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ON THE CALCULUS OF SYMBOLS FOR PSEUDO-DIFFERENTTAL OPERATORS

by

BENT EDVARD PETERSEN

Submitted to the Department of Mathematics on May 17, 1968 in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

Let M be a smooth paracompact manifold, let E and F be smooth complex
vector bundles over M, and let P(E,F) be the module of pseudo-differential
operators P : P:(E) + Pm(F) in the sense of Hormander, i.e. P is C-linear
and continuous and there exists a sequence ¢f complex numbers (zk)k-o,l,...

with Re Zel < Re z, and 1lim sup Re z, = - @, such that if

s € FC(E) then there is an asymptotic expansion

® z
e P(ei}‘g 8) ~ ) P, (s,8) A k A+ + =)
k=0

in FQ(F), uniformly for g in compact subsets K of Cw(M:m) such that g € K
implies dg ¥ O on supp s. If n, = [Re(z0 - zk)] it may be shown that

P (s,g) depends only on the n -jets of s and dg, and hence relative to the
splittings of the exact jet bundle sequences for E and 1 1nduced by a
covariant derivative D on E and a covariant derivative V on T the

'local parts' Pk of the operator P induce positively homogeneous smooth
fibre preserving maps Ty of degree 2, of T -(0) into Pom(E,F). The corre-
sponding formal sum I Tk is called the formal symbol of P relative to the
pair (D,V), It is shown that the mapping which takes P € P(E,F) to its
formal symbol relative to (D,V) is onto the module F(E,F) of such formal
sum3 and has kernel Pd”(E,F), the module of operators that have smooth
distribution-kernels, Coordinate free formulas for the formal symbols of
the composition of pseudo-differential operators (and hence for the para-
metrix of an elliptic operator) and for the transpose of a pseudo-differen-
tial operator are found, Also a coordinate free expression for the local

parts P, is given in terms of the Ty
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Title: Profesaor of Mathematics
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§1 Introduction

In [8] L, Hormander considers a class of pseudo-differential
operators defined directly on a manifold by means of certain asymptotic
serles which are analogous to the total characteristic polynomial
assoclated to a differential operator, Among other things, he obtains
an intricate calculus, relative to coordinates, for the coefficients
(symbols) of these series under natural operations on the pscudo-
differential operators (eg, composition, inverse, and transpose). The
definition of pseudo-differential operators may be extended to operators
acting on c sections of vector bundles and the same results obtain,
( [1,19] ).,

Our purpose here is to obtain a coordinate free description of the
calculus of the symbols, Since it is not obvious how the symbols of
pseudo~differential operators transform under coordinate changes we
begin by considering the lower order symbols of differentlal operators
(§2) and obtain their transformation law (theorem 2,5), Motivated by
these results we introduce a class of objects (generalized symbols, §3
and 84) which we prove includes the symbols of pseudo-differential
operators (§9). In coordinates Hérmander obtains expressions for the
symbols in terms of certain simpler objects (which we call the singular
parts) and in §9 we obtain similar expressions globally in terms of a
pair of covariant derivatives, In 59 we prove a global composition
formula for these singular parts, and in 511 we prove a global transpcse

formula,



§5 is devoted to defining the pseudo-differential operators that
we conslder, and te proving a few facts, There 1s nothing really new
but proofs have been given to show that considering operators with
symbols that allow complex degrees of homogenuity does not materially
alter the standard arguments,

In 88 we introduce asymptotic sums of pseudo-differential operators.
The name asymptotic sum was chosen since the proof of existence of an
asymptotic sum depends on Hormander's main existence theorem [8], which
in turn 1is obtained essentially by the classical summation of an asymp-
totic series (see A, Erdélyi [5, §1,7] ). In §12 we make use of an
asymptotic sum to prove the existence of a parametrix for an elliptic
operator, Essentially the same notion of an asymptotic sum as here is
used in J, J. Kohn and L, Nirenberg [10],

There is a recent paper by W, Shih [18] similar to some parts of
this work, Shih considers pseudo-differential operators over a compact
manifold and obtains a description of the generalized symbols as in
theorem 9,2 here and a description of the composition as in theorem 9,3,
He also points out how to obtain the singular parts of the generalized
symbols relative to a pair of covariant derivatives, but does not give
the inverse operation (theorem 9,4), The composition formula for the
singular parts (theorem 9,5), the isomorphism of theorem 9.9, and the
transpose formula (theorem 11,5) are apparently still new,

The treatment of differential operators in terme of vector bundles
is given in R, S, Palais [13] and D, G, Quillen [14],

The bibliography contains only references mentioned in the text., A

very extensive bibliography of pseudo-differential operators and related



topics may be found in the survey paper, A, P, Calderén [3], and also
in L, Hormander [9],

M will denote a paracompact Hausdorff C°° manifold of dimension
m, T* will be the cotangent bundle of M; and E, F and G will be complex
or occasionally real Cm vector bundles on M, Pw(E) will denote the
¢~ sections of E , and F:(E) is the submodule of FQ(E) consisting of
compactly supported sections, and these spaces are equipped with the
standard topologies. Jn(E) will denote the nth jet bundle of E (see [13])
and jn : PQ(E) -+ Pm(Jn(E) ) will be the nth jet extension map., Finally
Diffn(E,F) will be the module of smooth differential operators from E
to F of order S n , s0 we have a natural isomorphism

Diff (E,F) = I"Hom (3" (E), F).



§2, Lower Order Symbols of Differential Operators

In this section we introduce certain subbundles of the jet
bundles of the cotangent bundle and obtain a description of the lower
order symbols of a differential operator in terms of these bundles,

We begin by considering rz=al vector bundles, In particular
1=MxR, Let d : I‘m(l) > I‘w(T*) be the exterior derivative and
for each integer n 2 0 , and each x € M let Z: = { fe CQ(M:R) : f
vanishes of order 2 n at x },

Since j_d € Diff (1 Jn(T*) ) there exists a unique morphism
n n+l "’

llJn H Jn+1(1) -+ Jn(T*) such that

wn jn+1 - jnd
Let 1 : 1™+ Jn+1(1) be the canonical inclusion (induced by the constant

sections), Then if g € Cm(MdR) we have
b = (@1 ,,a) = g3d) = 0

since d annihilates constants, Thus lpnt = (0, Suppose now that

+1

ve (1)x and \pn(v) = 0, Choose f ¢ C (MR) such that

ve jn+1(f)(x). Then

1,@0E = Y 1 O = p @) = 0

and hence df ¢ Z°"1+ I™(T*) which implies £ - £(x) € 22, Thus
X X

Jn+1(f -£(x))(x) = 0 and so

v = (f)(x) = f.(x)jn_'_i(l)(x} = 1f(x)

Ion1



which implies ker v;ls: imt, It follows that the sequence

0-+1

v
1 > Jn+1(1) n_, Jn(T*)

is exact and therefore the image ¥' of wn is a c” vector subbundle

of Jn(T*). Thus we have a short exact sequence

0-+1 1 > Jn+1(1) _n Wn

> 0

It is clear that this sequence 1s split by the canonical projection

Jn+1(l) + 1, Also note since wojl =d , Vb maps onto T* and hence

y0 o x,
n.*
Can) may be identified with the bundle Jn+1(M), where Jn+l(M) is

n+l L
(1),1) whose C sections are the differential

the subbundle of Hom(J
operators in Diffn+1(1,1) which annihilate constants, (see J,T, Schwartz
[15] for properties of Jn+1(H) ). In particular Jl(M) = T and

Jo() = 0. Hence we make the convention that yl . 0,

lemma 2,1

Given any R-linear map D : I"(1) + I'(F) such that jn(df)(x) = 0

implies (Df)(x) = O , then there exists a unique merphism
6 : ¥ +F

such that

D) = 0¥ 4, = 6Qde) , geC MR
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Proof: The hypotheses clearly imply D € Diffn+1(l,F) and hence
there 1s a unique morphism 6 : J°TX(1) + F such that D(g) = B 14 (8
g € Cm(M:R). Now 1f g € C (MIR) we have 8i1(g) = 6(g jn+1(1)

g D(1) = 0 and so we have a commutative diagram

Y
0 >1 1 >Jn+1(l) n_, yn >0
e .7
0 o )
¥
F

Since the row is exact 6 factors uniquely through wn and so induces

the desired morphism €,

The hypotheses on D in lemma 2,1 may be stated in the equivalent
form, D€ Diffn+1(1,F) and D annihilates constants, For n =0 ,
the lemma is the standard universal property of d and T*,

In terms of the bundles Jn+1(M) lemma 2,1 asserts that Jm_l(M)GD F

n+l

is canonically isomorphic to the subbundle of Hom(J (1),F) whose ¢

sections are the differential operators which annihilate constants,

lemma 2,2
Given any k-malti-R-linear map D : I‘w(l)x x r’@) » I ()
such that 1if g,,iv4,8, € c”(M:R) and for some 1, 1<1¢%k,

jn(dgi)(x) = 0, then D(gl,...,gk)(x) = 0 , then there exists a unique

morphism

0 :on Y2 o F
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such that

D(fjpeeenfy) = 8 WE DG vegd (df) )

for any fl....,fk € C QU:R) .

Proof: If we fix f f and define P, : Pm(l) -+ Pm(F)

AR ] k

by Pk(f) = D(fl""'fk-l'f) s f € Cw(MﬂR) , then by hypothesis and

by lemma 2,1 there exists a unique morphism
n
ak_l(fl,..,,fk_l) t: ¥ =+ F
such that Pk(f) - ek-l(fl""'fk-l) . jn(f). Then

6,y ¢ T (), T+ T (Hom(¥",F) )

satisfies the hypotheses of the lemma and 1s (k-l)-multi-linear, Hence

by induction we obtain
91 H ‘Pn -+ Hom("i’n. Hom (4 Hom(‘l’n,F)...) )

such that

el ? jn(dfl) 'jn(dfz)ooc jn(dfk) - D(flgooc'fk)

Then 6, induces the desired morphism 6,

1

lemma 2,3
There exists a unique morphism

k k .n n
Un 1 S Y ® J(E) +J

such that 1f g ,.u0,8, € c"MR) , s €T (E) then
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k
v, ( jn(dgl)O... ® jn(dgk)®jn(8) ) (x)

T3 (e, 6 )ue (g o8, () 8) ()

for each x € M, Moreover the sequence

Uk L

Sk wn@ Jn(E) n_. Jn+k(E) —_—- Jk-

legy —> 0

is exact, where 1 is the natural projection.

Proof: If BrreeesBy € Cw(M:R) define

n+k

P(gseeesgy) t I (B) > T Q" (E) )

bY P(gyrererg) (9 () = r i . ( (8=8; )) s (g -2, (X))8 ) (X,

+

If s € Z: n+k+l

. I (E) and

1
* IT(B) then (3,8, (X)) .0 (g, =g, (x))s € Z
+k
80 P(B)y000,8, ) (8)(x) = 0, Thus P(g),...,8,) € DIff (E, 3" (E) )
and hence there i1s a unique morphism

k

D(g)yeeeygy) ¢ IT(E) = I7T(E)

such that

P(gseees8)(8) = D(@j,e0nsg) ¢ 3.(8) , 8 €T (E)

n+k

Now D : I (1), I (1)+T Hm("(E),J" (E) ) satisfies the

hypotheses of lemma 2,2, since if for some i, 1 < i € k. jn(dgi)(x) =0

1

then dg:l € Z:+ ] I‘Q(T*) whenece gi-gi(x) £ Z:+2 and so

ntk+1

(gl-gl(x))...(sk-sk(x)) €Z which implies D(gl.....sk) (x) = 0,
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by construction of D, Hence by lemma 2,2 we have a unique morphism

v 1@ ¥+ Bom (" (B), 3" (E) )

such that

D(gyreeergy) = Vi e g o (g )

But clearly P and hence Uz is gymmetric in the g's and so induces
U: with the required properties, Now if BioeceBy € Cm(M:IR) sy B E I‘m(E)

then

k ,
™oy (1,08))g | oia e g 14(8) V&)

= i (e, D) (g, ()8 ) ()

and so wuk - 0.
n

k

Suppose v € Jn+ (E)x and Tv = 0, Let s € fw(E) be such that

jn+k(s)(x) a v, Then jk_l(s)(x) = mTv = 0, e, 8€ Z: . Fw(E).

Thus there exist functions gi,....si in Zx and sections 8 € Fm(E)
such that
8 = g gi gi s
poeoe
=1 1 k "1
Then v = 3 . (8)(x) = g b I ¢ ! 1 ey
n+k (& Tk By ove By

.k.’fu'% @sh @eh) o1 (8,) ) )
41 ® Ialdg ) e 1,098 ®jn 84 X

Thus ker 1< im U: and so we have exactness, since m is known to be

surjective,
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For n = 0 the sequence in lemma 2.3 is a short exact sequence, the
jet bundle sequence Kk
\
*
0~ SkI'LQE

0, & > 3% 1) » 0

but in general U: is not injective,

When E is complex then J(E) 1is the complex bundle associated to
Jn(E, regarded as real) by the complex structure induced by multiplica-
tion by 1 on E, and Sk ?ﬁ@ J"(E) is the complex bundle associated to
Sk '!’ng( J"(£) regarded as real) by the complex structure induced by
multiplication by i on Jn(E). In this case the morphism U: in lemma 2.3
is C-linear relative to these natural complex structures, Hence lemma
2,3 holds in the complex case also.

It will be convenient to regard U: as a c” section of the bundie
of homogeneous polynomial maps of degree k

wpX (Y7, Bom ( J(E), ") ) )

We pass from one interpretation ton the other without comment.

lemma 2.4

For n > 0 we have a natural short exact sequence

£ w
0+ $n+1 T* n wn n . Wn—l + 0

Proof: By the definition of ¥" and by the (n+1)8t exact jet
bundle sequence of 1 we have a commutative diagram with exact rows

and columns
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0 0 )
lv ¥ * v *
0+ 0 > g™ g LR
In+1 E Ln
v " v
0+1 ——> ") B 5 Y4
u 1Tn+1 5 wn
Jr Y if
0-+1 > Ji) =Bl ynl
V v v
0 0 0

By the nine lemma (applied fibrewise) there are induced morphisms
at the dotted arrows such that the diagram remains commutat.ive and

moreover the resulting column is exact.

Since M 13 paracompact all short exact sequences of vector bundles
over M are spiit, and hence additive functors of vector bundles pre-
serve short exact sequences, In particular applying the functor
Hom (* , 1) to the short exact sequence in lemma 2,4 there results

a short exact sequence

n+l

O*Jn(M)—-——>Jn+1(H)'———>S T=+0

The first morphism in this sequence 1s the natural inclusion, and the
second is essentially the symbol, (sections of Jn+lon) are differen~

tial operators).

Now let E and F be complex. Then we have the following descrip-

tion of the symbols of a differential operator from E to F.
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Theorem 2,5

If Pe Diffn(E,F) then for 0 € k € n there exist unique homoge-

neous polynomial maps

0 (B) & I™@" ", Hom(1*(8),)) )

such that 1if g € Cm(}l:lR) y B E I‘O(E) then

n
e petre oy . ) ARk 0 (B) * 1, (dg) * 3, (8) (A eR)

k=0

In particular UO(P) is the symbol of P in the usual sense. (UO(P) is

the symbol given in R, S. Palais [13] multiplied by i".)

Proof: For xe M, X eR

n-k

1 (g-g (x)) n-k
¢ 20 noior (B84 h

where h . € 2% | Thus
X,A X

: n
e peBe gy - § A™F K 2 g™ o )

k=0 (n-k)!

Now let 6: JU(E) + F in the unique morphism such that P = 63 ,
n

Then by lemma 2.3

n=k

—-—tn_k), P( (g-8() )" Fe)(x) = 1" 0 ER(A“ kj“(dg)®jk(s))(x)
where

An-k dg = dg@...@ dg (n-k times)
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We define 0, (P) * §, (dg) * 1, (s) = gk eu:'k ThaL 1) g 3 (8)) .

Then uniqueness is clear and the last statement follows from the fact
that

n
0p(P) * dg(x) * 8(x) = I-P( (g2 (x))"s )(x) .

In order for our notation in theorem 2,5 to be unambiguous it is
convenient to regard a differential operator as being a pair (n,P) where

n is the order assigned to P,
Remark 2,6

If Pe Diffn(E,F)‘ and 0 ¢ k< n then P ¢ Diffk_l(E,F) if and
only if on_k(P) = 0, This fact is an immediate consequence of the

construction of on_k(P) and the exact sequence of lemma 2.3,

We now consider covariant derivatives on vector bundles and state
a few properties which will be useful later, Proofs not given here may
be found in R, S, Palais [13], Other discussions of covariant deriva-
tives are J, Koszul [11] and E, Nelson [12],

A covariant derivative D on E may be described as an element of
Diffl(E, T*3E) such that the associated morphism Jl(E) + T%E 1is a

splitting of the exact jet bundle sequence

v
o

0 —> THE > 31 (E) > E

Let V be a covariant derivative on T* and let D be a covariant

derivative on E, Then the pair (D,V) induces in a canonical way,[13],kth
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order differential operators

(k)

D 1”@ > IS TR |, k= 0,1,2..,

which are kth total differentials in the sense that the associated
morphism

k k *
uk.J(E)+S TQE

is a splitting of the exact jet bundle sequence

1 T
* -
0 — Sk T®E ———k—> Jk(E) —-l-°—> Jk 1(E) > 0

Let Vi :'Jk-l(E) > Jk(E) be the injection associated to this splitting,

Then we obtain a direct sum decomposition
n
n *
@ = D s*rTgE
' k=0

*
with injections Voses V s Sk TQE »> J"(E) and

kel 'kl
n k *
projections My "k+1"' “n t J(E)+ S TGDE
and relative to this direct sum decomposition jn 3 Fw(E) -+ Fw(Jn(E) )
© L ey

is given by (D", D7, ...,

*
The exterior derivative d i Pm(l) -+ Fw(T ) 18 a covariant deriva-

tive on 1 and hence the pair (d,V) induces kth total differentials
*
3™ ) » 17 1)

where 3(1) md and 8(2) = 4294  (4? 1s sysmetrization). Let
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X
w, ¢ *ay) » sk

v, 2 Iy » sk

k

be the morphisms corresponding to Hy and vk , respectively,

(k)

The total differentials D induced by the pair (D,V) and the

total differentials B(k) induced by the pair (d,V) are related by

the following "Leibnitz rule",
Theorem 2,7

If g € C MR) and s € I"(E) then

n
p @ (gs) = 20 ( Il: ) 3(k)8® D(n-k)s
k=

Froof: The proof is a simple induction using directly the

construction of the D(n) and 3(n) as given in [13],

Corollary 2,8

1f gl,u..gk € CQ(MlR) then

ni
a 81 OOOQO a Bk

a(“)(gl..-sk) = Z ‘1'11,..1kl

where we sum over 11 +...+1k = n, In particular if ¢ € Cm(MdRm)

hen (B,) (B)
(n) , d n! 1 % n’ %m
) @) - ? ¢ “ee 9 ¢
fea B 1 @0 n
] % %n
vhere «,8 are memulti-indexes , ¢ = ¢; ‘eeeed
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lemma 2.9

There exist unique morphisms

u, yk gk+l T*
k
(’k : yk=1 , gk
such that
G Ve = Y

Ve Vk-1 " %k Vin

Moreover, uy, and Gk are the morphisms associated to a splitting of

the short exact sequence

>yk ko ykl

4
0 —» gktl o* Tk

Proof Uniqueness is clear since ¢k and wk-l are surjective,

Recall that the short exact sequence

N Jk+1(1) —_— Wk —_— 0

is split by the canonical projection 1T Jk+1(1) + 1, If we let

p ¢ Wk + Jk+1(1) be the associated injection then an easy computation

5 (k1)

using the fact that annihilates constants shows that we may

define &k = uk+1 p « Then dk is a splitting as required and we let

v, 1 Wk-l - Wk be the corresponding injection, An easy computation

Yk
shows that Gk wk-l Tepl /] k Vbl Tibl whence the lemma follows since
L Jk+1(1) + Jk(l) is surjective,

K+l
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It follows that we have a direct sum decomposition

*
. Sk+1 T
k=0
. D . k+l  * n
with injections un s Vi 4 S T +VY
. n k+l *
and projections Uy Wppy eoe @ 8 ¥© -+ S T

and from the commutativity relations of lemma 2.9 we may verify that
00 00 n
18 T > (¥)

(a(l) a(n+1) )'

relative to this direct sum decomposition is given by

lemma 2,10

Let n > 0 be an integer and let s € Fw(E). For each x € M 1let U,
be an open neighborhood of x, Then for each x € M we can £ind

s € f:(Elux) such that
(1) s (x) = s(x)
@ %)) = 0, 1ckgn
3) x-~* jn(s*)(x) 18 a C section of J*(E).
Proof: Let h(x) = vn oo vl s(x) , so he Fm(Jn(E) ) and for

a0
each x € M choose s € Pc(Elux) such that jn(ax)(x) = h(x). Then

(3) clearly holds, and (1) holds since sx(x) =T ﬂnjn(sx)(x) -

Ty see TV vee Yy 8(x) = s(x), Finally if 1 € k € n then
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©® e = u 3,60
M Tarooe Ty 35080 &)
* He Tk ot " Va0 Vs s (x)

- uk Vk L N vl s(x) - 0 [}

Hence (2) also holds,

Corollary 2,11

If x € M, U is an open neighborhood of x, n > 0 is an integer, then
there exists an open neighborhood V of x such that Vs;ll,and sections

al...sp € F:(EIU) such that sl...sp is a local frame for E over V and

such that
0®ape = 0, 1gkgn, 1s3gp.
lemma 2,12

Let n > 0 be an integer and let g € Cw(M:R). Then for each x € M

ve can find g€ C (MiR) such that
1) g, x) = 0
(2) dg (x) = &s(x)
@ 0Mgrm = 0 1 25ksmm

4) x-~+ jn(dgx)(x) is a C_ section of ¥" .
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n+l @ )

Proof: Let h(x) =v . ...V, 1, dg(x) s0 hel (
and for each x € M choose 8, 2 Cw(M:lR) such that jn+1(gx)(x) = h(x).
Then jn(dgx)(x) = wn jn+1(gx)(x) - Opn h) (x) which implies (4) since
v he T (¥,

If 1< k< ntl then we have

0Me e = 0 1)@
U Tpr o0 Mol Ipan (80 00

U Mgl *** Tngd Vpap oo V2 1 980D

= UV oees Vo Ly dg (x)

0  if k22
{ 3 o g

dg(x) 1if k = 1 since
Thus (2) and (3) follow. Finally for (1) we have

gx(x) =Ty e Thn jn+1(gx)(x)

= M. eee T dg(x)

1 atl Vo1 0t V2 1y

LETR Y dg(x) = O

Corollary 2,13

If n> 0 1is an integer g € CQ(MaR) then for each x € M we can

Qo
find hx € C (MR) such that

2
(1) hx € zx

@ 6% = 0%nw , 25kgm

3) x~+ jn(dhx)(x) is a c” section of Y"
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Proof: Choose g, as in lemma 2,12 and then define
hx =g - g(x) =g, + Then (1) and (3) are c’ear and (2) follows from the

fact that a(k) annihilates constants 1f k > 1,

Corollary 2,14

If n > 0 is an integer and x € M we can find a chart (U,$) on M

with x € U such that ¢(x) = 0 and

0™ o)) = 0, 25ksml , 1

A
(3NN
A

-m'

]

Now let (U,¢) be a chart on M, If a is a multi-index we define

(d¢)a - d¢lo olo®d¢lo 00|od¢mo ooo®d¢m

where d¢, appears a, times , 3 = l...m, Then @H* , |a| =n,

h|
*

is a local frame for st over U, The dual frame of ST over U is

denoted by ( g$-)a ’ |a| = n , and these sections may be interpreted

in the usual way as differential operators,

(n)

Having fixed the notation we can now describe B(n) and D in

coordinates,

Theorem 2,15

Let N> 0 be an integer and let x € M, Let (U;¢) be a chart on

M with x € U such that ¢(x) = 0 and

A
(S
A

3

@® 6@ = 0, 2 kg ML, 1
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Suppose E 1s trivial over U and we have a frame sl...sp for E over

U such that

1A
(S
A
o

(D(k)aj)(x) -0 , 1<kgN 1
If g € CQ(M:R) then we have
@ M) x) = Bl (3% &) (@) (x)
o=n ! 39

for 0 £ n< M1, and

nl 3

@ ™)) = ahn 67 (57278 ® @)% gy
af=n

for 0<€SngN , 1<3S0P

Proof 1 By theorem 2,7 and by hypothesis, if n < N
(n) I P SN 03] (n=k)
D™ (gs,) (x) kZo () 8 g 078 )

@ M) g 5, )

and so it is sufficient to prove (1),

By Taylor's theorem, since ¢(x) = 0

1 3 . a _ . nHl
g - |q}$n TR (~5—¢ ) g(x) ¢ € Z,
and hence
(n) 1 3 0 (n) ,a
@ " 'g)(x) = = (xr)ex) ¢ 2 (x) .
|G¥$ﬂ al T

By corollary 2,8

(81) o (8)) o

! ¢11) (X)G ) o@ (3 ¢m ﬂl) (x)

© 0™ MHm - o 5 @
-n
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(B,) «a

(!j o 1
Since ¢, ezxj , 18 <oy then (@ ¢, 3)x) = 0 . Hence

in (%) it suffices to sum over B 2 a. In particular if |a| = n we

have
(,) a a) o
@™ e = B Yo Heg g0 ™o ")

But by corollary 2.8 and since ¢(x) = 0 we have

(@,) a

@ Yo, heo = ap @M. oMo

] 3

and so if |a| = n then
™ 4% @) = nl @) .

It now suffices to prove that (*) vanishes if |a| < n, If

a] <n, [Bl = n and o < B, then for seme §, Bj >, and by

corcllary 2,8

(8,)

o B, (1, )

a
b - q
6,316 = ] EITT%TI;T @ o)) geg @ T o)

where we sum over 11 + eee + iq = Bj and where q = aj . Since

B, > a, each term in this sum contains an ip with 2 < 1p € n< N1 and

3 3

by hypothesis each such term vanishes,

We now return to the consideration of lower order symbols of

differential operators, The following theorem is well-known,

Theorem 2,16

If Pe€ Diffn(E,F) then there exist unique morphisms
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k

. *
Tn-k(P) H S T @ E->F k= 0,1,2...-,11

such that

n
Pa ) 1% T (P)o p (k)

k=0

Proof: If P= Ojn then we define

k
Tn_k(P) - i 9 \)n eee Vk+1 'lk

and check that this works, Uniqueness is clear from the direct sum

representation of jn.

The factor of 1k in theorem 2,16 was chosen to make the connection
with the symbols a bit neater, Relative to the pair (D,V) we have the

injections

k
Vk XX X] vl ¢t E>J (E)

k

L) L *
v
Vk ceee Vl s T =» V¥

which are right inverses for the obvious projections, These injections

induce a morphism

- * -
K, 1 S p ® E~ sk kaD.Jk(E) , k=0,1,...n

k 4

Theorem 2,17

If P e Diff (EF) then

Tk(P) - ﬂk(P) o Kk - k= O.l....,n.
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and in particular

@ = o) .

*
Proof: If xeM , ec¢€ Ex s, V E Tx choose 8 E Tm(E) such

that s(x) = e and (D(h) g)(x) = 0, 1<h<n , and choose

g € CQ(M:R) such that dg(x) = v and (3(h) g)(x) = 0 for 2 < h € n+l
and g(x) = 0. (These choices are possible by lemmas 2,10 and 2,12)., By
definition of Ky and by the direct sum decompositions of jk and jkd

we have

n-k

6" vge = a"Fy (@)t @ 3 () )

k

and hence by theorem 2,16

n=k. in-k n-k
Qk(P) . Kk(A . v®e) = m-)-! P(g 8) (x)

- Tk(P) . (An-kveae)

k=1 h~-k
1 . (n=h) , n=k
+ hZo woT T, (F) * D (s 8) (x)

The computation of the first term here follows from the fact that
p(n-k) _ Mok I vhere u__,  splits the exact jet bundle sequence,
and from the definition of the injection in that sequence, or else
from computations gsimilar to those in theorem 2,15,

To show that the terms in the sum vanish it is sufficient to show

if p<hgn then

pM(Ffayx) = o
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We have

I (q)

: h
p™ @) = ] (1) 0 w5 oMY e

by hypothesis on s,
Hence it suffices to show (B(h) gp)(x) = 0 for p<hgn,

By corollary 2.3 we have

1,) (1)
O™ e = § T 0 Vg e p@ Pedm
1 ...p
where we sum over 11 + see+1 = h,
P

Since g(x) = 0 we need only consider terms for which each 1, 2 1,

3

Since p+ 1< h, in any such term we have each

1j € h=-p+l < n=-p+l < ntl and some 1j > 2, Thus in each of the terms

we consider there is an ij with 2 g ij €< ntl , and hence by

hypothesis on g, the sum vanishes,

It is also possible to give a formula which expresses ak(P) in

terms of T,(P) , 0 < jJ € k, However we will derive such an expression

b

more generally for pseudo-differential operators, so we omit it for now.
(see theorem 9,4). The motivation for presenting theorem 2,17 is that it

shows how to define the T, for pseudo-differential operators, even

k
though the decomposition given by theorem 2,16 no longer exists,
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§3 Generalized Symbols

The projection Wy eee W Y o T* is given by jn(dg) + dg . Let
A" be its kernel, Then A" is a C" vector subbundle and hence by local
triviality y" - A" 18 an open submanifold of ¥?,  Let P, ¢ Yoo At e N
be the restriction of the natural projection, Then if n > 0O i1a an

integer and z € ¢ we define
Smb1: (E,F)
* n x z n . n
- {aeﬂou(an(E),pnF):ccxw-xo-w,x> 0, we ¥ =-A"}

where HOM = T Hom.

We may also describe Smb1:(E,F) as the set of functions
o : ¥ = A" + Hom(J"(E),F)
with the following properties

(1) o 1is fibre preserving

(2) o 1s positively homogeneous of degree z

(3) if s € I‘:(E), g € Cm(M:R) and dg$0 on supp s then
X+0 ¢ jn(dg)(x) . jn(s)(x) 18 a C section of F. (This
section i1s well-defined on &ll of M if we make the convention

that it is zero if x ¢ supp 8).

Clearly SmbIZ(E,F) has a natural structure as a left dw(M:¢)-

%
module., We let Smblz(E,F) = Smblg(E,F). Then since WO = T and

Ao = (0) the module Smblz(E,F) is the same as the one conaidered in

-
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Palais [13,pg. 54] for real z. The natural projections Jn+1(E) + J™(E)

n+l n+l
z

and Y + Y% induce an Znclusion Smbll;(E,F)g Smbl "~ (E,F) so that

in particular Smblz(E,F)C__Smbll;(E,F) and for this reason we refer to
the elements of Smbl:(E,F) as generalized symbols.

Theorem 3,1

Let z €€ and let n > 0 be an integer, Suppose for each

8 € I‘:(E) and each g ¢ Cw(M:R) such that dg#0 on supp s we have
P(s,g) € I (F)

such that
(a) if A > 0, dg ¥ O on supp s, then P(s,\g) = Az P(s,g)

(b) 1if dg % O on supp & \ SuPP s', a,b e € then
P(as + be',g) = aP(s,g) + bP(s',g).

(c) if dg ¥ O on supp s, jn(s) (x) = 0, then P(s,g)(x) = O

) 1if dg, ¥ 0 on supp s, 1 = 1,2, and jn(dgl)(x) - jn(dgz) (x)
then P(x,gl)(x) = P(x,g,)x)

00
Then there exists a unique O € Smblrzl(E,F) such that if s € I‘c (E),

g € Cm(leR), dg ¥ 0 on supp s then

(*) o- jn(dg)(x) . jn(S)(x) = P(s,g)(x) , xeM
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Proof: Let x € M, Given w € W: - A: and v € Jn(E)x choosge
g € Cm(M:R) such that jn(dg)(x) » v, Since w ¢ A: it follows that
dg(x) ¥ 0. Thus there is an open neighborhood U of x such that
dg ¥ 0 on U, Now choose s € F:(EIU) such that jn(a)(x) = v, and then
define

O*wev = P(s,pg)x)

Suppose s8' ¢ F:(E). g'e Cm(MiR), dg' # 0 on supp s' and
jn(dg')(x) -w, jn(s')(x) = v, As before there is a neighborhood W
of x such that dg' # 0 on W, Choose 8" ¢ r:(EIWf\U) such that

jn(s")(x) = v, Then by (d) we have
P(s",g)(x) = P(s",8')(x)

Now dg ¥ O on supp 8" supp s 2 supp(s - 8') and hence by (c) and (b)

v

we have

0 = P(s" - 8,8)(x) = P(s8",g)(x) - P(s,g)(x)
Similarly we have

0 = P(s" -38',g'")(x) = P(s",g8'")(x) - P(8',8")(x)
It folléws that

P(s',g')(x) = P(s,g)(x)

and hence 0 * w * v 1is well-defined, In particular it follows by (b)

that 0 * w s v 1g C-linear in v and so

n n , n
ot YN - AT+ Hom(I" (E),F)_
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Carrying out this conatruction for each x € M yields a function
ot ¥" - A" + Hom(J"(E),F)

which clearly satisfies condition (1) for a generalized symbol, Con-
dition (2) 1s satisfied because of (a) and condition (3) is satisfied
by hypothesis. Hence it follows that 0O € Smbl'zl(E,F). Clearly o

satiasfies (*), and by construction is unique,

Theorem 3,2

€ Smbl‘l:(F,G). Then there exists a

2
unique generalized sympol 0,0 O, € smb1™tE
me & m 2 1 ztw

Let o, € Smblz(E.F) and ©
(E,G) such that if s € r‘c"(s),

g € Cm(ﬁnﬂ), dg # 0 on supp s then
(30 910 * Jpuc(de) * Jpp ()

= 0, * 1,048 * 3, (o) * 1 _(g) * 1 ()

Proof s If s ¢ I‘:(E) y BE CQ(M:IR), dg ¥ 0 on supp s, define
P(’lg) - 02 ¢ jk(dS) * jk(ol . jn(dS) * jn(’) ) .

Then it suffices to verify hypotheses (c) and (d) of theorem 3,1
(c): Suppose 8 € I‘:(E) , 8 € Cw(MdR), dg ¥ 0 on supp s, and that

kt+

jn+k(a) (x) = 0, Then jn(a) € Zx 1. I‘“(Jn(E) ) and so since

o, jn(dg) 1 JE) +F is a morphism it follows that

o ° Jn'(ds) « 3 () € Z:ﬂ « T”(F) whence P(s,g)(x) = O,

(d): Suppose s € I‘:(E) » 8 € CQ(MxR). dgi $ 0 on supp 8, { = 1,2,

and that jmk(dsl)(x) - jn+k(d82)(x)' Then
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1,0d8)) - 3 (dg,) € 21 o I"(¥") and so by the chain rule
o 3,0dg)) 3 (8) -0y + 3 (dgy) * 3_(a) € 2 IR
from which it follows that
3 (9) * 3,(dgy) * 3, (8) ) (x) = §,(0; * 3 (dg,) * 5 (8) )(x) .

Since k <€ ntk we also have jk(dgl)(x) - jk(dgz)(x) and hence

P(!.sl) (x) = P(s,g,)(x),

Remark 3,3

Since Diffn(E,P) ;Smblg(E.F) theorem 3,2 in particular applies
to composition of generalized symbols with differential operators,
Given a C map
. * 0) »
P : Tx - (0) Hom(Ex.Px)
we can define the (Préchet) derivatives of p
(k) | * Kk, % . L *
o 1) - (0 » LG, Hom(E,F) ) = Hom(S'TQE,F)

(J. Dieudonné [4, ch,8]) and we have the following result,

Theorem 3.4
If 1€ Smblz(E.F) then for each integer n 2 O we have

1® ¢ sab1___(s” TgE, F)
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Preof: It is sufficient to observe that the degree of homogenuity

(n) are defined inductively it

is correct, Since the derivatives T
suffices to consider n= 1,

* *
If ve Tx - (), u= Tx s €E Ex » A >0 then

L Av ¢ up e = if; t-I(T * (Av + tu) = T ° Av) ve
- tiz (At)-l(f s A(v + tu) = T * Av) e
Az-l T(l)

'V'l.l@é

(n)

We now compute the derivatives T in coordinates, If N is a
¢ manifold then E X N will denote the pullback of E by the projection
of M XN ontoM, Let T € Smblz(E,F) and let (U,¢) be a chart on M,

Then for each & € R™ we define 35 € C“(UﬂR) by

so 1if £ ¢ 0 then dgg ¥ 0 on U,

Now define p € r"(um(z,p)lu x R™ - (0) )
by e m
pE€) * s -T°dgg°s ’ seI‘(EIU),EeIR-(O)

*
Then clearly T(n) € Smblz_n(Sn TQDEiF) is given over U by

t® g s @)%gs = PP@ s, Jaln

(@)

where p = ( %E-)a p .
Now let D be a covariant derivative on E and let V be a covariant

*
derivative on T , Let D(k) be the total differentials induced by the

pair (D,V) and let a‘k) be the total differentials induced by the pair
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d,v).
The following theorem will be useful for describing the symbols of

pseudo~differential operators. (see theorem 9.4)

Theorem 3,5

For each pair of integers k,f with 0g 22 < k there exists a

unique generalized symbol

k=%, ok *
Xy g @s7) € Smbl; ™ (E,S* T@E)

such that 1f g ¢ I‘:(E) sy B E CQ(MR) » dg2 ¥ 0 on supp s and 1f for

each x € M we choosge hx € Cm(MaR) such that

2
1) hx € zx

@ eVrnw = 0Vpw , 2¢qgn

3) x-» jk(dhx)(x) 18 a C section of ‘Pk
then

Xie, g @) * 4, @) + 3 @@ = pM @l 9w

Proof : First we observe that hx exists by corollary 2,13, If

h'x is another candidate for hx » then by (1) and (2) and the direct
€ Z:'H « Then since

zk+9.+1 < Zk+1 .
b9 X

sum decomposition of j,d we have ' h, = h'

b ezl and h!e 2z’ it fs clear that () - )% e
Hence Xk z(D,V) . jk_"(dg)(x) . jk_z(s)(x) is well-defined,
»

- *
To show that Xi ’l(D,V) € Smbl;'t 2'(I!:,Sk TgE) it suffices to show
]
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that the hypotheses of theorem 3,1 are satisfied,

First we must show that x -+ D(k)(h 8)(x) isa C section of
S TQDE. By lemma 2,7 it suffices to show that x -+ B(q)(h s)(x) 1is
a C section of S9 T for q € k, but that is clear by condition (3)
on hx .

Now conditions (a) and (b) of theorem 3,1 clearly hold, and (c) is
also clear since hz € Z S:Z « For (d), assume g' € Cm(MdR).
dg' # 0 on supp s and jk_z(dg')(x) - jk_g(dg)(x) . Let h; be an

"h " corresponding to g', Then by conditions (1) and (2) we have

h h' € Zk ~242 , and so since h_ € Z2 and h' € Z2 w2 have
x x x x x
(hx)z - (h;)l € Z:+1 whence (d) follows,

The definition of XK. g also works for 22 > k, but then we just
?

get zero, Note that

Xi, 0@ * $,@e) * g ® = pWe,

Remark 3,6
We recall that the pair (D,V) induces injections

Vo oeeeV E + JU(E)

18
and that the pair (d,V) induces injections

L . * n
\’n Tee 1. T "\l’

wvhich are right inverses for the obvious projections, Moreover, we have
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the restriction

. . * n n
05 0os Vi 1 T = (0)+ Y -A

Now given 0o € SmblZ(E,F) we define the singular part of 0 relative

to (D,V) as the composition
* n n_ @ n
T « () —>Y =-A —> Hom(J (E),F) —> Hom(E,F)

(See remark 9,10 for motivation for the name "singular part"). This

definition is obviously motivated by theorem 2,17, The map
Smb1) (E,F) + smbl_(E,F)

which carries a generalized symbol to its singular part relative to
(D,V) 18 surjective and is clearly a left inverse for the obvious
inclusion,

Let O € Smb1:(E.F) and let T € Smbl (E,F) be the singular part
of 0 relative to (D,V), In view of the direct sum decompositions of yh

(1,e, of jnd) and of Jn(E) (1,e. of jn) given in 82 we have: 1if
selIT(E), geC (MR), dg#p0 onmpps, xe, 0w =o,

1sksn, O®g)x) =0, 2%ksgn+l, then
T v dg(x) * 8(x) = o J (dg)(x) ° 1,(8)(x)

and by lemmas 2,10 and 2,12 we iny eompute T 1in this fashion,

Remark 3,7

Let T € Smbl (E,F) and let P ¢ Dif!n(F,G). In remark 3.3 we
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defined the composition P o T € SmblZ(E,G). We now define
P, ,TE Smblz(E,G) as the singular part of Po T relative to (D,V).

(It will always be clear from context which covariant derivatives are

employed to define P , 7).
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54 Formal Symbols

A sequence of distinct complex numbers ZgrZysZgeae will be called

a sequence of exponents if

(a) Re z5 2 Re z, > Re Zy 2 aeas

1

lim sup

®) Mo

Re z, = -

We do not distinguish sequences that differ only in order of arrangement,
Now we define GF(E,F) to be the left C (M:€)-module of all

formal sums
[--]

gm0 3

n
where 0, € Smblzj (E,F) , Z3sZpeses is a sequence of exponents and

3 3
0« n, < Re(zo - z1). The elements of GF(E,F) are called generalized

formal symbols,

We define F(E,F) to be the left Cm(sz)-module of all formal

gm0

where T, € Smblz (E,F) and ZgeZgeese ig a sequence of exponents., The

] 3

elements of F(E,F) are called formal symbols, Clearly we have an

inclusion

F(E,F) < GF(E,F)
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1t ) g, € GF(E,F) , ) ak € GF(F,G) we define

3=0 k=m0
( G, ) o ( o, ) = G oo
kZo k kzo 1 j,éno ko

- -] o0
(see theorem 3,2), If jZO 03 has exponents ZgsZgenee and kZO Oy

has exponents WaeWyeeeo then clearly

& o o, € GF(E,G)
j,km0 K3

has exponents zj + Vi Jsk=0,1,2,,04s¢ With this definition of

composition GF(E,E) becomes an algebra over €, We do not consider

this algebra in any detail,

Let DE be a covariant derivative on E, DF a covariant deriva-

*
tive on F, V a covariant derivative on T., and let

1 1, € F(E,F)
=0 .

%. € F(®,G)
kZO k '

Then we define

(1 T ] 1) eFEG
k=0 j=0
to be
@ -
i~ =Q) )
i.kgz-o T Tk (DF * TJ)
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Since x depends on ¥V and D, , and Déz) depends on V and D, it
follows that this composition depends on all the covariant derivatives,

In particular the pair (DE,V) induces the structure of an algebra
on F(E) = F(E,E), The resulting algebra will be denoted by
F(DE,V)(E) . Later we will see thaf these algebras are all isomorphic
to an algebra invariantly associated to E » and in particular are

associative (see theorem 9,9),



43

§5 Pseudo-Differential Operators

In this section we define the pseudo-differential operators of
L. Hormander [8] except that we include operators whose symbols allow
complex degrees of homogenuity, The "asymptotic series' that occur are
then no longer true asymptotic series since distinct terms may have the
same order of growth, but this fact does not introduce any serious
complications. The introduction of complex degrees is necessary in order

to consider complex powers of suitable operators (Seeley [16 and 17]).
00 . ©0
Let P : T _(E) +T (F)

be a continuous C-linear map. Then P is called a pseudo-differential

operator if there is a sequence of exponents Zgs Zys e (see §4) such
that whenever s € P:(E) », B E C«kMﬂR), dg # 0 , on supp s,then there

is an asymptotic expansion

e—iAg i)g s

«© F4
) v ] P (s,
g=0 1

P(e

in the folliowing sense:
For each 8 € F:(E) » for each integer N > 0, and for each compact
subset K of Cw(MdR) such that g € K implies dg ¥ O on supp 8, the set

-y

2
(2 Yeepee gy - §op

¥4
(e,e)rd ) : A2, gekl}
y<n 3

is a bounded subset of f?F).
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Let P(E,F) be the set of all pseudo-~differential operators from
E to F. Then it is clear that P(E,F) is a left Cm(M:G)-module

(and a right Cm(Mzﬁ)qmodule as well),

lemma 5.1

The asymptotic expansion associated to a pseudo-differential operator
‘13 unique,

(By uniqueness here we mean modulo zero terms and modulo order of
arrangement of the terms of the series, As the proof will show the lemma

is true under a much weaker definition of asymptoticity than used here.)

Proof: Suppose the lemma is false so we can find a sequence of
exponents 2z, Ziseos and complex numbers a € €. k=0,1,2,, such that
(-] zk
0" E ar A A+ + =)
k=0

i.e. for each integer n > 0 if we define
nil z, -z
£ A) = a, A
n =0 k

then fn is bounded for X 2 1, Now note we have a recursive relation
Z =z
n n+l
* .
() £,0) = (£ () +a))

We agsume that a, $ 0, Since Zys Zpsees 18 a sequence of

exponents we can find an integer N 2 0 such that

Re 2, ® veeeeeee = Rez. » Re z

0 N M1

-
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and hence by (*) since !N(A) is bounded for A 2 1 and Re(zN - )>0

2N+l
we have

1im
)-ro0 fN(l) + ay = 0

On the other hand since Z, = 2y is pure imaginary and nonzero for

0< k< N-1 it follows that
t

A Q) ¥ )k = a

e
lim -1
N
1

Let € > 0, There is a T 2 0 such that A > eT implies |fN(X) + aNl <e

and hence
et _
lim -1 -1
IaNI S e b J ATT(EL Q) + ap)d)
eT
< lim =1 e(t -T) = €

Thus ay = 0. Hence we may discard this term from the asymptotic expan-

sion., Then it follows by the same argument that a = 0, and hence by

N-1
finite induction lao » 0, which contradicts our assumption that a, $ 0,

Corollary 5.2

if P € P(E,F) with exponents ZgsZysere WE have
(1) If s € I‘:(E) sy 8E CQ(MR), dg ¥ 0, on supp 8 then
z

P_(s,2g) = A n P (s,8) , A >0

(11) If s,8' € l‘:(E), g E C“(MtR), dg ¥ 0 on supp s, ,supp s' and

and a, b € € then
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Pn(as + be', g). = a Pn(s, g) +b Pn(s'.g)

Comparing Corollary 5.2 with theorem 3,1 indicates the direction in
which we plan to go. (see theorem 9.2),

It follows from corollary 5,2 if P, ¥ 0 then Re z, is uniquely
determined by P, This real number 1s called the order of P, P is said

to have order - {f P, = 0 for all j, If reR or r = - © ye define

3

Pr (E,F)

to be the submodule of P(E,F) consisting of pseudo-differential operators

of order < r,

lemma 5.3

If P e P(E,F) the corresponding P, are local i.,e, if s € I‘:(E),

]
g € CO(M#R) , dg ¥ 0 on supp s, then

supp Pj (s,g) < supp 8
Moreover, if g' ¢ Cw(MaR) and g - g' = 0 on supp s then
- 1
Pj(s,g) Pj(s,g )

Proof : We prove the last part first, Since g - g' = 0 on supp s

we have
QA @) ~1Ag pihe oy o 8! D8,

Now for each integer n > O
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-z . z
(a2 e pe oy - T Ptegn ) A1)
g<n 3

!
1s a bounded subset of PQ(F) and hence since eik(g g') 18 bounded in

c%:¢) 1t follows that

-z z
{r (e Pepee gy o 7 b o(s,gMe @B Ty a1}

y<n 3

1s a bounded subset of PO(F). But

-2 k4
(r "ePEpees) - T pend)inz1)
: i<n .

is a bounded subset of PQ(F). Thus it follows for each integer n > 0

Z,=2Z
(] (p (s,geP B8 53 05

4én j(s’g) -P

3

is a bounded subset of FO(F).

C (g-g') (x)

Now for each x € M, e is periodic in A and hence there

exists a real number r_ > 0 such that

z,~2Z
(] (P(a,e)6) -P(a,g® ) Gr)? ™ kw12,

y<n 3

is a bounded subset of Fx , and hence

' zZ,~z
(] ®e,e)) -Peehd N I " 221}

jn 3

is a bounded subset of Fx. Hence by the proof of lemma 5.1 we conclude

Pj(a.g) - Pj(a.g')

and moreover by considering er + t above we can conclude that if



-
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g(x) - g'(x) # O then for any complex number w such that |w| = 1 we

have

Pj(s,s)(X) - Pj(s.g')(x)w

whence Pj(s,g)(x) = 0, But for any x € M-supp 8 we may choose g'
satisfying the hypotheses and such that g(x) - g'(x) ¥ 0., Thus

supp Pj(s,g) < supp s,

Lemma 5,3 implies that we can localize pseudo-differential operators,
Let P € P(E,F) and let U be an open subset of M, Then we define

PIU to be the composition

™) i @ P © n L
Pc(Elu) PC(E) —> T (F) =——> T (FlU)
where { 1is the inclusion map and & is the restriction map. P|U is

clearly continuous,

Corollary 5,4

@0
PIU € P(EIU'F|U)' In fact if s € Pc(EIU), K 18 a compact subset
of Cc(UﬂR) such that g € K impliee dg ¥ O on supp s then
© z
e-ikg PIU (eikg 8) ~ 2 Pj(!.us)l b
. j-O
uniformly for g € K, where u € C:(UﬂR) is any function such that

u =1 on supp s,

Proof:

If we choose u as indicated then
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¢~ (u-1)g ( -1rg Py e 5y )

e z
- e-ilug P(eihug 8) ~ Z P, (s,ug)) ]

g=0
in Pw(FIU) » uniformly for g € K (since uK is a compact subset of
Cm(MdR) and the restriction map 1s continuous), But by lemma 5.3
Pj(s,ug) is independent of the choice of u, so we may define

Bj(s,g) € r"’(FIU) by

Pj(s,g) = Pj(s,ug)

for any u satisfying the hypotheses, But now boundednese of sets in
Pm(FlU) is checked only over compact subsets of U, and given any compact
subset A of U we can choose u go that u=1 in a neighborhood of A as

well as on supp s, Hence
F4
e @8 ey v ] P} (a,e)

as required,

Corollary 5,5

If Pe P(E,F), uwve C:CM:C) and supp u ~ supp v = ;6 then

vPu € P__(E,F),

Proofs Immediate by lemma 5,3
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Remark 5,6

From the fact that the symbols are local and a finite partition of
unity argument we see that 1f P € P(E,F) and if U is any open cover

of M then P € Pr(E,F) if and only 1if PIU € Pr(E ,FIU) for each

[u
u € U, Thus the order of P is entirely determined by the behaviour of
its distribution-kernel near the diagonal in MxM, One can show that
these distribution-kernels are C gections in the complement of the

diagonal, and are actually c sections everywhere when P has order =-«,

(see Appendix),

Let Pt P:(E) + PQ(F) be a linear map., Then for any open subset U

cof M we can define PIU as we did for pseudo~differential operators, We

will say that P 1is pseudo-local if for each u,v € C:(M:C) such that
SUpp u ~\ Supp vV = @  we have uPv € P__(E,F) (see Corollary A,5)

By Corollary 5.5 pseudo-differential operators are pseudo-local,

lemma 5,7

Let P :Fm;(E) -+ PO(F) be a linear map and let U be an open cover

of M, Suppoee one of the following hypotheses holds:

(a) P 1is pseudo-local

(b) {UX U : Ue U} 41s an open cover of M x M

It follows if Plu € P(EIU,Flu) for each U € U then fer any

Vyu € CZOM:C) we have vPu € P(E,F).
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Proof One proves part (a) first, and then shows that if (b) holds
then P is pseudo-local, The technique is the same as used in [19], so we

do not reproduce it here,

If A is a subset of M we define I”(EsA) to be the met of all

8 € I‘m(E) ﬁith gupp 8 S A,

lemma 5,8

If P : T:(E) > Pw(F) is a linear map and if for each u,v € C:(MﬂR)

vPu 1is continuous, then P is continuous,

Proof P:(E) carries the strongest locally convex topology for
which all the inclusions F“(EiA) > P:(E) are continuous for compact
AS M, Hence it suffices to show for each compact AS M,

P : I (E:A) + PO(F) i8 continuous, Choosing u € C:(MzR) so that

u =1 in a neighborhood of A we see that vP : P?(E:A) + PQ(F) is
continuous, But now a continuous semi-norm on Pw(F) only depends on
what happens over a compact subset of M, and hence P : Fm(EzA) + T°(F)

is continuous,

lemma 5.9

Let P P:(E) -+ PO(F) be a linear map and let ( be an open cover

of M, Suppose one of the following hypotheses holds:

(a) P 1is pseudo-local

(b) {UXXU s U€lU ) 1s an open cover of M x M
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Then P € P(E,F) with exponents ZgeZ pens if and only if for each

Ued, PIU € P(EiU’FIU) with exponents ZrZyenes

Proof: Necessity follows by corollary 5.4, For sufficiency, by
lemma 5,7, vPu € P(E,F) with exponents ZgeZyes for each v;u € C:(M:¢)
and hence by lemma 5,8 P is continuous, Now given 8 € F:(E) we can
choose u € C:CM:E) so that us = s and hence it follows that

vP € P(E,F) with exponents ZgeZqene for each v ¢ C:(M|¢). But since

1
boundedness of subsets of PQ(F) is only checked over compact subsets of

M, it then follows that P € P(E,F) with exponents ZarZqeees

P € P(E,F) 1s said to pe almost local if fcr each compact subset

A of M there is a compact subset A' of M such that

(a) s € I (E:A) implies Ps € FQ(E=A')

() se€ I‘:(E) and 6),, = 0 implies Psj, = 0

Since we have assumed M is paracompact it follows by a theorem of
Smirnov [7, pg. 81] that M is metrizable, Choose a metric on M, Then

we have

lemma 5,10

If P e P(E,F) then there exists P' € P(E,F) such that P' is
almost local and P - P' € P_ (E,F),
In fact given any € > O we can choose P' so that if s € §7E)

then supp P's lies in the €-neighborhood of supp s, In this case we
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say that P' 1g €-local,

Proof: Let (Ui):lel be a locally finite cover of M by open sets

of diameter less than € and with compact closures, By the shrinking

lemma there 15 a locally finite open cover (vi)iel of M such that
ViQUi for each 1 € I, Choose u, € Cc(Ui:lR) such that u, - 1l in a
neighborhood of Vi. Choose v, € Cc(Vi:R) such that 0 % viS 1 and

z v, = 1, Then define
ieI ’

P' = z viPu
iel

1

Then P' : I‘:(E) + I‘D(F) is a well-defined linear map since for each
8 € I‘:(E) » P's involves only a finite sum, If v,u ¢ C:(M:C) then
vP'u is a finite sum of pseudo-differential operators and hence
vP'u € P(E,F) and has the same exponents as P, By the proof of
lemma 5,9 it follows that P' € P(E,F) and P' has the same exponents

as P, By local finiteness and since supp u,8 < supp 8 it is clear

that we have an asymptotic expansion

z
P, (u,8,g)\ 3

a-ﬂBP'(eﬂg 8) ~ z Z vi 5y

=0 dex

Since s=-u 18 vanishes in a2 neighborhood of supp V4 » SUpPP (s~u iez)

< supp 8 and Pj is local it follows that vy Pj (a-uil.g) « 0, Then
since supp u,8 Csupp 8 and aupp(s-uil) < supp 8 it follows by

"linearity" that
Vi Pj (..S) - vi Pj (uials)

and hence P - P' e P__(E,F), That P' 1s €~local is clear,
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Essentially the same proof of lemma 5,10 was given in [19], We
glve a‘proof here since we refer to the proof later,
lemma 5.11

If P e P(E,F) 1s almost local then P F:(E) + T (F) 1is continuous

g0 8

and moreover the asymptotic expansion for P holds in T (F),

0

Proof: As in lemma 5.8 it suffices to show P : I' (E:A) + P:(F)
is continuous for each compact A <M, But by definition it 1is clear that
this map preserves bounded sets, Since I”(E:A) 1s metrizable and sc in
particular is !irst‘coﬁntable it followa.that P: fm(E:A) > P:(F) is
continuous (A, Friedman [6, pg, 18] )., The last statement is obvious,

since the P, are local,

3

Remark 5,12

It U dis the set of all strict charts on M then {UXU : U € U}
is an open cover of M x M, Thus lemma 5,9 teduces the study of pseudo-
differential operators on manifolds to pseudo-differential operators

over open submanifolds of Euclidean space,

Now we consider how the study of pseudo-differential operators on
vector bundles may be seduced to the consideration of pseudo-differential

operators on functions, The following simple lemma is quite useful,
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lemma 5,13

Given u € C:(M:C) there exists 8100008 € P:(E) and

N

o % @ o R
CElseeasty € Pc(E ) such that for any s € T (E) and any t € T (E )

N .

us = 321< tyy 8 > 8,
N

ut = j§l<t:, 5 > ¢,

Proof : By local triviality and a finite partition of unity

argument over supp u,

If s € Pw(E) then multiplication by s induces a continuous
linear map

I‘c(l) + T (E)

*
Ifwe I"(F ) then contraction by w induces a continuous linear
map

r"(®) + I (1)

lerma 5,14

Let P s T _(E) + T“(F) be & linear map, Then wPs € P(1,1) for each

808

* :
wE P:(F ), o€l (E) 1f and only if for each u,v € C:(M:C) we have

L]

vPu € P(E,F),

*
Proof: Sufficiency: Given w € P:(F ), 8s€E F:(E) choose u,v
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in Cc(MzC) such that vw=w and us = s, Then wPs = w(vPu)as € P(1,1)
18 clear by continuity of the maps induc ' by w and s,
Necessity: Given v € d:(M:C) by lemma 5,13 we can find

*
Vreeeg¥y € P:(F ) and hj,..0,h, € P:(F) such that for any h € I (F)

q

Vh-g<wk'h>hk

k=1
o w, X
Given any u € CCOM:C) by lemma 5,13 we cen find tl"'tp € Fc(E )
_and sl...sp € F:(E) such that for any - - .;(E)
us = § < t,, 8 > &8
=1 L L
Then vPu = § E { w, Ps) * <t, ,*> }+ h
k=l Rwl k L % k

Now by hypothesis Vi PIL € P(1,1) and hence (wk Psz) <y, 02 is

in P(E,1) which implies that ("k Psz) © < ty, h, is in P(E,F).

Corollary 5,15

Let P : P:(E) + T"(F) be a linear map and let U be an open

cover of M, Suppose one of the following hypotheses holds:

(a) P 1is pseudo-local

() {UxUsUelU} 41s an open cover of M X M

*
It follows if for each Ue lU , weE P:(F |U) » BE P:(Elu) we
have wPs € P(llu. llu) with exponents 2.,z .., then P e P(E,F) with

exponents zogzlococoo
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Proofs By lemma 5,14 1if u,v € c:(u:d:) then VPu € P(E|,F ()
with exponents ZgeZyeees Hence by the proof of lemma 5,9,
PIU € P(E|U’F|U) with exponents ZgsZyese and so by lemma 5,9 P € P(E,F)

with exponents ZgsZyeees

Remark 5,16

If E and F have constant dimension then the set V/ of all open
subsats V of M such that V 1§ compact and E and F are trivial over
a neighborhood of V 1s an open cover of M and moreover {vxviveVv}
is an open cover of M x M, Hence Corollary 5,14 implies that a linear
map P P:(E) + TI"(F) 1s an element of P(E,F) if and only if for
is a matrix (relative to local frames) of pseudo-

v

differential operators acting on functions, with some given sequence of

each VeV, Pl
exponents Zge Zyseee independent of V,

Remark 5,17

Let P : F:(E) -+ P“(F) be a continuous linear map and let ZgrZyees
be a sequence of exponents, Then the definition of a pseudo~differential
operator may be expressed in the form:

0 -]

Given s € FC(E), K a compact subset of C (M#R) such that g € K
implies dgg#0 on supp s, and a continuous semi-norm p on PQ(F) then ia8 a
sequence of reals th2 & 2t s> - (possibly depending on p)

such that

z, t
b pePE gy o T b eeni) = OaM

<y 3

uniformly for g € K, as A + + =,
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This formulation has the advantage that the t_'s are quite

N
arbitrary, so that when proving a given operator is a pseudo-differential
operator we do not require explicit information regarding the order of
growth of the 'remainder terms', This formulation of the definition is

used implicitly by Hormander [8],

Se—pom =

TEa¥™
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86 Local Analysis of Pseudo-differential Operatora

This section is a review of some of the results of L, Hormander [8].
Only a slight modification of Hormander's proofs is necessary to allow
for complex degrees of homogenuity, We assume in this section that M is
an open submanifold of R",

Let P € P(E,F) with exponents Z(3sZ15Zpee0ens

If s € I':(E) we define

e'1<°og> 1< 8>

p(s,£) = P(e ) , EeRr”

Then p(s,*)(*) € l‘m(R‘n X F) by continuity of P, We also define

Py(8:) = Pi(s, < E>) , EER - (0)

Then pj is positively homogeneous of degree =z in ¢ and we have an

]
asymptotic expansion (in I‘Q(F) )

© z
p(s,Ag) ~ ] A CRA R
j=0
uniformly for & 1n compact subsets of RrR™ - (0). Then according to

[8, lemma 2,3] we have

lemma 6.1

pj (8,°) € I ( ®R®-(0) ) x F) and if N> 0 4s an integer, a is
an m-multi-index, and p 1s any continuous semi-norm on I‘Q(F) then

Re z, - |af

pp @ e8) - T p® ey = OC|g]
j<n 3

(a)

N

for |E| 2 1, where p - (g—E )%p
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Corollary 6,2

For each continuous semi-norm p on Fw(F) and each multi-index o
there is a constant C such that

Re z, - |af

p(p®s,6)) < ca+ ]y ©

Corollary 6.2 is the key property in the definition of a larger class
of pseudo~differential operators in Hbrmander [9].,
Now let v € C:(M:C). If ¢ 1s the Fourier transform of v, then by

the iaversion formula, for any s ¢ F:(E) we have
ve = (2m™® I <82 g s

where the integral converges absolutely in P:(E). By the continuity of

P it follows that
P(vs) = (2m J el < b p(s,£) ¥ (£)dE

Thus it 1s natural to consider integral operators of this form where the
kernel has an asymptotic expansion of the form given in lemma 6.1.

Concerning the existence of such kernels we have [8, proposition 3.1].

lemma 6,3

Let ZgeZys be a sequence of exponents, Suppose Kj € Pm(FNRm-(O) )
is positively homogencous of degree zj in § E.Rm-(O). Then there
exists K € l‘w(FﬂRm) such that for each continuous semi-norm p on I‘Q(F),

each integer N > 0, and each multi~index £ we have
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Re z,, - |B|
ox® ey - ] xj“"(-.a)) - Oclg| ¥ )
3N

for |E| e 10‘

Let K.j and K be as in lemma 6.3, Then we have an estimate of
the form given in corollary 6.2 and hence we may define a continuous

linear map

Q:T () » r ()

u = ¢m™ j el <t K(+,E)T(E)dE

Then Hormander [8, lemma 3.2] proves

lemma 6,4

For each u € F:(l)

, Jal
e-:l < x,E > Q(ei < o, &> u) (x) v z -i—a-!—— Kj (“)(x.ﬁ)( %; )au(x)
0,3

as |£| + », More precisely, if N,J > 0 are integers and VvV 1is a

continuous semi-norm on PO(F) then
-|a|
i @), pye O (O
- la}m S Ky B (5 ) e)
3<J

v € E 7 gt <

Re z. = N Re z
- Ociel @ "+l 9

for |E| 2 1, uniformly for u in bounded subsets of P:(l).
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This lemma together with some careful Fourier transform estimates
(8, lemmas 3,4 and 3,5] 1s then used to prove the main existence

theorem [8, theorem 3,3] which may be stated as follows,

Theorem 6.5

Q € P(1,F) with exponents zJ -k, 3,k= 0,1, 2,,...

If fe¢ P:(l) s B E CmCMﬂR) and dg#0 on supp f then
-|a] ih
L kP e e Hm

Q,(£f,8)(x) =
zzo g e8I 3

)
o3
vhere £ = grad g(x) , h (y) = g(y) -g@x) -<y-x, >

Moreover if B, 1s a bounded subset of P:(l) and B 1s a bounded
subset of Cm(M;R) and there i1s a constant ¢ > 0 such that f € B,
and g € B implies |grad g(x)| 2 ¢ on supp f, then the asymptotic
expansion

e-ng ilg

Q™" £) ~ ] 0,(f,xe)
=0

is uniform for f € B0 and g € B,
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87 Composition of Pseudo-Differential Operators

If B, 1is a bounded subset of P:(E) we define supp B, to be
the closure of the union of the supports of the elements of By» Thus

supp B0 is a compact set,

Theorem 7,1

Choose a Riemannian metric on the cotangent bundle T*. Let
P € P(E,F) with exponents ZgaZypees

Let B, be a bounded subset of F:(E) and let B be a bounded
subset of Cm(MﬁR) such that there is a constant ¢ > 0 such that if

s E€EB g € B then |dg(x)|] 2 ¢ for x € supp s,

o 1]

Then the asymptotic expansion assoclated to P

b Z
eI p (o8 4y ) P, (s,2)) k
k=0

is uniform for s € B0 and g € B, Moreover for each k
{Pk(s.g):geno, g € B}

15 a bounded subset of P:(F).

Note if B. 1ig a bounded subset of P:(E) and K is & compact subset

1]
of Cm(MdR) such that g € K implies dgd0 on supp By, then there 1is a

constant ¢ > 0 such that the hypotheses above are satisfied with B = K,
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Proocf; The last statement follows from the fact that the map
CMXR) XxM~+R i (g,x) + |dg(x)|

is continuous and positive on the compact set K X supp Bo.

To prove the first part we observe since supp B, 1is compact, by

0
(] o %k
lemma 5.13 there exist B1rseesBy € PC(E) and Eyseeasty € Pc(E ) such
that for any s € B0 we have
N

8 = ] <t ,s>s
ey ok k

Then Bo,k = { < t, 08 > : 8 € By } 18 a bounded subset of Fw;(l),

supp Bo,k < supp B0 and

Pg = g (Psk)( <t,,8 >) , s€ B,
k=1
Hence it suffices to consider the operators Psk y 1l.e, we ﬁay assume
E=1,

By a finite partition of unity argument, since supp B0 is compact,
it suffices to prove the theorem for the operators Pu, for any
u € C:(Uzt), for any chart (U,$).

By a finite partition of unity argument and the definition of a
bounded subset of r°(r) it now suffices to show that the asymptotic
expansion associated to vPu 1is uniform over supp v for any
v € C_(ViC), for any charc (V,y) .

Given u,v as above we may write u = u, +u, , v= v, +v, where

u, € C:(Uat) » V4 € C:(Vzt) and
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supp v, \u/ supp u < U
supp Vv, \J supp u; < Vv

Supp VvV, ,\ supp u, = Q’

Then cutting down and translating the charts assoclated to U and V

we can produce a chart (W,6) such that

supp Vv, \UJ supp u, < W

Since VvPu = leu + vau + vauz it follows that it suffices to prove
if (U,$) is a chart on M, u,v € C:(U:C) then the asymptotic expans:lén
associated to the operator vPu 1s uniform on the sense required over
supp v, Thus we may assume that M 18 an open submanifold of R",

If we pick u € C:(M:G) such that u = 1 1in a neighborhood of
supp B then the operator Pu € P(1,F) 1s an integral operator of the
type considered in theorem 6,5 and hence the conclusion follows since
the existence of the constant ¢ 1in the hypotheses here for one
Riemannian metric on ‘1‘*, implies the existence of such a conafant for
any Riemannian metric (&ince supp B, is compact) and hence in
particular for the natural Riemannian metric on T* when M is an open
submanifold of R,

Thus we have proved the first part. Then for any integer N 2 O
ve have

PN(a,g) - (e-"sl’(e:"s 8) - ) Pj(a.s))
4<N

- "8 (e!8 6) - ) Py(s,8) )
JsN
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If N> 0 the right hand side is bounded in Fm(F) uniformly for s € Bj»
- 8 € B by what we have just proved, and if N = 0, the right hand side is

again bounded uniformly for s € B g € B by continuity of P and by

O ?
what we have just proved, Since supp PN(s,g) S supp By it follows

that { PN(s,g) ts€B),geB } 1s a bounded subset of F:(F).

lemma 7,2

If P : P:(E) + I(F) 1s a continuous linear map, B, 1s a bounded
subset of r“;(E) , and B is a bounded subget of Cm(MﬂR) then for each

continyous semi-norm p on Fw(F) there is an integer n 2 0 such that
o8 pe8 5y =« Oom

for A. 2 1, uniformly for g € B, 8 € BO. The integer n depends only on

P, p and supp Bo.

Proof: The conclusion is clear since P is continuous and since
there exists a differential operator D € Diff(F,1) and a compact subset

A of M such that for any w € Tw(F). p(w) < aﬁp [pw)| .

Theorem 7.3

Let P € P(E,F) with exponents ZgrZqsees and let Q € P(%,G)
with exponents WgeWypsees
(a) If f ¢ C:(MzC) then Qf? € P(E,G) with exponents zj+wk and

£9), (8,8) = Q. (£P, (,8) ,8)
Jo“’ 2758 j,lzc-o kT
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(b) If P is almost local then QP € P(E,G) with exponents
zj+wk and

@QP),(s,g) = Q (P, (s,8),8)
9.20 £ j,E-Ok j

Proof: Continuity of QfP in (a) is clear and continuity of QP
in (b) follows by lemma 5,11, Then (b) follows from (a) by taking f=1
in a neighborhood of supp 8, 8UPP Ps to obtain the appropriate asymptotic

expansion, Hence it suffices to prove (a).

Let s € P:(E) » let K be a compact subset of Cm(MdR) such that
g € K implies dg$0 on supp s. Then for each integer N > 0 there is a

bounded subset BN of Fm(F) such that

N=1 z z

D8 gpere ) L T ¢ Poaend = 2N b0
3=0

where b(\) € BN » A 21,
Thus we obtain
0 0 NeL 1) 2
"8 qtP(eMB g) - ] 7B e™ME P, (s,8) )\ ]
i=0

z
= P8 o8 5 o) Y

Since supp ij(a,g) < supp s it follows by theorem 7,1 for

each integer J > 0 there is & bounded subset BJ 3 of Fm(G) such
1

that
J=1 w
V8 % fr,(s,0) ) - ] QP (si0) e ¢

k=0

v
J
- A cj(x)
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when Cj(k) € A>1, g€ K., It follows that

B

N=1 J-l zZ. +w
ﬂg 8) - ): z Qk(fP (enG)tS)A i k

o1
ja0 k=0 J

QfP (e

N=1 w, + 2z z
- -] qon’ 1y 18 qe!*® oy N
=0
Hence if p 1s any continuous semi-norm on Fw(G) then by lemma 7,2
there 1s an integer n 2 0 depending only on Q, p and supp f such that

N=1 J=1 z, +w

Y- 11 o, e ent K
4=0 k=0

Re(w, + z.) Re z_.+n
- O(A 37 %0 5 B

e-ilg i\g o

o( QfP (e )

)

as A*° , and hence by remark 5,17 we are done,

Remark 7,4
Let Pt(E) - Pr(E,E)
P(E) = P(E,E)

Suppose P € P(E,F) , Q € P(F,G), Choose P' e P(E,F) 'such that
P~-P'¢eP_(EF) and P' is almost local (lemma 5,10), Then
QP' € P(E,G), Now if P" € P(E,F) , P" is almost local and
P-P"eP_(EF) then P' =P"= (P -P") - (P ~P') s in P_ (E,F)

and hence QP' - QP" € P__(E,G), i.,e. QP' = QP" modulo P__(L,G).

Then the composition of pseudo-differential operators induces the
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structure of an associative algebra on P(E) / P_,(E) and we denote
this algebra by P(E, mod-»),

If M is compact then every element of P(E) i1s almost local and
hence P(E) itself is an associative algebra, In this case P o (E)
is an ideal in P(E) and the quotient algebra P(E) /P _o(E) 18 of

course P(E,mod-=),
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58 Asymptotic Sums of Pseudo-Differential Operators

If QO.Ql... € P(E,F) then P € P(E,F) 1is ca'led an asymptotic

_S_UE of Qo,leooo

P ) o!
3=0
if
lim sup L 1y o o
order ( P = z Q’) -

j=0
Note if we change the Qj's by adding operators of order =~ then P will

be an asymptotic sum of the new operators also,

Theorem 8,1

If PN Z QJ then P 1is unique modulo operators of order ==,
j-O :
and if s€T2(E) , ge C (MR) and dgf0 on supp s then
[- -] (-]
a ] P, (s,8) = ) QE(S.s)
k=0 §,2=0

A necessary and sufficient condition for a sequence Qj , J=0,1.2,,.

in P(E,F) to admit an asymptotic sum is

1lim sup

e order Qn 2 -

(2)
Proof: Suppose P and P' are both asymptotic sums of the Qj's.
Then

n n
p-p' = -] - -] o)
j-o j-O
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implies P - P' € Pdm(E,F) since it follows from the definition of

pseudo-differential operators that

N P(E,F) = P_(E,F)
reR

Since
n=1 n
" = -] DH-e-] o)
j=0 j=0

the necessity of (2) 1s clear, and in addition (1) makes sense, (The
equality of such formal sume means of course equality of the parts
homogeneous of the same degree), Now for each r € R there exists an
integer N 2 ¢ such that n > N implies

n
order (P - 2 QJ) <r
3=0

n
order Q < r

and hence (1) clearly follows,

It remains to prove that (2) is sufficient, When (2) holds then (1)
makes sense, and we observe that it suffices to find P € P(E,F) such
that (1) holds, By the proof of lemma 5,10 it suffices to consider the
case where M ig an open submanifold of R™, Then by lemma 6.1 and
theorem 6,5 for each 8 € P:(E) there exists P° ¢ P(1,F) such that

P
) S ) ols
4=0
Now let V be an open subset of M such that 7 1s compact and there

Q0
exista sl"'p € PC(E) such that sl"'p is a local frame for E in a
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> m §

- a0 *
hb ' .
neighborhood of V, Let t, tp € PC(E ) be such that < ti,aj 13

on V and then define P' € P(E,F) by

P 8,
P's = ) P T« tyy6 >
i=]

oo
Clearly P'lv 4Y z lev + Then by the proof of lemma 5,10 again, we can
: =0

oo
construct P € P(E,F) such that P n Z QJ .
3=0

If QO,Ql... € P(E,F) we say Q € P(E,F) is an asymptotic limit

of the sequence Qo,Ql....
n
Q = 1lim asymp Q
o
provided we have

1im sup

oo order (Q-Qn) " -

Clearly this condition is equivalent to requiring that for some (and so
. far any) integer k 2 0
k v adHl
e-¢“ ~ § ™ -oh
I=k
By theorem 8,1 a recessary and sufficient condition for the asymptotic

limit to exist 1s

lim sup n+l _ .n _
oo order (Q Q) ©
and hence it follows that
order Q ¢ lim sup order Qn .

n+eo
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lemma 8,2

If QO,QI... is a sequence in P(E,F) of almost local operators

and if

lim sup
nre

n+l - ol

order (Q Q) = -

then there exists Q ¢ P(E,F) such that Q 1s almost local and

1im aaymﬁ’ n
Q e T Q

If Pe P(¥,G) and S € P(E,G) and

1lim sup

oo order (PQn + 8) f r > -w

then PQ + S € Pr(E,G).

Proof: Q exists by the above remarks and by lemma 5,10, By

definition it follows that

o lim asymp n
PQ + S oo | (PQ +5)

and hence

order (PQ + S) < 11ﬁ SUP pQ" 4+ 5) = r,
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§9 The Symbols of Pseudo-Differential Opetators

Let P € P(E,F) with exponents ZgsZqeee and let (U,$¢) be a chart
on M. If s8¢ I':(EIU) then the operator (Ps)llJ is an integral operator
of the form considered in theofem 6.5 and hence we have 1f u € C:(U:Q‘),
g € c”(M:R) » dg#0 on supp u, then

ih

~{a}
e p )0 (3 e He

W) ) Pjse)@) = ] Sy p

h| a,]

where 1if gE - z Ek ¢k & EIRm) then Ex is determined by

dg(x) = dg‘E (x) , and where hx =g - pg(x) - 85 + gg (x).
X X x

Theorem 9.1

Let n, be the largest integer such that 0 g n, < Re(zo - zz).

Then we have:

(a) If s ¢ I':(E) » B E Cm(M:R) , dg¥0 on supp s , and

an(s)(x) = 0 then P, (s,8)(x) = O.

(b) If s € I‘:(E) » g,8' € Cm(M:R) s dg$0 on supp s, dg' ¢ 0 on

supp s, and jn (dg) (x) = jnz(dg')(x) then
0 .

P,(s,8) (x) = P, (s,g') (x)

Proof: By lemma 5.3 it suffices to consider x € supp s, and we

may cut down supp s, In particular we may assume that there is a chart
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(U,$) on M, an open neighborhood V of x, such that ¥ is compact,
V < U, supp s < V, and E 18 trivial in a neighborhood of ¥, Then

th . e (e
ere exist s,,, TLA qc(hlu) such that JTITIIL 18 a local frame

for E over V, Thus we have unique functions Upreeesty £ CC(V:R) such

that
8 = z U 8

Then by (1) we have

2) P, (s,8)(x) = § ) glolt @ (e £ ) ) (L )%, 1?
L ’8 ’ k 1 a’ n’ pj aklEx X 3¢ ) (uk x)(x)
=1 a,j,n

where we sum over 2=z, = n-la| and |a| 2 2n, Moreover since
n-lal Sn-2n§ -n £ 0 4. follows that in (2) we are summing only over
s, for 1f 4 > L then Re(zz-zj) 2 0 and in the case where

Re(zl"j) = 0 we have z, = zj i{8 pure imaginary and (since j > ) 1is

nonzero, and so cannot be equal to n-|a| which is an integer.

(a): By hypothesis uy, vanishes of order n, +1 at x, and

hence u,h” vanishes of order nk+2n+1 at x, In (2) we differentiate

k'x
Uy h: ,|a| times where Ial-n - zj-zl. Since j £ £ we have |o|-n =
Re(zj-zz) < Re(zo-zz) and so since |[a|-n is an integer, lo|=n g .

Thus u, h: is differentiated at most nz+n times and hence
Pz(a.s) (x) = 0,

(b): Let h; be the "hx" corresponding to g', Since

j_ (dg)(x) = j_ (dg')(x) 1t follows that dg(x) = dg'(x) and so E_is
n! nz X
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the same for both g and g', Since u, h: is differentiated at most

ny +n times in (2) (same argument as in (a) ) it follows by Leibnitz
rul2 that to prove (b) it suffices to show that (hx)n - (h,")n vanishes
of order ng+n+1 atx, Since h and g (h; and g') have the
same derivatives of order two and higher at x and since hx (h;)
vanishes of order two at x if follows from jnl(dg)(x) o jnp(dg')(x)
that hx - h; vanishes 6f order n, + 2 at x, Since hx and h; vanish
of order two at x 1t now follows that (hx)n - (h,:)n vanishes of

order n, +n+ 1 at x which proves (b),

Theorem 9,2

Let P € P(E,F) with exponents Z3sZyseee and let n,  be the

largest integer such that

0<n

< n k= 0,1,2,,,

< Re(zo - zk)

Then for each integer k > 0 there exists a unique generalized symbol

"

ak(P) € Smblzk

(E,F)
such that 1f s € I‘:(E) y B E c” (MiR) , dg0 on supp s, then

P, (s,8) = ak(P) * 3, (dg) ° 3, (s)
k k
Proof By theorem 9,1, corollary 5,2 and theorem 3,1,

Thus the coefficients of the asymptotic series associated to P define

a generalized formal symbol and so we have a linear map
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o t P(E,F) + GF (E,F)

with kernel P __ (E,F),

Theorem 9,3
Let Pe P(E,F) and let Qe P(F,G),
(a) If f¢ c:(ma:) then
c(QfP) = 0(Q) e f o(P)
(b) If P is almost local then

g(QP) = 0(Q) e o(P)
Proof : By theorem 7,3 and theorem 3,2

It follows that o 3 P(E) * GF(E) induces an injective homomorphism

of algebras

6 : P(E, mod=) + GF (E),

*
Now let V be a covariant derivative on T and let DE be a
covariant derivative on E, Let B(k) be the total differentiels induced

by the pair (d,V) and let Dék) be the total differentials induced by

the pair (DE, V). If P e P(E,F) ‘then for each integer k 2 0 let
Tk(P) be the singula: part of ok(P) relative to (DE,V). Then
(- -]

y @ = ] T®

T
(Dgs¥ k=0
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defines a linear map
Tog,v) } PER * FER

and we have:

Theorem 9,4

@ o@ = £y ®, X , 0,7
40,20 Tinl ' n,2 E°
28<n

Thus 0o(P) 1s uniquely determined by 1 v)(P) and the kernel of
’

g

T(D ) 1s P-m(E.F).
E'

Proof: let s € F:(E), g € c” (MR) » dg#0 on supp s, Let x e M,
and let N > 0 be an integer,
Let (U,$¢) be a strict chart on M with x € U such that ¢(x) = O

and

w“%ﬁ@)- 0, 2<qsN+1, 1<4<m

(exists by corollary 2,14),

Let sl,...,ep € F:(EIU) be a local frame for E over an open

neighborhood V S U of x such that

@ e = 0, 1sagN, 1gyscy

(exists by corollary 2,11)
To prove equality in (3) at x, it suffices to prove equality up to

a finite number of terms, increasing with N, For each choice of N {and
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corresponding U and V, etc,) since everything in (3) is local we may cut
down the support of s, and in particular we may assume supp 8 <V, Then

there exist unique functions Upsseesty € C:(VdR) such that

b~

and by (1) we have

® P -|a|+£
1 (@) ey DG, 1R
(4) JZO P, (s,8) (x) = kzl ) 1 , GTZT Py (af )6 (5 b)) ()
la]222

where £ x is determined by dg(x) = dgE (x) and where hx = g-g(x)-gE ,
x x

m
vhere g = ] E o ,
3 k "k
k=1

Now
pq(ﬂkog) - Pq(sk'gg)

" 5 ® " g Gep) ¢ 3, )

and so 1if Re(zo-zj) < N then by remark 3,6

pj(sk,E)(x) - Tj(P) . dgE(x) * 8, (x)

Then by the computation following theorem 3,4 (pg, 35) 1f |a]| = n

and Re(zo-zj) < N we have

T, @@ ¢ ag ) ¢ @@ gy @ = 2, P, 0m

Thus by theorem 2,15 (@) 1f n < N, Re(zy=z,) € N wve have
1 (@) 3 (a, .2
i 87 P10 B @ (g ) ) 60

- H0,®® a0 0Pl o 6w
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Since dgE (x) = dg(x) 1t follows that
x

P i-lai+&

(o) 3 .o ]
(5) W aly ar i Py (8,4€.) (x) ( 53-) (u, h ) (x)

(sum over 22 < |a| € N, Re(z -xj) < N)

i-n+£

n,j,L n

o T ®® a0 e

(sum over 22 < n < N, Re(z 'zj) < N)

Now by the choice of the chart (U,$) and by definition of h_we
have

0@ rym - 0@ pwm  25qsm
and hence by theorem 3,5 1if 0< 22 < n < N then
(n) 2
xn.z(DE.V) * 3,8 (x) ¢ 3 ,(e)(x) = Dg (b s)(x)

Then by the definition of the composition of generalized symbols
(theorem 3,2), (5) is equal to

i-n+l

(n) . .
oI (TJ(P) © Xp,aPps¥) ) ¢ 3, ,@e)x) 3 ,(8)(x)

n,j,R

(sum over 22 < mn <N , Re(z ~z_,) < N)

3

Now the (a,], l)th term in (5) is positively homogeneous of degree

z -|a| + £ and Re(z -la] +2) <Re z Hence it now follows that

3’
=n+L
i (n)
I 0, = T Srgr @ e X, ,©Op")
Re(zo-zj) <N n,j,2

(sum over 2L < n g N, Re(zo-zj) < N,

Re zj-n+£ 2 Rezk)
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where k 2 0 is the largest integer such that Re(zo-zk) <€ N, Then the

theorem follows since N is arbitrary,

Theorem 9,4 41s the invariant form of the formula obtained by

Hormander for the generalized gymbols in coordinates [8,theorem 4,2],

Now consider in addition to the covariant derivatives V and DE'
a covariant derivative DF on F, Let Dék) be the total differentials

induced by the pair (DF’V)' Let P € P(E,F) , Q € P(F,G), let

fec:(mc) and let R = QfP, Now let

T (P) = T,(P)
(DE.V) jZO 3

T Q) = 7, (Q)
(DF,V) kzo k

T (R) = T, (R)
(DE,V) 220 L

Then we have the following coordinate free version of Hormander's

composition formula [8, theorem 4,3],

Theorem 9,5

T (R) = ¢ @Q «f< )
(DE.V) (DF.V) (DE.V)

i,e,
@

® 1™ (n) (n)
120 Tg(R) - . § 0 -;T-Tk(Q) ° (DF x £ TJ(P) )
0d»

(The * operation is defined in Remark 3,7)
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Proof By theorem 9,4 and theorem 9,3 we have
o0
I o,®
gm0 *
o« L h-n+p-q
i (n) (q)
- 1 ] S T @ % 9o T, (£P)
n,kihe0 q,{ pe0 BIRTAIPT K Xa,h P 3
Zhgn 2p<q
D_,V
° Xq,pPps")

Let the exponents of P be ZgsZjeses and let the exponents of Q be
WgsWysees Then the (n,k,h,q,j,p)th term in the above expression is

positively homogeneous of degree W -n +h+2z, -=q+p where 2h<n

b

.and 2p £ q. The exponents of R are zJ + Vi

we order appropriately and write as LT 2 =0,1,2,,,, Then 1f N> O

1,k=0,1,2,,,. which

is an integer we have

(6) L OE(R)
Re(ro-rz) <N
h=n+p=q
b
- 2 I AThTqTpl (sage as above)

n,k,h q,j,p
(sum over 2h < n, 2p < q, Re(wo k)+Re(z -zj)
Re(wk-n+h+zj-q+p) 2 Re rz,)

where L' 18 the largest integer such that Re(ro-rz.) < N, In order
to prove the theorem we take the singular part of both sides of (5)
relative to (DE,V). So let x €M, s € P:(E) y 8E ¢’ (M) , dg¥0 on

supp s and suppose that

gix) = 0
O™ e = 0 , 2gLemm

(D(L) al(«) = 0N 1 <2 <N
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Then we have

o)) % QR 3, @ ¢y, @@
Rc(ro-rz) <N

- ) T, (R) * dg(x) * 8(x)
L
Re(ro-rz) <N

where n, is the largest integer such that 0 < n, < Re(ro-rl). ‘The

2
right hand side of (6) becomes

4h-rp-q
® ] I3 nihlplql k(Q)(n) * dglx) - DF(n)

( h: T

(@), 4., 5 .
3 €8V edge b Op,TIeg_ [g)ed (o) ) ()

wher hx € Z: satisfies
0Prym =« 0P pm 252w

and go by the condition on g we have

N2h 4P NPH2p
X h

whence h € Z .

The D, V) o d o (s) vanishes of order Np+2p—~q at
" Xgyp®e,") * 1gp18) " dgyp prir=q
x, since it involves at most q derivatives of hz o It fellows that

the (n,k,h,q,j,p)th term in (8) vanishes of order
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N(th+p)+2(h+p) -q=-n

Now since Re(wk -n+h+ 2y - q + p) 2 Re r,» in (8) and

L w0+z0 it follows that

-nth-g+p

v

Re(wo- O+ Re(zo-zj) - Re(ro-rz.)

v

Re(w Y + Re(zo-z ) =N

0™k ]
2 - N
and so
h+p > n+ =N
Thus N(h+gp)+2(h+p) ~q-n 2 Nh+p)+n+gq-=-2N

and so if h 21 or p 21 we have

N(th+p) +2(h+p) ~q~n

v

n+q-=-N

w

h+p

v

1
Thus all terms in (8) in which h 2 1 or p 2 1 vanish, Hence we are left

only with terms in which h= 0 and p = 0 , which gives

—n-q
@ ] I Yo n@®eag@of™ a0 @l s

and since we proved above that h + p 2 n+ q = N it follows that in (9)

we have

n+qgN



85
Now by theorem 2,15 since
(Déz) 8j(x) = 0 , 152 <N
it follows that
Déq) s

vanishes of order N -q+ 1 2n+1 atx 1f 1 ¢ q < N and hence all
terms in (9) for which q 2 1 vanish, and so we are left only with the

term¢ for q = 0O, Thus

(10) E Tg(R) ¢ dg(x) * s(x)
Re(ro-rz) <N
i-n

¢° (n)
= —_—T (Q) odg (x) « D ('[
n,g,k n! 'k F

j(fP) e dg * 8)(x)

(sum over Re(wo- k)+Re(zo-zj) <N, Re(wk-n+z ) > Re rz,)

]

Since in (9) we had n + q £ ii 1t follows that in (10) we have
n £ N and hence by the definition of & (remark 3,7) the theorem

follows,

Corollary 9,6

In addition to the hypotheses of theorem 9,5 assume that P is

almost local, Then

T(DE.V)(QP) - T(D
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i.e,
E T,(QP) = of R @™ o .1, @y
080 2 n,§ k=0 n! 'k F 3j

Proofs We simply omit £ in the proof of theorem 9,5,

lemea 9,7

Let T eSmblz(E,F). Then there exists P € P(E,F) with exponents

z,z-1,2-2,,, such that
0,(®) = 7
Prcof s if (U,$) 1s a chart on M such that E admits a local
(- -]
frame almsp el (EIU) define
Kj(x.i) - T dsz(x) . aj(x)
Then by theorem 6,5 there exists Pj eP(lIU,FIU) such that

UO(Pj) edg e f = T edg faj

and P, has exponents 2z,z=1,z=2 ,,.,

3
oo &k
Now let tl""tp el (E |U) be the dual frame to S TRLLTL and
define
p (-]
Pg = jzl By < ty,8> sePc(EIU) .

Then P € P(ElU Flu) ’ OO(P) - Tlu and P has exponents z,z-1,z-2,,,.
)

Now globalize by a partition of unity argument as in lemma 5,10,
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lemma 9,8

let T € Smblz(E,F). Then there exists Q € P(E,F) with exponents

z,z-1,z-2,., such that

T(DE’V) @Q = T

i,e, the formal symbol of Q relative to (DE.V) consists of the single
term T,

It follows that the generalized formal symbol of Q is given by

by
L L-n
i (n)
@ = ) FEr T ° Xn,e@p")
n,=0
224n
Proof : The last statement follows by theorem 9,4, By lemma 9.7

there 1is Q, € P(E,F) with exponents z,z-1,z-2,,,, such thac
Oo(QO) = T

Now define T € F(E,F) by

1
T - T Ll T(DE.V) (Qo)
80 Tl has exponents z-l. 2-2. 2-3.0000

Suppose we have defined ™e F(E,F) (n 2 1)

™ o= Tt

n
w0 K

with exponents z-n, z-n~l, z-n=2,.,.. Then by lemma 9.7 there is
Qn € P(E,F) with exponents =z-n,z-n-l,z-n-2,,,, such that

%) = T
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Now define

n+l n ‘
T - T = T(DE,V) (Qn)

Then Tn+1 hag exponents z-n-l1, z-n-2, z-n-3, ,, and soc we may
proceed inductively, Then the order of Qn is at most Re z - n and
hence by theorem 8,1 an asymptotic sum

-

n=0

exists, and moreover

[ -]
o@@ = ] o()
n=0
(this sum makes sense since the orders are decreasing to - «),

It follows that
T Q) = T @)
(0, V) nzo g7 “n

- § (Tn - Tn+1)
n=0

a T = L

Theorem 9,9

The sequence
T (g
0 —> P_m(E,F) —> P(E,F) —— F(E,F)——> 0

is exact, and moreover

T(DE.V) : P(E) + F(E)
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induces an isomorphism of algebras

T ¢ P j-o) -+ F E
In particular it follows that F(D ) (E) 1s an associative algebra,
E.
Proof: By corollary 9,6 and theorem 9,4 it suffices to prove
~ that
T(DE.V) t P(E,F) + F(E,F)

18 surjective,
o
Llet T = Z Tj € F(E,F) have exponents IVTLITERE By
i=0
lemma 9,8 for each integer k > 0 there exists Qk € P(E,F) with

exponents z,, zk-l, zk-Z.... such that

"o, @ T T
Then
112*:?P order Q < li:;:up Re zgZ = =«

and hence by theorem 8,1 an asymptotic sum

exists, and moreover

o@ =  oq) .

It follows that

T Q) = T Q)
(Dp, V) kzo (D, V) 7k

L] T w T
kZO k

Thue T(DE-V) is surjective,
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Remark 9,10

Suppose we say that a generalized formal symbol o € GF(E,F) is
integrable if there exists P € P(E,F) such that o(P) = 0, Then

(-]
theorem 9,9 and thecrem 9,4 imply that o = Z (o]
R=0

integrable if and only if for some (and hence for any) pair (D,V) (where

o € GF(E,F) 1is

D i8 a covariant derivative on E, and V is a covariant derivative on

*
T ) we have

© o ik--n (n)
gm0 % 5,n§k-om B0 ek @0
2kg<n
where Tj is the singular part of oj relative to (D,V).
Notice that the generalized symbols xn.k(D.V) extend naturally
to C~ sections over all of ¥Y*X, Thus the T contain all the

singularities of the T e This fact was the motivation for the name

'singular part',
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§10 The Geometric Transpose of Generalized Symbols

The orientation bundle © of M is the real C_ line bundle

associated to the frame bundle J of M by the one-dimensional representa-
tion of GL(m#R) which sends a matrix into the sign of its determinant,
(see M, F, Atiyah and R, Bott [1 and 2]). If (U,$) i1is a chart on M
let [¢] be the C  section of eIU which corresponds to the unique
GL(m:R)-map JIU + R which sends the frame dbyseeepdd  onto 1.

(Here the left action of GL(m#R) on R 1s multiplication by the sign
of the determinant,) Then [¢] 1s a nonvanishing c” section of ©
over U, 1i,e,, a local frame for © over U,

We define the volume bundle or density bundle of M by

2 -0 g A"t

1f p e I*@) (0 < k <®), then for each chart (U,$) on M we

have a unique function p¢ £ Ck(Uzk) such that
pIU - p¢ [¢] ® d¢1 Actohd¢m

The functions p¢ constitute a Ck density on M, A Cm density p

is called a smooth positive measure on M if for each chart (U,$) we

have p¢ > 0, Since M 1is paracompact there exists a Riemannian metric
*
on T , Such a metric induces a smooth positive measure on M, which is

clearly a frame for , Thus Q 1s trivial,

By S, Sternberg [20, ch, III 83] there exists a unique continuous
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R-linear map
[1To@ » R
M

such that if (U,$) 1s a chart on M and p € r:(ﬂlu) then

[ 0 = [ (o0 ¢7Hx)x
M ™

If E 1is a complex c” vector bundle on M we define the geometric

dual E' of E by
*
E' = Hom(E, Q®¢) = E ®Q

*
Since Q 1is a trivial line bundle, 0 ® 2 1s canonically isomorphic

to 1 and hence we have a natural isomorphism E" = E, In particular
*
s T'g B = SfrgE',

The existence of adjoints of differential operators [13] implies

that we have a natuvral C-linear isomorphism
HOM(I®(E),F) = HOM(I(F'),E') : u + u°
(-] (- -]
such that if s € PC(E), v E Fc(F') then

}{< Wyl ¢ jl‘l(s) > = }{< TR j‘n.(w)i 8 >

lemma 10,1

Let O € SmblZ(E,F). Then there exists a unique o' € Smbli“(F',E')
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such that if s € I':(E), wE I‘:(F') , BE C QMR) , dg#C on

supp &, ,8upp W then
hfq< w, 0 *) (~dg) * § (8) > = ifi«r' © 1, (dg) 3, (W,s >

(note the minus sign)

- ]
Proof 1 Let ge C (MR) and let U be an open subset of M

such that dg#0 on U, Then
n
0+ 3,(~d8) € Hm("@)y , F|y)
admits a unique transpose

(023, (~dg) ) € Hom("(F')) " ) S Hom (3B | B )

|u

If we I':(F' ) define

lu

P(w,g) = (0 jn(-dg) ) A jZn(w)

By uniquenéss this definition is independent of U, and hence for any

wE I‘:(F') s BE Cm(M:R) such that dg¥0 on supp w
P(w,g) € T (E")

is well-defined,

It remains to verify the hypotheses of theorem 3,1, (a), (b) and
(¢) are clear, so it suffices to prove (d), Suppose wE I‘:(F'),
8118, € CQ(MJR) . dglfo on supp w, d32#0 on supp w and suppose x € M
and jzn(dgl)(x) - jzn(dgz)(x). Clearly supp P(q,gi)g supp w 1i=1,2,

so without loes of generality we may assume x € supp w, Let U be an
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open subset of M such that
suppw < U {yeM; dgl(y)#O and dgz(y)#O}

and consider the differential operators o ¢ jn(-dgl) y O ¢ jn(-dgz)
on U (they are well=defined by choice of U), If we look at the
coordinate representations, the coefficients of the tranapose involve
derivatives of order at most n of the coefficients of the given
eperators, and hence by the chain rule, derivatives of the coefficients

of dg1 and dg2 of at most order 2n, Thus since
1,,dg)(x) = 3, (dg,)(x)
we have that
(0 + 3 (~dgy))' « J, (W (x) = (0 ¢+ 3 (~dg,))' * 3, (w)(x)

and so

Pig)(x) =  P(w,g,)(x)

which verifies hypothesis (d) of theorem 3,1,

Remark 1012

Lemma 10,1 is rather unsatisfactory since we get 2n where we would
prefer to have n, If 0 € Smblg(E,F) occurs as a generalized symbol
of a pseudo~differential operator we will see that we Qctually have
o'e SmblZ(!',E'). This anomaly suggests that the modules SmbI:(E,F)
are really too big, and that certain submodules may be more natural in

our context,
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Let DE be a covariant derivative on E and let V be a
*
covariant derivative on T , Let 2,k be integers with 0 < 22 < k

and consider
xk 2 (DE,V) € Smbl (E S T ® E)

(see theorem 3,5)

lemma 10,3
(xk L @p7) ) € Smbl sk T ®E' EV
and 1f u e I (T) y VE F:(E') s, BE c (MR) dg#0 on supp v, then

(xk.!,(DE'V) )' * jk_!'(dg) ° jk_z(s)

- (-t E( ) 0y @ ST ugy)
q=0

where if for each x € M we choose hx € Cw(M:R) such that

2

1) hx € Zx

@ 6™Wnm - o™

g)(x) , 2&n<k+l
3) x-» jk(dhx)(x) is a C section of ‘l’k .

then

‘ L
B = < 2%, 2@ ah > @

Proof s First note 1f g g'€ cC (MR) and
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then (h) - (h') € Zk'”'"l < Zk"'1 and hence H - H' ¢ Zk"':rl':l
x x q q p'e

whence

o® Dy o u grie - * Dy 1wy a* u g v
Hence the first statement follows once we prove the formula for
(Xk,z(DE’v) )%,

Let 8 € I':(E). Then
xk’z(DE.V) . Jk_l(-ds)(x) . jk_l(s)(x)

« Do @ o
'k

- @t ) e @ 1l o 08D 6y
q-

(by theorem 2,7) and hence

< &¥ URY Xk,z(DE'V) * Jpg (C8) ¢ 3y, (8) > (%)

k

- D ) ()< p@Pah > @ < gepiTPem
q=0
k

- (-1>’°qz0 5y cn " ugy, 2 5> @)

and hence
[ < &y, q g * 3y, (de) Jk-z“k“®") » 82
M

i£< Ak“®"- X2 Ppe¥) * g (48D * 3y p (8) >

k
w (=1) qzo(q) }{ <Hq6 qug‘.v, DE q 8 >
k

= [ et e o @t lugn 6o
M q=
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Corollary 10,4

If we I"'(:(Sk T@E') . g€ Cm(MdR) dg¥0 on supp w, x € M and

(a(q) g)x) = 0 , 2¢< q¢< k-R+1

then
O, g Ppa?) D'+ 3o (@RI G) + 4y, () ()
X T YOS ST Y
0 if 2>0,
Proof: By polarization it suffices to consider w =.6Ku69\r

where u € fm(T) y VE P:(E'). By hypothesis on g we have

- . - 2
h € Zk R+2 and hence hz € Zkl Lo+2 and so
X X X X
2
H e Zkl-l +28=q
q x

If £ 21 then since 22 ¢ k we have

kL =22 4+20 -q2k+k(@-1) =22 +20 -q

k+20( <1) = 22 +# 20 - ¢q

v

k+ 2% -q

w

w

k=q+1
and so

Dy *, Flugnw = o,

If 2 = 0 then hi = 1 and B(q)(l) = 0 for q 2 1, Thus only the

q = 0 term remains and Ho =1,
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§11 The Geometric Transpose of a Pseudo-Differential Operator

lemma 11,1

Let P € P(E,F) with exponents z;,z;.... and let n, be the

largest integer such that 0 g nj < Re(zo-zj). Suppose that there
exists P' € P(F',E') such that
[ <wpPs> = [ <P'w, s>
M M
©0 o0
for each we€E FC(F') , SE FC(E).

. Then P' 1is unique, has exponents Zz;,Z;,«.. and

' = '
oj(P ) Uj(P)

n
so in particular oj(P)' € Smblzj (F',E")
h|

00 00
Proof: Uniqueness of P' is clear, Let s € TC(E), w E PC(F'),

g € Cm(MdR) dg$0 on supp 8\ ySUpPpP V. Then

g o, -1rg T 4k . .
e pe s) kzo X0, (P) jnk(-dg) jnk(S)

- '

-ﬂ ! ﬂg zk . (]

At AN (A IS kZO A <o (B Jni(ds) j“ﬁ(W)
and

W [ <ePBpePEy, s> = [<weBrEePE e >
M M

Then by the continuity of
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[ <w,e>: T(@F) » ¢
M

I <o, 8> Fm(E') + (
M

we obtain two asymptotic expansions for (1);
o z

Kk
A <w, g, (P) - (~dg) (s) >
k=m0 £ " Pk j“k & j“k °

and

k

A <o, (P') 3 ,(dg) 3 ,(w), s>
k=0 i-fi k nk nl'C

By the proof of lemma 5.1 it follows that we may assume zé =2
k=0,1,2,,. (since any zi (reep. zj) for which such an = equality does
not hold corresponds to a zero term in the asymptotic expansion of

' ' m
P' (resp. P) ). Then ng =mny and

{4 < w0 (P 3, (-de) 1o, ()2

- £ < ok(P') . jnk(dg) * 3 W), s>

whence
2) o () = o @'

2
By lemma 10,1 we know Ok(P)' € Smblznk (F',E') but (2) implies that
n n
o, (P)' is actually in Smbl k (F',E").
k z,

We depote the complexified volume bundle & ¢ simply Ly Q.
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lemma 11,2

Suppose M 1s an open submanifold of Rr" , and P € P(1,1) with

exponents 2z Then there exists a unique P' € P(Q,Q) such that

0'21...'
if f € c:(m@) , W€ r:(sz) then

[ e = [ £(P'w)
M M

Moreover P' has exponents ZgsZysZysenes

Proof: By theorem 4,4 1n L, Hormander [8] there exists a unique

Q e P{1,1) such that 1f u,v € C:(M:G) then

f v(Pu)dx = f u(Qv)dx
M M

Now given any w € F:(Q) there exists a unique Vv € C:(M:G) such

that w = vdx, Thus the Lebesque measure dx induces an isomorphism

y: Qal

Now define P' = w—l Q¢ . Then P' e P(Q,Q) and 1f u € C:(M:¢)

w € P:(Q) , W= vdx, then

[ Pu)w = [ (Pu) vdx
M M

- f u(Qv)dx
M

= [ we e vy W
M

- f u(P'w)
M

That P' has exponents z,,Zjeees follows by lemma 11.1.
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lemma 11,3

Let P e P(1,1) with exponents ZgeZqeee Then there exists a
unique P' € P(Q,Q2) such that if f € C:(M:G) , WE F:(Q) then
[ B)w = [ £ (' w
M M
Moreover P' has exponents ZrZyrseses
Proof: Let (U,$) be a chart on M, By lemma 11.2

@) € P(Q|U,QIU) exists, Now 1if u,vec:’(u:a:) then
« @'V e PO

and clearly u(PlU)' v = (vPu)'., In the proof of theorem 7,1 we
gshowed that 1f u,v € C:(M:¢) have supports in coordinate ne.ghborhoods

then u = u1+u2 and v = v1+v2 where

Supp vy \J supp u
supp Vv, J supp u,

supp Vv supp u,

2 \J
are each contained in some coordinate neighborhoods. It follcws that

(vPu)' exists and
' - ' ' '
(vPu) (leu) + (vaul) + (vauz)

Then by a partition of unity argument (vPu)' exists for each

u,v € C:(M:C) . Then there is a unique linear map

P': TL@) r” (@)
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such that

uP'v = (vPu)'

(-]
for each u,v € CC(M:G) and P' has the desired property {see argument
in theorem 11,5), By lemma 5,7, remark 5,12, and construction we have

uP'v € P(R,2), By lemma 11.1, vP'u has exponents +o. and so by

ZO,Zl

the proof of lemma 5,9, P' e P(Q,Q2) and P' has exponents ZgsZyees

Theorem 11,4

Let P € P(E,F) with exponents ZgsZqees Then there exists a

unique P' € P(F',E') such that if s € F:(E) y WE F:(F') then

[ <wpPs> = [ <Plws> ,
M M

Moreover P' has exponents ZgsZyeene P' 1is called the geometric

transpose of P,

*

Proof: If ue F:(F ), 8E F:(E) then uPs € P(1,1) admits
a (unique) geometric transpose (uPs)' € P(,2) by lemma 11.3.

If f ¢ C:(M:G) , WE P:(Q) then

3) [ < u® W (Ps)(£)>= [ < u, P(fs) >
M M

(uPg)(f) w

-/
M

= [ f£(uPe)'(w)
M

0
Since § is a trivial line bundle any W € FC(F') may be written as

% >
veug w where u € F:(F ), wEeE PC(Q). Thus (3) implies that (Ps)'
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exists and

(Ps)' @:Qbu» = (uPs)'(w)

(Ps)' u = (uPs)'

But then by lemma 5,14 and the proof of lemma 5,9 (Ps)' € P(F',2) and
{Ps)' has exponents Z(sZgeees

Now (3) also implies
(Pfs)' u = £ (uPs)'
whence s -+ (Ps)' 1is C:(M:¢)-linear. Thus we can define a linear map

Q: TL(F') » T (E")
by
< Q(w),s > = (Ps)'(w)

(-] ' - -]
for we€ FC(F ), s8¢ FC(E).

Now choose f € C:(M:G) such that f = 1 on supp s. Then

(Pe) ' (w)

[ <qw), s>
M
£ (Ps)'(w)

w, \Ps)(f) >

< w, P >

[ ]
R R B B
A

Thus Q = P' , i,e, P' exists,

o0 o X 0
If s € PC(E) , UE rc(r ), weE rc(n) then
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sP'u (W) = < P'(u®w), s >
- (Ps)'(“Qb w)

= (uPs)'(w)

so sP'u = (uPs)' € P(R,02) with exponents ZgrZyees Since Q 1is a
trivial line bundle the proof of lemma 5,9 implies P' € P(F',E') with
exponents Zzn,Z ...

Let D_ bLe a covariant derivative on E, D a covariant deriva-

E F'
*

tive on F', and V a covariant derivative on T .,

Let P € P(E,F) with exponents z;,Z;..s and let P' £ P(F',E")

be the geometric transpose of D,

Let T,(P) be the singular part of cj(P) relative to the pair

]
(DE,V) and let Tj(P') be the singular part of oj(P') relative to
the pair (DF,,V).
Theorem 11,5
v T 1), (n)y,
kzo o, (B*) = j'g-o = ) (&)
Proof By theorem 9,4 we have
o @ L=n
i (n)
kZOU k(P) - jnzz-om—!- Tj(P) ) Xn.z(DE.V)
"20n
and hence by lemma 11,1
Lt ® f-n
1 [} (n) ]
kzo o, (P') = 5nzzom (g, o P )" 0 (YT
- oy -

29.<n
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By lemma 10,3, lemma i0,1 and theorem 3,2
X @7 ) o (1, @ ™)y
n,2"E’ j

2
(F',E'), Hence for any integer N > 0 we have

n-
is in Smblz —ntd,

3

o, (P")
) k
Re(zo-zk) <N

2=n

- 2 nlf!

' (n) .,
j’n’z (xn,l(DE'V) ) [«] (Tj (P) )

(sum over 22 < n, n- < N, Re zJ - n+l > Re Zi )

when k' 4is the largest integer such that Re(z0 - zk,) < N,

Now let x € M, wE T:(F') , B8 E Cw(MdR), dg#0 on supp w,and suppose
(a(") g)ix) = 0, 2<q< N+

(Dé?) w)(x) = 0,1<q<N

Then by (4) we have

(5) ) T (') ¢ dgx) * wix)
k
Re(zo-zk) < N

il-n (n)
) ’ (xn‘ (D))" * 3,g(dB) () ((Tj(P) )'edgew) (x)

2 n

(sum over 22 < n, n-% <N, Re 2y = n+l 2 Re zk.)

Since n~2 €< N by the condition on g and by corollary 10,4 all terms in

the right hand side of (5) in which £ > 0 vanish, and by the same corollary
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the remaining terms yield

-n
® [ oo™ ca@™ iggv) @

Jm

(sum over n < N, Re zj -n 2 Re 2y )

By the conditions on g and w (6) is equal to

=N
2 _j_-_ﬁ_l_ ((DE(n))' x (T

S ) g - v
Jn

(sum over n < N, Re z, - n > Re z

1 k)

which proves the theorem,

Remark 11,6
In theorem 11,5

T @™ e sabl, _y " 1" g E,F)

i.e, Tj(P)(n) is a map

T* - (0) » Hom(Sn T*Q§ E, F)

Then (T (P)(n))' is given by the composition

]
* % T (P)(n) E3 a n
™ - () —51" - (0) 1= Hon(S"T g E,F) —>Hom(F',S"T g E')

where -1 denotes multiplication by -1, and & maps a homomorphism onto

its adjoint,
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§12 Elliptic Operaturs

Let P € P(E,F) have exponents ZgaZyeees We say that P is
*
elliptic 1if Re z; < Re z, and if for each x € M, w e Tx - (0)

OO(P) «w ¢ Ex > Fx

is an isomorphism,

Theorem 12,1

Let P e P(E,F) be elliptic and have exponents z.,Z;... Then
there exists an almost local operator Q € P(F,E) of order -Re zZg
such that

PQ -1 e P__(F)
and for each f € C:(M:G), if U 41is an open set on which £ = 1, then
(Qfp - l)lU € Pam(ElU)

Moreover Q 1is unique modulo P__ (F,E).

Proof: It suffices to consider the case where P 18 almost local

and to show we can construct an almost local Q € P(F,E) such that

PQ-1 € P_ (F)

Qp -1 € P_ (E)

-0

By hypothesis there exists a unique T € Smbl__z (F,E) such that
0

OO(P) oT = 1 and T o UO(P) - 1,



108
Then by lemma 9.7 there exists Q, € P(F,E) such that
05(Qy) = T

-z -10 -Z -zgoon Thus

and Q0 has exponents =z 0

0’ 0

order (PQ0 - 1) < max {-1, Re(zl-z )l = e <0

0
order (QuP -1) < max { -1, Re(z;-z() } = c<o0

Now define Qn € P(F,E) by

n n

Q, = kZO a - @, = kZO Q, (L - poy"
Then
PQ_ -1 = -(1-Ppq™
QP-1 = -Q - @)™
o, -0 = G-q@™ ) = g - rep™
Thus

order (PQn -=1) € (n+l)e

order (QnP -1) (n+l)c

1A

order (Qn+1-Qn) < (n+l)c - Re zq

Since c < 0 1t follows by lemma 8.2 that there exists an almost local

1im asymp

QePp, , (F,E) such that Q = o

0 %

PQ-1 € P__(F)

QP -1 e P_(E).

If 3 is another candidate for Q then 5 -Qm= (B? - 1)Q +

8(1 - PQ) € P__(F,E), which completes the proof,
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Remark 12,2

Let DE be a covariant derivative on E, DF a covariant derivative
*
on F, and V a covariant derivative on T , lLet P and Q be as in

theorem 12,1 and let

(=]
Yy 1, (B)
k0 K
be the formal symbol of P relative to (DE'V) and let
IRACY
i=0

be the formal symbol of Q relative to (DF,V). Then by theorem 9,5

we have
yOA L™, o™ @) - 1
n,j,k=0 n! k ° E *
72 @™ 0@ e =1
n,4,k=0 "3 PPk

and theorem 12,1 implies that these equations may be solved uniquely

for TJ(Q).
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APPENDIX

Operaters of Order - «

In this appendix we prove that the pseudo-differential operators of
order -~ © are precisely those linear maps given by integrals with smooth
kernels, In particular we characterize pseudo-local operators without
reference to pseudo-differential operators, This characterization makes
hypothesis (a) of lemma 5,7, lemma 5.9 and corollary 5,15 perhaps easler

to check in practice,

lemma A,1l

Let P : F:(E) -+ Fm(F) be a linear map. Then P ¢ P_m(E,F) if

and only if for each chart (U,$) on M, each s € P:(E ) we have

lu
PIU s € P-"D(IIU’ FIU).

Proof: If Pe P_ (E,F) then by corollary 5.4

5,15,
PlUs E P-w(llu’ FIU). The converse follows by corollary

lemma A,2

Suppose M is an open submanifold of R™ and let P : F:(E) +[(F)

oo
be a continuous linear map, If s € TC(E) we define

p(a,£) = e XE pl<hE 4

Thenthe following conditions are equivalent,
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. 00
(1) For each s € FC(E) , PseP_ (1,F)
(11) For each s € F:(E) » each continuous semi~norm p omn

Fm(F) and each pair of multi-indexes o ,R

(B)(8

sup { p(t% p E)) tEEeR" P ew

(i1i) For each s € F:(E) , each continuous semi-norm p 2n Fw(F)

and each multi-index d

sup { p(E® p(s,E) ) : EeR™ } < w

Proof: (1) => (1i) by corollary 6,2
(11) =>(111) 1s trivial

(111) =>(11) 1s clear since
3 - ,
35-'P(8.9) = -1 X,y p(s,6) + 1 p(ij.E)
]
(i1) =(1) by theorem 6,5
Let éb denote the "exterior" tensor product,

Theorem A,3

Let P : P:(E) -+ FD(F) be a continuous lineer map, Then

P e P__(E,F) 1if and only if there exists
Kel (F & E
(> )
such that if s € FC(E) then

Ps(x) = I < K(x,*), 8 > Moreover K is unique,
M
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Proofs By considering operators of the form wP where
wE F:(F*) , by the uniqueness of K we see there is no loss of generality
i1, assuming F = 1,

If K exists it is unique, Hence it suffices to prove existence
of K locally in M X M and hence by remark 5,12 it suffices to construct
a C°° integral kernel for PIU for each chart (U,$) on M, Conversely
by lemma A,1 if K exists to prove P € P_ (E,F) it suffices to consider

PlU and hence for each chart (U,$) on M, Thus we may assume

Klu x v
that M is an open submanifold of R™,

Then P € P_ (E,1) if and only if Ps € P_ (1,1) for each
5 € P:(E) is clear and hence by lemma A,2 P € PJD(E,I) if and only if

for each s € F:(E) each paif of multi-indexes a,f we have

9 o

(3" 8,0

is uniformly bounded for all £ € R™ and for x 1n any compact set,

(i) Suppose we have K € Pm(l éé E') which is an integral kernel

for P, Then K(x,y) = R(x,y)dy where K € r’a é E*) and we have
p(s,E)(x) = f ei<y-x,£> K(x,y)s(y)dy

and hence integrating by parts

()" £f pes,E) e

a B' i< &> ° B4y, o 0=y,
- chmu)i' J I (M " Rexaatay

which is uniformly bounded for x in a compact set, Thus P € P__ (E,1),



113
(11) Conversely suppose P € P_ (E,1). Then for each s € I‘:(E)
Ky = 0™ [ N pee) e
defines K eI (L @ 1) and 1f u e C_(M:¢) then
P(us)(x) = f Ks(x,y)u(y)dy

Now a local triviality and a partition of unity argument yields

) v *
KeT (1®E) such that

(Ps)(x) = [ K(x,y)s(y)dy,

Corollary A.4 . 0 . .

If Q: l"w(F) + I‘m(G) is a continuoue linear map and P € P__(E,F)

then QP € P__(E,G).

Corollary A.5

If P : I':(E) + Tm(F) is a linear map then P is pseudo-local if
and only if for each pair of disjoint compact subsets Al,Az, of M
there exists K E I‘m(F ® E') such that
(Ps)(x) = [ <K(x,*),8s>
M

if s € FC(E) » supp 8 S A and x € A,,

Remark A, 6

Suppose M is compact and P € P(E,F) 1e a bijective elliptic

operator. Since I'm(E) and I'Q(F) are Fréchet spaces i follows that
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P is continuous, Now let Q € P(F,E) be a parametrix for P, 1i.e,

QP -1 e P__(E)

PQ -1 € P_ (F)

Then P'-l = Q+ P-l(l - PQ) implies by corollary A.4 that

Ll e P(F,E) and that Pl . Q € P__(F,E).
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