A Nonparametric Residual-based Specification
Test: Asymptotic, Finite-sample, and
Computational Properties
by
Sara Fisher Ellison

Submitted to the Department of Economics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Economics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1993

(© Massachusetts Institute of Technology 1993. All rights reserved.
ARCHIVES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 09 1933

AUbOT .. e LIBRARIES
Department of Economics
April 22, 1993

Certified by ....,. .o cnvin o on gy e P PR RREEEE
Whitney Newey
Professor of Economics

Thesis Supervisor

Certified by...
Jerry Hausman

Professor of Economics

Thesis Supervisor

Accepted by .......... T T TR R e
Richard Eckaus

Chairman, Departmental Committee on Graduate Students



A Nonparametric Residual-based Specification Test:

Asymptotic, Finite-sample, and Computational Properties
by
Sara Fisher Ellison

Submitted to the Department of Economics
on April 22, 1993, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Economics

Abstract

The main purpose of this chapter is to present a general framework for cousistent
testing of the specification of parametric conditional means. We discuss in detail
two examples of tests in this framework, one motivated by the Davidson-MacKinnon
test for nonnested hypotheses using kernel regression estimators, the other a much
simpler version, computationally and conceptually. We prove asymptotic properties
of the general tests, exhibit finite sample properties through simulations, and present
an application of the test to some parametric models of gasoline demand.

In the second chapter we present a nonparametric test for the rank of a demand
system. It is nonparametric in the sense that the test does not depend on the para-
metric specification of the Engel curves which comprise the demand system. This
test is based on the nonparametric specification test of Ellison and Ellison (1992), a
variant of the test presented in the first chapter, necessarily adapted here for the case
of measurement error in the regressors. In addition to examining the test results,
this paper also compares bootstrapped and simulated null distributions of the test
statistics to check how well the theoretical predictions of Ellison and Ellison hold in
this particular application.

Finally, the third chapter looks at the problem, common to all nonparametric
tests, of window width choice. we critique various methods found in the literature
and propose original ideas for choosing window width.
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Introduction

Economists have always had practical and immediate questions to answer: Will in-
terest rates go up next year? Will a gasoline tax effect my state’s tourism industry?
Do doctors in different states have different prescribing practices? Statistical model
building alone cannot answer such questions. Therefore, econometric theory, as dis-
tinct from statistical theory, has answered the call of economists and has always had
as its particular focus hypothesis testing. Far from limiting attention paid to model
building, hypothesis testing has enhanced it in the following way. As economists built
ever more complex statistic models, questions of immediate practical significance, like
those above, were supplemented with questions about the validity of the statistical
model: Is assuming linearity in the relationship between rainfall and farm production
valid? Are production and investment jointly determined? Hypothesis testing which
answers such questions, specification testing, is an important complement to model
building. This thesis is a small contribution to the large and growing econometric
literature of specification testing.

The overarching objective of this thesis is to provide econometric practitioners
with a test for checking some aspects of their models, which is intuitive and easy
to implement, in addition to assuming as little structure as possible. By assuming
little structure, the hope is that the test will provide researchers with the means to
detect misspecifications in their models which traditional specification tests might be
unable to detect. Again, great care is taken to design a test which does not place
undue computational burdens on researchers. The first chapter proposes such a test
for the functional form of the economic model. We discuss variations of this test

appropriate for different circumstances, discuss its asymptotic behavior, and present



results from simulations of the test statistic and from a simple empirical application
of the test. The second chapter is an involved empirical application of the test of the
first chapter to the problem of testing the rank of a demand system. The problem
is discussed in some detail, as is the way in which the test is to be applied to the
problem. Also it is necessary to adapt the test to handle the case of error in the
explanatory variable. Finally, the testing procedure is carried out and the results are
interpreted. The third chapter deals with a problem inherent in all nonparametric
tests, this one included: choice of the smoothing parameter. Although the results in
this chapter are quite preliminary, we believe that the ideas therein are important

and of potentially wide applicability.



Chapter 1

The Testing Framework

1.1 Introduction

One of the most important functions of econometrics is to test the validity of eco-
nomic theories. In particular, an economic theory might imply a relationship among
economic variables, and econometrics is the tool by which these relationships are
empirically examined. Most often, these empirical tests take the form of tests of ex-
clusion restrictions. In other words, conditional on a general model being true, one
usually tests whether a model nested in the general one explains the data nearly as
well. Sometimes, however, one might want to test the form of the relationship among
economic variables, the functional form of the conditional mean. (Economic theory
might imply a specific functional form of the conditional mean, the rejection of which
is a rejection of the economic theory.) The test in this thesis is designed mainly as
a test of the second type. Using nonparametric techniques, a test is constructed to
detect sufficiently large deviations from the null model in all directions. First we
discuss a procedure which uses the kernel regression estimate of a conditional mean
function to test the goodness of fit of a null parametric model. Second we propose a
similar test which is easier to compute than the kernel regression test.

Hausman (1978) was one of the first to discuss the use of specification tests in
the econometric literature. He described a so-called test of orthogonality using a

model consistent under both the null and alternative to test the specification of a



model efficient under the null. Later, Davidson and MacKinnon (1981) discussed
a specification test using a parametric alternative which is not nested in the null
(or vice versa) to test the null specification. Also, Newey (1985) and others have
discussed conditional moment tests, of which specification tests are a special case.
These procedures are parametric and not ususally consistent against all deviations
from the null.

Recent work on consistent testing includes several papers by Bierens ((1982,1990)
and others) on consistent moment tests. In addition, several recent papers have pro-
vided comprehensive discussions on nonparametric specification testing. Nonpara-
metric specification testing, in general, is testing using a nonparametric model in
place of the usual parametric alternative to test the specification of the null model.
Typically, an advantage of nonparametric tests are their consistency properties. A
variety of approaches have been taken to the problem of constructing these tests.
First, different nonparametric estimators could be employed: spline regression, kernel
regression, series regression. Eubank and Spiegelman (ES) (1990) use primarily a
spline regression estimator to test null specification. Azzaiini, Bowman, and Hardle
(ABH) (1989) as well as part of this paper use a kernel regression estimator. In
addition, different testing frameworks are possible, such as likelihood ratio-type test-
ing, Lagrange multiplier-type testing, and so forth. ES use a Lagrange multiplier
framework. ABH use a likelihood ratio framework. We use a Lagrange multiplier,
specifically Davidson-MacKinnon, framework to motivate our statistics, but quickly
move beyond that framework. These differences in approach may lead to asymp-
totically equivalent tests, but they will have different finite-sample properties and
different computational characteristics. We focus on those questions in an attempt
to make our statistic accessible and easily applicable. First, this chapter will provide
a less computationally complex version of our statistic, a version convenient enough
that we hope for broad appiication. Also, we perform simulations to study the finite
sample properties of our statistics, such as distribution and power.

Section 1.2 is an informal discussion of the motivations behind our choice of the

specific form of the test statistic. In Section 1.3 we write down the model, introduce



the version of the test which is simpler to compute and prove the asymptotic normality
and consistency of them. Section 1.4 presents simulation results, both on distribution
and power. Section 1.5 is a discussion of a simple application of the methods. We

conclude in Section 1.6.

1.2 Discussion

This section will discuss two motivations for our test statistics. As discussed in the
introduction, most specification tests require a model, an alternative, to test the
null specification. These tests detect misspecification only in the direction of the
alternative. Tests employing parametric alternatives cannot be consistent against
zll deviations from the null because fixed parametric alternatives only span a finite
dimensional subspace of all possible alternatives. The first motivation for our test
statistics is, then, to construct a statistic, using a nonparametric instead of para-
metric model as an alternative, that will be consistent against all sufticiently large
deviations from the null. We will use a framework similar to that used by Davidson
and MacKinnon (DM). The second way in which we will motivate our test statistic is
as a systematic way to look at spatial patterns in residuals from the null model. We
will now informally discuss the motivations. In section 3 we will show how they are
related.

Assume we have a null model y = X3 + u, where u is i.i.d. with mean 0 and
variance o%. ! Estimates from this model are denoted with a tilde: y,%,5. The DM

test of the null mod=l is based on the statistic

1 N
T =—)Y M,
CNi:l

where ), the misspecification indicator, is §; — ¥;, where §; is a fitted value from
an alternative, nonnested model, and cy is a normalizing factor, vV Néy. Also, .7

denotes the transpose of a matrix or vector.

'Relaxing the assumption of normality of the errors was actually made in work subsequent to
Davidson and MacKinnon's original paper.
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Obviously, this test statistic will tend to be large (or small) if there is positive
(or negative) correlation between the misspecification indicator and the residuals.
It is essentially a test of orthogonality between the residuals and the parametric
alternative.

Note that the DM procedure requires the specification of a parametric alternative
model with which to test the null model. Davidson and MacKinnon make the point
that the alternative model need not be one in which the econometrician has any faith;
however, a particular model will only be useful in detecting misspecification of the
conditional mean in the direction of that particular model. Use of a more general
alternative, such as a nonparametric alternative, will allow one to dectect any mis-
specification. Of course, standard asymptotic results for parametric alternatives will
not apply when nonparametric alternatives are used. We will develop an asymptotic

theory in that case.

The second motivation for our test statistic is a less traditional, more intuitive,
view of a specification test. We motivate it as a means to look at spatial patterns in
the residuals. Let @ be residuals from the null model. Under correct specification,
we would not expect the value of #; to give us much information about the value of
it;. Even though we would expect a small amount of negative correlation because the
residuals add to zero, we would not expect any spatial or serial correlation. In other
words, knowing z; and z; should not give us any more information about #; than
just knowing #;. Under incorrect specification, however, we would expect residuals
close together to have expectations of the same sign. The pictures in Figure 1.1
illustrate that point. In the first illustration, the null is the truth. The residuals
do not seem to be spatially correlated. In the second illustration, the alternative
is the truth, and there is clear positive spatial correlation in the residuals. If a
systematic study of the residuals found that residuals whose z’s were close together
had expectations of the same sign, we might suspect misspecification. One possible
statistic that would allow us to do that could be based on T°; 3" ; w;;u;i,, where the
w;;'s are weights. We choose the weights depending upon which correlations in the

residuals we think are informative. Usually, for 4; and @; residuals from observations

11



far apart, w,; would be small because correlation between i; and #; would not be
very helpful in detecting misspecification. We would, however, be very interested in
positive correlations among groups of residuals close to each other.

It seems clear, then, that w;; for observations ¢ and j far apart should be much
smaller than w;; for i and j close. It is not clear, however, at what rate the w;;’s
should decrease as observations become further apart. In other words, for a fixed 1, we
would like to determine the shape the w;;’s ought to be over an area near observation
i. (Obviously, this is a problem without a simple general answer. We will discuss it
further in the chapter on window width choice.) Note that kernel weights satisfy our
intuition about what general shape the weights should take. It will be clear shortly

why it is useful to consider the kernel weights in this context.

1.3 The Test Statistic

Assume we wish to test a null model y = X8 + u, where v is t.i.d. with mean 0
and variance o2. Like before, estimates from this model are denoted with a tilde.
Assume also that an alternate nonparametric model is specified. The estimates from
the alternative model will be denoted with a hat. For the specific case of a kernel
regression estimator, recall that §; = Y, w,;y;, where w;; are the kernel weights

(wi; = 1K( )/N i ,I,K( 2-2i})). The DM-type statistic would be

T = —Z Zwuy, — §i)i

CN'

cn is a normalizing factor. We assume the X's have bounded support with the density
bounded away from zero on the support. To simplify, we substitute in z;3 + @, for

y, and .r_,-,é for §;. Then,

- CL ﬂzuxzwu-’% + LZw,,u,u. Bz:m.'ﬂ.')-

Note that the third term within the parentheses is identically zero. Note, also, that

the second term, a quadratic form in the residuals, is precisely the type term that
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would zllow us to look at spatial patterns in the residuals, as mentioned in the pre-
vious section. The weights are kernel regression weights. The first term goes away
asymptotically under certain conditions; therefore, the DM-type statistic is asymp-
totically equivalent, under those conditions, to a statistic based on a quadratic form
in the residuals. See Ellison and Ellison (1992) for a proof and discussion. Below we
will consider such a statistic, based on a quadratic form in the residuals.

As we observed before, kernel weights meet the conditions on the matrix W to be
useful in detecting departures from the null. Also by choosing a different kernel, we
can give the weights a somewhat different shape, and by changing the bandwidth, we
can make the weights more or less concentrated around each observation.

Kernel regression provides us with just the type of weights we need, but we should
point out that weights satisfying our conditions for being useful in detecting depar-
tures from the null need not be kernel weights. In fact, there is a good reason not
to use kernel regression weights. A problem with the kernel regression weights being
used in the statistic is the resulting computational complexity of the statistic. The
task of computing the weights is ususally the most computationally intensive part
of performing the specification test. Computing the statistic is an O(s(N)N) oper-
ation, where s(N) is the minimum over the observations of the number of points in
the support of the kernel. (Some common kernels, suchk as the normal kernel, have
infinite support. The computation then becomes O(N?).) For this reason we would
like to propose use of weights that satisfy the general characteristics we discussed
earlier, but are much easier to compute. The simplest approach is to divide the data
into bins of size k(/N) and set weights equal to each other (all equal 1/k(N)) inside
the bir and equal to zero outside the bin. The computaticn of these weights is no
longer a rate-datermining step since all of the nonzero weights are equal. In addition,
a simple trick allows us to compute the statistic in O(N) calculations once we have

the weights:
B

- o~ 1 ~\2
%:w.'ju.'uj = k(—N—-)—z—kZ( Z a;)*,

=1 i€bink

where B is the number of bins.
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Just as the kernel regression test corresponds to the kernel regression estimator,
the bin test corresponds to a bin regression estimator. Given the computational
simplicity of the bin test, it is important to keep in mind that, again, we are not
suggesting performing a DM-type test with §; the fitted values from a bin regression.

Rather, we suggest just computing #‘&TW'{L, with W being the bin weight matrix.

1.3.1 Asymptotic Distribution

We will now present asymptotic results or the distribution of a test statistic based on
#TWi. For a test to be easily implemented, it is important for the statistic to have
a standard (tabulated) asymptotic distribution. Then, critical values can be easily
computed or looked up in a table. We will first argue that 27 W is asymptotically
equivalent to uTWu. Then we will look at the asymptotic distribution of uTWu,
suitably normalized. In our discussion of asymptotic results, we 'vill add a subscript

of N when it is necessary for clarity. We first note that
i = qu,

where Mx = I — Px,and Py = X(XTX) 'X7 is the projection matrix onto X space.
Then,
TWa = uTM)T{‘Wqu.

The distribution, both finite sample and asymptotic, of this quadratic form in inde-
pendent random variables will depend on the characteristics of the matrix W, as we
shall see. In addition, we will now argue that the asymptotic distribution will depend
solely on W (not MTW My), i.e., Proposition 1.1 will show that aTW# and uTWu

have the same distribution asymptotically.

Proposition 1 #?Wyi and uTWyu have the same asymptotic distribution.

Proof

14



First, note that

‘iZTWNﬂ - 'u.TWN‘u. = uT(MxWNMx - Wn)u
= ‘u.T(PxWNPx - PxVVN — WNPx)u.

We may assume without loss of generality that Wy is symmetric. Then PxyWy =

Px PxWyn = PxWpyPx, so we can collect terms to get
= —uT(PxWNPx)u.

PxWnPx = X(XTX) ' XTWy X(XTX) ' XT.

As before let X be the nonparametric estimate of X, XTWy. Then,

PxWyPx = X(XTX)?'XTX(XTx)'xT
= X(XTX)'(XTXx)'XTxX)TxT
— X(XTX)_liTXT,

where [ is the matrix of coefficients from a regression of X on X. We can now write
W"Wyi = «TWyu — uT Pxu — «TX(XT X)X (T = L)) u,

where k is the dimension of X. The right term clearly can be ignored asymptotically
as it has plim zero. The second term has an asymptotic distribution because Py is
idempotent so uT Pyu ~ szfoz(x)- Then, to show asymptotic equivalence, we need
only to show that the first term times N~° has an asymptotic distribution for some
D > 0. We will see in the next lemma that this is true.

QED.

We have shown that we need only consider «TWu asymptotically, a quadratic
form in independent random variables. If we can find the asymptotic distribution

of uT Wu (or a nomalized u”Wu), we can base a test statistic on it. The following
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lemma gives us the asymptotic distribution of a quantity based on this quadratic
form.
Note that an assumption of normality of uy is added to prove the lemma. The

necessity of the assumption is discussed later in this section.

Lemma 1 Let Wy be a sequence of N x N symmetric positive semi-definite matrices

with eigenvalues iy < ... < 7yny and uy ~ N(fn,0%Iy).
Then
T 2 T
uNWNuN -0 tI'WN - fNWNfN C
Z ~ N(0,1
o2 (2T WR)1/2 — (0,1)
if
maxy Ty
a) —y—— 0
leil Tli;v
Twzf
b) NNV .
) Teway O
Proof

From elementary linear algebra, we can diagonalize W in the following way:
uTWu = uT®A Yy,

where A is diagonal, ® is orthogonal, and ¥ = ®~!. For W symmetric we may further

simplify as

= uT®AGTy
= (3Tu)TA(3T)

= vTAv,

where v ~ N (0, 021).
The final step is true since ® is orthogonal and u ~ N(0,02I). The assumption
of normality of the u’s is necessary to obtain independence of the v’s. Otherwise, the

v’s would merely be uncorrelated. Now, note that vTAv = 3" \;v? is a weighted sum

16



of independent x2 random variables. We can then apply a central limit theorem to
obtain the limiting normal distribution.

QED.

We will use this lemma to show asymptotic normality of both the kernel regression
test and the bin test. Given the lemma, it is easy to see how we can construct a N(0,1)
test statistic based on u? Wyu.

Our normalizing factor cy will be of the form o2(2trtW32)3. In addition, to obtain
a statistic that is standard normal under the null, we will have to subtract off the
mean of the statistic, o2trWy. Recall from Proposition 1.1 that aT Wy = u«TWyu —
uT Pxu + 0(1), and that " Pyu ~ o?x2, x)- The chi-squared term will not matter
asymptotically, but it will in finite samples. To ensure that the expectation under
the null of our statistic is correct in finite samples, we will add E(a?x2,(x)) to the

numerator. Thus, our statistic is

akWyiy — 62%rWy + 62col(X)

T =
&2(2trWE)1/2

for & a consistent estimate of o.

We will now verify conditions of the lemma. Note that under the null, fy =0, so
we need only to verify the condition a) to show asymptotic normality. This condition
on the eigenvalues of the weight matrix essentially says that no one eigenvalue can

dominate the others.

Proposition 2 For {Wy} a sequence of matrices of bin or kernel weights satisfying

conditions to be described below, T -+ Z ~ N(0,1).

Proof
For simplicity, we will assume in the proof that the true o is known.

Verification of condition a) for bin test:

We note first that the weight matrix for the bin test is symmetric and positive
semi-definite. To verify the first condition of the lemma, we note that Wy is a block

diagonal matrix with & blocks of k? elements (each being +) along the diagonal.

N

Such a matrix will have - eigenvalues of one and N — % eigenvalues of zero. (The

17



eigenvalues of one correspond to the following eigenvectors: cnes in the first k places,
zeroes elsewhere; zeroes in the first k places, ones in the next k places, and zeroes
elsewhere; and so on. Since a matrix only has the same number of nonzero eigenvalues

as its rank, the rest of the eigenvalues of the matrix are zero.) So,

maxy T2y 1 k

Yt N/k N’

Note that we can simply choose k fixed, i.e., take a fixed number of observations in
each bin. Alternatively, we may let the number in a bin grow, but if we restrict the
number of observations in each bin to go to infinity slower than N, we satisfy the
condition.

We, therefore, have that the bin test statistic is \/k(N)/N asymptotically normal.

Asymptotic nomality can also be shown without the assumption of nomality of
uny by noting that the weight matrix of the bin test is block diagonal. A quadratic
form in uy will, therefore, be the sum of independent random variables, and a central
limit theorem can be applied. Such an argument cannot be applied in the case of the
kernel test because the weight matrix is not block diagonal.

Verification of condition a) for kernel test:

The weight matrix for the kernel test will not be symmetric in general. We
symmetrize the matrix by letting W% = (Wx + WF)/2. Then uTW{u = «TWphu
and W3 symmetric. Since the weights in each column of Wy add to one, it is a
Markov transition matrix, and a well-known result is that its largest eigenvalue is
one. W’s largest eigenvalue is then also one because the transpose of a matrix has
the same eigenvalues as the matrix. We then have that the largest eigenvalue of W}
is at most one.

We also know that for Wy symmetric, © % = ttWg = ¥, w!?y, which is
minimized when all nonzero w;;’s are equal. Let b be the largest number of nonzero

weights in any column of Wy. Then, the maximum number of nonzero elements in

18



the entire W matrix is 2- N - b. So, ¥ 73 > N -b- 5 = & Therefore,

maxy T2y < 2b

ity TN

as long as the support of the kernel goes to infinity at a rate slower than N. (This

condition is not necessary. For kernels with infinite support, we just need that the

bandwidth goes to zero at a rate slower than IV for the condition on the eigenvalues
to hold. We will, though, be primarily concerned with kerneis of finite support.)

The kernel regression test statistic is ( trW,f,)i‘f asymptotically normal, a rate for

which we only have a lower bound. It will, of course, depend on the shape of the

kernel and the size of its support.

QED.

1.3.2 Consistency

Recall that one of the advantages of nonparametric specification testing over tradi-
tional parametric specification tests is their ability to detect departures from the null
in all directions. We will now show the consistency of our test statistics against all
alternatives that shrink at a sufficently slow rate. Specifically, we will show the con-
sistency of the kernel statistic against local alternatives. The proof of consistency of

the bin statistic is very similar.

Theorem 1 Let {Wx} be a sequence of weight matrices with window width or bin

width — 0. Let { be such that

N2(+l
w(WE)2

Ther the test is consistent if the true regression function is fo + foN¢ for some f,,

where fo is the null regression function.

I'roof
Let f, be the null function and let f, + g, be the alternative (true) function.

ga = faN¢ for some f,. We will find a lower bound on ( such that the test is consistent

19



against J, V<. (For simplicity, we have assumed that g, is orthogonal to X. If not, we

have

i =t + Mxga.
The argument carries through if we note that

Mxau(e:) - sa(e) - 2 2521 )

Let @ be the residuals from the (incorrectly specified) regression of y on X.

i=y—XB = Mx(XB+ faN¢+u)
= ﬁ+fo¢Nc 1= Myu

The test statistic is

T = (it My SN Wa(i + My fuN©)
N

1 1
= L iTWhi 4 (M fuNOT Wi + — N2 (fT My W My f.).
cN cN cN

From the null distribution we know that che first term is asymptotically A'(0,1). In

the second term we write (My f,)TWy = AT, a nonparametric estimate of
ha = fa - PXfa-

By the central limit theorem and the consistency of ha,

h u

W — N(O, UzE(h:))

So, cn/N¢*1/2 times the second term goes to a N (0,0%E(hZ)).
For reasonable assumptions on the weights w,; (such as assuming the bandwidth
goes to zero), we will have

(Myx fo)TWNMx fa ® g
N

(h2)-
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And hence, cy/N%*+! times the third term goes in probability to E(h?).

Now let { be any constant such that

N2+

— 00,
CN

Then, the first term is bounded in probability, the third term goes to infinity, and
the difference in the absolute values of the second and third terms goes to infinity
with probability one.

Therefore, 7 — oo and the test is consistent.

QED.

1.4 Simulation Results

We performed Monte Carlo studies to answer two questions about our test statistics:
whether our asymptotic results from the previous section provide a reasonable ap-
proximation to finite sample behavior of the statistics and also how powerful the bin
test and the kernel regression test are in finite samples. We will not only compare the
performance of the bin test with that of the kernel regression test, but also both with
the optimal Lagrange multiplier tests. The Epanechnikov kernel is used to construct

the kernel weight matrix.

1.4.1 Distribution

First, we provide graphs of smoothed finite sample distributions, Figures 1.2 through
1.5. We include the asymptotic distributions, A(0,1), for reference. The simulated
finite sample distributions were obtained in the following manner: First, the statistics
were computed on 1000 simulated data sets using OLS residuals from a model with
one explanatory variable distributed uniform over [-1,1], and normal errors. The null
hypothesis of no misspecification was imposed. Then a density for the test statistic
under the null hypothesis was estimated from the 1000 test statistics using kernel

density estimation. (The kernel density estimation was used for expositional purposes
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only.)

The first set of graphs we present are the results for the bin test run on data sets
with 30 observations with two different bin sizes. Note that even with as few as 30
observations, the bin test with five observations in a bin is beginning to look normal.
The bin test with ten observations in a bin seems quite skewed and quite far from a
standard normal, though. It is not surprising that the test with five observations in
a bin, six bins, does a better job approximating a standard normal. Recall that the
rate at which these test statistics converge to a normal is proportional to the square
root of the number of bins.

The second set of graphs are the simulated finite sample distributions for the kernel
tests with three different window widths, again run on data sets with 30 observations.
Again, the finite sample distribution of the test with the largest window width is
not well approximated by the standard normal. The small window width does a
much better job. The very small window width was included to illustrate that the
normal approximation does not continue to improve as the window width goes to
zero. Obviously, at some point, each window will contain only one observation. The
test statistic, then, will have plim zero. Here, the very small window width is small
enough so that each window contains an average of about 1.5 observations.

The next set of graphs are finite sample distributions from three different bin tests
with 300 observations. Note again that the normal approximation is better for the
smaller bins—there are no very small bins this time.

Finally, we present three different window widths for the kernel test on 300 obser-
vations in the last set of graphs. The same observations as before apply to this set of
graphs.

Note that almost all of the finite-sample distributions are approximated quite well
by the standard normal density, especially in the right tails. The right tails are, of
course, the important tails for this specification test—it will always be a one-sided
test. This evidence is encouraging for the prospect of carrying out this test without

simulating critical values.
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1.4.2 Power

The next set of simulations was performed to demonstrate the power of the various
test statistics against a variety of alternatives in finite samples. The simulations were
performed for two different sample sizes, 30 observations and 300 observations. In

both cases, the y’s were generated by
y=z+cf(z)+u,

where z is a one-dimensional explanatory variable, distributed uniform on [-1,1], f(z)
is the misspecification, and u is chosen randomly from a standard normal. Then y
is regressed on z and a constant, and the specification tests are performed on the
residuals. In other words, y = « + u is the null hypothesis, and y = z + cf(z) + u
is the truth. We will choose various different f(-) functions for which we will try to
test. For 30 observations, ¢ = 2.0, and for 300 observations, ¢ = 0.2. These constants
were merely chosen to obtain a wide range of performance of the tests at both 30 and
300 observations.

Along the top of Tables 1.3 and 1.4 are the various test statistics. The first
statistic, NN, is a nearest neighbor statistic. Technically, the nearest neighbor is
neither a bin or kernel test, but it is closely related to a bin test with a small bin. (The
weight matrix of the nearest neighbor test has ; on the diagonal, the super diagonal,
and the subdiagonal. On the other hand, the weight matrix of the bin test is block
diagonal.) The second, third, and, in the case of 300 observations, fourth, tests are
bin tests with increasingly larger bin sizes. The test labled Bin 5 has five observations
in each bin, for example. The next three tests, KernS, KernM, and KernL, are kernel
tests with small, medium, and large, window widths, respectively. Note that for 30
observations, the small window contains an average of three observations and the
large window contains an average of ten observations. For 500 observations, the
small window contains an average of six observations and the large window contains
an average of 18 observations. Finally, the test labled Opt is the optimal Lagrange

multiplier test for that particular alternative. The optimal test in each case was
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chosen with the knowledge of the particular form of misspecification; therefore, the
nonparametric tests cannot be expected to perform as well. The optimal test will
just serve as a benchmark for comparison of the nonparametric tests.

Along the left of both tables are the alternatives, or types of misspecification. The
first six are Legendre polynomials two through seven. The Legendre polynomials are
orthogonal on [-1,1], so an optimal test for one of the Legendre polynomials will only
have power against that particular misspecification. Also included are the functions
sin(2rz), and sin(107z).

The numbers in the body of the tables are the proportions of simulated tests
which reject the null at a 5 per cent level given the various forms of misspecification,
or alternatives, on the left. In the case of 30 observations, 500 simulated tests were
computed, but in the case of 300 observations, cnly 250 were computed. Note that
in all cases the optimal Lagrange multiplier tests for the misspecification have the
greatest power, as expected. For 30 observations, the bin tests seem to be significantly
less powerful than tlie kernel tests. As expected, the performance of tests using
different bin or window widths varies with the alternative—no bin or window width
dominates over all alternatives. The Bin5 and KernM seem to do fairly well against
a variety of alternatives. None of the tests does well against the particularly “wavy”
alternative, sin(107z), though. The window widths are not small enough, even NN,
Bin5, and KernS. Such a result is not surprising. It would be difficult to find any
specification test other than the optimal one that would reject in that case with such
a small sample size.

Recall that for 300 observations, the size of the deviation from the null is much
smaller than for 30 observations, which explains the lower rejection rates. These
tests on 300 observations will obviously have much higher power than the test on 30
observations against the same size alternative. Note that in this table the bin tests
perform very favorably compared with the kernel tests. In many cases the comparable
bin test is only slightly less powerful than the kernel test. Again, all test have difficulty
with sin(107z).

The simulations seem to indicate that in small samples the kernel test outperforms
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the bin test. As the sample increases (and, incidently, the kernel test becomes much
more difficult to compute), though, the bin test’s power relative to the kernel test

improves. Both tests fare reasonably well relative to the optimal tests.

1.5 Application: Gasoline Demand

As an illustration of how our test works, we present an application of it to survey
data on household gasoline expenditures. We will look at gasoline demand as a
function of price and income. The data sets we use are the U.S. Department of
Energy’s Residential Energy Consumption Survey from 1979-81 and its Residential
Transportation Energy Consumption Survey from 1983, 1985, and 1988. We use them
as a cross section with indicator variables for the years, yielding 18113 observations.
The data are treated as in Hausman and Newey (1992), including the nonparametric
“partialling out” of the demographic variables. We are thus left with a data set with
price and income as the explanatory variables and gasoline demand as the dependent
variable, all with the effect of the demographic variables taken out.

We would like to test parametric models of gasoline demand as explained by
price and income using our nonparametric specification test. First, however, we will
show two figures which lead us to believe that parametric specifications might not be
sufficient for these data. Figure 1.6 is a kernel regression estimate of gasoline demand
on price and income. The relationship does not appear to be regular or parametric in
nature: the surface has humps and troughs that do not appear in all cross sections,
either in the price direction or the income direction. Also, the cross sections are
not an easily recognizable parametric function. For these reasons we suspect that a
simple parametric specification might not be appropriate. Figure 1.7 illustrates the
same point. It shows a cross section of gasoline demand as a function of price for the
50tP percentile of income. The middle line is a simple full log specification , the upper
line is full log specification with quadratic terms and cross terms, and the lower line
is the cross section from the nonparametric surface estimation.

Tables 1.5 and 1.6 show that our suspicions are confirmed by a nonparametric bin
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specification test. Using two different bin sizes we test three parametric specifications.
Tables 1.5 and 1.6 report the test statistics and approximate p values for each test.
The approximate p values were read from the theoretically predicted null distribution
of the test statistic, the standard normal. This distribution should be a very good
approximation due to the large sample size. First, the full log specification is rejected
soundly by the larger bin test and very soundly by the smaller bin test. The large
bin test would reject the quadratic specification at the 1% level and the cubic at
the 2% level. The small bin test, however, rejects all three specifications with quite
small p values. These results are not surprising. We expected to find strong evidence
against the parametric specifications, which we did, and we would expect to find
stronger evidence with the smaller bin test because it would be more able to pick
up movements of the conditional mean function in small areas and not “smooth”
them over. Note that with 17,000 observations, we are in no danger here of having
too few bins (360 with the larger, 720 with the smaller) or too few observations per
bin (causing too large a trace for the weight matrix) with either bin size. With the
luxury of so many observations, we may then just choose bin size based on the type
of misspecification for which we are looking.

For this particular application the bin test was really the only feasible test. The
kernel test would have required larger computing facilities than were available to us.
As noted earlier, though, the bin test performs very well for large sample sizes. And,
of course, the computational savings over what would have been required to perform

the kernel test were quite significant.

1.6 Conclusion

This chapter presents nonparametric specification tests based on the residuals from
the null model, specifically, on a quadratic form in the residuals. The test statistics
are asymptotically normal at a rate which depends on properties of the matrix in
the quadratic form. The tests are consistent against all alternatives that shrink

sufficiently slowly. Simulations performed on both the finite-sample distribution and
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power against various alternatives of the test statistics are encouraging. Finally,
as exhibited by the applicaticn results, we are confident that these tests have the
potential to be valuable tools in applied econometrics.

In this case rejection of a parametric null can have implications for estimation of,
say, consumer surplus and deadweight loss, and eventually for policy questions such
as the welfare loss under a gasoline tax increase. This point is made forcefully in
Hausman and Newey, where estimates of these quantities based on both parametric
and nonparametric models are computed. They are quite different. Qur test points
to the inadequacy of basing these estimates on the parametric models tested and

suggests that a nonparametric modeling of the data might be more appropriate.
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Table 1.1: Characteristics on Null Distribution of Test Statistics, 30 observations

Test Mean Std Dev 5% Critical

Binb .1100 877 1.5758
Binl0 1371 .6294 1.4006
KernVS .1329 .5962 1.1328
KernS 1213 .7401 1.4648
KernL 1821 5443 1.1681

Table 1.2: Characteristics on Null Distribution of Test Statistics, 300 observations

“Test Mean Std Dev 5% Critical

Binb 0172 8776 1.5731
Bin10 .0350 .8924 1.6174
Bin50 .0756 .8968 1.7199
KernVS .0442 .8065 1.4621
Kern$S .1068 .9053 1.7252
KernL .0877 .8790 1.7664

Table 1.3: Power against Various Alternatives, 30 observations

Alternative NN Bin5 Binl0 Opt KernS KernM KerL
2nd Legendre .428 .354  .392 .972 .064 692 872
3rd Legendre .358 .300  .132 .944 .044 A74 0 348
4th Legendre .374 .308  .106 .948 .030 566  .274
5th Legendre .232 .180 130 .818 .026 238 .028
6th Legendre .258 .206  .006 .938 .036 .458  .032
7th Legendre .222 .174  .124 .922 .036 360  .008
sin(2mx) 260 .202  .374 .890 .030 .304  .080
sin(107x) .048 .030 .076 .880 .018 .054  .068
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Table 1.4: Power against Various Alternatives, 300 observations
Alternative NN Bin5 Binl0 Bin50 Opt KernS KernM KerL
2nd Legendre .120 .044  .172 312 .596 .084 224 332
3rd Legendre .076 .036 .204  .240 .696 .088 212272
4th Legendre .064 .032  .168  .148 .584 .088 148 .208
5th Legendre .132 .064  .152  .120 .612 .084 152 172
6th Legendre .084 .052  .128  .132 .632 .100 160  .192
7th Legendre .136 .068  .136  .144 .644 .128 .168  .168
sin(27x) 104 064 172 244 .652 .092 196 .240
sin(107x) 128 .084  .148  .068 .712 128 152 .036

Table 1.5: Regression Diagnostic: Gasoline Demand (avg 50 obs/bin)

log(price), log(income) quadratic terms

cubic terms

statistic
app. pvalue

3.243
0.0005

2.234
0.01

2.069

0.02

Table 1.6: Regression Diagnostic: Gasoline Demand (avg 25 obs/bin)

log(price), log(income)

quadratic terms

cubic terms

statistic
app. pvalue

6.008

very small

5.271
10-8

5.099

10-8
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Chapter 2

An Application to Estimating
Rank of a Demand System

2.1 Introduction

Economists have long been interested in studying individual consumption. Consump-
tion is often quantified by means of an Engel curve, percent consumption of a par-
ticular commodity or group of commodities as a function of total expenditure. For
example, an Engel curve would describe how the proportion of income spent on gaso-
line changed as income increased. We could then use the Engel curve to help predict
the incidence of a gasoline tax increase. Obviously, the utility function, as a complete
description of a consumers preferences for gasoline and other products, will determine
the Engel curves for that consumer.

In addition to looking at Engel curves for a particular quantity in isolation, it is
of interest to study demand systems, a system of Engel curves, one for each item or
category of expenditure. Economists have sought to answer questions about the rela-
tionships among the equations in such a system. Certainly, patterns of consumption
of some items might tell us about consumption of other items under some circum-
stances. One such relationship among Engel curves, rank, is defined to be the rank
of the function space spanned by the Engel curves. For instance, a demand system

with rank one would have Engel curves that were all multiples of one another. One
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application of the rank concept is in a demand system for risky assets. We might be
interested in knowing how many different mutual funds would have to be available
before all consumers could maximize utility by just purchasing shares in the funds.
We could answer such a question, in principle, by observing which assets consumers
do buy and seeing whether they buy them or groups of them in fixed ratios. (The case
where consumers could maximize utility with two mutual funds available to them is
known in the finance literature as two-fund separation and in the demand literature as
a rank two system.) In addition to providing information about consumer behavior,
such a finding would imply a concave utility function (and, incidentally, some things
about the distribution of returns on the assets), an interesting economic result. In
addition, macroeconomists in particular have been interested in the rank of demand
systems for its implications about aggregability.

Gorman (1981) showed that the rank of a demand system will be at most three,
assuming that the polymonial functions in expenditure do not contain price. Haus-
man, Newey, and Powell (1988) (HNP) and Lewbel (1991) have empirically studied
the rank of demand systems to test Gorman’s theory and implications of it. Lew-
bel constructs a direct test of the rank of a matrix which has the same rank as the
demand system (a matrix of coefficients of the Engel curves) to examine Gorman’s
hypothesis. He performs a decomposition of the matrix and tests whether the pivots
are equal to one. (Obviously, then, Lewbel’s test, while applied to testing the rank
of a demand system, is more general than that problem. It can be used as a test for
the rank of any matrix.) He finds strong evidence for the rank of the demand system
being at least three. HNP test for restrictions on the coefficients within Engel curves
implied by the demand system having rank three. Again, strong evidence is found
for Gorman’s hypothesis.! Unlike those two papers, we test the rank of the demand
system without having to make assumptions on the type of functions to appear in the
Engel curves. In other words, we test the rank of the function space spanned by the

Engel curves directly without first specifying and estimating the Engel curves and

'HNP correct also for the erzors in variables problem caused by the fact that total expenditure
is not observed and income is used instead. This issue should not present problem« in our analysis
because total expenditure will not actually be used as a regressor.
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then testing the rank of the matrix of their coefficients. Although it is a test which
exploits the specific structure of the problem and is therefore not of general use for
testing the rank of matrices, it is a more general test than Lewbel in the sense that
it will have power against linear independence of Engel curves no matter what their

specification. This point will be made more clear in the next section.

2.2 Approach and Data

We now precisely define the problem. Suppose that Engel curves are specified as

follows:

bo = oo+ Porfi(i) + Boaf2(i) + ...+ €0
bi = Bio+ Bufi(i) + Prafa(i) + ...+ &

be = Bro+ B fi(i) + Bz f2(i) + ... + €k,

where b; are budget shares, and i is expenditure. Let B be the matrix of coefficients
{Bi;}- Such a system of equations is known as a demand system. For example, let
by be the share of total expenditure on coffee. The first equation is then the Engel
curve for coffee. The rank of this demand system, defined as the rank of the function
space spanned by the Engel curves, will be exactly the rank of the matrix B.

In this section we will first discuss our approach to the problem of testing for the
rank of such a demand system. We will then discuss in detail how the nonparametric
specification test can be adapted for this problem. Finally, we discuss the data we

will use to empirically examine this problem.

2.2.1 Description of the Testing Procedure

We will first discuss the general procedure in the context of testing for the rank of a
demand system and then present a detailed example of the procedure with only two

equations in order to help fix ideas.
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The matrix B would have rank three if and only if there exist exactly three linearly
independent vectors of Engel curve coefficients. We could, in principle, construct a
sequential procedure involving testing for linear independence among groups of Engel
curves to determine the rank of B, then. First, assuming rank three, say, we ought to
be able to find two linearly independent Engel curves. Once found, we should then
be able to find a third which is linearly independent of the group of two Engel curves.
Finally, if the matrix actually has rank three, the rest of the Engel curves should be
linear combinations of the group of three. Questions arise, however. For instance, we
need a way to test whether a given Engel curve is linearly independent of a group of
other Engel curves. We will use the fact that each budget share is equal to a fixed
linear combination of coefficients of each Engel curve (ignoring for now the additive
error). We can, therefore, test linear independence of the budget shares, not the Engel
curves themselves. Such a test could be carried out by means of a specification test.
A budget share bj, could be regressed on a group of budget shares, b;,, b;,, and b;,,
and rejection of the linear specification would be tantamount to rejection of linear
dependence between b; and the group of three budget shares. We could, therefore,
construct our sequential testing procedure by regressing budget shares on groups of
other budget shares and testing the specification of the linear regressions.

The budget share equations are not deterministic, though. They do have additive
errors. This situation creates an errors in variables problem because the dependent
variables in the Engel curves, budget shares, will be used as regressors when testing
for linear independence. Instead of each budget share being equal to the sum of
their regressors times their coefficients, they are equal to the true Engel curve at that
point plus a random disturbance. If they are to be used as regressors, then they are
regressors “measured” with error. We can, of course, instrument for the regressors,
using polynomials in expenditure or perhaps other variables as instruments. We will
discuss the problem in more detail in the next subsection.

We will now step back for a moment from the application at hand, demand sys-
tems, and present a simple two-equation example. We hope to clarify how exactly

the problem can be reduced to one of testing only budget shares and how one would

42



perform this test.
We have two equations for which we would like to test linear indpendence of the

parameter vectors, £, and f3,.
n = f(z)h + ¢

Y2 = f(-’B)Tﬁz + €,

For each observation z; is a scalar, but f(z;) is a k-vector-valued function, where k is
the size of 3, and B2. Think of 8, and P2 as vectors, f(z) as a set of coefficients, one
set for each observation, and y, and Y2 as the value of the linear combinations of 3,
and B3, with f(z) as the coefficients, up to the additive errors €1 and €2. Now suppose
that f(z)is a k x » matrix with rank k. Then §; and 3, being linearly independent
k-vectors implies that Y1 and y, are linearly independent n-vectors. Therefore, {here
is no need to estimate B and (3, or even specify f(z) to test linear independence of the
vectors 5, and f3,. We just have to know that f(z) has rank k. For each observation,
f(z:) has k elements. We need at least k observations for f(z) to have rank k. (In
other words f(z) must be at least & x k.) Tt is true that for & linearly independent
functions f(z), there exist k values z such that the matrix of values of f(z) does not
have full rank. The sets of these values = have measure zero, though. In any case,
such matters should be of no concern because the number of sets of k coefficients, the
number of observations, is usually much larger than the number of elements in the
true B; and £, i.e., n is usually much larger than k.

We have now reduced the problem of testing for linear independence of 3, and o))
to the problem of testing for linear independence of ¥1 and y,, if not for the additjve
errors. We have avoided having to specify the Engel curves and estimate the coefh-
cients. Our biggest saving, though, is in the robustness of the test to the specification
of the Engel curves. The power of this test is not limited by the specification of the
Engel curves since the specification is never made explicit.

We now need a statistical procedure to test for linear independence of y; and

Y2. One such procedure would be to regress one of y; and y, on the other and test,
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whether that linear specification is correct. In other words, if we can reject the linear

specification

linearly dependent on 0.

2.2.2 Adapting the Test Statistic to the Case of Errors in

Variables

As mentioned before, the additive errors in the equations cause an errors in variables
problem when one dependent variable of a system of equations is regressed on another.
This subsection will quickly review the test statistic and why it would be appropriate
for such a problem, will discuss the Problem of adapting the test to the case of errors
in variables, and also will discuss the choice of instruments necessary to adapt this
test to the case of errors in variables.

We will now be discussing the procedure in the context of the demand system.
The procedure we will be using to test linear independence of sets of coefficient vectors
is the nonparametric specification test of the first chapter. Recall that the statistic is
based on the quadratic form @"Wi, where W is a weight matrix and 4 is the vector
of residuals fron: the null specification. In our case, the null specification js linear,
of course. In other words, the null hypothesis is that by is linearly dependent on b,.
If the statistic based on aTWi is larger than expected under the null, then we can
reject linear dependence of bo and b, and, therefore, of 3, and .

From now on, we will use the notational convention of the previous chapter: X
is the matrix of regressors and y is the dependent variable, for any regression whose
specification we are testing. Bear in mind that some variables, the budget shares b,,
might be used as both dependent variables and regressors.

The theory of our specification tests was worked out in the case of QLS. Applying
the tests discussed in this Paper to the case of errors in varijables is inelegant at best.

The residuals from performing an instrumental variables regression in this case are
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not orthogonal to the regressors. As a consequence the nonparametric specification
test statistics have extra terms that do not go away asymptotically. Recall that in
the case of OLS,

WTWi = uTWu — uT Px W Pxu,

where u are the true errors, @ are the residuals, and Py is the projection matrix onto

X space. We see that in the case of errors in variables,

u=y-XB-1p,

where X*, the true value for the regressor(s), is equal to X + 7, the observed value

plus an error. Then,

(]

= (I-Pz)((X +n)8+u)

= 0B +u— PznB — Pzu,

where Z is the matrix of instruments and Pz = X(XTX)~1ZT. To obtain an expres-
sion in terms of the true errors of a7 Wi, we then use the fact that the weight matrix

W is symmetric (or can be symmetrized) and that Py is symmetric and idempotent.

Then

iTWi = u"Wu— uTP,WPu+ (18)TW(nB)
~(1B)" PaW P4(1B) + 2u™ W (nf) — 2uT PoW Pa(nB),

P4 behaves like a projection matrix, so the terms with P4W P4 in the middle will
go away asymptotically, but might require a finite sample correction, like before.
Since we will be simulating or bootstapping our critical values instead of relying on
theoretical predictions in this empirical study, any such finite sample terms will not
affect our results. There are now, however, two terms in addition to " Wu that do
not go away asymptotically. We have two options for carrying out the test. First,

note that @’ Wi = (u + 7B8)TW (u + n0) asymptotically. One can then construct a
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test like before by merely replacing &2, the estimated variance of u, with 62,0, the

estimated variance of u + 0.

aTWu — 62, strtW
62, p(2trW2)/2

T, =

This test, however, is now a joint test of the following hypotheses: correct specifica-
tion of the model, zero covariance between u and 7, and correct specification of the
equation where the instruments explain the regressors. Usually one would not want
such a joint test. One could, though, test the two “nuisance” hypotheses separately
and reject correct specification of the model if the joint test rejected and the separate
tests did not. Critical values for the joint test might be problematic.

The second option is to subtract off estimates of the two unwanted terms from
the quadratic form. This method is the one we primarily used in order to avoid
problems involved in performing the joint test of several hypotheses. Estimates of
the two unwanted terms were constructed as follows. First, the regressors, X for now,
in the zegression of a budget share y on other budget shares were regressed on the
instruments Z to obtain coefficient estimates & Then the residuals were computed
in the following way: 7 = X — Z&. An estimate of # was calculated by regressing
y on X in two stages using Z as instruments. Finally, the “clean” residuals were
calculated as follows: @, = y — X3 + #3. The quadratic form was then constructed

with the 1. ’s as follows:
_alWa, — 62tW
STOTSENYE

The choice of instruments was, in some sense, very natural. Given that we believe
that each budget share can be expressed as some function of total expenditure—ample
empirical evidence bears out the fact that total expenditure has explanatory power in
that setting—polynomials in total expenditure seemed the natural choice. Obviously,
we should only use those polynomials and just as many polynomials as have predictive
power for budget share. Only polynomials which have predictive power for budget
share will be correlated with the regressors. In this choice we were guided by results of

our crossvalidated series regressions of budget shares on polynomials in expenditure
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which are discussed in Section 2.3.1. In addition, to be valid instruments, they must
be uncorrelated with the “error” in the regressors and with the equation error. Recall,
however, that since actual expenditure is not observed and income is used instead, the
instruments are also measured with error. Our instruments, then, actually have two
components, expenditure and the difference between income and expenditure, which
we will call instrument error. We need, therefore, to be concerned with four possible
correlations: both expenditure and the instrument error with both the equation and
the regressor error. Expenditure should not be correlated with either the equation
error or the regressor error, essentially by definition. The instrument error, however,
is somewhat more problematic. In order for the instrument error to be uncorrelated
with the regressor error, we would need to make the assumption that saving is not
correlated with excess expenditure in any category (relative to total expenditure),
i.e., that savings is separable from other expenditure. We will make this assumption
by necessity.

As mentiored before, the general testing procedure, in addition to the particular
specification test used, is a nonparametric procedure because it does not require
specification of the Engel curves. Of course, the particular test we are using is also
nonparametric, in the sense that it does not look for departures from linear in any
particular direction in the dependence of the budget shares. Therefore, there are, in
fact, two ways in which other testing procedures impose stucture that this procedure

does not.

2.2.3 Description of Data

The data that we will be using are from the 1982 Bureau of Labor Statistics Consumer
Expenditure Survey. We have data on 1324 individuals and their consumption habits.
In particular, we have their total dollar expenditures in each of five categories, food,
clothing, recreation, hea!ili care, and transportation, and their income. Assuming
that total expenditure is equal to income, as is customarily done, we can calculate
expenditures in a sixth category: other. Table 2.1 contains the summary statistics,

minima, maxima, means, and standard deviations, of the data set.
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Lewbel uses the same source of data. He, however, treats the data differently. He
estimates both a fixed effects model, assuming all consumers have the same prefer-
ences, and a random effects model, assuming taste parameters have some distribution.
For the random effects model, it is necessary to exclude consumers who seem likely
to have income correlated demographic variation. He, therefore, used the following
selection criteria: married couples with the age of the head of household and the
nomial annual income in certain ranges. Here we will assume fixed effects. We will,

therefore, not need to use just a selected portion of the data.

2.3 Results and Comments

We present two types of results here. The first type of results give us information
on the performance of the nonparametric specification test in the presence of errors
in variables. They are results about the distribution of the test statistics under the
null hypothesis that budget shares are linearly dependent. These distributions, both
simulated and bootstrapped, can be compared with the theoretical null distribution of
the test statistics, M(0, 1). We will, of course, use these simulated and bootstrapped
distributions to find critical values for rejection of the null.

The second type of results are, of course, the test statistics from the tests for the
rank of the demand system. After examining those test results, we should be able to
draw some conclusions about the rank of our demand system and consequently other
interesting economic questions such as aggregability.

But first we will discuss in detail the simulation and bootstrapping techniques

used to obtain the null distributions of the test statistics.

2.3.1 Simulating and Bootstrapping the Null Distribution

There are different possible methods for simulating and bootstrapping these distri-
butions. To explain them, we first present the null model for testing for linear inde-
pendence of one budget share from three others, say. Suppose that the fourth budget

share b3 is being tested for independence from the first three, by, b,, and b,. Then
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y = b3 and X = [bo b, b;]. Also, our instrument matrix Z will be comprised of

polynomials in total expenditure, f(z). First we have
-"—'i=1’;+77i, t=1,2,3,

where z? is the “true” budget share and z; is the “observed” budget share, measured
with error. Recall that each budget share is the dependent variable in its own Engel

curve, so

T, =a.-Z+7);, i=1,2,3,

where Z are the regressors in the Engel curve (and also our instruments). The null

model is then

y = Bo + Pz} + B2z + Pazy + €
= Bo + Biz1 + B2x2 + Pazs — i — P22 — Pans + €.

We now explain the method for simulating the null distribution that this paper
employed. To simulate values of X and y, we first regress z; on Z nonparametrically
to obtain &;.2 Then we regress y on X usiug instruinental variables estimation to
obtain 3. Next we draw values for 7 and € from an assumed distribution. Finally to

obtain simulated values of X and y we exploit the following formulae:
3 =&2Z + 7P i=1,2,3

yS = ﬁ.(dZ) + eDa

where the D superscript denotes a draw from the assumed distribution of the corre-
sponding random variable and the S superscript denotes the simulated variable.

Once we have ¥y we can then perform the test as before—run regressions, calculate

2We use cross-validated series estimation. Using just a simple parametric procedure would not
ensure that the residuals were orthogonal to the regressors because we do not claim correct specifi-
cation of the Engel curves, thus invalidating our simulation and bootstrapping.
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residuals, form the test statistic—as many times as we want in order to trace out the
distribution of this test statistic under the null.

Finally, we will mention from where the actual simulations and bootstrap replica-
tions were drawn. For simulation we drew 7 and €P from a joint normal distribu-
tion with the means being zero and the variance-covariance matrix being the sample
variance-covariance matrix of the residuals. For bootstrapping we drew 7P from the
residuals from the regression of z; on Z, ;. We drew €P from the pseudo-residuals
vy —zT8 + 9. Analogous to transforming the simulated errors with the estimated
variance-covariance matrix, we drew residuals from a whole observation for each boot-
strap replication, not each residual separately. In that way we preserve the covariance

structure.

2.3.2 Results on the Null Distribution

The results on null distribution of the test statistics, Table 2.2, were encouraging.
Recall that applying the nonparametric specification test in this nonstandard setting,
in the presence of errors in variables, produces several nuisance terms that will go away
asymptotically but will effect the statistic in finite samples. No attempt was made
to correct for these terms since the critical values were to be bootstrapped. These
nuisance terms surely played some role in the way the bootstrapped null distributions
deviated from the theoretically predicted null distribution. Still, in most cases the
theoretical distribution was a fair approximation of the bootstrapped and simulated
distributions. (Note that these tests were performed with over 1000 observations.
Any conclusions drawn about the relatively small impact of the nuisance terms are
drawn conditional on the sample size.) Some amount of nonsystematic deviation from
the theoretical distribution can also be attributed to the small number of bootstrap
replications and simulations performed, in all cases 500. The numbers were limited
by computational considerations.

Note that in comparisons of null distributions between the bin and kernel tests, the
kernel test distributions seem to be closer to the theoretical for the one dimensional

test, but not for the two and three dimensional tests. (This pattern does not seem
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to be a coincidence. Although we only report a small number of the bootstrapped
and simulated distributions here, we performed many others. The pattern seems to
be borne out in them as well.) It could be that the kernel test does not perform as
well in high dimensions due to problems of small amounts of data at the boundaries.
The bin test might not suffer from the same problems because the bins are fixed in
X space.

It should be pointed out that the critjcal values we have estimated here are es-
timated on the assumption that each of these specification tests will be performed
alone. The true critical values for a sequential procedure such as ours would be lower
than those for each test performed alone. There is also a problem of spurious rejec-
tions, though. For instance, if we performed a large number of one dimensional tests
(a budget share regressed on one other) to find one that rejected, then the result
might be spurious, and our critical values should be higher. The first problem should
only make our test procedure more conservative, if it is not cancelled out by the sec-
ond problem, so it should be of no concern. The second problem is potentially more
troublesome, but certainly not for this application. First, very few combinations of
budget shares were searched to obtain the results presented below. Second, as will

be shown, the results were decisive enough to ease any concern.

2.3.3 Test Results

The results from the procedure for testing the rank of the deinand system appear in
Table 2.3. The test for the demand system being rank one rejected decisively. The
values of the test statistics, 3.88 for the bin test and 13.48 for the kernel test, leave
little doubt, despite the possible problem of spurious rejections mentioned earlier.
(Assuming the theoretically predicted null distribution, the two tests would have P
values of 0.00005 and much less than 10-7, respectively.)

We found a third budget share to regress on the two from the first test to reject
rank two of the demand system. In this case, the test statistics were 7.12 for the bin
test and 9.77 for the kernel test, again a decisive result. (The p values for these two

tests are both much less than 10-7.)
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Finally, a test was performed to see if rank three could also be rejected. Again it
could, with the test statistics 6.34 and 4.38 for the bin and kernel tests. This final
rejection is an interesting result. Both HNP and Lewbel found strong evidence in
favor of rank three demand systems, although here we have found evidence for this
demand system having rank at least four. 3

One reason that our testing procedure might be rejecting rank three when other
tests have been unable to do so is that our test will detect a lack of linear dependence in
the Engel curve coefficient vectors regardless of Engel curve specification. In addition,
our test should reject arbitrary deviations from linear dependence of the shares. There
are certainly alternatives against which this test will have power and against which
a given parametric test will have little or no power.

Our test, like all nonparametric tests, falls prey to the “curse of dimensionality,”
significantly lowering its power in higher dimensions. It is true, though, that as
the space of alternatives becomes higher dimensional, conventional parametric tests
“cover” less and less of that space, even though they retain high power against a fixed
dimensional subspace of the alternative space; whereas, nonparametric tests will have
greater coverage. Finally, we will mention an interesting property of this test arising
from the fact that the Engel curves were not specified. It should not be viewed as
unusual that this test might fail to reject linear dependence when b;, is regressed on
b, and when it is regressed on b;,, but then reject when b;, is regressed on both b;,
and b;,. In fact this occurred in some of the tests we ran. The reason we might obtain
such a result is that the relationship between b;, and b;, and the relationship between

b, and b;, might appear linear, but the relationship between b;, and b;,, b;, need not

be planar.

3 Aggregation of goods can cause the rank of the matrix of coefficients to be smaller than the
actual rank of the demand system, as was pointed out in HNP and Lewbel. They, therefore, both
state that they have found evidence for rank being greater than or equal to three. We have, however,
used essentially the same data set and thus the same aggregation of goods as the previous two papers.
Our finding of rank at least four, then, has nothing to do with a different aggregation of goods.
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2.4 Conclusion

The results of this paper are interesting not only in their economic implications, but
also in the fact that this nonparametric procedure of testing for the rank of the de-
mand system yielded different results from previous empirical work, more parametric
in nature. The fact that this nonparametric procedure has greater coverage of the
space of possible alternatives may account for our rejection of rank three for the

demand svstem.
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Table 2.1: Descriptive Statistics of Budget Shares and Total Expenditures

Expenditure Category minimum maximum mean stand dev

food 0.00668 0.658 0.215 0.0920
clothing 0.000201 0.304 0.0554 0.0426
recreation 0.000293 0.842  0.206 0.139
health care 0.000283 0.673 0.0602 0.0730
transportation 0.000319 0.688 0.0539 0.0621
total expenditure 728 57064 5429 3526

Table 2.2: Comparison of Theoretical, Bootstrapped, and Simulated Null Distribu-
tions, bin/kernel tests

Budget Share Regression Theoretical Bootstrapped Simulated
Jonl mean 0.00 -0.07/0.00  0.00/-0.01
variance 1.00 0.85/0.98  0.89/0.96
95% crit 1.64 1.31/1.64 1.48/1.57
2on1l,3 mean 0.00 0.02/-0.03 -0.01/-0.01
variance 1.00 1.04/0.71  0.92/0.62
95% crit 1.64 1.65/1.14 1.53/1.03
5o0nl,2, 3 mean 0.00 -0.03/-0.04 0.02/-0.03
variance 1.00 1.02/0.73  0.99/0.65
95% crit 1.64 1.64/1.18 1.73/1.07

Table 2.3: Test Statistics and Bootstrapped Critical Values, bin/kernel tests

statistic critical value
test for rank 2 (6 on 1) 3.88/13.48 1.41/1.82
test for rank 3 (3 on 1, 6) 7.12/9.77 1.62/0.93
test for rank 4 (4 on 1,3,6) 6.34/4.38 1.79/1.28
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Chapter 3

Window Width Choice

3.1 Introduction

The problem of providing theoretical guidance for window width selection in non-
parametric testing has been largely swept under the rug in previous papers on the
subject. In fact, most studies have relied solely on the established theory for window
width selection in estimation despite its inappropriateness. In addition, while some
studies have examined data-based methods for choosing window width, they have
failed to present convincing theoretical or simulation results to justify their methods.
This chapter is a preliminary attempt to investigate this issue. We will first present
simulation results for various window widths to provide practical guidance for win-
dow width choice and also to provide intuition for the theoretical discussion to follow.
Then we will argue that window width selection in testing and estimation contexts
are different problems while examining methods of window width choice which other
papers have employed. Finally, we will present a variety of preliminary ideas and

conjectures along with simulation results on new methods for window width choice.

3.2 Simulations and Practical Guidance

To prevent confusion based on our perhaps nonstandard terminology, we now offer

an explanation. “Smoothing parameter” refers to the most general class of roughly
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analogous parameters in nonparametric estimators. “Window width” describes the
smoothing parameter in a narrower class, local smoothing estimators. This term will
be used to describe the smoothing parameter in both the bin and the kernel tests.
Finally, we might use even more specific terms, like bin width or bandwidth.

We first want to make clear the idea that different window widths work better
with different alternatiaves. We will accomplish this goal by presenting two sets of
simulations using the bin test statistic of Ellison and Ellison (1992), a slight variant
of the statistic presented in the first chapter. We look at the power of the bin tests
with various bin widths against different alternatives. In all cases, simulated critical
values are used and 2000 simulated iests are performed. The explanatory variable is
random, with the sample rechosen from #(—1,1) for each simulation.

The first set of power simulations simply employs a large variety of bin widths
against a number of alternatives for a fixed sample size, 100 observations. See Figure
3.1. Obviously, the performance of the various bin widths is dependent on which
alternative is used, the fcur alternatives being the second degree Legendre polynomial,
the fourth degree Legendre polynomial, sin(107z), and a line with one kink in it.
The results are predictable. It is not at all surprising, for instance, that the small
bin widths do much better than the large against a wavy alternative, sin(10wz), but
lag behind the large for the fairly smooth alternatives. The tradeoff faced is that the
larger bin widths “wash out” the wavy alternatives, whereas the small bin widths are
unable to capture very much of the spatial correlation present in the fairly smooth
alternatives. Figure 3.2 is a graph of the composite power of each different bin width.
Here we define composite power as an average of percentage rejections against the
four alternatives mentioned above, each at three different sizes. This is, of course, an
arbitrary measure, but it might still be of some interest in assessing overall power.

For small sample sizes such as 100 observations, we saw that the tradeoff between
power against smooth or wavy alternatives was fairly costly. Another question might
be how that tradeoff changes with growing sample size. In other words, how do
different rates of shrinkage of bin widths fare, as gauged by composite power. We

performed a second set of simulations to examine this question. See Figure 3.3.
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Three different rates of shrinkage were used: k(N/100)~2, k(N/100)-3, k(N/100)~.
Note that the bin widths are all equal at N = 100. Again, we used the measure of
composite power to compare the different bin widths. As you can see, there is very
little difference in the performance of the different shrinkage rates, at least until we
have 1000 observations. At 1000 observations, the rate shrinking the fastest seems to
gain advantage, certainly because it was the first to be able to detect wavy alternatives
effectively. Essentially, though, this set of simulations offers us little guidance in

window width choice.

3.3 Other Methods in the Literature

We will now present the main argument of this chapater: the context of testing
provides us with a different objective function for choosing smoothing parameters
than does estimation, thereby rendering much of the existing literature on window
width selection in estimation inappropriate for the task of window width selection in
testing.

We will first note that we would like a practical rule (or perhaps a few rules to
choose among) for choosing window width. Before we can commence with the business
at hand, though, we must first demonstrate what the optimal' window width would
be for a given alternative. Since we do not know the alternative against which we
are testing, the following rule is not a practical suggestion. We will need the result
to exhibit inadequacies of other rules, though.

One possible criterion is to choose the window width A to maximize

)
c=0

8 [ E(T|H, N)
6_{ V(T[Ho, N) }

where T is the test statistic, and c is the coefficient on the misspecification. Note
that the derivative is taken with respect to c? because the derivative of that term is

identically equal to zero at ¢ = 0 due to its symmetry around ¢ = 0.

lunder a given criterion
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Such a criterion will produce a window width that essentially maximizes the rate
at which the expected value of the test statistic grows relative to the variance of the
statistic under the null for infinitesimnl departures from the null. Loosely speaking,
the criterion ensures that the test statistic will grow quickly, thus making it easier for
one to reject the null, at the point of infinitesimal departures from the null. We do
not claim that this criterion is the only reasonable criterion. For instance, we could
have chosen h to maximize the derivative of the probability that the test reject for
infinitesimal ¢ instead of maximizing its rate of growth.

All such criteria, of course, will depend on the particular form of the alternative,

or departure from the null. For alternative f(X),

y=X,B+Cf(X)+u1

and the proposed criterion is

max

h otrW?

{Ei f(=;) s f(:c,-)w.-,-} .

It is true that for a fixed alternative, the window width optimal under this criterion
does not depend on N, the number of observations, once N is large enough.? This is
because for a fixed alternative, once the window width is small enough to not wash
out the alternative, it need not continue to become smaller to improve power.

To illustrate, we include an expository figure, Figure 3.4. Suppose that the line
is our null model and the curve is the truth. The vertical lines represent residuals
from the null. If we were to perform a bin test where the bins corresponded to the
spaces between the double lines, it is clear that we would “wash out” much of the
misspecification. Look, especially, at the second bin. Since the bin straddles the point
where the sign of the expectation of the residual changes, the contribution of that bin

to the statistic will be close to zero despite the misspecification. Suppose, instead,

20ne can see this easily if we restrict h to the class such that A — 0 and Nh? — oo, really
the only window widths we consider for the test statistic. Then, this criterion is bounded above by
c1 Nh, where ¢, is some constant. For h fixed, however, the criterion is asymptotically equivalent to
c2N. Keeping h fixed, therefore, maximizes the criterion.
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that we were to choose bins corresponding to the space between any lines, dotted or
double. The contribution from almost all of the bins would be positive. If the bins
were too small, however, much information on the spatial correlation of the residuals
would be lost. Our intuition might lead us to the conclusion that the optimal window
width for a given alternative would shrink as N increases only to the point where it
will no longer wash out information. It would then stay constant as N — oo.

We will now discuss methods proposed in the literature. Rodriguez and Stoker
(1992) choose the window width for their nonparametric regression test by generalized
crossvalidation (GCV), although they offer the caveat that this method will not satisfy
conditions necessary for their asymptotic results. By choosing the window width
through GCV, a data-based method, they are essentially fitting the alternative model.
We now present an example of why such a method does not produce the optimal
window width for testing. Figure 3.5 presents two testing situations. GCV would
provide quite different window widths for the two problems, a much smaller one in
the second situation, trying to fit all of the “wiggles” of the true model. Since for
testing we are not interested in the shape of the truth but rather just in whether it
deviates from the null, we would optimally choose very similar window widths in the
two situations. One can see this by referring back to the formula for optimal window
width choice. It contains the alternative f(-), but no derivatives. Therefore, the
wigglyness of one alternative matters very little as long as it does not stray far from
the other alternative. We would want the window width to be some sizeable fraction
of the periodicity with which the truth crosses the null. Any “wiggling around” either
on top or below the null is irrelevant. One could also see that GCV will not choose the
optimal window width for any alternative asyptotically because the window width will
go to zero. As we saw before, the optimal window has postive width asymptotically.
Eubank and Spiegelman (1990) also use GCV to choose their smoothing parameter.

Azzalini, Bowman, and Hardle (1989) have the most extensive discussion on
window width selection. They propose two model-based selection techniques. The
smoothing parameter is chosen to minimize the expectation under the null of, in one

case, a pseudo-likelihood ratio, and, in the other, a normalized error sum of squares.
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They note a shortcoming of such methods: a regression model with a slope near
zero, for instance, leads to very large smoothing paramters, ebscuring nonlinearities.
This explanation is a roundabout way of making the point that choosing a smooth-
ing parameter to optimally fit the null model in no way guarantees an appropriate
smoothing paramter for testing. See Figure 3.6 for an illustration of the specific ex-
ample mentioned by Azzalini, et al. Note that a procedure for window width choice
based on the null might, depending on the procedure, yield different window widths
in those two cases. For testing, though, we would want identical window widths in
the two cases: the formula for cptimal window width only contains the alternative,
not the null. In addition, Azzalini, et al. also propose GCV for window width choice,
obviously having the shortcomings mentioned before.

Other authors (e.g. Wooldrige, Bierens) have recognized that choice of smoothing
parameter in the context of testing is a different problem than in the context of
estimation. They commented on the possibility of tailoring their tests to detect certain
alternatives by choosing a particular value for the smoothing parameter. Both noted,
however, that such choices might affect asymptotic results.

We have now seen fairly compelling examples that lead us to reject methods of
window width choice based on either fitting the null or fitting the alternative. The

question now is what other solutions are available.

3.4 New Ideas

Earlier we derived an optimal window width choice rule for a given alternative. Qur
first proposal is to apply that criterion not to a particular alternative, but to a prior
distribution that the researcher has over the alternative space. We believe that this
Bayesian approach to window width selection would yield a test more powerful in
finite samples against alternatives considered most likely, but still consistent against
all alternatives with positive probabilities. It seems that this procedure would be
similar to choosing among parametric tests, depending on which alternatives one

believes are likely or possible, but it would be an explicit way of doing so based on
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stated prior beliefs.

Our second proposal for window width selection is to choose window width to
maximize the test statistic. The motivation behind such a method is that finding
any window width that results in a large statistic is evidence of misspecification.
Also, the onus of choosing the window width, trying to ensure it is large enough
to provide power but small enough to not wash out the misspecification, is taken
oft the researcher. Such an approach prompts several comments. First, some of
the great computational saving afforded by the bin version of the test will be lost.
Performing an actual maximization seems excessive, but even a grid search can be
computationally taxing. Second, the question arises whether this test statistic exists.
Even if the statistic exists, we would be much more pleased if we got an interior
solution instead of, say, a solution at A = 0. A boundary solution would be strange
because we think that a statistic resulting from 2 = 0 or h being a large as possible is
fairly meaningless. Finally, the critical values of such a statistic seems problematic,
to say nothing of the entire null distribution.?

We will now address the second comment, the one of existence.

Proposition 1 Let h be the window width, T (h) be the test statistic of Ellison and
FEllison (1992). For a fized sample size N, T(h) is bounded. Therefore, a mazimum
of T(h) exzists.

Proof

_ uTW(h)u
~ V202s(W(h))’

where s(-) is the square root of the sum of the squares of the elements of the matrix.

T(h)

Note that the numerator is bounded above by u2, 3, . w;;(h). The denominator is
bounded below by v/202(1/N?)T; i wi;(k). Therefore, ttere exists an upper bound
on the statistic independent of h for a fixed N.

30ne can imagine computing critical values directly if one knew the critical values of the tests
over which the maximization was being performed. We will not attempt such a thing. We will look
only at the null distribution and calculate critical values from that.
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QED.

We are still not assured of an interior solution, but at least note that as the window
width becomes too big, the weight matrix W will approach, essentially, a matrix of
ones with zeroes on the diagonal. The statistic will, therefore, be negative, so we will
not obtain a boundary solution there.,

Once we know the statistic exists, it is crucial that we answer questions about
its asymptotic behavior so that we can, among other things, compute critical values
for it. We conjecture that such a statistic suitably nomalized has an asymptotic
distribution and also that it is consistent against alternatives in all directions. Proofs
are not included here,* but we do provide simulations of the null distribution.

To perform the simulations, a grid search was used instead of a maximization
routine to save on computation. We performed a series of simulations of bin statistics
under the null with increasing sample sizes. The goal was either to determine that the
statistics were distributed identically or at least to detect a pattern of convergence to a
particular distribution as the sample size increased. Table 3.1 contains the simulation
result.. As one can see, the first two estimated moments of the distribution, along
with the estimated 5% critical values, are quite constant as the sample size increases.
It is difficult to determine whether any convergence to particular values is taking
place, but we are encouraged that the statistics seem to be properly normalized.
These very preliminary results seem to indicate that future work in this area holds

promise.

*The preof of asymptotic distribution could probably make use of results on the asymptotic
distribution of order statistics, although those results would not be immediately applicable.
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Figure 3.2
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Figure 3.4
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Figure 3.5
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Figure 3.6
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Table 3.1: Distribution of the Maximal Test Statistic

sample size mean std. dev. 5% critical value

50 obs. 0.98 0.54 2.13
100 obs. 1.00 0.59 2.23
200 obs. 0.92 0.50 1.83
300 obs. 0.96 0.56 2.16
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