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Abstract

Quantum technologies promise to revolutionize many fields, ranging from precise
sensing to fast computation. The success of novel technologies based on quantum
effects rests on engineering quantum systems robust to decoherence-the uncontrol-
lable decay of quantum coherence, one of the very features that empowers quantum
computation. To date, performance of quantum devices in the noisy intermediate-
scale quantum (NISQ) era is still limited by decoherence. The long term solution
is universal quantum computers that run on fault-tolerant quantum error corrected
logical qubits which are immune to decoherence. However, the substantial overhead
of qubits and quantum gates quantum error correction (QEC) imposes is thought to
greatly limit its utility in NISQ devices.

In this thesis, we address this challenge through a hardware-efficient approach-
leveraging understanding of the quantum system towards more efficient and robust
QEC protocols, which opens a potential avenue for useful QEC in near-term, pre-fault-
tolerant devices. We are interested in the solid-state quantum register comprising the
nitrogen-vacancy (NV) electronic spin and neighboring nitrogen and carbon nuclear
spins. First, we developed techniques that provided us with precise knowledge of
the system Hamiltonian and in turn high-fidelity and fast control. Next, we inves-
tigated and identified the decoherence mechanism of nuclear spins in the quantum
register. The dominant noise turns out to be the thermal fluctuation of the NV elec-
tron. We demonstrated a dynamical decoupling approach to suppress the fluctuator
noise and extended the nuclear spin coherence time. Furthermore, based on the pre-
cise knowledge of the system Hamiltonian and decoherence model, we customized a
hardware-efficient QEC code for dephasing induced by a common fluctuator. This
QEC code requires exponentially less overhead compared to the usual repetition code,
and is robust to model imperfections. Finally, we developed experimental building
blocks for near-term applications of the hardware-efficient QEC.

Thesis Supervisor: Paola Cappellaro
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and bias of the hidden (output) layer, which are learnable parameters

of the network. The output is the probability p1 (p2) of the state being

dark (bright) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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A-2 (a) Readout fidelity as a function of repetition number N in the repet-

itive readout. The fidelity from TM (grey) declines after Nept = 2375

due to increasing probability of "N nuclear spin flips. The fidelity

from ML keeps improving, although the increase rate slows down. For

each repetition number, we retrain the network and take the average

fidelity over 10 trainings. Error bars are the standard error of the 10

training results and are smaller than markers. Simulation parameters:

{kion= 90#MHz, A 1 = -50MHz}. (b) Fidelity comparison of TM at

its optimal repetition number Nept, ML at Nopt, and ML at N = 8000

under different NV parameters. Nept for each were respectively (from

left to right): 2000, 2375, 2750, 3125 and 2750. Error bars are the

standard error of 10 training results. . . . . . . . . . . . . . . . . . . 132

A-3 Cumulative number of photons as a function of read out repetitions.

Each trace corresponds to one input to the neural network. All traces

shown here experienced at least one "N flip, and are (a) correctly

or (b) wrongly assigned by ML. The larger number of traces in (a)

(93.78% of the total number of traces considered) reflects the high

fidelity of the ML readout. In contrast, the TM only looks at the

final photon number and compares it to the threshold (dashed line),

assigning roughly 25% in (a) and all in (b) to the wrong state. In the

figures, red lines represent time traces starting in bright state, grey in

dark state; the dashed line is the threshold for N = 8000. . . . . . . . 132

A-4 More efficient state preparation-by-measurement. The state readout

fidelity increases after discarding less trustworthy measurements and

this improves the state preparation. ML always outperforms TM and

scales more favorably with the ratio of discarded data. The solid curves

are a guide to the eye. Error bars are the standard error of 10 training

results, and are smaller than the marker. . . . . . . . . . . . . . . . . 133
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A-5 The 33-level NV model used in our simulation, consisting of 11 elec-

tronic spin levels times 3 nuclear spin levels (level spacings not to

scale). k, k47(= k6 7 ), k5 7 , k7 (= k7 3), k 7 2 and kionare incoherent tran-

sition rates connecting the corresponding energy levels. The optical

transition rate kr between excited state and ground state are set equal

for NV-and NV0 , and are assumed to be spin-conservative (spin non-

conservative part is < 1% [1741). # is a dimensionless parameter given

by the ratio of the laser power to the optical transition rate. k(de)ion

is the (de)ionization rate. We assume the (de)ionization happens in

the excited state and follows the selection rules depicted by the brown

arrow s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A-6 More efficient state preparation-by-measurement. Improved dark state

readout accuracy after discarding less trustworthy readouts. Each

diamond-shaped point represents an individual k-means test. . . . . . 135

B-1 Left: Comparison between theoretical formula (lines) and Trotter sim-

ulation (open symbols). Red, circles, m, = 0. Black (dashed line and

squares), m, = -1. Gray (dotted line and diamonds), m, = +1. This

range corresponds to our experimental condition, where RWA is shown

valid. Relative error between Trotter and theoretical curve is ~ 10-4.

Right: Comparison between theoretical formula (solid line) and trot-

ter simulation (open symbols) over large range of RF strength. Red,

m, = 0. Black, m, = -1. Gray, m, = +1. Good agreement indicates

small effects from counter-rotating term. . . . . . . . . . . . . . . . . 140
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C-1 (a) Simulation of differential measurement for T2*'. Red solid line as-

sumes perfect readout of the nuclear spin coherence. Black solid line

is one set of the differential data. The asymmetric shape and non-zero

asymptotic value indicate the presence of a common mode signal not

related to nuclear coherence. Gray dashed line shows differential mea-

surement,revealingT. (b) Nuclear coherence stored in different NV

manifolds when we apply DQ DD. Gray solid line is the full coherence.

Red solid line is the coherence stored in m, = 1) and black solid line

in ims) = 0. As coherence is stored in all manifolds, the differential

measurement is no longer effective in removing common mode noise

from the NV Te process. . . . . . . . . . . . . . . . . . . . . . . . . . 145

C-2 Engineered T1 measurement. (a) We compare the measured NV fluo-

rescence at a fixed time, t= 16ps, to the "bright" and "dark" reference

lines, given by the population states 10), 1-1), for all 200 different

traces. We clearly see that the final state can be read out with high

fidelity. (b) One of the engineered Te trace of theory (black solid line)

and experiment (red diamond). Error bars are one SEM. . . . . . . . 152

C-3 (a) Same Tf experiment as shown in Fig. 3-3b, but with DD sequence.

In this experiment, we deal with the overlap of Tf flip and DD pulses

the same way as to measure T2, demonstrating the same RTN envi-

ronment when we apply DD sequence and protect 14N . Red diamond:

experiment; black solid line: simulation; gray dashed line: fit. (b)

natural Tf measurement under a DD sequence with -r = 200ns interval

(red diamond). The fit to an exponential decay (gray dashed line) gives

3.7 ± 1.3ms in good agreement with the Te measured in the absence

of DD pulses. All error bars are one SEM. . . . . . . . . . . . . . . . 152
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C-4 Contribution of three eigenvalues to the T2 decay due to a 3LF. (a)

Decay rate corresponding to each eigenvalue as a function of the DD

interval r. Note the gray curve represents the negative eigenvalue, and

here we plot its absolute value. (b) Contribution of each eigenvalue
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Chapter 1

Introduction

1.1 Quantum Information and Science

The prosperity of the Information Age is deeply rooted in Moore's law-"the number of

transistors doubles every year per integrated circuit" (later modified by Moore himself

to every two years) [221]. Gorden Moore initially predicted the trend would go on for

another decade. It has now been more than five decades since his initial observation,

and the scaling has finally come to stagnation-it is physically impossible to further

reduce the size while maintaining the classical properties of transistors [66].

On the other hand, quantum computers, though in their infancy, promise expo-

nential speedup in tasks like factoring large numbers using Shor's algorithm [190, 193,

157]. Unicorns and startups are developing various hardware platforms and chasing

after the quantum version of Moore's law-which translates into either increasing the

coherence time by 1OX every 3 years [222], increasing the computational power over

classical ones at a double exponential rate [97], or doubling the "quantum volume"

every year [57.

Remarkably, google has recently achieved "quantum supremacy" [166], where noisy,

intermediate-scale quantum (NISQ) computers [167] outperform the most power-

ful classical computer in some task(s)-sampling random quantum circuits in this

case [141. Although in its current form, the task is of little practical use, the realization

of "quantum supremacy" serves as a milestone and reassurance of the computational
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power a universal quantum computer would possess.

It is critical to realize the big gap between NISQ devices and a universal quantum

computer. Most notably, the vulnerability to errors on the qubits, which are called

decoherence-the unwanted and uncontrollable decay of quantum coherence, one of the

very features that empowers quantum computation. Most NISQ devices are limited

by decoherence, and could only mitigate part of the effect by open loop control like

dynamical decoupling [214]. On the other side of the spectrum, a universal quantum

computer is immune to decoherence. It runs on logical qubits, which are redundantly

encoded by multiple physical qubits and protected against decoherence by quantum

error correction (QEC) [157, 191]. On top of errors on the qubit, there are errors

on the quantum control which can influence logical qubits and are not corrected by

QEC. These errors could be tackled by applying quantum control in a fault-tolerant

way, usually in the form of transversality [192, 157]. Fault-tolerancy requires extra

redundancy in addition to those required by QEC, making the overhead prohibitively

high for near-term devices. For the purpose of this thesis, I will focus my discussion

on QEC for a single logical qubit, and leave fault-tolerance out.

1.2 Error Detection and Correction

1.2.1 Error Correction in the Classical World

Error detection and correction is a very powerful tool not only in quantum computa-

tion but also in classical computers. In fact it is arguably one of the major reasons

digital computers prevailed over analog computers. The key idea is to add some re-

dundancy to the information in such a way that the receiver can check and correct

if an error has happened. One pedagogical example is to use a bitstring 000(111) to

represent the classical bit 0(1). The receiver can do a majority vote to recover the

original bit if at most one bit in the bitstring is corrupted. Before I make a con-

nection to QEC, I will first introduce some basic quantum mechanical notation for

convenience.
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1.2.2 From Classical to Quantum

The counterpart of a classical bit is a quantum bit, or qubit for short, given by an

effective quantum two-level system (TLS). To denote different qubit states we use the

'ket': 10) (|1)) for the qubit in 0(1) state. The qubit is famously known for allowing

superposition

1) =c (1.1)

where the parametrization {,<p} allows visualization of a qubit state on the Bloch

sphere surface by spherical coordinate {7, ep} (Fig. 1-1).

0)

Figure 1-1: Bloch Sphere. The green arrow defined by (9 = , = 0) represents state

2|0 ) + v/2 |1).

We now introduce density operator

P = Z PkI|)k (| = 1 (1+r,,+ rYY + rzaz) (1.2)
k

where the total probabilities of having state 1 )k is unity: EkPk = 1. The Bloch

vector r = (rx, ry, rz) represents the density operator on Bloch sphere. Note that

Ir < 1 means the Bloch vector can be either on or inside the Bloch sphere. The decay

of a quantum state from Ir| = 1 to Ir| < 1 is related to decoherence, an unwanted

effect caused by the interaction between physical qubits and their environment. The
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ability to measure all the components in in separate experiments and reconstruct the

density operator is called quantum state tomography, which gives precise information

of the qubit state.

1.2.3 The Need for Quantum Error Correction

Experimentally, all physical systems inevitably interact with their environment, and

therefore decohere over time. In turn, the quantum information they carry is lost.

Unfortunately, classical error correction schemes do not work in the quantum regime:

Firstly, due to superposition (Eq. 1.1), information is stored in the analog form of

parameters {,<p}. This is incompatible with classical digital error correction. Sec-

ondly, the no-cloning theorem of quantum mechanics [157] prohibits us from creating

an identical copy of an arbitrary unknown state. Finally, measurement collapses the

quantum states [157].

In QEC, the key idea is still to use redundancy as in classical error correction, but

one will have to detect and correct errors in a digital way. This is achieved by encoding

and detecting errors from global properties like parity of the qubit states, which

does not contain any quantum information carried by the qubits. The logical states

form the eigen-basis of the error syndrome measurement operators, with degenerate

eigenvalues. Errors will bring the logical states to the rest of the Hilbert space with

different eigenvalues. This way, results of the error syndrome is digitized to within

or outside of their +1 eigenvalue subspace, and the error syndrome measurements

do not reveal any information about the logical qubit state, avoiding collapsing the

quantum information. A pedagogical example is the simplest CSS code [191, 199,

200]-repetition code, where the logical states read

I)L = CO )L +C1)L =c 0 00) + c 1111) . (1.3)

A single bit flip error is detected by measuring So = o 1 Si = o1o3, where

of is the Pauli Z operator on qubit i. The logical states 1000) and |111) are both

the +1 eigenstate of So, S1. The classical bitstring SOS1 uniquely tells us if no error
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(SoS 1 = 00), or a bit flip happened to qubit 1 (SOS1 = 11), qubit 2 (SoS 1 = 10), or

qubit 3 (SoS1 = 01). An operation based on feedback from SoS1 could correct the

corresponding error. Error rates could consequently be suppressed to arbitrarily low

levels by increasing the QEC frequency (not considering control errors) [191, 199, 200,

193, 157]. QEC is therefore believed to be one of the fundamental building blocks for

scalable universal quantum computation [157, 65].

1.3 Quantum Error Correction: Current Status

1.3.1 Challenges in Experiments

Due to the importance of QEC, it has been an active area of research. For example,

the repetition code mentioned above has been tested in various physical platforms,

including NMR [55, 150], trapped ion [182], superconducting qubit [1701, and color

centers in diamond [203, 216, 56]. Other CSS codes and surface codes were explroed

as well [118, 46, 112]. Unfortunately, in most cases, the overhead in QEC-state

preparation, error syndrome measurement, feedback, recovery-makes the logical qubit

perform worse than its constituent physical qubits. Therefore, a benchmark called

"break-even point" was proposed, remarking logical qubit living as long as the best

physical qubit consisting of the logical qubit. At this point, the gain from QEC

balances the overhead. Before "break-even", QEC is of no practical use.

Reaching the break-even point proves challenging. As one can see from the simple

example of repetition code, the logical state of any superposition is a highly entangled

state of many physical qubits. Consequently, the logical qubit is subject to stronger

noise and intrinsically decoheres faster. To make it worse, the state preparation, error

detection and correction all require multi-qubit control, which are slow and therefore

impose a heavy overhead compared to not doing QEC at all.

As an example, for room-temperature Nitrogen-Vacancy (NV) center with 3 C in

diamond, the realization of repetition code requires 14 quantum gates for one round

of state preparation, error correction and readout, among which 10 are nuclear spin
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gates. These nuclear spin gates are slow, making the whole process (~ 1.8ms) on the

same order of the coherence time of NV, yielding a total process fidelity of - 43%,

rejecting break-even [203].

There are two strategies to reach and surpass the break-even point. One is to

improve the qubit itself-longer coherence time, higher-fidelity control, faster gates,

to surpass the overhead of QEC. Another way is to come up with a more efficient

QEC code to lower its overhead. Both methods have been successfully implemented

in experiments, which led to break-even [56, 160, 102. In this thesis, I mainly focus

on the second approach, although I have improved the quantum control and qubit

coherence as well along the way.

1.3.2 Success in Circuit QED

The possibility of an efficient QEC code has long been explored. Based on knowledge

of the noise, efficient QEC codes were proposed that require less resources and are

more robust. Examples include references [50, 90, 12, 124, 123, 173, 147]. In par-

ticular, bosonic error correction has experimentally reached the break-even point in

circuit QED system [160, 102].

In this system, researchers used a transmon coupled to a 3D microwave cavity,

where the dominant error is loss of microwave photons in the cavity. The encoding is

achieved in the over-complete basis of coherent states of microwave photons, which

are the eigenstates of photon loss, making the logical qubit insensitive to the noise. In

this case, the large Hilbert space of the harmonic cavity modes provides the necessary

redundancy for encoding. In experiment, researchers have shown longer coherence

time of the logical qubit than the best physical qubit in the system [160]. A similar

code, called the binomial code, has also shown to break-even [102]. Later, researchers

have improved the protocol to demonstrate fault-tolerant error detection [177] and

two-qubit gates between logical qubits [176, 49, 87].
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1.4 Thesis Overview

We want to share the same philosophy underlying the success of hardware-efficient

QEC in circuit QED: well-characterize our particular physical system, understand

the decoherence mechanism, customize a hardware-efficient QEC code and then im-

plement it in room-temperature NV-diamond system.

The thesis is organized accordingly: the second chapter first introduces the phys-

ical system-a quantum register in diamond comprising of an NV electronic spin and

neighboring nuclear spins. We then review two categories of nuclear spin control

techniques-direct RF control and indirect control using NV as an actuator. Based

on these two approaches, we are able to characterize different aspects of our system

and obtain precise knowledge of the system Hamiltonian. Part of this chapter was

published as ref. [44].

The third chapter studies the dominant decoherence mechanism of nuclear spins.

Using the native 4 N as an example, we propose a semi-classical model based on

knowledge of the system Hamiltonian to quantitatively predict and experimentally

verify that 1 4 N decoheres due to the thermal fluctuation of NV electron. This model

is general and applies to other neighboring nuclear spins like 1 3C 's as well. In ad-

dition we show that an open loop control on the fluctuator could help mitigate the

decoherence effect. This chapter is published as ref. [43].

The fourth chapter proposes a hardware-efficient QEC code tailored for the deco-

herence model identified in the previous chapter. The QEC code requires exponen-

tially less overhead and is more robust compared to the repetition code. In particu-

lar, one logical qubit consists of only two physical qubits, and the recovery operation

avoids the expensive nuclear-nuclear spin gate. This hardware-efficient QEC code is

therefore promising for experimental implementation. This chapter mainly consists

of ref. [123]

In the fifth chapter, we develop all the experimental tools required by the hardware-

efficient QEC code. As nuclear spins cannot be directly initialized and read out, we use

sequences developed in the second chapter as building blocks to achieve higher-level
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controls like nuclear spin state initialization, control and tomography measurement.

We further construct quantum circuits out of these building blocks and demonstrate

preparations of the logical state basis with high fidelity. The techniques developed

here pave the way to implementing the QEC code in the near future.

The sixth chapter discusses remaining challenges and describes next steps to com-

pletely realize room-temperature QEC using the hardware-efficient approach, and

possible directions beyond room-temperature QEC in diamond.

To enhance the readout fidelity of nuclear spins, we explored combining repetitive

readout and machine learning. The results are presented in Appendix. A, published

as ref. [131].
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Chapter 2

Characterization and Control of

Neighboring Nuclear Spins

Precise characterization of a system's Hamiltonian is crucial to its high-fidelity con-

trol that would enable many quantum technologies, ranging from hardware-efficient

quantum error correction to communication and sensing. In particular, energy non-

conserving off-diagonal parts of the Hamiltonian are usually more difficult to charac-

terize, even if they can give rise to subtle but non-negligible effects. In this chapter

we present two strategies for high-fidelity control and for the precise estimation of the

off-diagonal hyperfine couplings between an electronic and a nuclear spin, focusing

on the native "N and neighboring 13 C respectively. For "N , we apply the direct

radiofrequency (RF) control technique to precisely determine the transverse hyper-

fine coupling between a Nitrogen-Vacancy (NV) center electronic spin and its native

1 4N [44]. In addition, we show how this transverse hyperfine coupling, that has been

often neglected in experiments, is crucial to achieving large enhancements of the nu-

clear Rabi nutation rate. For 3 C , we first apply the indirect control using NV as an

actuator to individually address neighboring 13 C nuclear spins and precisely deter-

mine the A 1 component of their hyperfine couplings with NV electronic spin [204].

We then implement a direct control technique called DDRF, a modification to the

aforementioned direct RF control for weakly coupled nuclear spins including most

3 C 's [34]. The combination of the direct and indirect control methods allows us to
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individuall access and control all neighboring 13 C 's, and identify those suitable for

hardware-efficient QEC in our system.

2.1 A Quantum Register Based on Spins in Diamond

Quantum technologies promise to revolutionize many fields, ranging from precision

sensing to fast computation. The success of novel technologies based on quantum

effects rests on engineering quantum systems robust to noise and decoherence and on

controlling them with high precision. Solid-state systems comprising nuclear spins

have emerged as promising candidates, since the nuclear spin qubits are only weakly

coupled to external fields and thus exhibit long coherence times. The Nitrogen-

Vacancy (NV) center [91], among others, is of particular research interest. The NV

center is a naturally occurring point defect in diamond [80]. Thanks to its optical

properties and long coherence times, it has emerged as a versatile system for quantum

sensing [205, 70, 210], quantum information [225, 39] and photonics applications [6,

98].

The nuclear "N and 13C spins often play important roles in these applications. Not

only can they serve as qubits in small quantum algorithms [82, 215, 88, 216, 203], but

they can also be used to enhance the readout fidelity of the NV electronic spin [156,
142, 74, 130] and achieve more sensitive detection of magnetic fields [114, 13, 16] and

rotations [125, 9, 107]. The system consisting of one NV electronic spin, the native

Nitrogen nuclear spin, and neighboring 1 3C nuclear spins is often referred to as a

quantum register.

In order for nuclear spins to be used as good qubits, there are two important

requirements: their Hamiltonians need to be known with very high precision, as

this would enable applying e.g. optimal control methods [115, 181], and high-fidelity

individual nuclear spin addressing and control should be available, in order to perform

quantum information processing. In the following sections, we focus on 1 4 N and

13C respectively, and show how to meet these two requirements.
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2.2 Characterization and Control of Nitrogen

The Nitrogen nuclear spin is native to NV center (without loss of generality, we will

focus our discussion to "N ), and the diagonal part of the NV-"N Hamiltonian has

been well-characterized before [201, 196, 195, 73, 189, 105, 168, 2041. The transverse

hyperfine coupling is more difficult to measure [113] and published values do not

match well [69, 79, 99]. The most precise characterization to date has been achieved

by ensemble ESR techniques [79]. In that work, the ESR spectrum of an ensemble

of NV centers was measured by induction methods while applying a magnetic field

along the (110) direction to amplify nominally forbidden transitions. This method is

not applicable to single NV centers, since the strong transverse field would quench

the spin-dependent optical contrast.

Here we propose a different strategy based on second-order effects due to mix-

ing of the electronic and nuclear spin states [5] in order to identify their coupling

strength and to enhance the nuclear spin nutation rate [178], that can be carried out

with optically detected magnetic resonance. Thanks to this method we can determine

the value of the transverse coupling with a better precision than achieved previously.

The method is not restricted to the NV spin system, but could be applied more

generally to other electronic-nuclear spin systems, such as phosphorus [149] or anti-

mony [224] donors in silicon, defects in silicon carbide [220, 78] or quantum dots [42].

Precise knowledge of the hyperfine interaction tensor would enable achieving more

precise control, elucidating modulations of the NV echo dynamics or, as we show here,

achieving faster Rabi nutation of the nuclear spin [44].

2.2.1 Direct RF Control of Nitrogen

Theoretical Model

The NV ground state is a two-spin system given by the electronic spin of the NV

center (S = 1) and the nuclear spin (I = 1) of the substitutional "N adjacent to the

vacancy that comprise the defect. In the experiments, we are only interested in two of

the nuclear spin levels (m = +1, 0) that we drive on-resonance, while the third level
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can be neglected. Then, the Hamiltonian of the reduced system (see Appendix. B) is

given by N = 71, + 7t, where the secular, Ul, and nonsecular, ij, terms are:

Ni AS2 + (yeB, + A )Sz + (Q + -ynB)Iz + A, SzIz,2

V =2A1(SxIx + SyIy). (2.1)

Here S and I are the electron spin-1 and nuclear spin-1/2 operator respectively.

A= 2.87 GHz is the zero-field splitting and Q = -4.945 MHz [196] the nuclear

quadrupolar interaction. The NV spin is coupled to the nuclear spin by a hyperfine

interaction with a longitudinal component Al = -2.162 MHz [1961 and a transverse

component A 1 which we want to estimate. A magnetic field Bz is applied along

the NV crystal axis [111] to lift the degeneracy of the m. = +1 level, yielding the

electron and nuclear Zeeman frequencies yeBz and NBz where Ye = 2.8 MHz/G and

= -0.308 kHz/G.

Let |mS, MI) be eigenstates of 7l. The transverse coupling Ai mixes states con-

nected via zero-quantum (ZQ) transitions, 1+1, 0) ++ 10, 1) and 10, 0) ++ 1-1, 1). Di-

agonalization of the total Hamiltonian can then be achieved by rotating the two ZQ

subspaces with a unitary transformation UzQ- e-( 7-+"N, where we defined

o+ = i(I+1, 0)(0,1| - 10,1)(+1, 01);og = i(10, 0)(-1, 11 -|-1, 1)(0, 01) and the rotation

angles are

tan(29+) = 2A1
A+eBz- ynBz -Q' (2.2)

-2A 1tan(2V-) = -2A+ +
A - -yeBz - Al + -yBz + Q

Because of this level mixing, a field on resonance with the nuclear spin transition also

drives electronic transitions. Although the electronic spin state is unchanged to first

order, as long as the mixing is small, the nominally forbidden transitions result in an

enhancement of the nuclear state nutation frequency, as we explain below.

When applying a radio frequency (RF) field to drive the nuclear spin, the inter-
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action Hamiltonian of the NV- 1 4N system with the RF field is:

Lrf (t) = 2B1 cos(t)(yeS + VynI,), (2.3)

where B 1 is the RF field strength. The Hamiltonian can be simplified by going into a

rotating picture at the RF frequency w and applying the rotating wave approximation

(RWA), to obtain Wrf = B1(eS2 + 7I We note that since we might have

7eB1 » w, effects from the counter-rotating fields, such as Bloch-Siegert shifts of the

electronic energies, might be present. These effects were however negligible at the

fields and Rabi strengths used in the experiments (see Appendix. B). Transforming

Wrf with the unitary UZQ and denoting states and operators in the new frame by a

hat, we obtain rf=UZQ71rf(t)UzQ=-n +'e,with

Wn=V'7B 1 (alli)(ile+ao )(e+a_1|-l)(-il) i2 (2.4)

Here a,,, denote the enhancement factors in each manifold of the NV spin:

a~~1 7 e A1a+1 I + '_e -AL(2.5)
7N A + -yeB2 - 72nBz - Q'

ao ~1 -y 7( AiL
n A +J +eB) - 7(B6 - Q

A 1 1 YB
A - 7,eBz - All + -ynB2 + Q)'

a_ 1 ~1 + 7e A 1  (2.7)
7n A - yeBz - All +nBz + Q'

where we show expressions exact up to the first order in '9* (see Appendix. B for

the exact expressions). The Hamiltonian He can be neglected since electronic spin

transitions are far off-resonance.

Thanks to the strong dependence of the enhancement factors on the transverse

hyperfine coupling, we can determine A_ with high precision from measurement of

the "N Rabi oscillations.
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Figure 2-1: Left: energy levels of the reduced NV-1 N spin system, showing the
transitions that are mixed by the transverse hyperfine coupling. Right: Experimental
sequence used to measure the nuclear "N Rabi frequency in the three NV manifolds.
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Figure 2-2: 4 N Rabi oscillations at B =450G, B1 ; 3.3G in the three NV manifold
(Red, solid line m, = 0. Black, dashed line, m, 1. Gray, dotted line m,
+1). Here the dots are the experimental results, while the lines are fits to cosine
oscillations. The different baseline of the m, = -1 curve is due to small differences
in the fluorescence emission of different nuclear manifolds [106].

Experiments

We used a home-built confocal microscope to measure the transverse hyperfine in-

teraction of a single NV center in an electronic grade diamond sample (Element 6,

"N concentration nN < 5 ppb, natural abundance of 3 C ). The NV center is chosen

to be free from close-by 13C . We worked at magnetic fields (300-500G) close to the

excited state level anti-crossing so that during optical illumination at 532nm, polar-

ization of the NV spin can be transferred to the nuclear spin by their strong hyperfine

coupling in the excited state [106]. As a result, a 1ps laser excitation polarizes the

NV-'N system into the 10, 1) state.

Then, the NV spin is prepared in the desired Zeeman state by a strong microwave

(MW) pulse (t, ; 50ns) before coherently driving the nuclear spin by an RF field

on resonance with the nuclear transition |m, ,1) ++ m ,,0), for a duration r (see
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Figure 2-3: 14N Rabi Frequency in the three NV manifold (Red, solid line m, = 0.
Black, dashed line, m, = -1. Gray, dotted line m, = +1) as a function of the
magnetic field. Rabi frequency corresponds to am. The filled symbols correspond

to the experimental data, which matches closely the theoretical prediction. The
effective Rabi frequencies increase rapidly with the field, exceeding 1 MHz when close
to ground state level anti-crossing. The enhancement allows fast manipulation of
the nuclear spin even when the bare Rabi field is only B1 ~~ 3.3G. The theoretical
prediction is confirmed by simulations (open symbols) of the spin dynamics.

Fig. 2-1). Finally, the nuclear spin state is detected by employing a MW selective

pulse (t, ~ 700 ns) that maps the nuclear spin state onto the NV spin, which in turn

can be read out optically due to spin-dependent fluorescence emission intensity. The

nuclear Rabi oscillations in Fig. (2-2) clearly show that for a fixed driving strength,

the effective Rabi frequency is quite different in the three electronic spin manifolds.

2.2.2 Measuring Transverse Hyperfine by Forbidden Transi-

tion

To confirm the expected dependence of the Rabi enhancement factors on the external

magnetic field and the NV state, we measured the Rabi oscillations at the three

electronic spin manifolds with varying magnetic field Bz. As shown in Fig. (2-3),

the measured Rabi frequencies match well with the theoretical model. It is worth

noting that contrary to the static pseudo-nuclear Zeeman effect [5], there is a large

enhancement (aO - 16, a±1 ~ -9) even at zero field. Also, close to the ground state

avoided crossing (B ~ 0.1 T) the enhancement can become very large, exceeding

100. The validity of our approximation in this regime can be confirmed by numerical

simulations (see Appendix. B).

While these experiments could be used to extract A1 , this is not a practical
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method to obtain a good enough estimate. The range of magnetic field is restricted

by the need to be close to the excited state level anti-crossing, to achieve a good

polarization of the nuclear spin. The number of acquired points is limited by the

time it takes to change and properly align the external magnetic field. In addition,

there might be variations in the bare Rabi frequency in the three manifolds, because

of different responses of the electronics used to drive the nuclear spins at the different

frequencies.

In order to avoid these difficulties, we fixed the magnetic field to 509G and instead

linearly swept the amplitude of the RF driving (B1 ). With this procedure, we do

not need an independent measure of the bare Rabi frequency in order to extract the

transverse hyperfine coupling strength. The relative RF amplitudes B1 obtained when

varying the driving strength can be measured at each nuclear resonance frequency by

monitoring the RF voltage with an oscilloscope, confirming its linear dependence with

applied power.

We thus measure the effective nuclear Rabi frequency as a function of the nor-

malized RF amplitude B1 /IBi,ma. in all three electronic manifolds (Fig. 2-4). The

measured Rabi frequency Om is related to its on-resonance value by Qm= Q/2 +62,

where 6 is the detuning from the nuclear spin resonance frequency. We incorporate

this unknown, small detuning in our model and fit the experimental data with the

Rabi enhancement formulas (2.5-2.7). From the fit, we obtain an estimate of the

transverse hyperfine coupling, A I= -2.62 i 0.05 MHz, in good agreement with

recently published values and with better precision than previously measured.

In order to achieve even better precision, we need to consider all the sources of

uncertainty and errors. We find that small errors from imperfect MW r pulses and nu-

clear polarization only contribute to a reduced fluorescent contrast, but do not affect

the estimate of the Rabi frequency under our experimental condition. The detuning

of the selective MW and RF pulses from resonance and uncertainty in Al contributes

only linearly to the uncertainty. All these minor errors and uncertainties affect very

little the final uncertainty in the estimate of A1 (see Appendix. B). The major source

of error arises instead from the uncertainty in the measured Rabi frequency, which is
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Figure 2-4: Measured enhanced 1 4N Rabi Frequency in the three NV manifold (Red,
solid line m, = 0. Black, dashed line, m, = -1. Gray, dotted line m, = +1) as a
function of the bare Rabi frequency at B = 509G.

limited by photon shot noise of the optical readout process. Therefore, the precision

of the estimate could be improved with more averaging, at the expense of longer

measurement time. Currently our total measurement time is limited by the stability

of experimental setup, yielding 6A1 ~ 50 kHz. Improving the stability of the setup

by reducing thermal fluctuations and noise in the driving field (also using decoupling

schemes [37, 8]) or employing small ensembles or more efficient optical readout meth-

ods such as solid-immersion lenses 1141] and charge-state sensing [187] could provide

higher precision. Then, the limit would come from uncertainties in Ye and N,, with

relative error of 10-4 [69, 155], yielding an uncertainty in A 1 of a few hundred Hz (see

Appendix. B).

2.2.3 Discussion

In summary, we observed enhanced nuclear Rabi oscillation in the NV-1 4 N system

due to level mixing between electronic and nuclear spin states. We harness the strong

dependence of this enhancement on the transverse hyperfine coupling to determine

its value with higher precision than previously published results. Theoretical analysis

predicts an enhancement factor of almost 3 orders of magnitude when the magnetic

field is close to the ground state level anti-crossing, promising fast manipulation of

nuclear spin qubit at ~ MHz rates, with only moderate driving strengths. More

broadly, the method presented here can be applied to many other electron-nuclear
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hybrid spin systems to similarly characterize their interaction Hamiltonian with high

precisions. Our results indicate that taking into account non-secular parts of a sys-

tem's Hamiltonian is crucial to achieving faster and more accurate control of the

quantum system.

We remark that although the direct RF control of "N shown here is powerful in

determining the transverse hyperfine interaction strength A, it relies on the optical

polarization of 1 4N for measurement, and NV stays in its eigenstate during the nuclear

spin manipulation. For practical quantum information applications, it is convenient

if the effect is observable without nuclear spin polarization, and it is mandatory NV

stays in arbitrary (coherent) state during the nuclear spin operation. We will show

in Sec. 2.3.2 an extension of this direct RF control technique called DDRF, which

addresses both of these issues.

2.3 Characterization and Control of Carbon

Although the native "N nuclear spin is well understood and convenient to control,

neighboring 13C 's play an even more important role for scalability. The 1.1% natural

abundance of 1 3 C (I = 1/2) guarantees each NV is surrounded by roughly ~ 12

13C nuclear spins of hyperfine Al > 20kHz (Appendix. D), making the quantum

register a good fully-connected quantum node [34]. Since the quantum register occurs

naturally in the diamond substrate, our main focus is to control it with high fidelity.

Unfortunately, it is not straightforward to control the ' 3C nuclear spins. For

one thing, it does not have convenient polarization and readout at the single qubit

level. For another, most 1 3 C 's are far from the NV, coupling to the NV through the

magnetic dipole-dipole interaciton. This interaction falls off rapidly as r-3, yielding

an average coupling strength < 100 kHz. As a result, unlike the 1 4 N whose hyperfine

splitting is strong compared to the coherence time of NV (Ali > 1/T2*), individual

addressing of 13C has an extra requirement-protecting the coherence of NV electron.

In other words, dynamical decoupling (DD) of the NV should be built into the control

of weakly coupled 1 3 C . This way, we will have access to all the ~ 12 1 3 C as long as
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they satisfy 1/T < Al (~< 1/Tje).

Based on DD, we will describe two approaches to selectively control individual

1 3C nuclear spin while maintaining the coherence of NV in arbitrary state. The first

one uses NV electron as an actuator to indirectly control the nuclear spin. The control

rests on intrinsic hyperfine interaction between NV-13 C , and is in turn sensitive in

estimating the hyperfine coupling strength including the off-diagonal term, providing

precise information of the system Hamiltonian. The second method applies RF pulses

to directly control the nuclear spin. This method does not rely on the hyperfine

coupling, therefore grants access to more 13C 's in the quantum register, including

those suitable for implementing our hardware-efficient QEC protocol.

2.3.1 Indirect Control and Characterization

We start with the first method which uses NV electron as an actuator to indirectly

control the nuclear spins. It was first introduced in NV registers by Taminiau et al.

in 2012 [204] and extended later by the same group in 2014 [203]. In this method,

they simply applied Carr-Purcell-Meiboom-Gill (CPMG) type of DD [40] on the NV.

By carefully choosing the interpulse delay, the DD sequence could selectively control

individual 13 C via its intrinsic hyperfine interaction with NV, while decoupling NV

from the rest of the spin bath. Based on this indirect control technique, we could

extract the Sj and SzI, hyperfine coupling strengths.

Theoretical Model

Here we introduce an intuitive model proposed by Yixiang Liu to describe the in-

direct control by CPMG (Fig. 2-5). For simplicity, we assume the magnetic field is

aligned along the NV [111] axis, and we neglect 14N related Hamiltonian. Due to the

large electronic energy scale, we take the secular approximation and keep only terms

commuting with S,. After these simplifications, the Hamiltonian in the interaction

picture between NV- 13C reads:

1 = WLIz + AllSzIz + A1LSzI, (2.8)
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where WL is the nuclear Larmor frequency, Al (A 1) are the transverse and perpen-

dicular hyperfine interaction strength for components SzIz(SzIx), respectively. Note

that A 1 here is for ZX term, and not to be confused with that for the XX, YY terms

used in the previous section for 14 N . The effect of XX, YY couplings is second-order

and is neglected here.

Focusing on the nuclear spin, we obtain the following Hamiltonian:

?ir1= (WL+A 11A(t))I+AA(t)I1,- (WL+ , +AA(t)I. (2.9)
2

The last approximation assumes A(t) is balanced and toggles much faster than Al.

A(t) depends on the NV state:

A(t) = 0, NV in Im, = 0) (2.10)
il, NV in Im, = 1)

Without loss of generality, we assume NV is toggled back and forth under CPMG

sequence between 10) and |+1) from now on. Then A(t) takes the form of a square

wave, and its Fourier transform is:

1 2 °° (-1)k+1 27r(2k - 1)
Aa2)k--ii cos( 4T t), (2.11)2 7E 2k-1 4T

where 2r is the interpulse delay in CPMG (Fig. 2-5). A± denotes the nuclear spin

evolution conditional on NV starting in |+1) or 10). Plugging Eq. 2.11 into Eq. 2.9,

it is obvious that CPMG drives a generalized Rabi nutation of the nuclear spin at

frequency w= ir(2k - 1)/2r, with amplitude ( _)k+A:
(2k-1)ir'

Al 21 1
~(WL +Al )I ± - (Cos wot + - Cos 3wot + - cos 5wot .. .)IX, (2.12)

2 7 3 5

where wo = 7r/2T.
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We see immediately, for (2k - 1)wo WL + All /2, or

T (2k - 1)7r (2.13)
2wL + A||

the kth order will resonantly drive the nuclear Rabi nutation, with a Rabi frequency

of

Wrabi A 1  (2.14)
(2k - 1)7r

along the x(-x) axis if NV starts in 1+1) (10)). Therefore, the equivalent operator of

CPMG control whenTis on resonance (Eq. 2.13) can be written in a compact form

CRx(V) = 10) (0|1 R_(V) +11) (11 R(d), (2.15)

where R,(d) means a rotation of angle V along axis <p.

One advantage of this conditional rotation (CR) is that by adding a MW 1 pulse2

on NV both at the beginning and end of the sequence, we can observe successful

addressing of 1 3C even when the nuclear spin is in a thermally mixed state. It is a

convenient feature in experiment.

To see this effect, we explicitly analyze two conditions:9= {V , r}. The NV is first

prepared in (|0)+|1)) before subject to CR (9) and finally rotated back by a MW

pulse followed by optical readout. In the former case CR2(2)m = +,m1 = =

(|0, ~Fy) + |1, y)) entangles the NV electron and selected individual 3 C nuclear

spin. The final measurement of the subsystem (NV) of a bipartite entangled state

yields loss of coherence and a mixed state of NV electron. In the latter case CR2(7r)in= I+

-, ijresulting in a separable state between NV and 1 3 C ,and inducing a 7r phase

shift to the NV, which is subsequently readout by the last 2 pulse. Both cases yield

a darker final state (p = 1 or 11)). In fact, as long as r is on resonance with a 13C

any 0 < V < 27r results in a darker final state. It is a convenient feature in identifying

individual 1 3C 's without the need to polarize them or fine-tune V (Fig. 2-6).
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Figure 2-5: Top: Illustration of a CPMG-8 sequence. The unit block (-T - 7 - T) is
repeated 8 times. Bottom: A(t) (gray) and the Fourier decomposition up to the 1st,
2nd and 3rd orders.

Experiment

The experimental setup is the same as described in Sec. 2.2.1. For results shown in

this section, we work under a magnetic field of 405 G where the 532 nm laser polarizes

both the NV and the 1 4 N to 10,1) state.

To demonstrate our ability to selectively address and control individual nuclear

spins, the NV is first prepared in the superposition state (0) + 1)) by an on-

resonant MW 1 pulse. We then apply CPMG sequence of the form(-T - r-r- )N

on the NV. Each block consists of two free precession periods of durationT, separated

by a MW r pulse. The whole block is repeated N times (N is also the total number

of 7r pulses), and constitutes the conditional rotation (CR) gate. Finally, another '2

pulse brings the NV state back to its eigen-basis and subsequently read out. In the

first experiment, we probe the environment of the NV and identify nearby 1 3C 's. We

fixed the number of pulses to N = 32 and swept T, as shown in Fig. 2-6. The dips

in the spectrum indicate successful two-qubit operations between NV and 13 C (CR

gate, Eq. 2.15).
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Once we identified the resonance conditions for individual 13C 's from the spec-

trum, we moved on to demonstrate our ability to control the nuclear spins. The same

sequence was used, with r fixed at the dip positions, and N swept. This results in

nuclear Rabi nutations, as shown in Fig. 2-7.

Characterizing Al and A 1 Hyperfine Components

From a CPMG spectrum scan as shown in Fig. 2-6, one can identify a family of dips

belonging to the same 13 C corresponding to higher harmonics of the effective driving.

Following Eq. 2.13, a linear fit to the position of these dips gives an initial estimate

of Al (Fig. 2-7). In addition, we gain the knowledge of the corresponding harmonic

order k for each dip from the fitting.

We then extract A 1 from the nuclear Rabi oscillation as shown in Fig. 2-7. Ac-

cording to Eq. 2.14, we can estimate Aj from the nuclear Rabi frequency.

So far we have obtained an estimate for the hyperfine coupling components Al, Ai

separately. The precision is less than ideal due to various approximations we have

made that lead to the simple form of Eq. 2.13, 2.14. To better characterize the

hyperfine components, we numerically fit to the system evolution under Hamiltonian

)N

using all the data available to avoid inaccuracies introduced by the approximations.

This includes both the CPMG spectrum and the nuclear Rabi nutations relavent to

the 1 3C of interest. Such fits are shown as solid colored curves in Fig. 2-6, 2-7. The

fitted values for the three 13 C 's are listed in Table. 2.1.

13C All A 1

1 -85.6(4) 59.8(5)
2 -43(5) 19.4(4)
3 30(4) 26(1)

Table 2.1: Fit of the hyperfine interaction strengths of the three 13 C 's as shown in
Fig. 2-6.
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Discussion

In summary, the CPMG method provides aconvenient way to decouple NV from

all spins in the environment but aparticular 1 3Con resonance. It achieves both

protection of the NV from the rest of the spin bath and control of 3 C usinga simple

CPMG sequence. Moreover, it allows observation of successful individual nuclear

spin addressing through NV, without the need to polarize 1 3 C or fine-tune control

parameters like the number of pulses. This is abig experimental advantage to quickly

and thoroughly probe the unknown' 3 C environment neighboring an NV.

The nuclear spin control by CPMG is not limited to the CRgate discussed above.

A more detailed discussion can be found in [203]. In short, forTr= (2-1), the nuclear

spin conditionally rotates alongtx axes as controlled by NV; forT r =2TA',the

nuclear spin unconditionally oscillates around xaxis independent of the NV state;

for otherTr, the nuclear spin undergoes arotation along the zaxis. Therefore, by

appropriate choice ofTr and total pulse number N, one canrealize universal control

of 13 C by this indirect control technique [203].

However, as one might have noticed, there are afew potential drawbacks in this

method: firstly, it heavily relies on the intrinsic A 1 to drive the nuclear spin, limiting

our choices of 1 3 C 's. In particular, all13 C 's aligned close to the NV direction or
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"C 's distant from the NV have small A_ terms in their hyperfine interaction matrix,

preventing efficient control by CPMG. Secondly, the number of pulses required to

achieve any operation scales linearly with WL, in other words with the magnetic field.

Therefore, as the magnetic field increases, pulse errors start to dominate, preventing

high-fidelity nuclear spin control at high field. This can be seen from a combination

of Eq. 2.13, 2.14: as the field increases, the Rabi frequency remains unchanged, but

the interpulse interval Tgoes down inversely proportional to WL, resulting in the total

number of pulses proportional to wL. Last but not least, at high field, T isgenerally

small, posing a challenge to the hardware time resolution (typically 1 ns) [10, 2321.

As we will see later in Chapter 5, faithful realization of our decoherence model

requires minimizing effects from A1 . Therefore we introduce another nuclear spin

control method in the following section, which is independent of A1 . The CPMG

method introduced here is still useful, as it conveniently and accurately characterizes

the Hamiltonian of weakly-coupled "C .

2.3.2 Direct Control via DDRF

Similar to the direct control of "N, RF could also drive the 1 3 C 's given their

unique hyperfine coupling strength (therefore unique RF frequency). However, unlike

the previous case with "N , most 1 3 C nuclear spins remain unpolarized under laser

illumination. In addition, the hyperfine coupling of "C is generally weak, resulting

in very different timescales of the dynamics of NV electron and "C nuclear spins. It

is critical the coherence of NV is protected during manipulation of the nuclear spin.

On the other hand, the CR gate achieved by the indirect control technique dis-

cussed above allows convenient readout signal for successfully addressing individual

nuclear spins even when they are unpolarized. Besides, the NV electronic spin is

protected from the spin bath by DD built intrinsic to the gate.

To this end, a technique combining both the DD on NV and direct RF drive

on the nuclear spin is highly needed. Early works are restricted to strongly-coupled

nuclear spins [39, 198, 211, 101], and more recently a sequence called "DDRF" was

introduced by Bradley et al. [34], circumventing previous restricitons and allowing
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control for weakly-coupled nuclear spins. We will briefly review the working principles

of DDRF next. Modifications are then introduced to the original sequence to sidestep

a technical challenge and realize faster control in experiment. Finally we show how

the combination of direct DDRF control and the indirect control approach enables

us to identify 13C 's with small A 1 terms, and DDRF grants us access to these 3 C 's

that are suitable for hardware-efficient QEC experiments.

DDRF Sequence: Theory

The Hamiltonian between NV- 1 3C is the same as Eq. 2.8:

' = WLIz + AISzIz + A1 SzIx. (2.17)

A direct RF field at frequencywi= f(wL ±A)2 A selectively addresses a

specific 13C when the electron is in m = ±1) state. Without loss of generality,

we consider the effective spin-1/2 subspace of NV spanned by im = 0,+1), and

ignore A 1 . The corresponding nuclear spin Hamiltonian conditional on NV in state

|0) (1+1)) in the rotating frame of RF field takes the form

o= -(A + 6)Iz + Q(cos yIx + sin ply),

W1 =-6Iz + Q(cos pIx + sin pIy),

where J is the detuning of RF driving field from the resonance frequency C1 = wi+6,

Q the nuclear Rabi frequency and p the phase of RF field. To present a clean physical

picture, we assume All» Q in the following, and ignore the off-resonant driving term

in No 2. Conditional on the NV electronic spin state, the nuclear spin either precesses

around the z axis at a rate -(Al + 6) (m = 0)), or undergoes generalized Rabi

oscillation around axis n oc (Q cos p, Q sin p, -6) at frequency v/62 +Q2 (|ms = +1)).

The analysis above concerns RF control of nuclear spins. We now look at DD that

'For a complete treatment, see the supplementary material of [34]
2In most experiments, All - 10 - 100 kHz, while Q - 1 - 3 kHz, satisfying All» Q. However,

the off-resonant driving from Q in 'H0 poses significant issues when RF pulse is divided into very
short segments. In experiments, we always numerically check our sequence to avoid large influence.
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protects the NV electron, and combine DD and RF to realize desired nuclear spin

control.

Similar to the indirect control technique, we use CPMG type of DD of the form

(t-r- -o)N to decouple NV from the environment. The RF field is interleaved into

N + 1 segments to fit into the free precession periods of CPMG, and are labelled by

k = 1,... , N+1 (Fig. 2-8). Depending on the initial NV state 10) (11)), the even(odd)-

k RF segments are resonantly driving the nuclear spin, while in the other segments

the nuclear spin undergoes free precession along z axis for an angle p0 = -T(All - 6).

To constructively build up the RF driving of the nuclear spins, we have to counteract

the effects of free precession via the phase of RF field. As shown in [34], by choosing

the appropriate RF pulse phases 3

k = WO + (k - 1)cpr k odd (2.19)
(k - 1)p,(+7r) k even

one drives the nuclear spin coherently in alternating DD interval blocks (Fig. 2-8).

The optional -r phase in even-k segments switches the DDRF control between an

unconditional (7r phase off) and a conditional (-r phase on) nuclear spin gate on

the NV electron. The phase offset po helps set the nuclear spin driving axis. The

conditional gate is of similar form as the CR gate achieved by CPMG (Eq. 2.15)

CRw()) = 10) (01 R-(d) +11) (11 Ro(9). (2.20)

Therefore, a similar advantage immediately manifests: signal from successful individ-

ual nuclear spin addressing is present even when the nuclear spin is unpolarized.

The DDRF gate has one significant advantage over indirect control: it does not rely

on Aj to drive the nuclear spin, allowing control of "C 's with small A1 . These `C 's

widely exist (Appendix. D), and match well with our hardware-efficient QEC model

to be discussed in the following chapters. DDRF therefore is an enabling technique

that grants us access to the very nuclear spins suitable for hardware-efficient QEC

3Note there is an overall 7r phase shift from [34], for convenient definition of x axis.
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implementation. As shown later in Sec. 2.3.2, we identify two new 1 3 C 's with DDRF

which are invisible in the CPMG spectrum

In addition, DDRF is convenient in several other ways: first, the freedom in

choosing 6 allows nuclear spin rotation along any arbitrary axis, therefore any SU(2)

control in one gate operation. In contrast, the indirect control via CPMG practically

only accepts rotations along x or z axes4, making many useful gates prohibitively long.

Second, the RF drive permits freedom in choosing T to optimize the NV coherence.

With the modifications detailed in the next section, DDRF serves as a convenient

building block for larger scale quantum information applications like QEC (Sec. 5).

DDRF Sequence: Improvement

Experimentally, there is one inconvenience of DDRF in its pristine form: NV is a

sensitive magnetometer, and picks up a phase induced by the z component of the

RF driving field. Consequently, a phase shift is required for all the MW pulses to

apply correct control and for accurate interpretation of the results. In principle, the

required phase shift could be calculated and compensated in the sequence if the precise

waveforms of RF pulses are known. In reality, it poses a hurdle to the usage of DDRF

as a single building block for larger quantum circuits. Furthermore, RF amplifiers

introduce nonlinear response, making the RF induced phase shift unpredictable. As a

result, the original work [34] does not use an RF amplifier for the most part to avoid

this issue, making the DDRF gate too slow to keep NV coherent at room temperature.

To make the nuclear spin control fast enough to be compatible with NV's coherence

time at room temperature, we have to incorporate the RF amplifier. This requires

an improved DDRF sequence that builds in cancellation of the phase on NV induced

by RF, in the absence of perfect knowledge of the waveform.

Here we improve the original DDRF sequence to build-in this phase cancellation

by introducing symmetry into the sequence. This combines two experimental tricks.

We start by theoretical analysis of the phase induced by RF on NV.

4Limited by the hardware time resolution, it is experimentally prohibitive to achieve high-fidelity
control along arbitrary axis using CPMG.
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Figure 2-8: (a) Illustration of the pulse sequence employed to realize a DDRF gate.
Dynamical decoupling pulses on the electron spin (purple) are interleaved with rf
pulses (yellow), which selectively drive a single nuclear spin. (b) Illustration showing
that the initial state of the electron spin determines which RF pulses are resonant with
the nuclear spin. If the electron spin starts in 11), the odd RF pulses (red) are resonant.
For initial electron state 10), the even (blue) RF pulses are resonant. The phase of
each RF pulse is adapted to create the desired nuclear spin evolution, accounting
for periods of free precession according to Eq. 2.19. (c) Nuclear spin trajectory on
the Bloch sphere for a conditional rotation with N = 8 electron decoupling pulses.
Starting from the initial nuclear state It) (yellow), the red (blue) path shows the
nuclear spin evolution for the case where the electron starts in the state 11) (10)). The
final state vectors are antiparallel along the equator; therefore, the gate is a maximally
entangling two-qubit gate. (d) Top-down view of (c). The figure is reprinted from
ref. [34].
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The RF field along z axis takes the form Bz sin(wit + y). The phase on NV due

to an RF pulse of durationtRFis therefore [100, 101]

ItRF41(tRF, J)= f sin(wt + ), (2.21)

where Q, = yeBz is the energy splitting of NV due to the z component Bz of the

RF driving field. If Qz is constant, we see immediately by enforcing each RF pulse

length to be an integer number of RF periodsWitRF = 2m7, m E Z, the phase on

NVD (tRF, W) cancels out independently of the RF pulse phase W. This is convenient

because it leaves the freedom of choosing W to satisfy Eq. 2.19, and it works out nicely

for the scheme of Bradley et al. [34] in the absence of an RF amplifier. Nevertheless,

the nuclear spin control is slow due to the weak RF field. The gate time is comparable

to NV's coherence time at room temperature, making coherent control of the quantum

register at room temperature challenging. The control speed could be increased by

an RF amplifier, however, the non-linear response of the amplifier during the pulse

rise and fall causes deviation from theory. In particular, the amplitude Qz is no

longer constant in time in Eq. 2.21. Consequently, when an RF amplifier is in use,

the uncertainty in D requires the authors to sweep the phase of the readout MW ! 2

pulse for every spectroscopy data point to distinguish loss of coherence (successful CR

gate) from an NV phase shift due to RF pulses. This makes the whole experiment

unnecessarily long, as shown in Fig. 3 of ref. [34]. The uncertainty in O therefore

prohibits the sequence in its current form from being implemented as a single block

for larger quantum circuits.

We remark that 4 is fully determined by the waveform of RF control field. This

statement holds true even when the RF field is distorted from sinusoids due to the

RF amplifier. Based on this, we come up with the second trick to refocus and cancel

out the unknown D by introducing symmetry in the improved DDRF sequence, in

the presence of unknown non-linear response of an RF amplifier.

Here we make a distinction between the length of RF pulse tRFand half of the

interpulse delay r in DD, setting tRF < T-. We first slice all the 2 t RFRF pulses in
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Fig. 2-8 into two pieces of length tRF. We then look at each building block of DDRF

(-T - I - T-) (Fig. 2-9). When the RF phase relation is satisfied (Eq. 2.19), the

freedom in placing RF pulse wherever inside r allows us to enforce the same absolute

initial phase of RFL and RFR, which are the RF segments to the left and right of the

k - 1 th MW 7r pulse (Fig. 2-9)

L-1 + P_1 =it-1 + Wk = 0, (2.22)

where tL_ 1 ,t_ 1 are the starting time of the two RF pulses, to be solved for. The

two RF pulses RFL and RFR have the same absolute initial phase, frequency and

duration, therefore the same exact waveform. Their corresponding phase effects <bL/R

imposed on NV are the same. Although the values of <»L/R are unknown, they will

be cancelled by the MW 7r pulse between them.

So far, we have assumed the waveforms of distinct RF pulses are the same after RF

amplification. This is supported by experimental results. We observed reproducible

phase effects on NV induced by the RF in the original DDRF sequence, indicating

that the response of RF amplifier during rise and fall is fixed and reproducible in

experiments even though it is unknown'. Therefore, even with no knowledge of the

exact form of the amplifier's transfer function, it is possible to introduce symmetry

to the original DDRF sequence to refocus and cancel out the effects.

Furthermore, to avoid instability in the response of RF amplifier, we enforce an

additional restriction: the absolute phase at the beginning of every pulse is 0, such

that the amplitude of every RF pulse starts from and ends at 0 (Eq. 2.22).

Combining all these constraints together:

(k - 1)Wr k odd

(k - 1)Wp,(+7r) k even (2.23)

WltRF= 2m7r, m E Z

W L R= +S~kO
Wtk1 + Pk-1 Wtk_1 + (P = 0

'This is also indicated by results in Fig. 3 of [34]
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we have a DDRF sequence with built-in symmetry that cancels out any unwanted

phase effects on NV due to RF waveform distortion. This allows usage of an RF

amplifier, enabling faster nuclear spin control than NV decoherence at room tem-

perature. This sequence is in turn a suitable building block for room-temperature

applications.

DDRF Sequence: Experiment

In the DDRF experiment, we follow the same steps as with indirect control: we first

preparetheNV in(0)+1)), then apply the conditional DDRF sequence. A final

MW Z pulse brings the NV back to its eigenbasis before optical readout. We used

an RF amplifier, and the modifications to the original DDRF sequence allowed us to

cancel out the phases on NV induced by RF.

As a first demonstration, we fixed N = 32 and swept the RF frequency to obtain

the spectrum of neighboring 13C of the NV, shown in Fig. 2-10(a). Note that to

maximize the contrast of spectroscopy, we chose = , x,  = 7r in Eq. 2.20, which

is not an entangling gate. At the end of the gate, the NV is decoupled from the

13C , and picks up a 7r phase shift if the RF pulse is resonant with a specific ' 3 C ,

manifesting itself as a dip in the spectrum. For better spectral resolution and to

avoid crosstalk between nearby 13C 's, a total gate time of - 1 ms was used. From

the spectrum, we can clearly identify 8 distinct 13C dips, which are labelled by their

index in Fig. 2-10(a).

Care has to be taken in mapping dips to individual 1 3 C 's. Constructive build-up

of RF driving field is possible when

(WL - W1 )w= 9: + 2m7r, m E Z. (2.24)

In other words, for C1 = wi + 2,one might expect dips due to off-resonant driving.

The corresponding amplitude has to be determined numerically. In DDRF spectrum

experiment, r = 17.141 ps gives an off-resonant dip every 58.34 kHz. We find dips

#3,5,6 correspond to the first order off-resonant driving of 3C 's D, E, A located
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at dips #7,8, 1. This is further confirmed by a different DDRF spectrum using r =

15.237 ps, shown as crimson dashed line in Fig. 2-10(a). The dips #5,6 disappeared,

while the dip at position #3 is now off-resonantly driving the 1 3 C E (previously D).

In total there are 5 1 3 C 's 6, and we label them 13 C A (dip #1), B (dip #2), C (dip

#4), D (dip #7), E (dip #8), as shown in Fig. 2-10(a).

After we have identified and isolated individual 13C 's, we show selective nuclear

spin Rabi nutation. We use 1 3 C A as an example. Fixing r = 15.231 ps = 8 , tRF=

12.380 ps = 6 , we swept the number of 7r pulses N and observed the nuclear Rabi

oscillation of a weakly coupled 1 3C (Fig. 2-10(b)). We attribute the decoherence to a

combination of inaccurate RF frequency, T2 of NV electron, T2** of 13 C , and pulse

errors. Note that as mentioned earlier, the off resonant RF driving effect becomes

significant when we decrease bothtRF, T. Checked by both numerical simulation and

experiment, this happens whentRF, T ~< 10 ps for this 13C . Therefore, we avoid

sweepingtRFdirectly and instead sweep N. Note that in addition to the decay, the

contrast is limited by crosstalk from nearby 13C as well. The detuning from driving

a nearby 1 3 C is roughly on the same order of the nuclear Rabi frequency, causing the

DDRF sequence to drive simultaneously multiple 13C 's. In this case, from simulation

we estimate - 5% infidelity due to the nearest neighbor 13 C B. This can easily improve

by increasing the total gate time and using weaker RF driving power, as done in the

spectrum measurement (Fig. 2-10(a)).

Finally, we compare the CPMG spectrum (Fig. 2-10(c)) and DDRF spectrum

(Fig. 2-10(a)) of the same NV. As discussed before, DDRF does not rely on A, to

drive the nuclar spin. In turn, all 13 C 's with sufficient hyperfine coupling should

appear in the DDRF spectrum, regardless of the strength of A 1 . On the other hand,

the CPMG control rests exclusively on A 1 , and only 13C 's with large enough A1 will

appear in the CPMG spectrum. Therefore, dips that appear in DDRF spectrum but

not correspondingly in the CPMG spectrum suggest small A 1 hyperfine interaction

strength. We have examined all 5 3 C 's, and found corresponding dips in the CPMG

6This number is significantly lower than the average of 12 13 C 's in a quantum register (Ap-
pendix. D), because we select NVs with long coherence time T2* with ramsey experiment, which
indicates a smaller nuclear spin bath that causes dephasing.
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Figure 2-9: Improved DDRF sequence. Firstly we split the continuous 2T RF pulses
in Fig. 2-8 into two separate tRF segments. Phase of each RF segments Wk still follows
Eq. 2.19. In additional to enforcingW1tRF= 2m7r, we dynamically adjust the starting
positions tL_ 1 ,t 1 of each RF pairs to the left and right of the k - 1th 7r pulse, such
that the absolute phase for RFL and RFR is W1 tk-1 + Pk-1 = wlt- U1 + Wk = 0. Then
the amplifier response is stable and the phase on NV induced by RFL(R) cancels out
each other by the refocus of the k - 1th r pulse.

spectrum for 13C B, C, E, which are labelled by red circles in Fig. 2-10. There are

no significant dips for 13 C A, D, which should appear at positions indicated by the

crimson dashed line and black dash-dotted line in Fig. 2-10(c). This indicates A1 ~<

12 kHz for 13 C A, D. Going to high N of CPMG spectrum, one can set a better upper

bound for A 1 . As we will show in the next two chapters, these 13C 's share the same

decoherence model as the native 1 4 N , which is pure dephasing induced by a common

fluctuator, and are suitable for hardware-efficient QEC.

2.3.3 Conclusion

In this chapter, we have introduced the naturally occuring quantum register of NV-
1 4N -1 3C . In a natural abundance diamond chip, centered around each NV, the

quantum register consists on average of 12 13 C nuclear spins that has sufficient hy-

perfine interaction strengths suitable for selective addressing and control on the single
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Figure 2-10: (a): DDRF spectrum of one NV at 490 G. Each of the 8 dips addresses
an individual 3 C . The gray dashed line indicates the Larmor frequency of 1 3 C .
(b): DDRF Rabi oscillation. (c) CPMG-32 spectrum of the same NV. 3 out of the 5
13C 's identified in DDRF spectrum manifest themselves via dips in CPMG spectrum,
shown by red circles. We do not observe dips due to 13 C A, D, which should appears at
positions indicated by the crimson dashed line and black dash-dotted line, indicating
A, i< 12 kHz.
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spin level. We have shown single nuclear spin control of both 1 4 N and 13C .

Since precise quantum control relies on accurate knowledge of the system, we in

turn use quantum control to deduce with high precision the hyperfine interaction

strength between the nuclear spin under control and the NV electron. Using two

different nuclear spin control techniques, we could extract different components of

the hyperfine interaction matrix. In particular, for direct RF drive, as demonstrated

with 1 4 N , we observed enhanced nuclear Rabi oscillation due to forbidden transition.

We harnessed the strong dependence of this enhancement on the transverse hyper-

fine coupling to determine its value with higher precision than previously published

results. For indirect control using NV as an actuator, as demonstrated with 1 3 C via

CPMG sequence, we achieved universal control of the nuclear spins. Through the

resonance condition and nuclear Rabi frequency, we extracted the S.I, component of

the hyperfine coupling matrix.

Furthermore, we demonstrated an improved DDRF sequence, which combines the

advantages of both indirect and direct control techniques. In particular, it drives

the nuclear spins independent of the transverse hyperfine coupling strength. Our

modification improves the original DDRF sequence and cancels out any effect from

the RF driving field on NV electron. This allows the use of an RF amplifier, and

enables more than 4X faster nuclear spin control, making the sequence suitable as

a single gate to be implemented in larger quantum circuits, as shown in our QEC

experiments in Chapter. 5.

Last but not least, the combination of CPMG spectrum and DDRF spectrum

uniquely identifies 1 3C 's whose Aj hyperfine terms are small. This provides us a

convenient way to isolate 1 3 C 's whose decoherence is predominantly pure dephasing

induced by the thermal fluctuation of NV (see Chapter. 3), suitable to form the logical

qubits in our hardware-efficient QEC code (see Chapter. 4, 5).
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Chapter 3

Study of Nuclear Spin Dephasing

Mechanism

Equipped with experimental tools to individually address, characterize and control the

nuclear spins (see Chapter. 2), the quantum register in diamond proves a promising

platform, where the nuclear spins serve as physical qubits and the NV electronic

spin as the ancillae. Following the philosophy of hardware-efficient QEC, we want to

understand the decoherence of these qubits better and develop a hardware-efficient

QEC code that requires less resources and is more robust.

In this chapter, we focus on the intrinsic strongly-coupled "N nuclear spin as

an example. We first quantitatively understand its decoherence mechanism, identi-

fying as its source the electronic spin that acts as a quantum fluctuator. We then

propose a scheme to protect the quantum memory from the fluctuating noise by ap-

plying dynamical decoupling on the environment itself. We demonstrate a factor of

3 enhancement of the storage time in a proof-of-principle experiment, showing the

potential for a physical qubit that combines fast operation with long coherence time.

We remark that this dephasing model generalizes to all 13C 's in the quantum

register-they are strongly coupled to NVI, and one single Ti flip of NV fully decoheres

the 13C 's. In other words, the dephasing noise for different nuclear spins is correlated.

'Here by "strongly coupled" we compare the hyperfine interaction strength to the fluctuator's flip
rate (1/Tf). This is not to be confused when we refer to "weakly-coupled" 13C , meaning All < 1/T2*e.
The meaning should be clear in the context.
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This lays the foundation of our hardware-efficient QEC code induced by a common

fluctuator, as detailed in the next Chapter. 4.

3.1 Introduction

Quantum technologies, especially those based on solid-state systems such as supercon-

ducting qubits [65], Nitrogen-Vacancy (NV) centers in diamond [69, 63], and dopant

spins in silicon [233], have seen significant progress over the past few decades. Qubits

embedded in solid-state systems are advantageous because of their compatibility with

existing semiconductor fabrication techniques that can offer avenues for scalability.

The drawback, however, is their intrinsic noisy environment due to strong couplings

to their solid-state host. The fluctuating environment renders qubits fragile, leav-

ing demonstrations of even small scale quantum computing devices (20-50 qubits)

challenging [25].

While further improvements can come from more carefully engineering the qubit

systems to remove undesired noise sources and reduce the number of decoherence

channels, achieving fault tolerance will still require some form of quantum error

correction (QEC). Recent developments include both theoretical proposals for more

powerful QEC protocols [206] and experimental attempts at correcting or detecting

quantum errors [216, 203, 129]. Despite these advances, we have only seen few ex-

periments yielding better error rate of the error-corrected qubit than the best single

qubit in the same system [160, 102]. This is because the recovery operation needed for

QEC most likely introduced more error than it corrected. A simpler QEC strategy,

avoiding measurement and recovery operations, is to decouple qubits from the envi-

ronment using dynamical decoupling (DD). This technique, going back to NMR's spin

echo [95], enjoys great success thanks to its ease of implementation. In addition, it is

compatible with many quantum information processing protocols [116, 39, 230] and

can be concatenated with active QEC [163, 36, 33]. Still, DD has traditionally been

applied to refocus slow-varying, weakly coupled environments that can often be mod-

eled as classical bath [28], while its usefulness to decouple from strongly interacting
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quantum environments is less clear [19].

Here, we explore the effectiveness of DD to increase the coherence time of a spin

qubit in the presence of a strongly interacting quantum fluctuator. We first introduce

and verify a quantitive model of the decoherence process of a qubit (the "N nuclear

spin of a Nitrogen-Vacancy center) subject to random telegraph noise (RTN) arising

from the fluctuation of either a spin-1/2 or spin-1. Then, based on the model, we

find the requirement on the DD control sequence that achieves qubit protection from

the RTN. It turns out that, due to the slow control on nuclear spin compared to the

hyperfine interaction A, any DD sequence applied to the nuclear spin would not meet

the requirement and still yield the same coherence time, T2**. However, we find that

by modulating the noise source itself we can efficiently refocus its effects: control

on the NV electronic spin is fast enough to satisfy the DD requirement, and can

extend the qubit coherence time beyond the limit imposed by the fluctuator noise.

Finally, we realize a proof-of-principle demonstration of these ideas, by protecting the

1 4N nuclear spin from RTN of a short-lived effective electronic spin-1/2.

3.2 Fluctuator Model& Experiment

Random telegraph noise (RTN), often responsible for 1/f noise, is ubiquitous in

solid-state nanodevices [161] and is often the main source of decoherence for quan-

tum dots [23] and most notably for superconducting qubits [35, 23, 61]. Here we

focus on another exemplary system, nuclear spin qubits in the presence of a fluctu-

ating electronic spin. Specifically, we consider a quantum register consisting of the

electronic spin-1 of NV (in the following, we will refer to this simply as NV), its native
4 N nuclear spin-1, and possibly a few close-by 1 3 C nuclear spins. With this system,

researchers have demonstrated quantum information storage [142, 72], quantum error

correction [216, 203], quantum feedback control [101] and high-sensitivity magnetom-

etry [16, 229], taking advantage of the long dephasing time T2** of the nuclear spin,

which is usually one to two orders or magnitude longer than that of the NV. Long

though it is, T2*" is limited by the NV relaxation time T' (- few ms) [142, 229, 188].
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Random NV flips due to Te process result in a 3-level RTN; the nuclear spin picks

up a random phase from the RTN and decoheres. As explained below, when the

hyperfine interaction strength is larger than the Te flip rate, T2*f is strictly limited

by Tf. To extend T2** beyond this limit, previous efforts have focused on weakly

coupled nuclear spins, employing motional narrowing [142, 1091, or decoherence-free

subspace [172, 218]. On the other hand, strongly coupled nuclear spins are favorable

because they provide fast [44, 179, 188], and direct control. Here, we look into the

regime of strongly coupled nuclear spins, where previous methods do not work well.

In particular, we work with the native "N nuclear spin, because it is ubiquitous and

has proven useful in the NV-"N quantum register [72, 156, 16, 229, 101]. For this

system, the previous approaches do not work well, nor does implementing a simple

spin echo [188]. After gaining a deeper insight into the fluctuator model, we will show

how to overcome this challenge.

3.2.1 Spin-Fluctuator modeled as a random walker

We consider a system of two spins interacting via an hyperfine coupling A that we

describe semi-classically using a spin-fluctuator model [221.

T))

NV

14N

Figure 3-1: Qubit decoherence under random telegraph noise. The fluctuator (NV)
randomly flips between its two eigenstates (here from It) to 4)) changing the rate
at which the qubit ("N ) accumulates a phase. For a representative RTN trace, we
show that in the absence of a fluctuator jump, the qubit population would continue to
oscillate at the same rate (dashed line), while after a fluctuator jump, the oscillation
rate accelerates (solid red line). As the jump timing is random, the observed average
dynamics is decoherent.

We model the intrinsic 4 N nuclear spin I of the NV center as a random walker,
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whose phase evolves subject to the state of its neighboring electronic spin S that acts

as a strongly coupled fluctuator and generates RTN (Fig. 3-1). In such analogy, the

velocity v of the random walker is linked to the phase accumulation rate of the qubit,

and is set by the hyperfine interaction, v = msA. The fluctuator flips at a rate y

between any two ms states due to spin-lattice relaxation, inducing a change in the

value of the hyperfine coupling, msA, thus at each such event the walker's velocity v

also changes. In between fluctuator jumps, the walker covers a distance representing

the accumulated phase between qubit states.

For a 2-level fluctuator (2LF), the random walker has only two possible directions,

left or right, and its motion can be described by the system of differential equations:

{ tp , (yt) = -7[p3(p,t) - p,(V, t)] + v(,p)(, t)

&tlpr = 7(1r - PO )- VacpPr7

where fi(P) is the probability of reaching o at time I from the left(right). The spin

coherence is given by the average accumulated phase, (eiw'(t))= f P(p, t)ei"dp, where

P(p, t) = A +fr is the total probability of reaching p at time t. Note that this is the

Fourier transform of P, P(k, t), evaluated atk= -1. We can thus more compactly

write the relevant equations of motion as OtP(k, t) = MkP(k, t), that is

09 P 0 -ik) (P) 32
at (P _-ike -2- ) p)

where p(k,t) = pr(k,t) - pi(k,t).

We can similarly describe the spin dynamics in the presence of a three-level fluc-

tuator (3LF), where one of the levels corresponds to a "rest" state v = 0 (no phase

accumulation), with corresponding probability po:

P 0 0 -ikv P)

p+ = 2 -37 -ikv p+I, (3.3)

P 0 -ikv -3'J p

where p+ = Pi + Pr and here P = Pi + Pr + po. The spin decay is then given by
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(e(t)) = eM-1tP(-1,0) and is characterized by a typical timescale T2*'- Note that

since we consider the fluctuator to be either a spin-1/2 or a spin-1, we have v = A/2(A)

and y = 1/2Tf (1/3Tf) for the 2LF(3LF).

In the strong fluctuator regime that we focus on, intuitively a single fluctuator

jump is enough to totally decohere the nuclear spin. Then, provided v/7 » 1, the

spin decay rates doe not depend anymore on v but only on the jump rate. Indeed,

we find T2*" = 2Tf(1.5T) for the 2LF(3LF). This strict limit on T2** for the strong

fluctuator is in sharp contrast to the weak fluactuator case, where T2*" increases as

the hyperfine interaction strength decreases (See Appendix. C.2.4).

3.2.2 Experimental results

To verify the validity of the spin-fluctuator model, we measure and compare Tf of

the Nitrogen-Vacancy center electronic spin and T2** of its native 1 4 N nuclear spin.

All experiments are performed using a home-built confocal microscope, with single

NV centers in an electronic grade diamond sample (Element 6, 4 N concentration

1 14N] < 5 ppb, natural abundance of "C ). We work at a magnetic field of 424G, close

to the excited state level anti-crossing, to polarize the "N nuclear spin [106]. A 1.5mW

laser of 2ps duration polarizes the hybrid NV-"N system into ims = 0, m, = +1) with

high fidelity. Microwave (MW) and radiofrequency (RF) pulses are delivered through

a 25pm wide copper wire to have precise control of the NV and 1 4 N spin states.

For Tf measurement, a laser pulse first initializes the system into 10, +1). Then we

apply a strong MW pulse (t, = 44 ns) to prepare it to the desired state |-1,+1). The

NV is free to fluctuate due to T1 process before we measure the remaining population

in |-1,+1) obtaining the signal S-1 where the sub(super)script refers to the initial

(final) electronic spin state. We also measure the population in the state |0,+1)

obtaining the signal So 1. Tf is extracted to be 4.3 t 0.3 ms by fitting to the difference

of the two measurements S-j - Sl.

For T2*" measurement, we implement a nuclear Ramsey sequence in the electronic

m, = -1 manifold, where the larger nuclear spin energy splitting (due to the hyperfine

coupling) allows faster driving. The system is first prepared to |-1,+1), as described
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above, before being coherently driven to a nuclear superposition state (1-1,+1) +
|-1, 0))/v'2 using on-resonant RF field. After a free evolution period, we convert nu-

clear spin coherence to populations with a second RF r/2 pulse, a I-1, +1)+#1-1, 0).

Finally, the nuclear spin is read out by mapping its state to the NV electronic spin,

using a selective MW pulse (t, = 1.1ps). This pulse creates the entangled state

a10,+1)+ 31-1, 0) between the NV and 1 4 N , allowing optical readout of the nuclear

spin state population a1 2,1012 with high SNR.

Isolating the bare contribution of the nuclear spin dephasing in the fluorescence

signal decay is nonetheless not straightforward as the consequences of NV random

flips are three-fold. First, they induce the nuclear spin dephasing that we aim at

measuring. Second, they modify the NV state, leading the second RF r/2 pulse to

be off-resonance and preventing the transfer of the nuclear coherence into population

difference. Finally, they also induces errors in the mapping between nuclear and

electronic spin states as the NV state is not fully polarized anymore.

Fortunately, in the strong fluctuator regime, one flip of the fluctuator is enough

to decohere our qubit, which allows us to neglect the two last errors. The bare

contribution of the nuclear spin dephasing can be isolated by recording the signals

obtained from nuclear Ramsey sequence with 1) no phase difference between the two

RFr/2 pulses and 2) a 7r phase shift. The last two effects that cause imperfect readout

of the nuclear spin have an equivalent contribution in both Ramsey sequences, just

creating a common error that is suppressed when subtracting the two Ramsey signals

(Appendix. C.1.1). We can then measure a dephasing time T2*'= 5.6 ± 1.7 ms as

shown in Fig. 3-2b. This verifies our prediction from spin-fluctuator model with 3

levels, T2** = 1.5T .
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Figure 3-2: (a) Natural relaxation decay of a single NV population and (b) cohernce
decay of its native "N under a Ramsey sequence. The dashed lines are fits to the
expected dynamics, yielding T,= 4.3(3) ms and T2*"= 5.6(1.7) ms. These values
satisfy T2*" = 1.5Tf, as predicted by the spin fluctuator model.

3.3 Dynamical Decoupling in the strong coupling regime

3.3.1 Theory

To protect the nuclear spin qubit from RTN generated by the NV, we resort to

dynamical decoupling (DD). Usual DD schemes are highly effective in protecting

qubits from noise provided the pulses are applied at a higher repetition rate than the

typical correlation time of the noise. Unfortunately, because of the Markovian nature

of RTN, this condition does not apply here. Instead of being set by the fluctuator

rate y, in order for DD to be effective the r-pulse separation timeTmust satisfy

A - r < 1. (3.4)

When applying DD following the well-known CPMG sequence [144] with time

between pulses r, the spin coherence after N pulses is given by

(e0(NT)) = {[eM_1r/2 
. U, -eM-17/2 N 1, (3.5)

where U, is thei7r-pulse operator. For a 2LF this is diag(1, -1), while it is diag(1, 1 -1)

for a 3LF. As discussed below, it might be possible, and even more convenient, to

apply 7r-pulses on the fluctuator instead of the qubit. Indeed, the desired effect is
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to invert the sign of the coupling between the two systems. For a 3LF, this can be

achieved by driving the double quantum (DQ) transition 1+1) ++|-1). However, for

a 3LF there is some freedom on the type of pulses applied. In addition to driving

the DQ transition, one can also drive one of the single quantum (SQ) transitions,

10) |1±1), resulting in

1 0 0

Us= 1 -1/2 ±1/2).

1 F3/2 1/2

Since the qubit decay under DD is not necessarily purely exponential [Appendix. C.2.3],

we define an effective coherence time T2(T) through:

(e(Nr = T2 (r))) = 1/e (3.6)

The dependence of T2 on the DD interval r is shown in Fig. 3-4a. As expected,

smallerT's are better at decoupling the qubit from RTN and at extending T2. Inter-

estingly, the behavior for the 2LF and 3LF is different. For 2LF, DD leaves the decay

approximately exponential (see Appendix. C.2.2), with a decay rate

1/T2 =y--I , (3.7)

where W = -v _2-y2 . For a 3LF, however, the coherence decay is not exponential

(See Appendix. C.2.3). Still, we see that, by using DQ pulses to refocus the fluctuator

(or applying pulses directly to the qubit), one could in principle fully decouple the

qubit from RTN noise whenT -+ 0, until nuclear-nuclear dipolar interactions become

the dominant noise source [142]. With SQ drive, however, one only protects the qubit

from RTN half of the time, therefore the decay rate can at most be reduced to half

of its value without DD (Fig. 3-4a).
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3.3.2 Experimental results

We now apply these ideas to protect the nuclear spin from the NV RTN and extend

its Tg beyond the limit of Tf.

Due to the strong hyperfine coupling A = 2.16 MHz between the electronic and

nuclear spin of the NV, the condition (3.4) requires r ,< lys, which is not feasible

given the slow control of the nuclear spin qubit (with typical r-pulse times 50ps).

However, as the hyperfine interaction is symmetric with respect to the state of both

spins, applying r-pulses on either the qubit or the fluctuator modulates the hyperfine

interaction sign and will lead to an effectively weaker averaged hyperfine coupling and

thus a slower rate at which nuclear states acquire a random phase. It is consequently

possible to take benefit from the electronic driving strength that are typically a few

tens to a few hundreds of MHz [83, 62, 181], yielding r-pulses fast enough to meet

the requirement of Eq. (3.4).

Another challenge in the experiment is due to the nuclear spin readout, which is

indirectly obtained by measuring the NV spin. As mentioned in Sec. 3.2.2, as the

NV center state is unknown at the end of the evolution due to T1 processes, the

nuclear spin mapping from coherence to population states and its readout via the NV

electronic spin might fail. This problem is exacerbated when DD is applied, as we

expect some qubit coherence to be stored in all NV manifolds. Thus, the differential

measurement scheme applied above no longer provides an accurate picture of the

nuclear spin coherence decay. In particular, it is no longer possible to fully measure

gains in T2 beyond T2*' (see Appendix. C.1.1).

To remove this undesired effect and more precisely verify the protection of the

nuclear spin afforded by DD, we engineer a short-lived 2LF, decoupling its evolution

(and final state) from the state needed for the correct readout of the nuclear spin.

The engineered noise also allows shorter experiments, further avoiding slow external

experimental drifts that could hide the gains in coherence time. The artificial 2LF

is engineered by applying fast, on-resonant MW pulses to flip the NV electronic spin

state between |0) and |-1) (engineered T1 flip) at random times following a Poisson
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Figure 3-3: (a) Pulse sequence for one engineered Tf trace with three fluctuator
jumps. The red MW r-pulses prepare and readout the desired NV state. The black
MW 7r-pulses mimic engineered Tf flips. (b) Decay of a single NV under engineered

Tf relaxation noise, simulated by 200 traces of engineered Tf flips as described in the
main text. Red and black diamonds: S-I and S experimental decays. Solid gray
line: simulation of Te using the same traces. Gray dashed line: fit to an exponential
decay, giving T11= 10.06(1)ps.

distribution. Figure 3-3a displays one of the 200 engineered Te traces that once

averaged simulate an exponential Tf decay process. We set the flipping constant of

the artificial 2LF in order to obtain a relaxation time Tj= 10ps. This time scale is

much longer than the 7r-pulse length t, = 44ns, and is two orders smaller than that

of the natural Te, guaranteeing the third level |+1) of the NV center is not involved

in the dynamics and we indeed have an effective 2-level fluctuator.

Figure. 3-3b shows measurement of the engineered T1 decay, matching very well

with the simulation of the applied 200 engineered Tf traces. An exponential fit gives

a decay time of 10.06 0.01ps, in good agreement with our 10ps design. We then use

the same engineered Te traces to perform a nuclear Ramsey experiment and measure

the resulting coherence time, obtaining an engineered T2**= 22± 4ps = 2T1 (Figure 3-

4b), as expected from the 2LF theory. In order for the readout of nuclear spin state

to be accurate, if the NV ends up in 10) due to the engineered flips we apply an extra

7r-pulse immediately before the readout process, which brings it back to |-1).

Finally, in addition to the engineered Te traces, we apply the Knill-Dynamical

Decoupling (KDD) sequence [197] with an interval of T = 200ns on the NV to decouple

"N from the RTN. We apply ~ 100 DD pulses to measure the nuclear spin coherence
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Figure 3-4: (a) Effective coherence time Tn for 2LF (black solid line: theory;
red diamond: experiment), and 3LF for double quantum drive (red dashed line)
and single quantum drive (gray dashed line). The experimental results (for r =
200,260, 280,300,400,600, and 1000 ns) agree well with the theoretical prediction,
including the somewhat counterintuitive result for r = 600ns which indeed gives
Tn<T2; (b) Corresponding T2 (black diamond) and Tn (red diamond, r = 200ns
DD interval) decay. Dashed lines are fit by exponential decay. Gray dashed and solid
lines are the theoretical T2** and T2 decays calculated according to the spin-fluctuator
model.

decay, which according to Eq. 3.7, is expected to follow an exponential behavior. In

Fig. 3-4b we compare the experimental (and theoretical) decays with and without

DD, clearly showing the improvement achieved by applying a decoupling scheme,

proving the successful protection of nuclear spin from its RTN environment. This is

confirmed by the measured T2 value, extracted from a fit to be T2= 67±l7ps, (Fig. 3-

4b), clearly exceeding T2, and matching well with theoretical prediction of 71ps. We

repeat this experiment with different DD intervals , to compare the trend in Tn with

our theory. The results, shown in Fig. 3-4a, are in quantitative agreement with the

predicted behavior, including the somewhat counterintuitive result for T = 600ns,

where the applied DD accelerates decoherence, giving T2<T2*'.

While we demonstrated that dynamical decoupling can be effective in increasing

the coherence time affected by a strong random fluctuator only for engineered noise,

we remark that our experimental results show that it would be possible to refocus the

natural noise as well. Indeed, using a direct readout of the nuclear spin [175, 156] or

with a different protocol to map its state onto the electronic spin, it would be possible
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to avoid seeing direct effects of the NV Te on the measured nuclear spin coherence.

We further performed DD experiments to show that it is practically feasible to im-

plement the necessary number of pulses for decoupling (see Appendix C.1.4) without

introducing additional noise due to pulse errors.

3.4 Conclusion

Protecting a qubit strongly coupled to a fluctuating quantum environment is often a

challenging task. Here we studied an exemplary system comprising the electronic and

"N nuclear spins associated with the NV center in diamond. While the nuclear spin

can act as a long-lived qubit (or memory), the electronic spin, which is necessary for

initialization and readout, is also the main source of noise for the qubit. We identified

the decoherence mechanism of the nuclear spin qubit and introduced a simple model

in terms of a random fluctuator to describe its decoherence. Measurements on the

fluctuator and 1 4 N qubit verifies our spin-fluctuator model and show the limit on

the qubit coherence. Based on this model, we proposed a method to decouple and

protect the nuclear spin from its environment, and demonstrated a factor of 3 increase

in coherence time in a proof-of-principle experiment.

Our results pave the way to using strongly coupled nuclear spins, including the

ubiquitous native Nitrogen of the NV center, for demanding experiments requiring

long quantum memory times, complementing existing techniques applicable only to

weakly coupled nuclear spins [142, 172, 218]. In addition, the proposed technique

based on DD is compatible with many quantum information processing protocols [116,

39, 230], allowing the full functionality of a quantum register, where the electronic spin

performs local operations while the quantum memory is protected. This is in contrast

to other protocols where the electronic spin is inaccessible during protection of nuclear

spins [53, 142, 109]. Proposals concatenating DD with active QEC [163, 36, 33] also

makes it potentially a first layer of protection before applying QEC, enabling scaling-

up with less overhead. Finally, the proposed control technique is also applicable

to other solid-state systems, for example, superconducting qubits, where single or
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ensembles of fluctuators are believed to be the major noise source [22, 194, 1611.

We emphasize that this decoherence model generalizes to all 3C 's in the quan-

tum register. They couple to the same NV electron and one single T1 flip of NV fully

decoheres all the nuclear spins in the quantum register. The nuclear spins' decoher-

ence is therefore correlated and induced by a common fluctuator. Knowledge of the

decoherence mechanism gained in this chapter, in particular the correlation in nuclear

spin decoherence builds up the basis for our search for a hardware-efficient QEC code

that is robust and efficient, which is discussed in more detail in the next Chapter.
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Chapter 4

Hardware-Efficient Quantum Error

Correction for Dephasing Induced by

a Common Fluctuator: Theory

Quantum error correction is expected to be essential in large-scale quantum technolo-

gies. However, the substantial overhead of qubits it requires is thought to greatly

limit its utility in smaller, near-term devices. Here we introduce a new family of

special-purpose quantum error-correcting codes that offer an exponential reduction

in overhead compared to the usual repetition code. They are tailored for a common

and important source of decoherence in current experiments, whereby a register of

qubits is subject to phase noise through coupling to a common fluctuator, such as

a resonator or a spin defect. The smallest instance encodes one logical qubit into

two physical qubits, and corrects decoherence to leading-order using a constant num-

ber of one- and two-qubit operations. More generally, while the repetition code on

n qubits corrects errors to order to(') in the time t between recoveries, our codes

correct to order to(2»). Moreover, they are robust to model imperfections in small-

and intermediate-scale devices, where they already provide substantial gains in error

suppression. As a result, these hardware-efficient codes open a potential avenue for

useful quantum error correction in near-term, pre-fault tolerant devices.

77



4.1 Introduction

Decoherence, the uncontrolled decay of coherence in open quantum systems, is a

central obstacle to developing coherent quantum technologies such as quantum sen-

sors, networks, and computers. This obstacle is compounded by the destructive na-

ture of quantum measurement: straightforward attempts to identify-and ultimately

reverse-decoherence destroy the quantum coherence they seek to protect. Quantum

error correction (QEC) is a technique for taming decoherence which sidesteps this is-

sue. It encodes lower-dimensional quantum states into a higher-dimensional quantum

system such that decoherence can be detected and approximately reversed without

collapsing the encoded state. Specifically, the most common approach encodes k log-

ical qubits into an n-qubit register (k < n) whose Hilbert space 7 is decomposed

into orthogonal subspacesCo, C 1 , C2 ,... of dimension 2 k 1. These subspaces are cho-

sen by specifying operators E1, E2,... and demanding that the logical states, which

reside in Co, be mapped to Ci by Ej without distortion 2. By performing a partial

measurement that reveals only which subspace contains the state, and feeding back

appropriately, one can reverse the occurrence of any Ei-and more generally, any

error in E = span{I, E1 , E2 , ... }. The conventional strategy is to pick Ei's so that E

encompasses a broad family of operators on 7. Using Pauli operators of weight up

to w, for instance, produces a QEC code that corrects arbitrary errors on w qubits.

This is a powerful approach, especially in large devices (n » 1), since it can reverse

decoherence with little regard to its physical origins [157, 128]. For smaller devices,

however, casting such a wide net requires an overhead of qubits (n - k) that is often

prohibitive for near-term applications. A more economical strategy for small- and

intermediate-scale devices is instead to use a QEC code with E tailored to include

only the dominant, well-characterized decoherence modes. However, while this strat-

egy is well-known (see [157] §10.6.4), few explicit such codes have been discovered;

see, e.g., Refs. [126, 173, 1241.

In general, there could also be a "remainder" subspace C, of arbitrary dimension so that 7=

($ C ) (DCR
2While it is possible for multiple Ei's to have the same effect on the logical states, thus reducing

the number of subspaces required for QEC, we will not deal with such degenerate codes here.
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4.2 Theoretical Model

In order to systematically find noise-tailored QEC codes, here we focus on dephasing,

since it is the dominant type of decoherence in various experiments. In particular, we

consider the common scenario where dephasing in a register of qubits arises primarily

due to eigenstate-preserving coupling of each qubit to a common fluctuator, which

in turn exchanges energy with an external environment. That is, we consider a

Hamiltonian
0 in n

H = H + EwZ, + Hft E gZ, (4.1)
j=1 j=1

where [H, H t] = 0, and a fluctuator that jumps incoherently between energy eigen-

states {|E)f} (reflected by a dissipative term in the overall master equation). Moving

to the interaction picture, the Hamiltonian (4.1) becomes

Ht S-\ )(eI 0 HE, (4.2)

where H EAt= e f e(f Ifand HE = jgZ. When the fluctuator is in state

Ie)f, qubit j has an effective Hamiltonian A g3Zj in the rotating frame. Jumps of the

fluctuator therefore induce spatially-correlated random telegraph noise in the regis-

ter, which causes dephasing [136, 153]. This model, which we call common-fluctuator

dephasing (CFD), often describes the main decoherence mechanism in nuclear spins

near spin defects (e.g., Nitrogen-Vacancy centers in diamond [431) or quantum dots,

and can also be significant in superconducting qubits dispersively coupled to a com-

mon resonator with non-zero effective temperature [2, 142, 188, 229, 43, 26, 27, 85,

138, 51, 184, 227, 228, 226, 219]. Often the register is read out and/or initialized

via the fluctuator, imposing a lower limit on the desirable coupling strengths gj, and

making CFD a significant decoherence mode. Note that CFD does not generally

produce a decoherence-free subspace (DFS).

The standard QEC approach to correct dephasing uses Ei's comprising Pauli

Z operators on at most w qubits (and I on the rest). There are _=0 (") such

matrices; a simple counting argument (the quantum Hamming bound applied to
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phase noise) therefore suggests that n > 2w + 1 physical qubits are required to

protect k = 1 logical qubit from arbitrary phase errors of weight < w [157]. Indeed,

the repetition code saturates this bound: the smallest instance uses n = 3 for w = 1,

has logical states 10L) = 1+++)and 1)= I---)where 1i) := 1 (10)±11)),

and corrects for S = span{I, Z1 , Z2 , Z3}. It can correct CFD as follows: In any

run of the experiment, the register evolves over time t as U() = e-idHE for some

random variable V E [tAmintAmax} that depends on the fluctuator's trajectory. For

short t (understood in units of 1/max IgAe1, and often reducible through dynamical

decoupling [213, 18, 29, 43]), U(V) can be approximated as U(d) = I - iOHE +0(t 2).

Since dHEC E regardless of V, this 3-qubit code corrects dephasing at order 0(t).

More generally, H qcontains Paulis of weight < q, so correcting to order 0(tq) with

the repetition code requires n = 2q+ 1 qubits (for k = 1).

While the value ofd is unknown and varies from one run to the next, the coupling

strengths gj are often fixed and well characterized. This suggests designing a code

that corrects expressly for E = span{I, HE, H2, ... , H }, and depends on the {gj} in

a particular device. A similar counting argument as above suggests that such a code

would require q+1 subspaces to protect a logical qubit to order 0(tq), and therefore

require

n = [1+log 2 (q + 1)] (4.3)

qubits-an exponentially smaller overhead. We give a family of such codes here for

general q and arbitrary coupling strengths {gj}. We focus in particular on the q = 1

case, where one logical qubit is encoded in two physical qubits rather than three. We

construct recovery and logical operations for this code, which can be implemented

using a constant number of one- and two-qubit operations.
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4.3 Main Results

The decomposition 7 into subspaces Ci for QEC is equivalent to the Knill-Laflamme

conditions [119, 21]. For k = 1 and S = span{HE}O, these take the form

(OLI H |L)= (iLl HP 1L) (4.4)

(OLI HP 1L) = 0 (4.5)

for 0 < m < 2q, where we consider values of q that saturate the ceiling in Eq. (4.3)

(that is, q = 2-1 - 1). Finding a QEC code that corrects this S therefore requires

finding logical states |0L) and |1L) that satisfy Eqs. (4.4) and (4.5). We begin with

the ansatz
|0L L 2-1-•

O0L)= rjei1i) 11L)= r( 2 n 1 j) e'ij) (4.6)
j=0 j=0

for r, 7 9 , <p C R, where we use Ij) to denote the n-bit binary representation of the

integer j. That is, we fix the amplitudes of 11L) to be those of OL) in reverse order.

Notice that Eq. (4.6) always satisfies (4.4) for even m > 0, since XO'HgX© -

(-1)mHp. For odd m:

(0L| HP |0L) =-(1L| HT |1L) = M, (4•7)

where Z', m E Rq+1 are defined as zi= (ilZLli), with ZL : OL)(0L1- IL)(1LI, and

(Om) = (ij HP li) for i C [0, q] and odd m E [0, 2q]. Therefore, Eq. (4.4) is satisfied

for all relevant m if Z span{lm}. We can always find such a Z (f 6) since the m's

have dimension q + 1 but there are only q of them, so they cannot form a complete

basis. One approach is to construct a matrix V with 6m's as columns; then, I - VV+

projects onto span{'m}' (where + and I denote the pseudoinverse and orthogonal

complement, respectively) and therefore has at least one real eigenvector ? with unit

eigenvalue 3. Taking Z = /I| satisfies Eq. (4.4) since U -'Um = 0 automatically.

Finally, building upon a technique developed in Ref. [124] for optimization, we pick

3 Alternatively, the modified Gram-Schmidt procedure provides a less intuitive but more numeri-
cally stable method.
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ri's as

(rj, r(2 n-1-_))= (0, Vfj), if z ;> 0 (4.8)

(V/- sZj, 0),7 if zj < 0.

This choice ensures that (iOL) or 1L) vanishes for every j, thus satisfying Eq. (4.5).

We now have normalized logical states that form a valid QEC code for all q ; 1.

Notice that the components of OL) and |1L) generically have unequal amplitudes rj

by necessity, in marked contrast with classical error-correcting codes and most known

QEC codes. The phases og and <p can be chosen arbitrarily-we demonstrate a

convenient choice below. The performance of these codes on n < 5 qubits is shown

in Fig. 4-1 using an illustrative model of a normally-distributed V. In addition, we

give the pseudothresholds for n = 2 and 3 under the same model in the Supplemental

Material [1.

4.4 An Example: Two-Qubit Code

To illustrate this QEC code, we consider explicitly the smallest case of n = 2 qubits

coupled to a two-level fluctuator with A 1 = ±1 [cf. Eq. (4.2)], at high temperature.

We will label the register qubits 1 and 2 such that 1gil ;> |921. Note that here-and

in general-HE= 91 Z1 + 92Z2 is a combination of weight-1 Pauli operators, not a

weight-2 Pauli. This HEgives'U1 = (91 + 92, 91 - 9 2 )T. The matrix I - VV+ has only

a 1-dimensional eigenspace with unit eigenvalue, spanned by' = (-91+9 2 , gi+9 2 )T,

where U' - 1 = 0. If 9 1 > 0 we find r1 = r3= 0 and

ro = c91- 92 r2 = cV/g + 92, (4.9)

where c = 1/ '|l|.This gives logical states

|OL) = |Xo)|0) |1L)= I)1) (4.10)
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Figure 4-1: Comparison of QEC codes performance. We assume that the effect
of the quantum fluctuator is to impart a random phase, V, which follows a Gaussian

distribution '- A(0, -) with standard deviation . By normalizing the gj's to lie in

[0, 1]",n a describes the noise strength. CFD followed by a QEC recovery (if applicable)
results in an effective phase- or bit-flip channel p - (1 - p)p + p ApA, where A = Z
for the physical qubits, X, for the repetition codes, and ZL for hardware-efficient
codes. The average infidelity, average trace distance and diamond distance to I are
all oc p. As the performance of all strategies shown depends on {g3 }, we plot the

average of p over {gj} E [0,1]n. The error bands for the hardware-efficient codes
denote the standard error of the mean from Monte Carlo integration. More details
on the numerical implementation are given in [1].
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with

|Xo) c /gi -92| s*°10) + |~gi + g2| ei'02 l
IX0)= +/g 21 e11)(4.11)

|X1) = C |gi + g2 1e |0) + |gi-g 2l eI3 |1) ,

where 10) and 11) refer to the states of a qubit. The gi < 0 case gives the same result

up to a relabelling of 0L) +L). This code corrects for S = span{I, HE}; by design,

however, it does not correct for Z1 Z2 , nor Z1 or Z2 individually, none of which belong

to E. Rather, it corrects CFD with fewer qubits than the smallest repetition code

precisely because we have chosen not to correct individual Pauli operators.

Observe that Eqs. (4.10) and (4.11) reduce to a DFS in the limit where one exists

(|91| = 1921). More generally, notice that the choice 9
0 = 1 + 7T= = - 3 = V

for arbitrary V proves convenient: First, it gives (XolX1) = 0, and a simple action of

HEon logical states:

HE OL) OXi) 10) =:OE) (4.12)

HE 1L) IC Xo) 1) lE)

Both lines have the same proportionality constant, and we have defined the error

states 0E and1E). We emphasize that since HEcannot generically be decomposed

as a tensor product, it maps most separable states to entangled states; Eq. (4.12)-

wherein the first qubit is "flipped" by HE-is due to our choice of OL) andIL)•

Second, consider the orthogonal projectors PL= OL)(OLI+L)(L andPE= OE)(OEI+

|1E (Eonto Co= span{ OL) I 1L)} and C1 = span{|OE) I1E)}respectively(W-= CoD

C1 ). One can detect an error non-destructively by measuring parity in the Ix)Ii)
basis, which can be done by performing phase estimation (i.e., "phase kickback") on

S = PL - PE = Uz 0 Z2  (4.13)

with an ancilla [52]. Crucially, the choice of phases in IOL) andI 1L) makesSseparable

here, where U, := IXo)(Xol - Xi)(X1 Iis a 7r rotation about some axis determined by

84



controlled-S

e-iGHE xZ L)+ O(t2)
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Figure 4-2: A recovery procedure for n = 2 qubits where1'L)= IOL) +/8IL) for
arbitrary a and , H denotes a Hadamard gate, and 9 is a random variable. The
unitaries U and Uz are both 7r rotations about orthogonal axes on the Bloch sphere
which are determined by g1 , 92 andid.

g1 , g2 and d. This means that the controlled-S (cS) operation used to measure the

error syndrome can be implemented through a pair of two-qubit operations (cU, and

cZ), rather than a more challenging 3-qubit operation. If an error is detected, it can

be corrected by applying U2 := |Xo)(XI+IXi)(Xol to qubit 1-a 7r rotation about

a different axis. (Both U2 and U2 could be synthesized out of a constant number of

Pauli rotations, or implemented directly, e.g., by driving qubit 1 off resonance [143].)

The full recovery procedure, which corrects CFD to leading order, is shown in Fig.

4-2. Note that S behaves like a stabilizer, in the sense of its action on Co and C1.

It does not, however, fit in the usual QEC stabilizer formalism since {HE, S}0

generically, because {HE, S}I ) = 0 for 4') E Co but not for 4') E C1 [89]. This

is because HE maps CO to Ci without distortion, but not vice-versa, as HE is not

generically in the Pauli group. (Neither is S.) In spite of these unusual features, the

procedure for feeding back on S in Fig. 4-2 is largely the same as that of the usual

stabilizer formalism. Finally, (i) the encoding can be realized by applying a c2(U2)1

gate to an initial state Ixo)|Ib), and (ii) there is a simple way to implement any logical

unitary UL in this code: apply the corresponding physical U to qubit 2 followed by a

recovery.

The logical states derived above are also valid for all q > 1 (i.e., n > 2 qubits),

but the corresponding recovery and logical operations are generally more involved.

Generically, the analogues of S in (4.13) are not separable for any choice of '0 and <pj .

4e.g., Si = PL +PEl- PE2- PE3 and S2 = L - PE +PE 2 - PE3, Which could be measured
sequentially to identify an error for n = 3
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One might still synthesize them with one- and two-qubit operations, perform phase

kickback through optimal control, or implement a QEC recovery via more general

channel-engineering techniques [115, 60, 132, 186]. More efficient solutions could

even be found by analyzing specific experimental scenarios. One approach could be

for example to use devices with {gj} chosen so that the recovery and logical operations

can be conveniently implemented. One could also correct to a slightly lower order q

[i.e., maintaining n = O(log q) but not saturating the ceiling in Eq. (4.3)]; this would

yield a continuous family of possible Z's [cf. Eq. (4.8)], among which one might find

codes with convenient QEC operations. Note finally that for n > 2 it is not the bare

Hg's that map the codespace to the orthogonal subspaces {Cj}ji, but rather linear

combinations of them.

4.5 NV Quantum Register Implementations

Now we consider experimental implementation of the hardware-efficient QEC protocol

on the quantum register in diamond. As assumed in the Hamiltonian (Eq. 4.1, 4.2),

the dominant decoherence source for nuclear spins in a diamond quantum register

is pure dephasing induced by a common fluctuator via the hyperfine interaction

=19gjZj. However, we also see from Chapter. 2 and Appendix. D.3 that spatially

randomly distributed 1 C 's have two hyperfine interaction terms with NV electron,

the SI, term (Al = g) corresponding to pure dephasing, satisfying this model, but

also a SzIx term (A1 ), which causes T1 type of decoherence that violates the model.

The hardware-efficient QEC code does not correct decoherence induced by A 1 . It is

critical to work in experimental conditions where decoherence is dephasing dominant

and contribution from A 1 is small.

The previous chapters have shown it is experimentally convenient to work around

500 G of the NV excited-state level anticrossing, when the 532 nm laser illumination

polarizes both NV and 1 4 N nuclear spin. Under this experimental condition, for most

1 3C nuclear spins in the quantum register, WL A, A 1 . This guarantees that the

decoherence is predominantly dephasing, as seen from the nuclear spin Hamiltonian
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(Eq. 2.8):

-n = WLIz + A1 Sz Iz + A1 SzIx. (4.14)

We further explored the effect of Ai by simulation, and found the QEC code works

well for A 1 ~< 10 kHz. As an example, we take the NV examined in Chapter. 2 with

DDRF, using parameters for 13 C A: {A = -40.435 kHz, A 1 = 12 kHz}, and 13 C D:

{A 1 = 34.728 kHz, A 1 = 10 kHz}, where A's are estimated upper bound from the

CPMG-32 spectrum (Fig. 2-10). The simulation shows negligible influence of As on

the QEC, which outperforms both physical qubits and the logical state without error

correction (Fig. 4-3). In between QEC, we apply double quantum (DQ) dynamical

decoupling (DD), which protects the nuclear spins from the NV, effectively decreasing

the dephasing noise felt by 13 C . As shown in Chapter. 3, the DQ DD alone will

improve the coherence time of nuclear spin. As a result, the single 13C coherence

improves from 1.5T, (blue dash-dotted line). For this particular pair of 13C 's, due

to their similar hyperfine coupling strength, the logical state forms an approximate

decoherence-free subspace (DFS) [38]. This results in better coherence time than the

constituent physical qubits even without error correction (yellow dashed line). The

approximate DFS state (also logical state) does not fully cancel out the dephasing

noise, due to different Al strength, indicated by the decay. By applying QEC on

the logical state, we further cancel out the remaining dephasing noise, yielding a

long-lived logical qubit (Fig. 4-3).

Although the requirements on A1 strength of the probabilistically occuring 13C 's

seem daunting, we show in Appendix. D these 13C 's are quite common considering
13 C 's with a hyperfine interaction Ali > 20 kHz, which are resolvable at room-

temperature by DDRF as shown in Chapter. 2. In fact, in a typical 1.1% natural

abundance diamond lattice, roughly 60% of NVs have at least 2 suitable 13 C 's whose

A 1 -< 10 kHz, ready for hardware-efficient QEC experiments.

In the following chapter, we will demonstrate the necessary experimental tools

that build up the QEC experiment.
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Figure 4-3: Simulation of QEC performance using parameters of 13 C A, D charac-
terized before. We assume: Ti = 4 ms, the interpulse delay of DQ DD when not
performing error correction is 5 ps, and error correction is done in 1 ms steps. The
blue dash-dotted line indicates bare nuclear spin coherence time limited by NV fluc-
tuation.

4.6 Discussion and Outlook

These noise-adapted QEC codes involve a trade-off: they correct CFD very efficiently

at the cost of leaving most other errors uncorrected. For instance, errors during

gates, due to miscalibration of gj's, or from decoherence beyond CFD will generally

affect the logical state [1]. Accordingly, these codes are manifestly not fault-tolerant

in their current form [158]. They could potentially be made fault-tolerant using

implementation-specific methods as in Ref. [1771. Crucially though, they offer such a

large error budget under strong CFD-as evidenced by the gaps between QEC codes

and physical qubits in Fig. 4-1-that this trade-off can easily be worthwhile, much like

the targeted correction of photon loss in [160]. In the long-term, fault-tolerance could

also be achieved through concatenation, using our noise-adapted codes at the lowest

level of encoding to protect against the dominant error source, and more conventional

codes at higher levels. Even more importantly, our codes could have a near-term

impact in applications such as quantum sensing and communication, where long-lived

quantum memories are useful even when they are not fault-tolerant. We emphasize,

however, that these codes are designed expressly for small- and medium-scale qubit
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registers, and that the exponential reduction in overhead should be understood to

apply only in such devices. For one, there is typically a maximum n above which CFD

no longer dominates. Also, while the error budget always increases with n in principle,

so too do the effects of gate errors, miscalibration of gj's and decoherence beyond CFD,

as more qubits introduce more error channels. This growing sensitivity suggests an

unconventional quantum sensing scheme to measure {gj} for large n, by variationally

adjusting one's estimates to maximize code performance. In the nearer term, however,

these imperfections will likely set a maximum n in any particular device beyond which

one achieves no further gains, depending on their relative importance compared to

CFD [1].

The QEC codes presented could be generalized in several ways. First, they can

readily be made to correct dephasing due to multiple common fluctuators given

enough qubits, at the cost of correcting to lower order in t. Similarly, they can correct

spatially-correlated phase noise beyond that arising from common fluctuators. For

instance, classical white noise in the energy gaps of register qubits leads to Lindblad

error operators L= c (Z1,..., Z ), where { cAj} describes the noise's nor-

mal modes [122]. In the limit of spatially uncorrelated noise the Lj's become Pauli

Z operators; however, correlated noise produces Lj's with unequal amplitudes A,.

When the noise correlations are appreciable, it could be advantageous to use a QEC

code that corrects the stronger noise modes (those with large Aj's) to higher order in

t than the weaker ones (smaller Aj's) through an appropriate choice of V. It may also

be possible to extend the codes presented here for the setting where a fluctuator's

state affects not only the energy gap of each qubit, but also the direction of its Hamil-

tonian (i.e., its quantization axis) [7]. Eigenstate-preserving coupling arises frequently

in practice because a large detuning between a weakly-coupled qubit and fluctuator

suppresses non-commuting parts of their interaction Hamiltonian. However, when

the coupling to the fluctuator is comparable to the internal Hamiltonian, such as for

nuclear spins near defects in diamond, there can remain significant non-commuting

terms leading to HE j ' -j in Eq. (4.2). We analyze this effect's impact on

code performance in [1]. Extending the codes introduced here to this more general
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setting would make them even more widely applicable to near-term experiments, but

at the cost of larger overheads, since they would need to contend with a substantially

larger space of possible errors. It may be more practical instead to suppress non-

commuting interaction terms at the hardware level by increasing the energy gaps wj

of the register qubits, or at the "software" level through concatenation [1]. Another

interesting generalization would be to efficiently encode k > 1 logical qubits, which

seems plausible based on the counting argument used throughout involving the di-

mension of 7 versus S. Finally, it would be interesting to use the tools presented here

to design codes for other common error sources, such as other types of decoherence

or control/measurement errors.

Our results demonstrate that it is possible to find noise-adapted QEC codes with

a well-defined advantage (here exponential) over known, general codes. It is com-

monly argued that QEC will be of little use in Noisy Intermediate-Scale Quantum

(NISQ) devices due to its prohibitive overhead [167]. Noise-adapted QEC codes are

a promising way to reduce this overhead, although to date they have mostly relied

on numerical and variational techniques that lack transparency in terms of what ad-

vantage the codes can offer, and when [171, 81, 120, 202, 111] (see also [128] Ch.

13 and [159]). In contrast, the codes introduced here exhibit a clear reduction in

overhead under a well-characterized and common type of noise. New QEC codes

of this type could provide a middle ground between small-scale uncorrected devices

and large-scale fault-tolerant ones, where the dominant decoherence mechanisms are

tamed through specialized codes with only modest overheads. This view of near-term

QEC as quantum "firmware" rather than "software" suggests a possible interplay be-

tween theory and experiment, whereby NISQ hardware and efficient QEC codes both

guide each other's development.
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Chapter 5

Hardware-Efficient Quantum Error

Correction for Dephasing Induced by

a Common Fluctuator: Developing

Experimental Tools

In previous chapters, applying the philosophy of being hardware-efficient to our quan-

tum register in diamond, we started by precise characterization of the system Hamil-

tonian, emphasizing on the energy non-conserving off-diagonal terms in the hyperfine

coupling. With knowledge of the system Hamiltonian, we developed a semiclassical

spin-fluctuator model to describe the decoherence of nuclear spins, and used the native

"N as an example to experimentally verify the model. This model generalizes also to

1 3C 's in the quantum register. When the A 1 terms are small for 3 C 's, their decoher-

ence is predominantly dephasing due to a common fluctuator. Taking advantage of

this knowledge, we have developed a hardware-efficient QEC code for common fluctu-

ator dephasing (CFD), that offers an exponential reduction in overhead compared to

the usual repetition code and is robust against model imperfections. The substantial

gains in error suppression and reduction in overhead provide an opportunity to realize

useful QEC in the diamond quantum register at room temperature.
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In this chapter, we focus on the QEC code that encodes one logical qubit on two

physical qubits, and develop experimental tools required for implementing this code.

These include open loop dynamical decoupling, and nuclear spin operations includ-

ing state initialization, control and tomography, which consists of building blocks of

DDRF gates introduced in Chapter. 2. Using these tools, we demonstrate high-fidelity

preparation of the basis logical states IOL ,I 1L).

5.1 Double Quantum Dynamical Decoupling

The first tool is double quantum (DQ) dynamical decoupling (DD), applied in between

QEC recovery operations to mitigate the accumulation of dephasing errors induced by

the common fluctuator. Because the timescale of nuclear spin coherence is the same

as Tfe of NV electron, it is necessary to consider all three levels of the electronic spin-1

fluctuator NV, and apply decoupling sequences between the I n3 = +1) and |ms = -1)

states (therefore double quantum) as discussed in Chapter. 3 and ref. [431. The DQ

transition is intrinsically forbidden by the transition rules, but could be implemented

in experiment in two ways: composite pulse [103, 210] or two-tone microwave (MW)

driving [151, 139]. In the former, a single DQ 7 pulse consists of three alternating

+1 and -1 single quantum (SQ) 7r pulses [103, 210]. It is simple but the pulse

is slow. Given the total MW power oc B2, each pulse takes oc /7r/Bx and the

composite DQ 7r pulse takes oc 3VI7r/B. In the latter approach, a two-tone MW

B1 cos(wit + 61) + B 2 cos(w2t + 2) is generated to drive the ±1 electron transitions

simultaneously. The Hamiltonian in the rotating frame after dropping out the fast

oscillating terms is:

A y~ 1 YBei~ 6  
0

-AyBe-1  0e2 6 -yeB2ei65 2 ~(5.1)

0 -yBe-"2A -- yeBz W

where A,yeBz are the zero-field splitting and Zeeman splitting of NV. By having

both frequencies on resonance with the NV ±1 transitions, and tuning the driving
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Figure 5-1: Two-tone microwave driving of the NV electronic spin starting from

Im,= 0). After a varied two-tone driving duration, each of the three spin states

ims= 0, 1) is mapped to the Im, = 0) state by an optional 7r pulse and optically
read out.

amplitude the same Bi = B2 , the Hamiltonian becomes a spin-1 Pauli X operator

that could drive the NV directly between im, = +1) [151, 139]. Considering the

same MW power split evenly between the two-tone B, = B2 + B2, the two-tone DQ

7r pulse takes oc 2v/27r/B:, faster than the composite pulse. As a demonstration, we

varied the two-tone pulse duration, and read out the remaining population in all three

NV electronic spin state. The result is shown in Fig. 5-1, and we observe fast and

high-fidelity control.

5.2 Nuclear Spin State Preparation and Measure-

ment

In Chapter. 2 we have identified individual 13 C 's and demonstrated quantum con-

trol with unpolarized nuclear spins using both indirect and direct control techniques.

Here we focus on the direct control method using DDRF sequence, which allows

access to 3 C 's with small A1 hyperfine terms. To realize the conditional and uncon-

ditional nuclear spin rotations via the DDRF sequence, a few tens of pulses have to be
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considered. This has been analyzed and experimental demonstrated in the previous

chapter. However, for more complicated nuclear spin operations that require multiple

rotations, it is not convenient to work at the MW and RF pulse level which directly

interface the physical qubits. Instead, we could now use the DDRF sequence as a

single building block and subroutine, and abstract ourselves away from the physical

realization of pulses. This way we focus on quantum circuits at a higher level. We

next demonstrate a fundamental and indispensable part of QEC-state preparation

and measurement (SPAM) of individual nuclear spins.

5.2.1 Quantum Circuits for SPAM

Since we cannot directly initialize and read out nuclear spins, SPAM operations are

achieved with the help of the NV electron. To initialize the nuclear spin, we first

polarize the NV electron through laser illumination, then transfer polarization from

the NV electron to the target "C nuclear spin, and finally repolarize the NV by a

short laser pulse without disturbing the nuclear spin (Fig. 5-2(a)). This operation

maps NV 10/1) to the 1 3 C nuclear spin 10/1) state.

To fully characterize the nuclear spin state, we need the ability to perform nuclear

spin state tomography. This is achieved by mapping the corresponding expectation

values of each Pauli operators (X)((Y), (Z)) onto the NV electron for optical readout.

The nuclear spin state density operator could be reconstructed by combining the three

measurements pexP t = '(1+ (X)o, + (Y)um + (Z)c-z). The three mapping circuits for

quantum state tomography are listed in Fig. 5-2(b-c).

5.2.2 Experiment

We demonstrate our capabilities of the SPAM operations via the nuclear Ramsey

experiment on both "C A and D. The subroutine of CR(1) gate is calibrated using

nuclear Rabi nutation shown in Chapter. 2. Building upon the CR,(f) gate, we

construct the quantum circuits utilizing nuclear spin SPAM gates (Fig. 5-3(a)). We

firstly initialize the nuclear spin, prepare it in an equal superposition state by a CR
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(a)
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(Z)
- -13C |@b) CR2i CR,()

Figure 5-2: Quantum circuits for state preparation and measurement. (a) Initializa-
tion sequence. The polarization is transferred from NV to the 3 C , and then the
NV electron is repolarized. (b-c) Nuclear spin state tomography. The expectation
values of Pauli X, Y, Z are mapped to the NV electron for optical readout. The last
NV rotation for (Y), (Z) depends on the definition of nuclear spin 10/1) state, which
should yield gi > 0 for the hardware-efficient QEC.

gate, and let it evolve. The nuclear spin accumulates a phase during the Ramsey free

precession, which is subsequently read out by state tomography measurements for

(X), (Y), (Z). The results are plotted in Fig. 5-3(c, e) for 13 C A and D, respectively.

The experiments are consistent with theory, confirming our high-level control of the

nuclear spin including state initialization and tomography.

Next, we verify the conditional and unconditional nuclear spin control. In the

previous nuclear Ramsey experiment, we insert an optional MW 7r pulse that prepares

NV in 10/1) 1 immediately after nuclear spin initialization (Fig. 5-3(a)). Consequently,

due to the NV dependent nuclear spin CR2(E) gate, the Ramsey experiment measures

free evolution from the nuclear spin (|0) i ll)) state, manifesting opposite phase

in the (X) oscillation. This is consistent with our measurements, shown as crimson

and gray curves for 13 C A and D in Fig. 5-3(d, f), further confirming the nuclear spin

gate is conditional on NV. In comparison, we replace the conditional nuclear spin

'Because the nuclear spin is read out via the NV, a corresponding 7r pulse on NV is required before
the readout for correct interpretation. Here we apply the second -r pulse before the nuclear spin free
precession to ensure the nuclear spins have the same free precession rate to avoid misinterpretation.
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gate CR(.) by an unconditional nuclear spin E rotation (Fig. 5-3(b)) and perform2 2

Ramsey experiment. The nuclear spin is prepared in (10) + i ll)) regardless of the

NV electronic spin state. Experimental result is shown as black curve in the same

figure as the conditional gate (Fig. 5-3(d, f)). Recall our DDRF CR gate is controlled

by Im, = 0). The agreement between Ramsey curves with CR gate when NV starts

in 11) and with unconditional gate when NV starts in 10) confirms the nuclear spin

rotation is unconditional in the latter case. The unconditional single nuclear spin

rotation and conditional two-qubit gate between the nuclear spin and NV form a

complete set for universal control.

5.2.3 Discussion

There are various factors that contribute to the reduced contrast in experiments shown

in Fig. 5-3. Some are intrinsic to our measurement protocol caused by the imperfect

polarization of NV electron [203], some are due to control pulse errors and decoherence

during the quantum gates. These can be in principle calibrated. A discussion on the

imperfect NV polarization is included in Chapter. 6. Calibration of control errors are

discussed for example in [56]. In experiment, we observed asymmetry between (±)

measurements, indicating miscalibrated controls. In the following section, we avoid

potential bias due to the measurement asymmetry by performing differential readout.

For every measurement, we perform the same experiment with an additional MW ir

pulse right before the readout. The difference between these two signals are used.

So far we have demonstrated the ability to isolate and address individual nuclear

spins and perform both unconditional and conditional nuclear spin rotations, which

form a universal set of control (Chapter. 2). Building upon these building blocks,

we demonstrated higher-level controls that initialize the nuclear spin by polarization

transfer from NV electron, and measure expectation values of all Pauli operators

to perform state tomography. We will now employ all these machinery of quantum

control towards operations required for preparing logical states and performing QEC

recovery.
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5.3 Control for Logical State Preparation and QEC

Recovery

Recall the logical states are

|OL) = IXo)10) ,
(5.2)

|1L) = |Xi)|1) -

To avoid the expensive nuclear-nuclear spin gate, we would like to prepare any logical

superposition state co L) +C1 IL) utilizing the quantum circuit shown in Fig. 5-4. We

start with the two "C nuclear spins prepared in |X1) and 10) respectively, and the NV

prepared in the target state co 10)+ ci 1l). Subsequent Controlled-Ut and CeNOTn (e

means NV electron and n means nuclear spin qubit) gates then entangle NV and the

nuclear spin qubits, creating a tripartite entangled state. Finally aCnNOTe gate is

applied on NV to disentangle NV from the logical qubit, completing the logical state

preparation. The initialization of nuclear spins to |0) has been shown in the previous

section. The controlled-X or CNOT gate can be decomposed into

CNOT = CRx(-{)R2(,), (5.3)

whose components have been demonstrated before. The remainings parts are prepa-

ration of |XI), realization of Ux gate andCnNOTe on NV. In the following, we first

focus on the preparation and characterization of state lx1), then construct controls

required for QEC recovery: UY, Uz, which are equivalent to Pauli Y and Z operators

in the {Xo, X1} basis up to a global phase. They can combine to realize U operator.

With all these tools, we are in a good position to demonstrate the preparation of

logical basis states at the end.
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5.3.1 Preparation of xi1)

Provided the capabilities to initialize, control and measure single nuclear spins, we

move on towards the logical state preparation. Eq. 5.2 defines the logical states.

The two nuclear spins of choice are 13 C A, D, which show small Ai hyperfine

coupling strength. From DDRF characterization, g= -AII,A = 40435 Hz, 92 =

A1,D = 34728 Hz. Plugging into Eq. 4.11, and using o= <pi = 0,02 = -(p3

|Xo) = c |g -g9 2 1 10) - i 1 + g2| 11) (5-4)

|X) = c(/|91 + g21 10) + i |gi 97- 921|1))

These are the basis states for 13C A in our hardware-efficient QEC. They are rotated

from the computational states 10/1) by < = 330, where tan -= . Shown in

Fig. 5-5, |Xi) is close to 10), and we demonstrate its preparation first. We follow the

quantum circuit shown in Fig. 5-6(a), with 13 C A initialized in |0). A conditional nu-

clear spin rotation CR.(<p) brings it to Ix1). This is achieved by a DDRF sequence,

with N = 4 along -x axis. We then perform quantum state tomography to char-

acterize the prepared state, and obtain a fidelity Fx= [tr(pex ptarget pexpt)] 2

76(3)% (Fig. 5-8(a)).

5.3.2 Realization of Uy operator

To prepare |X), we start from lX1), and apply U,= X1) (Xol - IXo) (Xil. This is

the equivalent of Pauli Y operator in the {IXo), X1)} basis up to a global phase.

Conveniently, the desired control is implemented by

UY = |Xi) (Xol -|Xo) (X11 = Rx(7r), (5.5)

realized by a single DDRF gate (Fig. 5-7(a)). Utilizing the optional -r phase shift

in DDRF gate, we can change the rotation into CRx(r) and obtain NV controlled

CU, gate. This gate is useful both for state preparation as we demonstrate here in

Fig. 5-6(b) and for recovery in QEC. To be consistent with logical superposition state
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preparation following the quantum circuit in Fig. 5-4, we use the CU, gate to prepare

|Xo) from Xi) and obtain ]x7 = 73(3)%, shown in Fig. 5-8(b).

As we have briefly discussed in the nuclear Ramsey experiment, the fidelities of

state tomography are mainly limited by the imperfect polarization of NV electron.

The imperfect NV polarization is first transferred to the nuclear spin for initializa-

tion and then mapped back for readout. A more detailed discussed is included in

Chapter. 6. Here, without precise knolwedge of the charged state dynamics or a sys-

tematic benchmarking of the nuclear spin control, we cannot remove only effects from

imperfect NV polarization. Instead, we calibrate our results for both initialization

and readout errors. This is achieved by renormalizing all experimental measurements

by the experimental (Z) measurement of nuclear spin |0) state, in consistence with

ref. [203]. The calibrated state tomography results are shown in Fig. 5-8(c,d) for

|Xi) , lXo), with a calibrated fidelity of Y, = 96(3)%, Fxo = 92(3)%.

5.3.3 Realization of Uz operator

Another operator necessary for the recovery operation in QEC is U, which is equiva-

lent to Pauli Z operator in the {|Xo), lXi)} basis (Chapter. 4). This could be achieved

by a detuned DDRF gate directly, which is briefly discussed in Chapter. 2. However,

a detuned gate on nuclear spin is challenging for calibration purposes. To sidestep

this issue, we decompose the Uz gate into well-calibrated operations as shown in

Fig. 5-7(b). In particular

Uz = R2(W)R2(7r)R2(-p). (5.6)

The W rotation is already demonstrated in preparation of |Xi) state. The Rz rotation

could be embedded into a simulated frame rotation in all following nuclear spin op-

erators, imposing no control infidelities or time cost. Alternatively, we can interpret

the Rz(7r) operation in the original frame: we redefine the states adaptively as the
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QEC experiment is undergoing,

|Xo) = C |g- g2| 10) + (- 1)"nil Vlgi + g2| |1) (5,7
\(5.7)NXi = c gI + g2| 10) + (-1)"i |rgi g2| |1) )

where n is the total number of U2 operator implemented so far. Either way, the Rz(r)

is achieved on the software level and does not impose any experimental overhead. The

U2 operator is therefore equivalent to R2(-2V) in experiment. Care has to be taken

for simulated rotations such as R, especially when operated in controlled gates. A

good practice is to analyze case-by-case to ensure effects of the simulated rotations

are carried out.

As U,,,z are correspondingly the Pauli operators in the {IXo), XI)} basis, and we

have shown UY,2, it is straightforward to realize

Y = iU2 = R2(7r - 2p), (5.8)

with a simulated frame rotation.

5.3.4 Logical State Preparation and Measurement

Having laid the foundations, we demonstrate preparation of logical states and their

characterization. First, we introduce measurements for two-qubit tomography. Like

in the one qubit case, where we measured expectation values of Pauli operators

(X), (Y), (Z) for the reconstruction of the qubit density operator, here we measure

the expectation values of two-qubit Pauli operator (o-1 2). This measurement can be

achieved via the general circuit shown in Fig. 5-9(a). For our experimental realiza-

tions using the building blocks of DDRF sequences, the quantum circuits are shown

in Fig. 5-9(b-f). Here we only show five measurement operators which are relevant to

non-zero components of the 0L) , 1L) states.

We then prepare the logical states using circuits shown in Fig. 5-10. The to-

mography of raw data is shown in Fig. 5-11(a,b), giving logical state fidelities of
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FL = 54(9)%, FL = 52(9)%. Similar to the single nuclear spin state tomography,

the fidelities from raw data are limited by the imperfect polarization of NV electron.

With two nuclear spin qubits, the polarization transfer from NV happens twice, and

the loss in contrast is therefore worse than before. We renormalize all two-qubit

measurements by the result of performing (ZZ) measurement on 100) state, and ob-

tain the calibrated state tomography shown in Fig. 5-11(c,d), with state fidelities

FOL = 93(13)%, FlL = 95(14)%.

We remark that encoding quantum information generally requires superpositions

of the logical basis states. It demands one more step from our demonstration here:

decoupling NV from the logical qubit, indicated by the CnNOTe gate in Fig. 5-4. In

Fig. 5-12 we show a SWAP gate between NV electron and one 1 3 C nuclear spin qubit,

which guarantees universal control together with the qubit rotations we have thus far

demonstrated. It is an overkill for state preparation. And given the overhead mainly

comes from the DDRF gates, we should always optimize the quantum circuit by the

DDRF gate count on a case-by-case basis, instead of always implementing the SWAP

gate. For example the quantum circuit in Fig. 5-4 should have a better DDRF gate

count by 2 compared to using SWAP.

5.4 Discussion and Conclusion

In this Chapter, we have developed all the experimental tools required by the hardware-

efficient QEC protocol. We first show double quantum control between NV im = +1)

and Im, = -1), which protects the nuclear spins in an open loop and mitigates their

dephasing. We then focus on single nuclear spin qubit and demonstrate its state

preparation, control and measurement. Using the DDRF gate as a single building

block, we developed quantum circuits that enable the initialization and tomography

measurement of the nuclear spin qubits. Running Ramsey sequence as an illustrative

example, we experimentally demonstrated successful initialization, both conditional

and unconditional control, and full tomography of the nuclear spin qubits. Next, we

prepared both |Xo) and |x1) states with high fidelities, and demonstrated ways to ap-
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ply UX, U, and U, operations which supplement the previous nuclear spin controls and

form a complete control set for the QEC protocol introduced in Chapter. 4. Lastly,

we showed state preparation and tomography of the logical basis states OL), I1L) with

high fidelities, opening up an avenue to encoding quantum information in the logical

states protected against common fluctuator dephasing.

Combining all experimental tools developed in this chapter with the demonstrated

high fidelities, it is possible in the near future to implement the hardware-efficient

QEC protocol in experiment. In the next chapter, we will discuss remaining challenges

and possible approaches to overcome these obstacles.
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Figure 5-3: Verification of nuclear spin polarization, control and measurement. (a, b)
Quantum circuit for nuclear spin Ramsey experiment. The nuclear spin is initialized
(Init) and brought to a superposition state either by (a) conditional or (b) uncondi-
tional nuclear spin rotation. The last tomography (Tomo) gate is applied to measure
(X), (Y), (Z) . The Init and Tomo gates are broken down into basic control units in
Fig. 5-2. (c, e) Nuclear Ramsey experiment on 13 C (c) A (e) D, using conditional nu-
clear spin rotation, with NV starting in 10) selecting the R_,(! rotation for Ramsey.
(d, f) A comparison between conditional and unconditional rotations on 13 C (d) A
(f) D. The crimson and gray curves are (X) measurements of nuclear Ramsey using
conditional gate, with NV starting in 10, 1), applying RF,() rotation to prepare the
nuclear spin superposition state. The black curve uses unconditional gate, always
applying R.(i). This experiment starts with |m, = 0).
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Figure 5-4: Quantum circuit to prepare logical state co L) +C1 1L). The three qubits
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Figure 5-5: States |xo),|XI) represented on the Bloch sphere. Each is rotated from
the 11),10) state for 330 for our quantum register of interest.
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Figure 5-7: Quantum circuits for realizing operators (a) Uy, (b) Uz.
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oretical value, and crimson (blue) is experimental result without (with) initialization
and readout calibration.
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Chapter 6

Discussion and Outlook:

Implementation of Hardware-Efficient

QEC

Equipped with all the experimental tools developed in Chapter. 5, we are in good

shape to implement the hardware-efficient QEC code in our diamond quantum reg-

ister. There are a few remaining challenges that we will discuss here. The most

prominent one is to maintain a decent overall process fidelity, including the state

preparation, QEC and measurement. The infidelity of measurement in a process that

involves reinitialization of NV electron is intrinsic to the system and poses an ultimate

limit to the process fidelity. Analysis and ways to calibrate it is discussed first. Next,

a possibility of single-shot readout of individual "C is discussed, with the experimen-

tal sequence proposed. This could to a large extent suppress the infidelity caused by

imperfect NV polarization. The remaining infidelities mainly come from the interplay

between NV decoherence and control errors, which can be mitigated by incorporating

DDRF with double quantum dynamical decoupling. None of the these are fundamen-

tal limits and near-term experimental demonstration of our hardware-efficient QEC

code is promising.
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6.1 Calibration for Nuclear Spin Readout Due to Im-

perfect NV Polarization

One challenge in QEC implementation is the loss in readout contrast due to reini-

tialization of NV. Under green laser illumination, the NV is not perfectly polarized.

On the one hand, the decay rates from metastable state to all spin ground states

are on the same order, resulting in non-zero populations in im, = t1) state. On the

other hand, there is roughly 30% chance NV ends up in NVO state [15, 45, 94]. Both

scenarios add up and contribute to ~ 70% NV polarization to m., = 0) [174, 207, 93}.

A detailed description of the NV model under optical illumination is presented in

Appendix. A. Taking an analysis approach similar to [203], we compare the differen-

tial signal Af = Sf - Sf between the fluorescence readout of the final state and the

fluorescence readout of the final state followed by an immediate 7r pulse. This signal

is normalized by the differential readout of the initialized state with and without a7r

pulse

C Sf -f (6.1)
Si -Si

Assuming the 7r pulse for differential signal is perfect, then -1< C < 1 and is

symmetric.

We now consider a phenomenological representation of the imperfect polarization

of NV

Pi = P1p + P2Pm + P s + P4Pc, (6.2)

where po is the desired im, = 0) state, pm fully mixed state between jm8 = 0,+1), pS

the unused spin state Im, = -1), and pc the charged state NV0 . P1+P2+P3+P4 = 1.

Only pi contributes to differential readout signal. In a simple experiment without

reinitialization of NV, it is obvious Cmax = 1.

In a more complicated experiment such as QEC, the NV electron goes through

several reinitialization processes to polarize and later to measure the nuclear spins.

The resulting successful rate and contrast of readout therefore depend on the details

of the reinitialization process. As a simplified model, we consider that the reinitializa-

110



tion does not influence the nuclear spin state and fully redistribute the NV electron

population. After polarization transfer from NV electron to the nuclear spin, we start

from state

P = P1Pm PO + P2Pm 0 Pm + P3Ps ® Pm + P4Pc 0 Pm. (6.3)

The reinitialization changes the state to

p = (p1po + P2pm + P3Ps + P4Pc) 0 [p1Po +(1 I)- PP] (6.4)

Therefore the maximum contrast for nuclear spin measurement is

2

Cmax = pi (6.5)
Pi

In another note, if the reinitialization process does not change the NV charged

state, then instead of Eq. 6.4 we have

PPiPPO +P2Pm +PcPs 0 +(p 2 +p3)V 1 +P2Pm +PcPs0Pm+P4PcPrn , (6.6)
P1+P2+P3 P1+P2+P3

resulting in maximum contrast

Cmax Pi > Pi (6.7)
PI + P2 + P3

NV charged state population is reported around 70% in literature [15, 45, 94],

suggesting Cma, < Pi + P2 + P3 ~ 70%. This limits the contrast of two-qubit cor-

relation measurements to ~ 50%. We should therefore calibrate two-qubit readouts

accordingly.

In experiments so far, we have no precise knowledge of pi. Therefore, a calibration

of the initialization and readout accounting only for the imperfect polarization of NV

is not available. Instead, we have used the experimental measurement of (Z), (ZZ)

of nuclear spin qubit states 10) and 100) to renormalize one- and two-qubit measure-

ments. This is consistent with ref. [203], and works in practice given high control

fidelity. However, the calibration still includes both contributions due to imperfect
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NV polarization and due to control infidelities. It therefore over-compensates. One

possible strategy to avoid over-compensation is to perform a systematic benchmarking

of our nuclear spin control gates. Then we could decouple contributions from control

infidelities and obtain effects due to imperfect NV polarization pi. A possible strat-

egy is the gate set tomography [146, 31, 64], which takes measurement into account.

This could give us more faithful tomography measurements, though the contrast in

one- and two-qubit measurements remains small, and long averaging is required. In

addition, the benchmarking could provide useful information about sources of control

infidelities, and improve our nuclear spin qubit control.

6.2 Repetitive Readout for Nuclear Spin

Another way to circumvent the readout issue due to imperfect NV polarization is

by developing repetitive readout capability for 13 C . After analysis, we find the (X)

readout operator U(x) maps the nuclear spin state to NV electron in a non-demolition

fashion

U(x)|0, +) = 1, +) (6.8)

U(x)|0, -) = 0, -).

In addition, for weakly-coupled 13C , strong laser illumination for NV readout does

not decohere the 13 C [142]. It is therefore possible to repetitively readout the nuclear

spin to increase SNR, and even achieve single-shot readout [156, 142, 216, 74, 130].

The ability to read out individual nuclear spin state in a single shot would allow

state preparation-by-measurement. In this case, the nuclear spin state initialization

fidelity is no longer limited by NV polarization, but rather by the single-shot readout

fidelity and the fidelity of quantum-non-demolition. In two experiments involving

weakly coupled nuclear spins similar to our implementation scenario, the fidelity of

preparation-by-measurement can easily go beyond 95% by discarding less confident
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data in post-processing [142, 130]. The initial NV- 13C state is then

P = (P1Po +P2Pm + P3Ps + P4Pc) 0 Po. (6.9)

We remark that for nuclear spin control and two-qubit readout, we still have to

use the NV electron. However, single-shot readout circumvents the loss of contrast

due to NV reinitialization (Eq. 6.4, 6.6), which results in a maximum readout contrast

via NV Cm. = 1 and is independent of the total number of nuclear spins involved.

In the two nuclear spin case for QEC, this increase in contrast is about a factor of 2.

Also noteworthy, NV charge state initialization has been demonstrated at room

temperature [15, 71]. It is therefore possible to have pi > 0.95 [211], and true en-

tanglement proven in experiment at room temperature. Without these components,

the measured state fidelities (e.g. in Chapter. 5) differ from the actual fidelity by the

normalization factor pi 70%, which prohibits demonstration of entanglement. We

remark however, the characterizations of the (entangling) gates for QEC in Chapter. 5

are faithful.

6.3 Improving the Fidelity Limit Due to NV Deco-

herence

Another challenge at room-temperature is the limited coherence time of NV electronic

spin. Take the CU, gate required in the QEC recover operation as an example. In

its current form, the gate lasts ~ 500ps. For an NV electron with T 2 = 1.6 ms, this

corresponds to - 10% of coherence loss, coutneracting the gain from QEC. To make

QEC useful, these overheads need be suppressed. We discuss two strategies here.

The first one is to increase the coherence time of NV. It has been shown that the

coherence time of NV in electronic grade diamond sample at room temperature is

limited by the spin bath of 1C [47], and researchers have observed elongated NV co-

herence time in isotopically purified samples [142, 216]. It is therefore straightforward

to decrease the 1 3 C abundance in exchange for longer NV coherence time. In turn,
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the NV no longer needs protection from DD and "C nuclear spins could be directly

driven by RF field just like "N . The control fidelity is likely to improve. Although

isotopic purification also reduces number of "C nuclear spins in each quantum reg-

ister, a trade-off is possible [216]. Alternatively, better DD could fully decouple NV

from the spin bath, yielding phonon process limited decoherence [20]. This limit by

phonon could be further improved by lowering the temperature. At 4 K, 1 s coherence

was achieved in experiment {4]. Although at lower temperature, due to the increase

in T1 of NV electron, the nuclear spin coherence time is no longer due to the NV

fluctuation at idling, our hardware-efficient QEC code could still prove useful. This

is discussed in the next section.

The second approach is to employ faster nuclear spin control gates to reduce

the QEC overhead limited by NV coherence. Higher RF field increases the nuclear

Rabi frequency and decreases the DDRF gate time correspondingly. This is easily

achieved by increasing the RF driving power with a by-product of overheating the

sample, or improving the RF delivery. Currently we deliver both MW and RF field

via a coplanar waveguide (CPW) fabricated on glass substrate glued to the diamond

chip. The glass substrate with CPW is bonded to a PCB board mounted on piezo

stage. To facilitate the increased heat generation with higher RF power, one can

replace the glass substrate and PCB with a better heat-conducting material like SiC.

The transparent SiC substrate could serve both as the optical window for confocal

microscope and part of the heat sink that dissipates heat generated by RF. In the

meanwhile, the current CPW is not well impedance matched to 50 Q. A better CPW

design could improve RF power transmission efficiency, and enhance the RF driving

field.

In addition to hardware improvement, we could apply faster nuclear spin gates by

improving the quantum control. Again we take the CU, gate for example

CUY = 10) (01 +11) (1| UY

= 10) (0|1 + 11) (11 R(7r) (6.10)

= R2()CR(
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Due to the limitation of DDRF in its current form, the qubit is constantly rotating

whether the control qubit is in |0) or 1). The control qubit only determines the

direction of the qubit rotation. Consequently, a CNOT type of gate is twice as

long as the control actually requires. In Eq. 6.10, half of the total gate time is

wasted to realize the identity operator via a rotation and then counter-rotation when

NV in |m, = 0). By incorporating double quantum dynamical decoupling instead

of single quantum dynamical decoupling in the DDRF sequence, we could avoid this

dilemma and shorten the gate time by half. When NV is in either state IMs = +1), the

hyperfine interaction is on, and we can selectively address the same 13 C by resonant

RF field. To build up the RF driving constructively, we now require

-P = P + (k - 1)y'T (6.11)

where , = (2 - wi)T, withw1,2 being the RF frequency when Ims = ±1).

Although DQ coherence time is typicaly shorter than SQ [139], anormalous deco-

herence where DQ coherence time outlasts the SQ is also demonstrated both theo-

retically [231] and experimentally [103]. It is therefore possible to both increase the

decoherence time and shorten the gate time simultaneously.

Once the nuclear spin coherence time goes beyond the limit due to NV Ti fluctu-

ation with the help of our hardware-efficient QEC, the 13C _13C dipolar interaction

kicks in. These nuclear-nuclear spin interactions are on the order of 100 - 1000 Hz for

diamond sample with natural abundance carbon [34, 4, 3]. The dipolar interaction

can be easily suppressed by having the NV idle in m, = ±1) [34]. The ~ 10 kHz

hyperfine interaction creates a frozen core around the NV where 13 C 's inside the core

are protected from the dipolar interaction of the 13 C spin bath due to energy mis-

match. Another factor to consider is the nuclear spin Ti limit. This is usually a few

seconds at room temperature, and could be improved by three orders of magnitude

at elevated magnetic field [11].
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6.4 Nuclear Spin Coherence Beyond Room-Temperature

NV Fluctuation

Looking forward, we consider our hardware-efficient QEC code for common fluctu-

ator dephasing (CFD) advantagenous beyond correcting nuclear spin dephasing due

to the thermal fluctuation of NV at room temperature. Firstly, CFD is a common

decoherence model found not only in NV center, but also in quantum dots and super-

conducting qubits dispersively coupled to a common resonator with non-zero effective

temperature [142, 188, 229, 43, 26, 27, 85, 138, 51, 184, 227, 228, 226, 219]. The re-

duced overhead of such hardware-efficient QEC code could prove useful for NISQ

devices, serving as a "firmware" level protection and being concatenated with more

general QEC code at higher "software" level.

In addition, hardware-efficient QEC code for CFD is useful in protocols with in-

trinsic fluctuation. One example of near-term applications is entanglement generation

via heralding, which is the key component for a quantum repeater [117, 75, 48]. In

this protocol, the NV spin-photon entanglement is first generated at each node. Joint

measurement of the photons from different nodes then heralds remote NV electronic

spins into an entangled state [24]. Successful entanglement is transferred to local

quantum memory for storage while the NV continues to create remote entanglement.

The local nuclear spins are typically used as quantum memory [711 and are subject

to noise induced by NV during the entanglement generation. When NV goes through

optical cycles between ground and excited states, the hyperfine interaction strength

with the nuclear spin changes and dephases the nuclear spin. This noise is CFD for

the local nuclear spins in the node and a decoherence-protected subspace has proven

effective in mitigating the noise [172]. Our hardware-efficient QEC code could further

improve the quantum memory and help in quantum repeaters.
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Appendix A

Repetitive Readout Enhanced by

Machine Learning

Single-shot readout is a key component for scalable quantum information processing.

However, many solid-state qubits with favorable properties lack the single-shot read-

out capability. One solution is to use the repetitive quantum-non-demolition readout

technique, where the qubit is correlated with an ancilla, which is subsequently read

out. The readout fidelity is therefore limited by the back-action on the qubit from

the measurement. Traditionally, a threshold method is taken, where only the total

photon count is used to discriminate qubit state, discarding all the information of

the back-action hidden in the time trace of repetitive readout measurement. Here we

show by using machine learning (ML), one obtains higher readout fidelity by taking

advantage of the time trace data. ML is able to identify when back-action happened,

and correctly read out the original state. Since the information is already recorded

(but usually discarded), this improvement in fidelity does not consume additional

experimental time, and could be directly applied to preparation-by-measurement and

quantum metrology applications involving repetitive readout.
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A.1 Introduction

Single-shot readout is a key component for scalable quantum information process-

ing [68, 169], for its close connection to state initialization and fault-tolerant quantum

error correction [157]. Indeed, it is one of the main deciding factors in the selection

of potential qubits. Single-shot readout has been achieved in various physical qubit

systems, ranging from neutral atoms [17, 77, 54], to trapped ions [152], supercon-

ducting qubit [108], and solid-state defect centers [148, 76, 96, 156, 142, 74, 216, 130].

There are however situations where a candidate qubit has favorable coherence prop-

erties, but does not naturally come with single-shot readout capabilities. Examples

include Al+ ions [183, 104] and room-temperature nitrogen-vacancy (NV) centers in

diamond [156, 142, 74, 216, 130], where a closed optical cycle for readout is either lack-

ing, or experimentally challenging. A solution to this problem is through repetitive

quantum-non-demolition (QND) measurements [104].

In the repetitive QND protocol, a Controlled-NOT (CNOT) gate is applied to

correlate the qubit state to an ancilla, which is subsequently read out (Fig. A-1 (a)).

If the readout operator commutes with the qubit's intrinsic Hamiltonian, in other

words, if the readout is QND, one can repeat the above process multiple times to

increase signal-to-noise ratio, until the desired fidelity is reached.

This protocol is also known as the repetitive readout technique widely adopted

in NV research at room-temperature, where the nuclear spin state (here the "N or a

3 C ) is repetitively read out with the help of the NV electronic spin [110, 156]. In its

implementations so far, the spin state was determined by comparing the total photon

number collected through all the repetitive readouts with a previously established

threshold (Fig. A-1 (b)). The detected photon count numbers are thus divided into

two classes, referred to as bright (dark) state of the qubit.

In this threshold method (TM), the readout infidelity can be evaluated from the

overlap between the photon count distributions of bright and dark states. Two factors

contribute to this overlap: inefficient optical readout [59], including photon shot noise

and limited photon collection efficiency; and deviation from the QND condition. The
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first factor can be improved by embedding the emitter into photonic structures and by

using better single photon detectors. The second factor imposes a more fundamental

constraint. Indeed, if the readout operator does not fully commute with the system

Hamiltonian, back-action from the measurement will eventually limit the number of

photons that can be collected before quantum information is destroyed [58, 164].

To mitigate this effect, we propose to use the additional information carried by the

measurement-induced state perturbation itself. Information about the perturbation

is already recorded during typical experiments, in the form of the time trace of photon

clicks from the repetitive readouts (Fig. A-1 (c)), but is usually discarded in the TM

after extracting the total photon number. Identifying the perturbation and tracing

back to the unperturbed original state using this information is the key to improving

the fidelity of readout.

Unfortunately, finding an elegant analytical approach proves difficult-the complex-

ity of the photodynamics exhibits intrinsic randomness, and the inefficient photon col-

lection process yields noisy data, precluding clean analytical analysis that would take

advantage of the additional information. On the other hand, machine learning (ML)

is designed to discover hidden data correlations, and it is widely used in classification

problems [121]. It has been recently introduced in quantum information tasks to mit-

igate crosstalks in multi-qubit readout [185], to enhance quantum metrology [180, 67],

to identify quantum phases of matter and phase transitions [41, 212, 127], to identify

entanglement [134, 135, 86], and even to determine existence of quantum advan-

tage [145], to name a few. In particular, ML shows success in efficient interpretation

of quantum state tomography (QST), by being robust to partial QST and state-

preparation-and-measurement (SPAM) errors [86, 208, 162, 209].

In this work, we apply ML to state discrimination for the repetitive readout of

NV center. To design and evaluate the ML method, we use the full information from

time trace data generated by quantum Monte-Carlo simulation. We tried different

supervised ML methods and mainly focused on a shallow neural network realized using

MATLAB@ Neural Net Pattern Recognition tool (npartool). We observed consistent

increase in readout fidelity using ML over TM. The improvement in readout fidelity
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albeit small is robust over a parameter space that covers individual NV differences.

One application of our results is in preparation-by-measurement: when one discards

less trustworthy measurements, ML yields a more efficient initialization process than

TM.

Since in our method the training labels are readily available in experiments with

very high fidelity [156, 142, 216, 74, 130], it can be readily applied to current experi-

ments. Together with the robustness of our method over NV photodynamic parame-

ters, we expect that the improved readout fidelity can be achieved in experiments.

A.2 Repetitive Readout Model and Simulation

We consider reading out the native 1 4 N nuclear spin state through the electronic spin

of NV center at room-temperature as an example. The NV center's ground state

is an electronic spin triplet (S = 1), and can be optically polarized to the Im, = 0)

state. The other two sublevels im = +1) have additional non-radiative decay chan-

nels under optical illumination, allowing optical readout of spin state by fluorescence

intensity. The native 1 4N nuclear spin is a nuclear spin-1 (I = 1), and couples to

the NV center through hyperfine interaction. 1 4N does not have optical readout, but

it supports a CnNOTe operation (control on nuclear spin and NOT gate on elec-

tronic spin): Im, = 0, m, = +1) -+ ms = +1, m, = +1), and Im, m, = 0, -1)++

ns, m. = 0, -1), which correlates the 1 4 N to the NV state.

In the repetitive readout protocol, the NV starts in jmS = 0), and a CNOT gate

correlates the nuclear spin state to NV. A green laser then reads out the NV state,

while also repolarizing it back to im = 0). Under high magnetic field, where the

NV and 1 4 N energies are well separated, this process is approximately QND and can

be repeated a few thousand times to accumulate signal, discriminating the bright

in = 0, -1) (dark in = +1)) state of 1 4 N in a single shot (Fig. A-1). Still, the

high magnetic field cannot fully eliminate back-action of the measurement on "N ,

which is caused by the relatively strong excited state transverse hyperfine interaction

AI(S+I- + S-I+). This perturbation causes flip-flips between NV and the 1 4 N
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destroying the quantum information. In the TM, this perturbation prevents us from

keeping to accumulate useful signal and reduces the fidelity of state discrimination.

ML, instead, as we find out, can identify the majority of such flips and therefore

improve the readout fidelity. Ultimately, the readout fidelity is limited by flips that

occur very early during repetitive readout.

We used simulated data to explore the effectiveness of ML in repetitive readout

and to better analyze the source of improvement. To fully capture the photodynamics

involved in the repetitive readout process, we employed a 33-level model, considering

the NV- electronic and "N nuclear spins and the neutrally charged NV° state. The

model is described in more detail in the Appendix. Most transition rates in the model

were accurately measured from independent experiments [174, 207, 93, 140] and we

use values from Gupta et al [93]. The excited state NV-"N transverse hyperfine

interaction strength and NV- to NV (de)ionization rate at strong laser power were

not precisely determined before, and therefore a reasonable range is explored to cover

possible variations in individual NVs, based on the results from [142, 156, 165, 84].

In the simulation, we assumed an intermediate magnetic field of 7500 G typical

for repetitive readout experiments, and a photon collection efficiency of 30%, stan-

dard with photonic structures like solid immersion lens or parabolic mirrors on the

diamond [141, 175, 217]. A perfect CNOT gate connecting Im, = 0, m1 = +1) ++

|m, = +1, mr = +1) was assumed. Correspondingly, the dark state is im = +1),

and bright state is |m, = 0, -1).

We remark that it is possible to use the same protocol to read out "C rather than
1 4N [74, 216, 142, 130], given well-characterized hyperfine interaction strengths [105,

168, 195, 73].

A.3 Neural Network Architecture

The network in nprtool is a two-layer feed-forward neuron network (Fig. A-1 (c)). In

all trainings, we used a data set of size 10, 000 with a random portion of 15% for

validation. The input data is the time trace of single photon detector clicks through
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the repetitive readout process (Fig. A-1 (c)). Because the total photon count is a

good metric for state discrimination, we take the cumulative sum of the time trace of

photon detection {Xk} before feeding it to the neural network 2t= k_1Xk. Out of

the 10, 000 data, half are dark state imn = +1), while the other half are bright with

a 1 : 1 ratio between Im, = 0) and Im, = -1). After training, we used a test set of

size 4, 000, which was generated in the same way as the training set but not used

in training, to independently test the network. We performed Monte Carlo cross-

validation, which typically repeated the aforementioned training process 10 times

and the average accuracy was used throughout this work. Error bars represent the

standard error of the 10 results.

We found that approximately 12.5 neurons per 1000 repetitions was a good balance

between the increase in fidelity and avoidance of overfitting.

A.4 Results

We first investigate the influence of the repetition number on readout fidelity. The

fidelity F across this manuscript is defined as

F= Fbright + Fdark (A.1)
2

where Fbright and Fdk are the percentage of bright and dark states that are correctly

read out, respectively.

The number of repetition influences the readout fidelity in two ways: 1. A larger

repetition number means more photons detected and better separation between pho-

ton count distributions of the bright (dark) states (Fig. A-i (b)). 2. A larger repetition

number, however, also implies a longer illumination time and a higher probability of

the "N nuclear spin to flip, due to the large transverse hyperfine interaction in the

excited state, which mixes the photon count distributions of two initially different

states. As a result of these competing effects, there is an optimal repetition number

Nopt for the TM. On the other hand, the readout fidelity from ML keeps improving as
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we increase the repetition number even if the increase rate slows down (Fig. A-2 (a)).

At Nopt, we observed a 0.34% increase in fidelity with ML. Since the time trace input

for ML is recorded in all experiments even when intended for TM, this improved fi-

delity does not consume additional experimental time. One can add more repetitions

in the experiment, and harness a further increase as much as 0.57% in readout fidelity

(compared to TM at Nept). The improvement at N > Nept suggests that ML is not

only more robust against 4 N flips, but rather extracts useful information from the

flips. This is investigated in more detail later.

As mentioned earlier, the excited state transverse hyperfine interaction strength

A 1 between NV and 1 4 N , and (de)ionization rate kion(kdeion) between NV- and

NV' under strong illumination have been not yet determined to satisfactory precision.

We therefore explored a parameter range to cover realistic values one might encounter

in experiment: A 1 = {-30,-40,-50} MHz and kion= {70,90, 110} x # MHz, where

# is a unit-less value proportional to laser power. In the simulation, we choose #such
that for any combination of parameters the NV would emit the same total number of

photons in the bright state during repetitive readout. Comparisons of TM at Nopt, ML

at Nopt and ML at N = 8000 are shown in Fig. A-2 (b) under different Al, kien. The

trend matches Fig. A-2 (a). ML consistently outperforms TM with both repetition

numbers chosen.

To better understand how ML achieves higher fidelity, we take a closer look at

cases where 1 4 N experienced flip-flops in the excited state, which is a major limit

to the TM fidelity. We find the neural network is able to extract information from

the time trace input to recognize if a flip has occurred, and recover the original state.

Such flips could bring the photon count across the threshold, yielding misclassification

when using TM. This is shown in Fig. A-3, where we plot the cumulative sum of the

time traces in cases where flip(s) occurred. In Fig. A-3 (a), ML correctly assigns all

these time traces to their original states, while TM looks only at the total photon

count at the end and compares it to the threshold (dashed line), making - 25% wrong

decisions. In Fig. A-3 (b), we show instances when ML gave the wrong classification.

We notice that in those cases, the 1 4 N flip-flops happen at the very beginning, making
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the time traces indistinguishable from those of the opposite initial state with no flips.

There is little hope in correctly reading out these states, posing an ultimate limit to

the readout fidelity.

Another important objective of ML is that of generalization. We explore this

generalization power by testing the network R trained by {kion = 90MHz, A 1 =

-50MHz} on data generated with different parameters.

First, we test the network R on different (de)ionization rate {kion = 110,3MHz,

A 1 = -50MHz}, obtaining a fidelity of 94.4(1)% from the network R, compared to

96.31(4)% from TM. We attribute this deteriorated performance of ML to the change

in the photodynamics. Under the same condition, different kion change the relative

distributions of bright and dark states. This change cannot be compensated by laser

intensity, and makes the network R obsolete.

We then tested the network R on data of different transverse hyperfine strengths,

A 1 = {-40, -30} MHz. Intuitively, a small change in Ai does not change the

photoluminescence pattern, but rather modifies the 4 N flip-flop rate a little, which

could be captured by the network, given its ability to recognize the occurrence of flip-

flops. Indeed, we observed better fidelity from the network R on A1 = -40 MHz data

than TM, and comparable fidelity to TM on A 1 = -30 MHz, where the parameter

has changed by 40% (Table. A.1). Here we used Nop of the test data for both ML and

network R. These results indicated that provided variations in the NV parameters are

small, it is possible to use a fixed network R to directly read out any NV, without

the need to run experiments to generate the traning data.

Ai (MHz) TM fidelity ML fidelity network R fidelity
-40 97.94(2)% 98.20(4)% 98.24(4)%
-30 98.67(2)% 98.76(3)% 98.66(4)%

Table A.1: Robustness test of network R trained with {kion = 90,3MHz, A 1 =
-50MHz}. We compare the readout fidelities of test data with different A, from
TM, ML, and network R. The result from network R is better than TM when A 1 is
not changed too much.
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A.5 Application to initialization by readout

One scenario where even a modest increase in the fidelity can be beneficial is in state

preparation-by-measurement [156, 142, 74, 216, 130]. In this is a widely adopted

technique, to achieve a higher fidelity of state preparation with the TM, two distinct

thresholds are set, Ndrk <NthandNbright> Nth,where Nth is the readout threshold.

Measurements in between the two thresholds are discarded, as they cannot be assigned

to either bright or dark state with enough confidence. This leads to a lengthier state

preparation routine. In ML, the neural network assigns each input to a probability

Pbright Pdark) of the state being bright (dark). A final step comparesPbrightPdarkand

classifies accordingly. To achieve a higher fidelity, we discard cases where 0.5 - t <

Pdark/bright < 0.5+t, with an adjustable threshold t. We compare the state preparation

fidelity from TM and ML, when discarding the same amount of data, and observe that

ML maintains its advantage over TM, and scales more favorably than TM with the

ratio of discarded measurements (Fig. A-4). This enables preparing a high fidelity

initial state more efficiently. We observed similar improvement from unsupervised

learning (see Appendix), agreeing with [137].

A.6 Conclusion and Outlook

In conclusion, we have shown that ML techniques can exploit the hidden structure

in the repetitive readout data of NV center at room-temperature to improve the

state measurement fidelity. We used Quantum Monte-Carlo simulation based on a

33-level NV model to generate data for machine learning, and found improved single-

shot readout fidelity over the traditional threshold method, that can be attributed

to the ML ability to correctly classify a larger number of readout trajectory that are

perturbed by the measurement process itself.

While we used simulations, generally the training process does not depend on

knowledge of the model. In fact, the only information required is the label for the state

(|mI = +1) or Im, = 0, -1)), which is readily available in experiments by discarding
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less trustworthy data [156, 142, 74, 216, 130]. One can then use this data to train a

network specific to the NV of interest, and expect an increase in readout fidelity in all

subsequent repetitive readout experiments, free of any additional experimental time

(although at the cost of an increased computational time). Although individual NVs

may have slightly different photodynamic parameters, they should be covered by the

range we explored in this work, and therefore the improvement in fidelity is expected

to be ubiquitous.

In addition, the off-the-shelf MATLAB© deep learning toolbox we employed greatly

reduces the complexities in the neuron network architecture, making this improve-

ment easily reproducible and more accessible to experimentalists.

Though small, the increase in fidelity does not require any additional experimental

time, and is readily compatible with experiments using repetitive readout of nuclear

spins, including in quantum metrology [16, 133, 63] to improve sensitivity.

To further shed light on the bright/dark decisions that affect the ML readout

fidelity, one could use decision tree learning instead of a neuron network. This could

potentially inform optimized readout protocols, with varying illumination times, or

help further improve the neuron network architecture. More broadly, ML could be

applied to more complex systems, for example to help mitigate crosstalk of fluores-

cence signals in a solid-state register consisting of a few nearby NV or other color

centers [185].
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A.7 Appendix I: NV model and Quantum Monte-

Carlo Simulation

We used a 33-level model to fully describe the dynamics of NV-"N in the repetitive

readout process. This model includes the spin-1 triplet ground and excited states,

and singlet metastable state for NV-, the spin-1/2 ground and excited states for NV,

and the nuclear spin-1 of 14N , as illustrated in Fig. A-5. The transition rates directly

related to the NV photoluminescence have been precisely determined and reported in

various works [174, 207, 93, 140], although with some significant variations. For the

simulation we took the values from Gupta et al. [93] listed in Table. A.2.

transition rates k, k47 k7 kn kn

(MHz) 65.9 92.1 11.4 1.18 4.84

Table A.2: Transition rates used in the 33-level model.

The exact (de)ionization mechanisms under 532 nm laser illumination have not

been yet determined experimentally, neither have the (de)ionization rate under laser-

power comparable to the saturation power (measurement under weak power can be

found in [15, 45, 94]). Here we assume the (de)ionization kin(kdeion) occurs only in

the excited states, and obeys selection rules as illustrated in Fig. A-5. To maintain

the experimentally determined 70/30 ratio [15] between the charge states, we set

kdeion = 2kion. The ionization rate is proportional to the laser intensity, which is

swept around kion 90# MHz, in accordance with [142].

When the magnetic field is applied along the NV-axis, the ground state NV-

"N Hamiltonian has negligible effect on the repetitive readout, thus it is not consid-

ered in the numerical simulation. The NV- excited state Hamiltonian reads:

H_ = AesS,2+ QI,2+ yeBSz + -yBIz + S - A -I (A.2)

where S and I are the electronic and nuclear spin operators, Aes = 1.42 GHz is the

zero-field splitting of the electronic spin, Q = -4.945 MHz the nuclear quadrupole

interaction [196], and ye = 2.802 MHz/G and y, = -0.308 kHz/G the electronic
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and nuclear gyromagnetic ratios. The hyperfine interaction term is diagonal due to

symmetry:

S - A - I = AllS,1,z+ A1L(SjI, + Syly) (A.3)

where Ali = -40 MHz were determined via ODMR experiment [154]. Ai was believed

to be similar to Ali and is recently measured between -40 and -50 MHz [165].

The NV° excited state Hamiltonian takes the form:

Ho = QI2+ yeBSz + ynBIz + S - C -I (A.4)

with the hyperfine interaction term:

S - C - I = CliSZ1z + CiL(SX-T + Syly) (A.5)

The hyperfine interaction strengths were considered similar to those in the NV- ex-

cited state [84], and we set C11 = C = -40MHz.

To simulate repetitive readout experiments for both the training and testing data,

we used the quantum Monte-Carlo method based on the aforementioned 33-level

model. One challenge lies in the various time scales involved in the numerical sim-

ulation, from the electronic spin's fast oscillation w - (27r) - 10 GHz, to the optical

transition rates kij - 100 MHz, to the flip-flop rate of 14 N nuclear spin 1/Ti" - kHz.

We mitigate this issue by employing the Born-Oppenheimer approximation [32] in

our numerical simulation, and average out the fast oscillation at w as following.

We define op m as the transition probability from the state im) to In) in the time

step t. Starting from |0(t = 0))= Jm), we have

St33
Pmn (ni) dt

0 \i=1 R (A.6)

=ikhn |i /wi(t)h)2adt
i=1 0

Notice that |(il@(t))|2 is periodic with period 27/w, which is much smaller than the
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time step 6t ~ 1/kg. Thus, we assume only the average effect of this oscillation

is seen in each time step, and numerically find (6P7). This allows us to efficiently

perform the quantum Monte-Carlo simulation.

A.8 Appendix II: Machine Learning Discussions

A.8.1 Recurrent Neural Network

Recurrent neural network (RNN) is a commonly used architecture specializing in time-

series data with the capability to understand the correlation within the time-series.

In the main text, we showed results obtained using shallow neural network. In order

to see if we gain by exploiting the correlation within the time series we also tested

the performance of an advanced recurrent neural network: long short-term memory

(LSTM). Due to the nature of recurrent neural network, the training process is very

time-consuming and therefore not suitable for exploring multiple parameters in our

model. To speed up the training process, we averaged the input time trace data over

100 realizations, to greatly reduce the training set dimension. Indeed, this may have

caused some loss of information. The result though still consistently outperforms the

TM and is comparable to the shallow neural network shown in the main text (see

Table. A.3). One remark is that we did not take the cumulative sum for the input

data, because LSTM specializes in time series data and is able to recognize some

quasi-periodic patterns.

A1 (MHz) kion (MHz) TM fidelity ML fidelity LSTM fidelity
70/ 97.56(4)% 97.86(7)% 97.61(5)%

-50 90# 96.98(4)% 97.32(5)% 97.40(2)%
110/ 96.31(4)% 96.71(5)% 96.77(7)%

-30 98.67(2)% 98.76(3)% 98.44(3)%
-40 90 97.94(2)% 98.20(4)% 98.29(3)%
-50 96.98(4)% 97.32(5)% 97.40(2)%

Table A.3: Comparison between the fidelity obtained through TM, ML and LSTM
under different parameters. All training and testings were conducted at the Nept
of that set of parameters. Overall, the LSTM algorithm has similar performance
compared with the shallow neural network.
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A.8.2 Unsupervised learning

In the main text we compared the enhanced fidelities of TM and supervised learning

after discarding less trustworthy data. Another possibility is to use unsupervised

learning [137]. This method is of interest because unsupervised learning does not

require any well-labelled data. We implemented the k-means algorithm that classifies

a given data set into k different groups.

We first use the TM readout to obtain a bright (dark) group of measurement

trajectories. We then perform k-means on the bright (dark) group to further classify

it into k subgroups. The fidelity increases when we discard the smallest subgroup.

Compared to the TM, k-means gives better fidelity as shown in Fig. A-6, because the

unsupervised learning extracts some information about "N flips through the hidden

structures in time trace data, in agreement with [137]. Note that unlike TM or

supervised learning, we cannot control the ratio of discarded data. Therefore, the

fidelity defined by Eq. A.1 is not available, and only the fidelity of dark state is

shown. We also remark that in rare cases, k-means gives outlier results with fidelity

much worse than TM.
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Figure A-1: (a) Quantum circuit for repetitive quantum-non-demolition readout of the
nuclear spin state I|0), using the ancilla electronic spin (0e)). Here we assume e.g.,
to map the m = 0) nuclear spin state to the NV ims = 0) state and the Im, = +1)
state to the |mi = +1) state. (b) A typical histogram of total photon numbers col-
lected from repetitive readout, originating from bright (red, Im = 0, -1)) and dark
(grey, Im = +1)) states, is generated using simulation. A threshold at the cross
point classifies future readout results in the threshold method. (c) Shallow neuron
network architecture of MATLAB6 Neural Net Pattern Recognition tool (nprtool),
with sigmoid as activation function and softmax output. nprtool only allows users to
change the number of neurons in the hidden layer for high dimensional data. The
ML input is the time trace of single photon detector clicks Xk (at repetition k) in in-
dividual repetitive readout experiment, and we take the cumulative sum ("cumsum")
2= Z z of individual time traces before feeding the data to the neural network.
W1 (W2) and b (b2) are the weights and bias of the hidden (output) layer, which
are learnable parameters of the network. The output is the probability p1 (p2) of the
state being dark (bright).
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Figure A-2: (a) Readout fidelity as a function of repetition number N in the repetitive
readout. The fidelity from TM (grey) declines after Npt = 2375 due to increasing
probability of 14N nuclear spin flips. The fidelity from ML keeps improving, although
the increase rate slows down. For each repetition number, we retrain the network
and take the average fidelity over 10 trainings. Error bars are the standard error of
the 10 training results and are smaller than markers. Simulation parameters: {kion =
90/3MHz, A_ I= -50MHz}. (b) Fidelity comparison of TM at its optimal repetition
number Nopt, ML at Nopt, and ML at N = 8000 under different NV parameters. Nopt
for each were respectively (from left to right): 2000, 2375, 2750, 3125 and 2750. Error
bars are the standard error of 10 training results.
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Figure A-3: Cumulative number of photons as a function of read out repetitions.
Each trace corresponds to one input to the neural network. All traces shown here
experienced at least one "N flip, and are (a) correctly or (b) wrongly assigned by ML.
The larger number of traces in (a) (93.78% of the total number of traces considered)
reflects the high fidelity of the ML readout. In contrast, the TM only looks at the
final photon number and compares it to the threshold (dashed line), assigning roughly
25% in (a) and all in (b) to the wrong state. In the figures, red lines represent time
traces starting in bright state, grey in dark state; the dashed line is the threshold for
N = 8000.
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Figure A-4: More efficient state preparation-by-measurement. The state readout
fidelity increases after discarding less trustworthy measurements and this improves
the state preparation. ML always outperforms TM and scales more favorably with
the ratio of discarded data. The solid curves are a guide to the eye. Error bars are
the standard error of 10 training results, and are smaller than the marker.
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Figure A-5: The 33-level NV model used in our simulation, consisting of 11 electronic
spin levels times 3 nuclear spin levels (level spacings not to scale). kr, k47(= k6 7 ), k5 7 ,
k7 (= k 7 3), k 7 2 and kion are incoherent transition rates connecting the corresponding
energy levels. The optical transition rate kr between excited state and ground state
are set equal for NV-and NV, and are assumed to be spin-conservative (spin non-
conservative part is < 1% [174]). # is a dimensionless parameter given by the ratio of
the laser power to the optical transition rate. k(de)ion is the (de)ionization rate. We
assume the (de)ionization happens in the excited state and follows the selection rules
depicted by the brown arrows.
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point represents an individual k-means test.
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Appendix B

Rabi Enhancement: Model and Error

Analysis

B.1 Exact expressions for the Rabi enhancement

B.1.1 NV center system

For single NV, we effectively polarize the nitrogen nuclear spin at +1 (around excited

state level anti-crossing - 500G), and the only transition of concern is im = +1) ++

|m1 = 0). We simplify the problem by reducing nuclear spin-1 to an effective spin-1/2

system by applying the following transform where a factor of V is introduced

1
I,21 , z -+ 31 + Iz, Ix,y-+ V/-Ix,y (B.1)

In the main text we described our procedure to find expression for the enhancement

of the nuclear spin Rabi nutation due to virtual transitions of the electronic spin. Here

we provide the exact expressions for the enhancement factor in each electronic spin
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manifold m,:

a+1 = cos(7+) + 7esin(9+),

ao = cos(d+) cos( )- sin(9+ - 1 9-), (B.2)
'_Yn

a_1 = cos(O~) - sin(1-).
7Yn

where the rotation angles, as shown in main text, are given by

tan(22-+) = A1  2A1- (B.3)

an, +-fB--fB;?Q W+ +1'
mw rf

tan(2-) = e -2A__ -- (B.4)
N-,ye Bz -A +-YnBz+Q + -1 +AlmwW rf 1 +i

Here

MWi = + +eBz + Al ,

of 1= Q + -ynBz + Al , B5wA1 =Qy~B~A1 1,(B.5)
W-1 -A T--B,-All

W1 = Q +-nBz - All.

are the resonance frequencies for electron 10,+1) +1 il,+1) and nuclear 1±1,1) -

11, 0) transitions, which can be easily obtained experimentally.

Taking the approximation up to first order, we obtain equations linear in As as

given in the main text.

B.1.2 Electronic Spin-1/2

Formulas for the enhancement of the driving frequency when the nuclear spin is cou-

pled to an electronic spin 1/2 have been reported previously [30]. For completeness,

we provide here their expressions with the same notations and derivation procedure

as above. The system can be subdivided in two manifolds (a double-quantum and a

zero-quantum manifold, where the mixing between nuclear and electronic transitions

can occur). Following a procedure analogous to what described in the main text, we
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can rotate the ZQ manifold and thus obtained the enhancement factors:

'+1/2 = cos(V)+- sin(z9),
'Y" (B.6)

a-1/2 = cos(9) - g- sin(d).

where the rotation angle V is given by

tan(2z9)= =/2A__ ,__ __ _ (B.7)
7eBz - 7.Bz - Q + A mwW - rf

with

Wmw =-7eBz, Ar = 7nB2 + Q ~ 2l.   (B.8)
2

Note that for a nuclear spin 1/2, the same formulas are valid with the replacement

wrf= yBz and replace vAi with A1 .

B.2 Validity of Rabi enhancement formulas

In order to obtain the expressions in Eq. (B.2), we made some approximations; in

particular we neglected the counter-rotating term of the RF driving field and, after the

diagonalization procedure presented in the main text, we neglect any off-resonance

transition involving electronic spin levels. Since for the electronic spin the driving

field strength yB 1 is typically much larger than the driving frequency Wrf, the first

approximation might not always hold.

To test the validity of these approximations and thus of our enhancement formulas

Eq. (B.2), we performed numerical simulation using a first-order Trotter expansion

in the lab frame, thus considering both rotating and counter-rotating terms. Here

we used the same parameters as in the experiments. Figure B-1 shows a good agree-

ment between Trotter simulation and our theoretical formula, even for very large RF

strength. This indicates that although the nominal bound for the validity of the ro-

tating wave approximation (RWA) for the electronic spin might be broken, its effects

on the nuclear spin transitions are small. From these results we conclude that for the

RF strengths used in our experiment, effects from counter-rotating fields and other
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approximations are on the order of 10' of Rabi nutation rate, two orders of magni-

tude smaller than our estimated uncertainty 6A 1 and thus do not affect our estimate

of the value of A1 .

20,
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Figure B-1: Left: Comparison between theoretical formula (lines) and Trotter simula-
tion (open symbols). Red, circles, m, = 0. Black (dashed line and squares), m, = -1.
Gray (dotted line and diamonds), m, = +1. This range corresponds to our exper-
imental condition, where RWA is shown valid. Relative error between Trotter and
theoretical curve is - 10-4 . Right: Comparison between theoretical formula (solid
line) and trotter simulation (open symbols) over large range of RF strength. Red,
m, = 0. Black, m.,= -1. Gray, m, = +1. Good agreement indicates small effects
from counter-rotating term.

B.3 Error Analysis

In the main text, when discussing the uncertainty in the estimate of A, resulting

from our measurement and fitting procedure, we only considered error from measured

nuclear Rabi frequency. For a comprehensive discussion of error, we need to consider

all the sources of uncertainty and errors.

Small errors from imperfect MW -r pulses duration and nuclear spin polarization

contribute to reduction of fluorescent contrast and do not enter our estimation pro-

cedure. Under current experimental conditions, these two factors are negligible. The

detuning of selective MW pulse is estimated by measuring the linewidth of fourier

transformed electronic spin Ramsey signal. To find the uncertainty in RF frequency,

we perform pulsed RF excitation, sweeping across the resonance frequency and ob-

serving the fluorescence intensity after mapping the nuclear spin state to the electronic
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spin. The linewidth of the observed dip provides us a conservative estimate of the

uncertainty in Wrf. These uncertainties range from 1.8 - 7.9 kHz. In the fitting pro-

cess, uncertainty in Al also contributes linearly. It was measured with high precision

before [196].

In the estimation procedure, we truncate Eq.(B.2) to first order and rewrite them

in order to express A 1 as a function of experimental measurements:

A1  - (o - o _f)(" -1
7e NB1
= (n 1+ o-1i + All)( -1) (B.9)
7Ye 72W f B1
N 1 1 )-11 I Qo

7Ye WW-Wr w +w +All -yB)=W -( + w ) (1 -

We calculate contributions to the uncertainty 6A_ of A_ from all fitting pa-

rameters using the approximate propagation of error formula, 6A±(x1,x2,--) -=

z X. The contribution of each factor, DX = | 'x|,calculatedac-

cording to Eq. B.9 using values from our experiment are reported in Table B.1.

These results show that uncertainties from Wmw, Wrf and A are at least 4 orders

smaller than that from the measured nuclear Rabi frequency m. Therefore, our

fitting considering only error from measured Rabi frequency is valid.

The uncertainty in the Rabi frequency is limited by coherence time of the nuclear

spin under driving (which can introduce further decoherence due to the driving field

instability) and photon shot noise of the optical readout process. Thus the precision

of the estimate could be improved with more averaging, at the expense of longer

measurement time, or by using more advanced readout techniques [141, 1871. Another

limit of a few hundred Hz is imposed by accuracy of ye and 7, with ~ 10-4 relative

error [69, 1551.
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m= +1
m= 0

m= -1

6 Wmw

5.5 x 103

5.5 x 103

DW_ o6 rf Dbrf 6QmS

3 1.8 x 103  1 650
8* - 11* 1 x 103

10 7.9 x 103 14 1 x 10 3

Dom

2.7 x 105
1.3 x 105

1.6 x 105

6AI
2 x 103

2 x 103

2 x 103

DAI1
0
3
4

(Hz)

Table B.1: Contribution to uncertainty in A1 from all parameters according to
Eq. (B.9) and the error propagation formula. D. stands for '6x1.

*In the electronic m, = 0 manifold, w0  and w' do not enter Eq. (B.9), while wo andmw rfM
Wrf contribute. The error is estimated by combining contributions from the m, = ±1

manifolds, DW,O = D + Dj,_J.
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Appendix C

Decoherence Mechanism of Nuclear

Spins: Experimental Methods and

Analysis

C.1 Experimental Methods

C.1.1 Differential Measurement of Nuclear Spin Coherence

In our experiments we do not have a direct measurement of the nuclear spin qubit,

which would reveal its coherence time. A common strategy to overcome this limitation

is to initialize the NV and apply a CNOT gate, flipping the NV state conditional on

the nuclear spin state. This effectively maps the state information from the nuclear

to the electronic spin. In the nuclear Ramsey experiment in Sec. 3.2.2, we create

the entangled state a10,+1)+#1-1, 0) with this protocol. The NV is then optically

read out, giving the same probability distribution 12,1312 as if directly measuring

the nuclear spin. However, when we measure the nuclear spin coherence, the NV

undergoes Tf flips, potentially introducing errors in this readout process. First, if

the NV final state is different from the nominal one, the second RF pulse operates

in the incorrect NV manifold and is thus off-resonance, failing to transfer the nuclear

coherence into state populations. Second, the mapping between nuclear and electronic
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spin states might fail as the NV state is not fully polarized anymore.

To account for these errors, we perform a differential readout to obtain T2*": the

first measurement is the regular nuclear Ramsey experiment, measured by applying

a CNOT on the NV, subject to possible readout failure; for the second measurement,

we add a ir phase shift on the second RF 7r/2 pulse in the nuclear Ramsey sequence,

and then apply the same readout. The difference of the two measurements yields the

expected T2** decay, as shown in Fig. C-la. The intuitive explanation is that since one

jump of the strong fluctuator totally decoheres the qubit, any nuclear spin coherence

is preserved only when the NV stays in the original state. No coherence is left when

the final state is different. Therefore, measurements (including unsuccessful ones)

already contain all the information about the nuclear spin coherence. The purpose

of the differential readout is to remove the two errors mentioned above, which are

not related to the nuclear spin coherence decay. Therefore, one could even choose a

different measurement as the second data set, as long as it contains the same common

mode error. One such choice is to apply a CNOT gate conditional on the nuclear spin

being in the Im = 0) state (instead of Im, = +1)). We chose to apply a 7r phase shift

on the nuclear Ramsey because when taking the difference of the two measurements

this also doubles the signal amplitude. When the qubit is protected against RTN

by the DD control, this differential measurement is no longer effective because some

nuclear spin coherence is stored in all NV manifolds (Fig. C-1b). We emphasize that

this is not a fundamental limit. Single-shot readout, either using on-resonant laser

at cryogenic temperature [175] or using intermediate-high magnetic field at room-

temperature [156] solves this issue and has been experimentally demonstrated.

C.1.2 Data Analysis for Engineered Tf

In the engineered Tf experiment, we consider NT= 200 predetermined traces. Each

trace is repeated 4 x 104 times in order to build enough statistics to determine the

final population state of the NV. In Fig. C-2a, we plot the average signal at t= 16ps

for each one of the 200 Tf traces, clearly showing that the final state of each trace can

be reliably determined to be either 10) or 1-1). As another demonstration, in Fig. C-
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Figure C-1: (a) Simulation of differential measurement for T*. Red solid line assumes
perfect readout of the nuclear spin coherence. Black solid line is one set of the
differential data. The asymmetric shape and non-zero asymptotic value indicate the
presence of a common mode signal not related to nuclear coherence. Gray dashed
line shows differential measurement, revealing T2. (b) Nuclear coherence stored in
different NV manifolds when we apply DQ DD. Gray solid line is the full coherence.
Red solid line is the coherence stored in Im, = ±1) and black solid line in ims) = 0.
As coherence is stored in all manifolds, the differential measurement is no longer
effective in removing common mode noise from the NV Tf process.

2b we plot out the #47 engineered Te trace in black solid line, and the experimental

result in red diamonds. The error bars in all engineered Tf experiments are then the

standard deviation resulting from the 200 x 4 x 104 acquired data for each time point,

divided by VNr, which corresponds to the usual standard error of the mean used for

the other experimental results.

C.1.3 Engineered Tf with DD

In order to simulate a Tf flip, we apply a 7r pulse, the same pulse used for DD. As

the pulse length (44ns) is comparable to the smallest time interval between pulses of

the DD sequence (200ns), there is a non-negligible probability that a Te flip overlaps

with DD pulses for some of the Tf traces. We deal with this possibility in two ways:

if the overlap of the Tf flip and DD7r-pulse is larger than half the pulse duration,

we do not apply either pulses; also, we discard all traces that contain an overlap of

less than half of the pulse duration. We verify that this strategy does not bias the

overall engineered noise by measuring T1 with and without DD sequence. The results

in Fig. C-3a show that the fitted TfDD= 10.0 0.4ps is the same as Te without DD
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(10.0 ± 0.4ps) within the errorbars. This verifies that our treatment of overlapping

ir-pulses does not change the underlying physics, and that the protection of nuclear

spin coherence derives from DD, rather than from changes in the engineered Te under

DD.

C.1.4 Natural Tf with DD

To show that even for the natural T noise our DD method can efficiently decouple

the nuclear spin from its RTN, we measure the natural Tf while applying a DD

sequence (Fig. C-3b). In order to have a sequence robust against flip angle error

and off-resonance pulses, we employ the KDD pulse sequence [197], KDD = r/2 -

(-7rr/6+ - T - (7r) - T - (7),/ 2 +p - T - (7r)W - T - (7r),/ 6+,, and concatenate this

5-pulse block following the XY-16 phase cycle [92]: KDDx - KDD - KDDx - KDDY -

x - -K KDDY -KDD2-KDD -KDDV-KDDt-KDDKD D9--KDD

KDD9 - KDD_. We measure up to 8ms, corresponding to 4 x 104 pulses, longer than

T2*. We fit the data to an exponential decay and find the 1/e time to be 3.7 ± 1.3ms,

matching Te= 4.3 ± 0.3ms. At this T, we expect more than a factor of 3 gain in

T2 , therefore there should be a net improvement in nuclear spin coherence. This

suggests that for up to about ~ 105 pulses, pulse errors in the DD do not accumulate

so significantly to counteract potential gains in T2. We expect our method to protect

14 N beyond the limit set by natural Te of a few ms, as it could be verified with

single-shot readout of the nuclear spin coherence.

C.1.5 Discussion on the relation between Tf and T2*'

Given the large uncertainty in the measured natural T= 4.3(3)msandT= 5.6(.7)ms

(errors are 95% confidence interval from fit), we find a T2*"/Tf ratio of 5.6/4.3=

1.3(2), which is compatible with the 3LF model prediction (T2*'/Te= 1.5), but does

not exclude other models. It is then worth to examine more in depth whether the data

does indeed support the three-level spin-fluctuator model or whether other models

could be a better match.
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Table C.1: Comparing different models for T2/Tf

MSE Te(ms) oTT(ms) T2*/Te
model 1 0.0083 4.1 0.8 3/2
model 2 0.0091 3.6 0.8 2
model 3 0.0086 5.0 1.0 1
model 4 0.0084 4.3 1.2 1.3(5)

Instead of extracting Te and T2*n independently from the fit, we fit the two experi-

mental datasets together to four models: 1) fixing T2*"/TI= 1.5; 2) fixing T2/Tf= 2;

3) fixing T2*'/T'= 1; 4) leaving T2**/Tf as a free fitting parameter. We compare

the mean square error (MSE) of the fit and the uncertainty of the fitted Te for the

four models; results are summarized in Table. C.1. This analysis reveals that the

model assuming T2I/T,= 1.5 (model 1) yields the best result both in terms of small-

est MSE and smallest uncertainty in Tf. A more general fit (model 4) converges to

T2*n/T,= 1.3(5), similar to the result when the two datasets are fitted independently,

but results in larger uncertainty in Tf. We therefore argue that the experimental data,

although with a relatively large uncertainty, are consistent with the spin-fluctuator

model predictions.

We further note that we can ascribe the slightly smaller T2 than expected

(T2/Tf< 1.5) to environmental drift. Each data point in Fig. 3-2b is averaged

over 100,000 repetitions. We observe ~ 20Hz drift in the nuclear Larmor frequency

even after recalibrating the experiment about every hour by measuring the magnetic

field drift with the NV and compensating its effect on the nuclear Larmor frequency

by adding a corresponding phase shift to the second 7r/2 pulse of the nuclear Ram-

sey sequence. Although small, the frequency drift is non-negligible compared to the

detuning in the nuclear Ramsey experiment (- 800Hz). The resulting off-resonance

pulses cause the average data to have a reduced contrast at long time, which is inter-

preted as a shorter T2.
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C.2 Coherence decay for random telegraph noise

C.2.1 Master Equation Description of the Nuclear Coherence

While the random walker model provides an intuitive semiclassical picture of the

decay process, one could also solve the coupled fluctuator-qubit dynamics with a

fully quantum mechanical framework. In particular, as the Tf process of the NV

center is purely Markovian, it is valid to describe the combined electron-nuclear spin

dynamics using a master equation. We can then write a Lindblad master equation

dp M 1~~kpt 1~~rkJ) C1
= L[p] = -i[7-i, p] + Z(Lkp(t)L- L - p(t)ItLk), (C.1)

k=1

where the jump operators Lk describe the Tf flips of NV, and are therefore Lk=

Im,) (m,1, where m, m' = {-1, 0, +1}. F = 1/ZZ (1/51V3T) for 2LF (3LF).

We note that we do not need to explicitly write jump operators for the nuclear spin,

as its decoherence is mediated by the Hamiltonian R2 = WeSz+ WnI + S - A - 1

(13 = DS2 + WeS2 + WnIz + S - A - I) for the electron-nuclear spin register for an

electronic spin-1/2 (spin-1). The evolved density operator can be simply found by

vectorizing this equation to obtain p(t) = ep(). We find that the numerical results

from the spin-fluctuator model and the master equation match, indicating the validity

of using the semiclassical spin-fluctuator model to describe a fully quantum process.

We note that the quantum mechanical treatment could handle more general cases,

such as the initial NV state being a superposition state [223].

C.2.2 Analytical results for the coherence time due to a 2LF

In the 2LF case, we can obtain an intuitive picture of the dynamics under DD by

diagonalizing the block [eM-er/ 2 
. U, - eVM-r2 -1 AddV. The diagonal elements of

Add are real:

= [7 sin(WT) k Vv 2- _2 cos2 (WF)], (C.2)
W
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with W = -v _ y2. They satisfy A+ - 0 > A-, with the equal sign only for v = Y.

As we do not expect a net growth of coherence, the negative eigenvalue A- is not

expected to contribute. As we will see soon, its coefficient is almost 0. For an initial

state P = [1; p], p E [-1, 1], we can express the coherence explicitly:

(e(Nr)) ={VA'V- 1 Pl(
dd (C.3)

=pc1A+ - pc2A"+ c3A+ + c4 A"

with c, as follows

ci =c 2 = iv^ysin2(WT/2)B,

1 B 2
C3 =- + -[v2 _ 72 cos(WT)], (C.4)

2 2
lB 2

C4 = - 2 _ 72 cos(Wr)],2 2

where B = 1/[W v/v2 -_2 cos2 (WT)]. In the strong fluctuator regime, » 7, we

have c1 , c2 - /v ~ 0, c 3 ~ 1, c4 ~ 0, yielding an exponential decay (eO(NT)) ~ A".

Note that Equations (C.2-C.4) are valid even in the weak fluctuator regime.

C.2.3 Analytical results for the coherence time due to a 3LF

The 3-level fluctuator case is more complicated, and we cannot derive an elegant

analytical form. When we apply the DQ drive, the coherence approximately follows

a simple form

(e0(n)) I c+ A+ + coAn + c_A", (C.5)

where {A+, Ao, A -} are the eigenvalues of eMir/2 . U, - eM"'/2 . Instead of writing

down their cumbersome expressions, to obtain some intuition in Fig. C-4 we plot how

the eigenvalues and their corresponding coefficients change as a function of T. Similar

to the 2LF case, there is one eigenvalue, AO, that is negative but has a vanishing

contribution to the dynamics. The coherence behavior also depends on the initial

state (which sets Ck). Assuming Tj= 4ms and starting from the subspace spanned

by im = ±1), we obtain the solid lines in Fig. C-4; the dashed lines represent the
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case of starting from Im. = 0). Interestingly, in the latter case, the coefficients will

go beyond 1 and below 0, causing better coherence for someTvalue than the best

decay rate of the three eigenvalues.

C.2.4 Weak fluctuator regime for 3-level system

For completeness, we discuss briefly the 3-level weak fluctuator regime, v « y (results

for the 2LF can be found in reference [22]). When evaluating the decay without DD (to

obtain the dephasing time T2**) only one of the three eigenvalues of M_1 contributes

significantly to the decay. Therefore the decoherence has an exponential form, with

1 3-2 - v 2  K

T2* 31 / 3 K 32/3 (C.6)

K = (973 + v v49v22 +274)

The relationship between T2*" and v is shown in Fig. C-5, covering the full range from

weak fluctuator to strong fluctuator. The black circles are the approximated result

from the expression in Eq. C.6, which ignores small contributions from the other two

eigenvalues. We note that this approximation captures the average behavior for any

v, even if the exact result (red curve obtained from numerical calculations) shows

additional features. Unlike in the strong fluctuator regime, where T2**= 1.5Tf is

independent of v, T2** for a weaker fluctuator is longer in the regime where v < y and

increases with -y/v. We also see that both in the weak and strong fluctuator regimes,

an exponential decay is a good approximation, but the behavior is more complicated

in the intermediate regime.

When we apply DD to protect the nuclear spin qubit in the weak fluctuator regime,

we find that only one eigenvalue mainly contributes to the decay, while we had two

eigenvalues contributing in the strong coupling regime. The decoherence process is

thus exponential. Interestingly, the main contribution comes from the slowest decay

term. In Fig. C-6, we show example of the decay component (we did not plot the

other two fast decaying components because they are many orders larger) and their

contributions to the total decay under DQ drive, similar to Fig. C-4. Here we take
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Te= 10ps, v = 0.01y. A different result due to initial state as in strong fluctuator

regime is not seen here (solid lines overlap with dashed lines). The oscillatory behavior

seen in Fig. 3-4a and Fig. C-4a is also missing for the weak fluctuator.

C.2.5 T* in the strong fluctuator regime

In the strong fluctuator regime, T2*" becomes independent of v (the fluctuator/qubit

coupling). This had been observed in Ref. [22] for the TLF. For the 3LF, we can find

a similar result by taking the limit of v » y in Eq. C.6,

1 2
lim- = 2 =
2 T2* 3TF   (C.7)

T2*= -- f(3LF)2

Similarly, for 2LF, the two eigenvalues of M_1 are y ±y2 - v2 . In the strong

fluctuator regime, the only real contribution to decay is y,

T* - 2T (2LF). (C.8)
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FigureC-2: EngineeredTmeasurement. (a) We compare the measured NV fluores-
cence at a fixed time, t= 16ps, to the "bright" and "dark" reference lines, given by the
population states 10), |-1), for all 200 different traces. We clearly see that the final
state can be read out with high fidelity. (b) One of the engineered Te trace of theory
(black solid line) and experiment (red diamond). Error bars are one SEM.
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Figure C-3: (a) Same Tf experiment as shown in Fig. 3-3b, but with DD sequence. In
this experiment, we deal with the overlap of Te flip and DD pulses the same way as to
measure T2, demonstrating the same RTN environment when we apply DD sequence
and protect 14 N . Red diamond: experiment; black solid line: simulation; gray dashed
line: fit. (b) natural Tf measurement under a DD sequence withT= 200ns interval
(red diamond). The fit to an exponential decay (gray dashed line) gives 3.7 ± 1.3ms
in good agreement with the Te measured in the absence of DD pulses. All error bars
are one SEM.
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Figure C-4: Contribution of three eigenvalues to the T2 decay due to a 3LF. (a) Decay
rate corresponding to each eigenvalue as a function of the DD interval r. Note the
gray curve represents the negative eigenvalue, and here we plot its absolute value. (b)
Contribution of each eigenvalue to the qubit coherence. We see the negative eigenvalue
has almost zero contribution. Solid lines: NV starts in the subspace spanned by

+1); Dashed lines: NV starts in |m, = 0).
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Figure C-5: T2*" from weak to strong fluctuator regimes as a funcion of v/-y. In the
weak fluctuator regime, T2** increases as the fluctuator interacts more weakly with
the qubit.

153

(a)

0.8

.0.6

0.4

0.2

0
0 0.5 1

r (As)

1

-< >

-0.5



(a) (b)

1 1

0.8 0.8-

,0.6 0.6-.LD

0.4 o0.4-

0.2 0.2-

01 01
0 0.5 1 1.5 2 0 0.5 1 1.5 2

rv (/Is) TV (AS)

Figure C-6: Contribution of different eigenvalues in the T2 decay with a 3-level RTN,
for weak fluctuator. (a): decay rate corresponding to the slowest decaying eigenvalue
as a function of the DD interval T. (b): Contribution of each eigenvalue to the qubit
coherence. We see that only the black line corresponding to slowest decay has nonzero
contribution. Solid lines: NV start in subspace spanned by Im,= +1); Dashed lines
(superimposed): NV starts in m, = 0).
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Appendix D

Hardware-Efficient QEC:

Experimental Methods

D.1 Magnetic Field Stability

We use Neodymium permanent magnet of grade N52, which has a temperature coef-

ficient of - -0.6%/K from ambient temperature. It is therefore critical to stabilize

the temperature. We used two layers of 2-inch insulation materials (R = 10 for each

layer) to block the windows of the lab. The optical table is enclosed in blackout

curtains, in addition to the black hardboard panels enclosing the setup, which both

prevents ambient light and heat transfer via convection. Inside the enclosure of the

setup, we have a home-made PID temperature control system, with a heating power

of 40 W. We observe a typical temperature fluctuation of ±0.15 K over a few days by

a thermostat. In Fig. D-1, we show the observed fluctuation in NV energy splitting

between 10) ++ 1+1) in 292 experiments over 208 hours. The typical fluctuation is

within 100 kHz, correspondign to +0.04 G in magnetic field.

D.2 Precise Calibration of WL

With the magnetic field fluctuation estimated to be - 0.04 G, we should be able

to determine the Larmor frequency WL = 'ycB with an uncertainty of 43 Hz. In
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experiment, we achieved this by performing nuclear Ramsey experiment, which reveals

the frequency difference wi - WL, where wi is the RF frequency we use to drive the

13C . This gives us 524831 ± 67 Hz (Fig. D-2).
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Figure D-2: NV energy fluctuation over 208 hours.
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D.3 Simulation of 13 C distribution

As discussed in Section. 4.5, our hardware-efficient QEC code corrects pure dephasing

induced by a common fluctuator. This in turn restricts our selection of 13C in the

quantum register to have small Al hyperfine coupling strength. At first sight, this

might seem demanding, due to the probabilistic occurence of 13 C . Here we show with

simulation that in fact such 13 C s are very common.

We start by constructing the diamond lattice, which is face-centered-cubic (FCC)

with basis unit consisting of two carbon atoms at (0, 0, 0), (, , ) respectively. Take

the natural abundance of 1.1%, we randomly assign sites to be 1 3 C s, indicated by

red circles in Fig D-3(a).

Assuming there is only point magnetic dipole-dipole interaction between NV elec-

tron and the 13C s

H = (rrSD2 3($- (I- )- S- (D.1)

we can estimate the hyperfine coupling strength for each 13C . Note that by conven-

tion, we take the NV- 13C basis such that AY= 0 in the Hamiltonian. Therefore, the

A term is in fact -A ± + AV.

We ran through 500 randomly generated 13C distributions around one NV electron,

and observed 6211 13 C s whose Al = Azz >= 20 kHz, which can be selectively

addressed and individually controlled. 63.8% of all the NVs possess at least two 1 3 C s

dominated by pure dephasing error induced by NV fluctuation. Requirements for our

hardware-efficient QEC is therefore easily satisfied. The distribution of the hyperfine

coupling strength is shown in Fig. D-3(b, c).
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Figure D-3: (a) Diamond lattice. The red circles are randomly assigned 1 3 C . NV is in
the middle. (b) Distribution of the strength of the secular Ali, A_ coupling terms. We
selected only addressable and controllable 13 C s with All > 20 kHz. (c) Distribution of
the number of 3 C s suitable for hardware-efficient QEC per NV. All the distributions
are drawn from 500 randomly generated diamond lattice illustrated in (a), with a
natural 1 3 C abundance of 1.1%.
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