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Abstract

The typical machine learning algorithms looks for a pattern in data, and makes an assumption that the
signal to noise ratio of the pattern is high. This approach depends strongly on the quality of the datasets
these algorithms operate on, and many complex algorithms fail in spectacular fashion on simple tasks by
overfitting noise or outlier examples.

These algorithms have training procedures that scale poorly in the size of the dataset, and their out-
puts are difficult to intepret. This thesis proposes solutions to both problems by leveraging the theory
of optimal transport and proposing efficient algorithms to solve problems in: (1) quantization, with ex-
tensions to the Wasserstein barycenter problem, and a link to the classical coreset problem; (2) natural
language processing where the hierarchical structure of text allows us to compare documents efficiently;
(3) Bayesian inference where we can impose a hierarchy on the label switching problem to resolve ambi-
guities.
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Notation

These are the symbols used throughout the thesis.

Symbol Definition

ℝ𝑑 𝑑-dimensional Euclidean space
ℳ(𝑋) space of measure on𝑋
𝒫(𝑋) space of probability distributions on𝑋
𝐶(𝑋) space of continuous functions on𝑋
𝐶𝑏(𝑋) space of continuous and bounded functions on𝑋
𝛿𝑥 Dirac mass concentrated at point 𝑥
𝑇#𝜇 image measure of 𝜇 through the map 𝑇
𝜇 𝑉 restriction of 𝜇 to the set𝑉
‖ ⋅ ‖𝑝 𝐿𝑝 norm in Euclidean space
| ⋅ | metric on whatever underlying space we are in

Table 1: List of symbols and notation.
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1

Introduction

Machine learning algorithms find patterns in data. Given how central such algorithms have become to

everyday tasks, an immense amount of effort is spent every year improving either their effectiveness on

the tasks at hand, or their performance at scale. Many of the issues that plague learning algorithms stem

from the poor data they operate on. Often, the reason for the underperformance is itself algorithmic in

nature: many learning algorithms scale poorly in the size of the dataset, and so approximations must be

made.

How can we improve data? That is one of two central questions asked in this thesis, and the angle

we use to attack this question defines precisely what it means for an improvement to be both close to the

initial dataset, and yet also better in some way.

The second question we ask is parallel to the first. Once we have our learning algorithm running on

better data, how can we make sense of the patterns it is learning?

We tackle both questions through the lens of optimal transport, and we treat our data, whether im-

ages or text or anything else as distributions over a geometric space.

There aremanyways of comparing probability distributions. Theworkhorse ofmachine learning has

been the Kullback-Leibler divergence (or relative entropy) due to its computational ease, and its proba-

bilistic interpretation. Kullback-Leibler is part of a family of 𝑓-divergences which all share the same dis-

advantage: The comparison is in terms of overlap betweenmeasures. This can lead to unintuitive results

where two measures are equidistant to a third, despite appearances indicating otherwise. The optimal

transport distances which takes a more geometric approach to the problem of measuring distances be-
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tween measures, and avoids many of the issues with 𝑓-divergences at the cost of a heavier computational

burden.

Unlike divergences which compare the amount of mass in each measure at each point in space, the

optimal transport distance asks a physics-motivated question: Howmuch effort is required to move one

measure onto another? This point is illustrated in Figure 1-1 where we show the interpolant between two

measures under a vertical (Kullback-Leibler) and horizontal (transport) measure of distance.

The focus of this thesis is broadly on computational aspects of the transport problem: How do we

compute a transport plan efficiently if we allow ourselves some leeway in the exactness of the result? We

will explore this problem across two main themes: changing the nature of the result, and changing the

nature of the algorithm.

The first theme leads naturally to the notion of quantization of measures. We show some surprising

connections to the definition of a coreset of a dataset, give a stochastic gradient algorithm to compute the

quanta of a measure, and show how to extend this algorithm to compute the barycenter (or mean) of a

set of distributions.

The second theme exploits or imposes a hierarchical structure on regular transport problems. As an

example of a problemwith existing hierarchy, we show howwe can speed up and improve a popular doc-

ument distancemetric by exploiting the inherent topical structure of natural language documents. As an

example of a problemwhere hierarchy canbe imposed,we show that anoldproblem inBayesian inference

known as label switching can be ameliorated by lifting it into the space of distributions on distributions

and using transport techniques to compute point estimates.

1.1 Overall approach

The overabundance of data can be both a boon and a bane. For modern learning algorithms, more data

is almost synonymous with better performance, but data is inherently noisy, and the more of it we have,

the more this noise is treated as part of the signal.

Wewant algorithms that can sanitise their input, uncovermeaningful patterns, andwhich are fast and

with easily understood outputs, but achieving everything at once for all the problems we are interested

in is fanciful hope. Can we make progress if we break the task into smaller problems?
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(a) (b)

Figure 1-1: Interpolation between two Gaussian distributions for 0 ≤ 𝑡 ≤ 1. (a) Interpolation under the
𝑙2 metric: 𝜇𝑡 = (1 − 𝑡)𝜇0 + 𝑡𝜇1. (b) Interpolation under the𝑊2 metric: 𝜇𝑡 = ((1 − 𝑡)Id + 𝑡𝑇)#𝜇0.

There are three issues at hand:

Discretisation. For a problem to be understood by a computer, it must be presented as discrete data.

Deciding on a discretisation method is a crucial first step in any tool that seeks to understand and model

data. There is no universally best method; each cost function we seek to minimise, and each algorithm

we wish to employ will prefer data in a specific form and with specific properties.

Modelling. Once data is properly discretised, we must model the problem we are about to solve in a

way that is conducive to both performance and interpretation. It is not enough to know what the data

is saying; we must also be able to understand why the data is saying so. Interpretability can be explicitly

factored into a model by imposing structure on the data.

Optimisation. A model that has been adequately discretised is amenable to algorithms we can imple-

ment on a computer, but these algorithmsmust be practical for themodel and discretisation to be useful.

Practicality in many of the examples we present involves solving a non-convex optimisation problem ef-

ficiently, and we must always bear in mind the computational aspects of the problems we tackle.

The thread that links these challenges is that, in the ideal, if not in practice, they operate on data

distributions. The development of tools to manipulate distributions is then of utmost importance for
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the goal of understanding data.

1.2 The optimal transport problem

The tool we will use throughout the thesis is optimal transport. In this section, we give a basic introduc-

tion to the problem, and show how it connects to the goals outlined earlier: quantization and hierarchies.

A longer discussion of optimal transport is given in Chapter 2.

The optimal transport setup is simple: We are given two distributions 𝜇 and 𝜈, with 𝜇 supported on a

space𝑋, and 𝜈 supported on a space 𝑌. We are also given a cost function 𝑐(𝑥, 𝑦) that measures the cost of

moving one unit ofmass frompoint 𝑥 ∈ 𝑋 to point 𝑦 ∈ 𝑌. The problem is then to find amap𝑇 ∶ 𝑋 → 𝑌
that minimises

∫
𝑋
𝑐(𝑥, 𝑇(𝑥)) d𝜇(𝑥)

and such that 𝜈(𝐴) = 𝜇(𝑇−1(𝐴)) for all 𝐴 ⊂ 𝑌. Such a map 𝑇 is known as a Monge map due to its

introduction in the work of Gaspard Monge (Monge, 1781).

This problem does not always have a solution–one example is 𝜇 = 𝛿𝑥 and 𝜈 = 1/2𝛿𝑦1 + 1/2𝛿𝑦2 . The con-

vex relaxation of Kantorovich (Kantorovich, 1942) removes the constraintthat𝑇 has to be amap between

𝑋 and 𝑌, and instead considers all distributions 𝜋 over𝑋 × 𝑌. We now look for a solution of

inf𝜋 ∫
𝑋×𝑌

𝑐(𝑥, 𝑦) d𝜋(𝑥, 𝑦)

subject to
⎧

⎨
⎩

𝜋(𝐴 × 𝑌) = 𝜇(𝐴), ∀𝐴 ⊆ 𝑋

𝜋(𝑋 × 𝐵) = 𝜈(𝐵), ∀𝐵 ⊆ 𝑌

𝜋 ≥ 0.

(1.1)

This formulation is a linear program in infinite dimensions, but existence of a solution depends on prop-

erties of 𝜇, 𝜈, and 𝑐(⋅, ⋅), and is given in detail in Santambrogio (2015); Villani (2008).
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Problem (1.1) comes with an associated dual problem given by

sup
𝑓, 𝑔

∫
𝑋
𝑓(𝑥) d𝜇(𝑥) +∫

𝑌
𝑔(𝑦) d𝜈(𝑦)

subject to 𝑓(𝑥) + 𝑔(𝑦) ≤ 𝑐(𝑥, 𝑦).
(1.2)

It is tricky to show that this is indeed the dual, or that the dual and primal solutions agree, but an intuitive

understanding of how (1.2) relates to (1.1) can be arrived at by analogy to a real world problem. Suppose

we have somematerial located at 𝜇 that wewant tomove to 𝜈, andwe are willing to pay atmost 𝑐(𝑥, 𝑦) for
someone to move one unit of mass from 𝑥 to 𝑦. If we want to minimise our cost, we arrive at the primal;

from the perspective of the shipment company, however, we can set prices 𝑓(𝑥) for picking up one unit

at 𝑥, and 𝑔(𝑦) for dropping off one unit at 𝑦, and we wish to maximise our profit under the constraint

that we cannot exceed the budget 𝑐(𝑥, 𝑦).
The dual problem can be turned into an unconstrained supremum problem if we introduce the 𝑐-

transform of 𝑓, defined as 𝑓𝑐(𝑦) = inf𝑥 𝑐(𝑥, 𝑦) − 𝑓(𝑥). The dual problem is then

sup
𝑓

∫
𝑋
𝑓(𝑥) d𝜇(𝑥) +∫

𝑌
𝑓𝑐(𝑦) d𝜈(𝑦).

The optimal transport cost defines a distance whenever 𝑋 = 𝑌 and 𝑐(⋅, ⋅) is a power of the metric

𝑑(⋅, ⋅) on𝑋. The 𝑝-Wasserstein distance is given by

𝑊𝑝(𝜇, 𝜈) = inf𝜋 (∫
𝑋×𝑋

𝑑(𝑥, 𝑦)𝑝 d𝜋(𝑥, 𝑦))
𝑝

(1.3)

where 𝜋 is subject to the same mass preserving constraints as in (1.1).

1.2.1 Flavours of transport

While the continuous problem (where 𝜇 and 𝜈 are absolutely continuous with respect to some base mea-

sure) is, in some sense, the most well behaved, computing a transport plan 𝜋 is usually an intractable

problem. The two transport problems we know how to solve are:

1. The semi-discrete problem where 𝜇 is a continuous distribution, and 𝜈 = ∑𝑛
𝑖=1 𝛼𝑖𝛿𝑦𝑖 is finitely
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𝜋∈𝒫(𝑋×𝑌)

𝜇∈𝒫(𝑋)

𝜈∈
𝒫(
𝑌)

𝜇=∑𝑛
𝑖=1 𝑎𝑖𝛿𝑥𝑖

𝜈=
∑

𝑚 𝑗=
1
𝑏 𝑗𝛿

𝑦 𝑗
𝜋=∑𝑛

𝑖=1∑
𝑚
𝑗=1 𝑇𝑖,𝑗𝛿(𝑥𝑖,𝑦𝑗) 𝜋(𝑥,𝑦(𝑥))=𝜇(𝑥)

𝜈=
∑

𝑚 𝑗=
1
𝑏 𝑗𝛿

𝑦 𝑗

𝜇∈𝒫(𝑋)

Figure 1-2: Important specialisations of the transport problem. (a) The continuous optimal transport
problem requires both distributions to be absolutely continuouswith respect to the volumemeasure. (b)
Thediscrete optimal transport problemcanbe cast as a finite dimensional linear programand solvedusing
standard matching algorithms. (c) The semi-discrete optimal transport problem asks for the distance
between a continuous distribution and a discrete one. This problem can be solved efficiently using tools
from computational geometry.

supported. Solving this problem requires specialised tools from computational geometry (Auren-

hammer, 1987), and we can only hope for approximate solutions outside of a few special cases. An

example of a semi-discrete problem is shown in Figure 1-2(a).

2. The discrete problemwhere both𝜇 and 𝜈 are finitely supported. In this case the transport problem

reduces to aminimum cost matching problem that can be solved using classical algorithms (Kuhn,

1955). An example of the discrete problem is shown in Figure 1-2(b).

The discrete transport problem is a finite dimensional linear program, and is amenable to polynomial

time algorithms such as the Hungarian method (Kuhn, 1955). We discuss the semi-discrete problem in

what follows.

1.2.2 Semi-discrete optimal transport

The semi-discrete transport problem asks for a transport plan from a measure 𝜇 that is absolutely con-

tinuous with respect to the Lebesgue measure, to a discrete measure 𝜈 = ∑𝑛
𝑖=1 𝛼𝑖𝛿𝑥𝑖 . The optimisation
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variable is a finite dimensional vector 𝑤 ∈ ℝ𝑛:

sup
𝑤∈ℝ𝑛

{𝐹(𝑤) =
𝑛
∑
𝑖=1

𝑤𝑖𝛼𝑖 +∫
𝑋

min
𝑖=1,…,𝑛

(𝑐(𝑥𝑖, 𝑦) − 𝑤𝑖) d𝜇(𝑦)} . (1.4)

This is a finite dimensional optimisation problem that can be solved by gradient methods. The gradient

with respect to 𝑤𝑖 is given by
𝜕𝐹
𝜕𝑤𝑖

= 𝛼𝑖 −∫
𝑉𝑤
𝑖

d𝜇(𝑦),

where 𝑉𝑤
𝑖 = {𝑦 ∶ 𝑐(𝑥𝑖, 𝑦) − 𝑤𝑖 ≤ 𝑐(𝑥𝑗, 𝑦) − 𝑤𝑗, ∀𝑗 ≠ 𝑖} is a power cell Aurenhammer (1987). When the

integral of 𝜇 on𝑉𝑤
𝑖 can be computed exactly, both first and second ordermethods are known to converge

(Kitagawa et al., 2018).

One question we can ask given (1.4) is what happens when we can optimise over the 𝛼𝑖 and 𝑥𝑖. This

leads to a quantization problem, and forms part of our proposal detailed more in the following section.

1.3 Quantization of measures

Let us return to the discrete transport problem:

min𝜋 ∑
𝑖,𝑗

𝜋𝑖𝑗 𝑐(𝑥𝑖, 𝑦𝑗)

subject to {
∑𝑗 𝜋𝑖𝑗 = 𝑎𝑖,

∑𝑖 𝜋𝑖𝑗 = 𝑏𝑗, 𝜋 ≥ 0.

(1.5)

We are minimising over all possible feasible plans 𝜋 in this equation, but that may not be the only un-

known. If we have control over the support points 𝑥𝑖 and weights 𝑎𝑖, and wish to minimise for the dis-

tance between the measures 𝜇 = ∑𝑖 𝑎𝑖𝛿𝑥𝑖 and 𝜈 = ∑𝑗 𝑏𝑗𝛿𝑦𝑗 , we are looking for a quantization of 𝜈. The

quantization of a measure refers to an optimal discrete approximation with fixed number of points to a

given measure 𝜈. For the many notions of optimality here, see the excellent monograph (Pollard, 1982).

The optimal quantization of a measure is often impossible to compute exactly. As an example, quan-

tizing a discrete measure under the 2-Wasserstein distance using 𝑘 points leads to the 𝑘-means problem
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Figure 1-3: Quantiles and minimisers of problem (1.6)

and Lloyd’s algorithm.

Our data is not always finite however. The quantization problem becomes significantly more impor-

tant when we want to summarise a continuous distribution by a finite sample. Throughout the thesis

we will focus on this problem, and show how accurate quantizations can be computed efficiently using

semi-discrete optimal transport.

We begin with a simple illustration of this problem in one dimension.

1.3.1 Quantiles and quantization

If 𝜈 is a one dimensional distribution, and we must approximate 𝜈 by 1
𝑛 ∑

𝑛
𝑖=1 𝛿𝑥𝑖 where the only variable

we have control over are the points 𝑥𝑖, what should we want the 𝑥𝑖 to represent? One answer is that each

𝑥𝑖 ought to represent exactly 1
𝑛 of the mass of 𝜈. This leads us naturally to consider the quantiles of 𝜈 as

one potential answer.

But a similar notion of quantization arises naturally from the transportation problem if we treat 𝜈 as
continuous, set 𝑐(𝑥𝑖, 𝑦) = ‖𝑥𝑖 − 𝑦‖2, and 𝑎𝑖 = 1

𝑛 . If we minimise over the 𝑥𝑖, problem (1.5) becomes

min
{𝑥𝑖}

𝑊2
2 (

1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖 , 𝜈) . (1.6)
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Let us look at what happens when 𝜈 is one-dimensional. The dual problem to (1.6) is

min
{𝑥𝑖}

max
𝑤∈ℝ𝑛

𝑛
∑
𝑖=1

1
𝑛𝑤𝑖 +∫

∞

−∞
min𝑖 {‖𝑦 − 𝑥𝑖‖2 − 𝑤𝑖} d𝜈(𝑦). (1.7)

Of course, we can pull the min out of the integral, and integrate ‖𝑦 − 𝑥𝑖‖2 − 𝑤𝑖 over regions where 𝑥𝑖, 𝑤𝑖
are the minimising pair. If we differentiate (1.7) with respect to the dual variables 𝑤𝑖, we recover a simple

optimality condition

1
𝑛 = ∫

𝑎𝑖+1

𝑎𝑖
d𝜈

where (𝑎𝑖, 𝑎𝑖+1) is the range on which ‖𝑦 − 𝑥𝑖‖2 − 𝑤𝑖 ≤ ‖𝑦 − 𝑥𝑗‖2 − 𝑤𝑗. If we order the 𝑥𝑖 such that

𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛, then the optimality condition for 𝑤1 reads

1
𝑛 = ∫

𝑎1

−∞
d𝜈.

This is satisfied if 𝑎1 is the first (𝑛 + 1)-quantile of 𝜈. Proceeding from 𝑎1, we obtain that each 𝑎𝑖 is one
of the (𝑛 + 1)-quantiles of 𝜈.

While the one dimensional picture is clear, higher dimensions pose challenges. Quantiles are not

easy to define in higher dimensions, and the definitions that are available to us rely on solving intractable

problems (Carlier et al., 2016). However, we can still look for a solution of the underlying problem of

approximating a measure by a discrete distribution.

1.3.2 Wasserstein measure coresets

This notionof quantization extends naturally to higher dimensions, and reveals a connection to a subfield

of machine learning that studies sparsification of datasets. A coreset 1 is a small subset of a dataset that

approximates the performance of an algorithm on that dataset. We can bemore precise, and say that ifℱ
is some hypothesis set of functions that our algorithm can learn, and𝑋 is a dataset, wewant the following

1The name is a portmanteau of the words core and dataset and should be read as the core of a dataset.

23



condition to hold for our coreset𝐶:

∣∑
𝑥∈𝐶

𝜇𝐶(𝑥)𝑓(𝑥) −∑
𝑥∈𝑋

1
𝑛𝑓(𝑥)∣ ≤ 𝜀∑

𝑥∈𝑋

1
𝑛𝑓(𝑥)

for any 𝑓 ∈ ℱ. Here 𝜇𝐶(𝑥) is the weight of point 𝑥 in the coreset. If the size of 𝐶 is small relative to𝑋,

and we can achieve a small error 𝜀, then our coreset accurately represents the dataset, and is much easier

to train on.

Coreset constructions are typically discrete and refer to a particular algorithm. For example, there are

algorithms that construct coresets for 𝑘-means, and algorithms that construct coresets for support vector

machine classification, but no algorithm will do both well.

Our proposal is twofold.

First, we extend coreset language to the continuous setting, where the dataset𝑋 is replaced by a mea-

sure 𝜇 over the underlying space. This leads to a notion of a measure coreset defined as a measure 𝜈 for

which

∣𝔼𝑥∼𝜇[𝑓(𝑥)] − 𝔼𝑥∼𝜈[𝑓(𝑥)]∣ ≤ 𝔼𝑥∼𝜇[𝑓(𝑥)]

for all 𝑓 ∈ ℱ.

The connection to optimal transport comes from the dual problems of𝑊1 and𝑊2. The𝑊1 distance

is given as a supremum over 1-Lipschitz functions:

sup
𝑓∈Lip1

∫
𝑋
𝑓(𝑥) d𝜇(𝑥) −∫

𝑋
𝑓(𝑥) d𝜈(𝑥),

while 𝑊2 admits an inequality with respect to functions in the Sobolev space 𝐻1 of functions with

bounded quadratic growth. What this means for our coreset problem is that if ℱ ⊆ Lip1 or ℱ ⊆ 𝐻1,

then it is enough to construct a measure 𝜈 that is close to 𝜇with respect to the𝑊1 or𝑊2 distances.

To make this problem concrete, let’s put a prior on 𝜈, and say that 𝜈 = 1/𝑛∑𝑛
𝑖=1 𝛿𝑥𝑖 . Our goal is then
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to find the optimal location of the points 𝑥𝑖 by minimising

𝑊1 (𝜇,
1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖) or 𝑊2 (𝜇,
1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖) .

We call these measure coresets, and we can show they typically outperform classical coresets on discrete

problems, despite being generic in nature and construction.

1.3.3 Stochastic Wasserstein barycenters

Measure coresets are quantizations of a single distribution. A natural question to follow up is to ask for

the quantizationofmultiple distributions. What single finitely supporteddistributionbest approximates

all the input distributions 𝜇1, … , 𝜇𝑚, all supported on the same space𝑋.

If we pose this as a minimization problem over all distributions, we arrive at theWasserstein barycen-

ter definition:

𝜈∗ = argmin
𝜈

𝑚
∑
𝑗=1

𝜆𝑗𝑊2
2 (𝜈, 𝜇𝑗) (1.8)

where the 𝜆𝑗 are non-negative weights that sum to 1. This notion of barycenter captures the geometric

intuition of Figure 1-1, as the interpolant distributions can be seen as barycenters between 𝜇0 and 𝜇1 for

different values of 𝜆.
Computing 𝜈∗ is typically computationally intractable. Approximate solutions can be arrived at by

making assumptions. The simplest assumption to make is that the 𝜇𝑗 and the output barycenter 𝜈 are

supported on a finite grid, and the goal is then to figure out the amount of mass at each grid point that

would minimise (1.8). The barycenter problem on a grid can be written as a linear program as in (Carlier

et al., 2015), and faster algorithms can be obtained by entropically regularising the transport problems

(Benamou et al., 2015a; Solomon et al., 2015), or by distributing computation across multiple machines

(Staib et al., 2017).

This approach leads to an approximation of the true solution as the barycenter of distributions sup-

ported on a grid of 𝑛 points need not be supported on the same grid. To avoid this issue, we propose an

approach to compute free support barycenters by using samples from the input distributions.
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Weparameterise our barycenter as 𝜈 = 1/𝑛∑𝑛
𝑖=1 𝛿𝑥𝑖 , and optimise for the positions of the 𝑥𝑖 by solving

argmin
𝑥1,…,𝑥𝑛

𝑚
∑
𝑗=1

𝜆𝑗𝑊2
2 (

1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖 , 𝜇𝑗) . (1.9)

If we write down this problem in terms of its dual, the gradient step with respect to the points 𝑥𝑖 can be

written as a sum of simple expectations under the 𝜇𝑗. This makes the algorithm amenable to stochastic

gradient methods, and thus allows us to solve (1.9) for distributions 𝜇𝑗 that are absolutely continuous

with respect to some base measure, as long as we have sample access to the 𝜇𝑗.

1.4 Hierarchical transport

The methods we have seen so far approximated distributions by point sets or parametric distributions

under the Wasserstein distance, but the algorithms for computing these approximations require a solver

for the original optimal transport problem.

Computing the transport distance is challenging and scales poorly with increasing size of the input

distributions. One approach thatwepropose in this section tomitigate this problem is to exploit inherent

structure in instances of the transport problem to reduce the complexity of the problem.

The first example of this that we will look at is in text comparison

1.4.1 Hierarchical optimal transport for document retrieval

If we were to ask somebody to compare two novels, a typical response would centre around thematic

similarities and differences. We would likely hear the words: ”This novel is about ...”. But how can we

teach a machine what a novel or news article is about, and how can we compare these themes to figure

out which novels are similar to which?

The goal of this project is to extend results in document comparison proposed byKusner et al. (2015a)

to handle large documents and yield better, more interpretable results. The approach of Kusner et al.

(2015a) treats documents as distributionsoverwordsof a commonvocabularybynormalisingword counts

in each document. The distance between two documents is given by the optimal transport cost between
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these distributions. Of course, to compute a transport cost requires a ground metric between the sup-

port points of the distributions–in this case, the words. The approach relies on a word embedding space

(Mikolov et al., 2013; Pennington et al., 2014) for this purpose. The resultingdistance is knownas theword

mover’s distance (WMD) between documents, and has better interpretability than black-box models as

the word-to-word matching allows one to interpret why two documents are similar.

WMD is costly to compute. Because each document-to-document distance is computed as the opti-

mal transport cost between two distributions supported on a potentially very large set (vocabulary sizes

for a novel range in the tens of thousands of uniquewords), the computational cost of a single comparison

is frequently infeasible. The WMD between documents 𝑑1 = ∑𝑣∈𝑉 𝛼𝑣𝛿𝑣 and 𝑑2 = ∑𝑣∈𝑉 𝛽𝑣𝛿𝑣 is

WMD(𝑑1, 𝑑2) = 𝑊1 (∑
𝑣∈𝑉

𝛼𝑣𝛿𝑣,∑
𝑣∈𝑉

𝛽𝑣𝛿𝑣) . (1.10)

In our work, we think of each document as a distribution over topics instead of words. The total

number of topics in a document collection is typically small (on the order of 30), which mitigates the

computational cost of the transport distance. This leads to the same problem as before: What is a ground

metric on the space on topics? Our approach is to view this as a hierarchical transport problem, namely:

HOTT(𝑑1, 𝑑2) = 𝑊1 (∑
𝑡∈𝑇

𝜇𝑡𝛿𝑡,∑
𝑡∈𝑇

𝜈𝑡𝛿𝑡) (1.11)

where the inner sum is over topics, and the groundmetric between topics 𝑡1 and 𝑡2 is theWMDbetween

these two topics treated as distributions over words.

As topics can be maintained on the fly using methods such as latent Dirichlet allocation (Blei et al.,

2003), this approach scales to large document collections, and is robust to document size.

1.4.2 Alleviating label switching in Bayesian inference

Hierarchies are natural in interpreting text documents. For an example of a problem where identify-

ing the hierarchy is not obvious, but where doing so leads to an improved algorithm, consider the label

switching problem in Bayesian inference. Label switching occurs in Bayesian inference when the posterior

is invariant to some group acting on the parameters of the distribution. For example, anMCMC sampler
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from the posterior of a mixture of three Gaussians does not care whether its samples from the posterior

are ordered as first, second, third Gaussian or third, second, and first Gaussian.

We can see this issue most clearly if we look at the likelihood of the model. Let 𝛩 be the set of all

parameters of a model. In this case, our model is a mixture of Gaussians with identity covariance; the

parameters are only the mean of each Gaussian and the weight. The likelihood is given by:

𝑝(𝑥|𝛩) =
𝐾
∑
𝑘=1

𝜋𝑘𝑓(𝑥; 𝜇𝑘). (1.12)

For any permutation 𝜎(⋅) of labels 𝑘 = 1, … ,𝐾, let 𝜎(𝛩) = {𝜃𝜎(1), … , 𝜃𝜎(𝐾)}. The likelihood under 𝜎 is

unchanged:

𝑝(𝑥|𝜎(𝛩)) =
𝐾
∑
𝑘=1

𝜋𝜎(𝑘)𝑓(𝑥; 𝜇𝜎(𝑘)) = 𝑝(𝑥|𝛩).

This leads to trouble down the road if wewant to obtain expectations under the posterior distribution, as

this permutation invariance of the likelihood, but not of the parameters can lead tomeaningless averages.

The goal is then simple: To compute an expected value for the posterior in such a way as to avoid

the label switching issue. Most approaches to this problem rely on finding a privileged sample to align

everything to. Our proposal is different. Instead of aligning everything to a single sample, lift every sample

to the space of distributions and encode all possible permutations in the distribution associated to each

sample.

This procedure turns samples 𝜃 into distributions 1/|𝑆𝐾|∑𝜎∈𝑆𝐾 𝛿𝜎(𝜃), and allows us to use notions of

Wasserstein barycenters to obtain a principled average. While this leads to a simple and naive algorithm,

it is nearly impossible to compute a free supportWasserstein barycenter for distributions with such large

support size (the symmetric group on𝐾 labels has𝐾! elements).

We canprove two facts that significantly help here: (1)Thebarycenter of distributions invariant under

some group action is also invariant under the same group action; and (2) The barycenter is supported on

the same number of support points as the input distribution.

We can now apply stochastic gradient methods to the problem of estimating an expectation, and

work with a single point in the quotient space for an efficient algorithm that is highly adaptable to any

group action and works for distributions supported on non-Euclidean domains. This idea is illustrated
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?

(a) Ambiguity (b) Orbit empirical distribution (c) Quotient update

Figure 1-4: (a) Suppose we wish to update our estimate of the average (blue) given a new sample (red)
from; due to label switching, other points (light shade) have equal likelihood to our sample, causing am-
biguity. (b) Our proposal suggests an unambiguous update by constructing |𝐺|-point orbits as empiri-
cal distributions and doing gradient descent with respect to the Wasserstein metric. (c) This algorithm is
equivalent to moving one point, with a careful choice of update functions.

in Figure 1-4.

1.5 Overview

Only reading the section titles above, one would think we will present a scattering of applications of

optimal transport with only a loose thread connecting them. However, if we think of these problems in

terms of the algorithms used to solve them, a coherent picture emerges. The optimal transport problem

is old by now, and research has centred on solving simple variants of it; this research has culminated in

very efficient solvers for the discrete problem (Cuturi, 2013; Altschuler et al., 2017), and exhaustive theory

and algorithms for the semi-discrete problem (Kitagawa et al., 2018; Mérigot, 2011).

To arrive at further improvement, we must change the nature of the problem. What happens in the

semi-discrete problem if we allow for the support of the discrete distribution to change? How do we

exploit the structure of the distributions in the discrete problem? These questions lead naturally to the

problem of quantization and the idea of using hierarchical structure.

The goal of this thesis is to uncover where these new algorithms can be found, and how to develop

them into useful tools. To this end, we provide details on the optimal transport problem in Chapter 2,

including derivations of many of the identities mentioned in this section. In Part I, we describe the mea-

sure quantization problem and show how it links to classical coreset construction algorithms in machine

learning; we then extend this definition to the problem of computing means in the space of probability
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measures.

Quantization is a good first step towards simplifying complicated distributions, but at the end of

the day, comparing two distributions still requires solving a complicated optimal transport problem that

scales poorly in the size of the input. How can we make these algorithms faster? The common approach

in the transport literature is to approximate the true solution by something that is smoother and easier

to optimise for. This line of entropic regularised transport has seen great success, but it only gets you so

far. Instead of developing new algorithms to solve the transport problem, we can instead rely on the data

to guide us towards an efficient approximation of the solution. This leads to the idea of exploiting the

hierarchical structure of the data to reduce the size of the problem we seek to solve. We explore this ap-

proach in Part II and showhow it can be applied to problems in natural language processing andBayesian

inference.

We finish with a practical approach to computing the transport cost when computing geodesics is

difficult. In Part III we extend the dynamical formulation of Benamou & Brenier (2000) to discrete

surfaces such as triangle meshes.

There are two ways to read through this thesis. The first focuses on the algorithmic aspect, and sees

the progression of approaches asmore andmore specialised tools for solving optimal transport problems,

from the generic approximation of ameasure in Part I to the specialised tools of Part II, and the extension

of the dynamical formulation to triangulated surfaces in Part III.

The second reading revolves around how the constraints of the problem shape the approach. Part

I imposes no constraints on the problem input, but requires a finite measure as an output. Part II re-

lies heavily on an existing hierarchical structure in the data that we exploit for faster and more effective

algorithms.
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2

Optimal Transport

Wherein we present the optimal transport problem, the main workhorse of this thesis. Care is taken towards

developing mathematical intuition on these results, and less on formal correctness.

We will present optimal transport as it was developed historically, starting from Monge’s ideas de-

veloped in the late 18th century (Monge, 1781), passing to Kantorovich’s convex relaxation of Monge’s

formulation and detailing Kantorovich duality (Kantorovich, 1942), and ending with a look at the space

of distributions under the Wasserstein distance, including notions of Fréchet means (Agueh & Carlier,

2011).

The theory of optimal transport relies heavily on notions of duality. For details, we recommend the

first chapters of either Santambrogio (2015) or Villani (2008). For our purposes, we will denote the space

of continuous bounded functions on the space𝑋 as 𝐶𝑏(𝑋), and rely on the fact that it is the dual space

to the spaceℳ(𝑋) of measures on𝑋.

2.1 Monge transport maps

The initial motivation for the optimal transport problem was resource allocation (Monge, 1781). Monge

proposed a notion of distance that measured the work required to move earth from one site (the deblais)

to another (the remblais). Everything else equal, the cost for moving a single particle of earth ought to be

proportional to the mass of the particle multiplied by the distance it has to travel; the total cost is given

by the sum of this amount over all particles. To write this in measure theoretic language, let’s assume we
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have some measure 𝜇 that represents the earth to be moved, and another measure 𝜈 that represents the

location where we want to move it. Monge’s formulation thinks of every point 𝑥 in the support of 𝜇 as a

particle with mass 𝜇(𝑥), and looks for a destination for that particle 𝑥 → 𝑇(𝑥). The goal is to minimise

the total work given a notion of cost 𝑐(⋅, ⋅) between 𝑥 and 𝑇(𝑥). This leads to the Monge problem:

Definition 2.1 (Monge transport). Given measures 𝜇 ∈ 𝒫(𝑋), 𝜈 ∈ 𝒫(𝑌), and a cost function 𝑐(𝑥, 𝑦) for

every 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, the Monge map is given by:

inf
𝑇
∫
𝑋
𝑐(𝑥, 𝑇(𝑥)) d𝜇(𝑥), (2.1)

with the constraint that the pushforward 𝑇#𝜇 = 𝜈.

This definition is easy enough to understand, but we run into a problem quickly: Such a map𝑇may

not exist at all. A simple example is 𝜇 = 𝛿𝑥 and 𝜈 = 1/2𝛿𝑦1 + 1/2𝛿𝑦2 . TheMonge formulation does not allow

for mass to be split, and thus no 𝑇would satisfy 𝑇#𝜇 = 𝜈. This is exactly the assumption that we relax to

arrive at a convex relaxation where problems of existence and uniqueness are easier to tackle.

Let’s look at a simple example where a Monge map exists and is easy to understand in terms of per-

mutations. Let 𝜇 = ∑𝑛
𝑖=1 1/𝑛 𝛿𝑥𝑖 , and 𝜈 = ∑𝑛

𝑗=1 1/𝑛 𝛿𝑦𝑗 ; in this case, Monge maps exist as the problem

reduces to matching problem of assigning to each 𝑥𝑖 exactly one 𝑦𝑗. In other words, we are looking for a

permutation 𝜎which minimises∑𝑛
𝑖=1 𝑐(𝑥𝑖, 𝑦𝜎(𝑖)).

2.2 Kantorovich transport plans

We can look at (2.1) from a different perspective. Instead of looking for a transport map 𝑇(𝑥), we can ask

howmuch mass is moved from point 𝑥 to point 𝑦; if there is a way to move all of the mass at 𝑥 to a single

point 𝑦 for all points 𝑥 in the support of 𝜇, then 𝑇 exists. But, if we relax this constraint, we arrive at the

Kantorovich formulation of optimal transport:

Definition 2.2 (Kantorovich transport). Given measures 𝜇 ∈ 𝒫(𝑋), 𝜈 ∈ 𝒫(𝑌), and a cost function 𝑐(𝑥, 𝑦)
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for every 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, the Kantorovich optimal transport problem is given by:

inf𝜋 ∫
𝑋×𝑌

𝑐(𝑥, 𝑦) d𝜋(𝑥, 𝑦)

subject to {
𝜋(𝐴 × 𝑌) = 𝜇(𝐴)

𝜋(𝑋 × 𝐵) = 𝜈(𝐵)
∀𝐴 ⊆ 𝑋, 𝐵 ⊆ 𝑌.

(2.2)

In other words, we look for a distribution 𝜋 on the product space 𝑋 × 𝑌 whose 𝑋 and 𝑌marginals

agree with 𝜇 and 𝜈, and which minimises the total transport cost.

The discrete problem is helpful for developing intuition. Let 𝜇 = ∑𝑚
𝑖=1 𝛼𝑖𝛿𝑥𝑖 and 𝜈 = ∑𝑛

𝑗=1 𝛽𝑗𝛿𝑦𝑗 be
our two input distributions. The space of distributions on (𝑥𝑖, 𝑦𝑗) is the space of doubly stochastic matri-

ces inℝ𝑚×𝑛, and we can rewrite (2.2) as a linear program with a matrix unknown and𝑚 + 𝑛 constraints:

min
𝜋∈ℝ𝑚×𝑛 ∑

𝑖,𝑗
𝜋𝑖,𝑗𝑐(𝑥𝑖, 𝑦𝑗)

subject to
⎧

⎨
⎩

∑𝑛
𝑗=1 𝜋𝑖,𝑗 = 𝛼𝑖, ∀𝑖

∑𝑚
𝑖=1 𝜋𝑖,𝑗 = 𝛽𝑗, ∀𝑗

𝜋𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗

.
(2.3)

The underlying question here is how to best match supply (𝛼𝑖𝛿𝑥𝑖) with demand (𝛽𝑗𝛿𝑦𝑗) under capacity

constraints. This ties directly with network flow and stable marriage problems.

When 𝑋 = 𝑌, and the cost function is the metric 𝑑(⋅, ⋅) on 𝑋, the value of (2.2) is known as the

1-Wasserstein distance between 𝜇 and 𝜈, and the value of (2.3) is known as the Earth mover’s distance (or

EMD for short).

33



2.2.1 Dual formulation

Problem (2.2) is a linear programwith linear constraints. We can derive a dual form; first, the constraints

admit a weak form as

{
∫𝑋 𝑓(𝑥) d𝜇(𝑥) − ∫𝑋×𝑌 𝑓(𝑥) d𝜋(𝑥, 𝑦) = 0

∫𝑌 𝑔(𝑦) d𝜈(𝑦) − ∫𝑋×𝑌 𝑔(𝑦) d𝜋(𝑥, 𝑦) = 0.
∀𝑓 ∈ 𝐶𝑏(𝑋), 𝑔 ∈ 𝐶𝑏(𝑌)

If the constraints are not satisfied, then there is some choice of 𝑓 and 𝑔 such that

∫
𝑋
𝑓(𝑥) d𝜇(𝑥) +∫

𝑌
𝑔(𝑦) d𝜈(𝑦) −∫

𝑋×𝑌
(𝑓(𝑥) + 𝑔(𝑦)) d𝜋(𝑥, 𝑦) = +∞.

We can now turn (2.2) into an unconstrained problem:

inf𝜋 ∫
𝑋×𝑌

𝑐(𝑥, 𝑦) d𝜋(𝑥, 𝑦) + sup
𝑓∈𝐶𝑏(𝑋)
𝑔∈𝐶𝑏(𝑌)

∫
𝑋
𝑓(𝑥) d𝜇(𝑥) +∫

𝑌
𝑔(𝑦) d𝜈(𝑦) −∫

𝑋×𝑌
(𝑓(𝑥) + 𝑔(𝑦)) d𝜋(𝑥, 𝑦). (2.4)

We would like to exchange the inf and sup to eliminate 𝜋. Proving that this is possible is not obvious,

and we refer the reader to either Santambrogio (2015) or Villani (2008) for a full proof1. For now, let us

assume that this is possible and proceed with our argument. The term that depends on 𝜋 is

inf𝜋 ∫
𝑋×𝑌

𝑐(𝑥, 𝑦) − (𝑓(𝑥) + 𝑔(𝑦)) d𝜋(𝑥, 𝑦) = {
0, if 𝑓(𝑥) + 𝑔(𝑦) ≤ 𝑐(𝑥, 𝑦)

−∞, otherwise
. (2.5)

Assuming the supremum in (2.4) exists, we can eliminate 𝜋 using (2.5) and replace it with the constraint

𝑓(𝑥) + 𝑔(𝑦) ≤ 𝑐(𝑥, 𝑦). This leads to the Kantorovich dual formulation of optimal transport:

sup
𝑓∈𝐶𝑏(𝑋)
𝑔∈𝐶𝑏(𝑌)

∫
𝑋
𝑓(𝑥) d𝜇(𝑥) +∫

𝑌
𝑔(𝑦) d𝜈(𝑦)

subject to𝑓(𝑥) + 𝑔(𝑦) ≤ 𝑐(𝑥, 𝑦), ∀𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.
(2.6)

1The easiest, but least illuminating way to prove this is to use the duality theorem of Fenchel-Rockafeller.
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When 𝜇 and 𝜈 are finite dimensional, this reduces to a linear program with 𝑚 + 𝑛 variables, and 𝑚𝑛
constraints; compare this with the linear program for the primal problem which had 𝑚𝑛 variables and

𝑚 + 𝑛 constraints.

We can make one more observation about (2.6) before moving on. Let’s say we fix 𝑓 and want to

find the optimal 𝑔. The only constraint to worry about is 𝑓(𝑥) + 𝑔(𝑦) ≤ 𝑐(𝑥, 𝑦), and since we want to

maximise∫𝑔 d𝜈, we might as well set 𝑔(𝑦) = inf𝑥 𝑐(𝑥, 𝑦) − 𝑓(𝑥) for all 𝑦 as this maximises 𝑔 pointwise.

The value inf𝑥 𝑐(𝑥, 𝑦)−𝑓(𝑥) is known as the 𝑐-transformof𝑓 and is typicallywritten as𝑓𝑐. If wemake this

substitution we arrive at an unconstrained form of the dual problem with a single function to optimise

over:

sup
𝑓∈𝐶𝑏(𝑋)

∫
𝑋
𝑓(𝑥) d𝜇(𝑥) +∫

𝑌
inf
𝑥∈𝑋

(𝑐(𝑥, 𝑦) − 𝑓(𝑥)) d𝜈(𝑦). (2.7)

Equations (2.2) and (2.7) allow us to talk about the existence and uniqueness of transport plans in

problems with only weak assumptions on the input distributions and underlying spaces𝑋 and 𝑌. What

we still do not know how to do in general is solve for this transport plan even if we know it exists and

is unique. Gaussian distributions represent one of the few exceptions where not only are the distance

and plan known, but computing them is a rather painless affair. We take a short detour to derive these

identities.

2.2.2 Wasserstein distance between Gaussian distributions

The Gaussian distribution centred at mean 𝜇with covariance 𝛴 has density

𝑝(𝑥;𝑚, 𝛴) = 1
√2𝜋 det|𝛴−1|

exp {−(𝑥 − 𝑚)⊺𝛴−1(𝑥 − 𝑚)} . (2.8)

The Wasserstein distance between Gaussians𝒩(𝑚1, 𝛴1) and𝒩(𝑚2, 𝛴2) is given by

𝑊2
2 (𝒩(𝑚1, 𝛴1),𝒩(𝑚2, 𝛴2)) = ‖𝑚1 − 𝑚2‖22 + Tr [𝛴1 + 𝛴2 − 2 (𝛴

1/2
2 𝛴1𝛴

1/2
2 )] . (2.9)
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Let’s try to derive this equation for Gaussians centred at the origin. We can rewrite the 2-Wasserstein

distance as

𝑊2
2 (𝜇, 𝜈) = inf𝜋 𝔼(𝑋,𝑌)∼𝜋 [|𝑋 − 𝑌|2] (2.10)

where 𝜋 is a coupling on𝑋 × 𝑌with marginals 𝜇 and 𝜈. We expand the square inside the expectation for

𝔼𝑋∼𝜇 [𝑋⊺𝑋] + 𝔼𝑌∼𝜈 [𝑌⊺𝑌] − 2𝔼(𝑋,𝑌)∼𝜋 [𝑋⊺𝑌] = Tr (𝛴1) + Tr (𝛴2) − 2Tr (𝐶) .

We define𝐶 from the covariance matrix of the joint law (𝑋, 𝑌) ∼ 𝜋:

𝐴 = (
𝛴1 𝐶
𝐶⊺ 𝛴2

) .

Tominimise−2Tr (𝐶) subject to positive semi-definite constraints on𝐴 is thus equivalent tominimising

(2.10) over laws 𝜋. Proving that this minimiser is achieved by the expression in (2.9) is not trivial, but a

detailed proof can be found in Givens et al. (1984).

2.2.3 One dimensional transport

Even ifwe do not haveGaussian distributions, as long as our distributions are absolutely continuouswith

respect to the volumemeasure and one-dimensional, the transport plan between them can be computed

exactly and easily. We will again provide an intuitive derivation of the result without worrying about

formal correctness.

Let’s assume that 𝜇 and 𝜈 have densities 𝑓 and 𝑔, and let’s look at a point 𝑥 ∈ ℝ in the support of 𝜇.
Notice that for any 𝑦 ≤ 𝑥, it must hold that 𝑇(𝑦) ≤ 𝑇(𝑥) as otherwise we can improve the total cost by

swapping 𝑇(𝑥) and 𝑇(𝑦). Thus, for any 𝑥, the total mass up to 𝑥must have been mapped to somewhere

to the left of 𝑇(𝑥). That is,

∫
𝑥

−∞
𝑓(𝑥) d𝑥 = ∫

𝑇(𝑥)

−∞
𝑔(𝑥) d𝑥.

If we write CDF𝑓(𝑥) = ∫𝑥
−∞ 𝑓(𝑥) d𝑥 and CDF−1𝑓 (𝑡) = inf𝑥∈ℝ {CDF𝑓(𝑥) ≥ 𝑡}, then we can write the
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condition above as

CDF𝑓(𝑥) = CDF𝑔(𝑇(𝑥))

and hence

𝑇(𝑥) = CDF−1𝑔 (CDF𝑓(𝑥)) . (2.11)

2.3 Semi-discrete transport

We turn now to a very important case of equation (2.7). If 𝜇 is a finitely supported distribution 𝜇 =
∑𝑚

𝑖=1 𝛼𝑖𝛿𝑥𝑖 , then the first integral of (2.7) reduces to a sum, and the optimisation variable 𝑓 is now a

vector inℝ𝑚. Let’s call this vector 𝑣 to distinguish it from the continuous case, and rewrite (2.7):

max
𝑣∈ℝ𝑚 {𝐹[𝑣] =

𝑚
∑
𝑖=1

𝛼𝑖𝑣𝑖 +∫
𝑌
min𝑖 (𝑐(𝑥𝑖, 𝑦) − 𝑣𝑖) d𝜈(𝑦)} . (2.12)

Themin term in the integral abovepartitions space into convex regions that are generalisations ofVoronoi

regions. We will write 𝑉𝑣
𝑖 = {𝑦 ∶ 𝑐(𝑥𝑖, 𝑦) − 𝑣𝑖 ≤ 𝑐(𝑥𝑗, 𝑦) − 𝑣𝑗, ∀𝑗 ≠ 𝑖} for this power region for point 𝑥𝑖

with weight 𝑣𝑖.
We are in better shape to optimise (2.12) as 𝑣 is just a vector in ℝ𝑚. Let’s look at the gradient of the

functional 𝐹with respect to 𝑣:
𝜕𝐹
𝜕𝑣𝑖

= 𝛼𝑖 −∫
𝑉𝑣
𝑖

d𝜈(𝑦). (2.13)

At optimality this tells us that the amount of mass of 𝜈 in the region 𝑉𝑣
𝑖 is equal to the mass at point 𝑥𝑖;

the transport plan from 𝜈 to 𝜇 simply moves all mass within𝑉𝑣
𝑖 to the point 𝑥𝑖.

We can thus solve (2.12) by gradient descent on the vector 𝑣. The semi-discrete problem, and ap-

proaches towards its solution have been popular in applied mathematics (Lévy, 2015; Lévy & Schwindt,

2018), fluid simulation (de Goes et al., 2015b;Mérigot &Mirebeau, 2016; Gallouët &Mérigot, 2017), and

image processing (de Goes et al., 2011).

We restrict our attention to the metric 𝑐(𝑥, 𝑦) = |𝑥− 𝑦|. Themain stumbling block in using gradient

descent to solve (2.12) is computing the integral of 𝜈 on the region𝑉𝑣
𝑖 . Computing the regions is a known

problem in computational geometry (Aurenhammer, 1987) with existing implementations for 2 and 3
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dimensions (The CGAL Project, 2020). The power diagram also gives us access to the boundaries of

cells; let us say that points 𝑥𝑖 and 𝑥𝑗 are neighbours in the power diagram, andwrite 𝜕𝑉𝑣
𝑖,𝑗 for the boundary

between𝑉𝑣
𝑖 and𝑉𝑣

𝑗 . Let us further say that 𝜈 has a density 𝑝(⋅) so that we canwrite d𝜈(𝑦) = 𝑝(𝑦) d𝑦. This

is enough to obtain second order derivatives of 𝐹:

𝜕2𝐹
𝜕𝑣𝑖𝜕𝑣𝑗

= − 1
|𝑥𝑖 − 𝑥𝑗|

∫
𝜕𝑉𝑣

𝑖,𝑗

𝑝(𝑥) d𝑥. (2.14)

Because the semidiscrete transport problem is concave in 𝑣, Newton and quasi-Newton methods are

known to converge (Kitagawa et al., 2018).

That said, while the regions are convex, fewmeasures 𝜇 admit an exact form for∫𝑉𝑣
𝑖
d𝜈. One solution

that we will explore later on is to sample from 𝜈 and compute stochastic gradients.

2.4 Wasserstein barycenters

Imaginewewant to find apoint �̄� closest to a set of {𝑥1, … , 𝑥𝑛} ⊂ ℝ𝑑. Ifwedidnot know that the solution

is given by the Euclidean average of the points �̄� = 1/𝑛∑𝑛
𝑖=1 𝑥𝑖, we could pose this as an optimisation

problem that asks for a solution to

min
𝑥∈ℝ𝑑

𝑛
∑
𝑖=1

‖𝑥 − 𝑥𝑖‖2. (2.15)

Setting the derivative w.r.t. 𝑥 to 0 gives us the Euclidean average. We can ask the same question of a set

of distributions {𝜇1, … , 𝜇𝑛}. We no longer have a simple notion of average, but we can define one by

analogy to what we did above.

Definition 2.3 (Wasserstein barycenter). The Wasserstein barycenter of the distributions 𝜇1, … , 𝜇𝑛 with

weights 𝜆1, … , 𝜆𝑛 summing to 1 is given by a solution of

inf𝜈
𝑛
∑
𝑗=1

𝜆𝑗𝑊2
2 (𝜇𝑗, 𝜈). (2.16)

The infimum in (2.16) exists and is unique if all of the 𝜇𝑗 have finite secondmoments, and at least one

of them is absolutely continuous with respect to the volumemeasure on the underlying space𝑋 (Agueh
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& Carlier, 2011).

Despite these appealing theoretical properties, computing aWasserstein barycenter can only be done

for a few specialised distributions. We are thus left with only a few strategies to make this computation

tractable. We can discretise space and assume every distribution is finitely supported. The barycenter

problem reduces to a finite dimensional linear program in this case with efficient algorithms (Carlier

et al., 2015; Solomon et al., 2015; Benamou et al., 2015b; Cuturi & Doucet, 2014). We can approximate

theWasserstein distance by projecting the input distributions onto random lines which reduces the prob-

lem to a matching problem in one dimension (Rabin et al., 2011). Or we can assume that transport maps

between the input distribution and a given distribution can be computed easily, and arrive at the barycen-

ter through a fixed point scheme (Álvarez-Esteban et al., 2016).

In §5 we present a different approach that only assumes sample access to the input distributions and

approximates the barycenter by a finite point set.
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Part I

Quantization
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3

Introduction to Quantization

Wherein we find the best choice of samples from a measure. Applications to learning problems show

how it is sometimes better to simplify your data than to complicate your algorithm. An extension of this

idea to summarising data from multiple sources follows.

Now that we have developed a common language, it is time for us to delve into the details of how

we can use the tool of optimal transport to tackle fundamental problems in machine learning. We begin

with two questions: What is the best approximation to a distribution? How do we evaluate the quality

of samples? Answering these questions is the goal of this chapter.

We begin with the problem of evaluating the expectation of a function 𝑓 under a distribution 𝜇. To
write this out:

𝔼𝑥∼𝜇 [𝑓(𝑥)] = ∫
𝑋
𝑓(𝑥) d𝜇(𝑥).

It is almost always impossible to evaluate the integral on the right hand side, and we have to resort to

approximations. For example, if we can sample from 𝜇 easily, then we can approximate the integral by

a finite sum∑𝑛
𝑖=1

1
𝑛𝑓(𝑥𝑖). How close is this approximation to the integral? That depends on 𝑓, 𝑋, and

the number of points 𝑛. We shall see shortly that a reasonable error estimate is given by the Wasserstein

distance between 𝜇 and the sample distribution:

∣∫
𝑋
𝑓(𝑥) d𝜇(𝑥) −

𝑛
∑
𝑖=1

1
𝑛𝑓(𝑥𝑖)∣ ≤ 𝐿 ⋅ 𝑊1 (𝜇,

𝑛
∑
𝑖=1

1
𝑛𝛿𝑥𝑖) . (3.1)
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Here 𝐿 is the Lipschitz constant of the function 𝑓. If 𝑓 is not Lipschitz, then other inequalities may hold.

The link between (3.1) and generalisation error, and between generalisation error and data sparsifica-

tion are the subject of §4.

This approach to quantizationworkswell if all of our data comes from the same source, but this is not

always the case. Some examples of this problem inmachine learning are in federated learning (Yurochkin

et al., 2019a), and distributed posterior inference (Srivastava et al., 2015b). In the presence of multiple

data sources, we could simply apply the approach of Chapter 4 to each data source, but this is costly and

is more susceptible to dataset specific noise. Instead, we can pose the problem as an averaging problem.

The same way we asked before what is the best finite approximation to a given distribution, we can ask

what is the best finite approximation to a set of distributions and seek tominimise a functional that looks

something like
𝐽
∑
𝑗=1

∣∫
𝑋
𝑓(𝑥) d𝜇𝑗(𝑥) −

𝑛
∑
𝑖=1

1
𝑛𝑓(𝑥𝑖)∣ . (3.2)

over the points 𝑥𝑖. We are lead to the notion of a Wasserstein barycenter (Agueh & Carlier, 2011) of a set

of distributions, and in §5 we give an algorithm to compute such an approximation.

This chapter is based on Claici et al. (2018) and Claici et al. (2020).
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4

Wasserstein Measure Coresets

What is the best summary of a dataset, and what can we say about the performance of algorithms on the

summary? The answer to these questions is the goal of a coreset. In this chapter, we extend the coreset

idea to distributional data, and give simple yet effective algorithms to construct coresets for a large class of

problems.

4.1 Introduction

How do we deal with too much data? Despite the common wisdom that more data is better, algorithms

whose complexity scales with the size of the dataset are still routinely used in many areas of machine

learning. While large datasets capture high frequency differences between data points, many algorithms

only need a handful of representative samples that summarise the dataset.

Formalising a notion of representative requires care, however, since a representative sample for a clus-

tering algorithmmay differ from that for a classification algorithm. The notion of a data coreset was intro-

duced to specify precisely a notion of data summarisation that is task dependent. Originally proposed for

computational geometry, coresets have found their way into the learning literature for tasks ranging from

clustering (Bachem et al., 2018b), classification (Tsang et al., 2005), neural network compression (Baykal

et al., 2018), and Bayesian inference (Huggins et al., 2016; Campbell & Broderick, 2019).

Coreset construction is typically posed as a discrete optimisation problem: Given a fixed dataset and

learning algorithm, how can we construct a smaller dataset on which that algorithm achieves similar per-
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formance? This approach, however, ignores a key theme in machine learning. A dataset is an empirical

sample from an underlying data distribution, and learning problems typically seek to minimise an ex-

pected loss against the distribution, not the dataset. The effectiveness of a coreset should thus be mea-

sured against the distribution, and not the sample. In other words, the coreset should be designed to

guarantee good generalisation.

To address this oversight, we introduce measure coresets, which approximate the dataset by either a

parametric continuous measure or a finitely supported one with a smaller number of points. Our for-

mulation extends coreset language to smooth data distributions and recovers the original formulation

when the distribution is supported on finitely many points. We specifically focus on Wasserstein measure

coresets, which hinge on a natural connection between coreset language and optimal transport theory.

Contributions. We generalise the definition of a coreset to take into account the underlying data dis-

tribution, producing a measure coreset, with strong generalisation guarantees for a variety of learning

problems. Our formulation reveals an elegant connection to optimal transport, allowing us to leverage

relevant theoretical results to obtain generalisation error bounds for our coresets as well as stability under

Lipschitz transformations. From a computational perspective, we provide stochastic algorithms for ex-

tracting measure coresets, yielding methods that are well-adapted to cases involving incoming streams of

data. This allows us to construct coresets in an online manner, without having to store the whole dataset

in memory. Besides, contrarily to existing methods which are specific to a given learning problem, our

formulation is robust enough so that a given coreset can be used for different tasks.

4.1.1 Related work

We join the probabilistic language of optimal transport with the discrete setting of data compression via

coresets.

Coresets. Initially introduced in computational geometry (Agarwal et al., 2005), coresets have found

their way to machine learning research via importance sampling (Langberg & Schulman, 2010). Coreset

applications are varied, and generic frameworks exist for their construction (Feldman & Langberg, 2011).

Among the relevant recent applications are 𝑘-means and 𝑘-median clustering (Har-Peled & Mazumdar,

2004; Arthur&Vassilvitskii, 2007; Feldman et al., 2013; Bachem et al., 2018b), Bayesian inference (Camp-
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bell & Broderick, 2018; Huggins et al., 2016), support vector machine training (Tsang et al., 2005), and

neural network compression (Baykal et al., 2018).

While coresets are discrete, a sensitivity-based approach to importance sampling coresets was intro-

duced in a continuous setting for approximating expectations under absolutely continuous measures

with respect to the Lebesguemeasure (Langberg& Schulman, 2010). Formore information, see (Bachem

et al., 2018b; Munteanu & Schwiegelshohn, 2018).

Another line of work closer to ours uses the theory of Reproducing Kernel Hilbert Spaces (RKHS)

to design coresets, in particular kernel herding (Chen et al., 2010; Lacoste-Julien et al., 2015) and Stein

points (Chen et al., 2018). These methods also take into account the underlying distribution of the data,

but both require knowledge of that distribution (e.g., the density up to a normalising constant) while

our approach simply assumes sample access.

Optimal transport (OT). The connection between optimal transport and quantization can be traced

back to Pollard (1982), who studied asymptotic properties of 𝑘-means in the language of OT. More re-

cently, Cuturi & Doucet (2014) proposed a more efficient version of transport-based quantization us-

ing entropy-regularised transport. Entropy-regularised transport (Cuturi, 2013) is a computationally effi-

cient formulation of OT, which led to a wide range of machine learning applications; see recent surveys

(Solomon, 2018; Peyré & Cuturi, 2018) for details. Recent results characterise its statistical behaviour

(Genevay et al., 2019) and its ability to handle noisy datasets (Rigollet &Weed, 2018), which we can lever-

age to design robust coresets.

Our coreset construction algorithms are inspired by semi-discrete methods that compute transport

from a continuous measure to a discrete one using power diagrams (Aurenhammer, 1987). Efficient al-

gorithms that use computational geometry tools to perform gradient iterations to solve the Kantorovich

dual problem have been introduced for 2D (Mérigot, 2011) and 3D (Lévy, 2015). Closer to our method

are the algorithms by De Goes et al. (2012) and Claici et al. (2018), which solve a non-convex problem

for the support of a discrete uniform measure that minimises transport cost to an input image (De Goes

et al., 2012) or the barycenter of the input distributions (Claici et al., 2018). Stochastic approaches for

semi-discrete transport, both standard and regularised, were tackled by Genevay et al. (2016).
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4.2 Coresets: from discrete to continuous

4.2.1 Discrete coresets

A coreset is a small summary of a data set. Small usually refers to a the number of points in the coreset,

which one hopes is much smaller than the data set size, but one can also think of this in terms of the

number of bits required to store the coreset. The summary is often a weighted subset of the data, but can

also refer to points that are not in the initial dataset but rather represent the original points well.

To make these notions more precise, we must define a coreset in terms of both the dataset and the

cost function that the coreset is meant to perform well against. We can understand the definition as a

learning problem, where our goal is to approximate the performance of a learning algorithm on a dataset

𝑋 by its performance on the coreset𝐶.

Letℱ be the hypothesis set for a learning problem. Every function𝑓 ∈ ℱmaps from𝑋 toℝ. Let 𝜇𝑋
be a weighting function on the points in𝑋 (this is typically uniform), and define the cost of 𝑓 on (𝑋, 𝜇𝑋)
as

cost(𝑋, 𝜇𝑋, 𝑓) = ∑
𝑥∈𝑋

𝜇𝑋(𝑥)𝑓(𝑥). (4.1)

A coreset is then defined by a set𝐶 and a weight function 𝜇𝐶 in such a way that cost(𝐶, 𝜇𝐶, 𝑓) is close to

cost(𝑋, 𝜇𝑋, 𝑓). This leads to the following classical definition of a coreset (Bachem et al., 2017):

Definition 4.1 (Strong/weak 𝜀-coreset). The pair (𝐶, 𝜇𝐶) is a strong 𝜀-coreset for the function family ℱ if

𝐶 ⊆ 𝑋 and

∣cost(𝑋, 𝜇𝑋, 𝑓) − cost(𝐶, 𝜇𝐶, 𝑓)∣ ≤ 𝜀 ⋅ cost(𝑋, 𝜇𝑋, 𝑓)

for all 𝑓 ∈ ℱ. If we require that the inequality only holds at 𝑓∗ = argmin𝑓∈ℱ cost(𝑋, 𝜇𝑋, 𝑓), then we

call (𝐶, 𝜇𝐶) a weak 𝜀-coreset.

A coreset always exists for a dataset (𝑋, 𝜇𝑋) and family ℱ as the original dataset (𝑋, 𝜇𝑋) satisfies

Definition 4.1.

What distinguishes coresets fromother notions of data sparsification is their dependence on the learn-
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ing problem. For instance, there exist coresets for clustering (Bachem et al., 2018a,b), Bayesian inference

(Campbell & Broderick, 2019), and classification (Baykal et al., 2017).

Example (𝑘-means). The cost of a particular choice 𝑄 of 𝑘 centres is given by ∑𝑥∈𝑋 min𝑞∈𝑄 ‖𝑥 − 𝑞‖2.
To translate this into the language of Definition 4.1, we take 𝑓𝑄(𝑥) = min𝑞∈𝑄 ‖𝑥 − 𝑞‖2 and 𝜇𝑋(𝑥) = 1 for

all 𝑥 ∈ 𝑋. The function familyℱ is thus parameterised by the set of all possible choices of the centre set

𝑄, and we wish to construct a coreset that performs well against all such choices (in the case of a strong

coreset) or against the optimal 𝑘-means assignment (in the case of a weak coreset).

4.2.2 Measure coresets

So far we have used discrete language to describe coresets, but this belies the intent of coresets for learning

problems. Typical learning problems are posed as minimisations in a hypothesis class of an expectation

over a data distribution 𝜇. The standard coreset definition is incompatible with this setting as it relies on

the existence of a finite data set. To circumvent this issue, we define a measure coreset as a measure 𝜈 that
produces similar results underℱ as 𝜇:

Definition 4.2 (Measure Coreset). We call 𝜈 a strong 𝜀-measure coreset for 𝜇 if for all 𝑓 ∈ ℱ

∣𝔼𝜇[𝑓(𝑋)] − 𝔼𝜈[𝑓(𝑋)]∣ ≤ 𝜀. (4.2)

In analogy to the discrete case, a weak 𝜀-measure coreset is one for which the inequality holds at 𝑓∗ =
argmin𝑓∈ℱ 𝔼𝜇[𝑓(𝑋)]. As in the case of discrete coresets, such a 𝜈 always exists, as 𝜈 = 𝜇 satisfies the

inequality.

Beyond the change to measure theoretic language, our definition differs from the typical coreset one

in two ways. (1) The coreset 𝜈 can be an absolutely continuous measure, which means the size of the

coreset can no longer be measured simply in the number of points. (2) We use absolute error instead of

relative error; this connects our notion of coreset with generalisation error in learning problems in that

we can see the coreset as observed data and the full measure as out of sample data. Absolute instead of

relative error is uncommon in coreset language, but not unheard of; see (Reddi et al., 2015; Bachem et al.,

2018a) for examples.
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Under which constraints on 𝜈, 𝜇 andℱ can we construct a measure coreset? We will show a connec-

tion to optimal transport and a resulting construction algorithm that aims at minimising a Wasserstein

distance between the coreset 𝜈 and the target measure 𝜇. Using optimal transport duality, we can qualify

which learning problems admit measure coresets and the guarantees we can hope to achieve.

4.3 Sufficient conditions for coreset approximation

The link between our measure coreset formulation and the theory of optimal transport uses the notion

of integral probability metrics (Müller, 1997):

Definition 4.3 (Integral Probability Metric). Consider a class of functions ℱ ∶ 𝒳 → ℝ. The integral

probability metric 𝑑ℱ between two measures 𝜇 and 𝜈 is defined by

𝑑ℱ(𝜇, 𝜈) = sup
𝑓∈ℱ

∣𝔼𝜇[𝑓(𝑋)] − 𝔼𝜈[𝑓(𝑋)]∣ . (4.3)

Under mild assumptions on the set of functionsℱ, 𝑑ℱ defines a distance on the space of probability

measures. We mention the following examples:

• 1-Wasserstein Distance: ℱ = {𝑓 | ‖∇𝑓‖ ≤ 1} the space of 1-Lipschitz functions.

• Dual-Sobolev distance: ℱ = {𝑓 | ‖𝑓‖𝐻1(𝜇) ≤ 1} where𝐻1 is the Sobolev space {𝑓 ∈ 𝐿2 ∣ 𝜕𝑥𝑖𝑓 ∈
𝐿2}.

• Maximum Mean Discrepancy (MMD) (Gretton et al., 2007): ℱ = {𝑓 | ‖𝑓‖ℋ ≤ 1} whereℋ is a

universal Reproducing Kernel Hilbert Space (RKHS).

The examples above allow us to derive a coreset condition for each of these function classes based on

the Wasserstein distance or the MMD, explored in detail below.

Wasserstein distances. The 𝑝-Wasserstein distance between distributions 𝜇 and 𝜈 is given by the solution

of a minimisation problem:

𝑊𝑝
𝑝 (𝜇, 𝜈) = inf

𝜋∈𝛱(𝜇,𝜈)
∫
𝒳×𝒳

‖𝑥 − 𝑦‖𝑝 d𝜋(𝑥, 𝑦), (4.4)
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where𝛱(𝜇, 𝜈) = {𝜋 ∈ 𝑃(𝒳 × 𝒳) | 𝜋(d𝑥 × 𝒳) = 𝜇(d𝑥), 𝜋(𝒳 × d𝑦) = 𝜈(d𝑦)} is the set of couplings with

marginals 𝜇 and 𝜈.
When 𝑝 = 1, 𝑊1(𝜇, 𝜈) can be rewritten via duality as a maximisation problem over the set of 1-

Lipschitz functions (Santambrogio, 2015, §3.1). In particular, forℱ = Lip1(𝒳),

𝑑ℱ(𝜇, 𝜈) = sup
𝑓∈Lip1

∫
𝒳
𝑓 d(𝜇 − 𝜈) = 𝑊1(𝜇, 𝜈).

When 𝑝 = 2,𝑊2(𝜇, 𝜈) upper-bounds the dual Sobolev norm of (𝜇 − 𝜈) if 𝜇 and 𝜈 have densities w.r.t

the Lebesgue measure that are bounded above by some constant𝑀. In particular, for any 𝐶1 function

𝑓, define a semi-norm by

‖𝑓‖𝐻1(𝜇) = (∫
𝒳
|∇𝑓(𝑥)|2 d𝜇(𝑥))

1
2
.

This norm allows us to define a dual Sobolev norm on measures as

‖𝜈‖𝐻−1(𝜇) = sup
‖𝑓‖𝐻1(𝜇)≤1

∫
𝒳
𝑓(𝑥) d𝜈(𝑥).

Using (Peyre, 2018, Equation (17)), we obtain that forℱ = {𝑓 | ‖𝑓‖𝐻1(𝜇) ≤ 1} :

𝑑ℱ(𝜇, 𝜈) = ‖𝜇 − 𝜈‖𝐻−1(𝜇) ≤ √𝑀𝑊2(𝜇, 𝜈),

where𝑀 is the uniform bound on the densities of 𝜇 and 𝜈.

Maximum mean discrepancy. When ℱ is the unit ball of a RKHS, equation (4.3) defines a distance

function known as the maximum mean discrepancy (Gretton et al., 2007). If 𝜅(⋅, ⋅) is the reproducing

kernel of the RKHS, we can rewrite (4.3) as an expectation over kernel evaluations

MMD(𝜇, 𝜈) =𝔼𝜇⊗𝜇[𝜅(𝑋,𝑋′)] + 𝔼𝜈⊗𝜈[𝜅(𝑌, 𝑌′)]

− 2𝔼𝜇⊗𝜈[𝜅(𝑋, 𝑌)]. (4.5)

49



While our focus is on coresets under theWasserstein distance, wemention that coresets thatminimise

the MMD have been constructed for kernel density estimation (Phillips & Tai, 2018). Generic construc-

tion algorithms for sampling to minimiseMMD to a known fixed measure—known as kernel herding—

have been given by Chen et al. (2010) and Lacoste-Julien et al. (2015).

Coreset condition. Using the properties of IPMs above, we summarise conditions for 𝜈 to be an 𝜀-coreset
for 𝜇 based on conditions onℱ.

Proposition 4.1. The measure 𝜈 is an 𝜀-coreset for 𝜇 with function family ℱ if:

(i) 𝑊1(𝜇, 𝜈) ≤ 𝜀 for ℱ ⊆ Lip1;

(ii) 𝑊2(𝜇, 𝜈) ≤ 𝜀/√𝑀 for ℱ ⊆ 𝐻1(𝜇), when 𝜇 and 𝜈 have densities with respect to the Lebesgue measure

that are bounded above by 𝑀; or

(iii) MMD(𝜇, 𝜈) ≤ 𝜀 for ℱ ⊆ ℋ.

We can extend the first two conditions to Lip𝐾 and ‖𝑓‖𝐻1(𝜇) ≤ 𝐾 by scaling 𝑓 by the Lipschitz or

Sobolev constant by a multiplicative𝐾 factor. In the remainder of this paper, we will focus on coresets

based on Wasserstein distances and will call them measure coresets for simplicity. When more precision is

required, we will denote by 𝑊1 (resp. 𝑊2, MMD) measure coreset a coreset with function family Lip1
(resp.𝐻1(𝜇),ℋ).

4.4 Practical Wasserstein coreset constructions

While §4.3 gives ametric formeasuring how close a distribution 𝜈 is to satisfying the coreset condition for

a distribution 𝜇, the question of how to compute such a 𝜈 remains.

In our definition, 𝜈 was unconstrained, but for it to be a useful coreset for a measure, we should be

able to describe it using fewer bits than needed to describe the full measure 𝜇. From a practical point

of view, we should also be able to compute expectations under the coreset 𝜈 and at least approximate

expectations under 𝜇.
We make a few simplifications. We assume that we can sample from 𝜇 efficiently and that 𝜇 is sup-

ported on a compact set 𝒳 ⊂ ℝ𝑑. This is true of any finite dataset. The simplest notion of a measure
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coreset is a uniform distribution over a finite point set 𝑥1, … , 𝑥𝑛. This leads to the following optimisation

problem, which will be our focus in this section:

min
(𝑥1,…,𝑥𝑛)

𝑊𝑝 (
1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖 , 𝜇) . (𝒫)

It is also possible to formulate the problem using a continuous parametric density as a coreset. Given

a family of parametric densities (𝑝𝜃)𝜃∈𝛩 (e.g., Gaussian), we want to find the parametric distribution 𝑝𝜃
that best approximates a measure 𝜇. This can be written simply as

min
𝜃∈𝛩

𝑊𝑝 (𝑝𝜃, 𝜇) . (4.6)

We experimented with this option using Gaussian mixtures, but the minimisation is highly non-convex,

and gradient descent algorithms do not converge except in restricted settings (e.g., mixtures with equal

weights). We find the simpler problem (𝒫) sufficient for the applications we consider and leave compu-

tation of more general coresets to future research.

4.4.1 Properties of empirical coresets

We address the problem of estimating 𝑛 the number of points in a coreset 𝑛 given 𝜀 for 𝜇 an arbitrary

measure continuous. Namely, we ask how many samples 𝑛 we need such that 𝑊𝑝 (𝜇, 𝜈) ≤ 𝜀 when 𝜈 =
∑𝑛

𝑖=1 𝛿𝑥𝑖 .
Statistical bounds. There exist several theorems for finite sample rates of 𝑊𝑝, which each focus on

specific hypotheses to marginally improve rates. We give a general statement:

Theorem 4.1 (Metric convergence, Kloeckner 2012; Brancolini et al. 2009; Weed et al. 2019). Suppose 𝜇 is

a compactly supported measure in ℝ𝑑 and 𝜈𝑛 is a uniform measure supported on 𝑛 points drawn from 𝜇.

Then 𝑊𝑝(𝜈𝑛, 𝜇) ∼ 𝛩(𝑛−1/𝑑). Moreover, if 𝜇 has Hausdorff dimension 𝑠 < 𝑑, then 𝑊𝑝(𝜈𝑛, 𝜇) ∼ 𝛩(𝑛−1/𝑠).

Thus, both𝑊1 and𝑊2 have finite sample rate𝑂(𝑛−1/𝑑). If we assume that 𝜇 is supported on a lower

dimensional manifold of dimension 𝑠, we get the improved rate𝑂(𝑛−1/𝑠).

Corollary 1. If 𝜈 = ∑𝑛
𝑖=1 𝛿𝑥𝑖 with 𝑛 = 𝛩(𝜀−𝑠) is a globally optimal solution for (𝒫), then 𝜈 is a 𝜀-measure
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coreset.

While we cannot guarantee this bound in practice since global optimality is NP-hard (Claici et al.,

2018), empirically we observe that it holds and in fact is an overestimate of coreset size. Note that the

theoretically required coreset size is independent of additional variables in the underlying problem, e.g.,

the number of means in 𝑘-means.

This bound improves over the best known deterministic coreset size for 𝑘-means and 𝑘-median of

𝑂(𝑘𝜀−𝑑 log 𝑛) (Har-Peled & Mazumdar, 2004), but we must be careful as our coreset bounds are given

in absolute error. For 𝑘-means and 𝑘-medians, we are typically in the regime where the full data set has

large cost (4.1), but if that does not hold, the coresets are no longer comparable.

Better randomised construction algorithms exist for both 𝑘-means/𝑘-median and SVM with sizes

that do not have such a strong dependence on dimension. Empirically, our coresets are competitive, and

often better than specialised construction algorithms, especially in the small data regime (see Figures 4-3,

4-2 and 4-4).

One useful property of𝑊𝑝 coresets is that given an 𝜀−coreset for a reference measure 𝜇, we immedi-

ately have a 𝐿𝜀−coreset for the pushforward measure 𝑓#𝜇, where 𝐿 is the Lipschitz constant of 𝑓.

Proposition 4.2. (Coreset of pushforward measure) Consider a 𝐿-Lipschitz function 𝑓. If {𝑥𝑖}𝑛𝑖=1 is a 𝜀-
measure coreset under 𝑊𝑝 for 𝜇, then {𝑓(𝑥𝑖)}𝑛𝑖=1 is a 𝐿𝜀-measure coreset under 𝑊𝑝 for 𝑓#𝜇.

Proof. 𝑓 being 𝐿-Lipschitz implies that ‖𝑓(𝑥) − 𝑓(𝑦)‖𝑝 ≤ 𝐿𝑝‖𝑥 − 𝑦‖𝑝 ∀(𝑥, 𝑦) ∈ 𝒳. Thus, for all

𝜋 ∈ 𝛱( 1𝑛𝛿𝑥𝑖, 𝜇),

∫
𝒳

𝑛
∑
𝑖=1

‖𝑓(𝑥𝑖) − 𝑓(𝑥)‖𝑝 d𝜋(𝑥𝑖, 𝑥)

≤ 𝐿𝑝∫
𝒳

𝑛
∑
𝑖=1

‖𝑥𝑖 − 𝑥‖𝑝 d𝜋(𝑥𝑖, 𝑥).

Minimising over 𝜋 on the right hand side and using the definition of a pushforward measure on the left

gives

𝑊𝑝
𝑝 (

1
𝑛

𝑛
∑
𝑖=1

𝛿𝑓(𝑥𝑖), 𝑓#𝜇) ≤ 𝐿𝑝𝑊𝑝
𝑝 (

1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖 , 𝜇) .

Since 𝑥𝑖 is a𝑊𝑝 𝜀-measure coreset for 𝜇, we have𝑊𝑝 ( 1𝑛 ∑
𝑛
𝑖=1 𝛿𝑥𝑖 , 𝜇) ≤ 𝜀, yielding the desired bound.
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Figure 4-1: Coresets with 50 points for a Gaussian (top left) and the pushforward of a Gaussian through
𝑓 ∶ (𝑥, 𝑦) ↦ (𝑥, 𝑥2+𝑦). Top right is the image of theGaussian coreset through𝑓, bottom left is computed
directly on the pushforward. A random sample is plotted bottom right.

Pushforwardmeasures are ubiquitous in (deep) generative models, which have gained popularity for

image generation through GANs Goodfellow et al. (2014) and VAEs Kingma & Welling (2014). Specifi-

cally, new data is generated by pushing uniform or Gaussian noise through a neural network 𝑓 (Genevay

et al., 2018). The above proposition suggests that if the pushforward function 𝑓 has bounded variation,

constructing a coreset for the source noise and pushing it through 𝑓 is sufficient to find a ‘good enough’

coreset for the generativemodelwithout additional computations. This robustness property is illustrated

by Figure 4-1, where the banana-shaped distribution is the pushforward of a normalised Gaussian 𝒩
through 𝑓 ∶ (𝑥, 𝑦) ↦ (𝑥, 𝑥2 + 𝑦). Even though the coreset obtained as the image of the coreset of the

Gaussian through𝑓 performs slightly worse than the coreset computed directly on𝑓#𝒩, it represents the

distribution in a more faithful way than a random sample.

We also have the following relationship between being a𝑊2 coreset and being a𝑊1 coreset:
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Remark 1. Let {𝑥𝑖}𝑛𝑖=1 minimise 𝑊2 ( 1𝑛 ∑
𝑛
𝑖=1 𝛿𝑥𝑖 , 𝜇). Using the inequality between 𝑊𝑝 metrics,

𝑊1 (
1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖 , 𝜇) ≤ 𝑊2 (
1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖𝜇) .

Thus, if we choose 𝑛 large enough such that 𝑊2 ( 1𝑛 ∑
𝑛
𝑖=1 𝛿𝑥𝑖 , 𝜇) ≤ 𝜀, then 1

𝑛 ∑
𝑛
𝑖=1 𝛿𝑥𝑖 is also a 𝑊1 𝜀-measure

coreset for 𝜇.

4.4.2 Entropy-regularised Wasserstein distances

The entropy-regularisedWasserstein distance is a popular approximation of theWasserstein distance, as it

is computable with faster algorithms (Cuturi, 2013). The entropically regularised 𝑝-Wasserstein distance

is

𝑊𝑝
𝑝,𝜂(𝜇, 𝜈) = argmin

𝜋∈𝛱(𝜇,𝜈)
∫
𝒳×𝒳

‖𝑥 − 𝑦‖𝑝d𝜋(𝑥, 𝑦) + 𝜂KL(𝜋‖𝜇 ⊗ 𝜈). (4.7)

As theKL term is nonnegative,𝑊𝑝
𝑝,𝜂 upper-bounds𝑊

𝑝
𝑝 for all𝑝, and thus any coreset under𝑊1,𝜂 and

𝑊2,𝜂 is also a coreset under𝑊1 and𝑊2. Due to the entropic term, however, we have𝑊𝑝,𝜂(𝜇, 𝜇) = 𝑂(𝜂)
(Genevay et al., 2018), so even with a large number of samples 𝑛 in the coreset, it is not always possible

to get an 𝜖-coreset for𝑊𝑝 using𝑊𝑝,𝜂. In practice, we observe that this regulariser yields mode collapse of

the coreset, with the number of modes decreasing as 𝜂 increases.

To alleviate this issue, Genevay et al. (2018) introduce Sinkhorn divergences, defined via

𝑆𝐷𝑝,𝜂(𝜇, 𝜈) = 𝑊𝑝,𝜂(𝜇, 𝜈) −
1
2 (𝑊𝑝,𝜂(𝜇, 𝜇) +𝑊𝑝,𝜂(𝜈, 𝜈)) .

The additional terms ensure that 𝑆𝐷𝑝,𝜂(𝜇, 𝜇) = 0. Interestingly, when 𝜂 goes to infinity, Sinkhorn diver-

gences converge to MMD defined in (4.5) with kernel 𝜅(𝑥, 𝑦) = −‖𝑥 − 𝑦‖𝑝 for 0 < 𝑝 < 2. While solving

(𝒫) using 𝑆𝐷𝑝,𝜂 can be faster than with𝑊𝑝, especially for larger coreset sizes, we do not have theoretical

guarantees for the minimiser.

54



Algorithm 1 Compute an online𝑊1 coreset via SGD
Require: Measure 𝜇, 𝑛 > 0, mini batch size𝑚, 𝛾 > 0
Ensure: Points 𝑥1, … , 𝑥𝑛

1: Initialise (𝑥1, … , 𝑥𝑛) ∼ 𝜇
2: for 𝑘 = 1, … do
3: Sample (𝑦1, … , 𝑦𝑚) ∼ 𝜇
4: Update estimate of 𝑣∗ using samples 𝑦𝑘.
5: Define generalised Voronoi regions𝑉𝑖(𝑣∗).
6: Step: 𝑥𝑖 ← 𝑥𝑖 −

𝛾
√𝑘 ∑𝑦𝑘∈𝑉𝑖(𝑣∗)

1
|𝑉𝑖(𝑣∗)|

𝑦𝑘−𝑥𝑖
‖𝑦𝑘−𝑥𝑖‖ .

Algorithm 2 Compute an online𝑊2 coreset via SGD
Require: Measure 𝜇, 𝑛 > 0, mini batch size𝑚, 𝛾 > 0
Ensure: Points 𝑥1, … , 𝑥𝑛

1: Initialise (𝑥1, … , 𝑥𝑛) ∼ 𝜇
2: for 𝑘 = 1, … do
3: Sample (𝑦1, … , 𝑦𝑚) ∼ 𝜇
4: Update estimate of 𝑣∗ using samples 𝑦𝑘.
5: Define generalised Voronoi regions𝑉𝑖(𝑣∗).
6: Update: 𝑥𝑖 ← ∑𝑦𝑘∈𝑉𝑖(𝑣∗)

1
|𝑉𝑖(𝑣∗)|𝑦𝑘

4.4.3 Algorithms

Recall that the goal of our measure coreset algorithms is to find a set of points {𝑥1, … , 𝑥𝑛} that minimises

someWasserstein distance to a given distribution. Here, we detail how this goal is achieved by leveraging

the dual of the Wasserstein problem. In particular, we give algorithms that compute coresets under the

𝑊1 and𝑊2, via the updates specific to each setting.

Minimising 𝑊1 and 𝑊2. In the semi-discrete case, when 𝜈 = 1
𝑛 ∑

𝑛
𝑖=1 𝛿𝑥𝑖 , computing the Wasserstein

distance can be cast as maximising an expectation:

𝑊𝑝
𝑝 (𝜈, 𝜇) = max

𝑣∈ℝ𝑛 𝔼𝜇[min𝑖 (‖𝑋 − 𝑥𝑖‖𝑝 − 𝑣𝑖) +
1
𝑛

𝑛
∑
𝑖=1

𝑣𝑖], (4.8)
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which can be optimised via stochastic gradient methods (Genevay et al., 2016; Claici et al., 2018). The

gradients w.r.t. 𝑥𝑖 can be written in terms of power diagrams:

∇𝑥𝑖𝑊1 (
1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖 , 𝜇) = ∫
𝑉𝑖(𝑣∗)

𝑥 − 𝑥𝑖
‖𝑥 − 𝑥𝑖‖

d𝜇(𝑥) (4.9)

∇𝑥𝑖𝑊
2
2 (

1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖 , 𝜇) = 𝑥𝑖 −∫
𝑉𝑖(𝑣∗)

𝑥 d𝜇(𝑥) (4.10)

where 𝑣∗ is the solution of (4.8) and𝑉𝑖(𝑣) = {𝑥 ∶ ‖𝑥−𝑥𝑖‖𝑝−𝑣𝑖 ≤ ‖𝑥−𝑥𝑗‖𝑝−𝑣𝑗, ∀𝑗 ≠ 𝑖} is the generalised
Voronoi region of point 𝑥𝑖 with 𝑝 = 1 for𝑊1, and 𝑝 = 2 for𝑊2.

Thus, a gradient step in the point positions 𝑥𝑖 requires first solving (4.8) to get the optimal 𝑣, and
then computing the gradients according to (4.9), (4.10). For𝑊2

2 , the gradient step can be replaced by a

fixed point iteration (Claici et al., 2018).

Minimising 𝑊𝑝,𝜂 and 𝑆𝐷𝑝,𝜂. Due to themode collapse inherent to large regularisation 𝜂mentioned in

§4.4.2, Sinkhorn divergences empirically are better candidates to construct coresets. Following Genevay

et al. (2018), we compute ∇𝑥𝑆𝐷𝑝,𝜂 using automatic differentiation of the objective. The resulting algo-

rithm is identical to Algorithm 1, where∇𝑥𝑊1 gradient in line (6) is replaced by∇𝑥𝑆𝐷𝑝,𝜂.

4.4.4 Convergence

We mention some observations on the convergence of our approach. The minimisation over the 𝑥 vari-

ables is not convex due to inherent symmetries in the solution space, and 𝑊𝑝(⋅, ⋅) is not sufficiently

smooth in the 𝑥 variables to give precise convergence guarantees.

InAlgorithms 1 and2,we specify thenumberofpoints in the coreset. This parameter is unlikediscrete

coreset algorithms, which take 𝜀 as an input and return a coreset with enough points to satisfy the coreset

inequality. Because our input is a measure that is absolutely continuous with respect to the Lebesgue

measure, we do not have the luxury of this approach. An illustrative example is to consider 𝜀 = 0. In this

case, a discrete coreset algorithm would simply return the original dataset. For a continuous 𝜇, however,

there is no finite distribution that has 0 error relative to 𝜇.
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Figure 4-2: Coreset construction on for the 𝑘-means algorithm. We compute the 𝑘-means cost on the full
data using means learned on the coreset. The 𝑦 axis measures relative error to computing the cost using
themeans learned on the full data. Comparison is with Bachem et al. (2018a). We expect (and verify) that
𝑊2 coresets perform better than𝑊1 coresets on this problem. (a) Pendigits dataset Keller et al. (2012); (b)
HTRU dataset (Lyon et al., 2016); (c) Cod-RNA dataset (Uzilov et al., 2006)

4.4.5 Implementation details

Construction time depends strongly on the characteristics of the measure we are approximating. Most

of the time is spent evaluating the expectations in (4.9), (4.10). Since we run the gradient ascent until

‖∇𝑤𝐹‖2 ≤ 𝜀 and perform 𝑇 fixed point iterations, the construction requires𝑂(𝑇/𝜀) calls to an oracle that

computes densities of the power cells𝑉𝑖(𝑣).
The algorithms for 𝑊1 and 𝑊2 were implemented in C++ using the Eigen matrix library (Guen-

nebaud et al., 2010) and run on an Intel i7-6700K processor with 4 cores and 32GB of system memory.

Computing expectations under samples from 𝜇 can be trivially parallelised. The total coreset construc-

tion time ranges from a few seconds for small coresets on small datasets, to 5 minutes on large datasets

where large coresets are required. The Sinkhorn divergence coresets were implemented in TensorFlow

and run on the same architecture without GPU support. Since our code for 𝑊𝑝 is in C++, we do not

observe significant computational speedup when using Sinkhorn divergences in our experiments. As the

resulting coresets aremerely an approximationof𝑊𝑝 coresets, wedonot display them in the experimental

results.

All algorithmswere run 20 times –we display themean and standard deviations in our plots. Regard-

ing the parameters in Algorithms 1 and 2, we use a step size 𝛾 = 1 and 100 iterations.
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Figure 4-3: Coreset construction for SVM classification. We compute relative accuracy with respect to
training a classifier on all the data. Comparison is with Baykal et al. (2017). Soft margin SVMs minimise
a Lipschitz cost, and we expect both𝑊1 and𝑊2 coresets to perform well. (a) Credit card dataset (Yeh &
Lien, 2009); (b) HTRU dataset (Lyon et al., 2016); (c) Cod-RNA dataset (Uzilov et al., 2006)
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Figure 4-4: Coreset construction on a synthetic dataset (described in 4.5.3). The goal is to approximate
the posterior distribution for a logistic regression model, and we report the KL divergence to the true
posterior learned on the full data. Comparison is with Campbell & Broderick (2019). The log likelihood
of the model is Lipschitz, and we expect similar performance from𝑊1 and𝑊2 coresets.

4.5 Comparison with classical coresets

We compare with classical coreset constructions on a few problems. Each of the three tasks we consider

has a specialised coreset construction algorithm that does not extend to other problems. Our coresets, on

the other hand, do not have this limitation, but broad applicabilitymay come at the price of performance.

Even so, our coresets perform better than uniform on the three tasks we have chosen (𝑘-means clustering,

SVM classification, posterior inference), and greatly outperform state-of-the-art algorithms for the first
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two.

4.5.1 𝑘-means clustering

The 𝑘-means objective for a fixed set of cluster centres𝑄 is given by 𝐽(𝑄) = ∑𝑥∈𝑋 min𝑞∈𝑄 ‖𝑥 − 𝑞‖2.
When 𝑄 is a subset of a compact set, this cost has bounded Sobolev norm but is not Lipschitz. We

expect 𝑊1 coresets to perform worse than 𝑊2 coresets on this problem. To measure performance, we

compute coresets on the Pendigits dataset (Keller et al., 2012) and compute relative cost 1− 𝐽(𝑄𝑐)/𝐽(𝑄∗)
of the centres learned on the coreset𝑄𝑐 against the centres learned on the full data𝑄∗. We compare with

the importance sampling method of Bachem et al. (2018a). The number of clusters we expect in the data

is 10, one for each digit.

In this experiment, Bachem et al. (2018a) does not exhibit a clear advantage over uniform sampling.

This suggests that their method is better suited to larger datasets. On the other hand, when using 𝑊2

coresets, our method is on par with the minimal error for a coreset of 10 points. This is not surprising,

as minimising (𝒫) with𝑊2 and 𝑛 = 𝑘 support points is equivalent to minimising the 𝑘-means objective

with balanced cluster assignments (Pollard, 1982; Cañas & Rosasco, 2012). This example demonstrates

that our stochastic gradient descent approach is an efficient means of solving balanced 𝑘-means problems

over large datasets, since we only access small-sized batches of the data at each iteration and never process

the whole dataset at once.

4.5.2 Support vector machine classification

The soft margin SVM cost of a point 𝑥𝑖 with label 𝑦𝑖 is given by 𝑦𝑖(𝑤⊺𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖, where 𝜉𝑖 is a slack

variable associated to 𝑥𝑖. This cost is Lipschitz with a constant depending on the diameter of the set of

allowable 𝑤’s.

Because SVMs solve classification problems and our coresets approximate a dataset, our experimental

setup here is slightly different than for 𝑘-means. Instead of constructing a coreset on the (𝑥𝑖, 𝑦𝑖) pairs in
the training data, we construct individual coresets for all data associated to a single label and merge them

afterward. Hence, the coreset contains equal numbers of positive and negative samples. We hypothesise

that this property and the tendency of coresets to remove large outliers explains why in Figure 4-3 our
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coresets can yield better classifiers than training on the full data for large coreset size.

4.5.3 Bayesian inference

We construct a synthetic dataset for logistic regression by drawing 𝑥𝑖 ∼ 𝒩(0, 𝐼) and labelling the 𝑥𝑖 by

𝜃 ∼ 𝒩 (0, 𝐼) 𝑦𝑖 | 𝑥𝑖, 𝜃 ∼ Bern ( 1
1 + 𝑒−𝑥⊺𝑖 𝜃

) . (4.11)

The goal is to construct a (weighted) coreset that approximates the log likelihoodof the full data∑𝑖 log 𝑝(𝑦𝑖|𝜃).
This cost is Lipschitz in this particular case. To agree with Campbell & Broderick (2019), instead of com-

puting the relative log likelihood of our coreset against that of the full data, we use the coreset to infer the

parameters of the posterior distribution and report KL divergence against the posterior learned on the

entire dataset. Figure 4-4 shows results on a dataset of 20000 points drawn from a 5-dimensional Gaus-

sian distribution. While we do not match the performance of Campbell & Broderick (2019), our coreset

performs significantly better than a uniform sample.

4.5.4 Comparison with Kernel Herding

We have mentioned constructing coresets under the maximum mean discrepancy. Coresets under the

MMD distance can be constructed using kernel herding, as shown in Chen et al. (2010); Lacoste-Julien

et al. (2015). We give a qualitative comparison between𝑊2 coresets and samples obtained from herding

on the mixture of Gaussian example from Chen et al. (2010) in Figure 4-5.

4.6 Discussion

Learning problems are frequently posed as finding the best hypothesis thatminimises expected loss under

a data distribution. However classic coreset theory ignores that the samples from the dataset are drawn

from some distribution. We have introduced a notion ofmeasure coreset whose goal is tominimise gener-

alisation error of the coreset against the data distribution. Our definition is the natural one, and we can

draw connections between this generalised notion of a coreset and optimal transport theory that leads to
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Wasserstein

Kernel herding

Figure 4-5: Comparisonwith kernel herding on amixture of Gaussians. The first twenty points obtained
from herding are plotted against a twenty point coreset under the𝑊2 distance.

online construction algorithms.

As our approach is exploratory, there are many avenues for future research. For one, our definitions

rely on identities and inequalities that relate large function families to𝑊1 and𝑊2. If we cannot assume

much about 𝜇, then these relations cannot be refined. The theory in this chapter, however, does not

sufficiently explain the effectiveness of our coreset constructions on the learning problems in §4.5.

Our algorithm’s performance suggests several questions. There is a gap between the statistical knowl-

edge we have about the sample complexity of𝑊1 and𝑊2 and the behaviour of Algorithms 1 and 2 in the

few-samples regime. Additionally, a coreset condition similar to Proposition 4.1 for Sinkhorn divergences

would allowus to leverage their improved sample complexity compared toWasserstein distances, yielding

tighter theoretical bounds for the number of points required to be an 𝜖-measure coreset.
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5

Stochastic Wasserstein Barycenters

The mean of a dataset often tells us something about the most likely value, and computing a mean value

is central to much of learning theory. The notion of a mean in Euclidean space can be extended to means

of distributions by posing it as a variational problem, but computing such means is challenging. In this

chapter, we present an algorithm that recovers a quantization of the true barycenter.

5.1 Introduction

Several scenarios in machine learning require summarising a collection of probability distributions with

shared structure but individual bias. For instance, multiple sensors might gather data from the same

environment with different noise distributions; the samples they collect must be assembled into a single

signal. As another example, a datasetmight be split amongmultiple computers, each of which carries out

MCMCBayesian inference for a givenmodel; the resulting “subset posterior” latent variable distributions

must be reassembled into a single posterior for the entire dataset. In each case, the summarised whole can

be better than the sum of its parts: noise in the input distributions cancels when averaging, while shared

structure is reinforced.

The theory of optimal transport (OT) provides a promising and theoretically-justified approach to

averaging distributions over a geometric domain. OT equips the space ofmeasures with a distancemetric

known as the Wasserstein distance; the average, or barycenter, of a collection {𝜇𝑗}𝑁𝑗=1 is then defined as a

Fréchet mean minimising the sum of squared Wasserstein distances to the input distributions (Agueh &
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Carlier, 2011). This mean is aware of the geometric structure of the underlying space. For example, the

Wasserstein barycenter of twoDirac distributions 𝛿𝑥 and 𝛿𝑦 supported at points 𝑥, 𝑦 ∈ ℝ𝑛 is a single Dirac

delta at the centre point 𝛿(𝑥+𝑦)/2 rather than the bimodal superposition 1
2(𝛿𝑥 + 𝛿𝑦) obtained by averaging

algebraically.

If the input distributions are discrete, then the Wasserstein barycenter is computable in polynomial

time by solving a large linear program (Anderes et al., 2016). Adding entropic regularisation yields elegant

and efficient approximation algorithms (Genevay et al., 2016; Cuturi & Peyré, 2016; Cuturi & Doucet,

2014; Ye et al., 2017). These and other state-of-the-art methods typically suffer from any of a few draw-

backs, mainly (1) poor behaviour as regularisation decreases, (2) required access to the distribution func-

tions rather than sampling machinery, and/or (3) a fixed discretisation on which the input or output

distribution is supported, chosen without knowledge of the barycenter’s structure.

Given sample access to𝑁 distributions 𝜇𝑗, we propose an algorithm that iteratively refines an approx-

imation to the true Wasserstein barycenter. The support of our barycenter is adjusted in each iteration,

adapting to the geometry of the desired output. Unlike most existing OT algorithms, we tackle the prob-

lem without regularisation, yielding a sharp result whose support is contained (to tolerance) within the

support of the true barycenter even though we use stochastic optimisation rather than computational

geometry.

Contributions. We give a straightforward parallelizable stochastic algorithm to approximate and sample

from the Wasserstein barycenter of a collection of distributions, which does not rely on regularisation to

make the problem tractable. We only employ samplers from the input distributions, and our technique

is not restricted to input or output distributions supported on a fixed set of points. We verify conver-

gence properties and showcase examples where our approach is inherently more suitable than competing

approaches that require a fixed support.

5.2 Related work

OT has made significant inroads in computation and machine learning; see (Lévy & Schwindt, 2018;

Peyré & Cuturi, 2018; Solomon, 2018) for surveys. Although most algorithms we highlight approximate
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OT distances rather barycenters, they serve as potential starting points for barycenter computation.

Cuturi (2013) renewed interest in OT in machine learning through introduction of entropic regu-

larisation. The resulting Sinkhorn algorithm is compact and efficient; it has been extended to barycen-

ter problems through gradient descent (Cuturi & Doucet, 2014) or iterative projection (Benamou et al.,

2015a). Improvements for structured instances enhance Sinkhorn’s efficiency, e.g. via fast convolution (Solomon

et al., 2015) or multiscale approximation (Schmitzer, 2016).

Our technique, however, is influenced more by semidiscrete methods, which compute OT distances

to distributions supported on a finite set of points. Semidiscrete OT is equivalent to computing a power

diagram (Aurenhammer, 1987; Aurenhammer et al., 1992), a generalisation of a Voronoi diagram whose

cells receive the mass from each 𝛿. Algorithms byMérigot (2011) in 2D and Lévy (2015) in 3D use compu-

tational geometry to extract gradients for the dual semidiscrete problem; Kitagawa et al. (2018) accelerate

convergence via a second-order Newton method. Similar to our technique, De Goes et al. (2012) move

the support of a discrete approximation to a distribution to reduce Wasserstein distance.

Recent stochastic techniques target learning applications. Genevay et al. (2016) propose a scalable

stochastic algorithmbased on the dual of the entropically-regularised problem; they are among the first to

consider the setting of sample-based access to distributions but rely on entropic regularisation to smooth

out the problem and approximate OT distances rather than barycenters. Staib et al. (2017) propose a

stochastic barycenter algorithm from samples, but a finite, fixed set of support points must be provided

a priori. Arjovsky et al. (2017) incorporate a coarse stochastic approximation of the 1-Wasserstein dis-

tance into a generative adversarial network (GAN); the 1-Wasserstein distance typically is not suitable for

barycenter computation.

Furthermachine learning applications range from supervised learning to Bayesian inference. Schmitz

et al. (2018) leverage OT theory for dictionary learning. Carrière et al. (2017) apply the Wasserstein dis-

tance to point cloud segmentationbydeveloping a notion of distance on topological persistence diagrams.

Courty et al. (2016) utilise the optimal transport plan for transfer learning on different domains. Srivas-

tava et al. (2015a,b) use the Wasserstein barycenter to approximate the posterior distribution of a full

dataset by the barycenter of the posteriors on smaller subsets; their method provably recovers the full

posterior as the number of subsets increases.
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5.3 Background and preliminaries

For measures 𝜇1, … , 𝜇𝑁, we can define the Wasserstein barycenter as the minimiser of the functional

𝐹[𝜈] = 1
𝑁

𝑁
∑
𝑗=1

𝑊2
2 (𝜈, 𝜇𝑗). (5.1)

When the input measures are discrete distributions, (5.1) is a linear program solvable in polynomial time.

If at least one of the measures 𝜇𝑗 is absolutely continuous with respect to the Lebesgue measure,

then (5.1) admits a unique minimiser 𝜇∗ (Agueh & Carlier, 2011; Santambrogio, 2015). However, 𝜇∗ will

also be absolutely continuous, implying that computational systems typically can only find an inexact

finite approximation.

We study a discretization of this problem. Suppose 𝛴 ⊂ 𝑋 consists of 𝑚 points {𝑥𝑖}𝑚𝑖=1, and define

the functional

𝐹[𝛴] = 1
𝑁

𝑁
∑
𝑗=1

𝑊2
2 (

1
𝑚

𝑚
∑
𝑖=1

𝛿𝑥𝑖 , 𝜇𝑗) . (5.2)

We define the main problem.

Problem 1 (Semidiscrete approximation). Find a minimiser of𝛴 → 𝐹[𝛴] subject to the constraints𝛴 ⊂ 𝑋,

|𝛴| = 𝑚.

Solving problem (1) for a single input measure is equivalent to finding the optimal𝑚-point approxi-

mation to the inputmeasure. We can use the solution as a set of supersamples from the input (Chen et al.,

2010), or if the input distribution is a grayscale image, the solution yields a blue noise approximation to

the image (De Goes et al., 2012).
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5.4 Mathematical formulation

The OT problem (2.2) admits an equivalent dual problem

sup
𝑓∈𝐿1(𝑋)

∫
𝑋
𝑓(𝑥) d𝜈(𝑥) +∫

𝑋
𝑓(𝑦) d𝜇(𝑦), (5.3)

where 𝑓 is the Kantorovich potential and 𝑓(𝑥) ≔ inf𝑦∈𝑋{𝑑(𝑥, 𝑦)2 − 𝑓(𝑦)} is the 𝑐-transform of 𝑓 (San-

tambrogio, 2015; Villani, 2008).

Following Santambrogio (2015), if 𝜈 = ∑𝑚
𝑖=1

1
𝑚𝛿𝑥𝑖 is a finite measure supported on 𝛴 = {𝑥𝑖}𝑚𝑖=1,

then (5.3) becomes

max
𝑣∈ℝ𝑚 {∑

𝑖

1
𝑚𝑣𝑖 +∫

𝑋
𝑣(𝑦) d𝜇(𝑦)} , (5.4)

where 𝑣 = (𝑣1, … , 𝑣𝑚). The key observation is that the function 𝑓 ∈ 𝐿1(𝑋) is replaced with a finite-

dimensional 𝑣 ∈ ℝ𝑚.

With this formula in mind, define

𝐹OT[𝑣, 𝛴; 𝜇] ∶= ∑
𝑖

1
𝑚𝑣𝑖 +∫

𝑋
𝑣(𝑦) d𝜇(𝑦). (5.5)

Note that constant shifts in the 𝑣𝑖 do not change the value of 𝐹OT. 𝐹OT has a simple derivative with

respect to the 𝑣𝑖’s:

𝜕𝐹OT
𝜕𝑣𝑖 = 1

𝑚 −∫
𝑉𝑖
𝑣
d𝜇(𝑦) (5.6)

where𝑉𝑖
𝑣 is the power cell of point 𝑥𝑖:

𝑉𝑖
𝑣 = {𝑥 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑥𝑖)2 − 𝑣𝑖 ≤ 𝑑(𝑥, 𝑥𝑖′)2 − 𝑣𝑖′ , ∀𝑖′}.

From here on we work with compact subsets of the Euclidean spaceℝ𝐷 endowedwith the Euclidean

metric, 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2. To differentiate with respect to the 𝑥𝑖’s, notice that the first term in equa-
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tion (5.5) does not depend on the positions of the points. We rewrite the second term as

𝑚
∑
𝑖=1

∫
𝑉𝑖
𝑣
(𝑑(𝑦, 𝑥𝑖)2 − 𝑣𝑖) d𝜇(𝑦).

Using Reynolds’ transport theorem to differentiate while accounting for boundary terms shows

𝜕𝐹OT
𝜕𝑥𝑖 = 𝑥𝑖∫

𝑉𝑖
𝑣
d𝜇(𝑦) −∫

𝑉𝑖
𝑣
𝑦 d𝜇(𝑦). (5.7)

Equation (5.6) confirms the intuition that each cell contains as much mass as its associated source point.

Wewill leverage (5.7) to design a fixed-point iteration that moves each point to the centre of its power cell.

Each subproblem of (5.2) admits a different Kantorovich potential 𝑣𝑗 = (𝑣1𝑗 , … , 𝑣𝑚𝑗 ), giving the fol-

lowing optimisation functional

𝐹 [{𝑣𝑗}𝑁𝑗=1, 𝛴; {𝜇𝑗}𝑁𝑗=1]=
1
𝑁

𝑁
∑
𝑗=1

𝐹OT[𝑣𝑗, 𝛴; 𝜇𝑗] (5.8)

Define

𝑎𝑖𝑗 = ∫
𝑉𝑣𝑖𝑗

d𝜇(𝑦) 𝑏𝑖𝑗 =
1
𝑎𝑖𝑗
∫
𝑉𝑣𝑖𝑗
𝑦 d𝜇(𝑦).

With this notation in place, the partial derivatives are

𝜕𝐹
𝜕𝑣𝑖𝑗

= 1
𝑁 ( 1𝑚−𝑎𝑖𝑗)

𝜕𝐹
𝜕𝑥𝑖 =

1
𝑁

𝑁
∑
𝑗=1

𝑎𝑖𝑗 (𝑥𝑖−𝑏𝑖𝑗) . (5.9)

5.5 Optimisation

With our optimisation objective function in place, we now introduce our barycenter algorithm. To sim-

plify nomenclature, from here on we refer to the dual potentials 𝑣𝑗 as weights on the generalised Voronoi

diagram. Our overall strategy is an alternating optimisation of 𝐹 in (5.8):

• For fixed point positions, 𝐹 is concave in the weights and is optimised using stochastic gradient

ascent.
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• For fixed weights, we apply a single fixed point iteration akin to Lloyd’s algorithm (Lloyd, 1982).

5.5.1 Estimating Gradients

Each of 𝑎𝑖𝑗 and 𝑏𝑖𝑗 can be expressed as an expectation of a simple function with respect to the 𝜇𝑗. We

estimate these quantities by a simple Monte Carlo scheme.

In more detail, we can rewrite 𝑎𝑖𝑗 and 𝑏𝑖𝑗 as

𝑎𝑖𝑗 = 𝔼𝑦∼𝜇𝑗 [1𝑦∈𝑉𝑖
𝑣𝑗
] 𝑏𝑖𝑗 = 𝔼𝑦∼𝜇𝑗 [𝑦 ⋅ 1𝑦∈𝑉𝑖

𝑣𝑗
] .

Here, 1 indicates the indicator function of a set.

Since we have sample access to each 𝜇𝑗, the expectations can be approximated by drawing 𝐾 points

independently 𝑦𝑘 ∼ 𝜇𝑗 and computing

�̂�𝑖𝑗 =
1
𝐾

𝐾
∑
𝑘=1

1𝑦𝑘∈𝑉𝑖
𝑣𝑗

�̂�𝑖𝑗 =
1
𝐾

𝐾
∑
𝑘=1

𝑦𝑘 ⋅ 1𝑦𝑘∈𝑉𝑖
𝑣𝑗
. (5.10)

5.5.2 Concave Maximisation

The first step in our alternating optimisationmaximises𝐹 over the weights 𝑣while the points 𝑥𝑖 are fixed.
We call this step of the algorithm an ascent step.

For a fixed set of points, the functional𝐹 is concave in the weights 𝑣𝑗, since it is the dual of the convex
semidiscrete transport problem. To solve for the weights, we perform gradient ascent using the formula

in (5.9) where 𝑎𝑖𝑗 is approximated using �̂�𝑖𝑗. Note that the gradient for a set of weights 𝑣𝑗 only requires

computation of the density of a single measure 𝜇𝑗, implying that the ascent steps can be decoupled across

different measures.

Write 𝑤0 = 𝑣𝑗 for the initial iterate. The simplest version of our algorithm updates

𝑤𝑘+1 = 𝑤𝑘 + 𝛼 𝜕𝐹𝜕𝑣𝑗
[𝑤𝑘].

The iterates converge when each point contains equal mass in its associated power cell.
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𝐹 has a known Hessian as a function of the 𝑣𝑗 that can be used in Newton’s algorithm (Kitagawa

et al., 2018). Computing the Hessian, however, is only possible with access to the density functions of

the 𝜇𝑗’s as it requires computing a density of the measure on the boundary between two power cells.

The boundary set is inherently lower dimensional than the problem space, and hence sample access to

the 𝜇𝑗 is insufficient. Moreover, even had we access to the probability density functions, computing the

Hessian would require the Delaunay triangulation of the point set, which is expensive in more than two

dimensions.

In any event, choosing the step size 𝛼 is important for convergence. Line search is difficult as we do

not have access to true objective value at each iterate. Instead, we rely onNesterov acceleration to improve

performance (Nesterov, 1983). With acceleration, our iterates are

𝑧𝑘+1 = 𝛽𝑧𝑘 + 𝜕𝐹
𝜕𝑣𝑗

[𝑤𝑘] (5.11)

𝑤𝑘+1 = 𝑤𝑘 + 𝛼𝑧𝑘+1. (5.12)

In our experiments, we use 𝛼 = 10−3 and 𝛽 = 0.99. Convergence of the accelerated gradient method

can be shown when 𝛼 = 1/𝐿 where 𝐿 is the Lipschitz constant of 𝐹; in §5.6, we give an estimate of this

constant. Our convergence criterion for this step is ‖∇𝐹‖22 ≤ 𝜖.

5.5.3 Fixed Point Iteration

The second step of our optimisation is a fixed point iteration on the point positions. This step is similar

to the point update in a 𝑘-means algorithm in that it snaps points to the centres of local cells, andwe refer

to it as a snap step.

To derive the iteration, we set the second gradient in (5.9) to zero:

𝜕𝐹
𝜕𝑥𝑖 = 0 ⟹ 1

𝑁
𝑁
∑
𝑗=1

𝑎𝑖𝑗(𝑥𝑖 − 𝑏𝑖𝑗) = 0
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Algorithm 3 Adding a point to the current barycenter estimate 𝛴.
1: for 𝑡 = 1, 2, … , 𝑇 do
2: for 𝑗 = 1, 2, … , 𝐽 do
3: 𝑧0 ← 0 ▷Ascent on weights
4: 𝑤0 ← 𝑣𝑗
5: while ∥ 𝜕𝐹

𝜕𝑣𝑗∥ > 𝜖 do
6: Compute �̂�𝑖𝑗 according to equation (5.10)
7: 𝑧𝑘+1 = 𝛽𝑧𝑘 + 𝜕𝐹

𝜕𝑣𝑗 [𝑤
𝑘]

8: 𝑤𝑘+1 = 𝑤𝑘 + 𝛼𝑧𝑘+1
9: 𝑣𝑗 ← 𝑤end

10: Compute �̂�𝑖𝑗 according to equation (5.10)
11: for 𝑥𝑖 ∈ 𝑆 do

12: 𝑥𝑖 ←
∑𝑁

𝑗=1 �̂�𝑖𝑗�̂�𝑖𝑗
∑𝑁

𝑗=1 �̂�𝑖𝑗
▷ Snap points

which leads to the point update

𝑥𝑖 =
∑𝑁

𝑗=1 𝑎𝑖𝑗𝑏𝑖𝑗
∑𝑁

𝑗=1 𝑎𝑖𝑗
. (5.13)

This suggests a fixed point iteration for the 𝑥𝑖’s that can be decomposed into the following steps:

1. First find the barycenter of the power cells of each 𝑥𝑖 with respect to each 𝜇𝑗.

2. Then, average the points with weights given by the density of each measure in the cell.

If the concave maximisation has converged appropriately, and uniform areas 𝑎𝑖𝑗 have been achieved,

then the update step becomes a uniform average over the barycenters 𝑏𝑖𝑗 with respect to each measure.

5.5.4 Global and Local Strategies

The ascent and snap steps can be used to refine a configuration of points 𝛴. Once the iterates converge,

we have an𝑚-point approximation to the barycenter that can be used as an initialisation for𝑚+ 1 point

approximation in two ways. A new point 𝑥 is sampled uniformly from 𝑋, and then we have a choice

between (1) moving all points including the new one or (2) allowing only 𝑥 to move.
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These two approaches are codified inAlgorithm 3where the choice on the set 𝑆 dictates which points

move. The number of iterations of the outer loop is fixed beforehand. Typically, we see convergence

in fewer than 20 steps, and empirically, we observe good performance even with 𝑇 = 1. The two most

natural choices for 𝑆 are 𝑆 = 𝛴 and 𝑆 = {𝑥}. If the barycenter is absolutely continuous with respect

to the underlying Lebesgue measure, these two strategies converge at the same rate asymptotically (Bran-

colini et al., 2009). The latter, however, can generate spurious samples that are not in the support of the

barycenter. Note that optimising theweights is regardless a global problem asmoving or introducing just

one point can change the volumes of the power cells of neighbouring points.

Both algorithms are highly parallelisable, since (1) the gradient estimates are expectations computed

using Monte Carlo integration and (2) the gradient step in the weights decouples across distributions.

5.6 Analysis

We justify the use of uniform finitely-supported measures, and then prove that our algorithm converges

to a minimum cost under mild assumptions.

We assume in this section that at least one of the distributions𝜇𝑗 is absolutely continuouswith respect

to the Lebesgue measure, ensuring a unique Wasserstein barycenter.

5.6.1 Approximation Suitability

The simplest approach for absolutely continuousmeasures𝜇𝑗 ∈ 𝒫(𝑋) is to sample 𝑝 points from each of

the 𝐽measures and solve for the true barycenter of the empirical distributions (Anderes et al., 2016). This

approach likely approximates the barycenter as the number of samples increases, but requires solution of

a linear program with𝑂(𝑝𝐽) variables. As an alternative, Staib et al. (2017) propose a stochastic problem

for approximating barycenters. They are able to prove a rate of convergence, but the support of their

approximate barycenter is fixed to a finite set of points.

Our technique allows the support points to move during the optimisation procedure, empirically

allowing a better approximation of the barycenter with fewer points. The following theoretical result

shows that the use of uniformmeasures supported on a finite set of points can approximate the barycenter
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arbitrarily well:

Theorem (Metric convergence, (Kloeckner, 2012; Brancolini et al., 2009)). Suppose 𝜈∗𝑚 is a uniform mea-

sure supported on 𝑚 points that minimises 1
𝑁 ∑𝑁

𝑗=1𝑊2(𝜈∗𝑚, 𝜇𝑗), and let �̄� denote the true barycenter of the

measures {𝜇𝑗}𝑁𝑗=1. Then𝑊2(𝜈∗𝑚, �̄�) ≤ 𝐶𝑚−1/𝐷 where 𝐶 depends on the underlying space𝑋, the dimension

𝐷, and the metric 𝑑(⋅, ⋅).

Note that this shows convergence in probability 𝜈∗𝑚 ⇀ �̄� since theWasserstein distancemetrises weak

convergence (Villani, 2008). Brancolini et al. (2009) also show asymptotic equivalence of the local and

global algorithms.

While we cannot guarantee that our method converges to 𝜈∗𝑚, these properties indicate that the global

minimiser of our objective provides an effective approximant to the true barycenter as the number of

support points𝑚 → ∞.

5.6.2 Algorithmic Properties

The functional 𝐹 is concave in the weights 𝑣𝑗𝑖 with fixed point positions. We can investigate the conver-

gence properties of the gradient ascent step of the algorithm. Specifically, what we are after is a Lipschitz

constant for the gradient of 𝐹with respect to the weights. We will show that this does not hold generally.

Counterexample. Assume 𝑋 is a compact subset of ℝ𝐷. There are measures 𝜇 ∈ 𝒫(𝑋) for which the

gradient of 𝐹 is not Lipschitz continuous. A set of weights that satisfies 𝜕𝐹
𝜕𝑣 = 0 may not exist, and if it does,

it may not be unique.

Construction. We provide a counterexample for 𝐷 = 1. Let 𝑋 = [−1, 1] with the standard metric and

𝜇 = 𝛿0. Let 𝛴 = {−1, 1} be the fixed positions, and take 𝑣1 = {−𝜖, 0} and 𝑣2 = {𝜖, 0} for small 𝜖. Then

‖𝑣1 − 𝑣2‖1 = 2𝜖, but ‖∇𝐹𝑣[𝑣1] − ∇𝐹𝑣[𝑣2]‖1 = 2.
Non-existence is shown in Figure 5-1. To see non-uniqueness, take 𝜇 = 1

2𝛿−𝜖 + 1
2𝛿𝜖 with 𝛴 as before.

Any set of weights in (−𝜖, 𝜖)2 minimises 𝐹𝑣.

For mildly behaved measures 𝜇 the gradient of 𝐹with respect to 𝑣 is Lipschitz continuous:

Lemma. Assume 𝑋 is a compact subset of ℝ𝐷, and 𝜇 is absolutely continuous with respect to the Lebesgue

measure, with density function 𝜌. If the 𝑚 points of 𝛴 are distinct and 𝜌 ≤ 𝑀 almost everywhere for some
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𝜇

Figure 5-1: Non-existence of a set of weights. Let 𝜇 be the uniform measure on the line segment, and 𝛴
be the two red points such that the line between them is orthogonal to the support of 𝜇. There is no set
of weights such that the mass of 𝜇 is split evenly between the two red points.

Figure 5-2: Non-unique minimiser on two points for the uniform measure defined on the unit disk. All
antipodal points on the dashed circle at distance 2/𝜋 from the centre are valid minimisers.

constant 𝑀, then:

‖∇𝐹𝑣[𝑣1] − ∇𝐹𝑣[𝑣2]‖2 ≤ √𝑚𝑀𝑆
2𝐿 ‖𝑣1 − 𝑣2‖2.

where 𝑆 denotes the surface area of 𝜕conv(𝑋) and 𝐿 denotes the minimum pairwise distance between points

in 𝛴.

Proof. Consider the 𝑖th component of the gradient difference:

∣𝜕𝐹𝑣𝜕𝑣𝑖 [𝑣1] −
𝜕𝐹𝑣
𝜕𝑣𝑖 [𝑣2]∣ = ∣∫

𝑉𝑖
𝑣1

𝜌 d𝜆 −∫
𝑉𝑖
𝑣2

𝜌 d𝜆∣

≤ 𝑆‖𝑣1 − 𝑣2‖2
2𝐿 𝑀.

The second inequality follows as the area of a power cell is bounded by 𝑆 and the faces of the cells change

at a rate linear in ‖𝑣1 − 𝑣2‖2. The rate is dependent on the distance between the points, so the constant

𝐿 is required. The Lipschitz bound follows directly from considering all components of the gradient

difference together.

This lemma applies convergence for a step size that is the inverse of the Lipschitz constant. While the

above requires absolute continuity of 𝜇, we have found that our ascent steps and method often converge

even when this is not satisfied (see Figures 5-4 and 5-6).
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We may also show that our algorithm monotonically decreases 𝐹[𝛴] (defined in Equation (5.2)) af-

ter each pair of snap and then ascent steps for compact domain and absolutely continuous 𝜇𝑗. For this

purpose, recall that the transport cost for a map 𝑇 ∶ 𝑋 → 𝛴 sending measure 𝜇𝑗 to 1
𝑚 ∑𝑖 𝛿x𝑖 is:

∫
𝑋
𝑑(𝑥, 𝑇(𝑥))2 𝑑𝜇𝑗.

Fixing the power cells 𝑉𝑖
𝑗 after an ascent step, we may define 𝑇𝑗(𝛴) to be the transport cost for the map

sending the power cells 𝑉𝑖
𝑗 to the point set 𝛴, and we may define 𝑇𝐶(�̃�) = 1

𝑁 ∑𝑗 𝑇𝑗 to be the joint

(average) transport cost. Letting �̃� = {x̃i} denote the new positions after a snap step, we may now show:

Lemma. For 𝑋 ⊂ ℝ𝐷 compact, and 𝜇𝑗 absolutely continuous with respect to the Lebesgue measure for all

𝑗:
𝐹[�̃�] ≤ 𝐹[𝛴].

Proof. By strong duality, we have the following equality for each 𝑗when the 𝑣 have been optimised after

an ascent step:

𝐹𝑂𝑇[𝑣, 𝛴; 𝜇𝑗] = 𝑊2
2 (

1
𝑚

𝑚
∑
𝑖=1

𝛿x𝑖 , 𝜇𝑗) .

This implies that𝐹[𝛴] = 𝑇𝐶(𝛴) as𝑊2
2 is simply the optimal transport cost. Wenow argue that𝑇𝐶(�̃�) ≤

𝑇𝐶(𝛴). We may split up the integrals for transport cost over the power cells corresponding to each 𝑖th
point. We differentiate∑𝑁

𝑗=1∫𝑉𝑖
𝑗
‖𝑥 − 𝑝‖2 𝑑𝜇𝑗 with respect to 𝑝 to find the point with lowest joint trans-

port cost to the cells𝑉𝑖
𝑗 . Setting this to 0 yields the following:

𝑁
∑
𝑗=1

𝑎𝑖𝑗𝑏𝑖𝑗 − 𝑎𝑖𝑗𝑝 = 0

Note this is equivalent to the barycenter update step in Equation (5.13), and with convergence of the pre-

vious ascent step, we should have uniform 𝑎𝑖𝑗 weights. This demonstrates that snapping to the uniform

average of barycenters lowers𝑇𝐶, andwe have that𝐹[𝛴] = 𝑇𝐶(𝛴) ≥ 𝑇𝐶(�̃�) ≥ 𝐹[�̃�]. The last inequality

follows as the next ascent step will find the optimal transport and decrease the transport cost.

With joint transportation cost being non-negative, this implies that our objective function converges
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(a) (b) (c)

Figure 5-3: Barycenter when 𝑁 = 2 tested on two uniform distributions over unit squares. (a) Our
output: the input distributions are shown in blue, while the output barycenter points are shown in red,
with the limits of the true barycenter in black. (b) A similar example in three dimensions. (c) The output
barycenter of Staib et al. (2017): note the output has non-zero measure outside the true barycenter.

(a) (b) (c)

Figure 5-4: Barycenter of sharp featured distributions. (a) 50 points from our algorithm yields a barycen-
ter supported on a line. (b) The barycenter from Staib et al. (2017) using a grid of 20000 points. (c)
Barycenter from Solomon et al. (2015) using a regulariser value of 𝛾 = 0.1; smaller regularisers were nu-
merically unstable.

to a local minimum. This does not imply that our iterates converge, as there may not be a unique min-

imising point configuration (see Figure 5-2). Empirically, our iterates converge in all of our test cases. We

note also that our formula bears some resemblance to the mean-shift algorithm and to Lloyd’s algorithm,

both of which which are also known to converge under some assumptions (Li et al., 2007; Bottou &

Bengio, 1995).

75



Figure 5-5: The 𝑛 point approximation of a mixture of ten Gaussians. Top row: our method with 10, 50,
100, and 200 points. Bottom row: iid sampling with the same number of points.

5.7 Experiments

We showcase the versatility of our method on several applications. We typically use between 16K and

256K samples per input distribution to approximate the power cell density and barycenter. The variance

is due to different problem sizes and dimensionality of the input measures. We stop the gradient ascent

step when ‖∇𝐹‖22 ≤ 10−6. The snap step empirically converges in under 20 iterations, and several of our

examples use only one step.

5.7.1 Distributions with Sharp Features

Our algorithm is well-suited to problems where the input distributions have very sharp features. We

test against the algorithms in Staib et al. (2017) and Solomon et al. (2015) on two test cases: ten uniform

distributions over lines in the 2D plane (Figure 5-4), and 20 uniform distributions over ellipses (Figure 5-

6).

The results of Figures 5-4 and 5-6 show that our barycenter ismore sharply supported than the results

of competingmethods. Our output agrees with that of Solomon et al. (2015), but our resultsmore closely

match expected behaviour. We strongly suspect that the true barycenter in Figure 5-4 is also a uniform

measure on a line, while that in Figure 5-6 is a circle centred at the origin.
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(a) (b)

Figure 5-6: Barycenter of randomly generated ellipses. Top: plot showing 20 ellipses with randomly
drawn centre, semi-major and semi-minor axes, and skew. Bottom: (a) The output of our algorithm is
a sharp distribution approximating a circle. (b) The output of Solomon et al. (2015) with a regulariser
value of 𝛾 = 0.1.

5.7.2 The Case𝑁 = 2

In the case of two inputmeasures𝜇1 and𝜇2, we expect the barycenter to beMcCann’s interpolant (Agueh

& Carlier, 2011; McCann, 1997):

𝜇1/2 ≔ (12 id +
1
2𝑇)#

𝜇0 = (12 id +
1
2𝑇

∗)
#
𝜇1

where 𝑇 is the optimal map, and 𝑇∗ is the inverse map, while # denotes the pushforward of a measure.
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Figure 5-7: Blue noise sampling. Left: 10K samples from our algorithm. Right: Original image (approxi-
mately 90K pixels).

We test this on two uniform distributions on the unit square in Figure 5-3. The transport map in this

case is transport of the entire distribution along a straight line. As expected from McCann’s interpolant,

we recover a uniform distribution on the unit square halfway between the two input distributions. We

show our results alongside those of Staib et al. (2017). Notice that their output barycenter is not uniform,

and that it has non-zero measure outside the true barycenter.

5.7.3 The Case𝑁 = 1

The case𝑁 = 1 bears interest as well. There are instances when sampling iid from a distribution yields

samples that do not approximate the underlying distribution accurately. We showcase two applications

in generating super samples from distributions, as well as approximating grayscale images through blue

noise.

Super Samples Ourmethod canbe adapted to generate super samples fromcomplexdistributions (Chen

et al., 2010). Figure 5-5 details our results on amixture of tenGaussians. Ourmethod better approximates

the shape of the underlying distribution due to negative autocorrelations: points move away from over-

sampled regions. The points drawn iid from the mixture tend to oversample around the larger modes

and do not approximate density contours as well.
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Blue Noise The term blue noise refers to an unstructured but even and isotropic distribution of points.

It has been used in image dithering as it captures image intensity via local point density, without the need

for varying point sizes as in halftoning.

De Goes et al. (2012) described the link between optimal transport and blue noise generation. We

recover a stochastic version of their algorithm by taking 𝜇 a discrete distribution over the image pixels

proportional to intensity. As our method is more general, we observe performance loss, but the output

is of comparable quality (Figure 5-7).

5.8 Conclusion

We have proposed an algorithm for computing theWasserstein barycenter of continuous measures using

only samples from the input distributions. The algorithm decomposes into a concave maximisation and

a fixed point iteration similar to the mean-shift and 𝑘-means algorithms. Our algorithm is easy to imple-

ment and parallelise, and it does not rely on a fixed-support grid. This allows us to recover much sharper

approximations to the barycenter than previous methods. Our algorithm is general and versatile enough

to be applied to other problems beyond barycenter computation.

There are several avenues for future work. Solving the concave maximisation problem is currently

a bottleneck for our algorithm as we do not have access to the function value or the Hessian, but we

believe multiscale methods can be adapted to our approach. The potential applications of this method

extend beyond what was covered. One application we highlight is in developing coresets that minimise

the distance to the empirical distribution on the input data.
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6

Quantization: Discussion

We have seen how the simple idea of approximating a measure by a finite set of samples has deep implica-

tions with regards to learning theory, approximation, and summarisation.

At the core of these approaches lies the problem

min𝑥1,…,𝑥𝑛
𝑊𝑝 (𝜇,

1
𝑛

𝑛
∑
𝑖=1

𝛿𝑥𝑖) .

If the finite approximation is a good proxy for the measure 𝜇, then many problems that had to deal with

𝜇 are now tractable, from Bayesian inference to classification methods. The strength of this approach is

that once such an approximationhas been computed, even simple algorithms canproduce state-of-the-art

results thus taking the burden away from the practitioner.

Where do we go from here? The algorithms in Chapter 4 and Chapter 5 rely on efficiently solving

the semi-discrete transport problem, but this is often hard. Howwe get around this problem is answered

by the following two chapters. In Part II we show how structure inherent in a learning problem can be

used to speed up computation of the optimal transport cost, while in Part III we present an algorithm

for computing the optimal transport cost in situations where the ground metric is costly to calculate.
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Part II

Hierarchical Structure
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7

Introduction to Hierarchical Structure

Wherein we solve the transportation faster by using thematic or hierarchical structure in the data. Ap-

plications to natural language processing and Bayesian inference. A discussion follows on how this approach

generalises to much more.

Optimal transport is, by nature, a theory that operates at a fine-grained level. It deals with distri-

butions by allocating resources from individual points to individual points. In the absence of additional

information, this fine-grained approach is all we can work with, and much research has focused on how

to make such algorithms faster.

However, distributional data often comes with additional structure which is ignored by these ap-

proaches. In this part we show examples of this structure that leads to significantly faster algorithms,

better results, and more coarse-grained interpretability.

We can illustrate this with an example. Suppose someone asks us to compare two classics ofAmerican

literature: HermanMelville’sMoby Dick, andNathaniel Hawthorne’sThe Scarlet Letter. If we treat this

as an optimal transport problem, the atomswe canmanipulate are individual words, and themass at each

atom is akin to word frequency. But no human being would compare these two novels by splitting hairs

on each individual word.

What the algorithm is missing is thematically coherent regions of the text. When we say that both

Moby Dick and The Scarlet Letter are novels of vengeance, we pack a lot of significance into that single

word which a computer is oblivious towards.

We showhow to use themes in optimal transport to both understand data better, and improve perfor-
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mance on document-to-document distance computation in Chapter 8. At the heart of this approach is

a Wasserstein distance on the space of distributions whose atoms are themselves distributions, hence the

hierarchical structure of the title. This approach is most advantageous when the coarse-grained structure

does not change significantly over time.

While the problem in Chapter 9 is completely different, we recognise the same patterns, and show

how a hierarchical approach can alleviate a long standing problem in Bayesian inference.

This part is based on Yurochkin et al. (2019b) and Monteiller et al. (2019).
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8

Hierarchical Optimal Topic Transport

Natural language documents have always been a challenging test bed for learning algorithms, and for good

reason: semantics can change based on context, coarse grained structures such as narratives or themes are

hard to codify, etc. In this chapter, we show how to compare documents using coarse level thematic structure

by leveraging optimal transport and topic models. This leads to a simple, yet effective and fast algorithm

that is easy to interpret.

8.1 Introduction

Topic models like latent Dirichlet allocation (LDA) (Blei et al., 2003) are major workhorses for summaris-

ing document collections. Typically, a topic model represents topics as distributions over the vocabulary

(i.e., unique words in the corpus); documents are then modelled as distributions over topics. In this ap-

proach, words are vertices of a simplex whose dimension equals the vocabulary size and for which the

distance between any pair of words is the same. More recently, word embeddings map words into high-

dimensional space such that co-occurring words tend to be closer to each other than unrelated words

(Mikolov et al., 2013; Pennington et al., 2014). Kusner et al. (2015a) combine the geometry ofword embed-

ding space with optimal transport to propose the word mover’s distance (WMD), a powerful document

distance metric limited mostly by computational complexity.

As an alternative to WMD, in this paper we combine hierarchical latent structures from topic mod-

els with geometry from word embeddings. We propose hierarchical optimal topic transport (HOTT)
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document distances, which combine language information fromword embeddings with corpus-specific,

semantically-meaningful topic distributions from latent Dirichlet allocation (LDA) (Blei et al., 2003).

This document distance is more efficient and more interpretable than WMD.

We give conditions under which HOTT gives a metric and show how it relates to WMD. We test

against existing metrics on 𝑘-NN classification and show that it outperforms others on average. It per-

forms especially well on corpora with longer documents and is robust to the number of topics and word

embedding quality. Additionally, we consider two applications requiring pairwise distances. The first is

visualization of the metric with t-SNE (van der Maaten & Hinton, 2008). The second is link prediction

from a citation network, cast as pairwise classification using HOTT features.

Contributions. We introduce hierarchical optimal transport to measure dissimilarities between dis-

tributions with common structure. We apply our method to document classification, where topics from

a topic modeller represent the shared structure. Our approach

• is computationally efficient, since HOTT distances involve transport with small numbers of sites;

• uses corpus-specific topic and document distributions, providing higher-level interpretability;

• has comparable performance to WMD and other baselines for 𝑘-NN classification; and

• is practical in applications where all pairwise document distances are needed.

8.2 Related work

Document representation and similarity assessment are key applications in learning. Many methods are

based on the bag-of-words (BOW), which represents documents as vectors inℝ|𝑉|, where |𝑉| is the vo-

cabulary size; each coordinate equals the number of times aword appears. Otherweightings include term

frequency inverse document frequency (TF-IDF) (Luhn, 1957; Spärck Jones, 1972) and latent semantic in-

dexing (LSI) (Deerwester et al., 1990). LatentDirichlet allocation (LDA) (Blei et al., 2003) is a hierarchical

Bayesian model where documents are represented as admixtures of latent topics and admixture weights

provide low-dimensional representations. These representations equipped with the 𝑙2 metric comprise

early examples of document dissimilarity scores.

Recent document distances employ more sophisticated methods. WMD incorporates word embed-

dings to account for word similarities (Kusner et al., 2015a) (see §8.3). Huang et al. (2016) extend WMD
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to the supervised setting, modifying embeddings so that documents in the same class are close and docu-

ments from different classes are far. Due to computational complexity, these approaches are impractical

for large corpora or documents with many unique words.

Wu & Li (2017) attempt to address the complexity of WMD via a topic mover’s distance (TMD).

While their 𝑘-NN classification results are comparable to WMD, they use significantly more topics, gen-

erated with a Poisson infinite relational model. This reduces semantic content and interpretability, with

less significant computational speedup. They also do not leverage language information from word em-

beddings or otherwise. Xu et al. (2018) jointly learn topics andword embeddings, limiting the complexity

to under a hundred words, which is not suited for natural language processing.

Wu et al. (2018) approximateWMDusing a random feature kernel. In theirmethod, theWMD from

corpus documents to a selection of random short documents facilitates approximation of pairwiseWMD.

The resultingwordmover’s embedding (WME) has similar performancewith significant speedups. Their

method, however, requires parameter tuning in selecting the random document set and lacks topic-level

interpretability. Additionally, they do not show full-metric applications. Lastly,Wan (2007), whosework

predates (Kusner et al., 2015a), applies transport to blocks of text.

8.3 Background

Word mover’s distance. Given an embedding of a vocabulary as 𝑉 ⊂ ℝ𝑛, the Euclidean metric puts a

geometry on the words in𝑉. A corpus𝐷 = {𝑑1, 𝑑2, … 𝑑|𝐷|} can be represented using distributions over

𝑉 via a normalised BOW. In particular, 𝑑𝑖 ∈ 𝛥𝑙𝑖 , where 𝑙𝑖 is the number of unique words in a document

𝑑𝑖, and 𝑑𝑖𝑗 = 𝑐𝑖𝑗/∣𝑑𝑖∣, where 𝑐𝑖𝑗 is the count of word 𝑣𝑗 in 𝑑𝑖 and ∣𝑑𝑖∣ is the number of words in 𝑑𝑖. The

WMD between documents 𝑑1 and 𝑑2 is then𝑊𝑀𝐷(𝑑1, 𝑑2) = 𝑊1(𝑑1, 𝑑2).
The complexity of computing WMD depends heavily on 𝑙 = max(𝑙1, 𝑙2); for longer documents, 𝑙

maybe a significant fractionof |𝑉|. To evaluate the fullmetric on a corpus, the complexity is𝑂(|𝐷|2𝑙3 log 𝑙),
since𝑊𝑀𝐷must be computed pairwise. Kusner et al. (2015a) test WMD for 𝑘-NN classification. To cir-

cumvent complexity issues, they introduce a pruning procedure using a relaxed word mover’s distance

(RWMD) to lower-bound WMD. On the larger 20news dataset, they additionally remove infrequent

words by using only the top 500 words to generate a representation.
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8.4 Hierarchical optimal transport

Assume a topicmodel produces corpus-specific topics𝑇 = {𝑡1, 𝑡2, … , 𝑡|𝑇|} ⊂ 𝛥|𝑉|, which are distributions

over words, as well as document distributions �̄�𝑖 ∈ 𝛥|𝑇| over topics. WMDdefines a metric𝑊𝑀𝐷(𝑡𝑖, 𝑡𝑗)
between topics; we consider discrete transport over 𝑇 as a metric space.

We define the hierarchical topic transport distance (HOTT) between documents 𝑑1 and 𝑑2 as

𝐻𝑂𝑇𝑇(𝑑1, 𝑑2) = 𝑊1 (
|𝑇|
∑
𝑘=1

�̄�1𝑘𝛿𝑡𝑘 ,
|𝑇|
∑
𝑘=1

�̄�2𝑘𝛿𝑡𝑘) ,

where eachDirac delta 𝛿𝑡𝑘 is a probability distribution supported on the corresponding topic 𝑡𝑘 andwhere

the groundmetric isWMDbetween topics as distributions over words. The resulting transport problem

leverages topic correspondences provided by WMD in the base metric. This explains the hierarchical

nature of our proposed distance.

Our construction uses transport twice: WMD provides topic distances, which are subsequently the

costs in the HOTT problem. This hierarchical structure greatly reduces runtime, since |𝑇| ≪ 𝑙; the
costs for HOTT can be precomputed once per corpus. The expense of evaluating pairwise distances is

drastically lower, since pairwise distances between topics may be precomputed and stored. Even as doc-

ument length and corpus size increase, the transport problem for HOTT remains the same size. Hence,

full metric computations are feasible on larger datasets with longer documents.

When computing𝑊𝑀𝐷(𝑡𝑖, 𝑡𝑗), we reduce computational timeby truncating topics to a small amount

of words carrying the majority of the topic mass and re-normalise. This procedure is motivated by inter-

pretability considerations and estimation variance of the tail probabilities. On the interpretability side,

LDA topics are often displayed using a few dozen top words, providing a human-understandable tag. Se-

mantic coherence, a popular topic modelling evaluation metric, also is based on heavily-weighted words

andwas demonstrated to align with human evaluation of topic models (Newman et al., 2010). Moreover,

any topic modelling inference procedure, e.g. Gibbs sampling (Griffiths & Steyvers, 2004), has estima-

tion variance that may dominate tail probabilities, making them unreliable. Hence, we truncate to the

top 20words when computingWMDbetween topics. We empirically verify that truncation to any small
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Figure 8-1: Topic transport interpretability. We show two books from Gutenberg and their heaviest-
weighted topics (bolded topic names are manually assigned). The first involves steamship warfare, while
the second involves biology. Left and right column percentages indicate the weights of the topics in the
corresponding texts. Percentages labelling the arrows indicate the transported mass between the corre-
sponding topics, which match semantically-similar topics.

number of words performs equally well in §8.5.3.

In topicmodels, documents are assumed to be represented by a small subset of topics of size 𝜅𝑖 ≪ |𝑇|
(e.g., in Figure 8-1, books are majorly described by three topics), but in practice document topic propor-

tions tend to be dense with little mass outside of the dominant topics. Williamson et al. (2010) propose

an LDA extension enforcing sparsity of the topic proportions, at the cost of slower inference. When

computing HOTT, we simply truncate LDA topic proportions at 1/(|𝑇| + 1), the value below LDA’s

uniform topic proportion prior, and re-normalise. This reduces complexity of our approach without

performance loss as we show empirically in §8.5.2 and §8.5.3.

Metric properties of HOTT. If each document can be uniquely represented as a linear combination

of topics𝑑𝑖 = ∑|𝑇|
𝑘=1 �̄�𝑖𝑘𝑡𝑘, and each topic is unique, then𝐻𝑂𝑇𝑇 is ametric on document space. We present

a brief proof in the supplementary material.

Topic-level interpretability. The additional level of abstraction promotes higher-level interpretabil-

ity at the level of topics as opposed to dense word-level correspondences from WMD. We provide an

example in Figure 8-1. This diagram illustrates two books from theGutenberg dataset and the semanti-
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cally meaningful transport between their three most heavily-weighted topics. Remaining topics and less

prominent transport terms account for the remainder of the transport plan not illustrated.

Relation to WMD. First we note that if |𝑇| = |𝑉| and topics consist of single words covering the

vocabulary, then HOTT becomes WMD. In well-behaved topic models, this is expected as |𝑇| → |𝑉|.
Allowing |𝑇| to vary produces different levels of granularity for our topics as well as a trade-off between

computational speed and topic specificity. When |𝑇| ≪ |𝑉|, we argue that WMD is upper bounded by

HOTT and two terms that represent topic modelling loss. By the triangle inequality,

𝑊𝑀𝐷(𝑑𝑖, 𝑑𝑗) ≤ 𝑊1 (𝑑𝑖,
|𝑇|
∑
𝑘=1

�̄�𝑖𝑘𝑡𝑘) +𝑊1 (
|𝑇|
∑
𝑘=1

�̄�𝑖𝑘𝑡𝑘,
|𝑇|
∑
𝑘=1

�̄�𝑗𝑘𝑡𝑘) +𝑊1 (
|𝑇|
∑
𝑘=1

�̄�𝑗𝑘𝑡𝑘, 𝑑
𝑗) . (8.1)

LDA inference minimises KL(𝑑𝑖‖∑|𝑇|
𝑘=1 �̄�𝑖𝑘𝑡𝑘) over topic proportions �̄�𝑖 for a given document 𝑑𝑖;

hence, we look to relate Kullback–Leibler divergence to𝑊1. In finite-diameter metric spaces,𝑊1(𝜇, 𝜈) ≤
diam(𝑋)√1

2KL(𝜇‖𝜈), which follows from inequalities relating Wasserstein distances to KL divergence

(Otto & Villani, 2000). The middle term satisfies the following inequality:

𝑊1(
|𝑇|
∑
𝑘=1

�̄�𝑖𝑘𝑡𝑘,
|𝑇|
∑
𝑘=1

�̄�𝑗𝑘𝑡𝑘) ≤ 𝑊1(
|𝑇|
∑
𝑘=1

�̄�𝑖𝑘𝛿𝑡𝑘 ,
|𝑇|
∑
𝑘=1

�̄�𝑗𝑘𝛿𝑡𝑘) , (8.2)

where on the right we have 𝐻𝑂𝑇𝑇(𝑑1, 𝑑2). The optimal topic transport on the right implies an equal-

cost transport of the corresponding linear combinations of topic distributions on the left. The inequality

follows since𝑊1 gives the optimal transport cost. Combining into a single inequality,

𝑊𝑀𝐷(𝑑𝑖, 𝑑𝑗) ≤ 𝐻𝑂𝑇𝑇(𝑑𝑖, 𝑑𝑗) + diam(𝑋) [√1
2KL (𝑑𝑗∥

|𝑇|
∑
𝑘=1

�̄�𝑗𝑘𝑡𝑘) + √
1
2KL (𝑑𝑖∥

|𝑇|
∑
𝑘=1

�̄�𝑖𝑘𝑡𝑘)] .

WMD involves a large transport problem andKusner et al. (2015a) propose relaxedWMD (RWMD),

a relaxation via a lower bound (see also Atasu & Mittelholzer (2019) for a GPU-accelerated variant). We

next show that RWMD is not always a good lower bound on WMD.

RWMD–Hausdorff bound. Consider the optimisation in (2.2) for calculating𝑊𝑀𝐷(𝑑1, 𝑑2), and
remove the marginal constraint on 𝑑2. The resulting optimal 𝛤 is no longer a transport plan, but rather
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Figure 8-2: RWMD as a poor approximation to WMD

moves mass on words in 𝑑1 to their nearest words in 𝑑2, only considering the support of 𝑑2 and not its

density values. Removing themarginal constraint on𝑑1 produces symmetric behaviour;𝑅𝑊𝑀𝐷(𝑑1, 𝑑2)
is defined to be the larger cost of these relaxed problems.

Suppose that word 𝑣𝑗 is shared by 𝑑1 and 𝑑2. Then, the mass on 𝑣𝑗 in 𝑑1 and 𝑑2 in each relaxed

problemswill notmove and contributes zero cost. In the worst case, if𝑑1 and𝑑2 contain the samewords,

i.e., supp(𝑑1) = supp(𝑑2), then 𝑅𝑊𝑀𝐷(𝑑1, 𝑑2) = 0. More generally, the closer the supports of two

documents (over𝑉), the looser RWMD might be as a lower bound.

Figure 8-2 illustrates two examples. In the 2D example, 1 − 𝜖 and 𝜖 denote the masses in the teal

and maroon documents. The 1D example uses histograms to represent masses in the two documents. In

both, RWMD is nearly zero as masses do not have far to move, while the WMD will be larger thanks to

the constraints.

Tomake this preciseweprovide the following tightupperbound: 𝑅𝑊𝑀𝐷(𝑑1, 𝑑2) ≤ 𝑑𝐻(supp(𝑑1), supp(𝑑2)),
theHausdorff distance between the supports of𝑑1 and𝑑2. Let𝑋 = supp(𝑑1) and𝑌 = supp(𝑑2); and let

𝑅𝑊𝑀𝐷1(𝑑1, 𝑑2) and𝑅𝑊𝑀𝐷2(𝑑1, 𝑑2) denote the relaxed optimal values when themarginal constraints
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on 𝑑1 and 𝑑2 are kept, respectively:

𝑑𝐻(𝑋, 𝑌) = max (sup
𝑥∈𝑋

inf
𝑦∈𝑌

𝑑(𝑥, 𝑦), sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦))

≥ max (𝑅𝑊𝑀𝐷1(𝑑1, 𝑑2), 𝑅𝑊𝑀𝐷2(𝑑1, 𝑑2)) = 𝑅𝑊𝑀𝐷(𝑑1, 𝑑2).

The inequality follows since the left argument of the max is the furthest mass must travel in the solution

to 𝑅𝑊𝑀𝐷1, while the right is the furthest mass must travel in the solution to 𝑅𝑊𝑀𝐷2. It is tight if the

documents have singleton support and whenever 𝑑1 and 𝑑2 are supported on parallel affine subspaces

and are translates in a normal direction. A 2D example is in Figure 8-2.

The preceding discussion suggests thatRWMD is not an appropriateway to speed upWMDfor long

documents with overlapping support, scenario whereWMD computational complexity is especially pro-

hibitive. The Gutenberg dataset showcases this failure, in which documents frequently have common

words. Our proposed HOTT does not suffer from this failure mode, while being significantly faster and

as accurate as WMD. We verify this in the subsequent experimental studies. In the supplementary ma-

terials we present a brief empirical analysis relating HOTT and RWMD to WMD in terms of Mantel

correlation and a Frobenius norm.

8.5 Experiments

Wepresent timings formetric computation and consider applicationswhere distance betweendocuments

plays a crucial role: 𝑘-NN classification, low-dimensional visualisation, and link prediction.

8.5.1 Computational timings

HOTT implementation. During training, we fit LDA with 70 topics using a Gibbs sampler (Griffiths

& Steyvers, 2004). Topics are truncated to the 20 most heavily-weighted words and renormalised. The

pairwise distances between topics 𝑊𝑀𝐷(𝑡𝑖, 𝑡𝑗) are precomputed with words embedded in ℝ300 using

GloVe (Pennington et al., 2014). To evaluate HOTT at testing time, a few iterations of the Gibbs sampler

are run to obtain topic proportions �̄�𝑖 of a new document 𝑑𝑖. When computing HOTT between a pair
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Figure 8-3: 𝑘-NN classification performance across datasets

of documents we truncate topic proportions at 1/(|𝑇| + 1) and renormalise. Every instance of the OT

linear program is solved using Gurobi (Gurobi Optimization, 2018).

We note that LDA inferencemay be carried out using any other approaches, e.g. stochastic/streaming

variational inference (Hoffman et al., 2013; Broderick et al., 2013) or geometric algorithms (Yurochkin &

Nguyen, 2016; Yurochkin et al., 2019c). We chose the MCMC variant (Griffiths & Steyvers, 2004) for its

strong theoretical guarantees, simplicity and wide adoption in the topic modelling literature.

Topic computations. The preprocessing steps of ourmethod—computing LDA topics and the topic

to topic pairwise distancematrix—are dwarfed by the cost of computing the full document-to-document

pairwise distancematrix. The complexity of base metric computation in our implementation is𝑂(|𝑇|2),
since ∣supp(𝑡𝑖)∣ = 20 for all topics, leading to a relatively small OT instance.

HOTT computations. All distance computations were implemented in Python 3.7 and run on an

Intel i7-6700K at 4GHz with 32GB of RAM. Timings for pairwise distance computations are in Table

8.1 (right). HOTT outperforms RWMD and WMD in terms of speed as it solves a significantly smaller

linear program. On the left side of Table 8.1 we summarise relevant dataset statistics: |𝐷| is the number

of documents; |𝑉| is the vocabulary size; intersection over union (IOU) characterises average overlap in

words between pairs of documents; avg(𝑙) is the average number of unique words per document and

avg(𝜅) is the average number of major topics (i.e., after truncation) per document.
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Table 8.1: Dataset statistics and document pairs per second; higher is better. HOTT has higher through-
put and excels on long documents with large portions of the vocabulary (as in gutenberg).

Dataset statistics Pairs per second

Dataset |𝐷| |𝑉| IOU avg(𝑙) avg(𝜅) Classes RWMD WMD WMDT20 HOFTT HOTT

bbcsport 737 3657 0.066 116.5 11.7 5 1494 526 1545 2016 2548
twitter 3108 1205 0.029 9.7 6.3 3 2664 2536 2194 1384 1552
ohsumed 9152 8261 0.046 59.4 11.0 10 454 377 473 829 908
classic 7093 5813 0.017 38.5 8.7 4 816 689 720 980 1053
reuters8 7674 5495 0.06 35.7 8.7 8 834 685 672 918 989
amazon 8000 16753 0.019 44.3 9.0 4 289 259 253 927 966
20news 13277 9251 0.011 69.3 10.5 20 338 260 384 652 699
gutenberg 3037 15000 0.25 4367 13.3 142 2 0.3 359 1503 1720

8.5.2 𝑘-NN classification

We follow the setup of Kusner et al. (2015a) to evaluate performance of HOTT on 𝑘-NN classification.

Datasets. We consider 8 document classification datasets: BBC sports news articles (bbcsport) la-

belled by sport; tweets labelled by sentiments (twitter) (Sanders, 2011); Amazon reviews labelled by cat-

egory (amazon); Reuters news articles labelled by topic (reuters) (we use the 8-class version and train-

test split of Cachopo et al. (2007)); medical abstracts labelled by cardiovascular disease types (ohsumed)

(using 10 classes and train-test split as in Kusner et al. (2015a)); sentences from scientific articles labelled

by publisher (classic); newsgroup posts labelled by category (20news), with “by-date” train-test split

and removing headers, footers and quotes;1 and Project Gutenberg full-length books from 142 authors

(gutenberg) using the author names as classes and 80/20 train-test split in the order of document ap-

pearance. For gutenberg, we reduced the vocabulary to the most common 15000 words. For 20news,

we removed words appearing in ≤5 documents.

Baselines. We focuson evaluatingHOTTandavariationwithout topicproportion truncation (HOFTT:

hierarchical optimal full topic transport) as alternatives to RWMD in a variety ofmetric-dependent tasks.

As demonstrated by the authors, RWMD has nearly identical performance to WMD, while being more

computationally feasible. Additionally, we analyse a naïve approach for speeding-up WMD where we

truncate documents to their top 20uniquewords (WMD-T20),making complexity comparable toHOTT

(yet 20 >avg(𝜅) on all datasets). For 𝑘-NN classification, we also consider baselines that represent doc-
1https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
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Figure 8-4: Aggregated 𝑘-NN classification performance normalised by nBOW

uments in vector form and use Euclidean distances: normalised bag-of-words (nBOW) (Frakes & Baeza-

Yates, 1992); latent semantic indexing (LSI) (Deerwester et al., 1990); latent Dirichlet allocation (LDA)

(Blei et al., 2003) trained with a Gibbs sampler (Griffiths & Steyvers, 2004); and term frequency in-

verse document frequency (TF-IDF) (Spärck Jones, 1972). We omit comparison to embedding via BOW

weighted averaging as it was shown to be inferior to RWMDbyKusner et al. (2015a) (i.e., Word Centroid

Distance) and instead consider smooth inverse frequency (SIF), a recent document embedding method

by Arora et al. (2017). We also compare to bag-of-words, where neighbours are identified using cosine

similarity (Cosine). We use same pre-trained GloVe embeddings for HOTT, RWMD, SIF and truncated

WMD and set the same number of topics |𝑇| = 70 for HOTT, LDA and LSI; we provide experiments

testing parameter sensitivity.

Results. We evaluate each method on 𝑘-NN classification (Fig. 8-3). There is no uniformly best

method, but HOTT performs best on average (Fig. 8-4) We highlight the performance on the Guten-

berg dataset compared to RWMD. We anticipate poor performance of RWMD on Gutenberg, since
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books contain more words, which canmake RWMDdegenerate (see §8.4 and Fig. 8-2). Also note strong

performance of TF-IDF on ohsumed and 20news, which differs from results of Kusner et al. (2015a).

We believe this is due to a different normalisation scheme. We used TfidfTransformer from scikit-learn

(Pedregosa et al., 2011) with default settings. We conclude that HOTT is most powerful, both computa-

tionally (Table 8.1 right) and as a distance metric for 𝑘-NN classification (Figures 8-3 and 8-4), on larger

corpora of longer documents, whereas on shorter documents both RWMD and HOTT perform simi-

larly.

Another interesting observation is the effect of truncation: HOTT performs as well as HOFTT,

meaning that truncating topic proportions of LDA does not prevent us from obtaining high-quality

document distances in less computational time, whereas truncating unique words for WMD degrades

its performance. This observation emphasises the challenge of speeding up WMD, i.e. WMD cannot

be made computationally efficient using truncation without degrading its performance. WMD-T20 is

slower than HOTT (Table 8.1) and performs noticeably worse (Figure 8-4). Truncating WMD further

will make its performance even worse, while truncating less will quickly lead to impractical run-time.

In the supplement, we complement our results considering 2-Wasserstein distance, and stemming, a

popular text pre-processing procedure for topic models to reduce vocabulary size. HOTT continues to

produce best performance on average. We restate that in all main text experiments we used 1-Wasserstein

(i.e. eq. (2.2)) and did not stem, following experimental setup of Kusner et al. (2015a).

8.5.3 Sensitivity analysis of HOTT

We analyse sensitivity of HOTT with respect to its components: word embeddings, number of LDA

topics, and topic truncation level.

Sensitivity to word embeddings. We train word2vec (Mikolov et al., 2013) 200-dimensional embed-

dings on Reuters and compare relevant methods with our default embedding (i.e., GloVe) and newly-

trained word2vec embeddings. According to Mikolov et al. (2013), word embedding quality largely de-

pends on data quantity rather than quality; hence we expect the performance to degrade. In Fig. 8-5(a),

RWMD and WMD truncated performances drop as expected, but HOTT and HOFTT remain stable;

this behaviour is likely due to the embedding-independent topic structure taken into consideration.

95



GloVe word2vec on R8
Word embedding method

0

2

4

6

8

10

Te
st

 e
rro

r % 5.6

7.7

4.6

9.9

4.7 4.94.8 4.5

RWMD
WMD-T20
HOFTT
HOTT

20 40 60 80 100
Number of topics

4

6

8

10

12

Te
st

 e
rro

r %

HOTT
HOFTT
LDA
LSI

20 40 60 80 100
Number of topics

5

10

15

20

25

Te
st

 e
rro

r %

HOTT
HOTT full
HOFTT 50
HOTT 50
HOFTT 10
HOFTT
HOTT 10
LDA
HOTT 100
HOFTT 100
HOFTT full

Embedding sensitivity Topic number sensitivity Topic truncation sensitivity
on reuters on classic on reuters

Figure 8-5: Sensitivity of our approach with respect to hyperparameters.

Number of LDA topics. In our experiments, we set |𝑇| = 70. When the |𝑇| increases, LDA resem-

bles the nBOW representation; correspondingly, HOTT approaches the WMD. The difference, how-

ever, is that nBOW is a weaker baseline, whileWMD is powerful document distance. Using the classic

dataset, in Fig. 8-5(b) we demonstrate that LDA (and LSI) may degrade with too many topics, while

HOTT and HOFTT are robust to topic overparameterization. In this example, better performance of

HOTT over HOFTT is likely due relatively short documents of the classic dataset.

Whilewe have shown thatHOTT is not sensitive to the choice of the number of topics, it is also possi-

ble to eliminate this parameter byusingLDAinference algorithms that learnnumberof topics (Yurochkin

et al., 2017) or adopting Bayesian nonparametric topic modes and corresponding inference schemes (Teh

et al., 2006; Wang et al., 2011; Bryant & Sudderth, 2012).

Topic truncation. Fig. 8-5(c) demonstrates 𝑘-NN classification performance on the reuters dataset

with varying topic truncation: top 10, 20 (HOTTandHOFTT), 50, 100words andno truncation (HOTT

full andHOFTT full); LDA performance is given for reference. Varying the truncation level does not af-

fect the results significantly, however no truncation results in unstable performance.

8.5.4 t-SNE metric visualisation

Visualising metrics as point clouds provides useful qualitative information for human users. Unlike 𝑘-
NN classification, mostmethods for this task require long-range distances and a full metric. Here, we use
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Figure 8-6: t-SNE on classic

t-SNE (van derMaaten &Hinton, 2008) to visualise HOTT and RWMDon the classic dataset in Fig.

8-6. HOTT appears to more accurately separate the labelled points (colour-coded). The supplementary

material gives additional t-SNE results.

8.5.5 Supervised link prediction

We next evaluate HOTT in a different prediction task: supervised link prediction on graphs defined on

text domains, here citation networks. The specific task we address is the Kaggle challenge of Link Predic-

tion TU.2 In this challenge, a citation network is given as an undirected graph, where nodes are research

papers and (undirected) edges represent citations. From this graph, edges have been removed at random.

The task is to reconstruct the full network. The dataset contains 27770 papers (nodes). The training and

testing sets consist of 615512 and 32648 node pairs (edges) respectively. For each paper, the available

data only includes publication year, title, authors, and abstract.

To study the effectiveness of a distance-basedmodel withHOTT for link prediction, we train a linear

SVM classifier over the feature set 𝛷, which includes the distance between the two abstracts 𝜙𝑑𝑖𝑠𝑡 com-
2www.kaggle.com/c/link-prediction-tu
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Table 8.2: Link prediction: using distance (rows) for node-pair representations (cols).

Distance F1 Score

𝛷0 𝛷1 𝛷2 𝛷3 𝛷4

HOFTT 73.22 76.27 76.62 78.85 83.37
HOTT 73.19 76.03 76.24 78.64 83.25
RWMD 71.60 74.90 75.20 77.16 82.92

WMD-T20 67.22 63.38 65.20 70.38 81.84
None — 61.13 64.27 67.72 81.68

puted via one of {HOFT, HOTT, RWMD, WMD-T20}. For completeness, we also examine excluding

the distance totally. We incrementally grow the feature sets 𝛷 as: 𝛷0 = {𝜙𝑑𝑖𝑠𝑡}, 𝛷1 = {𝜙𝑑𝑖𝑠𝑡} ∪ {𝜙1},
𝛷𝑛 = {𝜙𝑑𝑖𝑠𝑡} ∪ {𝜙1, … , 𝜙𝑛} where 𝜙1 is the number of common words in the titles, 𝜙2 the number of

common authors, and 𝜙3 and 𝜙4 the signed and absolute difference between the publication years.

Table 8.2 presents the results; evaluation is based on the F1-Score. Consistently, HOFTT andHOTT

aremore effective thanRWMDandWMD-T20 in all tests, andnot using any of the distances consistently

degrades the performance.

8.6 Conclusion

We have proposed a hierarchical method for comparing natural language documents that leverages op-

timal transport, topic modelling, and word embeddings. Specifically, word embeddings provide global

semantic language information, while LDA topic models provide corpus-specific topics and topic dis-

tributions. Empirically these combine to give superior performance on various metric-based tasks. We

hypothesise that modelling documents by their representative topics is better for highlighting differences

despite the loss in resolution. HOTT appears to capture differences in the same way a person asked to

compare two documents would: by breaking down each document into easy to understand concepts,

and then comparing the concepts.

There are many avenues for future work. From a theoretical perspective, our use of a nested Wasser-

stein metric suggests further analysis of this hierarchical transport space. Insight gained in this direction
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may reveal the learning capacity of our method and inspire faster or more accurate algorithms. From a

computational perspective, our approach currently combines word embeddings, topic models and OT,

but these are all trained separately. End-to-end training that efficiently optimises these three components

jointly would likely improve performance and facilitate analysis of our algorithm as a unified approach

to document comparison.

Finally, from an empirical perspective, the performance improvements we observe stem directly from

a reduction in the size of the transport problem. Investigation of larger corpora with longer documents,

and applications requiring the full set of pairwise distances are now feasible. We also can consider appli-

cations to modelling of images or 3D data.
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9

Alleviating Label Switching with Optimal Transport

What follows may seem to come from left field given what has come before, but at the heart of our proposal

to alleviate a common issue in Bayesian inference is an algorithm that relies heavily on the hierarchical

point of view we have explored in the previous chapter.

Label switching is a problem caused by the invariance of optimisation variables to a group action, such

as permuting the labels of the variables. This leads to problems down the road when we want to compute

statistics of these variables. Our approach lifts this problem into the space of measures on measures and

develops tools to manipulate these higher order distributions that are both fast and effective.

9.1 Introduction

Mixture models are powerful tools for understanding multimodal data. In the Bayesian setting, to fit a

mixture model to such data, we typically assume a prior number of components and optimise or sample

from the posterior distribution over the component parameters. If prior components are exchangeable,

this leads to an identifiability issue known as label switching. In particular, permuting the ordering of

mixture components does not change the likelihood, since it produces the same model. The underlying

problem is that a group acts on the parameters of themixturemodel; posterior probabilities are invariant

under the action of the group.

To formalise this intuition, suppose our input is a data set𝑋 and a parameter𝐾 denoting the number

of mixture components. In the most common application, we want to fit a mixture of 𝐾 Gaussians to
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the data; our parameter set is𝛩 = {𝜃1, … , 𝜃𝐾}where 𝜃𝑘 = {𝜇𝑘, 𝛴𝑘, 𝜋𝑘} gives the parameters of each compo-

nent. The likelihood of 𝑥 ∈ 𝑋 conditioned on𝛩 is 𝑝(𝑥|𝛩) = ∑𝐾
𝑘=1 𝜋𝑘𝑓(𝑥; 𝜇𝑘, 𝛴𝑘),where 𝑓(𝑥; 𝜇𝑘, 𝛴𝑘) is

the density function of𝒩(𝜇𝑘, 𝛴𝑘). Any permutation of the labels 𝑘 = 1, … ,𝐾 yields the same likelihood.

The prior is also permutation invariant. When we compute statistics of the posterior 𝑝(𝛩|𝑥), however,

this permutation invariance leads to𝐾! symmetric regions in the posterior landscape. Sampling and infer-

ence algorithms behave poorly as the number of modes increases, and this problem is only exacerbated in

this context since increasing thenumber of components in themixturemodel leads to a super-exponential

increase in the number ofmodes of the posterior. Previousmethods such as the invariant losses of Celeux

et al. (2000) and pivot alignments of Marin et al. (2005) do not identify modes in a principled manner.

To combat this issue, we leverage the theory of optimal transport. In particular, one way to avoid the

multimodal nature of the posterior distribution is to replace each sample with its orbit under the action

of the symmetry group seen as a distribution over 𝐾! points. While this symmetrised distribution is

invariant to group actions, we can not average several such distributions using standard Euclideanmetrics.

We use the notion of aWasserstein barycenter to calculate a mean in this space, which we can project to a

mean in the parameter space via the quotient map. We show conditions under which our optimisation

can be performed efficiently on the quotient space, thus circumventing the need to store andmanipulate

orbit distributions with large support.

Contributions. We give a practical and simple algorithm to solve the label switching problem. To justify

our algorithm, we demonstrate that a group-invariant Wasserstein barycenter exists when the distribu-

tions being averaged are group-invariant. We give conditions under which the Wasserstein barycenter

can be written as the orbit of a single point, and we explain how failure modes of our algorithm corre-

spond to ill-posed problems. We show that the problem can be cast as computing the expected value of

the quotient distribution, and we give an SGD algorithm to solve it.

9.2 Related work

Mixture models. Gaussian mixture models are powerful for modelling a wide range of phenomena

(McLachlan et al., 2019). These models assume that a sample is drawn from one of the latent states (or
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components), but that the particular component assigned to any given sample is unknown. In a Bayesian

setup,Markov ChainMonte Carlo can sample from the posterior distribution over the parameters of the

mixture model. Hamiltonian Monte Carlo (HMC) has proven particularly successful for this task. In-

troduced for lattice quantum chromodynamics (Duane et al., 1987), HMC has become a popular option

for statistical applications (Neal et al., 2011). Recent high-performance software offers practitioners easy

access to HMC and other sampling algorithms (Carpenter et al., 2017).

Label switching. Label switching arises whenwe take a Bayesian approach to parameter estimation in

mixturemodels (Diebolt&Robert, 1994). Jasra et al. (2005) and Papastamoulis (2016) overview the prob-

lem. Label switching can happen evenwhen samplers do not explore all𝐾!possiblemodes, e.g., forGibbs

sampling. Documentation for modern sampling tools mentions that it arises in practice.1 Label switch-

ing can also occur when using parallel HMC, since tools like Stan run multiple chains at once. While a

single chain may only explore one mode, several chains are likely to yield different label permutations.

Jasra et al. (2005, §6) mention a few loss functions invariant to the different labellings. Most rele-

vant is the loss proposed by Celeux et al. (2000, §5). Beyond our novel theoretical connections to optimal

transport, in contrast to theirmethod, our algorithmuses optimal rather than greedymatching to resolve

elements of the symmetric group, applies to general groups and quotient manifolds, and uses stochastic

gradient descent instead of simulated annealing. Somewhat ad-hoc but also related is the pivotal reorder-

ing algorithm (Marin et al., 2005), which uses a sample drawn from the distribution as a pivot point to

break the symmetry; as we will see in our experiments, a poorly-chosen pivot seriously degrades the per-

formance.

Optimal transport. Optimal transport (OT) has seen a surge of interest in learning, from applica-

tions in generativemodels (Arjovsky et al., 2017; Genevay et al., 2018), Bayesian inference (Srivastava et al.,

2015a), and natural language (Kusner et al., 2015b; Alvarez-Melis & Jaakkola, 2018) to technical underpin-

nings for optimisation methods (Chizat & Bach, 2018). See Solomon (2018); Peyré & Cuturi (2018) for

discussion of computational OT and Santambrogio (2015); Villani (2008) for theory.

The Wasserstein distance from optimal transport (§9.3.1) induces a metric on the space of probabil-

ity distributions from the geometry of the underlying domain. This leads to a notion of a Wasserstein

barycenter of several probability distributions (Agueh & Carlier, 2011). Scalable algorithms have been
1https://mc-stan.org/users/documentation/case-studies/identifying_mixture_models.html
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proposed for barycenter computation, includingmethods that exploit entropic regularisation (Cuturi &

Doucet, 2014), use parallel computing (Staib et al., 2017), or apply stochastic optimisation (Claici et al.,

2018)

9.3 Optimal transport under group actions

Before delving into technical details, we will illustrate our approach with a simple example. Assume we

have some data to whichwewish to fit a Gaussianmixturemodel with𝐾 components. We can now draw

samples from the posterior distribution, and we would like to obtain a point estimate of the mean of the

posterior. We draw two samples𝛩1 = (𝜃11 , … , 𝜃1𝐾) and𝛩2 = (𝜃21 , … , 𝜃2𝐾). We cannot average them due to

the ambiguity of label switching; see Figure 9-1(a) and §B.1.3 of the supplementary for a simple example.

However, we can explicitly encode this multimodality as a uniform distribution over all𝐾! states:

1
𝐾! ∑𝜎∈𝑆𝐾

𝛿𝜎⋅𝛩1 and 1
𝐾! ∑𝜎∈𝑆𝐾

𝛿𝜎⋅𝛩2

where 𝑆𝐾 is the symmetry group on𝐾 points that acts by permuting the elements of𝛩1 and𝛩2. These

distributions are now invariant to permutations, so we can ask if there exists an average in this space. In

this section, we prove that this is possible through the machinery of optimal transport.

We provide theoretical results relevant to optimal transport betweenmeasures supported on the quo-

tient space under actions of some group 𝐺. This theory is fairly general and requires only basic assump-

tions about the underlying space𝑋 and the action of𝐺. For each theoretical result, we will use italics to

highlight key assumptions, since they vary somewhat from proposition to proposition.

9.3.1 Preliminaries: Optimal transport

𝑊𝑝 induces ametric on the set𝑃𝑝(𝑋) ofmeasures with finite 𝑝-thmoments (Villani, 2008). Wewill focus

on 𝑃2(𝑋), endowed with the metric𝑊2. This metric structure allows us to define meaningful statistics

for sets of distributions. In particular, a Fréchetmean (orWasserstein barycenter) of a set of distributions
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𝜈1, … , 𝜈𝑛 ∈ 𝑃2(𝑋) is defined as a minimiser

𝜇∗ = argmin
𝜇∈𝑃2(𝑋)

𝑛
∑
𝑖=1

1
𝑛𝑊

2
2 (𝜇, 𝜈𝑖). (9.1)

We follow Kim & Pass (2017) and generalise this notion slightly, by placing a measure itself on the space

𝑃2(𝑋). We will use 𝑃2(𝑃2(𝑋)) to denote the space of probability measures on 𝑃2(𝑋) that have finite

second moments and let𝛺 be a member of this set. Then the following functional will be finite, which

generalises (9.1) from finite sums to infinite sets of measures:

𝐵(𝜇) = ∫
𝑃2(𝑋)

𝑊2
2 (𝜇, 𝜈) d𝛺(𝜈) = 𝔼𝜈∼𝛺 [𝑊2

2 (𝜇, 𝜈)] . (9.2)

In analogue to (9.1), a natural task is to search for a minimiser of the map 𝜇 ↦ 𝐵(𝜇). For existence of
such a minimiser, we simply require that supp(𝛺) is tight.

Definition 9.1 (Tightness of measures). A collection 𝒞 of measures on 𝑋 is called tight if for any 𝜀 > 0
there exists a compact set 𝐾 ⊂ 𝑋 such that for all 𝜇 ∈ 𝒞, we have 𝜇(𝐾) > 1 − 𝜀.

Here are three examples of tight collections: 𝑃2(𝑋) if 𝑋 is compact, the set of all Gaussian distribu-

tions with means supported on a compact space and of bounded variance, or any set of measures with a

uniform bound on second moments (argued in §B.1.2 of the supplementary). This assumption is fairly

mild and covers many application scenarios.

Prokhorov’s theorem (deferred to the §B.1.1) implies the existence of a barycenter:

Theorem 9.1 (Existence of minimisers). 𝐵(𝜇) has at least one minimiser in 𝑃2(𝑋) if supp(𝛺) is tight.

9.3.2 Optimal transport with group invariances

Let𝐺 be a finite group that acts by isometries on𝑋. We define the set of measures invariant under group

action 𝑃2(𝑋)𝐺 = {𝜇 ∈ 𝑃2(𝑋) | 𝑔#𝜇 = 𝜇, ∀𝑔 ∈ 𝐺}, where the pushforward of 𝜇 by 𝑔 is defined as

𝑔#𝜇(𝐵) = 𝜇(𝑔−1(𝐵)) for 𝐵 a measurable set. We are interested in the relation between the space 𝑃2(𝑋)𝐺

and the space of measures on the quotient space 𝑃2(𝑋/𝐺). If all of the measures in the support of𝛺 in

(9.2) are invariant under group action, we can show that there exists a barycenter with the same property:
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Lemma. If 𝛺 ∈ 𝑃2(𝑃2(𝑋)𝐺) is supported on the set of group-invariant measures on 𝑋 and supp(𝛺) is

tight, then there exists a minimiser of 𝐵(𝜇) in 𝑃2(𝑋) that is invariant under group action.

Proof. Let𝜇 ∈ 𝑃2(𝑋)denote theminimiser fromTheorem9.1. Define anewdistribution𝜇𝐺 = 1
|𝐺| ∑𝑔∈𝐺 𝑔#𝜇.

We verify that 𝜇𝐺 has the same cost as 𝜇:

𝔼𝜈∼𝛺 [𝑊2
2 (

1
|𝐺| ∑𝑔∈𝐺

𝑔#𝜇, 𝜈)] ≤ 𝔼𝜈∼𝛺 [
1
|𝐺| ∑𝑔∈𝐺

𝑊2
2 (𝑔#𝜇, 𝜈)] by convexity of 𝜇 ↦ 𝑊2

2 (𝜇, 𝜈)

= 𝔼𝜈∼𝛺 [
1
|𝐺| ∑𝑔∈𝐺

𝑊2
2 (𝜇, (𝑔−1)#𝜈)] since 𝑔 acts by isometry

= 1
|𝐺| ∑𝑔∈𝐺

𝔼𝜈∼𝛺[𝑊2
2 (𝜇, 𝜈)]=𝔼𝜈∼𝛺[𝑊2

2 (𝜇, 𝜈)] by linearity of expectation and group invariance of 𝜈.

But 𝜇 is a minimiser, so the inequality in line 1 must be an equality.

Remark: If 𝑋 is a compact Riemannian manifold and 𝛺 gives positive weight to the set of abso-

lutely continuous measures, then Theorem 3.1 of Kim & Pass (2017) provides uniqueness (and this may

be extended to other non-compact cases with suitable decay conditions). However, in our setting, 𝛺 is

supported on samples, measures consisting of delta functions. In this case, a simple counterexample is

presented in the supplementary (§B.1.4) which arises in the case where𝑋 consists of two points inℝ2 and

𝑆2 acts to swap the points (𝑆𝐾 is the group of permutations of a finite set of𝐾 points). This is accompa-

nied by a study of the case of𝐾 points inℝ𝑑 (see supplementary §B.1.3), relevant to the mixture models

where components are evenly weighted and identical with a single mean parameter. Via this study we see

that counterexamples seem to require a high degree of symmetry, which is unlikely to happen in applied

scenarios, and does not arise empirically in our experiments.

An analogous proof technique can be used to show the following lemma needed later:

Lemma. If 𝜈1 and 𝜈2 are two measures invariant under group action, then there exists an optimal transport

plan 𝜋 ∈ 𝛱(𝜈1, 𝜈2) that is invariant under the group action 𝑔 ⋅ 𝜋(𝑥, 𝑦) = 𝜋(𝑔 ⋅ 𝑥, 𝑔 ⋅ 𝑦).

The above suggests that we might instead search for barycenters in the quotient space. Consider:

Lemma (Lott & Villani 2009, Lemma 5.36). Let 𝑝 ∶ 𝑋 → 𝑋/𝐺 be the quotient map. The map 𝑝∗ ∶
𝑃2(𝑋) → 𝑃2(𝑋/𝐺) restricts to an isometric isomorphism between the set of𝑃2(𝑋)𝐺 of𝐺-invariant elements
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in 𝑃2(𝑋) and 𝑃2(𝑋/𝐺).

We now introduce additional structure relevant to label switching. Assume that all measures 𝜈 ∼ 𝛺
are theorbits of individual delta distributions, as they are samples ofparameter values, i.e., 𝜈 = 1

|𝐺| ∑𝑔∈𝐺 𝛿𝑔⋅𝑥
for some 𝑥 ∈ 𝑋. In the simple example of a mixture of two Gaussians from 1D data with means at

𝜇1, 𝜇2 ∈ ℝ, 𝜈 is of the following form 𝜈 = 1
2𝛿(𝜇1,𝜇2) +

1
2𝛿(𝜇2,𝜇1).

Under this assumption and by Lemmas 9.3.2 and 9.3.2, minimisation of𝐵(𝜇) is equivalent to finding

the Wasserstein barycenter of delta distributions on𝑋/𝐺. Letting𝛺∗ ∶= 𝑝∗#𝛺, we aim to find:

argmin
𝜇∈𝑃2(𝑋/𝐺)

𝔼𝛿𝑥∼𝛺∗
[𝑊2

2 (𝜇, 𝛿𝑥)] . (9.3)

From properties of Wasserstein barycenters (Carlier et al. 2015, Equation (2.9)), the support of 𝜇 lies

in the set of solutions to

min
𝑧∈𝑋/𝐺

𝔼𝛿𝑥∼𝛺∗
[𝑑(𝑥, 𝑧)2] (9.4)

where 𝑑 is the metric on the quotient space 𝑋/𝐺 (see e.g. Santambrogio 2015, §5.5.5). As 𝛺 has finite

second moments, so does 𝛺∗, giving us existence of the expectation. The existence of minimisers of

𝑧 → 𝔼𝛿𝑥∼𝛺∗
[𝑑(𝑥, 𝑧)2] is established in §B.2.1 of the supplementary, giving the following lemma:

Lemma. The map 𝑧 → 𝔼𝛿𝑥∼𝛺∗
[𝑑(𝑥, 𝑧)2] has a minimiser.

Uniqueness of minimisers is not guaranteed (see §B.1.4 of supplementary), but we can rewrite (9.3)

as:

argmin
𝜇∈𝑃2(𝑋/𝐺)

𝔼𝛿𝑥∼𝛺∗
[𝑊2

2 (𝜇, 𝛿𝑥)] = argmin
𝜇∈𝑃2(𝑋/𝐺)

∫
𝑋/𝐺

∫
𝑋/𝐺

𝑑(𝑥, 𝑦)2 d𝜇(𝑦) d𝛺∗(𝛿𝑥)

= argmin
𝜇∈𝑃2(𝑋/𝐺)

∫
𝑋/𝐺

∫
𝑋/𝐺

𝑑(𝑥, 𝑦)2 d𝛺∗(𝛿𝑥) d𝜇(𝑦).

By Lemma 9.3.2, the term 𝑦 → ∫𝑋/𝐺 𝑑(𝑥, 𝑦)
2d𝛺∗(𝛿𝑥) has a (potentially non-unique) minimiser. Call

this function 𝑏(𝑦). We are left with

argmin
𝜇∈𝑃2(𝑋/𝐺)

∫
𝑋/𝐺

𝑏(𝑦) d𝜇(𝑦).
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Any minimiser 𝑦∗ of 𝑏 leads to a minimising distribution 𝜇 = 𝛿𝑦∗ , and we can conclude

Theorem 9.2 (Single Orbit Barycenters). There is a barycenter solution of (9.2) that can be written as

𝜇 = 1
|𝐺| ∑𝑔∈𝐺 𝛿𝑔⋅𝑧∗ .

Returning to our example of a Gaussian mixture model, we see that this theorem implies there is a

barycenter (amean in distribution space) that has the same form as the symmetrised sample distributions.

Any point in the support of the barycenter is an estimate for the mean of the posterior distribution.

As an aside, we mention that our proofs do not require finite groups. In fact, we prove Theorem 9.2

for compact groups𝐺 endowed with a Haar measure in the supplement.

To summarise: Label switching leads to issues when computing posterior statistics because we work

in the full space 𝑋, when we ought to work in the quotient space 𝑋/𝐺. Theorem 9.2 relates means in

𝑋/𝐺 to barycenters ofmeasures on𝑋which gives us a principledmethod for computing statistics backed

by a convex problem in the space of measures: take a quotient, find a mean in 𝑋/𝐺, and then pull the

result back to 𝑋. We will see below in concrete detail that we do not need to explicitly construct and

average in𝑋/𝐺, but may leverage group invariance of the transport to perform these steps in𝑋.

The crux of this theory is that the Wasserstein barycenter in the setting of Lemma 9.3.2 is a point

estimate for the mean of the symmetrised posterior distribution. The results leading to Theorem 9.2

should be understood then as a reduction of the problem of finding an estimate of the mean to that

of minimising a distance function on the quotient space; this latter minimisation problem can then be

solved via Riemannian gradient descent.

9.4 Algorithms

Label switching usually occurs due to symmetries of certain Bayesian models. Posteriors with the label

switching make it difficult to compute meaningful summary statistics, e.g. posterior expectations for the

parameters of interest.

Any attempt to compute posterior statistics in this regime must account for the orbits of samples

under the symmetry group. Continuing in the case of expectations, based on the previous section we

can extract a meaningful notion of averaging by taking the image of each posterior sample under the
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?

(a) Ambiguity (b) Orbit empirical distribution (c) Quotient update

Figure 9-1: (a) Suppose we wish to update our estimate of the average (blue) given a new sample (red)
from𝛺; due to label switching, other points (light shade) have equal likelihood to our sample, causing
ambiguity. (b) Theorem 9.2 suggests an unambiguous update by constructing |𝐺|-point orbits as empir-
ical distributions and doing gradient descent with respect to the Wasserstein metric. (c) This algorithm
is equivalent to moving one point, with a careful choice of update functions. This schematic arises for a
mean-only model with three means inℝ (§B.1.3 of supplementary); 𝐺 = 𝑆3, with action is generated by
reflection over the dashed lines.

symmetry group and computing a barycenter with respect to the Wasserstein metric. This resolves the

ambiguity regarding which points in orbits should match, without symmetry-breaking heuristics like

pivoting (Marin et al., 2005).

Algorithm 4 Riemannian Barycenter of𝛺.
Require: Distribution𝛺, exp and log maps onℳ
Ensure: Estimate of the barycenter of𝛺

1: Initialise the barycenter 𝑝 ∼ 𝛺
2: for 𝑡 = 1, … do

3: Draw 𝑞 ∼ 𝛺
4: −𝐷𝑝𝑐(𝑝, 𝑞) ≔ log𝑝(𝑞)
5: 𝑝 ← exp𝑝 (−

1
𝑡𝐷𝑝𝑐(𝑝, 𝑞))

In this section,weprovide an algorithmfor computing the𝑊2 barycenters above, extracting a symmetry-

invariant notion of expectation for distributions with label switching. As input, we are given a sampler

from a distribution𝛺 over a spaceℳ subject to label switching, as well as its (finite) symmetry group𝐺.

Our goal is to output a barycenter of the form 1
|𝐺| ∑𝑔∈𝐺 𝛿𝑔⋅𝑥 for some 𝑥 ∈ ℳ, using stochastic gradient

descent on (9.2). Our approach can be interpreted two ways, echoing the derivation of Theorem 9.2:

• The most direct interpretation, shown in Figure 9-1(b), is that we push forward 𝛺 to a distribu-
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tion over empirical distributions of the form 1
|𝐺| ∑𝑔∈𝐺 𝛿𝑔⋅𝑥, where 𝑥 ∼ 𝛺, and then compute the

barycenter as a |𝐺|-point empirical distribution whose support points move according to stochas-

tic gradient descent, similar to the method by Claici et al. (2018)

• Since |𝐺| can growextremely quickly, we argue that this algorithm is equivalent to one thatmoves a

single representative 𝑥, so long as the gradient with respect to 𝑥 accounts for the objective function;

this is illustrated in Figure 9-1(c).

Although our final algorithm has cosmetic similarity to pivoting and other algorithms that compute a

single representative point, the details of our approach show an equivalence to a well-posed transport

problem. Moreover, our stochastic gradient algorithm invokes a sampler from𝛺 in every iteration, rather

than precomputing a finite sample, i.e. our algorithm deals with samples as they come in, rather than

collecting multiple samples, and then trying to cluster or break the symmetry a posteriori.

Algorithm 5 Barycenter of𝛺 on quotient space
Require: Distribution𝛺, exp and log maps onℳ
Ensure: Barycenter [(𝑝1, … , 𝑝𝐾)]

1: Initialise the barycenter (𝑝1, … , 𝑝𝐾) ∼ 𝛺
2: for 𝑡 = 1, … do

3: Draw (𝑞1, … , 𝑞𝐾) ∼ 𝛺
4: Compute 𝜎 in (9.5)

5: for 𝑖 = 1, … ,𝐾 do

6: −𝐷𝑝𝑖𝑐(𝑝𝑖, 𝑞𝜎(𝑖)) ≔ log𝑝𝑖(𝑞𝜎(𝑖))
7: 𝑝𝑖 ← exp𝑝𝑖 (−

1
𝑡𝐷𝑝𝑖𝑐(𝑝𝑖, 𝑞𝜎(𝑖)))

Gradient descent on the quotient space. For simplicity of exposition, we introduce a few additional

assumptions on our problem; our algorithm can generalise to other cases, but these assumptions are the

most relevant to the experiments and applications in §9.5. In particular, we assumewe are trying to infer a

mixture model with𝐾 components. The parameters of our model are tuples (𝑝1, … , 𝑝𝐾), where 𝑝𝑖 ∈ ℳ
for all 𝑖 and some Riemannian manifoldℳ. We can think of the space of parameters as the productℳ𝐾.

Typically it is undesirable when two components match exactly in a mixture model, so we additionally
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excise any tuple (𝑝1, … , 𝑝𝐾) with any matching elements (together a set of measure zero). Representing

parameters in a mixture model can be made through a point process, it is natural to work with the𝐾th

ordered configuration space ofℳ considered in physics and algebraic topology (Fadell &Husseini, 2012):

Conf𝐾(ℳ) ∶= ℳ𝐾\{(𝑝1, … , 𝑝𝐾) ∣ 𝑝𝑖 = 𝑝𝑗 for some 𝑖 ≠ 𝑗} ⊂ ℳ𝐾.

Let 𝛺 ∈ 𝑃(Conf𝐾(𝑀)) be the Bayesian posterior distribution restricted to Conf𝐾(𝑀) (assuming

the posterior 𝑃(ℳ𝐾) is absolutely continuous with respect to the volume measure, this restriction does

essentially nothing). If𝐾 = 1, we can compute the expected value of𝛺using a classical stochastic gradient

descent (Algorithm 4). If 𝐾 > 1, however, label switching may occur: There may be a group 𝐺 acting

on {1, 2, … ,𝐾} that reindexes the elements of the product Conf𝐾(𝑀)without affecting likelihood. This

invalidates the expectation computed by Algorithm 4.

In this case, we need to work in the quotient Conf𝐾(𝑀)/𝐺. Two key examples for 𝐺 will be the

symmetric group 𝑆𝐾 of permutations and the cyclic group 𝐶𝐾 of cyclic permutations. When𝐺 = 𝑆𝐾 we

simply recover the𝐾th unordered configuration space, typically denoted UConf𝐾(𝑀).
UConf𝐾(𝑀) is aRiemannianmanifoldwith structure inherited fromtheproductmetric onConf𝐾(𝑀)

and has the property:

𝑑UConf𝐾(𝑀)([(𝑝1, … , 𝑝𝐾)], [(𝑞1, … , 𝑞𝐾)]) = min
𝜎∈𝑆𝐾

𝑑ℳ𝐾((𝑝1, … , 𝑝𝐾), (𝑞𝜎(1), … , 𝑞𝜎(𝐾))). (9.5)

The analogous fact holds for Conf𝐾(ℳ)/𝐺 for other finite𝐺 via standard arguments (see e.g. Kobayashi

(1995)). Thus, we may step in the gradient direction on the quotient by solving a suitable optimal trans-

port matching problem.

Since𝐺 is finite, themap 𝜎minimising (9.5) is computable algorithmically. When𝐺 = 𝐶𝐾, we simply

enumerate all 𝐾 cyclic permutations of (𝑞1, … , 𝑞𝐾) and choose the one closest to p. When 𝐺 = 𝑆𝐾, we

can recover 𝜎 by solving a linear assignment problem with cost 𝑐𝑖𝑗 = 𝑑(𝑝𝑖, 𝑞𝑗)2.
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Algorithm 6 Barycenter for Gaussian Mixtures
Require: Distribution𝛺
Ensure: Barycenter 𝑝 = (𝜇∗1, 𝛴∗

1) … , (𝜇∗𝐾, 𝛴∗
𝐾)

1: Initialise the barycenter 𝑝 ∼ 𝛺
2: for 𝑡 = 1, … do

3: Draw ((𝜇1, 𝛴1) … , (𝜇𝐾, 𝛴𝐾)) ∼ 𝛺
4: Compute 𝜎 in (9.5)

5: for 𝑖 = 1, … ,𝐾 do

6: 𝜇∗𝑖 = 𝜇∗𝑖 − 𝜂(𝜇∗𝑖 − 𝜇𝜎(𝑖))
7: 𝐿∗𝑖 = 𝐿∗𝑖 − 𝜂(𝐼 − 𝑇𝛴∗

𝑖 𝛴𝜎∗(𝑖))𝐿∗𝑖

These properties suggest an adjustment ofAlgorithm4 to account for𝐺. Given a barycenter estimate

p = (𝑝1, … , 𝑝𝐾) and a draw q = (𝑞1, … , 𝑞𝐾) ∼ 𝛺: (1) align p and q by minimising the right-hand side

of (9.5); (2) compute component-wise Riemannian gradients from 𝑝𝑖 to 𝑞𝜎(𝑖); and (3) step p toward q

using the exponential map.

Algorithm 5 summarises our approach. It can be understood as stochastic gradient descent for 𝑧
in (9.4), working in space Conf𝐾(𝑀) rather than the quotient Conf𝐾(𝑀) /𝐺. Theorem 9.2, however,

gives an alternative interpretation. Construct a |𝐺|-point empirical distribution 𝜇 = 1
|𝐺| ∑𝜎∈𝐺 𝛿𝜎⋅p from

the iterate p. After drawing q ∼ 𝛺, we do the same to obtain 𝜈 ∈ 𝑃2(Conf𝐾(𝑀)). Then, our update can

be understood as a stochastic Wasserstein gradient descent step of 𝜇 toward 𝜈 for problem (9.2). While

this equivalent formulation would require 𝑂(|𝐺|) rather than 𝑂(1)memory, it imparts the theoretical

perspective in §9.3, in particular a connection to the (convex) problem of Wasserstein barycenter compu-

tation.

In the supplementary, we prove the following theorem:

Theorem 9.3 (Ordering Recovery). If ℳ = ℝ, with the standard metric, then:

UConf𝐾(𝑀) ≅ {(𝑢1, … , 𝑢𝐾) ∈ Conf𝐾(ℝ) ∣ 𝑢1 < … < 𝑢𝐾} ⊂ ℝ𝐾.

Additionally, the single-orbit barycenter of Theorem 9.2 is unique and our algorithm provably converges.
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This settingoccurswhenone’smixturemodel consists of evenlyweighted componentswithonly a sin-

glemeanparameter for each inℝ. The result relates ourmethod to the classical approachof ordering these

means for correspondence and shows that it is well-justified. The convergence of our algorithm leverages

the convexity of UConf𝐾(𝑀). The supplementary contains additional discussion (§B.2.3) about such

“mean-only” models in ℝ𝑑 for 𝑑 > 1. They lack the niceness of the 𝑑 = 1 case, due to positive curva-

ture. This curvature is problematic for convergence arguments (as it leads to potential non-uniqueness

of barycenters), but we empirically find that our algorithm converges to reasonable results.

Mixtures ofGaussians. One particularly useful example involves estimating the parameters of aGaus-

sian mixture overℝ𝑑. For simplicity, assume that all the mixture weights are equal. The manifoldℳ is

the set of all (𝜇, 𝛴) pairs: ℳ ≅ ℝ𝑑 × 𝒫𝑑 with𝒫𝑑 the set of positive definite symmetric matrices. This

space can be endowed with the𝑊2 metric:

𝑑((𝜇1, 𝛴1), (𝜇2, 𝛴2))2 = 𝑊2
2 (𝒩(𝜇1, 𝛴1),𝒩(𝜇2, 𝛴2)) = ‖𝜇1 − 𝜇2‖22 + 𝔅2(𝛴1, 𝛴2), (9.6)

where𝔅2 is the squared Bures metric𝔅2(𝛴1, 𝛴2) = Tr[𝛴1 + 𝛴2 − 2(𝛴
1
2
1 𝛴2𝛴

1
2
1 )

1
2 ].

As the mean components inherit the structure of Euclidean space, we only need to compute Rie-

mannian gradients and exponential maps for the Bures metric. Muzellec & Cuturi (2018) leverage the

Cholesky decomposition to parameterise 𝛴𝑖 = 𝐿𝑖𝐿⊺𝑖 . The gradient of the Bures metric then becomes:

∇𝐿1
1
2𝔅(𝛴1, 𝛴2) = (𝐼 − 𝑇𝛴1𝛴2)𝐿1 with 𝑇𝛴1𝛴2 = 𝛴− 1

2
1 (𝛴

1
2
1 𝛴2𝛴

1
2
1 )

1
2𝛴− 1

2
1

The 2-Wasserstein exponential map for SPD matrices is exp𝛴(𝜉) = (𝐼 + ℒ𝛴(𝜉))𝛴(𝐼 + ℒ𝛴(𝜉)) where

ℒ𝛴(𝜉) is the solution of this Lyapunov equation : ℒ𝛴(𝜉)𝛴 + 𝛴ℒ𝛴(𝜉) = 𝜉.

9.5 Results

In §9.4,wegave a symmetry-invariant, simple, and efficient algorithmfor computing aWassersteinbarycen-

ter to summarise a distribution subject to label switching. To verify empirically that our algorithm can

efficiently address label switching, we test on two natural examples: estimating the parameters of a Gaus-
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Figure 9-2: True covariances in blue, covariances from SGD in green and pivot in red. Original samples
in the centre.

sian mixture model and a Bayesian instance of multi-reference alignment.

Estimating components of a Gaussian mixture. Our first scenario is estimating the parameters of a

Gaussian mixture with𝐾 > 1 components. We use Hamiltonian Monte Carlo (HMC) to sample from

the posterior distribution of a Gaussian mixture model. Naïve averaging does not yield a meaningful

barycenter estimate, since the samples are not guaranteed to have the same label ordering. To resolve this

ambiguity, we apply our method and two baselines: the pivotal reordering method (Marin et al., 2005)

and Stephens’ method (Stephens, 2000). The Stephens and Pivot methods relabel samples. Stephens

minimises the Kullback–Leibler divergence between average classification distribution and classification

distribution of each MCMC sample. Pivot aligns every sample to a prespecified sample (i.e. pivot) by

solving a series of linear sum assignment problems. Pivot method requires pre-selecting a single sample

for alignment — poor choice of the pivot sample leads to bad estimation quality, while making a “good”

pivot choicemay be highly non-trivial in practice. The default pivot choice is theMAP. Stephensmethod

is more accurate, however it is expensive computationally and has large memory requirement.

To illustratewhy pivoting fails, consider samples drawn from amixture of fiveGaussianswithmean 0
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and covariances𝑅𝜃𝑀with𝑀 = ( 1 0
0 0.1 ) and𝑅𝜃 a rotation of angle 𝜃 ∈ {−𝜋/12, −𝜋/24, 0, 𝜋/12, 𝜋/24} (Figure

9-2). The resulting pivot is uninformative for certain components. The underlying issue is that the pivot

is chosen to maximise the posterior distribution. If this sample lies on the boundary of Conf𝐾(𝑀) /𝑆𝐾,

the pivot cannot be effectively used to realign samples. Quantitative results for this test case are in Table

9.1.

Pivot Stephens SGD

Error (abs) 1.65 1.26 1.47

Time (s) 1.4 54 7.5

Table 9.1: Absolute error & timings

To get a better handle of the performance/accuracy trade-

off for the three methods, we run an additional experiment.

We draw samples from a mixture of five Gaussians over ℝ5

with means 0.5𝑒𝑖, where 𝑒𝑖 ∈ ℝ5 is the 𝑖-th standard basis vec-

tor with 𝑖 ∈ {1, … , 5}, and covariances 0.4𝐼5×5. We implement

HMC sampler using Stan (Carpenter et al., 2017), with four

chains discarding 500 burn-in samples and keeping 500 per

chain. Then we compare the three methods, increasing the number of samples to which they have ac-

cess. We measure relative error as a function of wall clock time and number of samples (Figure 9-3). The

resulting plots align with our intuition: pivoting obtains a suboptimal solution quickly, but if a more

accurate solution is desired, it is better to run our SGD algorithm.
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Figure 9-3: Relative error as a function of (a) number of samples and (b) time.

Multi-reference alignment. Adifferent problem towhichwe can apply ourmethods ismulti-reference

alignment (Zwart et al., 2003; Bandeira et al., 2014). We wish to reconstruct a template signal 𝑥 ∈ ℝ𝐾

given noisy and cyclically shifted samples 𝑦 ∼ 𝑔 ⋅ 𝑥 + 𝒩(0, 𝜎2𝐼), where 𝑔 ∈ 𝐶𝐾 acts by cyclic permuta-

tion. These observations correspond to a mixture model with𝐾 components𝒩(𝑔 ⋅ 𝑥, 𝜎2𝐼) for 𝑔 ∈ 𝐶𝐾
(Bandeira et al., 2017). We simulated draws from this distribution using Markov Chain Monte Carlo

114



(MCMC), where each draw applies a random cyclic permutation and adds Gaussian noise (Figure 9-4a).

The sampler we used was a Gibbs Sampler (Casella & George, 1992). To reconstruct the signal, we first

compute a barycenter using Algorithm 5, giving a reference point to which we can align the noisy signals;

we then average the aligned samples. Reconstructed signals for different 𝜎’s are in Figure 9-4b. To eval-

uate quantitatively, we compute the relative error of the reconstruction as a function of signal-to-noise

ratio SNR = ‖𝑥‖2/𝐾𝜎2 (Figure 9-4c).

𝜎 = 1

𝜎 = 10
𝜎 = 8
𝜎 = 5
𝜎 = 3

𝜎 = 15

Signal
Sample

Figure 9-4: Reconstruction of a signal from shifted and noisy observations. (a) The true signal is plotted
in blue against a random shifted and noisy draw from the MCMC chain. (b) Reconstructed signals at
varying values of noise. (c) Relative error as a function of SNR.

9.6 Discussion and conclusion

The issue underlying label switching is the existence of a group acting on the space of parameters. This

group-theoretic abstraction allowsus to relate awidely-recognisedproblem inBayesian inference toWasser-

stein barycenters from optimal transport. Beyond theoretical interest, this connection suggests a well-

posed and easily-solved optimisation method for alleviating label switching in practice.

The new structure we have revealed in the label switching problem opens several avenues for further

inquiry. Most importantly, (9.4) yields a simple algorithm, but this algorithm is only well-understood

when the Fréchet mean is unique. This leads to two questions: When can we prove uniqueness of the

mean? More generally, are there efficient algorithms for computing barycenters in 𝑃2(𝑋)𝐺?
Finding faster algorithms for computing barycenters under the constraints of Lemma 9.3.2 provides

an unexplored and highly-structured instance of the barycenter problem. Current approaches, such as

those by Cuturi & Doucet (2014) and Claici et al. (2018) are too slow and not tailored to the demands of
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our application, since each measure is supported on𝐾! points and the barycenter may not share support

with the input measures. Moreover, after incorporating an HMC sampler or similar piece of machinery,

our task likely requires taking the barycenter of an infinitely large set of distributions. The key to this

problem is to exploit the symmetry of the support of the input measures and the barycenter.
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10

Hierarchical Structure: Discussion

The examples we have seen of hierarchical structure may seem limited. Indeed, how could we generalise

the approach in Chapter 9 to data that does not exhibit the same group invariance?

Recall, however, what we did in Chapter I where the goal was to approximate a distribution by a

finite point set. One way to compute a distance between two distributions 𝜇 and 𝜈 is to compute finite

approximations of both, and then compute the transport cost between the finitely supported measures.

Instead of simply computing the transport distance between the distributions we obtain, we could

use a hierarchical approach for a better solution. Recall that each point in the quantization is assigned

a region in the input distribution. If we can compute transport between such regions more easily than

we can between the original distributions (or even approximate such a transport cost), then any problem

that admits a quantization also admits a hierarchical approximation to the true transport cost.

Using the notation of Chapter 2, what we just described can be written as

𝑊𝑝(𝜇, 𝜈) ≈ 𝑊𝑝 (
𝑛
∑
𝑖=1

1
𝑛𝛿𝜇 𝑉𝑣

𝑖
,

𝑛
∑
𝑗=1

1
𝑛𝛿𝜈 𝑉𝑤

𝑗
) .

The ground metric on the restrictions is itself transport, and, in certain cases, can be computed much

faster than the full problem.
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Part III

Optimal Transport on Discrete Surfaces
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11

Introduction

Wherein we step into curved space and see how ideas from fluid dynamics can inform algorithms for

solving the optimal transport problem. We show applications to solving measure valued Dirichlet problems,

and computing gradient flows on the space of distributions.

Our journey has taken us fromgeneric quantization tools through to specialised transport algorithms

for data that exhibits certain structural patterns. What we have not discussed, and have often assumed

was easy is computing the Wasserstein distance on a given metric space.

The reason we have avoided this discussion is that frequently the problem simply boils down to a

linear program with 𝑛2 variables for which there exist a slew of algorithms. But all of these algorithms

assume that the cost matrix𝐶𝑖,𝑗 = |𝑥𝑖 − 𝑦𝑗|𝑝 can be computed quickly.

What if this is not the case?

Unfortunately, the linear programming formulation of the optimal transport problemdoes not allow

us to compute costs on the fly, but there are cases where this can be done.

A simple example is computing𝑊1 on a graph with the ground metric induced by the graph metric.

We can take a page out of network flow algorithms, and think of transport as flow in and out of nodes

in the graph. We are given measures 𝜇 and 𝜈; let us measure the mass at node 𝑣. If we think of transport

in physics terms, mass must flow into node 𝑣 from 𝜇 and out of node 𝑣 towards 𝜈. The total of the mass

flowing into 𝑣 less the mass flowing out of 𝑣 must equal the mass at 𝑣 which is just 𝜇𝑣 − 𝜈𝑣. If we write

𝐽 for the flow along edges, 𝑉 for the vertex set, 𝐸 for the edge set of 𝐺, and 𝑐𝑒 for the cost of edge 𝑒, we
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recover Beckmann’s problem:

min
𝐽

∑
𝑒∈𝐸

𝐽𝑒𝑐𝑒

subject to ∑
𝑤∈𝑁(𝑣)

𝐽(𝑣,𝑤) = 𝜇𝑣 − 𝜈𝑣.

The more familiar version appears if we replace the finite graph with a surface 𝑀, and hence replace 𝐽
with a vector field:

min
𝐽

∫
𝑀
‖𝐽‖ d𝑥

subject to ∇ ⋅ 𝐽(𝑥) = 𝜇(𝑥) − 𝜈(𝑥)

𝐽(𝑥) ⋅ 𝑛(𝑥) = 0

(11.1)

This is a simple formulation for computing𝑊1 when geodesic distances are not known beforehand,

and it works for any manifold𝑀, making this formulation particularly useful for problems in computer

graphics(Solomon et al., 2014).

Can we do the same for𝑊2? Unfortunately, not readily. The issue at hand is that geodesic distances

can be computed greedily by summing up costs along the shortest path, but the same is not true for

squared geodesic costs. The right perspective (and formulation) was uncovered by Benamou & Brenier

(2000), but their discretisation does not preserve Riemannian structure, and thus has limited practical

uses. We fix this problem in what follows.

This chapter is based on Lavenant et al. (2018).
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12

Dynamical Optimal Transport on Discrete Surfaces

12.1 Introduction

Probability distributions are key objects in geometry processing that can encode a variety of quantities,

including uncertain feature locations on a surface, colour histograms, and physical measurements like the

density of a fluid. A central problem related to distributions is that of interpolation: Given two probabil-

ity distributions over a fixed domain, how can one transition smoothly from the first to the second?

Optimal transport gives one potential solution. This theory lifts the geometric structure of a surface

to a Riemannian structure on the space of probability distributions over the surface, the latter being

endowed with the so-called Wasserstein metric; the set of distributions equipped with this metric is some-

times called Wasserstein space. To interpolate between two probability distributions, one computes a

geodesic in Wasserstein space between the two. This definition is sometimes referred to as McCann’s dis-

placement interpolation (McCann, 1997), applied to graphics e.g. in (Bonneel et al., 2011).

Even though optimal transport theory is now well-understood (Villani, 2003, 2008; Santambrogio,

2015), the interpolation problem remains challenging numerically. Related problems, like the compu-

tation of Wasserstein distances or barycenters in Wasserstein space, can be tackled by fast and scalable

algorithms like entropic regularisation or semi-discrete methods, developed only a few years ago. Most

of these methods, however, fail to reproduce the Riemannian structure of Wasserstein space and/or are

prone to diffusion: The interpolation between two peaked probability distributions is more diffuse in

themidpoint than optimal transport theory suggests. This drawback can inhibit application of transport
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in computer graphics practice, in which blurry interpolants are often undesirable.

As an alternative, we define a Riemannian structure on the space of probability distributions over a

discrete surface, designed to mimic that of the Wasserstein distance between distributions over a smooth

manifold. Our construction is inspired by the Benamou–Brenier formula (Benamou & Brenier, 2000),

previously discretised only on flat grids without structure preservation. This Riemannian structure au-

tomatically defines geodesics and distances between probability distributions. In particular, the geodesic

problem can be recast as a convex problem and be tackled by iterative methods phrased using local op-

erators familiar in geometry processing and finite elements (gradients, divergence and Laplacian on the

surface). Our method does not require precomputation of pairwise distances between points on the sur-

face.

Compared to other methods, our interpolation can be rephrased as a geodesic problem and numer-

ically exhibits less diffusion when interpolating between peaked distributions. In cases where the sharp-

ness captured by our method and predicted by optimal transport theory is undesirable visually, we pro-

vide a quadratic regulariser that controllably reduces congestion of the computed interpolant; unlike

entropically-regularised transport, however, our optimisation problem does not degenerate or become

harder to solve when the regularisation term vanishes. Although the computation of interpolants re-

mains quite slow for meshes with more than a few thousand vertices and improving the scalability of

numerical routines used to optimise our convex objective remains a challenging task for future work, we

demonstrate application to tasks derived from transport, e.g. computation of harmonic mappings into

Wasserstein space and integration of gradient flows.

In addition to our algorithmic contributions, we regard our work as a key theoretical step toward

making optimal transport compatible with the language of discrete differential geometry (DDG). Our

Riemannian metric induces a true geodesic distance—with a triangle inequality—on the space of dis-

tributions over a triangulated surface expressed using one value per vertex. Inspired by an analogous

construction on graphs (Maas, 2011), we leverage a non-obvious observation that a strong contender for

structure-preserving discrete transport on meshes actually involves a real-valued external time variable,

rather than discretising transport as a linear program as in most previous work. The resulting geodesic

problemnaturally preserves convexity and other key properties from the theoretical case while suggesting

122



an effective computational technique.

12.2 Related work

12.2.1 Linear programming and regularisation

Landmark work by Kantorovich (Kantorovich, 1942) showed that optimal transport can be phrased as

a linear programming problem. If both probability distributions have finite support, we end up with

a finite-dimensional linear program solvable using standard convex programming techniques. A variety

of solvers has been designed to tackle this linear program, which exploit the particular structure of the

objective functional (Edmonds&Karp, 1972; Klein, 1967; Orlin, 1997). Thesemethods, however, usually

require as input the pairwise distance matrix, a dense matrix that scales quadratically in the size of the

support and is difficult to evaluate if the points are on a curved space.

A landmark paper by Cuturi (Cuturi, 2013) reinvigorated interest in numerical transport by propos-

ing adding an entropic regulariser to the problem, leading to the efficient Sinkhorn (ormatrix rebalancing)

algorithm. This algorithm, which involves iteratively rescaling the rows and columns of a kernel in the

cost matrix, is highly parallelizable and well-suited to GPU architectures. When the cost matrix involves

squared geodesic distances along a discrete surface, Solomon et al. (Solomon et al., 2015) showed that

Sinkhorn iterations can be written in terms of heat diffusion operators, eliminating the need to store the

cost matrix explicitly. While they are efficient, these entropically-regularised techniques suffer from dif-

fusion, making them less relevant to problems in which measures are sharp or peaked. They also do not

define true distances on the space of distributions over mesh vertices.

When the transport cost is equal to geodesic distance, i.e. the 1-Wasserstein distance, optimal trans-

port is equivalent to the Beckmann problem (Santambrogio, 2015, Chapter 4), for which specific and effi-

cient algorithms can be designed (Solomon et al., 2014; Li et al., 2018). These methods cannot be applied

to the quadratic Wasserstein distance, which is needed to make transport-based interpolation nontriv-

ial, namely to recover McCann’s displacement interpolation (McCann, 1997). In particular, the optimal

transport problemdefining the 1-Wasserstein distance does not comewith a time dependency allowing to

define a smooth interpolation and suffers from non-uniqueness coming from the lack of strict convexity.
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12.2.2 Semi-discrete optimal transport

When one of the distributions has a density w.r.t. Lebesgue while the other one is discrete, the transport

problem can be reduced to a finite-dimensional convex problemwhose number of unknowns scales with

the cardinality of the support of the discrete distribution. Leveraging tools from computational geome-

try, this semi-discrete problem can be solved efficiently up to fairly large scale when the cost is Euclidean

(Aurenhammer et al., 1998; Mérigot, 2011; De Goes et al., 2012; Lévy, 2015; Kitagawa et al., 2016).

Semi-discrete transport has been used to tackle problems for which the precise structure of the op-

timal transportation map is relevant, as in fluid dynamics (de Goes et al., 2015b; Mérigot & Mirebeau,

2016; Gallouët & Mérigot, 2017). It also has been used for approximating barycenters in the stochastic

case (Claici et al., 2018) and as ameasure of proximity for shape reconstruction (deGoes et al., 2011; Digne

et al., 2014). Extensions of semi-discrete transport to curved spaces can be found in (de Goes et al., 2014;

Mérigot et al., 2018). Although they can be fast and give explicit transport maps, these methods are not

suited for the application we have in mind: They rely on the computation of transport maps between

two probability distributions that are not of the same nature (one is discrete, the other has a density) and

hence cannot be used to implement a distance or interpolation cleanly.

12.2.3 Fluid dynamic formulations

By switching from Lagrangian to Eulerian descriptions of transport, Benamou and Brenier (Benamou&

Brenier, 2000) proved that optimal transport could be rephrased using fluid dynamics: Instead of com-

puting a coupling, they show that transport with quadratic costs is equivalent to finding a time-varying

sequence of distributions smoothly interpolating between the two measures. The problem that they ob-

tain is convex and solved via the Alternating Direction Method of Multipliers (ADMM) (Boyd et al.,

2011). Proof of the convergence of ADMM in the infinite-dimensional setting (i.e. when neither time

nor the geometric domain is discretised) is provided in (Guittet, 2003; Hug et al., 2020). Papadakis et

al. (Papadakis et al., 2014) reread the ADMM iterations as a proximal splitting scheme and show how one

can build different algorithms to solve the convex problem. This fluid dynamic formulation also appears

in mean field games (Benamou & Carlier, 2015).

In all of the above work, however, the authors work in a flat space and use finite difference discreti-
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sations of the densities and velocity fields. Hence their work does not contain a clear indication about

how to handle the problem on a discrete curved space, and theoretical properties of their models after

discretization remain unverified.

The algorithm for approximating 1-Wasserstein distances presented by Solomon et al. (Solomon et al.,

2014) achieves some of the objectives mentioned above. Their vector field formulation is in some sense

dynamical, and their distance satisfies properties like the triangle inequality after discretisation. As men-

tioned above, however, their optimisation problem lacks strict convexity and is not suitable for interpo-

lation.

12.2.4 Dynamical transport on graphs and meshes

Maas (Maas, 2011) defines a Wasserstein distance between probability distributions over the vertices of

a graph. The (finite-dimensional) space of distributions in this case inherits a Riemannian metric with

some structure preserved from the infinite-dimensional definition; for instance, the gradient flow of en-

tropy corresponds to a notion of heat flow along the graph. A similar structure is proposed by Chow

et al. (Chow et al., 2019), but they recover a different heat flow. Erbar et al. (Erbar et al., 2020) propose

a numerical algorithm for approximating the discrete Wasserstein distance introduced by Maas, but the

distributions they produce have a tendency to diffuse along the graph. This flaw is not related to their

numerical method but rather comes from the very definition of their optimal transport distance. It is

also not obvious what is the best way to adapt their construction to discrete surfaces rather than graphs.

12.2.5 Interpolation and geodesics

Optimal transport is not the only way to interpolate between probability distributions; for instance,

Azencot et al. (Azencot et al., 2016) use a time-independent velocity field to advect functions and match

them. Their method, however, cannot be understood as a geodesic curve in the space of distributions.

In another direction, Heeren et al. (Heeren et al., 2012) have provided an efficient way to discretise in

time geodesics in a high-dimensional space of thin shells. Their formulation is not well-suited for opti-

mal transport where direct discretisation of the Benamou–Brenier formula is possible. Finally, methods

like (Panozzo et al., 2013) provide a means of averaging points on discrete surfaces, although it is not clear
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𝑡 = 0 𝑡 = 1/4 𝑡 = 1/2 𝑡 = 3/4 𝑡 = 1

Figure 12-1: Top row: Interpolation of probability distributions. The left and right distributions are data
and the middle ones are the output of our algorithm. Bottom row: Display of the momentum m = 𝜇v,
where v is a time-dependent velocity-field advecting the left distribution on the right one. We have used
the regularisation described in Subsection 12.5.4 with 𝛼 = 0.1.

how to extend them to the more general distribution case.

12.3 Optimal transport on a discrete surface

12.3.1 Optimal transport on manifolds

We begin by introducing briefly optimal transport theory on a smooth space. Letℳ be a connected and

compact Riemannian manifold with metric ⟨ , ⟩ and induced norm ‖ ‖; define 𝑑 ∶ ℳ × ℳ → ℝ+ to be

geodesic distance.

Denote by𝒫(ℳ) the space of probability measures onℳ. This space is endowedwith the quadratic

Wasserstein distance from optimal transport: If �̄�0, �̄�1 ∈ 𝒫(ℳ), then the distance𝑊2(�̄�0, �̄�1) between

them is defined as

𝑊2
2 (�̄�0, �̄�1) ≔ min𝜋 ∬

ℳ×ℳ

1
2𝑑(𝑥, 𝑦)

2d𝜋(𝑥, 𝑦), (12.1)
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�̄�0 �̄�1
𝑥 𝑦

𝑥′ 𝑦′

d𝜋(𝑥, 𝑦)

𝑡 = 0 𝑡 = 1/3 𝑡 = 2/3 𝑡 = 1

Figure 12-2: Top row: schematic view of the static formulation of optimal transport (12.1). The initial
distribution �̄�0 is on the left, and the final distribution �̄�1 is on the right. The quantity d𝜋(𝑥, 𝑦) represents
the amount of mass that is transported from 𝑥 to 𝑦. The coupling 𝜋 is chosen in such a way that the total
cost is minimal. Bottom row: dynamical formulation between the same distributions (computed with
the algorithm in Section 12.4). To go from the top to the bottom row, once one has the optimal 𝜋, a
proportion d𝜋(𝑥, 𝑦) of particles follows the geodesic (in this case a straight line) between 𝑥 and 𝑦 with
constant speed. The macroscopic result of all these motions is a time-varying sequence of distributions,
displayed in blue.
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where the minimum is taken over all probability measures 𝜋 on the product space ℳ × ℳ whose first

(resp. second) marginal is �̄�0 (resp. �̄�1).
The problem (12.1) can be interpreted as follows: d𝜋(𝑥, 𝑦) denotes the quantity of particles located

at 𝑥 that are sent to 𝑦, and the cost for such a displacement is 𝑑(𝑥, 𝑦)2. The constraint on the marginals

enforces that 𝜋 describes a way of moving the distribution of mass �̄�0 onto �̄�1. Thus, the variational

problem (12.1) reads: Find the cheapest way 𝜋 to send �̄�0 onto �̄�1, and the result (i.e. the minimal cost)

is defined as the squared Wasserstein distance between �̄�0 and �̄�1. In some generic cases (Brenier, 1991;

Gangbo & McCann, 1996), the optimal 𝜋 is located on the graph of a map 𝑇 ∶ ℳ → ℳ, which means

that a particle 𝑥 ∈ ℳ is sent onto a unique location 𝑦 = 𝑇(𝑥) ∈ ℳ.

The space (𝒫(ℳ),𝑊2) is a complete metric space (Santambrogio, 2015; Villani, 2003), and—at least

formally—it has the structure of an (infinite-dimensional) Riemannian manifold. Revealing this mani-

fold structure requires some manipulation and rephrasing of the original problem (12.1), detailed below.

As first noticed by Benamou and Brenier (Benamou & Brenier, 2000), the Wasserstein distance be-

tween �̄�0 and �̄�1 can be obtained by solving an alternative, physically-motivated optimisation problem:

𝑊2
2 (�̄�0, �̄�1) =

⎧

⎨
⎩

min𝜇,v ∫1
0 ∫ℳ

1
2‖v𝑡‖2d𝜇𝑡d𝑡

s.t. 𝜇0 = �̄�0, 𝜇1 = �̄�1,

𝜕𝑡𝜇 + ∇ ⋅ (𝜇v) = 0.

(12.2)

As we will have to deal with functions and vectors depending both on time and space, here and moving

forward we adopt the following convention: Upper indices denote time, and lower indices denote space.

Moreover, 𝑡 ∈ [0, 1]will denote an instant in time, and𝑓will later denote a generic triangle (𝑓 for face) in a

triangulation. In (12.2), theminimum is taken over all curves 𝜇 ∶ [0, 1] → 𝒫(ℳ) and all time-dependent

velocity fields v ∶ [0, 1] ×ℳ → 𝑇ℳ such that the continuity equation 𝜕𝑡𝜇+∇ ⋅ (𝜇v) = 0 is satisfied in the

sense of distributions. The optimal curve 𝜇 is known asMcCann’s displacement interpolation (McCann,

1997).

The physical interpretation of this problem is as follows. Imagine probability distributions as distri-

butions of mass, e.g. the density of a fluid. The curve 𝜇 represents an assembly of particles in motion,

distributed as �̄�0 at 𝑡 = 0 and �̄�1 at 𝑡 = 1. At time 𝑡, a particle located at 𝑥 ∈ ℳmoves with velocity v𝑡𝑥.
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The continuity equation 𝜕𝑡𝜇 + ∇ ⋅ (𝜇v) = 0 simply expresses the conservation of mass. For a given time

𝑡, the cost∫ℳ
1
2‖v𝑡‖2d𝜇𝑡 is the total kinetic energy of all the particles. Hence, the cost minimised in (12.2),

i.e. the integral w.r.t. time of the kinetic energy, is the action of the curve. As there is no congestion cost—

that is, the particles do not interact with each other—(12.2) is the least-action principle for a pressureless

gas.

Formulation (12.1) is static, since it directly determines the target for each particle at 𝑡 = 1 given the

arrangement at 𝑡 = 0. On the other hand, (12.2) is dynamical, recovering a curve in𝒫(ℳ) interpolating
smoothly between �̄�0 and �̄�1. To convert from the static to the dynamical formulation, one takes an op-

timal transport plan 𝜋 from (12.1) and an assembly of particles distributed according to �̄�0. If a particle

located at 𝑥 ∈ ℳ at time 𝑡 = 0 and is supposed, according to 𝜋, to be sent to 𝑦 ∈ ℳ, then this particle fol-

lows a constant-speed geodesic alongℳ from 𝑥 to 𝑦. The optimal curve 𝜇 in (12.2) is exactly the resulting

macroscopic motion of all the particles, illustrated in Figure 12-2.

Callingm = 𝜇v themomentum and using the change of variables (𝜇, v) ↔ (𝜇,m), problem (12.2) be-

comes convex, because the mapping (𝜇, v) → 1/2‖v‖2𝜇 is not jointly convex while (𝜇,m) → 1/2‖m‖2/𝜇
is. Its dual reads

𝑊2
2 (�̄�0, �̄�1) = {

max𝜑 ∫ℳ 𝜑1d�̄�1 − ∫ℳ 𝜑0d�̄�0

s.t. 𝜕𝑡𝜑 + 1
2‖∇𝜑‖2 ⩽ 0 on [0, 1] × ℳ,

(12.3)

where the maximisation is performed over real-valued functions 𝜑 ∶ [0, 1] × ℳ → ℝ (Villani, 2008;

Santambrogio, 2015). The relation v = ∇𝜑 holds whenever v (resp. 𝜑) is a minimiser (resp. maximiser) of

the primal (resp. dual) problem. In particular, in (12.2), we can restrict ourselves to the set of v such that

v𝑡 = ∇𝜑𝑡 for every 𝑡 ∈ [0, 1].
Equation (12.2) defines a formal Riemannian structure on 𝒫(ℳ) (Otto, 2001). Given 𝜇 ∈ 𝒫(ℳ)

with a density bounded frombelowby a strictly positive constant, the tangent space𝑇𝜇𝒫(ℳ) is identified
as the set of functions 𝛿𝜇 ∶ ℳ → ℝwith 0-mean: 𝛿𝜇 is the partial derivative w.r.t. time of a curve whose

value at time 0 is𝜇. If 𝛿𝜇 ∈ 𝑇𝜇𝒫(ℳ), we can compute𝜑 ∶ ℳ → ℝ the solution (unique up to translation

by constants) of the elliptic equation

∇ ⋅ (𝜇∇𝜑) = −𝛿𝜇. (12.4)
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Then, the norm of 𝛿𝜇 is defined as

‖𝛿𝜇‖2𝑇𝜇𝒫(ℳ) ≔
1
2 ∫ℳ

‖∇𝜑‖2d𝜇. (12.5)

Endowedwith this scalar product obtained from the polarisation identity ⟨𝑥, 𝑦⟩ = 1
4(‖𝑥+𝑦‖2−‖𝑥−𝑦‖2),

one can check, and the derivation appears in the supplemental material, that theWasserstein distance𝑊2

can be interpreted as the geodesic distance induced by (12.4) and (12.5). This is precisely the content of

the Benamou–Brenier formula (12.2).

One needs to assume 𝜇 ⩾ 𝑐 > 0 on ℳ for the elliptic equation (12.4) to be well-posed. Neverthe-

less, one can still give a meaning to this Riemannian structure using tools from analysis in metric spaces

(Ambrosio et al., 2008).

12.3.2 Discrete surfaces

The previous subsection contains only well-understood results. Let us now start our contribution: to

mimic these definitions and properties when the manifold is replaced by a triangulated surface.

Instead of a smooth manifold ℳ, we consider the case where we only have access to a triangulated

surface 𝑆 = (𝑉, 𝐸, 𝑇), which consists of a set𝑉 ⊂ ℝ3 of vertices, a set𝐸 ⊆ 𝑉 ×𝑉 of edges linking vertices,

and a set𝑇 ⊆ 𝑉×𝑉×𝑉 of triangles containing exactly 3 vertices linked by 3 edges. For a given face 𝑓 ∈ 𝑇,

we denote by 𝑉𝑓 ⊂ 𝑉 the set of vertices 𝑣 such that 𝑣 ∈ 𝑓; for a given vertex 𝑣 ∈ 𝑉, we denote by 𝑇𝑣 ⊂ 𝑇
the set of faces𝑓 such that 𝑣 ∈ 𝑓. The area of a triangle𝑓 ∈ 𝑇 is denoted by |𝑓|. Each vertex 𝑣 is associated
to a barycentric dual cell (see Figure 12-3) whose area, equal to 1

3 ∑𝑓∈𝑇𝑣 |𝑓|, is denoted by |𝑣|.
Following standard constructions from first-order finite elements (FEM), a scalar function onℳwill

be seen as having one value per vertex, i.e. belonging toℝ|𝑉|. A distribution𝜇 ∈ ℳwill be also discretised

by one value per vertex representing the density w.r.t. the volume measure. In other words, the volume

of the dual cell centred at 𝑣 ∈ 𝑉, measured with 𝜇, is |𝑣|𝜇𝑣. We denote by 𝒫(𝑆) the set of probability

distributions on the discrete surface:

𝒫(𝑆) ≔ {𝜇 ∈ ℝ|𝑉| s.t. 𝜇𝑣 ⩾ 0 for all 𝑣 ∈ 𝑉 and ∑
𝑣∈𝑉

|𝑣|𝜇𝑣 = 1} . (12.6)
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For instance, the volume measure is represented by the vector in𝒫(𝑆) parallel to (1, 1, … , 1)⊤.
The set𝑉of vertices canbe interpreted as a discretemetric space, either byusing directly the Euclidean

distance onℝ3 or by some version of the discrete geodesic distance along 𝑆. Hence, a natural attempt to

discretise the 2-Wasserstein distance would be to use (12.1) and replace 𝑑 by the distance between vertices.

As pointed out in (Maas, 2011; Gigli &Maas, 2013), however, this discretisation leads to a space without a

smooth structure. For instance, there do not exist non-constant smooth (e.g., Lipschitz) curves valued in

such a space; whereas in a space with a smooth structure (e.g. a Riemannian manifold), one expects the

existence of non-constant Lipschitz curves, namely the (constant-speed) geodesics.

Let us briefly recall the argument. We take the simplest example of a space consisting of two points.

If 𝑋 = {𝑥0, 𝑥1} contains two points separated by a given distance ℓ, a probability distribution 𝜇 on 𝑋
is characterised by a single number 𝜇𝑥0 ∈ [0, 1], as 𝜇𝑥1 = 1 − 𝜇𝑥0 . If 𝜇𝑡 is a curve valued in 𝒫(𝑋), one
can compute𝑊2(𝜇𝑡, 𝜇𝑠) = ℓ√|𝜇𝑡𝑥0 − 𝜇𝑠𝑥0|. In particular, if 𝜇 is Lipschitz with Lipschitz constant 𝐿, our
expression for𝑊2 implies |𝜇𝑡𝑥0 −𝜇

𝑠
𝑥0| ⩽

𝐿2
ℓ2 |𝑡 − 𝑠|

2. There is an exponent 2 on the r.h.s., but only 1 on the

l.h.s.: it is precisely this discrepancy which is an issue. Indeed, dividing by |𝑡 − 𝑠| on both side and letting

𝑠 → 𝑡, one sees that 𝑡 ↦ 𝜇𝑡𝑥0 is differentiable everywhere with derivative 0, i.e. is constant.
For this reason, we prefer to discretise the Benamou–Brenier formulation (12.2), as it will automati-

cally give aRiemannian structure on the space𝒫(𝑆). In this sense, the basic inspiration for our technique

is the same as that of Maas (Maas, 2011), although on a triangulated surface we enjoy the added structure

afforded by an embedded manifold approximation of the domain rather than an abstract graph.

As (12.2) involves velocity fields, a choice has to be made about their representation (de Goes et al.,

2015a). To take full advantage of the triangulation, we want to use triangles and not only edges to define

our objective functional. The latter choice leads to formulas similar to Maas (2011); Chow et al. (2019),

which, as we say above, exhibit strongly diffuse geodesics. We prefer to represent vector fields on triangles.

More precisely, a (piecewise-constant) velocity field v is represented as an element of (ℝ3)|𝑇|, i.e. as one
vector per triangle, with the constraint that v𝑓, which is a vector ofℝ3, is parallel to the plane spanned by

𝑓, which means that our velocity fields lie in a subspace of dimension 2|𝑇|.
If 𝜑 ∈ ℝ|𝑉| represents a real-valued function, we compute its gradient along the mesh using the first-

order (piecewise-linear) finite elementmethod (Brenner& Scott, 2007): For each triangle𝑓, we compute
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�̂�, the unique affine function defined on 𝑓 coinciding with 𝜑 on the vertices of 𝑓. Then, the gradient of

𝜑 in 𝑓 is simply defined as the gradient of �̂� at any point of 𝑓; as the gradient is constant on each triangle,

we need to store only one vector per triangle. Since this operator is linear, let us denote by𝐺 ∈ ℝ3|𝑇|×|𝑉|

its matrix representation. In particular, the Dirichlet energy of 𝜑 ∈ ℝ|𝑉| is defined as

Dir(𝜑) ≔ 1
2 ∑𝑓∈𝑇

|𝑓|‖(𝐺𝜑)𝑓‖2. (12.7)

The sum is weighted by the areas of the triangles to discretise a surface integral. The first variation of

this Dirichlet energy can be expressed inmatrix form as (𝐺⊤𝑀𝑇𝐺)𝜑, where𝑀𝑇 ∈ ℝ3|𝑇|×3|𝑇| is a diagonal

weightmatrixwhose elements are the areas of the triangles. Thematrix𝐺⊤𝑀𝑇𝐺 is the so-called cotangent

Laplace matrix of a triangulated surface (Pinkall & Polthier, 1993).

12.3.3 Dual problem on meshes

Let us introduce our discrete Benamou–Brenier formula by starting from its dual formulation (12.3).

Since the objective functional is linear, its discrete counterpart is straightforward as both 𝜇 and 𝜑 are

defined on vertices. On the other hand, in the constraint 𝜕𝑡𝜑+ 1
2‖∇𝜑‖2 ⩽ 0, we would like to replace∇𝜑

by𝐺𝜑 but then the two terms of the sum do not live on the same space.

The constraint 𝜕𝑡𝜑 + 1
2‖∇𝜑‖2 ⩽ 0 is a priori not coercive. Suppose 𝜑 satisfies the constraint, and

take another function 𝜓 with the property that 𝜑 + 𝑠𝜓 satisfies the constraint for arbitrarily large 𝑠 ⩾ 0.
Expanding the inequality 𝜕𝑡(𝜑 + 𝑠𝜓) + 1

2‖∇𝜑 + 𝑠∇𝜓‖2 ⩽ 0 and taking the limit 𝑠 → +∞ shows that 𝜓
satisfies this property if and only if ‖∇𝜓‖ = 0 and 𝜕𝑡𝜓 ⩽ 0; these two conditions together imply that

the objective functional in (12.3) is smaller when evaluated at 𝜑 + 𝑠𝜓 rather than at 𝜑. This is a property

that we would like to keep at the discrete level. To do so, we enforce a discrete analogue of the constraint

at each vertex of the mesh. To go from ‖𝐺𝜑‖2, which is defined on triangles, to something defined on

vertices, we first take the squared norm and subsequently average in space:1

Definition 12.1. Let �̄�0, �̄�1 ∈ 𝒫(𝑆). The discrete (quadratic) Wasserstein distance 𝑊𝑑(�̄�0, �̄�1) is defined
1If we do the opposite (averaging and then taking the square), there are spurious modes in the kernel of the quadratic part

of the constraint, which leads to poor results when working with non-smooth densities.
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as the solution of the following convex problem:

𝑊2
𝑑 (�̄�0, �̄�1) =

⎧

⎨
⎩

sup𝜑 ∑𝑣∈𝑉 |𝑣|𝜑1𝑣 �̄�1𝑣 −∑𝑣∈𝑉 |𝑣|𝜑0𝑣 �̄�0𝑣

s.t. 𝜕𝑡𝜑𝑡𝑣 +
1
2
∑𝑓∈𝑇𝑣 |𝑓|‖(𝐺𝜑)

𝑡
𝑓‖2

3|𝑣| ⩽ 0

for all (𝑡, 𝑣) ∈ [0, 1] × 𝑉,

(12.8)

where the unknown is a function 𝜑 ∶ [0, 1] × 𝑉 → ℝ.

Thedenominator3|𝑣| is nothing else, bydefinition, than∑𝑓∈𝑇𝑣 |𝑓|. Inparticular, the value (∑𝑓∈𝑇𝑣 |𝑓|‖(𝐺𝜑)
𝑡
𝑓‖2) (3|𝑣|)−1

is the average, weighted by the areas of the triangles, of ‖(𝐺𝜑)𝑡𝑓‖2 for𝑓 ∈ 𝑇𝑣. One can check that the same

reasoning as above can be performed. Indeed, if 𝜑 ∶ [0, 1] × 𝑉 → ℝ satisfies the constraint in (12.8) and

𝜑 + 𝑠𝜓 also satisfies it for arbitrarily large 𝑠 ⩾ 0, it implies, taking 𝑠 → +∞, that

1
2
∑𝑓 s.t. 𝑣∈𝑓 |𝑓|‖(𝐺𝜓)𝑡𝑓‖2

3|𝑣| ⩽ 0. (12.9)

This inequality must hold for all (𝑡, 𝑣) ∈ [0, 1] × 𝑉. Thus, we conclude (and it is for this implication that

it is important to average after taking squares) that 𝐺𝜓 is identically 0. In other words, for all 𝑡 ∈ [0, 1],
the function 𝜓𝑡 is constant over the discrete surface. Plugging this information back into the constraint

in (12.8) and taking again 𝑠 → +∞, we see that 𝜕𝑡𝜓 ⩽ 0. Hence, the value 𝜓0 (which is constant over

the surface) is larger than 𝜓1. With this information (𝐺𝜓 = 0 and 𝜕𝑡𝜓 ⩽ 0), the value of the objective

functional must be smaller for 𝜑 + 𝑠𝜓 than for 𝜑 as soon as 𝑠 ⩾ 0.

12.3.4 Riemannian structure of the space of probabilities on a discrete surface

To recover an equation which looks like the primal formulation of the Benamou–Brenier formula (12.2),

it is enough towrite the dual of the discrete formulation (12.8). The latter formulation, as explained above,

was important to justify the choice of the way we average quantities that do not live on the same grid.

We introduce additional notation to deal with the averaging of the density 𝜇. If 𝜇 ∈ 𝒫(𝑆), we denote
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by �̂� ∈ ℝ|𝑇| the vector given by, for any 𝑓 ∈ 𝑇,

�̂�𝑓 =
1
3 ∑𝑣∈𝑉𝑓

𝜇𝑣. (12.10)

This is a natural way to average 𝜇 from vertices to triangles, appearing in the dual formulation given

below:

Proposition 12.1. The following identity holds:

𝑊2
𝑑 (�̄�0, �̄�1) =

⎧{

⎨{
⎩

min𝜇,v ∫1
0 (∑𝑓∈𝑇

1
2‖v𝑡𝑓‖2|𝑓|�̂�𝑡𝑓) d𝑡

s.t. 𝜇0 = �̄�0, 𝜇1 = �̄�1

𝜕𝑡(𝑀𝑉𝜇𝑠𝑣) + (−𝐺⊤𝑀𝑇[�̂�𝑡v𝑡])𝑣 = 0

for all (𝑡, 𝑣) ∈ [0, 1] × 𝑉.

(12.11)

Recall that𝑀𝑇 ∈ ℝ3|𝑇|×3|𝑇| and𝑀𝑉 ∈ ℝ|𝑉|×|𝑉| are diagonal matrices corresponding to multiplication

by the area of the triangles and of the dual cells respectively. Then, −𝐺⊤𝑀𝑇 represents a discrete version

of the (integrated) divergence operator, suggesting that the constraint can be interpreted as a discrete

continuity equation. The derivation of this result, detailed in the supplemental material, relies on an

inf-sup exchange, similar to the case of a smooth surfaceℳ.

Proposition 12.1, very similar to (12.2), shows that𝑊𝑑 is the geodesic distance for a Riemannian struc-

ture on the space𝒫(𝑆), at least for non-vanishing densities. Let us detail the metric tensor for a density

𝜇 ∈ 𝒫(𝑆) with min𝑣 𝜇𝑣 > 0. As the set 𝒫(𝑆) is a codimension-1 subset of the linear space ℝ|𝑉|, the

tangent space at 𝜇 is naturally {𝑥 ∈ ℝ|𝑉| s.t. ∑𝑣∈𝑉 |𝑣|𝑥𝑣 = 0}. In analogy to (12.4), take 𝛿𝜇 ∈ 𝑇𝜇𝒫(𝑆).
We call 𝜑 ∈ ℝ|𝑉| a solution of

𝑀𝑉𝛿𝜇 = −(𝐺⊤𝑀𝑇𝑀�̂�𝐺)𝜑, (12.12)

where𝑀�̂� ∈ ℝ3|𝑇|×3|𝑇| is a diagonal matrix corresponding tomultiplication on each triangle by �̂�. As �̂� >
0 everywhere on𝑉, this equation is well-posed: The kernel of𝐺⊤𝑀𝑇𝑀�̂�𝐺 is of dimension one (it consists

only of the constant functions), and𝑀𝑉𝛿𝜇 lies in the image of this operator. When the distribution 𝜇 is

uniform, (12.12) boils down to a Poisson equation, as the operator −(𝐺⊤𝑀𝑇𝑀�̂�𝐺) is proportional to the
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cotangent Laplacian.

One can then define the norm of 𝛿𝜇 on the tangent space 𝑇𝜇𝒫(𝑆) as

‖𝛿𝜇‖2𝑇𝜇𝒫(𝑆) ≔
1
2∑𝑓∈𝑇

‖(𝐺𝜑)𝑓‖2|𝑓|�̂�𝑓. (12.13)

The function𝜑 is unique up to an additive constant, which lies in the kernel of thematrix𝐺, so this norm

is well-defined.

To put everything in one formula, the scalar product ⟨𝛿𝜇, 𝛿𝜈⟩𝑇𝜇𝒫(𝑆) between two elements of the

tangent space at 𝜇 can be expressed as (𝛿𝜈)⊤𝑃𝜇(𝛿𝜇), where the matrix 𝑃𝜇 is expressed as

𝑃𝜇 =
1
2𝑀

⊤
𝑉𝐺−⊤(𝑀�̂�𝑀𝑇)−1𝐺−1𝑀𝑉. (12.14)

One can check, and the derivation is provided in the supplementalmaterial, that𝑊𝑑 is exactly the geodesic

distance induced by this metric tensor.

Proposition 12.2. The function 𝑊𝑑 ∶ 𝒫(𝑆) × 𝒫(𝑆) is a distance.

Proof. It is a general fact that the geodesic distance on a manifold (defined by minimization over all pos-

sible trajectories) is a distance, see for instance (Jost, 2008, Section 1.4).

A natural question is whether the space (𝒫(𝑆),𝑊𝑑) converges to (𝒫(ℳ),𝑊2) as 𝑆 becomes a finer

and finer discretisation of a manifoldℳ. For a discrete Wasserstein distance like the one of Maas (Maas,

2011), based on the graph structure of 𝑆—which corresponds to the case where velocity fields are discre-

tised by their values on edges and a particular choice of scalar product—the answer is known to be positive

in the casewhereℳ is the flat torusGigli&Maas (2013); Trillos (2017) in the sense ofGromov–Hausdorff

convergence of metric spaces, while a very recent work by Gladbach, Kopfer and Mass (Gladbach et al.,

2018) has refined the analysis and exhibits necessary conditions for such a convergence to hold. The high

technicality of the proofs of these results, however, indicates that the question for our particular defini-

tion is likely to be challenging and out of the scope of the present article.
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Figure 12-3: Left: temporal grids𝒢c
time and𝒢st

time for𝑁 = 4. Right: a vertex (•) surrounded by 6 adjacent
triangles, the dual barycentric cell is in grey.

12.4 Time discretisation of the geodesic problem

12.4.1 Discrete geodesic

So far, we have defined a structure-preserving notion of optimal transport on a triangle mesh. While our

model has many properties in common with the continuum version of transport, the resulting optimisa-

tion problem is infinite-dimensional since the unknown 𝜇𝑡 is indexed by a time variable 𝑡 ∈ [0, 1]. Our

next step is to derive a time discretisation that approximates this interpolant in practice. Put simply, we

want to solve the geodesic problem, i.e., given �̄�0, �̄�1 ∈ 𝒫(𝑆), we want to approximate the solution 𝜇 of

(12.11). To this end, we discretise in time the dual problem (12.8).

Our infinite-dimensional problem can be classified as a second-order cone program (SOCP) (Boyd

&Vandenberghe, 2004, Section 4.4.2); we choose a discretisation that preserves this structure. Themain

issue is that with a standard finite difference scheme, the derivative 𝜕𝑡𝜑 ends up on a grid staggered w.r.t.

the one onwhich𝜑 is defined. Hence, we average to define the constraint on a compatible grid. We apply

the same idea as before: With the term involving ‖𝐺𝜑‖2, we average after taking the square to avoid the

introduction of any spurious null space.

Let 𝑁 be the number of discretisation points in time. We consider two grids: the staggered grid

𝒢st
time ≔ {𝑘/𝑁 ∶ 𝑘 = 0, 1, … ,𝑁} and the centred grid 𝒢c

time ≔ {(𝑘 + 1/2)/𝑁 ∶ 𝑘 = 0, 1, …𝑁 − 1}, see
Figure 12-3 The staggered grid has𝑁+1 elements whereas the centred one has only𝑁. We call 𝜏 ≔ 1/𝑁
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the time step. The linear operator𝐷 ∶ ℝ𝒢st
time → ℝ𝒢c

time defined by

(𝐷𝜑)𝑡 ≔ 𝜑𝑡+𝜏/2 − 𝜑𝑡−𝜏/2
𝜏 , (12.15)

is a natural discretisation of the time derivative.

Next, we discretise 𝜑 ∈ ℝ𝒢st
time×|𝑉| a function depending both on space and time. The constraint

𝜕𝑡𝜑𝑡𝑣 + 1
2
∑𝑓∈𝑇𝑣 |𝑓|‖(𝐺𝜑)

𝑡
𝑓‖2

3|𝑣| ⩽ 0will be imposed on the centred grid𝒢c
time. It is enough to replace 𝜕𝑡𝜑 by𝐷𝜑.

On the other hand, the term 1
2
∑𝑓∈𝑇𝑣 |𝑓|‖(𝐺𝜑)

𝑡
𝑓‖2

3|𝑣| , which is defined on𝒢st
time, will be also averaged in time. In

other words, the fully discrete problem reads:

Find 𝜑 ∈ ℝ𝒢st
time×|𝑉| maximising

⎧{

⎨{
⎩

∑𝑣∈𝑉 |𝑣|𝜑1𝑣 �̄�1𝑣 −∑𝑣∈𝑉 |𝑣|𝜑0𝑣 �̄�0𝑣

s.t. (𝐷𝜑)𝑡𝑣 +
1
2 ∑
𝑖∈{−1,1}

1
2
∑𝑓∈𝑇𝑣 |𝑓|‖(𝐺𝜑)

𝑡+𝑖𝜏/2
𝑓 ‖2

3|𝑣| ⩽ 0

for all (𝑡, 𝑣) ∈ 𝒢c
time × 𝑉,

(12.16)

The constraint still stays quadratic, and hence the fully-discrete problem is still a SOCP.

12.4.2 Algorithm

To tackle (12.16) algorithmically, we followBenamou andBrenier (Benamou&Brenier, 2000) bybuilding

an augmented Lagrangian and using the Alternating Direction Method of Multipliers (ADMM). The

main issue is that the constraint is nonlocal—since it involves discrete derivatives—and nonlinear. We

construct a splitting of the problem that decouples these two effects.

To this end, we introduce two additional variables𝐴 and B. We enforce the constraint𝐴 = 𝐷𝜑, and
hence 𝐴 is defined on the grid 𝒢c

time × 𝑉. On the other hand, the variable B stores the values of 𝐺𝜑 but

with some redundancy. Each (𝐺𝜑)𝑡𝑓 appears in more than one inequality constraint in (12.16), and B is

chosen so that each component of B appears in only one inequality constraint. In detail, B is defined on

the grid𝒢c
time × {±1} × 𝑇 × 𝑉 with the constraint that (𝑓, 𝑣) ∈ 𝑇 × 𝑉 is such that 𝑣 ∈ 𝑓. We will impose

the constraint that B𝑡,𝑖𝑓,𝑣 = (𝐺𝜑)𝑡+𝑖𝜏/2𝑓 for all (𝑡, 𝑖, 𝑓, 𝑣) ∈ 𝒢c
time × {±1} × 𝑇 × 𝑉.
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We introduce the notation 𝑞 = (𝐴,B) and write 𝑞 = 𝛬𝜑 if 𝐴,B satisfy the relations written above.

Define

𝐹(𝜑) = ∑
𝑣∈𝑉

|𝑣|𝜑1𝑣 �̄�1𝑣 −∑
𝑣∈𝑉

|𝑣|𝜑0𝑣 �̄�0𝑣 , (12.17)

and𝐶 to be the function such that𝐶(𝐴,B) = 𝐶(𝑞) = 0 if

∀(𝑡, 𝑣) ∈ 𝒢c
time × 𝑉,

𝐴𝑡
𝑣 +

1
2 ∑
𝑖∈{−1,1}

1
2
∑𝑓∈𝑇𝑣 |𝑓|‖B

𝑡,𝑖
𝑣,𝑓‖2

3|𝑣| ⩽ 0 (12.18)

and −∞ otherwise. The discrete problem (12.16) can be written

max
𝑞=𝛬𝜑

𝐹(𝜑) + 𝐶(𝑞). (12.19)

The idea is to introduce a Lagrange multiplier 𝜎 = (𝜇,m) associated to the constraint 𝑞 = 𝛬𝜑 and to

build the augmented Lagrangian

𝐿(𝜑, 𝑞, 𝜎) = 𝐹(𝜑) + 𝐶(𝑞) + ⟨𝜎, 𝑞 − 𝛬𝜑⟩ − 𝑟
2‖𝑞 − 𝛬𝜑‖

2. (12.20)

In this equation, ⟨𝜎, 𝑞−𝛬𝜑⟩ = ⟨𝜇, 𝐴−𝐷𝜑⟩𝑉+⟨m,B−𝐺𝜑⟩𝑇, where the scalar product ⟨ , ⟩𝑉 (resp. ⟨ , ⟩𝑇)
is weighted by the areas of the vertices (resp. the triangles) and the time step 𝜏.

The saddle points of the Lagrangian (12.20)—which do not depend on the parameter 𝑟—are precisely

the solutions to the problem (12.16), and 𝜇, the first component of 𝜎 associated to the constraint𝐴 = 𝐷𝜑,
is an approximation of the time-continuous geodesic (12.11). On the other hand, the second component

m is an approximation of the momentum 𝜇v.
To compute a saddle point, we use ADMM,which consists in iterations of the following form (Boyd

et al., 2011):

1. Given 𝑞 and 𝜎, find 𝜑 that maximises 𝐿.

2. Given 𝜑 and 𝜎, find 𝑞 that maximises 𝐿.
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3. Do a gradient descent step (with step 𝑟) to update 𝜎.

The parameter 𝑟 > 0 is arbitrary and tuned to speed up the convergence; see (Boyd et al., 2011) for dis-

cussion. In our case, details of the iterations are briefly presented below and summarised in Algorithm

7.

Algorithm 7 Geodesic Computation

function Geodesic(�̄�0, �̄�1)
Initialise 𝜑,𝐴,B, 𝜇,m ← 0
while PrimalResidual and DualResidual > 𝜀 do

𝜑 ← solution of (12.21)
for 𝑠, 𝑣 ∈ 𝒢c

time × 𝑉 do
update𝐴 and B by solving (12.22)

Update 𝜇 and m through (12.23)
return 𝜇

Maximisation w.r.t.𝜑 TheLagrangian𝐿 is simply aquadratic functionof𝜑, so itsmaximisation amounts

to inverting the matrix𝛬⊤𝛬which, in our case, behaves like a space-time Laplacian.

More precisely, writing𝜑 ∈ ℝ𝒢st
time×𝑉 as a (𝑁+1)×|𝑉|matrix (with rows indexed by time and columns

by space), the equation satisfied by a maximiser of 𝐿 over 𝜑 reads

𝑟 [𝐷⊤𝑀𝑉𝐷𝜑 + 3(𝐸⊤𝐸)𝜑(𝐺⊤𝑀𝑇𝐺)]

= 𝑁(�̄�1𝐼𝑡=1 − �̄�0𝐼𝑡=0) − 𝐷⊤𝑀𝑉(𝜇 − 𝑟𝐴) − (m − 𝑟B)𝑀𝑇�̃�⊤. (12.21)

Again recall that the unknown here is 𝜑; the remaining symbols are fixed matrices. In this equation,

𝐸 ∈ ℝ𝒢c
time×𝒢st

time stands for the averaging in time defined by (𝐸𝜑)𝑡 = 𝜑𝑡−𝜏/2+𝜑𝑡+𝜏/2
2 . The matrices 𝐼𝑡=0 and

𝐼𝑡=1 ∈ ℝ𝒢st
time×𝑉 stand for the indicator of 𝑡 = 0 (resp. 𝑡 = 1), namely they contain zeros except on the

first (resp. last) row which is full of ones. The factor 3 comes from the fact that each value of (𝐺𝜑)𝑓 is

duplicated 3 times in B, one for each vertex which belongs to 𝑓. The operator �̃� is almost the same as𝐺
but takes in account the fact that the values of𝐺𝜑 are duplicated in B (hence inm): �̃� corresponds to the

adjoint of the second component of the operator𝛬.
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(𝐷⊤𝑀𝑉𝐷) is the discrete Laplacian in time, and𝐺⊤𝑀𝑇𝐺 is the discrete Laplacian on𝑆. In fact, (12.21)

is a Poisson equation with a space-time Laplacian. Equation (12.21) admits more than one solution but

they only differ by a constant whose value does not modify the value of 𝐿.
The linear operator to invert is the same at each iteration, and hence standard precomputation tech-

niques can be used to speed up the application of its inverse.

Maximisation w.r.t. 𝐴,B The Lagragian 𝐿 is also quadratic w.r.t. 𝑞, but there is a quadratic constraint

on these two variables due to the presence of 𝐶(𝑞). Because of the redundancy in B, each component of

𝐴 or B is subject to only one constraint. More precisely, we can check that one needs, for each (𝑡, 𝑣) ∈
𝒢c

time × 𝑉, to minimise

|𝑣| (𝐴𝑡
𝑣 − (𝐷𝜑)𝑡𝑣 −

1
𝑟𝜇

𝑡
𝑣)
2
+ |𝑓|

2 ∑
𝑖∈{±1}

∑
𝑣∈𝑉𝑓

∥B𝑡,𝑖𝑓,𝑣 − (𝐺𝜑)
𝑡+𝑖𝜏/2
𝑓 − 1

𝑟m
𝑡,𝑖
𝑓,𝑣∥

2
(12.22)

under the constraint (12.18). This minimization amounts to a Euclidean projection on the set of 𝐴,B
satisfying (12.18), which can be carried out by solving a cubic equation in one variable, independently on

each point of𝒢c
time × 𝑉. These equations are solved using Newton’s method.

Dual update This gradient descent corresponds to the following operations:

𝜇𝑡𝑣 ← 𝜇𝑡𝑣 − 𝑟 (𝐴𝑡
𝑣 − (𝐷𝜑)𝑡𝑣)

m𝑡,𝑖
𝑓,𝑣 ← m𝑡,𝑖

𝑓,𝑣 − 𝑟 (B
𝑡,𝑖
𝑓,𝑣 − (𝐺𝜑)

𝑡+𝑖𝜏/2
𝑓 ) ,

(12.23)

for any (𝑡, 𝑣) ∈ 𝒢c
time × 𝑉 and any (𝑡, 𝑖, 𝑓, 𝑣) ∈ 𝒢c

time × {±1} × 𝑇 × 𝑉.

12.5 Experiments

Recall that our main practical contribution is to be able interpolate between probability distributions

using an optimal transportmodel that preserves structure from the non-discretised case. Wewill illustrate

the robustness of our method: It can handle peaked distributions, and it lifts the intrinsic geometry of

the discrete surface while being insensitive to the choice of mesh topology.
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Figure 12-4: Amplitude of the primal and dual residual (Boyd et al., 2011, Section 3.3) in 𝐿2 norm. The
distributions �̄�0 and �̄�1 are delta functions located on respectively the right and left hand of the armadillo.
We also show themidpoint𝜇1/2 for different numbers of iterations (10,50 and 5000). After a few hundred
iterations, there is no visible difference in 𝜇1/2. There is a jump in the value of the dual residual at around
4600 iterations. It is due to a change in the value of the parameter 𝑟, which is updated according to the
heuristic rule presented in Section 3.4.1 of Boyd et al. (2011).

The typical computation is the following: We enter the data �̄�0, �̄�1 and compute a solution of the dis-

crete problem (12.16). Then, we plot the evolution over time of 𝜇, which approximates the geodesic in the

Riemannian metric described in Subsection 12.3.4. As a byproduct of the optimisation process, we also

obtain the optimal momentumm = 𝜇v, which can be also plotted, see Figure 12-1. The code used to con-

duct all our experiments is available at https://github.com/HugoLav/DynamicalOTSurfaces.

As the colour map is sometimes normalised independently for different time instants on the same

interpolation curve, let us underscore this fact: For every example, we have checked numerically that the

densities are always nonnegative and that mass is always preserved over time.

12.5.1 Convergence of the ADMM iterations

For fixed boundary data �̄�0 and �̄�1, we plot in Figure 12-4 the primal and dual error defined by Boyd et

al. (Boyd et al., 2011), as a function of the number of iterations of theADMMscheme. Weusually need on

the order of a few thousand iterations to satisfy our convergence criteria, this number being dependent
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Table 12.1: Timing data for various meshes and boundary data from the figures (numbers listed in the
table). 𝑁 denotes the number of time discretisation points and 𝛼 is the value of the congestion regulari-
sation parameter (see Section 12.5.4). For the ADMM method, the number of iterations and timing are
given. Iterations were stopped once an error of 10−4 was reached for the 𝐿2 norm of both the primal and
dual residual. One can see that the time per iteration depends on the size of the mesh and the tempo-
ral grid, but the number of iteration is quite insensitive to these parameters and rather depends on the
boundary conditions and the regularisationparameter. For theCVX implementationof the optimisation
problem, the solver time and the total time (includes CVX pre-processing) are given. Standard precision
settings were used, but are hard to interpret absolutely due to unknown algebraic rearrangement of the
problem. ∗ denotes that CVX reported a failure in this case. Results obtained on an 8-core 3.60GHz Intel
i7 processor with 32GB RAM.

Mesh Figure 𝑁 |𝑉| |𝑇| 𝛼 ADMM Iters. ADMM Time (s) CVX Time (s)
Punctured sphere 10 13 1020 2024 0.02 546 16 27
Punctured sphere 10 31 1020 2024 0.02 547 47 122

Hand 8 13 1515 3026 0.02 846 47 47
Hand 8 31 1515 3026 0.02 858 97 191

Armadillo 7 31 5002 10000 0 929 332 882
Armadillo 7 63 5002 10000 0 808 649 3970
Armadillo 7 31 5002 10000 1 308 116 1054

Face 2 31 5002 10000 0.1 415 155 1944
Airplane 9 31 3772 7540 0.1 535 144 831

Planar square 3 31 11838 23242 0 565 473 11082

of the boundary data �̄�0, �̄�1 (the more diffuse, the fewer iterations are needed).

Because our objective functional is scaled according to the geometry of the mesh (i.e. scalar products

are weighted by the areas of the triangles and the number of time steps), the number of iterations needed

does not depend on the size of the resolution of themesh nor the number of discretisation points in time,

but the computation time needed per iteration does. Typical values of the timings are given in Table 12.1,

they are of the order of 1 second per ADMM iterations for meshes with a few thousand vertices.

12.5.2 CVX implementation

Since the optimisation problem in Equation (12.25) is a convex cone problem, we have also used a straight-

forward implementation in CVX (Grant & Boyd, 2014, 2008), with Mosek as a solver ApS (2017). This

approach is provided as a simpler alternative to the ADMM implementation, and has comparable per-

formance on small meshes with standard precision settings (fewer than 1000 vertices). In general, it is

difficult to compare the error thresholds across the two implementations due to algebraic rearrangements
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performed by CVX. See Table 12.1.

12.5.3 Convergence with discretisation in space and time

As indicated in Section 12.3, it is not known theoretically whether our discrete distance converges to the

true Wasserstein distance when the mesh is refined. This is also the case as far as the time discretisation is

concerned; one could likely adapt the method of proof of Erbar et al. (Erbar et al., 2020), but doing so is

out of the scope of this article.

In Figure 12-5, however, we present some experiments indicating that convergence under space and

time refinement is likely to be true. These were conducted in the simplest case: translation of a given

density on a flat space. For this problem, the ground truth is known, and for a flat space it is clear what

it means to refine the mesh: We have use a regular triangle mesh with an increasing number of points per

side. The error was evaluated at time 𝑡 = 1/2 between the computed geodesic and the ground truth. As

a measure of error, as the distributions are compactly supported, we use a total variation norm (in other

words the 𝐿1 norm between the densities) rather than the Kullback–Leibler divergence. As expected, we

observe a decrease in error as the temporal and spatial meshes are refined.

12.5.4 Congestion and regularisation

In optimal transport there is no price paid for highly-congested densities. Imagine the probability dis-

tributions as an assembly of particles moving along the surface. Along a geodesic in Wasserstein space,

each particle evolves in time by following a geodesic on the surface—but does not feel the presence of its

neighbours.

Now imagine, due to the particular structure of the triangle mesh, there is a small shortcut in terms

of geodesic distance through which all geodesics tend to concentrate. This is likely to appear near a hy-

perbolic vertex (Polthier & Schmies, 2006). Then all the particles have the incentive to take this shortcut,

resulting in densely-populated zones, as they are not prone to congestion. As an example, see the first row

of Figure 12-6 in which, to go from the left to the right of the armadillo, all the particles go through only

two paths, leaving the rest of the mesh without any mass.

This effect, although visually unpleasant, would be observed on a smooth surface ℳ as soon as
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Figure 12-5: Top row: the test case. The inputs, i.e. probability distributions at times 𝑡 = 0 and 𝑡 = 1,
correspond to the same density translated two different ways. Optimal transport predicts that at time
𝑡 = 1/2we should observe the same density again, but translated to themidpoint between the two inputs;
this gives us ground truth we can use to verify our algorithm’s output. Bottom row: convergence plots.
On the left: error, measured in 𝐿1 norm, where the mesh is fixed (regular triangle mesh with 100 points
per side of the square) and the number 𝑁 of discretisation points in time varies. On the right: error,
measured in 𝐿1 norm, where the number of discretization points in time is fixed (127 points) and the
mesh is a regular triangle mesh whose number of points per side varies and is plotted on the 𝑥-axis.
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Figure 12-6: Effect of the regularising parameter 𝛼 penalising congestion. On each row, the interpolation
between the same boundary data (distributions located on the right and on the left of the armadillo)
is shown. Different rows correspond to different to different values of 𝛼. The colour in each image is
normalised independently from the others, explaining the change in intensity. Mass is always preserved
along the interpolation.
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geodesics concentrate in some regions. A way to remove this artefact is to penalise congestion; we can

do so with little modification to the algorithm.

We penalise the densities by their𝐿2 norms: The choice of the exponent 2 is important, as it preserves

the quadratic structure of the optimisation problem. Namely, we add to the Lagrangian (12.20) the term

𝛼𝜏
2 ∑

𝑡∈𝒢c
time

∑
𝑣∈𝑉

|𝑣||𝜇𝑡𝑣|2 = sup
𝜆

∑
𝑡∈𝒢c

time

∑
𝑣∈𝑉

𝜏|𝑣| (𝜆𝑡𝑣𝜇𝑡𝑣 −
1
2𝛼(𝜆

𝑡
𝑣)2) , (12.24)

where the parameter 𝛼 tunes the scale of the congestion effect and 𝜆 ∈ ℝ𝒢c
time×𝑉 corresponds to the dual

variable associated to the congestion constraint.

Using the notation from Section 12.4.2, one can write the problem as maximising

max
�̂�(𝜑,𝜆)=𝑞

𝐹(𝜑, 𝜆) + 𝐶(𝑞), (12.25)

but this time

𝐹(𝜑, 𝜆) = (12.17) − 1
2𝛼 ∑

𝑡∈𝒢c
time

∑
𝑣∈𝑉

𝜏|𝑣|(𝜆𝑡𝑣)2 (12.26)

and �̂�(𝜑, 𝜆) = (−𝜆, 0) − 𝛬(𝜑). Then one runs exactly the same algorithm, with a straightforward adap-

tation of the update formulas.

After regularisation, the interpolation is no longer a geodesic. For instance, the interpolation between

two instances of the sameprobability distribution is not constant in time, because the𝐿2 normpotentially

can be reduced by diffusing outward in the intermediate time steps. On the other hand, undesirable

sharp features and oscillations can be removed, as seen in Figure 12-6. Note that regardless of the level

of regularisation, the interpolating curves are still valued in 𝒫(𝑆), i.e. mass is still preserved along the

interpolation.

The tuning of the parameter 𝛼 allows ourmethod to be robust to noisymesh inputs, as shown in Fig-

ure 12-7. Noisy meshes have more local variation in curvature, leading to a higher tendency for congested

trajectories, but this can be tamed via greater regularisation.

Recall that the dynamical formulation of optimal transport can be interpreted as the least-action

principle for a pressureless gas. The effect of the penalisation of congested densities can be seen, from
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Figure 12-7: Robustness to noisy meshes, after adjusting the parameter 𝛼. Top row: original mesh,
𝛼 = 0.02; middle row: noisy mesh, 𝛼 = 0.1; bottom row: very noisy mesh, 𝛼 = 0.2. The bounding
boxes of the meshes were of side length ~1.5. Noisy mesh vertices were obtained by uniformly random
perturbation, in the normal direction, of magnitudes up to 0.02 and 0.04, for the middle and bottom
row, respectively.

the modelling point of view, as adding a pressure force: the trajectories of the moving particles are no

longer geodesics, they are bent by the pressure forces. The congestion term can also be see as an instance

of variational mean field games, for which the augmented Lagrangian approach has been applied for flat

spaces with grid discretisation (Benamou et al., 2017).

12.5.5 Intrinsic geometry

To illustrate the fact that the discrete Wasserstein metric is really associated to the geometric structure of

the mesh, we perform the following experiment. We design a mesh where the right part is much coarser

than the left one, and we let the density evolve. As one can see in Figure 12-8, the jump in coarseness does

not affect the density and does not produce any numerical artefact.
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𝑡 = 0 mesh 𝑡 = 1

𝑡 = 1/4 𝑡 = 1/2 𝑡 = 3/4

Figure 12-8: Top row: mesh and initial/final probability distributions. Notice the difference of coarseness
in the mesh. Bottom row: interpolation shown at different times where no effect of the difference in
coarseness is seen. We have used the regularisation described in Subsection 12.5.4 with 𝛼 = 0.1.

12.5.6 Arbitrary topologies

Thediscrete formulation thatwe have chosen applieswithout change tomesheswith boundary and those

of non-spherical topology. This is illustrated in Figure 12-9 with two meshes topologically equivalent to

a disc and a torus.

In the first example, the interpolating distribution stays near the boundary, approximately following

the geodesic between the means of the endpoint distributions. In the second example, one can see the

initial distribution splitting to travel both ways to the other side of a handle, before merging again to

achieve the final distribution.

12.5.7 Comparison to convolutional method

Solomon et al. (Solomon et al., 2015) provide a convolutional method for approximating theWasserstein

geodesic between two distributions supported on triangle meshes. Their approach solves a regularised

optimal transport barycenter problem using a modified Sinkhorn algorithm, with a heat kernel taking

the place of explicitly-calculated pairwise distances between vertices. As a result, their method blurs the
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𝑡 = 0 𝑡 = 1/3 𝑡 = 2/3 𝑡 = 1

Figure 12-9: Our formulation easily handles non-spherical topologies. In the top row is a punctured
sphere, and in the bottom row is a genus-1 teapot mesh. These interpolations were generated with 𝛼 =
0.02 and 𝛼 = 0.2, respectively.

input distributions, and the interpolated distributions are typically of higher entropy than the endpoints.

This is combatedwith a nonconvex projectionmethod that attempts to lower the entropy of intermediate

distributions to an approximated bound.

In comparing our methods, we found that Solomon et al. (2015) also tends to produce interpolating

distributions that do not travel with constant speed. This effect can be seen in Figures 12-10 and 12-11,

where their interpolating distributions remain mostly stationary for times near 𝑡 = 0 and 𝑡 = 1, but
move with high speed for times near 𝑡 = 1/2. Loosening the entropy bound in the nonconvex step helps

somewhat, but the problem persists regardless. Most likely this effect is due to the fact that the entropy

reduction step of their algorithm is not geometry-aware but rather simply sharpens the regularised inter-

polant.

Our method does not suffer from this issue, and the spread of our interpolating distributions is com-

parable or better in both cases. Furthermore, unless the regulariser 𝛼 is large, our interpolating distri-

butions tend to diffuse only in the direction of the geodesics along which particles are travelling, which

better mimics the behaviour ofWasserstein geodesics; this diffusion is reduced by addingmore time steps

to our interpolation problem.

Our formulation alsohas comparable runtimes to the convolutionalmethodof Solomonet al. (Solomon

et al., 2015). For instance, the implementation of the convolutional method provided by the authors of

that paper took 57 and 141 seconds to converge, on the punctured sphere (1020 vertices) and teapot (3900
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𝑡 = 0 𝑡 = 1/7 𝑡 = 2/7 𝑡 = 3/7 𝑡 = 4/7 𝑡 = 5/7 𝑡 = 6/7 𝑡 = 1

Figure 12-10: Constant-speed interpolation. Indicator distributions on handle ends of a pliers mesh are
interpolated. Top row: our method, calculated with 𝛼 = 0.001; middle row: method of Solomon et
al. (Solomon et al., 2015), calculatedwith entropy bounded by that of the endpoint distributions; bottom
row: method of Solomon et al. Solomon et al. (2015), calculated with no entropy bound. As can be seen,
the method of Solomon et al. Solomon et al. (2015) stays mostly stationary except for the middle frames.

vertices), respectively, for 13 time steps. This is to be put in comparison with the timings provided in

Subsection 12.5.2.

The comparisons in this section were computed on a 3.60GHz Intel i7-7700 processor with 32GB of

RAM. For the convolutional method, the heat kernel was used to diffuse to 𝑡 = 0.0015 with 10 implicit

Euler steps.

12.6 Discussion and conclusion

Although techniques using entropic regularisation or semi-discrete optimal transport can interpolate be-

tween distributions on a discrete surface, they do not provide a Riemannian structure and are subject to

practical limitations that restrict the scenarios to which they can be applied. Using an intrinsic formu-

lation of dynamical transport, we can realise the theoretical and practical potential of optimal transport

on discrete domains enabled by the Riemannian structure on the space of probability distributions, the

so-called Otto calculus. Our technique can be phrased in familiar language from discrete differential ge-

ometry and is implementable using standard tools in that domain. The key ingredients, namely first- and

second-order operators in geometry processing (gradient, divergence, Laplacian) as well as SOCP optimi-

sation, remain in the realm of what is already widely used.
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𝑡 = 0 𝑡 = 1/7 𝑡 = 2/7 𝑡 = 3/7 𝑡 = 4/7 𝑡 = 5/7 𝑡 = 6/7 𝑡 = 1

Figure 12-11: Constant-speed interpolation. Delta distributions on a horse mesh are interpolated. Top
row: ourmethod, calculatedwith 𝛼 = 0.01; middle row: method of Solomon et al. (Solomon et al., 2015),
calculated with entropy bounded by that of endpoint distributions; bottom row: method of Solomon et
al. Solomon et al. (2015), calculated with no entropy bound. For themiddle row, themotion is evenmore
concentrated in the middle frames. As seen in the bottom row, exclusion of the entropy bound helps
somewhat, but the result still is mostly stationary, save for the middle frames.

We have demonstrated the power of our model by showing how it can handle a variety of geometries

and peaked distributions, while introducing little diffusion. Mass may concentrate to yield a visually

inelegant result, but this behaviour is at the core of optimal transport theory and expected: No price is

paid for mass congestion, and hence any concentration of geodesics will result in a concentration of mass.

Nevertheless, as we have shown, one can easily modify the optimisation problem to penalise congested

densities, leading to smoother interpolants with a controllable level of diffusion. Unlike entropically-

regularised transport, however, our optimisation problem does not degenerate as the coefficient in front

of the regulariser vanishes.

Beyond evaluation of transport distances, our framework extends to support other tasks involving

transport terms. We can reliably compute harmonic mappings valued in this discrete Wasserstein space,

and the JKO integrator based onour discreteWasserstein distance exhibits expected qualitative behaviour.

The main drawback of our approach remains its scalability. The bottleneck of the computations is

the solution of a linear system whose number of unknowns is the product of the number of discretisa-

tion points in time and the size of the mesh. This is an extremely structured linear system on a product

manifold, for which specialised matrix inversion techniques may exist. In any event, with the current

bottleneck our method can handle meshes with few thousand vertices but is not currently practical for

larger meshes.
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As one of the first structure-preserving discretisations of transport on meshes, our work also sug-

gests several exciting avenues for future research. Many theoretical properties of our discrete Wasserstein

distance remain to be explored. For instance, while we have shown that our formulation is a trueRieman-

nian distance, one could verify the extent to which a wealth of other theoretical properties of transport

are preserved. Recent work has proven convergence of our transport over meshes to the true transport in

the limit of mesh refinement Lavenant (2019). From a practical perspective, a natural next step is to accel-

erate the optimisation procedure as much as possible; a faster solver for the convex optimisation problem

would clearly benefit our method.
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Part IV

Discussion and Conclusions
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Wherein we look to the past to inform the future. What comes next? How do we improve on what has

come before? What inspiration can we draw from the work we have done so far?

The theme of this thesis has been that structure–either inherent in a problem, or encoded in its

solution–leads to faster, better, andmore interpretable approaches to various problems inmachine learn-

ing. We have exploited this structure through the tool of optimal transport, but the list of unanswered

questions is almost inexhaustible.

We have seen that quantization computed under a Wasserstein distance provides a remarkably effec-

tive way of approximating large datasets, but the question of just how effective it is remains unanswered.

The asymptotic rates of convergence known in the literature do not address the low sample regime (Weed

et al., 2019; Kloeckner, 2012). For a solution to this problem, we can draw inspiration from recent results

for kernel herding (Lacoste-Julien et al., 2015; Chen et al., 2010) where faster convergence rates are found

for distributions in certain families.

What are the conditions a distribution has to satisfy for us to break the curse of dimensionality and

the𝑂(𝑛− 1
𝑑 ) convergence rate. Theoretical results imply that no single algorithm can yield a better rate for

any given distribution (Kloeckner, 2012). Can we say more about the problem of estimating the distance

𝑊𝑝(𝜇, 𝜈) by 𝑊𝑝(𝜇𝑛, 𝜈𝑛)? This second problem certainly seems easier. If we can compute the distance

exactly, then we can choose two points from 𝜇 and 𝜈 that are exactly that distance apart to achieve exact

recovery of the distance. However, this approach requires computing the distance. Is there a simple

algorithm that we can use to select weighted point sets from 𝜇 and 𝜈 for which the approximation scales

better with dimension?

From an algorithms point of view, the approach we have presented scales poorly in the number of

points of the approximation, and the dimension of the distribution. Can we improve upon this, or, if

not, is there a fast approximation or sketch of the distance we can use to make computation easier? If

we approximate by a parametric measure, is there a way to precondition the gradient descent to ensure

faster convergence? These ideas echo work done by Li & Montúfar (2018) and Andoni et al. (2009), but

applying these approaches to real data poses challenges.

The other viewpoint we have taken throughout the thesis is that hierarchical structure often makes

transportation problems simpler. Beyond what we have investigated, there are questions that remain
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unanswered. In Chapter 8 we saw how understanding documents via their topics turns a slow and dif-

ficult to interpret approach into a fast and understandable method. However, to discover topics in the

documents, we have relied on latentDirichlet allocation. Canwe use optimal transport to learn the topics

as part of the optimisation process?

In Chapter 9, we explored a problem where invariance to a group action lead to issues when com-

puting expectations. The hierarchy arose naturally when taking orbits of samples under the group, and

we saw how optimal transport leads to very efficient algorithms for tackling label switching. What other

problems exhibit group invariance, and do their solutions also allow for a similar approach?

What connects these problems and algorithms together is optimal transport. The theory of optimal

transport is flexible. Distributional data appears everywhere, frommachine learning, to computer graph-

ics, from natural language processing to Bayesian inference, and a fundamental task among these fields is

comparing two distributions. That optimal transport is suited to this task is not surprising; that we can

use insights from these fields to improve performance and efficiency of transport algorithms is important,

however.

None of the problems we have tackled are new, and yet viewing them through the lens of optimal

transport lends new perspectives. It is easy to shoehorn a Wasserstein distance wherever a Kullback-

Leibler divergence used to be, but the elegance of the transport problem is shown best when it is used

as more than just another distance between measures.
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A

Supplementary Material: Hierarchical Optimal Transport

for Document Representation

A.1 Metric properties

𝐻𝑂𝑇𝑇 is a metric in the lifted topic space since𝑊𝑝 is a metric on distributions.

Proof. We can additionally prove that if we can exactly write 𝑑𝑖 = ∑|𝑇|
𝑘=1 �̄�𝑖𝑘𝑡𝑘 and if 𝑡𝑖 ≠ 𝑡𝑗 for 𝑖 ≠ 𝑗, then

𝐻𝑂𝑇𝑇 is a metric in document space.

Positivity, symmetry, and the triangle inequality follow from properties of 𝑊2. We prove that if

𝐻𝑂𝑇𝑇(𝑑𝑖, 𝑑𝑗) = 0, then 𝑑𝑖 = 𝑑𝑗. From the definition of𝐻𝑂𝑇𝑇,

𝐻𝑂𝑇𝑇(𝑑𝑖, 𝑑𝑗) = 𝑊2 (
|𝑇|
∑
𝑘=1

�̄�𝑖𝑘𝛿𝑡𝑘 ,
|𝑇|
∑
𝑙=1

�̄�𝑗𝑙 𝛿𝑡𝑙) .

If𝐻𝑂𝑇𝑇(𝑑𝑖, 𝑑𝑗) = 0, then if the transport plan is positive at 𝑇𝑘,𝑙, it must hold that𝑊𝑝(𝑡𝑘, 𝑡𝑙) = 0. Since
𝑊𝑝 is a metric on probability distributions, this implies 𝑡𝑘 = 𝑡𝑙. As we assumed that topics are distinct,

and that documents are uniquely represented as linear combinations of topics we have 𝑑𝑖 = 𝑑𝑗.
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A.2 HOTT/WMD/RWMD relation

Following thediscussion inSection4of themain text, we relateHOTTandRWMDtoWMDempirically

in termsofMantel correlation and aFrobenius norm. The results are inTableA.1. While it is unsurprising

that RWMD ismore strongly correlated withWMD (HOTT is neither a lower nor an upper bound), we

note that HOTT is on average a better approximation to WMD than RWMD.

Table A.1: Relation between the metrics. For each dataset, we compute distance matrices using exact
WMD, RWMD, and HOTT from a few randomly-selected documents. We report results of a Mantel
correlation test between WMD/HOTT and WMD/RWMD and the difference between cost matrices
under a Frobenius norm.

Mantel 𝑙2
Dataset HOTT RWMD HOTT RWMD

ohsumed 0.57 0.87 55 104
20news 0.62 0.90 90 99
amazon 0.49 0.84 70 65
reuters 0.72 0.91 130 151
bbcsport 0.76 0.92 28 90
classic 0.43 0.89 157 69

Avg 0.60 0.89 88 96

A.3 Additional experimental results

In the main text, we used 𝑊1 distance and did not do any vocabulary reduction, following the experi-

mental setup of Kusner et al. (2015a). 𝑊2 distance has intuitive geometric properties and is equipped

with a variety of theoretical characterizations (Villani, 2008); one intuition for the difference between𝑊1

and 𝑊2 comes from an analogy to the differences between 𝑙1 and 𝑙2 regularization. On the other hand,

stemming is a common vocabulary reduction technique to improve quality of topic models. Stemming

attempts to merge terms which differ only in their ending, i.e. “cat” and “cats”. As stemming sometimes

produces words not available in the GloVe embeddings (Pennington et al., 2014), to embed a stemmed

word we take the average embeddings of the words mapped to it. We used SnowballStemmer available
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from the nltk Python package.

Figures A-1 and A-2 demonstrate results with𝑊1 and stemming; Figures A-3 and A-4 with𝑊2 and

no stemming; Figures A-5 and A-6 with𝑊2 and stemming. In all settings HOTT and HOFTT are the

best on average. Interestingly, using 𝑊2 degrades performance of RWMD and WMD-T20, while our

methods perform equally well with 𝑊1 and 𝑊2. Stemming tends to improve performance of nBOW,

therefore aggregated results appear worse. Stemming also negatively effects RWMD and WMD-T20,

while appears to have no effect on HOTT and HOFTT. For example, in the case of𝑊2 with stemming

(FiguresA-5 andA-6), RWMD is no longer superior to baselines LDA (Blei et al., 2003) andCosine, while

our methods maintain good performance. We conclude that our methods are more robust to the choice

of text processing techniques and specifics of the Wasserstein distance.

In Figure A-7 we present additional t-SNE (van der Maaten & Hinton, 2008) visualization results.
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Figure A-1: 𝑊1 and stemming: 𝑘-NN classification performance across datasets
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Figure A-2: 𝑊1 and stemming: 𝑘-NN classification performance normalized by nBOW
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Figure A-3: 𝑊2 without stemming: 𝑘-NN classification performance across datasets
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Figure A-4: 𝑊2 without stemming: aggregated 𝑘-NN classification performance normalized by nBOW
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Figure A-5: 𝑊2 and stemming: 𝑘-NN classification performance across datasets
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Figure A-6: 𝑊2 and stemming: aggregated 𝑘-NN classification performance normalized by nBOW

161



20news amazon
HOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTT

alt.atheism
comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x
misc.forsale
rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey
sci.crypt
sci.electronics
sci.med
sci.space
soc.religion.christian
talk.politics.guns
talk.politics.mideast
talk.politics.misc
talk.religion.misc

RWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMD
alt.atheism
comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x
misc.forsale
rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey
sci.crypt
sci.electronics
sci.med
sci.space
soc.religion.christian
talk.politics.guns
talk.politics.mideast
talk.politics.misc
talk.religion.misc

HOTTHOTTHOTTHOTTbooks
dvd
electronics
kitchen

RWMDRWMDRWMDRWMDbooks
dvd
electronics
kitchen

bbcsport ohsumed
HOTTHOTTHOTTHOTTHOTTbbcsport_0

bbcsport_1
bbcsport_2
bbcsport_3
bbcsport_4

RWMDRWMDRWMDRWMDRWMDbbcsport_0
bbcsport_1
bbcsport_2
bbcsport_3
bbcsport_4

HOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTohsumed_0
ohsumed_1
ohsumed_2
ohsumed_3
ohsumed_4
ohsumed_5
ohsumed_6
ohsumed_7
ohsumed_8
ohsumed_9

RWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDohsumed_0
ohsumed_1
ohsumed_2
ohsumed_3
ohsumed_4
ohsumed_5
ohsumed_6
ohsumed_7
ohsumed_8
ohsumed_9

r8 twitter
HOTTHOTTHOTTHOTTHOTTHOTTHOTTHOTTr8_0

r8_1
r8_2
r8_3
r8_4
r8_5
r8_6
r8_7

RWMDRWMDRWMDRWMDRWMDRWMDRWMDRWMDr8_0
r8_1
r8_2
r8_3
r8_4
r8_5
r8_6
r8_7

HOTTHOTTHOTTpositive
negative
neutral

RWMDRWMDRWMDpositive
negative
neutral

Figure A-7: These are the additional t-SNE results on all other datasets, except gutenberg, which is
excluded due to its high number of classes (142). These images show that clusters based on our metric
better alignwith the labels, corresponding to a bettermetric thanRWMD.Bothmethods performpoorly
on twitter, a difficult dataset for topic modelling.
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B

Supplementary Material: Alleviating Label Switching via

Optimal Trasport

B.1 Optimal Transport

B.1.1 Proof of Theorem 1

We first recall the definition of sequential compactness and Prokhorov’s theorem, which relates it to tight-

ness of measures:

Definition B.1 (Sequential compactness). A space 𝑋 is called sequentially compact if every sequence of

points 𝑥𝑛 has a convergent subsequence converging to a point in 𝑋.

Theorem B.1 (Prokhorov’s theorem). A collection 𝐶 ⊂ 𝑃2(𝑋) of probability measures is tight if and only

if 𝐶 is sequentially compact in 𝑃2(𝑋), equipped with the topology of weak convergence.

Now, note that the barycenter objective is bounded below by 0 and is finite, so we may pick out

a minimizing sequence 𝜇𝑛 of 𝐵(𝜇). Prokhorov’s theorem allows us to extract a subsequence 𝜇𝑛𝑘 that

converges to a minimizer 𝜇 ∈ 𝑃2(𝑋) and the theorem is proved.

B.1.2 Tightness from Uniform Second Moment Bound

We argue here for a sufficient condition for tightness claimed in the text:
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Lemma. If a collection of measures 𝒞 ⊂ 𝑃2(𝑋) has a uniform second moment bound (about any reference

point 𝑥0 ∈ 𝑋), i.e.,

∫
𝑋
𝑑2(𝑥0, 𝑥) 𝑑𝜈(𝑥) < 𝑀

for some 𝑀 > 0 and all 𝜈 ∈ 𝒞, then 𝒞 is tight.

Proof. For any 𝜈 ∈ 𝒞we have the following inequalities:

𝜈{𝑥 | 𝑑(𝑥, 𝑥0) > 𝑅} = ∫
𝑑(𝑥,𝑥0)>𝑅

d𝜈 ≤ 1
𝑅2 ∫𝑑(𝑥,𝑥0)>𝑅

𝑑(𝑥, 𝑥0)2d𝜈(𝑥) ≤
𝑀
𝑅2 .

The last termconverges to0 as𝑅 → ∞, and the set {𝑥 |𝑑(𝑥, 𝑥0) ≤ 𝑅} is compact, so tightness follows.

B.1.3 Mean-only Mixture Models

Here we note some facts about mixture models, where the𝐾 components are evenly weighted and iden-

tical with only one parameter each in ℝ𝑑. An example would be the simple case of a Gaussian mixture

model with fixed equal covariance across each component, and a remaining unspecified mean parameter

𝑝𝑖 ∈ ℝ𝑑.

In this instance, we are taking the quotient of (ℝ𝑑)𝐾 by an action of𝑆𝐾 which simply permutes the𝐾
factors of the product. Let us begin by investigating the case where 𝑑 = 1. In this instance, we note that

the sum of the scalar means∑𝑖 𝑝𝑖 remains fixed under the action of the group. In fact, the action of the

group splits into a trivial action on the 1-dimensional fixed subspace𝐹𝐾 ∶= {(𝑝1, … , 𝑝𝑘) ∣ 𝑝𝑖 all equal}, and
an action on 𝐹⊥𝐾 which permutes the vertices of an embedded regular (𝐾 − 1)-simplex about the origin.

Namely, onemay take the simplex in𝐹⊥𝐾 with vertices that consist of the point (𝐾−1, −1, −1, … , −1) and
its orbit. Figure B-1 illustrates the concrete example of three means: ℝ3/𝑆3. It shows 𝐹⊥3 , an embedded

2-simplex, and the action of 𝑆3 on this space and simplex. Section B.2.2 proves that the quotient space

ℝ𝐾/𝑆𝐾 is a convex, easily described set, and discusses the consequences for label switching.

The splitting mentioned above is the decomposition into irreducible components. For 𝑑 > 1, the
action of 𝑆𝐾 is diagonal and acts on the 𝑑 components of the means 𝑝𝑖 in parallel. It preserves the scalar
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O

(-1,-1,2)

(2,-1,-1) (-1,2,-1)

Figure B-1: A schematic illustrating the nontrivial part of the action of 𝑆3 on ℝ3. It acts on 𝐹⊥3 and the
embedded 2-simplex shown via reflection over the dashed lines. One can see that reflection over these
lines correspond to swapping of pairs of means, generating 𝑆3 as a group.

sum of these components over each dimension and we obtain the following splitting for the general case:

(ℝ𝑑)𝐾 =
𝑑
⨁
𝑗=1

(𝐹𝐾 ⊕ 𝐹⊥𝐾) ≅ ℝ𝑑 ⊕ (ℝ𝐾−1)𝑑 . (B.1)

The action on the first ℝ𝑑 component is trivial, while the second component has the diagonal action

permuting the vertices of an embedded regular (𝐾 − 1)-simplex for eachℝ𝐾−1. The simple example of

two means in ℝ2 (𝑑 = 𝐾 = 2) is discussed and illustrated in the next section (B.1.4), and also serves to

provide a counterexample to barycenter uniqueness. For 𝑑 > 1, the quotient (ℝ𝑑)𝐾/𝑆𝐾 lacks the simple

convexity of the 𝑑 = 1 case, as described in Section B.2.3.

B.1.4 Counterexample to uniqueness

O

Take 𝑑 = 𝐾 = 2 from the scenario above, which might correspond to our

mixture model consisting of two Gaussians in ℝ2 with equal weights and fixed vari-

ance. Only the means (𝑥, 𝑦; 𝑧, 𝑤) ∈ (ℝ2)2 are taken as parameters, and the ac-

tion of 𝑆2 swaps the means: (𝑥, 𝑦; 𝑧, 𝑤) ↦ (𝑧, 𝑤; 𝑥, 𝑦). This action splits into a

trivial action on Span{(1, 0; 1, 0), (0, 1; 0, 1)} and an antipodal action (𝑣 ↦ −𝑣) on

Span{(1, 0; −1, 0), (0, 1; 0, −1)}, where these are the first and second components in Eq.

(B.1). Recall that the 1-simplex is just an interval and the action of 𝑆2 merely flips the endpoints, so the

antipodal action arises as the diagonal action of this flip.
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The inset figure illustrates a simple schematic counterexample in the second span. The two distribu-

tions to be averaged are evenly supported on the black andwhite dots, invariant under reflection through

the center origin𝑂. Two candidate barycenters are those evenly supported on the red and blue diamonds,

and in fact, any convex combination of these two are a barycenter. This corresponds to averaging a mix-

turewithmeans at (1, 0) and (−1, 0) and another withmeans at (0, 1) and (0, −1). Two sensible averages

are a pair of means at (0.5, 0.5) and (−0.5, −0.5), or a pair of means at (0.5, −0.5) and (−0.5, 0.5).
Note that the previous example requires a high degree of symmetry for the input distributions, and

uniqueness is recovered if either of the distributions are absolutely continuous. SectionB.2.3 further char-

acterizes the geometry of the quotient space for 𝑑 = 𝐾 = 2, and how it leads to non-unique barycenters.

B.2 Optimal Transport with Group Invariances

B.2.1 Proof of Lemma 4

Consider an arbitrary point 𝑧0 ∈ 𝑋/𝐺, and we will show that a minimizer of 𝑧 → 𝔼𝛿𝑥∼𝛺∗
[𝑑(𝑥, 𝑧)2] lies

in a closed ball about 𝑧0. As the function is continuous and this is a compact set, existence of a minimizer

results.

By the triangle inequality, we have 𝑑(𝑥, 𝑧) ≥ 𝑑(𝑥, 𝑧0) − 𝑑(𝑧, 𝑧0). Thus, we have:

𝔼𝛿𝑥∼𝛺∗
[𝑑(𝑥, 𝑧)2] = ∫

𝑋/𝐺
𝑑(𝑥, 𝑧)2 d𝛺∗(𝛿𝑥)

≥ ∫
𝑋/𝐺

(𝑑(𝑥, 𝑧0) − 𝑑(𝑧, 𝑧0))
2 d𝛺∗(𝛿𝑥)

= (∫
𝑋/𝐺

𝑑(𝑥, 𝑧0)2 d𝛺∗(𝛿𝑥)) + 𝑑(𝑧, 𝑧0)2 − 2𝑑(𝑧, 𝑧0)∫
𝑋/𝐺

𝑑(𝑥, 𝑧0) d𝛺∗(𝛿𝑥).

The last two terms are quadratic in 𝑑(𝑧, 𝑧0). Given an arbitrary positive constant 𝑀 > 0, some simple

algebra shows that:

𝑑(𝑧, 𝑧0) >
𝑐 + √𝑐2 + 4𝑀

2 ⟹ 𝑑(𝑧, 𝑧0)2 − 𝑐𝑑(𝑧, 𝑧0) > 𝑀
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where 𝑐 = 2∫𝑋/𝐺 𝑑(𝑥, 𝑧0) d𝛺∗(𝛿𝑥). The finiteness of this integral follows from the fact that𝛺∗ has finite

second moment, implying finite first moment. Thus, if we set𝑀 to a realized value of 𝔼𝛿𝑥∼𝛺∗
[𝑑(𝑥, 𝑧)2],

we see that a minimizer lies in the ball of radius 𝑐+√𝑐2+4𝑀
2 about 𝑧0. Taking 𝑧 outside this ball implies:

𝔼𝛿𝑥∼𝛺∗
[𝑑(𝑥, 𝑧)2] ≥ (∫

𝑋/𝐺
𝑑(𝑥, 𝑧0)2 d𝛺∗(𝛿𝑥)) + 𝑑(𝑧, 𝑧0)2 − 2𝑑(𝑧, 𝑧0)∫

𝑋/𝐺
𝑑(𝑥, 𝑧0) d𝛺∗(𝛿𝑥).

≥ 𝑑(𝑧, 𝑧0)2 − 2𝑑(𝑧, 𝑧0)∫
𝑋/𝐺

𝑑(𝑥, 𝑧0) d𝛺∗(𝛿𝑥) > 𝑀.

B.2.2 Proof of Theorem 3

We recall theminimization problem in (5) of the paper for a sample q = (𝑞1, … , 𝑞𝐾) and a current barycen-

ter estimate p = (𝑝1, … , 𝑝𝐾) (with a squared distance objective for simplicity of expression):

min
𝜎∈𝑆𝐾

𝑑2ℝ𝐾((𝑝1, … , 𝑝𝐾), (𝑞𝜎(1), … , 𝑞𝜎(𝐾))) = min
𝜎∈𝑆𝐾

𝐾
∑
𝑖=1

‖𝑝𝑖 − 𝑞𝜎(𝑖)‖2. (B.2)

Here, we invoke themonotonicity of transport in 1D (see e.g. Santambrogio (2015), Chapter 2) to see that

we should simply order q in the same way that p is. That is to say: assuming 𝑝1 < 𝑝2 < … < 𝑝𝐾 (WLOG),

then the optimal 𝜎 is such that 𝑞𝜎(1) < 𝑞𝜎(2) < … < 𝑞𝜎(𝐾).
The above argument also shows that we have a very concrete realization:

UConf𝐾(ℝ) ≅ {(𝑢1, … , 𝑢𝐾) ∈ Conf𝐾(ℝ) ∣ 𝑢1 < … < 𝑢𝐾} ⊂ ℝ𝐾.

As this is an open convex set, we have uniqueness of the single-point barycenter of Theorem 2 from

the paper under mild conditions on the posterior. Namely, consider that𝛺∗ ∈ 𝑃2(𝑃2(𝑋)) descends to a

measure𝛺↓ ∈ 𝑃2(𝑋), and we will need to assume that𝛺↓ is absolutely continuous (as youmight expect).

With this, Kim & Pass (2017) give us the desired result.

Furthermore, we have guaranteed convergence of stochastic gradient descent (our algoritheorem) in

this setting, as 𝔼[𝑊2
2 (⋅, 𝜈)] is 1-strongly convex and the domain is convex. The next section shows us that

we may not leverage such simple structure for 𝑑 > 1.
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B.2.3 Positive Curvature of Mean-Only Models

Section B.1.4 shows us that in the case of 𝑑 = 𝐾 = 2:

UConf2(ℝ2) ≅ ℝ2 × 𝐶∗ where 𝐶∗ = (ℝ2\{(0, 0)})/{𝑣 ∼ −𝑣}.

𝐶∗ is isometric to an infinite metric cone (2-dimensional) with cone angle 𝜋 and cone point excised. It is

this positive curvature which gives rise to the counterexample presented.

More generally, B.1.3 showed us that in these mean-only models there is a diagonal action on a sub-

space isometric to (ℝ𝐾−1)𝑑. In all of these cases, under the action of 𝑆𝐾, the solid angle measure of a

sphere about the origin will be divided by𝐾!when quotiented, producing a point of positive curvature,

and leading to highly symmetric counterexamples with non-uniqueness of barycenters.
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