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Abstract

Currently, renewable technologies are often evaluated using the Levelized cost of elec-
tricity (LCOE), which is a measure of building and operating a generating plant over
an assumed financial life and duty cycle. Naturally, instead of only measuring the
cost, a more holistic approach would be to also assess the economical value of the
renewable generating technology. One approach to this would be to measure the Lev-
elized Avoided Cost of Electricity (LACE), which considers what it will cost the grid
to generate electricity using renewable technology, amortized over its lifetime. How-
ever, estimating avoided cost can be challenging since it requires knowledge of how the
renewable technology would perform in electricity generation, especially when taking
into account a projected future period. Naturally this would have repercussions in
policies adopting greater renewable technologies, further emphasising the importance
of an adequate measure of evaluating renewable technology.

In this thesis, we explore several methods of evaluating alternative sources of en-
ergy, with an in-depth focus on a LACE evaluation of solar PV as an alternative source
of electricity generation within CAISO market. Through experimentation of different
variants of a recurrent neural network, an LSTM model was trained to predict 2016
electricity prices of all nodes within CAISO. The model achieved a Mean Absolute
Scaled Error (MASE) of 0.761, outperforming a naive baseline using the Day-Ahead
prices. Using the predicted prices, the LACE for solar PV was estimated and com-
pared against the LACE computed with perfect knowledge of prices. Even though
they had similar mean values, there was a significant difference in the variance. The
effects of improvements in price prediction on the LACE was further explored. We
found that the smaller the difference in the estimated LACE to the respective LCOE
value, the greater the impact of improving price prediction performance; and was able
to place an implicit value of an improvement of price prediction performance. Espe-
cially for policy and decision makers, this improvement in electricity price forecasting
would directly translate to greater confidence when making the decision to switch a
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solar PV alternative.
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Chapter 1

Introduction

1.1 Motivation

According to “The future of solar energy: An interdisciplinary MIT study” [50], solar
energy electricity is one of the few low-carbon technologies that has the potential for
successful large scale implementation. In order to fulfill this potential, it is important
to first evaluate solar technology compared to current methods of electricity genera-
tion. Currently, renewable technologies are often evaluated using the Levelized cost of
electricity (LCOE), which is a measure of building and operating a generating plant
over an assumed financial life and duty cycle [63]. Naturally, instead of only measur-
ing the cost, a more holistic approach would be to also assess the economical value
of the renewable generating technology. One approach to this would be to measure
the Levelized Avoided Cost of Electricity (LACE), which considers the value to the
grid from electricity generated by renewable technology, amortized over its lifetime.
However, estimating avoided cost can be challenging since it requires knowledge of
how the renewable technology would perform in electricity generation and the value
of that electricity, especially when taking into account a projected future period [55].

In this thesis, the central aim is to answer the following questions: How would
different forms of solar Photo-Voltaic (PV) such as roof-top solar, residential and
utility scale panels, compare against conventional electricity generating sources? Can
we better leverage Machine Learning and Optimization techniques, and measure the
current benefits of solar technologies over its operating lifetime? Using data at an
Independent Systems Operator (ISO)-level, with currently available electricity price
data, as well as geographical information (such as weather and amount of sunshine),
we will attempt to implement current state of the art machine learning techniques to
forecast future electricity prices and geographic conditions. We will leverage on these
forecast to determine how and where we can potentially position solar PV panels
at a specified ISO region (e.g. California). Finally, under these conditions, we will
measure the LACE of solar PV, among other renewable energy technologies, which
can be used in discussions for greater policy support of solar PV as an alternative
source of generation of electricity.
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1.2 Thesis Outline

This thesis proceeds as follows: Chapter 1 introduces the motivation and provides the
thesis outline. Chapter 2 provides a background on the current methods of evaluation
renewable technology as well as introduction of current state of the art methods of
Electricity Price Forecasting (EPF) used in the industry. Chapter 3 focuses on the
computation of LACE on a Solar PV. This includes how LACE is computed and pro-
vides different LACE evaluation under different conditions, such different prediction
performances of electricity prices under an expected solar output. Chapter 4 would
then use the values computed and compare how improvements in price prediction
would affect the valuation of solar. We will further explore if we can determine a
break-even cost for the different conditions. Finally, we conclude with Chapter 5
where we will summarize the impact of improvement in EPF on a LACE evaluation
of solar, and discuss further oppotunities and policy implication.
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Chapter 2

Renewable Technology Evaluation

This chapter is intended to give the reader an overview of how different evaluation
methodologies, specifically the LCOE and LACE, can be used to assess the economic
competitiveness of renewable energy generation technologies, affecting investment and
policy decisions [55].

2.1 How Evaluation of Renewable Energy can Af-

fect Policy

In 2018, about 11% of the US energy consumption was generated by renewable energy
with biomass, hydroelectric, wind, solar and geothermal making up most of the re-
newable energy sources [56]. However, the relative mix between the different sources
of electricity generation changes and can largely be attributed to the relative cost and
benefits between the various renewable technologies [18].

There are currently several methods to compare between power generation tech-
nologies [46]:

1. Capacity vs Energy
We can compare between energy sources by looking at their capacity or energy
discharge output. Capacity is measured in kilowatts (kW) or megawatts (MW)
while energy is measured in kilowatts-hours (kWh) or megawatt-hours (MWh).
The capacity refers to the maximum output an electricity generator can phys-
ically produce. Energy is the amount of electricity a generator produces over
a specific period of time [30]. Although technology can be compared between
their respective capacity and energy, typically, the cost of the technology affects
its adoption [62]. This often leads to comparisons of capacity or energy together
with its cost. For example, the costs/kW or costs/kWh.

2. Initial Capital Cost
There are several ways to compare cost between renewable technologies. One of
them would be to compare the initial capital cost. Higher capital cost is often
associated with higher risk, which is an important factor for deterring invest-
ments in new technology [25]. This is not surprising since higher investment
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cost would limit the opportunity to investors with sufficient upfront capital re-
source. Furthermore, it would take a longer time horizon to break even on the
investment and reap its rewards [52]. In general, base load technologies will be
more expensive to build but would have lower operational cost as compared to
intermediate or peak load technologies that might have lower initial capital but
higher operational cost [40].

Base load power sources are plants that operate to meet the minimum level
of power demand at all times [15]. These plants generally produce power at a
constant rate and are not designed to respond to peak demands or emergencies.
Besides cost factors, these base-load technologies also characterized with low
risk of interruption. Within US, coal and nuclear plants, together with hydro-
powered plants and geothermal plants (if available), are generally associated
as base load power plants. Renewable energy sources such as wind and solar
are typically examples of intermediate load plants due to their dependencies on
natural weather conditions [42].

3. Levelized Cost of Energy (LCOE) As part of evaluating the overall com-
petitiveness of different generating technologies, a more comprehensive view of
the overall cost would require the operation cost of the respective technology to
be taken into consideration, in addition to the initial capital cost. The LCOE
is one such measure and represents the per-kilowatthour cost (in real dollars)
of building and operating a generating plant over an assumed financial life and
duty cycle [63, 55]. The U.S. Energy Information Administration (EIA) pro-
vides an annual report that determines the LCOE of key energy generating
sources such as solar, wind, hydroelectric, coal, geothermal, biomass, nuclear
[53]. Key inputs to calculating include capital cost, fuel cost, fixed and variable
operations and maintenance (OM) cost, financing cost, and assumed utilization
rate for each plant type [55]. The computation of the LCOE in the EIA annual
report takes the following [54]:

LCOE =
FCF ∗ CC +OMfixed

E(Ghours)
+OMvariable + fuel (2.1)

Where:

• LCOE is the levelized cost of electricity, expressed in units of $/Megawatthour
($/MWh)

• FCF is the Fixed Charged Factor that annualized the capital cost, ac-
counting for the weighted average cost of capital (return on debt and return
on equity), Federal tax burden for the project, and the expected financial
life of the project. This factor is estimated using a cash-flow model with the
National Energy Modeling System (NEMS), and varies over time, based
on changes on the cost of debt and cost of equity.

• CC is the Capital Cost. This is the initial investment per unit of capacity
in the project, expressed in $/Megawatt ($/MW). Depending on the tech-
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nology, this cost may be different due to several factors such as declining
technology cost due to learning and adjustments from border economic
factors.

• OMfixed is the fixed O&M cost. This measures the annual expenditure
per unit of project capacity for operations and maintenance, expressed in
$/MW/year. This cost is relatively constant, regardless of plant utilization
levels, such as worker salaries and maintenance or refurbishment cost that
are scheduled on a calendar basis (not operating-hour basis)

• OMvariable is the variable O&M. This is the expenditure per unit of genera-
tion of operations and maintenance expressed in $/Mwh. This expenditure
includes cost that are relted to the operating hours of the equipment, such
as consumable maintenance items and refurbishment cost that are sched-
uled based on operating hours.

• E(Ghours) is the annual expected generation hours. This is determined by
calculating the number of hours in a year that the plant is assumed to op-
erate. For dispatchable genration such as coal, nuclear, or gas-fired plants,
EIA calculates this based on an annual capacity factor that corresponds
to the maximum annual availablity for that unit. For peak load units, this
number is assumed to be 30% of annual capacity factor. For intermittent
renewable sources, this calculation is based on loaction-specific resource
availability.

• Fuel is the expenditure for fuel, expressed in $/MWh. This is the product
of the heat rate of the equipment and the fuel price. These cost represent
the hourly average of the long-term fuel cost over the assumed financial
life of the equipment (not just for the single year of estimation).

4. Levelized Avoided Cost of Energy (LACE) Instead of looking at the cost
of the different energy generation technology, it is only natural to look at ben-
efits between them. One way of doing so would be through consideration of
the avoided cost, which measures what it would cost the grid to generate the
electricity that is otherwise displaced by a different generation technology. The
LACE can be seen as a proxy of the economic value gained of the alternative
technology, summed over its financial life and converted to a stream of equal
payments annually [55]. A simpler adaption of the LACE computation by the
EIA takes the following form [54]:

LACE =

∑Y
t=1(Pt ∗Dt) + Cp ∗ Cc

E(Ghours)
(2.2)

Where:

• LACE is the levelized avoided cost of electricity, expressed in units of
$/MWh
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• Pt is the marginal generation price at time t. This is also the cost of serving
load to meet the demand at time t. While this price is typically determined
by the variable cost (fuel cost plus variable O&M) of the most expensive
generating unit that needs to be dispatched to meet energy demand. This
price might also be impacted by the cost of meeting any environmental or
portfolio policy requirements by the marginal generators. The marginal
general price plays a significant role in the LACE calculation, which we
will further explore in the remaining parts of the paper.

• Dt is the activity at time t and Y is the number of time steps in a year.
In calculations used in this paper, t is measured in hours and Y would be
approximately 8760 hours (in a year).

• Cp is the capacity payment. This is the value to the system of meeting
the reliability reserve margin. It is the payment that would be required to
incentives the last unit of capacity needed to satisfy a regional reliability
reserve requirement.

• Cc is the capacity credit. This is the ability of the generating unit to pro-
vide system reliability reserves. For dispatchable units, which are generat-
ing units that can generating electricity at anytime of the day regardless
of external factor conditions (like the weather). For intermittent renew-
able technologies (like solar or wind), the capacity credit is a function of
the availability of the resource during peak load periods and the estimated
probability of correlated resource -derived outages within a given region.
An example of this would be the capacity credit of winde is the probability
that if wind is not blowing within a certain region.

• E(Ghours) is the annual expected generation hours. This is similar to the
definition as described for LCOE.

There are many measures of evaluating these energy sources. Depending on which
measure we use as our metric, the computed measure will compare differently between
the different generating technologies and affect how we evaluate them. For example,
among the different ways of comparison, the EIA have a greater focus on the LCOE
and more recently the LACE to evaluate the economic value of different electricity
generating technologies [53]. Their results are regularly used by the U.S Department
of Energy Office of Scientific and Technical Information to help energy companies
evaluate and finance industrial renewable energy measures [49]. There are also many
different studies that uses the LCOE as a measure to build models. One of such
examples was a model by Bruck, Sandborn and Goudarzi, which used the LCOE to
evaluate wind as a generating technology for wind farms [11]. There is also another
case where Clauser and Ewert uses the LCOE to compare geothermal electric en-
ergy to other primary electricity generating sources [13]. These studies have further
implications towards policy discussion and will play a significant role in both state
and federal energy efficiency programs [6]. As we aim to increase penetration of re-
newable energy generation, which measure is selected for comparison become even
more important. Currently, we can see how this has already affected the formulation
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and implementation of energy policy and it is important that we used relevant and
appropriate evaluation methods and results.

2.2 LCOE as a Measure of Evaluation

The LCOE is currently still a popular metric of evaluation between different sources
of electricity generation among both government as well as private sectors [55, 53, 6].
A big part for this is due to its simplicity of calculation and visual appeal [58]. Its
widespread adoption further enhanced the LCOE as the preferred choice for com-
parison among energy stakeholders, as there is a common measure to evaluate be-
tween technology [3]. However, in more recent times, domain experts are finding that
LCOE might not be as useful generally appropriate when considering unconventional
resources like wind and solar [12]. This results in more decision makers to look at
alternative metric (e.g. LACE) when it comes to comparing the alternative electric-
ity sources [43]. There have been studies done comparing the LCOE against other
measure of assessments highlight several issues of LCOE [3, 58, 53]:

1. LCOE only considers the cost to build and operate a plant and does not consider
the value side of the energy generated. By not considering the revenue or value of
electricity generated, this assumes that all technologies provide similar service.
However, this is not necessarily the case and if we consider both the demand
and supply of energy, we can already start to see how the value of electricity
can differ. For example, the value of electricity might be higher at night when
there is higher usage demand and if a clean alternate form of energy generation
can provide electricity at this time, its value would be greater.

2. LCOE relies heavily on several assumptions such as the discount rate, inflation
effects and the sensitivity of results to uncertainty in future commodity cost.
With high variability of different commodity (e.g. fuel gas prices), there would
be greater implications to the range of LCOE for the different technologies.

Taking these factors into consideration, even popular sources of LCOE, such as
Lazard [36] and the Energy institute of The University of Texas at Austin [47], report
LCOE numbers with detailed caveats and context. Figure 2-1 shows Lazard’s LCOE
as a range depending on various assumption.
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Figure 2-1: Adapted from Lazard’s Levelized Cost of Energy Analysis - Version 11.0,
showing the cost competitiveness of alternative electricity generation sources relative
to conventional power sources [36].

2.3 What is Preventing LACE valuation of Renew-

able Energy

As we saw in the computation of the LACE for different renewable sources, this re-
quires the marginal generation price as well as the amount of electricity that will
be generated by the specific generation technology. This results in a more complex
estimation compared to other measures, such as the LCOE; since the LACE is es-
sentially an estimation of the value of the specific generation technology project to
exist at a future date [53]. There are two main challenges with this: 1) predicting
future electricity prices, and 2) estimating expected output of electricity generation
with the technology in question.

2.3.1 Future price prediction

Electricity price forecasting (EPF) has been tried for almost two decades [59] but has
only achieved limited success. In general, across all the different electricity markets
in the U.S., the electricity markets entails the following characteristics [4]:

1. high frequency,

2. non constant mean and variance (non stationary series),

3. multiple seasonality, both daily and weekly periodicity,

4. calendar effect (e.g. weekends and holidays),

5. high volatility,
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6. high percentage of unusual prices (especially during period of high demand).

The electricity market is heavily dependent on a variety of factors, such as the
weather, natural disasters, or technology advancements. Due to these characteristics,
it makes it extremely difficult to predict electricity prices. In the subsequent sections,
we will comparing the myriad of predictive models, comparing their strength and
weakness, to determine in more detail what are some of the respective challenges of
price forecasting. Without the ability to accurate determine what the future prices
will be, the reliability of the LACE is undermined. This would have further ripple
effects on the popularity and confidence of LACE as a metric for comparison within
the electricity market.

2.3.2 Estimating electricity generation

There are currently several main generation sources within the electricity market that
provides the supply required to meet the electricity demands of the market. Figure
2-2 shows the mix of generation sources within the U.S since 1950. While we see that
there is increasing trend for electricity demand, we also notice that the contribution
mix by the various energy sources changes. This is perhaps not surprising, due to
advancement of technologies and environmental policies, to see greater contribution
from renewable technology as a percentage of the over electricity generation. In
more recent years, we can see from figure 2-3 wind has become a major driver of
electricity generation and this has significant impact in evaluating how much benefits
the alternative technology can bring. Similary, LACE uses electricity price as a
measure of economic value and predicting this after incorporating the new technology.
This has traditionally been difficult to determine as we have no past information on
how this technology will do. Currently, early studies done by Inzunza and Knittel
estimates how higher penetration of renewable technology can affect electricity output
from the rest of generating sources and subsequent electricity prices [28]. We can
leverage on these behaviours to better estimate electricity generation outputs and thus
more realistic computation of the LACE for comparison in the subsequent chapters.
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Figure 2-2: Graph showing the amount of electricity generated from various energy
sources from 1950 to 2016. Green part indicates the generation by renewables, which
has been increasing over time due to climate change and environmental pressure, as
well as cost pressures [1].
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Figure 2-3: Graph showing that wind has been the major driver within the growth
of new generation capacity [1].

2.4 Current Methods in Electricity Price Forecast-

ing (EPF)

Finally, we introduce some of the current state of the art methods that are used in
EPF to get a better understanding of how the different method types would can affect
respective evaluation computations.

Based on a review conducted by Weron in 2014 [59], most of the EPF techniques
originate from the fields of Econometrics and Electrical Engineering. Figure 2-4 shows
details of some of these models which range from the following:

1) Multi-agent models:
Examples include multi-agent simulation, equilibrium, game-theoretic models

2) Fundamental models:
Structural models that include demand and supply modelling

3) Reduced-form models:
Econometric models that can be quantitative or stochastic type in nature

4) Statistical models:
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Econometric models that involves time-series analysis, technical analysis of fi-
nancial and commodity markets

5) Computational Intelligence models:
Non-parametric or non-linear models which include traditional Machine Learn-
ing models as well as Neural Networks

Figure 2-4: Taxonomy of electricity spot price modeling approaches [59].

2.4.1 Multi-agent models

As mentioned previously, the competitive electricity markets entails high levels of
uncertainty and involves great interaction between many different parties from sup-
pliers to consumers. This provides an opportunity for equilibrium (game theoretic)
approaches, commonly viewed as generalizations of cost-based models, amended with
strategic bidding considerations. These models are especially useful in predicting
expected price levels in markets with no price history, but known supply costs and
market concentration.

Figure 2-4 shows some examples of multi-agent approaches, which include: Nash-
Cournot framework, Supply function equilibrium, Strategic production-cost models
and Agent-based simulation models. These class of agent-based simulation techniques
can address features of electricity markets that static equilibrium models ignore, and
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are extremely flexible tools for the analysis of strategic behavior in electricity markets.
However, they require the assumptions embedded in the simulation to be justified,
both theoretically and empirically, such as who the players are, potential strategies,
ways they interact and set payoffs. These are typically subjective, and can have a
great impact on the results.

Finally, multi-agent models are generally more useful in understanding qualitative
issues rather than quantitative results. They may provide insights as to whether or not
prices will be above marginal costs, and how this might influence the playersoutcomes
[59]. However, as in our case of using the predicted prices to determine the LACE, a
more quantitative results is required and require electricity prices to be predicted with
a high level of precision. Thus, we will opt for an alternative approach of prediction.

2.4.2 Fundamental models

Fundamental models, also known as structural models, are modelled to capture the
basic physical and economic relationships present in the production and trading of
electricity. They involve understanding the functional associations between funda-
mental drivers such as electricity loads, weather conditions, system parameters, etc.
Often they rely on statistical, reduced-form that have the same foundations as com-
putational intelligence techniques.

There are 2 main sub-classes of fundamental models (figure 2-4):

1. Parameter-rich fundamental models:
Often developed as proprietary, in-house products and not publicly disclosed.
This subclass model involves using specific features to explain and predict var-
ious outcomes (e.g. hydro inflow, snow and temperature conditions to explain
spot price formation [16]).

2. Parsimonious structural models:
The Parsimonious structural subclass models typically begins with an empirical
analysis of market supply and demand curves. We then builds the spot price
process by applying the inverse of the BoxCox transformation (which includes
an exponential function as a special case) to an Ornstein-Uhlenbeck process
(see Eqn 2.3 below). With the obtained jumpless spot price model which can
exhibit spikes, we calibrates it to data from the respective electricity markets
[5].

The Ornstein-Uhlenbeck process equation is as follows:

dXt = (α− βXt)dt+ σdWt, (2.3)

where Xt = Dt − D̄t is the horizontal stochastic deviations, Dt is the demand at
time t, D̄t is the mean demand at time t, β is the speed of mean-reversion, α

β
is the

long term mean-reversion level, σ is the volatility and dWt are the increments of a
standard Wiener process(i.e.,Brownian motion).
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Fundamental models have high dependency on the availability of data that is fed
into the model. Since typically fundamental data are collected over longer intervals
(e.g. weekly or monthly), pure fundamental models are better suited for medium term
prediction horizons (as apposed to short term prediction). Also, since we incorporate
several stochastic fluctuations of the fundamental drivers, the specific assumptions
made regarding the physical and economic relationship of the market place becomes
extremely important. The price projections generated by the models are very sensitive
to violations of these assumptions with the more detailed the model output, the more
effort needed to adjust the parameters [59].

2.4.3 Reduced-form models

Reduced-form models are different from other models in that their main purpose is to
replicate the main characteristic of daily electricity prices rather than to only make
accurate predictions [59]. These models usually play a key role in price derivatives
and risk management system.

There are a couple of main reduced-form models (figure 2-4). They are

1. Jump Diffusion model
Within energy economics literature, they are known as special cases of general
stochastic differential equation(SDE) for the increment of the (deseasonalized
and detrended) spot electricity price (Xt):

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt + dq(Xt, t), (2.4)

where dWt are the increments of a standard Wiener process (i.e., Brownian
motion) and dq(Xt, t) are the increments of a pure jump process. There are
other variations proposed by Albanese et al. [2] and Geman and Roncoroni [19],
which utilize reduced-form models to model European and Bermudan electricity
derivatives.

2. Markov regime-switching (MRS)
MRS models takes into account consecutive spikes of prices, which jump dif-
fusion models cannot. The idea underlying MRS is to represent the observed
stochastic behavior of a (deseasonalized and detrended) spot price process Xt

by L separate states or regimes with different underlying stochastic processes
Xt, j, j = 1, ..., L. The switching mechanism between the states is assumed to
be an unobserved (latent) Markovchain Rt governed by the transition matrix P
containing the probabilities pij = P (Rt+1 = j|Rt=i) of switching from regime i
at time t to regime j at time t+ 1:

P = (pij) =


p11 p12 ... p1L

p21 p22 ... p2L
...

...
. . .

...
pL1 pL2 ... pLL

 , (2.5)
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with pii = 1−
∑

i 6=j pij.

Due to the Markov property, the current state Rt at time t depends only on Rt1.
Although L regime models can be considered typically two or three regimes are
sufficient to model the dynamics of electricity spot prices [32, 57].

Generally, the reduced-form models have been shown to perform relatively well
for volatile or price spike forecast. However, they are not expected to predict hourly
prices accurately and are heavily dependent on the price process (e.g. like marginal
distributions at future time points, price dynamics, and correlations between com-
modity prices) chosen to predict daily electricity prices. This approach while useful
for risk analysis and understanding of the general characteristic of price patterns [8],
would not be as useful in the computation of LACE, which is sensitive towards having
accurate future prices.

2.4.4 Statistical models

Price forecasting through statistical models are done via mathematical combinations
of previous prices and/or previous or current values of related exogenous factors.
Examples of these exogenous factors could be, but not limited to, production figures,
weather variables, etc. Statistical models typically fall within 2 main categories:

1. Additive
Predicted price is a linear sum (additive) of a number of components (features).

2. Multiplicative
Predicted price is the product(multiplicative) of a number of components (fea-
tures).

Figure 2-4 shows some popular examples of statistical models. Details of these meth-
ods will not be discussed here but highly encouraged to be read for understanding of
specifics. In general, statistical models are popular due to the robustness of modelling
many different problems [33, 35] and ease of interpretability of the model, allowing
better understanding of price behaviours. This, however, requires huge dependency
on the numerical efficiency of the algorithms employed, and also the quality of the
data used for analysis. The ability to incorporate important fundamental factors,such
as historical demand, demand and consumption forecasts, weather forecasts or fuel
prices is extremely important but without any formal methods to know which fac-
tors to include. Furthermore, they are often criticized for their limited ability to
model the (usually) nonlinear behavior of electricity price sand related fundamental
variables [59]. Their performance are often compared against modern techniques in
computational intelligence, to be further discussed.

2.4.5 Computational Intelligence

Computational Intelligence comes in many form in recent years but essentially de-
scribes models outside the realm of traditional statistical models. For this thesis,
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specifically we are interested in Machine Learning and Artificial Intelligence field and
will focus specifically on the Neural Networks.

Neural Network (NN) Architecture

A typical NN architecture consist of various neurons that form a model that contains
various linear and non-linear combination. According to the universal approximation
theorem by Cybenko in 1989 [14], even a basic feed forward NN with finite neurons
can approximate any continuous functions within a subspace of Rn. Figure 2-5 shows
two common types of neural networks: 1) Feed Forward Networks (FFN) and 2)
Recurrent Neural Networks (RNN).

NN models are excellent in modelling complex and non-linear problems, which
are typical of EPF problems. Yet, at the same time, as in Markov model discussed
above, the ability to model spiky, non-linear problems might not necessarily result
in better forecasts [9]. It also requires large amounts of data but will be able to
provide better interval and density forecasts than the linear models [59]. Currently,
these methods have shown to produce promising results predicting electricity prices
in the Pennsylvania-New Jersey-Maryland Interconnection (PJM) market [60]. In
subsequent chapters, we will further discuss details of these methods, using them to
predict electricity prices in the California Independent System Operator (CAISO)
market.

Figure 2-5: Taxonomy of Neural Network models, split mainly by their architecture
[59]. The input nodes are denoted by filled circles, output nodes by empty circles,
and hidden layer nodes with dashed-line circles.
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Chapter 3

LACE Evaluation of Solar PV

3.1 Introduction

Previously we saw how the commonly used LCOE measure does not consider the
value side of energy generated by the different technologies. LACE would then be a
good alternative, despite its difficulties, as it measures the value of energy the gener-
ation source produces. In this chapter, we estimate electricity prices and respective
potential output, to compute the LACE of CAISO nodal data and evaluate solar as
an electricity generating source. The results are then discussed in the next chapter
where we will gain an in depth understanding on how sensitive the LACE is towards
predicted prices.

3.2 Prediction of CAISO Prices Methodology

3.2.1 Predicting electricity prices with Neural Networks

Based on prediction methodology developed by Wong et al. [61, 60] used to predict
electricity prices in the PJM market, we will similarly predict the electricity prices in
the CAISO market. We begin by detailing the methods used below:

1. Feed Forward Networks (FFN)

FFN are the most basic architecture types of a NN. A basic FFN passes in-
formation in a forward fashion, and typically consist of an input layer, usually
the size of the feature vector xinput ∈ Rd, an intermediate layer with hidden
nodes, which takes the output of the input layer, puts the input through an
affine function, followed by an activation function, usually a sigmoid or tanh
(see Figure 3-1 below for an illustration). The output layer then takes all the
intermediate layer inputs and performs another affine function transformation
[26]. For classification problems, the output layer usually is a softmax layer,
which applies the normalized exponential function to the outputs of the hidden
layer. For regression problems such as EPF, the output layer does the affine
transformation and ends with 1 output (e.g. the next day RT price). The FF
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networks are trained by back-propagation, which is a gradient descent method.
For continuously valued functions and regression/classification tasks, one can
update the parameters of the system such that they minimize a specified loss
function. There is a range of loss function that can be selected, depending on
the specific prediction problem. For our specific EPF problem, an `1-type loss
function (Eqn. (3.1)) was chosen for backpropagation of training error. One
reason for this is due to the L1 loss generally being more robust and not as
affected by outliers as compared to other loss functions. For example, an `2 loss
might try to adjust the model according to outlier values, even at the expense
of other samples. The `1 loss was also selected as the metric for optimization
of hyperparameters based on error with a validation data set, to be discussed
further in the paper.

The `1 loss function is given by:

loss(t,y) =
1

n

∑
i

|ti − yi|, (3.1)

where t is the predicted prices of the model and y is the target prices from the
training or validation set (depending on whether the model is being trained or
tuned, respectively).

Equation 3.2 represents the mathematical representation of the input vector xt,
hidden layer ht, and output layer ot and the connections between the different
types of nodes in matrix vector form, namely:

ht = σ(W x,hxt),

ot = W h,oht,
(3.2)

where W x,h
a,b represents the weight multiplied used for the affine transformation

of the input vector h
(b)
t =

∑
aW

(a,b)
x,h x

(a)
t .

2. Recurrent Neural Networks (RNN)

An RNN is a class of neural network which the connection between units form
a directed cycle. By keeping track of a learning state of the RNN as data are
passed through this cycle, RNN models can exhibit “memory-like” behavior and
dynamically learn sequences of data to capture certain temporal dynamics, as
well as exhibit dynamic temporal behavior. In sequence modeling problems,
RNNs tend to far outperform traditional feedforward MLPs, since they allow
for information across values of inputs to be stored in the network. That is,
information from the past is stored in the system, and affects the future outputs
of the model.
Figure 3-2 depicts an illustration of the RNN. We can see through a set of
“context units” how the RNN is able to maintain and update the state network.
The nodes in the hidden layer are connected to the context layers, which are
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Figure 3-1: Example of simple feedforward network, adapted from [22].

then connected to the output layer. As a result, each of the neurons in the
hidden layer processes both the external input signals and signals from the
feedback.

Equation 3.3 shows the vector representation of a basic RNN. With input vectors
xt and hidden state ht, the updates follow the following equations:

ht = σ(W h,hht−1 +W h,xxt), (3.3)

where σ(·) is a non-linear activation function. The additional parameters learnt
in RNNs include the 2 weight matrices W h,h,W h,x.

Figure 3-2: The internal workings of RNN cells [41]. In the above diagram, each
line carries an entire vector, from the output of one node to the inputs of others.
In addition, the figure depicts tanh as the activating function, but any non-linear
activation function can be similarly represented.

Gated Recurrent Unit (GRU)

GRUs are an extension of RNNs, where there is a gating mechanism in the RNN.
With input vectors xt and hidden state ht, the updates follow the following
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equations:

gt = σ(W g,hht−1 +W g,xxt)

ht = (1− ht)� ht−1 + gt � tanh(W h,hht−1 +W h,xxt),
(3.4)

where σ(·) is the sigmoid function. The additional parameters learnt in GRUs
include the 2 weight matrices W g,h,W g,x in addition to those learnt in a basic
RNN.

Figure 3-3: The internal structure of a GRU cell [41]. In the above diagram, each
line carries an entire vector, from the output of one node to the inputs of others.
The pink circles represent pointwise operations, like vector addition, while the yellow
boxes are learned neural network layers.

Long-Short Term Memory (LSTM)

LSTMs are further generalizations of RNNs, where there are multiple gating
mechanisms, including the forget gate, the input gate and the output gate, and
were introduced in 1997 by Hochreiter [24] and in 1994 by Bengio [7].

With input vectors xt and hidden state ht, the updates follow the following
equations:

ft = σ(W f,hht−1 +W f,xxt)

it = σ(W i,hht−1 +W i,xxt)

ot = σ(W o,hht−1 +W o,xxt)

ct = (ft)� ct−1 + it � tanh(W c,hht−1 +W c,xxt)

ht = ot � tanh(ct),

(3.5)

where σ(·) is the sigmoid function. The additional parameters learned in LSTMs
include the 8 weight matrices W f,h,W f,x,W i,h,W i,x,W o,h,W o,x,W c,h,W c,x.
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Figure 3-4: The internal structure of an LSTM cell, which features mechanisms to
forget [41]. In the above diagram, each line carries an entire vector, from the output
of one node to the inputs of others. The pink circles represent pointwise operations,
like vector addition, while the yellow boxes are learned neural network layers.

Previous experiments found the basic RNN to be able to predict PJM electricity
prices well [60]. Using a similar prediction model architecture, we predict electricity
prices within CAISO, and use these values to estimate the annual LACE of solar.
Further details of the prediction model will be further elaborated later in the paper
at Section 3.3.2.

3.2.2 Solar PV expected output

In chapter 2, we saw how the expected output from solar radiance will form a key
input in the LACE computation. This chapter will involve estimating the expected
output with the following considerations:

1. Assume that current nodal locations within the CAISO are converted to solar
generation. This would allow us to use current location and nodal quantity
information as inputs to estimate pv output levels.

2. Based on past 5 year radiance profiles (at current nodal locations), estimate
the maximum amount of radiance to be converted to electricity. Part of this
calculation will involve assuming a 1-axis tracking array of solar panels pointed
at the direction to convert the Global Horizontal Irradiance (GHI) at each
location into solar energy.

3. Understand what are current state of the art efficiency of solar panels to deter-
mine the energy loss from solar radiance in pv generation.

Solar Capacity Factor

Capacity factor is a measure of how much energy is produced by a plant compared
with its maximum output. It is measured as a percentage, generally by dividing
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the total energy produced during some period of time by the amount of energy the
plant would have produced if it ran at full output during that time [38]. The na-
ture of solar power depends on the availability of solar energy at specific locations.
Naturally, different areas would experience different intensity of sunlight through-
out the day and no energy production at night. This presents a significant downtime
of energy production and can affect the capacity factor of solar as a PV generator [51].

Figures 3-5 below shows the capacity factor for a modeled nodal PV by Brown
and O’Sullivan [10] across the different markets from 2010 to 2017. Specifically for
CAISO, the modeled nodal PV capacity factor has been relatively stable throughout
the 5 years, averaging at about 30%. A stable capacity factor suggest that the general
irradiance levels within the CAISO has been consistent, with no significant changes
in irradiance patterns. This would become important as we estimate the potential
output power at the various nodal location later in the paper.

Figure 3-5: Modeled nodal PV capacity factor for a 1-axis tracking array (a) and
yearly average energy value (b) sorted by ISO and year [10].

Estimating nodal solar pv output

The output power of a PV generator at the maximum power point (MPP) is obtained
from equation 3.6 below [48, 44]:

PPV = PPV,STC ×
Gj

GT,STC

× [1− γ × (Tj − 25)]×NPV s ×NPV p, (3.6)
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where PPV , PPV,STC , Gj, γ, Tj, NPV s, NPV p are the generator output power at the MPP,
the rated PV power at the MPP and STC, the irradiance level node j at STC, the
power temperature coefcient at MPP, the cell temperature at node j, and the number
of modules in series and in parallel that composed the generator respectively.

For our calculations, we will assume Standard Test Condition (STC) measure con-
ditions at TSTC = 25C, GT,STC = 1000W/m2 , and wind speed of 1 m/s. GT,STC refers
to the approximate energy density at the Earth’s surface for a surface perpendicular
to the Sun’s rays at sea level on a clear day.

In this thesis, since our focus is on the impact of predicted electricity prices on
LACE, we will, for simplicity, estimate the expected Solar PV output with the follow-
ing assumption: Tj = 45.5 for all node locations, γ = 0.043%/C, NPV s = 72, NPV p =
1 and PVPV,STC = 165 as provided by Riffonneau et al. [48]. For the initial analysis,
we will be assuming the radiance profile of 2016 at the respective nodal locations.

3.2.3 Data

Electricity price

The California Locational Marginal Pricing (LMP) data at reported nodes were ob-
tained from the CAISO [39] using pyISO, a Python library which facilitates data
acquisition from the different ISO application programming interfaces (APIs). Note
that the CAISO footprint does not cover the entire state of California and only nodes
with serially complete LMP availability for a given calendar year were utilized. The
original dataset included 5735 LMP nodes with hourly DA/RT prices between 2009
and 2017. The geographic locations1 of the nodes were also extracted for reference to
weather information at the respective nodal locations. For each location, there was a
separate CSV file with information on the date, time (in 5 minute interval), and the
LMP price (dollars) for each interval - both Real-Time(RT) and Day-Ahead (DA).
We will be focusing on the RT LMP since that will be the eventual price used for
LACE computation.

Meteorological data

Meteorological data used are taken from the National Solar Radiation Database Phys-
ical Solar Model (NSRDB PSM) [23]. This included information on the global hori-
zontal irradiance (GHI, W/m2), direct normal irradiance (DNI, W/m2), diffuse hori-
zontal irradiance (DHI, W/m2), surface air temperature (◦C), and surface wind speed
at 2 m height (m/s). For each nodal location, meteorological data are derived from
satellite observations and are available on a 4km by 4km grid across the continen-
tal United States, at 30 min resolution for historical data from 1998 to 2017. The
meteorological data for a given timestamp are assumed to remain constant until the

1Approximate locational data were derived from publicly available data on nodes [29]. Exact node
location data such as latitude and logitude, considered Critical Energy Infrastructure Information,
are confidential and not for distribution, and subject to FERC regulations.
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next timestamp; for example, the reported irradiance, wind speed, and temperature
between 10:00 and 10:30 are assumed to have the same value throughout. Histori-
cal meteorological data at each nodal location was then combined with other nodal
information (e.g. LMP) before being used for further calculations.

Data processing

All data processing and analysis was carried out using Python. The data were split
into 3 sets: training, validation and test data, which will be used during the imple-
mentation of our price prediction model. PyTorch was used for implementation of
neural networks models for price prediction. PyTorch is a Python library that handles
tensor computation and includes a package for automatic differentiation, which can be
run on both CPUs and GPUs. PyTorch makes use of dynamic computational graphs,
as opposed to static computation graphs such as those implemented by TensorFlow
[45].

In this thesis, much of the development was carried out with testing on CPUs but
for large-scale runs a cluster equipped with GPUs was used. The speed-up associated
with this was typically about 6 times. This was an extremely significant improvement
since in this thesis there was substantial hyper-parameter tuning involved, which
required grid searches over large spaces of hyper-parameters. The code used in the
following modeling was based on the code done in a previous work on price forecasting
in Wong et al. [61].

3.3 LACE Computation

In this thesis, we will compute a basic version of the LACE by adapting equation 2.2
from chapter 2, such that we can easily attain an estimate of the LACE at the various
nodal locations quickly by reducing the computation time. Although the actual LACE
would involve further considerations (e.g. tax subsidies and capacity payment), these
factors are typically consistent throughout the region and thus would not significantly
affect the result when we are comparing variation of the LACE estimates between
different models of price prediction. The equation used will be as follows:

LACEs =

∑Y
t=1(Pt ∗Dt)

E(Ghours)
(3.7)

Where:

• LACEs is the levelized avoided cost of electricity, expressed in units of $/MWh
per m2 of the solar array.

• Pt is the marginal generation price ($/kWh) at time t as define previously.

• Dt is the activity at time t, which is also the expected electricity output gener-
ated in kWh.
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• t is measured in minute intervals and Y is the number of time steps in a year.
In our computations, Y would be approximately add up to 525600 minutes (in
a year).

• E(Ghours) is the annual expected generation hours in MWh as defined previously.

3.3.1 Base case prediction

We first compute the annual LACE for respective CAISO nodes with the initial
assumption that we have perfect information of the marginal prices for electricity in
a particular year. In other words, we will assume that we are able to forsee the hourly
electricity marginal prices all CAISO nodes in 2016 and use these prices to determine
the LACE.
Figure 3-6 shows what the LACE values of nodes within the CAISO using marginal
price data from 2016.

Figure 3-6: Annual LACE for CA ISO nodes assuming 2016 marginal prices. LACE
values are calculated for each m2 of solar panel at current nodal locations.

Here we can see how the coastal areas of California seems to have higher annual
LACE per m2 of solar. As we look to decarbonize electricity within the U.S., replac-
ing the electricity generation at these node locations to solar first will allow us to
reap greater benefit. Typically, we will like to assess the potential of solar generat-
ing sources at a particular site prior and hence this kind of perfect information on
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electricity prices might not always be possible. However, this will serve as a useful
benchmark for comparison to the LACE computed with predicted prices from our
NN model.

3.3.2 NN prediction

For our proposed prediction model, we will be predicting 2016 lmp prices for all
nodes, using historical price data. Since this will be one model to predict prices for
all nodes within the CAISO region, the trade off is that the model will be generalized
to predict prices for nodes within the CAISO region, without necessarily tuned to
individual nodes. We will have more data available for training of the model, this
typically improving prediction performance; but should not expect the model to learn
nuances of individual nodes. A regular RNN architecture was initially selected for
training but we will experiment with the GRU and LSTM architectures as well in the
hyperparameter tuning phase.

With the California LMP price data described earlier, the data were transformed
into model inputs and expected prediction outputs, where the inputs are formed
with a sequence of previous x timesteps of Real-Time (RT) LMP prices before the
prediction point. The output y would then be the RT price at the current point in
time. The training data were used to perform the initial training of the model while
the validation data were used to tune the model hyperparameters. The final model
would then utilize the test set to determine the performance of the model and to
determine how well it is able to predict electricity prices.

Model performance evaluation metric

In the training phase, backpropagation of the different variations of the RNN model,
as well as the optimization of hyperparameters, used the `1-type loss function (Eqn.
(3.1)) discussed above. To determine the performance of the model, the mean absolute
scaled error (MASE) was selected as a standard and more relevant measure of time
series prediction accuracy. The MASE was calculated using Eqn. (3.8),

MASE =
1

n

n∑
i=1

|ti − yi|
|ti − t̃i|

, (3.8)

where the error of each prediction is scaled by a baseline “naive” prediction and then
averaged. The baseline prediction t̃i was selected to be the respective node’s Day-
Ahead (DA) marginal price. The DA price, released 24 hours prior to the RT price, is
part of the ISO’s the Day-Ahead Energy Market that lets market participants commit
to buy or sell wholesale electricity one day before the operating day, to help avoid
price volatility [31]. The DA price should in theory encompass information from
previous periods as well as market expectations and bidding results of the RT prices
making this a reasonable baseline for comparison.

With MASE, values less than one are an improvement over predictions using the
mean of the data and zero represents a perfect prediction. This statistic is a transpar-
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ent way of understanding a models success at improving predictions over an already
available baseline [27]. Another popular performance metric would be the Mean Ab-
solute Percentage Error (MAPE), a measure of prediction accuracy that measures
the percentage error from the actual value. In our case, the MASE was selected in-
stead such that we remove any directional bias when interpreting the performance of
the prediction error. The MASE further allows for easy interpretation of the model
performance compared to a specified baseline.

Hyperparameter tuning

To increase the prediction power of the NN model, we initialized the model with hy-
perparameters from the PJM model implemented by Wong [60] and performed tuning
on selected model hyperparameters. The purpose of hyperparameter tuning is to find
the optimal parameters that will provide the model with the lowest loss function.
We will then select these parameters as our final model parameters. Hyperparameter
tuning was done through a basic grid search algorithm, varying each of the param-
eters sequentially while fixing the rest of the parameters, with the validation data
set to determine the parameter that provided the lowest loss value. In addition, we
further experimented with different variations in the model architectures by includ-
ing LSTM and GRU cells to determine which model architecture would train the best.

The following parameters for model variation were selected for tuning:

1. Window size: Number of prior timesteps incorporated to predict target price
value

2. Hidden layers: Number of hidden layers

3. Hidden dimension: Dimension of cell and hidden state of LSTM cell

4. Batch size: Number of observation used in a batch

5. Epoch: Number of training iteration with input data

For training the model, the learning rate of 0.01 was set, since the model was
training well and produced decent results. The initialized hyperparameter values
were selected as follows:

1. Window size: 26

2. Hidden layers: 2

3. Hidden dimension: 10

4. Batch size: 225

5. Number of Epochs: 80
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Performance of Varying Window Size

The window size determines how much prior data are fed into the model to predict
the target price. In previous work by wong [61], the hourly window size to predict
PJM prices was found to be around 26 hours, or roughly one day prior, for better
prediction. With this in mind, the model was tuned over a range of window sizes
around 24 hours, using previous CAISO RT data.

Figures 3-7, 3-8, 3-9 show the validation loss for the GRU, RNN and LSTM model
respectively, as the model was trained over a ranged from 1 to 40 window sizes. In
general, all 3 models showed increasing run times as the window sizes increased. This
is not surprising since with larger window sizes, the input data dimension increases
with the window size and in turn increase the weights dimension of the initial layer
that have to be updated during the training of the model. However, this increased
run time does not necessarily translate to a lower validation loss. For the GRU,
RNN and LSTM, the window size with the lowest validation loss is 36, 8 and 24
respectively. Both the GRU and LSTM model represent a more complex architecture
with additional gating characteristics that enable them to model longer sequences.
This could explain why the optimal window sizes was larger for the GRU and LSTM
model compared to the regular RNN model. Interestingly, we were able to see some
patterns of lower validation loss around window sizes of 24 and 36. In the context of
the hourly data, this is coincidentally 1 and 2 days respectively, perhaps indicating
that information in daily periods might be more valuable to predicting RT prices.
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Figure 3-7: Loss over various window size for GRU model.

42



5 10 15 20 25 30 35
Window size

8.5

9.0

9.5

10.0

10.5

11.0

11.5
Lo
ss

Validation loss (RNN)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ru
nn

in
g 
tim

e 
(s
)

Loss over window size

Run time (RNN)

Figure 3-8: Loss over various window size for RNN model.
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Figure 3-9: Loss over various window size for LSTM model.
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Performance of Varying Hidden Layers

The number of hidden layers represent the number of layers between the input and
output layers. For the GRU and LSTM model, this indicates the number of GRU
and LSTM cells to be included in the model. Overall, a greater number of hidden
layers results in a deeper model and would and thus have more parameters to be
tuned during training. Looking at figures 3-10, 3-11 and 3-12, this is exactly what we
see with longer training times as the number of hidden layers increase.

Comparing the validation loss, the optimal GRU cells seem to be 4 while for
the RNN and LSTM models 1 layer was the best. While a deeper model allows for
greater potential for the model to adjust its gradients to fit specific data, it runs
the risk for the gradients to become unstable and potentially lead to vanishing or
exploding gradients and result in poorer results. In this case, lesser number of layers
might be better, which is what we observe for the RNN and LSTM models.
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Figure 3-10: Loss over different number of hidden layers for GRU model.
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Figure 3-11: Loss over different number of hidden layers for RNN model.
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Figure 3-12: Loss over different number of hidden layers for LSTM model.
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Performance of Varying Hidden Layer Dimensions

For each hidden layer, the hidden layer dimensions is another parameter that can
provide greater complexity for the NN models. Instead of adding complexity in term
of the length of the NN, a higher dimension add more depth in each NN layer. Not
surprising, when we increase the hidden dimension from 1 to 150, we see that the
computation power increases proportionately (as seen from the training time for all
3 models in figures 3-13, 3-14 and 3-15).

Generally, it is recommended [17] that the hidden dimensions should be at least
the same as the inputs dimensions so that there is sufficient flexibility for the model to
learn. For the GRU, RNN and LSTM model, the hidden dimension that provided the
lowset validation loss was 140, 120 and 60 respectively. This was trained with using
base parameters of window size of 26, and batch sizes of 225 and 2 hidden layers.
This could explain a relatively larger hidden dimension that allowed the model to
have sufficient complexity to learn previous price sequences. We further notice that
the LSTM model seems to have a much lower optimal dimension. This could be due
to the nature of an LSTM cell having greater gating functions, specifically the forget
gate, and hence might not utilize the entire sequence of input data at once. With a
much lower computation time to train with lower hidden dimension, a lower optimal
would be valuable as we train our model on larger data sets.
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Figure 3-13: Loss over various dimensions of hidden layers for GRU model.
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Figure 3-14: Loss over various dimensions of hidden layers for RNN model.
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Figure 3-15: Loss over various dimensions of hidden layers for LSTM model.
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Performance of Varying Batch Sizes

The batch size determines the number of samples that will be propagated throughout
the network. As seen in figures 3-16, 3-17 and 3-18, increasing the batch size from
25 to 500 in intervals significantly decreases the running time of training the model.
With a larger batch size, more data sequences are being utilized at once to train.
Hence, with the same number of data points, less computation is required.

At the same time, comparing these figures (Fig. 3-16, 3-17 and 3-18), we see huge
variation in validation losses as different models learn better with different batch
sizes. One hypothesis for this could be that the batch size allows the model to learn a
generalized gradient according to the batch input it is provided. If these samples were
split into batches with very different characteristics in each batch, during each run
the model will find weights that fit each unique sample, making drastic adjustments
during each training epoch that might not converge and thus not generalize well
across all node prices. Since the weights updated process is different for different NN
architectures, the optimal batch sizes would also be unique to the respective model.
The batch size with the lowest validation loss for the GRU, RNN and LSTM is 275,
50, and 300 respectively.
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Figure 3-16: Loss over batch sizes for GRU model.
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Figure 3-17: Loss over batch sizes for RNN model.
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Figure 3-18: Loss over batch sizes for LSTM model.
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Early Stopping Criteria

Early stopping can be a useful regularization tool to prevent overfitting [20]. All
models were trained over various epoch numbers to attain the training and validation
loss. Looking at the results illustrated in figure 3-19, an early stopping criteria was
identified for the different models by observing the lowest validation loss. Looking at
rate of training loss decreases, the LSTM model seemed to converge at a faster rate.
The stopping criteria (epoch number) for the GRU, LSTM and RNN models were 40,
28 and 35 respectively. After which, the validation loss seemed to stabilized, a sign
of overfitting of the training set. This result was incorporated into the final model
accordingly, with the overall performance discussed later in the report.
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Figure 3-19: Loss over epoch for LSTM, GRU and RNN model

Optimal Parameters

Using the validation loss as our metric for comparison among the various hyperparam-
eter configurations, we see in figure 3-20 that while taking a longer runtime compared
to the GRU and RNN model, the LSTM model outperforms them with a significantly
lower validation loss. One explanation for this superior performance can be attributed
to the unique gating systems of an LSTM cell. When properly trained with sufficient
data, the input, forget and output gate of the LSTM cell is able to model longer term
sequences, emphasizing on key entries while forgetting less significant data prior to
the prediction point.
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Figure 3-20: Validation Loss comparing the LSTM, GRU and RNN models with the
standard hyperparameter setting.

Finally, complemented with other optimal hyperparameter values discussed, the
LSTM model is thus the selected model to predict the next hour RT price within the
CAISO. The final parameters selected are as follows:

1. Model: LSTM

2. Window size: 24

3. Hidden layers: 1

4. Hidden dimension: 60

5. Batch size: 300

6. Learning Rate: 0.01

7. Epoch: 28

Final Model Results

Table 3.1 shows a summary of results using the best experimented parameters with
the various prediction models.The predictions were tested using a hold out test data
set, using the MAPE and MASE as our metric for comparison. With a MASE of
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0.761, the LSTM model outperforms the naive baseline of using the DA price. How-
ever, when we look at the MAPE, even the best LSTM model does not seem to
perform well. This could be due to the fact that there are relatively frequent and sig-
nificant spikes in RT prices within the CAISO market, which would skew the towards
a larger percentage error when we try to predict the prices.

Technique LSTM GRU RNN
MAPE (%) 25.8 30.16 32.76

MASE 0.761 0.867 0.872
Validation Loss 10.85 11.9 12.39

Table 3.1: Summary of results, showing the best results from the implemented model
versus other baseline methods computed on the same data

lmp Mean STD Min Max
Actual 24.93 57.89 -1162.99 2498.82

Predicted 22.21 10.81 -263.12 505.9

Table 3.2: Summary statistics comparing actual and predicted prices. While the
mean values are close, the standard deviation of the actual prices are much greater
in magnitude compared to the predicted prices.

Figure 3-21 provides a plot of predicted values (from the final LSTM model)
against the actual prices of nodes within CAISO. Generally, we observe that the
model produces predicted prices that are able to capture the direction variation of
the prices. With hourly fluctuation of prices, being able to follow this fluctuation
and in some cases even get accurate predictions is a considerable achievement and
will be useful as we use to compute the LACE at the respective nodes. However,
for extreme spike in the prices, such as lmp prices that go above $200, the model
prediction is pretty conservative and does not capture these prices well. Table 3.2
further highlights this. We notice that while the mean of the actual and predicted
lmp (all the nodes) are relatively close in value, the difference in standard deviation of
the actual prices are much higher; with much lower minimum prices and much higher
maximum prices. Appendix A provides a more granular breakdown of the summary
statistics on a nodal and hourly level in tables A.1 and A.2 respectively.

Fortunately, in the context of determining the LACE of solar generation, the
impact of not being able to capture these sharp spike in prices remains low. There
are two main reasons for this, firstly, in the context of solar generation, if there were
errors in price prediction in the night (where there is no expected energy output),
this would not affect the LACE computation. Figure 3-22 show an example of a node
within the CAISO market. We observe that majority of the price spikes from October
2016 to Janurary 2017 occur at night, mitigating some of the impact of the prediction
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error. Secondly, during the calculation of the annual LACE, the expected value is
averaged over the year, smoothing out the error over the year and further reducing
the effects of the prediction error on the eventual LACE computation. In the later
part of the paper, we will compute the LACE based on predicted prices from the
LSTM model and compare how different the determined LACE is from the base case.
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Figure 3-21: Prediction vs Actual plots on test set. This model was trained on past
RT information from nodes within CAISO.
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Figure 3-22: Hourly lmp price from one example node in CAISO in 2016. Prices have
been differentiated to prices in the day and the night.

Model Extensions

In order to further improve our prediction power of our NN models, there are several
extension to the model that can be further explored. From the feature engineering
persepctive, we could include greater contextual and relevant information such as the
weather or information on the electricity demand in the region, since these would
directly affect the prices of electricity. Other features that would be interesting,
particularly in the electricity market, would be the fact that nodes within the region
are connected via power lines and thus can have a more direct effect on each other.
If we could include price information (both RT and DA prices) of neighboring nodes,
we should expect significant improvement in prediction performance.

From a modeling perspective, there might also be additional value by deploying
an ensemble method by combining the predictions from various model and averag-
ing them. Examples of additional models that can be include might include Auto-
Regressive Moving Average (ARMA) type models or Kalman filtering and smoothing
procedures, which are popular time-series models that are able to better identify
significant price spikes [21, 34].

Finally, we might also consider training individual models to predict prices of each
node. This would enable the model to learn any nuances in price behavior of each
node and potentially lead to better prediction performance. However, the trade off
here is that for each node, we would have much less data available, which is essential
in the training of deep NN models.

54



NN LACE results

Figure 3-23 shows the LACE values of nodes within the CAISO, using the predicted
hourly prices from our final LSTM model. At initial glance, the general LACE value
distribution throughout the nodes seem to be similar to the base case from figure 3-6,
with greater annual LACE of solar per m2 around the coastal areas of California.
This is encouraging from a decision making and policy implementation perspective,
since we are able to quickly identify regions where a solar transition would be more
valuable.

Comparing the difference in the computed LACE from the LSTM model against
the base case, however, we do see some differences in the final computed LACE.
Figure 3-24 shows the difference in the LACE of respective nodes in the CAISO,
with orange nodes indicating greater LACE values from prediction model and blue
nodes reflecting smaller LACE values anticipated by the LSTM model. The darker
the shade of the node (both orange or blue), the bigger difference in LACE determine
between the base case and NN model.

The difference in LACE values between the base case and the NN model is calcu-
lated as shown in equation 3.9 below. Since both cases used the same solar radiance
availability assumptions, a negative difference would indicate that the NN model had
overall predicted prices that are higher than the base case. Vise versa, a positive
difference would indicate that generally, predicted prices were lower compared to the
base case. Under prediction would result in a lower valuation of solar at those lo-
cations. This might result in policy makers deciding that we should not switch to
solar, when it is actually more economical to do so. Conversely, and over prediction
of prices might falsely present solar as a valuable switch, which in fact might not be,
at least not in those exact node locations. Fortunately, most of the nodes analyzed in
this paper do not exhibit drastic LACE values betwen the base case and NN model.
In fact, out of 5735 nodes shown in figure 3-23, less than 10% have difference of more
than $1.5/MWh per m2 of solar array. In the next chapter, we will go in further
detail in understanding how the difference in prediction prices from the actual prices,
translate to the difference in LACE computation from the base case. At the same
time, We will also discuss potential policy effects of having a deviation from the actual
LACE.
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Figure 3-23: Annual LACE for CA ISO nodes using predicted prices for 2016 marginal
prices. The predicted prices were determined using LSTM model trained with previ-
ous hourly RT data. LACE values are calculated for each m2 of solar panel at current
nodal locations.

LACEdiff = LACEbase − LACENN , (3.9)

where LACEbase, LACENN represents LACE computations from the base and NN
case respectively, using the LACE formula as described in equation 3.7.
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Figure 3-24: Difference between the annual LACE determined from the base case
versus the NN model. Darker nodes indicate greater variation in LACE. Negative
prices indicate overestimation of LACE using the NN model. Values are calculated
for each m2 of solar panel at current nodal locations.
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Chapter 4

LACE Evaluation and Break Even
Performance

4.1 Impact of Prediction accuracy on LACE

We have seen how there can be some variation in the evaluation of solar between
having perfect price information against prices generated from predictive models. The
objective of this chapter is thus to gain a better understanding of the importance of
having accurate predictive models, especially in the context of a LACE evaluation
of alternative generating electricity sources. We begin by analyzing the prediction
errors produced by the model in greater detail, and go in-depth by finding out how
this would affect the respective LACE computation as we vary the prediction error.
Finally, we will discuss, in relation to the cost of solar PV, how this would affect any
breakeven decisions.

4.1.1 Estimating price prediction errors

Referring back to figure 3-21, we observed that for each time step i in the test set,
there is a prediction error (ei) such that ei = ti − yi, where ti and yi are the actual
and predicted prices at time i respectively. ei is hypothesized to follow a normal
distribution with mean 0 and some variance σ2 and is normalized to a standard
normal according to the below equation:

zi =
ei − ē
s

, (4.1)

where ei are the prediction errors at time i, ē is the mean of the prediction errors
and s is the sample standard deviation of the prediction errors. The cumulative
distribution (CDF) of zi is then plotted against a standard Normal CDF to compare
the 2 distributions.
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Figure 4-1: Plot of normalized prediction errors and standard normal CDF from the
final LSTM model. CDF looks relatively close to standard normal, however, has a
much longer left tail.

Figure 4-1 shows a plot of the CDF of a standard normal against the normalized
prediction error from our LSTM model. We see that compared to a normal CDF,
despite generally looking like a standard normal distribution, the normalized predic-
tion error seemed to have a much longer left tail, going way beyond -4 on the x axis.
This effect is more pronounced when we look at the QQ plot of the standardised
prediction errors at figure 4-2, where we see a significant drop off before -2. The QQ
plot, also known as the Quantile-Quantile Plot, is a graphical technical that shows if
2 sets of data come from populations with a common distribution [37]. In our case, we
are comparing the normalized prediction errors against a theoretical standard normal
distribution. If the normalized errors did indeed come from the same distribution,
we expect the points to fall approximately along the 45-degree reference line. The
greater the deviation from this line, the less likely our normalized prediction errors
are from a normal distribution. Finally, we performed Kolmogorov-Smirnoff (K-S)
test to further validate our results. With n = 2000, the K-S statistic reported was
0.02707 with a p-value of 8.572× 10−7. With a low p-value, we can safely reject the
null hypothesis that the two distributions are the same, indicating that perhaps the
prediction errors do not follow a normal distribution.
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Figure 4-2: QQ plot of the normalized prediction error from the final LSTM model.
Points are roughly straight and close to the 45 degree line between -2 and 4. However,
points curve off in the extreme parts, some indication that the data have more extreme
values than would be expected if they truly came from a Normal distribution.

However, when we look at the actual prices of nodes in 2016, we realise that the
long left tail of prediction errors could be explained by huge spike patterns within
the CAISO market. Figure 4-3 shows an example of 2016 lmp prices from one node.
Here we defined prices about $400 as “spike” prices, which are highlighted in blue.
As mentioned previously, the current model is not great at predicted these price
spikes and based on our definition of prediction errors, naturally this would result in
some extremely large negative errors that, after normalizing, result in the long left
tails in the distribution. In order to get a better understanding of the generalized
characteristics of prediction errors, we will ignore the “spikes” for now and analyze
the distribution of the remaining prediction errors with a similar methodology as
performed previously; to see if we can approximate our errors to a normal distribution.
We will then assume that all prediction would follow these same characteristics (even
for “spiked” prices) to generate prediction errors and study how the LACE changes
with increasing errors.
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Figure 4-3: Hourly lmp price from another example node in CAISO in 2016. Prices
above $400 are considered “spike” prices and are highlighted in blue.

After obtaining the prediction errors of prices below $400 and normalizing the
errors using equation 4.1, we generate the QQ plot and the CDF of the standardized
prediction errors compared against a standard normal distribution. Figures 4-4 and
4-5 depict the respective QQ plot and CDF graphs.

The points within the QQ plot (fig 4-4) now almost entirely lie along the 45-
degree reference line, showing characteristics that the prediction errors are now much
closer to that of a standard normal distributions. The CDF plot of the normalized
prediction errors against the standard normal further validates this and we see that
the distributions are now very similar. Finally, the K-S test statistics is now 0.01048
with a p-value of 0.22156, making it statistically less certain that the 2 distribution
are different. It is safe to establish that the prediction errors from the final LSTM
model follow a normal distribution with some variance, σ2.

In the next section, we will assume that all prediction errors for electricity price
forecasting, under different prediction techniques, will also follow a standard normal
distribution and use this to get a better understanding of how the prediction accuracy
would impact the computation of LACE and how it relates to the respective breakeven
point.
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Figure 4-4: QQ plot of the normalized prediction error from the final LSTM model
without considering data with significant spikes. Prediction errors reflects much more
like standard normal after normalization, although slight curving off still exist at the
tails.
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Figure 4-5: Plot of normalized prediction errors (without considering prices with sig-
nificant spike) and standard normal CDF from the final LSTM model. CDF resembles
much like a CDF of a standard normal.
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4.1.2 Simulation of Prediction Errors

We randomly sampled nodes from CAISO to study the effects of the LACE as the
prediction power varies. The LACE is computed using equation 3.7 with prices that
include predicted errors drawn from a Standard Normal distribution with mean 0 and
variance σ2. The σ was varied from a range of 0 to 20 to simulate prediction errors. σ
with a value of 0 refers to having no error (perfect knowledge), while σ = 20 equates
to having a bad prediction model with huge variance in its prediction. For each σ,
the LACE as well as its respective MAPE was computed 2000 times to simulate the
expected LACE and respective error rate from a given prediction model.

Figures 4-6, 4-7 and 4-8 below show examples of selected nodes where the com-
puted LACE for each node was plotted against the MAPE of the prediction. The
blue line indicates the expected LACE with perfect knowledge and the light blue area
denotes the standard deviation of the LACE computed from the simulation. Notice
that while all of them had different annual LACE values, they exhibit similar charac-
teristics as the MAPE increases. Overall, as the MAPE of the prediction increases,
the variance of LACE computed increases as well. This is not surprising since we
expect that with increasing prediction uncertainty, the LACE would proportionately
increase in its variance, since the computation of the LACE is linearly related with
the predicted price.
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Figure 4-6: Plot of simulated LACE versus Mean Absolute Percentage Error (n =
2000) for an sampled node. The blue line indicates the expected LACE based on 2016
predicted prices, the red line indicates the estimated LCOE [55], and the light blue
area denotes the standard deviation of the simulated LACE computation.
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Figure 4-7: Plot of simulated LACE versus Mean Absolute Percentage Error (n =
2000) for another sampled node. The blue line indicates the expected LACE based
on 2016 predicted prices, the red line indicates the estimated LCOE [55], and the
light blue area denotes the standard deviation of the simulated LACE computation.

However, note that in our computation, we are using the simple LACE calculation
of equation 3.7, which in reality might include further benefits from tax policies
that might be dependent on the geographic location of the node. This might not
always be the best assumption, as we will see later in the thesis. Currently, we also
assume that even at the “spiked” prices, the prediction error still follows a normal
distribution. In both scenarios, while we expect different the variation to affect each
node differently, we can be certain that the variance of the values will continue to
increase with increasing prediction errors. With many different alternative sources of
energy, the certainty of our evaluation can be the difference in deciding if we switch
to solar as our alternative.

4.2 Breakeven Accuracy Performance

4.2.1 Solar PV breakeven LACE

The breakeven point occurs when the the benefits of switching to solar PV is equal to
the cost of implementation. So far, we have discussed potential annualised benefits
of solar PV within the CAISO region using simplified LACE (LACEs) as our metric.
Recall that in chapter 2, we mentioned the LCOE as a extremely popular method of a
cost-based evaluation of alternative energy. As such, we will determine the breakeven
point as follows:
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BEsolar − LCOEsolar = 0

BEsolar = LCOEsolar,
(4.2)

where BEsolar is the breakeven point for solar, LCOEsolar is the annualised solar PV.

According to the Annual Energy Outlook 2020 report by the EIA, the estimated
annual LCOE for 2025 would be about $27.56/MWh [55]. For our example node
illustrated in figure 4-8, we see that the expected LACE, when we have 0 MAPE
(able to predict prices perfectly), lies above the estimated LCOE (depicted with by
the red line), indicating that for this node, we expect to gain greater financial benefits
from switching to a solar alternative.
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Figure 4-8: Plot of simulated LACE versus Mean Absolute Percentage Error (n =
2000) for the same node in figure 4-3. The blue line indicates the expected LACE
based on 2016 predicted prices, the red line indicates the estimated LCOE [55], and
the light blue area denotes the standard deviation of the simulated LACE computa-
tion.

We compare the LACEs computed previously with the LCOE from the Annual
Outlook 2020 report and found that less than 0.5% of nodes in CAISO, based on 2016
LMP profiles, would break even at todays LCOE for solar PV. This is consistent with
values provided by Sullivan and Brown [10] where an estimated of less than 2% of
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nodes within U.S electricity markets (excluding ERCOT 2011 data) would break even
at the upfront system cost of solar PV, depending on the year.

One of the key assumptions in our computation of the LACEs is that it does
not include any additional capacity payment or capacity credit. If incorporated, we
would expected additional economic benefits of switching to solar, further increasing
the LACE value. This could provide initial explanation on why we found less nodes
above the breakeven point. At the same time, the effects of the assumption is further
exacerbated, especially when coupled with prediction uncertainty of electricity prices.
When we compare the LACEs using the predicted prices from our LSTM model, we
actually find that none of the nodes met the breakeven point. This would have
further repercussions in policies since this seems to indicate that a solar transition
would not be worth it, even as cost of solar systems continue to fall. Under such
an assumption, a further exploration in the relationship between prediction accuracy
and the respective breakeven values (of the respective nodes) can be valuable.

4.2.2 Prediction accuracy and breakeven LACE

When we use the LACEs computed from the predicted prices from our LSTM
model, the maximum value of $25.56/MWh resulted in none of the nodes passing
the breakeven point. Clearly, the accuracy of predicting prices would play a signifi-
cant role in deciding if it would be a viable switch.

67



0.0 0.1 0.2 0.3 0.4
MAPE

0.75

0.80

0.85

0.90

0.95

1.00
Pe

rc
en

ta
ge

 L
AC

E 
> 

BE
so

la
r (

%
)

% confidence versus MAPE

Breakeven Confidence E.g 3
Breakeven Confidence E.g 2
Breakeven Confidence E.g 1

Figure 4-9: Confidence plots from previous simulation examples. E.g 1, 2 and 3 refer
to examples from figures 4-6, 4-7 and 4-8 respectively

.

Figure 4-9 depicts a plot of our previous 3 example nodes, showing how confident
we are that solar PV is a profitable switch as the performance (in terms of MAPE) of
our prediction decreases. Here, we see that the difference in LACE from the breakeven
point inversely relates to the significance of prediction accuracy. The closer the LACE
to the BEsolar, the greater the importance of a more accurate model. In example 1
(figure 4-9), we are confident that of always being above the BEsolar point no matter
the performance of our model. However, for examples 2 and 3, we see how our
confidence levels drop drastically with increasing MAPE. Focusing on the worst case
example of node 3, we observe an approximate change of 1% decrease of confidence
for every % increase in MAPE.

Currently, our LSTM model provided a MAPE of about 0.25. At this MAPE
performance, many of the simulated prediction (from figure 4-8) would fall below the
breakeven line. With 2000 simulations, this amounts to about 15% of the computed
LACE lie below the BEsolar. In this case, a maximum MAPE of 10% can be accom-
modated if we would like to conclude with certainty, since all simulated LACE values
at least greater or equal to the breakeven point.
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Chapter 5

Conclusion

In this thesis, we studied the impact of the utilizing machine learning techniques in the
evaluation of renewable energy as a source of electricity generation. This chapter aims
to summarize key findings of the paper as well as discuss potential further research
opportunities as well as policy implications.

5.1 Summary of Key Findings

Focusing on electricity generating nodes within CAISO market, we explored solar PV
as an alternative generating source of electricity. Key findings of the paper can be
summarized as follows:

1) Currently there are several different methods of evaluating alternative sources
of energy. For these different methods, we saw how they can have very different
perspective to decision makers and how policies are set. While a cost approach
is currently most popular and is easy to determine, it ignores almost completely
the benefits potential of alternatives. LACE provides this benefits perspective
and a more holistic evaluation can be made when we look at both the LACE
and the LCOE together.

2) Electricity prices at different generating nodes provide information of the po-
tential value of generating electricity at that specific nodes. However, these
prices are typically volatile, making it extremely uncertain to predict. We dis-
cussed various EPF methods that included Multi-agent models, Fundamental
models, Reduced-form methods and Computational Intelligence models. Using
state of the art computational intelligence models in a Neural Network model,
we pursued a machine learning approach to predict prices for 2016, outperform-
ing a naive baseline of using day-ahead prices. For the CAISO price of 2016,
an LSTM model was found to be the best model after performing hyperpa-
rameter tuning. While having very promising results, there were still a lot of
potential for further improvements in prediction performances as well as better
understanding of features that contribute to the CAISO electricity prices.
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3) With greater investment in prediction performance, we will be able to better
evaluate solar PV. Especially when the LACE is close its cost, the investment
towards better prediction directly translates into greater certainty in deciding
whether we should switch to solar PV. From an economic perspective, this
becomes more important to policy and decision makers so that we can achieve
both environment and economic goals.

5.2 Further Research and Conclusion

In the end, policy and decision makers are interested in making more informed choices
to determine if it is economically viable to switch to a renewable alternative. Through-
out the paper, we have been evaluating electricity nodes within CAISO using the
LACEs without potential subsidies and other benefit considerations (e.g. capacity
payment or capacity credit). These considerations can be included to determine a
more accurate evaluation of the LACE.

From a price prediction perspective, we can conduct further research in the im-
provement of prediction performance. This can be done through several measures.
Firstly, we can improve the training of our NN model through careful feature engi-
neering. This could involve including more exogenous variables such as weather infor-
mation or geographic information. Next, we could also improve the models selected
for training. We mentioned how a potential ensemble method of various prediction
models, such as a combination of classical machine learning methods with deep learn-
ing techniques, can further improve the prediction power of electricity prices. An
improvement in these 2 main areas would already drastically improve the estima-
tion of potential future value of electricity, which is a important input of the LACE
evaluation.

We saw how for majority of the nodes, a switch to solar might not seem to be a
viable option in the short term, even when we use the base case of perfect knowledge
and amid decreasing cost of solar. One possible reason could be that these nodes
might be suited for other alternatives (other than solar PV) instead. Although this
research focused on solar PV, a similar methodology can be applied on other renewable
sources such as wind and hydro to reach a similar decision point. We can then compare
between different forms of alternative sources to decide which technology we should
switch to.

In conclusion, research showed that while there is going to be variability when
attempting to evaluating the potential benefits of solar PV, this variability can be
reduced with ongoing improvements in machine learning techniques. Through this
machine learning approach in evaluating solar PV, we were able to better understand
the relationship between the performance of machine learning prediction, and the
value solar PV. Comparison of the LACE and LCOE metric for solar PV will provide
easy economical comparison, not just for solar PV but across alternative renewable
sources as well. This can improve our decision making in terms of switching away
from current electricity generation sources to alternatives as we work towards meeting
current climate goals with larger scale implementation of renewable alternatives.
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Appendix A

Additional Tables
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Node
ID

Actual
lmp
mean

Actual
lmp
STD

Actual
lmp min

Actual
lmp
max

Predicted
lmp
mean

Predicted
lmp
STD

Predicted
lmp min

Predicted
lmp
max

0 28.49 65.23 -295.43 1100.26 24.24 11.81 -56.58 174.42
1 26.45 61.14 -297.84 1078.34 23.12 11.06 -56.98 178.11
2 28.49 65.23 -295.43 1100.26 24.24 11.81 -56.58 174.42
3 28.49 65.23 -295.43 1100.26 24.24 11.81 -56.58 174.42
4 28.49 65.23 -295.43 1100.26 24.24 11.81 -56.58 174.42
5 28.49 65.23 -295.43 1100.26 24.24 11.81 -56.58 174.42
6 28.49 65.23 -295.43 1100.26 24.24 11.81 -56.58 174.42
7 28.49 65.23 -295.43 1100.26 24.24 11.81 -56.58 174.42
8 28.49 65.23 -295.43 1100.26 24.24 11.81 -56.58 174.42
9 28.49 65.23 -295.43 1100.26 24.24 11.81 -56.58 174.42
10 28.55 65.57 -295.43 1096.01 24.25 11.89 -56.58 174.42
11 28.55 65.57 -295.43 1096.01 24.25 11.89 -56.58 174.42
12 28.55 65.57 -295.43 1096.01 24.25 11.89 -56.58 174.42
13 16.44 34.95 -154.29 991.16 17.86 9.29 -49.28 85.75
14 16.42 34.92 -154.07 990.32 17.84 9.28 -49.24 85.64
15 16.53 35.11 -156.63 997.16 17.94 9.33 -49.54 85.82
16 16.53 35.11 -156.63 997.16 17.94 9.33 -49.54 85.82
17 19.68 23.75 -151.37 953.42 20.22 7.42 -29.63 57.8
18 27.83 61.6 -268.99 1080.6 24.59 11.03 -73.29 186.1
19 27.83 61.6 -268.99 1080.6 24.59 11.03 -73.29 186.1
20 21.46 53.58 -237.82 986.94 18.96 9.26 -96.31 171.13
21 21.46 53.58 -237.82 986.94 18.96 9.26 -96.31 171.13
22 26.02 58.95 -639.99 1060.08 23.42 11.25 -135.39 172.78
23 23.61 59.7 -157.9 1005.47 20.52 9.91 -38.2 196.55
24 23.61 59.7 -157.9 1005.47 20.52 9.91 -38.2 196.55
25 28.39 62.05 -157.51 1091.3 24.8 10.95 -40.36 186.48
26 28.39 62.05 -157.51 1091.3 24.8 10.95 -40.36 186.48
27 19.66 23.7 -151.23 950.84 20.2 7.41 -29.6 57.71
28 19.66 23.7 -151.23 950.84 20.2 7.41 -29.6 57.71
29 29.18 68.64 -285.61 1108.74 24.6 12.92 -60.35 170.39
30 29.18 68.64 -285.61 1108.74 24.6 12.92 -60.35 170.39
31 19.78 23.91 -153.25 960.07 20.31 7.49 -30 58.08
32 27.48 63.7 -290.28 1092.47 23.96 11.73 -55.65 172.54
33 27.48 63.7 -290.28 1092.47 23.96 11.73 -55.65 172.54
34 26.5 61.86 -288.44 1161.76 23.18 11.17 -55.25 167.7

Table A.1: Abbreviations (1/2): 2016 lmp stats from example nodes in CAISO.
Prediction values reflect statistics from predicted prices of the final LSTM model.
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Hour Actual
lmp
mean

Actual
lmp
STD

Actual
lmp min

Actual
lmp
max

Predicted
lmp
mean

Predicted
lmp
STD

Predicted
lmp min

Predicted
lmp
max

0 20.34 10.82 -380.93 629.61 22.04 7.9 -263.12 154.85
1 20.32 28.24 -543.53 1051.86 21.50 7.26 -108.68 109.7
2 17.97 12.96 -355.87 533.8 20.19 7.88 -169.74 199.76
3 19.64 27.41 -179.64 569.38 19.47 7.63 -81.84 224.32
4 18.38 17.11 -1019.13 1843.86 19.49 7 -72.83 99.24
5 19.87 10.47 -975.21 246.81 19.60 7.6 -208.31 159.44
6 26.99 28.93 -418.65 563.03 20.78 6.81 -178.09 89.9
7 27.61 57.8 -974.68 1299.43 23.70 7.61 -88.39 97.45
8 21.93 56.96 -998.99 2498.83 23.18 9.78 -177.58 96.46
9 17.08 25.42 -346.88 1196.21 19.93 10.87 -184.29 165.49
10 17.92 27.37 -975.69 1196.08 18.73 11.45 -66.5 282.6
11 24.9 81.71 -1007.31 1556.52 18.83 11.36 -187.37 316.97
12 19.14 49.61 -982.69 1721.39 18.80 12.54 -209.11 505.98
13 27.22 94.64 -1163 1331.18 18.91 12.33 -256.15 152.27
14 24.51 79.37 -987.84 1543.89 19.69 13.17 -217.17 206.27
15 26.41 79.12 -588.66 1695.13 20.07 14.78 -214.36 264.29
16 29.46 92.65 -622.93 1572.7 20.73 13.4 -228.85 265.85
17 25.97 33.17 -789.56 1428.17 22.37 12.4 -171.74 164.75
18 41.88 98.26 -482.51 1411.95 25.010 10.61 -162.27 247.18
19 39.59 102.17 -637.62 1264.72 28.37 11.01 -96.92 277.14
20 32.46 53.39 -611.28 1567.39 28.97 10.28 -172.26 243.07
21 34.19 68.72 -763.67 1208.5 29.03 8.98 -112.17 203.94
22 24.27 14.19 -750.09 438.16 28.48 9.31 -203.88 179.33
23 20.52 14.49 -982.23 760.03 25.12 8.01 -234.33 145.01

Table A.2: Abbreviations (2/2): 2016 Hourly lmp stats from all nodes in CAISO
nodes. Prediction values reflect statistics from predicted prices of the final LSTM
model
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