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Abstract
Learning informative and transferable feature representations is a key aspect of machine
learning systems. Mutual information and Kullback-Leibler divergence are principled and
very popular metrics to measure feature relevance and perform distribution matching, re-
spectively. However, clean formulations of machine learning algorithms based on these
information-theoretic quantities typically require density estimation, which could be dif-
ficult for high dimensional problems. A central theme of this thesis is to translate these
formulations into simpler forms that are more amenable to limited data. In particular, we
modify local approximations and variational approximations of information-theoretic quan-
tities to propose algorithms for unsupervised and transfer learning. Experiments show that
the representations learned by our algorithms perform competitively compared to popular
methods that require higher complexity.
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Chapter 1

Introduction

� 1.1 Background and Motivation

Learning representations of data is a central theme of machine learning (ML) systems. In

addition to accuracy, a major advantage of artificial neural networks is in their ability to

learn hierarchical sets of features in their intermediate layers. For example, in convolutional

neural networks (CNN) for computer vision, the earlier layers detect for edges while the

later layers detect for higher level concepts such as eyes and ears [101]. Parts of the network

can then be used as general feature extractors for feature alignment, visualization, transfer

learning to other tasks, etc.

However, modern deep neural networks (DNN) have parameter counts on the order

of millions [41] to billions [87]. Accordingly, they require a commensurate amount of la-

beled training data to achieve state of the art performance. The difficulty and expense

associated with acquiring manually labeled data have led to increasing interest in unsu-

pervised (e.g., clustering [62], generative adversarial networks [32], infomax [60]), transfer

(e.g., parameter transfer [100], domain adaptation [30]), and self-supervised learning (e.g.,

embedding [71], predictive learning [79]). In these three paradigms, mutual information

and the Kullback-Leibler (KL) divergence [18] often serve as principled metrics to guide

representation learning, feature selection, and distribution matching.

One of the most prominent drawbacks of using these information-theoretic quantities is

17



1.1. BACKGROUND AND MOTIVATION

Table 1.1: The rapid increases in the number of parameters in popular deep neural network
architectures since year 2012.

Year Architecture Parameters

2012 AlexNet 62M

2014 VGGNet 138M

2018 BERT-Large 340M

2019 GPT-2 1.5B

2020 T-NLG 17B

that they are functions of the full distribution. To accurately compute them involve expen-

sive operations such as marginalization and kernel density estimation, which do not scale

well in term of either time or sample complexity to be used on today’s high dimensional

problems. However, ML algorithms do not need to rely on the exact value of these quanti-

ties. Approximations would suffice as long as they provide adequate signals to update model

parameters. This led to the development of different information-theoretic approximations,

two of which are local approximations [44] and variational approximations [78].

Local approximations exploit the fact that when constrained around a local neighbor-

hood of distributions, KL divergence behaves as a squared Euclidean norm. This transforms

many difficult information geometric operations into well known linear algebraic operations.

Variational approximations write statistical divergence as the result of a maximization

problem. The objective functions of these maximizations can be computed directly from

empirical estimates without requiring density estimation. Hence, maximizing divergence is

still a maximization problem using empirical data while minimizing divergence becomes a

min-max problem.

This thesis builds on those efforts by formulating problems such as probabilistic cluster-

18



CHAPTER 1. INTRODUCTION

ing using matrix norm couplings, task personalization, and the subset Wasserstein coupling.

It also derives useful information-theoretic approximation techniques, such as one-shot fea-

ture set reduction, non-zero-sum GAN, and the subset Wasserstein GAN. Section 1.3 starts

by deriving a local approximation of KL divergence based on Taylor series that we use

throughout Chapters 2 and 3.

19



1.2. NOTATION

� 1.2 Notation

General Notation:

R set of real numbers

C set of complex numbers

× Cartesian product

exp exponential with base e

log logarithm with base e

f(ε) = o(g(ε)) limε→0
f(ε)
g(ε) = 0

Probability and Random Variables:

pmf probability mass function

P , Q, R, U distributions

Bernoulli(p) Bernoulli distribution with parameter p

N (µ,Σ) Gaussian distribution with mean µ and covariance Σ

CN (µ,Γ) complex Gaussian distribution with mean µ and co-

variance Γ

PX probability simplex over alphabet X

P◦X relative interior of PX

Capital X, Y , Z random variables

Calligraphic X , Y, Z the non-empty sets of possible outcomes (alphabet)

for the respective random variables

Lower case x, y, z particular outcomes of random variables

E expectation

X
d
= Y X and Y have identical distributions

20



CHAPTER 1. INTRODUCTION

Matrices:

Boldface 0,1 column vector of all 0’s or 1’s of appropriate dimen-

sions

[ · ] diagonal matrix representation of a vector

Rm×n set of real m× n matrices

PY|X set of |Y| × |X | column stochastic matrices

tr(·) trace of a matrix

σi(A) ith largest singular values of A

‖A‖p ,
(∑min(m,n)

i=1 σi(A)p
)1
p

Schatten `p-norm of matrix A

‖A‖F = ‖A‖2 Frobenius norm of matrix A

‖A‖? = ‖A‖1 nuclear norm of matrix A

Statistics and Machine Learning:

L loss function in machine learning optimizations

φ̂ empirical version of some probabilistic object φ (e.g.,

random variable, distribution)

H(X) Shannon entropy of random variable X

I(X,Y ) Shannon mutual information between random vari-

ables X and Y

D(P ‖ Q) Kullback-Leibler (KL) divergence between distribu-

tions P and Q

Df (P ‖ Q) f -divergence between distributions P and Q

W1(P,Q) Wasserstein-1 distance between distributions P and

Q

21



1.3. LOCAL APPROXIMATION OF KL DIVERGENCE

� 1.3 Local Approximation of KL Divergence

Definition 1.3.1 (Information Vector). For some fixed reference distribution R ∈ P◦X , we

can define any other distribution P ∈ PX as a perturbation around R:

P = R+ ε
√
Rφ, (1.1)

where we call φ ∈ R|X | the information vector.

Remark 1.3.1. To satisfy the first axiom of probability, ε > 0 must be a scalar that is

small enough such that P ≥ 0 everywhere. To satisfy the second axiom of probability,〈√
R,φ

〉
= 0 .

In this thesis, we make extensive use of the following approximation to simplify KL

divergence for learning algorithms.

Theorem 1.3.1 (Local Approximation of KL Divergence). For distributions P and Q with

support on the same alphabet X , and their respective information vectors φ and ψ:

D(P ‖ Q) =
1

2
ε2 ‖φ− ψ‖22 + o(ε2), (1.2)

where o(ε2) represents a function satisfying limε→0 o(ε
2)/ε2 = 0.

Proof. For clarity, we show the proof for the case where X is a discrete set. It is straight-

forward to extend to continuous versions. P and Q can be written as

P = R+ ε
√
Rφ

Q = R+ ε
√
Rψ = P + ε

√
R (ψ − φ)

(1.3)

for some reference distribution R on the same support. Then, KL divergence can be written

22



CHAPTER 1. INTRODUCTION

as

D(P ‖ Q) = −
∑
x∈X

P (x) log
Q(x)

P (x)

= −
∑
x∈X

P (x) log
P (x) + ε

√
R(x) (ψ(x)− φ(x))

P (x)

= −
∑
x∈X

P (x) log

(
1 +

ε
√
R(x) (ψ(x)− φ(x))

P (x)

)

= −
∑
x∈X

P (x)
ε
√
R(x) (ψ(x)− φ(x))

P (x)
+

1

2

∑
x∈X

P (x)

[
ε
√
R(x) (ψ(x)− φ(x))

P (x)

]2
+ o(ε2)

= −
∑
x∈X

[Q(x)− P (x)] +
1

2

∑
x∈X

ε2R(x) (ψ(x)− φ(x))2

P (x)
+ o(ε2)

=
1

2

∑
x∈X

ε2R(x) (ψ(x)− φ(x))2

P (x)
+ o(ε2)

=
1

2

∑
x∈X

ε2R(x) (ψ(x)− φ(x))2

R(x) + ε
√
R(x) · φ

+ o(ε2)

=
1

2

∑
x∈X

ε2 (ψ(x)− φ(x))2 −
ε3
√
R(x)

3
φ(x) (ψ(x)− φ(x))2

R(x) + ε
√
R(x) · φ(x)

+ o(ε2)

=
1

2
ε2 ‖φ− ψ‖22 + o(ε2)

where the second, fifth, and seventh equality use (1.3) and the fourth equality uses the

Maclaurin series log(1 + u) = u− 1
2u

2 + o(u2). �

Corollary 1.3.1 (Local Symmetry of KL Divergence). Under the same local conditions as

Theorem 1.3.1, KL divergence is symmetric:

D(P ‖ Q) = D(Q ‖ P ) + o(ε2). (1.4)

23



1.4. OUTLINE

� 1.4 Outline

Chapter 2 uses the local version of mutual information to develop techniques for embedding

and clustering on joint probability distributions. Chapter 3 introduces task personaliza-

tion (a type of transfer learning) and exploits (1.2)’s linear algebraic structure to derive

low complexity algorithms for selecting task-specific features. Chapter 4 extends existing

training objectives in generative adversarial networks (GAN) and self-supervised learning;

it also examines using generative models to capture interference signal constellation to aid

wireless communication. Chapter 5 concludes this thesis and discusses future directions.
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Chapter 2

Probabilistic Clustering Using

Maximal Matrix Norm Couplings

Clustering is one of many important techniques in unsupervised learning that finds structure

in unlabeled data. One important class of clustering algorithms is metric based, where each

row of the data matrix corresponds to an item’s feature vector representation. The most

well known example of metric based clustering is k-means clustering (also known as the

Lloyd-Max algorithm [62, 66]).

In this chapter, we instead focus on probabilistic clustering, where the data matrix

is viewed as the joint co-occurrences (or affinities) between two discrete sets X and Y of

items and users, respectively. The co-occurrence matrix can be normalized to sum to 1 to

represent a joint probability matrix. Much like [22], we want to maximize the “cluster-to-

item” mutual information over the set of “user-to-cluster” assignment matrices. Our main

contributions include relaxing this mutual information optimization into a Frobenius norm

optimization over “DTM” matrices (to be defined later), relating such matrices to graph

Laplacians from spectral graph theory, and proposing an alternating maximization algo-

rithm to approximately solve this matrix optimization. Moreover, unlike spectral methods,

we directly learn a transition kernel for soft clustering as opposed to following the usual

two-step procedure of learning an embedding and then applying k-means clustering.

Note that there are preprocessing techniques to convert a metric based data matrix into

25



2.1. INFORMATION-THEORETIC MOTIVATION

an affinity matrix (e.g., via the heat kernel) that popular manifold learning algorithms such

as t-SNE [63] employ. Thus, the techniques presented in this chapter can also be applied

to datasets that are more naturally metric based, though we do not study cases with the

aforementioned preprocessing.

This chapter is organized as follows: Section 2.1 formulates the mutual information

criterion for probabilistic clustering. Section 2.2 reviews the related literature. Section 2.3

defines the divergence transition matrix and derives the relationship between its Frobenius

norm and mutual information. Section 2.4 discusses the Frobenius maximization problem

for probabilistic clustering and analyzes its convexity and complexity. Section 2.5 relaxes

the optimization problem and presents two algorithms based on gradient ascent and al-

ternating maximization, respectively. Section 2.6 presents some experimental results that

validate our model.

� 2.1 Information-Theoretic Motivation

Suppose we are given training data (x1, y1), . . . , (xn, yn) that is drawn i.i.d. from a joint

pmf PY,X ∈ PY×X such that PY ∈ P◦Y and PX ∈ P◦X . Our goal is to perform clustering on

Y by learning the transition probability kernel PZ|Y ∈ PZ|Y , where Z is the set of cluster

labels with |Z| � |Y|, and PZ|Y=y ∈ PZ represents a soft assignment of y ∈ Y. Since our

training data is “unlabeled”, we assume that X → Y → Z form a Markov chain to extract

information about the clusters from our training data. From hereon, we assume that PY,X

is known as it can be empirically estimated from the data, and PZ ∈ P◦Z is known from

some prior domain knowledge. For example, when clustering readers of political blogs, X is

the set of blogs, Y is the set of readers, and PZ can be set using priors on the distribution

of liberals and conservatives in the country.

The following information-theoretic problem can be used to perform probabilistic clus-
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tering:

sup
PZ|Y ∈PZ|Y : PZ|Y PY =PZ

I(X;Z), (2.1)

where PX,Y and PZ are fixed, X → Y → Z form a Markov chain, and I(X;Z) denotes the

mutual information between X and Z (see [18, Section 2.3] for a definition). In the sections

that follow, we will refer to PZ|Y PY = PZ as the constraint on the marginal. Intuitively, the

formulation in (2.1) finds soft clusters by maximizing I(X;Z) and thereby exploiting the

information that X contains about Y . Note that I(X;Z) ≤ I(X;Y ) by the data processing

inequality [18, Section 2.8], but PZ|Y = I|Z| (which denotes the |Z| × |Z| identity matrix)

is not a valid solution because |Z| � |Y|.

� 2.2 Related Work

The paradigm of clustering joint probability distributions is very useful for graphs, net-

works, and genomics, where items co-occur without explicit labels. Information-theoretic

co-clustering [22] alternates between searching for a cluster assignment that minimizes the

loss in mutual information and recomputing the induced cluster distributions. [77] exploits

properties of the graph Laplacian to search for the closest co-occurence matrix (in term of

Frobenius norm) that has the desired number of connected components. [53] uses optimal

transport coupling (Wasserstein and Gromov-Wasserstein distance [67, 98]) as the input

to a jump detection algorithm to co-cluster. Figure 2.1 shows a visualization the desired

output of any co-clustering algorithms: a block structure after rearranging by clusters.

It is also worth mentioning that the general idea of maximizing mutual information down

a Markov chain is related to the information bottleneck method developed in [96] (which

is useful for lossy source compression and clustering), as well as the linear information

coupling problem introduced in [42] (which provides intuition about network information

theory problems).
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2.3. MUTUAL INFORMATION APPROXIMATION

Figure 2.1: Visualization of co-clustering. The algorithm takes a joint probability distri-
bution as input and learns functions that assign items into clusters. Permuting the items
according to the assignments yields the underlying block structure.

� 2.3 Mutual Information Approximation

� 2.3.1 Local Approximation

We want to use Theorem 1.3.1 to transform (2.1) into a simpler Frobenius norm maximiza-

tion problem. To do that, we need to write PZ|Y and PZ|X into their information vector

forms (1.1):

∀y ∈ Y, PZ|Y=y = PZ + ε
√
PZ ψy, (2.2)

where PZ serves as the reference distribution.

Due to the Markov relation X → Y → Z and after some straightforward computation,

the conditions in (2.2) imply that

∀x ∈ X , PZ|X=x = PZ + ε
√
PZ φx, (2.3)
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where the information vectors are given by:

∀x ∈ X ,∀z ∈ Z, φx(z) =
∑
y∈Y

PY |X(y|x)ψy(z). (2.4)

� 2.3.2 Special Notation

For the remainder of this chapter only, every random variable is discrete and finite, so we

exclusively use the following matrix notation. Let PY|X ⊆ R|Y|×|X | represents the set of

all column stochastic matrices (channels or transition probability kernels) from X to Y.

Analogously, we also write the joint pmf of any two random variables as matrices (i.e.,

PY,X ∈ PY×X ⊆ R|Y|×|X |). For any (marginal) pmf PX , we view it as a column vector and

let [PX ] ∈ R|X |×|X | denote the diagonal matrix with PX along the principal diagonal.

� 2.3.3 Divergence Transition Matrix

To succinctly describe the local approximation of the objective function of (2.1) that stems

from (2.3), we introduce the divergence transition matrix.

Definition 2.3.1 (Divergence Transition Matrix [42]). Given a joint pmf PY,X ∈ PY×X ,

with conditional pmfs PY |X ∈ PY|X and marginal pmfs satisfying PX ∈ P◦X and PY ∈ P◦Y ,

the divergence transition matrix (DTM) of PY,X is defined as:

BY,X = B(PY,X) , [PY ]−
1
2PY,X [PX ]−

1
2 (2.5)

= [PY ]−
1
2PY |X [PX ]

1
2 . (2.6)

It is well-known that the largest singular value of BY,X is σ1(BY,X) = 1 with corre-

sponding right and left singular vectors
√
PX and

√
PY , respectively (see e.g. [42, Section
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3], [64, Appendix A]):

BY,X
√
PX = σ1(BY,X)

√
PY =

√
PY ,

BT
Y,X

√
PY = σ1(BY,X)

√
PX =

√
PX .

(2.7)

Moreover, the next proposition decomposes the DTM of random variables in a Markov

chain.

Proposition 2.3.1 (Composed DTM). If X → Y → Z form a Markov chain, then BZ,X =

BZ,YBY,X .

Proof. Observe using Definition 2.3.1 that:

BZ,X = [PZ ]−
1
2PZ|X [PX ]

1
2

= [PZ ]−
1
2PZ|Y PY |X [PX ]

1
2

= [PZ ]−
1
2PZ|Y [PY ]

1
2︸ ︷︷ ︸

BZ,Y

[PY ]−
1
2PY |X [PX ]

1
2︸ ︷︷ ︸

BY,X

where the second equality uses the Markov property. �

Finally, we locally approximate I(X;Z) using (2.3).

Theorem 2.3.1 (Local Approximation of Mutual Information). Under the local pertur-

bation conditions in (2.3), we have:

I(X;Z) =
1

2

(
‖BZ,X‖2F − 1

)
+ o
(
ε2
)
.

30
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Proof. Observe that:

I(X;Z) =
∑
x∈X

PX(x)D(PZ|X=x ‖ PZ)

=
1

2
ε2
∑
x∈X

PX(x) ‖φx‖22 + o
(
ε2
)

=
1

2
ε2
∑
x,z

PX(x)

(
PZ|X(z|x)− PZ(z)

ε
√
PZ(z)

)2
+ o
(
ε2
)

=
1

2

∑
x,z

(
PZ,X(z, x)− PZ(z)PX(x)√

PZ(z)PX(x)

)2
+ o
(
ε2
)

=
1

2

∥∥∥BZ,X −√PZ√PXT∥∥∥2
F

+ o
(
ε2
)

=
1

2

(
‖BZ,X‖2F − 1

)
+ o
(
ε2
)

where the first equality follows from a straightforward calculation, the second equality uses

Theorem 1.3.1, the third equality uses (2.3), the fifth equality uses Definition 2.3.1, and

the final equality holds due to (2.7). �

� 2.3.4 Connections to Spectral Graph Theory

In the case of X = Y, if we view PY |X as a matrix of Markov transition probabilities, (2.6) is

the matrix being factorized in diffusion maps [17]. If we view PY,X as a weighted adjacency

matrix, (2.5) is almost identical to the symmetric normalized graph Laplacian [16, Section

1.2], [6]. Similar to the Laplacian, the DTM carries an important property that we will use

later.

Proposition 2.3.2. The multiplicity of the singular value at 1 of B(PY,X) is equivalent

to the number of connected components in a bipartite graph that has weighted adjacency

matrix PY,X .

For a proof, we refer readers to [84, Theorem 3.1.1], which relates the eigenvalues of the
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identity minus the Laplacian to the singular values of the (corresponding) DTM.

� 2.4 Maximal Frobenius Norm Coupling

Inspired by Theorem 2.3.1, we will learn the PZ|Y ∈ PZ|Y that probabilistically clusters

each y ∈ Y by maximizing ‖BZ,X‖2F instead of I(X;Z). This Frobenius norm formulation

of probabilistic clustering is presented in the next definition.

Definition 2.4.1 (Frobenius Norm Formulation). Given a joint pmf PY,X ∈ PY×X such

that the marginal pmfs satisfy PX ∈ P◦X and PY ∈ P◦Y , and a target pmf PZ ∈ P◦Z , we seek

to solve the following extremal problem:

max
PZ|Y ∈PZ|Y : PZ|Y PY =PZ

‖BZ,X‖2F , (2.8)

where X → Y → Z form a Markov chain. We will refer to an optimal argument P ?Z|Y of this

problem, which represents a desirable soft clustering assignment, as a maximal Frobenius

norm coupling.

We make some pertinent remarks about Definition 2.4.1. Firstly, a “coupling” of two

marginal pmfs PY and PZ is typically defined as a joint pmf PZ,Y that is consistent with

these marginals (and often has additional desirable properties) [56, Section 4.2]. However,

since the maximizing conditional pmf P ?Z|Y implicitly defines a joint pmf P ?Z,Y = P ?Z|Y [PY ],

we refer to P ?Z|Y itself as a coupling. Secondly, although the Frobenius norm formulation

in (2.8) can be perceived as a local approximation of (2.1) (which nicely connects the

two problems), we do not need to require P ?Z|Y to be close to PZ as in (2.2) (i.e., weak

dependence between Z and Y ) when using this formulation. Thirdly, the formulation in

(2.8) is intuitively well-founded because [43] and [65] illustrate that the singular values of

the DTM BZ,X capture how informative or correlated mutually orthogonal embeddings of

Z and X are. Hence, maximizing the sum of all squared singular values maximizes the
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relevant dependencies between Z and X. Naturally, there are various other reasonable

formulations of probabilistic clustering that use singular values of the DTM. We present

one such class of formulations in (2.9) in the next subsection.

� 2.4.1 Theoretical Discussion

Consider the following generalization of (2.8) that also intuitively captures some notion of

probabilistic clustering:

max
PZ|Y ∈PZ|Y : PZ|Y PY =PZ

‖BZ,X‖pp (2.9)

where PZ ∈ P◦Z and PY,X ∈ PY×X are fixed such that PX ∈ P◦X and PY ∈ P◦Y . Using

Proposition 2.3.1, we may rewrite the objective function of (2.9) as

‖BZ,X‖pp =
∥∥∥[PZ ]−

1
2PZ|Y [PY ]

1
2BY,X

∥∥∥p
p
. (2.10)

Since the quantity inside the norm is linear in PZ|Y , and the pth power of a Schatten

`p-norm is convex, the objective function is convex. Moreover, the constraints on PZ|Y in

(2.9) define a compact and convex set in R|Z|×|Y|. As a result, the maximum in (2.9) can

be achieved due to the extreme value theorem. Hence, (2.9) is a maximization of a convex

function over a convex set. While convex minimization over convex sets is easy, non-convex

problems such as (2.9) are computationally hard [11].

To illustrate this, we consider the notable special case of (2.9) with p = 2 which yields

the problem in (2.8):

max
PZ|Y ∈R|Z|×|Y|

‖BZ,YBY,X‖2F

subject to (s.t.) PZ|Y PY = PZ

1T|Z|PZ|Y = 1T|Y|

PZ|Y ≥ 0

(2.11)
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where we use Proposition 2.3.1 to rewrite the objective function, 1k , [1, . . . , 1]T ∈ Rk,

and the second and third constraints ensure that PZ|Y ∈ PZ|Y . Letting A = BZ,Y and

B = BY,X , we can straightforwardly rewrite this problem as follows:

max
A∈R|Z|×|Y|

‖AB‖2F

s.t. A
√
PY =

√
PZ

AT
√
PZ =

√
PY

A ≥ 0

(2.12)

This is clearly a non-convex quadratic program (QP). Indeed, letting a = vec(A) ∈ R|Z||Y|

(which stacks the columns of A to form a vector), M1 = (B ⊗ I|Z|)(B
T ⊗ I|Z|), M2 =

√
PY

T ⊗ I|Z|, and M3 = I|Y| ⊗
√
PZ

T
, the preceding problem is equivalent to:

max
a∈R|Z||Y|

aTM1a

s.t. M2 a =
√
PZ M3 a =

√
PY

a ≥ 0

(2.13)

where ⊗ denotes the Kronecker product, and we use the fact that vec(ABC) = (CT ⊗

A) vec(B) for any matrices A, B, and C with valid dimensions. The QP in (2.13) is non-

convex because M1 is positive semidefinite and we are maximizing the associated convex

QP. It is proven in [90] that such QPs are NP-hard (also see [31, 80] and the references

therein). Therefore, there are no known efficient algorithms to exactly solve (2.8), and we

resort to relaxations and other heuristics in the upcoming sections.

Finally, we provide some brief intuition for the NP-hardness of (2.11). The feasible

set of (2.11) is the convex polytope PZ|Y ∩ H, where H , {M ∈ R|Z|×|Y| : MPY = PZ}

is a |Z|(|Y| − 1)-dimensional affine subspace of R|Z|×|Y|. In general, this convex polytope

has super-exponentially many extreme points. To see this, consider the special case where
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m = |Y| = |Z| and PY = PZ are the uniform pmf. Then, PZ|Y ∩H is the set of all m×m

doubly stochastic matrices, and its extreme points are the m! different m×m permutation

matrices by the Birkhoff-von Neumann theorem [40, Theorem 8.7.2]. For general |Y|, |Z|,

PY , and PZ , the extreme points of PZ|Y ∩ H have more complex structure (see e.g., [45],

which studies the uniform PY and arbitrary PZ case). When we maximize a convex function

over PZ|Y ∩H as in (2.11), the optimum is achieved at an extreme point of PZ|Y ∩H. So,

we have to search over all super-exponentially many extreme points to find this optimal

point. This is computationally very inefficient.

� 2.4.2 Comparison to Formulations that Directly Modify Co-occurrences

A key feature of our formulation in (2.8) is that it clusters using a transition kernel PZ|Y

and keeps the original data distribution PY,X intact. For comparison, let us consider a

different optimization problem that clusters by modifying the non-negative co-occurrence

matrix P ∈ R|Y|×|X | directly:

min
Q∈R|Y|×|X|:

Q≥0

‖Q− P‖2F − λ
|Z|∑
i=1

σi(B(Q)), (2.14)

where λ > 0 is a hyperparameter that should be set high enough to emphasize the second

term in the objective function, B(Q) denotes the DTM corresponding to the joint pmf

obtained after normalizing Q, and |Z| represents the ideal number of clusters we want

(note that the set Z is inconsequential in this formulation). Because (2.14) does not learn

a transition kernel, in this subsection we do not normalize the data P to be a valid pmf in

order to simplify the presentation.

Intuitively, (2.14) tries to find the closest non-negative matrix Q where B(Q) has the

top |Z| singular values as 1 (i.e., has |Z| connected components, see Proposition 2.3.2).

This is closely related to the model in [77]. One drawback of this type of formulation is
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that it has |Y||X | parameters to learn. Since the number of clusters is typically much

smaller than the number of users (i.e., |Z| � |Y|), our formulation in (2.9) has a much

lower number (|Z||Y|) of parameters to learn.

A more important drawback of (2.14) is that sometimes, the intuitively correct cluster-

ing is not the globally optimal solution. We demonstrate this phenomenon via an example.

Let X = X1 ∪ X2 for disjoint sets X1 and X2, Y = Y1 ∪ Y2 for disjoint sets Y1 and Y2,

|X1| = |X2| = n, |Y1| = |Y2| = m, and the number of clusters |Z| = 2. Furthermore, let the

data matrix P have the following structure:

P =


s1 1

1 s1



mm︸ ︷︷ ︸
n

︸ ︷︷ ︸
n

(2.15)

where 1 is a matrix of all 1’s of appropriate dimension, and s > 1 is some scalar multiplier.

Clearly, there are two distinct communities, and the intuitive result with two clusters is:

Q1 =


s1 0

0 s1



mm︸ ︷︷ ︸
n

︸ ︷︷ ︸
n

(2.16)

where 0 is a matrix of all 0’s of appropriate dimension. Since Q1’s structure creates two

connected components, X1 ∪ Y1 and X2 ∪ Y2, the largest two singular values of B(Q1) are

both 1. Moreover, the objective function has value 2mn− 2λ.

Now consider a different Q that also creates two connected components by only discon-
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necting one item of X and one item of Y from the rest of the items:

Q2 =



s1 1 0

1 s1 0

0 0 s




m


m− 1

}
1

︸ ︷︷ ︸
n

︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
1

(2.17)

where the disconnected item forms the bottom 1×1 block. The largest two singular values of

B(Q2) are still 1 because of the two connected components. However, the objective function

now equals m + n + s2(m + n − 2) − 2λ. Thus, when s <
√

(2mn−m− n)/(m+ n− 2),

the intuitively correct answer Q1 is not the global optimum of (2.14).

In contrast, our maximum Frobenius norm formulation in (2.8) (without the constraint

on the marginal) easily obtains the two intuitive clusters encoded in P . For example, let

m = n = 50, Z = {0, 1} denote the cluster labels, and consider the transition kernels

P 1
Z|Y corresponding to the intuitive clustering shown in (2.16) (defined by P 1

Z|Y (0|y) = 1

for y ∈ Y1 and P 1
Z|Y (1|y) = 1 for y ∈ Y2), and P 2

Z|Y corresponding to the clustering shown

in (2.17) (defined by P 2
Z|Y (0|y) = 1 for y 6= y0 and P 2

Z|Y (1|y0) = 1 for some y0 ∈ Y2).

Then, Figure 2.2 illustrates that the intuitive clustering of P 1
Z|Y is greatly preferred by the

maximum Frobenius norm formulation. Therefore, our formulation does not exhibit the

drawbacks of formulations like (2.14).
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Figure 2.2: Plots of ‖BZ,X‖2F versus m,n for the different transition kernels PZ|Y . In
particular, the blue plot corresponds to BZ,X defined by P 1

Z|Y (the intuitive clustering),

and the red plot corresponds to BZ,X defined by P 2
Z|Y (the “one item” clustering).

� 2.5 Optimization Algorithms

To solve the non-convex QP given by the Frobenius norm formulation of probabilistic clus-

tering in (2.8), we will use a heuristic gradient ascent algorithm (Subsection 2.5.1) as well

as a nuclear norm relaxation (Subsection 2.5.2). Although one approach to finding approx-

imate solutions to an NP-hard problem similar to (2.8) is via semidefinite programming

(SDP) relaxations, we do not explore SDP based algorithms in this work. Moreover, many

of the simpler SDP relaxations for non-convex QPs do not accurately capture our setting

because they only appear to be tight when at least one of the constraints is also quadratic

[3].
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� 2.5.1 Heuristic Gradient Ascent Algorithm

We now present a gradient-based algorithm for approximating the maximal Frobenius norm

coupling defined by the formulation of probabilistic clustering in (2.8), or equivalently, in

(2.12). For computational efficiency, we move the first constraint in (2.12) to the objective

function to obtain:

max
A∈R|Z|×|Y|

‖AB‖2F − λ
∥∥∥A√PY −√PZ∥∥∥2

2

s.t. AT
√
PZ =

√
PY

A ≥ 0

(2.18)

where λ > 0 is a hyperparameter that controls how strictly the A
√
PY =

√
PZ constraint

is imposed. In other words, the solution no longer has to induce clusters with exactly PZ

as their marginal pmf, but it incurs a penalty proportional to the squared `2-norm of the

difference A
√
PY −

√
PZ . Note that any other differentiable distance between distributions

can be substituted here.

The gradients of the components in the objective function of (2.18) are:

∂

∂A
‖AB‖2F =

∂

∂A
tr(ABBTAT ) = 2ABBT (2.19)

∂

∂A

∥∥∥A√PY −√PZ∥∥∥2
2

= 2
(
A
√
PY
√
PY

T
−
√
PZ
√
PY

T
)

(2.20)

where we use denominator layout notation (or Hessian formulation).

Furthermore, since there is an equivalence between (2.11) and (2.12), the constraints

in (2.18) correspond exactly to the second and third constraints in (2.11), which are just

enforcing PZ|Y to be a valid column stochastic matrix. Thus, we can either use any existing

algorithms (e.g. [15, 25]) for projection back onto the simplex and apply them column-

wise to PZ|Y or revise them to operate on A directly. Algorithm 1 describes the entire

optimization procedure for problem (2.18).
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Input: Joint distribution PY,X , target marginal PZ , marginal penalty multiplier λ > 0,

step size α > 0

Output: Soft clusters induced by PZ|Y

1: Initialize A0 ∈ R|Z|×|Y| to be an entry-wise positive matrix

2: B ← [PY ]−
1
2PY,X [PX ]−

1
2

3: M1 ← BBT

4: M2 ← λ
√
PY
√
PY

T

5: M3 ← λ
√
PZ
√
PY

T

6: while At not converged do

7: At ← At−1(I|Y| + α(M1 −M2)) + αM3

8: if At violates constraint above tolerance then

9: At ← proj(At)

10: end if

11: end while

12: return PZ|Y ← [PZ ]
1
2At[PY ]−

1
2

Algorithm 1: Gradient Ascent Algorithm for the Frobenius Norm Formulation.

� 2.5.2 Nuclear Norm Relaxation

Let us consider a modified problem where we approximate the Frobenius norm in (2.8)

using a nuclear norm. This yields the problem in (2.9) specialized to the p = 1 case. We

further relax this problem by completely disregarding the constraint on the marginal to

obtain:

max
PZ|Y ∈PZ|Y

‖BZ,X‖∗ (2.21)

which defines a maximal nuclear norm coupling representing a desirable clustering assign-

ment. To derive some intuition about this problem, we recall a well known result from the
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literature. For any fixed channel PZ|X ∈ PZ|X , the second largest singular value σ2(BZ,X)

of BZ,X is the Hirschfeld-Gebelein-Rényi maximal correlation between Z and X, which is

given by:

σ2(BZ,X) = max
f :Z→R, g:X→R :

E[f(Z)]=E[g(X)]=0

E[f(Z)2]=E[g(X)2]=1

E[f(Z)g(X)] (2.22)

= max
f∈R|Z|, g∈R|X|:
fTPZ=g

TPX=0
fT [PZ ]f=g

T [PX ]g=1

fTPZ,Xg (2.23)

where the equality can be easily justified using the Courant-Fischer variational character-

ization of singular values (cf. [88], [64, Definition 2, Proposition 1], and the references

therein). In particular, the optimal f? and g? can be obtained in terms of singular vectors

of BZ,X corresponding to the singular value σ2(BZ,X), and they serve as useful features

that capture the maximal correlation between Z and X [65, 84]. From this perspective,

(2.21) maximizes the statistical dependence between Z and X as measured by the sum of

maximal correlations (or singular values) subject to the Markov constraint X → Y → Z

for the purposes of probabilistic clustering.

To derive an algorithm for (2.21) that also uses SVD structure, we consider a general-

ization of (2.23). Using Ky Fan’s extremum principle, cf. [39, Theorem 3.4.1], we obtain

the relation:

‖BZ,X‖∗ = max
F∈R|Z|×r
G∈R|X|×r

tr(F TPZ,XG) (2.24)

s.t. F T [PZ ]F = GT [PX ]G = Ir

where r = min(|X |, |Z|). The proof of [39, Theorem 3.4.1] also shows that the optimal
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solutions of (2.24) are:

F ? = [PZ ]−
1
2U and G? = [PX ]−

1
2V (2.25)

where U ∈ R|Z|×r and V ∈ R|X |×r are matrices with orthonormal columns that correspond

to the left and right singular vector bases of BZ,X , respectively. Thus, since PZ,X =

PZ|Y PY,X by the Markov property, we can rewrite (2.21) as:

max
PZ|Y ∈PZ|Y
F∈R|Z|×r
G∈R|X|×r

tr(F TPZ|Y PY,XG) (2.26)

s.t. F T [PZ ]F = GT [PX ]G = Ir

Inspired by [77], we also use alternating maximization to solve this problem. With PZ|Y

fixed, the optimal F and G are given by (2.25). With F and G fixed, the objective function

in (2.26) is linear in the entries of PZ|Y and can be solved using any linear programming

(LP) packages. Algorithm 2 describes the entire optimization procedure.

We remark that this algorithm does not require any prior knowledge of PZ . This is

one potential advantage of the relaxed nuclear norm formulation in (2.21) over the original

Frobenius norm formulation in (2.8). On the other hand, problem (2.26) has the uncommon

feature that the constraint on F depends on PZ|Y (or more precisely, on PZ , which is derived

from PZ|Y ). In typical instances of alternating maximization problems, the feasible sets of

the variables (over which we alternate) are “independent” of each other (see e.g. [19]).

One way to “decouple” the feasible set of F from PZ|Y is to fix some PZ (when we have

prior knowledge). This imposes an additional linear constraint on PZ|Y which is easily

handled by an LP. In our experiments, we do not impose this additional constraint because

Algorithm 2 converges to a reasonable solution without the constraint.
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Input: Joint distribution PY,X

Output: Clusters induced by PZ|Y

1: Initialize PZ|Y to be a |Z| × |Y| column stochastic matrix

2: PX ← 1T|Y|PY,X

3: while PZ|Y not converged do

4: PZ,X ← PZ|Y PY,X

5: PZ ← PZ,X1|X |

6: B ← [PZ ]−
1
2PZ,X [PX ]−

1
2

7: U,Σ, V ← SVD(B)

8: F ← [PZ ]−
1
2U

9: G← [PX ]−
1
2V

10: PZ|Y ← arg maxPZ|Y ∈PZ|Y tr(F TPZ|Y PY,XG)

11: end while

12: return PZ|Y

Algorithm 2: Alternating Maximization Algorithm for the Nuclear Norm Formulation

� 2.6 Experiments

� 2.6.1 Word Embedding

Although this chapter is about clustering, we first want to validate that the DTM is an

informative matrix for large scale unsupervised learning. To do this, we use it to learn

word embeddings for the Microsoft Research Sentence Completion Challenge [104]. The

dataset consists of a training corpus of raw text taken from classic English literature and

1040 Graduate Record Examination (GRE) style sentence completion questions.

Let PY,X be constructed as the normalized word-word co-occurrence matrix and let

UΣV T ≈ [PY ]−
1
2PY,X [PX ]−

1
2 be the 640-dimensional truncated SVD of the DTM. We use
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Table 2.1: Performance comparison between our model and other single architecture meth-
ods as reported in [70].

Model Accuracy

4-gram 39%

Average LSA similarity 49.6%

Log-bilinear model 54.8%

RNNLMs 55.4%

Skip-gram 48.0%

Our model 53.94%

the alternating conditional expectations (ACE) algorithm [13, 65] to approximate [PY ]−
1
2U

and use that as the word embedding. We choose ACE because of the difficulty with inserting

side information into randomized SVD algorithms [35]. See Section A.1 for a derivation of

ACE with side information.

We use various functions of cosine similarity between the candidate word and the sur-

rounding words to select the most probable answer. For details on text preprocessing and

the selection metric, refer to Section A.2. Table 2.1 shows that our method is competitive

with popular single architecture word embedding techniques. This is not entirely surprising

as there are other works [57, 83] that advocate approximately factorizing various versions

of the co-occurrence matrix. However, it provides empirical evidence that methods based

on the DTM perform well and are worth further investigation (on embedding as well as

clustering).

� 2.6.2 MovieLens 100K

For qualitative validation, we use Algorithm 2 to find 5 clusters in the MovieLens 100K

dataset. The data is in the form of a movie-user rating matrix, where each entry can be
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Table 2.2: Examples of well known movies divided into the clusters found by Algorithm 2.
Note that N/A does not mean cluster 2 is empty, but that it does not contain any movies
in the top 100 most rated list.

Cluster 1 Cluster 2 Cluster 3

Raiders of the Lost Ark N/A The Terminator

The Godfather N/A Terminator 2

Pulp Fiction N/A Braveheart

Silence of the Lambs N/A The Fugitive

Cluster 4 Cluster 5

Star Wars Contact

Return of the Jedi Liar Liar

Fargo The English Patient

Toy Story Scream

blank to denote unrated, or in the range {1, . . . , 5}. This is conceptually different from a

co-occurrence matrix since a 5-rated movie does not mean a user watched that movie 5

times more frequently compared to a 1-rated movie.

For preprocessing, we replace all blank entries with 0 to denote zero co-occurrence. We

assume that each unit increment in rating corresponds to tripling a user’s affinity toward

a movie. Thus, we map each valid rating using the function r 7→ 3r−1 − 1. Then, we row

normalize such that each row (corresponding to one movie) sums to 1.

From Table 2.2, we can see an approximate division of genres among clusters 1, 3, 4,

and 5. Cluster 2 captures many of the less popular movies and does not contain any one

from the set of 100 movies with the most ratings. Since MovieLens 100K does not contain

ground truth cluster labels, we do not experiment further beyond this qualitative example.
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Figure 2.3: Histogram of the number of documents for each topic in the Reuters21578
dataset. The vertical axis is in logarithmic scale. The distribution approximately follows
Zipf’s law.

� 2.6.3 Reuters21578

The Reuters21578 dataset contains 8293 documents and their frequencies on 18933 terms.

Although the ground truth shows 65 topic clusters, the largest 10 clusters include 87.9%

of all documents while the smallest 8 clusters each has 1 document (see Figure 2.3). Thus,

we argue that a good algorithm needs to provide a meaningful metric to select a number

of clusters that balances between covering many documents and clustering accuracy.

For this experiment, we do not perform any data preprocessing and split all documents

into k ∈ {2, 3, 4, 6, 8, 10} clusters. Because we do not have clusters devoted to the 65 − k

smallest clusters, we report the classification accuracy in Table 2.3 using two different met-

rics. Overall accuracy counts all documents from those smallest clusters as incorrectly

classified, and k-accuracy disregards those documents and only reports accuracy of docu-

ments from the top k clusters. In both of these cases, the extra documents from the smallest
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Table 2.3: Clustering accuracy on the Reuters21578 dataset using Algorithm 2. The nuclear
norm increases more slowly when k ≥ 8, which implies that k = 8 or 10 is the “right” number
of clusters.

k Coverage Overall acc. k-acc. ‖·‖∗

2 69.55% 65.15% 93.67% 1.71

3 73.42% 65.51% 89.22% 2.33

4 77.01% 62.25% 80.83% 2.85

6 82.35% 57.43% 69.74% 3.72

8 85.43% 54.11% 63.34% 4.49

10 87.85% 48.52% 55.23% 5.14

Table 2.4: Clustering accuracy on the Reuters21578 dataset using Algorithm 1. Knowing
the true cluster marginal distribution helps maintain accuracy even as k increases.

k Coverage Overall acc. k-acc. ‖·‖F

2 69.55% 47.86% 68.81% 1.19

3 73.42% 59.60% 81.18% 1.30

4 77.01% 68.64% 89.12% 1.38

6 82.35% 67.70% 82.21% 1.48

8 85.43% 69.12% 80.90% 1.51

10 87.85% 70.73% 80.52% 1.59

clusters are still present in the data, acting as noise.

Similar to spectral clustering [75], we can report the norm given by Algorithm 2 against k

to identify the k that strikes a balance between document coverage and clustering accuracy.

At the cost of disregarding the smallest clusters, we achieve improved overall accuracy

compared to the best algorithm (43.94%) reported in [77, Table 2].
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Alternatively, assuming access to the ground truth cluster marginal pmf, we can use

Algorithm 1. Table 2.4 shows that this prior information offers significant improvements in

accuracy as k increases.

� 2.7 Summary and Future Work

In this chapter, we reviewed the mutual information formulation for probabilistic clustering

(2.1). Then, to convert (2.1) into a matrix optimization (2.8), we locally approximated

mutual information as the Frobenius norm of the DTM (Theorem 2.3.1). This allowed us

to explicitly learn a maximal matrix norm coupling PZ|Y for clustering as opposed to the

standard procedure of embedding then k-means. Learning PZ|Y also let us encode prior

information. We saw one example of this with the predefined PZ in (2.8). To perform

semi-supervised learning, we can also add constraints that fix certain columns of PZ|Y for

the subset of the data that is labeled.

There are two aspects of our approach that can be improved in future work. Firstly, we

can implement more efficient non-convex optimization algorithms that converge to solutions

that are closer to the global optimum. Secondly, we can improve our model’s robustness to

noise. Currently, we treat the observed noisy co-occurrence matrix as a good estimate of

the true distribution while matrix factorization (MF) models treat the noise as entry-wise

Gaussian perturbations of a low rank model [91]. In our experience, MF tends to perform

well on data with high entry-wise noise while our approach performs well on data with

complex community structures and lower noise.

Another future direction is to probabilistically cluster X in addition to Y . The opti-
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mization problem for this is:

max
A∈R|Z|×|Y|,
C∈R|W|×|X|

∥∥ABCT∥∥2
F

s.t. A
√
PY =

√
PZ , A

T
√
PZ =

√
PY ,

C
√
PX =

√
PW , C

T
√
PW =

√
PX ,

A ≥ 0, C ≥ 0,

(2.27)

where C obtains the clusters of X, cf. (2.12). This parallels the notion of co-clustering in

the literature [22], and is a topic worthy of further investigation.
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Chapter 3

One-Shot Feature Reduction for

Transfer Learning and Task

Personalization

� 3.1 Task Personalization

Neural networks have achieved great success in tackling problems in computer vision [41, 51],

natural language understanding [21], robotics [28], etc. However, state of the art neural

architectures have millions of parameters, and rely on extremely large datasets to reach

their advertised performance. For many tasks, it is unrealistic to obtain large amounts of

labeled data. For example, a personalized home security system cannot wait until multiple

robberies have already occurred before adapting to the homeowner’s environment. Multi-

task learning [89] enables such rapid adaptation, but it often requires uploading personal

labels to a central location, which may be unacceptable due to privacy reasons. Moreover,

users will want to design their own tasks, which makes it difficult for centralized training

to accommodate millions of unique customers.

In this chapter, we study this problem of task personalization. In particular, we model

task personalization as dividing some subset of the source labels into more detailed target

classes (see Figure 3.1). Building on the previous example, the home security system is
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Figure 3.1: Diagram overviewing the method of selecting a part of the source neural network
for task personalization.

centrally trained to distinguish between gender, but a customer may want to further train

it to distinguish between their multiple daughters. This is different from traditional notions

of personalization, where the user features change but the task does not.

Under this setting, overfitting dramatically degrades performance because the size of

the task personalization dataset is typically too small to properly train a model with many
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parameters. Thus, it is vital that we design a principled framework to process and rank

features from a generic source model. Then, as the amount of personalized training data

grows, the system can also increase the set of features it uses to achieve a good tradeoff

between representation and overfitting.

In particular, we consider the situation where we have a pre-trained deep neural network

for some generic purposes, such as CIFAR classification, and a limited number of labeled

samples for a specific task of interest. Here, the challenge is to use very few samples to

figure out how to use the selected features in the pre-trained model for the target task.

For example, we might use a pre-trained Inception model with 2048 features before the

final layer for a specific binary classification problem, for which we only have around 200

labeled samples. In such a case, it is necessary to select from these 2048 features a much

smaller subset that can optimally contribute to the desired decision. Conceptually, the key

question is which features are the most relevant ones to the target task, and how to select

them with a single small batch of samples.

The theoretical approach we take in this chapter is based on a local geometric analysis

reported in [44]. The concept we borrow is a metric of “relevance”, defined as the inner

product between feature functions in functional space, and can be approximated relatively

easily with a small amount of samples.

Our algorithms make only one pass over the dataset prior to training. Our first al-

gorithm rewrites the classification problem as a least square problem in the information

space. Its analytic solution makes it suitable for smaller neural networks with very limited

target training data. Our second algorithm performs feature set reduction by returning

the source features ranked by their potential contribution. This helps alleviate overfitting

and also permits training deeper networks on the target problem. We do not introduce

additional architectural elements, and only uses existing neural network building blocks

(e.g. softmax, backpropagation, gradient descent, etc.). This is advantageous compared
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to popular weight pruning techniques that require training to completion. Weight pruning

[36, 73] typically removes connections in a trained network that either have low absolute

value or have small impact on the output activation. However, the strategies are mostly

designed for during training or post-training. Due to the small amount of training data, the

target model typically overfits and causes the weight pruning objectives to be unreliable.

The chapter is organized as follows. Section 3.2 formulates the local geometric frame-

work for KL divergence and derives relevant approximations to classification problems with

cross-entropy loss. Section 3.3 reviews the related literature. Section 3.4 reports experimen-

tal performance on CIFAR-10 [50] and the NEXET self-driving datasets. Finally, Section

3.5 concludes the chapter and discusses future works.

� 3.2 Feature Selection Using Local Geometry

� 3.2.1 Log Likelihood Ratio Function

For clarity, consider a two class problem with input X ∈ X , Y ∈ {0, 1}, PY (0) = PY (1) =

0.5, with condition distributions in information vector form (1.1)

PX|Y=1 = PX +
√
PX φ (3.1)

PX|Y=0 = PX −
√
PX φ, (3.2)

where PX serves as the reference distribution. Figure 3.2 shows a visualization of the local

geometry.

The goal of neural classifiers is to optimally learn the log likelihood functions, or the

log likelihood ratio (LLR) in binary classification [10]. Under the geometric framework,

log
PX|Y=1

PX|Y=0
≈ φ√

PX
. (3.3)
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PX|Y=1
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‖φ‖22
‖φ‖22

Figure 3.2: Visualization of the conditional distributions and information vector φ as per-
turbations around the marginal distribution PX . Under the local geometric view, KL
divergence is symmetric.

Hence, φ√
PX

is the function of X that we want to learn using the neural network. Notice

that converting from function space back to information space just requires multiplying back
√
PX . We make use of this change of coordinate in Section 3.2.3.

� 3.2.2 Cross-Entropy Loss

The power of the geometric framework lies in its ability to convert problems without closed

form solutions into well known linear algebraic problems [85]. Logistic and softmax regres-

sion with cross-entropy loss are two important examples. Their loss function is

L(P̂ , Q) = −E
P̂X

E
P̂Y |X

logQ (Y |X) (3.4)

= E
P̂X

[
H
(
P̂Y |X=x

)
+D

(
P̂Y |X=x

∥∥∥ QY |X=x

)]
(3.5)
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where P̂ is the empirical distribution and Q is the learned distribution parameterized by a

neural network.

The entropy term is a constant, as it is not changed by optimizing over Q. After

applying Bayes’ rule and Theorem 1.3.1, we can simplify (3.5) as

c+ EPYD
(
P̂X|Y

∥∥∥ QX|Y ) ≈ c+ k
∥∥∥φ̂− ψ∥∥∥2

2
(3.6)

where c and k are constants, and ψ and φ̂ are the information vectors of Q and P̂ , respec-

tively. Thus, minimizing the cross-entropy loss is approximated by minimizing the squared

Euclidean distance between ψ and φ̂. Furthermore, if we plot the loss for different networks,

the loss should be affine functions of the squared Euclidean norm. This allows us to focus

on minimizing ‖φ̂− ψ‖22.

Although the local approximation is needed to reduce the cross-entropy loss into squared

Euclidean norm, starting with using the χ2 divergence as the loss function makes the above

approximation precise.

� 3.2.3 Approximate Analytic Solution

For many transfer learning systems with limited target data, parts of the source model are

used as a fixed feature extractor while one (or more) linear layers are attached and trained.

For a source model with k features, fi (the i-th feature output) is a function, and can be

rescaled into the information space as

ψ(fi) ,
√
PXfi, ∀i ∈ [1, k]. (3.7)

Then, minimizing the cross-entropy loss reduces to solving a least square problem in
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the information vector space:

arg min
w

1

2

∥∥∥∥∥φ̂−
k∑
i=1

wiψ
(fi)

∥∥∥∥∥
2

2

. (3.8)

For finite X and Ψ , [ψ(f1), . . . , ψ(fk)], (3.8) can be rewritten into the well known matrix

form

arg min
w

1

2

∥∥∥φ̂−Ψw
∥∥∥2
2
, (3.9)

with the solution as

w∗ = (ΨTΨ)−1ΨT φ̂. (3.10)

(ΨTΨ)−1 is the inverse covariance matrix of the zero-mean source features and is eas-

ily estimated from samples. The following calculation shows that under the geometric

framework, gradient backpropagation is equivalent to projection in linear algebra:

∂

∂wj
L =

∂

∂wj

1

2

∥∥∥∥∥φ̂−
k∑
i=1

wiψ
(fi)

∥∥∥∥∥
2

2

= ‖ψ(fj)‖2wi +
∑
i 6=j

〈
ψ(fj), ψ(fi)wi〉 − 〈ψ(fj), φ̂

〉

= −

〈
ψ(fj), φ̂−

k∑
i=1

wiψ
(fi)

〉
, (3.11)

and the matrix version yields

∂

∂w

1

2

∥∥∥φ̂−Ψw
∥∥∥2
2

= ΨTΨw −ΨT φ̂. (3.12)

When w = 0, the gradient reduces to the desired quantity −ΨT φ̂.
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Input: labeled dataset [xi, yi]
NL
i=1, unlabeled dataset [xj ]

NU
j=1, trained feature extractor f ,

target classifier gw

1: Apply f to [xj ]
NU
j=1, compute output feature mean and update f ’s final layer bias to

remove mean

2: Stack zero mean version of [f(xj)]
NU
j=1 into a data matrix F and compute F TF

3: Initialize w = 0, compute ∇wL

4: w ← −(F TF )−1∇wL

Algorithm 3: Least Square Solution

The least square solution in (3.10) can thus be implemented fairly easily: we can com-

pute ΨT φ̂ with (3.12), and ΨTΨ is the covariance matrix of all the features, which can

be evaluated with unlabeled data samples. Algorithm 3 describes the full procedure on

data samples. One might recognize this method as first whitening the feature functions to

eliminate the redundancy of the information they carry, and then making the projection to

the target φ̂. This is somewhat in the flavor of classical signal processing.

From an optimization point of view, the least square solution can be understood as

first approximating the loss function locally as quadratic, and then directly computing the

minimum from the gradients evaluated at a point near the optimum. This approach is quite

aggressive. It attempts to form a single linear combination of feature functions
∑
w∗i fi to

approximate φ̂. In practice, we observe that the result is often quite close to φ. However,

this approach is sensitive to the difference between φ̂ and φ, and often do not perform well

when only a small batch of samples is used to calculate the w∗ coefficients.

� 3.2.4 One-Shot Feature Set Reduction

Ideally, we want to use the local geometry encapsulated in (3.11) to select for multiple

relevant features. In addition to being more robust to empirical variations, this allows for

training multilayer target classifiers or additional stages of transfer learning.
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Figure 3.3: Graphical description of the projection view of classification with softmax
activation and cross-entropy loss.

Figure 3.3 illustrates the actions described in (3.11). Specifically, for a frozen set of

feature functions fi’s, if we initialize the weights w = 0 (i.e., the yellow point in the picture

is at the origin), the gradient calculation in (3.11) yields

∂L
∂wi

∣∣∣∣
wi=0

= −
〈
ψ(fi), φ̂

〉
. (3.13)

This inner product is interpreted as a measure of how relevant a feature function fi is for

a target query represented by φ̂. That is, if we have a binary hypothesis testing problem

with the LLR function written in the information vector form as φ̂, then the inner product

measures the approximate performance loss if we make decisions based on the feature value
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Input: labeled dataset [xi, yi]
NL
i=1, unlabeled dataset [xj ]

NU
j=1, trained feature extractor f ,

target classifier gw, number of features to retain r

1: Apply f to [xj ]
NU
j=1, compute output feature mean and variance.

2: Apply f and standardization to the labeled dataset input to form [f̃(xi), yi]
NL
i=1

3: Initialize w = 0, compute ∇wL, and rank individual wi in descending order of |∇wiL|

4: Retain the top r weights and make the remaining non-trainable

5: Update w with mini-batch gradient descent over [f̃(xi), yi]
NL
i=1

Algorithm 4: One-Shot Feature Set Reduction

of fi instead of the LLR. An advantage of this simple measure of relevance is that it can be

evaluated fairly easily, since the inner product of the information vectors can be written as

the correlation between the feature function fi and the target LLR function. In practice,

the gradient computed during backpropagation is the empirical average version of this

correlation, averaged with a single batch of samples.

As a compromise, we select not one, but a small collection of features. We do not require

these features to be uncorrelated, and use some labeled samples on a fully connected softmax

layer to learn the right way to combine these features. To that end, we only require that

each feature function is individually relevant to the target problem. This leads to a natural

solution that picks a subset of features with the largest absolute values of their gradients.1

Since the picking phase of the algorithm does not involve training for multiple iterations,

we call this one-shot feature set reduction (FSR). Algorithm 4 describes the full procedure

on data samples.

A key feature of Algorithm 4 is that the feature selection is performed under a linear

approximation while the classifier is a potentially nonlinear or generalized linear model

(GLM). Section 3.4 empirically shows that this approach outperforms both purely linear

1For multi-class problems, we use the sum of square of the weight gradients associated with a particular
feature.
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approximations to the cross-entropy loss and GLM with regularization.

� 3.3 Related Work

� 3.3.1 General Transfer Learning

Many methods fall under the umbrella of transfer learning. [71] uses self-supervision over

unannotated corpora to learn vector representations of words, which are useful for many

downstream tasks. [21, 87] take it a step further by learning deep transformer-based [97]

language models and fine-tuning on natural language understanding tasks. Today, these

models are viewed as the building blocks for many state of the art systems in natural

language understanding.

The source task can also be completely unsupervised. For example, [12] exploits the

structure of convolutional neural networks (CNN) to learn unsupervised representations

via mapping images to randomly drawn noise samples on the hypersphere. The authors

then show that the representations are informative for ImageNet [20] and Pascal VOC [27].

However, all the aforementioned works assume a large set of labeled target data to bypass

the need for feature set reduction.

Meta-learning, especially in the form of learning a transferable initialization [28, 76],

is another related research area. These methods formulate the meta-objective as the loss

after the current network parameters have had k steps of adaptation via gradient descent.

This encourages the learned network parameters to operate as good initialization points for

adapting to a distribution of tasks. They have also been shown to achieve higher accuracy

than methods based on matching [49, 99] on few-shot learning problems such as Omniglot

[54]. However, few-shot learning in this form assumes the presence of a distribution of

related tasks during training time. It would be challenging to obtain these while preserving

privacy.

Domain adaptation assumes that only the input distribution changes between the source
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and target problems [7]. The most popular methods (e.g., [30, 52]) use an adversarial loss

[32] during source training to align the source and target latent space. We do not focus on

source training in this work, but our method also allows for unsupervised domain adaptation

techniques during that stage.

� 3.3.2 Specific Related Methods

The area of subcategory-aware classification [14, 23] in the computer vision community is

conceptually similar to the goal of task personalization. The hypothesis is that there is too

much intraclass diversity such that automatically learning subcategories would improve

classification accuracy on the (larger) classes. Usually, the subcategories are learned using

unsupervised learning methods such as clustering. However, this is different from our

goal. Subcategory-aware classification typically only considers the source problem of class

accuracy, while we tackle the problem of transferring to subcategory classification with few

samples. Combining both methods would potentially yield interesting results.

Within the area of transfer learning and feature selection, [29] also uses a fully super-

vised image classification source task and proposes methods to transfer to unseen target

classes with few examples. While their goal is most similar to ours, they assume access

to natural language descriptions of the unseen classes and leverage pre-trained semantic

embeddings to represent them. We do not assume access to such side information. [82]

uses information-theoretic quantities to measure feature relevance. They propose estimat-

ing mutual information of continuous random variables using discretization and Parzen

windows, which is more computationally challenging than our methods. Additionally, they

do not explore the effect of their algorithm on transfer learning or task personalization.
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� 3.4 Experimental Results

� 3.4.1 Introduction

Recall that we are primarily interested in task personalization, defined as dividing some

subset of the source labels into more detailed target classes. We focus on comparing one-

shot FSR (Algorithm 4) against standard regularization and automatic feature selection

strategies such as ridge and lasso regression [95]. For all three methods, we extract the

output features from the penultimate layer of some source-trained deep neural network.

In this work, we then freeze the source network and train an additional linear layer for

classification on a small task personalization dataset. Because we use different source

models for CIFAR-10 and NEXET, their source training procedures are described in their

respective subsections.

� 3.4.2 Task Personalization Training Setup

After extracting the features using the source model, we standardize every feature by mak-

ing them zero mean and unit variance. This could be done using labeled or unlabeled

data. For Algorithm 4, we sweep the number of feature in [1, k] (approximately logarithmic

spaced), where k is the number of output features in the penultimate layer of the source

model. For ridge and lasso regression, we sweep λ ∈ [10−5, 100]. We select the best perform-

ing hyperparameter using the validation set and then report the performance on the test

set. We repeat each experiment 10 times to obtain the mean accuracy and 95% confidence

interval.

For training, we use the Adam optimizer [47] with a batch size of 50 and an initial

learning rate of 0.001. We decay the learning rate by a factor of 10 after five consecutive

epochs without validation accuracy improvement.

All experiments were performed using PyTorch 1.3.0 [81], on an Ubuntu 16.04 desktop

equipped with one Intel i7-8700k CPU and one Nvidia RTX 2080 Ti GPU.
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Figure 3.4: Example images from the CIFAR-10 dataset.

� 3.4.3 CIFAR-10

CIFAR-10 [50] is a popular benchmark dataset for computer vision2. It contains 50000

training and 10000 validation images of size 32 × 32. There are 10 different categories of

different types of animal and vehicles. We split the official validation set into two halves to

form our validation and test sets. During source and target training, we use random crop

and horizontal flip as data augmentation.

We use binary classification between classes {1, . . . , 5} and {6, . . . , 10} as the source

task and train a ResNet-18 [37] from random initialization as our source model. For this

part, we train for 100 epochs using stochastic gradient descent (SGD) with momentum.

The learning rate is 0.1 for epochs [1, 50], 0.001 for epochs [51, 75], and 0.0001 for epochs

[76, 100]. The batch size is 128 and L2 regularization is 5 · 10−4.

We define the two target tasks as 5-way classification within classes {1, . . . , 5}, cor-

responding to {airplane, automobile, bird, cat, deer}, and {6, . . . , 10}, corresponding to

2https://www.cs.toronto.edu/~kriz/cifar.html
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Table 3.1: Mean accuracy and 95% confidence interval for 5-way classification within classes
{airplane, automobile, bird, cat, deer} in the CIFAR-10 dataset.

N = 100 N = 300 N = 1000

Ridge 70.34± 0.06 74.35± 0.15 77.69± 0.21

Lasso 70.33± 0.23 75.75± 0.25 77.74± 0.17

One-shot FSR 73.32 ± 0.21 75.88 ± 0.22 78.82 ± 0.18

Features selected 96 160 192

Table 3.2: Mean accuracy and 95% confidence interval for 5-way classification within {dog,
frog, horse, ship, truck} in the CIFAR-10 dataset.

N = 100 N = 300 N = 1000

Ridge 84.12± 0.05 85.65± 0.32 89.58± 0.21

Lasso 87.96± 0.30 87.36± 0.23 89.99± 0.06

One-shot FSR 88.76 ± 0.14 88.98 ± 0.28 90.57 ± 0.17

Features selected 96 128 224

{dog, frog, horse, ship, truck}. The empirical results are found in Table 3.1 and Table

3.2, respectively. As expected, both tables show that when data is scarce, ridge regression

performs poorly because it does not reduce the feature set. One-shot FSR’s accuracy is

consistently highest across all scenarios, but the gap closes as the number of target samples

increase. Interestingly, the accuracy for classes {6, . . . , 10} is significantly higher than for

classes {1, . . . , 5}. This suggests that it is easier to distinguish between {dog, frog, horse,

ship, truck} than {airplane, automobile, bird, cat, deer}.
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Figure 3.5: Example images from the NEXET dataset.

� 3.4.4 NEXET

NEXET is a dataset of street images for training autonomous vehicles3. It contains 50000

training images with multiple bounding boxes. The images come from cities such as San

Francisco and Tel Aviv, and have lighting conditions such as daylight, nightime, and twi-

light. There are five categories: car, van, truck, pickup truck, and bus. We extract, resize

to 299× 299, and save each unique bounding box and its associated label. We do not use

any data augmentation for NEXET.

Because the car category contains the most samples, we define the source task as binary

classification between car and non-car. We train an Inception-v3 neural network [94] on the

source task starting from the PyTorch Inception-v3 ImageNet checkpoint. For this part,

we train for 100 epochs using SGD with momentum. The initial learning rate is 0.02, and

3https://blog.getnexar.com/https-medium-com-itayklein-intro-nexet-50e9b596d0e5
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Table 3.3: Mean accuracy and 95% confidence interval for classification between {van, bus},
and {truck, pickup truck} in NEXET. The source model is trained on car vs. non-car.

N = 30 N = 100 N = 300 N = 1000

Ridge 77.59± 0.28 80.09± 0.05 86.52± 0.36 88.90± 0.14

Lasso 80.68± 0.13 84.03± 0.27 86.81± 0.17 89.37± 0.12

One-shot FSR 83.85 ± 0.05 84.59 ± 0.35 88.61 ± 0.05 90.02 ± 0.06

Features selected 64 64 256 320

it decays by a factor of 10 every 25 epochs. The batch size is 64 and L2 regularization is

10−5.

We define the target task as binary classification between {van, bus}, and {truck, pickup

truck}. Because the number of target classes is smaller than that of CIFAR-10, we sweep

the number of target training samples over N ∈ {30, 100, 300, 1000}. Table 3.3 reports the

empirical results. Similar to the CIFAR-10 results, one-shot FSR’s accuracy is consistently

highest across all scenarios, but the gap closes as the number of target samples increase.

To further show that one-shot FSR is picking features in a statistically meaningful

way, we plot the mean accuracy as we sweep the number of features chosen. Here, the

baseline which we compare to is a simple strategy that just randomly picks a subset of

features. Figure 3.6 shows the plot for N = 1000. From that, it is clear that for as low

as 20 features, one-shot FSR already captures enough information to approach maximum

accuracy. However, because the target set is fairly large, one-shot FSR does not gain much

compared to pure regularization strategies (i.e., not picking, right endpoint of the blue line).

The more interesting outcome occurs when the target set is smaller. Figure 3.7 shows

the plot for N = 100. Here, if we use regularization alone, the performance is lower than

one-shot FSR or the least square solution. Since the least square solution does not have
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Figure 3.6: Plot of accuracy vs. number of feature chosen for randomly selecting features,
one-shot FSR, and least square solution. N = 1000.

hyperparameters, it is a useful method to achieve good (but not maximum) performance

on smaller datasets without needing hyperparameter sweep or validation.

� 3.4.5 NEXET Without Finetuning

For a complete empirical evaluation, we shift gears from task personalization to evaluat-

ing our method on a problem that one-shot FSR is not necessarily designed for: general

transfer learning. In the most general case, transfer learning assumes that both the input

distribution and the task set / distribution will change drastically [103]. Depending on the
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Figure 3.7: Plot of accuracy vs. number of feature chosen for randomly selecting features,
one-shot FSR, and least square solution. N = 100.

architecture of the source model, which layer we choose to extract, and the similarity be-

tween source and target task, either a larger proportion of the source features are irrelevant

to the target task or the learned representations are generic enough that every feature can

contribute to target accuracy improvement.

We model this scenario by transferring from a model pre-trained on ImageNet to

NEXET. We still use Inception-v3, but do not train on car vs. non-car. Instead, we

use the PyTorch ImageNet checkpoint as our source model. All other experimental settings

are identical to the previous subsection.
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Table 3.4: Mean accuracy and 95% confidence interval for classification between {van, bus},
and {truck, pickup truck} in NEXET. The source model is trained on ImageNet.

N = 30 N = 100 N = 300 N = 1000

Ridge 67.91± 0.13 79.61± 0.06 83.47± 0.08 86.01± 0.11

Lasso 71.45 ± 0.56 79.69 ± 0.13 83.83 ± 0.10 86.28 ± 0.11

One-shot FSR 69.57± 0.73 78.95± 0.07 82.77± 0.13 85.97± 0.15

Features selected 64 Full Full Full

Table 3.4 reports the empirical results. Since one-shot FSR tends to select all features,

it is a sign that the representations learned by Inception-v3 on ImageNet tend to be generic

and informative to the target task. Although lasso performs the best in this case, our

method does not significantly degrade performance.

� 3.5 Summary and Future Directions

As machine learning becomes more prevalent in our devices, there is more opportunity and

demand for task personalization. There have been many works tackling personalization

problems where the user feature changes but the task does not, or transfer learning problems

where the input does not change but the tasks are completely different. We bridge the gap

by proposing and studying the problem where the target divides some subset of the source

labels into more detailed classes.

We derive a local information geometric approximation to classification with softmax

activation and cross-entropy loss. Under the framework, classification problems can be

rewritten as a least square problem in the information space. Under the projection view of

least square, the least square weights represent the features’ relevance to the log likelihood

function that we are trying to learn.
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Then, we empirically show that our one-shot feature set reduction algorithm beats

regularization and automatic feature selection strategies for task personalization. The clas-

sification accuracy on CIFAR-10 and NEXET are especially strong when the target dataset

is small, such that it is difficult to train a large target model without overfitting.

There are many possible future directions for this work. For example, designing decor-

relation strategies to account for redundancy could further reduce the number of features

needed. Extending the geometric framework to analyze multi-layer or recurrent target clas-

sifiers could enable algorithms that can capture more complex task personalization classes.

Testing on multi-modal datasets beyond just images could improve performance and dis-

cover latent interactions between the different modalities.
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Chapter 4

Topics in Generative Models

Deep generative models, especially generative adversarial networks (GAN) are intimately

related to approximations of statistical divergences. In particular, divergences have vari-

ational forms and can be written as maximization problems. Then, minimizing the di-

vergence between a generated distribution and a data distribution yields GAN’s min-max

structure [78, Section 2]. This chapter presents some analyses and experiments in the gen-

erative modeling space. Section 4.1 proves that vanilla GAN does not have be framed as a

zero-sum game to perform implicit f -divergence minimization. Section 4.2 derives a vari-

ant of the Wasserstein critic that enables learning to generate a subset of a distribution.

Section 4.3 proposes a generative approximation of conditional entropy and experiments

with its self-normalization property in classification problems. Section 4.4 examines us-

ing generative models to learn interference signal constellations to aid multi-user wireless

communication.
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Figure 4.1: Architectural diagram for generative adversarial networks.

� 4.1 Alternative GAN Objective

GANs consist of a generator (G) and a critic1 (C), both parameterized by neural networks

(see Figure 4.1). They are trained with the following optimization [32, Section 3]:

min
G

max
C

Ex∼P [log(C(x))] + Ez∼N (0,σ2I) [log(1− C(G(z)))] , (4.1)

where P is the data distribution. In essence, C tries to discriminate between inputs from

the data distribution (real) and inputs from the generated distribution (fake) while G tries

to generate increasingly realistic samples to fool C.

GANs achieve global optimality when G∗(Z)
d
= X and C∗(x) = 0.5,∀x ∈ X , with a min-

1This is usually called a discriminator when the objective is binary classification. We use the more
general term critic to reserve the letter D for f -divergence.
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max loss of − log(4) [32, Theorem 1]. However, empirical results show that GANs rarely

replicate the entire data distribution, especially as the dimensionality of data increases.

One such phenomenon is called mode collapse by the generative models community, where

only a subset of modes are outputted by G. We now provide a brief qualitative description

of the cause of mode collapse.

Imagine we are training a GAN to generate MNIST handwritten digits [55] and at some

point during training, the majority of G’s outputs are 0’s and none of G’s outputs are 9’s.

When C sees this through data, it learns to predict 0’s as fake and 9’s as real with high

confidence. Now, because G is trained to maximally fool C into thinking its generated

samples are real, it can do that by outputting mostly 9’s. Then, C adapts to the updated

distributions and the cat and mouse game continues indefinitely.

One reason for this instability is due to the first order optimization methods used to

train neural networks. Neither G or C can anticipate how the other network will react

to its parameter updates. A method called unrolled GAN [69] attempts to alleviate this

problem by training G with a surrogate “lookahead” loss. However, the full algorithm

involves unrolling the computation graph and computing kth order derivatives.

� 4.1.1 Non-Zero-Sum GAN

We take a different approach and show that GAN does not have to be trained as a zero-sum

game. Consider the following loss functions:

LG = Ex∼P [Df (Bern(0.5) ‖ Bern(C(x)))] + Ex∼Q[Df (Bern(0.5) ‖ Bern(C(x)))] (4.2)

LC = −Ex∼P [log(C(x))]− Ex∼Q [log(1− C(x))] , (4.3)

where Df denotes any f -divergence, Q is a shorthand notation for the distribution of G(Z).

Instead of having LG = −LC (i.e., training G to maximally fool C), we build the inductive

bias of C∗(x) = 0.5 into G’s loss function. The following theorem establishes minimizing
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(4.2) as implicit divergence minimization.

Lemma 4.1.1. For a fixed G, the optimal C is C∗(x) = P (x)
P (x)+Q(x) .

Proof. See [32, Proposition 1].

Theorem 4.1.1. For C that is optimally trained with respect to G, LG = Df (P+Q
2 ‖ P ) +

Df (P+Q
2 ‖ Q). The global minimum generator loss LG = 0 when P = Q.

Proof. From Lemma 4.1.1, the optimal critic outputs C∗(x) = P (x)
P (x)+Q(x) . Then, substitute

C∗(x) into (4.2):

LG = Ex∼P [Df (U ‖ Bernoulli(C∗(x)))] + Ex∼Q[Df (U ‖ Bernoulli(C∗(x)))]

= Ex∼P

[
P (x)

P (x) +Q(x)
f

(
1
2(P (x) +Q(x))

P (x)

)
+

Q(x)

P (x) +Q(x)
f

(
1
2(P (x) +Q(x))

Q(x)

)]

+ Ex∼Q

[
P (x)

P (x) +Q(x)
f

(
1
2(P (x) +Q(x))

P (x)

)
+

Q(x)

P (x) +Q(x)
f

(
1
2(P (x) +Q(x))

Q(x)

)]

= Ex∼P

[
f

(
1
2(P (x) +Q(x))

P (x)

)]
+ Ex∼Q

[
f

(
1
2(P (x) +Q(x))

Q(x)

)]

= Df

(
P +Q

2

∥∥∥∥ P)+Df

(
P +Q

2

∥∥∥∥ Q), (4.4)

where the second and fourth equality use the definition of f -divergence and the third

equality uses a straightforward rearrangement of the expectations and probabilities. Due

to the positive definiteness of divergence, P = Q implies LG = 0. �

We can reverse the arguments of the f -divergences in (4.2) and show a similar result.

LRG = Ex∼P [Df (Bern(C(x)) ‖ Bern(0.5))] + Ex∼Q[Df (Bern(C(x)) ‖ Bern(0.5))] (4.5)

LRC = −Ex∼P [log(C(x))]− Ex∼Q [log(1− C(x))] , (4.6)
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Theorem 4.1.2. For C that is optimally trained with respect to G, LRG = Df (P ‖ P+Q
2 ) +

Df (Q ‖ P+Q
2 ). The global minimum generator loss LG = 0 when P = Q.

Proof. From Lemma 4.1.1, the optimal critic outputs C∗(x) = P (x)
P (x)+Q(x) . Then, substitute

C∗(x) into (4.5):

LRG = Ex∼P [Df (Bernoulli(C∗(x)) ‖ U)] + Ex∼Q[Df (Bernoulli(C∗(x)) ‖ U)]

= Ex∼P

[
1

2
f

(
P (x)

1
2(P (x) +Q(x))

)
+

1

2
f

(
Q(x)

1
2(P (x) +Q(x))

)]

+ Ex∼Q

[
1

2
f

(
P (x)

1
2(P (x) +Q(x))

)
+

1

2
f

(
Q(x)

1
2(P (x) +Q(x))

)]

= E
x∼P+Q

2

[
f

(
P (x)

1
2(P (x) +Q(x))

)
+ f

(
Q(x)

1
2(P (x) +Q(x))

)]

= Df

(
P

∥∥∥∥ P +Q

2

)
+Df

(
Q

∥∥∥∥ P +Q

2

)
(4.7)

where the second and fourth equality use the definition of f -divergence and the third

equality combines the expectations. Due to the positive definiteness of divergence, P = Q

implies LRG = 0. �

We conclude the proofs with a remark that when KL divergence is chosen in (4.5), (4.7)

becomes proportional to the Jensen-Shannon divergence [58].

� 4.1.2 Algorithm

Algorithmically, (4.2) with KL divergence is straightforward to implement in mod-

ern deep learning frameworks with automatic differentiation. Since the binary uniform

distribution is the first argument of the KL divergence, it is sufficient to modify the

ground truth probabilites of all generated samples to be uniform during generator train-

ing. Loss functions such as tf.nn.sigmoid cross entropy with logits in TensorFlow [1] and

torch.nn.BCEWithLogitsLoss in PyTorch [81] fully support this operation. Algorithm 5
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Input: unlabeled data distribution P , noise distribution N , mini-batch size m

Output: trained generator G and critic C

1: for number of training iterations do

2: Draw m samples [xi]
m
i=1 from P

3: Draw m noise samples [zi]
m
i=1 from N

4: Update C by descending on the gradient of

− 1

2m

m∑
i=1

log(C(xi))−
1

2m

m∑
i=1

log(1− C(G(zi))

5: Draw m noise samples [zi]
m
i=1 from N

6: Update G by descending on the gradient of

− 1

2m

m∑
i=1

log(C(G(zi)))−
1

2m

m∑
i=1

log(1− C(G(zi)))

7: end for

Algorithm 5: Modified GAN training procedure [32] with the alternative generator loss in
(4.2).

describes the training procedure in detail. For (4.5), the output from the critic is the first

argument of the KL divergence. Supporting this is also possible through automatically

differentiation of u log(u).

� 4.1.3 Stacked MNIST Experiment

For the experiment, we use the Stacked MNIST code and hyperparameter settings from

[59] and modify the DCGAN [86] generator loss to use (4.2) with KL divergence. Stacked

MNIST is an image dataset where three random images from MNIST [55] are stacked on

top of each other in the three color channels (see Figure 4.2). Thus, there are 1000 modes
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Figure 4.2: Example images from the Stacked MNIST dataset.

to cover.

To compute the number of modes covered, [59] uses a pre-trained MNIST classifier to

classify individual color channels of all generated samples. Then, mode coverage is defined

as the number of modes with at least one generated sample. Additionally, KL divergence

can be computed between the generated PMF and the uniform PMF over the 1000 modes.

Table 4.1 reports the Stacked MNIST performance of our method and other single sample

(unpacked) GAN architectures. Our method is competitive with popular GAN architecture

without introducing nearly as much complexity as VEEGAN [93] does. The simplicity of

our method also makes it straightforward to extend to multiple samples (packing).
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Table 4.1: Number of modes covered (higher is better) by the generator and the KL di-
vergence (lower is better) between the real and generated distributions for different GAN
architectures.

Architecture Modes KL

Adversarially Learned Inference (ALI) [26] 16.0 5.40

Unrolled GAN [69] 48.7 4.32

VEEGAN [93] 150.0 2.95

DCGAN [86] 78.9± 6.46 4.50± 0.127

Ours 111.8± 12.43 3.76± 0.20

� 4.2 Subset Wasserstein GAN

Wasserstein GAN (WGAN) [2] is another class of generative model based on the same idea

of competing neural networks. Instead of the convex conjugate2 of f -divergence [78], it uses

the Wasserstein distance (see Definition 4.2.1) and Kantorovich-Rubinstein duality [98] to

provide the training signal to the generator (G). As the full proof of the Kantorovich-

Rubinstein duality is beyond the scope of this work, we use discrete Wasserstein distance

for the derivations in this section.

Definition 4.2.1 (Discrete Wasserstein-1 Distance). For pmfs P and Q with identical

finite alphabet U and some distance function d : U × U → R, the Wasserstein-1 distance

2Also known as the Fenchel conjugate.
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W1 is defined as the solution to

W1(P,Q) = min
γ∈PU,U

∑
x∈U
y∈U

d(x, y)γ(x, y) (4.8)

s.t.
∑
y∈U

γ(x, y) = P (x), ∀x ∈ U ,

∑
x∈U

γ(x, y) = Q(y),∀y ∈ U .

Theorem 4.2.1 (Kantorovich-Rubinstein Duality). The dual problem of (4.8) is

max
f

∑
y∈U

f(y)Q(y)−
∑
x∈U

f(x)P (x) (4.9)

s.t. |f(x)− f(y)| ≤ d(x, y), ∀x, y ∈ U .

In addition, strong duality holds.

WGAN [2] and WGAN-GP [33] use G to generate Q, use the dataset to sample from

P , and parameterize f with a critic network. They choose d as the L1 distance and enforce

the resulting Lipschitz constraint with weight clipping and a gradient penalty term [33,

Section 4] , respectively. However, W1 = 0 if and only if P = Q, which is not conducive for

use cases where only a subset of the distribution needs to be captured.

For example, we may want to use WGAN as the base architecture for a style transfer

system [102] between two unlabeled datasets drawn from P and R. Although they are

unlabeled, we know that R contains only zebras and P contains various classes of animals

including different species of horses. If we only want the system to learn how to trans-

late between zebras and horses, it needs to automatically learn to treat horses and other

irrelevant species from P differently without manual labeling. To alleviate that problem,
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consider a modification of W1 that we name the subset Wasserstein distance:

W
(S)
1 (P,Q) = min

γ∈PU,U

∑
x∈U
y∈U

d(x, y)γ(x, y) (4.10)

s.t.
∑
y∈U

γ(x, y) ≤ P (x)

α
, ∀x ∈ U ,

∑
x∈U

γ(x, y) = Q(y),∀y ∈ U ,

where α is the prior belief on the probability of horses in Q. The dual of (4.10) is

max
f≥0

∑
x∈U

f(y)Q(y)− 1

α

∑
x∈U

f(x)P (x) (4.11)

s.t. |f(x)− f(y)| ≤ d(x, y), ∀x, y ∈ U .

For more details on the derivation of (4.11), refer to Section C.1.

To use WGAN to model (4.10) for image distributions, it is necessary to extend (4.11)

to continuous distributions and to design G with inductive biases to penalize large changes

between the input and output (in the example, this would bias G to map from zebras to

animals with similar geometry, such as horses). Then, the Subset WGAN can be trained

with the following optimization:

min
G

max
C≥0

Er∼R [C(G(r))]− 1

α
Ex∼P [C(x)] , (4.12)

where G(r) induces the distribution Q and C is a Wasserstein critic with a non-negative

output activation such as the softplus function.
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� 4.3 Batch Softmax Normalization

Classification problems aim to predict label Y from input X. In this section, we rewrite

classification with softmax activation and cross-entropy objective as estimating the condi-

tional entropy −H(Y |X). Since conditional entropy is a function of KL divergence, we can

choose to approximate its discriminative or generative forms [74]. The tool we use is the

Donsker-Varadhan (DV) characterization of KL divergence (Theorem 4.3.1) and we apply

it to either D(PY |X=x ‖ ·) or D(PX,Y ‖ ·).

Theorem 4.3.1 (Donsker-Varadhan [24]). KL divergence can be written in its variational

form as

D(P ‖ Q) = sup
g

EP [g(X)]− logEQ[exp(g(X))] (4.13)

where the function g : range(X)→ R is constrained such that logEQ[exp(g(X))] <∞.

Lemma 4.3.1. The optimal g(x) = c+ log
(
P (x)
Q(x)

)
for some c ∈ R.

Proof. See Appendix C.2.

For the remainder of this section, we assume X and Y to be discrete, though the

derivations also hold for continuous X.

� 4.3.1 Softmax as Discriminative DV

Define U to be a uniform random variable on the alphabet of Y . From definition of condi-

tional entropy,

−H(Y |X) = −
∑
x

PX(x)H(Y |X = x) =
∑
x

PX(x)[D(PY |X=x ‖ PU )−H(U)]. (4.14)
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Now, apply (4.13). Because there is a different divergence term for each realization of X,

the supremum is over functions g parameterized by X.

EPX [sup
gX

EPY |X [gX(Y )]− logEPU [exp(gX(U))]]−H(U)

=EPX

[
sup
gX

EPY |X [gX(Y )]− log

∑
u PU (u) exp(gX(u))]

PU (u)

] (4.15)

However, all of the supremizations are independent because they operate on g parameterized

by different outcomes of X. Thus, we can write g as a function of two variables and move

the sup to the outside of the expectation:

sup
g

EPX [EPY |X [g(X,Y )]− log
∑
u

exp(g(X,u))] (4.16)

= sup
g

EPX,Y [g(X,Y )]− EPX [log
∑
u

exp(g(X,u))] (4.17)

≈ sup
g

1

N

∑
xi,yi

log

(
exp(g(xi, yi))∑
u exp(g(xi, u))

)
, (4.18)

where (4.18) is the empirical version of (4.17) and N is the batch size. If g is parameterized

by a neural network, (4.18) becomes the optimization criterion for softmax regression with

cross-entropy objective. Thus, softmax regression is implicitly performing estimation of

the conditional entropy −H(Y |X) using (4.13). Lemma 4.3.1 implies that the optimal

exp(g∗(x, y)) ∝ PY |X(y|x).

� 4.3.2 Batch Softmax Normalization as Generative DV

Applying (4.13) to D(PX,Y ‖ PXUY ) instead of D(PY |X ‖ UY ) yields a different optimiza-

tion problem.

Proposition 4.3.1. −H(Y |X) = supg EPX,Y [g(X,Y )]− logEPX
∑

u exp(g(X,u)).
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Proof. Define U to be a uniform random variable on the support of Y . Then,

−H(Y |X) = −
∑
x

PX(x)H(Y |X = x) =
∑
x

PX(x)[D(PY |X=x ‖ PU )−H(U)]

= D(PX,Y ‖ PXPU )−H(U).

Now, apply DV to D(PX,Y ‖ PXPU ) while treating the arguments as bivariate distributions:

sup
g

EPX,Y [g(X,Y )]− logEPXPU [exp(g(X,U))]]−H(U)

= sup
g

EPX,Y [g(X,Y )]− log
EPX

∑
u PU (u) exp(g(X,U))

PU (u)

= sup
g

EPX,Y [g(X,Y )]− logEPX
∑
u

exp(g(X,u)) (4.19)

�

In this form, the log is outside of EPX , which means the softmax normalization term

is computed across the entire batch. Although this makes the empirical gradient esti-

mates biased, Lemma 4.3.1 still implies that the optimal exp(g∗(x, y)) ∝ PY |X(y|x). Inter-

estingly, the normalization term coupled with randomization between batches encourages∑
u exp(g(x, u)) ≈ c, for all x and some c ∈ R. Section 4.3.6 examines this effect in detail.

� 4.3.3 Relation to Mutual Information

The entropy of discrete random variables is non-negative. Hence, I(X;Y ) = H(Y ) −

H(Y |X) ≥ −H(Y |X), which shows that estimating −H(Y |X) also yields a lower bound

on the mutual information I(X;Y ). In fact, using I(X;Y ) as the starting point results in

almost identical derivations. Section C.3 draws some connections to mutual information

based self-supervised learning algorithms.
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� 4.3.4 Experimental Setup

For all the self-supervised learning algorithms mentioned in Section C.3, the original pa-

pers have extensive experiments on their representation learning performances. One shared

observation is that MINE and Deep InfoMax (generative DV) tend to be less stable than In-

foNCE and Jensen-Shannon Deep InfoMax (discriminatve DV), especially on easier datasets.

Since we have drawn the connection between softmax and DV, we investigate the differ-

ence between discriminative DV (softmax) and generative DV on supervised learning. In

this subsection, we report performance for classification accuracy, self-normalization, and

generalization on the CIFAR-10 dataset [50].

For the experiments, we build on top of the PyTorch [81] code from [61] for ResNet-18

[37] and DenseNet-121 [41]. We train the neural networks for 100 epochs using SGD with

momentum of 0.9 and mini-batch size of 128. The initial learning rate is 0.1, and decays

to 0.01 and 0.001 at epoch 50 and 75, respectively. We use a weight decay of 0.0005 and

random crop and horizontal flip for data augmentation.

� 4.3.5 Classification Accuracy

To establish generative DV as a competitive objective, we first compare the classification

accuracy on CIFAR-10. Table 4.2 reports that for two popular architectures, using gener-

ative DV does not degrade performance significantly. Figure 4.3 and Figure 4.4 show that

the training progress of the two methods closely track each other.

� 4.3.6 Self-Normalization

For tasks such as sampling or language modeling, it may be useful to induce self-normalized

outputs without needing to apply the softmax normalization. After training is complete,

we compute the mean and standard deviation of
∑

u exp(g(X,u)), where g(X,u) is the

u-th final layer activation for input random variable X before any output nonlinearity
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Figure 4.3: ResNet-18 test error rate (%) as a function of training epoch.
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Figure 4.4: DenseNet-121 test error rate (%) as a function of training epoch.
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Table 4.2: Classification error rates (%) for softmax and generative DV objectives on the
CIFAR-10 dataset.

Network Softmax Gen. DV

ResNet-18 5.23 5.27

DenseNet-121 5.1 5.11

Table 4.3: Mean±standard deviation for
∑

u exp(g(X,u)) on the CIFAR-10 training and
test set.

Network Data Softmax Gen. DV

ResNet-18 Train 3.8e4± 8.9e4 1.49± 0.03

ResNet-18 Test 5.2e4± 1.5e5 1.46± 0.15

DenseNet-121 Train 1.5e5± 1.0e6 15.76± 0.43

DenseNet-121 Test 3.1e5± 1.8e6 15.75± 0.89

(e.g., softmax). Table 4.3 shows that the softmax activation does not perform any self-

normalization. In fact, the standard deviation of
∑

u exp(g(X,u)) is consistently larger

than its mean. On the other hand, generative DV controls that quantity to be tight around

the mean across all input, even for unseen data (i.e., the test set).

� 4.3.7 Generalization

We sweep the amount of training data from 6.125% to 100% of the CIFAR-10 training

set and compare the sensitivity of softmax and generative DV to the availability of data.

Figure 4.5 shows generative DV noticeably underperforming softmax when fewer than 25%

of the training set is used, which appears to corroborate the trends observed in [79] and

[38].
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Figure 4.5: Generalization performance for ResNet-18 as a function of the fraction of data
used for training. Softmax (blue) outperforms generative DV (red) as the availability of
data decreases.

� 4.4 Wireless Interference Signal Constellation Modeling

� 4.4.1 Communication Background

As the number of wireless devices increase, they inevitably interfere with each other and

degrade overall performance. Since the focus of this work is on learning, we choose a simple,

match filtered and sampled baseband model for M = 2 transmitters (TX) interfering with

each other at N receivers (RX):

Y (n) = H1X1(n) +H2X2(n) + Z(n), (4.20)
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where Y (n), H1, H2 ∈ CN , X1(n), X2(n) ∈ C, and Z(n) ∼ CN (0, 1). X1(n) and X2(n)

are structured. For the examples in this section, we choose X1(n) to be binary phase-shift

keying (BPSK) and X2(n) to be quadrature amplitude modulation (16-QAM) with the

following constellations:

X1(n) ∈ {1,−1} (4.21)

X2(n) ∈ {a+ bi | a, b ∈ { 3√
10
,

1√
10
,− 1√

10
,− 3√

10
}}. (4.22)

The goal of X1’s receiver is to detect whether 1 or −1 is sent by computing the log

likelihood ratio (LLR):

log

(
P (X1(n) = 1|Y )

P (X1(n) = −1|Y )

)
, (4.23)

and there are algorithms with varying degrees of complexity (see Table 4.4) to approximate

(4.23) in the presence of interference:

1. Ignore the structure in H2X2(n), treat it as additional Gaussian noise, and perform

binary LLR calculation on X1(n)

2. Solve for X1(n) and X2(n) using regularized least squares (minimum mean square

error) and round to the nearest neighbor in the constellation

3. Perform maximum a posteriori (MAP) detection by marginalizing out X2(n)
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Table 4.4: Advantages and disadvantages of three different receiver designs in increasing
complexity.

Algorithm Advantages Disadvantages

1 Very simple to implement. No

need to modify RX. Only needs to

estimate channel for primary user

(H1).

Poor performance. Accuracy goes

to 50% as interference power in-

creases.

2 Polynomial time complexity in M

and N .

Needs to estimate channel for all

users. Does not perform well if

N < M .

3 Optimal in term of error probabil-

ity.

Needs to estimate channel for all

users. Time complexity scales with

the product of every user’s constel-

lation size (exponential in M).

� 4.4.2 Detection Using Neural Networks

There has been recent progress on using neural networks to perform channel decoding [46],

modulation classification [68], and multiple-input and multiple-output (MIMO) detection

[92]. Knowing the full model (4.20), we can also generate data to train a bank of classifiers

indexed by the channel state information (H1, H2) to detect for X1(n). Figure 4.6 shows

one example channel state’s generated dataset. When deployed, the receiver estimates

(H1, H2) and computes (4.23) using the pre-trained classifier with the closest channel.

� 4.4.3 Adapting Between Different Channels

In an environment where the interference is slowly varying, the receiver can exploit the

structure in the signal to adapt from a source model trained under (H1, H2) to any target

91



4.4. WIRELESS INTERFERENCE SIGNAL CONSTELLATION MODELING

Figure 4.6: Scatterplot of observed data for one BPSK user and one 3x (4.8dB) stronger
16-QAM interferer. Red and blue correspond to the symbols 1 and −1, respectively.

Figure 4.7: Neural classifier’s output LLR for the example dataset in Figure 4.6.

92



CHAPTER 4. TOPICS IN GENERATIVE MODELS

channel realization (H ′1, H2). For simplicity, we focus on memoryless receivers and drop

the dependence on n. Start by rewriting (4.23) as

log

(
P (X1 = 1|Y )

P (X1 = −1|Y )

)
= log

(
P (X1 = 1)P (Y |X1 = 1)

P (X1 = −1)P (Y |X1 = −1)

)
= log

(
P (X1 = 1)

P (X1 = −1)

)
+ log

(
P (Y |X1 = 1)

P (Y |X1 = −1)

)
.

Typically, P (X1 = 1) = P (X1 = −1) = 0.5 in order to transmit the maximum amount of

information, which makes the 1st term 0. By the linear relationship in (4.20), the 2nd term

can be written as

log

(
P (H2X2 + Z = Y −H ′1)
P (H2X2 + Z = Y +H ′1)

)
. (4.24)

In other words, having a trained density estimator for the random variable H2X2(n)+Z(n)

allows us to compute the LLR for any target channel realization H ′1. Although generative

models such as variational autoencoders [48] can effectively estimate lower bounds of general

densities, using them involves training a separate model purely for adaptation. We want

to show that the source model can be used to approximate (4.24).

Based on the same derivation as (4.24), the source model fS computes

fS(Y ) = log

(
P (H2X2 + Z = Y −H1)

P (H2X2 + Z = Y +H1)

)
(4.25)

and outputs

fS(Y −H ′1 +H1) = log

(
P (H2X2 + Z = Y −H ′1)

P (H2X2 + Z = Y −H ′1 + 2H1)

)
(4.26)

fS(Y +H ′1 +H1) = log

(
P (H2X2 + Z = Y +H ′1)

P (H2X2 + Z = Y +H ′1 + 2H1)

)
. (4.27)

for the chosen shifted inputs. Although (4.26) and (4.27) cannot be combined to compute
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(4.25) exactly, an approximation is possible. Intuitively, (4.26) and (4.27) guess that 1

and −1 are the transmitted target symbol, respectively, and subtract the guessed symbols’

contributions (±H ′1) from Y . One of the two shifts is correct and successfully cancels the

target symbol’s contribution while the other introduces an erroneous bias of ±2H ′1. After

adding an arbitrary source symbol H1 to align with the source domain, the correct shift

lands in a region of the input space with high likelihood. Conversely, it is highly unlikely

to be able to bias that point by ±2H ′1 and remain in a region with equally high likelihood.

The problem remains that classifiers are trained to estimate the conditional probability

P (X1|Y ) as opposed to the data likelihood P (Y ). For example, in the gap regions with

no datapoints in Figure 4.6, P (Y ) should be small, but Figure 4.7 shows that fS outputs

LLRs with large absolute values. To remedy that, we can augment the source training set

with noise data drawn from

Y ∼ unif(min(H1X1 +H2X2),max(H1X1 +H2X2))

X1 ∼ Rademacher

Figure 4.8 shows the classifier’s output LLR when trained using the same (augmented)

dataset as Figure 4.7. This trick allows us to approximate the target LLR as

log

(
P (Y |X1 = 1)

P (Y |X1 = −1)

)
= log

(
P (H2X2 + Z = Y −H ′1)
P (H2X2 + Z = Y +H ′1)

)
(4.28)

≈ fS(Y −H ′1 +H1)− fS(Y +H ′1 +H1) (4.29)
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Figure 4.8: Neural network classifier’s output LLR for the example dataset in Figure 4.6
augmented with noise samples.
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Chapter 5

Conclusion

In this thesis, we studied information-theoretic approximations for machine learning algo-

rithms. In particular, we formulated and designed techniques based on local information

geometry to 1) cluster joint probability distributions in an end-to-end fashion as opposed to

embedding then k-means, and 2) compute principled feature relevance scores before target

task training to improve generalization for task personalization. We also modified and im-

proved variational approximations of statistical divergences to 1) ameliorate mode collapse

in GAN, 2) automatically learn to capture subsets of a data distribution using WGAN,

and 3) self-normalize in the final layer of neural classifiers. Finally, we proposed using

generative models for wireless communication in the presence of interference and presented

a heuristic on how to approximate the generative models using a classifier.

There are many future directions related to the topics presented in this thesis, including:

� Extend the local information geometric framework beyond single layer classifiers to

show how information flows in multilayer perceptions (MLP) and recurrent neural

networks (RNN)

� Rigorously analyze the convergence properties of the proposed GAN / WGAN struc-

tures and conduct experiments on large scale tasks

� Use the self-normalization property from Section 4.3 to decrease the need for noise

sampling for the classifier from Section 4.4
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Appendix A

Supplementary Results from Chapter

2

� A.1 Alternating Conditional Expectation With Side Information

� A.1.1 Information Vector Derivation

To show the relation between DTM factorization with side information and the alternating

conditional expectation (ACE) algorithm, consider the following rank-k matrix factorization

problem:

min
ψ∈R|Y|×k
φ∈R|X|×k

∥∥B − ψφT∥∥2
F

+ λψ tr(ψTAψ) + λφ tr(φTCφ), (A.1)

where B is the DTM and A and C are additional loss matrices. With the appropriate

choice of B vs. BT , (A.1) is symmetric between ψ and φ and all derivations apply to both

variables.

When φ is fixed, the problem is convex and the solution occurs when the gradient is
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zero.

∂

∂ψ

[∥∥B − ψφT∥∥2
F

+ λψ tr(ψTAψ) + λφ tr(φTCφ)
]

=
∂

∂ψ

[
tr
((
B − ψφT

) (
BT − φψT

))]
+ λψ

(
Aψ +ATψ

)
=
∂

∂ψ

[
tr
(
BBT − 2ψφTBT + ψφTφψT

)]
+ λψ

(
Aψ +ATψ

)
=− 2Bφ+ 2ψφTφ+ λψ

(
Aψ +ATψ

)
= 0. (A.2)

For general matrix A, (A.2) is an instance of a Sylvester equation, which is often studied in

numerical linear algebra and control theory. Solving it using the Bartels–Stewart algorithm

[4] has cubic time complexity.

For diagonal A, the objective λψ tr(ψTAψ) reduces to

λψ

|Y|∑
i=1

Ai,i ‖ψ(i, :)‖22 , (A.3)

where ψ(i, :) denotes the i-th row of ψ. It is clear to see that (A.3) has the form of L2

regularization with an additional row-specific multiplier Ai,i. To decouple the Ai,i’s, we can

combine (A.2) and (A.3) row-by-row

−B(i, :)φ+ ψ(i, :)φTφ+ λψAi,iψ(i, :) = −B(i, :)φ+ ψ(i, :)
(
φTφ+ λψAi,iIk

)
= 0 (A.4)

to obtain the row-wise stationary points:

ψ(i, :) = B(i, :)φ
(
φTφ+ λψAi,iIk

)−1
. (A.5)
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� A.1.2 Conditional Expectation Operator of Embedding Functions

To show that ACE can solve (A.5), first observe that
(
φTφ+ λψAi,iIk

)−1
in (A.5) only

performs a row-wise normalization. Hence, all we need to show are that ψ = Bφ and φ =

BTψ are equivalent to conditional expectation operations. Start by defining f , [PY ]−
1
2ψ

and g , [PX ]−
1
2φ as the desired embedding functions for Y and X, respectively. Then,

[PY ]
1
2 f = ψ = Bφ =

(
[PY ]−

1
2PY,X [PX ]−

1
2

)(
[PX ]

1
2 g
)

(A.6)

[PX ]
1
2 g = φ = BTψ =

(
[PX ]−

1
2P TY,X [PY ]−

1
2

)(
[PY ]

1
2 f
)

(A.7)

simplify to

f = [PY ]−1PY,X · g = PY |X · g (A.8)

g = [PX ]−1P TY,X · f = PX|Y · f. (A.9)

� A.2 Word Embedding

To test the performance of DTM factorization on a real world dataset, we focus on the

Microsoft Research Sentence Completion Challenge [104]. The training corpus contains 522

classic literature texts. The test set consists of 1040 sentences from Sherlock Holmes novels,

where one word is replaced with a blank. Similar to the Graduate Record Examination

(GRE), there are five candidate words for the algorithm to pick from (see Figure A.1).

However, the candidates are selected to have roughly equal unigram probability to prevent

models from exploiting raw word count information.

� A.2.1 Preprocessing

1. Remove hyphens and quotation marks.

2. Start every sentence on a new line.
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7) I stared at it _____ , not knowing what was about to issue 
from it.

a) afterwards
b) rapidly
c) forever
d) horror-stricken
e) lightly

8) The probability was , therefore , that she was _____ the 
truth , or , at least , a part of the truth.

a) addressing
b) telling
c) selling
d) surveying
e) undergoing

9) The furniture was scattered about in every direction , with 
dismantled shelves and open drawers , as if the lady had 
hurriedly _____ them before her flight.

a) warned
b) rebuked
c) assigned
d) ransacked
e) taught

10) The sun had set and _____ was settling over the moor.
a) dusk
b) mischief
c) success
d) disappointment
e) laughter

11) Round one of his hands he had a _____ wrapped , which was 
mottled all over with bloodstains.

a) gondolier
b) handkerchief
c) gun
d) weapon
e) tail

12) During two years I have had three _____ and one small job , 
and that is absolutely all that my profession has brought me.

a) cheers
b) jackets
c) crackers

2

Figure A.1: Example of a sentence completion question from the Microsoft Research Sen-
tence Completion Challenge dataset.

3. Remove numbers and proper nouns and replace them with special indicators words.

4. Remove punctuations and lowercase the remaining words.

5. Remove determiners and prepositions such as the, after, where, etc.

6. Use Natural Language Toolkit [9] WordNetLemmatizer to aggregate different gram-

matical representations of the same root word (e.g., quick, quicker, quickly).

� A.2.2 Constructing PY,X

We iterate over each word in a sentence. At word wi, we add a co-occurrence count to

(wi, wi+1), . . . , (wi, wi+l) and (wi+1, wi), . . . , (wi+l, wi), where l is the window length. The

window can also be weighted to deemphasize words that are far from each other, but we

do not report the performance of that scheme.

� A.2.3 Choosing the Most Likely Word

Define f : W → Rk, where W is the set of words in the vocabulary and k is the number

of word embedding dimensions. Recall that f is fully determined by [PY ]−
1
2U , which has

unit variance in all dimensions. Using f as the word embedding assumes the same semantic

importance across all k dimensions. We can also use [PY ]−
1
2U
√

Σ to deemphasize the later

dimensions with lower correlation.
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Table A.1: Accuracy of DTM factorization with different weighting functions on the Mi-
crosoft Research Sentence Completion Challenge.

Scheme Weighting Accuracy

(A.10) [PY ]−
1
2U 53.94%

(A.10) [PY ]−
1
2U
√

Σ 51.06%

(A.11) [PY ]−
1
2U 51.82%

(A.11) [PY ]−
1
2U
√

Σ 49.81%

(A.12) [PY ]−
1
2U 52.40%

(A.12) [PY ]−
1
2U
√

Σ 50.67%

To choose the answer from the candidate set, we focus on three schemes based on the

cosine distance and report the accuracy in Table A.1.

1. Sum the individual cosine distances of every word in the sentence with the candidate:

score(candidate) =
∑

w∈sentence
cos

(
f(candidate) · f(w)

‖f(candidate)‖ · ‖f(w)‖

)
. (A.10)

2. Sum the individual cosine distances of every word in a length 2l window with the

candidate word:

score(candidate) =
∑

w∈window

cos

(
f(candidate) · f(w)

‖f(candidate)‖ · ‖f(w)‖

)
. (A.11)

3. Sum the embedding of every word in the sentence. Then use the cosine distance of

that sum with the candidate word:

score(candidate) = cos

(
f(candidate) ·

∑
word∈sentence f(w)

‖f(candidate)‖ ·
∥∥∑

word∈sentence f(w)
∥∥
)
. (A.12)
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Appendix B

Supplementary Results from Chapter

3

� B.1 Synthetic Data Experiment

We also test on a discrete synthetic dataset, where X ∈ {0, . . . , 59} and Y ∈ {0, 1}. PY

is uniform and PX|Y is generated by entry-wise sampling from unif(0, 1) and normalizing

to sum to 1. The numpy seed used is 10. The input is first converted to one-hot vector

representation and then fed into a two layer neural network with softmax output activation

and cross-entropy loss. The network is trained using Adam (learning rate 0.01) on 8000

samples and tested on 2000 samples. Figure B.1 and Figure B.2 shows the accuracy and

loss, which has similar trends as Figure 3.6 and 3.7. Because it is a discrete problem with

known distribution, we also plot the ideal test set performance of a classifier trained on the

training set and test set, respectively.
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Figure B.1: Plot of accuracy vs. number of feature chosen for randomly selecting features,
one-shot FSR, and the least square solution. Results are averaged over 50 runs.



Figure B.2: Plot of loss vs. number of feature chosen for randomly selecting features,
one-shot FSR, and the least square solution. Results are averaged over 50 runs.



B.1. SYNTHETIC DATA EXPERIMENT
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Appendix C

Supplementary Results from Chapter

4

� C.1 Derivation of Subset Kantorovich-Rubinstein Duality for PMFs

Recall the formulation of the subset Wasserstein distance:

W
(S)
1 (P,Q) = min

γ∈PU,U

∑
x∈U
y∈U

d(x, y)γ(x, y) (C.1)

s.t.
∑
y∈U

γ(x, y) ≤ P (x)

α
, ∀x ∈ U ,

∑
x∈U

γ(x, y) = Q(y),∀y ∈ U .

This is a linear program (LP). It is bounded because both the alphabet U and distance

function d are defined to be finite and bounded (see Definition 4.2.1). It is feasible because a

coupling that satisfies the regular Wasserstein constraints is also a solution to (C.1). Thus,

the dual LP is bounded, feasible, and strong duality holds [8].
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C.1. DERIVATION OF SUBSET KANTOROVICH-RUBINSTEIN DUALITY FOR PMFS

After direct application of duality, the dual of (C.1) is

max
f,g

∑
x∈U

f(y)Q(y) +
1

α

∑
x∈U

g(x)P (x) (C.2)

s.t. |f(y)− g(x)| ≤ d(x, y), ∀x, y ∈ U ,

g(x) ≤ 0,∀x ∈ U .

All that is left is to show g = −f via proof by contradiction. Observe that for x, y = c,

d(c, c) = 0. Then, g(c) 6= −f(c) (i.e., the inequality not being tight) combined with

complementary slackness imply that γ(c, c) = 0 in the primal problem. We can focus on

the case where P (c), Q(c) > 0 because otherwise, γ(c, c) can be eliminated from the set of

primal variables.

Qualitatively, γ(c, c) = 0 and P (c), Q(c) > 0 imply that even though at least |P (c) −

Q(c)| amount of mass exists in both P and Q at c, the transportation plan still chooses to

move that amount of mass elsewhere. Then, for some a, b 6= c such that γ(a, c), γ(c, b) > 0,

d(a, b) +d(c, c) ≤ d(a, c) +d(c, b) by the triangle inequality. Reassigning the transportation

plan to move an additional ε amount of mass from a to b instead of a to c and c to b would

achieve a net saving. This means the primal cannot be optimal when g 6= f in the dual.
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� C.2 Proof of Lemma 4.3.1

Let g(X) , c+ log
(
P (X)
Q(X)

)
. We will show that it achieves the maximum.

EP [g(x)]− logEQ[exp(g(x))] = EP
[
c+ log

(
P (X)

Q(X)

)]
− logEQ

[
exp

(
c+ log

(
P (X)

Q(X)

))]
= c+ EP

[
log

(
P (X)

Q(X)

)]
− c− logEQ

[
exp

(
log

(
P (X)

Q(X)

))]
= EP

[
log

(
P (X)

Q(X)

)]
− logEQ

[
P (X)

Q(X)

]
= EP

[
log

(
P (X)

Q(X)

)]
= D(P ‖ Q). �

� C.3 Connections to Self-Supervised Learning

For tasks where it is expensive to obtain labeled examples, the self-supervised learning

paradigm defines proxy tasks that enable neural networks to capture the structure of the

underlying data distribution. These proxy tasks are still prediction problems, which means

they can be related to DV and converted into the generative DV form. This section shows

three such connections.

Often, these algorithms learn by contrasting data drawn from the true joint distribution

against data drawn from a noise distribution. Notation-wise, we use X and Y as the random

variables for the true data and Z ∼ Bernoulli( 1
k+1) as the indicator of whether to draw from

PX,Y or a problem-specific noise distribution WX,Y . We define X̃ and Ỹ as the random

variables with mixture distribution 1
k+1PX,Y + k

k+1WX,Y .

� C.3.1 Noise Contrastive Estimation and Negative Sampling for Word Em-

bedding

One of the most successful application of self-supervised learning is word embedding [71,

83]. By learning a low dimensional model to approximate the word-context conditional
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Figure C.1: The canonical example of vector arithmetic and analogy in the word embedding
space.

distributions, words that have similar conditional distributions are mapped to be close1.

Figure C.1 shows the famous example, where the semantics of male vs. female is captured by

one direction in the embedding space. Two popular methods for learning word embedding

are noise contrastive estimation (NCE) [34, 72] and negative sampling (NS).

Proposition C.3.1. Let X̃ and Ỹ be the input and output word random variable with

k noise (negative) samples per true sample. Both the NCE and NS objectives implicitly

estimate −H(Z|X̃, Ỹ ), which is a lower bound on I(X̃, Ỹ ;Z).

Proof. Recall that Z is an indicator variable that is 1 when we draw from the joint word-

1This is known as the distributional hypothesis.
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context distribution and 0 when we draw from the noise distribution. For word embedding,

the noise is typically chosen to be PXWY for some specified WY . If we draw k noise samples

per true sample, then

QX̃,Ỹ ,Z=1 =
1

k + 1
PX,Y

QX̃,Ỹ ,Z=0 =
k

k + 1
PXWY .

(C.3)

To start, expand I(X̃, Ỹ ;Z) and apply Theorem 4.3.1 to D(QZ|X̃,Ỹ ‖ QZ):

I(X̃, Ỹ ;Z) = D(QX̃,Ỹ ,Z ‖ QX̃,ỸQZ)) = EQX̃,ỸD(QZ|X̃,Ỹ ‖ QZ)

= sup
g

EQX̃,Ỹ
[
EQZ|X̃,Ỹ g(X̃, Ỹ , Z)− log

(
EQZ exp(g(X̃, Ỹ , Z))

)]
= sup

g
EQX̃,Ỹ ,Zg(X̃, Ỹ , Z)− EQX̃,Ỹ log

(
EQZ exp(g(X̃, Ỹ , Z))

)
. (C.4)

Now, use (C.3) to rewrite the expectations in (C.4) as

sup
g

1

k + 1
EPXEPY |Xg(X,Y, 1) +

k

k + 1
EPXEWY

g(X,Y, 0)

− 1

k + 1
EPXEPY |X log (EQZ exp(g(X,Y, Z)))− k

k + 1
EPXEWY

log (EQZ exp(g(X,Y, Z))) ,

and combine terms:

sup
g

EPX

[
1

k + 1
EPY |X log

(
exp[g(X,Y, 1)]

EQZ exp(g(X,Y, Z))

)
+

k

k + 1
EWY

log

(
exp[g(X,Y, 0)]

EQZ exp(g(X,Y, Z))

)]
.
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Finally, write out the terms of EQZ , and rearrange some constants:

sup
g

EPX

[
1

k + 1
EPY |X log

(
exp[g(X,Y, 1)]

1
k+1 exp(g(X,Y, 1)) + k

k+1 exp(g(X,Y, 0))

)

+
k

k + 1
EWY

log

(
exp[g(X,Y, 0)]

1
k+1 exp(g(X,Y, 1)) + k

k+1 exp(g(X,Y, 0))

)]

= sup
g

EPX

[
1

k + 1
EPY |X log

(
1

k+1 exp[g(X,Y, 1)]
1

k+1 exp(g(X,Y, 1)) + k
k+1 exp(g(X,Y, 0))

)

+
k

k + 1
EWY

log

(
k
k+1 exp[g(X,Y, 0)]

1
k+1 exp(g(X,Y, 1)) + k

k+1 exp(g(X,Y, 0))

)]

− 1

k + 1
log

(
1

k + 1

)
− k

k + 1
log

(
k

k + 1

)
= sup

g
EPX

[
1

k + 1
EPY |X log

(
exp[g(X,Y, 1)]

exp(g(X,Y, 1)) + k exp(g(X,Y, 0))

)
+

k

k + 1
EWY

log

(
k exp[g(X,Y, 0)]

exp(g(X,Y, 1)) + k exp(g(X,Y, 0))

)]
+H(Z). (C.5)

If we move H(Z) to the other side, the remaining optimization estimates I(X̃, Ỹ ;Z) −

H(Z) = H(Z|X̃, Ỹ ).

Using Lemma 4.3.1, we can compute what the optimal g should be:

exp(g(X,Y, 1)) = CX,Y
Q(Z = 1|X,Y )

Q(Z = 1)
= CX,Y

P (Y |X)
1

k+1P (Y |X) + k
k+1W (Y )

(C.6)

exp(g(X,Y, 0)) = CX,Y
Q(Z = 0|X,Y )

Q(Z = 0)
= CX,Y

W (Y )
1

k+1P (Y |X) + k
k+1W (Y )

, (C.7)

where CX,Y is a multiplicative factor. Because of the free multiplicative factor, only the

ratio between (C.6) and (C.7) matter:

exp(g(X,Y, 1))

exp(g(X,Y, 0))
=
P (Y |X)

W (Y )
. (C.8)

Thus, if we set exp(g(X,Y, 0)) = 1
k , we recover the NS logistic regression objective [71,
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Section 2.2]

sup
g

EPX

[
1

k + 1
EPY |X log

(
exp[g(X,Y, 1)]

exp(g(X,Y, 1)) + 1

)
+

k

k + 1
EWY

log

(
1

exp(g(X,Y, 1)) + 1

)]
.

(C.9)

(C.8) implies exp(g∗(X,Y, 1)) = P (Y |X)
kW (Y ) . Interestingly, if W (Y ) = P (Y ) (i.e., the noise

distribution is chosen to be the same as the unigram distribution),

g∗(X,Y, 1) = log
P (Y |X)

kP (Y )
= log

P (X,Y )

P (X)P (Y )
− log(k). (C.10)

Word2vec restricts g to be a dot product, which means (C.10) is implicitly factorizing the

shifted pointwise mutual information matrix. Thus, Theorem 4.3.1 leads to an alternate

proof for the result of [57, Section 3] without using any gradient calculations.

Alternatively, if we set exp(g(X,Y, 0)) = W (Y ), we recover the noise contrastive esti-

mation (NCE) objective [34, 72]:

sup
g

EPX

[
1

k + 1
EPY |X log

(
exp[g(X,Y, 1)]

exp(g(X,Y, 1)) + kW (Y )

)
+

k

k + 1
EWY

log

(
kW (Y )

exp(g(X,Y, 1)) + kW (Y )

)]
.

(C.11)

(C.8) implies exp(g∗(X,Y, 1)) = P (Y |X). �

� C.3.2 InfoNCE

[79, Appendix A.1] already draws connections between InfoNCE and DV-based Mutual

Information Neural Estimation (MINE) [5]. We only make the further observation that

the derivation uses the discriminative DV form for MINE. Due to its softmax objective,

InfoNCE also can be interpreted as discriminative DV where one of the random variables

is a sequence.
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� C.3.3 Deep InfoMax

Deep InfoMax [38] learns a feature encoder Eψ such that I(X;Eψ(X)) is maximized:

arg max
ω,ψ

Îω(X;Eψ(X)) (C.12)

Define J as the joint distribution of (X,Eψ(X)) and M as the product of their marginals.

To estimate mutual information, the authors propose to substitute it with its DV form:

Îω(X;Eψ(X)) = EJ[Tω(X,Eψ(X))]− logEM[exp(Tω(X,Eψ(X)))] (C.13)

The authors note that a key difference in their formulation is the log on the outside of

all expectations. Section 4.3 shows it results from applying DV to the generative form.

An additional insight from [38, Section 3.1] is replacing (C.12) with maximizing a non-

KL divergence based mutual information. In particular, they propose using the mutual

information defined via the Jensen-Shannon divergence [58]. We derive the following rela-

tion:

Proposition C.3.2. Let Z ∼ Bernoulli(12), and the noise distribution be PXPEψ(X). The

Jensen-Shannon Deep InfoMax objective is equivalent to estimating I(X̃, Ẽψ(X);Z) using

DV. More generally, I(JSD)(X;Y ) = I(X̃, Ỹ ;Z).

Proof. Written in the notation from [38, Equation 4], the objective of Jensen-Shannon Deep

InfoMax is

Î
(JSD)
ω,ψ (X;Eψ(X)) = EP[−sp(−Tω(X,Eψ(X)))]− EP×P̃[sp(Tω(X ′, Eψ(X)))] (C.14)

where X is the input, X ′ is the input drawn from P̃ = P, and sp(·) = log(1 + exp(·)).
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If we write out the sp function, the objective becomes

EP[− log(1 + exp(−Tω(X,Eψ(X))))]− EP×P̃[log(1 + exp(Tω(X ′, Eψ(X))))]

= EP

[
log

(
1

1 + exp(−Tω(X,Eψ(X)))

)]
+ EP×P̃

[
log

(
1

1 + exp(Tω(X ′, Eψ(X)))

)]
.

(C.15)

Eψ(X) is a deterministic function of X and the expectations are unweighted2. If we define

Y , Eψ(X) and k = 1, (C.15) is equivalent to the objective in (C.9) by a change of variable3.

Thus, (C.15) estimates the same quantity as (C.9): H(Z|X̃, Ỹ ), where Z ∼ Bernoulli(12).

For the purpose of optimization, [38] discards a constant log(2) term from the convex

conjugate formulation in [78]. When k = 1, H(Z) = log(2). Adding that back, we see

that Jensen-Shannon Deep InfoMax estimates I(X̃, Ẽψ(X);Z). For general Y that is not

a deterministic function of X, the first expectation in (C.14) is over the joint distribution,

and the same proof works to show that I(JSD)(X;Y ) = I(X̃, Ỹ ;Z) �

2This does not preclude having more than one negative sample per positive sample to approximate the
2nd expectations. k is only a parameter that controls the mixture distribution of (X̃, Ỹ ).

3This is sometimes called the law of the unconscious statistician.
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[19] Imre Csiszár and Gábor Tusnády. Information geometry and alternating minimization
procedures. Statistics and Decisions, Supplement Issue 1:205–237, 1984.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, 2019.

[22] Inderjit S Dhillon, Subramanyam Mallela, and Dharmendra S Modha. Information-
theoretic co-clustering. In Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 89–98. ACM, 2003.

120



BIBLIOGRAPHY

[23] Jian Dong, Wei Xia, Qiang Chen, Jianshi Feng, Zhongyang Huang, and Shuicheng
Yan. Subcategory-aware object classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 827–834, 2013.

[24] Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain
markov process expectations for large time. iv. Communications on Pure and Applied
Mathematics, 36(2):183–212, 1983.

[25] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient
projections onto the l 1-ball for learning in high dimensions. In Proceedings of the
25th International Conference on Machine Learning, pages 272–279. ACM, 2008.

[26] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Mart́ın Arjovsky,
Olivier Mastropietro, and Aaron C. Courville. Adversarially learned inference. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

[27] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International journal of
computer vision, 88(2):303–338, 2010.

[28] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

[29] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio
Ranzato, and Tomas Mikolov. Devise: A deep visual-semantic embedding model. In
Advances in neural information processing systems, pages 2121–2129, 2013.

[30] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by back-
propagation. In International Conference on Machine Learning, pages 1180–1189,
2015.

[31] David Yang Gao. Canonical duality theory and solutions to constrained nonconvex
quadratic programming. Journal of Global Optimization, 29(4):377–399, August 2004.

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[33] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Advances in neural information
processing systems, pages 5767–5777, 2017.

[34] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estima-
tion principle for unnormalized statistical models. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and Statistics, pages 297–304, 2010.

121



BIBLIOGRAPHY

[35] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decompo-
sitions. SIAM review, 53(2):217–288, 2011.

[36] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and
connections for efficient neural network. In Advances in neural information processing
systems, pages 1135–1143, 2015.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[38] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip
Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representations by
mutual information estimation and maximization. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[39] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, New York, 1991.

[40] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, New York, second edition, 2013.

[41] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[42] Shao-Lun Huang and Lizhong Zheng. Linear information coupling problems. In
Proceedings of the IEEE International Symposium on Information Theory (ISIT),
pages 1029–1033, Cambridge, MA, USA, July 1-6 2012.

[43] Shao-Lun Huang, Anuran Makur, Lizhong Zheng, and Gregory W Wornell. An
information-theoretic approach to universal feature selection in high-dimensional in-
ference. In 2017 IEEE International Symposium on Information Theory (ISIT), pages
1336–1340. IEEE, 2017.

[44] Shao-Lun Huang, Anuran Makur, Gregory W Wornell, and Lizhong Zheng. On
universal features for high-dimensional learning and inference. arXiv preprint
arXiv:1911.09105, 2019.

[45] W. B. Jurkat and H. J. Ryser. Term ranks and permanents of nonnegative matrices.
Journal of Algebra, 5(3):342–357, March 1967.

[46] Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, and Pramod
Viswanath. Communication algorithms via deep learning. In 6th International Con-
ference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings.

122



BIBLIOGRAPHY

[47] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings.

[48] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd Inter-
national Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings.

[49] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks
for one-shot image recognition. In ICML deep learning workshop, volume 2. Lille,
2015.

[50] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[51] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[52] Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerio
Feris, Bill Freeman, and Gregory Wornell. Co-regularized alignment for unsupervised
domain adaptation. In Advances in Neural Information Processing Systems, pages
9345–9356, 2018.

[53] Charlotte Laclau, Ievgen Redko, Basarab Matei, Younes Bennani, and Vincent
Brault. Co-clustering through optimal transport. In Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume 70, pages 1955–1964, 2017.

[54] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):1332–
1338, 2015.

[55] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL
http://yann.lecun.com/exdb/mnist/.

[56] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing
Times. American Mathematical Society, Providence, first edition, 2009.

[57] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factoriza-
tion. In Advances in neural information processing systems, pages 2177–2185, 2014.

[58] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions
on Information theory, 37(1):145–151, 1991.

[59] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power of
two samples in generative adversarial networks. In Advances in neural information
processing systems, pages 1498–1507, 2018.

123

http://yann.lecun.com/exdb/mnist/


BIBLIOGRAPHY

[60] Ralph Linsker. Self-organization in a perceptual network. Computer, 21(3):105–117,
1988.

[61] Kuang Liu. https://github.com/kuangliu/pytorch-cifar, 2018.

[62] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Informa-
tion Theory, IT-28(2):129–137, March 1982.

[63] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(Nov):2579–2605, 2008.

[64] Anuran Makur and Lizhong Zheng. Linear bounds between contraction coefficients
for f -divergences. arXiv:1510.01844v3 [cs.IT], August 2017.

[65] Anuran Makur, Fabián Kozynski, Shao-Lun Huang, and Lizhong Zheng. An efficient
algorithm for information decomposition and extraction. In Proceedings of the 53rd
Annual Allerton Conference on Communication, Control, and Computing, pages 972–
979, Allerton House, UIUC, Illinois, USA, September 29-October 2 2015.

[66] Joel Max. Quantizing for minimum distortion. IRE Transactions on Information
Theory, 6(1):7–12, March 1960.

[67] Facundo Mémoli. Gromov–wasserstein distances and the metric approach to object
matching. Foundations of computational mathematics, 11(4):417–487, 2011.

[68] Gihan J Mendis, Jin Wei, and Arjuna Madanayake. Deep learning-based automated
modulation classification for cognitive radio. In 2016 IEEE International Conference
on Communication Systems (ICCS), pages 1–6. IEEE, 2016.

[69] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative
adversarial networks. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.

[70] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[71] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013.

[72] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with
noise-contrastive estimation. In Advances in neural information processing systems,
pages 2265–2273, 2013.

[73] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning
convolutional neural networks for resource efficient inference. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings.

124

https://github.com/kuangliu/pytorch-cifar


BIBLIOGRAPHY

[74] Andrew Y Ng and Michael I Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. In Advances in neural information
processing systems, pages 841–848, 2002.

[75] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in neural information processing systems, pages 849–856,
2002.

[76] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algo-
rithms. arXiv preprint arXiv:1803.02999, 2018.

[77] Feiping Nie, Xiaoqian Wang, Cheng Deng, and Heng Huang. Learning a structured
optimal bipartite graph for co-clustering. In Advances in Neural Information Pro-
cessing Systems, pages 4132–4141, 2017.

[78] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative
neural samplers using variational divergence minimization. In Advances in neural
information processing systems, pages 271–279, 2016.

[79] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[80] Panos M. Pardalos and Stephen A. Vavasis. Quadratic programming with one nega-
tive eigenvalue is NP-hard. Journal of Global Optimization, 1(1):15–22, March 1991.

[81] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems, pages 8024–8035, 2019.

[82] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy. IEEE
Transactions on pattern analysis and machine intelligence, 27(8):1226–1238, 2005.

[83] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–1543, 2014.

[84] David Qiu. Embedding and latent variable models using maximal correlation. Mas-
ters thesis in electrical engineering and computer science, Massachusetts Institute of
Technology, Cambridge, Massachusetts, February 2017.

[85] David Qiu, Anuran Makur, and Lizhong Zheng. Probabilistic clustering using maxi-
mal matrix norm couplings. In 2018 56th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pages 1020–1027. IEEE, 2018.

125



BIBLIOGRAPHY

[86] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings.

[87] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI Blog, 1
(8):9, 2019.
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