with Eq. (6.9).] More precisely, we can do so by picking angles 𝜃 in our
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repetition-code-like ansatz as

𝜃 =
1

2
arccos

[︀
𝜁 projker(𝐶)�⃗�

]︀
=

1

2
arccos

[︀
𝜁(𝐼 − 𝐶𝐶+)�⃗�

]︀
, (6.26)

where 𝜁 is an adjustable parameter in the range [−𝜁max, 𝜁max] ∖ {0} and

𝜁max = ||projker(𝐶)�⃗�||−1
∞ = ||(𝐼 − 𝐶𝐶+)�⃗�||−1

∞ > 0. (6.27)

This range of allowed 𝜁’s was chosen so that the arccosine of each element in Eq. (6.26)

is always well-defined, therefore always giving 𝑃𝐿𝑗𝑃 = 0 and 𝑃𝐻0𝑃 ̸∝ 𝑃 when

𝐻0 /∈ S .

We now consider terms of the form 𝑃 (�⃗� · �⃗�)(�⃗� · �⃗�)𝑃 , for arbitrary �⃗�, �⃗� ∈ R𝑛. For

𝑛 ≥ 3, the orthogonality of |0l,𝑖⟩ and |1l,𝑖⟩ implies that ⟨0l|𝑍𝑗𝑍𝑘 |1l⟩ = 0. We also

have

⟨1l|𝑍𝑗𝑍𝑘 |1l⟩ = ⟨0l| (𝑋⊗𝑛𝑍𝑗𝑋
⊗𝑛)(𝑋⊗𝑛𝑍𝑘𝑋

⊗𝑛) |0l⟩ = (−1)2 ⟨0l|𝑍𝑗𝑍𝑘 |0l⟩ . (6.28)

Therefore, 𝑃 (�⃗� · �⃗�)(�⃗� · �⃗�)𝑃 ∝ 𝑃 automatically from our ansatz. We have therefore

constructed a QEC code (or more properly, a family of codes) tailored for sensing

applications, which satisfies the ECQS conditions in Eqs. (5.3) and (5.4) for all 𝑛 ≥ 3,

𝐶 and �⃗� [provided �⃗� /∈ col(𝐶), i.e., 𝐻0 is outside the Lindblad span].

6.2 Codes Through Semidefinite Programming

Before continuing our analysis of the QEC code found in Section 6.1.2 by deforming

the repetition code, let us briefly recap a numerical technique developed by Zhou in

Ref. [52] producing QEC codes for sensing. As we will see, the ansatz in Eq. (6.20) is

optimal in terms of the sensing performance it offers when 𝐻0 is outside the Lindblad

span, and our choice of angles 𝜃 is typically optimal. (At worst, it approximates the

optimal choice, for which there is no known closed-form expression).

In Chapters 3 and 5 we made no efforts to formulate our optimization problems in

154



any special form with convenient mathematical properties. This is because there was

no need to do so; it was sufficient for our purposes to construct generic objective/cost

functions and apply general-purpose numerical optimization methods to them. In this

section we will describe a different approach, using convex optimization, and more

specifically, semidefinite programming.

An optimization problem is said to be convex if it can be written in the form

Minimize 𝑓(�⃗�) subject to 𝑔𝑖(�⃗�) ≤ 0 and 𝐴𝑖�⃗� = �⃗�𝑖, (6.29)

where 𝐴𝑖 and �⃗�𝑖 are matrices and vectors respectively, and 𝑓, 𝑔𝑗 : R𝑑 ↦→ R are convex

functions, i.e.,

𝑓
[︀
𝜑 �⃗�+ (1 − 𝜑)�⃗�

]︀
≤ 𝜑𝑓(�⃗�) + (1 − 𝜑)𝑓(�⃗�) (6.30)

for all �⃗�, �⃗� ∈ R𝑑 and 𝜑 ∈ [0, 1], and likewise for all 𝑔𝑗. (These functions could be

defined only on a convex subset of R𝑑, though we will not encounter that situation

here.) Note that minimization problems can be converted to maximization problems

and vice versa by replacing 𝑓(�⃗�) with −𝑓(�⃗�).

Ref. [175] gives a thorough introduction to convex optimization, in which the

authors write:

“There is in general no analytical formula for the solution of convex op-

timization problems, but. . . there are very effective methods for solving

them. . . If we can formulate a problem as a convex optimization problem,

then we can solve it efficiently, just as we can solve a least-squares prob-

lem efficiently. With only a bit of exaggeration, we can say that, if you

formulate a practical problem as a convex optimization problem, then you

have solved the original problem.”

The last point should be taken with a grain of salt when dealing with problems where

the dimensionality 𝑑 can grow exponentially with the size of the physical system in

question, as we are doing here. Nevertheless, it will be illuminating to encode the

search for QEC codes for sensing into convex optimization problems because:
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1. As stated above, there are very effective numerical methods for solving such

problems.

2. Every minimum of a convex optimization problem is a global minimum. (In

general there could be several distinct global minima, but they are all guaranteed

to yield the same value of 𝑓 .) There is therefore no possibility of getting stuck

in a bad local minimum.

3. Many convex problems—and in particular, the ones we will encounter here—

have an associated “dual problem” which may be simpler, and whose optimal

value is equal to that of the original (or “primal”) problem. This can provide

partial information about the solutions to convex problems without having to

solve them explicitly.

As in Section 6.1, we will consider here the ideal case where 𝐻0 is outside the

Lindblad span S . This means there is guaranteed to exist a QEC code which can

perfectly suppress the noise in the 𝛿𝑡 → 0 limit, without equally suppressing the

signal [151, 152]. Such codes offer vanishing (i.e., perfect) sensitivity 𝜂 in principle,

because they can approach a quantum Fisher information scaling of ℱ = (𝜉∆𝑡)2 with

the sensing cycle length ∆𝑡. As we discussed in Section 4.2.3, a better figure of merit

in this ideal scenario is therefore the coefficient 𝜉 that they offer. The best possible

value of 𝜉 is given by [152]

𝜉2 = 4 min
𝑆∈S
𝑆=𝑆†

||𝐻0/𝜔0 − 𝑆||2, (6.31)

where ||𝐴|| = max|𝜓⟩ ⟨𝜓|𝐴 |𝜓⟩ denotes the operator norm.

Zhou showed in Ref. [52] that solutions to the following optimization problem

could be directly transformed into QEC codes for sensing which saturate Eq. (6.31):

Maximize �⃗� · diag(𝐻0/𝜔0) subject to (6.32)

||�⃗�||1 ≤ 2 and �⃗� · diag(𝑆) = 0 for all 𝑆 = 𝑆† ∈ S ,
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where diag(𝐴) denotes the vector of diagonal elements of a matrix 𝐴. This is a convex

optimization problem—in fact, it is a special kind called a semidefinite program4—in

which �⃗� has dimension 𝑑 = 2𝑛. Suppose �⃗�⋆ is a solution to this problem. One can

show that the states

|0l⟩ =
2𝑛−1∑︁
𝑗=0

√︁
𝑥
(+)
⋆𝑗 |𝑗⟩ |1l⟩ =

2𝑛−1∑︁
𝑗=0

√︁
𝑥
(−)
⋆𝑗 |𝑗⟩ , (6.33)

satisfy Eqs. (5.3) and (5.4), where �⃗�(±)
⋆ contains only the absolute values of posi-

tive/negative elements of �⃗�⋆, with all other elements set to zero, such that �⃗�⋆ =

�⃗�
(+)
⋆ − �⃗�

(−)
⋆ . (This is a very similar construction to that used in Section 2.2.) More-

over, by analyzing the dual of this problem, one can show that this code saturates

Eq. (6.31).

In principle one could use Eq. (6.32) directly to devise QEC codes for particular

𝐶’s and �⃗�’s. (In fact, it can be also be used more broadly [52].) However, because the

problem domain is exponentially large in the number of qubits 𝑛, this is not a scalable

approach. Instead, one can start with the ansatz in Eq. (6.20) and use a different

semidefinite program to find the angles 𝜃. Not only will this new optimization problem

be defined over R𝑛 (as opposed to R2𝑛), but it will also saturate Eq. (6.31).

The semidefinite program in question is

Maximize �⃗� · �⃗� subject to ||�⃗�||∞ ≤ 1 and 𝐶�⃗� = 0⃗, (6.34)

where now �⃗� ∈ R𝑛. The solution �⃗�⋆ to this problem can be used to form a QEC

code using the ansatz in Eq. (6.20) with the angles 𝜃 = 1
2

arccos(�⃗�⋆). Zhou showed in

Ref. [52] that the resulting code saturates the bound5 in Eq. (6.31). This is notewor-

thy for two reasons: First, it is a rare instance of a numerically-derived QEC code (or

quantum protocol more broadly) in which the dimensionality of the problem is linear

in the system size. This remarkable reduction in complexity compared to the semidef-

4In this setting a “program” refers to a an optimization problem, rather than a computer program.
5This does not guarantee that the solutions to Eqs. (6.32) and (6.34) will always produce the

same QEC codes; only that these codes will offer the same performance.
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inite program in Eq. (6.32) is due to the careful choice of ansatz in Eq. (6.20). By

imposing the right structure before turning to numerical methods, we have removed

illusory complexity and made this optimization-based approach scalable.

Second, one can see by inspection that the solution to Eq. (6.34) when 𝐶 has only

one vanishing eigenvalue (the most likely case) is simply Eq. (6.26) with 𝜁 = 𝜁max.

In other words, our closed-form code from Section 6.1.2 is typically optimal when

𝐻0 is outside the Lindblad span, and it approximates the optimal code in the rarer

instances where 𝐶 has several vanishing eigenvalues. Notice that we have arrived at

this conclusion without the need to actually perform numerics because the relevant

problems could be formulated as well-behaved convex optimizations.

6.3 Sensitivity Afforded Under General Noise Cor-

relations

In order to develop and analyze new QEC codes, we have so far made the simplifying

assumption of maximally strong spatial noise correlations, leading to 𝐻0 outside the

Lindblad span. We now relax this assumption and turn our attention to the more

general case of arbitrary 𝐻0 and 𝐶 using the tools developed above. In light of

the results in Sections 6.1 and 6.2, we will use the rotated-repetition-code ansatz in

Eq. (6.20) as a starting point. We cannot claim that it offers optimal sensitivity

in general; only that it is typically optimal in the limit of maximally strong noise

correlations. On this basis, we expect it to perform at least reasonably well outside

this limit.

Recall from Chapter 5 that in the generic case where 𝐻0 is in the Lindblad

span, there exists no QEC code that can completely suppress decoherence—even

in principle—without equally suppressing the signal. As we saw in Sections 5.3.1

and 5.3.2, however, it is still possible for QEC to improve the signal to noise ratio

and therefore the sensitivity—which is ultimately what matters—even if it cannot

approach ideal performance in principle.
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In this section we will find the sensitivity offered by QEC codes of the form

in Eq. (6.20) for general spatial noise correlations. We will do so by finding the

effective logical dynamics offered by these codes in the limit of frequent, instantaneous

recoveries (𝛿𝑡 → 0). Ultimately, the effective dynamics will reduce to that of a

dephasing qubit.

Recall from Section 5.2 that the optimal sensitivity for a single physical qubit in

our noise model is

𝜂1 = 𝛾−1

√︃
2𝑒

𝑇 *
2

=
√

2𝑒Γ (6.35)

in terms of the underlying noise strength Γ, and that for 𝑛 such qubits operating

in parallel it is 𝜂par = 𝜂1/
√
𝑛. As a warm-up, let us first find the sensitivity 𝜂GHZ

offered by letting a GHZ state (|0 . . . 0⟩ + |1 . . . 1⟩)/
√

2 evolve under 𝐻0 = 𝜔0

2
�⃗� · �⃗�

with arbitrary phase noise correlations 𝐶, for �⃗� = (𝛾, . . . , 𝛾)⊤. The energy difference

between |0 . . . 0⟩ and |1 . . . 1⟩ is 𝜔0 �⃗� · 1⃗ = 𝜔0𝑛𝛾, so in the language of Eq. (4.50) we

have 𝐴 = 𝑛. Similarly, if each qubit dephases exponentially at a rate 1/𝑇 *
2 = 𝛾2Γ,

a superposition of |0 . . . 0⟩ and |1 . . . 1⟩ does so at a rate 𝐵/𝑇 *
2 for 𝐵 = 1⃗⊤𝐶1⃗. This

may be faster or slower depending on 𝐶; for uncorrelated noise (𝐶 = 𝐼) it represents

an 𝑛-fold increase in the dephasing rate. Comparing with Eq. (4.50), an initial GHZ

state therefore gives a sensitivity of

𝜂GHZ =

√︀
1⃗⊤𝐶1⃗

𝑛
𝜂1 (6.36)

We can re-write this expression in a way that will facilitate comparison with the

sensitivity offered by our QEC code. Namely, if we diagonalize 𝐶 as

𝐶 = 𝑉 𝐷𝐶𝑉
⊤, (6.37)

where 𝑉 = (�⃗�1, . . . , �⃗�𝑛) is a matrix whose columns are orthonormal real eigenvectors

of 𝐶 and 𝐷𝐶 = diag(𝜆1, . . . , 𝜆𝑛), we have

𝜂GHZ =
||𝐷1/2

𝐶 𝑉 ⊤1⃗||2
𝑛

𝜂1, (6.38)
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where ||�⃗�||2 =
√︁∑︀

𝑗 |𝑥𝑗|2 is the usual 2-norm. Note that for uncorrelated noise

||𝐷1/2
𝐶 𝑉 ⊤1⃗||2 =

√
𝑛, (6.39)

thus negating any gains from entanglement. These expressions can easily be general-

ized for non-uniform �⃗�’s, although in doing so one must take care also to adjust the

definition of 𝐶 in Eq. (5.13) appropriately, as discussed in Section 5.3.

We now perform an analogous—but more involved—analysis for the QEC code

we developed in Section 6.1.2. In contrast with our initial treatment, however, we

will not assume here that 𝐶 has a vanishing eigenvalue. This means that we cannot

use Eq. (6.26) for the rotation angles 𝜃 in our code (since ker(𝐶) = {⃗0} generically).

Instead, inspired by the examples in Sections 5.3.1 and 5.3.2, we will design our code

so that a subdominant noise mode (rather than a vanishing one) is left uncorrected.

The net result will be a non-vanishing signal at the logical level, as well as logical de-

coherence due to this purposely uncorrected noise mode. The hope will be to achieve

a net enhancement in sensitivity at the logical level through such noise filtering.

Concretely, we will take

𝜃 =
1

2
arccos(𝜁�⃗�𝑢), (6.40)

where 𝑢 ∈ {1, . . . , 𝑛} is the to-be-determined index of the Lindblad jump operator

𝐿𝑢 =
√
𝜆𝑢�⃗�𝑢 · �⃗� that we will leave uncorrected, 𝜁 ∈ [−𝜁max, 𝜁max] ∖ {0} is again an

adjustable parameter with 𝜁max = ||�⃗�𝑢||−1
∞ , and the arccosine is again taken element-

wise.

To find the sensitivity offered by the QEC code described above, we compute

the sensor’s effective Liouvillian, ℒeff = ℛℒ𝒫 , under frequent QEC recoveries ℛ,

where ℒ is the sensor’s Liouvillian and 𝒫(𝜌) = 𝑃𝜌𝑃 [60]. The usual QEC recovery

in Section 1.2.2 (i.e., the transpose channel) results in population leakage out of the

codespace due to the uncorrected error 𝐿𝑢, even when 𝛿𝑡→ 0, which complicates the

analysis. To prevent such leakage at leading order in 𝛿𝑡, we modify the usual recovery

so that the state is returned to the codespace after an 𝐿𝑢 jump, though perhaps with

a logical error. This modification results in a Markovian, trace-preserving effective
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dynamics over the two-dimensional codespace, given by ℒeff, from which it will be

simple to find the afforded sensitivity. We now construct this ℒeff explicitly.

We begin by constructing the recovery operation ℛ. The standard QEC recovery

procedure (adapted from Section 1.2.2 for a Lindblad dynamics) is the following:

The projector 𝑃 onto the codespace, together with the correctable jumps for our

code {𝐿𝑖}𝑖 ̸=𝑢, define a set of rank-two projectors {𝑃𝑖}𝑖 ̸=𝑢 and corresponding unitaries

{𝑈𝑖}𝑖 ̸=𝑢 [152]. To leading order in 𝛿𝑡, the correctable jumps kick the sensor into the

subspaces defined by the 𝑃𝑖’s. The standard/transpose recovery consists of measuring

in {𝑃, 𝑃1, 𝑃2, . . . } (not containing a 𝑃𝑢), and applying 𝑈 †
𝑖 if the state is found in

C𝑖 := col(𝑃𝑖), for 𝑖 ̸= 𝑢 [7, 19]. In the present setting, however, this procedure is

problematic. The issue is that the uncorrected error 𝐿𝑢 can cause the state to jump

into the “remainder” subspace Cr = col(𝑃r), with projector 𝑃r = 𝐼 − 𝑃 − ∑︀
𝑖 ̸=𝑢 𝑃𝑖.

To avoid population leakage from the codespace into Cr at leading order in 𝛿𝑡, we

modify the usual procedure by returning the state to the codespace in the event of an

error 𝐿𝑢, even though this error cannot—by design—be fully corrected. This gives

an ℒeff with non-trivial dynamics only in the 2-dimensional codespace, which lets us

analyze the sensitivity using Eq. (4.50), i.e., as though it were a two-level system.

Concretely, let us first define Knill-Laflamme coefficients 𝑚𝑖𝑗 ∈ R by 𝑃𝐿†
𝑖𝐿𝑗𝑃 =

𝑚𝑖𝑗𝑃 , for all 𝑖, 𝑗 ∈ 1, . . . , 𝑛. We also define the 𝑛 × 𝑛 code matrix 𝑀 = (𝑚𝑖𝑗)
𝑛
𝑖,𝑗=1,

and the (𝑛 − 1) × (𝑛 − 1) submatrix �̃� = (𝑚𝑖𝑗)𝑖,𝑗 ̸=𝑢, which is equal to 𝑀 with

the 𝑢th row and column removed. (Recall that 𝑢 is the index of the noise mode

left uncorrected.) Then, let 𝑊 be an orthogonal matrix diagonalizing �̃� , such that

𝑊⊤�̃�𝑊 = diag(𝑑1, 𝑑2, . . . ). This 𝑊 lets us define new error operators {𝐹𝑖}𝑖 ̸=𝑢 such

that

𝐹𝑘 =
∑︁
𝑖 ̸=𝑢

𝑤𝑖𝑘𝐿𝑖 and 𝐿𝑗 =
∑︁
𝑘 ̸=𝑢

𝑤𝑗𝑘𝐹𝑘, (6.41)

which satisfy 𝑃𝐹𝑖𝐹𝑗𝑃 = 𝛿𝑖𝑗𝑑𝑖𝑃 . For 𝑗 ̸= 𝑢, we then use 𝐹𝑗 to define a unitary 𝑈𝑗 via

polar decomposition, such that 𝐹𝑗𝑃 =
√︀
𝑑𝑗𝑈𝑗𝑃 , and finally 𝑃𝑗 = 𝑈𝑗𝑃𝑈

†
𝑗 . (If 𝑑𝑗 = 0

take 𝑈𝑗 = 0.) So far we have followed the standard construction. However, we now
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define an additional unitary 𝑈𝑢 via the polar decomposition of 𝑃𝑅𝐿𝑢𝑃 :

𝑃𝑅𝐿𝑢𝑃 = 𝑈𝑢
√︀

(𝑃𝑅𝐿𝑢𝑃 )†(𝑃𝑅𝐿𝑢𝑃 ) =
√︀
𝑚𝑢𝑢 − 𝜆𝑢𝜁2 − 𝛼 𝑈𝑢𝑃, (6.42)

(taking 𝑈𝑢 = 0 if 𝑃𝑅𝐿𝑢𝑃 = 0) for some constant 𝛼. Concretely, 𝛼 is defined through

𝑃𝐿†
𝑢𝑃r𝐿𝑢𝑃 = 𝑃𝐿2

𝑢𝑃 − (𝑃𝐿𝑢𝑃 )2 −
∑︁
𝑖∈ℐ

𝑃𝐿𝑢𝑈𝑖𝑃𝑈
†
𝑖 𝐿𝑢𝑃 (6.43)

= (𝑚𝑢𝑢 − 𝜆𝑢𝜁
2)𝑃 −

∑︁
𝑖∈ℐ

1

|𝑑𝑖|
𝑃𝐿𝑢𝐿𝑖𝑃𝐿𝑖𝐿𝑢𝑃

=: (𝑚𝑢𝑢 − 𝜆𝑢𝜁
2 − 𝛼)𝑃.

where ℐ = {𝑖 | 𝑖 ̸= 𝑢, 𝑑𝑖 ̸= 0 and 1 ≤ 𝑖 ≤ 𝑛}. Our modified recovery channel then

consists of measuring in {𝑃, 𝑃1, . . . , 𝑃𝑛}, where 𝑃𝑗 := 𝑈𝑗𝑃𝑈
†
𝑗 for all 𝑗 ∈ {1, . . . , 𝑗}

(now including 𝑗 = 𝑢). [Eq. (6.42) immediately implies that these projectors satisfy

𝑃𝑖𝑃𝑗 = 𝛿𝑖𝑗𝑃𝑖 for all 0 ≤ 𝑖, 𝑗 ≤ 𝑛, where 𝑃0 := 𝑃 .] The correction step is then: If the

state is found in the codespace, do nothing; if it is in C𝑖 = col(𝑃𝑖) for 1 ≤ 𝑖 ≤ 𝑛,

apply 𝑈 †
𝑖 . In other words:

ℛ(𝜌) =
𝑛∑︁
𝑖=0

𝑈 †
𝑖 𝑃𝑖𝜌𝑃𝑖𝑈𝑖, (6.44)

where 𝑈0 := 𝐼.

Having defined ℛ, we now compute ℒeff. It is convenient to define superoperators

ℋ0 and 𝒟𝑗 such that the sensor’s Liouvillian takes the form

ℒ(𝜌) = −𝑖 [𝐻0, 𝜌]⏟  ⏞  
ℋ0(𝜌)

+
1

2𝑇 *
2

𝑛∑︁
𝑗=1

(︁
𝐿𝑗𝜌𝐿𝑗 −

1

2
{𝐿2

𝑗 , 𝜌}
)︁

⏟  ⏞  
𝒟𝑗(𝜌)

, (6.45)

where we assume 𝐻0 = 𝜔0

2
�⃗� · �⃗� for �⃗� = (𝛾, . . . , 𝛾)⊤. Again, these results can easily be

generalized for non-uniform �⃗�’s, although as discussed in Section 5.3, one must take

care to define 𝐶 appropriately in this case.

We begin by computing ℛℋ0𝒫 . The fact that 𝑃𝑗’s are mutually orthogonal (for
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0 ≤ 𝑗 ≤ 𝑛) immediately implies that

ℛℋ0𝒫(𝜌) = [𝒫(𝐻0), 𝒫(𝜌)] =
𝜔0𝜁(�⃗�𝑢 · �⃗�)

2
[𝑍l,𝒫(𝜌)],

using (6.24). For a logical 𝜌 = 𝒫(𝜌) we may therefore write ℛℋ0𝒫(𝜌) = [𝐻eff, 𝜌],

where

𝐻eff =
𝜔0𝜁(�⃗�𝑢 · �⃗�)

2
𝑍l. (6.46)

We now turn toℛ𝒟𝑗𝒫 for 𝑗 ̸= 𝑢, which we expect to vanish since the code corrects

the associated error 𝐿𝑗 by design. Assuming a logical 𝜌 to simplify the notation, we

have

ℛ𝒟𝑗𝒫(𝜌) = 𝑃𝐿𝑗𝜌𝐿𝑗𝑃⏟  ⏞  
(i)

− 1

2
𝑃{𝐿2

𝑗 , 𝜌}𝑃⏟  ⏞  
(ii)

+
𝑛∑︁
𝑖=1

𝑈 †
𝑖 𝑃𝑖𝐿𝑗𝜌𝐿𝑗𝑃𝑖𝑈𝑖⏟  ⏞  

(iii)

(6.47)

where the other terms vanish because the 𝑃𝑗’s are all orthogonal. Term (i) vanishes

since 𝑃𝐿𝑗𝑃 = 0 for 𝑗 ̸= 𝑢, while term (ii) equals 𝑚𝑗𝑗 𝜌. To evaluate term (iii), we

first note that 𝑈 †
𝑢𝑃𝑢𝐿𝑗𝑃 = 0. The equality holds trivially when (6.42) vanishes, and

when it does not we have

𝑈 †
𝑢𝑃𝑢𝐿𝑗𝑃 = (𝑚𝑢𝑢 − 𝜆𝑢𝜁

2 − 𝛼)−1/2 𝑃𝐿𝑢𝑃r
∑︁
𝑖∈ℐ

𝑤𝑗𝑖√
𝑑𝑖
𝑃𝑖𝑈𝑖 = 0 (6.48)

since 𝑃r𝑃𝑖 = 0. This leaves

term (iii) =
∑︁
𝑖∈ℐ

𝑈 †
𝑖 𝑃𝑖𝐿𝑗𝑃𝜌𝑃𝐿𝑗𝑃𝑖𝑈𝑖 (6.49)

=
∑︁
𝑖∈ℐ

1

|𝑑𝑖|
𝑃𝐹𝑖𝐿𝑗𝑃𝜌𝑃𝐿𝑗𝐹𝑖𝑃

=
∑︁
𝑖∈ℐ

∑︁
𝑘,ℓ̸=𝑢

1

|𝑑𝑖|
𝑤𝑗𝑘𝑤𝑗ℓ𝛿𝑖𝑘𝛿𝑖ℓ𝑑𝑘𝑑ℓ𝜌

= 𝑚𝑗𝑗 𝜌.

We therefore have the expected result ℛ𝒟𝑗𝒫 = 0.

Finally, we turn our attention to ℛ𝒟𝑢𝒫 , which we do not expect to vanish (unless
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we are in the limit where 𝐻0 /∈ S ), since we have designed our code such that 𝐿𝑢 is

uncorrectable. As before, we have

ℛ𝒟𝑢𝒫(𝜌) = 𝑃𝐿𝑢𝜌𝐿𝑢𝑃⏟  ⏞  
(I)

− 1

2
𝑃{𝐿2

𝑢, 𝜌}𝑃⏟  ⏞  
(II)

+
𝑛∑︁
𝑖=1

𝑈 †
𝑖 𝑃𝑖𝐿𝑢𝜌𝐿𝑢𝑃𝑖𝑈𝑖⏟  ⏞  

(III)

. (6.50)

From (6.24), the first term simplifies to

term (I) = 𝜆𝑢𝜁
2 𝑍l𝜌𝑍l, (6.51)

while term (II) becomes 𝑚𝑢𝑢 𝜌. Treating the 𝑖 ̸= 𝑢 and 𝑖 = 𝑢 parts of term (III)

separately, we have

∑︁
𝑖∈ℐ

𝑈 †
𝑖 𝑃𝑖𝐿𝑢𝜌𝐿𝑢𝑃𝑖𝑈𝑖 =

∑︁
𝑖∈ℐ

1

|𝑑𝑖|
𝑃𝐿𝑖𝐿𝑢𝑃𝜌𝑃𝐿𝑢𝐿𝑖𝑃 = 𝛼𝜌, (6.52)

so

ℛ𝒟𝑢𝒫(𝜌) = 𝜆𝑢𝜁
2𝑍l𝜌𝑍l + (𝛼−𝑚𝑢𝑢)𝜌+ 𝑈 †

𝑢𝑃𝑢𝐿𝑢𝜌𝐿𝑢𝑃𝑢𝑈𝑢. (6.53)

One immediately sees from (6.53) that were it not for the 𝑃𝑢 measurement and feed-

back that we have added to ℛ (the last term in the above equation), ℒeff would not

be of Lindblad form over the codespace, due to leakage into Cr = col(𝑃r). This is

manifest through the mismatch between the 𝜆𝑢𝜁2 and (𝛼 − 𝑚𝑢𝑢) coefficients. By

design, however, we have

𝑈 †
𝑢𝑃𝑢𝐿𝑢𝑃 = 𝑃𝑈 †

𝑢𝐿𝑢𝑃 (6.54)

= (𝑚𝑢𝑢 − 𝜆𝑢𝜁
2 − 𝛼)−1/2 𝑃𝐿𝑢𝑃r𝐿𝑢𝑃

=
√︀
𝑚𝑢𝑢 − 𝜆𝑢𝜁2 − 𝛼 𝑃

from (6.42), which cancels the mismatched 𝛼 −𝑚𝑢𝑢 term in (6.53), giving the valid,

trace-preserving Lindblad dissipator

ℛ𝒟𝑢𝒫(𝜌) = 𝜆𝑢𝜁
2
(︀
𝑍l𝜌𝑍l − 𝜌

)︀
. (6.55)
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at the logical level.

In summary, then, the effective logical dynamics in the limit of frequent recoveries

is generated by

ℒeff(𝜌) = −𝑖[𝐻eff, 𝜌] + 𝐿eff 𝜌𝐿
†
eff −

1

2
{𝐿†

eff𝐿eff, 𝜌}, (6.56)

where 𝐻eff = 𝜔0𝜁(�⃗�𝑢 · �⃗�)𝑍l/2 and 𝐿eff = 𝜁
√︁

𝜆𝑢
2𝑇 *

2
𝑍l, with 𝑍l = |0l⟩⟨0l| − |1l⟩⟨1l|. In

other words, at the logical level, the sensor accumulates a phase at a rate set by 𝜁

and the overlap of 𝐿𝑢 with 𝐻0, while also losing phase coherence at a rate set by 𝜁

and 𝜆𝑢. More specifically, the sensor’s effective logical dynamics becomes that of a

dephasing qubit with 𝐴 = 𝜁|�⃗�𝑢 · 1⃗| and 𝐵 = 𝜁2𝜆𝑢 from Eq. (4.50), giving

𝜂
(𝑢)
QEC =

√
𝜆𝑢

|�⃗�𝑢 · 1⃗|
𝜂1 (6.57)

when we leave mode 𝑢 ∈ {1, . . . , 𝑛} uncorrected. Notice that the free parameter 𝜁

cancels out here. Finally, the optimal choice of index 𝑢 is the one that minimizes the

above quantity, giving:

𝜂QEC =
1

||𝐷−1/2
𝐶 𝑉 ⊤1⃗||∞

𝜂1, (6.58)

valid for arbitrary noise correlation profiles 𝐶 on 𝑛 ≥ 3 qubits. (Note that 𝐷−1/2
𝐶

is undefined when 𝐶 has a vanishing eigenvalue. In this case, Eq. (6.58) should be

regularized by replacing 𝐷𝐶 → 𝐷𝐶 + 𝜖𝐼, evaluating the norm, then taking 𝜖 → 0.)

Eq. (6.58) identifies the 𝐶’s for which this QEC scheme provides enhanced sensitivity

over parallel and GHZ sensing [cf. Eq. (6.38)]. Notice that while 𝐻0 is outside the

Lindblad span only in a measure-zero set of 𝐶’s (on the boundary of the set of possible

correlation matrices), QEC can enhance sensitivity over a much larger set, regardless

of whether it can approach noiseless sensing in principle.

This result generalizes the behavior we observed in special cases considered in

Sections 5.3.1 and 5.3.2. In fact, plugging in 𝐶neg from Section 5.3.1 gives precisely

the same sensitivity as in Eq. (5.34) (using 𝑢 = 3, independent of the correlation

strength 𝜙 and the adjustable parameter 𝜁), which arose from ad hoc QEC codes
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in the previous chapter. Whereas the code from Section 6.1.1 reduced to that in

Eq. (5.27), the one considered here reduces to Eq. (5.35) for 𝜁 = ±𝜁max, and produces

new codes for general 𝜁. [No value of 𝜁 produces Eq. (5.27).]

On the other hand, plugging in 𝐶pos from Section 5.3.2 gives the same sensitivity

as in Eq. (5.43) for correlation strengths 𝜙 ≥ 392/409 ≈ 0.96 (using 𝑢 = 3, regardless

of 𝜁). For 𝜙 < 392/409, however, it is better to leave mode 𝑢 = 2 uncorrected,

whereas in Section 5.3.2 we used 𝑢 = 3 for all correlation strengths 𝜙. In this latter

regime, taking 𝑢 = 2 gives

𝜂QEC =

√︀
17(8 + 9𝜙)

20
𝜂1, (6.59)

which is substantially better than the sensitivity in Eq. (5.43), though slightly worse

than the performance offered by GHZ and parallel sensing schemes. The codes re-

sulting from 𝐶pos here are generically different from those in Eq. (5.38).

6.4 Illustration: Distance-Dependent Noise Correla-

tions

Eq. (6.58) admits a broad range of 𝜂QEC vs. 𝑛 scalings due to the critical dependence

of 𝜂QEC on 𝐶 = 𝐶(𝑛), which could grow with 𝑛 in myriad different ways. Consider, for

instance, a sensor comprising𝑚 clusters of 𝑛
𝑚
qubits, where each cluster’s Hamiltonian

is outside the Lindblad span, but where the noise has no inter-cluster correlations.

In this case, one could use the code from Section 6.1.2 to make a noiseless sensor

from each cluster in principle, and perform GHZ sensing at the logical level to get

𝜂 ∝ 1/𝑚 ∝ 1/𝑛 Heisenberg scaling. On the other hand, given an 𝑛-qubit sensor

for which the total Hamiltonian is already outside the Lindblad span, adding an

additional qubit which shares no noise correlations with the others has no impact on

𝜂QEC. We now analyze an intermediate example between these extreme scalings in

this section.

Consider a sensor comprising 𝑛 ≥ 3 identical qubits arranged in a ring, and equally
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spaced from one another. Suppose that the noise correlation coefficient between two

qubits depends only on the distance between them, so that neighboring qubits have

a coefficient of 𝛼1, next-to-nearest neighbors have 𝛼2, and so on up to 𝛼max for the

most distant qubits, as shown in the left panel of Fig. 6-1. (N.b., the special case of

𝛼𝑖 = 0 describes a lack of correlation.) We emphasize that in practice, the distance

between two qubits is a poor predictor of how strongly correlated the noise in their

gaps is. As discussed Part I, other factors, like proximity and relative orientations to

nearby fluctuators, for instance, are often more important. Accordingly, this example

is not meant to provide a particularly realistic model, but rather, an illustrative one

which can be solved exactly, and which has normal noise modes (i.e., Lindblad jump

operators) with a simple physical interpretation.

k = 0
k = 1 in-phase
k = 1 quadrature
k = 2 in-phase

Figure 6-1: Left: A ring of 𝑛 ≥ 3 evenly-spaced probing qubits. The lines connecting
each pair denote an arbitrary correlation strength 𝛼𝑖 in the energy gap noise felt
by either qubit. Right: The first few Fourier modes in the sensor resulting from the
spatial noise correlations. (Qubits not shown.) The height of each point along a curve
denotes the weight of 𝑍𝑗 for qubit 𝑗 in the corresponding Lindblad jump operator,
for modes �⃗�0, �⃗�1,0, �⃗�1,𝜋/2, �⃗�2,0.

The qubits in this sensor are assumed to undergo Markovian dephasing described
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by Eq. (5.13), with �⃗� = (𝛾, . . . , 𝛾)⊤ for simplicity and

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝛼1 𝛼2 𝛼2 𝛼1

𝛼1 1 𝛼1 · · · 𝛼3 𝛼2

𝛼2 𝛼1 1 𝛼4 𝛼3

...
. . .

...

𝛼2 𝛼3 𝛼4 1 𝛼1

𝛼1 𝛼2 𝛼3 · · · 𝛼1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.60)

where we assign qubit numbers/labels sequentially based on their location. Notice

that 𝐶 is a circulant matrix, so it is diagonalized by a discrete Fourier transform

matrix [176]. This means that the eigenvectors of 𝐶 are simply the spatial Fourier

modes on the ring. These are often chosen to be complex vectors of the form

�⃗�𝑘 =
1√
𝑛

(1,Ω𝑘,Ω
2
𝑘, . . . ,Ω

𝑛−1
𝑘 )⊤, (6.61)

where Ω𝑘 := exp(2𝜋𝑖𝑘/𝑛) for 𝑘 = 0, . . . , 𝑛− 1. The corresponding eigenvalues are

𝜆𝑘 = 1 + 𝛼1Ω𝑘 + 𝛼2Ω
2
𝑘 + · · · + 𝛼2Ω

𝑛−2
𝑘 + 𝛼1Ω

𝑛−1
𝑘 ∈ R. (6.62)

Since these eigenvalues come in degenerate pairs (𝜆𝑘 = 𝜆𝑛−𝑘 for 𝑘 ≥ 1), we can equiv-

alently form a real eigenbasis for 𝐶 from �⃗�𝑘 ± �⃗�𝑛−𝑘, in keeping with the convention

from previous sections of using �⃗�𝑘 ∈ R𝑛. The first such eigenvector is the 𝑘 = 0, or

constant Fourier mode

�⃗�0 =
1√
𝑛

(1, . . . , 1)⊤ = 1⃗/
√
𝑛, (6.63)

Higher wavenumbers 𝑘 ≥ 1 each describe a pair of eigenvectors with a 𝜋/2 phase

offset on the ring:

�⃗�𝑘,0 =
(︁

1, cos(𝜗𝑘), cos(2𝜗𝑘), . . . , cos
[︀
(𝑛− 1)𝜗𝑘

]︀)︁⊤
(6.64)

�⃗�𝑘,𝜋/2 =
(︁

0, sin(𝜗𝑘), sin(2𝜗𝑘), . . . , sin
[︀
(𝑛− 1)𝜗𝑘

]︀)︁⊤
,
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where 𝜗𝑘 = 2𝜋𝑘/𝑛. The first few of these Fourier modes are illustrated in the right

panel of Fig. 6-1. The key observation here is that all but the 𝑘 = 0 noise mode are

orthogonal to �⃗�. This forces us to take �⃗�𝑢 = �⃗�0 as the mode to leave uncorrected. Any

other choice of 𝑢 would give 𝜂(𝑢)QEC = ∞, and is therefore inadmissible. The eigenvalue

of 𝐶 associated with this mode is given by

𝜆𝑢 = �⃗�⊤𝑢 𝐶�⃗�𝑢 =
1

𝑛
1⃗⊤𝐶1⃗. (6.65)

From (6.58), this gives an ideal sensitivity of

𝜂QEC =

√︀
1⃗⊤𝐶 1⃗

𝑛
𝜂1 =

√︂
1 + 2(𝛼1 + 𝛼2 + · · · + 𝛼max)

𝑛
𝜂1 (6.66)

Notice that the scaling of 𝜂QEC with 𝑛 here has two components: (i) a generic 1/
√
𝑛

improvement as one adds qubits, and (ii) a term that depends on how
∑︀

𝑖 𝛼𝑖 changes

with 𝑛.

Comparing with 𝜂par = 𝜂1/
√
𝑛, one sees that QEC provides an advantage over a

parallel sensing scheme (i.e., one with initial state |𝜓0⟩ = |+⟩⊗𝑛) when 𝛼1+· · ·+𝛼max <

0. Therefore, in this particular setting, there must be negative correlations in the noise

(i.e., certain 𝛼𝑗 < 0) for QEC to provide an advantage over parallel sensing. This is

not required in general however, as we have seen in Section 5.3.2.

Finally, we compare the sensitivity offered by QEC in this model with that offered

by a GHZ scheme which uses an initial state |𝜓0⟩ = 1√
2
(|0 . . . 0⟩+ |1 . . . 1⟩). Eq. (6.38)

immediately gives 𝜂GHZ = 𝜂QEC—therefore, in this particular example, our QEC

scheme offers the same sensitivity as GHZ sensing (in the 𝛿𝑡→ 0 limit) but does not

surpass it. There is a simple explanation for this apparent coincidence: taking �⃗�𝑢 = �⃗�0

and 𝜁 = 𝜁max =
√
𝑛 gives logical states |0l⟩ = |0 . . . 0⟩ and |1l⟩ = |1 . . . 1⟩, resulting in

the same initial state as the GHZ scheme. Moreover, a simple calculation shows that

both of these logical states are in the kernel of every Lindblad jump with 𝑘 ≥ 1. In

other words, span{|0 . . . 0⟩ , |1 . . . 1⟩} is a decoherence-free subspace of {𝐿𝑘}𝑘≥1, and so

the recovery ℛ reduces to the identity channel (i.e., doing nothing) [60]. This means
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that for this model, GHZ sensing is a special case of our error-correction scheme, for

a particular choice of the adjustable parameter 𝜁. Since 𝜂QEC is independent of 𝜁, it

follows that 𝜂QEC = 𝜂GHZ here. Of course, this is particular to the present model, and

is not the case in general, even with purely positive noise correlations.

6.5 Discussion

In this chapter we proposed and analyzed a family of QEC codes which can filter

background noise from a signal in quantum sensors. We found closed-form expressions

for these codes in terms of the noise correlations in a sensor, and ultimately arrived

at an expression for the sensitivity they can offer in principle. As expected, our codes

are more likely to enhance sensitivity when there are strong noise correlations. It

is not clear at present, however, why certain noise correlations seem to enable much

better sensitivity than others.

While this chapter presents the natural continuation of the results in Chapter 5,

it also raises new questions. For one, it is not clear whether, or when, the scheme we

have proposed is optimal in the typical case where 𝐻0 is in the Lindblad span. The

fact that 𝜂QEC for this scheme matches those from the examples in Chapter 5, which

we analyzed using ad hoc methods, suggests that we may have reached a fundamental

bound in these cases. On the other hand, we used a modified version of the standard

QEC recovery here, so as to get a simple effective dynamics from which we could

easily find the sensitivity. Our modified recovery, however, purposely causes logical

errors rather than letting population build up in an unused subspace. It would be

surprising if this mathematically-convenient strategy were optimal. Also, we did not

analyze in detail what kind of circuits could implement the encodings or recoveries

for the codes considered here. Naturally, this is would be an important next step if

one is to implement these application-adapted codes in experiment. It would also be

useful, to this end, to elucidate more concretely what noise correlations can be made

to arise in different types of quantum sensors, and to what extent these are amenable

to ECQS.
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Outlook

“We live on an island surrounded by a sea of ignorance. As our

island of knowledge grows, so does the shore of our ignorance.”

– John A. Wheeler

Quantum error correction (QEC) is often envisioned as a sort of quantum “soft-

ware,” which works somewhat independently of the underlying hardware. In both

Parts I and II of this thesis, we illustrated how QEC might instead be used more like

quantum “firmware.” We showed that this firmware approach to QEC offers clear ad-

vantages over the conventional software approach in the near term. Yet, we have only

just scratched the surface. Accordingly, we will discuss here some of the prospects

and questions arising from the results in this thesis, beginning with those from Part I.

Beyond current experimental efforts to implement the codes from Chapter 2, the

most natural extension of Part I would be to apply the techniques developed therein

more broadly; that is, to devise device-adapted QEC codes for other error mech-

anisms, occurring in other types of quantum devices. These errors could include

intrinsic decoherence as in Chapter 2, as well as measurement and control errors as

in Chapter 3. Given the broad variety of current quantum devices, and the fact that

device-adapted codes are—by design—not one-size-fits-all, there is likely a substantial

amount of work to be done in this direction. More ambitiously, one could imagine

a tighter feedback loop than currently exists between the design of quantum devices

and that of QEC schemes to implement on them. A central theme of this thesis has

been that noise can often be corrected more efficiently when it has structure, pro-

vided this structure is known and exploited. This suggests a new paradigm in which
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one seeks not only to design less noisy quantum devices, but also to give whatever

noise remains a particular structure that can be efficiently corrected through device-

adapted QEC. One could imagine an iterative process whereby QEC codes and NISQ

(noisy intermediate-scale quantum) devices guide each other’s development.

This approach could perhaps be pushed even further by extending the techniques

from Part I towards device-adapted fault tolerance. One strategy, mentioned in Chap-

ter 2, would be to use modular architectures where device-adapted codes are used in

each module as a first level of encoding, and the modules are then operated together

using a conventional QEC code at the second level of encoding. Alternatively, it may

be possible to incorporate a degree of fault tolerance directly into device-adapted

codes. The underlying intuition is based on the recurring theme in this thesis that

structured noise can be easier to manage than unstructured noise. In light of the

results in Part I, it would not be surprising if the requirements for fault tolerance

(e.g., thresholds) became much less stringent by incorporating device physics into the

code from the start. Of course, this approach is unlikely to scale well to large devices,

but it may provide a useful shortcut for initial demonstrations of fault tolerance.

We now turn our attention to the results from Part II, which raise a number of

new questions about error-corrected quantum sensing. For instance, our results (and

indeed, most other papers on the topic to date) are based on the effective sensor

dynamics at leading order in the time between QEC recoveries. In experiments,

however, higher-order effects could also be significant. These could bring both new

challenges and new opportunities. For instance, higher-order terms in the effective

dynamics can produce not only logical decoherence, but also additional Hamiltonian

terms which could systematically bias the sensor’s output [see Eq. (5.2)]. On the other

hand, it could be that signal and noise which are difficult to distinguish at leading

order in time through QEC could be distinguished more easily in these higher-order

terms. More ambitiously, the techniques we used to develop application-adapted

codes for sensing could perhaps also be used for other near-term application such

as quantum annealing or analog quantum simulation, which also rely on manifestly

analog dynamics.
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The specialized codes in Part II could also provide fundamental insights into QEC

more broadly. For instance, in Chapters 5 and 6 we encountered a strong tension

between correcting local phase noise and allowing local unitaries to enact a logical

unitary which encoded the signal (to leading order in time, at least). This difficulty

seems reminiscent of the Eastin-Knill theorem, which says that a QEC code that can

detect (arbitrary) single-qubit errors cannot have a universal, transversal encoded

gate set [177]. (Of course, we had no interest in universal encoded operations in

Part II, nor did we want to correct arbitrary local errors, but there still appears to

be a similarity in spirit.) Indeed, recent work revisiting the Eastin-Knill theorem in

the language of symmetries and approximate QEC hints further at a connection—

see, e.g., Refs. [178, 179]. Notice, for instance, that the angles in Eq. (6.20) define

single-qubit operators {𝑂𝑗} such that the separable unitary exp(−𝑖𝜑∑︀𝑛
𝑗=1𝑂𝑗) enacts

the logical unitary exp(−𝑖𝑛𝜑𝑍l). Moreover, the enhancement in sensitivity offered

by these codes relies critically on the fact that they only partially correct the noise in

question. It would be interesting, and perhaps mutually beneficial, to elucidate the

connection between our application-adapted codes and the Eastin-Knill theorem.

Finally, there are some points common to both Parts I and II. In particular, we

showed in this thesis that tailoring QEC codes for specific devices and applications can

provide substantial benefits. In doing so, however, we took an extreme approach; that

is, we devised codes that are highly adapted to particular error operators, and imposed

almost no constraints a priori on their structure. For instance, we did not demand

that the recoveries associated with our codes be easily implementable; instead, we

occasionally got such structure for free, e.g., in Chapter 2. Having now illustrated

the potential of QEC as quantum firmware, however, it is likely worthwhile going

forward to impose a minimum structure on new QEC codes from the start. In other

words, it is a good idea to demand up front that new codes have a certain locality,

even if this means they cannot be as closely tailored to the error mechanisms at hand.

The added ease of implementation from such constraints would likely justify the costs.

What structure should be imposed depends on how these codes are to be implemented.

For instance, codes intended to passively suppress errors through an energy penalty

173



could be constrained so that they are realizable using reasonably local couplings.

Alternatively, codes to be implemented through active error detection and correction,

as we have mostly considered here, could be constrained so that these procedures

match the device connectivity. One could perhaps even demand that it be sufficient

simply to track the error syndromes (and to modify future operations accordingly),

rather than actively correcting errors as soon as they are detected. Again, the costs of

imposing such constraints may be justified in practice. Perhaps the most useful QEC

codes will ultimately lie somewhere between the highly customized ones developed

here and conventional codes, which are highly structured.

Ideally, the techniques developed in this thesis will not remain relevant in the

long term. That is, one hopes that quantum devices will eventually become so so-

phisticated that QEC—and indeed, quantum algorithms—can be implemented in a

relatively hardware-agnostic way; i.e., as quantum software rather than firmware. It

is becoming apparent, however, that getting to this point may require more than

separate, steady advances in both quantum hardware and software. Rather, realizing

the ultimate potential of quantum technologies may hinge upon our ability to first

achieve intermediate goals, perhaps by means of special-purpose tools which are dif-

ferent from those we intend to use in the more distant future. The aim of this thesis

has been to develop such tools. Some may object to this strategy, on the grounds

that any steps off the most direct path to mature quantum technologies constitute

wasted effort. I believe, on the contrary, that an indirect path, which winds through

increasingly significant milestones, may in fact be the only viable one.
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Appendix A

Appendix to Chapter 2

A.1 Monte Carlo Averaging

We use Monte Carlo integration to compute ⟨𝑝⟩ =
∫︀ 1

0
𝑑𝑔1 · · ·

∫︀ 1

0
𝑑𝑔𝑛 𝑝 in Figs. 2-1, 2-6,

2-10, 2-11 and 2-12. Specifically, we estimate ⟨𝑝⟩ through

⟨𝑝⟩ = ⟨𝑝(𝜎)⟩ ≈ 1

𝑁

𝑁∑︁
𝑖=1

𝑝(�⃗�(𝑖), 𝜎) =: 𝜇, (A.1)

where �⃗� = (𝑔1, . . . , 𝑔𝑛) is sampled uniformly 𝑁 times from [0, 1]𝑛. The sample variance

of 𝑝 over �⃗� ∈ [0, 1]𝑛 is

Var(𝑝) =
1

𝑁 − 1

𝑁∑︁
𝑖=1

[︀
𝑝(�⃗�(𝑖), 𝜎) − 𝜇

]︀2
, (A.2)

so the standard error in approximating ⟨𝑝⟩ by 𝜇 is
√︀
Var(𝑝)/𝑁 , which is shown as

error bars/bands in these plots. To validate this numerical averaging, we compare

in Fig. A-1 the Monte Carlo estimates of ⟨𝑝⟩’s with analytical expressions [i.e., from

integrating Eqs. (2.32), (2.33) etc.], when the latter can be calculated in Mathematica.

The values of ⟨𝑝⟩ for physical qubits and repetition codes shown in Figs. 2-1, 2-6, 2-

10, 2-11 and 2-12 were found analytically to reduce unnecessary statistical noise in

these plots. (That is, they use the yellow lines in Fig. A-1 rather than the blue dots.)

Those for efficient codes are Monte Carlo averages.
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Figure A-1: Validation of Monte Carlo averaging. The yellow line is the exact ⟨𝑝⟩
found analytically, and the blue dots are the Monte Carlo estimates of the same
quantity. Error bars are too small to be seen due to the large number of samples
used.

As further validation, we also plot the average error probability ⟨𝑝⟩ in the ultra-

low-noise regime in Fig. A-2, compared to the corresponding power law in 𝜎.
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Figure A-2: Further validation of Fig. 2-1, in the ultra-low-noise regime. Each code
is shown in a different panel for clarity (along with an unencoded qubit for reference).
The blue dots are data points; error bars, when visible, denote standard error of the
mean in Monte Carlo averaging. The yellow lines are the corresponding power laws
whose slopes serve to guide the eye (their offsets, which were determined through
fitting, are not of primary importance here). For clarity, the panels use different
ranges of 𝜎 (unlike the inset of Fig. 2-1), chosen to be as wide as possible, such that
(i) they represent a perturbative regime (𝜎 . 1) where ⟨𝑝⟩ is described by a power law,
and (ii) they do not produce unmanageably small values of ⟨𝑝⟩ prone to significant
numerical errors. The hardware-efficient code with 𝑛 = 5 is not shown because it
suppressed noise so strongly that it was difficult to find values of 𝜎 satisfying both
(i) and (ii).
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Appendix B

Appendix to Chapter 3

Figs. 3-2 and 3-3 show the results of an optimization performed first over 𝑝fb ∈ [0, 1]

for each 𝑁 , and then over 1 ≤ 𝑁 ≤ 10. In Fig. B-1 we show the results from the first

step of this optimization separately for each 𝑁 .
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Figure B-1: The optimal 𝐹𝑁 for each 1 ≤ 𝑁 ≤ 10 separately (left panels), and the
corresponding 𝑝(𝑁)

fb at which this fidelity is achieved (right panels). Note that the
color bars in the left panels have a different scale than that in Fig. 3-3.
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