
 

 

 

Abstract - A generic design of a complex industrial system allows 

the reduction in engineering cost and time to market because of 

the ability to adapt a technical solution given a particular 

context. We present in this study a model-based design approach 

that allows managing variability and flexibility in design to 

support both near- and long-term decisions. A case study 

addressing a solar desalination combination problem illustrates 

this approach. The produced models are organized in an open-

web decision support system, which governs access to an 

integrated suite of models. This suite includes computational 

models for the operation of three desalination and two solar 

technologies and a life-cycle investment model, first developed as 

stand-alone applications and then modularized with the web 

platform to provide a set of linked models. In addition, to assist a 

collaborative design of solar desalination plants, a possible 

application of this work is to support a new e-bidding process. 

 
Index Terms— system architecture; multidisciplinary 

optimization; flexibility; variability; e-bidding; solar desalination 

I. INTRODUCTION 

HE diversity of solutions available to meet the needs of 

clients is increasing and makes the reuse of each solution 

in the appropriate context of its use difficult. The design of 

systems that can fulfill varying customer requirements or 

specifications while maintaining optimal performance at low 

cost is a complex challenge. Management of design variants 

requires rigorous approaches that can allow for an adaptive 

bridge between the client`s high-level needs with technical 

solutions. An architectural design framework coupled with 

multiobjective and multidisciplinary optimization models can 

help in structuring, organizing, and identifying common 

platforms that can be used cost effectively for different 

requirements. Thus, we can quickly develop new system 

solutions by reusing existing designs. A model-based design 
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approach helps in structuring and organizing the views that 

enable a complete and justified design of a complex industrial 

system. It is useful for managing trade-offs and decisions 

when we often seek to meet several multidisciplinary 

expectations, given several design constraints and variables 

stemming from the system environment. The resulting models 

can serve as a baseline for managing variability and 

uncertainty, adapting the technical design to different contexts 

of use and associated business models while reducing 

engineering costs by reusing models and reducing the time to 

market. 

The utility and benefits of a model-based system design 

have been discussed in many research works [1][3]. The aim 

of this study is to describe a design approach that could be 

used to deal with variability and flexibility, as well as on how 

it could be extended in order to support an early e-bidding 

process. 

To illustrate our approach, we present in this study a library 

of models for solar desalination design. Coupling of the 

desalination process with solar technology is a complex 

problem. These types of plants are still relatively new, and 

their design should be generic in order to support variability 

(different potential locations, etc.) and flexibility (external 

parameters and capacity changes over time, etc.). As various 

types of desalination processes and solar technologies have 

been developed, the selection of the best combination requires 

several design criteria. Capital costs, operation, and 

maintenance costs, plant site, salinity of seawater, 

environmental impacts, and water quality requirements are 

examples of design criteria involved in selecting a suitable 

desalination process. Furthermore, the selection of a suitable 

solar system is governed by a number of factors such as plant 

configuration, energy, location, solar irradiance, dust, and 

working fluids. Moreover, when integrating the solar 

technology and desalination processes, several requirements 

and constraints arise. A generic design of a solar desalination 

plant will reduce the cost of engineering studies and the time 

to market owing to the reuse of existing designs.  

In the following sections, we report related works, introduce 

the design approach, and discuss a case study and its results 

and research perspectives. 
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II. RELATED WORKS  

A model-based design approach provides guidance and 

rules for structuring, classifying, and organizing different 

architectures [4]. A design framework serves as a reference to 

organize all the elements of the architecture of a system with 

several views [5]. The principle of views was first discussed in 

[6]. As discussed in [1], model-based approaches are very 

useful and helpful for risk reduction, enhancing team 

communication, discovering system issues, performing trade 

studies, early detection of errors, integration, as well as 

traceability [7][9].  

Furthermore, in industrial practice, to design a complex 

system, there are several multidisciplinary objectives and 

constraints. Conducting the analysis, defining the right 

criteria, and evaluating alternatives are difficult tasks. This 

difficulty is, particularly, owing to the fact that the separation 

between the problem definition and the solution design is 

often unclear [11]. Multiobjective optimization is performed 

and used as a basis for trade-off analysis and decision-making. 

Research works have been conducted using Pareto 

modeling in the context of system architecture [11]–[14]. 

Refs. [15],[16] introduce the concept of fuzzy Pareto 

optimality. They recommend to keep some optimal solutions 

(near Pareto frontier solutions) when designing a system. In 

case of uncertainty, they advocate to take into account, in 

addition to the Pareto optimal solutions, some other 

alternatives to anticipate the unintended exclusion of viable 

solutions and perhaps even desirable ones, particularly 

because of unforeseen or unpredictable external influences in 

an uncertain environment. In this regard, in the context of 

system of systems, [17] discusses a design process beginning 

with a global goal of constructing a multi-criteria decision 

process in order to create a set of alternatives representing 

different choices. Ref. [18] discusses a scenario planning tool 

in order to perform “what if” scenarios that can be used to 

evaluate the effects of different planning policies and to select 

the most suitable one. 

This study introduces a model-based design approach 

combining system architecture and multiobjective 

optimization to help decision makers in addressing flexibility 

and variability. It also introduces the concept of e-bidding 

process. The approach is illustrated through a case study on 

solar desalination systems. 

III. DESIGN APPROACH 

A first draft of the approach was presented in [19]. An 

adapted and completed version is presented in Figure 1. The 

starting point of designing a system is the definition of its 

boundary and main operations. This first step allows the 

identification of stakeholders, enabling systems, their 

expectations, and constraints over the life cycle of the system 

of interest [11],[14]. This step considers particular aspects 

such as the market, end-user, regulations, technology 

availability, and natural environment. 

Once the main functional and non-functional requirements 

are identified, the system architecture organizes the different 

views allowing to achieve a comprehensive system modeling. 

This step clarifies the relationship between design constraints 

and design variables, functions, components, and interfaces, 

and yields design concepts that could be modeled and 

simulated. 

Simulation is used to verify and validate the design. It 

reduces the cost and time of engineering studies through the 

use of models. The connection and traceability between 

simulation models with associated architectural design 

facilitate the change propagation analysis; they maximize the 

reuse to save time and cost. The link between system 

architecture and simulation is iterative and incremental. 

Indeed, simulation models are detailed increasingly following 

the progress in the design process. 

Many decisions are made at this stage of the design process 

to generate the initial guidelines for choosing system designs 

and levels of maturity and to achieve quality, reliability, 

security, flexibility, robustness, sustainability, and scalability 

of the system life cycle [20]. However, the multitude of 

multidisciplinary objectives and constraints makes trade-off 

analysis difficult. Therefore, multidisciplinary design 

optimization is performed in order to identify the optimal 

design in a particular environment and at a particular time.  

Once an optimal design is identified, changing the temporal 

dimension by infusing uncertainties and future scenarios of 

use could yield potential future designs. Thus, this first 

optimal design could be used as a basis for addressing 

flexibility in design (designing for changeability.)  

Similarly, changing the spatial dimension could yield 

different designs that are optimal in other locations. This 

variety of design could be captured in a commonality 

platform. Thus, this first optimal design could be used as a 

basis for addressing variability in design (designing for 

commonality.)  

Following the design approach as summarized in Figure 1, 

we present a case study in the context of solar desalination. 

 

 



 

 

 
Figure 1. Design approach adapted from [19]  

 

       

IV. BACKGROUND OF THE CASE STUDY 

The desalination of seawater has been the most expensive 

method of producing potable water at a commercial scale, 

mainly owing to the high capital and energy costs [22]. 

Nevertheless, it represents a viable option to meeting the water 

demand of the perpetually increasing world population. It is 

indeed projected that close to 70% of the world’s population 

will face water shortage issues by 2025, while approximately 

50% of the world’s population lives within 200 km of the 

seacoast [22]. 

The ever-increasing energy demand is also leading toward 

economic problems if the matter is not tackled in an optimal 

manner. Fortunately, many countries have been bestowed with 

abundant renewable energy such as solar and wind, thus 

setting the stage for a more sustainable source of energy. 

When combined with desalination technology, the possibilities 

for more sustainable water systems are endless. However, 

planning the efficient deployment of a renewable energy-

based desalination system is constrained by several key 

performance attributes, such as sustainability, optimality, 

strategic security, and robustness as well as the ideal phasing 

and deployment of facilities. 

A. Solar desalination technologies integration 

Conventional combinations of solar technologies with 

desalination processes are discussed in [22]. There are two 

types of desalination processes. First is the reverse osmosis 

(RO) process, which requires electricity for operation and can 

be coupled with a photovoltaic solar system that converts solar 

radiation into direct current electricity. Second is the thermal 

desalination process, which is derived using thermal energy 

and can be coupled with solar thermal systems that use 

thermal collectors to capture and absorb the solar radiation and 

then convert it into heat. Given the fact that desalination 

systems and solar systems are developed independently and 

then integrated together, the analysis for each system would be 

carried out separately. In this study, we focus on the main 

solar technologies: the photovoltaic (PV) and concentrated 

solar power (CSP) as well as the main desalination 

technologies, i.e., multistage flash (MSF), multiple effect 

desalination (MED), and RO. 

B. Energy requirements for solar desalination systems 

Selecting the best solar desalination system for specific 

conditions requires a good understanding of the energy 

requirements associated with desalination. Energy 

requirements vary from one desalination process to another 

based on the desalination technique as well as other 

desalination-related systems such as seawater intake pumping, 

pretreatment, and post treatment. Table 1 shows the typical 

energy requirements for industrial desalination techniques. It 

can be observed in Table 1 that the RO desalination technique 

is more efficient in terms of energy than the thermal 

desalination techniques. However, thermal desalination 

techniques are still attractive as they can handle seawater with 

high salt concentration. 
TABLE I 

DIFFERENT ENERGY REQUIREMENTS FOR INDUSTRIAL DESALINATION 

TECHNIQUES [23] 

Technique Heat requirements 

(Thermal)  

kWh/m3  

Electricity requirements 

(Pumping)  

kWh/m3 

Combined 

energy demand  

kWh/m3 

RO - 4–6 4–6 

MSF 40–120 (thermal) 2.5–5 21–58 

MED 30–120 (thermal) 2–2.5 15–58 



 

 

 

C. Cost considerations for solar desalination systems 

Cost reduction is the key driver in considering solar 

desalination. However, estimation of the solar desalination 

system cost is affected by many factors, such as location, solar 

irradiance, energy efficiency of the desalination system, 

salinity of the feed seawater, material and labor cost by 

geographical areas, and financing packages. Table 2 provides 

the desalination cost per unit of water produced for some 

desalination techniques coupled with conventional or solar 

energy sources. Moreover, the water cost is directly affected 

by the solar desalination system’s capacity [22]. 
TABLE II 

 DESALINATED WATER COST FOR VARIOUS COMBINATIONS OF DESALINATION 

PROCESSES POWERED BY CONVENTIONAL OR SOLAR ENERGY [24] 

Desalination system powered by energy source Cost ($/m3)  

Conventional energy + RO, ED, MSF, MED, & VC 0.5–3.5 

Solar thermal + MED 1.25–6.25 

Photovoltaic energy + RO 4–11 

 

Even if solar-assisted desalination appears to be not 

competitive yet with conventional fossil fuel desalination in 

terms of unit product cost of fresh water, the continuing 

research activity in solar and desalination technologies can 

significantly enhance such technology to become an attractive 

choice for fulfilling the future global desalination 

requirements. 

V. APPLICATION TO SOLAR DESALINATION 

This section summarizes the different models developed 

following our design approach as part of the Strategic 

Sustainable Desalination Network (SSDN) project [25]. The 

aim of this project is to develop a decision support platform 

for planning the efficient deployment of a sustainable 

desalination network at a country level. 

A. Environment models 

Following our design approach, the aim of first tasks in 

designing the coupled desalination–solar energy facility is to 

clearly identify the system boundaries and their external 

interfaces with the environment. It is important to delimit the 

system(s) of interest from the external environment with 

which they interact to understand the dynamics of the overall 

system behavior. This boundary setting exercise allows the 

clearest possible view of external interfaces of the systems of 

interest before proceeding into the optimization of its internal 

interfaces. We thus depict the desalination plant and the solar 

plant as the bounded subsystems of interest, as shown in 

Figures 2 and 3, which together form the solar desalination 

system. 

The desalination and solar subsystems both show a 

relationship with physical site features and locational 

attributes such as weather conditions and water quality 

characteristics. They also depend on infrastructure 

components such as energy transmission lines and water 

distribution lines. The owners and manufacturers of equipment 

are important stakeholders in the design of these subsystems 

because the choice of technologies sets up the business and 

competitive dynamics. Furthermore, design decisions take 

place in different regulatory and standard environments. Thus, 

the external interfaces either influence or place constraints on 

the design of the subsystems. 

 

Figure 2. Desalination plant as a black box with its external dependencies and 
linkage to the solar plant 

 

Figure 3. Solar plant as a black box with its external dependencies and linkage 

to the desalination plant 

B. Model library 

Figure 4 depicts the model library. As part of the SSDN 

project, we developed two solar models (PV and CSP) and 

three desalination models (MSF, MED, and RO). Data 

organized in a geographic information system (GIS) database 

are important components. They contain site-specific data on 

locational attributes pertaining to weather (temperature, 

density, dust, cloud formation, and insolation) and seawater 

conditions (seawater temperature, salinity distribution, and 

other characteristics). The investment tradespace model (ITM) 

is a multiobjective screening model that takes site-specific 

data from the GIS database and empirical values for plant 

design parameters, and investigates the interaction of 

contractual structures with plant designs. The ITM reduces a 

very large design space to a set of feasible design 

configurations, which have the potential to maximize the 

economic value of the plant under uncertainty.  

The integrator module (IM) is central. It receives locational 

information from the GIS database and other models. Based 

on a set of rules for connectivity and integration, it should 



 

 

allow synthesizing technically feasible and valid architectures 

(with different combinations of models). The resulting 

architectures should then be simulated and evaluated given a 

set of evaluation criteria. The evaluation criteria to find the 

optimal design are metrics selected depending on the 

stakeholders. Some of these include water cost, water quality, 

energy consumption, modularity, and adaptability. Pareto 

frontiers could be produced base on these criteria.  

The interdependencies across the dimensions of the solar 

desalination problem make the integration within the IM a key 

challenge. For example, the design of the solar plant depends 

critically on the design of the desalination facility, and a 

number of design configurations may emerge. In some cases, 

constraints on solar plant design may also limit the design 

space by imposing constraints on the design of the 

desalination facility, primarily through the energy available 

for power desalination. Finally, this framework simulates 

iteratively the design performance to meet the multiple 

objectives of minimizing water cost, water shortages, and 

environmental impacts, and maximizing economic asset 

values of the single solar desalination plant. We describe in 

detail the models in the following paragraphs. The models 

were developed with the intention of simulating design 

processes and understanding how designers make trade-offs. 

Therefore, very precise predictions of plant performances over 

a wide range of operating parameters were not necessary, 

thereby making these models adequate for their purpose. 

 

 

Figure 4. Model library 

1) Desalination Models 

In the SSDN project, we addressed the two main types of 

desalination processes (membrane and thermal). We described 

MSF more generally, and studied MED and RO processes in 

detail. These processes were implemented in Matlab. 

The MSF model, as developed, includes three main 

components: feedwater/brine heating sections, multistage 

recovery sections, and multistage rejection sections. Exhaust 

heat recovery boilers provide the energy requirement for the 

evaporation process, which is later recovered in the 

condensation process. The model expects the following user 

defined inputs: number of simulation runs, number of stages, 

distillate flow rate, feedwater salinity, final stage temperature, 

top brine temperature, feedwater temperature, brine flow rate 

per stage width, and vapor velocity. Upon the completion of 

each simulation, the model outputs the following data: 

performance parameters, individual stage parameters, heat 

transfer areas, and stage flow rates. The performance 

parameters that the single MSF desalination plant focuses on 

are the performance ratio and the specific heat transfer area. 

The model calculates the heat transfer areas for both the 

condenser and evaporator. The width, length, gate height, and 

pool height for each stage is also calculated. Finally, the 

model produces the feedwater, brine, distillate, and steam flow 

rates for each stage [25]. 

The MED model as developed is a thermoeconomic model 

of MED desalination system with a thermal vapor compressor 

(TVC), which is based on the energy and exergy analysis in 

combination with economic principles. Basically, 

thermoeconomics includes the associated costs of the 

thermodynamic inefficiencies in the total product cost of an 

energy system. The proposed model considers five decision 

variables: motive steam temperature and flow rate, number of 

effects, last effect temperature, and condenser minimum 

temperature difference. Other independent variables that are 

related to the location of the site intake such as the seawater 

temperature, salinity, and ambient temperature are considered 

as parameters. The outputs of the model in which some can be 

optimized are the operating data for each effect (such as 

temperature, pressure, and flow rates), capacity, gain output 

ratio, exergy destructions of different units in the MED–TVC 

system, electrical power required, heat transfer areas, and unit 

product cost [30]. 

 

The RO model as developed is capable of simulating in 

detail the main physical processes necessary to describe the 

operation of an RO plant, and has been validated with data 

from both commercial software and real data from a 

commercial RO plant. The model also includes a simple 

financial module to assess the capital and operational costs. 

The model simulates the operation of the RO system 

describing the process in every membrane inside each pressure 

vessel, the operation of the pressure vessels, and the operation 

of the several RO trains. The model is based on solution 

diffusion models published in the literature, which have been 

applied successfully to simulate not only desalination 

processes with RO but also the transport in dialysis or gas 

permeation. Membranes from different manufacturers have 

different performances, and this model addresses such 

differences by making use of a database with individual 

specifications provided by different membrane manufacturers. 

The model characterizes the operation at steady state for 

design conditions, and it has recently been adapted for the 

simulation in part load operation assuming that individual RO 

trains can operate either at full capacity or would be shut off. 

The model currently can be run using two types of strategies: 

either the user sets the amount of feedwater that will be 

entering the plant, or the user sets the total production of water 

required from the plant. The model was also built with a basic 

financial analysis tool based on data available in the literature 

so that currently it is possible to not only evaluate the physical 

performance of the RO plant but also obtain relevant 

economic metrics. The financial module accounts for the total 



 

 

capital costs of the pumps and energy recovery devices. The 

costs of piping are neglected in this version of the model but 

can be easily included in a future iteration. The capital cost, 

operational cost, and energy consumption of the intake and 

pre-treatment system depends on the combination of the intake 

and pre-treatment choices, as well as the intake seawater flow 

rate. The model was calibrated using design data from a large 

commercial plant in the northeastern coast of Saudi Arabia on 

the Persian Gulf. The validation process was performed using 

a commercial software used as reference in this industry, the 

RO system analysis (ROSA) from Dow Chemical Company, 

which has been validated in other studies [28][29]. The RO 

model validation is presented in Appendix 1. 

 

2) Solar Models 

The solar plant components of the SSDN project are 

employed to assess the use of CSP and PV technologies in 

combination with desalination processes at various locations 

[25]. The assessment will consider electricity, heat output, 

efficiencies, associated capital investments, operation and 

maintenance costs, and possibilities for storage. The solar 

models developed are less sophisticated than the desalination 

models. We aim to use the system advisor model (SAM) 

developed by the US National Renewable Energy Laboratory 

(NREL) in the future. SAM models describe the performance 

characteristics of physical equipment in the system and project 

costs. Renewable energy options in the current version of 

SAM (2014.1.14) include wind, solar (PV and CSP), 

geothermal, biomass, and generic or custom formulations. The 

SAM tool would be used to simulate the electricity and 

thermal energy (heat) production and to assess other 

performance measures for a variety of design configurations at 

various time scales while supplying the desalination plants. 

In addition, one of the main models developed as part of the 

SSDN project that we do not report in this study is the dust 

mitigation model presented in [31]. The ultimate objective of 

this model is to study the potential impact of incorporating 

dust mitigation technologies into PV and CSP, taking into 

account their effects on performance and cost. The developed 

Matlab model focuses currently on the dust impact on PV, 

which will be adapted to CSP later. The model consists of two 

physical performance components and a financial component. 

The first layer calculates the amount of radiation reaching the 

panel surface for the chosen location set by the user, 

simulating the dust impact and the performance of each of the 

dust mitigating technologies. The second layer calculates the 

PV panel performance knowing the amount of irradiation 

actually reaching the panel: the model allows for a choice 

from a number of solar modules based on different PV 

technologies. The third layer calculates the financial 

performance, including estimates of capital investment, 

operation, and management costs for each year. The dust 

mitigating technologies being assessed for dust mitigation 

performance are electrodynamic screens, air-blowing 

mechanisms, and superhydrophobic nanocoatings. The model 

is tested using Saudi-specific data. To validate the model, the 

results were compared with those obtained from the European 

Solar Test Installation’s Photovoltaic GIS [31]. 

 

3) GIS Module 

Because one of the main objectives of the SSDN project is 

to provide a decision support system platform to evaluate and 

refine complex scenarios addressing the location, timing, and 

technology of solar and desalination investments, a GIS is 

created and currently being populated with real data for that 

purpose. All the data related to water salinity, solar irradiance, 

and dust as well as water demand are collected. The geospatial 

aspect is emphasized to support the argument that 

understanding and attempting to solve solar desalination 

systems issues must be performed on a level that exposes the 

spatial cross-dependencies of such systems. Details of this GIS 

are described in [32]. 

 

4) Investment Tradespace Model  
ITM is a multiobjective screening model that reduces a very 

large design space—a set of many feasible plant designs—to a 

much smaller set of “attractive” designs that meet the key 

objectives or design criteria. A tradespace model is a high- 

level (low-fidelity) model that relates the attributes of 

conceptual designs to their expected performance outcomes 

along multiple dimensions. The ITM developed here takes as 

inputs locational water quality attributes and information on 

water demand and energy price uncertainty, and investigates 

how these economic factors and contract structures interact 

with technical design features under uncertainty. The 

screening model attempts to simultaneously relate the 

economic asset value (for the agent) to the social value (value 

to the principal) inclusive of costs and losses owing to water 

shortages. It also produces risk profiles along these value 

dimensions, and technical system-level outcomes such as 

reliability of meeting demand under water demand 

uncertainty. Many stakeholders in the water industry inquire 

whether a tradespace model could be useful in the front-end 

conceptual design phase and early bidding phase for new 

desalination plant procurements. This trend is consistent with 

a recent movement in systems engineering in which bidders 

submit their design models in response to tenders instead of 

paper-based documents. A version of the ITM with a user 

interface was tested in a series of pilot experiments for both 

independent and collaborative design. After model refinement, 

the ITM was deployed at scale in design exercises with a large 

number of collaborators. Between October and December 

2014, approximately 140 designers at MIT participated in a 

design exercise using the ITM. Some of them used the model 

independently, i.e., they designed desalination facilities on 

their own. Other designers used the model collaboratively. In 

these cases, collaborating designers played the role of 

stakeholders and exchanged information about designs, or 

communicated with each other to identify designs that met 

their different competing objectives. The design exercises 

were controlled. This enabled the results of independent 

designs to be compared with collaborative designs using the 

ITM [26][27]. 



 

 

Example of results from the ITM  

The tradespace analysis provides some intuition regarding 

risk and performance. Regression analyses of the “reference 

class” dataset suggest that economies of scale exist for very 

small plant capacities (up to 10,000 m
3
/day of potable water) 

but are exhausted for mid-scale plants (20,000–30,000 

m
3
/day). Modular plants with mid-size units can therefore be 

most profitable because there are no returns to scale from 

increasing size upfront, when faced with uncertain water 

demand, while allowing for capacity expansions. This insight 

is consistent with other empirical observations in the literature, 

and gives rise to an experimental hypothesis that after 

observing the net present value (NPV) performance in the 

training round, the agent will initially propose mid-size plants 

under water demand uncertainty and fixed price concessions. 

The tradespace model also shows that for mid-size plants, a 

fixed-price concession allocates the water demand risk to the 

agent. It will therefore under-invest initially and then exercise 

capacity addition options in a way that lags demand. The 

minimum revenue guarantee allocates some of this demand 

risk to the principal; therefore, the agent should initially over-

invest, but also enable and exercise capacity options to take 

advantage of the upside when water demand is high. Under a 

revenue collar, the upside for the agent is truncated by the 

ceiling of the collar; hence, the agent will over-invest initially, 

but limit capacity expansion options because their revenue is 

capped.  

Results from the current version of the tradespace model do 

in fact reveal design trade-offs. Figure 5 shows the Pareto 

trade-offs in two different settings. The chart on the left shows 

a situation where the agent firm is investing in a monolithic 

(non-modular) desalination facility of a chosen technology 

(RO here) under a fixed price water purchase contract ($/m
3
 

delivered), and the firm can vary the production capacity of 

the plant as an independent variable. The horizontal axis 

shows the project’s profitability (NPV) for the firm, whereas 

the vertical axis denotes the social losses (unserved demand) 

as a consequence of the selected level of capacity. The chart 

has three different curves for differing degrees of volatility 

(0%, 5%, and 10%) in the water demand from the plant. In 

general, points on the top left of the chart indicate levels of 

capacity that minimize social losses, and points on the bottom 

right suggest those that maximize the firm’s NPV. The 

analysis suggests that as NPV increases, the social losses also 

increase because of the trade-off between the two objectives. 

We observe this result irrespective of the degree of volatility 

in demand; however, for higher levels of volatility, there are 

many levels of capacity that meet one objective but not the 

other. 

 

Figure 5. Pareto trade-offs in monolithic/non-modular (left) and modular 

(right) plant designs, with modular presenting knee points that simultaneously 

maximize project NPV and minimize the social losses of unserved demand 

4) Integrator Module 

Desalination technologies can be supplied with solar energy 

in various combinations that are shown to be technically 

feasible. We started integrating desalinization models with 

solar models described previously. The resulting architectures 

are simulated and evaluated under given evaluation criteria 

and comparison methods. Pareto frontiers could be produced 

in order to show the different design alternatives. Among 

different possible combinations of desalination processes 

driven by solar energy, PV–RO is a promising combination as 

well as an MED process coupled with a solar thermal heat 

source. The aim is to assess hybrid combinations; however, we 

started by first considering the MED–CSP and PV–RO 

combinations.  

In order to assess the MED–CSP combination, we 

conducted a thermoeconomic and performance analysis for an 

MED–TVC process driven by CSP. A solar steam generation 

system is introduced to provide the required thermal energy in 

the form of steam to two steam ejectors in series of the MED 

system using a boiler heat exchanger. This combined solar 

desalination system is built based on the CSP and MED 

models using Matlab. Effects of variations in parameters, such 

as compressed steam temperature and number of effects on 

unit product cost, specific heat transfer area, gain output ratio, 

the specific flow rate of the cooling water, exergy destruction, 

and solar field area were investigated. Moreover, a case study 

is performed to evaluate the unit product cost of desalinated 

water along the Red Sea coast of Saudi Arabia taking into 

account the variation of location-sensitive parameters, namely 

ambient temperature, solar radiation, seawater salinity, and 

seawater temperature along the Red Sea coast during 

wintertime [30]. 

For the PV–RO combination, an initial analysis is 

performed using a PV model developed at NREL. This PV 

model is being integrated with the RO model. The PV model 

as developed by NREL is one of the references used for the 

pre-design assessment of PV parks. The work being conducted 

currently considers many sizing options such as that the user 

sets the size of the RO and then the model tries to match the 

size of the PV plant according the nominal RO consumption, 

or the user sizes the PV plant, and then the model tries to 

match the size of the RO plant accordingly, or the user sets the 

size of PV and the size of RO independently. The current 



 

 

version of the model considers steady-state operation at each 

time step for 8760 h of the year off-grid operation, no storage 

option, and no minimum startup or shutdown periods. 

Knowing the installed capacities, the model is run for every 

hour of the year, calculating how many RO trains can be 

operated at each time step. At the end of the simulations, an 

aggregation of the outputs is computed to obtain relevant 

metrics (e.g., total production of freshwater and electricity, 

capacity factors, production profile for a typical winter and 

summer day, and number of startups). 

 

VI. EARLY BIDDING PHASE OF NEW DESALINATION PLANT 

PROCUREMENTS 

By building up the solar desalination platform presented in 

this study, we envision a new model-based bidding process for 

the efficient procurement of solar desalination plants, in which 

bidder-contractors submit detailed reference designs for 

consideration instead of paper-based documents. Stakeholders 

of the system, the procurement agency, and bidders in this 

case, can compare the performance outcomes of their designs 

in a common tradespace as early as the front-end conceptual 

design phase. This collaborative design approach minimizes 

significant design evaluation cycles. Eventually, this approach 

can establish a movement in systems engineering in which 

bidders submit their design models in response to tenders, 

instead of documents. 

We developed a decision support interface as an open web 

platform, which governs access to the integrated suite of 

models described earlier. The models were first developed as 

stand-alone applications and then modularized with the web 

platform to provide a set of linked models. This open web 

platform was implemented utilizing the SAFFRON framework 

[35]. As shown in Figure 6, users start first by selecting the 

technology of interest, whether it is a desalination technology, 

a solar technology, or an investment model. Each of these 

models has it is own set of design inputs that must be entered. 

As a result of these entered inputs, the outputs will be 

visualized. The variables include capital costs, operation and 

maintenance costs, water quality, water quantity, cost of 

produced water, solar irradiance, seawater salinity, and energy 

consumption.  

 

 

Figure 6. Single plant model web interface 

VII. DISCUSSION AND PERSPECTIVES 

In this study, we discussed a model-based design approach 

that allows the development and reuse of generic designs. The 

associated models can serve as a baseline for managing 

variability and flexibility by adapting the technical design to 

different contexts of use and associated business models while 

reducing engineering costs by reusing models and reducing 

the time to market. 

Following this design approach, we developed a library of 

models to support stakeholders in comparing technologies and 

systems at the facility level, including, for the time being, the 

role of solar–thermal and solar–electrical energy requirements 

based upon technology choices. A key strategic issue is the 

degree to which solar plants are dedicated and/or co-located 

with specific desalination plants, including impacts on 

operational performance and flexibility versus solar plants that 

may be located elsewhere. This model library addresses the 

design of solar-powered desalination plants by evaluating 

different combinations of solar technologies with desalination 

processes. The objective is to select the optimal output 

capacity, technology, and sub-system design specifications for 

a single desalination facility in a certain location with its 

associated technical and environmental conditions. The solar 

plants could either be connected directly to the national power 

grid or function as dedicated installations to supply electricity 

or heat only to desalination plants. An investment model 

investigates the interaction of contractual structures with plant 

designs. This investment model reduces a very large design 

space to a set of feasible design configurations, which have the 

potential to maximize the economic value of the plant under 

uncertainty. Detailed process models then work within the 

reduced design space and draw information from a geospatial 

database with detailed data on locational characteristics such 

as site-specific attributes like feedwater salinity, temperature, 

and weather, which may significantly affect solar desalination 

design requirements, and therefore, both capital costs and 

operations and maintenance costs as well as environmental 

impacts. The models run iteratively to identify solar-powered 

desalination facility designs that are optimal along a number 

of dimensions. Another objective of this model library is to 

assess hybrid desalination technologies. Indeed, the best 



 

 

solutions in the future may not be a single technology (e.g., 

MED–CSP or RO–PV), but hybrid plants that combine 

multiple technologies such as MED/RO–PV–CSP. Moreover, 

it aims at studying the effect of climate change and the 

impacts of changing weather conditions (long-term trends for 

dust and sandstorms) on PV and CSP performance over the 

long term. All these models are compressed in a one-web 

platform allowing open access to many stakeholders. The 

purpose of this open platform is also to support a new e-

bidding process, where potential contractors would submit 

their reference designs not on paper but as models that could 

be evaluated and compared directly to support benchmarking. 

This trend is consistent with the recent movement in systems 

engineering in which bidders submit their design models in 

response to tenders, instead of paper-based documents.  
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APPENDIX 1. 

RO model validation  

In this section, we present the RO model verification, which 

was performed on two levels. First, we verify the solution-

diffusion model used to simulate the RO membranes by 

comparing it against a commercial software package. Then, 

we verify the system level model by comparing the design 

data obtained from an existing RO plant to the model output. 

 

1) RO membrane model 

The RO membrane model was verified and compared to the 

ROSA program provided by Dow Water and Process 

Solutions.  

 

 

Figure 7. RO model verification: (a) varying feed flow rate; (b) varying feed 

pressure 

 

Figure 7 shows comparisons of RO unit recovery ratio 

computed by both ROSA software and the custom-developed 

RO membrane model. The RO unit consisted of 65 pressure 

vessels with 7 membrane elements per vessel; membrane type 

SW30HRLE-440i was used. In Figure 7a, the feed pressure 

was kept constant at 70 bar, and in Figure 7b the feed flow 

rate was kept constant at 500 m
3
/h. The results show some 

slight discrepancy between the ROSA and model results, but 

the difference is small (approximately 1% value difference in 

recovery ratio), and there is a consistent trend between them.  

 

 

Figure 8. RO model verification: (a) different types of RO membrane element; 

(b) varying number 

 

Figure 8 shows the comparison of RO unit recovery ratio 

computed by both ROSA software and custom-developed 

model. Feed pressure was kept constant at 70 bar, and feed 

flow rate was kept constant at 500 m
3
/h. Results show 

consistent trends with slight variations in numerical values.  

 

 

Figure 9. RO model verification, salt concentration, and recovery ratio 

 

Figure 9 shows the permeate salt concentration predicted by 

ROSA versus that of the custom-developed model. Salt 

concentration predicted by ROSA is approximately 50 ppm 

lower compared to the model results, but the two results 

follow an identical trend. This discrepancy is mainly because 

of the non-availability of official permeability values, as the 

permeability values used by ROSA cannot be known. The 

consistency in the trends of the results also suggests that the 

differences are due to different values of constants being used. 

The lumped-parameter model used in the custom-built model 

adds another level of inconsistency compared to ROSA. 

 

2) System level performance 

A detailed design proposal for an existing RO in the Middle 

East was used to calibrate and verify the system level 

predictions of the model. Table III lists the design parameters 

reported in the proposal.  

 
TABLE III 

DESIGN PARAMETERS OF EXISTING RO PLANT 

Parameter Value 

Feedwater flow rate 

Intake structure 
Pre-treatment 

Number of trains 

75,000 m3/day 

Deep open 
Conventional 

6 

First pass 

Number of pressure vessels 
Membranes/vessel 

Feed pressure 

 

65 
7 

70 bar 

Second pass 

Number of pressure vessels 

Membranes/vessel 

Feed pressure 
Brine recirculation 

 
14 

7 

14 bar 
100% 

 

The plant is a 2-pass seawater RO plant. The seawater at the 

proposed site has a TDS of 45,000 ppm with temperatures 

between 15°C and 30°C, and analyses for both conditions 

were available. The 15°C case was used for model verification 



 

 

purposes. Table IV shows the comparison of the system level 

predictions of the model versus those of the design proposal. 
TABLE IV 

MODEL PREDICTION VERSUS PLANT PROPOSAL VALUES 

  Design 
proposal 

Model 
prediction 

Water production m3/day 30,000 30,600 

System recovery  40% 40% 

Capital cost (CC) $M 50.94 39.2 
CC, intake $M 15.4 15.6 

CC, pre-treatment $M 15.36 15.68 

CC, RO train $M 5.98 8.3 
CC, other $M 14.2 - 

Energy consumption kWh/ m3 4.1 3 

Operational cost $/day - 11,300 

 

Because this proposed design was used to calibrate some of 

the model parameters, there is a very close agreement between 

the results of model prediction and those of the design 

proposal. The major discrepancies come from the capital costs 

and energy consumptions, which are not considered in the 

model such as post-treatment cost (approximately $1M), and 

civil and electrical costs (approximately $13M). The unit price 

of the membrane elements assumed in the model is based on 

online prices, which would be higher than the wholesale prices 

available between vendors and contractors.  


