
Learning and Optimization in the Face of Data
Perturbations

by

Matthew James Staib
B.S., Stanford University (2015)
M.S., Stanford University (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

© Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 1, 2020

Certified by. .
Stefanie Jegelka

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Learning and Optimization in the Face of Data Perturbations

by

Matthew James Staib

Submitted to the Department of Electrical Engineering and Computer Science
on May 1, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract
Many problems in the machine learning pipeline boil down to maximizing the ex-
pectation of a function over a distribution. This is the classic problem of stochastic
optimization. There are two key challenges in solving such stochastic optimization
problems: 1) the function is often non-convex, making optimization difficult; 2) the
distribution is not known exactly, but may be perturbed adversarially or is otherwise
obscured. Each issue is individually so challenging to warrant a substantial accom-
panying body of work addressing it, but addressing them simultaneously remains
difficult.

This thesis addresses problems at the intersection of non-convexity and data per-
turbations. We study the intersection of the two issues along two dual lines of in-
quiry: first, we build perturbation-aware algorithms with guarantees for non-convex
problems; second, we seek to understand how data perturbations can be leveraged to
enhance non-convex optimization algorithms. Along the way, we will study new types
of data perturbations and seek to understand their connection to generalization.

Thesis Supervisor: Stefanie Jegelka
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

A Ph.D. is a long journey, made easier by kind mentors, made more fun by great

friends, and supported by loving family. I am indebted to all three.

I will start by thanking my advisor, Stefanie Jegelka. Working with Stefanie over

the past few years has been simply wonderful. She has taught me a great deal about

both how to do quality research and also how to communicate it. Stefanie has given

me countless opportunities, constantly sending me to speak and present and learn,

and encouraging me to explore. She has granted me much intellectual freedom, but

has also managed to counterbalance that with advice and insight. Working with her

has truly been a joy, and I am grateful to have had the opportunity.

Next, I want to thank my other committee members, John Tsitsiklis and Andreas

Krause. While John and Andreas came onboard fairly late in the process, never-

theless they provided insightful questions and suggestions which helped shape and

contextualize the thesis.

During my Ph.D. I am fortunate to have worked with several great collaborators

on projects that are in this thesis or closely related to it. Suvrit Sra and Justin

Solomon have been wonderful senior collaborators and mentors. Bryan Wilder and

Sebastian Claici have been great student collaborators and also great friends. Thanks

also to Sashank Reddi, Satyen Kale, and Sanjiv Kumar for their guidance and for

hosting me for a fruitful summer at Google Research, which led to Part III of the

thesis.

I also want to thank other mentors who have helped me become the researcher

I am today. Thanks to James Kirpes and the rest of the West High math folk for

nurturing my love for math in my formative years. At Stanford, thanks to Bernard

Widrow and Brad Osgood for helping guide a bushy-tailed undergraduate interested

in applying math, and thanks to Jindong Cai and Sheila Melvin for helping that

undergraduate stay well-rounded. Thanks to Thomas Moscibroda and Nic Lane for

hosting me at MSR Asia, for what was one of my first real doses of academic research.

And, many years later, thanks to Div, Jin, and the team at Two Sigma for teaching

5

me a great deal about applied research (and for having me back full-time!).

I have been fortunate to have had many friends at MIT. First, thanks to LOGSS

(Stefanie and Suvrit’s research group) for friendships and fun discussions, and thanks

more broadly to the MIT ML group. Thanks to the “LIDS++” group that has

largely stuck together since the visit days: Joshua, Aidan, Dennis, Deniz, Zhi, and

Dogyoon. Thanks to my “Stanford fam” at MIT, among them: Rio, Alfred, Linyi,

Marie, Leilani, and Anna. The great musicians of MITSO helped keep me sane. A

few other MIT friends are not as easily categorized: Yen-Ling, Candace, the Muscos,

Ed Chien, and Sam Park.

Other friends in Cambridge provided support and kept me grounded in the world

outside campus: Rio and Avery, Josh and Cat, Ruodi and Vincent, Seb and Cat, Zi

and Leon, Hunter and Riley, Ben and Dandan, Sarah and Tom, Brian and Karen

(at risk of redundancy, a few of you appear in multiple lists!). And friends from far

away served a similar role despite the distance: Jesse and Dawn, Tyler, Gabe, Arun,

Garrett, Boris, and Anna.

Next I thank my family. Thanks to Ginat, Steve, Michael, and David, for treating

me like one of their own. Thanks to my in-laws for always checking in and wishing注

意安全、身体健康！Thanks to my extended family for constant encouragement and

dealing with my too-long explanations of too-mathy topics. Thanks to Catherine,

Becca, Cassie, and Anna, for keeping childhood zany and remaining good friends

as we age gain life experience. And, of course, thanks mom and dad for always

supporting me, encouraging me, nurturing my curiosity and sense of self-confidence,

and giving me every opportunity to explore.

Finally, thank you to my wife 思孜, who has been my constant source of strength

and inspiration. Without her radiance, intellect, insight, and open mind, this thesis

would have suffered, and my worldview would not be as broad. And without her

support and love, it would have been much harder to finish. 感谢你傻鹅。

6

Contents

Acknowledgements 5

List of Figures 13

1 Introduction 15

1.1 Motivation . 15

1.2 Thesis outline . 17

1.3 Additional related publications . 18

1.4 Notation . 19

I Understanding the link between DRO and generaliza-
tion 20

2 Background on generalization, data perturbations, and DRO 21

2.1 Data perturbations and generalization 22

2.1.1 Random perturbations . 22

2.1.2 Adversarial perturbations . 22

2.2 Distributionally Robust Optimization (DRO) 23

2.2.1 Far-reaching relevance to machine learning 25

3 DRO, MMD, kernels, and generalization 27

3.1 Introduction . 27

3.2 Background and related work . 29

3.3 Generalization bounds via MMD DRO 31

7

3.3.1 Bounding the DRO adversary’s problem 32

3.4 Connections to kernel ridge regression 34

3.4.1 Bounding norms of products 35

3.4.2 Implications: kernel ridge regression 36

3.4.3 Algorithmic implications . 38

3.5 Approximation and connections to variance regularization 39

3.6 Experiments . 41

3.6.1 Alternate regularizer . 41

3.6.2 Conjecture: generalizing beyond Gaussian kernels 42

3.7 Discussion and future work . 46

II Algorithms for distributionally robust subset selection 47

4 Submodularity background 49

4.1 Submodular set functions . 49

4.1.1 Definitions . 50

4.1.2 Optimization . 50

4.2 General submodular functions . 52

4.2.1 Definitions: submodular functions and DR functions 52

4.2.2 Optimization . 53

4.3 Submodular DRO . 54

4.3.1 Robust and risk-averse submodular optimization 55

4.3.2 Submodular optimization with errors 56

5 Distributionally robust submodular maximization 57

5.1 Introduction . 57

5.1.1 Related work . 59

5.2 Stochastic submodular functions and distributional robustness 61

5.2.1 Stochastic submodular functions 61

5.2.2 Optimization and empirical approximation 62

5.2.3 Variance regularization via distributionally robust optimization 64

8

5.3 Exact algorithm for χ2-DRO . 66

5.4 Algorithmic approach . 70

5.5 Experiments . 75

5.5.1 Facility Location . 76

5.5.2 Influence maximization . 77

5.5.3 Rounding . 78

5.6 Discussion and future work . 79

6 Robust Budget Allocation 81

6.1 Introduction . 81

6.1.1 Background and related work 84

6.2 Robust and stochastic Budget Allocation 85

6.2.1 Stochastic optimization . 85

6.2.2 Robust optimization . 86

6.3 Robust Budget Allocation: main ideas 88

6.4 Constrained continuous submodular function minimization 90

6.4.1 Forming an equivalent convex problem 91

6.4.2 Bounding solution quality for the constrained problem 95

6.5 Simple examples where our approach is optimal 101

6.5.1 Separable problems . 101

6.5.2 Non-separable quadratics and SDP relaxations 105

6.5.3 Evaluation of suboptimality bounds 106

6.6 Robust Budget Allocation experiments 107

6.6.1 Synthetic . 108

6.6.2 Yahoo! data . 110

6.6.3 Comparison to first-order methods 111

6.7 Discussion and future work . 112

III The reverse: leveraging perturbations for better non-

9

convex optimization algorithms 114

7 Escaping saddle points with Adaptive Gradient Methods and per-

turbations 115

7.1 Introduction . 115

7.1.1 Adaptive gradient methods (AGMs) 116

7.1.2 Related work . 119

7.2 Notation and definitions . 120

7.3 The RMSProp preconditioner . 121

7.3.1 What is the purpose of the preconditioner? 122

7.3.2 Reddi et al. (2018b) counterexample resolution 123

7.4 Main results: gluing estimation and optimization 124

7.4.1 Estimating from moving sequences 124

7.4.2 Convergence results . 127

7.5 Discussion . 132

7.5.1 How to set the regularization parameter ε 132

7.5.2 Comparison to SGD . 133

7.5.3 Alternative preconditioners . 134

7.5.4 Tuning the EMA parameter β 134

7.6 Experiments . 135

7.7 Further discussion and future work 136

IV Conclusion 139

8 Conclusion 141

8.1 High-level summary . 141

8.2 Future directions . 142

8.2.1 Perturbations and generalization 142

8.2.2 Perturbation-aware optimization 142

8.2.3 Perturbations for optimization 143

10

V Bibliography and Appendix 144

Bibliography 145

A DRO, MMD, kernels, and generalization 165

A.1 Proofs of main structural results . 165

A.2 Gaussian kernel bounds . 167

A.2.1 Trace inequality . 172

A.2.2 Extensions of Proposition 3.4.1 173

A.3 Proofs for Section 3.5 . 173

B Distributionally robust submodular maximization 177

B.1 Tail Bound . 177

B.2 Equivalence of Variance Regularization and Distributionally Robust

Optimization . 178

B.3 Exact Linear Oracle . 180

B.3.1 Unique solutions . 185

B.3.2 Lipschitz gradient . 186

B.4 Convergence analysis for MFW . 188

B.5 Rounding to a distribution over subsets 191

C Robust Budget Allocation 193

C.1 Worst-Case Approximation Ratio versus True Worst-Case 193

C.2 DR-submodularity and L♮-convexity 194

C.3 Constrained Continuous Submodular Function Minimization 195

C.3.1 Solving the Optimization Problem 195

C.3.2 Runtime . 197

D Escaping saddle points with Adaptive Gradient Methods and per-

turbations 199

D.1 More Insights from Idealized Adaptive Methods (IAM) 199

D.2 Algorithm Details . 200

11

D.3 Curvature and noise constants for different preconditioners 201

D.3.1 Constants for identity preconditioner 202

D.3.2 Constants for full matrix IAM 203

D.3.3 Constants for diagonal IAM 205

D.4 Convergence results for the diagonal case 207

D.5 Main Proof . 208

D.5.1 Definitions . 209

D.5.2 High level picture . 210

D.5.3 Amortized increase due to large stepsize iterations 212

D.5.4 Bound on possible increase when Ect occurs 213

D.5.5 Bound on decrease (progress) when Et occurs 214

D.5.6 Auxiliary lemmas . 228

D.5.7 Descent lemmas . 229

D.6 Convergence to First-Order Stationary Points 231

D.6.1 Generic Preconditioners: Proof of Theorem 7.4.2 231

D.6.2 Generic Preconditioners with Errors: Proof of Theorem 7.4.3 . 233

D.7 Online Matrix Estimation . 234

D.8 Converting Noise Estimates into Preconditioner Estimates 238

12

List of Figures

1-1 Block diagram showing topics addressed by the the thesis and how

they relate to each other. 17

3-1 Pictorial representation of the DRO Generalization Principle 3.1.1. . . 28

3-2 Comparison of standard kernel ridge regression regularizer ‖h‖2σ versus

our proposed regularizer ‖h2‖σ/√2. 41

3-3 Estimates of the ratio σ′/σ needed so that ‖kσ(0, ·)2‖σ′ ≤ ‖kσ(0, ·)‖2σ. 43

3-4 Study of ‖h2‖σ′ versus ‖h‖2σ for functions h = cos θ kσ(0, ·)+sin θ kσ(1, ·). 43

3-5 Distribution of ratio ‖h2‖σ′/‖h‖2σ for randomly sampled functions h,

for Laplace kernels with different bandwidths σ. 44

3-6 Distribution of ratio ‖h2‖σ′/‖h‖2σ for randomly sampled functions h,

for Matérn kernels with different bandwidths σ. 45

5-1 Algorithm comparison and generalization performance on last.fm dataset. 77

5-2 Influence maximization on political blogs dataset. 78

6-1 Bipartite graph demonstrating the setup of (Robust) Budget Allocation. 82

6-2 Comparison of submodular optimization solution versus optimal SDP

solution for non-convex quadratic programs. 107

6-3 Empirical study of when Theorem 6.4.2 can certify optimality of our

constrained submodular minimization solution. 109

6-4 Comparison of robust versus non-robust solutions for Budget Alloca-

tion on synthetic data. 110

13

6-5 Convergence properties of our algorithm on a Robust Budget Alloca-

tion problem with real data. 111

6-6 Convergence properties of Frank-Wolfe (FW), versus the optimal value

attained with our scheme (SFM). 111

7-1 SGD vs RMSProp performance escaping a saddle point with poorly

conditioned gradient noise. 137

7-2 Performance on MNIST logistic regression of RMSProp with different

choices of β and decreasing stepsize. 138

14

Chapter 1

Introduction

1.1 Motivation

Machine learning systems are increasingly prevalent, as are decision systems that

make use of learned models of the world. Though the types of models, decisions, and

application areas are manifold, one fundamental tool is key to all of them: stochastic

optimization, i.e. the problem minw Ez∼P[f(w, z)]. For example, in supervised learn-

ing, P is a distribution of pairs z = (x, y) of datapoints x together with labels y. Our

goal is to choose a model w that we can use to predict y from x, e.g. y ≈ wTx. For a

single sample pair z = (x, y), the function f(w, z) might capture the prediction error

when w is used to predict y from x. It is then natural to choose a model w with

minimum prediction error Ez∼P[f(w, z)] on the data generating distribution P.

Beyond statistical learning, stochastic optimization problems capture many deci-

sion problems we may need to make downstream. Indeed, the classic work of von

Neumann and Morgenstern (1944) shows that, under certain assumptions, any ratio-

nal actor making decisions in a stochastic environment can be thought of as optimizing

Ez∼P[f(w, z)] for an appropriately chosen utility function f .

There are two key challenges to solving stochastic optimization problems. First,

P is often not known exactly; instead we might only have samples from P, or noisy

parameter estimates for P if P is a parametric model. In statistical learning, one typ-

ically replaces P with the empirical distribution P̂n, and minimizes Ez∼P̂n
[f(w, z)] =

15

1
n

∑n
i=1 f(w, zi). This is called empirical risk minimization (ERM). While ERM pro-

vides a good starting point, other approaches can often do better, especially in more

challenging settings. For example, in extreme cases, P might be perturbed adversari-

ally, and more specialized algorithms can yield substantial performance improvements

(see e.g. (Madry et al., 2018)). A major challenge in machine learning, generalization,

is to achieve good performance on P despite these difficulties.

Second, f is often non-convex, making optimization challenging even if P were

known exactly. This thesis addresses both these challenges from multiple facets.

One approach to improving generalization (despite the effect of perturbations on

P) is to explicitly encode these perturbations via an uncertainty set U that captures

how P might be altered. Then we can solve the distributionally robust optimization

(DRO) problem minw maxQ∈U EQ[f(w)]. We try to choose a point w that works as

well as possible in spite of an adversary that perturbs P within U . This approach

has seen success in the operations research literature and is a promising technique

for machine learning. The first part of this thesis develops a new variant of DRO

with particularly strong connections to generalization in machine learning. However,

DRO problems can be challenging for some uncertainty sets U , especially when f

is non-convex. The second part of this thesis develops new algorithms for solving

DRO problems in the special case when f is submodular. In the final part of this

thesis, we investigate a different type of noise in P due to subsampling a dataset, as is

common in practice when e.g. the dataset cannot fit in memory. This is the problem

of stochastic non-convex optimization. We show how the noise due to subsampling,

normally a hindrance to optimization, can be reshaped to yield better performance

when f is non-convex.

There are three fundamental questions we ask, each of which we study in one of

the three parts in the thesis:

1. Precisely how are DRO and generalization linked? And how can this bond be

strengthened via e.g. new DRO problems?

2. When and how is it possible to solve DRO problems when f is not convex?

16

Perturbations

DRO
Adversary

Subsampling
Noise

Generalization

Non-Convex
Optimization
Algorithms

Part I

Part II

Part III

Figure 1-1: Block diagram showing how this thesis addresses topics at the interfaces
of three main areas of study: data perturbations, generalization, and non-convex
optimization algorithms.

3. How can data perturbations be leveraged to create better non-convex optimiza-

tion algorithms?

1.2 Thesis outline

These questions and their relationship with data perturbations and non-convex op-

timization can be understood via Figure 1-1. The key players are generalization,

perturbations, and non-convex optimization algorithms, and each part of the thesis

studies the relationship between two of these.

Part I asks how perturbations (via DRO) relate to generalization. We start by

giving background in Chapter 2 on the interplay of generalization and perturbations.

We specifically focus on DRO, and introduce the types of DRO problems considered

in the literature thus far. Then in Chapter 3, which is based on (Staib and Jegelka,

2019a), we develop a new kind of DRO problem with strong ties to generalization.

Part II asks how to construct optimization algorithms for non-convex DRO prob-

lems, specifically, submodular DRO problems. In Chapter 4 we provide background

on submodular optimization. We highlight positive results in submodular maximiza-

tion and minimization, and also discuss potential difficulties, such as hardness results

for robust and risk-averse submodular optimization. In Chapter 5, based on (Staib

et al., 2019b), we demonstrate how to solve a certain class of submodular DRO prob-

lem, with broad applications to problems such as influence maximization and facility

17

location. As a byproduct, we tighten results relating certain DRO problems and vari-

ance regularization. Then in Chapter 6, based on (Staib and Jegelka, 2019b), we

focus on a specific combinatorial problem called Budget Allocation. We introduce a

robust version of the problem, and develop new submodular optimization techniques

in order to solve it.

Finally, Part III asks how perturbations can help non-convex optimization. In

Chapter 7, which is based on (Staib et al., 2019a), we study a class of optimization

algorithms called adaptive gradient methods (AGMs). These are poorly understood

in the non-convex setting. We observe that AGMs reshape subsampling noise in

a way that is useful for non-convex optimization. This insight, coupled with other

new observations, allows us to give the first (non-convex) second-order convergence

result for any AGM, and understand when AGMs work well compared to alternative

algorithms.

1.3 Additional related publications

Here we list other work completed during the author’s program. These also address

other aspects of robustness, uncertainty, geometry, and optimization. While these

papers are strongly related to the thesis, they were left out to maintain a clearer

story.

• Matthew Staib, Sebastian Claici, Justin M Solomon, and Stefanie Jegelka. Par-

allel streaming Wasserstein barycenters. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in

Neural Information Processing Systems 30, pages 2644–2655. Curran Associates,

Inc., 2017.

• Matthew Staib and Stefanie Jegelka. Distributionally robust deep learning as a

generalization of adversarial training. In NIPS Machine Learning and Computer

Security Workshop, 2017a.

18

• Matthew Staib and Stefanie Jegelka. Wasserstein k-means++ for cloud regime

histogram clustering. In Proceedings of the Seventh International Workshop on

Climate Informatics: CI 2017, 2017c.

1.4 Notation

As the thesis includes work in several areas with their own notational conventions,

it is difficult to wholly unify the notation; we have made efforts to do so where

possible. We refer to a model or function we want to learn by h; this is most relevant

in Part I. We will refer to generic objective functions by f . Their arguments are

context-dependent: in learning problems, considered in the background sections and

in Part III, the arguments are weights w to be learned. In Part I we focus specifically

on problems where the objective is the loss ℓh incurred by our model h. Elsewhere,

particularly in Part II, the arguments are more varied, and may be subsets S or

generalizations thereof x.

We refer to small probabilities by δ. The radius of an uncertainty set we refer to

by ε, e.g. {x : ‖x‖ ≤ ε}, except in Part III, where ε is an algorithm parameter. When

presenting optimization results, τ is used to denote convergence tolerances. By 1 and

0 we mean the all-ones and all-zeros vectors, respectively. Throughout the thesis, δx
is a point mass distribution at x. We reserve P and Q to refer to distributions, and

by P̂n we mean an empirical distribution 1
n

∑n
i=1 δxi

consisting of xi that are sampled

iid from P.

Other notation that is more specific to individual chapters is introduced as needed.

19

Part I

Understanding the link between

DRO and generalization

20

Chapter 2

Background on generalization, data

perturbations, and DRO

One of the key challenges in machine learning is generalization. In the traditional

statistical setup, a model trained only on samples from a distribution P generalizes if

it performs similarly well on the samples and on P itself. Formally, we assume there is

an underlying population distribution P of interest: in machine learning, for example,

P could be a distribution of all possible images of objects, together with labels for the

objects. Our goal is to learn a model h that performs well on this entire distribution,

e.g. h can accurately predict the correct label for each object. However, we cannot

possibly have access to every possible image. Instead, we have a finite dataset, called

the training set, composed of n samples z1, . . . , zn that are assumed to be drawn i.i.d.

from P. These samples form the empirical distribution P̂n. In lieu of seeking good

performance on P, we seek a model h that performs well on the available dataset P̂n.

We say the learned model h statistically generalizes if its performance on the available

data P̂n is similar to its performance on the population distribution P.

The above setup is convenient for statistical analysis, but is not always realistic.

Future unseen examples need not come from the same distribution as our training set.

Instead, when we deploy our model and evaluate it on new examples, any number of

changes may have occured. Perhaps the new example images have different lighting,

or are rotated differently. Maybe the relative frequencies of different types of objects

21

have changed. The new images could be noisier, or even adversarially perturbed. We

say generalization in the broadest sense means our learned model h can perform well

on new unseen examples, regardless of whether those samples come from the same

distribution P as our test set.

We will see that data perturbations and distributionally robust optimization

(DRO) give us tools to understand and improve both statistical generalization as

well as generalization in the broadest sense.

2.1 Data perturbations and generalization

2.1.1 Random perturbations

Practitioners often have some prior idea of what kinds of variations occur in the

population distribution P but may not necessarily arise in the training set. One

especially clear case of this is in image classification. In curated training sets of

images of objects, typically the object is centered in the image and right-side up.

But while most pictures of e.g. cars have the car centered and oriented normally, a

photographer could conceivably choose to take a picture off-center and at a strange

angle. Such pictures, while potentially rare, may occur in the population distribution

P even if they do not occur in the training set.

A simple way to encode such knowledge about the population distribution is to

take examples from the training set, perturb them, and add them to the training set.

For example, for each image in the training set, add randomly flipped, rotated and

cropped versions of that image. This practice is called data augmentation, and it is

extremely popular and successful in improving generalization performance.

2.1.2 Adversarial perturbations

Random perturbations are not the only type of perturbations that have found use

in machine learning. Substantial recent work considers augmenting the training set

with adversarially perturbed examples (Goodfellow et al., 2015; Szegedy et al., 2014;

22

Madry et al., 2018). For example, we may seek a model w that performs well even

when each training example z is perturbed adversarially in a ball Bε(z) of radius ε

around z:

inf
w

E
z∼P̂n

[
sup

z̃∈Bε(z)

f(w, z̃)

]
. (2.1)

Training a model against adversarially perturbed examples is known as adversarial

training. Adversarial training is actually also a specific example of robust optimiza-

tion (Ben-Tal et al., 2009; Bertsimas et al., 2011), in which we want to make a decision

that performs well despite errors in the objective function and even the constraints,

e.g.:

inf
w

sup
u,A,b∈U

{f(w;u) s.t. Aw ≤ b} . (2.2)

Though originally motivated due to concerns about security and robustness of

learned models, adversarial training can also improve models in qualitative ways that

are not captured by test performance (Tsipras et al., 2019, Section 3).

2.2 Distributionally Robust Optimization (DRO)

The previous section focused on the effect of perturbing individual examples from the

training set, and how such perturbations can improve generalization. More generally,

we could jointly perturb the entire training set, or equivalently, perturb the empirical

distribution P̂n within some uncertainty set U . This is an instance of distributionally

robust optimization (DRO) (Goh and Sim, 2010; Bertsimas et al., 2018). DRO,

introduced by Scarf (1958), asks to not only perform well on a fixed problem instance

(parameterized by a distribution), but simultaneously for a range of problems, each

determined by a distribution in an uncertainty set U . Concretely, we want to make a

decision w that solves

(DRO) inf
w

sup
Q∈U

Ez∼Q[f(w, z)]. (2.3)

23

The uncertainty set plays a key role: it implicitly defines the induced notion of ro-

bustness.

As an example, Scarf (1958) is concerned with an inventory management problem

that depends on the distribution of demand. Here, the decision maker knows the mean

and variance of the demand distribution – perhaps she has accurate measurements

of these quantitites – but wishes to avoid making further assumptions. Scarf sets up

a DRO problem where the uncertainty set U consists of all distributions with that

mean and variance, and derives a closed form solution.

Many DRO problems studied by the operations research community are similarly

defined by moment constraints. More recently, Delage and Ye (2010) have shown

for a wide class of problems how to allow the moments themselves to be uncertain.

We refer to all of this body of work as DRO with moment-based uncertainty sets.

While moment-based DRO has a rich history, it is not well suited to many machine

learning problems, where the distributions are not well captured by moments alone.

One could hardly capture the distribution of natural images, for example, by its mean

and variance. Instead there has been extensive study of DRO with discrepancy-based

uncertainty sets. Here, the uncertainty set U is given as a ball centered on some

nominal distribution P0, i.e. U = {Q : D(Q,P0) ≤ ε}, where D is some discrepancy

measure.

In this thesis, as in most DRO work in machine learning, we focus on data-driven

DRO, where the nominal distribution P0 at the center of U is taken to be an empirical

sample P̂n = 1
n

∑n
i=1 δzi . In other words, we consider perturbations of our empirical

distribution, e.g. our dataset of images. In data-driven DRO, the size or radius ε of

the uncertainty set U is also determined in a data-dependent way, and may depend

on the number of samples n, how spread out the data is, and the particular choice of

discrepancy D. The choice of discrepancy D also determines how tractable the DRO

problem is, and is therefore critical.

In machine learning, two choices of the discrepancy D are prevalent: ϕ-divergences

(Ben-Tal et al., 2013; Duchi et al., 2016; Lam, 2016), and Wasserstein distance (Mo-

hajerin Esfahani and Kuhn, 2018; Shafieezadeh Abadeh et al., 2015; Blanchet et al.,

24

2019). The first option, ϕ-divergences, have the form Dϕ(P||Q) =
∫
ϕ(dP/dQ) dQ,

and include χ2 divergence and Kullback-Leibler divergence. DRO with χ2-divergence

is roughly equivalent to regularizing by variance (Maurer and Pontil, 2009; Gotoh

et al., 2018; Lam, 2016; Duchi et al., 2016; Namkoong and Duchi, 2017), and, as we

will see in Chapter 5, the worst case distribution Q ∈ U can be computed exactly in

O(n logn).

The second option, Wasserstein distance, is defined in terms of a distance metric

g on the data space. The p-Wasserstein distance Wp between measures µ, ν is given

by Wp(µ, ν) = inf{
∫
g(x, y)p dγ(x, y) : γ ∈ Π(µ, ν)}1/p, where Π(µ, ν) is the set of

couplings of µ and ν (Villani, 2008). DRO with Wasserstein distance is asymptotically

equivalent to certain common norm penalties (Gao et al., 2017), and the worst case

Q ∈ U can be computed approximately in several cases (Mohajerin Esfahani and

Kuhn, 2018; Gao and Kleywegt, 2016). While most results for Wasserstein DRO focus

on the case when g is Euclidean, there are extensions available to e.g. Mahalanobis

distances (Blanchet et al., 2017, 2018). Concentration results bounding Wp(P, P̂n)

with high probability, which are needed to determine the radius ε of the uncertainty

set U , are available for many settings, e.g. (Fournier and Guillin, 2015; Lei, 2020;

Singh and Póczos, 2018; Weed et al., 2019).

2.2.1 Far-reaching relevance to machine learning

DRO sheds light on both notions of generalization. For the broader notion of gen-

eralization, note that DRO generalizes adversarial training (Sinha et al., 2018; Staib

and Jegelka, 2017a). DRO has also been applied to fairness across groups (Hu et al.,

2018; Oren et al., 2019; Sagawa* et al., 2020; Hashimoto et al., 2018). Causal infer-

ence can be understood in terms of DRO, e.g. see the paper of Meinshausen (2018).

In theory one could encode many other desiderata via DRO, e.g. invariance to dataset

shifts. Statistical generalization also enjoys many connections to DRO, in particular

via regularization. We will explore new such connections in Chapter 3.

Overall, DRO is a useful tool in machine learning now. As optimization technology

improves, we expect it will become easier to encode more sophisticated desiderata

25

with the language of DRO. At present, however, DRO with these rich uncertainty

sets remains mostly impractical. Instead, DRO with discrepancy-based uncertainty

sets are the most tractable and most relevant to machine learning. As we will see

in Chapter 5, even discrepancy-based DRO problems can be challenging to solve,

especially for large scale problems and non-convex objectives. Hence, in this thesis,

we focus on DRO with discrepancy-based uncertainty sets. Nevertheless, we remain

optimistic about the future of DRO in machine learning.

26

Chapter 3

DRO, MMD, kernels, and

generalization

3.1 Introduction

In Chapter 2 we gave background on DRO and, in particular, discrepancy-based DRO.

The two prototypical cases are ϕ-divergence and Wasserstein DRO. There has been

much fruitful effort towards understanding and solving these DRO problems, and

connecting them to statistical generalization. But these two classes of DRO problems

are not a panacea: in this chapter we argue that there is a third type of discrepancy

measure worth considering.

Our motivation comes from an extremely direct way of linking DRO and statistical

generalization. One of the main objects of study in statistical generalization are

generalization bounds, i.e. certified upper bounds on the population loss or error of

a learned model. We propose the following straightforward path towards using DRO

as a tool to prove such generalization bounds:

Principle 3.1.1 (DRO Generalization Principle). Suppose we have learned a can-

didate model h to predict y from x, i.e. y ≈ h(x). Let U be a set of distributions

containing the empirical distribution P̂n. Suppose U is large enough so that, with

probability 1 − δ, U contains the population P. Then with probability 1 − δ, the

27

•P̂n

•P

D(Q, P̂n) ≤ ε

ε

Figure 3-1: A pictorial representation of the DRO Generalization Principle. If the
population distribution is in the uncertainty set U , then the worst case performance
over all elements of U bounds the population performance.

population loss Ex∼P[ℓh(x)] is bounded by

Ex∼P[ℓh(x)] ≤ sup
Q∈U

Ex∼Q[ℓh(x)]. (3.1)

We focus on uncertainty sets U defined by U = {Q : D(Q, P̂n) ≤ ε} for some

divergence measure D. Principle 3.1.1 is described pictorially in Figure 3-1. While

Principle 3.1.1 is simple and intuitive, it is difficult to use with current DRO technol-

ogy. This is due to drawbacks to the ϕ-divergence and Wasserstein uncertainty sets

currently used. Any ϕ-divergence uncertainty set U around P̂n contains only distribu-

tions with the same (finite) support as P̂n. Hence, the population P is typically not in

U , and so the DRO objective value cannot directly certify out of sample performance.

Wasserstein uncertainty sets do not suffer from this problem. But, they are more

computationally expensive, and the key results on equivalences (to regularization)

and computation are typically limited to convex objectives or are only asymptotic

bounds.

We introduce and develop a new class of DRO problems, where the uncertainty

set U is defined with respect to maximum mean discrepancy (MMD) (Gretton et al.,

2012), a kernel-based distance between distributions. MMD DRO complements exist-

ing approaches and avoids some of their drawbacks. In particular, with MMD DRO

28

we can directly apply Principle 3.1.1 because unlike ϕ-divergences, the uncertainty

set U will contain P if the radius is large enough.

First, we show that MMD DRO is roughly equivalent to regularizing by the Hilbert

norm ‖ℓh‖H of the loss ℓh (not the model h). While, in general, ‖ℓh‖H may be difficult

to compute, we show settings in which it is tractable. Specifically, for kernel ridge

regression with a Gaussian kernel, we prove a bound on ‖ℓh‖H that, as a byproduct,

yields generalization bounds that match (up to a small constant) the standard ones.

Along the way, we prove bounds on the Hilbert norm of products of functions that

may be of independent interest. These bounds also suggest an alternate regularizer

for kernel ridge regression.

Second, beyond kernel methods, we show how MMD DRO can be efficiently ap-

proximate empirically. This approximation leads to another insight: MMD DRO

generalizes variance-based regularization.

Overall, our results offer deeper insights into the landscape of regularization and

robustness approaches, and a more complete picture of the effects of different diver-

gences for defining robustness.

3.2 Background and related work

Background information on DRO is given in Chapter 2. Here we briefly discuss other

related areas of work, namely MMD and penalization by the Hilbert norm ‖·‖H.

Maximum Mean Discrepancy (MMD). MMD is a distance metric between

distributions that leverages kernel embeddings. LetH be a reproducing kernel Hilbert

space (RKHS) with kernel k and norm ‖·‖H. MMD is defined as follows:

Definition 3.2.1. The maximum mean discrepancy (MMD) between distributions P

and Q is

dMMD(P,Q) := sup
g∈H:∥g∥H≤1

Ex∼P[g(x)]− Ex∼Q[g(x)]. (3.2)

29

Fact 3.2.1. Define the mean embedding µP of the distribution P by µP = Ex∼P[k(x, ·)].

Then the MMD between distributions P and Q can be equivalently written

dMMD(P,Q) = ‖µP − µQ‖H. (3.3)

MMD and (more generally) kernel mean embeddings have been used in many ap-

plications, particularly in two- and one-sample tests (Gretton et al., 2012; Jitkrittum

et al., 2017; Liu et al., 2016; Chwialkowski et al., 2016) and in generative model-

ing (Dziugaite et al., 2015; Li et al., 2015; Sutherland et al., 2017; Bikowski et al.,

2018). We refer the interested reader to the monograph by Muandet et al. (2017).

MMD admits efficient estimation, as well as fast convergence properties, which are of

chief importance in our work.

Further related work. In Chapter 2 we discussed work in operations research

that has considered DRO problems that capture uncertainty in moments of the dis-

tribution, e.g. (Delage and Ye, 2010). These approaches typically focus on first-

and second-order moments; in contrast, an MMD uncertainty set allows high order

moments to vary, depending on the choice of kernel.

Beyond DRO, Xu et al. (2009) study the connection between robustness and reg-

ularization in SVMs, and perturbations within a (possibly Hilbert) norm ball. Unlike

our work, their results are limited to SVMs instead of general loss minimization.

Moreover, they consider only perturbation of individual data points instead of shifts

in the entire distribution. Bietti et al. (2019) show that many regularizers used for

neural networks can also be interpreted in light of an appropriately chosen Hilbert

norm (Bietti and Mairal, 2019).

30

3.3 Generalization bounds via MMD DRO

The main focus of this chapter is Distributionally Robust Optimization where the

uncertainty set is defined via the MMD distance dMMD:

inf
h

sup
Q:dMMD(Q,P̂n)≤ε

Ex∼Q[ℓh(x)]. (3.4)

One motivation for considering MMD in this setting are its possible implications

for Generalization. Recall that for the DRO Generalization Principle 3.1.1 to apply,

the uncertainty set U must contain the population distribution with high probability.

To ensure this, the radius of U must be large enough. But, the larger the radius, the

more pessimistic is the DRO minimax problem, which may lead to over-regularization.

This radius depends on how quickly dMMD(P, P̂n) shrinks to zero, i.e., on the empirical

accuracy of the divergence.

In contrast to Wasserstein distance, which converges at a rate of O(n−1/d) (Fournier

and Guillin, 2015), MMD between the empirical sample P̂n and population P shrinks

as O(n−1/2):

Lemma 3.3.1 (Modified from (Muandet et al., 2017), Theorem 3.4). Suppose that

k(x, x) ≤ M for all x. Let P̂n be an n sample empirical approximation to P. Then

with probability 1− δ,

dMMD(P, P̂n) ≤ 2
√

M
n
+

√
2 log(1/δ)

n
. (3.5)

The constant M is dimension-independent for many common universal kernels,

e.g. Gaussian, Laplace, and Matern kernels. With Lemma 3.3.1 in hand, we conclude

a simple high probability bound on out-of-sample performance:

Corollary 3.3.1. Suppose that k(x, x) ≤M for all x. Set the uncertainty set radius

ε to ε = 2
√
M/n+

√
2 log(1/δ)/n. Then with probability 1−δ, we have the following

31

bound on population risk:

Ex∼P[ℓh(x)] ≤ sup
Q:dMMD(Q,P̂n)≤ε

Ex∼Q[ℓh(x)]. (3.6)

We refer to the right hand side as the DRO adversary’s problem. In the next

section we develop results that enable us to bound its value, and consequently bound

the DRO problem (3.4).

3.3.1 Bounding the DRO adversary’s problem

The DRO adversary’s problem seeks the distribution Q in the MMD ball so that

Ex∼Q[ℓh(x)] is as high as possible. Reasoning about the optimal worst-case Q is the

main difficulty in DRO. With MMD, we take two steps for simplification. First,

instead of directly optimizing over distributions, we optimize over their mean embed-

dings in the Hilbert space (described in Fact 3.2.1). Second, while the adversary’s

problem (3.6) makes sense for general ℓh, we assume that the loss ℓh is in H. In

case ℓh 6∈ H, often k is a universal kernel, meaning under mild conditions ℓh can be

approximated arbitrarily well by a member of H (Muandet et al., 2017, Definition

3.3).

With the additional assumption that ℓh ∈ H, the risk Ex∼P[ℓh(x)] can also be

written as 〈ℓh, µP〉H. Then we obtain

sup
Q:dMMD(Q,P)≤ε

Ex∼Q[ℓh(x)] ≤ sup
µQ∈H:∥µQ−µP∥H≤ε

〈ℓh, µQ〉H, (3.7)

where we have an inequality because not every function in H is the mean embedding

of some probability distribution. If k is a characteristic kernel (Muandet et al., 2017,

Definition 3.2), the mapping P 7→ µP is injective. In this case, the only looseness

in the bound is due to discarding the constraints that Q integrates to one and is

nonnegative. However it is difficult to constrain the mean embedding µQ in this way

as it is a function.

The mean embedding form of the problem is simpler to work with, and leads to

32

further interpretations.

Theorem 3.3.1. Let ℓh, µP ∈ H. We have the following equality:

sup
µQ∈H:∥µQ−µP∥H≤ε

〈ℓh, µQ〉H = 〈ℓh, µP〉H + ε‖ℓh‖H = Ex∼P[ℓh(x)] + ε‖ℓh‖H. (3.8)

In particular, the adversary’s optimal solution is µ∗
Q = µP +

ε
∥ℓ∥H

ℓh.

Combining Theorem 3.3.1 with equation (3.7) yields our main result for this sec-

tion:

Corollary 3.3.2. Let ℓh ∈ H, let P be a probability distribution, and fix ε > 0. Then,

sup
Q:dMMD(P,Q)≤ε

Ex∼Q[ℓh(x)] ≤ Ex∼P[ℓh(x)] + ε‖ℓh‖H and therefore (3.9)

inf
h

sup
Q:dMMD(P,Q)≤ε

Ex∼Q[ℓh(x)] ≤ inf
h
Ex∼P[ℓh(x)] + ε‖ℓh‖H. (3.10)

Combining Corollary 3.3.2 with Corollary 3.3.1 shows that minimizing the em-

pirical risk plus a norm on ℓh leads to a high probability bound on out-of-sample

performance. This result is similar to results that equate Wasserstein DRO to norm

regularization. For example, Gao et al. (2017) show that under appropriate as-

sumptions on ℓh, DRO with a p-Wasserstein ball is asymptotically equivalent to

Ex∼P̂n
[ℓh(x)] + ε‖∇xℓh‖P̂n,q

, where ‖∇xℓh‖P̂n,q
=
(
1
n

∑n
i=1‖∇xℓh(xi)‖q∗

)1/q measures

a kind of q-norm average of ‖∇xℓh(xi)‖∗ at each data point xi (here q is such that

1/p + 1/q = 1, and ‖ · ‖∗ is the dual norm of the metric defining the Wasserstein

distance).

There are a few key differences between our result and that of Gao et al. (2017).

First, the norms are different. Second, their result penalizes only the gradient of ℓh,

while ours penalizes ℓh directly. Third, except for certain special cases, the Wasser-

stein results cannot serve as a true upper bound; there are higher order terms that

only shrink to zero as ε→ 0. These higher order terms may not be so small: in high

dimension d, the radius ε of the uncertainty set needed so that P ∈ U shrinks very

slowly, as O(n−1/d) (Fournier and Guillin, 2015).

33

Remark 3.3.1. Theorem 3.3.1 and Corollary 3.3.2 require that ℓh is in the RKHS H.

Though this may seem restrictive, if the kernel k is universal, as is the case for many

kernels used in practice such as Gaussian and Laplace kernels, we can readily extend

our results to all bounded continuous functions. Suppose ℓh is a bounded continuous

function on a compact metric space X . By definition (e.g. (Muandet et al., 2017),

Definition 3.3), if k is a universal kernel on X , then for any ε > 0, there is some

ℓ′ ∈ H with supx∈X |ℓh(x) − ℓ′(x)| < ε. It follows that for any measure P, we can

bound the expectation of ℓh(x) by that of ℓ′: Ex∼P[ℓh(x)] < Ex∼P[ℓ
′(x)]+ ε. Then, we

can apply our results to ℓ′ ∈ H.

3.4 Connections to kernel ridge regression

After applying Corollary 3.3.2, we are interested in solving:

inf
h
Ex∼P̂n

[ℓh(x)] + ε‖ℓh‖H. (3.11)

Here, we penalize our model h by ‖ℓh‖H. This looks similar to but is very different

from the usual penalty ‖h‖H in kernel methods. In fact, Hilbert norms of function

compositions such as ℓh pose several challenges. For example, h and ℓh may not

belong to the same RKHS – it is not hard to construct counterexamples, even when

ℓ is merely quadratic. So, the objective (3.11) is not yet computational.

Despite these challenges, we next develop tools that will allow us to bound ‖ℓh‖H
and use it as a regularizer. These tools may be of independent interest to bound RKHS

norms of composite functions (e.g., for settings as in (Bietti et al., 2019)). Due to

the difficulty of this task, we specialize to Gaussian kernels kσ(x, y) = exp(−‖x −

y‖2/(2σ2)). In this setting, our results apply pretty generally: the norm inside the

expression for kσ can be any norm that has an associated inner product; for example,

it can be a Mahalanobis norm, in which case kσ can be interpreted as a Gaussian kernel

with general covariance. Since we will need to take care regarding the bandwidth σ, we

explicitly write it out for the inner product 〈·, ·〉σ and norm ‖·‖σ, of the corresponding

34

RKHS Hσ.

To make the setting concrete, consider kernel ridge regression, with Gaussian

kernel kσ. As usual, we assume there is a simple target function h∗ that fits our data:

h∗(xi) = yi. Then the loss ℓh of h is ℓh(x) = (h(x)− h∗(x))2, so we wish to solve

inf
h
Ex∼P̂n

[(h(x)− h∗(x))2] + ε‖(h− h∗)2‖σ. (3.12)

3.4.1 Bounding norms of products

To bound ‖(h − h∗)2‖σ, it will suffice to bound RKHS norms of products. The key

result for this subsection is the following deceptively simple-looking bound:

Theorem 3.4.1. Let f, g ∈ Hσ, that is, the RKHS corresponding to the Gaussian

kernel kσ of bandwidth σ. Then, ‖fg‖σ/√2 ≤ ‖f‖σ‖g‖σ.

Indeed, there are already subtleties: if f, g ∈ Hσ, then, to discuss the norm of the

product fg, we need to decrease the bandwidth from σ to σ/
√
2.

We prove Theorem 3.4.1 via two steps. First, we represent the functions f, g,

and fg exactly in terms of traces of certain matrices. This step is highly dependent

on the specific structure of the Gaussian kernel. Then, we can apply standard trace

inequalities. Proofs of both results are given in Appendix A.2.

Proposition 3.4.1. Let f, g ∈ Hσ have expansions f =
∑

i aikσ(xi, ·) and g =∑
j bjkσ(xj, ·). For shorthand denote by zi = ϕ√

2σ(xi) the (possibly infinite) feature

expansion of xi in H√
2σ. Then,

‖fg‖2
σ/

√
2
= tr(A2B2), ‖f‖2σ = tr(A2), and ‖g‖2σ = tr(B2),

where A =
∑

i aiziz
T
i and B =

∑
j ajzjz

T
j .

Lemma 3.4.1. Let X,Y be symmetric and positive semidefinite. Then tr(XY) ≤

tr(X) tr(Y).

With these intermediate results in hand, we can prove the main bound of interest:

35

Proof of Theorem 3.4.1. By Proposition 3.4.1, we may write

‖fg‖2
σ/

√
2
= tr(A2B2), ‖f‖2σ = tr(A2), and ‖g‖2σ = tr(B2),

where A =
∑

i aiziz
T
i and B =

∑
j bjzjz

T
j are chosen as described in Proposition 3.4.1.

Since A and B are each symmetric, it follows that A2 and B2 are each symmetric and

positive semidefinite. Then we can apply Lemma 3.4.1 to conclude that

‖fg‖2
σ/

√
2
= tr(A2B2) ≤ tr(A2) tr(B2) = ‖f‖2σ‖g‖2σ.

3.4.2 Implications: kernel ridge regression

With the help of Theorem 3.4.1, we can develop DRO-based bounds for actual learning

problems. In this section we develop such bounds for Gaussian kernel ridge regression,

i.e. problem (3.12).

For shorthand, we write RQ(h) = Ex∼Q[ℓh(x)] = Ex∼Q[(h(x)−h∗(x))2] for the risk

of h on a distribution Q. Generalization amounts to proving that the population risk

RP(h) is not too different than the empirical risk RP̂n
(h).

Theorem 3.4.2. Assume the target function h∗ satisfies ‖(h∗)2‖σ/√2 ≤ Λ(h∗)2 and

‖h∗‖σ ≤ Λh∗. Then, for any δ > 0, with probability 1− δ, the following holds for all

functions h satisfying ‖h2‖σ/√2 ≤ Λh2 and ‖h‖σ ≤ Λh:

RP(h) ≤ RP̂n
(h) + 2√

n

(
1 +

√
log(1/δ)

2

)(
Λh2 + Λ(h∗)2 + 2ΛhΛh∗

)
. (3.13)

Proof. We utilize the DRO Generalization Principle 3.1.1. By Lemma 3.3.1 we know

that with probability 1 − δ, dMMD(P̂n,P) ≤ ε for ε = (2 +
√

2 log(1/δ))/
√
n, since

kσ(x, x) ≤ M = 1. Note the bandwidth σ does not affect the convergence result. As

36

a result of Lemma 3.3.1, with probability 1− δ:

RP(h) = Ex∼P[(h(x)− h∗(x))2] (3.14)
(a)

≤ Ex∼P̂n
[(h(x)− h∗(x))2] + ε‖(h− h∗)2‖σ/√2 (3.15)

(b)

≤ RP̂n
(h) + ε

(
‖h2‖σ/√2 + ‖(h∗)2‖σ/√2 + 2‖hh∗‖σ/√2

)
(3.16)

(c)

≤ RP̂n
(h) + ε

(
Λh2 + Λ(h∗)2 + 2ΛhΛh∗

)
, (3.17)

where (a) is by Corollary 3.3.2, (b) is by the triangle inequality, and (c) follows from

Theorem 3.4.1 and our assumptions on h and h∗. Plugging in the bound on ε yields

the result.

We placed different bounds on each of h, h∗, h2, (h∗)2 to emphasize the dependence

on each. Since each is bounded separately, the DRO based bound in Theorem 3.4.2

allows finer control of the complexity of the function class than is typical. Since, by

Theorem 3.4.1, the norms of h2, (h∗)2 and hh∗ are bounded by those of h and h∗, we

may also state Theorem 3.4.2 just with ‖h‖σ and ‖h∗‖σ.

Corollary 3.4.1. Assume the target function h∗ satisfies ‖h∗‖σ ≤ Λ. Then, for

any δ > 0, with probability 1 − δ, the following holds for all functions h satisfying

‖h‖σ ≤ Λ:

RP(h) ≤ RP̂n
(h) + 8Λ2

√
n

(
1 +

√
log(1/δ)

2

)
. (3.18)

Proof. We reduce to Theorem 3.4.2. By Theorem 3.4.1, we know that ‖h2‖σ/√2 ≤

‖h‖2σ, which may be bounded above by Λ2 (and similarly for h∗). Therefore we can

take Λh2 = Λ2
h = Λ and Λ(h∗)2 = Λ2

h∗ = Λ in Theorem 3.4.2. The result follows by

bounding

Λh2 + Λ(h∗)2 + 2ΛhΛh∗ ≤ Λ2 + Λ2 + 2Λ · Λ = 4Λ2.

Generalization bounds for kernel ridge regression are of course not new; we em-

phasize that the DRO viewpoint provides an intuitive approach that also grants finer

control over the function complexity. Moreover, our results take essentially the same

37

form as the typical generalization bounds for kernel ridge regression, reproduced be-

low:

Theorem 3.4.3 (Specialized from (Mohri et al., 2018), Theorem 10.7). Assume the

target function h∗ satisfies ‖h∗‖σ ≤ Λ. Then, for any δ > 0, with probability 1− δ, it

holds for all functions h satisfying ‖h‖σ ≤ Λ that

RP(h) ≤ RP̂n
(h) + 8Λ2

√
n

(
1 +

1

2

√
log(1/δ)

2

)
. (3.19)

Hence, our DRO-based Theorem 3.4.2 evidently recovers standard results up to a

universal constant.

3.4.3 Algorithmic implications

The generalization result in Theorem 3.4.3 is often used to justify penalizing by the

norm ‖h‖σ, since it is the only part of the bound (other than the risk RP̂n
(h)) that

depends on h. In contrast, our DRO-based generalization bound in Theorem 3.4.2 is

of the form

RP(h)−RP̂n
(h) ≤ ε

(
‖h2‖σ/√2 + ‖(h∗)2‖σ/√2 + 2‖h‖σ‖h∗‖σ

)
, (3.20)

which depends on h through both norms ‖h‖σ and ‖h2‖σ/√2. This bound motivates

the use of both norms as regularizers in kernel regression, i.e. we would instead solve

inf
h∈Hσ

E(x,y)∼P̂n
[(h(x)− y)2] + λ1‖h‖σ + λ2‖h2‖σ/√2. (3.21)

Given data (xi, yi)
n
i=1, for kernel ridge regression, the Representer Theorem implies

that it is sufficient to consider only h of the form h =
∑n

i=1 aikσ(xi, ·). Here this is

not in general possible due to the norm of h2. However, it is possible to evaluate

and compute gradients of ‖h2‖2
σ/

√
2
: let K be the matrix with Kij = k√2σ(xi, xj),

and let D = diag(a). Using Proposition 3.4.1, we can prove ‖h2‖2
σ/

√
2
= tr((DK)4) A

complete proof is given in Corollary A.2.1 in the appendix.

38

3.5 Approximation and connections to variance reg-

ularization

In the previous section we studied bounding the MMD DRO problem (3.4) via Hilbert

norm penalization. Going beyond kernel methods where we search over h ∈ H, it is

even less clear how to evaluate the Hilbert norm ‖ℓh‖H. To circumvent this issue,

next we approach the DRO problem from a different angle: we directly search for the

adversarial distribution Q. Along the way, we will build connections to variance reg-

ularization (Maurer and Pontil, 2009; Gotoh et al., 2018; Lam, 2016; Namkoong and

Duchi, 2017), where the empirical risk is regularized by the empirical variance of ℓh:

VarP̂n
(ℓh) = Ex∼P̂n

[ℓh(x)
2] − Ex∼P̂n

[ℓh(x)]
2. In particular, we show in Theorem 3.5.1

that MMD DRO yields stronger regularization than variance.

Searching over all distributions Q in the MMD ball is intractable, so we restrict

our attention to those with the same support {xi}ni=1 as the empirical sample P̂n.

All such distributions Q can be written as Q =
∑n

i=1wiδxi
, where w is in the n-

dimensional simplex. By restricting the set of candidate distributions Q, we make

the adversary weaker:

supQ Ex∼Q[ℓh(x)]

s.t. dMMD(Q, P̂n) ≤ ε
≥

supw

∑n
i=1wiℓh(xi)

s.t. dMMD(
∑n

i=1wiδxi
, P̂n) ≤ ε∑n

i=1wi = 1

wi ≥ 0 ∀i = 1, . . . , n.

(3.22)

By restricting the support of Q, it is no longer possible to guarantee out of sam-

ple performance, since it typically will have different support. Yet, as we will see,

problem (3.22) has nice connections.

The dMMD constraint is a quadratic penalty on v = w − 1
n
1, as one may see via

39

the mean embedding definition of MMD:

dMMD

(
n∑

i=1

wiδxi
, P̂n

)2

=

∥∥∥∥∥
n∑

i=1

wik(xi, ·)−
1

n

n∑
i=1

k(xi, ·)

∥∥∥∥∥
2

H

=

∥∥∥∥∥
n∑

i=1

vik(xi, ·)

∥∥∥∥∥
2

H

.

(3.23)

The last term is vTKv = (w − 1
n
1)TK(w − 1

n
1), where K is the kernel matrix with

Kij = k(xi, xj). If the radius ε of the uncertainty set is small enough, the constraints

wi ≥ 0 are inactive, and can be ignored. By dropping these constraints, we can solve

the adversary’s problem in closed form:

Lemma 3.5.1. Let ℓ⃗ be the vector with i-th element ℓh(xi). If ε is small enough that

the constraints wi are not active, then the optimal value of problem (3.22) is given by

Ex∼P̂n
[ℓh(x)] + ε

√
ℓ⃗TK−1ℓ⃗− (ℓ⃗TK−11)2

1TK−11 . (3.24)

In other words, fitting a model to minimize the support-constrained approxi-

mation of MMD DRO is equivalent to penalizing by the nonconvex regularizer in

Lemma 3.5.1. To better understand this regularizer, consider, for instance, the case

that the kernel matrix K equals the identity I. This will happen e.g. for a Gaussian

kernel as the bandwidth σ approaches zero. Then, the regularizer equals

ε

√
ℓ⃗TK−1ℓ⃗− (ℓ⃗TK−11)2

1TK−11 = ε

√
ℓ⃗T ℓ⃗− (ℓ⃗T 1)2

1T 1 = ε
√
n
√

VarP̂n
(ℓh). (3.25)

In fact, this equivalence holds a bit more generally:

Lemma 3.5.2. Let K = aI+b11T , so that Kij equals a if i = j, and b+a otherwise.

Then, √
ℓ⃗TK−1ℓ⃗− (ℓ⃗TK−11)2

1TK−11 = a−1/2
√
n
√

VarP̂n
(ℓh). (3.26)

As a consequence, we conclude that with the right choice of kernel k, MMD DRO

is a stronger regularizer than variance:

40

100 101 102 103

Regularizer strength λ for ‖h2‖H

0.01

0.02

0.03

0.04

P
op

u
la

ti
on

R
M

S
E

‖h‖2H
‖h2‖H

10−2 10−1 100 101

Regularizer strength λ for ‖h‖2H

10−1 100 101 102 103

Regularizer strength λ for ‖h2‖H

0.3

0.4

0.5

P
op

u
la

ti
on

R
M

S
E ‖h‖2H

‖h2‖H

10−2 10−1 100 101 102

Regularizer strength λ for ‖h‖2H

Figure 3-2: Comparison of the two regularizers ‖h‖2σ and ‖h2‖σ/√2 in both the easy
(left) and hard (right) settings, across a parameter sweep of λ. The x-axis is shifted
to make comparison easier.

Theorem 3.5.1. There exists a kernel k so that MMD DRO bounds the variance

regularized problem:

Ex∼P̂n
[ℓh(x)] ≤ Ex∼P̂n

[ℓh(x)] + ε
√
n
√

VarP̂n
(ℓh) ≤ sup

Q:dMMD(Q,P̂n)≤ε

[ℓh(x)].

(3.27)

3.6 Experiments

3.6.1 Alternate regularizer

In subsection 3.4.3 we proposed an alternate regularizer for kernel ridge regression,

specifically, penalizing ‖h2‖σ/√2 instead of ‖h‖2σ. Here we probe the new regularizer

on a synthetic problem where we can precisely compute the population risk RP(h).

Consider the Gaussian kernel kσ with σ = 1. Fix the ground truth h = kσ(1, ·) −

kσ(−1, ·) ∈ Hσ. Sample 104 points from a standard one dimensional Gaussian, and

set this as the population P. Then subsample n points xi = h(xi) + εi, where εi are

Gaussian. We consider both an easy regime, where n = 103 and Var(εi) = 10−2,

and a hard regime where n = 102 and Var(εi) = 1. On the empirical data, we fit

h ∈ Hσ by minimizing square loss plus either λ‖h‖2σ (as is typical) or λ‖h2‖σ/√2 (our

proposal). We average over 102 resampling trials for the easy case and 103 for the hard

41

case, and report 95% confidence intervals. Figure 3-2 shows the result in each case

for a parameter sweep over λ. If λ is tuned properly, the tighter regularizer ‖h2‖σ/√2

yields better performance in both cases. It also appears the regularizer ‖h2‖σ/√2 is

less sensitive to the choice of λ: performance decays slowly when λ is too low.

3.6.2 Conjecture: generalizing beyond Gaussian kernels

One limitation of our DRO-based kernel ridge regression bounds is that they apply

only for Gaussian kernels. Our proof relies on the fact that, for any bandwidth σ,

we can find a smaller bandwidth σ′ so that ‖h2‖σ′ ≤ ‖h‖2σ. For Gaussian kernels,

Theorem 3.4.1 implies we can choose σ′ = σ/
√
2, but at present, we lack similar

theoretical results for other kernels.

In this subsection we give empirical evidence that such results may hold for popular

kernels. In particular, we study the Laplace and Matérn kernels. The Laplace kernel

is defined by kσ(x, y) = exp(−‖x− y‖/σ); the Matérn kernel is defined by kσ(x, y) =

21−ν

Γ(ν)

(√
2ν ∥x−y∥

σ

)ν
Kν

(√
2ν ∥x−y∥

σ

)
, where Kν is a modified Bessel function, and ν ≥ 0

is a parameter most commonly set to 1.5 or 2.5.

One major difficulty in proving such a bound is computing the norm ‖h2‖σ′ .

Computing the RKHS norm ‖f‖H of a function f is easiest when we are given the

expansion f =
∑

i aik(xi, ·), in which case we can compute the norm in closed form.

But for f = h2 we do not in general have such an expansion. Instead, we numerically

estimate the norm ‖h2‖σ′1 and empirically validate the bound.

Scaling the bandwidth, and functions with two term expansions

We focus on one-dimensional functions defined on R. First, for each kernel (Laplace;

Matérn with ν = 1.5, 2.5), we numerically compute the scaling factor C = σ′/σ

so that ‖kσ(0, ·)2‖σ′ ≤ ‖kσ(0, ·)‖2σ; these results are summarized in Figure 3-3. For

Matérn kernels, we suspect that, as ν increases, the required scaling factor should
1This is done via approximating the Fourier transform F [h2] of h2, and using the fact that, for

shift-invariant kernels k, the norm ‖f‖2H =
∫
ω
|F [f(ω)]|2/F [k(ω)] dω, up to a constant that depends

on how the Fourier transform is defined. Numerically estimating this integral leads to an estimate
of ‖h2‖σ′ .

42

Figure 3-3: Estimates of the ratio σ′/σ needed so that ‖kσ(0, ·)2‖σ′ ≤ ‖kσ(0, ·)‖2σ.

Laplace Matérn, ν = 1.5 Matérn, ν = 2.5
Bandwidth scale factor 0.5 ≈ 0.648 ≈ 0.678

0 π/2 π

Angle θ

0.0

0.5

1.0

R
at

io
||h

2
|| σ
′ /
||h
||2 σ

Laplace kernel

σ = 2

σ = 1

σ = 1/2

0 π/2 π

Angle θ

0.0

0.5

1.0

R
at

io
||h

2
|| σ
′ /
||h
||2 σ

Matérn kernel, ν = 1.5

σ = 2

σ = 1

σ = 1/2

0 π/2 π

Angle θ

0.0

0.5

1.0

R
at

io
||h

2
|| σ
′ /
||h
||2 σ

Matérn kernel, ν = 2.5

σ = 2

σ = 1

σ = 1/2

Figure 3-4: Study of the ratio ‖h2‖σ′/‖h‖2σ across different kernels and bandwidths
σ, for functions of the form h = cos θ kσ(0, ·) + sin θ kσ(1, ·). The ratio never exceeds
1, implying ‖h2‖σ′ ≤ ‖h‖2σ for all functions of this form.

approach 1/
√
2 ≈ 0.707; this is because as ν increases, the Matérn kernel approaches

the Gaussian kernel, for which we already proved that 1/
√
2 suffices. Through the rest

of this section, we fix the scaling factor for each kernel in accordance with Figure 3-3,

e.g. σ′ = σ/2 for the Laplace kernel.

Then, we study the inequality ‖h2‖σ′ ≤ ‖h‖2σ for all functions h with two terms in

their expansion: h = a1kσ(x1, ·)+a2kσ(x2, ·). By shift-invariance, instead of varying x1

and x2, we can set x1 = 0 and x2 = 1 and vary the bandwidth σ. And because norms

are positively homogeneous, it suffices to study weights a = (a1, a2) with ‖a‖2 = 1. We

parameterize such functions in terms of an angle θ: h = cos θ kσ(0, ·)+sin θ kσ(1, ·). In

Figure 3-4 we plot the ratio ‖h2‖σ′/‖h‖2σ as a function of θ. The numerical estimates

of this ratio never exceed 1 for any of the three kernels, meaning the inequality

empirically holds for all.

Random functions with ten term expansions

The next logical step is to study functions h with more terms in their expansion.

As the number of terms increases, it becomes more difficult to systematically check

every such function (as we did for the two term case). Instead, we randomly sample

functions. Specifically, here we study functions with ten terms centered at {1, . . . , 10}:

h =
∑10

i=1 aikσ(i, ·). For each kernel, we randomly sample 104 such functions by

43

0

4

σ = 8

0

4

σ = 4

0

4

σ = 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

4

σ = 1

0.0 0.2 0.4 0.6 0.8 1.0
Ratio ||h2||σ′/||h||2σ

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Laplace kernel

Figure 3-5: Distribution of ratio ‖h2‖σ′/‖h‖2σ for randomly sampled functions h, for
Laplace kernels with different bandwidths σ ∈ {1, 2, 4, 8}.

sampling each coefficient ai from a standard Gaussian. We repeat for several different

bandwidths σ, and plot histograms of the ratio ‖h2‖σ′/‖h‖2σ.

Our histograms for the Laplace kernel are displayed in Figure 3-5, and those for

the Matérn kernels are in Figure 3-6. For the Laplace kernel, the maximum value of

the ratio observed was about 0.99, meaning that the inequality always held. Between

the two Matérn kernels, we observe a maximum ratio value of about 1.006. While

this ratio is slightly greater than 1, the discrepancy could be attributed to error in

our numerical estimate either of ‖h2‖σ′ or of the scaling factor σ′/σ.

One notable trend present in Figures 3-5 and 3-6 is that, as the bandwidth σ

increases, the distribution of the ratio ‖h2‖σ′/‖h‖2σ skews higher towards 1. In other

words, ‖h2‖σ′ and ‖h‖2σ tend to be more similar when the bandwidth σ is larger.

This pattern suggests that using the new regularizer ‖h2‖σ′ should result in more

different behavior when σ is small. However, in practice, when data is limited and

better regularization would matter most, large bandwidths σ tend to work better

due to their regularizing effect. The interplay between the new regularizer and the

bandwidth is an interesting direction for future study.

44

0

12

σ = 8

0

4

σ = 4

0

4

σ = 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

4

σ = 1

0.0 0.2 0.4 0.6 0.8 1.0
Ratio ||h2||σ′/||h||2σ

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Matérn kernel, ν = 1.5

0

20

σ = 8

0

4

σ = 4

0

4

σ = 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

4

σ = 1

0.0 0.2 0.4 0.6 0.8 1.0
Ratio ||h2||σ′/||h||2σ

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Matérn kernel, ν = 2.5

Figure 3-6: Distribution of ratio ‖h2‖σ′/‖h‖2σ for randomly sampled functions h, for
Matérn kernels with different bandwidths σ ∈ {1, 2, 4, 8}. Top and bottom are plots
for Matérn kernels with ν set to 1.5 and 2.5, respectively.

45

3.7 Discussion and future work

In this chapter we introduce MMD DRO, distributionally robust optimization with

maximum mean discrepancy uncertainty sets. We prove fundamental structural re-

sults and upper bounds for MMD DRO, and unearth deep connections, in particular

to Gaussian kernel ridge regression and variance regularization.

Several open questions remain. In terms of theory, our MMD DRO approach to

generalization bounds leaves much new ground to explore. In particular, we conjecture

that our approach might also work for ridge regression with non-Gaussian kernels;

this conjecture is supported by our experiments in Section 3.6.2. Practically, there is

also much left to do to make MMD DRO a general purpose tool. We have presented

two approximations of MMD DRO, each with strengths and drawbacks: the upper

bound in Corollary 3.3.2 enables our kernel ridge regression generalization bound, but

is potentially loose, and is difficult to use more generally because the Hilbert norm is

tricky to compute; the discrete approximation in Section 3.5 is more practical, and in

fact has already seen application in Bayesian Optimization (Kirschner et al., 2020),

but is not an upper bound on the MMD DRO problem. Future work could address

these drawbacks, or potentially develop a tractable exact reformulation of the DRO

problem.

46

Part II

Algorithms for distributionally

robust subset selection

47

48

Chapter 4

Submodularity background

In work described in Part I we strengthen the bond between DRO and generaliza-

tion in machine learning. Now, we take this bond as motivation to build algorithms

for solving DRO problems. For convex objectives, there are classic convex reformu-

lations available for many robust optimization problems; see e.g. (Bertsimas et al.,

2011). DRO problems are more challenging because often the adversary searches

over the infinite dimensional space of distributions; still, for convex objectives, there

are tractable finite reformulations (Shafieezadeh Abadeh et al., 2015; Blanchet et al.,

2019; Mohajerin Esfahani and Kuhn, 2018). But for non-convex problems, even when

there is a tractable reformulation available e.g. (Sinha et al., 2018), it is not possible

to guarantee solution quality due to non-convexity.

Instead of trying to tackle general non-convex DRO, we will focus on a special,

promising subcase: DRO problems involving submodular objective functions.

4.1 Submodular set functions

Submodular set functions have natural applications in many facets of machine learn-

ing and related areas, e.g. dictionary learning (Das and Kempe, 2011), influence

maximization (Kempe et al., 2003; Domingos and Richardson, 2001), data summa-

rization (Lin and Bilmes, 2011), probabilistic modeling (Djolonga and Krause, 2014)

and diversity (Kulesza and Taskar, 2012).

49

4.1.1 Definitions

Submodular set functions in particular are the most studied. Given a ground set of

items V , we say a set function is a function f defined on the powerset 2V of V . For

set functions, submodularity can be captured by two equivalent definitions:

Definition 4.1.1 (Submodular set functions). A set function f : 2V → R is submod-

ular if, for all S, T ⊆ V , it holds that

f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T). (4.1)

Equivalently, f is submodular if, for all S and T satisfying S ⊆ T ⊆ V , and for all

i ∈ V \ T , it holds that

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T). (4.2)

Equation (4.2) is known as the diminishing returns (DR) property. As the set S

grows, the marginal gain of adding a new item i decreases, i.e. there are diminishing

returns. Additionally, if −f is submodular, we say that f is supermodular.

4.1.2 Optimization

Many optimization problems involving submodular set functions admit efficient algo-

rithms with theoretical guarantees on performance. Here, we briefly highlight some

such guarantees, for submodular set function maximization and minimization.

Maximization

Perhaps the most common example of a submodular maximization problem is mono-

tone submodular maximization under a cardinality constraint, i.e. maxS:|S|≤k f(S).

Here, f is monotone, i.e. f(S) ≤ f(T) whenever S ⊂ T . The greedy algorithm

admits a (1 − 1/e) approximation ratio, shown in classic work by Nemhauser et al.

(1978). Much work has gone into speeding up the greedy algorithm in practice, e.g.

50

accelerated variants (Minoux, 1978), stochastic approximations (Mirzasoleiman et al.,

2015) and distributed variants (Mirzasoleiman et al., 2016).

The same (1 − 1/e) approximation ratio can also be attained with more general

matroid constraints (Vondrak, 2008), by using a continuous version of the greedy

algorithm (Calinescu et al., 2011). This continuous algorithm is more expensive but

can also be accelerated, as we will review in Chapter 5. Many other submodular

maximization problems also admit guarantees. For example, Feige et al. (2011) gave

a deterministic 1/3 approximation for non-monotone unconstrained submodular max-

imization, while Buchbinder et al. (2015) gave a randomized 1/2 approximation for

the same problem.

Minimization

Submodular minimization has rich connections to convex optimization. Given a set

function f : 2V → R, one can define an extension f̂ : R|V | → R, known as the Lovász

extension, so that f is submodular if and only if f̂ is convex (Lovász, 1983, Proposition

4.1). Among other foundational contributions, Edmonds (1970) showed how to

efficiently compute subgradients of the Lovász extension. Grötschel et al. (1981) gave

the first polynomial time algorithm for submodular set function minimization, based

on applying the ellipsoid method to the Lovász extension. Combinatorial algorithms

with polynomial time guarantees came later (Schrijver, 2000; Iwata et al., 2001).

Recent work (Lee et al., 2015; Chakrabarty et al., 2017; Axelrod et al., 2020) has

pushed the theoretical time complexity down even further.

In practice, the Fujishige-Wolfe algorithm (Wolfe, 1976; Fujishige, 2005) is a popu-

lar choice despite worse guarantees, though these have been improved recently (Chakrabarty

et al., 2014). Much work has sought faster practical performance for special cases, e.g.

separable problems (Jegelka et al., 2013). For further background, we recommend the

monograph by Bach (2013).

51

4.2 General submodular functions

While submodular set functions are the best studied, the concepts of submodularity

and diminishing returns (DR) can also be generalized beyond set functions. These

concepts extend readily to functions on the integer lattice, and even to continuous

domains. We will introduce two generalizations, namely (general) submodular and

DR-submodular functions.

These generalizations are actually of great practical relevance for set function

optimization. Many algorithms for submodular set function maximization actually

depend on DR-submodular maximization. And many algorithms for submodular set

function minimization readily extend to more general domains.

4.2.1 Definitions: submodular functions and DR functions

When we generalize beyond sets, the situation becomes more complicated, because

there are multiple ways to generalize submodularity. Recall that there are two equiv-

alent ways of defining submodular set functions: submodularity, i.e. Equation (4.1);

and diminishing returns (DR), i.e. Equation (4.2). Though these coincide for set

functions, for more general domains, DR is actually more restrictive than submodu-

larity. Some optimization results apply for all (general) submodular functions, but

some only hold for DR functions. We must therefore give two separate definitions.

First, we generalize submodularity, i.e. Equation (4.1). To do this, we need a suit-

able generalization of union and intersection. Distributive lattices are structures that

admit such generalizations, where union (∪) is replaced by join (∨), and intersection

(∩) is replaced by meet (∧). For this thesis, we restrict our attention to domains that

are subsets of the integer lattice or of Rd, and where x∨y denotes the coordinate-wise

maximum and x ∧ y the coordinate-wise minimum:

Definition 4.2.1 (Submodular functions). A function f : X → R is submodular if

for all x, y ∈ X , it holds that

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y). (4.3)

52

Note that set functions are a special case: set X = {0, 1}|V | and encode sets S

by their indicator vectors 1S ∈ X . If f is defined on a subset of Rd and is twice-

differentiable, the property of submodularity means that all off-diagonal entries of

the Hessian are nonpositive, i.e., ∂f(x)
∂xi∂xj

≤ 0 for all i 6= j (Topkis, 1978, Theorem 3.2).

These functions may be convex, concave, or neither. We will return in Chapter 6 to

general submodular functions.

Second, we consider functions which instead satisfy a general version of the DR

property. These are called DR-submodular functions:

Definition 4.2.2 (DR-submodular functions). A function f : X → R is DR-submodular

if, for all x ≤ y ∈ X , i ∈ [n], and γ > 0 so that x+ γei and y + γei are still in X , we

have f(x+ γei)− f(x) ≥ f(y + γei)− f(y).

Note that DR-submodularity implies submodularity, so DR-submodular functions

are a subclass of submodular functions. If f is twice-differentiable, DR-submodularity

implies that all entries of the Hessian are nonpositive, i.e. ∂f(x)
∂xi∂xj

≤ 0 for all i and j.

DR-submodularity will be crucial to the optimization results in Chapter 5.

There are a number of other connections and alternate characterizations of sub-

modular and DR-submodular functions; we recommend the thesis of Bian (2019) for

more detail.

4.2.2 Optimization

Submodular functions on lattices can be minimized by a reduction to set functions,

more precisely, ring families (Birkhoff, 1937). Combinatorial algorithms for submodu-

lar optimization on lattices are discussed in (Khachaturov et al., 2012). More recently,

Bach (2019) extended results based on the convex Lovász extension, by building on

connections to optimal transport, in order to give a continuous algorithm for general

submodular minimization. Based on the connections made by Bach (2019), Axel-

rod et al. (2020) recently gave a faster continuous algorithm for general submodular

minimization. The subclass of L♮-convex functions admits strongly polynomial time

minimization (Murota, 2003; Kolmogorov and Shioura, 2009; Murota and Shioura,

53

2014), but does not apply to the problems discussed in this thesis.

Similarly, results for submodular maximization extend to integer lattices, e.g.

(Gottschalk and Peis, 2015). Stronger results are possible for DR-submodular func-

tions: many approximation results for the set function case extend (Bian et al., 2017;

Soma and Yoshida, 2015; Soma et al., 2014). Ene and Nguyen (2016) show how to re-

duce DR-submodular optimization to set function optimization, for certain constraint

sets.

4.3 Submodular DRO

As detailed above, submodular functions can be efficiently optimized in many cases,

despite their potential non-convexity. We take this as inspiration towards studying

DRO problems with submodular objectives as a first step towards general non-convex

DRO. Accordingly, we present below a prototypical distributionally robust submodu-

lar optimization problem:

(Submodular DRO) sup
S

inf
Q∈U

Ez∼Q[f(S, z)]. (4.4)

Problem (4.4) is just one possible variation: as there are many tractable submodular

optimization problems, so too are there many submodular DRO problems worthy

of study. We might focus on discrete or continuous domains, or maximization or

minimization. The problems we study in Chapters 5 and 6 represent just a small

fraction of these.

However, it is worth emphasizing that, while many submodular optimization prob-

lems are tractable, it need not follow that submodular DRO problems are too. Sub-

modular DRO problems can be substantially more challenging. One way to under-

stand why is that, unlike convexity, submodularity is not in general preserved under

pointwise maximum or minimum. Moreover, submodular DRO is a special case of

robust submodular optimization, which in some cases is known to be hard to approx-

imate (Krause et al., 2008a). In spite of these challenges, many positive results exist

54

for robust and risk-averse submodular optimization; we review some of these below.

4.3.1 Robust and risk-averse submodular optimization

Robust submodular optimization

Most work on robust submodular optimization has focused on maximization, where

we seek a set S, perhaps subject to some constraints, that solves:

max
S

min
f∈F

f(S). (4.5)

An adversary chooses a submodular objective function f from a set F , which is

typically finite. Though this problem is hard to approximate to any polynomial

factor of |V | (Krause et al., 2008a), positive results are possible with appropriate

relaxations. In particular, there are many algorithms for choosing a near-optimal

distribution of subsets S (Krause et al., 2011; Chen et al., 2017; Anari et al., 2019;

Wilder, 2018a).

Moreover, the above worst-case results due to Krause et al. (2008a) may not apply

when there is more structure in the adversary’s set F of candidate functions. One

example is deletion-robust submodular maximization, where we wish to solve:

max
S:|S|≤k

min
T⊂S:|T |≤t

f(S \ T). (4.6)

Here the adversary can only delete elements from the chosen set S. Studying this

special case separately is crucial, as it actually admits efficient algorithms with con-

stant factor approximation guarantees (Orlin et al., 2016; Bogunovic et al., 2017;

Mirzasoleiman et al., 2016; Kazemi et al., 2018). Another specific problem that

has attracted attention is robust influence maximization (Chen et al., 2016; He and

Kempe, 2016; Lowalekar et al., 2016; Kalimeris et al., 2019).

55

Risk-averse submodular optimization

Besides robust optimization, there are other approaches to encourage risk-aversion in

stochastic decision making. For example, instead of optimizing an expectation, one

might optimize value-at-risk (VaR) or conditional value-at-risk (CVaR) (Rockafellar

and Uryasev, 2000, 2002), which capture tail performance. While risk-averse versions

of modular (linear) set function optimization admit tractable optimization, in par-

ticular for robust (Bertsimas and Sim, 2003) and CVaR (Nikolova, 2010) variants,

submodular objectives do not in general admit such optimization (Maehara, 2015).

However, variants and relaxations of submodular CVaR problems admit approxima-

tions (Ohsaka and Yoshida, 2017; Wilder, 2018b).

4.3.2 Submodular optimization with errors

Beyond robust and risk-averse formulations of submodular problems, other work has

focused on the sensitivity of submodular optimization algorithms to noise and errors.

Hassidim and Singer (2017) give positive results for submodular maximization with

stochastic errors, but also prove hardness in the case of adversarial errors. Balkanski

et al. (2017) prove hardness results for general submodular maximization in a more

difficult setting, where we see the function value only on randomly sampled subsets.

Conversely, Balkanski et al. (2016) give positive results for this problem for functions

with bounded curvature. There is also work studying submodular minimization with

errors (Halabi and Jegelka, 2019; Ito, 2019).

56

Chapter 5

Distributionally robust

submodular maximization

5.1 Introduction

In Chapter 4 we have seen that submodular functions have wide application and have

good properties for optimization. Most of these results are for generic submodular

functions that admit an evaluation oracle. However, in many settings the submod-

ular function we wish to optimize has additional structure, which may present both

challenges and an opportunity to do better.

In particular, we focus on the problem of stochastic submodular optimization

(SSO), which has recently gained much attention. In SSO, we wish to choose a

set S, subject to e.g. a cardinality constraint |S| ≤ k, in order to maximize fP(S) :=

Ef∼P[f(S)] for some distribution P. Note that SSO is a particular instantiation of the

fundamental problem of stochastic optimization discussed in Chapter 1. Stochastic

submodular optimization encompasses many problems, e.g. influence maximization

and facility location. Much recent work has focused on more computationally effi-

cient gradient-based algorithms for SSO (Karimi et al., 2017; Mokhtari et al., 2018a;

Hassani et al., 2017; Karbasi et al., 2019; Zhang et al., 2019). However, none of this

work accounts for uncertainty in the distribution P. We typically lack direct access

to P, and instead may have only a fixed set of samples f1, . . . , fn from P that form

57

an empirical distribution P̂n. Prior work on SSO does not address this gap.

The problem we consider is: how can we, given only P̂n, efficiently select a subset

S that has good performance on P? Or, more generally, how can we solve SSO

problems given obscured or perturbed access to P? This challenge strongly resembles

statistical learning, as studied e.g. in Chapter 3. Work on SSO so far has largely

ignored this aspect of SSO, and instead focused on optimizing the empirical estimate

fP̂n
= 1

n

∑n
i=1 fi, akin to empirical risk minimization. While this works well when

n is large and fP̂n
≈ fP, for small n, it may be possible to do better. In statistical

learning, when n is small, one can often achieve better performance on the population

P by regularizing the model (analagous in this setting to the decision S). However,

it is not obvious how to select a regularizer in this setting. In statistical learning,

norm penalties (e.g. the norm of the weights of a linear model) are perhaps the most

common regularizer. But it is not clear how to port those over to our SSO setting,

since our decision S is already constrained: |S| ≤ k.

The astute reader may already (correctly) suspect that we will propose to use DRO

to protect against this gap between P and P̂n. For generic stochastic optimization, we

have strongly advocated in Chapters 2 and 3 for DRO as a way of dealing with such

perturbations. It especially makes sense for SSO, since it is not clear how otherwise

to regularize the problem. Of the DRO options available, DRO with χ2 uncertainty

sets seems the most sensible. The other alternatives, namely Wasserstein and MMD,

would force us to develop geometry on the space of submodular functions f ; this may

be fruitful for special cases, but our focus here is general SSO.

DRO with χ2 uncertainty sets is especially popular due to its connection with

variance regularization (per section 2.2). By variance regularization, we mean that

we use the variance of f(S) on P̂n as a data-dependent regularizer, and optimize

fP̂n
(S) − C1

√
VarP̂n

(f(S))/n. In studying SSO, both the DRO viewpoint and the

variance regularization viewpoint will be crucial, because both are intuitive but also

challenging. Variance regularization is easy to motivate: when the variance is high,

it dominates a standard high-probability lower bound on the population performance

fP(S), which is the quantity we actually want to optimize. However, it seems difficult

58

to give optimization guarantees for the variance regularized problem, since even if all

fi are submodular, their variance need not be (see Fact 5.2.1; Fact 6.2.1 in the next

chapter is also related). On the other hand, for DRO, we have provided substantial

motivation in the preceding chapters. However, a priori, the DRO reformulation of

variance regularization could also be difficult, due to the hardness of robust submod-

ular maximization discussed in Section 4.3.1.

In this chapter we show, perhaps surprisingly, that variance-regularized submod-

ular maximization is both tractable and scalable. We give a theoretically-backed

algorithm for distributionally robust submodular optimization with χ2 uncertainty

sets. Our algorithm substantially improves over a naive application of previous ap-

proaches for robust submodular problems. Along the way, we develop improved tech-

nical results for general (non-submodular) DRO problems, including both improved

algorithmic tools and more refined structural characterizations of the problem. For

instance, we give a more complete characterization of the relationship between χ2

DRO and variance regularization. We verify empirically that in many real-world set-

tings, variance regularization enables better generalization from fixed samples of a

stochastic submodular function, particularly when the variance is high.

5.1.1 Related work

We build on and significantly extend a recent line of research in statistical learning

and optimization that develops a relationship between distributional robustness and

variance-based regularization (Maurer and Pontil, 2009; Gotoh et al., 2018; Lam, 2016;

Duchi et al., 2016; Namkoong and Duchi, 2017). While previous work has uniformly

focused on the continuous (and typically convex) case, here we address combinatorial

problems with submodular structure, requiring further technical developments. As

a byproduct, we better characterize the behavior of the DRO problem under low

sample variance (which was left open in previous work), show conditions under which

the DRO problem becomes smooth, and provide improved algorithmic tools which

apply to general DRO problems.

Another related area is robust submodular optimization, which we discuss in Sec-

59

tion 4.3.1. Existing work aims to maximize the minimum of a set of submodular func-

tions, but does not address the distributionally robust optimization problem where

an adversary perturbs the empirical distribution. We develop scalable algorithms, ac-

companied by approximation guarantees, for this case. Our algorithms improve both

theoretically and empirically over naive application of previous robust submodular

optimization algorithms to DRO. Further, our work is motivated by the connection

between distributional robustness and generalization in learning, which has not previ-

ously been studied for submodular functions. Stan et al. (2017) study generalization

in a related combinatorial problem, but they do not explicitly balance bias and vari-

ance, and the goal is different: they seek a smaller ground set which still contains a

good subset for each user in the population.

A complementary line of work concerns stochastic submodular optimization (Karimi

et al., 2017; Mokhtari et al., 2018a; Hassani et al., 2017; Karbasi et al., 2019; Zhang

et al., 2019) that, as opposed to our setting, requires a sampling oracle for the under-

lying function. We draw from stochastic optimization tools, but assume only a fixed

dataset is available.

Our motivation also relates to optimization from samples, where we have access to

values of a fixed unknown function on inputs sampled from a distribution. Balkanski

et al. (2017, 2016) prove hardness results for general submodular maximization from

samples, with positive results for functions with bounded curvature. We address

a different model where the underlying function itself is stochastic and we observe

realizations of it. Hence, it is possible to well-approximate the optimization problem

from polynomially many samples. The challenge is to construct algorithms that make

more effective use of data.

60

5.2 Stochastic submodular functions and distribu-

tional robustness

Refer to Chapter 4 for background on submodular functions and optimization. We

call a set function f : 2V → R monotone if S ⊆ T implies f(S) ≤ f(T). Let P be a

distribution over monotone submodular functions f . We assume that each function is

normalized and bounded, i.e., f(∅) = 0 and f(S) ∈ [0, B] almost surely for all subsets

S. We seek a subset S that maximizes

fP(S) := Ef∼P[f(S)] (5.1)

subject to some constraints, e.g., |S| ≤ k. We call the function fP(S) a stochastic

submodular function. Such functions arise in many domains; we begin with two

specific motivating examples.

5.2.1 Stochastic submodular functions

Influence Maximization. Consider a graph G = (V,E) on which influence prop-

agates. We seek to choose an initial seed set S ⊆ V of influenced nodes to maximize

the expected number subsequently reached. Each edge can be either active, meaning

that it can propagate influence, or inactive. A node is influenced if it is reachable from

S via active edges. Common diffusion models specify a distribution of active edges,

e.g., the Independent Cascade Model (ICM), the Linear Threshold Model (LTM),

and generalizations thereof. Regardless of the specific model, each can be described

by the distribution of “live-edge graphs” induced by the active edges E (Kempe et al.,

2003). Hence, the expected number of influenced nodes f(S) can be written as an ex-

pectation over live-edge graphs: fIM(S) = EE [f(S; E)]. The distribution over live-edge

graphs induces a distribution P over functions f as in equation (5.1).

Facility Location. Fix a ground set V of possibile facility locations j. Suppose

we have a (possibly infinite as in (Stan et al., 2017)) number of demand points i

61

drawn from a distribution D. For example, each i may correspond to a user sampled

from a population D. The goal of facility location is to choose a subset S ⊂ V that

covers the demand points as well as possible. Each demand point i is equipped with

a vector ri ∈ R|V | describing how well point i is covered by each facility j. We wish

to maximize: ffacloc(S) = Ei∼D
[
maxj∈S r

i
j

]
. Each f(S) = maxj∈S rj is submodular,

and D induces a distribution P over the functions f(S) as in equation (5.1).

5.2.2 Optimization and empirical approximation

Two main issues arise with stochastic submodular functions. First, simple techniques

such as the greedy algorithm become impractical since we must accurately compute

marginal gains. Recent alternative algorithms (Karimi et al., 2017; Mokhtari et al.,

2018a; Hassani et al., 2017) make use of additional, specific information about the

function, such as efficient gradient oracles for the multilinear extension. A second issue

has so far been neglected: the degree of access we have to the underlying function (and

its gradients). In many settings, we only have access to a limited, fixed number of

samples, either because these samples are given as observed data or because sampling

the true model is computationally prohibitive.

Formally, instead of the full distribution P, we have access to an empirical dis-

tribution P̂n composed of n samples f1, . . . , fn ∼ P. One approach is to optimize

fP̂n
= Ef∼P̂n

[f(S)] =
1

n

∑n

i=1
fi(S), (5.2)

and hope that fP̂n
adequately approximates fP. This is guaranteed when n is suffi-

ciently large. E.g., in influence maximization, for fP̂n
(S) to approximate fP(S) within

error ε with probability 1− δ, Kempe et al. (2015) show that O
(

|V |2
ε2

log 1
δ

)
samples

suffice. To our knowledge, this is the tightest general bound available. Still, it easily

amounts to thousands of samples even for small graphs; in many applications we

would not have so much data.

The problem of maximizing fP(S) from samples greatly resembles statistical learn-

62

ing. Namely, if the fi are drawn iid from P, then we can write

fP(S) ≥ fP̂n
(S)− C1

√
VarP (f(S))

n
− C2

n
(5.3)

for each S with high probability, where C1 and C2 are constants that depend on

the problem. For instance, if we want this bound to hold with probability 1 − δ,

then applying the Bernstein bound (see Appendix B.1) yields C1 ≤
√

2 log 1
δ

and

C2 ≤ 2B
3

log 1
δ

(recall B is an upper bound on f(S)). Given that we have only finite

samples, it would then be logical to directly optimize

fP̂n
(S)− C1

√
VarP̂n

(f(S))/n, (5.4)

where VarP̂n
refers to the empirical variance over the sample. This would allow us to

directly optimize the tradeoff between bias and variance. However, even when each

f is submodular, the variance-regularized objective (5.4) need not be:

Fact 5.2.1. There exists a distribution P of functions f so that each f ∼ P is

submodular, but neither −VarP(f(S)) nor −
√

VarP(f(S)) are submodular.

Proof. Our counterexample uses a uniform distribution over two such functions g, h :

2V → R. In particular, we choose h = 0. Then the variance of the uniform distribution

over g and h is given by:

VarP(f(S)) = Ef∼P[f(S)
2]− Ef∼P[f(S)]

2

=
1

2
g(S)2 +

1

2
· 02 −

(
1

2
g(S) +

1

2
· 0
)2

=
1

4
g(S)2.

Since submodularity is invariant to positive rescaling, it suffices to study g2 in lieu of

VarP(f) and |g| in lieu of
√

VarP(f). In other words, it suffices to find a submodular

function g so that neither −g2 nor −|g| are submodular. For w = (1,−1), the modular

function g(S) =
∑

i∈S wi will do the trick, defined on the ground set V = {0, 1}. The

function g is modular and therefore also submodular. However, |g| is not submodular,

63

because

−|g({0, 1})|+ |g({0})| = 1 6≤ −1 = −|g({1})|+ |g(∅)|. (5.5)

Moreover, since the range of g(S) is {−1, 0, 1}, we have g(S)2 = |g(S)|, so −g2 is not

submodular either.

5.2.3 Variance regularization via distributionally robust op-

timization

While the optimization problem (5.4) is not directly solvable via submodular opti-

mization, we will see next that distributionally robust optimization (DRO) can help

provide a tractable reformulation. In DRO, we seek to optimize our function in the

face of an adversary who perturbs the empirical distribution within an uncertainty

set P :

max
S

min
Q∈P

Ef∼Q[f(S)]. (5.6)

We focus on the case when the adversary set P is a χ2 ball around the empirical

distribution:

Definition 5.2.1. The χ2 divergence between distributions P and P̃ is Dϕ(P||P̃) =
1
2

∫ (
dP/dP̃− 1

)2
dP̃. The χ2 uncertainty set around an empirical distribution P̂n

is Pρ,n = {Q : Dϕ(Q||P̂n) ≤ ρ/n}. When P̂n corresponds to an empirical sample

Z1, . . . , Zn, we encode Q by a vector p in the simplex ∆n and equivalently write

Pρ,n =
{
p ∈ ∆n : 1

2
‖np− 1‖22 ≤ ρ

}
.

In particular, maximizing the variance-regularized objective (5.4) is equivalent to

solving a distributionally robust problem when the sample variance is high enough.

The intuition behind this equivalence is that the χ2 ball is a quadratic ball in the

simplex, and the variance penalty is also quadratic. More formally:

Theorem 5.2.1 (modified from (Namkoong and Duchi, 2017)). Fix ρ ≥ 0, and let

Z ∈ [0, B] be a random variable (i.e. Z = f(S)). Write s2n = VarP̂n
(Z) and let

64

OPT = infQ∈Pρ,n EQ[Z]. Then

max
{
0,

√
2ρ

n
s2n −

2Bρ

n

}
≤ EP̂n

[Z]−OPT ≤
√

2ρ

n
s2n.

Moreover, if s2n ≥ 2ρ(maxi zi−zn)
2/n, then OPT = EP̂n

[Z]−
√
2ρs2n/n, i.e., χ2-DRO

is exactly equivalent to variance regularization.

In several settings, Namkoong and Duchi (2017) show this holds with high prob-

ability, by requiring high population variance VarP(Z) and applying concentration

results to show the empirical variance VarP̂n
(Z) is high enough. While Theorem 5.2.1

is a direct port from the convex setting, the corresponding high probability result for

submodular functions is more involved:

Lemma 5.2.1. Fix parameters δ, ρ, |V | and k ≥ 1, and define the constant M by:

M = max
{√

32ρ/7,
√

36 (log (1/δ) + |V | log(1 + 24k))
}
.

For all S with |S| ≤ k and VarP(fP(S)) ≥ B√
n
M , χ2-DRO is exactly equivalent to

variance regularization with combined probability at least 1− δ.

This result is obtained as a byproduct of a more general argument that applies

to all points in a fractional relaxation of the submodular problem (see Appendix

B.2) and shows equivalence of the two problems when the population variance is

sufficiently high. However, it is not clear what the DRO problem yields when the

sample variance is too small. We give a more precise characterization of how the

DRO problem behaves under arbitrary variance:

Lemma 5.2.2. Let ρ < n(n − 1)/2. Suppose all z1, . . . , zn are distinct, with z1 <

· · · < zn. Define α(m,n, ρ) = 2ρm/n2 + m/n − 1, and let I = {m ∈ {1, . . . , n} :

65

α(m,n, ρ) > 0}. Then, infQ∈Pρ,n EQ[Z] is equal to

min
m∈I

{
zm −min

{√
α(m,n, ρ)s2m,

s2m
zm − zm

}}
≤ EP̂n

[Z]−min
{√

2ρs2n
n

,
s2n

zn − zn

}
,

where P̂m denotes the uniform distribution on z1, . . . , zm, zm = EP̂m
[Z], and s2m =

VarP̂m
(Z).

The inequality holds since n is always in I and α(n, n, ρ) = 2ρ/n. As in Theo-

rem 5.2.1, when the variance s2n ≥ 2ρ/n · (zn − zn)
2, we recover the exact variance

expansion. We show Lemma 5.2.2 by developing an exact algorithm for linear opti-

mization over the χ2 ball, which we overview in the next section.

Finally, we apply the equivalence of DRO and variance regularization to obtain

a surrogate optimization problem. Fix the set S, and let Z be the random variable

induced by f(S) with f ∼ P. Theorem 5.2.1 in this setting suggests that instead of

directly optimizing equation (5.4), we can instead solve

max
S

min
Q∈Pρ,n

Ef∼Q[f(S)] = max
S

min
p∈Pρ,n

n∑
i=1

pifi(S). (5.7)

We will return to this problem in Section 5.4. First, though, we discuss how to solve

the DRO adversary’s problem efficiently and exactly.

5.3 Exact algorithm for χ2-DRO

In this section we show how to construct an O(n logn) time exact oracle for linear

optimization in the χ2 ball:

minp 〈z, p〉

s.t. 1
2
‖np− 1‖22 ≤ ρ

1Tp = 1

pi ≥ 0, i = 1, . . . , n.

(5.8)

66

Without loss of generality, assume z1 ≤ z2 ≤ · · · ≤ zn. This can be done by sorting

in O(n logn) time.

First, we wish to discard the case where the χ2 constraint is not tight:

Lemma 5.3.1. Let ℓ be the largest integer so that z1 = zℓ, i.e. z1 = · · · = zℓ < zℓ+1.

If ρ ≥ n(n − ℓ)/(2ℓ), then problem (5.8) is solved by p⋆i = 1/ℓ for i = 1, . . . , ℓ.

Otherwise, the χ2 (quadratic) constraint must be tight.

The proof for Lemma 5.3.1 and all other Lemmas in this section can be found in

section B.3 in the appendix. Before proceeding, we define several auxiliary variables

which can all be computed from the problem data in O(n) time:

zj =

j∑
i=1

zi, j = 1, . . . , n (5.9)

bj =

j∑
i=1

z2i , j = 1, . . . , n (5.10)

s2j =
bj
j
− (zj)

2, j = 1, . . . , n. (5.11)

Note that zj and s2j are the mean and variance of {z1, . . . , zj}. Now, we begin by

writing down the Lagrangian of problem (5.8):

L(p, λ, θ, η) = 〈z, p〉+ λ

(
1

2
‖np− 1‖22 − ρ

)
+ θ

(
n∑

i=1

pi − 1

)
− 〈η, p〉, (5.12)

with dual variables λ ∈ R+, θ ∈ R, and η ∈ Rn
+. By the KKT conditions, an optimal

assignment p⋆, λ⋆, θ⋆, η⋆ must satisfy

0 = ∇pL(p⋆, λ⋆, θ⋆, η⋆) = z + λ⋆n(np⋆ − 1) + θ⋆1− η⋆, (5.13)

or, equivalently,

λ⋆n2p⋆i = λ⋆n− zi − θ⋆ + η⋆i . (5.14)

67

By complementary slackness, either η⋆i > 0, in which case p⋆i = 0, or η⋆i = 0 and

λ⋆n2p⋆i = λ⋆n− zi − θ⋆. (5.15)

Since z1 ≤ · · · ≤ zn, it follows that p⋆i decreases as i increases until eventually p⋆i = 0.

Hence there exists m so that for i = 1, . . . ,m we have p⋆i > 0 and thereafter p⋆i = 0.

Combining this observation with equation (5.15), we can solve for p⋆:

p⋆i =

(
1− (zi + θ⋆)

λ⋆n

)
· 1
n

for i = 1, . . . ,m, (5.16)

and p⋆i = 0 otherwise. (5.17)

Note we can divide by λ⋆ as we have already determined via Lemma 5.3.1 that the

corresponding constraint is tight (and therefore λ⋆ > 0).

It is challenging to compute the value of m in closed form, but fortunately we do

not need to. We can instead search for the best choice of m. For each guess of m,

we can compute in closed form the corresponding optimal values of p⋆, λ⋆, θ⋆ and η⋆.

There are only n possible choices for m, and each can be checked in constant time; at

the end, we can simply pick the best one. As such, for the rest of the results in this

section, we can fix m and assume it is optimal.

Our first step is to solve for θ⋆ as a function of λ⋆:

Lemma 5.3.2. Suppose that λ⋆ is optimal. Then the optimal value of θ⋆ is:

θ⋆ =
(
1− n

m

)
λ⋆n− zm. (5.18)

Since we have solved for θ⋆ as a function of the other variables, we can eliminate

it and express p⋆ purely as a function of λ⋆. As a consequence, we can derive the

objective value in terms of λ⋆:

Lemma 5.3.3. Let λ⋆ be optimal. The optimal solution p⋆ obtains the objective value

〈z, p⋆〉 = zm −
ms2m
λ⋆n2

.

68

Algorithm 1 Linear optimization in χ2 ball
Input: pre-sorted vector z with z1 ≤ · · · ≤ zn
Output: optimal vector p

▷ Check if χ2 constraint is tight
Compute maximum ℓ s.t. z1 = zℓ
if n(n− ℓ)/(2ℓ) ≤ ρ then

return p with pi = 1/ℓ for i ≤ ℓ and pi = 0 otherwise
end if

▷ Since χ2 constraint is tight, now we search for optimal m
zj ← 1

j

∑j
i=1 zi, j = 1, . . . , n

bj ←
∑j

i=1 z
2
i , j = 1, . . . , n

s2j ← bj/j − (zj)
2, j = 1, . . . , n

mmin ← min{m ∈ {1, . . . , n} : α(m,n, ρ) > 0}
λm = 1

n2 ·max
{√

m2s2m
α(m,n,ρ)

, (zm − zm)m
}
, m = mmin, . . . , n

vm ← zm −ms2m/(λmn
2), m = mmin, . . . , n

mopt ← argminm{vm : m = mmin, . . . , n}
θ ←

(
1− n

mopt

)
λmoptn− zmopt

return p = 1
n

max
(
0, 1− zmopt+θ

λmoptn

)

Since ms2m ≥ 0, λ⋆ will be the minimum value of λ such that the induced p is still

feasible. Since the 1Tp = 1 constraint is guaranteed by the choice of θ⋆, to compute

λ⋆ we need only check the χ2 and nonnegativity constraints. As a byproduct, we

derive a simple check to help prune out suboptimal m:

Lemma 5.3.4. If α(m,n, p) > 0, the optimal feasible λ⋆ for this value of m is given

by

λ⋆ =
1

n2
·max

{√
m2s2m

α(m,n, ρ)
, m(zm − zm)

}
. (5.19)

Otherwise, if α(m,n, p) ≤ 0, then m cannot be optimal.

With Lemmas 5.3.3 and 5.3.4 in hand, our strategy is clear: for each m with

α(m,n, ρ) > 0, we compute the optimal dual variables, and then use them to compute

the objective value. At the end, we choose the best value of m, and compute p⋆ via

equation (5.16). Our algorithm is given more formally in Algorithm 1.

69

5.4 Algorithmic approach

Even though each fi(·) is submodular, it is not obvious how to solve Problem (5.7):

robust submodular maximization is in general inapproximable, i.e. no polynomial-

time algorithm can guarantee a positive fraction of the optimal value unless P =

NP (Krause et al., 2008b). Recent work has sought tractable relaxations (Staib and

Jegelka, 2017b; Krause et al., 2008b; Wilder, 2018a; Anari et al., 2019; Orlin et al.,

2016; Bogunovic et al., 2017), but these either do not apply or yield much weaker re-

sults in our setting. We consider a relaxation of robust submodular maximization that

returns a near-optimal distribution over subsets S (as in (Chen et al., 2017; Wilder,

2018a)). That is, we solve the robust problem maxD mini∈[m] ES∼D[fi(S)] where D is

a distribution over sets S. It is not immediately clear how to represent a distribu-

tion over exponentially many subsets. We will later see that optimizing a product

distribution (i.e. via the multilinear extension) is enough. Our strategy, based on

“continuous greedy” ideas, extends the set function f to a continuous function F ,

then maximizes a robust problem involving F via continuous optimization.

Multilinear extension. One canonical extension of a submodular function f to

the continuous domain is the multilinear extension. The multilinear extension F :

[0, 1]|V | → R of f is defined as F (x) =
∑

S⊆V f(S)
∏

i∈S xi

∏
j ̸∈S(1 − xj). That is,

F (x) is the expected value of f(S) when each item i in the ground set is included in

S independently with probability xi. A crucial property of F (that we later return

to) is that it is a continuous DR-submodular function, in the sense of Definition 4.2.2.

Efficient algorithms are available for maximizing DR-submodular functions over

convex sets (Calinescu et al., 2011; Feldman et al., 2011; Bian et al., 2017). Specifi-

cally, we take X to be the convex hull of the indicator vectors of feasible sets. The

robust continuous optimization problem we wish to solve is then

max
x∈X

min
p∈Pρ,n

∑n

i=1
piFi(x). (5.20)

It remains to address two questions: (1) how to efficiently solve Problem (5.20) –

70

existing algorithms only apply to the max, not the maximin version – and (2) how to

then obtain a solution for Problem (5.7).

We address the former question in the next section. For the latter question, given

a maximizing distribution D over subsets, existing techniques (e.g., swap rounding)

can be used to round D to a deterministic subset S with no loss in solution qual-

ity (Chekuri et al., 2010). But our variable x in Problem (5.20) can only express a

limited class of distributions with independent marginals Pr(i ∈ S), not all distribu-

tions D. Fortunately, this discrepancy does not cost us much:

Lemma 5.4.1. Suppose x is an α-optimal solution to Problem (5.20). Then x induces

a distribution D over subsets so that D is (1− 1/e)α-optimal for Problem (5.7).

Our proof involves the correlation gap (Agrawal et al., 2010). It is also possible

to eliminate the (1 − 1/e) gap altogether by using multiple copies of the decision

variables to optimize over a more expressive class of distributions (Wilder, 2018a),

but empirically we find this unnecessary.

Next, we address algorithms for solving Problem (5.20). Since a convex combi-

nation of submodular functions is still submodular, we can see each p as inducing a

submodular function, so Problem (5.20) asks to maximize the minimum of a set of

continuous submodular functions.

Frank-Wolfe algorithm and complications. In the remainder of this section,

we show how Problem (5.20) can be solved with optimal approximation ratio (as

in Lemma 5.4.1) by Algorithm 2, which is based on Frank-Wolfe (FW) (Frank and

Wolfe, 1956; Jaggi, 2013). FW algorithms iteratively move toward the feasible point

that maximizes the inner product with the gradient. Instead of a projection step,

each iteration uses a single linear optimization over the feasible set X ; this is very

cheap for the feasible sets we are interested in (e.g., a simple greedy algorithm for

matroid polytopes). Indeed, FW is currently the best approach for maximizing DR-

submodular functions in many settings. While there are FW algorithms designed for

convex-concave games (Gidel et al., 2017), it is not possible to directly apply these

to the submodular setting while maintaining approximation guarantees.

71

Algorithm 2 Momentum Frank-Wolfe (MFW) for DRO
1: Input: functions Fi, time T , batch size c, parameter ρ, stepsizes ρt > 0
2: x(0) ← 0
3: for t = 1, . . . , T do
4: p(t) ← argmin

p∈Pρ,n

∑n
i=1 piFi(x

(t−1))

5: Draw i1, . . . , ic from {1, . . . , n}
6: ∇̃(t) ← 1

c

∑c
ℓ=1 p

(t)
iℓ
∇Fiℓ(x

(t−1))

7: d(t) ← (1− ρt)d
(t−1) + ρt∇̃(t)

8: v(t) ← argmaxv∈X 〈d(t), v〉
9: x(t) ← x(t−1) + v(t)/T

10: end for
11: return x(T)

Instead, observe that, since the pointwise minimum of concave functions is con-

cave, the robust objective G(x) = minp∈Pρ,n

∑n
i=1 piFi(x) is also DR-submodular.

However, a naive application of FW to G(x) faces several difficulties. First, to eval-

uate and differentiate G(x), we require an exact oracle for the inner minimization

problem over p, whereas past work (Namkoong and Duchi, 2017) gave only an approx-

imate oracle. In comparison, our submodular setting is more delicate, so an inexact

oracle does not suffice: the issue is that two solutions to the inner problem can have

arbitrarily close solution value while also providing arbitrarily different gradients.

Hence, gradient steps with respect to an approximate minimizer may not actually

improve the solution value. To resolve this issue, we provide an exact O(n logn) time

subroutine in Appendix B.3. Compared to previous techniques, our algorithm rests

on a more precise characterization of solutions to linear optimization over the χ2 ball,

which is often helpful in deriving structural results for general DRO problems (e.g.,

Lemmas 5.2.2 and 5.4.2).

Second, especially when the amount of data is large, we would like to use stochastic

gradient estimates instead of requiring a full gradient computation at every iteration.

This introduces additional noise and standard Frank-Wolfe algorithms will require

O(1/τ 2) gradient samples per iteration to cope. Accordingly, we build on a recent

algorithm of Mokhtari et al. (2018a) that accelerates Frank-Wolfe by re-using old

gradient information; we refer to their algorithm as Momentum Frank-Wolfe (MFW).

72

For smooth DR-submodular functions, MFW achieves a (1 − 1/e)-optimal solution

with additive error τ in O(1/τ 3) time. Building off MFW is advantageous versus other

stochastic first-order algorithms for DR-submodular maximization, e.g. Hassani et al.

(2017) achieve suboptimal approximation ratio, and Karimi et al. (2017) focus only

on a subclass of problems. Accordingly, we focus on MFW, and generalize MFW to

the DRO problem by solving the next challenge.

Third, Frank-Wolfe (and MFW) require a smooth objective with Lipschitz-continuous

gradients; this does not hold in general for pointwise minima. Wilder (2018a) gets

around this issue in the context of other robust submodular optimization problems

by replacing G(x) with the stochastically smoothed function Gµ(x) = Ez∼µ[G(x+ z)]

as in (Duchi et al., 2012; Lan, 2013), where µ is a uniform distribution over a ball of

size u. Combined with our exact inner minimization oracle, this yields a (1 − 1/e)

optimal solution to Problem (5.20) with τ error using O(1/τ 4) stochastic gradient

samples. However, this approach results in poor empirical performance for the DRO

problem (as we demonstrate later). We obtain faster convergence, in both theory

and practice, through a better characterization of the DRO problem: we show that

in many cases, we actually obtain a smooth problem,

Smoothness of the robust problem. While general theoretical bounds rely on

smoothing G(x), in practice, MFW without any smoothing performs the best. This

behavior suggests that for real-world problems, the robust objective G(x) may actu-

ally be smooth with Lipschitz-continuous gradient. Via our exact characterization of

the worst-case distribution, we can make this intuition rigorous:

Lemma 5.4.2. Define h(z) = minp∈Pρ,n〈z, p〉, for z ∈ [0, B]n, and let s2n be the sample

variance of z. On the subset of z’s satisfying the high sample variance condition s2n ≥

(2ρB2)/n, h(z) is smooth and has L-Lipschitz gradient with constant L ≤ 2
√
2ρ

n3/2 + 2
Bn

.

Combined with the smoothness of each Fi, this yields smoothness of G.

Corollary 5.4.1. Suppose each Fi is LF -Lipschitz. Under the high sample variance

condition, ∇G is LG-Lipschitz for LG = LF +
2b
√

2ρ|V |
n

+
2b
√

|V |
B
√
n

.

73

For submodular functions, LF ≤ b
√
k, where b is the largest value of a single

item (Mokhtari et al., 2018a). However, Corollary 5.4.1 is a general property of DRO

(not specific to the submodular case), with broader implications. For instance, in

the convex case, we immediately obtain a O(1/τ) convergence rate for the gradient

descent algorithm proposed by Namkoong and Duchi (2017) (previously, the best

possible bound would be O(1/τ 2) via nonsmooth techniques). Our result follows

from more general properties that guarantee smoothness with fewer assumptions (see

Appendices B.3.1, B.3.2). For example:

Fact 5.4.1. For ρ ≤ 1
2
, the robust objective h(z) = min

p∈Pρ,n

〈z, p〉 is smooth when {zi}

are not all equal.

Combined with reasonable assumptions on the distribution of Fi, this means G(x)

is nearly always smooth. Native smoothness of the robust problem yields a significant

runtime improvement over the general minimum-of-submodular case. In particular,

instead of O(1/τ 4), we achieve the O(1/τ 3) rate of the simpler, non-robust submodular

maximization:

Theorem 5.4.1. When the high sample variance condition holds, MFW with no

smoothing satisfies

E[G(x(T))] ≥ (1− 1/e)OPT − 2
√
kQ

T 1/3
− Lk

T

where Q = max{92/3‖∇G(x0)− d0‖, 16σ2+3L2
Gk}; σ is the variance of the stochastic

gradients.

This convergence rate for DRO is almost the same as for a single submodular

function (the non-robust case) (Mokhtari et al., 2018a); only the Lipschitz constant

is different, but this gap vanishes as n grows. It is perhaps surprising that we can

obtain this rate for the robust problem, especially using an algorithm like MFW

which was originally intended for the nonrobust setting. Indeed, previous work on

robust submodular optimization has relied on different techniques; MFW is not an

obvious candidate for DRO. However, as surveyed below, our better characterization

74

of the DRO problem and subsequent ability to leverage MFW yields theoretical and

empirical benefits.

Comparison with previous algorithms Two recently proposed algorithms for

robust submodular maximization could also be used in DRO, but have drawbacks

compared to MFW. Here, we compare their theoretical performance with MFW (we

also show how MFW improves empirically in Section 5.5).

First, Chen et al. (2017) view robust optimization as a zero-sum game and apply

no-regret learning to compute an approximate equilibrium. Their algorithm applies

online gradient descent from the perspective of the adversary, adjusting the distribu-

tional parameters p. At each iteration, an α-approximate oracle for submodular opti-

mization (e.g., the greedy algorithm or a Frank-Wolfe algorithm) is used to compute

a best response for the maximizing player. In order to achieve an α-approximation up

to additive loss τ , the no-regret algorithm requires O(1/τ 2) iterations. However, each

iteration requires a full invocation of an algorithm for submodular maximization.

Our MFW algorithm requires runtime close to a single submodular maximization

call. This results in substantially faster runtime to achieve the same solution solution

quality, as we demonstrate experimentally.

Second, Wilder (2018a) proposes the EQUATOR algorithm, which also applies a

Frank-Wolfe approach to the multilinear extension but uses randomized smoothing.

Our analysis shows smoothing is unnecessary for the DRO problem, allowing our

algorithm to converge using O(1/τ 3) stochastic gradients, while EQUATOR requires

O(1/τ 4). This theoretical gap is reflected in empirical performance: EQUATOR

converges much more slowly, and to lower solution quality, than MFW.

5.5 Experiments

To probe the strength and practicality of our methods, we empirically study the two

motivating problems from Section 5.2: influence maximization and facility location.

We first report performance of distributions x∗ that optimize the multilinear extension

75

or its DRO variant (5.20), and later demonstrate high performance is maintained even

after rounding. DRO improves test performance in all cases. All error bars are 95%

confidence intervals.

5.5.1 Facility Location

Similar to (Mokhtari et al., 2018a) we consider a facility location problem motivated

by recommender systems. We use a music dataset from last.fm (las) with roughly

360000 users, 160000 bands, and over 17 million total records. For each user i, record

rij indicates how many times they listened to a song by band j. We seek a subset of

bands so that the average user likes at least one of the bands, as measured by the

playcounts. More specifically, we fix a collection of bands, and observe a sample of

users; we seek a subset of bands that performs well on the entire population of users.

Here, we randomly sample a subset of 1000 “train” users from the dataset, solve the

DRO and ERM problems for k bands, and evaluate performance on the remaining

≈ 360000 “test” users from the dataset.

Optimization. We first compare MFW to previously proposed robust optimiza-

tion algorithms, applied to the DRO problem with k = 3. Figure 5-1a compares

1. MFW, 2. Frank-Wolfe (FW) with no momentum and 3. EQUATOR (Wilder,

2018a). Naive FW handles noisy gradients poorly (especially with small batches),

while EQUATOR underperforms since its randomized smoothing is not necessary

for our natively smooth problem. We also compared to the online gradient descent

(OGD) algorithm of Chen et al. (2017). OGD achieved slightly worse objective value

than MFW with an order of magnitude greater runtime: OGD required 53.23 min-

utes on average, compared to 4.81 for MFW. EQUATOR and FW had equivalent

runtime to MFW since all used the same batch size and number of iterations. MFW

dominates the alternatives in both runtime and solution quality.

Generalization. Next, we evaluate the effect of DRO on test set performance

across varying set sizes k. Results are averaged over 64 trials for ρ = 10 (corresponding

to probability of failure δ = e−10 of the high probability bound). In Figure 5-1b we

plot the mean percent improvement in test objective of DRO versus optimizing the

76

MFW FW EQUATOR
0

50

100

150

ob
je

ct
iv

e

batch size 60

batch size 5

(a) Algorithm comparison

2 5 10 15 20

k

0

5

10

15

%
im

pr
ov

em
en

t
D

R
O

ov
er

av
g

(b) % improvement via DRO

2 5 10 15 20

k

0

10

20

T
es

t
ob

je
ct

iv
e

va
ri

an
ce

avg

DRO

(c) Test performance variance

Figure 5-1: Algorithm comparison and generalization performance on last.fm dataset.

average. DRO achieves clear gains, especially when the set size k is small. In Figure 5-

1c we show the variance of test performance achieved by each method. DRO achieves

lower variance, meaning that overall DRO achieves better test performance, and with

better consistency.

5.5.2 Influence maximization

As described in Section 5.2, we study an influence maximization problem where we

observe samples of live-edge graphs E1, . . . , En ∼ P. Our setting is challenging for

learning: the number of samples is small and P has high variance. Specifically, P is a

mixture of two different independent cascade models (ICM). In the ICM, each edge e

is (independently) live with probability pe. In our mixture, each edge has pe = 0.025

with probability q and pe = 0.1 with probability 1 − q, mixing between settings of

low and high influence spread. This models the realistic case where some messages

are shared more widely than others. The mixture is not an ICM, as observing the

state of one edge gives information about the propagation probability for other edges.

Handling such cases is an advantage of our DRO approach over ICM-specific robust

influence maximization methods (Chen et al., 2016).

We use the political blogs dataset, a network with 1490 nodes representing links

between blogs related to politics (Adamic and Glance, 2005). Figure 5-2 compares

the performance of DRO and ERM. Figure 5-2a shows that DRO generalizes better,

achieving higher performance on the test set. Each algorithm was given n = 20

training samples, k = 10 seeds, and we set q (the frequency of low influence) to

be 0.1. Test influence was evaluated via a held-out set of 3000 samples from P .

77

2 4 6 8 10

ρ

675

700

725

750

775

T
es

t
in

flu
en

ce

DRO

ERM

(a) Influence on held-out set

0.1 0.2 0.3 0.4 0.5

q

0

100

200

300

R
ar

e
cl

as
s

in
flu

en
ce

DRO

ERM

(b) Rare class held-out perf.

20 50 75

n

0

10000

20000

30000

40000

T
es

t
ob

je
ct

iv
e

va
ri

an
ce DRO

ERM

(c) Test performance variance

Figure 5-2: Influence maximization on political blogs dataset.

Figure 5-2b shows that DRO’s improved generalization stems from greatly improved

performance on the rare class in the mixture (low propagation probabilities). For

these instances, DRO obtains a greater than 40% improvement over ERM in held-

out performance for q = 0.1. As q increases (i.e., the rare class becomes less rare),

ERM’s performance on these instances converges towards DRO. A similar pattern is

reflected in Figure 5-2c, which shows the variance in each algorithm’s influence spread

on the test set as a function of the number of training samples. DRO’s variance is

lower by 25-40%. As expected, DRO’s advantage is greatest for small n, the most

challenging setting for learning.

5.5.3 Rounding

Above, we report results achieved by the optimal distribution x∗ on the multilinear

extension F (x∗) of the relevant stochastic submodular function. But to use our meth-

ods in practice, we eventually need to round x∗ to a single subset S. One might worry

that variabilty from the rounding procedure could erase DRO’s gains. This is not the

case: DRO still performs better empirically, even after rounding.

On the earlier Facility Location problem for k = 4, we compared the optimal

distributions x∗
ERM and x∗

DRO for ERM and DRO. For each, we rounded 500 times to

deterministic sets via swap rounding (Chekuri et al., 2010) and compared the resulting

distributions of test objective values Ef∼P[f(S)] (on a large subsample from the test

set P). Over 64 trials (the stochasticity of MFW leads to different x∗
ERM, x∗

DRO), we

observed that: 1. DRO always achieved better mean performance, on average by

9.3%; 2. DRO achieved lower variance in 88% of trials; 3. for every quantile, DRO

78

was better on at least 73% of trials. We conclude DRO leads to better performance

on the test set, both on F (x∗) and on the original problem after rounding.

5.6 Discussion and future work

In this chapter we address stochastic submodular optimization (SSO), where we wish

to optimize fP(S) = Ef∼P[f(S)]. Unlike prior work, we focus on the setting where only

a finite number of samples f1, . . . , fn ∼ P is available. Instead of simply maximizing

the empirical mean 1
n

∑
i fi, we directly optimize a variance-regularized version which

1. gives a high probability lower bound for fP(S) (generalization) and 2. allows us to

trade off bias and variance in estimating fP. We accomplish this via an equivalent re-

formulation as a distributionally robust submodular optimization problem. Along the

way, we show new results for the relation between distributionally robust optimization

(DRO) and variance regularization. We further give conditions for the uniqueness of

the DRO solution: these are broadly useful for guaranteeing that DRO problems are

smooth. Even though robust submodular maximization is hard in general, as dis-

cussed in Chapter 4, we are able to give efficient approximation algorithms for our

reformulation. Empirically, our approach yields notable improvements for influence

maximization and facility location problems.

The intersection of DRO and submodular optimization is ripe with possibility,

and there are many interesting directions to pursue, one of which we will explore in

Chapter 6. Other types of DRO problems, such as those discussed in Chapters 2

and 3, may also prove tractable and effective in the SSO setting. Other submodular

problems, such as submodular minimization, may admit useful and tractable DRO

reformulations or algorithms. Weaker versions of submodularity, that retain good

optimization properties, may also admit tractable DRO algorithms with guarantees.

We are hopeful that the notion of submodularity will enable the field to further expand

the set of non-convex functions that are amenable to DRO.

79

80

Chapter 6

Robust Budget Allocation

6.1 Introduction

In Chapter 5 we studied a relatively general class of problems, namely stochastic

submodular optimization, and we showed how to improve performance via DRO.

While those results apply to many submodular objectives, in this chapter, we instead

focus on a specific problem, (Robust) Budget Allocation, which is of interest to the

machine learning and data mining communities. While the problem itself is more

narrow, in solving it, we develop techniques in section 6.4 that have wide applicabilty

in constrained submodular minimization.

Our motivation stems from the optimal allocation of resources for maximizing

influence, or spread of information or coverage. These problems have gained attention

in the past few years (Domingos and Richardson, 2001; Kempe et al., 2003; Chen

et al., 2009; Gomez Rodriguez et al., 2012; Borgs et al., 2014). Formally, in the

Budget Allocation Problem, one is given a bipartite influence graph between channels

S and people T , and the task is to assign a budget y(s) to each channel s in S with the

goal of maximizing the expected number of influenced people I(y). We illustrate the

setup in Figure 6-1. Each edge (s, t) ∈ E between channel s and person t is weighted

with a probability pst that, e.g., an advertisement on radio station s will influence

person t to buy some product. The budget y(s) controls how many independent

attempts are made via the channel s to influence the people in T . The probability

81

Radio

TV

Newspaper

y(1)

y(2)

y(3)

pst

S T

Figure 6-1: Bipartite graph demonstrating the setup of the (Robust) Budget Alloca-
tion problem. Each individual on the right can be influenced via any of the channels
on the left. Each edge is weighted with a probability pst representing how susceptible
person t ∈ T is to channel s ∈ S.

that a customer t is influenced when the advertising budget is y is

It(y) = 1−
∏

(s,t)∈E
[1− pst]

y(s), (6.1)

and hence the expected number of influenced people is I(y) =
∑

t∈T It(y). We write

I(y; p) = I(y) to make the dependence on the probabilities pst explicit. The total

budget y must remain within some feasible set Y which may encode e.g. a total

budget limit
∑

s∈S y(s) ≤ C. We allow the budgets y to be continuous, as in (Bian

et al., 2017).

Since its introduction by Alon et al. (2012), several works have extended the

formulation of Budget Allocation and provided algorithms (Bian et al., 2017; Hatano

et al., 2015; Maehara et al., 2015; Soma et al., 2014; Soma and Yoshida, 2015).

Budget Allocation may also be viewed as influence maximization on a bipartite graph,

where information spreads as in the Independent Cascade model. For integer y,

Budget Allocation and Influence Maximization are NP-hard. Yet, constant-factor

approximations are possible, and build on the fact that the influence function is

submodular in the binary case, and DR-submodular in the integer case (Soma et al.,

2014; Hatano et al., 2015). If y is continuous, the problem is a concave maximization

82

problem.

The formulation of Budget Allocation assumes that the transmission probabilities

are known exactly. But this is rarely true in practice. Typically, the probabilities pst,

and possibly the graph itself, must be inferred from observations (Gomez Rodriguez

et al., 2010; Du et al., 2013; Narasimhan et al., 2015; Du et al., 2014; Netrapalli and

Sanghavi, 2012). In Section 6.6 we will see that a misspecification or point estimate

of parameters pst can lead to much reduced outcomes. A more realistic assumption is

to know confidence intervals for the pst. Realizing this severe deficiency, recent work

studied robust versions of Influence Maximization, where a budget y must be chosen

that maximizes the worst-case approximation ratio over a set of possible influence

functions (He and Kempe, 2016; Chen et al., 2016; Lowalekar et al., 2016). The

resulting optimization problem is hard but admits bicriteria approximations.

In this work, we revisit Budget Allocation under uncertainty from the perspective

of robust optimization (Bertsimas et al., 2011; Ben-Tal et al., 2009). We maximize

the worst-case influence – not approximation ratio – for p in a confidence set centered

around the “best guess” (e.g., posterior mean). This avoids pitfalls of the approxi-

mation ratio formulation (which can be misled to return poor worst-case budgets, as

demonstrated in Appendix C.1), while also allowing us to formulate the problem as

a max-min game:

max
y∈Y

min
p∈P
I(y; p), (6.2)

where an “adversary” can arbitrarily manipulate p within the confidence set P . With

p fixed, I(y; p) is concave in y. However, the influence function I(y; p) is not convex,

and not even quasiconvex, in the adversary’s variables pst.

The new, key insight we exploit in this work is that I(y; p) has the property

of continuous submodularity in p – in contrast to previously exploited submodular

maximization in y – and can hence be minimized by generalizing techniques from

discrete submodular optimization (Bach, 2019). The techniques in (Bach, 2019),

however, are restricted to box constraints, and do not directly apply to our confidence

sets. In fact, general constrained submodular minimization is hard (Svitkina and

83

Fleischer, 2011; Goel et al., 2009; Iwata and Nagano, 2009). We make the following

contributions:

1. We provide the first results for continuous submodular minimization with box

constraints and one more “nice” constraint, and checkable conditions under

which the algorithm is guaranteed to return a global optimum. In other words,

we have a provable algorithm for a new class of constrained nonconvex mini-

mization problems that should be of interest more broadly.

2. Leveraging the above result, we present an algorithm with optimality bounds

for Robust Budget Allocation in the nonconvex adversarial scenario (6.2).

6.1.1 Background and related work

For background on submodularity and diminishing returns, refer to Chapter 4. Par-

ticularly relevant are section 4.1.2 on submodular minimization, section 4.2 on general

submodular functions, and section 4.3.1 on risk-averse submodular optimization. We

will draw on all of these in both our approach to the problem, as well as in our

algorithmic solution. In the rest of this background section we focus on discussing

problems most related to Budget Allocation.

A sister problem of Budget Allocation is Influence Maximization on general graphs,

where a set of seed nodes is selected to start a propagation process. The influence

function is still monotone submodular and amenable to the greedy algorithm (Kempe

et al., 2003), but it cannot be evaluated explicitly and requires approximation (Chen

et al., 2010).

Stochastic Coverage (Goemans and Vondrák, 2006) is a version of Set Cover where

the covering sets Si ⊂ V are random. A variant of Budget Allocation can be written as

stochastic coverage with multiplicity. Stochastic Coverage has mainly been studied

in the online or adaptive setting, where logarithmic approximation factors can be

achieved (Golovin and Krause, 2011; Deshpande et al., 2016; Adamczyk et al., 2016).

Our objective function (6.2) is a signomial in p, i.e., a linear combination of mono-

mials of the form
∏

i x
ci
i . General signomial optimization is NP-hard (Chiang, 2005),

84

but certain subclasses are tractable: posynomials with all nonnegative coefficients can

be minimized via Geometric Programming (Boyd et al., 2007), and signomials with a

single negative coefficient admit sum of squares-like relaxations (Chandrasekaran and

Shah, 2016). Our problem, a constrained posynomial maximization, is not in general

a geometric program. Some work addresses this setting via monomial approximation

(Pascual and Ben-Israel, 1970; Ecker, 1980), but, to our knowledge, our algorithm is

the first that solves this problem to arbitrary accuracy.

6.2 Robust and stochastic Budget Allocation

The unknown parameters in Budget Allocation are the transmission probabilities pst

or edge weights in a graph. If these are estimated from data, we may have posterior

distributions or, a weaker assumption, confidence sets for the parameters. For ease

of notation, we will work with the failure probabilities xst = 1− pst instead of the pst

directly, and write I(y;x) instead of I(y; p).

6.2.1 Stochastic optimization

If a (posterior) distribution of the parameters is known, a simple strategy is to use

expectations. For example, we can place a uniform prior on xst, and observe nst

independent observations drawn from Ber(xst). If we observe αst failures and βst

successes, the resulting posterior distribution on the variable Xst is Beta(1 + αst, 1 +

βst). Given such a posterior, we may optimize

max
y∈Y

I(y;E[X]) (6.3) or max
y∈Y

E[I(y;X)]. (6.4)

Proposition 6.2.1. Problems (6.3) and (6.4) are concave maximization problems

over the (convex) set Y and can be solved exactly.

Concavity of (6.4) follows since it is an expectation over concave functions, and

it can be solved by stochastic gradient ascent or by explicitly computing gradients.

Merely maximizing expectation does not explicitly account for volatility and hence

risk. One option is to penalize variance (Ben-Tal and Nemirovski, 2000; Bertsimas

85

et al., 2011; Atamtürk and Narayanan, 2008):

min
y∈Y

−E[I(y;X)] + ε
√

Var(I(y;X)). (6.5)

This approach is strongly related to optimizing CVaR, discussed in section 4.3.1. How-

ever, for submodular objectives, these approaches to risk-aversion can be challenging,

and our case is no exception:

Fact 6.2.1. For y in the nonnegative orthant, the term
√

Var(I(y;X)) need not be

convex or concave, and need not be submodular or supermodular.

This observation does not rule out a solution, but the apparent difficulties further

motivate a robust formulation that, as we will see, is amenable to optimization.

6.2.2 Robust optimization

The focus of this work is the robust version of Budget Allocation, where we allow

an adversary to arbitrarily set the parameters x within an uncertainty set X . This

uncertainty set may result, for instance, from a known distribution, or simply from

assumed bounds. Formally, we solve

max
y∈Y

min
x∈X
I(y;x), (6.6)

where Y ⊂ RS
+ is a convex set with an efficient projection oracle, and X is an

uncertainty set containing an estimate x̂. In the sequel, we use uncertainty sets

X = {x ∈ Box(l, u) : R(x) ≤ B}, where R is a distance (or divergence) from the esti-

mate x̂, and Box(l, u) is the box
∏

(s,t)∈E[lst, ust]. The intervals [lst, ust] can be thought

of as either confidence intervals around x̂, or, if [lst, ust] = [0, 1], they enforce that

each xst is a valid probability.

Common examples of uncertainty sets used in robust optimization are Ellipsoidal

and D-norm uncertainty sets (Bertsimas et al., 2011). Our algorithm in Section 6.4

applies to both.

86

Ellipsoidal uncertainty. The ellipsoidal or quadratic uncertainty set is defined by

XQ(γ) = {x ∈ Box(0, 1) : (x− x̂)TΣ−1(x− x̂) ≤ γ},

where Σ is the covariance of the random vector X of probabilities distributed ac-

cording to our Beta posteriors. In our case, since the distributions on each xst are

independent, Σ−1 is actually diagonal. Writing Σ = diag(σ2), we have

XQ(γ) =
{
x ∈ Box(0, 1) :

∑
(s,t)∈E

Rst(xst) ≤ γ
}
,

where Rst(x) = (xst − x̂st)
2σ−2

st .

D-norm uncertainty. The D-norm uncertainty set is similar to an ℓ1-ball around

x̂, and is defined as

XD(γ) =
{
x : ∃c ∈ Box(0, 1) s.t. xst = x̂st + (ust − x̂st)cst,

∑
(s,t)∈E

cst ≤ γ
}
.

Essentially, we allow an adversary to increase x̂st up to some upper bound ust, subject

to some total budget γ across all terms xst. The set XD(γ) can be rewritten as

XD(γ) =
{
x ∈ Box(x̂, u) :

∑
(s,t)∈E

Rst(xst) ≤ γ
}
,

where Rst(xst) = (xst− x̂st)/(ust− x̂st) is the fraction of the interval [x̂st, ust] we have

used when increasing xst.

Comparison to DRO. In the context of the preceding chapters, it is important

to note that, in our approach to Robust Budget Allocation, we technically depart

from DRO. This is because the uncertainty we allow in the probabilities x (or p)

affects both the distribution as well as the objective function – whereas in DRO,

only the distribution changes. This technicality manifests because the decision maker

in Budget Allocation actually alters the relevant distribution: by changing y, the

87

decision maker changes the distribution of which edges (s, t) are active. Nevertheless,

the spirit of Robust Budget Allocation is the same: we want to do well in expectation,

namely to maximize expected influence, even when the underlying distribution is

perturbed.

Overall, the min-max formulation maxy∈Y minx∈X I(y;x) has several benefits: the

model is not tied to a specific learning algorithm for the probabilities x as long as we

can choose a suitable confidence set. Moreover, this formulation allows to fully hedge

against a worst-case scenario.

6.3 Robust Budget Allocation: main ideas

Next, we address in two main steps how to solve Problem (6.6), first the outer and

then the inner optimization problem. As noted above, the function I(y;x) is concave

as a function of y for fixed x. As a pointwise minimum of concave functions, F (y) :=

minx∈X I(y;x) is concave. Hence, if we can compute subgradients of F (y), we can

solve our max-min-problem via the subgradient method, as outlined in Algorithm 3.

A subgradient gy ∈ ∂F (y) at y is given by the gradient of I(y;x∗) for the min-

imizing x∗ ∈ arg minx∈X I(y;x), i.e., gy = ∇yI(y;x∗). Hence, we must be able to

compute x∗ for any y. We also obtain a duality gap: for any x′, y′ we have

min
x∈X
I(y′;x) ≤ max

y∈Y
min
x∈X
I(y;x) ≤ max

y∈Y
I(y;x′). (6.7)

This means we can estimate the optimal value I∗ and use it in Polyak’s stepsize rule

for the subgradient method (Polyak, 1987).

What remains to be addressed is how to compute x∗. I(y;x) is not convex in x,

and not even quasiconvex. For example, standard methods (Wainwright and Chiang,

2004, Chapter 12) imply that f(x1, x2, x3) = 1 − x1x2 −
√
x3 is not quasiconvex on

R3
+. Moreover, the above-mentioned signomial optimization techniques do not apply

for an exact solution either. So, it is not immediately clear that we can solve the

inner optimization problem.

88

Algorithm 3 Subgradient Ascent
Input: suboptimality tolerance τ > 0, initial feasible budget y(0) ∈ Y
Output: τ -optimal budget y for Problem (6.6)
repeat

x(k) ← arg minx∈X I(y(k);x) ▷ Find worst-case x for y(k)

g(k) ← ∇yI(y(k);x(k)) ▷ Gradient with respect to y of minx∈X I(y;x) at
y = y(k)

L(k) ← I(y(k);x(k)) ▷ Lower bound on optimal value
U (k) ← maxy∈Y I(y;x(k)) ▷ Upper bound on optimal value
γ(k) ← (U (k) − L(k))/‖g(k)‖22 ▷ Polyak’s stepsize rule
y(k+1) ← projY(y(k) + γ(k)g(k))
k ← k + 1

until U (k) − L(k) ≤ τ

The key insight we will be using is that I(y;x) has a different beneficial property:

while not convex, I(y;x) as a function of x is continuous submodular.

Lemma 6.3.1. Suppose we have n ≥ 1 differentiable functions fi : R → R+, for

i = 1, . . . , n, either all nonincreasing or all nondecreasing. Then, f(x) =
∏n

i=1 fi(xi)

is a continuous supermodular function from Rn to R+.

Proof. For n = 1, the resulting function is modular and therefore supermodular. In

the case n ≥ 2, we simply need to compute derivatives. The mixed derivatives are

∂f

∂xi∂xj

= f ′
i(xi)f

′
j(xj) ·

∏
k ̸=i,j

fk(xk). (6.8)

By monotonicity, f ′
i and f ′

j have the same sign, so their product is nonnegative, and

since each fk is nonnegative, the entire expression is nonnegative. Hence, f(x) is

continuous supermodular by Theorem 3.2 of Topkis (1978).

Corollary 6.3.1. The influence function I(y;x) defined in Section 6.2 is continuous

submodular in x over the nonnegative orthant, for each y ≥ 0.

Proof. Since submodularity is preserved under summation, it suffices to show that

each function It(y) is continuous submodular. By Lemma 6.3.1, since fs(z) = zy(s) is

nonnegative and monotone nondecreasing for y(s) ≥ 0, the product
∏

(s,t)∈E x
y(s)
st is

89

continuous supermodular in x. Flipping the sign and adding a constant term yields

It(y), which is hence continuous submodular.

We further conjecture that the functions I(y;x) enjoy another beneficial property,

beyond submodularity:

Conjecture 6.3.1. Strong duality holds, i.e.,

max
y∈Y

min
x∈X
I(y;x) = min

x∈X
max
y∈Y
I(y;x). (6.9)

If strong duality holds, then the duality gap maxy∈Y I(y;x∗)−minx∈X I(y∗;x) in

Equation (6.7) is zero at optimality. If I(y;x) were quasiconvex in x, strong duality

would hold by Sion’s min-max theorem, but this is not the case. In practice, we

observe that the duality gap always converges to zero.

We have seen the functions I(y;x) enjoy nice structural properties, but it is still

not clear how to solve the inner problem. Bach (2019) demonstrates how to minimize

a continuous submodular function H(x) subject to box constraints x ∈ Box(l, u), up

to an arbitrary suboptimality gap τ > 0. The constraint set X in our Robust Bud-

get Allocation problem, however, has box constraints with an additional constraint

R(x) ≤ B. This case is not addressed in any previous work. Fortunately, for a large

class of functions R, there is still an efficient algorithm for continuous submodular

minimization, which we present in the next section.

6.4 Constrained continuous submodular function

minimization

The previous section shows that, to solve Robust Budget Allocation, we need an

algorithm for minimizing a monotone continuous submodular function H(x) subject

90

to box constraints x ∈ Box(l, u) and a constraint R(x) ≤ B:

minimize H(x)

s.t. R(x) ≤ B

x ∈ Box(l, u).

(6.10)

If H and R were convex, the constrained problem would be equivalent to solving,

with the right Lagrange multipler λ∗ ≥ 0:

minimize H(x) + λ∗R(x)

s.t. x ∈ Box(l, u).
(6.11)

Although H and R are not necessarily convex here, it turns out that a similar approach

indeed applies. The property of submodularity then enables a special relaxation

that allows one to obtain a solution for all possible values of λ via a single convex

optimization problem. The main idea of our approach bears similarity with (Nagano

et al., 2011) for the set function case, but our setting with continuous functions

and various uncertainty sets is more general, and requires more argumentation. We

present our theoretical results here, and defer implementation details to the appendix.

6.4.1 Forming an equivalent convex problem

Following Bach (2019), we discretize the problem; for a sufficiently fine discretization,

we will achieve arbitrary accuracy. This discretization will in turn lead to a convex

relaxation. Let A be an interpolation mapping that maps the discrete set
∏n

i=1[ki]

into Box(l, u) =
∏n

i=1[li, ui] via the componentwise interpolation functions Ai : [ki]→

[li, ui]. We say Ai is δ-fine if Ai(xi+1)−Ai(xi) ≤ δ for all xi ∈ {0, 1, . . . , ki− 2}. We

will further say the full interpolation function A is δ-fine if each Ai is δ-fine.

This mapping yields functions Hδ :
∏n

i=1[ki] → R and Rδ :
∏n

i=1[ki] → R via

Hδ(x) = H(A(x)) and Rδ(x) = R(A(x)). Hδ is submodular on the integer lattice.

This construction reduces Problem (6.11) to a submodular minimization problem over

91

the integer lattice:
minimize Hδ(x) + λRδ(x)

s.t. x ∈
∏n

i=1[ki].
(6.12)

Motivated by convex optimization, one may hope that there exists a λ whose associ-

ated minimizer x(λ) yields a nearly optimal solution for the corresponding constrained

Problem (6.10) in the lattice case, where Hδ and Rδ replace H and R. Theorem 6.4.2

below states that, under a condition, this is indeed the case. Moreover, a second ben-

efit of submodularity is that we can find the entire solution path for Problem (6.12)

by solving a single optimization problem.

Lemma 6.4.1. Suppose H is continuous submodular, and suppose the regularizer

R is strictly increasing and separable: R(x) =
∑n

i=1 Ri(xi). Then we can recover a

minimizer x(λ) for the induced discrete Problem (6.12) for any λ ∈ R by solving a

single convex optimization problem.

To formally prove Lemma 6.4.1, we need to go into more detail. The convex

optimization problem arises from a relaxation h↓ that is an analogue of the Lovász

extension of set functions to continuous submodular functions (Bach, 2019). The

basic idea for the extension h↓ is: instead of fixing a value for each coordinate of x,

we give a distribution over values, and h↓ is the expected function value under that

distribution. As a corollary, h↓ coincides with Hδ on lattice points.

Instead of specifying a full joint distribution over all coordinates, we will only

need to give coordinatewise marginals µi. It is also convenient to represent the dis-

tributions µi via their (reversed) cumulative distributions functions ρi. The best

joint distribution follows directly from these marginals: it is the solution to a multi-

marginal optimal transport problem between the marginals, where the transport cost

is the original submodular function H or Hδ. Formally h↓ can be defined as:

Definition 6.4.1 (Bach (2019)). Write X =
∏n

i=1Xi, and let H : X → R be a sub-

modular function (discrete or continuous). We define the generalized Lovász extension

92

of H by:

h↓(ρ1, . . . , ρn) = h↓(µ1, . . . , µn) := inf
γ∈P(X ,{µi})

∫
X
H(x) dγ(x) (6.13)

where P(X , {µi}) is the set of measures γ whose marginals match the µi, for all

coordinates i.

Importantly, h↓ is convex if and only if H is submodular (Bach, 2019, Theorem

1). This makes optimizing h↓ tractable. To prove Lemma 6.4.1 we will use a specific

correspondence between a discrete submodular function Hδ and its extension h↓:

Theorem 6.4.1 (Theorem 4 from Bach (2019)). Let Hδ :
∏n

i=1[ki] → R be a sub-

modular function with generalized Lovász extension h↓. Also let aiyi be strictly convex

functions for all i = 1, . . . , n and each yi ∈ [ki]. The set Rk
↓ refers to the set of ordered

vectors z ∈ Rk that satisfy z1 ≥ z2 ≥ · · · ≥ zk, and the notation ρi(xi) denotes the

xi-th coordinate of the vector ρi. The vector ρi should still be understood as a discrete

reverse cumulative distribution function, as stated earlier. For convenience we also

write ρ = ρ1, . . . , ρn. Then the two problems

minimize Hδ(x) +
∑n

i=1

∑xi

yi=1 a
′
iyi
(λ)

s.t. x ∈
∏n

i=1[ki].
(6.14)

and
minimize h↓(ρ) +

∑n
i=1

∑ki−1
xi=1 aixi

[ρi(xi)]

s.t. ρ ∈
∏n

i=1R
ki−1
↓

(6.15)

are equivalent. Specifically, one recovers a solution to Problem (6.14) for any λ: find

ρ∗ which solves Problem (6.15) and, for each component i, choose xi to be the maximal

value for which ρ∗i (xi) ≥ λ.

With Theorem 6.4.1 in hand, we are finally ready to prove Lemma 6.4.1. Our

high-level strategy is to convert Problem (6.12) into the form of Problem (6.14). Per

Theorem 6.4.1, we can solve Problem (6.14) and hence Problem (6.12) simultaneously

for all λ, simply by solving the single convex Problem (6.15).

93

Lemma 6.4.1. The discretized form of the regularizer Rδ is also separable and can be

written Rδ(x) =
∑n

i=1R
δ
i (x). For each i = 1, . . . , n and each yi ∈ [ki] with yi ≥ 1,

define aiyi(t) =
1
2
t2 · [Rδ

i (yi) − Rδ
i (yi − 1)], so that a′iyi(t) = t · [Rδ

i (yi) − Rδ
i (yi − 1)].

Since we assumed R(x) is strictly increasing, the coefficient of t2 in each aiyi(t) is

strictly positive, so that each aiyi(t) is strictly convex. Then,

λRδ
i (xi) = λ ·

[
Rδ

i (0) +

xi∑
yi=1

(
Rδ

i (yi)−Rδ
i (yi − 1)

)]
(6.16)

= λRδ
i (0) +

xi∑
yi=1

a′iyi(λ), (6.17)

so that the discretized version of the minimization problem (6.12) can be written as

minimize Hδ(x) + λRδ(0) +
∑n

i=1

∑xi

yi=1 a
′
iyi
(λ)

s.t. x ∈
∏n

i=1[ki].
(6.18)

Since the term Rδ(0) does not depend on the variable x, this minimization is equiva-

lent to
minimize Hδ(x) +

∑n
i=1

∑xi

yi=1 a
′
iyi
(λ)

s.t. x ∈
∏n

i=1[ki].
(6.19)

This problem is in the precise form where we can apply Theorem 6.4.1 to show

equivalence between Problems (6.14) and (6.15), so we are done.

Problem (6.15) can be solved by Frank-Wolfe methods (Frank and Wolfe, 1956;

Dunn and Harshbarger, 1978; Lacoste-Julien, 2016; Jaggi, 2013). This is because

the greedy algorithm for computing subgradients of the Lovász extension can be

generalized, and yields a linear optimization oracle for the dual of Problem (6.15).

We detail the relationship between Problems (6.12) and (6.15), as well as how to

implement the Frank-Wolfe methods, in Appendix C.3.1.

94

6.4.2 Bounding solution quality for the constrained problem

We now have a tractable convex formulation, Equation (6.15), of the regularized

problem. But it is not yet clear if we can also recover a good solution to the original

constrained problem.

Let ρ∗ be the optimal solution for Problem (6.15). For any λ, we obtain a rounded

solution x(λ) for Problem (6.12) by thresholding: we set x(λ)i = max{j | 1 ≤ j ≤

ki − 1, ρ∗i (j) ≥ λ}, or zero if ρ∗i (j) < λ for all j. Each x(λ′) is the optimal solution

for Problem (6.12) with λ = λ′. We use the largest parameterized solution x(λ) that

is still feasible, i.e. the solution x(λ∗) where λ∗ solves

min Hδ(x(λ))

s.t. λ ≥ 0

Rδ(x(λ)) ≤ B.

(6.20)

This λ∗ can be found efficiently via binary search or a linear scan.

Theorem 6.4.2. Let H be continuous submodular and monotone decreasing, with ℓ∞-

Lipschitz constant G, and let R be strictly increasing and separable. Assume all entries

ρ∗i (j) of the optimal solution ρ∗ of Problem (6.15) are distinct. Let x′ = A(x(λ∗)) be

the thresholding corresponding to the optimal solution λ∗ of Problem (6.20), mapped

back into the original continuous domain X . Then x′ is feasible for the continuous

Problem (6.10), and is a 2Gδ-approximate solution:

H(x′) ≤ 2Gδ + min
x∈Box(l,u), R(x)≤B

H(x).

Theorem 6.4.2 implies an algorithm for solving Problem (6.10) to τ -optimality:

(1) set δ = τ/G, (2) compute ρ∗ that solves Problem (6.15), (3) find the optimal

thresholding of ρ∗ by determining the smallest λ∗ for which Rδ(x(λ∗)) ≤ B, and (4)

map x(λ∗) back into continuous space via the interpolation mapping A.

The general idea of this proof is to first show that the best integer-valued point

95

x∗
d that solves

x∗
d ∈ argmin

x∈
∏n

i=1[ki]:R
δ(x)≤B

Hδ(x)

is also nearly a minimizer of the continuous version of the problem, due to the fineness

of the discretization. Then, we show that the solutions traced out by x(λ) get very

close to x∗
d. These two results are simply combined via the triangle inequality.

We begin with a Lemma bounding the optimal discrete solution by the optimal

continuous solution:

Lemma 6.4.2. With x∗
d defined as above,

Hδ(x∗
d) ≤ Gδ + min

x∈X :R(x)≤B
H(x). (6.21)

Proof. Consider x∗ ∈ arg minx∈X :R(x)≤B H(x). If x∗ corresponds to an integral point

in the discretized domain, then H(x∗) = Hδ(x∗
d) and we are done. Else, since our

discretization is δ-fine, we can find a discrete point xfloor with x∗− δ ≤ A(xfloor) ≤ x∗

elementwise. Algorithmically, xfloor is a kind of elementwise floor of x∗ with respect

to the discretization. There are two implications of the bound between A(xfloor) and

x∗: first, by monotonicity, Rδ(xfloor) ≤ B, i.e. A(xfloor) is feasible for the original

continuous problem; second, we must have ‖x∗ − A(xfloor)‖∞ ≤ δ. Applying the

Lipschitz property of H and then the optimality of x∗
d, we have

Gδ ≥ H(A(xfloor))−H(x∗) = Hδ(xfloor)−H(x∗) ≥ Hδ(x∗
d)−H(x∗),

from which (6.21) follows.

The next step in proving our suboptimality bound is to bound the suboptimality

of our thresholded solutions relative to the true discrete solution:

Lemma 6.4.3. Define λ− and λ+ by

λ− ∈ argmin
λ≥0:Rδ(x(λ))≤B

Hδ(x(λ)) and λ+ ∈ argmax
λ≥0:Rδ(x(λ))≥B

Hδ(x(λ)).

96

Then, we can bound the discrete optimal value Hδ(x∗
d) on both sides by

Hδ(x(λ+)) ≤ Hδ(x∗
d) ≤ Hδ(x(λ−)). (6.22)

Proof. Note that

min
x∈

∏n
i=1[ki]:R

δ(x)≤B
Hδ(x) = min

x∈
∏n

i=1[ki]
max
λ≥0

{
Hδ(x) + λ(Rδ(x)−B)

}
, (6.23)

since either the term Rδ(x)−B does not contribute, or it blows up when x is infeasible.

Continuing, we can bound:

min
x∈

∏n
i=1[ki]:R

δ(x)≤B
Hδ(x) = min

x∈
∏n

i=1[ki]
max
λ≥0

{
Hδ(x) + λ(Rδ(x)−B)

}
(6.24)

(a)

≥ max
λ≥0

min
x∈

∏n
i=1[ki]

{
Hδ(x) + λ(Rδ(x)−B)

}
(6.25)

(b)
= max

λ≥0

{
Hδ(x(λ)) + λ(Rδ(x(λ))−B)

}
(6.26)

(c)

≥ max
λ≥0:Rδ(x(λ))≥B

{
Hδ(x(λ)) + λ(Rδ(x(λ))−B)

}
(6.27)

(d)

≥ max
λ≥0:Rδ(x(λ))≥B

Hδ(x(λ)) (6.28)

(e)
= Hδ(x(λ+)), (6.29)

where (a) uses weak duality, (b) plugs in the definition of x(λ), (c) shrinks the set

of candidate λ, (d) bounds the regularizing term by zero, and (e) is the definition of

x(λ+). We can also bound the optimal value of Hδ(x∗
d) from the other side:

Hδ(x∗
d) = min

x∈
∏n

i=1[ki]:R
δ(x)≤B

Hδ(x) ≤ min
λ≥0:Rδ(x(λ))≤B

Hδ(x(λ)) = Hδ(x(λ−)) (6.30)

because the set of x(λ) parameterized by λ is a subset of the full set {x ∈
∏n

i=1[ki] :

Rδ(x) ≤ B}.

Corollary 6.4.1. In the same setting as Lemma 6.4.3, it holds that

Hδ(x(λ−)) ≤ Gδ +Hδ(x∗
d).

97

Proof. Via Lemma 6.4.3 we can bound the optimal value of Hδ(x∗
d) on either side

by optimization problems where we seek an optimal λ ≥ 0 for the parameterization

x(λ):

Hδ(x(λ+)) ≤ Hδ(x∗
d) ≤ Hδ(x(λ−)). (6.31)

Recall that x(λ) comes from thresholding the values of ρ∗ by λ, and that we assume

that the elements of ρ∗ are unique. Hence, as we increase λ, the components of

x decrease, in steps of one. Combining this with the strict monotonicity of R, we

see that ‖x(λ+) − x(λ−)‖∞ ≤ 1. By the Lipschitz properties of Hδ, it follows that∣∣Hδ(x(λ+))−Hδ(x(λ−))
∣∣ ≤ Gδ. Since Hδ(x∗

d) lies in the interval between Hδ(x(λ+))

and Hδ(x(λ−)), it follows that
∣∣Hδ(x∗

d)−Hδ(x(λ−))
∣∣ ≤ Gδ.

With the above technical results in place, we can easily prove Theorem 6.4.2:

Theorem 6.4.2. We now combine Lemma 6.4.2 and Corollary 6.4.2. We have that

H(x′)
(a)
= Hδ(x(λ−)) (6.32)
(b)

≤ Gδ +Hδ(x∗
d) (6.33)

(c)

≤ Gδ +

(
Gδ + min

x∈Box(l,u), R(x)≤B
H(x)

)
(6.34)

= 2Gδ + min
x∈Box(l,u), R(x)≤B

H(x), (6.35)

where (a) is the definition of x′, (b) follows from Lemma 6.4.2 and (c) follows from

Corollary 6.4.2.

Computable Optimality Bounds

Beyond the theoretical guarantee of Theorem 6.4.2, for any problem instance and

candidate solution x′, we can compute bounds on the gap between H(x′) and Hδ(x∗
d):

1. The discrete point x(λ+) yields the bound

H(x′) ≤ [H(x′)−Hδ(x(λ+))] +Hδ(x∗
d). (6.36)

98

2. The Lagrangian yields the bound

H(x′) ≤ λ∗(B −R(x′)) +Hδ(x∗
d). (6.37)

The first bound is a simple consequence of Lemma 6.4.3:

Hδ(x(λ+)) ≤ Hδ(x∗
d) (6.38)

=⇒ 0 ≤ −Hδ(x(λ+)) +Hδ(x∗
d) (6.39)

=⇒ H(x′) ≤ H(x′)−Hδ(x(λ+)) +Hδ(x∗
d). (6.40)

As for the Lagrangian bound, since x(λ∗) is a minimizer for the regularized function

Hδ(x) + λ∗(Rδ(x)−B), it follows that

Hδ(x(λ∗)) + λ∗(Rδ(x(λ∗))−B) ≤ Hδ(x∗
d) + λ∗(Rδ(x∗

d)−B). (6.41)

Rearranging, and observing that Rδ(x∗
d) ≤ B because x∗

d is feasible, it holds that

H(x′) = Hδ(x(λ∗)) (6.42)

≤ Hδ(x∗
d) + λ∗(Rδ(x∗

d)−Rδ(x(λ∗))) (6.43)

≤ Hδ(x∗
d) + λ∗(B −R(x′)). (6.44)

One can also combine either of these bounds with the result from the proof of

Theorem 6.4.2 that Hδ(x∗
d) ≤ Gδ +H(x∗) yielding e.g.

H(x′) ≤ Gδ + λ∗(B −R(x′)) +Hδ(x∗). (6.45)

Improvements

The requirement in Theorem 6.4.2 that the elements of ρ∗ be distinct may seem

somewhat restrictive, but as long as ρ∗ has distinct elements in the neighborhood of

our particular λ∗, this bound still holds. We see in Section 6.6.1 that in practice, ρ∗

99

almost always has distinct elements in the regime we care about, and the bounds of

Remark 6.4.2 are very good.

If H is DR-submodular and R is affine in each coordinate, then Problem (6.12)

can be represented more compactly via the reduction of Ene and Nguyen (2016),

and hence problem (6.10) can be solved more efficiently. In particular, the influence

function I(y;x) is DR-submodular in x when for each s, y(s) = 0 or y(s) ≥ 1.

Application to Robust Budget Allocation

The above algorithm directly applies to Robust Allocation with the uncertainty sets

in Section 6.2.2. The ellipsoidal uncertainty set XQ corresponds to the constraint

that
∑

(s,t)∈E Rst(xst) ≤ γ with Rst(x) = (xst − x̂st)
2σ−2

st , and x ∈ Box(0, 1). By the

monotonicity of I(x, y), there is never incentive to reduce any xst below x̂st, so we

can replace Box(0, 1) with Box(x̂, 1). On this interval, each Rst is strictly increasing,

and Theorem 6.4.2 applies.

For D-norm sets, we have Rst(xst) = (xst − x̂st)/(ust − x̂st). Since each Rst is

monotone, Theorem 6.4.2 applies.

Runtime and Alternatives

The core part of the algorithm uses Frank-Wolfe to optimize the regularized convex

extension, Problem (6.15). This convex problem can be solved to τ -suboptimality

in time O(τ−1n2δ−3α−1|T |2 lognδ−1), where α is the minimum derivative of the func-

tions Ri (see Appendix C.3.2 for details). Suppose that the optimal solution ρ∗ to

Problem (6.15) has distinct elements separated by η; then choosing τ = η2αδ/8 re-

sults in an exact solution to the discrete regularized Problem (6.12) in total time

O(η−2n2δ−4α−2|T |2 lognδ−1).

Noting that Hδ + λRδ is submodular for all λ, one could instead perform binary

search over λ, each time converting the objective into a submodular set function

via Birkhoff’s theorem and solving submodular minimization e.g. via a fast, recent

method (Chakrabarty et al., 2017; Lee et al., 2015). However, we are not aware of

a practical implementation of the algorithm in (Lee et al., 2015). The algorithm

100

in (Chakrabarty et al., 2017) yields a solution only in expectation. This approach

also requires care in the precision of the search over λ, whereas our approach solves

for all λ simultaneously, and picks directly from the O(nδ−1) elements of ρ∗.

A host of alternate approaches are also possible, e.g. a generalization of the

minimum norm point algorithm (Wolfe, 1976; Fujishige, 2005) which is also suggested

by Bach (2019). However such development is out of scope for this work: our focus

is on developing a convex formulation, rather than optimizing the algorithm.

6.5 Simple examples where our approach is opti-

mal

Next, we take a view beyond Budget Allocation, and theoretically and empirically

evaluate the optimality of our constrained submodular minimization algorithm on

two classes of nonconvex problem where the optimal solution can be computed. For

one class, the algorithm provably yields the global optimal solution. For the other

class, the algorithm empirically yields solutions that are very close to globally optimal

solutions from a specialized SDP relaxation.

6.5.1 Separable problems

First, we assume that the objective function H(x) and constraint function R(x) are

continuous submodular and separable. Some such problems admit simple analytic

solutions despite nonconvexity. Our approach will recover these solutions. To under-

stand how our method behaves when the objective and constraints are separable, the

following structural result about the convex extension will be useful.

Lemma 6.5.1 (also appears informally in (Bach, 2019)). Suppose the objective is

separable: H(x) =
∑n

i=1Hi(xi). Then the convex extension h↓(µ1, . . . , µn) is also

separable:

h↓(µ1, . . . , µn) =
n∑

i=1

hi↓(µi), (6.46)

101

where hi↓ is the extension for Hi.

Note that this separability also holds for any block-separable structure.

Proof. First we write out the definition of the convex extension h↓(µ):

h↓(µ1, . . . , µn) = inf
γ∈P(X ,{µi})

∫
X
H(x) dγ(x) (6.47)

= inf
γ∈P(X ,{µi})

∫
X

n∑
i=1

Hi(xi) dγ(x) (6.48)

= inf
γ∈P(X ,{µi})

n∑
i=1

∫
X
Hi(xi) dγ(x). (6.49)

Each integral of Hi(xi) only depends on the marginal of γ, which by definition is µi.

Since this is the only dependence on γ, the infimum is now unnecessary:

h↓(µ1, . . . , µn) =
n∑

i=1

∫
Xi

Hi(xi) dµi(xi) =
n∑

i=1

hi↓(µi).

Write ∆Hi(xi) = Hi(xi)−Hi(xi− 1) and similarly for Ri(xi). Using Lemma 6.5.1

we can prove the following structural result:

Proposition 6.5.1. Suppose H(x) and R(x) are both separable as above. Consider

the regularized problem:

minimize h↓(ρ) +
∑n

i=1

∑ki−1
xi=1 aixi

(ρi(xi))

s.t. ρ ∈
∏n

i=1R
ki−1
↓ .

(6.50)

If Qi(xi) := ∆Hi(xi)
∆Ri(xi)

is nondecreasing in xi for all i, then the optimal solution for

Problem (6.50) is given by ρ∗i (xi) = −Qi(xi).

Proof. By Lemma 6.5.1 we have h↓(ρ) =
∑n

i=1 hi↓(ρi). In the single dimensional case,

hi↓, the extension is very easy to compute, as it is given by hi↓(µi) =
∫
Xi
Hi(xi) dµi(xi).

We instead use the alternative characterization of hi↓ in terms of the reversed cumu-

lative distribution function ρi. In the discrete case, we write ρi(xi) = µi(xi) + µi(xi +

102

1) + · · ·+ µi(ki − 1), and so hi↓(ρi) is given by:

hi↓(ρi) = Hi(0) +

ki−1∑
xi=1

ρi(xi)(Hi(xi)−Hi(xi − 1)) (6.51)

= Hi(0) +

ki−1∑
xi=1

ρi(xi)∆Hi(xi). (6.52)

We assumed the constraint functions R(x) =
∑n

i=1Ri(xi) are separable over i.

As in the proof of Lemma 6.4.1, we convert each Ri into strongly convex functions

aixi
(t) = 1

2
t2∆Ri(xi). Since the convex extension h↓ is now also separable, as are the

monotonicity constraints, we may separately consider n problems of the form:

minimize hi↓(ρi) +
∑ki−1

xi=1 aixi
(ρi(xi))

s.t. ρi ∈ Rki−1
↓

(6.53)

The first term hi↓(ρi) is also a sum over xi, so we may rewrite the objective as:

ki−1∑
xi=1

ρi(xi)∆Hi(xi) +
1

2

ki−1∑
xi=1

[ρi(xi)]
2∆Ri(xi) (6.54)

=

ki−1∑
xi=1

{
ρi(xi)∆Hi(xi) +

1

2
[ρi(xi)]

2∆Ri(xi)

}
. (6.55)

Completing the square, we may write

ρi(xi)∆Hi(xi) +
1

2
[ρi(xi)]

2∆Ri(xi) (6.56)

=
∆Ri(xi)

2

(
ρi(xi) +

∆Hi(xi)

∆Ri(xi)

)2

− ∆Ri

2
·
(
∆Hi(xi)

∆Ri(xi)

)2

. (6.57)

The last term is a constant that does not depend on ρi, so we ignore it. Using, in

addition, the identity Qi(xi) =
∆Hi(xi)
∆Ri(xi)

, the problem we wish to solve is:

minimize
∑ki−1

xi=1∆Ri(xi) (ρi(xi) +Qi(xi))
2

s.t. ρi ∈ Rki−1
↓

. (6.58)

103

This is a weighted isotonic regression problem. We try to fit ρi(xi) to the value

−Qi(xi), with associated weight ∆Ri(xi). We assumed Qi(xi) is nondecreasing, so

−Qi(xi) is nonincreasing. Therefore setting ρ∗i (xi) = −Qi(xi) is feasible and obtains

optimal objective value (zero).

There are many situations in which Qi(xi) is nondecreasing, and therefore ρ∗i (xi) =

−Qi(xi). We focus on a particularly simple one: let Hi(xi) = aix
p
i and Ri(xi) = rix

p
i ,

so that the overall optimization problem is

minimize
∑n

i=1 aix
p
i

s.t.
∑n

i=1 rix
p
i ≤ B

0 ≤ x ≤ 1.

(6.59)

The problem might be nonconvex in its current form, but the transformation yi = rix
p
i

gives a convex problem:

minimize
∑n

i=1
ai
ri
· yi

s.t. 1Ty ≤ B

0 ≤ y ≤ r.

(6.60)

The constraint here is a scaled version of the simplex. An optimal solution can be

found by sorting the indices so a1
r1
≤ · · · ≤ an

rn
, and saturating y1, y2, . . . in order until

the total budget B is achieved.

This procedure is precisely equivalent to what our algorithm will do, even without

the convex reparameterization. In our case,

Qi(xi) =
ai
ri
· x

p
i − (xi − 1)p

xp
i − (xi − 1)p

=
ai
ri

(6.61)

is constant, hence nondecreasing. Therefore ρ∗i (xi) = −ai
ri

solves Problem (6.50).

Consider now the thresholding step of our algorithm, where we search over λ and

take ρ∗i (xi) only if ρ∗i (xi) ≥ λ. Since ρ∗i (xi) = ρ∗i is constant, we will take entire

coordinates at a time: we will first find the coordinate i with −Qi = −ai
ri

maximized,

104

i.e. ai
ri

minimized. We set xi = ki − 1 (which maps back to xi = 1 when we un-

discretize). Then we move onto the next best coordinate, and so on.

Proposition 6.5.1 confirms at least for this special case that our algorithm finds

the optimal solution. Moreover, we can find the optimal solution without using a

more specialized approach that depends on e.g. quadratic problem structure.

6.5.2 Non-separable quadratics and SDP relaxations

Reasoning about guaranteed performance gets more difficult as we move away from

separable problems. Even empirical evaluation becomes problematic in nonconvex

settings where all we can know about the globally optimal solution is the subopti-

mality bound returned by our algorithm. Before addressing these harder regimes, we

study a harder class of nonconvex problems that still admit global optimality guar-

antees. Specifically we look at a certain class of nonconvex quadratically-constrained

quadratic problems:

min
x

1

2
xTAx+ cTx min

x

1

2
xTAx+ cTx

s.t. x ∈ Box(0, 1) ⇔ s.t. x2
i ≤ xi ∀i

1

2
xT diag(r)x ≤ B

1

2
xT diag(r)x ≤ B,

where A has nonpositive off-diagonal entries. These problems are a useful benchmark

because they can be solved globally via an SDP relaxation (Kim and Kojima, 2003).

Concretely:

Theorem 6.5.1 (Theorem 4 from Kim and Kojima (2003)). Let A have nonpositive

105

off-diagonal entries. Let (X∗, x∗) be a solution to the SDP

min
X,x

1

2
tr(AX) + cTx

s.t. diag(X) ≤ x

1

2
tr(diag(r)X) ≤ BX x

xT 1

 � 0.

Taking z∗ to be the elementwise square root of diag(X∗) yields an optimal solution to

the original nonconvex problem.

We emphasize that this is a very special subclass of constrained submodular prob-

lems: the SDP approach only applies when both the objective and constraint are

quadratic, while our algorithm applies more broadly.

We compare our constrained submodular optimization algorithm to the SDP re-

laxation on random problems. For our algorithm, we discretize each coordinate into

k = 1000 pieces, and run only 300 iterations of Frank-Wolfe on the convex relax-

ation (6.15). The matrix A is set to M + MT , where each entry of M is sampled

uniformly in [−1, 0]. The linear term c is set to zero, the constraint vector r is set to

the all ones vector, and we vary B. Figure 6-2 shows histograms of the gap in perfor-

mance between the two algorithms. For most instances our approach does nearly as

well as the globally optimal SDP solution.

In fact, if A is restricted to be a diagonal matrix (we take only its diagonal part),

our algorithm always achieved a relative suboptimality gap below 10−4. As predicted

by Proposition 6.5.1, for separable problems our algorithm is essentially optimal.

6.5.3 Evaluation of suboptimality bounds

In Section 6.4.2 we give solution-dependent suboptimality bounds for the algorithm.

These require only the discrete solution, (possibly) the optimal Lagrange multiplier,

the granularity δ (chosen to be 0.001 in these experiments), and the ℓ∞ Lipschitz

106

0 0.02 0.04 0.06 0.08
0

100

200

300

400

0 0.005 0.01 0.015 0.02
0

100

200

300

400

Figure 6-2: Relative suboptimality of the submodular optimization solution (objective
value fsubmod) vs the globally optimal SDP solution (objective value fsdp). Quadratic
constraints ‖x‖2 ≤ B with B = 0.1 (left) and B = 1 (right).

constant of H(x) = 1
2
xTAx. Since x ≤ 1 elementwise, we can equivalently bound the

ℓ∞ norm of the linear map x 7→ 1
2
1TAx, which is just 1

2
‖1TA‖1. Since the bounds do

assume access to the optimal ρ∗ for Problem (6.15), it is important to run Frank-Wolfe

for enough iterations to get a good approximation to ρ∗.

For each quadratic experiment from the previous section, we compute the best

available suboptimality bound. Here, even 300 iterations were easily sufficient to

approximate ρ∗ for this purpose. For the quadratic problems, the bounds from Sec-

tion 6.4.2 were typically ≈ 0.1 for B = 0.1 and ≈ 0.01 for B = 1. The computed

bounds were always an upper bound on the true suboptimality in our experiments.

6.6 Robust Budget Allocation experiments

After testing the core submodular minimization subroutine, we return to the moti-

vating application of Robust Budget Allocation. We evaluate our algorithm on both

synthetic test data and a real-world bidding dataset from Yahoo! Webscope yah to

demonstrate that our method yields real improvements. For all experiments, we used

Algorithm 3 as the outer loop. For the inner submodular minimization step, we im-

plemented the pairwise Frank-Wolfe algorithm of Lacoste-Julien and Jaggi (2015). In

all cases, the feasible set of budgets Y is {y ∈ RS
+ :
∑

s∈S y(s) ≤ C} where the specific

budget C depends on the experiment. Our code is available at git.io/vHXkO.

107

git.io/vHXkO

6.6.1 Synthetic

On the synthetic data, we probe two questions: (1) how often does the distinctness

condition of Theorem 6.4.2 hold, so that we are guaranteed an optimal solution; and

(2) what is the gain of using a robust versus non-robust solution in an adversarial

setting? For both settings, we set |S| = 6 and |T | = 2 and discretize with δ = 0.001.

We generated true probabilties pst, created Beta posteriors, and built both Ellipsoidal

uncertainty sets XQ(γ) and D-norm sets XD(γ).

Optimality

Theorem 6.4.2 and Remark 6.4.2 demand that the values ρ∗i (j) be distinct at our

chosen Lagrange multiplier λ∗ and, under this condition, guarantee optimality. We

illustrate this in four examples: for Ellipsoidal or a D-norm uncertainty set, and

a total influence budget C ∈ {0.4, 4}. Figure 6-3 shows all elements of ρ∗ in sorted

order, as well as a horizontal line indicating our Lagrange multiplier λ∗ which serves as

a threshold. Despite some plateaus, the entries ρ∗i (j) are distinct in most regimes, in

particular around λ∗, the regime that is needed for our results. Moreover, in practice

(on the Yahoo data) we observe later in Figure 6-5 that both solution-dependent

bounds from Remark 6.4.2 are very good, and all solutions are optimal within a very

small gap.

Robustness and Quality

Next, we probe the effect of a robust versus non-robust solution for different uncer-

tainty sets and budgets γ of the adversary. We compare our robust solution with using

a point estimate for x, i.e., ynom ∈ argmaxy∈Y I(y; x̂), treating estimates as ground

truth, and the stochastic solution yexpect ∈ argmaxy∈Y E[I(y;X)] as per Section 6.2.1.

These two optimization problems were solved via standard first-order methods using

TFOCS (Becker et al., 2011).

Figure 6-4 demonstrates that indeed, the alternative budgets are sensitive to the

adversary and the robustly-chosen budget yrobust performs better, even in cases where

108

0 50 100

0

0.014

0.028
D-norm, C = 0.4

0 50 100

0

0.005

0.01
Ellipsoidal, C = 0.4

0 50 100

0

0.013

0.026
D-norm, C = 4

0 50 100

0

0.005

0.01
Ellipsoidal, C = 4

Figure 6-3: Visualization of the sorted values of ρ∗i (j) (blue dots) with comparison
to the particular Lagrange multiplier λ∗ (orange line). In most regimes there are no
duplicate values, so that Theorem 6.4.2 applies. The theorem only needs distinctness
at λ∗.

109

0 5 10 15

0

0.1

0.2

0.3
D-norm, C = 0.400

0 400 800

0

0.1

0.2

0.3
Ellipsoidal, C = 0.400

0 5 10 15

0

0.5

1

1.5

D-norm, C = 3.740

0 400 800

0

0.5

1

1.5

Ellipsoidal, C = 3.740

Figure 6-4: Comparison of worst-case expected influences for D-norm uncertainty sets
XD(γ) (left) and ellipsoidal uncertainty sets XQ(γ) (right), for different total budget
bounds C. For any particular adversary budget γ, we compare minx∈X (γ) I(y;x) for
each candidate allocation y.

the other budgets achieve zero influence. When the total budget C is large, yexpect

performs nearly as well as yrobust, but when resources are scarce (C is small) and the

actual choice seems to matter more, yrobust performs far better.

6.6.2 Yahoo! data

To evaluate our method on real-world data, we formulate a Budget Allocation instance

on advertiser bidding data from Yahoo! Webscope (yah). This dataset logs bids on

1000 different phrases by advertising accounts. We map the phrases to channels S

and the accounts to customers T , with an edge between s and t if a corresponding

bid was made. For each pair (s, t), we draw the associated transmission probability

pst uniformly from [0, 0.4]. We bias these towards zero because we expect people not

to be easily influenced by advertising in the real world. We then generate an estimate

110

Figure 6-5: Convergence properties of our algorithm on real data. In the first plot,
‘p’ and ‘d’ refer to primal and dual values, with dual gap shown on the second plot.
The third plot demonstrates that the problem-dependent suboptimality bounds of
Remark 6.4.2 (x for x(λ+) and L for Lagrangian) are very small (good) for all inner
iterations of this run.

0 40 80

7500

8500

9500

10500

Figure 6-6: Convergence properties of Frank-Wolfe (FW), versus the optimal value
attained with our scheme (SFM).

p̂st and build up a posterior by generating nst samples from Ber(pst), where nst is the

number of bids between s and t in the dataset.

This transformation yields a bipartite graph with |S| = 1000, |T | = 10475, and

more than 50,000 edges that we use for Budget Allocation. In our experiments, the

typical gap between the naive ynom and robust yrobust was 100-500 expected influenced

people. We plot convergence of the outer loop in Figure 6-5, where we observe fast

convergence of both primal influence value and the dual bound.

6.6.3 Comparison to first-order methods

Given the success of first-order methods on nonconvex problems in practice, it is

natural to compare these to our method for finding the worst-case vector x. On

111

one of our Yahoo problem instances with D-norm uncertainty set, we compared our

submodular minimization scheme to Frank-Wolfe with fixed stepsize as in (Lacoste-

Julien, 2016), implementing the linear oracle using MOSEK (MOSEK ApS, 2015).

Interestingly, from various initializations, Frank-Wolfe finds an optimal solution, as

verified by comparing to the guaranteed solution of our algorithm. Note that, due to

non-convexity, there are no formal guarantees for Frank-Wolfe to be optimal here, mo-

tivating the question of global convergence properties of Frank-Wolfe in the presence

of submodularity.

It is important to note that there are many cases where first-order methods are

inefficient or do not apply to our setup. These methods require either a projection ora-

cle onto or linear optimization oracle over the feasible set X defined by ℓ, u and R(x).

The D-norm set admits a linear optimization oracle via linear programming, but we

are not aware of any efficient linear optimization oracle for Ellipsoidal uncertainty, nor

projection oracle for either set, that does not require quadratic programming. Even

more, our algorithm applies for nonconvex functions R(x) which induce nonconvex

feasible sets X . Such nonconvex sets may not even admit a unique projection, while

our algorithm achieves provable solutions.

6.7 Discussion and future work

In this chapter, we address the issue of uncertain parameters (or, model misspecifi-

cation) in Budget Allocation or Bipartite Influence Maximization (Alon et al., 2012)

via robust optimization. The resulting Robust Budget Allocation is a nonconvex-

concave saddle point problem. Although the inner optimization problem is noncon-

vex, we show how continuous submodularity can be leveraged to solve the problem

to arbitrary accuracy τ , as can be verified with the proposed bounds on the duality

gap. In particular, our approach extends continuous submodular minimization meth-

ods (Bach, 2019) to more general constraint sets, introducing a mechanism to solve

a new class of constrained nonconvex optimization problems. Our method provably

performs well on a class of separable nonconvex problems, and empirically well on

112

nonconvex quadratics. For Robust Budget Allocation, we confirm on synthetic and

real data that our method finds high-quality solutions that are robust to parameters

varying arbitrarily in an uncertainty set, and scales up to graphs with over 50,000

edges.

There are many compelling directions for further study. The uncertainty sets we

use are standard in the robust optimization literature, but have not been applied

to e.g. Robust Influence Maximization; it would be interesting to generalize our

ideas to general graphs. Finally, despite the inherent nonconvexity of our problem,

first-order methods are often able to find a globally optimal solution. Explaining

this phenomenon requires further study of the geometry of constrained monotone

submodular minimization.

113

Part III

The reverse: leveraging

perturbations for better

non-convex optimization

algorithms

114

Chapter 7

Escaping saddle points with

Adaptive Gradient Methods and

perturbations

7.1 Introduction

In the previous sections, we focused on how to work around data perturbations, by

designing algorithms that explicitly guard against them. Our approach has been to

explicitly inject perturbations – we will call these intentional perturbations – into the

learning or decision problem, and then design an algorithm that can handle these per-

turbations. We have seen that performance is highly dependent on selecting the appro-

priate type or shape of perturbations: in DRO, MMD, Wasserstein and ϕ-divergence

uncertainty sets all have vastly different performance characteristics.

In contrast, in machine learning problems such as empirical risk minimization

(ERM), there are often already perturbations – unintentional perturbations – in the

learning algorithm itself. This is because stochastic first-order methods such as

stochastic gradient descent (SGD) subsample. Instead of computing full gradients

of the empirical risk Ez∼P̂n
[f(w, z)] = 1

n

∑n
i=1 f(w, zi), which requires summing over

n terms, it is much cheaper to sample a smaller subset S of the datapoints and use

115

the gradient of 1
|S|
∑

i∈S f(w, zi) as an approximation. Instead of the full gradient ∇

of the empirical risk, we receive a stochastic gradient g = ∇ + ξ, where ξ captures

the noise due to subsampling. We say ξ is an unintentional perturbation because we

do not add it ourselves, thinking it can help performance; rather, it arises due to

computational convenience.

We are of course not the first to study subsampling noise: it is a classic issue,

and is a core motivation for online and stochastic optimization research. There is an

immense body of work on stochastic optimization, and a wide variety of approaches

to dealing with the computation versus noise level tradeoff for ERM specifically. We

highlight variance reduction techniques such as (Shalev-Shwartz and Zhang, 2013;

Schmidt et al., 2017; Defazio et al., 2014; Johnson and Zhang, 2013); for more thor-

ough background, see e.g. (Bottou et al., 2018).

In this chapter we specifically explore how the nature of the subsampling noise ξ

affects optimization performance. In the same way that the type of DRO uncertainty

set is critical to achieving good performance, so too is managing the shape of the

noise ξ crucial to optimization. In this way we draw a connection between intentional

perturbations – the focus of Parts I and II – and unintentional perturbations.

7.1.1 Adaptive gradient methods (AGMs)

Adaptive gradient methods (AGMs) are one attempt to improve performance in this

noisy stochastic optimization setting. The intuition is that some coordinates of the

stochastic gradients are noisier than others, so it may help to have a different learning

rate for each coordinate.1 AGMs set these learning rates adaptively based on past

observed stochastic gradients. Though the history of AGMs dates back decades (see

e.g. (Jacobs, 1988)), at present, Adagrad (McMahan and Streeter, 2010; Duchi et al.,

2011) is perhaps the best known AGM. Adagrad uses the square root of the sum of

the outer product of the past gradients to achieve adaptivity. At time step t, Adagrad
1More generally, AGMs precondition the stochastic gradient update direction. Most AGMs use

per-coordinate learning rates, equivalent to preconditioning by a diagonal matrix. In our work it is
actually simpler to first study full-matrix preconditioning, and then to modify the results for the
more common diagonal case.

116

updates the parameters in the following manner:

wt+1 = wt −G
−1/2
t gt,

where gt is a noisy stochastic gradient at wt and Gt =
∑t

i=1 gig
T
i . More often, a

diagonal version of Adagrad is used due to practical considerations, which effectively

yields a per parameter learning rate. In the convex setting, Adagrad achieves provably

good performance, especially when the gradients are sparse.

The non-convex case is more mysterious. Adagrad in particular does not work

as well as in the convex case: this performance degradation is often attributed to

the rapid decay of the learning rate in Adagrad over time, which is a consequence

of rapid increase in eigenvalues of the matrix Gt. Instead, two variants of Adagrad,

namely Adam (Kingma and Ba, 2015) and its special case, RMSProp (Tieleman

and Hinton, 2012), are extremely popular for non-convex problems in deep learning.

We focus on RMSProp, a variant of which is outlined in Algorithm 5; RMSProp

replaces the sum of the outer products with an exponential moving average (EMA)

i.e., Gt = (1− β)
∑t

i=1 β
t−igig

T
i for some constant β ∈ (0, 1). RMSProp often enjoys

better empirical performance than SGD, but we lack a clear idea as to why. In contrast

to the convex setting where we know Adagrad can converge faster than SGD, in the

non-convex setting there is little theory for AGMs. There is limited work showing

convergence of AGMs to first-order stationary points, e.g. (Ward et al., 2019). But

there are also counterexamples showing that RMSProp need not converge even for

convex problems (Reddi et al., 2018b). Moreover, RMSProp is challenging to analyze

due to the EMA and its many terms.

In this chapter, we introduce a much simpler way of thinking about adaptive meth-

ods such as Adam and RMSProp. Roughly, adaptive methods try to precondition

SGD by some matrix A, e.g. when A is diagonal, Aii corresponds to the effective

stepsize for coordinate i. For some choices of A the algorithms do not have oracle

access to A, but instead form an estimate Â ≈ A. We separate out these two steps,

by 1) giving convergence guarantees for an idealized setting where we have access to

117

A, then 2) proving bounds on the quality of the estimate Â. Our approach makes it

possible to effectively intuit about the algorithms, prove convergence guarantees (in-

cluding second-order convergence), and give insights about how to choose algorithm

parameters. It also leads to a number of surprising results, including an understand-

ing of why the Reddi et al. (2018b) counterexample is hard for adaptive methods, why

adaptive methods tend to escape saddle points faster than SGD (observed empirically

in (Reddi et al., 2018a)), insights into how to tune Adam’s parameters, and (to our

knowledge) the first second-order convergence proof for any adaptive method.

More significantly for the theme of this thesis: our convergence results hinge on

the observation that the RMSProp preconditioner A rescales the subsampling noise

ξ to enable better optimization.

Contributions: In addition to the aforementioned novel viewpoint, we also make

the following key contributions:

• We develop a new approach for analyzing convergence of adaptive methods

leveraging the preconditioner viewpoint and by way of disentangling estimation

from the behavior of the idealized preconditioner.

• We provide second-order convergence results for adaptive methods, and as a

byproduct, first-order convergence results. To the best of our knowledge, ours

is the first work to show second order convergence for any adaptive method.

• We provide theoretical insights on how adaptive methods escape saddle points

quickly. In particular, we show that the preconditioner used in adaptive meth-

ods leads to isotropic noise near stationary points, which helps escape saddle

points faster.

• Our analysis also provides practical suggestions for tuning the exponential mov-

ing average parameter β.

118

7.1.2 Related work

There is an immense amount of work studying nonconvex optimization for machine

learning, which is too much to discuss here in detail. Thus, we only briefly discuss

two lines of work that are most relevant to our paper here. First, the recent work

e.g. (Chen et al., 2019; Reddi et al., 2018b; Zou et al., 2019) to understand and give

theoretical guarantees for adaptive methods such as Adam and RMSProp. Second, the

technical developments in using first-order algorithms to achieve nonconvex second-

order convergence (see Definition 7.2.1) e.g. (Ge et al., 2015; Allen-Zhu and Li, 2018;

Jin et al., 2017; Lee et al., 2016).

Nonconvex convergence of adaptive methods. Many recent works have inves-

tigated convergence properties of adaptive methods. However, to our knowledge, all

these results either require convexity or show only first-order convergence to station-

ary points. Reddi et al. (2018b) showed non-convergence of Adam and RMSProp

in simple convex settings and provided a variant of Adam, called AMSGrad, with

guaranteed convergence in the convex setting; Zhou et al. (2018) generalized this to

a nonconvex first-order convergence result. Zaheer et al. (2018) showed first-order

convergence of Adam when the batch size grows over time. Chen et al. (2019) bound

the nonconvex convergence rate for a large family of Adam-like algorithms, but they

essentially need to assume the effective stepsize is well-behaved (as in AMSGrad).

Agarwal et al. (2019) give a convex convergence result for a full-matrix version of

RMSProp, which they extend to the nonconvex case via iteratively optimizing con-

vex functions. Their algorithm uses a fixed sliding window instead of an exponential

moving average. Mukkamala and Hein (2017) prove improved convergence bounds

for Adagrad in the online strongly convex case; they prove similar results for RM-

SProp, but only in a regime where it is essentially the same as Adagrad. Ward et al.

(2019) give a nonconvex convergence result for a variant of Adagrad which employs

an adaptively decreasing single learning rate (not per-parameter). Zou et al. (2019)

give sufficient conditions for first-order convergence of Adam.

119

Nonconvex second order convergence of first order methods. Starting with Ge

et al. (2015) there has been a resurgence in interest in giving first-order algorithms

that find second order stationary points of nonconvex objectives, where the gradient is

small and the Hessian is nearly positive semidefinite. Most other results in this space

operate in the deterministic setting where we have exact gradients, with carefully

injected isotropic noise to escape saddle points. Levy (2016) show improved results

for normalized gradient descent. Some algorithms rely on Hessian-vector products

instead of pure gradient information e.g. (Agarwal et al., 2017; Carmon et al., 2018);

it is possible to reduce Hessian-vector based algorithms to gradient algorithms (Xu

et al., 2018; Allen-Zhu and Li, 2018). Jin et al. (2017) improve the dependence on

dimension to polylogarithmic. Mokhtari et al. (2018b) work towards adapting these

techniques for constrained optimization. Most relevant to our work is that of Danesh-

mand et al. (2018), who prove convergence of SGD with better rates than Ge et al.

(2015). Concurrent with our paper, Fang et al. (2019) give even better rates for SGD.

Our work differs in that we provide second-order results for preconditioned SGD.

7.2 Notation and definitions

The objective function is f , and the gradient and Hessian of f are ∇f and H = ∇2f ,

respectively. Denote by wt ∈ Rd the iterate at time t, by gt an unbiased stochastic

gradient at wt and by ∇t the expected gradient at t. The matrix Gt refers to E[gtgTt].

Denote by λmax(G) and λmin(G) the largest and smallest eigenvalues of G, and κ(G)

is the condition number λmax(G)/λmin(G) of G. For a vector v, its elementwise p-

th power is written vp. The objective f(w) has global minimizer w∗, and we write

f ∗ = f(w∗). The Euclidean norm of a vector v is written as ‖v‖, while for a matrix

M , ‖M‖ refers to the operator norm of M . The matrix I is the identity matrix,

whose dimension should be clear from context.

Definition 7.2.1 (Second-order stationary point). A (τg, τh)-stationary point of f is

a point w so that ‖∇f(w)‖ ≤ τg and λmin(∇2f(w)) ≥ −τh, where τg, τh > 0.

120

Algorithm 4 Preconditioned SGD
Input: initial w0, time T , stepsize η, preconditioner A(w)
for t = 0, . . . , T do

gt ← stochastic gradient at wt

At ← A(wt) ▷ e.g. At = E[gtgTt]−1/2

wt+1 ← wt − ηAtgt
end for

Algorithm 5 Full-matrix RMSProp
Input: initial w0, time T , stepsize η, small number ε > 0 for stability
for t = 0, . . . , T do

gt ← stochastic gradient
Ĝt = βĜt−1 + (1− β)gtg

T
t

At = (Ĝt + εI)−1/2

wt+1 ← wt − ηAtgt
end for

As is standard (e.g. Nesterov and Polyak (2006)), we will discuss only (τ,
√
ρτ)-

stationary points, where ρ is the Lipschitz constant of the Hessian.

7.3 The RMSProp preconditioner

Recall that methods like Adam and RMSProp replace the running sum
∑t

i=1 gig
T
i used

in Adagrad with an exponential moving average (EMA) of the form (1−β)
∑t

i=1 β
t−igig

T
i ,

e.g. full-matrix RMSProp is described formally in Algorithm 5. One key observation

is that Ĝt = (1 − β)
∑t

i=1 β
t−igig

T
i ≈ E[gtgTt] =: Gt if β is chosen appropriately; in

other words, at time t, the accumulated Ĝt can be seen as an approximation of the

true second moment matrix Gt = E[gtgTt] at the current iterate. Thus, RMSProp

can be viewed as preconditioned SGD (Algorithm 4) with the preconditioner being

At = G
−1/2
t . In practice, it is too expensive to compute Gt exactly since it requires

summing over all training samples. Practical adaptive methods (see Algorithm 5)

estimate this preconditioner (or a diagonal approximation) on-the-fly via an EMA.

Before developing our formal results, we will build intuition about the behavior

of adaptive methods by studying an idealized adaptive method (IAM) with perfect

access to Gt. In the rest of this section, we make use of idealized RMSProp to

121

answer some simple questions about adaptive methods that we feel have not yet been

addressed satisfactorily.

7.3.1 What is the purpose of the preconditioner?

Why should preconditioning by A = E[ggT]−1/2 help optimization? The original

Adam paper (Kingma and Ba, 2015) argues that Adam is an approximation to natu-

ral gradient descent, since if the objective f is a log-likelihood, E[ggT] approximates

the Fisher information matrix, which captures curvature information in the space of

distributions. There are multiple issues with comparing adaptive methods to natu-

ral gradient descent, which we discuss in Appendix D.1. Instead, Balles and Hennig

(2018) argue that the primary function of adaptive methods is to equalize the stochas-

tic gradient noise in each direction. But it is still not clear why or how equalized noise

should help optimization.

Our IAM abstraction makes it easy to explain precisely how rescaling the gradient

noise helps. Specifically, we manipulate the update rule for idealized RMSProp:

wt+1 ← wt − ηAtgt (7.1)

= wt − ηAt∇t − η At(gt −∇t)︸ ︷︷ ︸
=:ξt

(7.2)

The At∇t term is deterministic; only ξt is stochastic, with mean E[At(gt − ∇t)] =

At E[gt − ∇t] = 0. Take ε = 0 and assume Gt = E[gtgTt] is invertible, so that

ξt = G
−1/2
t (gt − ∇t). Now we can be more precise about how RMSProp rescales

gradient noise. Specifically, we compute the covariance of the noise ξt:

Cov(ξt) = I −G
−1/2
t ∇t∇T

t G
−1/2
t . (7.3)

The key insight is: near stationary points, ∇t will be small, so that the noise covari-

ance Cov(ξt) is approximately the identity matrix I. In other words, at stationary

points, the gradient noise is approximately isotropic. This observation hints at why

adaptive methods are so successful for nonconvex problems, where one of the main

122

challenges is to escape saddle points (Reddi et al., 2018a). Essentially all first-order

approaches for escaping saddlepoints rely on adding carefully tuned isotropic noise, so

that regardless of what the escape direction is, there is enough noise in that direction

to escape with high probability.

7.3.2 Reddi et al. (2018b) counterexample resolution

Recently, Reddi et al. (2018b) provided a simple convex stochastic counterexample on

which RMSProp and Adam do not converge. Their reasoning is that RMSProp and

Adam too quickly forget about large gradients from the past, in favor of small (but

poor) gradients at the present. In contrast, for RMSProp with the idealized precon-

ditioner (Algorithm 4 with A = E[ggT]−1/2), there is no issue, but the preconditioner

A cannot be computed in practice. Rather, for this example, the exponential moving

average estimation scheme fails to adequately estimate the preconditioner.

The counterexample is an optimization problem of the form

min
w∈[−1,1]

F (w) = pf1(w) + (1− p)f2(w), (7.4)

where the stochastic gradient oracle returns∇f1 with probability p and∇f2 otherwise.

Let ζ > 0 be “small,” and C > 0 be “large.” Reddi et al. (2018b) set p = (1+ ζ)/(C+

1), f1(w) = Cw, and f2(w) = −w. Overall, then, F (w) = ζw which is minimized at

w = −1, however Reddi et al. (2018b) show that RMSProp has E[F (wt)] ≥ 0 and

so incurs suboptimality gap at least ζ. In contrast, the idealized preconditioner is a

function of

E[g2] = p

(
∂f1
∂w

)2

+ (1− p)

(
∂f2
∂w

)2

= C(1 + ζ)− ζ

which is a constant independent of w. Hence the preconditioner is constant, and, up

to the choice of stepsize, idealized RMSProp on this problem is the same as SGD,

which of course will converge.

The difficulty for practical adaptive methods (which estimate E[g2] via an EMA)

123

is that as C grows, the variance of the estimate of E[g2] grows too. Thus Reddi et al.

(2018b) break Adam by making estimation of E[g2] harder.

7.4 Main results: gluing estimation and optimiza-

tion

The key enabling insight of this chapter is to separately study the preconditioner

and its estimation via EMA, then combine these to give proofs for practical adaptive

methods. We will prove a formal guarantee that the EMA estimate Ĝt is close to

the true Gt. By combining our estimation results with the underlying behavior of

the preconditioner, we will be able to give convergence proofs for practical adaptive

methods that are constructed in a novel, modular way.

Separating these two components enables more general results: we actually an-

alyze preconditioned SGD (Algorithm 4) with oracle access to an arbitrary precon-

ditioner A(w). Idealized RMSProp is but one particular instance. Our convergence

results depend only on specific properties of the preconditioner A(w), with which we

can recover convergence results for many RMSProp variants simply by bounding the

appropriate constants. For example, A = (E[ggT]1/2+εI)−1 corresponds to full-matrix

Adam with β1 = 0 or RMSProp as commonly implemented. For cleaner presentation,

we instead focus on the variant A = (E[ggT] + εI)−1/2, but our proof technique can

handle either case or its diagonal approximation.

7.4.1 Estimating from moving sequences

The above discussion about IAM is helpful for intuition, and as a base algorithm

for analyzing convergence. But it remains to understand how well the estimation

procedure works, both for intuition’s sake and for later use in a convergence proof.

In this section we introduce an abstraction we name “estimation from moving se-

quences.” This abstraction will allow us to guarantee high quality estimates of the

preconditioner, or, for that matter, any similarly constructed preconditioner. Our

124

results will moreover make apparent how to choose the β parameter in the exponen-

tial moving average: β should increase with the stepsize η. Increasing β over time

has been supported both empirically (Shazeer and Stern, 2018) as well as theoreti-

cally (Mukkamala and Hein, 2017; Zou et al., 2019; Reddi et al., 2018b), though to

our knowledge, the precise pinning of β to the stepsize η is new.

Suppose there is a sequence of states w1, w2, . . . , wT ∈ W , e.g. the parameters of

our model at each time step. We have access to the states xt, but more importantly we

know the states are not changing too fast: ‖wt−wt−1‖ is bounded for all t. There is a

Lipschitz function G :W → Rd×d, which in our case is the second moment matrix of

the stochastic gradients, but could be more general. We would like to estimate G(w)

for each w = wt, but we have only a noisy oracle Y (w) for G(w), which we assume

is unbiased and has bounded variance. Our goal is, given noisy reads Y1, . . . , YT of

G(w1), . . . , G(wT), to estimate G(wT) at the current point wT as well as possible.

We consider estimators of the form
∑T

t=1 ptYt. For example. setting pT = 1 and

all others to zero would yield an unbiased (but high variance) estimate of G(wT).

We could assign more mass to older samples Yt, but this will introduce bias into the

estimate. By optimizing this bias-variance tradeoff, we can get a good estimator.

In particular, taking p to be an exponential moving average (EMA) of {Yt}Tt=1 will

prioritize more recent and relevant estimates, while placing enough weight on old

estimates to reduce the variance. The tradeoff is controlled by the EMA parameter

β; e.g. if the sequence wt moves slowly (the stepsize is small), we will want large β

because older iterates are still very relevant.

In adaptive methods, the underlying function G(w) we want to estimate is E[ggT]

(or its diagonal E[g2]), and every stochastic gradient g gives us an unbiased estimate

ggT (resp. g2) of G(w). With this application in mind, we formalize our results in

terms of matrix estimation. By combining standard matrix concentration inequalities

(e.g. from Tropp (2011)) with bounds on how fast the sequence moves, we arrive at

the following result, proved in Appendix D.7:

Theorem 7.4.1. Assume ‖wt − wt+1‖ ≤ ηM . The function G : Rd → Rd×d is

matrix-valued and L-Lipschitz. The matrix sequence {Yt : t = 1, 2, . . . } is adapted

125

to a filtration Ft and satisfies E[Yt|Ft−1] = G(wt) for all t ≥ 1. For shorthand

we write Gt := G(wt). Additionally, we assume for each t that ‖Yt − Gt‖ ≤ R

and ‖E[(Yt − Gt)
2|Ft−1]‖ ≤ σ2

max. Set pt ∝ βT−t with
∑T

t=1 pt = 1 and assume

T > 4/(1−β). Then with probability 1−δ, the estimation error Φ =
∥∥∥∑T

t=1 ptYt −GT

∥∥∥
is bounded by

Φ ≤ O(σmax
√

1− β
√

log(d/δ) +MLη/(1− β)).

This is optimized by β = 1−Cη2/3, for which the bound is O((ηMσ2
max(log(d/δ))L)1/3)

as long as T > C ′η−2/3.

As long as T is sufficiently large, we can get a high quality estimate of Gt =

E[gtgTt]. For this, it suffices to start off the underlying optimization algorithm with

W = O(η−2/3) burn-in iterations where our estimate is updated but the algorithm is

not started. This burn-in period will not affect asymptotic runtime as long as W =

O(η−2/3) = O(T). In our non-convex convergence results we will require T = O(τ−4)

and η = O(τ 2), so that W = O(τ−4/3) which is much smaller than T . In practice,

one can get away with much shorter (or no) burn-in period.

If β is properly tuned, while running an adaptive method like RMSProp, we will

get good estimates of G = E[ggT] from samples ggT . However, we actually require a

good estimate of A = E[ggT]−1/2 and variants. To treat estimation in a unified way,

we introduce estimable matrix sequences:

Definition 7.4.1. A (W,T, η,∆, δ)-estimable matrix sequence is a sequence of matri-

ces {A(wt)}W+T
t=1 generated from {wt}t with ‖wt−wt−1‖ ≤ η so that with probability

1 − δ, after a burn-in of time W , we can achieve an estimate sequence {Ât} so that

‖Ât − At‖ ≤ ∆ simultaneously for all times t = W + 1, . . . ,W + T .

Applying Theorem 7.4.1 and union bounding over all time t = W +1, . . . ,W +T ,

we may state a concise result in terms of Definition 7.4.1:

Proposition 7.4.1. Suppose G = E[gtgTt] is L-Lipschitz as a function of w. When

applied to a generator sequence {wt} with ‖wt −wt−1‖ ≤ ηM and samples Yt = gtg
T
t ,

126

the matrix sequence Gt = E[gtgTt] is (W,T, ηM,∆, δ)-estimable with W = O(η−2/3),

T = Ω(W), and ∆ = O(η1/3σ
2/3
max(log(2Td/δ)1/3M1/3L1/3).

We are hence guaranteed a good estimate of G. What we actually want, though,

is a good estimate of the preconditioner A = (G+ εI)−1/2. In Appendix D.8 we show

how to bound the quality of an estimate of A. One simple result is:

Proposition 7.4.2. Suppose G = E[ggT] is L-Lipschitz as a function of w. Further

suppose a uniform bound λmin(G)I � G(w) for all w, with λmin(G) > 0. When applied

to a generator sequence {wt} with ‖wt − wt−1‖ ≤ ηM and samples Yt = gtg
T
t , the

matrix sequence At = (Gt+ εI)−1/2 is (W,T, ηM,∆, δ)-estimable with W = O(η−2/3),

T = Ω(W), and ∆ = O((ησ2
max log(2Td/δ)ML)1/3(ε+ λmin(G))−3/2).

7.4.2 Convergence results

We saw in the last two sections that it is simple to reason about adaptive methods

via IAM, and that it is possible to compute a good estimate of the preconditioner.

But we still need to glue the two together in order to get a convergence proof for

practical adaptive methods.

In this section we will give non-convex convergence results, first for IAM and then

for practical realizations thereof. We start with first-order convergence as a warm-up,

and then move on to second-order convergence. In each case we give a bound for IAM,

study it, and then give the corresponding bound for practical adaptive methods.

Assumptions and notation

We want results for a wide variety of preconditioners A, e.g. A = I, the RM-

SProp preconditioner A = (G + εI)−1/2, and the diagonal version thereof, A =

(diag(G) + εI)−1/2. To facilitate this and the future extension of our approach to

other preconditioners, we give guarantees that hold for general preconditioners A.

Our bounds depend on A via the following properties:

Definition 7.4.2. We say A(w) is a (Λ1,Λ2,Γ, ν, λ−)-preconditioner if, for all w,

the following bounds hold. First, ‖A∇f‖2 ≤ Λ1‖A1/2∇f‖2. Second, if f̃(w) is the

127

quadratic approximation of f at some point w0, we assume ‖A(∇f−∇f̃)‖ ≤ Λ2‖∇f−

∇f̃‖. Third, Γ ≥ E[‖Ag‖2]. Fourth, ν ≤ λmin(AE[ggT]AT). Finally, λ− ≤ λmin(A).

Note that we could bound Λ1 = Λ2 = λmax(A). but in practice Λ1 and Λ2 may

be smaller, since they depend on the behavior of A only in specific directions. In

particular, if the preconditioner A is well-aligned with the Hessian, as may be the

case if the natural gradient approximation is valid, then Λ1 would be very small. If

f is exactly quadratic, Λ2 can be taken as a constant. The constant Γ controls the

magnitude of (rescaled) gradient noise, which affects stability at a local minimum.

Finally, ν gives a lower bound on the amount of gradient noise in any direction;

when ν is larger it is easier to escape saddle points2. For shorthand, a (·, ·,Γ, ·, λ−)-

preconditioner needs to satisfy only the corresponding inequalities.

In Appendix D.3 we provide bounds on these constants for variants of the second

moment preconditioner. We highlight the two most relevant cases, for SGD and

RMSProp:

Proposition 7.4.3. The preconditioner A = I is a (Λ1,Λ2,Γ, ν, λ−)-preconditioner,

with Λ1 = Λ2 = 1, Γ ≤ E[‖g‖2] ≤ d · tr(G), ν ≤ λmin(G), and λ− = 1.

Proposition 7.4.4. The preconditioner A = (G + εI)−1/2 is a (Λ1,Λ2,Γ, ν, λ−)-

preconditioner, with

Λ1 = Λ2 =
1

(λmin(G) + ε)1/2
, Γ =

dλmax(G)

ε+ λmax(G)
,

ν =
λmin(G)

λmin(G) + ε
, and λ− = (λmax(G) + ε)−1/2.

First-order convergence

Proofs are given in Appendix D.6. For all first-order results, we assume that A is a

(·, ·,Γ, ·, λ−)-preconditioner. The proof technique is essentially standard, with minor

changes in order to accomodate general preconditioners. First, suppose we have exact

oracle access to the preconditioner:
2In cases where G = E[ggT] is rank deficient, e.g. in high-dimensional finite sum problems, lower

bounds on λmin(G) should be understood as lower bounds on E[(vT g)2] for escape directions v from
saddle points, analogous to the “CNC condition” from (Daneshmand et al., 2018).

128

Theorem 7.4.2. Run preconditioned SGD with preconditioner A and stepsize η =

τ 2λ−/(LΓ). For small enough τ , after T = 2(f(w0)− f ∗)LΓ/(τ 4λ2
−) iterations,

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤ τ 2. (7.5)

Now we consider an alternate version where instead of the preconditioner At, we

precondition by an noisy version Ât that is close to At, i.e. ‖Ât − At‖ ≤ ∆.

Theorem 7.4.3. Suppose we have access to an inexact preconditioner Â, which satis-

fies ‖Â−A‖≤ ∆ for ∆ < λ−/2. Run preconditioned SGD with preconditioner Â and

stepsize η = τ 2λ−/(4
√
2LΓ). For small enough τ , after T = 32(f(w0)−f ∗)LΓ/(τ 4λ2

−)

iterations, we will have

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤ τ 2. (7.6)

The results are the same up to constants. In other words, as long as we can achieve

less than λ−/2 error, we will converge at essentially the same rate as if we had the

exact preconditioner. In light of this, for the second-order convergence results, we

treat only the noisy version.

Theorem 7.4.3 gives a convergence bound assuming a good estimate of the pre-

conditioner, and our estimation results guarantee a good estimate. By gluing to-

gether Theorem 7.4.3 with our estimation results for the RMSProp preconditioner,

i.e. Proposition 7.4.2, we can give a convergence result for bona fide RMSProp:

Corollary 7.4.1. Consider RMSProp with burn-in, as in Algorithm 6, where we

estimate A = (G+ εI)−1/2. Retain the same choice of η = O(τ 2) and T = O(τ−4) as

in Theorem 7.4.3. For small enough τ , such a choice of η will yield ∆ < λ−/2. Choose

all other parameters e.g. β in accordance with Proposition 7.4.2. In particular, choose

W = Θ(η−2/3) = Θ(τ−4/3) = O(T) for the burn-in parameter. Then with probability

129

Algorithm 6 RMSProp with burn-in
Input: initial w0, time T , stepsize η, burn-in length W
Ĝ0 ← BurnIn(W,β) ▷ Appendix D.2
for t = 0, . . . , T do

gt ← stochastic gradient
Ĝt ← βĜt−1 + (1− β)gtg

T
t

Ât ← Ĝ
−1/2
t

wt+1 ← wt − ηÂtgt
end for

1− δ, in overall time O(W + T) = O(τ−4), we achieve

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤ τ 2. (7.7)

Second-order convergence

Now we leverage the power of our high level approach to prove nonconvex second-order

convergence for adaptive methods. Like the first-order results, we start by proving

convergence bounds for a generic, possibly inexact preconditioner A. Our proof is

based on that of Daneshmand et al. (2018) for SGD, and therefore we achieve the

same O(τ−5) rate. It may be possible to improve our result using the technique

of Fang et al. (2019), which is concurrent work to ours. However, our focus is on the

preconditioner, and our study of it is wholly new. Accordingly, we study the con-

vergence of Algorithm 7, which is the same as Algorithm 4 (generic preconditioned

SGD) except that once in a while we take a large stepsize so we may escape saddle-

points. The proof is given completely in Appendix D.5. At a high level, we show

the algorithm makes progress when the gradient is large and when we are at a saddle

point, and does not escape from local minima. Our analysis uses all the constants

specified in Definition 7.4.2, e.g. the speed of escape from saddle points depends on

ν, the lower bound on stochastic gradient noise.

Then, as before, we simply fuse our convergence guarantees with our estimation

guarantees. The end result is, to our knowledge, the first nonconvex second-order

convergence result for any adaptive method.

130

Algorithm 7 Preconditioned SGD with increasing stepsize
Input: initial w0, time T , stepsizes η, r, threshold tthresh, matrix error ∆
for t = 0, . . . , T do

At ← A(wt) ▷ preconditioner at wt

Ât ← any matrix with ‖Ât − At‖ ≤ ∆
gt ← stochastic gradient at wt

if t mod tthresh = 0 then
wt+1 ← wt − rÂtgt

else
wt+1 ← wt − ηÂtgt

end if
end for

Definitions for second-order results. Assume further that the Hessian H is

ρ-Lipschitz and the preconditioner A(w) is α-Lipschitz. The dependence on these

constants is made precise in the proof, in Appendix D.5. The usual stepsize is η, while

r is the occasional large stepsize that happens every tthresh iterations. We tolerate

a small probability of failure δ. For all results, we assume A is a (Λ1,Λ2,Γ, ν, λ−)-

preconditioner. For simplicity, we assume the noisy estimate Â also satisfies the Λ1

inequality. We will also assume a uniform bound on ‖Ag‖ ≤M = O(
√
Γ).

The proofs rely on a few other quantities that we optimally determine as a function

of the problem parameters: fthresh is a threshold on the function value progress, and

gthresh = fthresh/tthresh is the time-amortized average of fthresh. We specify the precise

values of all quantities in the proof.

Theorem 7.4.4. Consider Algorithm 7 with inexact preconditioner Ât and exact

preconditioner At satisfying the preceding requirements. Suppose that for all t, we

have ‖Ât − At‖ = O(τ 1/2). Then for small τ , with probability 1 − δ, we reach an

(τ,
√
ρτ)-stationary point in time

T = Õ

(
Λ4

1Λ
4
2Γ

4

λ10
− ν4

· L
3

ρδ3
· τ−5

)
. (7.8)

The big-O suppresses other constants given in the proof.

To prove a result for bona fide RMSProp, we need to combine Theorem 7.4.4

with an algorithm that maintains a good estimate of G = E[ggT] (and consequently

131

A = (G + εI)−1/2). This is more delicate than the first-order case because now the

stepsize varies. Whenever we take a large stepsize, the estimation algorithm will need

to hallucinate S number of smaller steps in order to keep the estimate accurate. Our

overall scheme is formalized in Appendix D.2, for which the following convergence

result holds:

Corollary 7.4.2. Consider the RMSProp version of Algorithm 7 that is described in

Appendix D.2. Retain the same choice of η = O(τ 5/2), r = O(τ), and T = O(τ−5)

as in Theorem 7.4.4. For small enough τ , such a choice of η will yield ∆ < λ−/2.

Choose W = Θ(η−2/3) = Θ(τ−5/3) = O(T) for the burn-in parameter Choose S =

O(τ−3/2), so that as far as the estimation scheme is concerned, the stepsize is bounded

by max{η, r/S} = O(τ 5/2) = O(η). Then as before, with probability 1 − δ, we can

reach an (τ,
√
ρτ)-stationary point in total time

W + T = Õ

(
Λ4

1Λ
4
2Γ

4

λ10
− ν4

· L
3

ρδ3
· τ−5

)
, (7.9)

where Λ1,Λ2,Γ, ν, λ− are the constants describing A = (G+ εI)−1/2.

Again, as in the first order results, one could substitute in any other estimable

preconditioner. In particular, in Appendix D.4 we discuss the more common diagonal

version of RMSProp.

7.5 Discussion

Separating the estimation step from the preconditioning enables evaluation of different

choices for the preconditioner.

7.5.1 How to set the regularization parameter ε

In the adaptive methods literature, it is still a mystery how to properly set the

regularization parameter ε that ensures invertibility of G+ εI. When the optimality

tolerance τ is small enough, estimating the preconditioner is not the bottleneck. Thus,

132

focusing only on the idealized case, one could just choose ε to minimize the bound.

Our first-order results depend on ε only through the following term:

Γ

λmin(A)
≤ dλmin(G)

ε+ λmin(G)
· (λmax(G) + ε), (7.10)

where we have used the preconditioner bounds from Proposition 7.4.4. This is min-

imized by taking ε → ∞, which suggests using identity preconditioner, or SGD. In

contrast, for second-order convergence, the bound is

Λ4
1Λ

4
2Γ

4

λ10
− ν4

≤ d4κ(G)4(λmax(G) + ε), (7.11)

which is instead minimized with ε = 0. So for the best second-order convergence rate,

it is desireable to set ε as small as possible. Note that since our bounds hold only for

small enough convergence tolerance τ , it is possible that the optimal ε should depend

in some way on τ .

7.5.2 Comparison to SGD

Another important question we make progress towards is: when are adaptive methods

better than SGD? Our second-order result depends on the preconditioner only through

Λ4
1Λ

4
2Γ

4/(λ10
− ν4). Plugging in Proposition 7.4.3 for SGD, we may bound

Λ4
1Λ

4
2Γ

4

λ10
− ν4

≤ E[‖g‖2]4

λmin(G)4
≤ d4κ(G)4, (7.12)

while for full-matrix RMSProp, we have

Λ4
1Λ

4
2Γ

4

λ10
− ν4

≤ d4κ(G)4(λmax(G) + ε). (7.13)

Setting ε = 0 for simplicity, we conclude that full-matrix RMSProp converges faster

if λmax(G) ≤ 1.

Now suppose that for a given optimization problem, the preconditioner A is well-

aligned with the Hessian so that Λ1 = O(1) (e.g. if the natural gradient approx-

133

imation holds) and that near saddle points the objective is essentially quadratic

so that Λ2 = O(1). In this regime, the preconditioner dependence of idealized

full matrix RMSProp is d4λmax(G)5, which yields a better result than SGD when

λmax(G) ≤ λmin(G)−4. This will happen whenever λmin(G) is relatively small. Thus,

when there is not much noise in the escape direction, and the Hessian and G−1/2 are

not poorly aligned, RMSProp will converge faster overall. Similar phenomenon can

be shown for the diagonal case when the approximation is good, per the results in

Appendix D.3 and D.4.

7.5.3 Alternative preconditioners

Our analysis inspires the design of other preconditioners: e.g., if at each iteration

we sample two independent stochastic gradients g1 and g2, we have unbiased sample

access to (g1 − g2)(g1 − g2)
T , which in expectation yields the covariance Σ = Cov(g)

instead of the second moment matrix of g. It immediately follows that we can prove

second-order convergence results for an algorithm that constructs an exponential mov-

ing average estimate of Σ and preconditions by Σ−1/2, as advocated by Ida et al.

(2017).

7.5.4 Tuning the EMA parameter β

Another mystery of adaptive methods is how to set the exponential moving average

(EMA) parameter β. In practice β is typically set to a constant, e.g. 0.99, while other

parameters such as the stepsize η are tuned more carefully and may vary over time.

While our estimation guarantee Theorem 7.4.1, suggests setting β = 1−O(η2/3), the

specific formula depends on constants that may be unknown, e.g. Lipschitz constants

and gradient norms. Instead, one could set β = 1 − Cη2/3, and search for a good

choice of the hyperparameter C. For example, the common initial choice of η = 0.001

and β = 0.99 corresponds to C = 1.

134

7.6 Experiments

We experimentally test our claims about adaptive methods escaping saddle points,

and our suggestion for setting β.

Escaping saddle points. First, we test our claim that when the gradient noise is

ill-conditioned, adaptive methods escape saddle points faster than SGD, and often

converge faster to (approximate) local minima. We construct a two dimensional3 non-

convex problem f(w) = 1
n

∑n
i=1 fi(w) where fi(w) =

1
2
wTHw + bTi w + ‖w‖1010. Here,

H = diag([1,−0.1]), so f has a saddle point at the origin with objective value zero.

The vectors bi are chosen so that sampling b uniformly from {bi}ni=1 yields E[b] = 0

and Cov(b) = diag([1, 0.01]). Hence at the origin there is an escape direction but

little gradient noise in that direction.

We initialize SGD and (diagonal) RMSProp (with β = 1 − η2/3) at the saddle

point and test several stepsizes η for each. Results for the first 104 iterations are

shown in Figure 7-1. In order to escape the saddle point as fast as RMSProp, SGD

requires a substantially larger stepsize, e.g. SGD needs η = 0.01 to escape as fast as

RMSProp does with η = 0.001. But with such a large stepsize, SGD cannot converge

to a small neighborhood of the local minimum, and instead bounces around due to

gradient noise. Since RMSProp can escape with a small stepsize, it can converge

to a much smaller neighborhood of the local minimum. Overall, for any fixed final

convergence criterion, RMSProp escapes faster and converges faster overall.

Setting the EMA parameter β. Next, we test our recommendations regard-

ing setting the EMA parameter β. We consider logistic regression on MNIST. We

use (diagonal) RMSProp with batch size 100, decreasing stepsize ηt = 0.001/
√
t

and ε = 10−8, and compare different schedules for β. Specifically we test β ∈

{0.7, 0.9, 0.97, 0.99} (so that 1 − β is spaced roughly logarithmically) as well as our

recommendation of βt = 1 − Cη
2/3
t for C ∈ {0.1, 0.3, 1}. As shown in Figure 7-2, all

3The same phenomenon still holds in higher dimensions but the presentation is simpler with
d = 2.

135

options for β have similar performance initially, but as ηt decreases, large β yields

substantially better performance. In particular, our decreasing β schedule achieved

the best performance, and moreover was insensitive to how C was set.

7.7 Further discussion and future work

In this chapter, we gave the first second-order guarantees for AGMs. To achieve these

guarantees, we introduced a new, simpler way of reasoning about AGMs, based on

separating the estimation of the preconditioner A from the effect of the preconditioner

on optimization. Our convergence guarantees also led to insights about how to set the

various parameters of RMSProp, in particular ε and β, as well as better understanding

of when AGMs can beat SGD.

There are many fruitful directions for further research. Chief among these is

extending our proof technique to provide guarantees for Adam. Adam is slightly more

complicated to study, but we are optimistic due to the close relationship between

Adam and RMSProp. Other related algorithms may also be amenable to similar

study.

It is also likely our results can be improved. As mentioned earlier, it is likely

to improve the dependence of our results on τ by adapting the technique developed

by Fang et al. (2019). Our results could also perhaps be strengthened for particular

problem instances. Specifically, our proof relies on a pessimistic view of how the

preconditioner A interacts with the Hessian ∇2f . For some problems, these two

matrices may be “aligned” in a way that is favorable to optimization and leads to

tighter bounds.

136

0 2000 4000 6000 8000 10000

Iteration

−0.01

0.00

0.01

O
b

je
ct

iv
e

SGD η = 0.03

SGD η = 0.01

SGD η = 0.007

0 2000 4000 6000 8000 10000

Iteration

−0.01

0.00

0.01

O
b

je
ct

iv
e

RMSProp η = 0.01

RMSProp η = 0.001

RMSProp η = 0.0001

Figure 7-1: SGD (top) vs RMSProp (bottom) performance escaping a saddle point
with poorly conditioned gradient noise. Compared to RMSProp, SGD requires a
larger stepsize to escape as quickly, which negatively impacts convergence to the
local minimum.

137

25 50 75 100 125 150 175 200

Epoch

0.06

0.07

0.08

0.09

0.10

L
os

s

β = 0.7

β = 0.9

β = 0.97

β = 0.99

β = 1− 0.3η2/3

Figure 7-2: Performance on MNIST logistic regression of RMSProp with different
choices of β and decreasing stepsize.

138

Part IV

Conclusion

139

140

Chapter 8

Conclusion

8.1 High-level summary

As depicted in Figure 1-1, in this thesis we studied the interplay of data perturba-

tions, learning and generalization, and non-convex optimization. In Part I we studied

how data perturbations, particularly DRO, shed light on generalization. We devel-

oped a new type of DRO problem and developed deep connections to kernel methods.

In Part II, we developed algorithms for non-convex perturbation-robust optimization

problems. We focused on submodular objectives, and were able to give algorithms

with solution quality guarantees for some perturbation-robust problems. And, in

Part III, we showed that perturbations in the form of subsampling error, typically

thought of as a nuisance, can be reshaped in order to yield better non-convex opti-

mization performance.

Though the mechanical tools employed in each part vary widely, the goals and

ideas are strongly linked. We wish to understand how algorithms and models are

affected by perturbations, then leverage this understanding to improve their perfor-

mance. We seek new algorithms that, given limited data, learn perturbation-robust

models and make robust decisions that succeed in many environments.

141

8.2 Future directions

We have already discussed, at the end of each chapter, directions for future work that

are most relevant to that chapter. Here we instead speculate on broader themes and

more ambitious future directions.

8.2.1 Perturbations and generalization

While the connection between perturbations and (statistical and otherwise) general-

ization is already rich, there are many ways to further strengthen this connection.

For DRO specifically, there are many exciting directions. For existing DRO prob-

lems, it is likely possible to develop tighter generalization bounds with fewer assump-

tions. There is also much room for further employment of DRO as a tool to enable

algorithmic fairness, causal inference, transfer learning, etc.

Other kinds of perturbations also present exciting opportunities. For example,

new types of data augmentation will continue to improve real-world performance of

learned models. Other notions of robustness will also expand the set of inferences we

can make from data. For example, in the line of work building off of Chernozhukov

et al. (2018), a kind of robustness or insensitivity called Neyman orthogonality enables

estimation of average treatment effect (a causal quantity) in new settings using only

observational data.

8.2.2 Perturbation-aware optimization

Perturbation-aware optimization such as DRO is difficult for two reasons: the ob-

jective may be non-convex, and incorporating the perturbations is often challenging.

Most of the work done so far has focused on convex objectives, together with one of

a few well-behaved types of perturbations or uncertainty sets. Our work in Part II

broke out of this mold by considering non-convex objectives.

Even for standard uncertainty sets, there is much work to be done in building out

tools for perturbation-aware non-convex optimization. There are many submodular

DRO problems we have not yet explored that may prove tractable. Beyond submod-

142

ularity, other specific subclasses of non-convex objective functions may also admit

DRO problems with performance guarantees.

An orthogonal direction of future work is to consider broader kinds of perturba-

tions, and develop algorithms to make optimzation tractable in those settings. For

example, while Meinshausen (2018) captures certain causal inference problems in the

language of DRO, the resulting DRO formulations are typically too challenging to

be useful at the present. We are optimistic that many DRO problems, currently of

theoretical interest only, will eventually admit tractable optimization.

8.2.3 Perturbations for optimization

We studied how to adjust a base algorithm (SGD) to make it better use subsampling

error. Beyond directly extending our results, there are other potential avenues for

better using noise in optimization. For example, there is substantial work that changes

the subsampling distribution via e.g. changing the sampling frequencies of each data

point, or even sampling non-iid. Finally, it remains to be understood how these

perturbations due to subsampling interact with intentional perturbations added by

techniques such as DRO.

143

Part V

Bibliography and Appendix

144

Bibliography

Last.fm dataset - 360k users. URL http://www.dtic.upf.edu/~ocelma/
MusicRecommendationDataset/lastfm-360K.html.

Yahoo! Webscope dataset ydata-ysm-advertiser-bids-v1_0. URL http://research.
yahoo.com/Academic_Relations.

Marek Adamczyk, Maxim Sviridenko, and Justin Ward. Submodular Stochastic Prob-
ing on Matroids. Mathematics of Operations Research, 41(3):1022–1038, April 2016.

Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 u.s.
election: Divided they blog. In Proceedings of the 3rd International Workshop on
Link Discovery, LinkKDD ’05, pages 36–43, New York, NY, USA, 2005. ACM.
ISBN 1-59593-215-1.

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma.
Finding approximate local minima faster than gradient descent. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
pages 1195–1199, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4528-6.

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang,
and Yi Zhang. Efficient full-matrix adaptive regularization. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 102–110, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

Shipra Agrawal, Yichuan Ding, Amin Saberi, and Yinyu Ye. Correlation robust
stochastic optimization. In SODA, 2010.

Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order
oracles. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 3720–3730. Curran Associates, Inc., 2018.

Noga Alon, Iftah Gamzu, and Moshe Tennenholtz. Optimizing Budget Allocation
Among Channels and Influencers. In Proceedings of the 21st International Confer-
ence on World Wide Web, WWW ’12, pages 381–388, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1229-5.

145

http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-360K.html
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-360K.html
http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations

Nima Anari, Nika Haghtalab, Seffi Naor, Sebastian Pokutta, Mohit Singh, and Al-
fredo Torrico. Structured robust submodular maximization: Offline and online
algorithms. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings
of Machine Learning Research, volume 89 of Proceedings of Machine Learning Re-
search, pages 3128–3137. PMLR, 16–18 Apr 2019.

Alper Atamtürk and Vishnu Narayanan. Polymatroids and mean-risk minimization
in discrete optimization. Operations Research Letters, 36(5):618–622, September
2008.

Brian Axelrod, Yang P. Liu, and Aaron Sidford. Near-optimal Approximate Discrete
and Continuous Submodular Function Minimization, pages 837–853. 2020.

Francis Bach. Learning with submodular functions: A convex optimization perspec-
tive. Foundations and Trendső in Machine Learning, 6(2-3):145–373, 2013.

Francis Bach. Submodular Functions: From Discrete to Continous Domains. Mathe-
matical Programming, 175(1-2):419–459, 2019.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. The power of optimization from
samples. In Advances In Neural Information Processing Systems, pages 4017–4025,
2016.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. The limitations of optimization
from samples. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1016–1027. ACM, 2017.

Lukas Balles and Philipp Hennig. Dissecting Adam: The sign, magnitude and variance
of stochastic gradients. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 404–413, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

Stephen R Becker, Emmanuel J Candès, and Michael C Grant. Templates for convex
cone problems with applications to sparse signal recovery. Mathematical program-
ming computation, 3(3):165–218, 2011.

Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of Linear Programming
problems contaminated with uncertain data. Mathematical Programming, 88(3):
411–424, September 2000.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimization.
Princeton University Press, 2009.

Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and
Gijs Rennen. Robust solutions of optimization problems affected by uncertain
probabilities. Management Science, 59(2):341–357, 2013.

146

D. Bertsimas, D. Brown, and C. Caramanis. Theory and Applications of Robust
Optimization. SIAM Review, 53(3):464–501, January 2011.

Dimitris Bertsimas and Melvyn Sim. Robust Discrete Optimization and Network
Flows. Mathematical programming, 98(1):49–71, 2003.

Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimiza-
tion. Mathematical Programming, 167(2):235–292, Feb 2018.

Michael J. Best and Nilotpal Chakravarti. Active set algorithms for isotonic regres-
sion; A unifying framework. Mathematical Programming, 47(1-3):425–439, 1990.

Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, and Andreas
Krause. Guaranteed non-convex optimization: Submodular maximization over con-
tinuous domains. In AISTATS, 2017.

Yatao An Bian. Provable non-convex optimization and algorithm validation via sub-
modularity, 2019.

Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and
complexity of deep convolutional representations. The Journal of Machine Learning
Research, 20(1):876–924, 2019.

Alberto Bietti, Grégoire Mialon, Dexiong Chen, and Julien Mairal. A kernel perspec-
tive for regularizing deep neural networks. In Proceedings of the 36th International
Conference on Machine Learning. PMLR, 2019.

Garrett Birkhoff. Rings of sets. Duke Mathematical Journal, 3(3):443–454, 1937.

Mikoaj Bikowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demys-
tifying MMD GANs. In International Conference on Learning Representations,
2018.

Jose Blanchet, Yang Kang, Fan Zhang, and Karthyek Murthy. Data-driven optimal
transport cost selection for distributionally robust optimization. arXiv preprint
arXiv:1705.07152, 2017.

Jose Blanchet, Karthyek Murthy, and Fan Zhang. Optimal transport based distribu-
tionally robust optimization: Structural properties and iterative schemes. arXiv
preprint arXiv:1810.02403, 2018.

Jose Blanchet, Yang Kang, and Karthyek Murthy. Robust wasserstein profile inference
and applications to machine learning. Journal of Applied Probability, 56(3):830–
857, 2019.

Ilija Bogunovic, Slobodan Mitrović, Jonathan Scarlett, and Volkan Cevher. Robust
submodular maximization: A non-uniform partitioning approach. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages

147

508–516, International Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR.

Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing
Social Influence in Nearly Optimal Time. In Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 946–957,
Philadelphia, PA, USA, 2014. Society for Industrial and Applied Mathematics.
ISBN 978-1-61197-338-9.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-
scale machine learning. SIAM Review, 60(2):223–311, 2018.

Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial
on geometric programming. Optimization and engineering, 8(1):67–127, 2007.

Niv Buchbinder, Moran Feldman, Joseph SeffiNaor, and Roy Schwartz. A tight lin-
ear time (1/2)-approximation for unconstrained submodular maximization. SIAM
Journal on Computing, 44(5):1384–1402, 2015.

Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM Journal on
Computing, 40(6):1740–1766, 2011.

Y. Carmon, J. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

Deeparnab Chakrabarty, Prateek Jain, and Pravesh Kothari. Provable submodular
minimization using wolfe's algorithm. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 802–809. Curran Associates, Inc., 2014.

Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. Sub-
quadratic Submodular Function Minimization. In STOC, 2017.

V. Chandrasekaran and P. Shah. Relative Entropy Relaxations for Signomial Opti-
mization. SIAM Journal on Optimization, 26(2):1147–1173, January 2016.

C. Chekuri, J. Vondrak, and R. Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In 2010 IEEE 51st Annual Sym-
posium on Foundations of Computer Science, pages 575–584, Oct 2010.

Robert S Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust op-
timization for non-convex objectives. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 4708–4717. Curran Associates,
Inc., 2017.

148

Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social
networks. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 199–208. ACM, 2009.

Wei Chen, Chi Wang, and Yajun Wang. Scalable Influence Maximization for Preva-
lent Viral Marketing in Large-scale Social Networks. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’10, pages 1029–1038, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0055-1.

Wei Chen, Tian Lin, Zihan Tan, Mingfei Zhao, and Xuren Zhou. Robust influence
maximization. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 795–804. ACM, 2016.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class
of adam-type algorithms for non-convex optimization. In International Conference
on Learning Representations, 2019.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian
Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for
treatment and structural parameters. The Econometrics Journal, 21(1):C1–C68,
2018.

Mung Chiang. Geometric Programming for Communication Systems. Commun. Inf.
Theory, 2(1/2):1–154, July 2005.

Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of good-
ness of fit. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pages 2606–2615, New York, New York, USA,
20–22 Jun 2016. PMLR.

Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and Thomas Hofmann. Escaping
saddles with stochastic gradients. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 1155–1164, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

Abhimanyu Das and David Kempe. Submodular meets spectral: Greedy algorithms
for subset selection, sparse approximation and dictionary selection. In Lise Getoor
and Tobias Scheffer, editors, Proceedings of the 28th International Conference on
Machine Learning (ICML-11), ICML ’11, pages 1057–1064, New York, NY, USA,
June 2011. ACM. ISBN 978-1-4503-0619-5.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental
gradient method with support for non-strongly convex composite objectives. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,

149

editors, Advances in Neural Information Processing Systems 27, pages 1646–1654.
Curran Associates, Inc., 2014.

Erick Delage and Yinyu Ye. Distributionally robust optimization under moment
uncertainty with application to data-driven problems. Operations Research, 58(3):
595–612, 2010.

Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation Algorithms
for Stochastic Submodular Set Cover with Applications to Boolean Function Eval-
uation and Min-Knapsack. ACM Trans. Algorithms, 12(3):42:1–42:28, April 2016.

Josip Djolonga and Andreas Krause. From MAP to marginals: Variational inference
in Bayesian submodular models. In Advances in Neural Information Processing
Systems, pages 244–252, 2014.

Pedro Domingos and Matt Richardson. Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 57–66. ACM, 2001.

Nan Du, Le Song, Manuel Gomez Rodriguez, and Hongyuan Zha. Scalable influence
estimation in continuous-time diffusion networks. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 3147–3155. Curran Associates, Inc., 2013.

Nan Du, Yingyu Liang, Maria-Florina Balcan, and Le Song. Influence function learn-
ing in information diffusion networks. In ICML, pages 2016–2024, 2014.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:
2121–2159, July 2011.

John Duchi, Peter Glynn, and Hongseok Namkoong. Statistics of robust optimization:
A generalized empirical likelihood approach. arXiv preprint arXiv:1610.03425,
2016.

John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing
for stochastic optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

Joseph C Dunn and S Harshbarger. Conditional gradient algorithms with open loop
step size rules. Journal of Mathematical Analysis and Applications, 62(2):432–444,
1978.

Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. Training genera-
tive neural networks via maximum mean discrepancy optimization. In Proceedings
of the Thirty-First Conference on Uncertainty in Artificial Intelligence, UAI’15,
pages 258–267, Arlington, Virginia, United States, 2015. AUAI Press. ISBN 978-0-
9966431-0-8.

150

J. Ecker. Geometric Programming: Methods, Computations and Applications. SIAM
Review, 22(3):338–362, July 1980.

Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Richard K
Guy, editor, Calgary International Conference on Combinatorial Structures and
Their Applications. Gordon and Breach, 1970.

Alina Ene and Huy L. Nguyen. A Reduction for Optimizing Lattice Submodular
Functions with Diminishing Returns. arXiv:1606.08362 [cs], June 2016.

Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex sgd escap-
ing from saddle points. In Alina Beygelzimer and Daniel Hsu, editors, Proceedings
of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings
of Machine Learning Research, pages 1192–1234, Phoenix, USA, 25–28 Jun 2019.
PMLR.

Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone sub-
modular functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A unified continuous greedy
algorithm for submodular maximization. In IEEE Symposium on Foundations of
Computer Science (FOCS), 2011.

Nicolas Fournier and Arnaud Guillin. On the rate of convergence in Wasserstein
distance of the empirical measure. Probability Theory and Related Fields, 162(3):
707–738, Aug 2015.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110, March 1956.

Satoru Fujishige. Submodular Functions and Optimization, volume 58. Elsevier, 2005.

Rui Gao and Anton J Kleywegt. Distributionally robust stochastic optimization with
Wasserstein distance. arXiv preprint arXiv:1604.02199, 2016.

Rui Gao, Xi Chen, and Anton J Kleywegt. Wasserstein distributional robustness and
regularization in statistical learning. arXiv preprint arXiv:1712.06050, 2017.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points
— online stochastic gradient for tensor decomposition. In Peter Grünwald, Elad
Hazan, and Satyen Kale, editors, Proceedings of The 28th Conference on Learning
Theory, volume 40 of Proceedings of Machine Learning Research, pages 797–842,
Paris, France, 03–06 Jul 2015. PMLR.

Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. Frank-Wolfe Algorithms for
Saddle Point Problems. In Aarti Singh and Jerry Zhu, editors, Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, volume 54
of Proceedings of Machine Learning Research, pages 362–371, Fort Lauderdale, FL,
USA, 20–22 Apr 2017. PMLR.

151

Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. Approximability
of combinatorial problems with multi-agent submodular cost functions. In Foun-
dations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on,
pages 755–764. IEEE, 2009.

Michel Goemans and Jan Vondrák. Stochastic Covering and Adaptivity. In LATIN
2006: Theoretical Informatics, pages 532–543. Springer Berlin Heidelberg, March
2006.

Joel Goh and Melvyn Sim. Distributionally robust optimization and its tractable
approximations. Operations Research, 58(4-part-1):902–917, 2010.

Daniel Golovin and Andreas Krause. Adaptive Submodularity: Theory and Applica-
tions in Active Learning and Stochastic Optimization. Journal of Artificial Intelli-
gence, 42:427–486, 2011.

M Gomez Rodriguez, B Schölkopf, Langford J Pineau, et al. Influence maximization
in continuous time diffusion networks. In 29th International Conference on Machine
Learning (ICML 2012), pages 1–8. International Machine Learning Society, 2012.

Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks
of diffusion and influence. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 1019–1028,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0055-1.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In International Conference on Learning Representations,
2015.

Jun-ya Gotoh, Michael Jong Kim, and Andrew E.B. Lim. Robust empirical opti-
mization is almost the same as mean-variance optimization. Operations Research
Letters, 46(4):448 – 452, 2018.

Corinna Gottschalk and Britta Peis. Submodular function maximization on the
bounded integer lattice. In Approximation and Online Algorithms: 13th Inter-
national Workshop (WAOA), 2015.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and
Alexander Smola. A kernel two-sample test. Journal of Machine Learning Research,
13:723–773, March 2012.

Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

Marwa El Halabi and Stefanie Jegelka. Minimizing approximately submodular func-
tions. arXiv preprint arXiv:1905.12145, 2019.

152

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fair-
ness without demographics in repeated loss minimization. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine Learning Research, pages
1929–1938, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient Methods for
Submodular Maximization. In Advances in Neural Information Processing Systems
30, pages 5843–5853, 2017.

Avinatan Hassidim and Yaron Singer. Submodular optimization under noise. In
Satyen Kale and Ohad Shamir, editors, Proceedings of the 2017 Conference on
Learning Theory, volume 65 of Proceedings of Machine Learning Research, pages
1069–1122, Amsterdam, Netherlands, 07–10 Jul 2017. PMLR.

Daisuke Hatano, Takuro Fukunaga, Takanori Maehara, and Ken-ichi Kawarabayashi.
Lagrangian Decomposition Algorithm for Allocating Marketing Channels. In
AAAI, pages 1144–1150, 2015.

Xinran He and David Kempe. Robust influence maximization. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 885–894. ACM, 2016.

Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally
robust supervised learning give robust classifiers? In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 2029–
2037, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Yasutoshi Ida, Yasuhiro Fujiwara, and Sotetsu Iwamura. Adaptive learning rate via
covariance matrix based preconditioning for deep neural networks. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-
17, pages 1923–1929, 2017.

Shinji Ito. Submodular function minimization with noisy evaluation oracle. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 32, pages 12103–12113.
Curran Associates, Inc., 2019.

Satoru Iwata and Kiyohito Nagano. Submodular function minimization under cover-
ing constraints. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual
IEEE Symposium on, pages 671–680. IEEE, 2009.

Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polyno-
mial algorithm for minimizing submodular functions. J. ACM, 48(4):761–777, July
2001.

153

Robert A Jacobs. Increased rates of convergence through learning rate adaptation.
Neural networks, 1(4):295–307, 1988.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization.
In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th In-
ternational Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 427–435, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Stefanie Jegelka, Francis Bach, and Suvrit Sra. Reflection methods for user-friendly
submodular optimization. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, pages 1313–1321. Curran Associates, Inc., 2013.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How
to escape saddle points efficiently. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 1724–1732, International Con-
vention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Wittawat Jitkrittum, Wenkai Xu, Zoltan Szabo, Kenji Fukumizu, and Arthur Gret-
ton. A linear-time kernel goodness-of-fit test. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 262–271. Curran Associates,
Inc., 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predic-
tive variance reduction. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
26, pages 315–323. Curran Associates, Inc., 2013.

Dimitris Kalimeris, Gal Kaplun, and Yaron Singer. Robust influence maximization
for hyperparametric models. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 3192–3200, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

Amin Karbasi, Hamed Hassani, Aryan Mokhtari, and Zebang Shen. Stochastic
continuous greedy++: When upper and lower bounds match. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 13066–13076. Curran
Associates, Inc., 2019.

Mohammad Karimi, Mario Lucic, Hamed Hassani, and Andreas Krause. Stochastic
Submodular Maximization: The Case of Coverage Functions. In Advances in Neural
Information Processing Systems 30, pages 6856–6866, 2017.

Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Scalable deletion-
robust submodular maximization: Data summarization with privacy and fairness

154

constraints. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2544–2553, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the Spread of Influence
Through a Social Network. In Proceedings of the Ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’03, pages
137–146, New York, NY, USA, 2003. ACM. ISBN 978-1-58113-737-8.

David Kempe, Jon M Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. Theory of Computing, 11(4):105–147, 2015.

Vladimir R. Khachaturov, Roman V. Khachaturov, and Ruben V. Khachaturov. Su-
permodular Programming on Finite Lattices. Computational Mathematics and
Mathematical Physics, 52(6):855–878, 2012.

Sunyoung Kim and Masakazu Kojima. Exact Solutions of Some Nonconvex Quadratic
Optimization Problems via SDP and SOCP Relaxations. Computational Optimiza-
tion and Applications, 26(2):143–154, Nov 2003.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015.

Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, and Andreas Krause. Distri-
butionally robust bayesian optimization. arXiv preprint arXiv:2002.09038, 2020.

Vladimir Kolmogorov and Akiyoshi Shioura. New algorithms for convex cost tension
problem with application to computer vision. Discrete Optimization, 6:378–393,
2009.

Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust
submodular observation selection. Journal of Machine Learning Research, 9(Dec):
2761–2801, 2008a.

Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust
submodular observation selection. Journal of Machine Learning Research, 9(Dec):
2761–2801, 2008b.

Andreas Krause, Alex Roper, and Daniel Golovin. Randomized sensing in adversarial
environments. In IJCAI, 2011.

Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine Learning.
Now Publishers Inc., Hanover, MA, USA, 2012. ISBN 1601986289, 9781601986283.

Simon Lacoste-Julien. Convergence Rate of Frank-Wolfe for Non-Convex Objectives.
arXiv:1607.00345 [cs, math, stat], July 2016.

155

Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of frank-
wolfe optimization variants. In Advances in Neural Information Processing Systems,
pages 496–504, 2015.

Henry Lam. Robust Sensitivity Analysis for Stochastic Systems. Mathematics of
Operations Research, 41(4):1248–1275, 2016.

Guanghui Lan. The complexity of large-scale convex programming under a linear
optimization oracle. arXiv preprint arXiv:1309.5550, 2013.

Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient
descent only converges to minimizers. In Vitaly Feldman, Alexander Rakhlin, and
Ohad Shamir, editors, 29th Annual Conference on Learning Theory, volume 49 of
Proceedings of Machine Learning Research, pages 1246–1257, Columbia University,
New York, New York, USA, 23–26 Jun 2016. PMLR.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method
and its implications for combinatorial and convex optimization. In Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 1049–
1065. IEEE, 2015.

Jing Lei. Convergence and concentration of empirical measures under wasserstein
distance in unbounded functional spaces. Bernoulli, 26(1):767–798, 02 2020.

Kfir Y Levy. The power of normalization: Faster evasion of saddle points. arXiv
preprint arXiv:1611.04831, 2016.

Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks.
In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 1718–1727, Lille, France, 07–09 Jul 2015. PMLR.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summariza-
tion. In Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages
510–520, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.
ISBN 978-1-932432-87-9.

Qiang Liu, Jason Lee, and Michael Jordan. A kernelized Stein discrepancy for
goodness-of-fit tests. In Maria Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages 276–284, New York, New York,
USA, 20–22 Jun 2016. PMLR.

L. Lovász. Submodular functions and convexity, pages 235–257. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1983. ISBN 978-3-642-68874-4.

156

Meghna Lowalekar, Pradeep Varakantham, and Akshat Kumar. Robust Influence
Maximization: (Extended Abstract). In Proceedings of the 2016 International Con-
ference on Autonomous Agents & Multiagent Systems, AAMAS ’16, pages 1395–
1396, Richland, SC, 2016. International Foundation for Autonomous Agents and
Multiagent Systems. ISBN 978-1-4503-4239-1.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations, 2018.

Takanori Maehara. Risk averse submodular utility maximization. Operations Re-
search Letters, 43(5):526–529, September 2015.

Takanori Maehara, Akihiro Yabe, and Ken ichi Kawarabayashi. Budget allocation
problem with multiple advertisers: A game theoretic view. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 428–437,
Lille, France, 07–09 Jul 2015. PMLR.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample
variance penalization. In Conference on Learning Theory, 2009.

H. Brendan McMahan and Matthew J. Streeter. Adaptive bound optimization for
online convex optimization. In COLT 2010 - The 23rd Conference on Learning
Theory, Haifa, Israel, June 27-29, 2010, pages 244–256, 2010.

N. Meinshausen. Causality from a distributional robustness point of view. In 2018
IEEE Data Science Workshop (DSW), pages 6–10, June 2018.

Michel Minoux. Accelerated greedy algorithms for maximizing submodular set func-
tions. In J. Stoer, editor, Optimization Techniques, pages 234–243, Berlin, Heidel-
berg, 1978. Springer Berlin Heidelberg. ISBN 978-3-540-35890-9.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák,
and Andreas Krause. Lazier than lazy greedy. In Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed
submodular maximization. Journal of Machine Learning Research, 17(238):1–44,
2016.

Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust
optimization using the Wasserstein metric: performance guarantees and tractable
reformulations. Mathematical Programming, 171(1):115–166, Sep 2018.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018.

157

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Conditional gradient method
for stochastic submodular maximization: Closing the gap. In Amos Storkey and
Fernando Perez-Cruz, editors, Proceedings of the Twenty-First International Con-
ference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine
Learning Research, pages 1886–1895, Playa Blanca, Lanzarote, Canary Islands, 09–
11 Apr 2018a. PMLR.

Aryan Mokhtari, Asuman Ozdaglar, and Ali Jadbabaie. Escaping saddle points in
constrained optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 31, pages 3633–3643. Curran Associates, Inc., 2018b.

MOSEK ApS. MOSEK MATLAB Toolbox 8.0.0.57, 2015.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard
Schölkopf. Kernel mean embedding of distributions: A review and beyond. Foun-
dations and Trendső in Machine Learning, 10(1-2):1–141, 2017.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of RMSProp and Adagrad
with logarithmic regret bounds. In Doina Precup and Yee Whye Teh, editors, Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 2545–2553, International Conven-
tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Kazuo Murota. Discrete convex analysis. SIAM, 2003.

Kazuo Murota and Akiyoshi Shioura. Exact bounds for steepest descent algorithms
of l-convex function minimization. Operations Research Letters, 42:361–366, 2014.

Kiyohito Nagano, Yoshinobu Kawahara, and Kazuyuki Aihara. Size-Constrained
Submodular Minimization through Minimum Norm Base. In ICML, pages 977–
984, 2011.

Hongseok Namkoong and John C. Duchi. Variance-based Regularization with Convex
Objectives. In Advances in Neural Information Processing Systems 30, pages 2975–
2984, 2017.

Harikrishna Narasimhan, David C Parkes, and Yaron Singer. Learnability of influence
in networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages 3186–3194.
Curran Associates, Inc., 2015.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of
approximations for maximizing submodular set functions I. Mathematical Pro-
gramming, 14(1):265–294, 1978.

Yurii Nesterov. Introductory lectures on convex optimization : a basic course. Kluwer
Academic Publishers, Boston, 2004. ISBN 1402075537.

158

Yurii Nesterov and Boris T Polyak. Cubic regularization of Newton method and its
global performance. Mathematical Programming, 108(1):177–205, 2006.

Praneeth Netrapalli and Sujay Sanghavi. Learning the graph of epidemic cascades. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems, SIGMETRICS
’12, pages 211–222, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1097-0.

Evdokia Nikolova. Approximation algorithms for reliable stochastic combinatorial op-
timization. In Maria Serna, Ronen Shaltiel, Klaus Jansen, and José Rolim, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 338–351, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
ISBN 978-3-642-15369-3.

Naoto Ohsaka and Yuichi Yoshida. Portfolio optimization for influence spread. In
Proceedings of the 26th International Conference on World Wide Web, WWW’17,
page 977–985, Republic and Canton of Geneva, CHE, 2017. International World
Wide Web Conferences Steering Committee. ISBN 9781450349130.

Yonatan Oren, Shiori Sagawa, Tatsunori Hashimoto, and Percy Liang. Distribution-
ally robust language modeling. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pages 4227–4237, Hong
Kong, China, November 2019. Association for Computational Linguistics.

James B. Orlin, Andreas Schulz, and Rajan Udwani. Robust monotone submodular
function maximization. In Conference on Integer Programming and Combinatorial
Optimization (IPCO), 2016.

Luis D. Pascual and Adi Ben-Israel. Constrained maximization of posynomials by
geometric programming. Journal of Optimization Theory and Applications, 5(2):
73–80, March 1970.

Boris T. Polyak. Introduction to Optimization. Number 04; QA402. 5, P6. 1987.

Sashank Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Francis Bach, Ruslan
Salakhutdinov, and Alex Smola. A generic approach for escaping saddle points. In
Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, volume 84 of Pro-
ceedings of Machine Learning Research, pages 1233–1242, Playa Blanca, Lanzarote,
Canary Islands, 09–11 Apr 2018a. PMLR.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and
beyond. In International Conference on Learning Representations, 2018b.

R Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-
risk. Journal of risk, 2:21–42, 2000.

159

R Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general
loss distributions. Journal of banking & finance, 26(7):1443–1471, 2002.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Dis-
tributionally robust neural networks. In International Conference on Learning
Representations, 2020.

Herbert Scarf. A min-max solution of an inventory problem. Studies in the mathe-
matical theory of inventory and production, 1958.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346 –
355, 2000.

Soroosh Shafieezadeh Abadeh, Peyman Mohajerin Mohajerin Esfahani, and Daniel
Kuhn. Distributionally robust logistic regression. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 1576–1584. Curran Associates, Inc., 2015.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods
for regularized loss minimization. Journal of Machine Learning Research, 14(Feb):
567–599, 2013.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear
memory cost. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 4596–4604, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR.

Shashank Singh and Barnabás Póczos. Minimax distribution estimation in wasserstein
distance. arXiv preprint arXiv:1802.08855, 2018.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional
robustness with principled adversarial training. In International Conference on
Learning Representations, 2018.

Tasuku Soma and Yuichi Yoshida. A Generalization of Submodular Cover via the
Diminishing Return Property on the Integer Lattice. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 847–855. Curran Associates, Inc., 2015.

160

Tasuku Soma, Naonori Kakimura, Kazuhiro Inaba, and Ken ichi Kawarabayashi.
Optimal budget allocation: Theoretical guarantee and efficient algorithm. In Eric P.
Xing and Tony Jebara, editors, Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages
351–359, Bejing, China, 22–24 Jun 2014. PMLR.

Matthew Staib and Stefanie Jegelka. Distributionally robust deep learning as a gener-
alization of adversarial training. In NIPS Machine Learning and Computer Security
Workshop, 2017a.

Matthew Staib and Stefanie Jegelka. Robust budget allocation via continuous sub-
modular functions. In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 3230–3240, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017b. PMLR.

Matthew Staib and Stefanie Jegelka. Wasserstein k-means++ for cloud regime his-
togram clustering. In Proceedings of the Seventh International Workshop on Cli-
mate Informatics: CI 2017, 2017c.

Matthew Staib and Stefanie Jegelka. Distributionally robust optimization and general-
ization in kernel methods. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 9131–9141. Curran Associates, Inc., 2019a.

Matthew Staib and Stefanie Jegelka. Robust budget allocation via continuous sub-
modular functions. Applied Mathematics & Optimization, Mar 2019b.

Matthew Staib, Sebastian Claici, Justin M Solomon, and Stefanie Jegelka. Paral-
lel streaming Wasserstein barycenters. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 2644–2655. Curran Associates,
Inc., 2017.

Matthew Staib, Sashank Reddi, Satyen Kale, Sanjiv Kumar, and Suvrit Sra. Es-
caping saddle points with adaptive gradient methods. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
5956–5965, Long Beach, California, USA, 09–15 Jun 2019a. PMLR.

Matthew Staib, Bryan Wilder, and Stefanie Jegelka. Distributionally robust submod-
ular maximization. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Pro-
ceedings of the Twenty-Second International Conference on Artificial Intelligence
and Statistics, volume 89 of Proceedings of Machine Learning Research, pages 506–
516. PMLR, 16–18 Apr 2019b.

Serban Stan, Morteza Zadimoghaddam, Andreas Krause, and Amin Karbasi. Prob-
abilistic submodular maximization in sub-linear time. In Doina Precup and

161

Yee Whye Teh, editors, Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine Learning Research, pages
3241–3250, International Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR.

Dougal J Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya
Ramdas, Alex Smola, and Arthur Gretton. Generative models and model criti-
cism via optimized maximum mean discrepancy. In International Conference on
Learning Representations, 2017.

Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based algo-
rithms and lower bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
International Conference on Learning Representations, 2014.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSProp: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31, 2012.

Donald M Topkis. Minimizing a submodular function on a lattice. Operations re-
search, 26(2):305–321, 1978.

Joel Tropp. Freedman’s inequality for matrix martingales. Electronic Communica-
tions in Probability, 16:262–270, 2011.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. Robustness may be at odds with accuracy. In International Confer-
ence on Learning Representations, 2019.

Cédric Villani. Optimal Transport: Old and New (Grundlehren der mathematischen
Wissenschaften). Springer, 2008. ISBN 9788793102132.

John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behav-
ior. Princeton University Press, 1944.

Jan Vondrak. Optimal approximation for the submodular welfare problem in the value
oracle model. In Proceedings of the Fortieth Annual ACM Symposium on Theory
of Computing, STOC’08, page 67–74, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605580470.

Kevin Wainwright and Alpha Chiang. Fundamental Methods of Mathematical Eco-
nomics. McGraw-Hill Education, 2004. ISBN 0070109109.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univer-
sity Press, 2019.

162

Rachel Ward, Xiaoxia Wu, and Leon Bottou. AdaGrad stepsizes: Sharp convergence
over nonconvex landscapes. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 6677–6686, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

Jonathan Weed, Francis Bach, et al. Sharp asymptotic and finite-sample rates of
convergence of empirical measures in wasserstein distance. Bernoulli, 25(4A):2620–
2648, 2019.

Bryan Wilder. Equilibrium computation and robust optimization in zero sum games
with submodular structure. In Proceedings of the 32nd AAAI Conference on Arti-
ficial Intelligence, 2018a.

Bryan Wilder. Risk-Sensitive Submodular Optimization. In AAAI Conference on
Artificial Intelligence, 2018b.

Philip Wolfe. Finding the nearest point in a polytope. Mathematical Programming,
11(1):128–149, Dec 1976.

Huan Xu, Constantine Caramanis, and Shie Mannor. Robustness and regularization
of support vector machines. Journal of Machine Learning Research, 10(Jul):1485–
1510, 2009.

Yi Xu, Jing Rong, and Tianbao Yang. First-order stochastic algorithms for escaping
from saddle points in almost linear time. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 31, pages 5531–5541. Curran Associates, Inc., 2018.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Ku-
mar. Adaptive methods for nonconvex optimization. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31, pages 9793–9803. Curran Associates,
Inc., 2018.

Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, and Amin Karbasi.
One sample stochastic frank-wolfe. arXiv preprint arXiv:1910.04322, 2019.

Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. On the con-
vergence of adaptive gradient methods for nonconvex optimization. arXiv preprint
arXiv:1808.05671, 2018.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition
for convergences of adam and rmsprop. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

163

164

Appendix A

DRO, MMD, kernels, and

generalization

A.1 Proofs of main structural results

Proof of Theorem 3.3.1. We will use weak duality to derive a candidate solution, and

then use that solution to show strong duality. First, note that

sup
µQ∈H:∥µQ−µP∥H≤ε

〈f, µQ〉H = sup
µQ∈H

inf
λ≥0

{
〈f, µQ〉H − λ(‖µQ − µP‖2H − ε2)

}
(A.1)

≤ inf
λ≥0

sup
µQ∈H

{
〈f, µQ〉H − λ(‖µQ − µP‖2H − ε2)

}
(A.2)

= inf
λ≥0

{
λε2 + sup

µQ∈H

{
〈f, µQ〉H − λ‖µQ − µP‖2H

}}
. (A.3)

We first focus on the innermost objective, which may be rewritten:

〈f, µQ〉H − λ‖µQ − µP‖2H = 〈f, µP〉H + 〈f, µQ − µP〉H − λ‖µQ − µP‖2H (A.4)

= 〈f, µP〉H − λ

[
‖µQ − µP‖2H − 2

〈
1

2λ
f, µQ − µP

〉
H

]
(A.5)

= 〈f, µP〉H − λ

[∥∥∥∥µQ − µP −
1

2λ
f

∥∥∥∥2
H
+

∥∥∥∥ 1

2λ
f

∥∥∥∥2
H

]
, (A.6)

165

where the final inequality is by completing the square. Only one term depends on

µQ, namely −λ‖µQ − µP − 1
2λ
f‖2H; since norms are nonnegative, this term can never

exceed zero, and zero is achieved by µ∗
Q = µP + 1

2λ
f ∈ H, yielding inner objective

value

〈f, µP〉H − λ

∥∥∥∥ 1

2λ
f

∥∥∥∥2
H
= 〈f, µP〉H −

1

4λ
‖f‖2H. (A.7)

Plugging this in for the inner problem, and then solving for the optimal dual variable

λ∗, we derive the upper bound:

sup
µQ∈H:∥µQ−µP∥H≤ε

〈f, µQ〉H ≤ inf
λ≥0

{
λε2 + 〈f, µP〉H +

1

4λ
‖f‖2H

}
(A.8)

= 〈f, µP〉H + ε‖f‖H. (A.9)

The optimal dual variable λ∗ = 1
2ε
‖f‖H is that which balances the two terms. Plug-

ging this in, we find that µ∗
Q = µP +

ε
∥f∥H

f .

In order to prove equality, it remains to show strong duality holds. We will achieve

this by lower bounding the original objective. Specifically, the supremum over all µQ

can be lower bounded by plugging in our particular µ∗
Q:

sup
µQ∈H:∥µQ−µP∥H≤ε

〈f, µQ〉H = sup
µQ∈H

inf
λ≥0

{
〈f, µQ〉H − λ(‖µQ − µP‖2H − ε2)

}
(A.10)

≥ inf
λ≥0

{
〈f, µ∗

Q〉H − λ(‖µ∗
Q − µP‖2H − ε2)

}
(A.11)

= inf
λ≥0

{〈
f, µP +

ε

‖f‖H
f

〉
H
− λ

(∥∥∥∥ ε

‖f‖H
f

∥∥∥∥2
H
− ε2

)}
(A.12)

= inf
λ≥0

{〈
f, µP +

ε

‖f‖H
f

〉
H
− λ

(
ε2 − ε2

)}
(A.13)

=

〈
f, µP +

ε

‖f‖H
f

〉
H
= 〈f, µP〉H + ε‖f‖H. (A.14)

Since the same bound appears on both sides, we have equality.

166

A.2 Gaussian kernel bounds

We first reproduce Proposition 3.4.1 for convenience:

Proposition A.2.1. Let f, g ∈ Hσ have the expansions f =
∑

i aikσ(xi, ·) and g =∑
j bjkσ(xj, ·). For shorthand denote by zi = ϕ√

2σ(xi) the (possibly infinite) feature

expansion of xi in H√
2σ. Then

‖fg‖2
σ/

√
2
= tr(A2B2), ‖f‖2σ = tr(A2), and ‖g‖2σ = tr(B2),

where A =
∑

i aiziz
T
i and B =

∑
j ajzjz

T
j .

In order to prove Proposition 3.4.1, we will need a utility lemma that helps trans-

late between Hσ and Hσ/
√
2:

Lemma A.2.1. Let 〈·, ·〉σ/√2 be the inner product in the RKHS Hσ/
√
2. Let 〈·, ·〉σ′

refer to the inner product in Hσ′. Then,

〈kσ(x, ·)kσ(y, ·), kσ(a, ·)kσ(b, ·)〉σ/√2 (A.15)

can be simplified as

kσ
√
2(x, a)kσ

√
2(x, b)kσ

√
2(y, a)kσ

√
2(y, b). (A.16)

In order to make the proof cleaner, we first derive a couple of identities involving

norms and sums.

Lemma A.2.2. Let x, y, z be vectors in an inner product space with norm ‖·‖. Then

the following identity holds:

‖x− z‖2 + ‖y − z‖2 = 1

2
‖x− y‖2 + 2

∥∥∥∥z − x+ y

2

∥∥∥∥2 . (A.17)

Proof. The parallelogram law states that for u, v in an an inner product space with

167

norm ‖·‖, it holds that

2‖u‖2 + 2‖u‖2 = ‖u− v‖2 + ‖u+ v‖2. (A.18)

Set u = x− z and v = y − z, and note that u− v = x− y and u+ v = 2z − (x+ y).

Then, for the norm ‖·‖, it follows that:

2‖x− z‖2 + 2‖y − z‖2 = ‖x− y‖2 + ‖2z − (x+ y)‖2. (A.19)

The result follows by dividing by two.

Lemma A.2.3. Let x, y, a, b be arbitrary vectors in an inner product space with inner

product 〈·, ·〉 and norm ‖·‖. Define S and T by:

S := ‖x− y‖2 + ‖a− b‖2 + ‖(x+ y)− (a+ b)‖2

T := ‖x− a‖2 + ‖x− b‖2 + ‖y − a‖2 + ‖y − b‖2.

Then S = T .

Proof. Start by expanding the third term of S:

‖x− y‖2 + ‖a− b‖2 + ‖(x+ y)− (a+ b)‖2 (A.20)

= ‖x− y‖2 + ‖a− b‖2 + ‖(x− a) + (y − b)‖2 (A.21)

= ‖x− y‖2 + ‖a− b‖2 + 2〈x− a, y − b〉+ ‖x− a‖2 + ‖y − b‖2. (A.22)

168

The first three terms of equation (A.22) can be expanded as

‖x− y‖2 + ‖a− b‖2 + 2〈x− a, y − b〉 (A.23)

= ‖x‖2 + ‖y‖2 − 2〈x, y〉+ ‖a‖2 + ‖b‖2 (A.24)

− 2〈a, b〉+ 2〈x− a, y − b〉 (A.25)

= ‖x‖2 + ‖y‖2 − 2〈x, y〉+ ‖a‖2 + ‖b‖2 (A.26)

− 2〈a, b〉+ 2〈x, y〉 − 2〈x, b〉 − 2〈a, y〉+ 2〈a, b〉 (A.27)

= ‖x‖2 + ‖y‖2 + ‖a‖2 + ‖b‖2 − 2〈x, b〉 − 2〈a, y〉 (A.28)

= ‖x− b‖2 + ‖y − a‖2. (A.29)

Replacing the first three terms in equation (A.22) by ‖x − b‖2 + ‖y − a‖2 yields T ,

i.e. S = T .

We are now equipped to prove Lemma A.2.1:

Proof of Lemma A.2.1. First, write

kσ(x, z)kσ(y, z) = exp
(
− 1

2σ2

(
‖x− z‖2 + ‖y − z‖2

))
(A.30)

= exp
(
− 1

2σ2

(
1

2
‖x− y‖2 + 2

∥∥∥∥z − x+ y

2

∥∥∥∥2
))

(A.31)

= exp
(
− 1

4σ2
‖x− y‖2

)
exp

(
− 1

σ2

∥∥∥∥z − x+ y

2

∥∥∥∥2
)

(A.32)

= kσ
√
2(x, y)kσ/

√
2

(
z,

x+ y

2

)
, (A.33)

where in the second line we used Lemma A.2.2. Note that the first term does not

169

depend on z. Now, applying this identity to Equation (A.15), we find:

〈kσ(x, ·)kσ(y, ·), kσ(a, ·)kσ(b, ·)〉σ/√2 (A.34)

= kσ
√
2(x, y)kσ

√
2(a, b)

〈
kσ/

√
2

(
x+ y

2
, ·
)
, kσ/

√
2

(
a+ b

2
, ·
)〉

σ/
√
2

(A.35)

= kσ
√
2(x, y)kσ

√
2(a, b)kσ/

√
2

(
x+ y

2
,
a+ b

2

)
(A.36)

= kσ
√
2(x, y)kσ

√
2(a, b)kσ

√
2 (x+ y, a+ b) . (A.37)

To simplify this expression, notice that it takes the form exp(−S/(4σ2)), where

S = ‖x− y‖2 + ‖a− b‖2 + ‖(x+ y)− (a+ b)‖2. (A.38)

By Lemma A.2.3, S is equal to

S = ‖x− a‖2 + ‖x− b‖2 + ‖y − a‖2 + ‖y − b‖2, (A.39)

which means equation (A.37) can be rewritten as

exp
(
− S

4σ2

)
= exp

(
−‖x− a‖2

4σ2

)
exp

(
−‖x− b‖2

4σ2

)
exp

(
−‖y − a‖2

4σ2

)
exp

(
−‖y − b‖2

4σ2

)
= kσ

√
2(x, a)kσ

√
2(x, b)kσ

√
2(y, a)kσ

√
2(y, b).

With Lemma A.2.1 available, it is possible to prove Proposition 3.4.1:

Proof of Proposition 3.4.1. Define the vectors zi as described, so that zTi zj = k√2σ(xi, xj).

For convenience, also write Kij = k√2σ(xi, xj), and observe that K2
ij = kσ(xi, xj). It

follows that

‖f‖2σ =
∑
i

∑
j

aiajkσ(xi, xj) =
∑
i

∑
j

aiajK
2
ij =

∑
i

∑
j

aiajz
T
i zjz

T
j zi (A.40)

170

Rearranging the inner terms, we find

‖f‖2σ =
∑
i

aiz
T
i

(∑
j

ajzjz
T
j

)
zi =

∑
i

aiz
T
i Azi = tr

(∑
i

aiziz
T
i A

)
= tr(A2),

(A.41)

where we have used the definition of A, the fact that the trace of a scalar is simply

that scalar, and the cyclic property of the trace. The proof that ‖g‖2σ = tr(B2) is

identical, so we omit it.

The derivation of the trace form of ‖fg‖2
σ/

√
2

is more complicated. Expanding out

fg, we see that

(fg)(x) =
∑
i,j

aibjkσ(xi, x)kσ(xj, x). (A.42)

Therefore the norm ‖fg‖2
σ/

√
2
, which is simply 〈fg, fg〉σ/√2, is equal to:

〈fg, fg〉σ/√2 =

〈∑
i,j

aibjkσ(xi, x)kσ(xj, x),
∑
i′,j′

ai′bj′kσ(xi′ , x)kσ(xj′ , x)

〉
σ/

√
2

(A.43)

=
∑

i,j,i′,j′

aiai′bjbj′ 〈kσ(xi, x)kσ(xj, x), kσ(xi′ , x)kσ(xj′ , x)〉σ/√2 (A.44)

=
∑

i,j,i′,j′

aiai′bjbj′kσ
√
2(xi, xi′)kσ

√
2(xi, xj′)kσ

√
2(xj, xi′)kσ

√
2(xj, xj′)

(A.45)

=
∑

i,j,i′,j′

aiai′bjbj′Kii′Kij′Kji′Kjj′ , (A.46)

where in the second to last step we have used Lemma A.2.1. Before continuing,

observe the identity

∑
ℓ

aℓKiℓKjℓ =
∑
ℓ

aℓz
T
i zℓz

T
ℓ zj = zTi

(∑
ℓ

aℓzℓz
T
ℓ

)
zj = zTi Azj (A.47)

171

Similarly,
∑

ℓ bℓKiℓKjℓ = zTi Bzj. Leveraging these identities, we continue:

∑
i,j,i′,j′

aiai′bjbj′Kii′Kij′Kji′Kjj′ =
∑
i,i′,j

aiai′bjKii′Kji′

∑
j′

bj′Kij′Kjj′ (A.48)

=
∑
i,i′,j

aiai′bjKii′Kji′(z
T
i Bzj) (A.49)

=
∑
i,j

aibj

(∑
i′

ai′Kii′Kji′

)
(zTi Bzj) (A.50)

=
∑
i,j

aibj(z
T
j Azi)(z

T
i Bzj). (A.51)

At this point we leverage the cyclic property of the trace, so the above expression

equals:

tr
(∑

i,j

aibjAziz
T
i Bzjz

T
j

)
= tr

(
A

(∑
i

aiziz
T
i

)
B

(∑
j

bjzjz
T
j

))
= tr(A2B2).

A.2.1 Trace inequality

Proof of Lemma 3.4.1. Consider the trace inner product 〈X,Y 〉 = tr(XTY) = tr(XY),

where the final equality is because X is symmetric. By the Cauchy-Schwarz inequality,

we have tr(XY) ≤
√

tr(X2) tr(Y 2). Let {λi}ni=1 be the eigenvalues of X. Then,

tr(X2) =
n∑

i=1

λ2
i ≤

n∑
i=1

λ2
i + 2

n∑
i=1

n∑
j=i+1

λiλj =

(
n∑

i=1

λi

)2

= tr(X)2, (A.52)

where the inequality holds because λi are all nonnegative. The same holds for any

positive semidefinite matrix, in particular, Y . Combining these two inequalities, we

have

tr(XY) ≤
√

tr(X2) tr(Y 2) ≤
√

tr(X)2 tr(Y)2 = tr(X) tr(Y). (A.53)

172

A.2.2 Extensions of Proposition 3.4.1

There are many useful corollaries and extensions of Proposition 3.4.1. Here, we give

a result that makes it tractable to actually compute ‖fg‖σ/√2:

Corollary A.2.1. Suppose f =
∑n

i=1 aikσ(xi, ·) and g =
∑n

i=1 bikσ(xi, ·) have the

same finite expansion, but with potentially different coefficients. Form the kernel

matrix K with Kij = k√2σ(xi, xj), where we have replaced the bandwidth σ with
√
2σ.

Write Da = diag(a) and similarly for Db. Then,

‖fg‖2
σ/

√
2
= tr((DaK)2(DbK)2). (A.54)

Proof. Pick vectors zi so that zTi zj = Kij, and let Z be the matrix with i-th column

zi. Note that A =
∑n

i=1 aiziz
T
i = ZDaZ

T , and similarly for B. Then we may write

‖fg‖2
σ/

√
2

(a)
= tr(A2B2) (A.55)

= tr((ZDaZ
T)(ZDaZ

T)(ZDbZ
T)(ZDbZ

T)) (A.56)
(b)
= tr(DaZ

TZDaZ
TZDbZ

TZDbZ
TZ) (A.57)

(c)
= tr(DaKDaKDbKDbK) (A.58)

= tr((DaK)2(DbK)2), (A.59)

where (a) is by Proposition 3.4.1, (b) is by the cyclic property of the trace, and (c)

follows since ZTZ = K by definition of zi.

A.3 Proofs for Section 3.5

Proof of Lemma 3.5.1. For notational convenience, we just write ℓ instead of ℓ⃗. First,

notice that problem (3.22), once the wi ≥ 0 constraint is dropped, can be written

supw ℓTw

s.t.
(
w − 1

n
1
)T

K
(
w − 1

n
1
)
≤ ε2

1Tw = 1

(A.60)

173

Write v = w − 1
n
1. Then the value of problem (A.60) is equal to

1

n
1T ℓ+

supv ℓTv

s.t. vTKv ≤ ε2

1Tv = 0

(A.61)

and we can focus on this slightly simpler problem. This problem can be in turn

rewritten as:

sup
v

inf
η≥0,λ

{
ℓTv − η(vTKv − ε2)− λ1Tv

}
. (A.62)

Slater’s condition holds since v = 0 is strictly feasible. Therefore strong duality holds,

so the optimal value is equal to:

inf
η≥0,λ

{
ηε2 + sup

v

{
ℓTv − ηvTKv − λ1Tv

}}
(A.63)

= inf
η≥0,λ

{
ηε2 + sup

v

{
−ηvTKv + (ℓ− λ1)Tv

}}
. (A.64)

The inner problem is a concave quadratic maximization problem. In general, if A is

symmetric, −xTAx+ bTx is maximized when x = 1
2
A−1b, and the resulting objective

value is 1
4
bTA−1b. Applying this to the problem at hand, we find that the optimal v∗

satisfies:

v∗ =
1

2η
K−1(ℓ− λ1), (A.65)

and the corresponding objective value of the inner problem is

1

4η
(ℓ− λ1)TK−1(ℓ− λ1). (A.66)

The overall problem is therefore

inf
η≥0,λ

{
ηε2 +

1

4η
(ℓ− λ1)TK−1(ℓ− λ1)

}
. (A.67)

174

The objective is a convex quadratic in λ, and it is simple to check that λ∗ =

(1TK−1ℓ)/(1TK−11). Then, both remaining terms are positive, so it is optimal to

balance them. This leads to

η∗ε2 =
1

4η∗
(ℓ− λ∗1)TK−1(ℓ− λ∗1) (A.68)

=⇒ 1

2η∗
=

ε√
(ℓ− λ∗1)TK−1(ℓ− λ∗1)

, (A.69)

and the overall optimal value is

2 · 1

4η∗
(ℓ− λ∗1)TK−1(ℓ− λ∗1) (A.70)

= ε
√

(ℓ− λ∗1)TK−1(ℓ− λ∗1). (A.71)

The term inside the square root is equal to

(ℓ− λ∗1)TK−1(ℓ− λ∗1) = ℓTK−1ℓ− 2λ∗1TK−1ℓ+ (λ∗)21TK−11 (A.72)

= ℓTK−1ℓ− (1TK−1ℓ)2

1TK−11 , (A.73)

from which we can simply compute the overall objective of the original problem.

Proof of Lemma 3.5.2. One can prove via the matrix inversion lemma that

K−1 = (aI + b11T)−1 = a−1

[
I − b

a+ bn
11T

]
. (A.74)

As a consequence,

aℓTK−1ℓ = ‖ℓ‖2 − b

a+ bn
(1T ℓ)2 (A.75)

aℓTK−11 = 1T ℓ− b

a+ bn
(1T ℓ)(1T1) = a

a+ bn
· 1T ℓ (A.76)

a1TK−11 = 1T1− b

a+ bn
(1T1)2 = a

a+ bn
· n. (A.77)

175

It follows that

(aℓTK−11)2
a1TK−11 = a ·

(
a

a+bn
1T ℓ
)2

a
a+bn
· n

= a · (1
T ℓ)2

n
· a

a+ bn
= a · (1T ℓ)2 ·

(
1

n
− b

a+ bn

)
(A.78)

and therefore

a ·
[
ℓTK−1ℓ− (ℓTK−11)2

1TK−11

]
= a ·

[
‖ℓ‖2 − b

a+ bn
(1T ℓ)2 − (1T ℓ)2 ·

(
1

n
− b

a+ bn

)]
(A.79)

= a ·
[
‖ℓ‖2 − (1T ℓ)2

n

]
= a · VarP̂n

(ℓ), (A.80)

from which the conclusion follows.

176

Appendix B

Distributionally robust

submodular maximization

B.1 Tail Bound

We use the following one-sided Bernstein’s inequality:

Lemma B.1.1 (Wainwright (2019), Chapter 2). Let X1, . . . , Xn be iid realizations of

a random variable X which satisfies X ≤ B almost surely. Then,

Pr
[
1

n

n∑
i=1

Xi − E[X] ≥ ε

]
≤ exp

(
− nε2

Var (X) + Bε
3

)
.

We apply Lemma B.1.1 with Xi = fi(S). If we set the probability on the right

hand side to be at most δ, then a simple calculation shows that it suffices to have

n = Var(X)
ε2

log 1
δ
+ Bε

3
log 1

δ
. Hence, for a given value of n, we can guarantee error of

at most

ε =

√
2 log

(
1

δ

)
Var(X)

n
+

2

3
log
(
1

δ

)
B

n
.

Therefore, we can take C1 =
√

2 log 1
δ

and C2 = 2B
3

log 1
δ
. For many submodular

maximization problems, B can be bounded by the ground set size |V |. For instance,

177

this bound holds for influence maximization, though tighter bounds may be available

for specific graphs and distributions.

B.2 Equivalence of Variance Regularization and

Distributionally Robust Optimization

Lemma B.2.1. Suppose that f({i}) ≤ b for all f in the support of P and all i ∈ V .

Then, for each such f , its multilinear extension F is b-Lipschitz in the ℓ1 norm.

Proof. Consider any two points x, x′ ∈ [0, 1]|V | and any function f in the support of

P. Without loss of generality, let f(x′) ≥ f(x). Let [x]+ = max(x, 0) elementwise,

∨ denote elementwise minimum, and ei be the i-th standard basis vector. Then we

bound F (x′):

F (x′)
(a)

≤ F (x′ ∨ x)

= F (x+ [x′ − x]+)

(b)

≤ F (x) + F ([x′ − x]+)

(c)

≤ F (x) +

|V |∑
i=1

F ([x′ − x]+i ei)

(d)
= F (x) +

|V |∑
i=1

f({i})[x′ − x]+i

(e)

≤ F (x) + b

|V |∑
i=1

[x′ − x]+i

≤ F (x) + b‖x′ − x‖1.

Here, (a) follows from monotonicity, while (b) and (c) follow because submodular

functions are subadditive, i.e., F (x+y) ≤ F (x)+F (y). Then, (d) follows by definition

of the multilinear extension, and (e) by assumption. Rearranging yields |F (x′) −

F (x)| ≤ b‖x− x′‖1 as desired.

We will use the following concentration result for the sample variance of a random

178

variable:

Lemma B.2.2 (Namkoong and Duchi (2017), Section A.1). Let Z be a random

variable bounded in [0, B] and z1, . . . , zn be iid realizations of Z with n ≥ 64. Let σ2

denote Var(Z) and s2n denote the sample variance. Then s2n ≥ 1
4
σ2 with probability at

least 1− exp
(
− nσ2

36B2

)
.

This allows us to get a uniform result for the variance expansion of the distribu-

tionally robust objective:

Corollary B.2.1. Let X be the polytope {x ∈ [0, 1]|V | :
∑|V |

i=1 xi = k} corresponding

to the k-uniform matroid. With probability at least 1− δ, for all x ∈ X such that

VarP(F (x)) ≥
max

{√
32
7
ρB2,

√
36B2

(
log
(
1
δ

)
+ |V | log (1 + 24k)

)}
√
n

,

the variance expansion holds with equality.

Proof. Let X≥α = {x : VarP(F (x)) ≥ α} be the set of points x with variance at least

α. Let Y be a minimal ℓ1-cover of X≥α with fineness ε
b
, for a parameter ε to be fixed

later. Since the ℓ1-diameter of X is 2k (by definition), we know that |Y| ≤
(
1 + 2kb

ε

)|V |.

Let s2n(x) be the sample variance of F1(x), . . . , Fn(x) and σ2(x) = VarP(F (x)). Via

Lemma B.2.2 and union bound over all elements in Y , we have

Pr
[
s2n(x) ≥

1

4
σ2(x) ∀x ∈ Y

]
≥ 1− |Y| exp

(
− nα2

36B2

)
.

Denote by E the above event, i.e. the event that s2n(x) ≥ 1
4
σ2(x). Conditioning on E ,

we will proceed to extend the sample variance lower bound to the entirety of X≥α.

Consider any x ∈ X≥α, and let x′ ∈ arg minx′∈Y‖x − x′‖1 be the closest point to

x in the cover Y . By definition of Y , ‖x − x‖1 ≤ ε
b
, and so by Lemma B.2.1, which

guarantees Lipschitzness of each Fi, we have |Fi(x)−Fi(x
′)| ≤ ε for all i. Accordingly,

it can be shown that |sn(x)− sn(x
′)| ≤ ε and |σ(x)− σ(x′)| ≤ ε. It follows that:

sn(x) ≥ sn(x
′)− ε ≥ 1

2
σ(x′)− ε ≥ 1

2
σ(x)− 3

2
ε.

179

Now, conditioned on the event E , we can set ε = α
24

in order to ensure that sn(x) ≥
7
16
α.

All that is left is to determine the appropriate setting for α. We would like the

exact variance expansion to hold on all elements of X≥α with probability at least 1−δ.

To have sufficiently high population variance, we must take α ≥
√

16
7
· 2ρB2

n
. In order

for the concentration bound to hold, a simple calculation shows that

α ≥

√
36B2

(
log
(
1
δ

)
+ |V | log (1 + 24k)

)
n

suffices. Taking the max of the two, we require

α ≥
max

{√
32
7
ρB2,

√
36B2

(
log
(
1
δ

)
+ |V | log (1 + 24k)

)}
√
n

.

B.3 Exact Linear Oracle

Proof of Lemma 5.3.1. Since z1 = · · · = zk are less than the other elements of z, if it is

feasible, it is optimal to place all the mass of p on the first k coordinates. In particular,

the assignment pi = 1/k for i = 1, . . . , k accomplishes this while minimizing the χ2

cost. The χ2 cost incurred by this assignment can be computed as

1

2

k∑
i=1

(n
k
− 1
)2

+
1

2

n∑
i=k+1

(0− 1)2 =
1

2

[
k ·
(
n− k

k

)2

+ (n− k)

]
(B.1)

=
1

2
· (n− k) ·

[
n− k

k
+ 1

]
(B.2)

= n(n− k)/(2k). (B.3)

Hence if ρ ≥ n(n− k)/(2k), we can place all the mass of p on the first k coordinates;

otherwise, the χ2 constraint must be tight.

180

Proof of Lemma 5.3.2. At optimality, we must have 1Tp⋆ = 1:

1 =
n∑

i=1

p⋆i =
m∑
i=1

p⋆i =
m∑
i=1

(
1− (zi + θ⋆)

λ⋆n

)
· 1
n
. (B.4)

Simplifying,

n =
m∑
i=1

(
1− (zi + θ⋆)

λ⋆n

)
= m− 1

λ⋆n

m∑
i=1

(zi + θ⋆) (B.5)

= m− mzm
λ⋆n

− θ⋆m

λ⋆n
. (B.6)

Multiplying through by λ⋆n and solving for θ⋆, we have

λ⋆n2 = λ⋆mn−mzm − θ⋆m =⇒ θ⋆ =
(
1− n

m

)
λ⋆n− zm.

Proof of Lemma 5.3.3. By equation (5.16),

〈z, p⋆〉 = 1

n

m∑
i=1

(
1− (zi + θ⋆)

λ⋆n

)
zi (B.7)

=
1

n

m∑
i=1

zi −
1

n

m∑
i=1

(zi + θ⋆)zi
λ⋆n

(B.8)

=
m

n
zm −

1

λ⋆n2

m∑
i=1

(z2i + θ⋆zi) (B.9)

=
m

n
zm −

1

λ⋆n2
(bm + θ⋆mzm). (B.10)

Plugging in the expression for θ⋆ derived in Lemma 5.3.2, we compute

θ⋆mzm =
((

1− n

m

)
λ⋆n− zm

)
mzm (B.11)

= (m− n)λ⋆nzm −m(zm)
2, (B.12)

181

so that we may further compute

− 1

λ⋆n2
(bm + θ⋆mzm) = −

bm
λ⋆n2

− 1

λ⋆n2

(
(m− n)λ⋆nzm −m(zm)

2
)

(B.13)

= −(bm −m(zm)
2)

λ⋆n2
+

(n−m)

n
zm (B.14)

= −ms2m
λ⋆n2

+
(n−m)

n
zm. (B.15)

When we finally plug this into equation (B.10), the m
n
zm and n−m

n
zm terms combine

to form zm, leaving:

〈z, p⋆〉 = zm −
ms2m
λ⋆n2

.

Proof of Lemma 5.3.4. First we check the χ2 (quadratic) constraint; since the con-

straint is active, we have:

ρ ≥ 1

2
‖np⋆ − 1‖22 (B.16)

=
1

2

n∑
i=1

(np⋆i − 1)2 (B.17)

=
1

2

m∑
i=1

((
1− (zi + θ⋆)

λ⋆n

)
− 1

)2

+
1

2

n∑
i=m+1

(−1)2 (B.18)

=
1

2
· 1

(λ⋆)2n2

m∑
i=1

(zi + θ⋆)2 +
1

2
(n−m) (B.19)

where the third line is due to equation (5.16). We expand the sum of squares:

m∑
i=1

(zi + θ⋆)2 =
m∑
i=1

(z2i + 2ziθ
⋆ + (θ⋆)2) (B.20)

=
m∑
i=1

z2i + 2θ⋆
m∑
i=1

zi +
m∑
i=1

(θ⋆)2 (B.21)

= bm + 2θ⋆mzm + (θ⋆)2m. (B.22)

We expand the second and third terms, plugging in our expression for θ, and find

182

that

(θ⋆)2m =
[(

1− n

m

)
λ⋆n− zm

]2
·m (B.23)

=

[(
1− n

m

)2
(λ⋆)2n2 − 2

(
1− n

m

)
λ⋆n · zm + (zm)

2

]
·m (B.24)

=
(
1− n

m

)2
(λ⋆)2n2m− 2

(
1− n

m

)
λ⋆nmzm +m(zm)

2 (B.25)

and also

2θ⋆mzm = 2mzmθ
⋆ (B.26)

= 2mzm

[(
1− n

m

)
λ⋆n− zm

]
(B.27)

= 2
(
1− n

m

)
λ⋆nmzm − 2m(zm)

2. (B.28)

Note that the first term matches the second term of equation (B.25), so that they can-

cel when we add 2θ⋆mzm and (θ⋆)2m. Using this fact, we now expand equation (B.22):

bm + 2θ⋆mzm + (θ⋆)2m = bm − 2m(zm)
2 +

(
1− n

m

)2
(λ⋆)2n2m+m(zm)

2 (B.29)

= bm −m(zm)
2 +

(
1− n

m

)2
(λ⋆)2n2m (B.30)

= ms2m +
(
1− n

m

)2
(λ⋆)2n2m. (B.31)

183

Finally, plugging this back into equation (B.19) yields:

ρ ≥ 1

2
· 1

(λ⋆)2n2
·
[
ms2m +

(
1− n

m

)2
(λ⋆)2n2m

]
+

1

2
· (n−m) (B.32)

⇔ 2ρ ≥ ms2m
(λ⋆)2n2

+
(
1− n

m

)2
m+ (n−m) (B.33)

⇔ 2ρ ≥ ms2m
(λ⋆)2n2

+

(
1− 2n

m
+

n2

m2

)
m+ (n−m) (B.34)

⇔ 2ρ ≥ ms2m
(λ⋆)2n2

+m− 2n+
n2

m
+ (n−m) (B.35)

⇔ 2ρ ≥ ms2m
(λ⋆)2n2

− n+
n2

m
(B.36)

⇔ 2ρm

n2
≥ m2s2m

(λ⋆)2n4
− m

n
+ 1 (B.37)

⇔ m2s2m
(λ⋆)2n4

≤ α(m,n, ρ). (B.38)

If α(m,n, ρ) ≤ 0, there is no feasible choice of λ⋆ for this m, so m cannot be correct.

Otherwise, we can divide and solve for λ⋆:

λ⋆ ≥

√
m2s2m

n4α(m,n, ρ)
=

1

n

√
ms2m

2ρ+ n− n2/m
, (B.39)

or equivalently

λ⋆n2 ≥

√
m2s2m

α(m,n, ρ)
. (B.40)

Now we check the other remaining constraint on λ⋆, that the constraint pi ≥ 0 for

i = 1, . . . ,m must hold. In particular, we must have pm ≥ 0:

0 ≤ pm =
1

n
·
(
1− zm + θ⋆

λ⋆n

)
(B.41)

⇔ zm + θ⋆ ≤ λ⋆n (B.42)

⇔ zm +
(
1− n

m

)
λ⋆n− zm ≤ λ⋆n (B.43)

⇔ zm − zm ≤
λ⋆n2

m
(B.44)

⇔ m(zm − zm) ≤ λ⋆n2. (B.45)

184

Hence λ⋆ must satisfy

λ⋆n2 ≥ max
{√

m2s2m
α(m,n, ρ)

, m(zm − zm)

}
. (B.46)

Since we seek minimal λ⋆, we select λ⋆ which makes this constraint tight.

B.3.1 Unique solutions

Here we provide results for understanding when there is a unique solution to Prob-

lem (5.8). Recall that our solution to Problem (5.8) first checks whether the optimal

solutions have tight χ2 constraint. By choosing ρ small enough, this can be guaranteed

uniformly:

Lemma B.3.1. Suppose {zi} attain at least ℓ distinct values. If ρ ≤ (ℓ − 1)/2 then

all optimal solutions to Problem (5.8) have tight χ2 constraint.

Proof. Assume z1 ≤ · · · ≤ zn. If {zi} attain at least ℓ distinct values, then the

maximum number k so that z1 = · · · = zk can be bounded by n− ℓ+ 1. Recall from

earlier in section B.3 that the constraint is tight if ρ ≤ n(n− k)/(2k), and note that

this bound is monotone decreasing in k. Hence, we can guarantee the constraint is

tight as long as

ρ ≤ n(n− (n− ℓ+ 1))

2(n− ℓ+ 1)
=

n(ℓ− 1)

2(n− ℓ+ 1)
. (B.47)

Since n− ℓ+ 1 ≤ n, the previous inequality is implied by

ρ ≤ (n− ℓ+ 1)(ℓ− 1)

2(n− ℓ+ 1)
=

ℓ− 1

2
. (B.48)

Now, assuming the χ2 constraint is tight, we can characterize the set of optimal

solutions:

Lemma B.3.2. Suppose the optimal solutions for Problem (5.8) all have tight χ2

constraint. Then there is a unique optimal solution p∗ with minimum cardinality

among all optimal solutions.

185

Proof. This is a consequence of our characterization of the optimal dual variable λ as

a function of the sparsity m. For each choice of m, we solved earlier for the unique

dual variable λm which determines a unique solution p. Hence, even if there are

multiple values of m that are feasible and that yield optimal objective value, there is

still a unique minimal mopt, which in turn yields a unique optimal solution.

B.3.2 Lipschitz gradient

Lemma B.3.3. Define h(z) = minp∈Pρ,n〈z, p〉. Then on the subset of z’s satisfying

the high sample variance condition s2n ≥ (2ρB2)/n2, h(z) has Lipschitz gradient with

constant L ≤ 2
√
2ρ

n3/2 + 2
Bn1/2 .

Proof. In this regime, there is a unique worst-case p ∈ Pρ,n, and it is the gradient of

h(z). In the high sample variance regime, we have m = n, i.e. each pi > 0 and:

pi =

(
1− zi + θ

λn

)
· 1
n

for all i = 1, . . . , n. (B.49)

In particular, θ = (1 − n/n)λn − zn = −zn, and λ = 1
n2

√
n2s2n/(2ρ/n). Simplifying,

we have

pi =

(
1− zi − zn

λn

)
· 1
n

(B.50)

=

(
1− zi − zn

1
n

√
n2s2n/(2ρ/n)

)
· 1
n

(B.51)

=

(
1− zi − zn√

ns2n/(2ρ)

)
· 1
n
. (B.52)

We will bound the Lipschitz constant of p as a function of z by computing the Hessian

which has entries Hij =
∂pi
∂zj

and bounding its largest eigenvalue. For the element Hij

186

we have two cases. If i = j, then

Hii = −
√
2ρ

n3/2
· ∂

∂zi

(
zi − zn√

s2n

)
(B.53)

= −
√
2ρ

n3/2
·

(√
s2n(1− 1

n
)− (zi − zn) · 2n · (zi − zn)

s2n

)
. (B.54)

If i 6= j, then

Hij = −
√
2ρ

n3/2
· ∂

∂zj

(
zi − zn√

s2n

)
(B.55)

= −
√
2ρ

n3/2
·

(
− 1

n
·
√
s2n − (zi − zn) · 2n · (zj − zn)

s2n

)
. (B.56)

Define H̃ so that
√
2ρ

n3/2s2n
H̃ = H, i.e.

H̃ij =


√

s2n(
1
n
− 1) + (zi − zn) · 2n · (zi − zn) i = j

1
n
·
√

s2n + (zi − zn) · 2n · (zj − zn) i 6= j.

(B.57)

It is easy to see that H̃ is given by

H̃ = −diag(
√
s2n1) +

√
s2n
n

11T +
2

n
(z − zn1)(z − zn1)T . (B.58)

By the triangle inequality, the operator norm of H̃ can thus be bounded by

‖H̃‖ ≤ ‖diag(
√

s2n1)‖+
√

s2n
n
‖11T‖+ 2

n
‖(z − zn1)(z − zn1)T‖ (B.59)

=
√

s2n +

√
s2n
n
‖1‖22 +

2

n
‖z − zn1‖22 (B.60)

= 2
√

s2n +
2

n

n∑
i=1

(zi − zn)
2 (B.61)

= 2
√

s2n + 2s2n. (B.62)

187

It follows that the Lipschitz constant of the gradient of h(z) can be bounded by

‖H‖ =
√
2ρ

n3/2s2n
‖H̃‖ (B.63)

≤
√
2ρ

n3/2s2n

(
2
√
s2n + 2s2n

)
(B.64)

=
2
√
2ρ

n3/2
·

(
1 +

1√
s2n

)
. (B.65)

Since we are in the high variance regime s2n ≥ (2ρB2)/n, it follows that 1/
√

s2n ≤
√
n/(B

√
2ρ) and therefore

‖H‖ ≤ 2
√
2ρ

n3/2
·
(
1 +

√
n

B
√
2ρ

)
(B.66)

=
2
√
2ρ

n3/2
+

2

Bn
. (B.67)

B.4 Convergence analysis for MFW

Here we establish the convergence rate of the MFW algorithm specifically for the

DRO problem. For completeness, we reproduce the MFW convergence guarantee

here:

Lemma B.4.1 (adapted from Mokhtari et al. (2018a)). Let F be an up-concave

function with L-Lipschitz gradient. MFW run for T iterations returns a point x(T)

satisfying

E[F (x(T))] ≥
(
1− 1

e

)
OPT − 2DQ1/2

T 1/3
− LD2

2T

where D = maxx∈X‖x‖, Q = max{92/3‖∇F (x0)− d0‖2, 16σ2 + 3L2D2}, and σ is

the variance of the stochastic gradients.

The main work is to establish Lipschitz continuity of ∇G, the gradient of the

DRO objective. In fact, Mokhtari et al. (2018a) get a better bound by controlling

188

changes in ∇G specifically along the updates used by MFW. We bound this same

quantity as follows:

Lemma B.4.2. When the high sample variance condition is satisfied, for any two

points x(t) and x(t+1) produced by MFW, ∇G satisfies ‖∇G(x(t)) − ∇G(x(t+1))‖ ≤(
b
√
n|V |L+ b

√
k
)
‖x(t) − x(t+1)‖.

Proof. We write F⃗ (x) = (F1(x), ..., Fn(x)), and are interested in the composition

G = h(F⃗ (x)) (recall that h is defined in Lemma 5.4.2 as the value of the inner

minimization problem for a given set of values). Let DF⃗ (x) be the matrix derivative

of F⃗ . That is,
[
DF⃗ (x)

]
ij
= ∂

∂xj
Fi(x). The chain rule yields

∇h(F⃗ (x)) =
(
∇h(F⃗ (x))

)
DF⃗ (x).

Consider two points x, y ∈ X . To apply the argument of Mokhtari et al. (2018a),

we would like a bound on the change in ∇h along the MFW update from x in the

direction of y. Let x′ = x+ 1
T
y be the updated point. We have

‖∇h(F⃗ (x))−∇h(F⃗ (x′))‖ =
∥∥∥(∇h(F⃗ (x))

)
DF⃗ (x)−

(
∇h(F⃗ (x′))

)
DF⃗ (x′)

∥∥∥
=
∥∥∥(∇h(F⃗ (x))

)
DF⃗ (x)−

(
∇h(F⃗ (x))

)
DF⃗ (x′)

+
(
∇h(F⃗ (x))

)
DF⃗ (x′)−

(
∇h(F⃗ (x′))

)
DF⃗ (x′)

∥∥∥
≤
∥∥∥(∇h(F⃗ (x))

)
DF⃗ (x)−

(
∇h(F⃗ (x))

)
DF⃗ (x′)

∥∥∥
+
∥∥∥(∇h(F⃗ (x))

)
DF⃗ (x′)−

(
∇h(F⃗ (x′))

)
DF⃗ (x′)

∥∥∥
=
∥∥∥(∇h(F⃗ (x))

)(
DF⃗ (x)−DF⃗ (x′)

)∥∥∥
+
∥∥∥(∇h(F⃗ (x))−∇h(F⃗ (x′))

)
DF⃗ (x′)

∥∥∥ .
Starting out with the first term, we note that ∇h(F⃗ (x)) is a probability vector

189

(the optimal p for the DRO problem). Hence, we have

∥∥∥(∇h(F⃗ (x))
)(

DF⃗ (x)−DF⃗ (x′)
)∥∥∥ ≤ max

i=1,...,n

∥∥∥DF⃗ (x)i −DF⃗ (x′)i

∥∥∥
= max

i=1,...,n
‖∇Fi(x)−∇Fi(x

′)‖

And from Lemma 3 of Mokhtari et al. (2018a), we have that when x′ is an updated

point of the MFW algorithm starting at x,

‖∇Fi(x)−∇Fi(x
′)‖ ≤ b

√
k‖x− x′‖ ∀i = 1, . . . , n.

We now turn to the second term. Note that the jth component of this vector is

just the dot product

(
∇h(F⃗ (x))−∇h(F⃗ (x′))

)
·DF⃗ (x)·,j

where DF⃗ (x)·,j collects the partial derivative of each Fi with respect to xj. Via

the Cauchy-Schwartz inequality, we have

(
∇h(F⃗ (x))−∇h(F⃗ (x′))

)
·DF⃗ (x)·,j ≤

∥∥∥(∇h(F⃗ (x))−∇h(F⃗ (x′))
)∥∥∥∥∥∥DF⃗ (x)·,j

∥∥∥
Lemma 5.4.2 shows that

∥∥∥(∇h(F⃗ (x))−∇h(F⃗ (x′))
)∥∥∥ ≤ L‖x − x′‖. In order to

bound the second norm, we claim that for all i, j, ∇jFi(x) ≤ b. To show this, note

that we can use the definition of the multilinear extension to write

∇jFi(x) = ES∼x[fi(S|{j} ∈ S)]− ES∼x[fi(S|{j} 6∈ S)]

where S ∼ x denotes that S is drawn from the product distribution with marginals

x. Now it is simple to show using submodularity of fi that

ES∼x[fi(S|{j} ∈ S)]− ES∼x[fi(S|{j} 6∈ S)] ≤ fi({j})− fi(∅) ≤ b.

190

Accordingly, we have that

∥∥∥DF⃗ (x)·,j

∥∥∥ ≤ b‖1‖ = b
√
n.

This gives us a component-wise bound on each element of the vector

(
∇h(F⃗ (x))−∇h(F⃗ (x′))

)
DF⃗ (x′).

Putting it all together, we have

∥∥∥(∇h(F⃗ (x))−∇h(F⃗ (x′))
)
DF⃗ (x′)

∥∥∥ ≤ b
√
nL‖x− x′‖ · ‖1‖

≤ b
√
n|V | · L · ‖x− x′‖,

and summing the two terms yields the final Lipschitz constant b
√

n|V |L+b
√
k.

Now the final convergence rate for MFW stated in Theorem 5.4.1 follows from

plugging the above Lipschitz bound into Lemma B.4.1. We also remark that the

above argument trivially goes through for an arbitrary (not necessarily submodular)

functions:

Lemma B.4.3. Suppose that each function f : R|V | → R in the support of P has

bounded norm gradients maxi=1,...,|V | |∇if | ≤ b which are also Lf -Lipschitz. Then un-

der the high variance condition, the corresponding DRO objective G has LG-Lipschitz

gradient with LG ≤ Lf + b
√

n|V |L, where L is as defined in Lemma 5.4.2.

B.5 Rounding to a distribution over subsets

The output of MFW is a fractional vector x ∈ X . Lemma 5.4.1 guarantees this x

can be converted into a distribution D over feasible subsets, and moreover, that the

attainable solution value from doing so is within a (1 − 1/e) factor of the optimal

value for the DRO problem. This result is essentially standard (see Wilder (2018a)

for a more detailed presentation), but we sketch the process here for completeness.

191

There are two steps. First, we argue that x can be converted into a distribution

over subsets with equivalent value for the DRO problem. Second, we argue that the

optimal x (product distribution) has value within (1− 1/e) of the optimal arbitrary

distribution over subsets.

For the first step, our starting point is the swap rounding algorithm of Chekuri

et al. (2010). Swap rounding is a randomized rounding algorithm which takes a

vector x and returns a feasible subset S. For any single submodular function and its

multilinear extension F , swap rounding guarantees E[f(S)] ≥ F (x). In our setting,

such guarantees cannot be obtained for a single S since we want to simultaneously

match the value of x with respect to n submodular functions f1, . . . , fn. However,

swap rounding obeys a desirable concentration property which allows us to form a

distribution D by running swap rounding independently several times and returning

the empirical distribution over the outputs. Provided that we take sufficiently many

samples, D is guaranteed to satisfy ES∼D[fi(S)] ≥ Fi(x)− ε for all i = 1, . . . , n with

high probability. Specifically, Wilder (2018a) show that it suffices to draw O
(

log n
δ

ε3

)
sets via swap rounding in order for this guarantee to hold with probability 1− δ.

The other piece of Lemma 5.4.1 relates the optimal value for Problem (5.20)

(optimizing over product distributions) to the optimal value for the complete DRO

problem (optimizing over arbitrary distributions). These values are easily shown to

be within (1 − 1/e) of each other by applying the correlation gap result of Agrawal

et al. (2010). For any product distribution p over subsets, let marg(p) denote the

set of (potentially correlated) distributions with the same marginals as p. This result

shows that for any submodular function f ,

max
p: a product distribution

max
q∈marg(p)

ES∼q[f(S)]

ES∼p[f(S)]
≤ e

e− 1

and now Lemma 5.4.1 follows by applying the correlation gap bound to each of

the fi.

192

Appendix C

Robust Budget Allocation

C.1 Worst-Case Approximation Ratio versus True

Worst-Case

Consider the function f(x; θ) defined on {0, 1} × {0, 1}, with values given by:

f(x; 0) =

1 x = 0

0.6 x = 1,

f(x; 1) =

1 x = 0

2 x = 1.

(C.1)

We wish to choose x to maximize f(x; θ) robustly with respect to adversarial choices

of θ. If θ were fixed, we could directly choose x∗
θ to maximize f(x; θ). In particular,

x∗
0 = 0 and x∗

1 = 1. Of course, we want to deal with worst-case θ. One option is to

maximize the worst-case approximation ratio:

max
x

min
θ

f(x; θ)

f(x∗
θ; θ)

. (C.2)

One can verify that the best x according to this criterion is x = 1, with worst-

case approximation ratio 0.6 and worst-case function value 0.6. In this chapter, we

optimize the worst-case of the actual function value:

max
x

min
θ

f(x; θ). (C.3)

193

This criterion will select x = 0, which has a worse worst-case approximation ratio of

0.5, but actually guarantees a function value of 1, significantly better than the 0.6

achieved by the other formulation of robustness.

C.2 DR-submodularity and L♮-convexity

A function is L♮-convex if it satisfies a discrete version of midpoint convexity, i.e. for

all x, y it holds that

f(x) + f(y) ≥ f

(⌈
x+ y

2

⌉)
+ f

(⌊
x+ y

2

⌋)
, (C.4)

where the floor b·c and ceiling d·e functions are interpreted elementwise.

Remark C.2.1. An L♮-convex function need not be DR-submodular, and vice-versa.

Hence algorithms for optimizing one type may not apply for the other.

Proof. Consider f1(x1, x2) = −x2
1 − 2x1x2 and f2(x1, x2) = x2

1 + x2
2, both defined on

{0, 1, 2}×{0, 1, 2}. The function f1 is DR-submodular but violates discrete midpoint

convexity for the pair of points (0, 0) and (2, 2), while f2 is L♮-convex but does not

have diminishing returns in either dimension.

Intuitively-speaking, L♮-convex functions look like discretizations of convex func-

tions. The continuous objective function I(x, y) we consider need not be convex,

hence its discretization need not be L♮-convex, and we cannot use those tools. How-

ever, in some regimes (namely if each y(s) ∈ {0} ∪ [1,∞)), it happens that I(x, y) is

DR-submodular in x.

194

C.3 Constrained Continuous Submodular Function

Minimization

C.3.1 Solving the Optimization Problem

Here, we describe how to solve the convex problem (6.15) to which we reduced the orig-

inal constrained submodular minimization problem. Bach (2019), at the beginning of

Section 5.2, states that this surrogate problem can be optimized via the Frank-Wolfe

method and its variants. However, Bach (2019) only elaborates on the simpler version

of Problem (6.15) without the extra functions aixi
. Here we detail how Frank-Wolfe

algorithms can be used to solve the more general parametric regularized problem.

Our aim is to spell out very clearly the applicability of Frank-Wolfe to this problem,

for the ease of practitioners.

Bach (2019) notes that, by duality, Problem (6.15) is equivalent to:

min
ρ∈

∏n
i=1 R

ki−1

↓

h↓(ρ)−H(0) +
n∑

i=1

ki−1∑
xi=1

aixi
[ρi(xi)]

= min
ρ∈

∏n
i=1 R

ki−1

↓

max
w∈B(H)

〈ρ, w〉+
n∑

i=1

ki−1∑
xi=1

aixi
[ρi(xi)]

= max
w∈B(H)

{
min

ρ∈
∏n

i=1 R
ki−1

↓

〈ρ, w〉+
n∑

i=1

ki−1∑
xi=1

aixi
[ρi(xi)]

}
:= max

w∈B(H)
f(w).

Here, the base polytope B(H) happens to be the convex hull of all vectors w which

could be output by the greedy algorithm in (Bach, 2019).

It is the dual problem, where we maximize over w, which is amenable to Frank-

Wolfe. For Frank-Wolfe methods, we need two oracles: an oracle which, given w,

returns ∇f(w); and an oracle which, given ∇f(w), produces a point s which solves

the linear optimization problem maxs∈B(H)〈s,∇f(w)〉.

Per Bach (2019), an optimizer of the linear problem can be computed directly from

the greedy algorithm. For the gradient oracle, recall that we can find a subgradient

195

of g(x) = miny h(x, y) at the point x0 by finding y(x0) which is optimal for the inner

problem, and then computing ∇xh(x, y(x0)). Moreover, if such y(x0) is the unique

optimizer, then the resulting vector is indeed the gradient of g(x) at x0. Hence, in

our case, it suffices to first find ρ(w) which solves the inner problem, and then ∇f(w)

is simply ρ(w) because the inner function is linear in w. Since each function aixi

is strictly convex, the minimizer ρ(w) is unique, confirming that we indeed get a

gradient of f , and that f is differentiable.

Of course, we still need to compute the minimizer ρ(w). For a given w, we want

to solve

min
ρ∈

∏n
i=1 R

ki−1

↓

〈ρ, w〉+
n∑

i=1

ki−1∑
xi=1

aixi
[ρi(xi)]

There are no constraints coupling the vectors ρi, and the objective is similarly sepa-

rable, so we can independently solve n problems of the form

min
ρ∈Rk−1

↓

〈ρ, w〉+
k−1∑
j=1

aj(ρj).

Recall that each function aiyi(t) takes the form 1
2
t2riyi for some riyi > 0. Let D =

diag(r), the (k− 1)× (k− 1) matrix with diagonal entries rj. Our problem can then

be written as

min
ρ∈Rk−1

↓

〈ρ, w〉+ 1

2

k−1∑
j=1

rjρ
2
j = min

ρ∈Rk−1
↓

〈ρ, w〉+ 1

2
〈Dρ, ρ〉

= min
ρ∈Rk−1

↓

〈D1/2ρ, D−1/2w〉+ 1

2
〈D1/2ρ, D1/2ρ〉.

Completing the square, the above problem is equivalent to

min
ρ∈Rk−1

↓

‖D1/2ρ+D−1/2w‖22 = min
ρ∈Rk−1

↓

k−1∑
j=1

(r
1/2
j ρj + r

−1/2
j wj)

2

= min
ρ∈Rk−1

↓

k−1∑
j=1

rj(ρj + r−1
j wj)

2.

196

This last expression is precisely the problem which is called weighted isotonic re-

gression: we are fitting ρ to diag(r−1)w, with weights r, subject to a monotonicity

constraint. Weighted isotonic regression is solved efficiently via the Pool Adjacent

Violators algorithm of Best and Chakravarti (1990).

C.3.2 Runtime

Frank-Wolfe returns an τ -suboptimal solution in O(τ−1D2L) iterations, where D is

the diameter of the feasible region, and L is the Lipschitz constant for the gradient of

the objective (Jaggi, 2013). Our optimization problem is maxw∈B(H) f(w) as defined

in the previous section. Each w ∈ B(H) has O(nδ−1) coordinates of the form Hδ(x+

ei) − Hδ(x). Since Hδ is an expected influence in the range [0, T], we can bound

the magnitude of each coordinate of w by T and hence D2 by O(nδ−1T 2). If α

is the minimum derivative of the functions Ri, then the smallest coefficient of the

functions aixi
(t) is bounded below by αδ. Hence the objective is the conjugate of an

αδ-strongly convex function, and therefore has α−1δ−1-Lipschitz gradient. Combining

these, we arrive at the O(τ−1nδ−2α−1T 2) iteration bound. The most expensive step

in each iteration is computing the subgradient, which requires sorting the O(nδ−1)

elements of ρ in time O(nδ−1 lognδ−1). Hence the total runtime of Frank-Wolfe is

O(τ−1n2δ−3α−1T 2 lognδ−1).

As specified in the main text, relating an approximate solution of (6.15) to a solu-

tion of (6.12) is nontrivial. Assume ρ∗ has distinct elements separated by η, and chose

τ to be less than η2αδ/8. If ρ is τ -suboptimal, then by αδ-strong convexity we must

have ‖ρ− ρ∗‖2 < η/2, and therefore ‖ρ− ρ∗‖∞ < η/2. Since the smallest consecutive

gap between elements of ρ∗ is η, this implies that ρ and ρ∗ have the same ordering, and

therefore admit the same solution x after thresholding. Accounting for this choice in

τ , we have an exact solution to (6.12) in total runtime of O(η−2n2δ−4α−2T 2 lognδ−1).

197

198

Appendix D

Escaping saddle points with

Adaptive Gradient Methods and

perturbations

D.1 More Insights from Idealized Adaptive Meth-

ods (IAM)

Suppose for now that we have oracle access to Gt = E[gtgTt]. Why should precondition-

ing by A = E[ggT]−1/2 help optimization? The original Adam paper (Kingma and Ba,

2015) argues that Adam is an approximation to natural gradient descent, since if the

objective f is a log-likelihood, E[ggT] approximates the Fisher information matrix F ,

which captures curvature information in the space of distributions. This connection

is tenuous at best, since the approximation F ≈ E[ggT] is only valid near optimality.

Moreover, the exponent is wrong: Adam preconditions by E[ggT]−1/2, but natural

gradient should precondition by E[ggT]−1. But using the exponent −1 is reported in

the literature as unstable, even for Adagrad: “without the square root operation, the

algorithm performs much worse” (Ruder, 2016). So the exponent is changed to −1/2

instead of −1.

Both of the above issues with the natural gradient interpretation are also pointed

199

out by Balles and Hennig (2018), who argue that the primary function of adaptive

methods is to equalize the stochastic gradient noise in each direction. But it is still

not clear precisely why or how equalized noise should help optimization.

By assuming oracle access to E[ggT], we can immediately argue that the exponent

cannot be more aggressive than −1/2. Suppose we run preconditioned SGD with the

preconditioner G−1
t (instead of G−1/2

t as in RMSProp), and apply this to a noiseless

problem; that is, gt always equals the full gradient ∇t = ∇f(xt). The preconditioner

is then

At = (E[gtgTt] + εI)−1 = (∇t∇T
t + εI)−1. (D.1)

Taking ε→ 0, the idealized RMSProp update approaches

wt+1 ← wt − η
∇t

‖∇t‖2
. (D.2)

First, the actual descent direction is not changed, and curvature is totally absent. Sec-

ond, the resulting algorithm is unstable unless η decreases rapidly: as xt approaches a

stationary point, the magnitude of the step ∇t/‖∇t‖2 grows arbitrarily large, making

it impossible to converge without rapidly decreasing the stepsize.

By contrast, using the standard −1/2 exponent and taking ε→ 0 in the noiseless

case yields normalized gradient descent:

wt+1 ← wt − η
∇t

‖∇t‖
. (D.3)

In neither case do adaptive methods actually change the direction of descent (e.g. via

curvature information); only the stepsize is changed.

D.2 Algorithm Details

Per our estimation results in Section 7.4.1, we must alter RMSProp to ensure it

achieves an accurate estimate of the preconditioner. Namely, before updating the

parameter wt, we need to burn-in the estimate for several iterations so the initial

200

Algorithm 8 BurnIn
function BurnIn(burn-in length W , β)

for t = 0, . . . ,W do
gt ← stochastic gradient
Ĝt ← βĜt−1 + (1− β)gtg

T
t

end for
return Ĝt

end function

Algorithm 9 Hallucinate
function Hallucinate(hallucination length S, β, Ĝ, wstart, wend)

for s = 0, . . . , S do
gs ← stochastic gradient at wstart +

s
S
(wend − wstart)

Ĝ← βĜ+ (1− β)gsg
T
s

end for
return Ĝ

end function

estimate Ĝ0 is accurate. This subroutine is given in Algorithm 8.

Later, when we prove second-order convergence, we need to modify RMSProp

to occassionally take a large step. However, this complicates estimation: per Theo-

rem 7.4.1, estimation quality deteriorates as the step size increases. Naively applying

Theorem 7.4.1 to the large stepsize yields an estimate of G that is not accurate

enough. To get around this, every time RMSProp takes a large step, we will hal-

lucinate a number of smaller steps to feed into the estimation procedure. This is

formalized in Algorithm 9. Overall, the variant of RMSProp we study is formalized

in Algorithm 10.

D.3 Curvature and noise constants for different

preconditioners

Our analysis for general preconditioners depends on constants Λ1,Λ2,Γ, ν, as well as

λ− = λmin(A) that measure various properties of the preconditioner A. For conve-

nience, we reproduce the definition:

Definition D.3.1. We say A(w) is a (Λ1,Λ2,Γ, ν, λ−)-preconditioner if, for all x in the

201

Algorithm 10 Full-matrix RMSProp with increasing stepsize
Input: initial w0, time T , stepsizes η, r, threshold tthresh, time S, burn-in length
W , momentum β
Ĝ0 ← BurnIn(W,β) ▷ Algorithm 8
for t = 0, . . . , T do

gt ← stochastic gradient at wt

Ĝt ← βĜt−1 + (1− β)gtg
T
t

At ← Ĝ
−1/2
t

if t mod tthresh = 0 then
wt+1 ← wt − rAtgt
Ĝt ← Hallucinate(S, β, Ĝt, wt, wt+1) ▷ Algorithm 9

else
wt+1 ← wt − ηAtgt

end if
end for

domain, the following bounds hold. First, ‖A∇f‖2 ≤ Λ1‖A1/2∇f‖2. Second, if f̃(w)

is the quadratic approximation of f at some point w0, we assume ‖A(∇f −∇f̃)‖ ≤

Λ2‖∇f − ∇f̃‖. Third, Γ ≥ E[‖Ag‖2]. Fourth, ν ≤ λmin(AE[ggT]AT). Finally,

λ− ≤ λmin(A).

As before, we write G = E[ggT] throughout.

D.3.1 Constants for identity preconditioner

In the simplest case, A = I and we merely run SGD. We reproduce Proposition 7.4.3:

Proposition D.3.1. The preconditioner A = I is a (Λ1,Λ2,Γ, ν, λ−)-preconditioner,

with Λ1 = Λ2 = 1, Γ = E[‖g‖2], ν ≤ λmin(G), and λ− = 1.

The overall second-order complexity depends on

Λ1Λ2Γ

ν
=

E[‖g‖2]
λmin(G)

, (D.4)

as well as λ− = λmin(A) = 1.

Proof of Proposition D.3.1. Clearly, Λ1 = Λ2 = λ− = 1. Then,

E[‖Ag‖2] = E[‖g‖2] =: Γ. (D.5)

202

Finally,

λmin(AGAT) = λmin(G) =: ν. (D.6)

D.3.2 Constants for full matrix IAM

Write G = E[ggT], and define the preconditioner A by A = (G+εI)−1/2. We reproduce

Proposition 7.4.4:

Proposition D.3.2. The preconditioner A = (G + εI)−1/2 is a (Λ1,Λ2,Γ, ν, λ−)-

preconditioner, with

Λ1 = Λ2 = (λmin(G) + ε)−1/2, Γ =
dλmax(G)

ε+ λmax(G)
, ν =

λmin(G)

λmin(G) + ε
, (D.7)

and λ− = (λmax(G) + ε)−1/2.

Overall, the complexity depends on Λ1Λ2Γ/ν:

Λ1Λ2Γ

ν
=

1√
λmin(G) + ε

· 1√
λmin(G) + ε

· dλmax(G)

ε+ λmax(G)
· λmin(G) + ε

λmin(G)
(D.8)

=
dλmax(G)

(ε+ λmax(G))λmin(G)
. (D.9)

Therefore

Λ4
1Λ

4
2Γ

4

λ10
− ν4

≤
(

dλmax(G)

(ε+ λmax(G))λmin(G)

)4

(λmax(G) + ε)5 (D.10)

= d4κ(G)4(λmax(G) + ε) (D.11)

Note that when ε = 0 and we do not regularize the preconditioner, the complexity

bound is

Λ4
1Λ

4
2Γ

4

λ10
− ν4

= d4κ(G)4λmax(G). (D.12)

203

If we make the optimistic but often reasonable assumptions that Λ1 = O(1) (if A is

aligned well with the Hessian) and Λ2 = O(1) (the function f is essentially quadratic

at saddle points) then all dependence on λmin(G) vanishes, and the bound is

Γ4

λ10
− ν4

= d4λmax(G)5. (D.13)

Proof of Proposition 7.4.4. We can bound both Λ1 and Λ2 by

Λ1,Λ2 ≤ λmax(A) = λmin(G+ εI)−1/2 = (λmin(G) + ε)−1/2. (D.14)

For Γ, we need to bound E[‖Ag‖2] = tr(A2G). Expanding, we may write

A2G = (G+ εI)−1G. (D.15)

The mapping t 7→ t/(t + ε) is increasing, so by using the bound λmax(G)I � G, we

may bound

A2G � λmax(G)

ε+ λmax(G)
I. (D.16)

It follows that we can bound the trace of A2G by

Γ = d · λmax(G)

ε+ λmax(G)
. (D.17)

Next, ν is a bound on the least eigenvalue of

AGAT = (G+ εI)−1/2G(G+ εI)−1/2 = (G+ εI)−1G. (D.18)

Since t 7→ t/(t+ ε) is increasing, it is minimized when t is small. Therefore

λmin(AGAT) ≥ λmin(G)

λmin(G) + ε
=: ν. (D.19)

204

D.3.3 Constants for diagonal IAM

Define the preconditioner A by A = diag(E[g2] + ε)−1/2.

Proposition D.3.3. The preconditioner A = diag(E[g2]+ε)−1/2 is a (Λ1,Λ2,Γ, ν, λ−)-

preconditioner, with

Λ1 = Λ2 =

(
ε+ min

i∈[d]
E[g2i]

)−1/2

, (D.20)

Γ =
dmaxi∈[d] E[g2i]
ε+ maxi∈[d] E[g2i]

, (D.21)

ν =
λmin(G diag(G)−1) ·mini∈[d] E[g2i]

ε+ mini∈[d] E[g2i]
, and (D.22)

λ− = (ε+ max
i∈[d]

E[gi]2)−1/2. (D.23)

Overall,

Λ1Λ2Γ

ν
=

ε+ mini∈[d] E[g2i]
(ε+ mini∈[d] E[g2i]) · λmin(G diag(G)−1)mini∈[d] E[g2i]

·
d ·maxi∈[d] E[g2i]
ε+ maxi∈[d] E[g2i]

(D.24)

=
1

λmin(G diag(G)−1)mini∈[d] E[g2i]
·
d ·maxi∈[d] E[g2i]
ε+ maxi∈[d] E[g2i]

(D.25)

(D.26)

so the overall second-order dependence is

Λ4
1Λ

4
2Γ

4

λ10
− ν4

=
(ε+ maxi∈[d] E[g2i])5

λmin(G diag(G)−1)4(mini∈[d] E[g2i])4
·
d4 · (maxi∈[d] E[g2i])4

(ε+ maxi∈[d]) E[g2i])4
(D.27)

=
(ε+ maxi∈[d] E[g2i]) · d4 · (maxi∈[d] E[g2i])4

λmin(G diag(G)−1)4(mini∈[d] E[g2i])4
. (D.28)

If we set ε = 0 and do not regularize the preconditioner, the complexity bound is

Λ4
1Λ

4
2Γ

4

λ10
− ν4

=
d4 · (maxi∈[d] E[g2i])5

λmin(G diag(G)−1)4(mini∈[d] E[g2i])4
. (D.29)

205

Proof of Proposition D.3.3. As before, we can bound both Λ1 and Λ2 by

Λ1,Λ2 ≤ λmax(A) =

(
ε+ min

i∈[d]
E[g2i]

)−1/2

. (D.30)

For Γ, using the same manipulations as before, we want to bound

E[‖Ag‖2] = tr(diag(E[g2]) diag(ε+ E[g2])−1) (D.31)

= tr
(

diag
(

E[g2]
ε+ E[g2]

))
(D.32)

≤ d ·
maxi∈[d] E[g2i]

ε+ maxi∈[d] E[g2i]
. (D.33)

Again, bounding ν is difficult, as we would need to bound the least eigenvalue of

AE[ggT]A = E[ggT] diag(ε+ E[g2])−1 (D.34)

= G(ε+ diag(G))−1 (D.35)

= G(diag(G)−1 − diag(G)−1(ε−1I + diag(G)−1)−1 diag(G)−1) (D.36)

= G diag(G)−1(I − (ε−1I + diag(G)−1)−1 diag(G)−1). (D.37)

The first two terms are ν if we had not added ε to A. The remaining terms can be

bounded as before by

I − (ε−1I + diag(G)−1)−1 diag(G)−1 �
mini∈[d] E[g2i]

ε+ mini∈[d] E[g2i]
· I (D.38)

so that overall we can take

ν = λmin(G diag(G)−1) ·
mini∈[d] E[g2i]

ε+ mini∈[d] E[g2i]
≤ λmin(G(ε+ diag(G))−1). (D.39)

Finally,

λ− = λmin(A) =
1

(maxi∈[d] E[g2i] + ε)1/2
. (D.40)

206

Algorithm 11 Diagonal RMSProp with burn-in
Input: initial w0, time T , stepsize η, burn-in length W
v̂0 ← diag(BurnIn(W,β)) ▷ Appendix D.2
for t = 0, . . . , T do

gt ← stochastic gradient
v̂t ← βv̂t−1 + (1− β)g2t
Ât ← diag(v̂t)−1/2

wt+1 ← wt − ηÂtgt
end for

Algorithm 12 Diagonal RMSProp with increasing stepsize
Input: initial w0, time T , stepsizes η, r, threshold tthresh, time S, burn-in length
W , momentum β
v̂0 ← diag(BurnIn(W,β)) ▷ Algorithm 8
for t = 0, . . . , T do

gt ← stochastic gradient at wt

v̂t ← βv̂t−1 + (1− β)g2t
At ← diag(v̂t)−1/2

if t mod tthresh = 0 then
wt+1 ← wt − rAtgt
v̂t ← diag(Hallucinate(S, β, diag(v̂t), wt, wt+1)) ▷ Algorithm 9

else
wt+1 ← wt − ηAtgt

end if
end for

D.4 Convergence results for the diagonal case

In this section we give convergence results for the diagonal approximation A =

diag(E[g2] + ε)−1/2.

There are three interacting components to the results. First, using estimates

Yt = diag(g2t), Theorem 7.4.1 says we can accurately estimate E[Yt] = diag(E[g2t]) via

an exponential moving average, under reasonable assumptions. Second, the curvature

and noise constants for this case are already given in Appendix D.3, specifically

Proposition D.3.3. Finally, we plug these results in, together with Theorems 7.4.3

and 7.4.4, to get convergence bounds for the common diagonal version of RMSProp:

Corollary D.4.1. Consider diagonal RMSProp with burn-in, as in Algorithm 11,

where we estimate A = (E[g2] + ε)−1/2. Retain the same choice of η = O(τ 2) and

207

T = O(τ−4) as in Theorem 7.4.3. For small enough τ , such a choice of η will yield

∆ < λ−/2. Choose all other parameters e.g. β in accordance with Proposition 7.4.2.

In particular, choose W = Θ(η−2/3) = Θ(τ−4/3) = O(T) for the burn-in parameter.

Then with probability 1− δ, in overall time O(W + T) = O(τ−4), we achieve

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤ τ 2. (D.41)

Corollary D.4.2. Consider the diagonal RMSProp version of Algorithm 7 that is

formalized in Algorithm 12. Retain the same choice of η = O(τ 5/2), r = O(τ), and

T = O(τ−5) as in Theorem 7.4.4. For small enough τ , such a choice of η will yield

∆ < λ−/2. Choose W = Θ(η−2/3) = Θ(τ−5/3) = O(T) for the burn-in parameter

Choose S = O(τ−3/2), so that as far as the estimation scheme is concerned, the

stepsize is bounded by max{η, r/S} = O(τ 5/2) = O(η). Then with probability 1 − δ,

we can reach an (τ,
√
ρτ)-stationary point in total time

W + T = Õ

(
Λ4

1Λ
4
2Γ

4

λ10
− ν4

· L
3

ρδ3
· τ−5

)
, (D.42)

where Λ1,Λ2,Γ, ν, λ− are the constants describing A = diag(E[g2] + ε)−1/2.

Note that in Algorithms 11 and 12, it is simple to implement efficient diagonal

versions of the BurnIn (Algorithm 8) and Hallucinate (Algorithm 9) subroutines.

D.5 Main Proof

Here we will study the convergence of Algorithm 7. This is the same as Algorithm 4

except that once in a while we take a large stepsize so we may escape saddlepoints.

In order to unify our results, we prove second order convergence for general pre-

conditioners A(w). The convergence rate will depend on various properties of A(w),

and A = E[ggT]−1/2 will turn out to be particularly well-behaved.

208

D.5.1 Definitions

Let ρ be the Lipschitz constant of the Hessian H, and let α be the Lipschitz con-

stant of the preconditioner matrix A(w) as a function of the current iterate w. The

usual stepsize is η, while r is the occasional large stepsize that happens every tthresh

iterations. δ is a small probability of failure, d is the dimension. Since it will recur

often, we define κ = (1 + ηγ), where γ is the magnitude of the most negative eigen-

value of A1/2HA1/2. By the following lemma, we will be able to lower bound γ by

λmin(A)|λmin(H)| ≥ λ−
√
ρτ :

Lemma D.5.1. Suppose A and H are symmetric matrices, with A � 0 and λmin(H) <

0. Then there is a negative eigenvalue of A1/2HA1/2 with magnitude at least λmin(A)|λmin(H)|.

Proof. Let v be the minimum eigenvector of H, so that vTHv = −λmin(H)‖v‖2 =

−λmin(H). Define the unit vector u = A−1/2v/‖A−1/2v‖. Then,

uTA1/2HA1/2u =
1

‖A−1/2v‖2
vTHv = − λmin(H)

‖A−1/2v‖2
. (D.43)

The vector u is not necessarily an eigenvector of A1/2HA1/2, but the above expression

guarantees that A1/2HA1/2 has a negative eigenvalue with magnitude at least

λmin(H)

‖A−1/2v‖2
≥ λmin(H)

λmax(A−1)‖v‖2
= λmin(H)λmin(A). (D.44)

Throughout, we will assume that A is a (Λ1,Λ2,Γ, ν, λ−)-preconditioner, that Â

also satisfies the Λ1 inequality, and that ‖Â− A‖ ≤ ∆.

Differing from Daneshmand et al. (2018), we will assume a uniform bound on

‖Ag‖ ≤ M . In general this bound need not depend on either the spectrum of A or

any uniform bound on g. For example, if g were Gaussian, Ag would be a Gaussian

with zero mean and identity covariance, so we would expect ‖Ag‖ = O(
√
d) with high

probability. In general M should have the same scale as
√
Γ, and the statement of

Theorem 7.4.4 reflects this.

209

The proofs rely on a few other quantities that we will optimally determine as

a function of the problem parameters: fthresh is a threshold on the function value

progress, and gthresh = fthresh/tthresh is the time-amortized average of fthresh.

D.5.2 High level picture

For shorthand we write At := A(wt). Since we want to converge to a second order

stationary point, our overall goal is to study the event

Et := {‖∇f(wt)‖ ≥ τ or λmin(∇2f(wt)) ≤ −
√
ρτ 1/2} (D.45)

= {‖∇f(wt)‖ ≥ τ or (‖∇f(wt)‖ ≤ τ and λmin(∇2f(wt)) ≤ −
√
ρτ 1/2)}. (D.46)

(where t is obvious from context, we will omit it. In words, Et is the event that we

are not at a second order stationary point. The main theorem results from bounding

the progress we make when Et does not yet hold, while also ensuring we do not leave

once we hit a second order stationary point:

Lemma D.5.2. Suppose that both

E[f(wt+1)− f(wt)|Et] ≤ −gthresh (D.47)

and E[f(wt+1)− f(wt)|Ect] ≤ δgthresh/2. (D.48)

Set T = 2(f(w0) − minw f(w))/(δgthresh). We return wt uniformly randomly from

w1, . . . , wT . Then, with probability at least 1− δ, we will have chosen a time t where

Et did not occur.

210

Proof. Let Pt be the probability that Et occurs. Then,

E[f(wt+1)− f(wt)] = E[f(wt+1)− f(wt)|Et]Pt + E[f(wt+1)− f(wt)|Ect](1− Pt)

(D.49)

≤ −gthreshPt + δgthresh/2 · (1− Pt) (D.50)

≤ δgthresh/2− (1 + δ/2)gthreshPt (D.51)

≤ δgthresh/2− gthreshPt. (D.52)

Summing over all T iterations, we have:

1

T

T∑
t=1

E[f(wt+1)− f(wt)] ≤ gthresh ·
1

T

T∑
t=1

(δ/2− Pt) (D.53)

=⇒ 1

T

T∑
t=1

Pt ≤ δ/2 +
f(w0)− f ∗

Tgthresh
≤ δ (D.54)

=⇒ 1

T

T∑
t=1

(1− Pt) ≥ 1− δ. (D.55)

Theorem D.5.1. Write γ = λ−
√
ρτ 1/2. Let K be a universal constant. The pa-

rameter ω will be set later and depends only logarithmically on the other parameters.

Set

r = γ2 · δνK

54Λ1Λ2ΓLρM

η = γ5 · δ2ν2K2

324M2L2Λ2
1Λ

2
2Γ

2ρ2ω

fthresh = γ4 · δν2K2

54 · 12Λ2
1Λ

2
2ΓLρ

2M2
.

Let tthresh = ω/(ηγ), ∆ = O(τ 1/2), and set gthresh = fthresh/tthresh. Then we have both

E[f(wt+1)− f(wt)|Et] ≤ −gthresh (D.56)

and E[f(wt+1)− f(wt)|Ect] ≤ δgthresh/2. (D.57)

211

Corollary D.5.1. In the above setting, with probability 1−δ, we reach an (τ,
√
ρτ 1/2)-

stationary point in time

Õ

(
M4L3

ρδ3
· Λ

4
1Λ

4
2Γ

2

λ10
− ν4

· τ−5

)
. (D.58)

Proof. Simply observe T = C(f0 − f ∗)/(δgthresh) and plug in gthresh.

D.5.3 Amortized increase due to large stepsize iterations

Before we start casework on whether Et holds We want to bound the amortized effect

on the objective of increasing the stepsize every tthresh iterations. By Corollary D.5.2,

E[f(wt+1)]− f(wt) ≤
9LΓr2

8
. (D.59)

Note that for our particular setting of r and fthresh, we have

9LΓ

8
· r2 = 9LΓ

8
· γ4 · δ2ν2K2

542Λ2
1Λ

2
2Γ

2L2ρ2M2
(D.60)

=
9δ

8
· 12
54
· γ4 · δν2K2

54 · 12Λ2
1Λ

2
2ΓLρ

2M2
(D.61)

=
δfthresh

4
, (D.62)

so also

E[f(wt+1)]− f(wt) ≤
δfthresh

4
. (D.63)

Therefore on average

E[f(wt+1)]− f(wt)

tthresh
≤ δgthresh/4. (D.64)

212

D.5.4 Bound on possible increase when Ect occurs

For the main result we need to bound

E[f(wt+1)− f(wt)|Ect] ≤ δgthresh/4. (D.65)

Note that

Ect = {‖∇f(wt)‖ ≥ τ or λmin(∇2f(wt)) ≤ −
√
ρτ 1/2}c (D.66)

= {‖∇f(wt)‖ < τ and λmin(∇2f(wt)) > −
√
ρτ 1/2}. (D.67)

Hence it suffices to bound the function increase conditioned on ‖∇f(wt)‖ ≤ τ . By

Corollary D.5.2 we have

E[f(wt+1)]− f(wt) ≤
9LΓη2

8
. (D.68)

We want this to not exceed δgthresh/4:

9LΓη2

8

?

≤ δ

4
gthresh (D.69)

⇔ 9LΓη2

8

?

≤ δ

4
fthresh ·

ηγ

ω
(D.70)

⇔ 9LΓη

2

?

≤ δfthresh ·
γ

ω
(D.71)

⇔ 9LΓ

2
· γ5 · δ2ν2K2

324M2L2Λ2
1Λ

2
2Γ

2ρ2ω

?

≤ δ · γ
ω
· γ4 · δν2K2

54 · 12Λ2
1Λ

2
2ΓLρ

2M2
. (D.72)

Cancelling like terms, we find that the inequality is equivalent to ω ≥ 9/4, which we

can easily enforce later. Therefore we may indeed write that

E[f(wt+1)]− f(wt) ≤
δgthresh

4
. (D.73)

213

D.5.5 Bound on decrease (progress) when Et occurs

We need to bound

E[f(wt+1)− f(wt)|Et] ≤ −gthresh. (D.74)

By definition,

Et = {‖∇f(wt)‖ ≥ τ} ∪ {λmin(∇2f(wt)) ≤ −
√
ρτ 1/2 and ‖∇f(wt)‖ ≤ τ}. (D.75)

In words, we split Et into two cases: either the gradient is large, or we are near a

saddlepoint but there is an escape direction.

Large gradient regime

If the norm of the gradient is large enough, i.e.

‖∇f(wt)‖2 ≥ τ 2 (D.76)

then by Corollary D.5.4,

E[f(wt+1)]− f(wt) ≤ −
ητ 2λ−

4
≤ −gthresh (D.77)

as long as η ≤ 4λ−τ2

9LΓ
and gthresh ≤ ητ2λ−

4
. For our choice of η = O(τ 5/2) and gthresh =

Õ(τ 5), each of these will hold for small enough τ .

Sharp negative curvature regime

We start at a point w0 around which we base our Hessian approximation:

g(w) = f(w0) + (w − w0)
T∇f(w0) +

1

2
(w − w0)

TH(w − w0) (D.78)

where we write H = ∇2f(w0). We will also write A = E[g0gT0]1/2 as the preconditioner

at w0.

214

Lemma D.5.3. For every twice differentiable ρ-Hessian Lipschitz function f we have

‖∇f(w)−∇g(w)‖ ≤ ρ

2
‖w − w0‖2. (D.79)

Proof. From Lemma 1.2.4 in (Nesterov, 2004), we have

‖∇f(w)−∇f(w0)−H(w − w0)‖ ≤
ρ

2
‖w − w0‖2. (D.80)

Now simply observe that ∇g(w) = ∇f(w0) +H(w − w0).

Lemma D.5.4. Suppose that ‖∇f(w0)‖ ≤ τ . Also suppose the Hessian at w0 has a

strong escape direction, i.e. λmin(∇2f(w0)) ≤ −
√
ρτ 1/2, and define γ = λ−

√
ρτ 1/2 so

that √ρτ 1/2 = λ−1
− γ. Then there exists k < tthresh so that

E[f(wk)]− f(w0) ≤ −fthresh (D.81)

Proof. Suppose not, i.e. suppose that for all t < tthresh it holds that

E[f(wt)]− f(w0) ≥ −fthresh. (D.82)

Under this assumption we will prove bounds which will imply that the assumption

cannot hold. In particular, we will give a lower bound on E[‖wt−w0‖2] that conflicts

with Lemma D.5.11.

Define the following terms, each of which is selected to satisfy a certain recursion:

Term Recursion identity

ut = (I − ηAH)t(w1 − w0). ut = (I − ηAH)ut−1

δt =
∑t

i=1(I − ηAH)t−iA(−∇f(wi) +∇g(wi)) δt = A(−∇f(wt) +∇g(wt)) + (I − ηAH)δt−1

dt = −
∑t

i=1(I − ηAH)t−iA∇f(w0) dt = −A∇f(w0) + (I − ηAH)dt−1

ζt =
∑t

i=1(I − ηAH)t−iξi ζt = ξt + (I − ηAH)ζt−1

χt =
∑t

i=1(I − ηAH)t−i(A− Ai)∇f(wi) χt = (A− At)∇f(wt) + (I − ηAH)χt−1

ιt =
∑t

i=1(I − ηAH)t−i(Ai − Âi)∇f(wi) ιt = (At − Ât)∇f(wt) + (I − ηAH)ιt−1.

215

By convention we take δ0 = d0 = ζ0 = χ0 = ι0 = 0, and for convenience we will write

πt = δt + dt + ζt +χt + ιt. These terms are chosen so that each is a kind of error term

in a stale Taylor expansion of f . The error terms cancel so that the following identity

holds:

πt = (I − ηAH)πt−1 + AH(wt − w0)− Ât∇f(wt) + ξt. (D.83)

We will inductively prove the identity

wt+1 − w0 = ut + ηπt (D.84)

= ut + η(δt + dt + ζt + χt + ιt) (D.85)

for t ≥ 0. The base case is simple because u0 = w1 − w0 and the other terms are all

zero. For the inductive step, note

(wt+1 − w0)− (wt − w0) = wt+1 − wt

= −ηÂt∇f(wt) + ηξt

= η[πt − (I − ηAH)πt−1 − AH(wt − w0)]

where the last equality follows from equation (D.83). Rearranging, we have

wt+1 − w0 = η[πt − (I − ηAH)πt−1] + (I − ηAH)(wt − w0) (D.86)

= η[πt − (I − ηAH)πt−1] + (I − ηAH)(ut−1 + ηπt−1) (D.87)

by induction. Since ut = (I − ηAH)ut−1, we can further simplify:

wt+1 − w0 = η[πt − (I − ηAH)πt−1] + (I − ηAH)(ut−1 + ηπt−1) (D.88)

= η[πt − (I − ηAH)πt−1] + ut + η(I − ηAH)πt−1) (D.89)

= ut + ηπt (D.90)

as desired.

216

To proceed with our saddle point escape argument, we must bound all the terms

ut, δt, dt, ζt, χt, ιt to show that wt − w0 grows fast enough.

Lemma D.5.5. Under the above conditions, we have

E[‖χt‖] ≤ ατ
√

η3LΓΛ1 · κt ·

(
4

(ηγ)2
+

6fthresh

η3γLΓ
+

2

ηγ
·

√
2r2

η3LΛ1

)
. (D.91)

Proof. We assume A(x) is α Lipschitz, so that ‖Ai − A‖ ≤ α‖wi − w0‖. Then,

E[‖χt‖] = E

[∥∥∥∥∥
t∑

i=1

(I − ηAH)t−i(A− Ai)∇f(xi)

∥∥∥∥∥
]

(D.92)

≤
t∑

i=1

(1 + ηγ)t−i E [‖(A− Ai)∇f(xi)‖] (D.93)

≤
t∑

i=1

(1 + ηγ)t−i E [‖A− Ai‖‖∇f(xi)‖] (D.94)

≤ τ
t∑

i=1

(1 + ηγ)t−i E [‖A− Ai‖] (D.95)

≤ ατ
t∑

i=1

(1 + ηγ)t−i E [‖wi − w0‖] (D.96)

≤ ατ
t∑

i=1

(1 + ηγ)t−i
√

E [‖wi − w0‖2] (D.97)

≤ ατ

t∑
i=1

(1 + ηγ)t−i
√

6ηfthreshΛ1i+ η3LΓΛ1i2 + 2Γr2 (D.98)

where for the last identity we have applied Lemma D.5.11. By Lemma D.5.12, we

may further bound this by

E[‖χt‖] ≤ ατ
√

η3LΓΛ1

t∑
i=1

(1 + ηγ)t−i

(
2i+

3ηfthreshΛ1

η3LΓΛ1

+

√
2Γr2

η3LΓΛ1

)
(D.99)

= ατ
√
η3LΓΛ1

t∑
i=1

(1 + ηγ)t−i

(
2i+

3fthresh

η2LΓ
+

√
2r2

η3LΛ1

)
. (D.100)

217

Applying Lemma D.5.14 with β = ηγ yields:

E[‖χ‖] ≤ ατ
√
η3LΓΛ1 · κt ·

(
4

(ηγ)2
+

2

ηγ
· 3fthresh

η2LΓ
+

2

ηγ
·

√
2r2

η3LΛ1

)
(D.101)

= ατ
√
η3LΓΛ1 · κt ·

(
4

(ηγ)2
+

6fthresh

η3γLΓ
+

2

ηγ
·

√
2r2

η3LΛ1

)
. (D.102)

Lemma D.5.6. Under the above conditions, we have

E[‖δt‖] ≤ Λ2ρκ
t

[
2Γr2

ηγ
+

6ηfthreshΛ1

(ηγ)2
+

3η3LΓΛ1

(ηγ)3

]
. (D.103)

Proof. We write

E[‖δt‖] = E

[∥∥∥∥∥
t∑

i=1

(I − ηAH)t−iA(∇f(wi)−∇g(wi))

∥∥∥∥∥
]

(D.104)

≤
t∑

i=1

(1 + ηγ)t−i E [‖A(∇f(wi)−∇g(wi))‖] (D.105)

≤ Λ2

t∑
i=1

κt−i E [‖∇f(wi)−∇g(wi)‖] (D.106)

≤ Λ2(ρ/2)
t∑

i=1

κt−i E
[
‖wi − w0‖2

]
(D.107)

≤ Λ2(ρ/2)
t∑

i=1

κt−i
(
6ηfthreshΛ1i+ η3LΓΛ1i

2 + 2Γr2
)
, (D.108)

where again, the last inequality comes from Lemma D.5.11. Applying Lemma D.5.14

with β = ηγ yields:

E[‖δt‖] ≤
Λ2ρκ

t

2

[
(6ηfthreshΛ1) ·

2

η2γ2
+ η3LΓΛ1 ·

6

η3γ3
+ 2Γr2 · 2

ηγ

]
(D.109)

= Λ2ρκ
t

[
2Γr2

ηγ
+

6ηfthreshΛ1

(ηγ)2
+

3η3LΓΛ1

(ηγ)3

]
. (D.110)

218

Lemma D.5.7. Under the above conditions,

E‖ιt‖] ≤ 2τ(ηγ)−1∆κt. (D.111)

Proof. Write

E‖ιt‖] = E

[∥∥∥∥∥
t∑

i=1

(I − ηAH)t−i(Ai − Âi)∇f(wi)

∥∥∥∥∥
]

(D.112)

≤
t∑

i=1

(1 + ηγ)t−i E
[∥∥∥(Ai − Âi)∇f(wi)

∥∥∥] (D.113)

≤ τ
t∑

i=1

(1 + ηγ)t−i E
[∥∥∥Ai − Âi

∥∥∥] (D.114)

≤ 2τ(ηγ)−1κt max
i

E
[∥∥∥Ai − Âi

∥∥∥] (D.115)

≤ 2τ(ηγ)−1∆κt. (D.116)

Lemma D.5.8. Under the above conditions, E[uT
t]dt ≥ 0.

Proof. We have

E[ut] = (I − ηAH)t E[w1 − w0] = −r(I − ηAH)tA∇f(w0). (D.117)

For small enough η, we have ‖ηAH‖ ≤ 1 and hence:

E[uT
t]dt = r

[
(I − ηAH)tA∇f(w0)

]T t∑
i=1

(I − ηAH)t−iA∇f(w0) (D.118)

= r

t∑
i=1

(A∇f(w0))
T (I − ηAH)2t−i(A∇f(w0)) ≥ 0. (D.119)

Lemma D.5.9. Under the above conditions, we get an exponentially growing lower

219

bound on the expected squared norm of ut:

E[‖ut‖2] ≥ (1 + ηγ)2tr2ν = κ2tr2ν. (D.120)

Proof. For unit vectors v, we may write

E[‖ut‖2] ≥ E[(vTut)
2]. (D.121)

In particular, by definition of ut,

E[‖ut‖2] ≥ E[(vT (I − ηAH)t(w1 − w0))
2]. (D.122)

We wish to choose a unit vector v so that this is as large as possible. If AH were

symmetric, we could choose v to be an eigenvector, but the product of symmetric

matrices is not in general symmetric. However, because A and H are both symmetric,

and A is positive definite, it follows that A1/2 exists and that A1/2HA1/2 is symmetric.

Hence for orthonormal U and diagonal Λ, we have

A1/2HA1/2 = UΛUT (D.123)

=⇒ A−1/2AHA1/2 = UΛUT (D.124)

=⇒ AH = A1/2UΛ(A1/2U)−1. (D.125)

The diagonal matrix Λ contains the eigenvalues of A1/2HA1/2. Without loss of gener-

ality, Λ11 corresponds to a negative eigenvalue with absolute value γ. Therefore

(I − ηAH)t = (A1/2U(I − ηΛ)(A1/2U)−1)t (D.126)

= A1/2U(I − ηΛ)t(A1/2U)−1. (D.127)

Since we can choose v to be any unit vector we want, we will set it equal to C(UTA1/2)−1e1

so that UTA1/2v = Ce1. Here e1 is the first standard basis vector and C is a scalar

constant chosen to make v a unit vector. Taking transposes, we have vTA1/2U = CeT1 .

220

Now,

vT (I − ηAH)t = vTA1/2U(I − ηΛ)t(A1/2U)−1 (D.128)

= CeT1 (I − ηΛ)t(A1/2U)−1 (D.129)

= C(1 + ηΛ11)
teT1 (A

1/2U)−1 (D.130)

= (1 + ηγ)t · CeT1 (A
1/2U)−1. (D.131)

Substituting in the definition of v, this is equal to:

vT (I − ηAH)t = (1 + ηγ)t · vT (A1/2U)(A1/2U)−1 (D.132)

= (1 + ηγ)tvT . (D.133)

This equality holds for any v of the form specified above; in particular, choose C so

that v is unit. Then, we may finally bound

E[‖ut‖2] ≥ E[(vT (I − ηAH)t(w1 − w0))
2] (D.134)

≥ (1 + ηγ)2t E[(vT (w1 − w0))
2] (D.135)

= (1 + ηγ)2tr2 E[(vTAg0)2] (D.136)

= (1 + ηγ)2tr2vT E[Ag0gT0 AT]v (D.137)

= (1 + ηγ)2tr2vTAE[g0gT0]ATv (D.138)

≥ (1 + ηγ)2tr2λmin(AE[g0gT0]AT) (D.139)

≥ (1 + ηγ)2tr2ν, (D.140)

where the last two lines follow by the fact that ‖v‖ = 1 and by definition of ν.

Lemma D.5.10. Under the above conditions we have a deterministic bound on ‖ut‖:

‖ut‖ ≤ κtrM (D.141)

221

Proof. We write

‖ut‖ = ‖(I − ηAH)t(w1 − w0)‖ (D.142)

≤ ‖I − ηAH‖t · ‖w1 − w0‖ (D.143)

≤ (1 + ηγ)t · r‖Ag0‖ (D.144)

≤ (1 + ηγ)t · rM. (D.145)

Putting all these results together, we can give a lower bound on the distance

between iterates:

E[‖wt+1 − w0‖2] = E
[
‖ut + η(δt + dt + ζt + χt + ιt)‖2

]
= E[‖ut‖2] + 2η E

[
uT
t (δt + dt + ζt + χt + ιt)

]
+ η2 E

[
‖δt + dt + ζt + χt + ιt‖2

]
≥ E[‖ut‖2] + 2η E

[
uT
t (δt + dt + ζt + χt + ιt)

]
= E[‖ut‖2] + 2η E

[
uT
t (δt + dt + χt + ιt)

]
= E[‖ut‖2] + 2η E[uT

t δt] + 2η E[uT
t dt] + 2η E[uT

t χt]

= E[‖ut‖2] + 2η E[uT
t δt] + 2η E[ut]

Tdt + 2η E[uT
t χt] + 2η E[uT

t ιt]

≥ E[‖ut‖2] + 2η E[uT
t δt] + 2η E[uT

t χt] + 2η E[uT
t ιt]

≥ E[‖ut‖2]− 2η‖ut‖E[‖δt‖]− 2η‖ut‖E[‖χt‖]− 2η‖ut‖E[‖ιt‖]

≥ κ2tr2ν − 2ηκtrM E[‖δt‖+ ‖χt‖+ ‖ιt‖].

Substituting in the bounds for E[‖δt‖], E[‖χt‖], and E[‖ιt‖],we finally have the

lower bound:

(
rν − 2ηM

[
Λ2ρ

[
2Γr2

ηγ
+

6ηfthreshΛ1

(ηγ)2
+

3η3LΓΛ1

(ηγ)3

]
(D.146)

+ατ
√

η3LΓΛ1

(
4

(ηγ)2
+

6fthresh

η3γLΓ
+

2

ηγ
·

√
2r2

η3LΛ1

)
+ 2τ(ηγ)−1∆

])
rκ2t. (D.147)

222

As long as the sum in the parentheses is positive, this term will grow exponentially

and grant us the contradiction we seek. We want to bound each of the seven terms

in brackets by rν/8, so that the overall bound is r2κ2tν/8. For simplicity, we will

write K = 1/8 as a universal constant. Then, we want to choose parameters so the

following inequalities all hold.

We start with the last term (from ιt) because it is the most simple. Since γ =

Θ(τ 1/2), we require that

2ηM · 2τ(ηγ)−1∆ ≤ rνK (D.148)

⇔ 4Mτγ−1∆ ≤ rνK (D.149)

⇔ τ · τ−1/2∆ ≤ O(r) (D.150)

⇔ ∆ ≤ O(τ−1/2r). (D.151)

Since we will eventually set r = O(τ), this constraint is simply ∆ ≤ O(τ 1/2).

Next we move onto the first three terms, which correspond to δt:

2ηMΛ2ρ ·
2Γr2

ηγ
≤ rνK ⇔ r ≤ γνK

4Λ2ΓρM
(D.152)

2ηMΛ2ρ ·
6ηfthreshΛ1

η2γ2
≤ rνK ⇔ fthresh ≤

γ2rνK

12Λ1Λ2ρM
(D.153)

2ηMΛ2ρ ·
3η3LΓΛ1

η3γ3
≤ rνK ⇔ η ≤ γ3rνK

6MLΛ1Λ2Γρ
. (D.154)

The first constraint is satisfied for small enough τ because we chose r = O(τ) ≤

O(τ 1/2). The second term is equivalent to

fthresh
?

≤ γ2νK

12Λ1Λ2ρM
· r (D.155)

⇔ γ4 · δν2K2

54 · 12Λ2
1Λ

2
2ΓLρ

2M2

?

≤ γ2νK

12Λ1Λ2ρM
· γ2 · δνK

54Λ1Λ2ΓLρM
(D.156)

⇔ δν2K2

54 · 12Λ2
1Λ

2
2ΓLρ

2M2

?

≤ δν2K2

54 · 12Λ2
1Λ

2
2ΓLρ

2M2
(D.157)

which trivially always holds since the two expressions are equal.

Finally, we address the three terms corresponding to χt. For small enough τ , it

223

will turn out that none of the resulting constraints are tight, i.e. they are all weaker

than some other constraint we already require. First,

2ηMατ
√

η3LΓΛ1 ·
4

η2γ2
≤ rνK (D.158)

⇐ η1/2τ ≤ O(rγ2) (D.159)

⇔ η ≤ O(r2γ4τ−2) = O(τ 2). (D.160)

Next,

2ηMατ
√

η3LΓΛ1 ·
6fthresh

η3γLΓ
≤ rνK (D.161)

⇐ ητη3/2
fthresh

η3γ
≤ O(r) (D.162)

⇔ fthresh ≤ O(η1/2rγτ−1) = O(τ 7/4). (D.163)

Finally,

2ηMατ
√

η3LΓΛ1 ·
2

ηγ
·

√
2r2

η3LΛ1

≤ rνK (D.164)

⇐ τ
√

η3 · 1
γ
· r√

η3
≤ O(r) (D.165)

⇔ τγ−1r ≤ O(r) (D.166)

⇔ τ ≤ O(γ) = O(τ 1/2). (D.167)

Hence, for small enough τ , for the above parameter settings, we have

E[‖wt+1 − w0‖2] ≥ r2κ2tνK. (D.168)

We now have a lower bound and an upper bound that when combined yield

(1 + ηγ)2t ≤ C, where

C =
[
(6ηfthreshΛ1) t+ η3LΓΛ1t

2 + 2Γr2
]
· 1

r2νK
. (D.169)

224

We can choose ω that is only logarithmic in all parameters, i.e. ω = O(log(Λ1Λ2ΓLηfthresh
νr

)),

so that setting t ≥ tthresh = ω/(ηγ) yields (1 + ηγ)2t ≥ C. This contradicts the upper

bound, as desired.

Lemma D.5.11. Assume that Equation (D.82) holds. Assume also that η ≤ fthreshΛ1

Γ
.

Then,

E[‖wt − w0‖2] ≤ 6ηfthreshΛ1t+ η3LΓΛ1t
2 + 2Γr2. (D.170)

Proof. By Lemma D.5.16,

−fthresh ≤ E[f(wt)]− f(w0) (D.171)

= E

[
t−1∑
i=0

f(wi+1)− f(wi)

]
(D.172)

≤ −η
t−1∑
i=0

E[‖Â1/2
i ∇f(wi)‖2] +

η2LΓ(t− 1)

2
+

r2LΓ

2
. (D.173)

Remember, we are making the simplifying assumption that Λ1 serves as a bound in

the same way for Â as it does for A. This is trivially true if ∆ = 0. Applying the

definition of Λ1 yields:

−fthresh ≤ −ηΛ−1
1

t−1∑
i=0

E[‖Âi∇f(wi)‖2] +
η2LΓt

2
+

r2LΓ

2
. (D.174)

By rearranging, we can get a bound on the gradient norms:

t−1∑
i=0

E[‖Âi∇f(wi)‖2] ≤
Λ1

η

(
η2LΓt

2
+

r2LΓ

2
+ fthresh

)
(D.175)

=
ηLΓΛ1t

2
+

r2LΓΛ1

2η
+

fthreshΛ1

η
. (D.176)

225

Before we proceed, note that we already have

δfthresh

4
≥ 9LΓr2

8
=⇒ fthreshΛ1

η
≥ 9

2δ

r2LΓΛ1

η
≥ r2LΓΛ1

2η
. (D.177)

Hence we can further bound equation (D.176) by

t−1∑
i=0

E[‖Âi∇f(wi)‖2] ≤
ηLΓΛ1t

2
+

2fthreshΛ1

η
. (D.178)

Now we will work toward bounding the norm of the difference wt − w0. We will

first bound the difference wt − w1, then the difference w1 − w0.

E[‖wt − w1‖2] ≤ E

∥∥∥∥∥
t−1∑
i=1

wi+1 − wi

∥∥∥∥∥
2
 (D.179)

≤ η2 E

∥∥∥∥∥
t−1∑
i=1

(ξi − Âi∇f(wi))

∥∥∥∥∥
2
 , (D.180)

where ξi = Âi(∇f(wi)− gi) is the zero mean effective noise that arises from rescaling

the stochastic gradient noise. We may write

E

∥∥∥∥∥
t−1∑
i=1

(ξi − Âi∇f(wi))

∥∥∥∥∥
2
 = E

∥∥∥∥∥
t−1∑
i=1

ξi −
t−1∑
i=1

Âi∇f(wi)

∥∥∥∥∥
2
 (D.181)

= E

∥∥∥∥∥
t−1∑
i=1

Âi∇f(wi)

∥∥∥∥∥
2

+

∥∥∥∥∥
t−1∑
i=1

ξi

∥∥∥∥∥
2

− 2
t−1∑
i=1

t−1∑
j=1

〈ξi, Âj∇f(wj)〉


(D.182)

= E

∥∥∥∥∥
t−1∑
i=1

Âi∇f(wi)

∥∥∥∥∥
2
+ E

∥∥∥∥∥
t−1∑
i=1

ξi

∥∥∥∥∥
2
 (D.183)

because ξi are zero mean. Since E[ξTi ξj] = 0 for i 6= j, the expression can be simplified

226

as:

E

∥∥∥∥∥
t−1∑
i=1

(ξi − Âi∇f(wi))

∥∥∥∥∥
2
 = E

∥∥∥∥∥
t−1∑
i=1

Âi∇f(wi)

∥∥∥∥∥
2
+

t−1∑
i=1

E
[
‖ξi‖2

]
(D.184)

≤ E

∥∥∥∥∥
t−1∑
i=1

Âi∇f(wi)

∥∥∥∥∥
2
+

t−1∑
i=1

E
[
‖ξi‖2

]
(D.185)

≤ E

(t−1∑
i=1

∥∥∥Âi∇f(wi)
∥∥∥)2

+
t−1∑
i=1

E
[
‖ξi‖2

]
(D.186)

≤ (t− 1)
t−1∑
i=1

E
[∥∥∥Âi∇f(wi)

∥∥∥2]+ t−1∑
i=1

E
[
‖ξi‖2

]
.

(D.187)

Note

E[‖ξi‖2] ≤ E[‖Âi∇f(wi)‖2] + E[‖Âigi‖2] (D.188)

≤ E[‖Âi∇f(wi)‖2] +
9

4
Γ (D.189)

where we have used Lemma D.5.15. We can then bound

E

∥∥∥∥∥
t−1∑
i=1

(ξi − Âi∇f(wi))

∥∥∥∥∥
2
 ≤ (t− 1 + 1)

t−1∑
i=1

E
[∥∥∥Âi∇f(wi)

∥∥∥2]+ 9tΓ

4
. (D.190)

Plugging in Equation (D.178) we get:

E

∥∥∥∥∥
t−1∑
i=1

(ξi − Âi∇f(wi))

∥∥∥∥∥
2
 ≤ t

(
ηLΓΛ1t

2
+

2fthreshΛ1

η

)
+ tΓ. (D.191)

Plugging this into Equation (D.180) yields:

E[‖wt − w1‖2] ≤ tη2
(
ηLΓΛ1t

2
+

2fthreshΛ1

η

)
+ η2Γt (D.192)

=
(
4ηfthreshΛ1 + η2Γ

)
t+

η3LΓΛ1t
2

2
. (D.193)

227

Then we may write

E[‖wt − w0‖2] ≤ 2E[‖wt − w1‖2] + 2E[‖w1 − w0‖2] (D.194)

≤
(
4ηfthreshΛ1 + 2η2Γ

)
t+ η3LΓΛ1t

2 + 2Γr2. (D.195)

We are almost done. By our additional assumption that η ≤ fthreshΛ1

Γ
(which will

wind up being true for small enough τ), it also follows that

2η2Γ ≤ 2ηfthreshΛ1 (D.196)

and therefore

E[‖wt − w0‖2] ≤ 6ηfthreshΛ1t+ η3LΓΛ1t
2 + 2Γr2. (D.197)

D.5.6 Auxiliary lemmas

Lemma D.5.12. For z, A,B,C ≥ 0,

√
Az2 +Bz + C ≤

√
A ·

(
2z +

B

2A
+

√
C

A

)
. (D.198)

Proof. Note the following two facts:

Az2 +Bz + C = A(z2 +B/Az + C/A) = A[(z +B/(2A))2 + C/A−B2/(2A)2]

(D.199)

and

Az2 +Bz + C = A(z2 +B/Az + C/A) = A[(z +
√

C/A)2 − 2
√

C/A+B/A].

(D.200)

228

If B2 ≥ 4AC, then C/A−B2/(2A)2 ≤ 0. Otherwise, −2
√

C/A+B/A ≤ 0. Hence,

√
Az2 +Bz + C ≤


√
A · (z +B/(2A)) case 1
√
A · (z +

√
C/A) case 2.

(D.201)

≤
√
A ·
[
(z +B/(2A)) + (z +

√
C/A)

]
. (D.202)

Lemma D.5.13. Let 0 < x < 1. For t ≥ 2 logC/x, we have (1 + x)t ≥ C.

Proof. For x < 1 we have log(1 + x) ≤ x− x2/2 ≤ x/2. Hence,

t log(1 + x) ≥ tx/2 (D.203)

≥ logC, (D.204)

and the lemma follows by exponentiating both sides.

Series lemmas

Lemma D.5.14 (As in (Daneshmand et al., 2018)). For 0 < β < 1 the following

inequalities hold:

t∑
i=1

(1 + β)t−i ≤ 2β−1(1 + β)t (D.205)

t∑
i=1

(1 + β)t−ii ≤ 2β−2(1 + β)t (D.206)

t∑
i=1

(1 + β)t−ii2 ≤ 6β−3(1 + β)t. (D.207)

D.5.7 Descent lemmas

First we need a quick lemma relating the constants of the true preconditioner to those

of an approximate preconditioner:

229

Lemma D.5.15. Let Γ be an upper bound on E[‖Ag‖2]. Let Â be another matrix

with ‖Â− A‖ ≤ ∆ < λ−/2. Then, E[‖Âg‖2] ≤ 9
4
Γ.

Proof. The proof is straightforward:

E[‖Âg‖2] ≤ E[‖(A+∆I)g‖2] (D.208)

≤ E

[∥∥∥∥32Ag
∥∥∥∥2
]

(D.209)

=
9

4
E[‖Ag‖2] = 9

4
Γ (D.210)

where the penultimate line follows by ∆ < λ−/2 and ∆I � 1
2
At.

Note that in the noiseless case ∆ = 0, all the below results still apply, and we

only lose a constant factor compared to the typical descent lemma.

Lemma D.5.16. Assume f has L-Lipschitz gradient. Suppose we perform the up-

dates wt+1 ← wt − ηÂtgt, where gt is a stochastic gradient, At is a (Λ1,Λ2,Γ, ν, λ−)-

preconditioner, and ‖Ât − At‖ ≤ ∆ < λ−
2

. Then,

E[f(wt+1)] ≤ f(wt)−
ηλ−

2
‖∇f(wt)‖2 +

9η2LΓ

8
(D.211)

Proof. We write

E[f(wt+1)] ≤ f(wt) + 〈∇f(wt),E[wt+1 − wt]〉+
L

2
E[‖wt+1 − wt‖2] (D.212)

= f(wt)− η〈∇f(wt), Ât∇f(wt)〉+
η2L

2
E
[
‖Âtgt‖2

]
(D.213)

≤ f(wt)− η(λ− −∆)‖∇f(wt)‖2 +
9η2LΓ

8
(D.214)

≤ f(wt)−
ηλ−

2
‖∇f(wt)‖2 +

9η2LΓ

8
(D.215)

where the third line follows by Lemma D.5.15.

Corollary D.5.2. Always

E[f(w1)]− f(w0) ≤
9η2LΓ

8
. (D.216)

230

Corollary D.5.3. Suppose η ≤ 4λ−‖∇f(w0)‖2/(9LΓ). Then,

E[f(w1)]− f(w0) ≤ −
ηλ−

4
‖∇f(w0)‖2. (D.217)

Corollary D.5.4. Suppose ‖∇f(w0)‖2 ≥ τ 2. Then if η ≤ 4λ−τ
2/(9LΓ)

E[f(w1)]− f(w0) ≤ −
ηλ−

4
‖∇f(w0)‖2 ≤ −

ηλ−

4
τ 2. (D.218)

D.6 Convergence to First-Order Stationary Points

D.6.1 Generic Preconditioners: Proof of Theorem 7.4.2

Proof. Let g be the stochastic gradient at time t. We will precondition by At = A(wt).

We write

E[f(wt+1)] ≤ f(wt) + 〈∇f(wt),E[wt+1 − wt]〉+
L

2
E[‖wt+1 − wt‖2] (D.219)

= f(wt)− η〈∇f(wt), At∇f(wt)〉+
η2L

2
E
[
‖Atgt‖2

]
(D.220)

≤ f(wt)− η〈∇f(wt), At∇f(wt)〉+
η2LΓ

2
(D.221)

≤ f(wt)− ηλmin(At)‖∇f(wt)‖2 +
η2LΓ

2
(D.222)

≤ f(wt)− ηλ−‖∇f(wt)‖2 +
η2LΓ

2
. (D.223)

Summing and telescoping, we have

E[f(wT)] ≤ E[f(w0)]− ηλ−

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
+

η2LTΓ

2
. (D.224)

Now rearrange, and bound f(wT) by f ∗ to get:

1

T
· λ− ·

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤ f(w0)− f ∗

Tη
+

ηLΓ

2
. (D.225)

231

and therefore

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤
(
f(w0)− f ∗

Tη
+

ηLΓ

2

)
· 1

λ−
. (D.226)

Optimally choosing η =
√

2(f(w0)− f ∗)/(TLΓ) yields the overall bound

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤
√

2(f(w0)− f ∗)LΓ

T
· 1

λ−
. (D.227)

Rephrasing, in order to be guaranteed that the left hand term is bounded by τ 2, it

suffices to choose T so that√
2(f(w0)− f ∗)LΓ

T
· 1

λ−
≤ τ 2 (D.228)

⇔ T ≥ 2(f(w0)− f ∗)LΓ

τ 4λ2
−

(D.229)

and

η =

√
2(f(w0)− f ∗)

TLΓ
(D.230)

≤

√
2(f(w0)− f ∗)

LΓ
· τ 4λ2

−

2(f(w0)− f ∗)LΓ
=

τ 2λ−

LΓ
. (D.231)

232

D.6.2 Generic Preconditioners with Errors: Proof of Theo-

rem 7.4.3

Proof. Let g be the stochastic gradient at time t. We will precondition by Ât which

satisfies ‖Ât − At‖ ≤ ∆ < λ−/2. We write

E[f(wt+1)] ≤ f(wt) + 〈∇f(wt),E[wt+1 − wt]〉+
L

2
E[‖wt+1 − wt‖2] (D.232)

= f(wt)− η〈∇f(wt), Ât∇f(wt)〉+
η2L

2
E
[
‖Âtgt‖2

]
(D.233)

≤ f(wt)− η(λ− −∆)‖∇f(wt)‖2 +
η2L

2
E
[
‖(At +∆I)gt‖2

]
(D.234)

≤ f(wt)−
ηλ−

2
‖∇f(wt)‖2 +

η2L

2
E

[∥∥∥∥32Atgt

∥∥∥∥2
]

(D.235)

= f(wt)−
ηλ−

2
‖∇f(wt)‖2 +

9η2LΓ

8
(D.236)

where the penultimate line follows by ∆ < λ−/2 and ∆I � 1
2
At. Summing and

telescoping, and further bounding 9/8 < 2, we have

E[f(wT)] ≤ E[f(w0)]−
ηλ−

2

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
+ 2η2LΓ. (D.237)

Now rearrange, and bound f(wT) by f ∗ to get:

1

T
· λ−

2
·
T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤ f(w0)− f ∗

Tη
+ 2ηLΓ (D.238)

and therefore

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤
(
f(w0)− f ∗

Tη
+ 2ηLΓ

)
2

λ−
. (D.239)

Optimally choosing η =
√

(f(w0)− f ∗)/(2TLΓ) yields the overall bound

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤
√

32(f(w0)− f ∗)LΓ

T
· 1

λ−
. (D.240)

233

Rephrasing, in order to be guaranteed that the left hand term is bounded by τ 2,

it suffices to choose T so that√
32(f(w0)− f ∗)LΓ

T
· 1

λ−
≤ τ 2 (D.241)

⇔ T ≥ 32(f(w0)− f ∗)LΓ

τ 4λ2
−

(D.242)

and

η =

√
f(w0)− f ∗

2TLΓ
≤

√
(f(w0)− f ∗)τ 4λ2

−

32(f(w0)− f ∗)L2Γ2
=

τ 2λ−

4
√
2LΓ

. (D.243)

D.7 Online Matrix Estimation

We first reproduce the Matrix Freedman inequality as presented by Tropp (2011):

Theorem D.7.1 (Matrix Freedman). Consider a matrix martingale {Yi : i = 0, 1, . . . }

(adapted to the filtration Fi) whose values are symmetric d × d matrices, and let

{Zi : i = 1, 2, . . . } be the difference sequence, i.e. Zi = Yi − Yi−1. For simplicity,

let Y0 = 0, so that Yn =
∑n

i=1 Zi. Assume that ‖Zi‖ ≤ R almost surely for each

i = 1, 2, Define Wi :=
∑i

j=1 E[Z2
j |Fj−1]. Then for all k ≥ 0,

P
(
‖Yn‖ ≥ k and ‖Wn‖ ≤ σ2

)
≤ d exp

(
−k2/2

σ2 +Rk/3

)
.

Corollary D.7.1. Let {Zi : i = 1, 2, . . . } be a martingale difference sequence (adapted

to the filtration Fi) whose values are symmetric d × d matrices. Assume ‖Zi‖ ≤ R

and ‖E[Z2
i |Fi−1]‖ ≤ σ2

max for all i. Let p ∈ ∆n in the simplex. Then for all k ≤

3‖p‖22σ2
max/R,

P

(∥∥∥∥∥
n∑

i=1

piZi

∥∥∥∥∥ ≥ k

)
≤ d exp

(
−k2

4‖p‖22σ2
max

)
.

234

Proof. Observe that Yi :=
∑i

j=1 pjZj is a matrix martingale; we are trying to bound

P(‖Yn‖ ≥ k). Define the predictable quadratic variation process Wi :=
∑i

j=1 E[(pjZj)
2|Fj−1].

By assumption, we may bound

‖Wn‖ =

∥∥∥∥∥
n∑

j=1

E[p2jZ2
j |Fj−1]

∥∥∥∥∥ ≤
n∑

j=1

∥∥E[p2jZ2
j |Fj−1]

∥∥ =
n∑

j=1

p2j
∥∥E[Z2

j |Fj−1]
∥∥ (D.244)

≤
n∑

j=1

p2jσ
2
max = σ2

max‖p‖22.

(D.245)

In other words, we can deterministically bound ‖Wn‖ ≤ σ2
max‖w‖22. Combining this

bound with Theorem D.7.1, it follows that for any k ≥ 0,

P (‖Yn‖ ≥ k) = P
(
‖Yn‖ ≥ k and ‖Wn‖ ≤ σ2

max‖p‖22
)

(D.246)

≤ d exp
(

−k2/2

σ2
max‖p‖22 +Rk/3

)
. (D.247)

By assumption, k ≤ 3‖p‖22σ2
max/R, so Rk/3 ≤ σ2

max‖p‖22, and we may further bound

d exp
(

−k2/2

σ2
max‖p‖22 +Rk/3

)
≤ d exp

(
−k2

4‖p‖22σ2
max

)
.

Now we can apply the above matrix concentration results to prove Theorem 7.4.1:

Proof of Theorem 7.4.1. First we separately bound the bias and variance of the esti-

mate
∑T

t=1 ptYt, then use Corollary D.7.1. Since E[Yt|Ft−1] = Gt = G(wt), the bias

235

of the estimate is:∥∥∥∥∥
T∑
t=1

ptG(wt)−G(wT)

∥∥∥∥∥ =

∥∥∥∥∥
T∑
t=1

pt(G(wt)−G(wT))

∥∥∥∥∥ (D.248)

≤
T∑
t=1

pt‖G(wt)−G(wT)‖ (D.249)

≤ L

T∑
t=1

pt‖wt − wT‖ (D.250)

≤ L

T∑
t=1

pt

T∑
s=t+1

‖ws − ws−1‖ (D.251)

≤ ηML
T∑
t=1

pt(T − t) (D.252)

= ηML · 1∑T
t=1 β

T−t
·

T∑
t=1

βT−t(T − t). (D.253)

Note that by a well-known identity,

T∑
t=1

βT−t(T − t) =
T−1∑
s=0

sβs ≤
∞∑
s=0

sβs =
β

(1− β)2
. (D.254)

Hence, the bias is bounded by

ηML · 1∑T
t=1 β

T−t
· β

(1− β)2
= ηML · 1− β

1− βT
· β

(1− β)2
(D.255)

= ηML · 1

1− βT
· β

1− β
(D.256)

≤ML · η

(1− β)(1− βT)
. (D.257)

Applying Corollary D.7.1 to the martingale difference sequence Zt = Yt −G(wt),

we have that

P

(∥∥∥∥∥
T∑
t=1

pt(Yt −G(wt))

∥∥∥∥∥ > k

)
≤ d exp

(
−k2

4‖p‖22σ2
max

)
.

236

Now note that

‖w‖22 =
T∑
t=1

p2t =
1

(
∑T

t=1 β
T−t)2

T∑
t=1

(β2)T−t (D.258)

=
(1− β)2

(1− βT)2

T∑
t=1

(β2)T−t (D.259)

=
(1− β)2

(1− βT)2
· 1− β2T

1− β2
(D.260)

=
1− β2T

(1− βT)2
· (1− β)2

1− β2
(D.261)

=
1 + βT

1− βT
· 1− β

1 + β
(D.262)

≤ 2(1− β)

1− βT
. (D.263)

Setting the right hand side of the high probability bound to δ, we have concentration

w.p. 1− δ for k satisfying

δ ≥ d exp
(

−k2

4‖p‖22σ2
max

)
. (D.264)

Rearranging, we find

log(d/δ) ≤ k2

4‖p‖22σ2
max

(D.265)

⇔ k ≥ 2σmax‖p‖2
√

log(d/δ). (D.266)

Combining this with the triangle inequality,∥∥∥∥∥
T∑
t=1

ptyt −G(wT)

∥∥∥∥∥ ≤
∥∥∥∥∥

T∑
t=1

ptyt −
T∑
t=1

ptG(wt)

∥∥∥∥∥+
∥∥∥∥∥

T∑
t=1

pt(G(wt)−G(wT))

∥∥∥∥∥
(D.267)

≤ 2σmax‖w‖2
√

log(d/δ) +ML · η

(1− β)(1− βT)
(D.268)

≤ 23/2σmax

√
1− β√
1− βT

√
log(d/δ) +ML · η

(1− β)(1− βT)
.

(D.269)

237

with probability 1− δ. Since 1/
√

1− βT ≤ 1/(1− βT), this can further be bounded

by

(
23/2σmax

√
1− β

√
log(d/δ) +ML · η

(1− β)

)
· 1

1− βT
. (D.270)

Write α = 1− β. The inner part of the bound is optimized when

23/2σmax
√
α
√

log(d/δ) = ML · η
α

(D.271)

⇔ α3/2 =
MLη

23/2σmax
√

log(d/δ)
(D.272)

⇔ α =
M2/3L2/3η2/3

2σ
2/3
max(log(d/δ))1/3

(D.273)

for which the overall inner bound is

2 · 23/2σmax
√
α
√

log(d/δ) = 4σ2/3
max(log(d/δ))1/3M1/3L1/3η1/3. (D.274)

If T is sufficiently large, the 1/(1− βT) term will be less than 2. In particular,

T >
2

log(1 + α)
=⇒ 1

1− (1− α)T
< 2. (D.275)

Since log(1 + α) > α/2 for α < 1, it suffices to have T > 4/α.

D.8 Converting Noise Estimates into Preconditioner

Estimates

Lemma D.8.1. Suppose ‖G − Ĝ‖ ≤ ε, i.e. Ĝ is a good estimate of G in operator

norm. Assume ε is so small that ε‖G−1‖ < 1/2. Then,

‖G−1 − Ĝ−1‖ ≤ ε

2(λmin(G))2
. (D.276)

238

Proof. Observe

G−1(Ĝ−G)Ĝ−1 = G−1 − Ĝ−1. (D.277)

Therefore,

δ = ‖G−1 − Ĝ−1‖ = ‖G−1(Ĝ−G)Ĝ−1‖ (D.278)

≤ ε‖G−1‖‖Ĝ−1‖ (D.279)

≤ ε‖G−1‖(‖G−1‖+ δ). (D.280)

Grouping δ terms together, we find

(1− ε‖G−1‖)δ ≤ ε‖G−1‖2 (D.281)

=⇒ δ ≤ ‖G−1‖2

1− ε‖G−1‖
· ε. (D.282)

By assumption ε is small enough so that ε‖G−1‖ < 1/2, so overall we have

δ ≤ ‖G
−1‖2

2
· ε = 1

2(λmin(G))2
· ε. (D.283)

Lemma D.8.2. Suppose ‖G − Ĝ‖ ≤ ε, i.e. Ĝ is a good estimate of G in operator

norm. Assume ε is so small that ε < 3
4
λmin(G). Then,

‖G1/2 − Ĝ1/2‖ ≤ ε

(λmin(G))1/2
. (D.284)

Proof. We can equivalently write

G− εI � Ĝ � G+ εI. (D.285)

239

By monotonicity of the matrix square root,

(G− εI)1/2 � Ĝ1/2 � (G+ εI)1/2 (D.286)

and therefore

(G− εI)1/2 −G1/2 � Ĝ1/2 −G1/2 (D.287)

� (G+ εI)1/2 −G1/2. (D.288)

At this point we can bound each side by applying Lemma D.8.3 to G and to G− εI.

The result is the bound

−ε
2(λmin(G)− ε)1/2

� Ĝ1/2 −G1/2 � ε

2(λmin(G))1/2
.

The lower bound is looser, so the operator norm of the difference is bounded by

ε

2(λmin(G)− ε)1/2
<

ε

2(1
4
λmin(G))1/2

=
ε

(λmin(G))1/2
.

Lemma D.8.3. Let A � 0 and ε > 0. Then

‖(A+ ε)1/2 − A1/2‖≤ ε

2(λmin(A))1/2
. (D.289)

Proof. The bound reduces to plugging in the eigenvalues of A to a scalar function

f : R→ R. Define f(x) = (x+ ε)1/2 − x1/2. Note that

f(x) =
((x+ ε)1/2 − x1/2)((x+ ε)1/2 + x1/2)

(x+ ε)1/2 + x1/2
(D.290)

=
(x+ ε)− x

(x+ ε)1/2 + x1/2
(D.291)

=
ε

(x+ ε)1/2 + x1/2
(D.292)

≤ ε

2x1/2
, (D.293)

240

from which the result follows.

Corollary D.8.1. Suppose ‖G− Ĝ‖ ≤ ε, for small enough ε. Then,

‖(G+ δI)−1/2 − (Ĝ+ δI)−1/2‖ ≤ ε

2(δ + λmin(G))3/2
.

Proof. Simply apply Lemma D.8.1 and Lemma D.8.2 to G+ δI.

241

	Acknowledgements
	List of Figures
	Introduction
	Motivation
	Thesis outline
	Additional related publications
	Notation

	I Understanding the link between DRO and generalization
	Background on generalization, data perturbations, and DRO
	Data perturbations and generalization
	Random perturbations
	Adversarial perturbations

	Distributionally Robust Optimization (DRO)
	Far-reaching relevance to machine learning

	DRO, MMD, kernels, and generalization
	Introduction
	Background and related work
	Generalization bounds via MMD DRO
	Bounding the DRO adversary's problem

	Connections to kernel ridge regression
	Bounding norms of products
	Implications: kernel ridge regression
	Algorithmic implications

	Approximation and connections to variance regularization
	Experiments
	Alternate regularizer
	Conjecture: generalizing beyond Gaussian kernels

	Discussion and future work

	II Algorithms for distributionally robust subset selection
	Submodularity background
	Submodular set functions
	Definitions
	Optimization

	General submodular functions
	Definitions: submodular functions and DR functions
	Optimization

	Submodular DRO
	Robust and risk-averse submodular optimization
	Submodular optimization with errors

	Distributionally robust submodular maximization
	Introduction
	Related work

	Stochastic submodular functions and distributional robustness
	Stochastic submodular functions
	Optimization and empirical approximation
	Variance regularization via distributionally robust optimization

	Exact algorithm for χ2-DRO
	Algorithmic approach
	Experiments
	Facility Location
	Influence maximization
	Rounding

	Discussion and future work

	Robust Budget Allocation
	Introduction
	Background and related work

	Robust and stochastic Budget Allocation
	Stochastic optimization
	Robust optimization

	Robust Budget Allocation: main ideas
	Constrained continuous submodular function minimization
	Forming an equivalent convex problem
	Bounding solution quality for the constrained problem

	Simple examples where our approach is optimal
	Separable problems
	Non-separable quadratics and SDP relaxations
	Evaluation of suboptimality bounds

	Robust Budget Allocation experiments
	Synthetic
	Yahoo! data
	Comparison to first-order methods

	Discussion and future work

	III The reverse: leveraging perturbations for better non-convex optimization algorithms
	Escaping saddle points with Adaptive Gradient Methods and perturbations
	Introduction
	Adaptive gradient methods (AGMs)
	Related work

	Notation and definitions
	The RMSProp preconditioner
	What is the purpose of the preconditioner?
	Reddi et al. [2018b] counterexample resolution

	Main results: gluing estimation and optimization
	Estimating from moving sequences
	Convergence results

	Discussion
	How to set the regularization parameter ε
	Comparison to SGD
	Alternative preconditioners
	Tuning the EMA parameter β

	Experiments
	Further discussion and future work

	IV Conclusion
	Conclusion
	High-level summary
	Future directions
	Perturbations and generalization
	Perturbation-aware optimization
	Perturbations for optimization

	V Bibliography and Appendix
	Bibliography
	DRO, MMD, kernels, and generalization
	Proofs of main structural results
	Gaussian kernel bounds
	Trace inequality
	Extensions of Proposition 3.4.1

	Proofs for Section 3.5

	Distributionally robust submodular maximization
	Tail Bound
	Equivalence of Variance Regularization and Distributionally Robust Optimization
	Exact Linear Oracle
	Unique solutions
	Lipschitz gradient

	Convergence analysis for MFW
	Rounding to a distribution over subsets

	Robust Budget Allocation
	Worst-Case Approximation Ratio versus True Worst-Case
	DR-submodularity and L♮-convexity
	Constrained Continuous Submodular Function Minimization
	Solving the Optimization Problem
	Runtime

	Escaping saddle points with Adaptive Gradient Methods and perturbations
	More Insights from Idealized Adaptive Methods (IAM)
	Algorithm Details
	Curvature and noise constants for different preconditioners
	Constants for identity preconditioner
	Constants for full matrix IAM
	Constants for diagonal IAM

	Convergence results for the diagonal case
	Main Proof
	Definitions
	High level picture
	Amortized increase due to large stepsize iterations
	Bound on possible increase when Etc occurs
	Bound on decrease (progress) when Et occurs
	Auxiliary lemmas
	Descent lemmas

	Convergence to First-Order Stationary Points
	Generic Preconditioners: Proof of Theorem 7.4.2
	Generic Preconditioners with Errors: Proof of Theorem 7.4.3

	Online Matrix Estimation
	Converting Noise Estimates into Preconditioner Estimates

