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A (−q)-ANALOGUE OF WEIGHT MULTIPLICITIES

GEORGE LUSZTIG AND ZHIWEI YUN

Abstract. We prove a conjecture in [L11] stating that certain polynomials P σ
y,w(q) introduced in

[LV11] for twisted involutions in an affine Weyl group give (−q)-analogues of weight multiplicities
of the Langlands dual group Ǧ. We also prove that the signature of a naturally defined hermitian
form on each irreducible representation of Ǧ can be expressed in terms of these polynomials
P σ
y,w(q).

1. Statement of the main theorems

1.1. The P σ-polynomials. Let W be a Coxeter group with simple reflections S. Let ℓ : W → N
be the length function defined by the simple reflections S. In [KL79], for any two elements
y,w ∈ W , a polynomial Py,w(q) ∈ Z[q] is attached. Consider the Hecke algebra H over A =
Z[q, q−1] (q is an indeterminate) with basis {Tw}w∈W and multiplication given by TwTw′ = Tww′

if ℓ(ww′) = ℓ(w)+ ℓ(w′) and (Ts+1)(Ts − q) = 0 for all s ∈ S. Then {
∑

y∈W ;y≤w Py,w(q)Ty}w∈W

is (up to a factor) the “new basis” of H introduced in [KL79].
In [LV11] (for W a Weyl group) and [L11] (in general), the authors work in the situation of a

triple (W,S, ∗) where (W,S) is as before and ∗ is an involution of (W,S). Let I∗ = {w ∈ W |w∗ =
w−1} be the ∗-twisted involutions in W . From the data (W,S, ∗), a refined version P σ

y,w(q) ∈ Z[q]
of Py,w(q) is defined for y,w ∈ I∗. They also introduced a free A-module M with basis {aw}w∈I∗ ,
which carries a natural module structure over the Hecke algebra H′ with q replaced by q2. Then
{
∑

y≤w,y∈I∗
P σ
y,w(q)ay}w∈I∗ is (up to a factor) the “new basis” of M introduced in [LV11, Theorem

0.3] and [L11, Theorem 0.4].

1.2. Affine Weyl group. For the rest of the note we consider the setting of [L11, Section 6]:
(W,S) is the Coxeter group associated to an untwisted connected affine Dynkin diagram. Let
Λ ⊂ W be the subgroup of translations, i.e., those elements which have finite conjugacy classes.
This is a free abelian subgroup of W of finite index. Let W = W/Λ. We shall use additive
notation for the group law in Λ. The conjugation action of w ∈ W on Λ is denoted by λ 7→ wλ.

Fix a hyperspecial vertex s0 ∈ S (i.e., a vertex in S with Dynkin label equal to 1). Then the
finite Weyl group WJ generated by J = S − {s} is a section of the natural projection W → W ,
and we henceforth identify WJ with W . Let wJ be the longest element of WJ .

An element λ ∈ Λ is dominant if ℓ(λwJ) = ℓ(λ) + ℓ(wJ ). Let Λ+ denote the set of dominant
translations. The set of double cosets WJ\W/WJ is in bijection with Λ+: each WJ -double coset
in W contains a unique λ ∈ Λ+. For λ ∈ Λ+, let dλ = λwJ be the longest element in the double
coset WJλWJ .
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2 GEORGE LUSZTIG AND ZHIWEI YUN

Let ∗ be the automorphism of W defined by

w∗ := wJwwJ , for w ∈ WJ ;(1.1)

λ∗ := −wJλ for λ ∈ Λ.

This ∗ is an involution which stabilizes S and fixes s0. In fact, if wJ acts by −1 on Λ, then ∗
is the identity; otherwise ∗ has order two. As shown in [L11, Proposition 8.2], every element dλ
belongs to I∗. Therefore we may consider the polynomials P σ

dµ,dλ
(q).

The following theorem is the main result of this note, which was conjectured by the first author
in [L11, Conjecture 6.4].

1.3. Theorem. Notation as above. Then for any λ, µ ∈ Λ+, we have

P σ
dµ,dλ

(q) = Pdµ,dλ(−q).

The proof of the theorem will be given in Section 3, after some preparation regarding the
geometric Satake equivalence in Section 2. In Section 6, we give a generalization of the above
theorem to other involutions ⋄ of (W,S) which are closely related to ∗.

In [L11, Proposition 8.6], the first author proves special cases of this result by pure algebra.
It is proved in [L83, 6.1] that Pdµ,dλ(q) is a q-analogue of the µ-weight multiplicity in the

irreducible representation Vλ of an algebraic group Ǧ (see the discussion in Section 2.3). There-
fore, we may interpret the above theorem as saying that P σ

dµ,dλ
(q) is a (−q)-analogue of weight

multiplicities, hence the title of this note.

1.4. The Zσ-polynomials. The polynomials Py,w(q) is the Poincaré polynomial of the local
intersection cohomology of an affine Schubert variety indexed by w; the Poincaré polynomial of
the global intersection cohomology of the same affine Schubert variety is given by

Zw(q) =
∑

y∈W ;y≤w

Py,w(q)q
ℓ(y) ∈ Z[q].

Algebraically, consider the A-algebra homomorphism χ : H → A given by χ(Tw) = qℓ(w) for all
w ∈ W . Then Zw(q) is the value of the new basis

∑
y≤w Py,w(q)Ty under the homomorphism χ.

We want to define some polynomials Zσ
w(q) ∈ Q(q) which play the same role with respect to

Zw(q) as P
σ
y,w(q) plays with respect to Py,w(q). To to do, we replace χ : H → A by the following

A-linear map introduced in [L11, 5.7]

ζ : M → Q(q)(1.2)

aw 7→ qℓ(w)

(
q − 1

q + 1

)φ(w)

for all w ∈ I∗(1.3)

Here φ : I∗ → N is defined in [L11, 4.5]. Concretely, for w ∈ I∗ with image w ∈ W , φ(w) =
e(w∗)− e(∗), where e(∗) (resp. e(w∗)) is the dimension of the (−1)-eigenspace of the involution
t 7→ t∗ (resp. t 7→ w(t∗)) on ΛQ = Λ⊗Z Q.

For w ∈ I∗ we let Zσ
w(q) be the image of the new basis of M under ζ:

(1.4) Zσ
w(q) = ζ


 ∑

y∈I∗;y≤w

P σ
y,w(q)ay


 =

∑

y∈I∗;y≤w

P σ
y,w(q)q

ℓ(y)

(
q − 1

q + 1

)φ(y)

∈ Q(q)

We also set

(1.5) Z̃dλ(q) = Zdλ(q)ZwJ
(q)−1 ∈ Q(q), Z̃σ

dλ
(q) = Zσ

dλ
(q)Zσ

wJ
(q)−1 ∈ Q(q).

Our second main result is
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1.5. Theorem. For any λ ∈ Λ+ we have Z̃σ
dλ
(q) = Z̃dλ(−q). In particular, Z̃σ

dλ
(q) ∈ Z[q].

We will present two proofs of the theorem, one geometric in Section 4 which is based on
a cohomological interpretation of Zσ

w(q), and one algebraic in Section 5. Both proofs rely on
Theorem 1.3.

It is also observed in [L83] that Z̃dλ(q) is a q-analogue of the dimension of the irreducible

representation Vλ of the group Ǧ. We will show in Section 5.6 that Z̃σ
dλ
(q) is a q-analogue of the

signature of Vλ under a naturally defined hermitian form introduced in [L97].

1.6. Gelfand’s trick. It is interesting to notice the relation between the involution ∗ and
“Gelfand’s trick” in proving that the spherical Hecke algebra is commutative. In fact, for a
split simply-connected almost simple group G over a local field F with Weyl group WJ , the dou-
ble coset G(OF )\G(F )/G(OF ) is in bijection with WJ\W/WJ . The spherical Hecke algebra Hsph

consists of compactly supported bi-G(OF )-invariant functions on G(F ) with the algebra structure
given by convolution. There is an involution g 7→ g∗ of G which stabilizes a split maximal torus
T and acts by −wJ on X∗(T ) = Λ. The induced action on the affine Weyl group W is the same
as the one given in Section 1.2. The anti-involution τ : g 7→ (g∗)−1 induces an anti-involution on
Hsph while fixing each double coset WJ\W/WJ , hence acting by identity on Hsph. This implies
the commutativity of Hsph. Roughly speaking, the main theorem is a categorification of Gelfand’s
trick: it explains what τ does to the Satake category (categorification of Hsph) beyond the level
of isomorphism classes of objects (on which it acts by identity).

1.7. Notation and conventions. By a tensor category, we mean a monoidal category with a
commutativity constraint compatible with the associativity constraint.

For an algebraic torus T , let X∗(T ) (resp. X∗(T )) denote the group of cocharacters (resp.
characters) of T . For a cocharacter λ : Gm → T , we use xλ to mean the image of x ∈ Gm under
λ; for a character α : T → Gm, we use zα to denote the image of z ∈ T under α. Note that
(xλ)α = x〈α,λ〉 ∈ Gm.

By an involution in a group, we mean an element of order at most two.
All algebraic varieties in this note are over C; all complexes of sheaves are with Q-coefficients.
For an algebraic variety X of dimension n, let IH•(X) denote its intersection cohomology

groups with Q-coefficients. We normalize it so that IHi(X) = 0 unless 0 ≤ i ≤ 2n.

2. Geometric definition of the P σ-polynomials

2.1. Affine flag variety. In this section we give a geometric definition of the polynomials P σ
x,y(q).

In fact, in the case of finite Weyl groups with ∗ = id, such a geometric definition is given in [LV11,
Section 3] using the geometry of flag varieties. It is remarked in [LV11, Section 7.1-7.2] that such
a geometric definition works for affine Weyl groups and general ∗, with the flag varieties replaced
by affine flag varieties. This section is an elaboration of this remark.

Let G be the simply-connected almost simple group over C whose extended Dynkin diagram
is the one we started with in Section 1.2, so that the usual Dynkin diagram of G is given by
removing the vertex s0. Fix a pinning for G; in particular, fix a maximal torus T ⊂ G, and a
Borel B containing T . We may identify (WJ , S − {s0}) with the Weyl group NG(T )/T together
with the simple reflections determined by B. We may also identify Λ with the cocharacter lattice
X∗(T ), which is also the coroot lattice of G.

Let G((t)) be the loop group associated to G: it is the ind-scheme representing the functor R 7→
G(R((t))) for any C-algebra R. LetG[[t]] ⊂ G((t)) be the subscheme representing the functorR 7→
G(R[[t]]). The affine Weyl group W may be identified with the C-points of NG((t))(T ((t)))/T [[t]].
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For each w ∈ W , we choose a lifting ẇ of it in NG((t))(T ((t))). For example, if λ ∈ Λ, we may

choose λ̇ to be the point tλ ∈ T ((t)).
An Iwahori subgroup of G((t)) is one which is conjugate to I = π−1(B) ⊂ G[[t]] where π :

G[[t]] → G is the mod t reduction morphism. Let Fl = G((t))/I be the affine flag variety of G
classifying Iwahori subgroups of the loop group G((t)). This is a (locally finite) infinite union of
projective varieties over C of increasing dimensions. The group scheme I acts on Fl from the left
with orbits Flw = IẇI/I indexed by w ∈ W . Each orbit Flw is isomorphic to an affine space of
dimension ℓ(w) (with respect to the simple reflections S). Let Fl≤w be the closure of Flw, which
is the union of Fly for y ≤ w.

Consider the derived category DI(Fl) = lim
−→w∈W

DI(Fl≤w) of I-equivariant Q-complexes which

are supported on the Fl≤w for some w ∈ W . Note that for fixed w, the I-action on Fl≤w factors
through a quotient group scheme Iw of finite type such that ker(I → Iw) is pro-unipotent. We
therefore understandDI(Fl≤w) as the category of Iw-equivariant derived category of Q-complexes
on the projective variety Fl≤w in the sense of [BL94].

2.2. Geometric interpretation of the P σ-polynomials. Let ∗ denote the pinned automor-
phism of G such that λ 7→ (wJλ)∗ acts by −1 on Λ. This involution induces an involution on
the affine Weyl group (W,S) which coincides with the ∗ defined in (1.1). The involution ∗ also
induces an involution on G((t)) preserving the Iwahori I, so that it induces an involution on Fl
which we still denote by ∗.

Consider the anti-involution τ of G((t)) defined as

τ(g) = (g∗)−1.

We would like to define a functor:

τ∗ : DI(Fl) → DI(Fl)

given by pull-back along the map τ . We may identify each object of DI(Fl) as a complex on G((t))
equivariant under the left and right translation by I. Since each I-double coset IẇI ⊂ G((t)) is
sent to another double coset I(ẇ∗)−1I, pull-back by τ preserves bi-I-equivariance, and defines the
functor τ∗.

For each object K ∈ DI(Fl) and y ∈ W , the restriction of K to Fly is a constant complex by
I-equivariance. We therefore have a vector space Hi

yK, which is canonically isomorphic to the
i-th cohomology of the stalk of Sw at any point of Fly.

For each w ∈ W , one has the (shifted) intersection cohomology complex Sw ∈ DI(Fl) of Fl≤w,
which we normalize so that Sw|Flw

∼= Q. If w ∈ I∗ (i.e., (w∗)−1 = w), we have a canonical
isomorphism

(2.1) Φw : τ∗Sw
∼
→ Sw

whose restriction to Flw is the identity map for the constant sheaf Q. For each y ∈ I∗, y ≤ w, the
restriction of Φw induces an involution:

Hi
yΦw : Hi

ySw = τ∗Hi
y(τ

∗Sw) → Hi
ySw

where the first equality comes from the definition of τ∗. Then

(2.2) P σ
y,w(q) =

∑

i∈Z

tr(Hi
yΦw,H

i
ySw)q

i/2.

It is known that Hi
ySw = 0 for odd i(see [KL80, Theorem 4.2] for the case W finite, [KL80,

Theorem 5.5] for the case W affine; see also [G01, A.7] for the affine case), therefore P σ
y,w ∈ Z[q].
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2.3. Affine Grassmannian and the geometric Satake equivalence. Let Gr = G((t))/G[[t]]
be the affine Grassmannian of G, which is also a locally finite union of projective varieties of
increasing dimensions. The left translation by G[[t]] on Gr has orbits indexed by WJ -orbits on
Λ. For each dominant coweight λ ∈ Λ+, there is a unique G[[t]]-orbit Grλ containing tλ (which

also contains tλ
′

for any λ′ in the same WJ -orbit of λ). The dimension of Grλ is 〈2ρ, λ〉, where
2ρ is the sum of positive roots of G.

Let S = PG[[t]](Gr) be the category of G[[t]]-equivariant perverse sheaves on Gr which are
supported on finitely many G[[t]]-orbits. This abelian category carries a convolution product
⊙ : S × S → S (implicit in [L83], see [G95, Proposition 2.2.1]), which is equipped with an
obvious associativity constraint and a less obvious commutativity constraint (based on ideas of
Drinfeld, see an exposition in [MV07, Section 5]) making (S,⊙) a tensor category (the convolution
product is usually denoted by ∗ in literature, and we change it to ⊙ to avoid confusion with
the involution ∗). Let Vecgr be the category of finite dimensional graded Q-vector spaces (the
commutativity constraint is not adjusted by the Koszul sign convention, so Vecgr ∼= Rep(Gm) as
tensor categories). Consider the functor

H• : S → Vecgr

K 7→
⊕

i∈Z

Hi(Gr,K).

This functor carries a tensor structure (see [G95, Proposition 3.4.1] and [MV07, Proposition 6.3],
note that the commutativity constraint of S is adjusted by a sign in [MV07, Paragraph after
Remark 6.2] in order to make H• a tensor functor).

Composing H• with the forgetful functor Vecgr → Vec (the category of finite dimensional vector
spaces), we get a fiber functor H of the tensor category S, hence an algebraic group Ǧ = Aut⊗(H)
over Q. In [G95, Theorem 3.8.1] (with the corrected commutativity constraint by Drinfeld and
based on results of [L83]), it is proved that Ǧ is a connected split reductive group over Q whose
root datum is dual to G. The proof in [MV07, Theorem 7.3] in fact equips Ǧ with a maximal
torus Ť with a canonical identification X∗(Ť ) = Λ = X∗(T ). In fact, the functor H• factors as

H• : S
⊕λ∈ΛFλ
−−−−−→ VecΛ

〈2ρ,−〉
−−−−→ Vecgr

Here the first arrow is the sum of weight functors introduced in [MV07, Theorem 3.6]; the second
functor turns a Λ-graded vector space ⊕λV

λ into a Z-graded one V i := ⊕〈2ρ,λ〉=iV
λ. Under the

identification S
∼
→ Rep(Ǧ), the functor H• then factors as

Rep(Ǧ) → Rep(Ť ) → Rep(Gm)

induced by the homomorphisms 2ρ : Gm → Ť →֒ Ǧ.

2.4. Geometric interpretation of P σ
dµ,dλ

(q). For each λ ∈ Λ+, let Cλ be the shifted intersec-

tion cohomology complex of the closure Gr≤λ of Grλ, such that Cλ|Grλ = Q. The involution τ of
G((t)) again induces a functor

(2.3) τ∗ : S → S.

One can similarly define the stalks Hi
µCλ for µ ≤ λ ∈ Λ+, which again vanishes for odd i. Each

double coset G[[t]]tλG[[t]] is sent to G[[t]]t−λ∗

G[[t]]. By the definition of ∗, we have −λ∗ = wJλ),
hence G[[t]]t−λ∗

G[[t]] = G[[t]]tλG[[t]], i.e., each G[[t]]-double coset in G((t)) is stable under τ (this
is equivalent to saying that the longest element in each WJ -double coset belongs to the set I∗ of
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∗-twisted involutions). This means one can fix an isomorphism

(2.4) Ψλ : τ∗Cλ
∼
→ Cλ

which is the identity when restricted to Grλ. This isomorphism similarly induces an involution:

Hi
µΨλ : Hi

µCλ = Hi
µ(τ

∗Cλ) → Hi
µCλ.

We have a projection map π : Fl → Gr. For each λ ∈ Λ+, the preimage π−1(Gr≤λ) = Fl≤dλ
(recall dλ ∈ WJλWJ is the longest element). Since Fl≤dλ → Gr≤λ is smooth, we have an
isomorphism φλ : π∗Cλ

∼= Sdλ , which can be made canonical by requiring its restriction to Fldλ
to be the identity map on the constant sheaf. Moreover, the isomorphism φλ clearly intertwines
Ψλ and Φdλ . Using φλ, we get a commutative diagram

Hj
µCλ

Hj
µφλ

//

Hj
µΨλ

��

Hj
dµ
Sdλ

Hj
µΦλ

��

Hj
µCλ

Hj
µφλ

// Hj
dµ
Sdλ

Therefore, from (2.2) we get

(2.5) P σ
dµ,dλ

(q) =
∑

j∈Z

tr(H2j
µ Ψλ,H

2j
µ Cλ)q

j .

2.5. Loop group of a compact form. At certain points in the proof of the main theorem, it is
convenient to take an alternative point of view of the affine Grassmannian Gr, namely the space
of polynomial loops on the compact form of G. We remark that the switch of viewpoint is not
necessary for the proof, but it makes the idea of the proof more transparent.

Let K ⊂ G(C) be a compact real form which is stable under ∗ (for example, we may define
K using the Cartan involution ẇJ∗, for any lifting of ẇJ of wJ to NG(T )). Let Ω = ΩpolK be
the space of polynomial loops on K based at the identity element 1 ∈ K (see [PS86, §3.5]). By
[PS86, Theorem 8.6.3], there is a homeomorphism

ι : Ω
ι̃
→֒ G(C((t)))

p
−→ Gr(C).

The stratification of Gr by {Grλ}λ∈Λ+ gives a Whitney stratification of Ω. We denote the strata
by Ωλ with closure Ω≤λ. Let Db(Ω) = lim

−→λ
Db(Ω≤λ). Let SK be the full subcategory of Db(Ω)

consisting of perverse sheaves which are locally constant along each strata Ωλ.
Let mK : Ω×Ω → Ω be the multiplication map. This is stratified in the sense that mK(Ω≤λ×

Ω≤µ) = Ω≤λ+µ for λ, µ ∈ Λ+. Define

⊙K : Db(Ω)×Db(Ω) → Db(Ω)

(K1,K2) 7→ mK!(K1 ⊠K2).

Let

H• : SK → Vecgr

be the functor of taking total cohomology.
The involution τ : k 7→ (k∗)−1 on K induces an involution τK on Ω, which gives the pullback

functor

τ∗K : Db(Ω) → Db(Ω).

2.6. Lemma.
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(1) The functor ⊙K has image in SK , and there is a natural associativity constraint making
(SK ,⊙K) a monoidal category; H• : SK → Vecgr is naturally a monoidal functor.

(2) The pull-back functor ι∗ gives a monoidal equivalence ι∗ : (S,⊙) → (SK ,⊙K).
(3) There is a natural isomorphism of monoidal functors H• ◦ ι∗ ∼= H• : S → Vecgr.
(4) The functor τ∗K sends SK to SK ; τ∗ and τ∗K are naturally intertwined under ι∗.

Proof. (1)(2) The functor ι∗ identifies SK with the category of perverse sheaves on Gr locally
constant along the strata Grλ. By [MV07, Proposition A.1] the latter category is canonically
equivalent to S. To prove (1) and (2), it suffices to give ι∗ a monoidal structure. Recall that the
convolution product ⊙ on S is defined as

K1 ⊙K2 = m!(K1 ⊡K2)

Here m : G((t))
G[[t]]
× Gr → Gr is the multiplication map, K1 ⊡ K2 is the perverse sheaf on

G((t))
G[[t]]
× Gr characterized by

(2.6) p′∗K1 ⊡K2 = p∗K1 ⊠K2 on G((t)) ×Gr,

where p : G((t)) → Gr, p′ : G((t)) ×Gr → G((t))
G[[t]]
× Gr are the projections. To give ι∗ a tensor

structure, we need to give a canonical isomorphism

mK!(ι
∗K1 ⊠ ι∗K2) ∼= ι∗m!(K1 ⊡K2)

for any K1,K2 ∈ S. Note that we have commutative diagram

(2.7) Ω× Ω
ι2
//

mK

��

G((t))
G[[t]]
× Gr

m

��

Ω
ι

// Gr

where ι2 is given by the composition

Ω× Ω
ι̃×ι
−−→ G((t)) ×Gr

p′
−→ G((t))

G[[t]]
× Gr.

It is easy to see that ι2 is also a homeomorphism, so (2.7) is a Cartesian diagram. Therefore we
have a canonical isomorphism

ι∗m!(K1 ⊡K2) ∼= mK!ι
∗
2(K1 ⊡K2)

= mK!(ι̃× ι)∗p′∗(K1 ⊡K2)
(2.6)
= mK!(ι̃× ι)∗(p∗K1 ⊠K2)

= mK!(ι̃
∗p∗K1 ⊠ ι∗K2) = mK!(ι

∗K1 ⊠ ι∗K2)

It is easy to check these isomorphisms are compatible with the associativity constraints.
(3) is obvious.
(4) For each K ∈ S, we need to give a functorial isomorphism

ι∗τ∗K
∼
→ τ∗Kι∗K.

Recall ι factors as Ω
ι̃
−→ G((t))

p
−→ Gr and ι̃τK = τ ι̃, where τ : g 7→ (g∗)−1 is the anti-automorphism

of G((t)). Therefore

ι∗τ∗K = ι̃∗p∗τ∗K = ι̃∗τ∗p∗K = τ∗K ι̃∗p∗K = τ∗Kι∗K.

This gives the desired isomorphism. �
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Using part (2) of Lemma 2.6, one can transfer the commutativity constraint of (S,⊙) to
(SK ,⊙K) making the latter a tensor category. Part (3) of Lemma 2.6 then gives the functor H•

a tensor (in addition to monoidal) structure.

3. Proof of Theorem 1.3

For a monoidal category (C,⊗), we let (C,⊗σ) be the same category equipped with a new
functor ⊗σ : C × C → C given by X ⊗σ Y := Y ⊗X. It is easy to check that (C,⊗σ) also carries
a monoidal structure.

3.1. Lemma. The functor τ∗ : S → S carries a natural structure of a monoidal functor

τ∗ : (S,⊙) → (S,⊙σ).

Proof. Using Lemma 2.6(2) and (4), it suffices to construct the monoidal structure of τ∗K . Let
σ : Ω×Ω → Ω×Ω be the involution which interchanges two factors. Since τK is an anti-involution,
we have a Cartesian diagram

(3.1) Ω× Ω
τK×τK

//

mK◦σ

��

Ω×Ω

mK

��

Ω
τK

// Ω

Therefore by proper base change, for any K1,K2 ∈ SK , we have a canonical isomorphism

τ∗KmK!(K1 ⊠K2) ∼= (mK ◦ σ)!(τ
∗
KK1 ⊠ τ∗KK2) = mK!(τ

∗
KK2 ⊠ τ∗KK2).

By the definition of ⊙K , we get a canonical isomorphism

τ∗K(K1 ⊙K K2)
∼
→ τ∗KK2 ⊙K τ∗KK1.

It is easy to check that these isomorphisms are compatible with the associativity constraint and
the unit objects of (SK ,⊙K) and (SK ,⊙σ

K). This finishes the proof of the lemma. �

Let H•,σ : (S,⊙σ) → (Vecgr,⊗) be the same functor as H•, except that we change its monoidal
structure to the one of H• composed with the commutativity constraint of ⊗ for Vecgr, so that
H•,σ is also a tensor functor.

3.2. Lemma. There is a natural isomorphism γ : H•,σ ◦ τ∗
∼
→ H•, which preserves the monoidal

structures of both functors.

Proof. Using Lemma 2.6, it suffices to give a natural isomorphism γK : H• ◦ τ∗K
∼
→ H• between

functors SK → Vecgr, which preserves the monoidal structures. Since τK is an automorphism
of Ω, we have a canonical isomorphism H•(Ω, τ∗KK)

∼
→ H•(Ω,K), which gives the desired γK .

It remains to check that γ preserves the monoidal structures. But this is also obvious from the
natural monoidal structure of H• : SK → Vecgr. �

Suppose we have two Tannakian categories (C,⊗) and (D,⊗) equipped with fiber functors ωC

and ωD into Veck respectively (k is a field). Let F : (C,⊗) → (D,⊗) be a monoidal functor

equipped with a monoidal isomorphism φ : ωD ◦ F
∼
→ ωC . Then φ induces a homomorphism of

algebraic groups over k:

(F, φ)# : Aut⊗(ωD) → Aut⊗(ωC)

(ωD
h
−→ ωD) 7→ (ωC

φ−1

−−→ ωD ◦ F
h◦idF−−−→ ωD ◦ F

φ
−→ ωC).
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Note that the tensor morphisms between tensor functors only uses their structures as monoidal
functors, therefore the above definition makes sense even if F is only a monoidal functor. More
generally, if ωC and ωD take values in another Tannakian category V equipped with a fiber functor
ω : V → Vec, then F induces a homomorphism of algebraic groups (F, φ)# : Aut⊗(ω ◦ ωD) →
Aut⊗(ω ◦ ωC) making the following diagram commutative

Aut⊗(ω)
ω#
D

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

ω#
C

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

Aut⊗(ω ◦ ωD)
(F,φ)#

// Aut⊗(ω ◦ ωC)

We apply the above remarks to the situation

(S,⊙)
τ∗

//

H•
$$■

■■
■■

■■
■■

γ
⇐

(S,⊙σ)

H•,σ
zztt
tt
tt
tt
t

Vecgr

and get a commutative diagram of algebraic groups over Q:

Gm

2ρ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ 2ρ

  ❆
❆❆

❆❆
❆❆

❆

Ǧ
(τ∗,γ)#

// Ǧ

In other words, (τ∗, γ)# is an automorphism of Ǧ commuting with elements in the torus 2ρ(Gm).
Since τ∗ does not change the isomorphism classes of irreducible objects in S, this automorphism
must be inner. Therefore (τ∗, γ)# determines an element g ∈ Ť (note that Ǧ is of adjoint form).

Using the commutative constraint of (S,⊙), the identity functor gives a monoidal equivalence

idσS : (S,⊙)
∼
→ (S,⊙σ).

There is a unique natural isomorphism of monoidal functors Θ : τ∗
∼
→ idσS making

idH•,σ ◦Θ = γ : H•,σ ◦ τ∗ → H•,σ ◦ idσS = H•.

In fact, identifying S with Rep(Ǧ), the functor τ∗ sends V ∈ Rep(Ǧ) (with the action α : Ǧ →

Aut(V )) to the same vector space V with the new action Ǧ
Ad(g)
−−−→ Ǧ

α
−→ Aut(V ). Then the effect

of the natural isomorphism Θ on V is given by α(g−1) : V → V .

3.3. Lemma.

(1) The element g ∈ Ť (Q) is (−1)ρ, the image of −1 under the cocharacter ρ : Gm → Ť (note
that Ǧ is of adjoint type, so ρ is a cocharacter of Ť ).

(2) The effect of the natural isomorphism Θ on the intersection complex Cλ[〈2ρ, λ〉] ∈ S is
(−1)〈ρ,λ〉Ψλ.

(3) The action of the involution τ∗K on IH2j(Ω≤λ) is by (−1)j .

Proof. Let λ ∈ Λ+. The action of g−1 on H•(Ω,Cλ)[〈2ρ, λ〉] = IH•(Ω≤λ)[〈2ρ, λ〉] = Vλ ∈ Rep(Ǧ)
is given by the composition

IH•(Ω≤λ)
τ∗
K−−→ IH•(Ω≤λ) = H•(Ω, τ∗KCλ)

H•(Ω,Θλ)
−−−−−−→ H•(Ω,Cλ) = IH•(Ω≤λ).

where the first arrow is the pull-back along the anti-involution τK of Ω≤λ and Θλ : τ∗KCλ → Cλ

is induced from the effect of Θ on Cλ[〈2ρ, λ〉] ∈ S. Since the only automorphisms of Cλ are
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scalars, the isomorphisms Θλ and Ψλ must be related by Θλ = cλΨλ for some constant cλ ∈ Q×:
the restriction of Θλ on Ωλ is given by multiplication by cλ on the constant sheaf.

The stratum Ωλ homotopy retracts to the K-orbit of tλ, which is a partial flag variety G/Pλ =
K/Pλ ∩K (see [MV07, Top of page 100]). The action of τK on Ad(K)tλ ∼= K/Pλ ∩K is given by

ktλk−1 7→ (k∗tλ
∗

k∗,−1)−1 = k∗t−λ∗

k∗,−1 = k∗ẇJ t
λẇ−1

0 k∗,−1.

Therefore the induced action of τ∗K on K/Pλ∩K is given by k mod Pλ∩K 7→ k∗wJ mod Pλ∩K
(any lifting ẇJ ∈ NT∩K(K) normalizes Pλ ∩K, hence the right translation makes sense).

Let jλ : Ωλ →֒ Ω≤λ be the inclusion. We have a commutative diagram

(3.2) IHi(Ω≤λ)

c−1
λ

g−1

��

j∗
λ

// Hi(Ωλ)
∼
//

τ∗
K

��

Hi(K/Pλ ∩K)

wJ∗

��

IHi(Ω≤λ)
j∗
λ

// Hi(Ωλ)
∼
// Hi(K/Pλ ∩K)

When i ≤ 2, the horizontal restriction maps are isomorphisms. In fact, from the stratification
Ω≤λ by the open Ωλ and the closed complement z : Ω<λ →֒ Ω≤λ, we get an exact sequence

(3.3) Hi(Ω<λ, z
!Cλ) → IHi(Ω≤λ) → Hi(Ωλ) → Hi(Ω<λ, z

!Cλ)

Since dimΩ<λ ≤ 〈2ρ, λ〉 − 2 and z!Cλ[〈2ρ, λ〉] lies in perverse degree ≥ 1, z!Cλ lies in the usual
cohomological degree ≥ 3. This implies Hi(Ω<λ, z

!Cλ) = 0 for i ≤ 2 hence the isomorphism
follows from the exact sequence (3.3).

We claim that the action τ∗K : k 7→ k∗wJ on the partial flag variety K/Pλ ∩ K induces −1

on H2(K/Pλ ∩K). In fact, H2(K/Pλ ∩K,Q) →֒ H2(K/T,Q) ∼= X∗(T )Q by pull-back along the
projection K/T ∩ K → K/Pλ ∩ K, and this map is equivariant under the (W ⋊ Out(G))λ-
actions (subscript λ means stabilizer of λ under the W ⋊ Out(G)-action on Λ = X∗(T )). Since
∗wJ = wJ∗ ∈ W ⋊Out(G) acts on Λ by −1 by definition, the claim follows.

Since τ∗K induces the identity action on H0(K/Pλ ∩K), c−1
λ g−1 acts by identity on IH0(Ω≤λ)

by diagram (3.2). Since τ∗K acts by -1 on H2(K/Pλ ∩K) by the above claim, c−1
λ g−1 acts on

IH2(Ω≤λ) by multiplication by −1 by diagram (3.2).
Recall that the grading on IH•(Ω≤λ)[〈2ρ, λ〉] ∼= Vλ comes from the action of the cocharacter

2ρ : Gm → Ť on Vλ. Let Vλ(µ) be the weight space of weight µ under the Ť -action, we have

IHi(Ω≤λ) =
⊕

〈2ρ,µ〉=i

Vλ(µ).

In particular,

IH0(Ω≤λ) = Vλ(
wJλ);

IH2(Ω≤λ) =
⊕

Vλ(
wJλ+ α∨

i )

where the sum over simple roots α∨
i of Ǧ. Therefore, the previous paragraph implies

c−1
λ g−

wJ λ = 1;(3.4)

c−1
λ g−

wJ λ−α∨
i = −1 for all simple roots α∨

i .

Comparing these two equations we conclude that gα
∨
i = −1 for all simple roots α∨

i of Ǧ. On the

other hand, (−1)ρ also has this property. Since Ǧ is adjoint, an element in Ť is determined by
its image under simple roots, therefore g = (−1)ρ. This proves (2). Plugging this back into (3.4),
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we conclude that cλ = ((−1)ρ)−
wJ λ = (−1)〈ρ,−

wJ λ〉 = (−1)〈ρ,λ〉. This proves (1). Now (3) follows
easily from (1) and (2). �

3.4. Completion of the proof. By (2.5), it suffices to show that H2j
µ Ψλ acts on H2j

µ Cλ by
(−1)j .

We extend the partially ordered set {µ ∈ Λ+, µ ≤ λ} into a totally ordered one, and denote the
total ordering still by ≤. For any µ ≤ λ, let Ω[µ,λ] = Ω≤λ − Ω<µ. Similarly Ω(µ,λ] = Ω≤λ − Ω≤µ.
Then we have a long exact sequence

· · · → Hi
c(Ω(µ,λ],Cλ) → Hi

c(Ω[µ,λ],Cλ) → ⊕a+b=iH
a
c (Ωµ)⊗Hb

µCλ → · · ·

Since Ωµ = Grµ is an affine space bundle over a partial flag variety G/Pµ, we have that H
•
c(Ωµ) ∼=

H•(G/Pµ)[−〈2ρ, µ〉+dimG/Pµ] which is concentrated in even degrees. We also know that Hb
µCλ

vanishes for odd b. Therefore the third term in the above exact sequence vanishes for odd i. Using
decreasing induction for µ (starting with λ), we conclude that each H•

c(Ω[µ,λ],Cλ) is concentrated
in even degrees, and the above long exact sequence becomes a short one for even i. This gives a
canonical decreasing filtration

F≥µIH•(Ω≤λ) := H•
c(Ω[µ,λ],Cλ)

with associated graded pieces

(3.5) grµF IH
•(Ω≤λ) = H•

c(Ωµ)⊗H•
µCλ.

The action of τ∗K preserves each F≥µ, and the induced action on the associated graded pieces
takes the form

(3.6) grµF τ
∗
K = (τK |Ωµ)

∗ ⊗H•
µΨλ : H•

c(Ωµ)⊗H•
µCλ → H•

c(Ωµ)⊗H•
µCλ.

By Lemma 3.3(3), the action of τ∗K on the top-dimensional cohomology H
2〈2ρ,µ〉
c (Ωµ) ∼= IH2〈2ρ,µ〉(Ω≤µ)

is via multiplication by (−1)〈2ρ,µ〉 = 1; the action of τ∗K on H
2〈2ρ,µ〉
c (Ωµ)⊗H2j

µ Cλ ⊂ grµF IH
2j+2〈2ρ,λ〉(Ω≤λ),

as a subquotient of IH2j+2〈2ρ,λ〉(Ω≤λ), is via multiplication by (−1)j+〈2ρ,λ〉 = (−1)j . Therefore,

by (3.6), H2j
µ Ψλ acts on H2j

µ Cλ via multiplication by (−1)j . This finishes the proof of Theorem
1.3.

4. Geometric proof of Theorem 1.5

The proof of Theorem 1.5 will become transparent once we give the cohomological interpreta-
tion of the Zσ-polynomials.

4.1. Affine flag variety via a compact form. We already see that Ω = ΩK
∼
→ Gr(C) is a

homeomorphism. We need analogous statement for the affine flag variety. Let Tc = K ∩ T be
the maximal torus in K. Then the inclusion K ⊂ G(C) induces a homeomorphism K/Tc

∼
→

(G/B)(C). The multiplication (g, kTc) 7→ gkI gives a continuous map ιFl : Ω ×K/Tc → Fl(C)
making the following diagram commutative

(4.1) Ω×K/Tc

prΩ
��

ιFl
// Fl(C)

π

��

Ω
ι

// Gr(C)

It is easy to check that ιFl is bijective on points, hence a homeomorphism because it is a continuous
map from a compact space to a Hausdorff one. Moreover, ιFl is Tc-equivariant, where Tc acts on
Ω×K/Tc diagonally by conjugation and left translation, and it acts on Fl(C) by left translation.
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Let Ξ = K/Tc × Ω ×K/Tc, on which K acts diagonally via left translation on K/Tc and via
conjugation on Ω. The space Ξ also admits an involution τ̃ : (k1Tc, g, k2Tc) 7→ (k∗2Tc, (g

∗)−1, k∗1Tc),
which intertwines the original diagonal K-action and the that action pre-composed with ∗. We
may rewrite [Tc\(Ω ×K/Tc)] as [K\Ξ], so that the homeomorphism ιFl can be rewritten as a
map of topological stacks

[K\Ξ]
ι̃Fl−→ Tc\Fl → I\Fl(4.2)

(k1Tc, g, k2Tc) 7→ Tck
−1
1 gk2I 7→ Ik−1

1 gk2I.

which intertwines the involutions τ̃ and τ . Since ιFl is a homeomorphism, so is ι̃Fl (by which we
mean that it comes from a K-equivariant homeomorphism of topological spaces). Via (4.2), we
may define Ξw (resp. Ξ≤w) as the preimage of I\Flw (resp. I\Fl≤w) for each w ∈ W . Then Ξw

is K-equivariantly homeomorphic to the twisted product K
Tc

× Flw.
Recall from (2.1) we have an isomorphism Φw : τ∗Sw

∼
→ Sw in the category DI(Fl) for w ∈ I∗,

where Sw is the shifted intersection cohomology sheaf of Fl≤w. This induces an involution on
I-equivariant cohomology

τ∗ = H•
I(Fl,Φw) : IH

•
I(Fl≤w)

∼
→ IH•

I(Fl≤w).

4.2. Lemma. Let r be the rank of G. Then
∑

j∈Z

tr
(
τ∗, IH2j

I
(Fl≤w)

)
qj = qℓ(w)(1− q)e(∗)−r(1 + q)−e(∗)Zσ

w(q
−1)

as elements in Z[[q]]. Here e(∗) is the dimension of the (−1)-eigenspace of ∗ : ΛQ → ΛQ.

Proof. By (4.2), IH•
I
(Fl≤w) ∼= IH•

K(Ξ≤w). We think of Sw as the intersection complex of Ξ≤w

which is the constant sheaf on Ξw. The stratification of Ξ by Ξ≤w gives a spectral sequence
with the E2-page consisting of H•

K(Ξy, i
!
ySw) abutting to IH•

K(Ξ≤w). Here iy : Ξy →֒ Ξ is

the inclusion. Since i!ySw is a sum of constant sheaves on Ξy concentrated on even degrees,
and H•

K(Ξy) ∼= H•
T (pt) is also concentrated in even degrees, the spectral sequence necessarily

degenerates at E2. Therefore IH
•
K(Ξ≤w) admits an increasing filtration indexed by {y ≤ w} with

gryIH
•
K(Ξ≤w) = H•

K(Ξy, i
!
ySw). The involution τ̃∗ on IH•

K(Ξ≤w) maps gry to gr(y∗)−1 , therefore
its trace is the sum of traces on gry for y ∈ I∗, i.e.,

∑

j

tr(τ̃∗, IH2j
K (Ξ≤w))q

j =
∑

y≤w,y∈I∗

∑

j∈Z

tr(τ̃∗,H2j
K (Ξy, i

!
ySw))q

j .(4.3)

Verdier duality gives an isomorphism in DK(Ξy) commuting with the involutions induced by Φw

i!ySw
∼=

⊕

k

H2ℓ(w)−2ℓ(y)−2kSw[−2k].

Hence
∑

j∈Z

tr(τ̃∗,H2j
K (Ξy, i

!
ySw))q

j(4.4)

=
∑

k∈Z

tr(H2ℓ(w)−2ℓ(y)−2k
y Φw,H

2ℓ(w)−2ℓ(y)−2k
y Sw)q

k
∑

j∈Z

tr(τ̃∗,H2k
K (Ξy))q

j

= qℓ(w)−ℓ(y)P σ
y,w(q

−1)
∑

j∈Z

tr(τ̃∗,H2j
K (Ξy))q

j .
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Since [K\Ξy] ∼= [Tc\Fly], it has the same cohomology as [T\T ẏT/T ], where ẏ is a lifting of y to

G((t)). Let Ty = {(y(t−1), t), t ∈ T} ⊂ T × T (y is the image of y in W ) be the stabilizer of the
T ×T -action on T ẏT via left and right translations. The involution τ on [T\T ẏT/T ] ∼= [pt/Ty] is
then induced by the involution (y(t−1), t) 7→ ((t∗)−1, y(t∗)) of Ty. We identify Ty with T via the
second projection, then the involution of [pt/Ty] = [pt/T ] induced by τ∗ comes from t 7→ y(t∗).
This involution gives a decomposition t = t+ ⊕ t− of the Lie algebra t ∼= ΛC of T into (+1) and
(−1)-eigenspaces, with dimensions r − e(y∗) and e(y∗) respectively (see remarks following (1.2)
for notations). Since

H•
K(Ξy) ∼= H•

Ty
(pt) ∼= Sym(t∨[−2]) ∼= Sym(t∨+[−2])⊗ Sym(t∨−[−2]),

therefore∑

j∈Z

tr(τ∗,H2j
K (Ξy))q

j =
∑

j≥0

dimSymj(t∨+)q
j
∑

k≥0

dimSymk(t∨−)(−q)k = (1− q)e(y∗)−r(1 + q)−e(y∗).

Plugging this into (4.4) and then into (4.3), we get
∑

j

tr(τ∗, IH2j
K (Ξ≤w))q

j

=
∑

y≤w,y∈I∗

qℓ(w)−ℓ(y)P σ
y,w(q

−1)(1− q)e(y∗)−r(1 + q)−e(y∗)

= qℓ(w)(1− q)−r
∑

y≤w,y∈I∗

P σ
y,w(q

−1)q−ℓ(y)

(
q−1 − 1

q−1 + 1

)e(y∗)

= qℓ(w)(1− q)−r

(
q−1 − 1

q−1 + 1

)e(∗)

Zσ
w(q

−1) = qℓ(w)(1− q)e(∗)−r(1 + q)−e(∗)Zσ
w(q

−1).

�

In the situation of the affine Grassmannian, the isomorphism (2.4) induces an involution on

the global sections τ∗K : IH•(Ω≤λ)
∼
→ IH•(Ω≤λ).

4.3. Lemma. For λ ∈ Λ+, we have

(4.5)
∑

i∈Z

tr(τ∗K , IH2i(Ω≤λ))q
i = Z̃σ

dλ
(q).

Proof. The map (4.2) induces an isomorphism on intersection cohomology commuting with the
relevant involutions:

(4.6) IH•
I
(Fl≤dλ)

∼= IH•
K(Ξ≤dλ)

∼= IH•
K(Ω≤λ)⊗H•

K(pt) H
•
K(K/Tc ×K/Tc).

where the last equality comes from the degeneration of the Leray spectral sequence at E2 since
all the relevant cohomology groups are concentrated in even degrees. Note that in (4.6), the
involution on H•

K(K/Tc ×K/Tc) is induced by (k1Tc, k2Tc) 7→ (k∗2Tc, k
∗
1Tc), and the involution on

H•
K(pt) is induced by the involution ∗ of K.
Another spectral sequence argument shows that we have an isomorphism

IH•
K(Ω≤λ) ∼= H•

K(pt)⊗ IH•(Ω≤λ)

commuting with the obvious involutions (the one on H•
K(pt) is again induced by ∗, and the ones

involving Ω≤λ are given by τ∗K). Combining this with (4.6) we get an isomorphism

IH•
I
(Fl≤dλ)

∼
→ IH•(Ω≤λ)⊗H•

K(K/Tc ×K/Tc)
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intertwining the involutions on both sides which we specified before. The special case λ = 0,
dλ = wJ gives IH•

I
(Fl≤wJ

) ∼= H•
K(K/Tc ×K/Tc). Therefore

IH•
I
(Fl≤dλ)

∼
→ IH•(Ω≤λ)⊗ IH•

I
(Fl≤wJ

)

commuting with the relevant involutions. Taking the Poincaré polynomials with respect to the
traces of these involutions, and using Lemma 4.2, we get

qℓ(dλ)(1− q)e(∗)−r(1 + q)−e(∗)Zσ
dλ
(q−1)

= qℓ(wJ)(1− q)e(∗)−r(1 + q)−e(∗)Zσ
wJ

(q−1)
∑

j∈Z

tr(τ∗K , IH2j(Ω≤λ))q
j .

In view of the definition of Z̃σ
dλ
(q) in (1.5), we get

∑

j∈Z

tr(τ∗K , IH2j(Ω≤λ))q
j = qℓ(dλ)−ℓ(wJ )Z̃σ

dλ
(q−1).

Let Qλ(q) denote the left side. Substituting q−1 for q in the above, we get

Qλ(q
−1) = q−ℓ(dλ)+ℓ(wJ )Z̃σ

dλ
(q).

Poincaré duality for IH•(Ω≤λ) (which has dimension 〈2ρ, λ〉) implies Qλ(q) = q〈2ρ,λ〉Qλ(q
−1).

Therefore

Qλ(q) = q〈2ρ,λ〉Qλ(q
−1) = q〈2ρ,λ〉+ℓ(wJ )−ℓ(dλ)Z̃σ

dλ
(q).

Since ℓ(dλ) = ℓ(wJ) + 〈2ρ, λ〉 (i.e, dimFl≤dλ = dimG/B +dimGr≤λ), the above equality implies
(4.5). �

4.4. Completion of the proof. By Lemma 3.3(3), the involution τ∗K acts on IH2j(Ω≤λ) via
(−1)j . Therefore, by Lemma 4.3, we have

(4.7) Z̃σ
dλ
(q) =

∑

j∈Z

(−1)j dim IH2j(Ω≤λ)q
j =

∑

j∈Z

dim IH2j(Ω≤λ)(−q)j .

On the other hand, the argument using the filtration (3.5) shows that Zdλ(q) is the Poincaré
polynomial for IH•(Fl≤dλ):

Zw(q) =
∑

j∈Z

dim IH2j(Fl≤w)q
j .

Using the homeomorphism ιFl and the diagram (4.1), we have IH•(Fl≤dλ)
∼= IH•(Ω≤λ)⊗H•(K/Tc) ∼=

IH•(Ωλ)⊗ IH•(Fl≤wJ
). Therefore Zdλ(q) is the product of ZwJ

(q) with the Poincaré polynomial

of IH•(Ω≤λ). By the definition of Z̃dλ(q) in (1.5), we have

(4.8) Z̃dλ(q) = Zdλ(q)ZwJ
(q)−1 =

∑

j∈Z

dim IH2j(Ω≤λ)q
j .

The theorem now follows by comparing (4.7) and (4.8).
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5. Algebraic Proof of Theorem 1.5

Now we start the algebraic proof of Theorem 1.5. Using [L11, 3.6(f)] and Theorem 1.3 we see
that

Z̃σ
dλ
(q) =

∑

µ∈Λ+;dµ≤dλ

P σ
dµ,dλ

(q)ζ


 ∑

y∈WJµWJ ;y∈I∗

ay


Zσ

wJ
(q)−1

=
∑

µ∈Λ+;dµ≤dλ

Pdµ,dλ(−q)ζ


 ∑

y∈WJµWJ ;y∈I∗

ay


Zσ

wJ
(q)−1.

On the other hand

Z̃dλ(−q) =
∑

µ∈Λ+;dµ≤dλ

Pdµ,dλ(−q)
∑

y∈WJµWJ

(−q)ℓ(y)ZwJ
(−q)−1.

Hence to prove Theorem 1.5 it is enough to show that for any double coset WJµWJ we have

(5.1) ζ


 ∑

y∈WJµWJ∩I∗

ay


Zσ

wJ
(q)−1 =

∑

y∈WJµWJ

(−q)ℓ(y)ZwJ
(−q)−1.

We fixed such a double coset WJµWJ for the rest of this section, where µ ∈ Λ+ ∩WJµWJ is
the unique dominant translation. Let d = dµ (resp. b) be the element of maximal (resp. minimal)
length in WJµWJ .

We shall be interested also in some parabolic analogues of Zw(q), Z
σ
w(q). For any H $ S let

WH be the subgroup of W generated by H so that (WH ,H) is a finite Coxeter group; let wH

be the longest element of WH . We also set PH =
∑

x∈WH
qℓ(x) ∈ N[q] so that ZwH

(q) = PH(q).

Recall that J = S−{s0}, and our previous notation WJ , wJ is consistent with the new notation.
If in addition we are given an involution τ : WH → WH leaving H stable, we set (as in [L11,

5.1]) PH,τ =
∑

x∈WH ;τ(x)=x q
ℓ(x) ∈ N[q]. By [L11, 5.9] we have Zσ

wJ
(q) = PJ(q

2)PJ,∗(q)
−1 (we

use also that P σ
y,wJ

(q) = 1 for any y ∈ WJ , see [L11, 3.6(f)]).

Let H = J ∩ bJb−1. Let ǫ : WH∗ → WH∗ be the involution y 7→ b−1y∗b (H∗ is the image of H
under ∗). From [L11, 5.10] we have

ζ(
∑

y∈WJµWJ∩I∗

ay) = ζ(ab)PJ (q
2)PH∗,ǫ(q)

−1.

Similarly, ∑

y∈WJµWJ

qℓ(y) = qℓ(b)PJ (q
2)PH∗(q)−1.

We see that (5.1) is equivalent to the following statement:

(5.2) ζ(ab)PJ,∗(q)PH∗,ǫ(q)
−1 = (−q)ℓ(b)PJ(−q)PH∗(−q)−1.

5.1. Lemma. The involution ǫ on WH∗ is the same as Ad(wH∗); i.e., b−1y∗b = wH∗ywH∗ for all
y ∈ WH∗.

Proof. We shall denote the inverse of µ by µ−1 instead of −µ as before. We have µwJ = d =
wJwHbwJ . Hence µ = wJwHb. Now WJ × WJ acts transitively on WJµWJ by left and right
multiplication and the isotropy group of µ is isomorphic to Wµ := {w ∈ WJ ;

wµ = µ}. Hence
|WJµWJ | = |WJ |

2/|Wµ|. By [L11, 1.1] we have also |WJµWJ | = |WJ |
2/|WH | hence |Wµ| = |WH |.

We show that Wµ ⊂ WH∗ . We have WH = WJ ∩ bWJb
−1; applying ∗ we deduce WH∗ =
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WJ ∩ b−1WJb. Hence it is enough to show that Wµ ⊂ b−1WJb. Since µ = wJwHb we have
µ−1WJµ = b−1wHwJWJwJwHb = b−1WJb. If w ∈ Wµ then wµ = µw hence µwµ−1 = w ∈ WJ ;
thus Wµ ⊂ µ−1WJµ = b−1WJb. We have shown that Wµ ⊂ WH∗ . Since the last two groups
have the same order we see that Wµ = WH∗ . Hence to prove (a) it is enough to show that for
any y ∈ Wµ we have b−1y∗b = wH∗ywH∗ that is (after applying ∗) byb−1 = wHy∗wH . Since
b = wHwJµ, it is enough to show that for y ∈ Wµ we have wJµyµ

−1wJ = y∗, or, using µy = yµ,
that wJywJ = y∗. This follows from the definition of ∗ in Section 1.2. This proves the lemma. �

5.2. Lemma. If L $ S and Ad(wL) is the conjugation by wL on WL, then

PL,Ad(wL)(q) = PL(−q)

(
1 + q

1− q

)nL

,

where nL is the number of odd exponents of WL.

Proof. Let ei(i ∈ X) be the exponents of WL. We have X = X ′ ⊔ X ′′ where X ′ = {i ∈
X; ei is odd}, X

′′ = {i ∈ X; ei is even}. It is well known that

PL(q) =
∏

i∈X

qei+1 − 1

q − 1
.

It follows that

(5.3) PL(−q) =
∏

i∈X′

qei+1 − 1

−q − 1

∏

i∈X′′

qei+1 + 1

q + 1

We have

(5.4) PL,Ad(wL)(q) =
∏

i∈X′

qei+1 − 1

q − 1

∏

i∈X′′

qei+1 + 1

q + 1
.

Here, the left hand side evaluated at a prime power q is the number of Fq-rational Borel subgroups
of a semisimple algebraic group defined over Fq which is twisted according to the opposition
involution. This can be computed from the known formula for the number of rational points of
such an algebraic groups given in [S67, §11]. Now the lemma follows from (5.3) and (5.4). �

5.3. Using Lemma 5.1 and 5.2 (applied to L = H∗) and the definition of ζ we see that the
desired equality (5.2) is equivalent to

qℓ(b)
(
q − 1

q + 1

)φ(b) (1 + q

1− q

)nJ−nH∗

= (−q)ℓ(b),

that is, to the equality

(5.5) φ(b) = nJ − nH∗ .

Here we use that φ(w) = ℓ(w)( mod 2) for any w ∈ I∗, see [L11, 4.5].
Define φ′ : {z ∈ WH∗ ; ǫ(z) = z−1} → N in terms of (WH∗ , ǫ) in the same way as φ was defined

in terms of W and ∗ in [L11, 4.5] (using the difference of the dimension of the (−1)-eigenspaces
of w ∈ WH∗ and wwH∗ on the reflection representation of WH∗). We show:

5.4. Lemma. For any z ∈ WH∗ such that ǫ(z) = z−1, we have φ(bz) = φ′(z) + φ(b).

Proof. We argue by induction on ℓ(z). If z = 1 the result is clear. Now assume that z 6= 1.
We can find s ∈ H∗ such that ℓ(sz) < ℓ(z). Assume first that sz 6= zǫ(s). Then ℓ(szǫ(s)) =
ℓ(z)− 2 hence by the induction hypothesis we have φ(bszǫ(s)) = φ′(szǫ(s))+φ(b). By definition,
φ′(szǫ(s)) = φ′(z). We have bszǫ(s) = bsb−1bzǫ(s) = ǫ(s)∗bzǫ(s) and hence, by definition,
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φ(bszǫ(s)) = φ(ǫ(s)∗bzǫ(s)) = φ(bz). Thus φ(bz) = φ′(z)+φ(b). Next we assume that sz = zǫ(s).
Then ℓ(szǫ(s)) = ℓ(z)−1 hence by the induction hypothesis we have φ(bszǫ(s)) = φ′(szǫ(s))+φ(b).
By definition, φ′(szǫ(s)) = φ′(z) − 1 and φ(bszǫ(s)) = φ(ǫ(s)∗bzǫ(s)) = φ(bz) − 1. Thus φ(bz) =
φ′(z) + φ(b). This completes the proof of the lemma. �

5.5. Completion of the proof. From Lemma 5.4 we deduce

(5.6) φ(bwH∗) = φ′(wH∗) + φ(b).

We have d = cbwH∗c∗−1 where c = wJwH (see [L11, §1.2]). From the definition of φ we see that
φ(d) = φ(bwH∗) hence, using (5.6), we have

φ(d) = φ′(wH∗) + φ(b).

Hence (5.5) is equivalent to

(5.7) φ(d) − φ′(wH∗) = nJ − nH∗ .

For any linear map A : ΛQ → ΛQ (where ΛQ = Λ ⊗Z Q), recall e(A) is the dimension of the
(−1)-eigenspace of A. We claim that

(5.8) φ(d) = e(wJ ).

In fact, if w ∈ I∗ with image w ∈ W , we have φ(w) = e(w∗)− e(∗). Since the action of ∗ is given
by x 7→ −wJ(x)), we have φ(w) = e(−wwJ)− e(−wJ). If w = d then d = twJ (t is the dominant
translation) hence w = wJ ∈ W ∼= WJ and φ(d) = e(−id) − e(−wJ), which is equal to e(wJ).
This proves (5.8).

Now let R′ be the reflection representation of WH∗ . For any linear map A : R′ → R′ we denote
by e′(A) the dimension of the (−1)-eigenspace of A. We claim that

(5.9) φ′(wH∗) = e′(wH∗).

In fact, from the definition we have φ′(wH∗) = e′(wH∗ǫ) − e′(ǫ). Note that both wH∗ and ǫ
act naturally on R′; the action of ǫ is given by x 7→ −wH∗x by Lemma 5.1. Thus we have
φ′(wH∗) = e′(−id)− e′(−wH∗) = e′(wH∗). This proves (5.9).

Using (5.8) and (5.9) we see that the desired equality (5.7) is equivalent to

(5.10) e(wJ)− e′(wH∗) = nJ − nH∗ .

Now for any finite Weyl group, the dimension of the (−1)-eigenspace of the longest element acting
on the reflection representation is equal to the number of odd exponents of that Weyl group, as
one easily verifies. It follows that e(wJ) = nJ , e

′(wH∗) = nH∗. Thus (5.10) is proved. This
completes the proof of Theorem 1.5.

5.6. Signature of a hermitian form. Let Ǧ be the Langlands dual of G as before, with dual
Cartan and Borel Ť ⊂ B̌. We identify the Weyl group of Ǧ with WJ . Let λ ∈ Λ+, viewed as
a dominant weight of Ǧ, and let Vλ be the corresponding irreducible representation of Ǧ with
highest weight λ. In [L97] a hermitian form hλ on Vλ is constructed in terms of a semisimple
element s ∈ Ť with s2 = 1. Here we shall take s = (−1)ρ. The hermitian form hλ is invariant
under a real form of Ǧ which can be shown to be quasi-split (for our choice of s) and admits a
compact Cartan subgroup. Moreover, by [L97, 2.9], the signature of hλ is given by

(5.11) Signature(hλ) = (−1)〈ρ,λ〉tr((−1)ρ, Vλ).
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Recall the following results from [L83]. First, it is shown in [L83, 6.1] that the multiplicity of
the weight µ in Vλ is equal to Pdµ,dλ(1). Second, we have the formula (see [L83, (8.10)] and its
proof)

(5.12) Z̃dλ(q) = q〈ρ,λ〉
∑

µ∈Λ+;dµ≤dλ

Pdµ,dλ(1)
∑

µ∈WJµ

q〈ρ,µ〉.

Setting q = 1 we obtain that Z̃dλ(1) = dimVλ. Setting q = −1 in (5.12), we obtain

(5.13) Z̃dλ(−1) = (−1)〈ρ,λ〉tr((−1)ρ, Vλ).

We may also obtain (5.13) from Lemma 3.3(3) and Lemma 4.3. Combining (5.13) with Theorem
1.5 and (5.11), we obtain

(5.14) Signature(hλ) = Z̃σ
dλ
(1).

Thus, while Z̃dλ(q) is a q-analogue of the dimension of Vλ, Z̃
σ
dλ
(q) = Z̃dλ(−q) is the q-analogue

of the signature of the hermitian form hλ on Vλ.

5.7. Remark. We expect that the hermitian form hλ on Vλ is the complexification of the sum of
the polarization Hodge structures IH2p(Gr≤λ) (which only has (p, p)-classes). By the Riemann-
Hodge bilinear relation, this pairing is positive (resp. negative) definite on IH2p(Gr≤λ) when p is
even (resp. odd). Therefore the signature on the total intersection cohomology IH•(Gr≤λ) (which

is also the signature of the Poincaré duality pairing) is also calculated by Z̃dλ(−1) = Z̃σ
dλ
(1).

6. Generalization

6.1. More involutions in affine Weyl groups. In Section 1.2, we fixed a hyperspecial vertex
s0 ∈ S in the Dynkin diagram of (W,S). Let A = Aut(W,S). Then A has a subgroup

AΛ := {a ∈ Aut(W,S)| there exists w ∈ WJ such that a(λ) = wλ for all λ ∈ Λ}.

One may identify AΛ with the affine automorphisms fixing the standard alcove corresponding to
S. It is easy to see that AΛ is normal in A. Let A := A/AΛ. The stabilizer of s0 under A is
AJ = Aut(WJ , J), which projects isomorphically to A.

We recall the extended affine Weyl group is the semi-direct product W̃ = W ⋊AΛ, and it fits
into an exact sequence

1 → Λ̃ → W̃ → W → 1

where Λ̃ is a lattice containing Λ such that the projection Λ̃ →֒ W̃ → AΛ induces an isomorphism

Λ̃/Λ ∼= AΛ.

6.2. Lemma. Recall we have an involution ∗ ∈ AJ defined in (1.1).

(1) Every element in the coset AΛ∗ = ∗AΛ ⊂ A is an involution.
(2) For any hyperspecial vertex s1 ∈ S, there is a unique a ∈ AΛ∗ which sends s0 to s1.

Proof. (1) The group AJ acts on AΛ by conjugation. This action can be seen explicitly as follows:

WJ ⋊ AJ acts on Λ̃ by the reflection action stabilizing Λ. The action of AJ on the quotient

AΛ = Λ̃/Λ is then induced from this reflection action. In particular, the action of ∗ ∈ AJ on Λ̃ is
via λ 7→ −wJλ, which is congruent to −λ modulo Λ. Therefore ∗ acts on AΛ by inversion, hence
every element a∗ ∈ AΛ∗ satisfies (a∗)2 = a(∗a∗) = aa−1 = 1.

(2) It is well-known that AΛ permutes the hyperspecial vertices simply transitively. Then for
any a ∈ AΛ, we have (a∗)(s0) = a(s0) which exhaust all hyperspecial vertices exactly once as a
runs over AΛ. �
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Let s1 be another hyperspecial vertex in S. Let ⋄ ∈ AΛ∗ be the unique involution taking s0 to
s1, hence taking J to J⋄ = S − {s1}. Let I⋄ = {w ∈ W |w⋄ = w−1} be the ⋄-twisted involutions
in W . To avoid complicated subscripts, we denote WJ⋄ by W ⋄

J instead.
The following theorem generalizes Theorem 1.3.

6.3. Theorem.

(1) Each double coset WJ\W/W ⋄
J in W is stable under the anti-involution w 7→ (w⋄)−1. In

particular, the longest element in each (WJ ,W
⋄
J )-double coset belongs to I⋄.

(2) For longest representatives d1 and d2 of (WJ ,W
⋄
J )-double cosets in W , we have

P σ,⋄
d1,d2

(q) = Pd1,d2(−q).

Here the polynomials P σ,⋄
y,w(q) (y,w ∈ I⋄) are the ones defined in [L11] in terms of (W,S, ⋄).

6.4. Sketch of proof. We only indicate how to modify the proof of Theorem 1.3 to give the
proof of this theorem.

The anti-involution w 7→ (w∗)−1 extends to an anti-involution on W̃ by the same formula (1.1)

(except that λ now is any element in Λ̃). Again each double coset WJ\W̃/WJ is stable under
this anti-involution. Write ⋄ = a∗ for a ∈ AΛ, then W ⋄

J = a(WJ). Multiplication by a on the
right gives a bijection

WJ\W/W ⋄
J ↔ WJ\W · a/WJ ⊂ WJ\W̃/WJ .

This shows part (1) of Theorem 6.3.
In the situation of Section 2.1, G is a simply-connected group. Let Gad be the adjoint form

of G, with maximal torus T ad = T/Z(G). Then we have a natural isomorphism Λ̃ ∼= X∗(T
ad).

The connected components of the affine Grassmannian Grad for Gad are indexed by Λ̃/Λ. The

Gad[[t]]-orbits on Grad are indexed by Λ̃/WJ , and the natural projection Λ̃/WJ → Λ̃/Λ indicates

which orbit belongs to which connected component. Identifying AΛ with Λ̃/Λ, we denote the
corresponding component of Grad by Grada (a ∈ AΛ such that ⋄ = a∗). We may similarly define

the Satake category Sad for Gad with simple objects Cλ[〈2ρ, λ〉], λ ∈ Λ̃+ (dominant coweights of
Gad). Via the fiber functor H•, Sad is equivalent to Rep(Ǧsc), where Ǧsc is the simply-connected
form of Ǧ. The same anti-involution τ∗ defines a functor (Sad,⊙) → (Sad,⊙σ), and there is an

isomorphism Ψλ : τ∗Cλ
∼
→ Cλ normalized to be the identity on Gradλ , which induces an involution

Hi
µΨλ on the stalks Hi

µCλ for µ ≤ λ ∈ Λ̃+. Note that in the partial ordering of Λ̃, two elements
are comparable only if they are congruent modulo Λ.

Let ȧ ∈ NGad((t))(T
ad((t))) be a lifting of a ∈ AΛ < W̃ , then ȧGad[[t]]ȧ−1 is a hyperspecial

parahoric subgroup of Gad((t)) corresponding to the vertex s1 = ⋄(s0). Let P ⊂ G((t)) be the
hyperspecial parahoric subgroup (containing I) corresponding to s1. Right multiplication by ȧ
induces an isomorphism

(6.1) G((t))/P
∼
→ Gad((t))/ȧGad[[t]]ȧ−1 ∼

→ Grada

which is equivariant under the left actions by G[[t]]. The double coset G[[t]]\G((t))/P is in
bijection withWJ\W/W ⋄

J . As in (2.5), the coefficients of the polynomials P σ,⋄
d1,d2

(q) are expressible

as the traces of an involution on the stalks of the intersection cohomology complexes on G[[t]]-
orbits of G((t))/P. Under the isomorphism (6.1), we have the following formula generalizing
(2.5):

P σ,⋄
d1,d2

(q) =
∑

j∈Z

tr(H2j
µ Ψλ,H

2j
µ Cλ)q

j .
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Here µ ≤ λ ∈ Λ̃+ have image equal to a in Λ̃/Λ, and d1 (resp. d2) is the longest element in the
double coset WJµa

−1W ⋄
J (resp. WJλa

−1W ⋄
J ).

So in order to prove Theorem 6.3(2), it suffices to show that H2j
µ Ψλ acts on H2j

µ Cλ via mul-

tiplication by (−1)j for any µ ≤ λ ∈ Λ̃+. The argument in Section 3 works up to Lemma 3.2.
The pair (τ∗, γ) again determines the element g = (−1)ρ ∈ Ť < Aut(Ǧsc). However, a monoidal

isomorphism Θ : τ∗
∼
→ idσSad is the same as the choice of an element g̃ ∈ Ť sc lifting (−1)ρ: the

effect of Θ on V ∈ Rep(Ǧsc) ∼= Sad is the action of g̃−1. Lemma 3.3(2) should say that the effect
of Θ (or g̃−1) on Cλ[〈2ρ, λ〉] is g̃−

wJ λτ∗K . In the rest of the argument, we use (3.6). The piece

H
2〈2ρ,µ〉
c (Ωµ)⊗H2j

µ Cλ appears in degree 2〈2ρ, µ〉+ 2j − 〈2ρ, λ〉 in IH•(Ω≤λ)[〈2ρ, λ〉] ∼= Vλ, hence

it appears as a subquotient of ⊕νVλ(ν), where ν ∈ Λ̃ has the same image as λ and µ in Λ̃/Λ and

(6.2) 〈2ρ, ν〉 = 2〈2ρ, µ〉+ 2j − 〈2ρ, λ〉, or j = 〈ρ, ν + λ− 2µ〉.

We write H
2〈2ρ,µ〉
c (Ωµ) ⊗ H2j

µ Cλ = ⊕ν(H
2〈2ρ,µ〉
c (Ωµ) ⊗ Hj

µCλ)ν according to the weight decom-

position. Therefore g̃−1 or g̃−
wJ λτ∗K acts on (H

2〈2ρ,µ〉
c (Ωµ) ⊗ H2j

µ Cλ)ν by g̃−ν . Specializing to

λ = µ = ν, g̃−
wJ µτ∗K acts on H

2〈2ρ,µ〉
c (Ωµ) = IH2〈2ρ,µ〉(Ω≤µ) by g̃−µ. Therefore, by (3.6), the

action of Hj
µΨλ on Hj

µCλ is given by

(6.3) g̃−ν+wJ λ · (g̃−µ+wJ µ)−1 = g̃−ν+µ+wJ (λ−µ).

Since −ν + µ ∈ Λ, we have g̃−ν+µ = g−ν+µ = (−1)〈ρ,−ν+µ〉. Since λ − µ ∈ Λ, we also have

g̃
wJ (λ−µ) = g

wJ (λ−µ) = (−1)〈ρ,
wJ (λ−µ)〉 = (−1)〈−ρ,λ−µ〉. Taking these two facts together we

conclude that the expression (6.3) is equal to

(−1)〈ρ,−ν+µ〉(−1)〈−ρ,λ−µ〉 = (−1)〈ρ,−ν−λ+2µ〉,

which is equal to (−1)j by (6.2). This finishes the proof of Theorem 6.3.

6.5. Remark. The results of Section 4 and 5 can also be extended to the setup in Section 6.
Thus Ǧ can be replaced by the corresponding simply connected group whose irreducible finite
dimensional representations carry a natural hermitian form as in [L97] with signature expressible
in terms analogous to (5.14). We omit the details.
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