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ABSTRACT  

 

Utility of single-cell biophysical markers is often limited due to the low-specificity nature of 

biophysical markers and lack of existing techniques which can test multiple biophysical 

characteristics for single cells. To address this challenge, I developed a multiparameter intrinsic 

cytometry approach which integrates multiple label-free biophysical measurements into a 

versatile (can combine techniques across domains) and readily extensible (to measure more than 

two biophysical markers) platform for single cell analysis. The proposed multiparameter cell-

tracking intrinsic cytometry utilizes label-free microfluidic techniques to manipulate cells such 

that information regarding their biophysical properties can be extracted from their spatiotemporal 

positions. Furthermore, this technique utilizes cell tracking to extract and associate the 

biophysical markers for single cells. The specific instantiation of the cytometry platform can 

measure up to five intrinsic markers of cells, and has facilitated the quantitative investigation of 

label-free cell profiles and classification of cell types and functional states. The applications of 

this approach were extended by leveraging digital holographic microscopy and deep learning 

technologies to monitor cells in a large field of view, enabling rapid and high-throughput 

assessment of biophysical phenotypes.  
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1.1 Extrinsic and Intrinsic Properties of Cells 

Cells possess continuously changing biochemical and biophysical characteristics that allow 

them to perform specialized functions, respond to external environment, and maintain 

homeostasis.1,2 They sense external cues through intricate networks of cell receptors and 

biochemical cascades, and respond by intracellular chemical and/or physical modification.3,4 In 

addition to cellular processes (e.g., growth, division, and differentiation), pathological conditions 

(e.g., cancer and microbial infections) can affect and are influenced by the biochemical and the 

biophysical characteristics of cells to varying extents. The ability to detect these characteristics in 

single cells is therefore essential for the understanding of cell behaviors and disease diagnosis. 

On one hand, biochemical properties (i.e., extrinsic properties) quantify the abundance and 

distribution of biochemical contents of cells, including proteins, RNA, DNA, reactive oxygen 

species, and physiologically important ions. As biochemical properties can be directly linked to 

specific pathways, they are highly informative and highly specific indicators of cellular functions 

and activities. Several analysis tools, e.g., fluorescence microscopy, flow cytometry, and mass 

cytometry, in conjunction with their corresponding extrinsic biochemical detection tags, e.g., 

fluorochromes and heavy metal ions, have been developed and are commercially available for 

quantifying many biochemical features in parallel.5–8 Flow cytometry, in particular, is capable of 

high-content, high-throughput, single-cell assays, and has become a well-established method to 

interrogate and quantify cells for extensive ranges of biological and clinical applications.9–11 

On the other hand, biophysical properties (i.e., intrinsic properties), including morphological, 

mechanical, electrical, and optical properties, rely on properties of cells that do not need extrinsic 

labels for detection. Biophysical properties are not tied to specific molecular pathways but 

generally represent the integrative attributes of the underlying cellular features.12 Analyses of 

biophysical properties are more suitable for applications that require quick turnaround and for 

exploratory analysis where biochemical labels for the target cell types or functions are not 

known.13,14 A variety of macroscale and microscale label-free characterization techniques have 

been developed to measure biophysical properties of cells such as cell size, shape, density, 

refractive index, mechanical, and electrical phenotypes in bulk and at the single-cell resolution.15–

17 Many of them utilize microfluidic technology, which is favorable for precise cell manipulation 
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and microenvironment control as microfluidics operate at the scale of cells and of unique physical 

phenomena.18 Label-free microfluidic methods for single-cell analysis have been applied to many 

biological and biomedical applications, including cell cycle monitoring, rapid complete blood 

count, cancer diagnosis, parasite detection, etc.17 

While a number of promising biophysical properties and their roles in cellular states and 

functions have been identified, there still lacks a versatile and comprehensive approach that can 

investigate multiple biophysical markers across domains (e.g., optical, mechanical, electrical) at 

the single-cell level. Many label-free single-cell characterization tools are generally developed to 

investigate biophysical markers that are within the principal domains of operations and are rarely 

extended across domain. My dissertation aims to contribute to this under-explored area by 

proposing and demonstrating an integrated approach, that reduces the complexity of combining 

multiple label-free measurement techniques and enables multivariate studies of biophysical 

markers which are not frequently profiled together. 

1.2 Existing Label-Free Cell Characterization Techniques 

Numerous label-free cell characterization techniques exist that can probe different aspects of 

cells with varying operating principles, throughput, and sensitivity. In this section, existing label-

free cell characterization techniques are discussed along with their operating principles, 

applications, throughput, advantages, and limitations. The scope of the review is restricted to the 

three major domains of cell characterization techniques, including mechanical characterization, 

electrical characterization, and optical characterization. More emphasis is given to microfluidic 

single-cell techniques. 

1.2.1 Mechanical Characterization of Cells 

Mechanical properties of cells generally describe how a cell deforms in response to an applied 

load.19 They have been shown to be a promising biomarker as 1) they can represent an integrative 

characteristic of the underlying components and  morphology of cell cytoskeleton, nucleus, and/or 

plasma membrane; 2) they are directly related to cellular functions, such as migration, adhesion, 

polarization; and 3) they are hallmarks of numerous diseases, including cancer, cardiovascular 

disease, inflammation, microbial infections, etc.13,20–22 A number of characterization techniques 

that can probe localized and whole-cell mechanical properties with varying deformation extent 

have been demonstrated. Examples of non-microfluidic approaches include Atomic Force 
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Microscopy (AFM), micropipette aspiration, microbead rheometry (magnetic tweezer), and optical 

tweezer. While these techniques can provide precise deformation measurements that can be used 

to extract elastic and viscoelastic properties of cells, they tend to have low throughput and are 

challenging to scale up.12 To meet the high-throughput requirement, microfluidic approaches have 

been developed to induce cell deformation by various mechanisms, e.g., constriction channels, 

fluid-dynamic stresses, acoustic waves, optical forces, dielectrophoretic (DEP) forces.  We review 

common microfluidic mechanical characterization techniques, as broadly classified by physical 

origins of the applied deformation,2 along with their advantages and limitations in this section.  

Structure-induced deformation 

In structure-induced deformation approaches, cells are squeezed through constriction 

channels whose widths are smaller than cell diameter. Deformability indicators, e.g., elongation 

index, transit time, recovery time, can then be quantified by high-speed imaging, impedance 

measurement, or cantilever-based mass sensing. The designs of constriction structures that have 

been reported vary in shapes and arrangements and are often optimized empirically for the samples 

being tested. Constriction channels have been used to measure biomechanical changes in a variety 

of cell samples, including different stages of malaria-infected red blood cells,23,24 leukemia cells 

from leukostasis-symptomatic patients in comparison to leukostatis-asymptomatic patients,25 and 

malignant versus non-malignant cell lines.26,27  Constriction-based techniques are simple in terms 

of device design, fabrication, and operation. They mimic structures of in vivo capillaries and are 

easily scalable to many parallel microchannels. The reported throughputs are approximately 1 – 

100 cells per second, which is sufficient to process clinically relevant samples. Nevertheless, 

constriction-based approaches can suffer from limited control of the applied deformation per 

individual cells and from measurements that can be confounded by size and adhesion between cell 

surface and constriction surface. Research efforts have been made to mitigate these effects, e.g., 

by extracting size information in parallel to transit time,28,29 adjusting the constriction height in 

real time according to cell diameter of incoming cells,30 separating entry time and transit time in 

the analysis,27 and applying surface treatment prior to experiment to reduce adhesion. In addition, 

constriction-based techniques are susceptible to clogging as cells are required to come into contact 

with channel structures. Sample dilution may be required to avoid clogging.  
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Fluid-induced deformation   

In fluid-induced approaches, cells are deformed by shear stress from channel geometry or by 

extensional flow, and high-speed imaging is used to extract deformation index and size. As these 

approaches are contact-free (i.e., cells do not have to come into contact with channel surface), 

channel widths for fluid-induced deformation are generally comparable and slightly larger than 

the cell diameter. Forsyth et al. observed reduced deformation and increased instances of tumbling 

(a characteristic dynamic of elongation index vs time of stiff cells) of red blood cells with 

glutaraldehyde treatment as they travelled through an area with increased shear rate followed by 

an area with decreased shear rate.31 Otto et al. has reported a real-time deformability cytometry 

(RT-DC), in which cells are deformed by shear stresses, with an analysis throughput of > 100 cells 

per second.32 RT-DC successfully distinguished changes in deformability and size due to effects 

of cytoskeletal drugs, cell-cycle progression, and cell differentiation of HL60 cells. Gossett et al. 

reported an extremely high-throughput (~ 2000 cells per second) approach, in which cells are 

deformed (> 50% strain) in an extensional flow field, and demonstrated that deformability is a 

promising biomarker for identifying malignant cells in pleural effusions and pluripotent stem cell 

differentiation.33 Overall, fluid-induced approaches for mechanical characterization of single cells 

are able to achieve high throughput compared to other approaches. Because these approaches are 

contact-free, they are less susceptible to clogging and are not confounded by adhesion properties 

of cells. However, they require high-speed cameras which can be costly as well as a rapid image 

processing pipeline in order to avoid the storage and transfer of large image stacks. Similar to the 

structure-induced deformation, deformability measured from fluid-induced deformation are 

dependent on cell size because stress fields generated from these techniques depend on cell size 

and shape. Therefore, size information is often extracted as an additional parameter. 

Optical stretching 

Optical stretchers employ two opposed Gaussian laser beams to trap and stretch cells.34 Radii 

along the beam axis and radii perpendicular to the beam axis of stretched cells are then extracted 

from image analysis with resolution down to ±11 nm. The throughput of the optical stretcher is 

between 1 cell per minute to ~ 20 cells per second.12 The optical stretcher has been used to 

distinguish normal, cancerous, and metastatic cell lines; characterize human myeloid precursor 

cells and three induced lineages; and identify malaria-infected red blood cells.35–37 While optical 
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stretching benefits from being a contactless approach, it suffers from low throughput, inherently 

small deformation due to weak optical force, and sample heating.  

DEP-induced deformation 

In DEP-induced mechanical characterization (or electrodeformation), cells are trapped and 

deformed by dielectrophoretic (DEP) force generated from time-varying, nonuniform electric 

fields. Images of cell deformation are used to extract changes in deformation length or elongation 

index of cells. Electrodeformation has been applied to characterize deformability of human cancer 

cell lines, platelets, and healthy red blood cells versus red blood cells infected with Plasmodium 

falciparum malaria parasites.38–43 Generally, electrodeformation techniques are batch processing 

systems with limited throughput as the measurement is made for one cell or for a small batch of 

cells at a time.  The processes are not fully automated as manual operation for voltage control 

during cell trapping and deformation measurement is required. Additionally, special attention must 

be paid to minimize the influence of Joule heating. 

1.2.2 Electrical Characterization of Cells 

Dielectric properties of cells have been investigated extensively as an important biophysical 

marker that can be exploited to manipulate (e.g., focus, trap, or separate) and to characterize cells.44 

They have been applied to characterize blood cells, cancer cells, and stem cells. Electrical 

characterization results of cells are normally interpreted using the single shell model, which is a 

simplified electrical model of a cell. In the single shell model, a cell is represented as two uniform 

concentric layers of different complex permittivity.45,46 The outer layer represents the cell 

membrane and the inner sphere represents the cytoplasm. The model can be fitted to the measured 

complex permittivity in order to extract dielectric parameters, including permittivity and 

conductivity of each layer. Studies have shown that dielectric properties of the cell membrane are 

potentially influenced by membrane area, thickness, and composition (e.g. expression of 

membrane proteins); whereas dielectric properties of the cytoplasm are influenced by intracellular 

structures and components (e.g., ion concentration).47–51 We review common approaches for  

electrical characterization of cells in this section. 
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Impedance-based approaches 

Impedance-based electrical characterization approaches measure the impedance of cells using 

AC excitation at one or more frequencies. These techniques have evolved from the Coulter counter 

principle, in which the (DC or low-frequency AC) impedance of a cell flowing through an aperture 

is measured by sensing electrodes on the two sides.52 Changes in the measured impedance are used 

to count cells and extract cell volume. Impedance-based microfluidic cytometry generally 

integrates microelectrodes within the devices, and measures impedance of cells at frequencies 

between kHz and MHz ranges.14 Both simulation and experimental impedance analysis studies 

have demonstrated that impedance measurements at different frequency ranges can provide useful 

information about different aspects of the cells, e.g., cell size, membrane properties, and 

cytoplasmic properties.53 

Impedance-based microfluidic cytometry can be broadly categorized into two varieties based 

on whether cells are immobilized or are flowing when the impedances are measured.54 In the first 

variation, cells are trapped by hydrodynamic trapping, vacuum aspiration, surface modification, 

or dielectrophoretic forces; before their electrical impedances are measured.55–59 Trapping of cells 

enables measurement of impedance spectra as well as continuous impedance monitoring of the 

same cells over time for chemical response assessment. Nevertheless, the throughput of these 

techniques is limited (on the order of ~ 10 cells/study) by many factors, including capture/release 

time, spectra measurement time, and the number of traps and sensing electrodes that are available 

on the same chips.2 

 In the second variation, cells continuously flow through the devices while the impedance 

analysis is performed. Impedance flow cytometry, one example of a successful impedance 

characterization technique for flowing cells, utilizes differential impedance sensing from two 

electrode pairs to compare the cell impedance directly against the suspending medium and to 

cancel any unwanted electrode drifts.54 The first electrode pair measures the current fluctuation 

caused by the presence of a cell in the detection volume, while the second pair measures the current 

passing through pure medium and is used for reference. For differential sensing schemes, parallel 

electrode pairs have been shown to be a more advantageous configuration than coplanar electrode 

pairs as they produce more homogenous electric field distribution and less positional variation in 

the impedance signals.60 Differential impedance flow cytometry has been demonstrated to 
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characterize and distinguish polymer beads with different sizes, normal red blood cells and their 

ghost counterparts or their fixed counterparts, different stages of Plasmodium falciparum infected 

red blood cells, and different states (e.g., normal, apoptotic, necrotic) of tumor cells.53,61,62 Overall, 

these characterization techniques were able to achieve high throughput (~ 1000 cells per second). 

Research efforts have been made to extend the applications of these techniques by improving 

measurement precision (e.g., via accurate positioning of cells in the detection chamber)63, and by 

increasing the number of frequencies that can be measured at the same time (e.g., via maximum 

length sequence).64 Another example of impedance characterization for flowing cells uses 

constriction channels to reduce the positioning variation and decrease the current leakage through 

the medium surrounding cells.65 In this technique, single cells are aspirated through the 

constriction channels where the impedance measurement at one or more frequencies are made 

from the electrode on each side. Example applications include characterization of tumor cells, red 

blood cells, and stem cells.29,65–68 The throughput of the constriction-based technique is on the 

order of ~ 100 cells per second. Compared to the differential impedance flow cytometry, the 

constriction-based approach achieves smaller throughput and is more likely to suffer from channel 

blockage.   

DEP-based approaches 

When a cell is subjected to a nonuniform electric field; the dielectrophoretic (DEP) force, 

which is proportional to the cell’s effective polarizability (represented by the real component of 

the Clausius-Mossotti factor or Re[CM]), is exerted on it and can cause it to move or down the 

electric field gradient.44 The time-averaged DEP force due to the non-uniform electric field can be 

approximated as:  

�̅�𝐷𝐸𝑃  = 2𝜋𝑅3휀𝑚𝑅𝑒[𝐶𝑀(𝜔)]∇|�̅�𝑟𝑚𝑠|2, 

where R is the cell’s radius, 휀𝑚is the permittivity of the media, 𝜔 is the applied radian frequency, 

and ∇|�̅�𝑟𝑚𝑠|2 is the gradient of the square of the electric field magnitude. The frequency-dependent 

CM factor, 𝐶𝑀(𝜔), is the effective polarizability of the cell and its surrounding medium:  

𝐶𝑀(𝑤)  =  
휀𝑝

∗ −  휀𝑚
∗

휀𝑝
∗ + 2휀𝑚

∗
 

where 휀𝑝
∗  and 휀𝑝

∗  are complex permittivity of the cell and the surrounding medium, respectively. If 

the cell’s polarizability is greater than the suspending medium’s (Re[CM]>0), the particle is 
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directed up the field gradient (positive DEP). If the cells’ polarizability is smaller than the 

medium’s (Re[CM]<0), the particle is directed down the field gradient (negative DEP). Both the 

sign and the magnitude of the Re[CM] have been utilized for electrical characterization of cells.  

A common DEP-based characterization technique measures the crossover frequency of cells 

by observing their motion in response to changes in the applied frequency and determines the 

frequency at which the DEP forces exerting on the cells vanish. This technique has been applied 

to detect morphology changes in cells undergoing apoptosis, estimate physical properties of 

neurons and glial cells, and distinguish fate potential of human stem cells.69–71 DEP crossover 

frequency experiment requires a very simple experiment setup. However, it can be limited by low 

throughput associated with batch processing, and the need to use low-conductivity media that may 

alter the properties of the cells being measured. 

Several techniques utilize other types of forces (e.g., hydrodynamic, gravitational, optical) to 

balance the DEP forces in order to characterize or to manipulate cells. In Dielectrophoretic Field-

Flow Fractionation (DEP-FFF), the negative DEP forces levitate cells to different equilibrium 

heights in a parabolic flow profile, where cells attain different corresponding velocity and 

eventually time or distance separation based on their dielectric properties.72,73 DEP-FFF has been 

applied to separate circulating tumor cells (CTCs) from normal blood cells and separate major 

leukocyte subpopulations.74–76 DEP-FFF is a promising technique as it allows high throughput and 

it does not require the use of low-conductivity media. DEP-FFF technology has been 

commercialized (e.g., ApoStream®).  

Iso-dielectric separation (IDS) is another unique continuous-flow technique to characterize 

the electrical properties of cells, independently from cell size, at the throughput of ~ 150 cells per 

second.77–79 In IDS devices, cells travel in single file along the nDEP barrier (i.e., generated by 

coplanar or parallel electrodes, which are positioned slightly slanted from the flow direction) from 

high-conductivity media to low-conductivity media. As the conductivity of their surrounding 

media decreases, cells experience lower negative DEP force (due to decrease in the magnitude of 

the Re[CM]). Cells eventually pass through the electrode barrier at the iso-dielectric point (IDP), 

where the drag force overcomes the negative DEP force, and remain in this position on the 

conductivity gradient axis. IDS technique has been demonstrated to be a promising, label-free tool 

to rapidly quantify the number of leukocyte activation, which is more predictive of the clinical 
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sepsis severity indicator than the complete blood count, in human patients.80 One downside of the 

IDS technique is that a conductivity gradient has be generated inside the device for the 

measurement.  

Su et al. has demonstrated a force-balance method called the DEP Spring technique, which 

allows the Re[CM] of cells to be inferred from the balance position between the hydrodynamic 

drag force and the DEP force.81 In this technique, cells, subjected to the drag force, migrate along 

the channel flow direction. As they move closer to the coplanar electrodes, which are placed 

slightly slanted from the channel flow direction, they experience larger negative DEP forces, 

pushing them from the electrode centerline. If the exerted DEP force is sufficient to counteract the 

drag force, then the cells continue to travel along the electrode centerline at the constant distance 

perpendicular to the electrode centerline (balance position). This technique has enabled rapid and 

automated screening of conditions (applied AC frequency and medium conductivity) that can 

discriminate activated and inactivated neutrophils.81 As a continuous-flow method, this technique 

is able to achieve sufficiently high throughput of ~10 cells per second. An extension of this 

technique, introduced by Jaffe et al., measures the balance positions at three different frequencies 

of single cells.82 The authors have determined a set of three frequencies as the optimal combination 

of frequencies for cell discrimination using Monte Carlo simulation, and have demonstrated that 

improved classification in cell states was achieved when the measured balance positions at all three 

frequencies were used.  

Electrorotation (ROT)-based approaches 

When a cell is subjected to rotating electric fields, an induced torque causes the cell to rotate 

with a rotation rate (R𝑅𝑂𝑇) that is proportional to the imaginary part of the CM factor (Im[CM]): 

𝑅𝑅𝑂𝑇 =  − 
𝜖𝑚|𝐸𝑟𝑚𝑠|2

2𝜂
𝐼𝑚[𝐶𝑀(𝜔)]𝐾, 

where 𝜂 is the viscosity of the surrounding medium and K is a scaling factor.83 The most common 

ROT setup places a cell at the center of four electrodes which are connected to sinusoidal 

waveforms with 90o phase offset. The rotation spectra are measured from the rotation rates of the 

cell at different applied frequencies (typically between 1 kHz and ~ 1 MHz). Electrorotation has 

been applied to characterize white blood cells, human cancer cells, … Because the target cell 

rotates in the same position, the amplitude of the electric field remains unchanged, and is simple 
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to obtain in order to extract the electrical properties of the cell from the rotation spectra. 

Electrorotation technique is limited by throughput (estimated to be 12-20 cells per hour) as cell 

positioning and the spectra measurement can be slow.84  Recently, Keim et al. reported an 

improvement in throughput  (~ 600 cells per hour) by using single-cell arraying, selective release, 

and batch measurement.84 

1.2.3 Optical characterization of Cells 

It is well recognized that label-free images and intrinsic optical characteristics (e.g., light 

scattering, refractive index, absorption, Raman scattering) of cells provide useful information 

about cell types and states.85–88 For example, along with fluorescence measurement, flow 

cytometry is equipped for the measurement of forward-scattered light (FSC), which has some 

similarity to size, and side-scattered light (SSC), which has some similarity to cell granularity and 

internal complexity. FSC and SSC parameters are often used to gate viable cells from debris and 

nonviable cells, prior to fluorescence gating analysis. It has also been demonstrated that FSC and 

SSC can be used to distinguish major leukocyte subpopulations (i.e., granulocytes, lymphocytes, 

and monocytes). In addition, with the recent advances in deep learning technologies, applications 

of label-free imaged-based characterization of single cells have been demonstrated.89,90  

Microfluidic technology has been integrated with optical detection and image detection in 

several applications.88 Particularly, the microfluidic technology is mainly used to continuously 

introduce single cells through the detection zone, reduce the required sample/reagent volume, 

minimize manual operation, increase portability, and facilitate high-throughput measurement.91 

Several integrated systems also incorporate microfluidic manipulation techniques, e.g., 

hydrodynamic focusing, inertial focusing, acoustic focusing, dielectrophoretic focusing, to focus 

and order cells into single or parallel stream(s) prior to detection. Focusing and ordering of cells 

improve the precision and efficiency of the overall system by reducing out-of-focus instances as 

well as mitigating the instances when no cell or more than one cell appear in the detection zone.   

Optical flow cytometry 

Several label-free optical microfluidic flow cytometers have been developed for low-cost 

point-of-care applications, by measuring light scattering. Chen et al. developed a microflow 

cytometer equipped with small-angle forward-scattered light measurements for particle counting 

and sizing, by using a commercial photovoltaic cell, an adjustable power laser module, and a 
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PDMS microfluidic chip.92 They found that the intensity of the forward scattering light linearly 

correlate with particle size, with a 20% – 30% coefficient of variation (CV). Fu et al. reported an 

optical microflow cytometer to count and size non-fluorescent and fluorescent particles based on 

external total reflection.93  In this system the total number and size of the particles passing through 

the detection region is extracted from the nonscattered light signal reflected from a plane mirror 

positioned over the microchip, while the number of fluorescence‐labeled particles is extracted from 

the back scattered fluorescence signal. Su et al. reported a microscope-based microfluidic 

cytometer, which records 2D patterns of the light scattering. They show that CD34+ hematopoietic 

stem cells can be distinguished from myeloid precursor cells. Dannhauser et al. reported a 

microfluidic flow system to measure the light scattering profiles over a wide angular range of red 

blood cells and match the profiles to simulation to obtain morphological properties of cells.94  

Imaging flow cytometry 

Imaging flow cytometry combines the high-throughput capability of flow cytometry with the 

high spatial resolution of microscope imaging, and enables studies that are not possible using either 

technique alone.95 The commercially available Amnis® ImageStream® imaging flow cytometry 

can acquire single cell images at rates up to 5,000 cells per second in up to 12 channels, including 

brightfield, scatter, and fluorescence.96 The system is equipped with a machine-learning-based 

image analysis software to circumvent hand-crafted feature selection and enable rapid automated 

analysis. It has been demonstrated, using the ImageStream® platform and deep-learning based 

analysis, that the brightfield and darkfield images of single cells can be used to assess stages in the 

cell cycle as well as identify red blood cell storage lesions in a label-free manner.95,97,98   

There are two main detection modalities for microfluidic imaging flow cytometry: camera-

based and photodetector-based.91 For camera-based detection modality, a large number of cells in 

a large detection area are introduced to the detection zone (possibly at reduced velocity compared 

to the photodetector-based scheme), and are monitored in parallel by a high-speed camera. Hur et 

al. reported the first example of a high-throughput, microfluidic parallel-flow cytometer by 

integrating sheathless inertial focusing and high-speed bright-field imaging (between 190,000 and 

500,000 fps). The microfluidic platform consists of 256 parallel channels, enabling a sample rate 

up to 1 million cells per second. The platform is used to automate red blood cell and leukocyte 

counts on diluted whole blood. Nevertheless, the system is limited in terms of spatial resolution 
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due to bright-field mode, and is not suitable for morphological analysis.99 Schonbrun et al. reported 

a multiple field of view imaging flow cytometry, using parallel microfluidic channels and 

diffractive lenses to monitor 16 fields of view with a 45X magnification and submicron resolution. 

They used the system to image latex beads, red blood cells, cancer cell line at the rate of 2,000 – 

20,000 instances per second.100 Rane et al. reported a high-throughput, multi-parametric method 

that can acquire bright field, dark field, and blur-free fluorescence image, using inertial focusing 

and stroboscopic epifluorescence imaging. The extrapolated throughput of this technique was ~ 

50,000 cells per second.101 Seo et al. reported a high-throughput on-chip blood analysis, using 

lens-free digital holographic microscopy to extend the imager’s field of view. The system was 

used to automate counting of red blood cells and 3-part differentiation of white blood cells.102 This 

system was able to achieve a spatial resolution of ~ 1.4 µm with the field of view of ~ 24 mm2. 

For photodetector-based detection modality, cells are introduced one at a time in a high-speed flow 

to the detection zone, and the time-stretch imaging method is used to acquire images of fast-

moving cells without motion blur. This concept was demonstrated by Goda et al. with the 

throughput of 100,000 cells per second.103 Additionally, Asymmetric-detection Time-stretch 

Optical Microscopy (ATOM) has been demonstrated to improve the time-stretch imaging further 

by enhancing the image contrast of unlabeled cells.104  

1.3 Combining Measurements of Multiple Biophysical Markers for Single Cells 

There are several benefits to measure multiple biophysical markers for single cells.  First, it 

enables us to study the influences of one marker on the measurement of the other markers, and 

potentially decouple those effects. For example, various label-free cell characterization techniques 

are dependent on cell size; therefore, cell size is often extracted out from these experiments as an 

additional marker. Deformability of cells (which is quantified as elongation index, transit time, 

Young’s modulus) is often reported with cell size in two-dimensional dot plots, which allows us 

to extract the variations of the deformability marker for the same cell size.30,32,33,105–108 Similarly, 

since the electrical impedance at low frequency is associated with cell size, the electrical 

impedance is often measured at more than one frequency.61,109 The impedance markers measured 

from two frequencies are often reported in two-dimensional plots of the impedance at low 

frequency (related to size) versus the impedance at high frequency or the opacity (the ratio of the 

impedance at high frequency to the impedance at low frequency). The extraction of cell size as an 

additional marker illustrates the effects of size on that marker as well as the intrinsic or 
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measurement variations of the marker.27 Second, it has been demonstrated, using machine learning 

techniques, that measuring many multiple biophysical markers significantly improves the 

classification accuracy of cell types and states. In addition to the elongation index during 

deformation and the initial diameter before deformation, Lin et al. extracted more than 20 cell 

motion-related and morphology-related parameters from the deformability cytometry and 

observed ~ 14% improvement in classification accuracy when comparing pluripotent stem cells 

and their derivatives.110 Yang et al. reported 5% – 50% improved classification accuracy of breast 

cancer cells and their chemically-induced states, by combining the measurements of electrical 

impedance, deformability, and relaxation index, compared to when the individual markers were 

used.111 Increasing classification accuracy can be particularly useful in diagnostic testing and drug 

screening. Third, it allows multivariate studies of the biophysical profiles of cells that are 

impossible otherwise, which can potentially be used to discover new subpopulation. This benefit 

has been shown extensively with flow cytometry and mass cytometry. As biophysical 

measurement techniques improve in terms of precision, robustness, throughput, and readiness to 

combine with other techniques, a biophysical phenotyping cytometry, which can measure 

biophysical profiles of single cells across operating domains (e.g., mechanical, electrical, optical, 

acoustic, magnetic), can be realized to maximize the benefits of the label-free characterization 

methods. 

1.4 Thesis Overview 

The aim of this thesis is to develop and demonstrate a multiparameter intrinsic cytometry 

approach to combine multiple label-free biophysical measurements for single cells, which is 

versatile (can combine techniques across domains) and readily extensible (to measure more than 

two biophysical markers). In Chapter 2, I describe and demonstrate the multiparameter cell-

tracking intrinsic cytometry, which utilizes label-free microfluidic techniques to manipulate cells 

such that information about their biophysical properties can be extracted from their spatiotemporal 

positions and utilizes cell tracking to extract and associate the biophysical markers for single cells. 

In Chapter 3, I describe the extension of cell-tracking intrinsic cytometry approach by using digital 

holographic microscopy and deep learning to monitor cells in a large field of view, enabling rapid 

and high-throughput assessment of biophysical phenotypes. In the closing chapter, I summarize 

major contributions of this thesis and offer future outlook.  
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2.1 Introduction 

Cells and their states can be identified by extrinsic markers, biochemical labels that target 

specific molecules on or in the cells, coupled with detection tags, such as fluorochromes, quantum 

dots, magnetic beads, and stable isotopes. Flow cytometry and mass cytometry are powerful 

analysis tools that are readily extensible to investigate 10s of extrinsic markers simultaneously 

within single cells, making it possible to identify rare subtypes and complex states of cells within 

heterogeneous populations.6,7,112 These single-cell multiparametric extrinsic measurements have 

enabled numerous applications in biology and medicine.9,113,114  

Cells also possess intrinsic markers, which are the properties of cells that do not need labels 

to become apparent, such as size, shape, density, optical, mechanical, and electrical properties.16 

Intrinsic markers are useful for measuring cell properties that do not have biochemical markers, 

and can complement or substitute label-based analysis where cost or time are 

paramount.115,116,20,117–119,13,120,2,22 Several label-free macroscale and microscale techniques have 

been developed for bulk and, within recent decades, single-cell characterization and separation 

based on intrinsic markers.2 Microfluidic techniques in particular are appealing due to the plethora 

of different properties that can be measured and a variety of techniques that have been engineered 

to perform measurements of these properties.16,44,121–125 Nevertheless, intrinsic markers are 

generally not tied to specific molecular pathways, but tend to integrate diverse pathways (e.g. cell 

size); therefore, intrinsic markers tend to suffer from a lack of specificity. In addition, similar to 

the case of extrinsic markers, a single intrinsic marker is often not sufficient for cell 

characterization in real-world applications where different cell states and populations within a 

complex mixture need to be identified and characterized.  

To increase specificity, several studies have measured multiple intrinsic markers 

simultaneously within single cells. For example, size and deformability measurements of single 

cells have been shown together to increase specificity in a variety of samples.26,30,126,33,127,32,105,110 

Combinations of cell electrical signatures, e.g. multi-frequency impedance data, have shown 

similar benefits.14,54 These multiparametric intrinsic studies show that additional intrinsic markers 

can be creatively extracted from the same measurement recordings without changing the 

experiment designs of the dominating measurement techniques, e.g. extracting size or morphology 

from visual readout or electrical impedance change, and that combinations of intrinsic markers can 
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improve characterization.24-33 Here we introduce a more general approach to multiparameter 

intrinsic cytometry that is readily extensible to different types of intrinsic markers. 

There are several ways to develop a multiparameter intrinsic cytometry. One approach is to 

serially connect the outlet of one device to inlet of the next (Figure 2-1a). To preserve cell identity, 

cells have to be spaced sufficiently apart to maintain their order through the tubing. Therefore, the 

throughput of this approach can be limited. Another straightforward and commonly used approach 

in both extrinsic cytometry and intrinsic cytometry is to combine different measurement 

techniques into the same integrated space such that different intrinsic properties can be measured 

simultaneously (Figure 2-1b(left)). An undeniable limitation of this approach is the difficulty of 

integrating increasing numbers of measurement modalities within the same space and structures. 

One can also spread the measurement techniques out in the same platform and use time to associate 

the measured properties to the same cells (Figure 2-1b(right)). However, different probes and 

readout systems are required, which can add to the complexity as the number of the measurement 

modules increase. Instead, we propose to spread measurement modules across space and record 

cell trajectories as they transit between modules. In this fashion, each module can be individually 

optimized, and the data obtained in each module can be correlated to individual cells using optical 

cell tracking (Figure 2-1c).  

To show a specific implementation of this approach, we developed a cytometry that measures 

size, polarizability at multiple frequencies, and deformability of single cells. We validate 

performance of each module and then show how cell tracking can be used to correlate 

measurements back to individual cells, thus aggregating the data. We use the multiparametric data 

in the context of cytoskeletal disruption of HL60 cells to investigate the orthogonality between 

parameters and the importance of each intrinsic marker as a predictor for the classification of cell 

populations of interest. 
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Figure 2-1. Approaches to create a multiparameter intrinsic cytometry. (a) Serial connection via tubing. (b) 

Integration of devices, within the same platform in the same physical space (left) or spread out in space (right). 

(c) Integration of devices with visual readout capability and cell tracking.   

2.2 n-DEP Spring Overview 

The n-DEP spring method utilizes the force balance between the negative DEP force and the 

hydrodynamic drag force to infer polarizability of cells.81 In this method, a non-uniform electric 

filed is created by a pair of coplanar electrodes, which are positioned slightly slanted from the flow 

direction. As cells flow down the channel and move closer to the centerline of the electrodes, they 

experience stronger negative DEP forces that counter the drag forces, deflecting them from the 

electrode centerline. The perpendicular distance from the electrode centerline at which the DEP 

force acting on the cell is equal to the drag force is termed the balance position (δ), and is used to 

infer cell polarizability. 
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Figure 2-2. a) n-DEP spring overview, reprinted from Su et al.81 b) The positional dependency of the DEP 

force in x-direction for different particle radii, as calculated by conformal mapping using the device geometry 

specified in this study. 

The hydrodynamic drag force (𝐹𝐷𝑟𝑎𝑔) acting on a cell in a uniform Stokes’ flow (Reynolds 

number << 1) in the x-direction is given as 

𝐹𝐷𝑟𝑎𝑔𝑥 =  −6𝜋𝑅𝜂𝑣𝑥 

where R is the cell radius, 𝜂 is the viscosity of the media, and 𝑣𝑥 is the average velocity of the flow 

at the center of the cell in the x-direction. The average velocity in the x-direction of the flow at the 

center of the cell can be estimated from the parabolic flow profile along the z-axis, assuming that 

the cell is pushed toward the ceiling by the upward DEP force, as   

𝑣𝑥 =  
6𝑄

𝑤ℎ3
𝑅(ℎ − 𝑅) sin 𝜃 

where Q is the volumetric flow rate, w is the channel width, h is the channel height, and 𝜃 is the 

angle between the electrode centerline and the flow direction. 

The negative DEP force acting on a cell is given as 

          𝐹𝐷𝐸𝑃𝑥 = 2𝜋𝑅3휀𝑚𝑅𝑒[𝐶𝑀]
𝜕𝐸2(𝑥, ℎ − 𝑅)

𝜕𝑥
 

      =  2𝜋𝑅3휀𝑚𝑅𝑒[𝐶𝑀]𝑞𝑅(𝑥)𝑉𝑅𝑀𝑆
2 𝑝(𝑓, 𝜎𝑚)  

where εm is the permittivity of the media, 𝑅𝑒[𝐶𝑀] is the real component of the Clausius-Mossotti 

(CM) factor (a measure of the cell’s effective polarizability), 𝐸2(𝑥, ℎ − 𝑅) is the RMS value of 
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the electric field strength for an applied RMS voltage VRMS at location x and height h - R, 𝑞𝑅 is a 

function that reflects positional dependency of the DEP force, and 𝑝(𝑓, 𝜎𝑚) is a function that 

corrects for frequency-dependent voltage drop at the electrode/solution interface.  

At the balance position (δ),  

�̅�𝐷𝐸𝑃𝑥 +  �̅�𝐷𝑟𝑎𝑔𝑥 = 2𝜋𝑅3휀𝑚𝑅𝑒[𝐶𝑀]𝑞𝑅(𝛿)𝑉𝑅𝑀𝑆
2 𝑝(𝑓, 𝜎𝑚) −  6𝜋𝑅𝜂 [

6𝑄

𝑤ℎ3
𝑅(ℎ − 𝑅) sin 𝜃] = 0 

The balance position is, therefore, defined as 

𝛿 =  𝑞𝑅
−1 (

3𝜂 sin 𝜃 [
6𝑄

𝑤ℎ3 (ℎ − 𝑅)]

𝑅휀𝑚𝑅𝑒[𝐶𝑀]𝑉𝑅𝑀𝑆
2 𝑝(𝑓, 𝜎𝑚)

) =  𝑞𝑅
−1 (

18𝜂 sin 𝜃

𝑤ℎ3휀𝑚𝑝(𝑓, 𝜎𝑚)
∙

𝑄

𝑉𝑅𝑀𝑆
2 ∙

(ℎ − 𝑅)

𝑅 ∙ 𝑅𝑒[𝐶𝑀]
) 

For a device with fixed electrode geometry and fixed channel geometry, 𝑄 and 𝑉𝑅𝑀𝑆 can be tuned 

to increase drag force or DEP force, respectively. Given that the balance positions and the radii of 

cells can be measured, Re[CM] can also be extracted. For cells with the same radii, an increase in 

the balance positions indicates an increase in the Re[CM].  

2.3 Materials and Methods 

2.3.1 Cell Culture 

BA/F3 murine interleukin-3 dependent pro-B cell line was cultured according to ATCC 

protocols and were passaged ~3-4 days at 1/10 dilution. The cell culture medium was prepared 

from RPMI-1640 with high glucose content, L-Glutamine, and phenol red indicator, supplemented 

with 10% fetal bovine serum, 1% L-glutamine, 1% penicillin-streptomycin, 1% Sodium Pyruvate, 

and 1% MEM non-essential amino acids.  

HL60 human acute promyelocytic leukemia cell line was cultured according to ATCC 

protocols and were passaged ~2-3 days to maintain cell density between 1x105 and 1x106 cells/mL. 

The cell culture medium was prepared from RPMI-1640 with high glucose content, L-Glutamine, 

and phenol red indicator, supplemented with 10% fetal bovine serum, and 1% penicillin-

streptomycin.  

2.3.2 Microfluidic device 

For deformability experiment, the device consists of a PDMS layer which contains a 15-µm-

high microfluidic channel with 32 parallel constriction channels, modified from Rosenbluth et al.25 
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The widths of the narrowest constrictions are 10 µm for BA/F3 experiments and are 6 µm for 

HL60 experiments. The two constriction widths were chosen experimentally as the constriction 

channels had to be sufficiently narrow to be sensitive to the change in cell deformability and 

sufficiently wide to avoid channel clogging which decreased the number of available channels for 

testing. The microfluidic channels in PDMS is molded from an SU-8 silicon master or a plastic 

master mold replicated from the original mold, using standard microfabrication techniques. The 

PDMS layer is then bonded a glass slide after 2-minute exposure to oxygen plasma. 

For polarizability and size experiment, the device is as described in Su et al.81 The device 

consists of two main components: 1) a PDMS layer with 20µm-by-2mm-by-5cm channel, which 

is molded from silicon or plastic master mold, and 2) a patterned electrode layer with 200nm Au 

and 10 nm Ti on Pyrex wafer, which is fabricated using standard lift-off protocol. The two 

components are plasma bonded and sealed with two-part epoxy. 

For multiparameter intrinsic cytometry experiment, the integrated platform design is shown 

in Figure 2-3. The PDMS layer and the electrode layer of the cytometry are fabricated as previously 

described. The channel pattern in the PDMS layer is then aligned and plasma-bonded to the 

electrode patterns on Pyrex wafer. External electrical connections are soldered onto the 

predesignated electrode pads. 

 

Figure 2-3. Device design. The device contains one inlet, DEP focusing, polarizability module, deformability 

module, and one outlet. The device footprint is ~29.27 mm (L) × 23.28 mm (W). The polarizability module 
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footprint, including the channel, electrodes, and the electrode contact pads, is ~7.07 mm (L) × 19.75 mm (W). 

The deformability module footprint is ~1.92 mm (L) × 1.35 mm (W).  

2.3.3 Cell assay 

For deformability study, BA/F3 cells were incubated with 4% paraformaldehyde in 

Dulbecco's Phosphate-Buffered Saline (DPBS) at room temperature for 10 minutes. For drug 

treatment studies, HL60 cells were exposed to 10% DMSO (for control), 2µM or 10 µM 

Cytochalasin D in addition to 1µM Calcein AM, and incubated at 37oC for 1 hour. Calcein AM 

was added to cells to improve cell detection accuracy. Before each experiment, prepared cells are 

re-suspended in DPBS with 13%(w/v) Dextran at 1 x105-2x105 cells/mL.  

2.3.4 Cytometry experiment 

Microfluidic channels are flushed with 0.5% (w/v) Pluronic-F108 in DI water until all bubbles 

are removed, and are passivated with 2% bovine serum albumin in DPBS for 1-2 hours to reduce 

non-specific binding between cell samples and channel walls. Typical experiment setup is shown 

in Figure 2-4. Cell samples are loaded into 1 mL Hamilton Syringe, which is connected to the 

device via 0.01 ID PEEKTM tubing and sample-loop configuration. The device is connected to 

function generators via 50Ω coaxial cable with BNC connectors. Constant flow is delivered by 

Chemyx Fusion 200 syringe pump. Due to difference in channel structures and cell diameters, flow 

rate is 1 µL/min for BA/F3 experiments and 0.3 µL/min for HL60 experiment. Customized 

MATLAB GUI (Figure 2-5), modified from Su et al.,81 is used to control Agilent 33220A function 

generator (for frequency < 20 MHz), Aim TTi TGR1040 RF signal generator (for frequency ≥ 20 

MHz) and PCO Sensicam QE camera. Imaging is performed with Zeiss Axio Imager m1m upright 

microscope. Once initiated, MATLAB GUI records time-lapsed videos along with the frame-by-

frame frequency sequence generated by the function generator. The video recording settings 

including FOV, frame rate, and recording time, were optimized in terms of cell measurement 

throughput under the constraint of RAM capacity. Therefore, the recording conditions were 

different for the deformability module validation, polarizability module validation, and the 

integrated platform experiments. The field of view (FOV) for the deformability module validation, 

polarizability module validation, and the integrated platform experiments were ~206 μm × 757 μm 

(H x V), 1373 μm × ~103 μm (H x V), and ~2065 μm × 757 μm (H x V), respectively. The 

recording frame rates for the deformability module validation, polarizability module validation, 
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and integrated platform experiments were ~20 frames per seconds, ~32 frames per seconds, and 

~5.3 frames per seconds, respectively.  

 

Figure 2-4. Cytometry experiment setup. 
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Figure 2-5. Customized MATLAB graphic user interface (GUI) for the cytometry experiment.  

2.3.5 Cell detection and tracking 

All image processing and analysis are performed in MATLAB®R2017a. For cell detection, 

intensity image in each frame of the time-lapsed videos is binarized via adaptive thresholding and 

connected components within specified area constraints are considered potential cell detections. 

The extracted cells centroid locations in each frame are then applied to the customized multi-object 

tracking algorithm.  

For tracking, cell detections which correspond to the same cell across time are assigned to the 

same track by the Hungarian algorithm. The cost matrix supplied to the Hungarian algorithm can 

be depicted by, 

𝑐𝑜𝑠𝑡(𝑖, 𝑗) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ′i′ 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑓𝑟𝑎𝑚𝑒𝑠  

𝑎𝑛𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ′𝑗′ 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒 × 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

× 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 

where i and j are indices for each detection of the previous frames and for each detection of 

the current frame, respectively. The distance between detections is used as one of the parameter in 

the cost matrix under the assumption that detections between frames of the same cells are closer 

together than detections between frames of different cells. Therefore, assignment of cells to tracks 
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can be achieved by minimizing the distance or the cost matrix. Direction parameter and channel 

geometry parameter are included in the cost matrix to prevent assignment of any cell motions 

which are not possible, given a priori knowledge about the flow direction in the channel and the 

channel geometry. The distance cost will be replaced with an infinite cost if any impossible motion 

between detections are detected and the assignment between those detections will not be made as 

the Hungarian algorithm will try to minimize the cost function. For each frame of the time-lapsed 

video, the cost matrix is computed and the track assignments made by the Hungarian algorithm 

are updated. Any unassigned detections in the current frame will be assigned to new tracks and 

any tracks from the previous frames that are unassigned will be marked invisible and penalized. 

After a track has been penalized for more than predetermined number of frames, the cell 

corresponding to that track is considered to have left the field-of-view.  

2.3.6 Data extraction 

After tracking, locations of individual cells with respect to channel structure across time are 

specified. In addition to equivalent diameters, transit times, and balance positions at three 

frequencies of individual cells are extracted. Equivalent diameter is calculated from 

2 × √𝑎𝑟𝑒𝑎 𝜋⁄ . Transit time is calculated from number of frames a cell stays in the deformability 

ROI divided by number of frames per seconds. Balance position at each frequency is calculated 

from the perpendicular distance from the electrode centerline to the cell centroid detected within 

the polarizability ROI when waveform of that specific frequency is applied. If there are more than 

one measurement of a specific parameter for a cell, the measurements are averaged to give the 

final extracted values.  

2.3.7 Data analysis 

The Wilcoxon rank sum tests (equivalently the Mann-Whitney U-test) were performed to 

compare transit time distributions with determination of statistical significance between 

populations. 

Two-dimensional visualization of the multiparameter single-cell data was produced by visual 

interactive stochastic neighbor embedding (viSNE),128 a nonlinear dimensionality reduction 

technique that maps data points from high-dimensional space to low-dimensional space while 

conserving the spatial relationship between nearest neighbors. The resulting two-dimensional 

projections, i.e. viSNE maps, allow visualization of the high-dimensional data, making it easier to 
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analyze and interpret. To study relationship between the measured intrinsic markers and cell 

population, data points in viSNE maps representing single-cell data can be re-colored according 

to the cell population or according to measurement of each marker.  

To evaluate the orthogonality between the measured intrinsic markers and the importance of 

each marker, we plot Pearson’s linear correlation coefficients between all pairs of intrinsic markers 

and trained supervised machine learning algorithms, including random forest and SVM, to classify 

cell populations with 70% of the dataset and withhold the rest for testing. We trained with all 31 

possible combinations of five markers used for classification ranging from one marker to five 

markers used. To elaborate, there are five cases each where number of markers used is one and 

four, and there are 10 cases each where number of markers used is two and three, and there are 

only 1 case where all five markers are used. In all cases, optimal training parameters were 

determined with Bayesian optimization, which searches for hyperparameters that minimize five-

fold cross validation loss. We computed the average of the classification accuracy on the test set 

in different conditions and grouped them in terms of number of markers used. Impact of each 

marker on the model accuracy is evaluated by permuting values of that marker and observing 

decrease in model accuracy. 

2.4 Results and Discussion 

2.4.1 Cytometer architecture and choice of modality 

Cell-tracking cytometry comprises of three main subsystems: a microfluidic platform, 

microscope imaging, and image processing (Figure 2-6). The microfluidic platform consists of 

measurement modules for the intrinsic markers of interest. These modules are designed such that 

they encode the intrinsic markers of interest into the relative temporal and spatial positions of cells. 

Microscope imaging enables observation and recording of cell spatiotemporal positions in the 

microfluidic platform in the form of information-rich image stacks. The image processing 

subsystem then detects, tracks, and extracts the intrinsic markers of cells from the image stacks as 

well as associates intrinsic marker measurements from different modules corresponding to the 

same cells across the platform. This tracking-based intrinsic cytometry approach, which spreads 

the measurement modules out in space on the same microfluidic platform and links them via 

tracking, minimizes constraints on area and volume of microfluidic investigation chamber and on 

the measurement techniques (e.g. synchronization of readout signals or probing requirements). 
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Figure 2-6. Multiparameter intrinsic cytometry. (a) Overview. Combining different microfluidic modules on 

one substrate along with cell tracking to correlate per-cell information across modules allows acquisition of 

multiparameter intrinsic properties. (b-d) Specific instantiation with five parameters. (b) Size module. Cell 

size (d1, d2) is obtained optically from images as cells flow through modules. (c) Multi-frequency nDEP 

spring module. Cells driven by hydrodynamic flow forces (FD) experience an opposing nDEP forces (FDEP) 

as they approach coplanar electrodes and reach different equilibrium positions (δf1, δf2, δf3) based on their 

polarizability at the applied frequency. By applying a sequence of three different frequencies, we obtain 3 

measures of polarizability. (d)  Deformability module. Cells deform as they transit through narrow channels. 

The transit time (T1, T2) is related to their deformability. 

While different intrinsic markers can reflect different aspects of cells, we chose to study size, 

deformability, and polarizability of single cells on our platform. We chose size because cell size 

is determined by both intrinsic developmental programs and extracellular signals.129 Cell size has 

been used as a marker to coarsely separate cell types and cell states, e.g. blood cell fractionation, 

platelet activation, separation of neuroblastoma cells and glioma cells.130–132 Cell deformability 

signifies cytoskeletal or nuclear changes associated with disease progression and changes in cell 

states, and has been used to characterize changes of malaria-infected red blood cells, invasive 

cancer cells compared to benign cells of the same origin,  activated and inactivated leukocytes, 

and pluripotency of stem cells.13,22 Finally, cell polarizability consolidates information about cell 

morphology and composition, and has been shown to distinguish subtle changes in biological 
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phenotypes, e.g. induced apoptosis in HL60 cells, stimulation of T and B lymphocytes, and 

induced differentiation in Friend murine erythroleukemia cell lines.133 Overall, size, deformability, 

and polarizability of cells are promising label-free biomarkers that have been extensively 

investigated individually, but rarely studied all together. 

Each intrinsic marker can be measured by a variety of techniques. Cell deformability 

measurement techniques include optical stretching, cell transit analyzers, hydrodynamic forces, 

and others.2 Electrical properties of single cells can be measured by impedance cytometry, 

dielectrophoretic force balance techniques, and electro-rotation techniques.54,133  Size can be 

measured with image processing, Coulter resistive sizing, deterministic lateral displacement array, 

etc.30,52,134 Here we chose techniques that  translate the properties into spatiotemporal positions 

and are thus compatible with the cell-tracking cytometry approach. 

2.4.2 Deformability module design and analysis 

We adopted a constriction-based deformability measurement platform previously introduced 

by the Fletcher group.25 In the platform, suspended cells are squeezed through parallel constriction 

channels whose width is smaller than the cell diameter (Figure 2-7a). More deformable cells are 

expected to transit through the constriction faster than less deformable cells (holding cell size and 

cell-surface interactions constant). 

On our platform, cells were detected from image stacks by thresholding the pixel intensity 

within the region of interest (ROI), followed by cell segmentation and tracking (Figure 2-7(b-c)). 

The transit time of each cell was calculated as the difference between the time stamp when the cell 

first entered the ROI and the time stamp when the cell exited the ROI. Multiple cells could be 

detected at the same time with a customized tracking algorithm (Figure 2-7d). 
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Figure 2-7. Deformability measurement module and image analysis. (a) Image of 32 parallel constriction 

channels and region of interest (ROI). The inset shows exploded view of two narrowest constriction channels. 

(b) Cell detection. Images of cells in videos are detected by adaptive thresholding and filtered by size. (c)  

Cell tracking. Detected cells in subsequent frames are assigned to tracks based on nearest-neighbor adjacency 

and direction of travel. Transit time is defined as the time for a cell to travel across the ROI. (d) Multiple 

object tracking. This approach allows many cell trajectories to be determined simultaneously. Shown are 

frames with identified cells denoted by numbers.   

2.4.3 Deformability module validation 

To validate the transit time measurements from the constriction-based deformability module, 

we performed two sets of experiments. First, we studied BA/F3 cells, a murine interleukin-3 

dependent pro-B cell line, with and without 10-minute exposure to 4% paraformaldehyde 

crosslinking fixative, which has been previously used to provide additional rigidity to the cells. 

Cells that are fixed by cross-linking agents such as formaldehyde33 or glutaraldehyde24,107,135–138 

are expected to have decreased deformability (negative change). Figure 2-8(a-b) shows beeswarm 

plots and histograms of the extracted transit time for control and fixed BA/F3 cells. Qualitatively, 

in fixed cells we observed an increase in the cell population that has > 3 seconds of transit time. 

Direct comparison of quartiles shows a ~2.5-fold (1.05 s vs. 0.41 s) increase in the 75th percentile 

population in the fixed cells (Figure 2-8c), supporting an increased transit time upon fixation.  
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Figure 2-8. Transit time measurement of control and fixed BA/F3 populations. (a) Measured transit times 

from control (n=5270) and fixed (n=1418) BA/F3s. Red crosses and green squares depict mean and median 

of the distributions, respectively. (b) Histograms of cell transit time across 3 experiments over one device 

replicate. Red dashed lines depict 25%, 50%, and 75% percentile of the distribution, respectively. (c) 

Extracted quantiles of transit times (**, p<0.01). Error bars represent 95% confidence intervals. 

To generalize beyond one cell type and one condition, we undertook experiments using HL-

60 cells, a human promyelocytic leukemia cell line, with and without exposure to Cytochalasin D.  

Cytochalasin D is a potent actin polymerization inhibitor, which has been shown to increase cell 

deformability (positive change) by various deformability measurement techniques.25,32,139 Figure 

2-9(a-b) show beeswarm plots and histograms of control and 2μM Cytochalasin D treated cells. 

The transit time distributions of the two populations are not normally distributed, but rather are 

heavy-tailed. Qualitatively, the shape of the Cytochalasin D treated transit time distribution is 

slightly more skewed toward lower transit times. In this case we find a significant decrease in the 

75th percentile transit time (3.43 s vs. 5.12 s), consistent with an increase in deformability (Figure 

2-9c). 

Together, these results demonstrate proper functioning of the deformability module coupled 

with image-based cell tracking.  

 

Figure 2-9. Transit time measurement of control and 2-μM Cytochalasin D treated HL60 cells. (a) Measured 

transit times from control (n=867) and Cytochalasin D-treated (n=1371) HL60s. Red crosses and green 

squares depict mean and median of the distributions, respectively. (b) Histograms of cell transit time across 
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6 experiments over three device replicates. Red dashed lines depict 25%, 50%, and 75% percentile of the 

distribution, respectively.  (c) Extracted quantiles of transit times, or the 25, 50, and 75 percentiles of the 

transit time distribution (**, p<0.01). Error bars represent 95% confidence intervals. 

2.4.4 Size and polarizability module design and analysis 

For polarizability measurement, we use a variant of the  DEP spring previously introduced by 

our lab.81 In this technique, a pair of parallel coplanar electrodes is positioned slightly slanted from 

the flow direction (Figure 2-10a). Cells that are introduced into the channel are subjected to a 

hydrodynamic drag force and will migrate along the channel flow direction. Once cells encounter 

the electrodes, cells will be subjected to a negative DEP force that pushes the cells away from the 

electrode centerline. If the negative DEP force in the direction perpendicular to the electrode 

centerline is sufficient to counter balance the drag force, cells will continue to migrate along the 

direction of the electrode centerline. With this technique, the polarizability of cells can be inferred 

from a measurement of the balance position (δ) that arises as a competition between the fluid drag 

force and the negative DEP force. Cell polarizability can be reported as the real part of the 

Clausius-Mossotti factor (Re[CM]), which incorporates the geometry and electrical properties of 

cell compartments. The different compartments and their properties cause the Re[CM] to be 

frequency dependent. For example, subtle changes in the cytosolic compartment will be more 

prominent in the balance position measurements at a higher frequency range than changes in the 

cell membrane. Thus, probing cell polarizability at multiple frequencies provides richer electrical 

phenotypic information. The frequency sequence, which is a repeated set of three frequencies, was 

randomly chosen within the operative frequency range that will be most indicative of the Re[CM] 

spectra. We applied this frequency sequence to the electrodes for testing.  

Similar to the deformability module, we use the image stacks to detect and track cells as they 

traverse the DEP spring (Figure 2-10b). We extract the distance of the cell centroids from electrode 

centerline, and can obtain balance position measurements at multiple frequencies by correlating 

the cell position in time to the temporal frequency sequence (Figure 2-10c). The imaging can also 

be used to extract cell diameter of each cell, using the frame stack to obtain multiple measures of 

the diameter as the cell traverses the field of view. 
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Figure 2-10. Size and multi-frequency nDEP measurements through image processing. (a) Overview of DEP 

spring method. Balance positions (δ) are the equilibrium perpendicular distance between the cell centroid and 

the center of the electrodes. Three different frequencies are applied as the cells traverse the field of view, 

allowing determination of three balance positions, which are related to the polarizability. (b) Images of cells 

on electrodes are thresholded after background subtraction. Red horizontal lines indicate the electrode 

centerline. (c) Extracted cell diameters and distance of the cell centroid from the electrode centerline relative 

to the applied frequency as a cell traversed the polarizability module. As there are many diameter 

measurements for each cell, the mean of the cell diameters measured across time is considered to be the 

extracted cell diameter.  

2.4.5 Size module validation 

To validate the extracted cell diameters, we compared visually measured cell diameters to 

those measured using Coulter sizing for all three HL60 populations. Histograms of cell diameters 

extracted from image processing on our platform and cell diameters measured from coulter counter 

measurements for all three HL60 populations are shown in Figure 2-11. The average and standard 

deviation of cell diameters measured from Coulter counter for control, 2µM and 10µM 

Cytochalasin D populations were 11.28±1.41 μm, 11.04±1.39 μm, 10.97±1.34 μm, respectively, 

whereas they were 10.55±1.21 μm, 9.81±1.31 μm, 9.45±1.38 μm, respectively, when measured 

via image processing. Thus, for each HL60 population, the average cell diameters obtained from 

image processing are <1.6 µm (17%) smaller than those measured via Coulter counter, which is 

not surprising given that image thresholding can lead to such systematic biases. While size 
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accuracy can be achieved by calibrating the threshold value for a particular illumination, focusing, 

object material and background setting, such calibration can be burdensome as the imaging setting 

can fluctuate slightly during experiment and more so across experiments. For size measurement 

on our platform, accuracy is not as crucial as precision since we are only interested in relative size 

within and between cell populations.  

 

Figure 2-11. Histogram of cell diameters as extracted from the image processing and from coulter counter 

measurements. 

2.4.6 Polarizability module validation 

To validate the operation of the multi-frequency DEP spring module with cell tracking, we 

used HL60s exposed to Cytochalasin D, which has been shown to impact cell actin structure in a 

dose-dependent manner.140 Here we measured balance positions at three different frequencies of 

single cells in a single device. According to the CCD camera pixel size and the selected objective 

lens, the measured balance positions were determined with ±1.07 μm resolution. Extracted balance 

positions at three different frequencies of single cells are shown in scatter plots with marginal 

histograms in Figure 2-12. For each population, the balance positions generally decreased as the 

test frequency increased. For each test frequency, we observed positive shift in balance positions 

as the concentration of Cytochalasin D increased even though cell diameters decreased, which 

implied an increase in Re[CM] magnitude. The imperfect linear relationships between all pairs of 

the three frequencies in the scatter plots suggest that additional information is obtained with each 

added frequency.  
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Figure 2-12. Scatter plots with marginal histograms of balance points at three different frequencies for control 

(n=194), 2µM (n=51), and 10µM (n=144) CytochalasinD treated HL60s.  

2.4.7 Multiparameter intrinsic characterization of single cells 

To show how cell tracking and can be used to correlate multiple properties across different 

microfluidic elements, we created an intrinsic cytometer with size, deformability, and 

polarizability modules (Figure 2-13a). This device incorporated both electrode-based analysis 

(DEP spring) and PDMS microfluidics (deformability), two common microfluidic fabrication 

modalities. Broadly speaking, with our approach, the multiplicative nature of the yield of data 

within each module can cause substantial data loss as number of modules to be integrated increase. 

Therefore, it is important to ensure that the throughput of the modality corresponding to each 
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marker in the pipeline is maximized and that the tracking algorithm is optimized to maintain the 

relations between markers of single cells. Particularly, on our first instantiation of this approach, 

we were able to extract all five markers of only 12% of cells that were detected on the platform 

(not shown). With further investigation and improvement on both the DEP spring module and the 

deformability module, we were able to increase the throughput from ~100 cells per run (~12% of 

all cell detections) to ~400 cells per run (~48% of all cell detections). The remaining ~50% of cell 

detections did not have measurements of all 5 markers, partially because 1) we exclude transit time 

measurements of cells that came into contact with another, 2) some cells were not focused onto 

the investigation region of the DEP spring module and did not experience the negative DEP force 

which was required for the polarizability measurements, 3) some cells travelled faster than others 

through the DEP spring module and did not have enough time to experience all three frequencies 

in the frequency sequence. The yield can be further improved by enhancing the efficiency of cell 

focusing prior to DEP spring module measurements, optimizing the frequency sequence, flow rate, 

and ROI of the DEP spring module.  

 

Figure 2-13. Multiparameter intrinsic measurements. (a) top view and side view of integrated platform 

schematic, drawn not to scale. (b) successful tracks of cells across the polarizability module and the 

deformability module. 

We then performed assays examining the effect of Cytochalasin D on the five intrinsic 

markers that we measured. Unlike the separate studies for deformability and polarizability modules 

in previous sections, here we can measure all five intrinsic markers and maintain the connections 

between these markers for single cells. Examples of tracks of cells as they traverse the different 

modules are shown in Figure 2-13b. The extracted multiparameter data of single cells are shown 

in 5-by-5 scatter plots in Figure 2-14.  
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Figure 2-14. Scatter plots and histograms of the five intrinsic markers measured by the integrated platform 

for (a) control population (blue), (b) 2 µM Cytochalasin D treated population (red), and (c) 10 µM 

Cytochalasin D treated population (green) 
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viSNE is used to project the single-cell multiparameter data from the 5D space into 2D plots 

while preserving significant structures in the high-dimensional space. viSNE visualization of the 

multiparameter data as colored by population (exposure to Cytochalasin D) is shown in Figure 

2-15a. The viSNE map reveals clear separation between the control population and the 10-µM 

Cytochalasin D-treated population, while there is a high degree of overlap between most of the 

space occupied by the two populations and 2- µM Cytochalasin D-treated population. To better 

understand the relations between the separation in viSNE visualization and the intrinsic marker 

measurements, the same viSNE map is re-labelled according to each of the five intrinsic marker 

measurements and shown in Figure 2-15b. In general, cells with larger size are distributed across 

the three natural clusters in the map while transit time gradually increases toward the tip of the 

cape-shaped region in the lower right quadrant of the map. Nevertheless, the trends in size and 

transit time did not seem to significantly contribute to the visual separation of cell populations in 

viSNE map. In contrast, the balance positions at three frequencies, which represent the 

polarizability marker, gradually increase toward the top right of the viSNE maps. Mentally 

overlaying the viSNE map with the population-based color scheme onto the viSNE map with the 

marker-based color scheme shows that the 10-µM Cytochalasin D-treated population tends to have 

larger balance positions at all three tested frequencies than control populations. Meanwhile, the 2-

µM Cytochalasin D-treated population is not clearly separable from the other two populations with 

the five markers that we measured on our platform. 
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Figure 2-15. Visualization of multiparameter data by applying a nonlinear dimensionality-reduction 

technique, viSNE. (a) viSNE maps of the multiparameter data for control (n=240), 2 uM (n=393), and 10 uM 

(n=137) Cytochalasin D treated HL60s. The two axes represent arbitrary units. (b) corresponding viSNE maps 

as colored by individual parameter measurements, namely size, transit time, and balance positions at 0.5 

MHz, 2 MHz, and 25 MHz. 

To quantitatively investigate the orthogonality between each intrinsic marker measured from 

our multiparameter platform, we computed Pearson’s correlation coefficients between all pairs of 

markers (Figure 2-16). If two markers are highly correlated (i.e. less orthogonal), we might not 

need to measure both of them. Orthogonality between markers indicates how much additional 

information we are able to learn from measuring them and helps determine the optimal set of 

markers needed for cell classification. We observed stronger correlation (R>0.36) in pairs of 

balance positions at two different frequencies than other pairs of markers (R<0.10). With 

correlation coefficients (R) between -0.01 and 0.05, variation in cell size does not seem to have 

contributed to variation in transit time and balance positions. Similarly, transit time is not strongly 

correlated to balance position at each of the three frequencies (0.03<R<0.07). In general, none of 
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the intrinsic marker pairs are strongly correlated to each other and we expect to gain additional 

information about the cells from each of the measured intrinsic markers.  

 

Figure 2-16. Matrix of plots showing correlation among pairs of the measured intrinsic markers for the 

multiparameter single-cell data across all three populations, including, control, 2 uM, and 10 uM Cytochalasin 

D treated HL60s. The correlation coefficients as well as the slopes of the corresponding least-square reference 

lines are displayed in the plots. Red dots indicate that the correlation coefficient is significantly different from 

zero (p<0.05). Histograms of markers are shown along the matrix diagonal.  

To evaluate how the number of intrinsic markers measured for single cells affects the ability 

to distinguish between the treatment conditions, we trained random forest classifiers for all subsets 

of the 5 markers measured and computed averaged classification accuracies on the test set when 

only one intrinsic marker was used for classification compared to when 2, 3, 4, and all 5 markers 

were used for classification. The random forest algorithm was chosen because it is a non-

parametric approach, which is intrinsically suited for multiclass classification. In other words, it 

does not make any assumptions about the shape of the decision boundaries between classes and 

therefore it is well suited for our classification problem where the decision boundaries between 

populations are expected to be highly non-linear. We find that the classification accuracy generally 
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increases as the number of intrinsic markers used increases (Figure 2-17a), suggesting that all five 

intrinsic markers measured contribute to the characterization of the cell states of interest, 

particularly the exposure level of Cytochalasin D drug. Nevertheless, even with all five markers, 

the average classification accuracy on the test set is ~71.4%. The confusion matrix from the 

representative run of the random forest algorithm (Figure 2-17c) shows that most classification 

errors originate from the reduced ability to distinguish the 2 µM Cytochalasin D treated population 

from the control population and the 10 µM Cytochalasin D treated population. This is consistent 

with observations from viSNE maps, which show partially overlapping regions between 2 µM 

Cytochalasin D treated population and the other two populations. Furthermore, the importance of 

each marker on the accuracy of the model can be evaluated by permuting the values of the marker 

of interest and observing the changes in classification accuracy. Permutation of an unimportant 

marker should have little effect on model accuracy while permutation of an important marker 

should significantly decrease it.  According to Figure 2-17b, permutation of balance positions at 

all three frequencies decrease the model accuracy by ~6.9-10.4%, which were more than those of 

size (~4.8%) and transit time (~3.0%), suggesting that the balance position markers contribute to 

classification accuracy more than the other two markers. Similar results were obtained by the same 

analysis with another machine-learning algorithm, the support vector machine (SVM) with a 

Gaussian kernel (Figure 2-18). The only difference between the random forest model and the SVM 

model is the impact of size on the model accuracy. 
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Figure 2-17. Classification of cell states from the multiparameter single-cell data containing three cell 

populations by random forest models. (a) Classification accuracy by the random forest classifiers on the test 

data set as the number of predictors used increases. (b) Impact of each intrinsic marker on the classification 

accuracy of the random forest model, which used all five measured markers.  Larger decrease in classification 

accuracy is expected as the values of a more important marker are permuted. (c) Confusion matrix describing 

the performance of the random forest classifier with all five intrinsic markers on the test data set. Green and 

red boxes represent the percentages of accurate and inaccurate classifier outputs corresponding to target 

classes, respectively. The blue box shows the overall classification accuracy of the model. 
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Figure 2-18. Classification of cell states from the multiparameter single-cell data containing three cell 

populations by support vector machine (SVM) models. (a) Classification accuracy by the SVM classifiers on 

the test data set as the number of predictors used increases. (b) Impact of each parameter on the classification 

accuracy of the SVM model.  Classification accuracy as the values of each parameter are permuted. (c) 

confusion matrix describing the performance of the SVM model with all 5 intrinsic markers on the test data 

set. 

Simultaneous electrical and mechanical characterizations of single cells have been 

demonstrated on various platforms and have been shown to improve classification accuracy when 

the two types of markers were combined compared to when they were individually tested.29,65,141–

144 Most of these platforms utilized electrical impedance measurements to measure cell impedance 

profiles as well as cell transit times through constriction.29,65,144 While electrical-detection- based 

techniques are favorable for real-time applications due to simplicity in data extraction and 

processing, we opted for image-based techniques due to multiple reasons. First, more subtle 

features of cell properties can be harnessed from images without additional probes, e.g. surface 

roughness, aspect ratio, constriction entry time, elongation length, etc. Second, image-based 
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techniques allow cell measurements to be parallelized within and across measurement modules, 

which compensates for tracking and data extraction time. Similarly for extrinsic markers, there 

have been efforts to change the analytical paradigm of conventional flow cytometry in order to 

improve cell throughput by acoustically focus cells in a parallelized fashion and use image-based 

detection to extract optical parameter data in order to remove the limitations from serially 

investigating one cell in a single focused stream at a time.145,146 Last but not least, image-based 

techniques provide ease of potential integration of additional modules. Measurement techniques 

that translate their property directly into electrical signals are scarce, while the set of techniques 

that can be read out from images is large. By restraining ourselves to measurement techniques that 

enable visual readouts, the integration complexity with regard to output synchronization and 

processing is significantly reduced. In particular, our platform utilized a force-balanced technique 

called the DEP spring to characterize electrical properties of cells, which allows electrical 

properties of cells to be embedded in their spatiotemporal positions and eliminates the need for 

extra probes for electrical detection as well as the requirement for an impedance analysis system. 

Our platform, which measures five intrinsic markers for single cells, is only a proof-of-

concept demonstration. Additional markers which might be useful for cell characterization can be 

retrieved from the image stacks recorded with the current setup, e.g. constriction entry time, 

elongation length of deformed cells, and aspect ratio of undeformed cells. Elongation index, and 

separation of entry and transit behaviors have been shown to improve classification of benign and 

cancer cells based on deformability marker as well as have been used to estimate Young’s 

modulus, hydrodynamic resistance, and cytoplasmic viscosity of cells.26,147 While indirect markers 

are sufficient for cell classification purposes, extraction of fundamental intrinsic properties such 

as Young’s modulus, viscosity, and polarizability should be considered in the device design and 

analysis for comparing the same properties across different measurement techniques and for 

robustness in the interpretability of the results. Furthermore, for applications where cell size is not 

known a priori or varies broadly, one can integrate the constriction-based module with varying 

constriction widths right after size separation module with corresponding lateral displacement of 

cell size, e.g., deterministic lateral displacement array, in order to maintain the ratio of cell size to 

constriction width, or choose to substitute the constriction-based module with other deformability 

measurement techniques which are less susceptible to cell size. Regardless, the main advantage of 

tracking-based intrinsic cytometry is versatility in the design and optimization of the microfluidic 
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platform. The collection of intrinsic markers studied can be further expanded and optimized by 

adding or substituting the measurement modules on the platform, as currently we used only 24% 

of the entire field-of-view of the microscope with 5X objective. One can imagine extending the 

device footprint further by using 2.5X objective with trade-off on the image resolution and 

accuracy of the distance- or size- related measurements. With numerous label-free microfluidic 

techniques for measuring cell intrinsic properties, especially those equipped with visual readout 

capabilities, e.g., deterministic lateral displacement array, inertial microfluidics, acoustophoresis, 

optical techniques,16 there are many combinations of the microfluidic measurement modules that 

can be integrated with this approach to allow several intrinsic markers of single cells to be studied 

simultaneously. We envision our proposed approach as a general strategy to develop 

multiparameter intrinsic cytometry tools. 

2.5 Conclusions 

We proposed a new multiparameter intrinsic cytometry approach for characterizing single 

cells, by combining measurement of ≥2 intrinsic markers on the same platform and associating 

markers to single cells via tracking. In contrast to conventional approaches that integrate different 

measurement techniques in the same physical space and measure properties of single cells 

simultaneously, our approach distributes measurement across space and measures properties of 

cells in parallel fashion. This adaptation allows each measurement module to be optimized 

individually and makes the platform readily extensible to more measurement techniques as 

constraints on investigation space are mitigated. We demonstrated a proof-of-concept 

implementation that can measure five intrinsic markers of single cells, including size, 

deformability, and polarizability at three frequencies. By studying cell samples with drug-induced 

changes in cytoskeleton, individual modules were first validated separately and the fully integrated 

platform was demonstrated. Analyses of Pearson’s linear correlation coefficients and supervised 

classification accuracy results both confirmed that additional information about the drug-induced 

structural changes of cells could be obtained with each additional intrinsic marker that we 

measured. Similar to the development of extrinsic markers and their countless biomedical 

applications, we anticipate intrinsic markers to become more useful in complex real-world 

applications once combinations of intrinsic markers can be investigated with ease.  
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 Chapter 3 

Real-time, large-area, cell-tracking 

intrinsic cytometry with digital 

holography and deep learning 

 

 

 

 

 

 

 

Portions of this chapter are adapted from 

Apichitsopa, N., Voldman, J., Real-time, large-area, cell-tracking intrinsic cytometry with 

digital holography and deep learning. (submitted manuscript, 2020) 
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3.1 Introduction 

The cell-tracking intrinsic cytometry using microscope imaging reported in Chapter 2 has 

many benefits. First, there is a vast pool of image-based microfluidic methods which can be 

combined with this approach. Second, because the measurement modules are spread out in space, 

each module can be independently optimized. Third, parallelization within and across modules is 

straightforward as cells’ positions in time and two-dimensional space can be linked via 

multiparameter object tracking. Regardless, as cell tracking has to be maintained across 

measurement modules, one limitation of this approach is the need to keep the entire interrogation 

area of the platform within the microscope FOV. The restricted microscope FOV limits the active 

area of the microfluidic platform, which in turns limits throughput and specificity of the overall 

analysis. In addition, as cell-tracking cytometry is an image-based approach, rapid image 

processing is required to achieved quick turnaround time. In this chapter, we explore solutions to 

mitigate these two challenges.  

More generally, observation and analysis of particle motion in fluids is indispensable in 

microfluidics.148 Dynamics of particles (e.g., , cells, organisms) inside microfluidic channels are 

routinely studied for various applications, including characterization of fluid dynamics underlying 

a carefully designed microenvironment and investigation of cell behaviors in vitro, sometimes in 

response to controlled stimulation and manipulation.149–152 Several detection methodologies have 

been developed to detect and measure particle dynamics in microfluidic devices, including 

photodetector-based imaging, camera-based imaging, impedance sensing, etc.17,91,149,153,154 The 

most prevalent of these is camera-based imaging via conventional benchtop microscopes due to 

the rich spatial information that images provide, and their availability, ease of use, and versatility 

across a wide range of imaging applications.155–157  

Despite many benefits, there are a few challenges for investigation of particle motion in 

microfluidic platforms using the camera-based imaging technique via benchtop microscopes. First, 

the ability to detect moving microscale particles sensitively with a benchtop microscope imaging 

system, especially in bright-field images, imposes a lower limit on the imager’s spatial resolution, 

which then dictates the upper limit for the microscope’s field of view (FOV) and the probe area of 

the microfluidic platform. This limitation renders a mismatch between the field of view of 

microscope objective (< a few mm2 scale) and the active area of microfluidic chips, which can be 
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more than an order of magnitude larger. In effect, the fundamental trade-off between spatial 

resolution and field of view in most microscope objectives limits the sensitivity and scalability of 

the image readout. While mechanical scanning and tiling approaches may be used to tackle 

resolution-FOV trade-off for static samples and samples with slow movement, they are not feasible 

in continuous-flow platforms where rapid dynamics of moving particles need to be captured and 

where particle identity across the platform needs to be maintained.  

Second, as with any other image-based detection techniques, a fast and accurate image 

processing pipeline is required to achieve high analytical throughput and to avoid storing a large 

number of image stacks for post-experiment processing.158 Extracting relevant data from 

information-rich image stacks generally incorporates two main steps, namely object detection, 

which locates objects’ bounding boxes in each still frame, and object tracking, which associates 

the detected bounding boxes across frames for the same objects. Detection of objects flowing 

through obstacles in bright-field microscope images can be computationally complex as a result 

of low signal-to-noise ratio, high and fluctuating background noise, and inconsistency in shape 

and intensity of the object images. Object tracking can suffer when multiple objects travel through 

the platform at varying speed and when there are false positives and missed detections.159 To 

reflect the fluidic throughput and maximize the final throughput, both object detection and object 

tracking need to be optimized in accuracy and processing time.  

Here, we implement two technologies to extend the capability of the image-based detection 

system for single-cell intrinsic cytometry. First, large-FOV digital holography,160 a well-developed 

lens-free computational imaging technique, is used to overcome the microscope’s FOV limitation 

and image cells inside a large-scale microfluidic cytometry platform that contains two pairs of 

coplanar electrodes for multi-frequency polarizability measurement81,82 and 72 parallel 

constriction channels for deformability measurement.25 While large-FOV digital holography has 

been applied to observe dynamic of biological samples, e.g., blood cells and sperms, both in 

straight microchannels and in large microchambers,102,161,162 it has rarely been applied to observe 

cells in more complicated microstructures, e.g., constriction channels, micropillars, and coplanar 

electrode layers, which are essential for probing biophysical properties of cells and for 

manipulation of cells. Second, a deep learning You Only Look Once (YOLO) object detection 

algorithm163–165 is used to detect cells’ spatiotemporal positions in hologram images without digital 
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reconstruction even in the presence of cell deformation and physical microstructures that create 

interference in the optical path of the cell holograms. Together with a customized tracking 

algorithm, multiple cells are detected and tracked as they traverse the microfluidic platform in a 

real-time manner. The integration of deep learning in an image processing pipeline enables rapid 

and automated detection of defocused and deformable cell hologram patterns, avoiding the process 

of manual feature extraction and selection.  

We show that more than one hundred cells can be monitored simultaneously by the integrated 

system as they navigate through various microfluidic measurement modules within an enlarged 

field of view of ~21 mm2. Five intrinsic markers, including electrical polarizability at three applied 

frequencies, transit time, and cell diameter, are extracted from the image stacks. Cell diameters 

obtained from the integrated system are shown to be highly correlated (R = 0.95, p<0.05) to those 

obtained from a Coulter Counter. Intrinsic markers, which are related to spatiotemporal positions 

of tracked cells (i.e., electrical polarizability at three frequencies and transit time), are obtained 

from the integrated system and validated with those obtained from a microscope system. With the 

integrated system, we demonstrate high-throughput multi-parameter measurements and 

classification of three leukocyte cell lines. 

3.2 Digital Holographic Microscopy Overview 

Digital holography is a computational imaging technique that allows a three-dimensional 

optical field to be recorded and reconstructed.166 It has been widely used for a variety of 

applications, e.g., imaging, particle characterization, 3D object tracking, and microscopy.167,168 

Digital holography consists of two main operations: recording and reconstruction.169 For 

recording, a known reference wave is introduced to coherently interfere with an unknown object 

wave, allowing the phase information of the unknown object wave to be converted to intensity 

variation. The intensity of the sum of the two complex wavefields, which now contains both the 

amplitude and phase of the unknown object wave, are then recorded by the recording media (e.g., 

CMOS sensor), which are only sensitive to the intensity of light. As a result, the recorded 

interference patterns (i.e., a hologram) can be digitally reconstructed to obtain an image of the 

original object. One commonly used image reconstruction technique is the angular spectrum 

approach. This approach is achieved by computing the Fourier transform of the recorded hologram, 
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multiplying it by the transfer function of propagation, and computing the inverse Fourier 

transform. The transfer function of propagation through linear isotropic meida is given as 

𝐻𝑧(𝑓𝑥, 𝑓𝑦) = {𝑒𝑗2𝜋𝑧
𝑛
𝜆√1 − (

𝜆𝑓𝑥

𝑛
)

2

− (
𝜆𝑓𝑦

𝑛
)

2

, √𝑓𝑥
2 + 𝑓𝑦

2 <
𝑛

𝜆

0,                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where fx and fy are the spatial frequencies, z is the distance between the sample plane and the sensor 

plane, n is the refractive index of the medium, λ is the wavelength of the light source.160 

Various recording and processing schemes of digital holographic microscopy have been used 

in the literature, and are different in architectures, illumination sources, and modulation methods, 

among other aspects.160,169,170 For example, digital holographic microscopy can be configured to 

operate in either transmission or reflection modes, using in-line or off-axis architectures, 

respectively.171–173  Additionally, light sources with varying degrees of temporal coherence (which 

is related to their spectrum bandwidth) and spatial coherence (which is related to their size and 

implemented propagation distance) have been reported to affect the quality (e.g., sharpness, 

speckle noise) of the recorded holograms and of the reconstructed images.174 Conventional 

holography uses light sources with near perfect spatial coherence (e.g., a laser on a small aperture 

(1-2 µm)) for illumination, and is disadvantageous as the usage of the small aperture size in these 

setups requires the setup to be mechanically stable and carefully aligned.160 Incoherent or partially 

coherent sources with and without lenses have also been demonstrated for digital holography and 

have been shown to suppress the undesired coherent speckle noise, and allow simpler and robust 

optical setups.175 

One variant of digital in-line holographic microscopes has been reported to image a 

transmissive sample with a large field of view and without the need for coherent sources or any 

bulky optical components. In this setup (Figure 3-1.), a light emitting diode (LED) butt-coupled to 

a pinhole is used to illuminate the sample.160 It has been shown through a theoretical analysis that 

an incoherent illumination through a large aperture can be considered equivalent to coherent 

illumination of each object individually when the sample plane is close to the sensor plane (i.e., 

𝑧1+𝑧2

𝑧1
 ~ 1).160 The interference fringe patterns between the light diffracted from the object and the 

unscattered light, which contain both the amplitude and phase of an object wave, are recorded on 

the sensor. This simple lensless incoherent holographic microscope was able to achieve subcellular 
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resolution (~1 to 2 µm) over a field of view of ~24 mm2, making it suitable for applications that 

require collection or monitoring of a large number of microscale samples. This approach and its 

variations (e.g., color imaging, pixel super-resolution) have been applied to observe static 

polystyrene beads, blood smear, Papanicolaou smear, Caenorhabditis elegans samples, and to 

record three-dimensional trajectories of human sperms.162,167,176  

More recently, deep learning has been applied to digital holography for image reconstruction 

and enhancement.177 For example, AlexNet-based and VGG16-based architectures have been 

trained to predict the in-focus reconstruction depth from a single hologram of Madin-Darby Canine 

Kidney (MDCK) cell clusters.178 Deep learning has also been implemented to infer phase recovery 

(i.e., removal of twin image artefacts) from a single hologram intensity after back-propagation has 

been applied. This technique enables a phase recovery that is 4-30 times faster than the state-of-

the-art iterative reconstruction approach.179 Wu et al. demonstrated a U-Net-inspired model that  

simultaneously perform autofocusing and phase recovery from a single hologram to extend the 

depth of field and reduce the reconstruction time of the holographic imaging system.180 Cross-

modality image transformation from the back-propagated holograms to the bright-field microscope 

images have also been reported using a generative adversarial network (GAN). With this network, 

a single recorded hologram is back-propagated at different depths and the back-propagated 

holograms are used to infer the high-contrast artefact-free bright-field microscope images.181 Deep 

learning-enabled image enhancement, including super-resolution, and color imaging, have been 

shown by GAN-based approaches.182,183 Furthermore, a U-Net model has been applied to 

accurately identify stained cells directly from holograms with high accuracy for the diagnosis of 

lymphoma.184 
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Figure 3-1. Digital holographic microscopy using partially coherent illumination. The system consists of an 

LED butt-coupled to a pinhole (~50-100 µm in diameter) and an optoelectronic sensor array. z1 and z2 

represent the distance from the sample plane to the source and the distance from the sample plane to the 

sensor plane, respectively. 

3.3 Materials and Methods 

3.3.1 Digital holographic imaging system 

The digital holographic imaging system is comprised of an Ultrabright LED (TLCY5800, 

Vishay Semiconductors), an aspheric condenser lens (Thorlabs), a 100-µm mounted precision 

pinhole (P100H, Thorlabs), and a 5-megapixel image sensor (MT9P031, Aptina/On 

Semiconductors). The LED light source (λ = 590±17 nm) was mounted in line with the condenser 

lens, the pinhole, and the CMOS image sensor (image format = 2592x1944, pixel size = 2.2 µm x 

2.2 µm) as shown in Fig. 1. The microfluidic chip was mounted on the XY translational sample 

holder (XYFM1, Thorlabs) between the pinhole and the CMOS sensor. The distance from the 

pinhole to the microfluidic chip was ~3-5 cm. The distance between the microfluidic chip and the 

CMOS was ~2-3 mm.  

3.3.2 Microfluidic platform 

The microfluidic device was made of two components: 1) a 20-µm-high PDMS channel and 

2) glass substrate with an ITO electrode layer (Figure 3-2 and Figure 3-4). The PDMS layer was 

fabricated by standard soft lithography and replica molding. The channel pattern contains a straight 

channel for the polarizability module and 72 parallel constriction channels for the deformability 

module. The glass substrate contains four pairs of ITO electrodes for DEP focusing and 

polarizability module. DEP focusing was used to concentrate cell samples for the downstream 

polarizability module. The electrode layer was fabricated from 1200-1600Å-thick ITO-coated 
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glass slides (CB-50IN-S105, Delta Technologies LTD) by photolithography and wet etching with 

a solution of hydrochloric acid (HCL), DI water, and nitric acid (HNO3) at a ratio of 4:2:1 for three 

minutes. The two components were thoroughly cleaned with acetone, isopropanol alcohol, and 

methanol before plasma bonding. External electrical wires were connected to ITO pads with 

conductive epoxy.  

 

Figure 3-2. a) Device design. The device contains one inlet, DEP focusing region for cell enrichment, 2 pairs 

of parallel electrodes for polarizability measurement, 72 parallel constriction channels for deformability 

measurement, and one outlet. b-d) Bright-field micrographs with overlays of calcein fluorescence (green) of 

three regions of interest (ROI) in the DEP focusing region and the polarizability module.  

3.3.3 Cytometry experiment 

Prior to experiment, the microfluidic channel was pre-treated with 0.5% (w/v) Pluronic F108 

in DI water until all bubbles were removed, followed by 7.5% bovine serum albumin for one hour 

to reduce nonspecific binding between cell samples and PDMS walls. For experiments, samples 

were resuspended in 13% Dextran in DPBS at a concentration of approximately 7x105 cells/mL 

and injected into the microchannel by a syringe pump (Chemyx Fusion 200) with a constant flow 
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rate of 0.5 µL/min. The microfluidic platform was then placed under the digital holographic 

imaging system or a 5X objective microscope for imaging. The device was connected to function 

generators via a 50Ω coaxial cable with BNC connector. Customized MATLAB GUI was used to 

control the function generators (Agilent 33220A for frequency > 20MHz and Aim TTi TGR1040 

RF for frequency > 20 MHz), mechanical SPDT switch box (USB-1SPDT-A18, Mini Circuits 

Laboratory), and either the microscope camera (PCO Sensicam QE) or the CMOS image sensor 

(Aptina/On Semiconductor). For microscopy validation, the device was observed with Zeiss Axio 

Imager m1m upright microscope with 5X objective and videos were recorded at ~ 11 fps for 

polarizability measurement and at ~ 20 fps for deformability measurement. For digital holographic 

imaging, videos were recorded at ~ 12 fps. The device was flushed with 13% dextran in DPBS 

buffer between samples.  

3.3.4 Image pre-processing 

All video recording, processing, and analysis were performed in MATLAB®2019b. Prior to 

experiment, raw holograms of the microfluidic platform without cell samples were recorded for 

200 frames and median values across frames were saved as background image. Image registration 

was performed on the first frame of the stack by rotation and cropping such that microchannel was 

horizontally aligned with the horizontal axis of the image. Electrode centerlines and constriction 

channels were automatically located. Autofocusing was performed to estimate the distance 

between the sample plane and the image sensor plane. For autofocusing, the hologram was 

propagated to multiple z-distances within the expected distance range and Tenengrad variance185 

was calculated as relative focus measure. The z-distance with maximum focus measure was the 

estimated focus distance. Calculated registration parameters were saved.  

During experiment, the acquired hologram image was pre-processed by background 

subtraction, registration, and scaling, using previously saved parameters. 

3.3.5 Cell hologram detection algorithms 

We created two datasets of pre-processed holograms from sixteen video recordings of four 

cell lines, including BA/F3, HL60, Jurkat, and K562, in two repeats of experiment. The datasets 

consisted image inputs as well as manually detected bounding box positions of cells. The training 

set contained 800 frames of holograms and the test set contained 80 frames of holograms. Each 
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frame contained ~80 – 200 cells. To ensure that there was no data leakage between the two datasets, 

the training set and the test set were derived from different video recordings.  

As benchmark for automated cell detection performance, we performed image reconstruction 

on the full frame and used blob detection by Laplacian of gaussian filter and non-maximal 

suppression to detect focused cell images. Circular Hough transform and simple intensity 

thresholding were performed to detect cells in pre-processed holograms for comparison. Note that 

these algorithms required manual fine-tuning of parameters in each experiment for optimized 

detection accuracy.  

For deep learning cell detection, a variant of YOLO v2 objector detector164 was implemented 

using MATLAB Deep Learning ToolboxTM. The architecture of the model is shown in Figure 3-3. 

It consists of a series of convolution, ReLU, batch normalization layers and max pooling layers 

for feature extraction, followed by YOLO transform layer and output layer, which transformed 

activations of the last convolutional layer into refined bounding boxes. The input image size was 

set to 1024 x 1024 pixels. Increasing network depth and input image size could increase detection 

accuracy as well as detection time.  Three anchor boxes were calculated from the training dataset 

before training. The network was trained for 100 epochs using stochastic gradient descent with 

momentum at the learning rate was set to 1x10-5.  
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Figure 3-3. The architecture of the deep learning YOLO model for cell hologram detection. Note that all 

convolution layers except the last layer consist of 3 x 3 convolution kernels, and are followed by batch 

normalization and ReLU activation. The last convolution layer consists of 1 x 1 convolution kernels.  

To evaluate performance of cell hologram detection algorithms, precision and recall of 

detection results compared to manually labelled data (ground truth) were computed. Detections 

were assigned to ground truth bounding boxes if overlap ratio was larger than 0.5. Processing time 

of the detection algorithms were the average processing time per frame of 80 frames in the test set. 

3.3.6 Tracking algorithm 

For multiple object tracking algorithm, a Kalman filter with constant velocity motion model 

was assigned to each new track and was used to predict location of the object in the next frame. A 

distance cost matrix between all possible combination of newly detected centroids on current frame 

and predicted centroids from previous frame were calculated. Since flow direction was known a 

priori, any detection-to-track assignment against the flow were assigned to infinity cost to prevent 

incorrect assignment. Detections were then assigned to tracks based on the optimal assignments 

which minimized the total cost by the Hungarian algorithm. Detections which had been assigned 

to tracks were used to update the Kalman filter motion model. Detections which had not been 

assigned to tracks initiated new tracks. Any tracks which did not have new detections for more 

than ten frames were saved and terminated. 
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3.3.7 Parameter extraction 

For cell diameter measurement, cropped tiles of cell hologram in the polarizability region 

from detection algorithm were propagated to the focus plane. Intensity thresholding was applied, 

and equivalent diameter was calculated from the binary mask as 2 ∙ √𝑎𝑟𝑒𝑎/𝜋. 

For cell polarizability measurement, a repeating series of 0.5 MHz, 2 MHz, and 25 MHz 

sinusoidal waveforms were applied to coplanar electrodes with a period of 5 seconds for each 

frequency. Balance positions at a specific applied frequency were calculated from perpendicular 

distances from cell centroids to the nearest electrode centerline within the last five frames before 

the next frequency was applied. To extract real part of the Clausius-Mossotti factor (Re[CM]) from 

balance positions, we calculated average balance positions with respect to x-distance of 10-µm 

size standard polystyrene beads at three applied frequencies. From force balance equation, system 

parameter C1(x) for each frequency can be estimated from186: 

𝐶1(𝑥)  =  
18𝑄 sin 𝜃

𝑉𝑅𝑀𝑆
2 𝑤ℎ3𝜖𝑚𝑝(𝑓)

 =
𝑅𝑒[𝐶𝑀] ∙ 𝑅 ∙ 𝑞𝑅(𝛿)

ℎ − 𝑅
 

where Q is volumetric flow rate, θ is angle between electrode centerline and channel, VRMS is 

the applied RMS voltage, w is channel width, h is channel height, εm is media permittivity, p(f) is 

a function that corrects for frequency-dependent voltage drop at the electrode/solution interface, 

R is object radius, δ is balance position, and qR is a function that reflects positional dependency of 

the DEP force. Re[CM] can then be extracted from cell balance positions by: 

𝑅𝑒[𝐶𝑀] = 𝐶1(𝑥)
h − R

R ∙ 𝑞𝑅(𝛿)
 

For deformability measurement, region of interest (ROI) was specified across the narrowest 

constriction channels. Time difference corresponding to the first and last frame that a cell stayed 

in the ROI was determined as transit time. 

3.3.8 Data analysis 

The nonparametric Kruskal-Wallis tests and the follow-up multi comparison tests were 

performed to compare the medians of >2 distributions for each intrinsic marker, with determination 

of statistical significance. 
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For classification of the three leukemia cell lines, the dataset containing the multiple intrinsic 

markers measured from our platform was split into training and test sets with an 80-20 ratio. The 

random forest models were trained to classify cell types, and were optimized for hyperparameters 

using five-fold cross validation. The AUC and confusion matrix of the final model performed on 

the test set were computed to show classification accuracy. To evaluate the impact of each marker 

on the classification accuracy, predictor importance were calculated by summing the 

improvements in the split criterion due to splits on every predictor and dividing the sum by the 

number of branch nodes. 

3.3.9 Cell Culture 

BA/F3 murine interleukin-3 dependent pro-B cell line, Jurkat human immortalized T 

lymphocyte cell line derived from an acute T cell leukemia, and K562 human immortalized 

myelogenous leukemia cell line were cultured according to ATCC protocols and were passaged 

~3-4 days at 1/10 dilution. The cell culture medium was prepared from RPMI-1640 with high 

glucose content, L-Glutamine, and phenol red indicator, supplemented with 10% fetal bovine 

serum, 1% L-glutamine, 1% penicillin-streptomycin, 1% Sodium Pyruvate, and 1% MEM non-

essential amino acids.  

HL60 human acute promyelocytic leukemia cell line was cultured according to ATCC 

protocols and were passaged ~2-3 days to maintain cell density between 1x105 and 1x106 cells/mL. 

The cell culture medium was prepared from RPMI-1640 with high glucose content, L-Glutamine, 

and phenol red indicator, supplemented with 10% fetal bovine serum, and 1% penicillin-

streptomycin. 
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Figure 3-4. System overview of the real-time, cell-tracking, intrinsic cytometer platform, showing three main 

components: 1) large-FOV digital holographic imaging system, 2) label-free microfluidic platform and 3) 

automated system control and real-time image-processing pipeline. 

3.4 Results and Discussion  

3.4.1 System Overview and Design Considerations 

The cell-tracking intrinsic cytometry system (Figure 3-4) consists of three main components: 

1) large-FOV digital holographic imaging, 2) a label-free microfluidic platform, and 3) an 

automated system control and real-time image-processing pipeline.  

Large-FOV microscopy for dynamic imaging can be achieved by several techniques, 

including optical lens systems,187 digital in-line holography,188–190 Fourier ptychography,191,192 etc. 

Among these techniques, digital in-line holography is an attractive choice as it has the minimal 

overall hardware and software requirements (e.g., number of optical components, optical 

alignment, number of images needing to be recorded per view, and image reconstruction process) 

and as it can be scaled up further simply by using an image sensor with increased active area. We 

adapt a partially coherent digital holographic imaging technique, introduced in Mudanyali et al.160, 

which utilizes a simple light emitting diode (LED), a 100-μm pinhole, and a CMOS image sensor. 

Digital holography is a two-step lens-free computational imaging technique, which allows 

information of both amplitude and phase of the diffracted waves from an object (i.e., hologram) to 

be recorded and to be reconstructed numerically afterwards.169 By placing samples close to the 
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CMOS sensor, Mudanyali et al.160 showed that a hologram with an area equal to the active area of 

the implemented CMOS sensor could be acquired. Our imaging system can acquire images with a 

field of view of ~ 21 mm2, which is ~11 times larger than the FOV of a typical 10X microscope 

objective and ~3.7 times larger than the FOV of 5X microscope objective. To capture rapid 

dynamics of cells in the microfluidic platform, the CMOS sensor is set to capture videos at ~ 10-

11 fps. 

To maximize the usage of the imager’s enlarged field of view, our previously reported 

multiparameter intrinsic cytometry  platform193 has been expanded to accommodate 72 parallel 

constriction channels for deformability measurement as well as two pairs of transparent electrodes 

for polarizability measurement. We used transparent indium tin oxide (ITO) layers for the 

electrodes to minimize optical aberrations associated with the transmission mode of the imaging 

system. Device designs and experimental protocols, including constriction channel width, flow 

rate, cell concentration, and frequency sequence setting, were optimized experimentally for the 

throughput-sensitivity trade-off. 

An integral part of a cell-tracking cytometry is the ability to analyze large amounts of time-

lapse image stacks quickly and accurately, as the final throughput and sensitivity of the overall 

system depend on both microfluidic throughput and image processing throughput. Visual 

recognition tasks such as object detection and tracking, which are intuitive to humans, are 

complicated computational problems.194 Traditional object detection algorithms, including 

intensity thresholding, edge detection, and circular Hough transform, often rely on manual 

extraction and selection of image parameter, such as intensity, object area, and object shape, which 

can vary across experiments and conditions, and are susceptible to background noise. On the 

contrary, deep convolutional neural network models can be customized and trained to recognize 

invariant, two-dimensional features of task-specific objects, surpassing traditional methods that 

rely on manual feature selection in both processing time and accuracy.195 In the next section, we 

investigate the performance of various object detection algorithms to determine the most suitable 

option for our application. 

3.4.2 Cell Hologram Detection and Tracking 

An example of a preprocessed hologram image is shown in Figure 3-5. Background 

subtraction in image preprocessing partially removed PDMS channels as well as electrode 
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structures, and enhanced cell hologram signals in the acquired image. In the polarizability region, 

cell hologram signatures were expected to appear as circular fringe patterns because shapes of 

suspension cells were roughly spherical. As cells traversed through constriction channels in the 

deformability region, cell hologram signatures became distorted into irregular shapes and intensity 

patterns because of cell deformation and interference from PDMS constriction channel structures.  

 

Figure 3-5. Cell hologram detection. a) A hologram recorded by the digital holographical imaging system 

after image registration and background subtraction. Yellow bounding boxes indicate cell detection. Cyan 

dash lines indicate electrode centerlines. Red dash lines depict the beginning of deformability region as well 

as the narrowest constriction location. b-c) multiple exploded views of cell holograms in the polarizability 

region and the deformability region, respectively. 

To establish a benchmark for automated cell detection, we computationally reconstructed the 

preprocessed holograms, applied a blob detection technique, and morphological operations to 

detect focused cell images. On the contrary, other cell detection techniques were applied to 

preprocessed holograms without reconstruction to reduce the processing time. Object detection 
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algorithms using manual feature selection, including circular Hough transform and intensity 

thresholding, were implemented and tested. In addition, the deep learning YOLO object detector, 

the state-of-the-art real-time object detection algorithm which has been applied to detect hundreds 

of categories of common objects in real-world image datasets, was trained with the pre-processed 

cell hologram images and tested. Figure 3-6(a-b) shows the precision-recall curves of the four 

different object detection techniques on the test image dataset compared to the ground truth, which 

was manually labelled. As the number of objects and the detection performance in the 

polarizability and the deformability regions were expected to be different, we calculated the 

precision-recall curves on these two regions separately. The average precision (AP) of each cell 

hologram detection technique, which was the average precision value for the recall value over 0 

to 1, was summarized in Figure 3-6c. High-performance object detection techniques were expected 

to achieve high average precision, i.e., maintain high precision (low number of false positives) as 

recall improved (low number of false negatives). The mean average precision over the two regions 

of the four techniques was 0.73, 0.66, 0.57, and 0.85, respectively. 

In the polarizability region, the average precision of the benchmark blob detection on the 

reconstructed images, and of the circular Hough transform, thresholding, and YOLO on the 

hologram images were 0.96, 0.95, 0.73, and 0.95, respectively. The performance of the YOLO 

model was comparable to the circular Hough transform. However, the benchmark blob detection 

technique on reconstructed images achieved the highest accuracy because it was able to distinguish 

cells that were extremely close together, whereas the circular Hough transform and YOLO were 

not able to resolve highly overlapping cell holograms as two objects. On the contrary, intensity 

thresholding was not able to achieve high precision, i.e., there were still many false negatives, 

possibly because intensity thresholding was not able to separate two cell holograms that were 

touching each other.  

The generally smaller area under the precision-recall curves in the deformability region 

(Figure 3-6b) compared to the precision-recall curves in the polarizability region (Figure 3-6a) 

among all tested algorithms indicated that cell holograms in the deformability region were more 

challenging to detect than cell holograms in the polarizability region. In the deformability region, 

the average precision for the four detection techniques was 0.49, 0.37, 0.41, and 0.74, respectively. 

Low average precision (<0.5) of the benchmark blob detection, the circular Hough Transform, and 
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the intensity thresholding techniques suggested that the algorithms performed poorly in this region, 

which was expected, since many cell holograms were no longer circular and there was high 

background noise in this region. In contrast, YOLO, which was trained to recognize irregular 

intensity patterns of deformed cells in noisy background, was able to perform significantly better 

than the other techniques, including the benchmark blob detection on reconstructed images which 

suffered from imperfect reconstruction of cell holograms in constriction channels.   

 

Figure 3-6. a) Precision-recall curve of four cell detection algorithms in the polarizability region, including 

the benchmark blob detection on reconstructed image, circular Hough transform, thresholding, and YOLO 

on pre-processed holograms. b) Precision-recall curve of four cell detection algorithms in the deformability 

region. c) Average precision of the four cell detection algorithms in the polarizability region, the deformability 

region, and the overall average across the two regions. d) Average processing time per frame. The error b ar 

indicates the standard deviation.   

Besides detection accuracy, another important performance measure of an object detection 

algorithm is the processing time. According to Figure 3-6d, the processing time of YOLO on a 

CPU (Intel® Core™ i7-9750H) and GPU (NVIDIA® GeForce® RTX™ 2070) was ~14 and ~40 

times faster than the benchmark blob detection on the reconstructed images with the GPU. In 

contrast, the traditional circular Hough transform and intensity thresholding were ~3 and ~1.5 

times slower than the benchmark. Among all object detectors, the circular Hough transform 

exhibited the largest variation in processing time because it relied on edge detection to find relevant 

pixels and a scoring technique to keep scores for circle centroid candidates. As more object pixels 
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or more noise pixels were determined to be relevant, more processing time was needed to calculate 

the scores. In contrast, YOLO displayed the smallest variation in processing time as the processing 

time of YOLO in each frame did not largely depend on the number of target objects. Taking both 

the detection accuracy and the processing time into consideration, we chose to integrate the YOLO 

object detector into our image processing pipeline.  

3.4.3 Extraction and Validation of Cell Diameter obtained from Digital Holographic 

Imaging System 

Acquired images from digital holographic imaging were not focused images of objects, but 

rather holographic diffraction patterns formed by interference of light waves diffracted from 

objects and unscattered LED light.169 As a result, object diameters were not readily available for 

extraction, and numerical reconstruction of hologram images had to be performed to reconstruct 

focused images of objects and retrieve object diameter information. To extract the diameter of 

undeformed objects, we performed image reconstruction on the acquired holograms only in the 

designated polarizability region where objects were not expected to be deformed. Examples of 

holograms and reconstructed images of standard size polystyrene beads and four cell lines are 

shown in Figure 3-7a. As expected, we observed fringe patterns in the hologram images that were 

unique for each object class as the LED light was absorbed and diffracted differently by each 

object, depending on its size, morphology, refractive index, and subcellular components. After 

numerical reconstruction, intensity thresholding was applied to locate the focused images of the 

objects and equivalent diameters of objects were calculated. Since an object usually takes more 

than one hundred frames to traverse the polarizability region, image   reconstruction and diameter 

extraction was performed every tenth frame to maintain rapid image processing. The final diameter 

was estimated from the median of repeatedly extracted diameter values associated with its track. 

To validate extraction of object diameter obtained from digital holographic imaging, we 

performed diameter extraction of standard size polystyrene beads with diameters of 6 µm, 10 µm, 

and 15 µm, respectively, in our system and compared the obtained distribution with a diameter 

distribution obtained from a Coulter Counter. According to the results, the standard deviation of 

repeated bead diameter extraction within each track was below 7.25%, 5%, and 3.6% for 6 µm, 10 

µm, and 15 µm polystyrene beads, respectively. Overall, the average deviation of the extracted 

diameter within each track, representing the precision of the object diameter extraction algorithm, 

was below ~0.5 pixels, which corresponded to 1.1 µm. Mean diameters of 6 µm, 10 µm, and 15 
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µm polystyrene beads measured from the digital holographic imaging system were 6.35±0.62, 

9.64±0.92, 15.83±1.38 µm, respectively. Mean diameters of 6 µm, 10 µm, and 15 µm polystyrene 

beads obtained from Coulter Counter were 6.08±0.20, 10.03±0.67, and 15.7±0.78 µm, 

respectively. Figure 3-7b shows that the means of the three-sized bead distributions obtained from 

our system were highly correlated to those obtained from Coulter Counter (R = 0.9974, p<0.05). 

In addition, we compared distributions of cell diameters of four cell lines, namely BA/F3, HL60, 

Jurkat, and K562, obtained from our system compared to Coulter Counter measurement with one 

repeat (Figure 3-7c) and showed correlation of 0.9544 (p<0.05). 

 

Figure 3-7. Cell diameter measurement. a) Holograms and reconstructed images of 6 µm, 10 µm, 15 µm 

polystyrene microspheres, and four cell lines, including BA/F3, HL60, JURKAT, and K562. Scale bars depict 

50 µm. b) Size measurement from digital holographic imaging and from Coulter Counter of three sized 

polystyrene beads. c) Size measurement from digital holographic imaging and from Coulter Counter of 

BA/F3, HL60, JURKAT, and K562 cell lines 

3.4.4 Extraction and Validation of Multi-frequency Polarizability and Deformability from 

Cell Detection on Pre-processed Holograms 

Characterization of multi-frequency polarizability from balance positions with the DEP spring 

technique and characterization of constriction-based deformability from transit time allow these 

intrinsic markers to be estimated from spatiotemporal positions of cells. To associate cell hologram 

detections which corresponded to the same cells over time, we implemented a customized multiple 
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object tracking algorithm based on motion estimation using the Kalman filter. The cost matrix 

between all possible pairs of object centroids detected on the current frame and predicted centroids 

from the Kalman filter were calculated based on Euclidean distance. Detections on the current 

frame were assigned to tracks based on cost minimization using the Hungarian assignment 

algorithm. The cost of any assignment which would result in motion against the flow direction was 

set to infinity to prohibit such assignment. The spatiotemporal positions of cells were then recorded 

and stored for analysis.  

Figure 3-8a shows tracking of a cell traversing across the measurement modules, as obtained 

from the digital holographic imaging system. For multi-frequency polarizability, the perpendicular 

distance from the detected cell centroids to the nearest electrode centerline and the corresponding 

applied DEP frequencies (0.5 MHz, 2MHz, and 25 MHz) are shown in Figure 3-8. Balance 

positions, determined from the perpendicular distance from the cell centroids to the nearest 

electrode centerline within the last five frames of each applied frequency, were extracted and used 

to estimate the real part of the Clausius-Mossotti factor (Re[CM]), an indicator of electrical 

polarizability. Figure 3-11c plots time versus x-distance of the same cell as it travelled across the 

deformability region. Transit time, an indicator of cell deformability, was calculated as the time 

span that a cell required to travel through the region of interest designated by the two red dash 

lines.  

As the deformability measurement module has been expanded to 72 parallel channels, we 

quantify the variation of transit time measurement within each parallel channel as obtained from 

the microscope imaging. Figure 3-9 and Figure 3-10 show overlays of cell trajectories, total 

number of cells that pass through, and combined transit time distribution within each of the middle 

56 constriction channels at two different flow rates, respectively. The overlay of cell trajectories 

reveals the shape of the constriction channels, which verifies our tracking algorithm, as well as the 

channels that might be clogged. The total number of cells that passed through each constriction 

channel shows lower number for channels that were clogged. On average, median transit time of 

each channel is 0.51 ± 0.08 seconds and 0.32 ± 0.07 seconds (mean ± SD) for the flow rate of 0.5 

µL/min and 1 µL/min, respectively.  
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Figure 3-8. Multi-frequency polarizability and deformability measurement. a) cell trajectory across the active 

region of the platform. Blue dash lines depict electrode centerlines of two electrode pairs. Red dash lines 

indicate deformability region and measurement ROI. b) Perpendicular distance from cell centroids in a) to 

the nearest electrode centerline versus x-distance (top) and the corresponding applied frequency (bottom). c) 

Time as the cell in a) travelled across the narrowest constriction channel. Two dash lines indicate transit time 

measurement ROI. 

 

Figure 3-9. Measurement of the transit time of ~6-µm microspheres through 8-µm constrictions at the flow 

rate of 0.5 µL/min as obtained from the microscope imaging system. Note that the middle 56 channels out of 

72 channels were monitored by the microscope imaging system due to limited field of view. a) Overlay of 

microspheres’ trajectories from four runs within the same device. The color of each trajectory reflects the 

corresponding transit time (blue indicates small transit time while red indicates large transit time). b) Total 
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number of cells that passed through each of the parallel constriction channels. c) Boxplots showing 

accumulated transit time distribution within each channel. 

 

Figure 3-10. Measurement of the transit time of ~6-µm microspheres through 8-µm constrictions at the flow 

rate of 1 µL/min as obtained from the microscope imaging system. Note that the middle 56 channels out of 

72 channels were monitored by the microscope imaging system due to limited field of view. a) Overlay of 

microspheres’ trajectories from four runs within the same device. The color of each trajectory reflects the 

corresponding transit time (blue indicates small transit time while red indicates large transit time). b) Total 

number of cells that passed through each of the parallel constriction channels. c) Boxplots showing 

accumulated transit time distribution within each channel. 
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Figure 3-11. Characterization of size standard polystyrene microspheres with mean diameter of 6.20±0.50 

µm by the microscope imaging system and the digital holography system. The results show combined data 

points from three replicates within the same device for each of the two imaging systems. a) Diameter 

measurements from microscope system (top, n = 579) and digital holography (bottom, n = 3849). b) Re[CM] 

measurements at the applied frequency of 0.5 MHz from microscope system (top, n = 200) and digital 

holography (bottom, n = 605). c) Re[CM] measurements at the applied frequency of 2 MHz from microscope 

system (top, n = 210) and digital holography (bottom, n = 592). d) Re[CM] measurements at the applied 

frequency of 25 MHz from microscope system (top, n = 180) and digital holography (bottom, n = 584). e) 

Transit time measurements from microscope system (top, n = 1494) and digital holography (bottom, n = 

1199). Red vertical dashed lines indicate 25, 50, and 75 percentiles. f-j) Corresponding boxplots showing 25, 

50, and 75 percentiles of the distributions of the five markers. 

To verify that object centroids extracted from pre-processed holograms could provide accurate 

positions of cell centroids required to extract cell polarizability and cell deformability, we 

performed comparison study between the microscope imaging system and the digital holography 

system by characterization of size-standard polystyrene microspheres and two cell lines. Note that, 

for microscope imaging analysis, image stacks with smaller FOVs were acquired and the two 

measurement modules were monitored separately since microscope imaging could not be used to 

observe the entire active region of the microfluidic platform simultaneously.  

To quantitatively compare the two imaging modalities for the measurements of polarizability 

and deformability, polystyrene microspheres (6.20±0.50 µm diameter) were characterized using 

the microscope-based cell-tracking cytometer and the digital holography-based cytometer (with 

the benchmark blob detection on reconstructed images) are shown in Figure 3-11. The standard 
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deviations of the balance positions at three frequencies measured from digital holography-based 

system (< 1.70 µm or 9.9%) were larger than those from microscope-based system (< 1.26 µm or 

7.2%). The differences in balance position extraction between the two imaging modalities were 

expected as there were different specifications in the imagers (e.g., pixel size and magnification) 

and in the extraction algorithms.  Similarly, the standard deviations of the transit time measured 

from microscope imaging and from digital holography were ~0.10 seconds and ~0.21 seconds, 

respectively, which were approximately twice the inverse of the imagers’ frame rates.  

 In addition, we showed that the digital holography-based system with a YOLO cell hologram 

detector was sufficient to distinguish the differences in polarizability and transit time between two 

cell lines, in agreement with the results from the microscope-based system. Box plots representing 

distributions of Re[CM] at three frequencies of two leukocyte cell lines, namely BA/F3 and K562, 

obtained from the digital holographic imaging and from the microscope imaging are shown in 

Figure 3-12(b-d). Two general trends emerged that were consistent between the two imaging 

systems. First, as expected, magnitudes of Re[CM] generally decreased as frequency increased 

(f1<f2<f3). Second, the median Re[CM] of BA/F3 populations were larger in magnitude than the 

median Re[CM] of K562 population for frequency f1 and frequency f3 (p<0.05). While there 

might be some discrepancy in the estimated Re[CM] values measured from the two imaging 

systems as a result of device-to-device variations and differences in the imagers’ spatial resolution, 

consistency in general trends and statistical analysis showed that Re[CM] estimates from the 

digital holographic imaging system were in quantitative agreement with the microscope imaging 

system, resolving the differences in Re[CM] measurements of the two cell lines. Box plots 

representing distributions of transit time of the two cell lines obtained from the two imaging 

systems were shown in Figure 3-12e. Both imaging systems consistently showed that the quantiles 

of transit time were larger in K562 compared to BA/F3. We showed that similar quantitative 

parameter extraction from particles’ dynamics can be obtained from the two systems. 
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Figure 3-12. a) Boxplots of diameter measurements of BA/F3 and K562 cell lines obtained from microscope 

imaging and from digital holographic imaging. b-d) Boxplots of Re[CM] measurements at three different 

frequencies of BA/F3 and K562 cell lines obtained from microscope imaging and from digital holographic 

imaging. e) Boxplots of transit time measurements of BA/F3 and K562 cell lines obtained from microscope 

imaging and from digital holographic imaging. * indicates that there is a significant difference among cell 

populations (p<0.05). 

3.4.5 Multi-parameter Characterization of Single-cells 

To show specific application of the large-FOV real-time integrated system, we performed 

multiparameter characterization and classification of three established   leukemia cell lines, which 

have been used as cell models to study human leukemia cell deformability and drug response,196–

199 including HL60 acute promyelocytic leukemia, JURKAT acute T lymphocytic leukemia, and 

K562 chronic myelogenous leukemia. Multiparameter measurements of five intrinsic markers, 

including cell diameter, Re[CM] at three frequencies, and transit time, of the three cell lines 

obtained from our integrated system, are shown as boxplots in Figure 3-15(a-e) and as scatter plots 

in Figure 3-13. To assess the discriminating power of the five measured intrinsic markers, a 

Random Forest model was trained to classify the three leukemia cell lines using the measurements 

of these markers as input. Receiver operating characteristic (ROC) curves and confusion matrices, 

illustrating the ability of the trained classifier to distinguish between the three cell lines in the test 

dataset, are shown in Figure 3-15(f-g). The overall classification accuracy was 73.1%.  



77 

 

 



78 

 

Figure 3-13. Scatter plots showing characterization of five intrinsic markers, including cell diameter, Re[CM] 

at three different frequencies, and transit time, measured from the integrated platform for HL60 (green , n = 

10,559), Jurkat (orange, n = 5169), and K562 (purple, n = 4627) cell lines. The results are combined data 

from four replicates using two different devices.  

 

 

Figure 3-14. Correlation plots among pairs of intrinsic markers measured from the integrated platform. The 

density scatter plots show combined measurements of the three cell lines (HL60, Jurkat, and K562). The 

linear correlation coefficients and the corresponding least-squares reference lines are displayed. 

The trained classifier was able to detect HL60, JURKAT, and K562 with 74.0%, 68.8%, and 

76.5% accuracy, respectively. According to the area under the ROC curve (AUC) and the 

confusion matrix, the classifier was able to distinguish K562 from the other two cell lines with the 

highest discriminating capability, while it was more challenging to distinguish between HL60 and 

JURKAT.  To evaluate the contribution of each intrinsic marker to the classification performance, 

we calculated predictor importance estimates by averaging the improvements in the splitting 

criterion due to splits on every predictor (Figure 3-15h). The results suggested that cell diameter 
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was the most important parameters that contributed to the overall classification accuracy between 

the three cell types. 

 

Figure 3-15. Multiparameter measurements and classification of three leukemia cell lines, including HL60, 

JURKAT, and K562. a) Diameter. b) Re[CM] at f1. c) Re[CM] at f2. d) Re[CM] at f3. e) Transit time. f) 

ROC curves and g) confusion matrix, illustrating the classifier’s ability to distinguish between the three 

leukemia cell lines in the test dataset. h) Predictor importance estimates from the classifier.  

3.4.6 Image Processing Time and Throughput Analysis 

To analyze the image processing time and throughput, we introduced different concentrations 

of cells into the microfluidic platform (Figure 3-16) and estimated the image processing time and 

throughput as a function of cell concentrations (Figure 3-17). According to Figure 3-17a, the 

average pre-processing time and YOLO cell hologram detection time per frame are generally 

constant within the range of cell concentrations tested. However, the current size extraction 

algorithm, which involves image reconstruction, intensity thresholding, and connected component 

analysis, results in the average size extraction time that depends on the cell concentration. The 

recording time, illustrated as a red dashed line, shows that frames with fewer than ~200 cells can 

be processed faster or as fast as they were recorded. Figure 3-17b reports the final measurement 

throughput of the size, polarizability, and deformability modules separately. Throughput of the 

deformability module are 21% - 50% less than the throughput of size measurement, because a 

small number of cells went through the bypass channels instead of the constriction channels and a 

number of cell holograms near the narrowest constrictions were not detected. The throughput of 
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polarizability module is 15% - 40% of the size measurement throughput as some cells did not 

travel close the centerlines of the coplanar electrodes and did not experience sufficient negative 

DEP force for the polarizability measurements.  

 

Figure 3-16. Snapshots of time-lapsed pre-processed holograms when various concentrations of cells (1x105 

to 5x105 cells/mL) were introduced into the microfluidic platform. 

With our integrated image-based analytical system, we showed that more than hundreds of 

cells could be monitored simultaneously in an enlarged FOV of 21 mm2 and an order of magnitude 

improvement in the final throughput could be achieved compared to our previous system.193 While 

an FOV of 21 mm2 was shown in the applications presented here, the digital holographic imaging 

system can be extended to ~cm2 scale simply by replacing the CMOS sensor with an image sensor 

with a larger active area. For label-free biophysical assays, in particular, an increase in the imager’s 

FOV enlarges the device probe area and enhances flexibility in the design of the microfluidic 

measurement platforms. An increase in the device probe area would allow parallelization and 

sequential stacking of the same or different types of the physical probes, which could be used to 

improve repeatability, throughput, sensitivity, and specificity of the measurements. Similarly, the 
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spatial resolution of the imaged-based measurements could be improved by replacing the CMOS 

image sensor with an imager with a smaller pixel size. An increase in the spatial resolution would 

improve the measurement accuracy and precision of all spatial parameters, as well as enhance their 

discriminating power. 

 

Figure 3-17. Image processing time and throughput versus cell concentrations estimated from the first two 

hundred frames of eight recorded experiment videos. a) Average processing time per frame for pre-

processing, YOLO cell hologram detection, size extraction, and total time. The error bars depict the standard 

deviations. The red dashed line indicates the recording time per frame. Note that the average size extraction 

time was computed from applying size extraction every tenth frame. b) The final measurement throughput of 

each measurement modules, including size, polarizability, and deformability. The throughput in the 

polarizability module is calculated from the number of cell trajectories with at least one valid polarizability 

measurement. The grey lines show the least-square lines of throughput versus cell concentration for each 

module. 

3.5 Conclusions 

We developed an integrated image-based analytical platform with an enlarged FOV of ~21 

mm2 for real-time analysis of particle dynamics in microfluidic obstacles by using digital 

holographic imaging and deep learning. The integrated system was applied to an enlarged 

microfluidic platform that contained two pairs of electrodes for multi-frequency polarizability 

measurements and 72 parallel constriction channels for deformability measurements. The 

measurements of the five intrinsic markers obtained from the integrated system were validated 

with the measurements obtained from a Coulter Counter and a microscope imaging system. 

Multiparameter measurements and classification of three leukemia cell lines were performed to 

demonstrate the high-throughput applications of the integrated system. 
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 Chapter 4 

Contributions and Future Outlook
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In this thesis, a new approach to multiparameter, cell-tracking, intrinsic cytometry platform 

for single-cell characterization has been conceptualized and developed by leveraging microfluidic 

technologies, imaging technologies, and computer vision. The specific instantiation of the 

cytometry platform, which can measure up to five intrinsic markers of cells, has been demonstrated 

for quantitative investigation of label-free cell profiles and applied for classification of cell types 

and functional states. The major contributions of this thesis and the potential future directions 

building upon this work are summarized below. 

4.1 Contributions 

A new approach to combine the measurement of more than two intrinsic properties of cells 

We have developed a new approach to combine the label-free measurement of single cells’ 

biophysical properties across domains (e.g., mechanical, electrical, optical) by utilizing 

microfluidic techniques to manipulate cells’ spatiotemporal positions according to their 

biophysical properties; and by using image-based tracking to monitor, extract, and connect the 

measured properties to individual cells. This approach provides a versatile framework for 

integrating existing and future microfluidic measurement techniques across domains while 

mitigating the complications from combining different readout systems. In our approach, a number 

of microfluidic measurement modules can be used as building blocks to be added in parallel or 

sequentially within the two-dimensional active space of the analytical platform, and be 

independently optimized. Flexibility in the design space of the microfluidic platform and 

convenience in the readout system renders the approach readily extensible to investigate a myriad 

of promising intrinsic markers of single cells that are rarely studied together for explorative 

analysis, as well as readily customizable for specific biological and clinical applications.  

Instantiation of a cell-tracking intrinsic cytometry that measures up to five intrinsic 

properties of single cells and affirms the utility of combining multiple intrinsic markers 

We have implemented a cell-tracking intrinsic cytometry system that measures diameter, 

polarizability at three frequencies, and deformability of single cells; and, in effect, established a 

unique screening tool that allows the electrical and the mechanical phenotypes of cells to be 

measured and studied together at the single-cell level. The multidimensional biophysical profile 

of single cells, from three treatment conditions of a cytoskeletal drug, measured on our platform 

has enabled us to perform multivariate studies, including 1.) correlation tests to assess the linear 
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relationship between cell size, deformability and polarizability; 2.) unsupervised nonlinear 

dimensionality reduction visualization that illustrates the combined changes of the measured 

intrinsic markers as a result of different treatment conditions; and 3.) training and testing of 

supervised machine-learning classification models from subsets of the five measured markers to 

confirm the additional contribution of each marker to the classification accuracy of drug-induced 

structural changes in single cells. Using five measured intrinsic markers, we demonstrated that 

classification accuracy for three drug-induced cell states of ~71.4% could be achieved. 

Enhancement of the image-based analytical system using digital holography and deep 

learning  

We have developed an integrated image-based analytical platform with an enlarged FOV of 

~21 mm2 (which is ~ 4 times the FOV of 5X microscope objective and ~ 10 times the FOV of the 

10X microscope objective) for real-time detection of particle dynamics in microfluidic obstacles, 

by using digital holographic imaging and deep learning. The integrated system was applied to 

monitor an enlarged microfluidic platform that contained two pairs of electrodes for multi-

frequency polarizability measurements and 72 parallel constriction channels for deformability 

measurements. Large-FOV digital holographic microscopy is commonly applied to observe static 

samples, and moving samples in simple straight microfluidic channels or in large microfluidic 

chambers. Here, we have demonstrated that the presence of cells in microfluidic obstacles can be 

reliably and rapidly detected for extraction of their spatiotemporal positions via deep-learning based 

image analysis, even when their holographic patterns deviate substantially from the regular circular 

fringe patterns, e.g., the presence of a cell in 6-µm-wide parallel constriction channels (constriction 

width ~3-4 pixels in the hologram images) can still be detected.  

In the context of cell-tracking intrinsic cytometry, the expansion of the imager’s FOV and the 

microfluidic investigation area increases flexibility in the design space for addition and 

optimization of the microfluidic single-cell measurement modules. For example, the enlarged 

space can be designed to accommodate parallel single-cell measurement probes for increased 

throughout, or sequential stacks of new and repeated measurement modules for increased 

sensitivity and specificity. In our application, we expanded our previously reported cell-tracking 

intrinsic cytometry platform to accommodate two pairs of parallel electrodes for polarizability 
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measurement and 72 parallel constriction channels for deformability measurement, and observed 

more than a magnitude increase in throughput. 

4.2 Future Directions 

4.2.1 Technological Directions 

Next-generation multiparameter cell-tracking intrinsic cytometry  

To tackle important biological and biomedical challenges, the next-generation multiparameter 

cell-tracking intrinsic cytometry must be optimized in terms of sensitivity, specificity, and 

throughput. This can be achieved by optimizing each of the three subsystems in the cell-tracking 

intrinsic cytometry. First, the CMOS image sensor can be replaced by a high-speed image sensor 

with large active area and small pixel size, allowing dynamics of cells’ positions and morphology 

to be recorded with high spatial resolution and high temporal resolution. Second, the label-free 

measurement modules in the microfluidic platform can be optimized. For example, they can be 

replaced with modules that are less sensitive to size, e.g., IDS for polarizability measurement and 

stacks of constriction obstacles with decreasing gap width for deformability measurement. 

Alternatively, deterministic lateral displacement array (DLD) can be used to separate cells 

according to size before cells are introduced to constrictions with corresponding widths. Other 

label-free measurement modules, e.g., cell rolling and acoustophoresis, can also be added to the 

platform to enable extraction of new intrinsic markers and increase the specificity in cell type 

classification. Measurement methods, that can be parallelized easily, can increase the throughput 

of the system significantly. 

Deep-learning enabled image analysis   

In the current system, we use deep learning models to enable rapid and accurate detection of 

moving cells in the microfluidic platform from hologram images. The cell centroids and cell 

diameters are later used to extract the five intrinsic markers for analysis. Nevertheless, there is a 

wealth of information in the cell holograms (e.g., morphological features, subcellular components, 

refractive indexes). While it is challenging to extract important image features when the 

differences are not obvious to human eyes, deep-learning models can be trained to extract useful 

hologram image features to combine with deformability, polarizability, and diameter for a more 

accurate cell identification and classification. This would give a unique screening tool that merges 
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the quantitative measurement of the optical phenotypes (that are beyond cell diameters) with the 

mechanical and the electrical phenotypes.  

Integration of fluorescence measurements 

In addition to intrinsic biophysical properties, the platform can be extended to concurrently 

measure multiple biochemical properties of single cells while they traverse the aforementioned 

microfluidic platform via fluorescent labels and wide-field fluorescence imaging built upon the 

computational imager. One approach using a multiband filter and serial switching between the 

digital holography channels and the fluorescence channels is illustrated in Figure 4-1. 

Measurements of the additional biochemical properties of single cells can be used to validate cell 

identification based on single-cell biophysical properties or consolidated with single-cell 

biophysical properties for improvement in cell classification, as shown in earlier works on 

microfluidic impedance and fluorescent flow cytometry.200 More importantly, the correlation maps 

between multiple biophysical properties and one or more biochemical properties of single cells 

can be created for studies that were not possible without the single-cell association between 

intrinsic and extrinsic cellular properties. These studies can potentially lead to discovery of new 

cell subpopulations, development of new protocol for disease progression monitoring, and 

unravelling of molecular or biochemical underpinnings of biophysical properties.  
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Figure 4-1. An approach to integrate fluorescence measurements with the cell-tracking intrinsic cytometry, 

which allows biophysical and biochemical phenotyping of single cells. 

4.2.2 Biological directions 

Optical, mechanical, and electrical phenotypes of cells have each been investigated for 

numerous applications which often overlap, e.g., leukocyte activation, infection of red blood cells, 

early detection of apoptosis, and lineage potential of stem cells. The multiparameter cell-tracking 

intrinsic cytometry can be used to screen the biophysical properties of these samples at the single-

cell level and create holistic biophysical profiles of cells to answer important biological and 

biomedical questions. Interesting questions, that can be answered using our platform, include 1.) 

how the measured intrinsic markers are related to each other, 2.) how and when certain changes 

(e.g., biochemical, genetic) in the cells are accompanied by changes in the measured intrinsic 

markers, and 3.) if their combined discrimination capability can be used to substitute or 

complement an extrinsic marker.       
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Appendix 1 Fabrication process of the microfluidic channels with SU-8, using a mask 

aligner 

Starting Materials:  

150-mm-diameter, 650-μm-thick Silicon wafers (WaferNet, Inc., San Jose, CA)  

Photomask: Front Range Photomask, 7”x7”, .12” thick (~3.05mm) 

 

Step Description Machine Parameters 

0 Dehydration bake Hotplate 300 200°C, 30 min 

1 Adhesion Layer SU-8 spinner 

 

 

 

Hotplate 2 (95oC) 

EV1 

Hotplate 2 (95oC) 

SU-8 2002(2 μm thickness),  

Dispense ~6ml SU-8 (1ml per inch diameter) 

Ramp to 3000 rpm and hold for total of 30 

seconds 

Hold at 95°C for 1 min; cool to ambient 

Flood exposure for 10 seconds 

Hold at 95°C for 2 min; cool to ambient 

2 SU-8 Spin SU-8 spinner SU-8 2015(20 μm thickness): 

Dispense ~6ml SU-8  

Ramp to 500 rpm at 100 rpm/sec acceleration 

and hold for 5-10 seconds 

Ramp to 2250 rpm at 300 rpm/second and hold 

for total of 30 seconds 

3 Prebake Hotplate station Slow ramp from 60°C to 95°C, hold at 95°C for 

4 min; cool to ambient 

4 UV expose EV1 Flow chamber mask, 10 seconds. 30 μm 

separation 

5 Post-expose bake Hotplate station Slow ramp from 60°C to 95°C, hold at 95°C for 

5 min; cool to ambient 

6 Develop SU-8 hood ~ 3-5 min soak in PM Acetate from Pass-Thru 

Spray with PMA and IPA 

Dry with Nitrogen gun 
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Facility: Voldman Group Lab 

7 Hard bake Hotplate 150oC Leave the SU-8 in the hotplate for ~ 30 

minutes up to 2 hours. The purpose is to make 

remaining solvent evaporates. 

8 Silanize Acid/Base Hood  Put 3-4 drops of trichloro octadecyl silane 

into aluminum foil cup in vacuum jar. 

Put wafer in wafer holder in the jar 

Close jar, turn on vacuum for 5-10 min 

Turn vacuum off, let it sit for ~ 30 min 

 

9 Mix and degas 

PDMS 

 Weigh the PDMS (Polydimethylsiloxane, 

Sylgard 184) pre-polymer components in a 

10:1 ratio. Mix well.  Utilize approximately 

70 grams of the PDMS. 

 

Degas under vacuum (desiccator) until no 

bubbles appear in the mixture (20~30 

minutes). Make sure the PDMS mixture does 

not foam out of the container. 

10 Pour PDMS  Place the SU-8 master wafer into aluminum 

foil.  Carefully pour the PDMS into the foil to 

minimize bubbles. 

11 Cure PDMS  Cure the PDMS on a hotplate at 80oC for 2 

hours. After curing, the wafer with the PDMS 

is stable and may be stored for months. 

12 Remove the mold  Carefully peel off the PDMS mold from the 

SU-8 master, and cut out individual devices 

with a razor. 
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Appendix 2 Fabrication process for electrode patterning on Pyrex, using a mask aligner 

Starting Materials: 

 150-mm-diameter, 762-μm-thick Pyrex wafers (Bullen Ultrasonics, Eaton, OH) 

Step Description TRL Machine Parameters 

Electrode patterning, 6” Pyrex wafer 

1 Piranha clean Acid hood  

2 Dehydration bake HMDS oven HDMS recipe for AZ5214, 155°C, 30 mins, 

wait for air cool 

3 Photolithography Spin Coater 

 

Prebake Oven 

EV1 

Postbake Oven 

EV1 

Hood 

Coater: DISPENSE: 500;8s SPREAD: 

750rpm;6s; SPIN: 2000rpm; 30s (2um) 

Prebake for 30mins 

Expose 2sec with masks 

90secs on 120 hotplate (or in postbake oven) 

flood exposure 70 seconds (w/o mask) 

develop in AZ422 (90sec) 

4 Metal evaporation eBeamFP 100Å Ti, 2000Å Au  

5 Liftoff metal Solvent-Au Liftoff with acetone 

6 Protective resist 

coat 

Coater AZ 5214, 500 rpm final speed 

7 Bake Hotplate station 120°C, 2 min 
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Appendix 2 Fabrication process for electrode patterning on ITO coated glass slides, using a 

maskless aligner 

Starting Materials: (1200 - 1600 A)-thick ITO coated glass slides (75mm-by-25mm-by-0.7mm) 

Step Description TRL Machine Parameters 

0 Clean ITO glass Photo-wet Clean with Acetone, Isopropanol, Methanol 

1 Dehydration bake Hot plate Dehydration bake at 110oC for 10 minutes 

2 Photoresist spin 

coat 

coater 

 

Target thickness (1 um): 

Dispense SPR700 on substrate 

Ramp to 3000 rpm and hold for total of 30 

seconds 

3 Soft bake Hot plate At 110oC for 5 minutes 

4 Direct write MLA150 Direct write with i-line(365nm) 

5 Post exposure bake Hot plate At 115oC for 1 minutes 

6  Photoresist develop Photo-wet Immerse in CD26 for 30 seconds (visual 

stop) 

Rinse with DI water 

Blow dry 

7 Hard bake Hot plate At 130oC for 3 minutes 

8 ITO etching Acid-hood2 Prepare etching solution: 

HCL: H20: HNO3 = 4: 2: 1 by volume 

Immerse for 3 minutes at room temperature 

Rinse with DI water for 4 cycles 

Blow dry 

Dehydration bake at 105oC for 15 minutes 

9 Photoresist removal Photo-wet Immerse in Acetone for 1 minute with 

ultrasound on and then Isopropanol (IPA)  

for 1 minutes with ultrasound on. 

Rinse with DI water for 4 cycles 

Blow dry 

Dehydration bake at 105oC for 15 minutes 
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Appendix 4: Experiment Protocol 

Materials: 

1. Assembled device 

2. 3 ml, 5 ml, and 10 ml plastic syringes (Becton, Dickinson and Company) 

3. 1 mL plastic syringes (Becton, Dickinson and Company) 

4. Tubing (Tygon®, 0.020-inch inner diameter) 

5. Five 25 mm syringe filters (Pall Corporation, 0.2 µm Tuffryn® membrane) 

6. Solution of polystyrene microspheres or cells  

Sample preparation 

• Microsphere sample 

1. Dispense 100 μL bead solution from bottle into a 1 mL Eppendorf with 900 µL of 0.1% 

tween® 20 DPBS solution. Keep track of bead concentration. The proportion of beads to 

buffer can be adjusted according to bottle concentration. Vortex bead container before 

dispensing. 

2. Centrifuge the Eppendorf according to bead size.  

Bead Diameter (μm) G – Force (cm/s2) Time (minutes) 

4.5 594 2 

6 334 2 

10 120 2 

15 53 2 

3. Carefully drain the liquid until only the beads are left in the bottom. 

4. Dispense 1 mL filtered DPBS-T into the Eppendorf. Vortex. 

5. Dilute the washed solution to the final concentration of 105 to 106 particles/ml. 

6. Take 100 µL out for coulter counter analysis. 

• Cell sample 

1. Load cells suspended in cell culture media into a 15 mL Falcon tube. 

2. Centrifuge at 1500 rpm for five minutes.  

3. Gently drain the media out of the Falcon tube without discarding the cells. 

4. Dispense 1 mL of 13.3% Dextran in DPBS and mix with cells by gentle pipetting. 

5. Filter the cell sample by pipetting it through a cell strainer. 

6. Take 100 µL out for coulter counter analysis. 

Device Pre-conditioning: 

1. Position and secure the device under the microscope (Zeiss Axio Imager M1M) equipped 

with a 12-bit CCD camera (LA Vision Imager QE)  

2. Load a 10 mL syringe with 0.5% Pluronic F108 in deionized water. Connect it to a filter, 

tubing, and metal inserts. Clamp it into place on a syringe pump. 

3. Let the pump run at 5-10 µL/min until you see droplets forming at the ends of the tubing. 

Plug the tubing into outlets of the device, merging the droplets from the tube with 

droplets over the outlets.  
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4. Observe. Increase the flow rate for faster bubble elimination. Let the priming solution fill 

inside the device and disconnect the tubing when all bubbles are removed (~ 10-20 

minutes) 

5. Load a syringe with 7.5% BSA and connect it to the device. Let the priming solution fill 

inside the device and wait for at least 30 minutes. Disconnect the tubing. 

Device Set-up: 

1. Load sample into a 1 mL syringe and load filtered DPBS into 5 mL syringes. Connect to 

filters (only the DPBS syringes), and tubing. Clamp them on syringe pumps. 

2. Let the pump run at 5-10 µL/min until you see droplets forming at the ends of the tubing. 

Stop the pump. Connect the tubing to the inlets of the device, merging the droplets from 

the tube with droplets over the inlets. 

3. Run the syringe pumps. Set the sample syringe pump such the syringe is vertically 

pointing the ground. Observe and adjust flow rates if needed. 

Clean-up: 

1. When the experiment is finished, disconnect the syringes from the device. 

2. Flush out the plastic syringes a few times before throwing them away.  
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