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ABSTRACT

XENOLITH; AND THE NATURE OF THE UPPER MANTLE AND LOWER CRUST

NUNIVAK ISLAND, ALASKA

by

DONALD MICHAEL FRANCIS

Submitted to the Department of Earth and Planetary Sciences on

August 19, 1974 in partial fulfillment of the requirements for the
-degree of Doctor of Philosophy.

The mafic and ultramafic xenoliths of Nunivak Island occur in maars

and splatter cones of alkalic basalt. Xenoliths from the splatter cones

are typically iddingsitized, while those of the maars are fresh'and un-

altered. Lherzolite xenoliths predominate, but dunites, harzburgites,
pyroxene granulites and gabbros are locally common in the splatter cones.

. The lherzolites and related harburgites and dunites are interpreted

to be fragments of the upper mantle. Iddingsitized lherzolites from the

splatter cones range from aluminous specimens with green, Cr-poor (6

weight percent Cr 03) spinels and Na-rich, tschermakitic pyroxenes to

aluminum-poor nodules with red-brown Cr-spinels (27 weight percent Cr 0 )
and endiopsidic clinopyroxenes. This variation is believed to reflec?

changing bulk composition in the upper mantle with depth. Eight of the

fresh lherzolites contain interstitial, Cr-bearing (1.5 to 3.5 weight

percent Cr 03), pargasitic amphibole. This amphibole frequently contains

embayed ani vesicular, Cr-rich (to 45 weight percent Cr 03) spinel inclu-

sions. Fifty percent of the fresh lherzolites contain ?ine-grained zones

of euhedral clinopyroxene, olivine, and spinel in glass. The texture and

compositions of these phases indicate that the fine-grained zones repre-
sent melted amphibole. Both the amphibole lherzolites and the lherzo-

lites with fine-grained, glass-bearing zones are characterized by inter-

stitial clinopyroxenes rich in jadeite, but poor in calcium tschermak

component. Fresh lherzolites without amphibole or fine-grained zones

are identical to the aluminum-poor, iddingsitized lherzolites with red-

brown spinel. The differences between the xenolith populations of the

maars and splatter cones are believed to reflect a deeper sampling by the

former.

The Cr-bearing amphibole is interpreted to be secondary. Two alter-

native mechanisms are proposed for its origin:



i. Fluid + Gr-Garnet + Cpx + Cr-Amphibole + Spinel

ii. Fluid + 3px + Opx + Spinel -+ Cr-Amphibole + Cr-Rich Spinel

The first mecaanism is supported by the jadeitic nature of the amphibole
lherzolite's :linopyroxene and the similarity between the compositions
of re-calcula;ed garnets and reported garnets from garnet lherzolite
xenoliths. The second reaction is favored by the textural relations and
chemical zoning of the amphibole and its included spinel. The Na/Na + K
ratios of the Nunivak basalts closely resemble those of the amphiboles.
The amphibole, however, predates the entrainment of the lherzolite
xenoliths in the alkalic basalts. In addition, the low Ti and Fe, but
high Mg and Cr contents of the amphiboles precludes their origin by
reaction between the alkalic basalts and spinel lherzolite. The forma-
tion of the amphibole may reflect a pervasive metasomatic event in the
-upper mantle caused by rising temperatures and the infiltration of
alkali-rich volatiles prior to the introduction of basalt.'

The pyroxene granulite, gabbro and certain dunite xenoliths are
believed to be fragments of the lower crust. The pyroxene granulites
were originally feldspathic dunites and troctolites with cumulate
textures. They formed by.the reaction of primary olivine and plagio-
clase to coronas of orthopyroxene and spinel-clinopyroxene symplectite
prior to their entrainment in the alkalic basalts. This reaction may
.have been a response to increasing pressure associated with crustal
thickening or to isobaric cooling of the original cumulate assemblage.
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CHAPTER 1 LNTRODUCTION

Nunivak :sland is one of a number of late Tertiary to recent, basal-

tic eruptive centers which characterize the hinterland of the Aleutian

subduction zone. The island is located just off the west coast of Alaska

(600 N, 1660 W) in the shallow waters covering the Bering Sea shelf

(Figure 1-1). For much of the island, the horizon of broad, lonely

stretches of tundra with its innumerable lakes is interrupted only by

scattered, low, symmetrical hills; remnants of volcanic eruptions. A low,

composite shield, Mount Roberts, is the high point on the island reaching

a maximum elevation of only 1675 feet. As a national wildlife refuge,

,the island is a natural habitat for muskox, reindeer, fox, and a myriad

of nesting, migratory birds.

This thesis presents the findings of a study of the xenoliths occur-

ring in the youngest volcanic vents of the island, clustered around

Roberts Mountain. These xenoliths are concluded to be largely accidental

in origin and retain important information about their source; the upper

mantle and lower crust. The most significant finding of this thesis is

the evidence for Cr-bearing, pargasitic amphibole in many of the lherzo-

lite xenoliths. Nuni-Jak Island joins a growing list of amphibole lherzo-

lite localities throughout the world. Although there are still several

hypotheses for the origin of the amphibole, it must be concluded that

amphibole lherzolite is, at least locally, a common constituent of the

upper mantle. Its absence in many lherzolite suites may result from its

instability in the alkalic magmas which carry these nodules.
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The similarity between the Na/K ratios of the Nunivak basalts and

lherzolite amphibole is a natural enticement for theories on genetic

relationships. First, however, it is essential that the nature of these

amphibole lherzolites be fully understood. This thesis is a step in that

direction.



CHAPTER 2 REGIONAL SETTING

The Aleutian arc is one of the major subduction zones of the Earth.

The arc and the Bering Sea behind it, however, differ in many respects

from other island arc systems. In Alaska, the typical elements of an

oceanic island arc have been superimposed on those of a continental mar-

gin. This results in rather unique tectonics which are not fully under-

stood. The continental margin of western Alaska is a Mesozoic feature

while the Aleutian chain and trench were constructed in the Tertiary.

I Mesozoic Continental Margin

a) Alaskan West Coast

Two thirds of the tocks underlying the west coast of Alaska in the

vicinity of Nunivak Island belong to the Gemuk Group (Hoare, 1961).

These highly deformed rocks range in age from early Carbonaceous to early

Cretaceous. They consist largely of greywacke sandstones and conglom-

erates; siltstones; argillites; and lesser amounts of andesitic volcanics

and cherts. These rocks are cut by numerous small acidic stocks ranging

in composition from gabbro to granite. The Gemuk group is believed to be

part of a large eugeosynclinal belt which occupied much of Alaska during

the late Paleozoic and early Mesozoic. Northwest-southeast compression

beginning in the mid-Mesozoic formed large northeast trending ge-anticlines.

Concommitant with the uplift of these positive features, the intervening

geosynclines were filled with sediments. These sediments comprise the

*Kuskokwim Group and range from late Cretaceous to early Tertiary in age.



Though deformed, the sedimentary rocks of this group are significantly

less indurated than those of the Gemuk Group.

Subparal:.el to the trend of regional folding is an extensive system

of northeast striking faults. The Togiak-Holitna-Farewell fault zone

(Figure 2-1) is the major feature of this system and is believed to be

the westward extension of the Denali fault. These faults are still

active, and recent movement is thought to be of a normal nature. Offsets

measured in the field, however, indicate pre-Pleistocene strike-slip

movements of up to 50 km. (Hoare, 1961).

The northeast trending tectonic elements of the west coast of Alaska

can-be traced inland where they eventually bend to the southeast, paral-

leling the southern coastline of Alaska.

b) Continental Shelf

Reflection seismic surveys have been conducted over most of the

Bering Sea shelf. The acoustic basement under the shelf appears to be

formed into broad arches and basins (Scholl, 1969). The trend of the

basement arches suggests that they are extensions of the geanticlines

found on the west coast of Alaska. Their high frequency, magnetic char-

acter (Pratt, 1972) is thought to be due to numerous small intrusive

bodies such as characterize the Gemuk Group on the mainland. According

to this interpretation, the acoustic basement would correspond to the

erosional unconformity at the top of the deformed Gemuk Group (Scholl,

1968 and 1969; Pratt, 1972).

Above the acoustic basement rests 1500 meters of Cenozoic sediments

which have been termed the "main layered sequence" by Scholl (1968). The
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lower part of these deposits are Paleocene in age and may correspond to

the Kuskokwim Group of the mainland.

Two elong;ated, fault bounded, depressions parallel. the margin of the

continental shelf in the vicinity of the Pribilof Islands (Scholl, 1969).

These have been downdropped 1 to 1.5 km. and appear to correlate with a

similar depression discovered by Pratt (1972) to the Southeast (Figure

2-1). Moore (1972) believes that these depressions can be linked with a

Cretaceous-Paleocene geosyncline (Burk, 1965) found on Kodiak and

Shumagin Islands. He proposes that this hypothetical geosyncline can be

extended to the Northeast to join similar geosynclinal sediments found in

the'Koryak Mountains of Siberia.. According to Moore's interpretation the

present continental margin of Alaska marks the site of a late Mesozoic

trench system which can be traced from the Gulf of Alaska to mainland

Siberia.

c) Aleutian Basin

The Aleutian basin is deduced to have been tectonically quiet since

the formation of the Aleutian chain. The abyssal floor manifests no

detectable stripped magnetic patterns, sea mounts, or guyots which char-

acterize the Pacific Ocean basin to the South. Shor (1964) believes that

the Bering Sea basin, which contains 3-4 km. of flat lying sediments, is

a classic example of the conversion of an ocean basin to a continental

shelf due to the ponding of sediments behind the Aleutian Islands. Seis-

mic evidence indicates that the Mohoricic discontinuity is 4 km. deeper

beneath the Bering Sea than it is beneath the adjacent Pacific Ocean.



Figure 2-1 is a composite interpretation of the extensions of Meso-

zoic tectonics defined on the Alaskan mainland beneath the Bering Sea.

All the available evidence indicates that the pre-Tertiary trends of

western Alaska bend northward beneath the continental shelf and eventu-

ally parallel its margin. The resultant mega "S" fold in these pre-

Tertiary tectonics is striking.

II Tertiary Western Alaska

a) The Aleutian Arc

Burk (1965) interprets the Aleutian chain and trench to be a Terti-

ary feature. Like all present subduction zones, the Aleutians are seis-

mically active. The hypocenters of earthquakes define a diffuse Benioff

zone dipping a shallow 30* to the North beneath the Aleutian Islands.

However, except on the mainland, earthquakes do not occur farther than

200 km. north of the Aleutian trench (Tobin, 1968). In addition, no

earthquakes originating deeper than 180 km. are known, though quakes as

deep as 300-700 km. are detected in the adjacent Kurile subduction zone.

The absence of deep focus earthquakes in Alaska is puzzling!

The interpretation of magnetic and seismic data indicates that the

Pacific Ocean basin is moving northwest 5-7 cm/yr (Le Pichon, 1968). The

well-known magnetic "bight" of the Gulf of Alaska is thought to be the

relict of a triple junction of spreading ridges that existed south of the

trench in the early Tertiary (Pitman, 1968). Grow and Atwater (1970)

suggest that the western arm of this junction (Kula ridge) ran nearly

east-west. They calculate that the Kula ridge was engulfed in the



Aleutian subduction zone in early Miocene time. The occurrence of a

major orogeny; coeval in the islands and later in the Pliocene on the

Alaskan Peninsula; support this theory (Bur, 1965).

The present volcanic activity in the Aleutian chain is calc-alkaline

in nature and is closely associated with the seismic activity. The char-

acter of vulcanism has evolved with time from early shield volcanoes com-

posed largely of basalt to the present andesitic strato-volcanoes with a

concomitant northward shift of the eruption centers. The presently

active volcanoes are located along the northern edge of the island chain,

approximately 100 km. above the top of the Benioff zone. This depth

differs significantly from the 200 km. depth to the Benioff zone beneath

the active Japanese volcanoes.

The seismically inactive western islands of the chain have not been

the site of volcanic activity since the end of the Miocene. This may be

attributed to the almost tangential motion of the Pacific plate with re-

spect to the western islands. If Grow and Atwater's (1970) speculation

about the orientation of the Kula ridge is correct, the pre-Miocene move-

ment may have intersected the western islands at a higher angle. This

would account for the evidence of pre-Miocene volcanic activity on these

islands.

b) Recent Activity in the Hinterland of the Aleutian Arc

An extensive province of late Tertiary to Recent, continental,

basaltic vulcanism constitutes the most important recent activity north

of the Aleutian subduction zone. In addition to Nunivak Island, other

eruption centers include: Pribilof Islands, St. Matthews Island, central



St. Lawrence Island, northern Seward Peninsula, plus numerous other small

localities on the western mainland. All of the island centers are situ-

ated on arches in the Mesozoic basement and may be closely related to

regional faulting (Hoare, 1968; Scholl, 1969). Because of the predomi-

nately alkalic nature of their basalts, Barth (1956) believed that St.

Lawrence Island and the Pribilof Islands were distinct from the other

eruption centers, but typical of a general occurrence of alkalic vulcan-

ism behind circum-Pacific arcs. However, Hoare (1968) feels that the

entire basaltic province consists largely of tholeiite lavas with lesser

amounts of coeval alkali-olivine basalts.

Ultramafic xenoliths have been reported in the alkali basalts of the

Seward Peninsula, Nunivak Island, and the Pribilof Islands, and in

andesitic volcanics on Kanaga Island (Forbes, 1965) in the Aleutian chain.

The latter is the only known occurrence of lherzolite nodules in

andesitic volcanics. Further, Nunivak Island, the Pribilof Islands and

Kanaga Island are roughly co-linear. Thus we have the unique occurrence

of the "Andesite Line" being intersected by a coeval zone of ultramafic

inclusion bearing volcanoes.

It is difficult to correlate the basaltic province with the current

geophysical picture for western Alaska. The eruption centers are too far

behind the arc to be directly associated with the present underthrusting

in the Aleutians. As mentioned earlier, deep focus earthquakes do not

occur farther than 200 km. behind the Aleutian trench. Shallow earth-

quakes are, however, common on the mainland, especially along the zone of

maximum curvature of the tectonic elements. These shallow earthquakes



are believed to be associated with normal movement along faults of the

Denali system.

Runcorn (1964) has computed the direction and magnitude of traction

for island arc systems due to coupling between the mantle and the litho-

sphere using satellite gravity data. According to this analysis most

areas behind island arcs experience strong traction towards the arc. The

Bering Sea does not. This speculation, combined with the occurrence of

normal faulting in western Alaska and the wide spread basaltic vulcanism

may indicate that a tensional environment exists in the hinterland of the

Aleutian arc. This might be an after-effect of the engulfing of the Kula

ridge or the associated change in the spreading direction during the

Miocene. This is, however, speculative and specific mechanisms are dif-

ficult to suggest.



PREVIOUS WORK

Much of the geologic information available on Nunivak Island has

come from the work of Dr. Joe Hoare of the U.S. Geological Survey. He

has visited the island on several occasions, initially to study the ba-

salts (1964, 1966) and later the xenoliths (1967). Mark (1971) has

studied the strontium isotopes and major element chemistry of the Nunivak

basalts. There is some confusion as to the classification of the Nunivak

basalts. To avoid this problem the field occurrence cE the basalts will

be described first, followed by a discussion of their chemistry and an

evaluation of the relative merits of the nomenclature which has been

applied.

I Detailed Geology

Nunivak Island is largely covered by extensive, thin flows of what

Hoare (1968) has termed "tholeiite" basalt. These flows range from 3 to

15 meters in thickness and may extend as much as 15 km. They are best

observed in cliffs along the coast, stream cuts, and in felsenmeer fields

in the south central portion of the island. The vents for these basalts

appear to correspond to low, rounded, topographical highs. A few of

these hills are capped with peculiar mesa-like outcrops of shattered

basalt.

In hand specimen the basalt is medium grey and contains ubiquitous,

corroded olivine phenocrysts. Less commonly augite and feldspar pheno-

crysts are also found. The groundmass is "subophitic to intersertal and

CHAPTER 3



diktytaxitic" and consists of labradorite, clinopyroxene, olivine, iron

ores, and glats (Hoare, 1968).

Two perce.nt of the exposed volcanics on the island have a more

alkaline nature. Two styles of eruption are recognized. The older and

more abundant eruptions have constructed small cones 30 to 150 meters

high. When fresh, they support steep exterior slopes (to 38*) which are

covered in tundra vegetation and show extensive development of frost gar-

lands due to solifluction. The youngest of these cones have sharp, out-

crop defined rims and steep interior walls; the oldest cones are rounded

hills with little outcrop and only faintly discernible central craters.

All'the cones are built of volcanic breccia or agglutinate of welded

basaltic splatter, scoria, and cinders.

. The second style of alkaline eruption is represented by maars. At

least four of these structures occur on the island defining a linear

trend bearing 092* and stretching over 13 km. (Figure 4-1). The craters

involved are Nanwaksjiak (NA3-9) plus a parasite crater (NA3-6), crater

385 (NA3-7), Binalik (NA4-7), and possibly Ahkiwiksnuk (NA4-6). These

maars are thought to be the most recent volcanic features on the island.

They are essentially holes excavated through pre-existing tholeiite flows

and rimmed by loosely consolidated ash. The interior walls are steep

talus slopes of ash giving way to cliffs of tholeiite basalt. Most of

these craters have central lakes.

Flows of alkaline basalt are small (1 to 3 km.) and originate at

cinder cones. They are typically characterized by aa tops. One alkaline

flow has been found in the interior wall of a maar (NA3-9) underlying its

ash rim (Hoare, 1968).

1 -11-11 1-1 01
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In hand specimen these alkaline basalts vary in color from light

grey in the older, holocrystalline specimens to black for the glass-rich,

younger flows. Olivine and less commonly titanaugite are present as

phenocrysts. The holocrystalline varieties often exhibit a mottled

pattern thought to be caused by the hydration and crystallization of

former glass (Hoare, 1968). The groundmass consists of opaques, clino-

pyroxene,, olivine, plagioclase, nepheline, and analcime. The black color

of the younger alkaline basalts is caused by the presence of finely dis-

seminated opaques in the glass of the groundmass.

II ' Basalt Chemistry

Hoare's original data indicated that the two varieties of basalt

observed in the field were chemically distinct: 1) voluminous olivine

tholeiites containing normative olivine and orthopyroxene; and 2) less

abundant basanites containing both modal and normative nepheline. On

the basis of additional analyses, Mark (1971) established three basalt

categories: 1) less alkaline basalts consisting of the tholeiite basalts

of Hoare (1968), some of which had been found to contain normative nephe-

line; 2) transitional alkali-olivine basalts which are assoicated with

splatter cones but contain less than about 11 weight percent normative

nepheline; and 3) basanites with hoth modal and normative nepheline.

Mark (1971) felt that the transitional basalts were chemically related

to the less alkaline basalts despite the fact that their field occurrence

would group them with the basanites. However, Figure 3-1, a Tilley-Muir

diagram of both Mark's (1971) and Hoare's (1968) basalt analyses suggests

the opposite. It appears that the basanites and transitional basalts form
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a continuous series of alkali-olivine basalts while the tholeiite basalts

cluster in the olivine tholeiite field (Yoder and Tilley, 1964). The

three "tholeiite" basalts which Mark (1971) found to be nepheline norma-

tive come from the inside wall of Nanwaksjiak (NA3-9) crater and may have

been altered during its eruption.

Considering the clustering in Figure 3-1 and the distinctive field

relations, it appears that the Nunivak basalt population is bimodal as

originally proposed by Hoare:

1) Olivine tholeiite basalts occurring as extensive, thin

flows covering most of the island.

2) Alkali basalts ranging from basanites to olivine basalts

occurring as maars, splatter cones and their associated

flows.

The bimodal character of the Nunivak basalts is distinct from the

quartz tholeiite/alkali-olivine duality characteristic of Cenozoic basalts

in general (Chayes, 1971). The most common occurrence of olivine

tholeiite is found at the mid-ocean ridges. Compared to these abyssal

basalts, the Nunivak tholeiites are relatively enriched in alkalies and

magnesium but depleted in calcium. This is reflected. in significantly

higher proportions of hypersthene in the norms of the Nunivak tholeiites.

Mark (1971) has reached the following conclusions about the chemistry

of the Nunivak basalts:

1) Though the Nunivak tholeiites have relatively high potassium

contents (.6 to 1.2 wt. % K20) characteristic of continental tholeiites,

they contain less radiogenic strontium (Sr 87/Sr86 = .70313 ± .00013) than



typical oceanic tholeiites (Sr 87/Sr86 = .7035). The alkalic basalts

exhibit still lower Sr 87/Sr86 ratios (.70279±0.0016). Mark argues that

such low radiogenic strontium contents virtually rule out any possibility

of crustal contamination of the Nunivak basalts. The Nunivak strontium

ratios are so low that they indicate a prior depletion of rubidium in the

upper mantle. Both the potassium and radiogenic strontium contents of

the Nunivak basalts decrease with decreasing age.

2) The most significant chemical parameter is an inverse relation-

ship between total alkalies and silica. Such a variation can not be ex-

plained by fractional crystallization of olivine, the only ubiquitous

phenocryst phase. Two thirds of the parental magma must crystallize to

raise the alkali level found in the tholeiites to that of the basanites.

The similarity of the Mg/Mg+Fe ratios of these two magma types indicates

that this degree of fractionation is-unlikely. The abundance of dense

xenoliths in the basanites suggests that fractional crystallization has

not played a major role in their origin. The relationship between alka-

lies and silica in the basalts also precludes any major involvement of

the anorthoclase xenocrysts, which are common in the splatter cones, in

the formation of the basanites.

3) The differences between the alkalic and tholeiite basalts on

Nunivak Island were generated by different degrees of partial melting in

a vertically heterogenous upper mantle. The tholeiites formed by exten-

sive partial melting of material rich in the incompatible elements, while

the basanites were produced at deeper levels by small degrees of partial

melting of material relatively depleted in the incompatible elements.



Mark also suggests that the strong correlation between Na 20 and K20 (2:1)

in the Nunivak basalts indicates that these elements were held in amphi-

bole rather tlan in a pore fluid where Na would be buffered by clinopyro-

xene, independent of the potassium content of the fluid.

III Xenoliths

Xenoliths and megacrysts are abundant at most of the alkalic erup-

-tion centers. Hoare (1968) was the first to recognize the occurrence of

a number of unusual xenolith types in the maars of Nunivak Island. He

reported (Hoare and Condon, 1968; Hoare and Kuno, 1968) the presence of

what he termed "eclogite" xenoliths which contain spinel-clinopyroxene

symplectite coexisting with plagioclase and orthopyroxene mantled olivine.

Because of the chemical similarity between these nodules and the garnet

pyroxenites found in Salt Lake Crater, Hawaii; Hoare concluded that the

symplectite formed by the breakdown of garnet. On a return trip to Nuni-

vak Island, he claims to have found two feldspathic examples which con-

tain relict garnet (Hoare, 1966).

McGetchin and Hoare (1968) reported the occurrence of spinel lherzo-

lites with Cr-bearing phlogopite in the maars of Nunivak Island.

Megacrysts of anorthoclase, black clinopyroxene, and kaersutite have

been found in the ejecta of both the cinder cones and maars. Mark (1971)

obtained a Sr 87/Sr86 ratio of .7027 for an anorthoclase xenocryst. Since

this ratio is within the range of the basaltic strontium ratios, he con-

cludes that the anorthoclase crystals are cognate.



IV Summary of the Volcanic History of Nunivak Island

Using potassium-argon dating and paleomagnetic techniques, Hoare

(1968) has recognized six episodes of volcanic activity on Nunivak Island.

These active episodes were separated by periods of quiesence lasting .5

to 1.5 million years. The oldest exposed flows are found at the western

end of the island and date 4 to 6.1 million years. The geographic center

of each successive episode has shifted towards the East. The eruption

pattern is one of voluminous tholeiite outpourings with small amounts of

coeval alkalic activity. The xenolith-bearing cones and maars that were

exanined in this study belong to the last episode of vulcanism and are

found in the south central portion of the island. This last episode

began with the eruption of both tholeiite and alkalic basalts approxi-

mately one million years ago. The youngest tholeiite dated is 650,000

years old. Splatter cone NA4-6 (Figure 4-1), however, is only 30,000

years old. The state of erosion of cone NA3-1 indicates that it is signi-

ficantly younger than cone NA4-6. Thus the maars which are younger still

may only be a few thousand years old (Hoare, 1968). This means that

alkalic eruptions have continued after cessation of the tholeiite vulcan-

ism.



CHAPTER 4 FIELD WORK

Five weeks were spend during the sumer of 1973 studying the xeno-

lith population of Nunivak Island, Alaska. Over 3000 xenoliths were

examined from 30 volcanic vents of Pleistocene to Holocene age. These

host structures belong to the Oknl Formation defined by Hoare (1968) and

consist of alkalic basalt. They represent the last episode of eruption

on the island which commenced approximately one million years ago.

Figure 4-1 is a map of the central portion of Nunivak Islafid showing the

location of all the vents examined.

At each vent, as many xenoliths as could be found in a few hours

were collected. In most cases in excess of 100 xenoliths were examined

from each site. These xenoliths were hand sorted, classified and counted.

A representative sample of each xenolith type from each vent was returned

to the laboratory for further study. Visual modes were estimated for at

least 50 of the inclusions at every site.

In addition, the relative age of each host vent was estimated and

where appropriate, a sample of the associated basalt was collected. Be-

cause the splatter and cinders of the cones are usually altered and be-

cause of the inherent danger of selecting an inclusion, basalt samples

were collected only from flows associated with a vent.

In the field the xenoliths were classified into 7 groups. These

groups are listed below:

i. Gabbroic xenoliths: granular rocks consisting largely of plagio-

clase with lesser amounts of dark green clinopyroxene plus or

minus olivine.



ii. Feldspathic Granulites: similar to gabbroic xenoliths but char-

acterized by the presence of masses, blebs or bands of extremely

fine grained, green-grey material (spinel-clinopyroxene symplec-

tite under the microscope).

iii. Olivine Granulites: granular rocks consisting largely of olivine

and characterized by the presence of extremely fine grained

.green-grey material separated from olivine by 1 mm seams of

white orthopyroxene.

iv. Lherzolites: granular rocks consisting of olivine, black ortho-

pyroxene, spinel and pale green chromian diopside.

v. * Dunites: similar to lherzolites but lacking any trace of chromian

diopside and containing less than 5% orthopyroxene.

.vi. Harzburgites: similar to lherzolites but lacking any trace of

chromian diopside.

vii. Pyroxenites: granular rocks consisting largely of greenish black

clinopyroxene with lesser amounts of olivine.

In addition to the above, xenocrysts of anorthoclase and black

kaersutite were frequently found. Inclusions of greywacke sandstone,

conglomerate and basalt are locally common, especially in the ash rims of

the maars. Notably, inclusions of gneiss or other metamorphic rocks are

absent.

Each of the above groups was subdivided into two groups depending on

whether the xenoliths belonging to it had been iddingsitized or not.

Xenoliths were classed as "fresh" (not iddingsitized) if their olivine

were green and transparent in appearance. They were termed iddingsitized
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if their olivine were opaque and dull to bright red in appearance. Xeno-

liths whose olivine showed any sign of incipient red alteration were

placed in the latter category. Some difficulty was encountered in dis-

tinguishing between iddingsitized harzburgites and dunites. In addition

to a red discolouration, the interiors of altered olivines were often

blackened. As a result the modal proportion of orthopyroxene was diffi-

cult to estimate in these xenoliths.

Table 4-1 lists the relative abundances of the various xenolith

types with respect to the nature and relative age group of their host

vents. The state of preservation of the geomorphic features was used as

the criteria for the age grouping of these vents. The most striking

feature of this table is the restriction of the iddingsitized xenoliths

to the splatter cone type of host vent. With the exception of Ahkiwik-

snuk crater, no iddingsitized xenoliths were found associated with the

maars. However, the morphology of Ahkiwiksnuk is atypical of the other

Nunivak maars. The xenolith-bearing horizons appear to be part of an

older splatter cone through which the maar has cut. Fresh xenoliths are

found in the splatter cones. In any particular cone, both iddingsitized

and fresh xenoliths might occur, though the two types are usually spa-

tially segregated within the cone itself. Occasionally, the fresh xeno-

liths found in these cones contained olivine which exhibits a darker or

greyer hue of green than usual, giving the xenolith a dark gray-green

appearance rather than the bright green appearance of typical lherzolites.

Xenoliths found in basalt lava flows are usually not idding-sitized thougn

the associated cone might contain predominately iddingsitized xenoliths.



Table 4-1

Relative Abundances of Xenoliths on Nunivak Island

Age Class

Number of Vents

total A'

Type of Vent

A A~ B C D

3- 2 4 3 8 6 1

maars <-cinder cones
4.

gabbro 7.4

idd. gabbro

lherzolite

idd. lherz.

dunite & harz.

idd.

30.3

54.1

2.4

4.4

.2

.6

"v i

ol. granulite

idd.

felds. granulite

pyroxenite

idd. pyroxenite

1.2 21.9 11.3 12.6

- 1.5

5.8 2.8 7.5

- - .2

90.0 48.5 24.3 1.3 14.8 37.3 8.2

.7 9.4 50.9 80.2 73.9 54.3 73.7

6.7 17.2 1.2 .6 .1 .5

- 1.5 7.2 3.1 4.0 4.7 9.0

1.0 - .7

- - 3.4

- .5

.5

.3 .3

-. 1

- - - .3 .5

- .8

- .8

- - - 1.6

total sample

increasing age

3297 720 64 415 318 1072 575 133



Figure 4-2 is a graphic simplification of Table 4-1. There is an

apparent trend of increasing relative abundance of feldspar bearing,

dunite and harzburgite xenoliths relative to lherzolite xenoliths with

decreasing age of their host structure. The change in eruption style

from splatter cones to maars corresponds to a discontinuity in the above

trend. It is interesting that the two members of the youngest splatter

cone group are characterized not only by a relative minimum in the

abundance of lherzolite xenoliths, but a general paucity of xenoliths of

all types. Several hours of concentrated search uncovered a combined

total of only 64 xenoliths for these two cones. Usually no difficulty

was incurred in collecting in excess of 100 xenoliths per cone.

Hoare's original investigation indicated that the granulite xeno-

liths were restricted to the maars. This study has revealed, however,

that both olivine and feldspathic granulites are also to be found in

small concentrations in many of the splatter cones. In particular, cone

NA3-8 has the highest concentration of granulite xenoliths of any of the

volcanic vents examined. Feldspathic and olivine granulites, together,

comprise approximately 1% of the total xenolith population.

McGetchin and Hoare (1968) have reported the occurrence of mica-

bearing lherzolites in the maars of Nunivak Island. A small number of

these xenoliths were also found in this study, in the splatter cones as

well as the maars. The true relative abundance of the mica-bearing xeno-

liths could not be estimated in the field because often the presence of

mica can only be determined in thin section.
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PETROGRAPHY OF ULTRAMAFIC XENOLITHS

This chapter deals with the petrography of the lherzolite xenolith

suite. Xenoliths considered in this chapter contain the four essential

lherzolite phases; olivine, orthopyroxene, clinopyroxene, and spinel. A

few of the nodules included here are more correctly termed harzburgites

or dunites. However, the criterion used to include these xenoliths was

the presence of any trace of Cr-diopside. Ultramafic xenoliths which

lack this phase and whose olivines have forsterite contents significantly

below Fo 89 have been grouped with the feldspathic rocks and are described

in Chapter 7.

The nodules of the lherzolite suite display the characteristic xeno-

morphic-granular texture of spinel lherzolites. Preliminary U-stage

analysis of 2 specimens (10001, 10005) indicates that their olivines

exhibit a moderate orthorhombic fabric. This would place these xenoliths

between the "coarse-grained" and "tabular olivine and enstatite" textural

types of Boullier and Nicolas (1973).

1 On a macroscopic scale, the most striking feature of the lherzolite

nodules is their division into two groups; lherzolites with fresh olivine

and lherzolites whose olivine has developed a red-brown alteration called

iddingsite. The maars of Nunivak Island contain only the former group

while the majority of those found in the splatter cones belong to the

latter (see Table 4-1).

CHAPTER 5



I Fresh Lherzolite Suite

Nodules that are assigned to this cateyory contain fresh olivine

which exhibits no sign of the development oE iddingsite alteration. The

characters of olivine and orthopyroxene are uniform throughout the xeno-

liths of this suite. Olivine occurs as 1 to 4 mm., anhedral, but slight-

ly flattened grains. In thin section they appear tabulate and exhibit

extensive development of undulatory extinction and deformational banding

perpendicular to their direction of elongation. The character of ortho-

pyroxene is essentially identical, except that it has a slightly smaller

mean grain size and less commonly exhibits deformational banding. The

oblate nature of the grains of these phases often defines a weak folia-

tion in the xenoliths.

Despite the uniform nature of the two major phases of its xenoliths,

the fresh lherzolite suite can be subdivided on a textural and mineralog-

ical basis. The criteria for this subdivision are the habits of the

clinopyroxene and spinel and the presence or absence of the following

accessory phases; amphibole, mica, or glass. Using these criteria a

sequence of xenoliths can be established in the lherzolite suite. At one

end of this sequence are xenoliths which contain amphibole as an integral

phase, while at the other end are xenoliths which contain only the four

essential lherzolite phases. Intermediate members of the sequence con-

tain decreasing amounts of accessory glass and mica which are interpreted

to be the remnants of amphibole. Position in the sequence appears to be

independent of the mode of the individual lherzolites involved.



a) Amphibole-Bearing Lherzolite

Eight lherzolites have been found containing interstitial amphibole.

This amphibolo is red-brown in color and is often inconspicuous in hand

specimen. In transmitted light, however, it is strongly pleochroic,

ranging in color from reddish brown to olive green. Two textures are

observed. Typically the amphibole contains a core of black Cr-spinel.

This texture ranges from single amphibole crystals with rounded spinel

inclusions to large (1 to 5 mm.) oblate bodies consisting of aggregates

of .3 to 1 mm., anhedral amphibole grains enclosing a highly embayed and

vesicular spinel (plate 5-1). In the larger examples, anhedral masses of

red-brown, pleochoic phlogopite are occasionally found between the amphi-

bole and its core spinel. Less commonly, amphibole occurs as .3 to 3 mm.,

subhedral crystals without inclusions of spinel. Both of these amphibole

types may be present in the same specimen. Two specimens, however, con-

tain only the latter.

Many of the amphibole grains, especially those with core spinels,

exhibit textural evidence of partial melting. This evidence is in the*

form of fine-grained zones replacing the amphibole adjacent to its in-

cluded spinel.~ In reflected light, these zones are observed to consist

of Cr-diopside and olivine as .05 to .1 mm. euhedral prisms with domal

terminations in a homogenous matrix of low reflectivity. Spinel also

occurs as .01 to .02 mm., equant, skeletal crystals in this matrix

(plate 5-3). In transmitted light the matrix material is colorless and

isotropic. It is assumed to be glass. Table 5-1 presents a typical mode

for one of these fine-grained, glass-bearing zones.



Table 5-1

Mode of a Typical.Fine-Grained, Glass-Bearing Zone

Cr-diopside ....... ........ 24%

Cr-spinel..... . .............. 2%

glass........................ 8%

voids..........................53%

The majority of the spinel of the amphibole-bearing lherzolites

occurs as the embayed and vesicular cores found in the amphibole. Small

amounts of spinel, however, are present as subhedral, .02 to .1mm. in-

clusions in the other silicate phases. In olivine and Cr-diopside these

inclusions tend to be isolated, equant grains; while in orthopyroxene

they also occur as swarms of tiny, preferentially oriented rods. Inter-

scitial Cr-spinel is generally absent.

The clinopyroxene of many of the amphibole-bearing lherzolites is

distinctive. In hand specimen it commonly has a milky green, translucent

appearance rather than the bright green, vitrious character that is typi-

cal of the Cr-diopsides in spinel lherzolites. This feature is most

apparent in the clinopyroxenes of nodules whose amphibole has well devel-

oped, partial melting textures. In thin section, clinopyroxene is ob-

served as .5 to 1+ mm., anhedral grains containing rounded inclusions of

olivine, orthopyroxene, and occasional .01 to .2 mm vesicules. This

clinopyroxene commonly has a turbid or cloudy hue in plane polarized

light. Under high magnification the turbid or cloudy grains are found to



Plate 5-1 (top): Oblate body with amphibole, phlogopite, and Cr-spinel.

Note development of fine-grained zone.

Plate 5-2 (bottom): Fine-grained zone containing relict spinel, euhedral

crystals, and vesicular glass.
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contain numerous hollow tubes 1 to 5 microns in diameter. These tubes

have a common orientation, but are not arranged into planar elements.

The tubes, however, do not appear to be the cause of the turbidity in

the clinopyroxene. This turbidity must originate from some sub-micro-

scopic feature.

The clinopyroxenes of lherzolites whose amphibole exhibits little or

no sign of partial melting have not developed the features described

above and tend to retain the bright green, vitrious character of typical

Cr-diopsides.

b) Glass-Bearing Lherzolite

There is no trace of amphibole in the xenoliths in this category.

The interstitial Cr-spinel of the nodules included here, however, is

surrounded by fine-grained, porous zones consisting of euhedral crystals

and glass (plate 5-2). The mineralogy and texture of these zones are

identical to those associated with the amphibole in the foregoing section.

The spinel in the center of these melt zones is highly embayed and vesi-

cular. It commonly exhibits finely serrated edges when viewed in re-

flected light. Occasionally two or three irregular fragments of spinel

are present which appear to be remnants of a single grain.

Less typically, fine-grained zones are observed which lack residual,

core spinel. These zones are commonly characterized by an increased con-

centration of tiny, spinel euhedra; often localized along their bounda-

ries. Occasionally the boundaries of such fine-grained zones are planar,

suggesting monoclinic or triclinic crystal pseudomorphs (plate 5-4).

II



Plate 5-3 (top): Reflected light image of fine-grained zone. Note

euhedral crystals, relict spinel and grey glass.

Plate 5-4 (bottom): Fine-grained, glass-bearing zone with pseudomorphic

outline.
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A complete spectrum of specimeins exists ranging from those in which

the fine-grained zones are extensively developed to those in which only

traces of then can be found. Nodules in which these melting textures are

best developed often contain traces of red-brown phlogopite in their

fine-grained zones. This mica appears highly embayed and is usually

intimately intergrown with the core spinel.

The.clinopyroxene of the glass-rich lherzolites closely resembles

that found in the amphibole-bearing lherzolites. It is typically a

milky, translucent green in color and cften contains rounded inclusions

and vesicules. These clinopyroxenes have developed .02 to .05 mm altered

rims (plate 5-5). The nature of.these features is obscure in trans-

mitted light because of their small scale in comparison to the thickness

of a standard thin section. When viewed in reflected light, however,

they are seen to consist of fragments of clinopyroxene separated from the

host grain by a homogenous material of low reflectivity (plate 5-6).

This material is also observed lining the grain contacts between the

clinopyroxene and other silicate phases. Though these regions of darker

material are too small to be observed under crossed nicols in transmitted

light, they are interpreted to be glass produced by incipient melting

occurring along the Cr-diopside grain boundaries.

Nodules containing only traces of fine-grained zones about their

interstitial spinel are characterized by clinopyroxenes which are bright

green in color, have a vitrious lustre, and lack inclusions or vesicules.

They show no signs of instability along their grain boundaries.

In addition to occurring as an interstitial phase surrounded by melt

zones, spinel also occurs as subhedral inclusions in all the silicate
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Plate 5-5 (top); Lherzolite with fine-grained zone about spinel and

partially melted clinopyroxene.

Plate 5-6 (bottom): Reflected light image of the margin of a partially

melted clinopyroxene.
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phases of the lherzolites. This variety of spinel exhibits no si-n of

instability and is identical to its counter art described in the section

on amphibole-bearing lherzolites.

c) Four Phase Lherzolite

Xenoliths in this category contain no trace of either hydrous sili-

cates or fine-grained zones. They consist only of the four essential

lherzolite phases.

The Cr-diopsides of these lherzolites are bright green in color,

have a vitrious lustre, and lack inclusions or vesicules. No evidence is

found for partial melting along their grain boundaries. The Cr-spinel is

red-brown in color and is present as both interstitial and included

grains. Though the interstitial spinel continues to appear slightly em-

bayed in some cases, it is not vesicular and shows no signs of instabi-

lity.

d) Interpretation of the Petrographic Features of the Fresh Lherzolites

Of 27 nodules initially sectioned, 3 contain what appears to be pri-

mary amphibole, 12 contain fine-grained, glass-bearing zones and 11 con-

sist only of olivine, orthopyroxene, Cr-diopside, and spinel. A few of

the spinels in the remaining 2 specimens have voids about them, but it is

difficult to rule out the possibility that these were created during thin

sectioning.

The textural relationships of the amphibole in the first three

nodules suggest that it is breaking down to an assemblage of clinopyro-

xene, olivine, spinel, and glass. The following criteria indicate that



the fine-graiied, glass-bearing zonc3 observed in approximately fifty

percent of the fresh lherzolites represent the sites of former amphibole;

identical minE ralogy to the fine-grained zones observed replacing amphi-

bole, occasional pseudomorphic outline, co-mmon presence of r alict spinel

similar to those found in amphibole, resemblance of associated clinopyro-

xene to that found with amphibole. The presence of abundant vesicules

in the glass of the fine-grained zones indicates that it was molten as

its xenoliths reached the surface. This implies that the melting of the

original amphibole occurred as the lherzolites were entrained in their

alkalic magmas.

In summary, the petrographic features of 50% of the fresh lherzo-

lites suggest that they contained amphibole while they were in place in

the upper mantle. According to this interpretation, -much of the amphii-

bole was destroyed as alkalic magmas brought the lherzolites to the sur-

face.

Reports of interstitial, pargasitic amphibole in lherzolite xeno-

liths are becoming increasingly common in the literature. White (1966)

recognized a number of amphibole-bearing lherzolites in his Hawaiian

xenolith suite. The clinopyroxenes of such lherzolites tended to be Na-

rich and exhibited partial melting textures. Varne (1970) has described

an amphibole lherzolite from the Kirsh volcano, South Yemen, which lacks

interstitial spinel. Partial melting of the amphibole has produced fine-

grained zones of pyroxene, spinel, and glass. Wilshire (1971) has found

amphibole-bearing lherzolites at Dish Hill, California. Boyd (1971) and

Smith (1973) have described harzburgites containing intergrowths of Cr-



spinel and amphibole from kimberlitt. pipes in South Africa. Griffin

(1973) report.. the occurrence of amphibole, mantling embayed spinel in

lherzolites from the Fen alkaline complex, Norway. Best (1974) has found

six amphibole-bearing lherzolites in the western Grand CanyouL. He ob-

serves, however, that half of the lherzolites from this locality contain

fine-grained aggregates of pyroxene and Cr-spinel in vesicular, colorless

glass. le interprets these aggregates to be remnants of amphibole. Frey

(1974) describes interstitial amphibole associated with porous zones con-

sisting of euhedral clinopyroxene, olivine, and spinel with glass in

lherzolites from the Victorian basanites of Australia.

II Iddingsitized Lherzolite Suite

Xenoliths belonging to this group are characterized in hand specimen

by earthy red-brown, altered olivine. In thin section the olivine is

surprisingly fresh in appearance. The extent of the alteration varies

from the presence of bright orange-red iddingsite along fractures and as

occasional narrow wisps to a pervasive, fine feather-like network. Only

olivine is affected. In some cases extensive precipitation of opaques is

associated with the iddingsite alteration. The habit of these opaques

ranges from parallel 5 micron plates or needles to chains and networks of

10 micron, equant grains in the same olivine crystal. Frequently, this

precipitation does not extend throughout a whole slide but is localized

in small patcaes associated with fractures or near the nargans of the

xenolith.



The nature of the spinel, again, appears to be a distinctive cri-

teria for subdividing the nodules of this suite. However, unlike the

relationships observed in the fresh lherzolites, fine-grained zones abou':

spinel are rare. Instead color is the diagnostic property. The color of

the spinels ranges from light olive green to dark red-brown. The green

spinel has an anhedral, habit and appears embayed. In nodules with red-

brown spinel, on the other hand, a significant proportion of the spinel

occurs as rounded to equant inclusions in the other silicate phases. In

addition, the interstitial spinel grains have a le'ss embayed appearance

than the green spinels. Intermediate colored spinels often exhibit thin,

darkened margins.

The clinopyroxenes of nodules containing green spinel commonly have

.1 to .3 mm altered margins. The inner edges of these margins appear to

be bounded by minute crystal faces when viewed in transmitted light. The

nature of the body of these margins is obscure. In reflected light, they

are observed to contain irregular stringers and patches of material with

a low reflectivity. Occasionally discontinuous seams of this material

line the contacts of the Cr-diopside. The width of these structures

rarely exceeds 10 microns. Another characteristic feature of the clino-

pyroxenes in nodules with green spinel is the presence of numerous planes

of minute bubbles (less than one micron in size). Such structures have

been interpreted to be the sites of fracture annealing (Roedder, 1965).

The clinopyroxenes of nodules containing red-brown spinel do not exhibit

altered margins and appear internally clear.

There is an apparent textural difference between the xenoliths with

green spinel and those with red-brown spinel. The former tend to be

50



finer crained with an average grain size of approximately 1 mm. They

also contain, however, larger grains of clinopyroxene and orthopyroxene

(porphyroblasts) which often exceed 2 mm in size. These xenoliths typi-

cally exhibit a compositional foliation defined by variations in the pro--

portion of clinopyroxene. Xenoliths with red-brown spinel tend to be

very coarse-grained, the average grain size occasionally exceeding 4 mm.

They commonly exhibit a strong foliation defined by the pervasive flat-

tening of olivine and orthopyroxene grains. There appears to be a com-

plete gradation between these two textural types.

Only one of the iddingsitized xenoliths that have been examined con-

tains a fine-grained melt zone. It is an oval, porous patch consisting

of euhedral crystals of clinopyroxene, olivine, and spinel in a colorless

glass. There is, however, no relict of embayed spinel.

In summary, the most variable feature of the iddingsitized lherzo-

lite suite is the color of its spinel. A continuous sequence of xeno-

liths can be organized rangihg from those containing red-brown spinel to

those with olive green spinel. The presence of partial melting textures

in the clinopyroxenes and the general fabric of a xenolith can be corre-

lated with its position in this sequence.



CHAPTER 6 CHLMISTRY OF THE PHASES CF THE LHERZOLITE XENOLITH SUITE

I Analytic.l Technique

All chemical analyses reported in this chapter were performed with a

M.A.C. electron microprobe owned by the Department of Earth and Planetary

Sciences of M.I.T. This probe is part of an automated system designed by

Finger and Hadidiacos (1972) using a PDP 11/20 mini-computer. The in-

strument has a take-off angle of 38.5* and employs three spectrometers

with analysing crystals of R.A.P., P.E.T. and LiF. Flow proportional

counters are used with the first two crystals and a scintillation counter

is used with the LiF crystal.

Analyses were reduced on-line with the "GeoLab" program of Finger

and Hadidiacos (1972) which employs the correction scheme of Albee and

Ray (1970). In a standard operating set-up, a filament voltage of 15 KV

was used with a beam current of 300 nanoamps and counting times of 30

secs. per element.

During standardization, a minimum of 5 replicate counts were taken

per element. If the ratio of the standard deviation of these counts to

the error predicted by counting statistics exceeded 3, the element was

re-standardized. The standards employed varied according to the nature

of the material being analyzed.

Analyses whose sum concentrations were not within the range 98.5 to

101.5 were diacarded. In practice, few analyses were accepeed whose sums

differed more than 1% from 100%. For minerals, any analysis whose cation

sum (calculated on the basis of an ideal number of oxygens atoms) differed



by more than 1% of the predicted value was discarded. Again, in practice

few analyses whose cation error exceeded .5% were accepted.

In the following sections, the Mg number of a phase will frequently

be reported. This parameter is defined as the atomic fraction Mg/Mg +

E Fe. This fraction is given to three significant figures with an

approximate precision of ±.001.

II Lherzolite Olivines

The olivines of the fresh lherzolite suite have Mg numbers ranging

from .890 to .915. There is a weak correlation between the modal concen-

tration of olivine in a lherzolite nodule and the Mg number of the

olivine; i.e., the most olivine rich xenoliths tend to have the most mag-

nesium rich olivines.

Euhedral olivine found in the fine-grained, glass-bearing zones have

significantly higher Mg numbers than do their associated interstitial

olivine. These higher Mg numbers range between .920 and .935. Individ-

ual euhedral olivine crystals are zoned with Mg numbers increasing towards

their margins. These olivines are also characterized by relatively high

CaO concentrations, averaging .10 to .24 weight percent compared to .04

to .09 weight percent for the host olivines. Though this difference is

small, it is significant when compared to the standard deviation of .016

weight percent CaO for analyses of individual olivine grains. The high

calcium content of the euhedral olivines supports the petrographic inter-

pretation that they are quench crystals in a silicate glass (Simkin and

Smith, 1970).



The round olivine inclusions found in the clinopyroxenes of some of

the amphibole-bearing lherzolites are chemially identical to the inter-

stitial olivine.

The olivines of the iddingsitized lheizolites have not been system-

atically analyzed because the iddingsite alteration and its associated

opaque precipitation has altered their original compositions. In parti-

cular, heavily altered olivines in this suite exhibit anomalously high Mg

numbers.

III Lherzolite Orthopyroxenes

a) Fresh Lherzolite Suite

The Mg numbers of the orthopyroxenes in the fresh lherzolite suite

range between .896 and .916. Again, there is a weak correlation between

the modal abundance of olivine and the Mg number of the corresponding

orthopyroxene. The chemistry of the orthopyroxenes is remarkably uniform

throughout the fresh lherzolite suite. The largest variation is found in

their alumina contents. The weight percent Al203 in orthopyroxene varies

from 2.27 to 3.43 (average standard deviation per nodule = .107 weight

percent Al203 *

Orthopyroxene found as rounded inclusions in the clinopyroxene of

amphibole-bearing lherzolite 10006 has an Al 0 content of 1.25 and a Mg
2 3

number of .920 compared to 3.03 and .913 respectively for the intersti-

tial orthopyroxene.



b) Iddingsitized Lherzolite Suite

The Mg mmbers for the orthopyroxenes of this suite range from .901

to .912 and aie strongly correlated to the petrographic sequence de-

scribed in th: preceding chapter. Orthopyrixenes from nodules with the

greenest spinels have the lowest Mg numbers while those from nodules with

the darkest spinels have the highest Mg numbers. The relative abundances

of A1203' r203, and Ti02 in the orthopyroxene of a lherzolite can also

be correlated with its position in the petrographic sequence defined by

the spinels. Al203 ranges from 4.58 weight percent in the nodules with

green spinel to 2.74 weight percent in the nodules with red-brown spinel

(average standard deviation per nodule = .082 weight percent Al203)'

Similarly Cr203 and TiO2 vary from .22 and .14 weight percent to .45 and

.02 weight percent respectively. Although the variations in Cr and Ti

are small, they appear to be significant in light of their small average

standard deviation of .01 weight percent per nodule. In addition, both

these elements were analyzed using standards with correspondingly low

concentrations (Di 96 CrCats 4: 0.86% Cr and Di2Ti: 1.20% Ti).

IV Cr-Spinels

Chemical data has been collected for the spinels of 21 lherzolites.

These spinels are the typical Cr-bearing, magnesium-rich variety which

characterize spinel lherzolites (Ross et al., 1954). Of all the phases

found in the Nunivak lherzolites, however, the spinels exhiLit the larg-

est compositional variation. The chemistry of five textural spinel types

will be examined:



1' interstitial spinel; ranging from the red-brown spinel of both

of the iddingsitized and fresh, four phase lherzolites to the

olive green spinel of the iddingsitized lherzolites.

2) relict spinel; occurring as embayed and vesicular grains in

fine-grained, glass-bearing zones.

3) core spinel; occurring as central inclusions in amphibole.

4) spinel occurring as equant inclusions in silicate phases other

than amphibole.

5) euhedral spinel; found as skeletal grains in the glass of fine-

grained zones.

a) Chromium and Aluminum Variations

Figure 6-1 documents the variation in the trivalent cation composi-

tion of the interstitial, relict, and core spinels of both the iddingsi-

tized and fresh lherzolites. The euhedral spinels and spinels occurring

as inclusions in silicate phases other than amphibole are not represented.

The relict and core spinels are highly zoned (see section IV c) and there-

fore each plot in Figure 6-1 represents the average of 6 to 10 analyses

for a single grain. Occasionally more than one of these grains is repre-

sented per nodule. The amount of trivalent iron in the spinels was cal-

culated by a method similar to that of Stevens (1944). After Si and Ti

were removed as forsterite and illmenite respectively, sufficient Fe
2+

was converted to Fe to balance the equation: 2 x divalent cations =

trivalent cations.
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The compositional variation of the 'trivalent cations in the C-pinels

(Figure 6-1) is largely restricted to Cr and Al, while the relative

amount of calculated Fe remains uniformly low (less than 10 atomic per-

c--nt Fe /Cr + Al + Fe ). The following s-inel types are listed in

order of decreasing Cr/Cr + Al + Fe : core spinel in amphibole, 2) re-

lict spinel in fine-grained zones, 3) red-brown spinel of both the fresh

and iddingsitized, four phase lherzolites, 4) olive green spinels of the

iddingsitized lherzolites.

The spinels of the iddingsitized lherzolite suite define a contin-

uous compositional spectrum which can be correlated with their color

variation; i.e., the red-brown spinels are the most chromian and the

olive green spinels are the most aluminous. The red-brown spinel compo-

sitions of this suite coincide with those of the interstitial spinels in

the four phase, fresh lherzolites.

b) Chromium and Alumium versus Magnesium and Iron

Figures 6-2 and 6-3 are log-normal plots which illustrate an excel-

lent, inverse correlation between the Cr/Cr + Al and Mg/Mg + Fe atomic

ratios for the spinels of the lherzolite suites. Figure 6-2 is the plane

MgAl20 4- MgCr204 - FeCr 20 - FeAl 20 of the spinel prism first used by

Stevens (1944) and later by Irvine (1965), Jackson (1969) and Loney (1971).

In this diagram Fe has been neglected.

Irvine (1965) has demonstrated thermodynamically that the composition

,f a spinel coexisting with an olivine of a specified composition at a

given temperature is constrained to what he terms an equipotential sur-

face within the spinel prism. The trace of such a surface for olivine
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Fo 91 (approximate mean composition of olivine in fresh lherzolites)

calculated at 1100*C is shown by the dashed line in Figure 6-2. This

curve was calculated according to the formula:

T = {(-AG* - aAG* - SAG* + AG* .
MgSi 00 FeCr20 FeAl0 Fe0.2

OL CHR

+ aAG* + aAG* )/R in { }}2

MgCr 0 MgAl204 XFe 2+OL XMgCHR

a = Cr/Cr + Al

= Al/Cr + Al

or

T 5580a + 1018 + 2400 -

.90a + 2.566 - 1.47 + 1.987 ln KDMg - Fe2+

After Jackson, 1969

The curve in Figure 6-2 is not intended to represent an accurate

temperature determination because the uncertainties in the AG* values

alone yield a temperature uncertainty of ±3000 C. (Jackson, 1969). How-

ever, the correspondence between the equipotential curve and the locus

for the lherzolite spinels is striking; especially considering that the

spinels included in amphibole and fine-grained, glass-bearing zones are

not theoretically constrained by the composition of the lherzolite

olivine.

The compositions of the spinels found in nodules which are thought

to be crustal cumulates (Chapter 7) are also plotted in Figure 6-2. They

lie at relatively lower Cr/Cr + Al and Mg/Mg + Fe atomic ratios and coin-

.cide with an equipotential curve for olivine Fo 87 (approximate mean com-
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position of cumulate olivines) determined at 1200*C.

Figure 6-3 is similar to 6-2 except that the Fe content of the

spinels has been taken into account. The diagram is constructed by pro-

jection onto the Fe + absent face of the spinel prism. Comparing Figure.-

6-3 and 6-2, we see that the effect of this modification is to shift

corresponding points towards the right side of the diagram. Despite the

resultant increased scatter in the data points, the trends observed in

Figure 6-2 are preserved. The locus of the data points in Figure 6-3,

however, is better modeled by an equipotential curve calculated at a

temperature of 1300*C. It is interesting to note that the magnitude of

the shift to the right between the two Figures is greater for the lherzo-

lite spinels (250*C) than for the cumulate spinels (100*C).

The composition of spinel intergrown with pargasite in a harzbur-

gite xenolith from the Wesselton mine, South Africa (Boyd, 1971) is also

piotted in Figure 6-3. It plots just above the trend for the Nunivak

spinels and its associated olivine has a composition of Fo 94.

To summarize Figures 6-2 and 6-3; the locus of lherzolite spinel

compositions coincides with a theoretical curve calculated by assuming

that the spinels are in equilibrium with their associated olivines. The

position of a spinel on this locus can be correlated with its mode of

occurrence. In these spinels increasing Cr/Cr + Al is accompanied by

decreasing Mg/Mg + Fe.

c) Chemical Zoning

The relict spinels found at the center of fine-grained, glass-

bearing zones are chemically zoned. Figure 6-4 illustrates the results
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of a ricroprobe traverse across on particularly large and massive spinel

grain found in specimen 10013. The zoning pattern is one of increasing

iron and chromium with reciprocal decreasing magnesium and aluminum from

the core to the grain margin. Because of their typical vesicular and

embayed habit, the majority of the relict spinel grains exhibit zoning

patterns considerably more complicated than that pictured in Figure 6-4.

In these grains, all borders whether internal or external are chromium

and iron rich, while the relative proportions of magnesium and aluminum

increase away from these contacts.

The core spinel intergrowths in the amphiboles of specimen 10016

exhibit chemical zoning patterns similar to those of the vesicular,

relict spinels. The average composition of this intergrown spinel, how-

ever, is considerably higher in chromium and iron and lower in magnesium

and aluminum than those of the relict spinels. The compositional ranges

of single relict spinels and core spinels in amphiboles are presented in

Figure 6-5b. Though the compositional ranges of individual grains do not

necessarily overlap, they parallel the locus of the average spinel com-

positions of the lherzolite suites (compare equipotential curve for

olivine Fo 91 calculated at 1100*C in Figures 6-2 and 6-5b). The chemi-

cal zoning in the relict spinels bridges the gap between the compositions

of spinels included in amphibole and the interstitial spinels of the four

phase, fresh lherzolites.

d) Spinel Iaclusions in Silicate Phases other than Amphibole

Spinel inclusions in the silicate phases of both the iddingsitized

and fresh, four phase lherzolites have compositions identical to those of
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their associated interstitial spine!. This is not the case, however,

in lherzoliten; which contain amphibole or fine-grained, glass-bearing

zones. Here :,.t is found that spinels included in olivine or orthopyro-

xene have com-rositions which are more magnesium-rich and chrimium-poor

than any of the other varieties of spinel in the same specimen. In

Figure 6-5b the compositions of spinel inclusions are joined to those of

associated relict spinels and, where present, core spinels in amphibole.

For a given xenolith, the plots of these three varieties of spinel are

approximately colinear and define trends which parallel that of the

zoning in the relict and core spinels. In terms of major element chem-

istry, the spinel inclusions in dlivine and orthopyroxene are most

similar to the interiors of the relict spinels, while the spinels in-

cluded in amphibole resemble the margins of the relict spinels.

e) Euhedral Spinels

The euhedral spinels in glass-bearing zones are small and diffi-

culty was encountered in obtaining acceptable totals for microprobe

analyses. Because of this problem, analyses whose oxide sum totaled as

low as 97.5% were sometimes accepted and usually only one analysis was

obtained per grain. Thus there are few analyses for this spinel type and

conclusions about their chemistry are tenuous.

The compositions of these euhedral spinels are presented in Figure

6-5a. Tie-lines join these points to the compositions of the margins of

their associated relict spinels. It is apparent that for a given Cr/Cr

+ Al ratio, the euhedral spinels are significantly more Mg-rich than

their associated relict spinel. Equipotential curves for several temper-



atures are plotted for olivines of camposition Fo 91 and 93 (inter-

stitial olivine and euhedral olivine in fine-grained zones respectively)

in Figure 6-5a. It appears that the higher Fo content of the euhedral

olivine can not entirely account for the magnesium enrichmaaLt of the

euhedral spinel. If these fine-grained, glass-bearing zones were equili-

brium assemblages, then the euhedral spinel compositions may record

higher temperatures than the relict spinels.

V Lherzolite Clinopyroxenes

a) - Interstitial Clinopyroxene

The chemical variation exhibited by the interstitial, chromian

diopsides is potentially the most useful petrogenetic indicator in the

nodules of the two lherzolite suites. When plotted in the standard pyro-

xene quadrilateral (Wo-En-Fs) these clinopyroxenes appear to have a

limited compositional range, falling in the upper third of the endiopside

field defined by Poldervaart and Hess (1951). The compositional varia-

tions of the lherzolite clinopyroxenes, however, are largely in compo-

nents which cannot be represented in the pyroxene quadrilateral.

Figure 6-6a is an unconventional projection in which the pyroxene

components wollastonite, enstatite, and ferrosilite are grouped as one,

endiopside, and represented by the left corner of a ternary diagram. The

apex of the triangle represents the Na-bearing components jadeite and

acmite, while the right corner (CaTs) reprEsents calcium-tsc-hermak com-

ponents of both Al (CaAlAlSiO6) and Cr (CaCrAlSiO 6) plus CaTiAl 206 No

attempt is made in this diagram to distinguish between jadeite and acmite
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because of the large uncertainties in the calculated Fe content of the

clinopyroxenes. The majority of the analyzed clinopyroxenes gave

slightly high cation totals and as a result the conversion of all the

Fe2+ to Fe was often insuffi5ient to achieve ideal stoichiometry. An

excess of X and Y cations appears to be a general characteristic of

lherzolite clinopyroxenes (Griffin, 1973; Green, 1964; and Ross et al.,

1954).

Figure 6-6a reveals the presence of two compositional trends in the

lherzolite clinopyroxenes which can be correlated with the textural vari-

ations described in Chapter 5. The dashed curve labeled "A" represents

a trend of Na enrichment at the expense of endiopside and tschermak com-

ponents. This trend is delineated by the clinopyroxenes of lherzolites

which contain either amphibole or fine-grained, glass-bearing zones. The

more extensive the development of this latter texture, the more Na-rich

the associated clinopyroxene. Curve "B" corresponds to a trend of in-

creasing sodium and tschermak components at the expense of endiopside.

This curve is defined by clinopyroxenes found in the iddingsitized

lherzolite suite. -The position of a nodule's clinopyroxene on this trend

can be correlated with the color (and composition) of its spinel; i.e.,

the most endiopside-rich clinopyroxenes are associated with the darkest,

most chromian spinels and the clinopyroxenes richest in Na and tschermak

components occur with olive green, aluminous spinels. For both trends,

there is a general correlation between the relative proportion of endiop-

side in a clinopyroxene and its Mg number (Figure 6-6a).

The relative amounts of tetrahedral and octahedral alumium in the

lherzolite clinopyroxenes were calculated by assuming that there are two



tetrahedral positions for every six oxygens which are filled first by

silicon and then aluminum. The results are presented in Figure 6-7.

White (1964) used such data to distinguish clinopyroxenes of garnet-

bearing assemblages (eclogites) from those of metamorphic granulites.

Aoki (1968, 1973) has demonstrated that the clinopyroxene compositions

of spinel lherzolites found in basalts all fall in the granulite field

defined by White (1964) and cluster about the line Al vi/Aliv = 1/1. The

clinopyroxenes of the iddingsitized lherzolites support this observation.

The most aluminous clinopyroxenes in this suite are associated with the

olive green, aluminous spinels, while the aluminum-poor clinopyroxenes

are found with the more chromian, red-brown spinels. The majority of the

clinopyroxenes from nodules which contain either amphibole or fine-

grained, glass-bearing zones, however, fall in the eclogite field. This

not only implies that their xenoliths equilibrated at relatively higher

pressures than the other lherzolites (possibly in the presence of garnet),

but that the Na enrichment trend exhibited by these clinopyroxenes in

Figure 6-6a is one of increasing jadeite rather acmite. The clinopyro-

xenes of the four phase, fresh lherzolites fall in the granulite field of

Figure 6-7, coincident with those of the iddingsitized lherzolites with

red-brown spinel. Figure 6-7 also illustrates that the Mg numbers of the

lherzolite clinopyroxenes are inversely proportional to their aluminum

contents.

There is an interesting pattern for the distribution of Ti in the

chromian diopsides of the two lherzolite suites. Figure 6-8 is an over-

lay of Figure 6-7 on which the Ti content of the clinopyroxenes is con-

toured. For clinopyroxenes whose compositions fall in the granulite

70
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field, there Ls a direct correlation between aluminum and titanium.

The clinopyro:cenes which plot in the eclogite field, however, have

generally low Ti values over a wide range of aluminum contents.

Table 6-1 lists the compositions of a few representative clino-

pyroxenes which have been plotted in Figures 6-6 through 6-8. A more

complete listing is available in the appendix.

b) Cloudy Alteration in Interstitial Clinopyroxene

Many of the clinopyroxenes of the fresh lherzolites with either

amphibole or fine-grained, glass-bearing zones have a milky green,

cloudy appearance (Chapter 5). Often one specimen or even one grain will

have both clear and cloudy clinopyroxene. Table 6-2 compares the com-

positions of a few representative clear and cloudy clinopyroxene pairs.

The cloudy clinopyroxene is relatively poorer in Na, Al, and Fe but rich-

er in Ca and Mg. There is little difference, however, in the chromium

contents of these two types of clinopyroxenes. In Figures 6-6, 6-7 and

6-9 the cloudy clinopyroxenes are represented by open symbols and are

joined by tie-lines to the compositions of their coexisting clear clino-

pyroxenes. The development of the cloudy alteration is seen to corre-

vi
spond to a depletion of jadeite (Al ). The resultant compositional

shift in Figure 6-6a parallels the "A" trend defined by the locus of the

compositions of the fresh lherzolite clinopyroxenes.

Carswell (1973) describes a similar phenomena in the clinopyroxenes

of garnet lherzolites from South Africa; "cloudy, porous ou'er zones

around clear, pale green cores". He finds that although sodium and

alumium are depleted in the cloudy zones, chromium appears to be unaf-

fected.



TABLE 6-1

LHERZOLITE CLINOPYROXENES

10006 10016 10045 10022

55.64
0.03
4.28
0.00
0.87
2.80
15.94
0.13,
17.61
2.71
0.02

54.83
0.02
3.27
0.00
0.78
2.42
16.22
0.13

19.89
2.12
0.01

54.43
0.01
3.27
0.00
0.63
2.59

16.26
0.08

20.12
2.CS
0.00

52.95
0.05
2.94
0.00
0.74
2.58

17.54
0.06

22.'91
0.41
0.00

10008 10024 10211

52.46
0.10
3.25
0.00
0.6'8
2.47
17.40
0.05

23.01
0.48
o.oo

53.47
0.15
4.63
0.00
0.7'5
2.72
16.35
0.11

230.10
1.64
0.00

51.91
0.69
7.14
0.00
0.49
2.90

14.85
0.11
19.16
2.28
0.00

100.03 99.69 99.47 100.18 99.90 99.92 99.53

FQRMULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

1-.991
0.001
0.181
0.000
0.025
0.384
0.850
0.004
0.675
0.188
0.001

. 1.981
0.001
0.13S
0.000
0.022
0.073
0.873
0.0C4
0.770
0.148
0.c0C

6 OXYGENS

1.974
0.000
0.140
0.000
0.018
C.C79
0.879
0.0C2
0.782
0.146
0.0c0

1.92 1
0.001
0.126
0.000
0.021
0. C-78
0.949
0.002
0.891
0.029
0.000

TOTAL

MG/MG+FE

4.000 4.012 4.020 4.018 4.025 4.013 4.019

0.910 0.923 0.918 0.924 C.926 0.915 0.901

UNLESS OTHERWISE SPECIFIED; TOTAL IRCN AS FE0

SPEC.

S102
TI02
AL203
FE203
CR203
FEO
MGOJ
MNO
CAO
NA20
K20

TOTAL

1.910
0.003
0.139
0.000
0.020
0. C75
0.944
0.002
0.898
0.C34
0.000

1.931
0.004
0.197
0.000
0.021
0.082
0.880
0.003
0.778
0.115
0.000

1.882
0.019
0.305
0.000
0.314
0.088
0.803
0.003
0.744
0.160
0.000



TABLE 6-2

CLEAR AND CLOUDY LHERZOLITE CLINOPYROXENES

SPEC.

SI32
TI 32
AL203
FE203
CR203
FE)
MGO
MNO
CA3
NA23
K20

10006 10006 10016 10016 10045 10045

55.64
0.03
4.23
0.00
0.87
2.80
15.94
0.13
17.61
2.71
0.02

55.05
0.06
3.06
3.00
0.69
2.32

16.53
30.09

23.96
1.51
0.00

54.83
0.02
3.27
0.00
0.78
2.42

16.22
0.13
19.89
2.12
0.01

54.99
0.08
2.55
0.00
0.50
2.26

16.58
0.09
21.20
1.67
0.00

54.43
0.01
3.27
0.00
0.63
2.59

16.26
0.08

20.12
2.08
0.00

54.52
0.02
2.98
0.00
0.56
2.45
16.37
0.09

20.90
1.77
0.00

T3TAL 100.03 103.27 99.69 99.92 99.47 99.66

F3RMULA UNITS ASSU4ING 6 OXYGENS

SI 1.991 1.979 1.981 1.985 1.974 1.975
TI 0.001 0.002 0.001 0.002 0.000 0.001
AL 0.181 0.130 0.139 0.108 0.140 0.127
FE3+ 0.000 0.00G 0.000 0.000 0.000 0.000
CR 0.025 0.020 0.022 0.014 0.018 0.016
FE2+ 0.084 0.070 0.073 0.068 0.379 0.074
MG 0.850 C.885 0.873 0.892 0.879 0.884
MN 0.004 0.003 0.004 0.003 0.002 0.303
CA 0.675 0.807 0.770 0.820 3.782 0.811
NA 0.188 0.105 0.148 0.117 0.146 0.124
K 0.001 0.000 0.000 0.0300 0.000 0.000

TOTAL

MG/MG+FE

4.C00 3.998 4.012 4.010 4.020 4.015

0.910 0.927 0.923 0.929 0.918 0.923

CLEAR CLOUDY CLEAR CLOUDY CLEAR CLOUDY

UNLESS OTHERWISE SPECIFIED; TOTAL IRON AS FED

75



The absence of glass and the behavior of chromium indicates that tha

development of the cloudy alteration in the lherzolite clinopyroxenes is

not a partial melting process. The nature of the chemical changes in-

volved suggest that the alteration may develop in response to a pressure

decrease. Aoki (1973) has proposed a similar process to account for the

presence of low Na clinopyroxene in nodules that were originally garnet

lherzolites. He believes that they are the product of low pressure re-

crystallization which has preferentially removed their jadeite components.

The clear, but low-Na clinopyroxenes of speciments 10001 and 10003, (the

only lherzolites with fine-grained, glass-bearing zones whose clinopyro-

xenes fall in the granulite field of Figure 6-7), may represent a re-

crystallized end-produce of such a process.

c) Rim Clinopyroxene

Figures 6-6b and 6-9 compare the compositions of the interiors and

rims of the jadeite-rich clinopyroxenes of the fresh lherzolites and the

jadeite and tschermak-rich clinopyroxenes of the iddingsitized lherzo-

lites. In the fresh lherzolites, the jadeite-rich interiors of the

clinopyroxenes plot in the eclogite field whereas the compositions of the

rims fall in the granulite field and are strongly depleted in jadeite but

enriched in tschermak and endiopside components. There are corresponding

increases in the Mg numbers of the rims of these clinopyroxenes. Table

6-3 lists the compositions of some representative clinopyroxene interior-

rim pairs. In addition to the chemical differences already documented in

the foregoing, note the sharp increase in chromium in the clinopyroxene

rims. The chemical differences between the rims and interiors of the
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TABLE 6-3

INTERIORS AND RIMS OF LHERZCLITE CLIJ10PYROXENES

SPEC.

S102
TI02
AL203
FE203
CR203
FED
MGO
MNO
CAD
NA20
K20

10002 10002 1C005 10005 10006 10006

54.82
0.07
4.45
0.00
0.90
2.83

16.55
0 * 07

18.77
2.57
0.00

53.64
0.04
3.98
0.00
1.19
2.73

17.90
0.1 C

19.54
1.35
0.03

54.03
0.C4
2.98
0.00
0.68
2. 53

16.84
0.09

20.48
1.74
0.0 cI

53.21
0.04
2.44
0.00
1.31
2.55

18.03
0.11

21.84
0.71
0 .C3

55.64
0.03
4.28
0.00
0.87
2.80

15.94
0.13

17.61
2.71
0.02

54.39
0.03
2.15
0.00
1.35
2.73

17.44
0.16

20.56
0.77
0.07

TOTAL 101.03 100.50 99.42 100.27 100.03 99.65

FORMULA UNITS ASSUMING 6 OXYGENS

SI
TI
AL
FE30+
CR
FE2+
MG
MN
CA
NA
K

1.953
0.002
0.187
0.000
0.025
0.084
0.879
0.002
0.717
0.178
0.000

1.926
0.001
0.168
0.000
0.034
0.082
0.958
0.003
0.752
0.094
0.001

1.963
0.001
0.128
0.0C0
0.020
0.077
C.412
0 .0C3
0.797
0.123
0.0C

1.928
0.301
0.104
0.000
0.03-8

C.077
0.974
0.003
0.848
0.050
0.001

1.991
0.001
0.181
0.0003
0.025
0.C84
0.850
0.004
0.675
0.188
3.001

1.972
0.001
0.092
0.000
0.039
0.083
0.943
0.005
0.799
0.054
0.003

TOTAL

MG/MG+FE

4.027 4.019 4.024 4.025 4.000 3.990

0.912 0.921 0.922 0.926 0.910 0.919

INTER RIM INTER RIM INTER RIM

SPECIFIED; TOTAL IRCN AS FEOUNLESS OTHERWISE



clinopyroxenes of the fresh lherzolites with amphibole or fine-grained,

glass-bearing zones supports the conclusior based on textural arguments

that these rims were produced by incongruert melting.

The origin of the rims developed on clinopyroxenes in the iddingsi-

tized lherzolites with green spinel is less clear. They are developed

only in clinopyroxenes rich in both jadeite and tschermak components.

However, unlike the case in the fresh lherzolites, the clinopyroxene rims,

their Mg numbers are the same or perhaps smaller than those of the clino-

pyroxene interiors (Figure 6-9). This last fact is difficult to recon-

cile with a partial melting origin. The low reflectivity material in

contact with this rim clinopyroxene 'in one specimen (10211) has the com-

position of plagioclase An 54 (see section VIIa). White (1966) describes

similar features developed on the margins of clinopyroxenes rich in jade-

ite and calcium tschermak components. He found that low reflectivity

material adjacent to the clinopyroxene rims was plagioclase An 50, Or 1.

He suggests the reaction; jadeite-rich clinopyroxene -> jadeite-poor

clinopyroxene plus feldspar and nepheline (?). Thus the apparent incon-

gruent melting of the aluminous clinopyroxenes in the iddingsitized lher-

zolites may in fact be a solid state breakdown to aluminum poor clino-

pyroxene and feldspar.

d) Euhedral Clinopyroxene

The euhedral clinopyroxenes of the fine-grained, glass-bearing zones

are very silicon deficient and characterized by a high but variable de-

gree of calcium-tschermak substitution of both Al (CaAlAlSiO 6) and Cr

(CaCrAlSiO6 ). Table 6-4 lists compositions of euhedral clinopyroxenes



TABLE 6-4

EUHEDRAL

SPEC.

S102
TI02
AL203
FE203
CR203
FEO
MGO
MNO
CAO
NA20
K20

LHERZOLITE CLINOPYROXENES

10001 10002 10045 10010 10013 10013

49.79
0.79
7.26
0.00
1.71
2.28

15.30
0.04,

21.32
1.02
0.01

49.57
0.08
6.96
0.00
3.62
2.29

15.56
0.06

20.03
1.30
0.0

49.36
0.09
7.,62
0.00
3.47
2.07
14.54
0.12

21.10
1.20
0.00

51.95
0.03
5.62
0.00
2.44
2.05

16.47
0.08
19.79
1.36
0.00

49.84
0.25
7.45
0.00
3.29
2.38
15.42
0.10

20.51
1.15
0.01

50.08
0.27
6.82
0.00
3.01
2.4C
15.62
0.10

20.89
0.99
0.03

99.52 99.47 99.57 99.79 100.40 100.21

UNITS ASSUMING

1.819
0.022
0.313
0.000
0.049
0.070
0.833
0.001
0.835
0.072
0.000

1.816
0.002
0.301

000 c
0.1C5
0.070
C.85C
0.002
0.786
0.092
0.000

6 CXYGENS

1.809
0.0C2
0.3 29
0.000
0.101
0.063
0.794
0.004
0.829
0.C85
0.0 00

1.882
0.001
0.240
0.000
0.C70
0.062
0.889
0.00?
0.768
0.C96
0.000

1.809
0.007
0.319
0.000
0.C94
0.072
0.834
0.003
0.798
0.081
0.000

1.822
0.007
0.292
0.030
C.087
0.073
0.847
0.003
0.814
0.07C
0.001

4.014 4.025 4.016 4.010 4.018 4.017

K/MG+FE 0.923 0.924 0.926 0.935 0.920 0.921

UNLESS OTHERWISE SPECIFIEC; TOTAL IRCN AS FEO

TOTAL

FORMULA

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

TOTAL



from several specimens. Each composition listed in this Table is an

average of a number of analyses which span a wide compositional range.

The standard deviations for the oxide compcnents listed in Table 6-4

are two to five times those of the analyses of the interstitial clino-

pyroxenes listed in Table 6-1. This variability is in part due to chemi-

cal zoning in individual clinopyroxene crystals. The small size of these

.crystals makes precise characterization of the zoning difficult, but the

pattern is one of decreasing chromium and aluminum towards the crystal

margins. The spectrum of compositions of euhedral clinopyroxenes for a

single fine-grained zone, however, appears to be wider than that found

in any one crystal in that zone. As an illustration of the range of this

compositional spectrum, the Cr203 and Al203 contents of euhedral clino-

pyroxenes in specimen 10002 range from highs of 4.89 and 8.94 to lows of

2.98 and 5.18 weight percent respectively. There is an inverse relation-

ship between the Mg numbers for the euhedral clinopyroxenes in any one

zone and the degree of tschermak substitution. In the specimen cited

above, the Mg numbers range from .914 to .937. Thus, like the euhedral

olivines in these fine-grained zones, the euhedral clinopyroxenes show

increasing Mg numbers towards their margins.

The compositions of the euhedral clinopyroxenes from specimens which

contain amphibole (10013,10006) and of the euhedral clinopyroxenes from

the nodules which do not are similar.

VI Lherzolite Amphiboles



a) Nature of the Nunivak Amphiboles .

Table 6-6 lists selected analyses for amphiboles found in three

Nunivak lherzolites.' A more complete listing is available in the appen-

dix. The compositions of the Nunivak amphiboles are transitional be-

tween the fields of pargasitic hornblende and endenitic hornblende as de-

fined by Leake (1968). Using Leake's prefixes, these amphiboles would be

described as both chromic (Cr > .25 atoms/23 oxygens) and sodic (Na > 1

atom/23 oxygens). However, a serious problem is encountered with Leake's

(1968) classification. As an example, amphibole #1 (Table 6-6) is

determined, using the Si versus Ca + Na + K scale of Leake's Figure #1,

to contain the end-members pargasite (Na + K) Ca2Mg (A1,Cr)Si6A12 022 (OH)2

and richterite (Na + K)2CaMg5Si 8022 (OH)2 in the relative proportions

80:20. The same ratio calculated by assuming that these end-members

account for all the Na, K, and Ca is 60.5:39.5. Clearly, there is a

problem. The same paradox is exhibited by the Cr-bearing amphiboles

found in the western Grand Canyon by Best (1974). He failed to notice

the incongruity and calculated end-members by the latter method.

Figure 6-10 provides a possible solution to this classification

problem. It presents the results of a microprobe traverse across an

amphibole grain in specimen 10016. The significance of the chemical

zoning will be discussed later, but what is germane to this discussion is

that both chromium and aluminum increase together at the expense of

magnesium and silicon. This indicates that chromium is substituting for

magnesium and not for octahedrally coordinated aluminum. Charge balance

is maintained by the concomitant replacement of silicon by aluminum.



Table 6-5

Sources for Analyses Listed in Tables 6-6 and 6-7

1 specimen 10013, Nunivak Island

2 specimen 10006, Nunivak Island

3 specimen 10016, Nunivak Island

4 harzburgite, Monastery Mine, South Africa; Smith, 1974

5 harzburgite, Wesselton Mine, South Africa; Boyd, 1971

6 hornblende lherzolite, Kirsh Volcano, Ataq; Varne, 1970

7 amphibole lherzolite, western Grand Canyon; Best, 1974

8 garnet lherzolite, Itinome-gata, Japan; Aoki, 1973

9 spinel lherzolite, Itinome-gata, Japan; Aoki, 1973

10 spinel lherzolite, Victoria, Australia; Frey and Green, 1974

.11 spinel lhersolite, Dish Hill, California; Wilshire, 1971

12 spinel lherzolite, Dish Hill, California; Wilshire, 1971

13 spinel lherzolite, Fen Alkaline Complex, Norway; Griffin, 1973

14 specimen 13000, kaersutite ' megacryst, Nunivak Island



TABLE 6-6

CR-AMPHIBOLES I

1

1013 10006 10016

44.54
0.38
13.42
0.00
2.85
4.13
17.68
0.11,
9.79
3.83
1.31

45.99
0.08
12.91
0.00
3.14
3.42

13.45
0.C7
9.07
4.79
0.92

46.75
0.11

11.51
0.00
2.55
3.29
19.C1
0.11
9.43
4.39
0.72

7429 AT-15 S-6

44.60
0.01
11.10
0.0)
2.21
2.72

20.30
0.19

11.00
3.24
1.34

45.50
0.01

11.10
0.00
1.67
3.18
20.00
0.06
10.6U
3.79
0.60

44.73
0.29

12.58
1.10
2.4 3
2.37
19.17
0.11
10.95
3.85
0.43

44.60
1.20

13.40
0.00
2.70
3.40
18.10
0.00
10.10
3.40
1.30

98.04 98.84 97.87 96.71 96.51 98.01 98.20

FORMULA UNITS ASSUMING

AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

6.336
0.041
2.250
0.000
0.321
0.4'91
3.748
0.0C13
1.492
1.056
0.238

6.449
0.0C8
2.134
0.000
0.348
0.401
3.856
0.008
1.363
1.302
0.165

23 OXYGENS

6.595
0.012
1.914
0.000
C.284
0.388
3.097
0.013
1.425
1.2C1
0.130

6.414
0.001
1.881
0.000
0.251
C.327
4.351
0.023
1.695
0.9C3
0.246

TOTAL

MG/MG+FE
NA/NA+K

15.986 16.035 15.959 16.093 16.030 15.968 15.882

0.884 0.906 0.911 0.930 0.918 0.935 0.905
0.816 3.888 3.9C3 0.786 0.906 0.932 0.799

UNLESS OTHERWISE SPECIFIED; TOTAL IRCA AS FEO

SPEC.

S102
T102
AL203
FE203
CR203
FED
MGO
MNO
CAO
NA20
K20

TOTAL

6.518
0.001
1.874
0.000
0.189
0.381
4.270
0.007
1.627
1.053
0.110

6.325
0.031
2.097
0.117
0.272
0.280
4.041
0.013
1.659
1.056
0.078

6.306
0.128
2.233
0.030
0.302
0.402
3.815
0.000
1.530
0.932
0.234



This explains why for a given silicon content, the Nunivak amphiboles

are anomalously alkali rich. Their silicon contents are significantly

lower than would be predicted by a combination of pargasite and richte-

rite. Figure 6-11 illustrates how the Nunivak amphiboles deviate to the

alkali-rich side of the pargasite-endenite tie-line. The shaded area is

the region in which Leake's classification predicts they would plot.

Because of these classification problems, the term Cr-amphibole will be

used in the following discussion.

The alkali contents of the Nunivak amphiboles are remarkably uniform

in any one specimen. There are, however, interesting variations in their

Cr, Mg, Al, and Si contents. Amphiboles which are in contact with their

core spinel intergrowths are strongly zoned. Figure 6-10 presents the

results of a microprobe traverse across such a grain in specimen 10016.

The pattern is one of increasing Al -and Cr but decreasing Si and Mg from

the grain margins to the core spinel. In another grain, with a less

regular, but more extreme zoning pattern, the Cr content ranged from a

low of 1.70 weight percent Cr203 at the amphibole margin to 3.85 weight

percent Cr203 adjacent to spinel. Amphiboles not in contact with their

core spinel are not chemically zoned and have Cr contents similar to

those of the margins of the zoned amphibole grains. In specimen 10013,

amphibole grains which appear stable, but contain no included spinel

exhibit larger Cr contents (2.85 weight percent Cr2 0 3) than amphiboles

which appear to be decomposing (2.18 weight percent Cr203). In specimen

10006, however, a partially decomposed amphibole grain witi no associated

relict spinel contains only 1.49 weight percent Cr 203 while a nearby
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amphibole remnant in a fine-grained, glass-bearing zone about an inter-

growth of relict spinel and phlogopite contains 3.14 weight percent

Cr2 03

b) Comparison with other Lherzolite Amphiboles

Analyses #4 through #13 (Tables 6-6 and 6-7) represent selected

interstitial, Cr-amphiboles reported in lherzolite nodules. In his re-

view of possible mantle derived amphiboles, Best (1974) has noted that

these interstitial amphiboles are characterized by lower K, Fe, Al, and

especially Ti; but higher Cr and Mg when compared to poikilitic, vein,

or megacryst amphiboles. A comparison of the above analyses with analy-

sis #14, a kaersutite megacryst from Nunivak Island, emphasizes these

differences.

Analyses in Table 6-6 are closest in composition to those of the

interstitial amphiboles of Nunivak Island. They differ from those

listed in Table 6-7 in having higher Na, K, and Cr contents, but lower

Ca, Ti, and Al contents. Wilshire (1971) has shown that the reaction of

interstitial amphibole with basanite magmas produces secondary kaersuti-

tic amphibole enriched in K, Ti, and Al. This process cannot explain the

differences between the analyses of Table 6-6 and 6-7 because of the con-

trary behavior of K and Ti. Figure 6-11 is a plot of tetrahedrally

coordinated aluminum versus total alkalies first used by Deer et al.

(1964). It illustrates the differences between the analyses of Tables

6-6 and 6-7.

An important characteristic of the amphiboles in Table 6-6 is their

textural relationships to spinel. Amphiboles #4 and #5 occur as eutectic-



TABLE 6-7

CR-APFbIRCLES

8 9 10 11 12 13 14

2313 2314 2642 BAI-52 BAl-52 1 13000

42.40
1.00

15.70
0.00
C.48
4.30
19.20
0.09
11.90
3.10

43. 10
1.00

15.40
0.00
C.48
4.30

17.8
0.09
11.90
2.60

45.19
1.28

15.43
1.27
0.97
2.04
17.98
0.03
10011
3.47

44.20
0.9C

15.60
.0.00
1. 10
5. 3C

18. CG
0.10

110 50
3.C0

44.50
1.40

15. 10
0.0C
1.10
5.50

18.30
0.10
11. 5C
3.10

43.51
0.49
14.74
0.00
1.07
4.00
19.18
0.09
10.70
3.93

39.89
5.13

13.93
0.00
0.00
14.33
10.45
0.13
9.75
2.81

C.07 C.07 0.04 0.50 0.30 0.19 1.95

SPEC.

S102
T102
AL2C3
FE2C3
CR2C3
FEC
MGO
MNO
CAO
NA2C
K2C

TC7AL 97.81 100.40 100.90 97.90 98.37

FORPULA UNITS ASSUMING

SI

AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

70TAL

5.993
C. 106
2.615
0.030
C.054
0.508
4.C45
0,011
1.802
C.850
0.013

6.156
0. 1C7
2. 593
0 .000
0.0
0.514
3.7 0
0.011
1.821
C.720
0.013

23 OXYGENS

6 .302
0.134
2.536
0.133
0. 1C7
0.238
3.738
0.004
1.511
0.938
0.007

6.128
C.C94
2.562
0 .CCC
0.121
0.615
3.720
0. C 12
1.7C8
c.8C6
0.CE8

6. 144
0.145
2.457
0.000
0. 120
0.635
3.766
0.012
1.701
C.83G
0.053

6.159
0.052
2.459
0.000
0.120
0.474
4.C47
0.011
1.623
1.079
0.034

5 .950
0.575
2.449
C.000
0.000
1.787
2.323
0.016
1.558
0.813
0.371

15.997 15.779 159648 15.814 15.863 16.056 15.842

tG/PG+FE 0.888 0.881 0.940 0.858 0.856
KA/IAA+K C.985 C.983 0.992 C.SC1 0.940

0.895 0.565
0.969 0.687

KAERSLTITE

TOTAL IRCN AS FEC

98.24 96.74

LALESS OThERWISE SP FE C IF IE D;
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like intergrowths with Cr-spinel in harzbur;;ites from South African

kimberlite pipes (Smith, 1973; Boyd, 1971). Amphiboles #6 and #7 are

found in lherzolites whose only spinel is found with glass and clino-

pyroxene as the breakdown products of the amphibole (Varne, 1968; Best,

1974). The close relationship between the Nunivak amphiboles and spinel

has been documented in Chapter 5. In all of these examples, there is an

absence of interstitial spinel.1 Amphibole #13 of Table 6-7 is textu-

rally similar to those of Nunivak Island in that it surrounds corroded

brown spinels in lherzolites from the Fen alkaline complex, Norway

(Griffin, 1973). Though this amphibole is considerably lower in Cr and

K than the Nunivak amphiboles, it is chemically transitional between the

amphiboles of Tables 6-6 and 6-7.

In summary, the amphiboles of the Nunivak lherzolites appear to

belong to a chemically distictive group of Cr-bearing, interstitial am-

phiboles which tend to occur in xenoliths which lack interstitial spinel.

Spinel, when present, is either intimately associated with the amphibole

or secondary after the breakdown of the amphibole. These amphiboles

differ from other interstitial amphiboles in having relatively higher

contents of Cr, K, and Na; but distictly lower values of Al and Ti.

VII Lherzolite Micas

The red--brown mica commonly found between amphibole and its core

1One lherzolite recently returned from Nunivak Island contains both
interstitial spinel and amphibole without core spinel.



spinel in the amphibole lherzolites is a chromium and sodium-bearing

member of the phlogopite (K,Na)2 (Mg,Fe)6 (Si 6Al2)020 (OH) - eastonite

(K,Na)2 (Mg,Fe)5 (CrAl)(Si5Al3 )020 (OH)4 solid solution series (Table 6-8).

Chromium and excess aluminum substitute for magnesium and iron in octa-

hedral coordination. There appears to be an X cation deficiency, how-

ever, this may be accounted for by elements such as Ba, Rb, or Cs which

were not analyzed. These phlogopites characteristically have Mg numbers

which are slightly higher than their associated amphiboles (Table 6-8).

In other respects the chemistry of a mica closely.parallels that of the

amphibole with which it coexists.

Occasionally a thin vein of phlogopite is found cutting a lherzolite

nodule. This mica tends to be richer in titanium and poorer in chromium

than the interstitial phlogopite (Table 6-8).

VIII Lherzolite Glasses

Three chemically distinct varieties of glasses can be recognized in

the Nunivak lherzolites. Each has its own characteristic mode of

occurrence:

1. Glasses with Na/Na + K greater than 0.90 are along the

margins of Na-rich clinopyroxenes.

2. Glasses with Na/Na + K less than 0.60 are associated with

phlogopite, clinopyroxene, olivine, spinel intergrowths.

3. Glasses with Na/Na + K greater than 0.69 and less than

0.86 are in the fine-grained zones.



TABLE 6-8

LHERZOLITE P-iLOGOPITES

IN VEINS ** WITH AMPHIBCLE

MD3-1 10051 10006 10013 10013 10016

. 39.24
1.14
18.47
0.00
1.12
3.82

22.95
0.05
0.00
0.47

10.21

39.38
2.91

15.69
0.0c
0.48
4.26

21.99
0.06
3.03
1.08
9.00

38.31
0.14

16.72
0.00
2.48
3.75

23.53
C.C5
0.00
0.82
9.19

. 38-.53
0.43

17.62
0 )0
1.93
4.13

22.78
0.C5
0.00
0.92
8.60

38.68
0.48
17.47
0.00
2.11
3.88

23.14
0.05
0.01
0.99
8.49

39.91
0.20
17.75
0.30
2.17
3.43

23.76
0.05
0.00
1.47
7.30

97.47 94.88

FORMULA UNITS ASSUMING

94.99 94.99 95.30 96.04

22 OXNGENS

5.444
0.119
3.020
0.000
0.123
0.443

5.602
0.311
2.631
0.000
0.054
0.507

5.464
0.015
'2.811
0.000
0.280
0.447

5.473
0.046
2.948
0.00 I~
0.217
C.490

4.745 4.663 5.003 4.820
0.0Cr6 0.0C7 0.0G6 0.006
0.000 0.C05 0.00 0.COO
0.126 0.298 0.227 0.253
1.807 1.633 1.672 1.557

15.833 15.710 15.925 15.807

MG/MG+FE 0.915 0.902 0.91 C.9C9
NA/NA+K 0.065 0.154 0.119 0.140

MG/MG+FE AMPH: .9C6 .884

UNLESS OTHERWISE SPECIFIEC; TOTAL IR
92

5.468
0.C51
2.911
0.000
0.236
0.459
4.76
0.006
0.002
C.271
1.531

5.540
0.021
2.904
0.000
0.238
0.398
4.916
0.006
0.000
0.396
1.293

15.809 15.712

0.914 0.925
0.151 0.234

.890 .911

CN AS FEO

SPEC.

S102
TI02
AL203
FE203
CR203
FEO
MGO
MNO
CAO
NA20
K20

TOTAL

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

TOTAL

------- --------



a) High Sodium Glasses

High Na glasses are found lining the boundaries of, or as irregular

patches within, the margins of Na-rich clinopyroxenes. In the latter

case, rims of Na-poor clinopyroxene are developed with the glass on the

original clinopyroxene grains. The majority of these glass patches were

too small to analyse with the microprobe. The few good analyses that

were obtained are listed in Table 6-9.

The analysis from specimen 10211 may be misleading. If formula

units are calculated on the basis of 8 oxygens, the result closely re-

sembles the stoichiometry of a feldspar with the cations totalling 5.04.

In section Vc of this chapter it was found that the relative chemistries

of the clinopyroxene interiors and rims are incompatible with a partial

melting origin for the latter. Thus the low reflectivity material (in this

specimen), which was interpreted to be glass, may be plagioclase with a

labradorite composition (An 54.6, Ab 43.4, Or 2.0). The compositions of

the low reflectivity material from the other two specimens support the

petrographic interpretation.that they are glasses produced by the incon-

gruent melting of Na-rich clinopyroxene.

The compositions of the clinopyroxene interiors of specimens 10006

and 10211 were calculated from the compositions of their rims and

associated glass (plagioclase? in the case of the latter) using the

"mineral distribution program" of Wright and Doherty (1970). For both

specimens excellent matches were obtained for all oxides except Na20$

with the glasses representing 10.8 and 13.7 percent fractionation of the

clinopyroxene interiors respectively. In each case the calculated clino-

pyroxenes were 1.04 weight percent low in Nla 20 when compared to the

93



TAeLE 6-9

HIGH SOCIUV GLASSES ANC HIGH POTASSIU? GLASSES

HI-NA HI-NA HI-NA HI-K HI-K HI-K

10211 10025 1CCC6 1CC17 1C017

53.73
0.05

28.24
0.C0
0.02
0.53
0.15
0.01

11.37
4. c9

g;7.56
0.53

23.07
0.00
0.C0
1.10

2.19
0.02
6.26
7.55

59.80
0.01

29.63
C.C0
C .C0
0.27
C.30
C.c0
1.09
9.17

55.26
1.94

18.51
0.00
C..16
7.12
3.15
C.15
5.57
3.04

54.88
1.33

19.87
0.00
0.13
5.41
3.18
0.10
5.76
3.69

HI-K

2640 2640

64.
2.

18.
0.
0.
1.
1.
0.
3.
3.

66.20
1.50

18.30
0.00
0.00
1.20
1.50
0.C0
1.50
3.80

SPEC.

S IC2
TIC2
AL203
FE203
CR203
FEC
MGO
MNC
CAC
NA20
K20

TOTAL

FCRPULA UNITS ASSUMING 1C OXYGENS

3.063
0.002
1.897
0.0CC
C.001
0.025
0.013
0.0C0
0.695
C.552
C.026

3.280
0.023
1.549
C.000
0.c00
0.052
C.186
0.cOL
0.382
C.834
0.064

3.263
0.000
1.906
0.CC0 0
C.CCO
0.C12
0.024
0.C 00
0.064
0.970
0.C58

3.279
0.087
1.294
0.000
0.C08
0.353
0.279
0 .C 08
0.354
0.350
0.297

3.251
0.059
1.387
0.000
0.006
0.268
0.281
C.C05
0.366
0.424
0.318

621
084
218
000
CCO
066
134
CCO
180
363
401

6.274 6.372 6.298 6.308 6.364 6.067 6.064

NA/NA+K 0.955 0.929 0.944 0.540 0.571 0.475 0.490

FREY FREY '74

UNLESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC

0.36 0.88 C.83 3.93 4.21 5.60 6.00

99.45 99.16 101.10 98.83 98.56 99.83 100.00

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

TOTAL

3.691
0.C63
1.202
0.000
0.CCO
0.056
0.125
0.cC0
0.090
0.411
0.427



analysed clinopyroxene interiors. This.may indicate that some Na has

been lost from the system.

The calculated K 20 contents for the clinopyroxene interiors of

specimens 10006 and 10211 are 0.09 and 0.05 weight percent respectively.

Analyses of the clinopyroxene interiors rarely exceeded 0.01 weight per-

cent K20. The accuracy of this figure is debatable, however, because the

standard used was orthoclase with 12 weight percent potassium. Erlank

(1973) states that the potassium concentration in clinopyroxene ranges

from less than 0.03 weight percent K 20 in chromian diopsides to 0.06

weight percent in sub-calcic diopsides from sheared garnet lherzolites.

It is apparent that the potassium contents calculated for the clinopyro-

xene interiors are too high. If this discrepancy is significant, the

glass (plagioclase? in the case of specimen of 10211) may contain more

potassium than can be derived from clinopyroxene. It is unlikely that

this excess potassium could be supplied by other anhydrous phases in the

nodules because they typically contain less than 30 ppm potassium (Erlank,

1973). Amphibole or mica may be the source of excess potassium in speci-

men 10006. Alternative possibilities are that this excess potassium was

preferentially leached from the interiors of the clinopyroxenes or that

it was introduced from the alkalic magma which carried these xenoliths.

b) High Potassium Glasses

High K glasses are found in specimen 10017 developed around inter-

growths of phlogopite, clinopyroxene, olivine, and spinel. Table 6-9

presents the compositions of two such glasses. 'Also in this Table are

the compositions of two glasses coexisting with phlogopite in specimen



2640 of the Victorian lherzolite suite .(Frev and Green, 1974). These

glasses are characterized by low Na/Na + K ratios and relatively low con-

centrations of calcium and aluminum with respect to other glasses found

in the Nunivak lherzolites. The Victorian glasses are more extreme in

these characteristics, probably because they are derived from phlogopite

not intimately associated with clinopyroxene.

c) Glasses in Fine-Grained Zones

Analyses of glasses from the fine-grained zones of seven lherzo-

lites are listed in Table 6-10. Despite the ubiquitous quench textures

exhibited by the fine-grain zones, these glasses are remarkably homo-

genous within their zones. In individual fine-grained zones, silicon

analyses exhibited the greatest variability, with standard deviations in

each of the seven specimens averaging 0.71 weight percent SiO2 , The

highest standard deviation observed was 1.24 weight percent SiO2 for 5

glass analyses from specimen 10002.

The compositions of the glasses from the seven different specimens

are remarkably similar. The relative proportions of Ca, Na, and K for

these glasses are plotted with those of other glasses in Figure 6-12.

The glasses from the fine-grained zones define a distinctive group adja-

cent to the compositions of the Cr-bearing amphiboles. These glasses

differ significantly from the high potassium glasses associated with

phlogopite and are more potassium-rich than the glasses developed from

clinopyroxene.

It is seen in Figure 6-12 that the glasses of the fine-grained zones

can be derived (at least in terms of their Na, Ca, and K contents) by



TABLE 6-10

GLASSES IN FINE-GRAINED ZCNES

SPINEL SPINEL SPINEL SPINEL

10013 10001 10046 10045 10002 10003 10010

52.32
0.51
23.44
0.00
0.11
4.01
3.98
0.09,
8.02
4.29
2.92

52.90
1.32

22.29
0.00
0.05
3.78
4.30
0.06
9.11
3.94
2.00

53.11
C.38

22.53
0.00
C.C9
3.06
4.69
0.07

5.30
1.33

55.19
C. 14
21.25
0.00
0.15
3.37
4.46
0.09
8.50
4.39
1.93

55.61
0.18
23.84
0.00
0.1'5
3.37
4*00
0.03
7.46
3.45
1.42

57.79
0.29

23.94
0 *10
0.13
2.72
2.84
0.06
6.44
3.C9
1.23

58.99
0.16

20.87
0.00
0.09
2.77
3.60
0.07
6.58
4.57
2.10

99.69 99.75 100.51 99.44 99.51 98.53 99.80

FORMULA UNITS ASSUMING 10 OXYGENS

3.061 3.080
0.022 0.058
1.616 1.530
0.000 0.0co
0.005 0.002
0.196 0.184
0.347 0.373
0.004 3.003
0.503 0.568
0.487 0.445

3.070
0.017
1.535
0.0C0
S.0 C 4

0.148
0.404
C.0C3
0.616
0.594

3.200
0.006
1.452
0.000
0.007
0.163
0.385
0.004
0.528
0.494

0.218 0.149 0.098 0.141

6.459 6.392 6.490 6.381

3.180
0.008
1.607
0.000
0.007
0.161
0.341
0.001
0.457
0.383
0.104

3.289
0.012
1.606
0.000
0.006
0.129
0.241
0.003
0.393
0.341
0.089

3.356
0.007
1.399
0.000
0.004
0.132
0.305
0.003
0.401
0.504
0.152

6.248 6.108 6.264

MG/MG+FE
NA/N'A+K

0.639 0.670 0.732 0.702 0.679 0.650 0.698
0.691 0.750 0.858 0.778 0.787 0.792 0.768

UNLESS- OTHERWISE SPECIFIEC; TCTAL

AMPHWITH:

SPEC.

S102
T102
AL203
FE20 3
CR203
FEO
MGO
MNO
CAO
NA20
K20

TOTAL

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA

TOTAL

IRCN AS FEO



Ca

Amphibole
Quench Cpx
Glass with amph
Glass
Glass (Frey '74)
Xyllized Glass
Glass? in Cpx
Cpx
Rim Cpx

LHERZOLITE GLASS

~i

AQ
9

au---a U
Na

0

0

A
A

e

* Mica
* Mica (Frey '74)
@ Glass with mica

and Cpx U
A Anorthoclase

Basalts

K .



removing the euhedral clinopyroxenes from liquids similar in composition

to the Cr-bearing amphiboles. On the other hand, it is impossible to re-

produce the Na, Ca, K proportions of these glasses by melting either

interstitial clinopyroxene or phlogopite alone. Other phases such as

garnet, orthopyroxene, or olivine will not affect these conclusions be-

cause they have negligible alkali contents. The possibility remains,

however, that some combination of clinopyroxene and phlogopite can pro-

duce glasses similar in composition to those of the fine-grained zones.

This subject will be dealt with at length in a following section. The

compositions of selected glasses from specimens 2700 and 2669 of the

Victorian lherzolite suite (Frey, 1974) are also plotted in Figure 6-12.

They are less Ca and K-rich than the glasses in the fine-grained zones

of the Nunivak lherzolites, but significantly more K-rich than the

glasses derived from interstitial clinopyroxenes. It is also possible to

derive these glasses by removing a Na-poor clinopyroxene from a melt

similar in composition to the Nunivak amphiboles.

The glass from specimen 10013 coexists with a partially decomposed

amphibole. In Figure 6-12 this glass is joined by tie-lines to the com-

positions of its associated amphibole and euhedral clinopyroxene. The

composition of glass 10013 is slightly more K-rich than would be pre-

dicted by simply removing the euhedral clinopyroxenes from a melt of the

amphibole's composition. Some process is required which will decrease

the Na/Na + K ratio of the glass. This process is not the preferential

removal of K from its associated amphibole because the K content of the

amphibole grains in specimen 10013 does not vary with the presence or

absence of glass.



The relative proportions of Ca, Na, and K observed in the Nunivak

basalts are remarkably similar to those of the glasses of the fine-

grained zones and interstitial amphibole of the lherzolite xenoliths

(Figure 6-12). Inferences about the significance of this correlation

will be deferred until Chapter 8.

d) C.I.P.W. Norms of Glasses in Fine-Grained Zones

The normative mineralogy of the seven analysed glasses from fine-

grained zones are presented in Table 6-11. Glasses from nodules 10013,

10001, and 10046 are nepheline normative while those from nodules 10010,

10002, and 10003 are quartz normative. Glass 10045 is both olivine and

hyperstene normative. These relationships are illustrated in Figure

6-13. This Figure is a projection from the diopside apex of a modified

basalt tetrahedron. The end-member "Feldspar" accounts for both ortho-

clase and plagioclase.

It is impossible to explain the spread in the normative mineralogy

of these glasses in terms of the compositions of the euhedral crystals

included in them. There has been some suggestion in the data presented

in the preceding sections that the lherzolites have not been closed

systems with respect to sodium. The occurrence of normative corundum in

the norms of two of the most quartz normative glasses suggests that they

are sodium deficient. To test this possibility, the norms of the non-

nepheline normative glasses were recalculated after successive amounts

of Na20 had been added to them. The results of these calculations are

illustrated in Figure 6-13. Except for the glass of specimen 10003, the

addition of 1 to 2 weight percent Na20 is sufficient to render all these

100
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Table 6-11

C.I.P.W. Normative Mineralogy of Fine-Grained Zone Glasses

10013 10001 10046 10045 10002 10003 10010

17.309

25.338

6.001

1.554

.892

.593

6.343

4.650

.163

.972

11.849

32.031

.755

3.335

2.146

.968

6.020

2.992

.074

2.514

7.820

29.232

8.336

6.483

4.218

1.821

5.189

2.470

.132

.718

11.291

37.356

3.991

3.654

1.972

5.268

3.133

.223

.268

5.540

3.080

8.432

29.336

10.011

5.846

.222

.344

15.246

5.904

7.377

26.537

7.179

4.582

.195

.559

3.214

12.435

38.748

1.010

8.984

4.885

.133

.305
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glasses nepheline normative. The resultant clustering of the normative

compositions of all the glasses after the selective application of this

"sodium fudge factor" is impressive.

e) Crystallized Glass

In a few specimens the fine-grained, glass-bearing zones are

characterized by an unusually high ratio of euhedral crystals to glass

(low reflectivity material). In transmitted light, under crossed nicols,

the glass (?) areas appear to be microcrystalline. Compositions of this

material resemble alkali feldspar, but are extremely heterogenous. Na/

Na + K ratios range from more than 0.9 to 0.3 in one fine-grained zone.

Table 6-12 lists some representative compositions from one such zone in

contact with partially decomposed amphibole in specimen 10006. The poor

quality of the analyses is due to the minute scale of the low ref lec-

tivity patches. These analyses, with others, have been plotted in

Figure 6-12 along with an analysis of an anorthoclase megacryst. The

similarity between the average of the analyses in Table 6-12 and the

composition of the anorthoclase megacryst is striking.

The crystallized glasses are thought to have been produced by the

extensive removal of clinopyroxene, olivine, and spinel from liquids

produced by the melting of interstitial amphibole. The residual liquid

formed by this process was essentially alkali feldspar in composition

and crystallized in the sub-solvus region of anorthoclase. If residual

liquids of this composition are immiscible in basaltic melts, then they

may be involved in the formation of anorthoclase megacrysts.
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TABLE 6-12

CRYSTALLIZED GLASSES FRCV SPECIMEN 10006

10006 10006 100C6 10006 10006 10006

65.92
0.34
20.12
0.00
0.07
0.59
0.33
0.00,
0.40
2.16
7.63

66.23
0.40

23.62
0.00
0.03
0.76
0.51
0.00
0.59
5.84
2.37

62.C1
0.10

25.34
0.00
0.06
0.29
C.21
0.00
0.12
9.77
0.90

59.69
0.10

25.34
0.00
0.00
0.39
0.27
0.00
2.'73
5.54
4.50

63.53
0.05

30.11
0.00
G. 14
0.23
C.3C
0.00
0.17
8.43
0.60

66.46
0.21

23.62
0.00
0.07
0.58
0.29
0.00
1.34
5.09
4.32

SPEC.

S102
T102
AL203
FE203
CR203
FEO
MGO
MNO
CAO
NA20
K20

TOTAL

FORMULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

2.990
0.012
1.076
0.000
0.003
0.022
0.022
0.000

0.19C
0.441

- TOTAL

. 2.879
0.013
1.210
0.000
0.001
0.028
0.033
0.000
0.027
0.492
0.131

8. OXYGENS

2.760
0.*0)C3
1.329
0.000
C.0C2
0.011
0.014
0.0C0
0.0C6
C.843
0 .051

2.710
0.003
1.356
0.000
0.000
0.015
0.013
0.000
0.133
0.488
0.261

2.676
0.002
1.495
0.000
0.005
0.008
0.C19
0.000
0.008
J.689
0.032

2.872
0.007
1.203
0.000
0.002
0.021
0.019
0.000
0.062
0.426
0.238

4.775 4.815 5.019 4.983 4.933 4.851

NA/NA+K 0.301 0.789 0.943 0.652 0.955 0.642

UNLESS OTHFPWISE SPECIFIED; TOTAL IRCN AS FEO
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f) Origin of Glass in Fine-Grained Zones

On the basis of mineralogy, textural relationships, and the relative

proportions of Na, Ca, and K, the fine-grained, glass-bearing zones are

inferred to have been produced by the melting of interstitial, Cr-

bearing amphibole. In order to quantify this argument, the "mineral

distribution program" of Wright and Doherty (1970) was used to evaluate

a number.of potential parent assemblages for the fine-grained zones.

This program calculates, by a least squares technique, the relative pro-

portions of the phases present in a fine-grained zone required to match

the composition of a proposed parent assemblage. The most likely candi-

date is assumed to be the one whQse composition is most closely matched

by a combination of the secondary phases in proportions which are com-

.patible with the observed mode of the fine-grained zone. Two sets of

calculations were made, one for a fine-grained zone without relict spinel

(10010) and one for a zone with relict spinel (10002).

The following candidates were evaluated as parental assemblages for

the fine-grained zone of specimen 10010:

amphibole

amphibole + olivine

amphibole + clinopyroxene

amphibole + olivine + clinopyroxene

clinopyroxene

clinopyroxene + olivine

phlogopite + clinopyroxene

phlogopite + clinopyroxene + olivine
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Table 6-13 lists the best solutions that were obtained for each of

the assemblags in order of increasing sum of residuals (absolute value

of the weight percent difference between an oxide's concentration in the

trial and calculated assemblages). No solution could be attained for

trial candidates not listed in Table 6-13a.

Of the parental candidates, assemblages of amphibole or amphibole

with minor olivine yield the best solutions. Not only are these solu-

tions characterized by the lowest residual totals, but the proportions

of secondary phases required are closest to those of the estimated mode.

A substantial portion of the total residuals is contributed by low values

for'Na 20 (residual Na 20 to 2.7 weight percent) in the calculated amphi-

boles. This is characteristic of all the amphibole solutions. For each

of the other oxides, except silica, the difference between the calculated

and trial amphibole compositions is less than one weight percent. SiO2

usually runs 1 to 1.3 weight percent higher in the calculated amphiboles

than the trial amphiboles. It should be noted that the proportion of

glass required in each of the amphibole solutions is higher than its

estimated modal abundance. The estimated modes, however, may not be very

accurate because of the small size of the fine-grained zones. In addi-

tion, 50 percentt of these zones consist of voids which may, in part,

represent lost glass.

The clinopyroxene solution is not only characterized by a signifi-

cantly higher residual sum, but requires relative proportions of the

secondary phases which are entirely inconsistent with the observed mode.

The solution for a mixture of clinopyroxene and phlogopite yields an: even

higher residual sum. Clinopyroxene and clinopyroxene plus phlogopite
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Table 6-13

a) Trial Parent Assemblages and Solutions for Specimen 10010

Fine-Grained /kssemblage cpx spin oliv glass

Mode 51 4 25 20

Trial Assemblage

amph 10006 + oliv(9.29)

amph 10006

amph 10016 + oliv(4.40)

amph 10016

cpx

cpx(42.18) + phlog(57.82)

30.44

33.61

35.61

37.27

89.65

47.12

9.43

10.32

7.68

8.01

2.29

26.63

19.28

24.07

20.64

1.74

19.69

33.50

36.81

32.64

34.10

8.62

30.89

Total

Residuals

6.36

6.38

6.45

6.49

9.81

15.36

b) Trial Parent Assemblages and Solutions for Specimen 10002

Fine Grained Assemblage cpx spin oliv glass Total

Mode 49 8 24 19 Residuals

Trial Assemblage

amph 10006 + spin(1l.09) 27.64 17.17 19.29 35.91 6.99

amph 10006 + oliv(4.50) 32.18 6.39 24.88 36.55 7.26

amph 10006 33.71 6.65 21.45 38.19 7.29

amph 10016 37.35 4.29 22.91 35.48 7.33

amph 10013 36.91 8.79 18.58 35.74 7.75

cpx 94.36 - 3.07 2.59 12.88

cpx(59.03) + phlog(40.97) 45.23 - 23.18 31.58 15.62
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must thereforei be rejected as parents of the fine-grained, glass-bearing

zones.

The calculations for the fine-grained zone with relict spinel in

specimen 10002 are summarized in Table 6-13b. Again, amphibole or

amphibole with minor olivine are the most likely parents for the fine-

grained zones. The solution with the lowest residual sum, amphibole

plus aluminous spinel, appears less likely because of the large propor-

tions of glass and euhedral spinel required. The solutions for clino-

pyroxene or clinopyroxene plus phlogopite are worse than they were for

specimen 10010. The problem of sodium deficiency in the calculated

amphiboles is also encountered in the solutions for specimen 10002. This

deficiency accounts for almost half of the total residuals for each

amphibole solution.

Despite repeated efforts, no solution could be obtained which in-

volved the composition of the relict spinel found in the fine-grained

zone of specimen 10002. This suggests that this spinel was not formed

by the incongruent melting of amphibole, but was present as an inclusion

in the original amphibole. If this is true, the chemical zoning in these

relict spinels -(section IVc) is not the result of the melting process

but an artifact of the parent assemblage.

g) Conclusions on the Chemistry of Lherzolite Glasses

The glasses found in the fine-grained zones are chemically distinct

from those produced by the melting of clinopyroxene and phlogopite.

Except for sodium, the compositions of the glasses from these zones can

be derived by the removal of their euhedral crystal assemblage from a

melt similar in composition to the Nunivak Cr-bearing amphiboles. This
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supports the petrographic interpretation that the fine-grained, glass-

bearing zones are produced by the melting of interstitial, Cr-bearing

amphibole. Mathematical models of this process indicate that the relict

spinels commonly found in the fine-grained zones were not produced by

incongruent melting, but were originally inclusions in the amphibole.

Sodium appears to have been a mobile component during the melting process

and was,.in part, lost from the nodules, probably in fluids formed by the

amphibole's decomposition.

IX Summary and Conclusions on the Phase Chemistry of the

Lherzolite Xenoliths

a) Iddingsitized versus Fresh Xenoliths

The petrographic interpretation that the iddingsitized and fresh

lherzolites are distinct xenolith populations is supported by their phase

chemistry. These two suites are not mutually exclusive, however, and

their distinction lies in the relative proportions of the different

lherzolite textural types (Chapter 5) in each suite.

The spinels of the iddingsitized lherzolites have Cr/Cr + Al ratios

which range from .062 for the olive green variety to .322 for the darkest,

red-brown variety. The Cr/Cr +Al ratios of spinels of the four phase,

fresh lherzolites coincide with those of the red-brown spinels of the

iddingsitized suite, with a low value of .240. In the fresh lherzolite

suite, however, with the development of the fine-grained, glass-bearing

zones, the Cr/Cr + Al ratios of the spinels increase beyond the range of

the spinels in the iddingsitized lherzolites. The most chromian spinels
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(Cr/Cr + Al to .634) are those occurring as inclusions in the Cr-

bearing amphiboles.

The pyroxenes of the two lherzolite suites also exhibit divergent

chemical patterns. The four phase, fresh lherzolites and the iddingsi-

tized lherzolites with red-brown spinel are both characterized by clino-

pyroxenes with low contents of jadeite and calcium-tschermak components.

These chromian diopsides also have the highest Mg numbers exhibited by

any of the lherzolite clinopyroxenes. In the iddingsitized lherzolite

suite, as the chromium content of the spinels decrease, the proportions

of titanium, jadeite, and calcium-tschermak component increase in the

associated clinopyroxenes. There is a concomitant rise in the aluminum

content of the associated orthopyroxenes and a general decrease in the

Mg numbers of all phases except spinel. In contrast, as fine-grained,

glass-bearing zones appear in the fresh lherzolites, the jadeite compo-

nent of the interstitial clinopyroxenes increases at the expense of

calcium-tschermak substitution, while the aluminum content of the associ-

ated orthopyroxenes remains the same or decreases. The Mg numbers of

the phases of lherzolites containing glass or amphibole are generally

lower than those of the four phase, fresh lherzolites.

In Figures 6-14 and 6-15 a number of the chemical parameters sum-

marized in the foregoing paragraphs are plotted against the aluminum

content of orthopyroxene. It is apparent from these diagrams that the

four phase, fresh lherzolites are members of the spectrum of lherzolites

comprising the iddingsitized lherzolite suite. The distincuions between

the fresh and iddingsitized lherzolites are thus; 1) the restriction of

lherzolites with fine-grained, glass-bearing zones or amphibole to the
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former and 2) the high abundance of aluminous lherzolites with olive

green spinel :Ln the latter. The significance of iddingsite lies solely

in its restriction to nodules from splatter cones. Baker (1967) has

found iddings:.te of the type present in the Nunivak xenoliths to consist

of a mixture of goethite and smectite clay minerals. Using the experi-

mental work of Tunnel and Psonjak (1931) on the stability of goethite,

Baker concludes that iddingsite is formed by deuteric processes under

oxidizing conditions at temperatures below 140*C. In the Nunivak case,

this means that the iddingsite must have formed in the volcanic piles

after eruption. This interpretation is supported by the occurrence of

fresh lherzolites in alkalic flows associated with, or in localized

.pockets within, splatter cones. The conclusion, is therefore, that the

differences between the iddingsitized and fresh lherzolite suites are

correlated to the style of eruption, splatter cones or maars, which

brought the xenoliths to the surface. This conclusion conflicts with the

interpretation (Lorenz, 1973) that maars are simply the result of

meteoric water gaining access to the magma sources of cinder cones.

b) Amphibole-Bearing Lherzolites

The clinopyroxenes and spinels of the amphibole-bearing lherzolites

have been shown to be chemically distinct from those of both the idding-

sitized and fresh, four phase lherzolites. The interstitial clinopyro-

xenes-of the amphibole lherzolites are relatively rich in jadeite and

plot in the eclogite field of White (1964), as opposed to those of the

four phase lherzolites which fall in the granulite field. The amphibole

lherzolite clinopyroxenes contain the lowest degree of calcium-tschermak
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substitution cf any of the Nunivak lherzolite clinopyroxenes. The

spinels of the amphibole lherzolites, which occur largely as embayed in-

clusions in the amphibole, exhibit the highest Cr/Cr + Al and the lowest

Mg numbers fotnd in either of the- lherzolite suites.

The phases of the fresh lherzolites containing fine-grained, glass-

bearing zones show strong chemical affinities with those of the amphibole

lherzolites. Their clinopyroxenes, when fresh, also contain high propor-

tions of jadeite and low contents of calcium-tschermak component. The

majority of these clinopyroxenes fall in the eclogite field of White

(1964). Many of these clinopyroxenes, however, have developed a cloudy

alteration which is associated with a depletion in jadeite and an en-

-hancement in calcium-tschermak component. This alteration has the effect

.of shifting their compositions towards those of the four phase, fresh

lherzolites. The interstitial spinels of these lherzolites are invari-

ably surrounded by fine-grained, glass-bearing zones. These relict

spinels are chemically zoned with margins rich in chromium, similar in

composition to spinels included in amphibole, and aluminous cores, simi-

lar in composition to the spinels of the four phase, fresh lherzolites.

In addition to -the similarity of the clinopyroxenes and spinels between

the glass and amphibole bearing lherzolites, it has also been demon-

strated that the bulk composition of the fine-grained zones can be re-

calculated as a Cr-amphibole. All of the above characteristics support

the petrographic interpretation that these glass-bearing lherzolites were

originally amphibole-bearing lherzolites which have experienced partial

melting after entrainment by their host basanites. If this interpreta-

tion is correct, then 50% of the fresh lherzolites were originally

114



amphibole lherzolites. Best (1974) has reached a remarkably similar

conclusion abcut a suite of lherzolites found in the western Grand

Canyon.

The nature and origin of the amphibole-bearing lherzolites is intri-

guing. Their predominance in the maars, whose xenolith population has

the highest ratio of lherzolites to feldspathic xenoliths (Table 4-1),

and the j.adeitic nature of their clinopyroxenes suggests that they are

derived from relatively deeper levels than the four phase lherzolites of

both the fresh and iddingsitized suites. The chemical zoning found in

the core spinels and their host amphiboles could not survive for any

length of time under the pressure-temperature conditions of the upper

mantle. This suggests that the amphibole-spinel intergrowths may be

.recent features, possibly formed during the early stages of igneous

activity beneath Nunivak Island. This topic will be dealt with at length

in Chapter 8.

c) Origin of the Chemical Variations in the Lherzolite Phases

The origin(s) of the variations in the lherzolite phase chemistry

are intimately tied to the origin of the lherzolites themselves. Lherzo-

lites have been generally accepted to be fragments of the upper mantle.

White (1966), Wilshire and Binns (1961), and Ross et al. (1954) have re-

viewed the general arguments for this conclusion which apply equally well

to the Nunivak lherzolites. O'Hara (1963,1968,1973) has pointed out,

however, that few of these arguments are definitive and postulates that

lherzolites represent a high-pressure, cummulate assemblage from alkalic

basalts. With these alternatives in mind, three possible origins will be
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examined for the chemical variations documented in the phases of the

Nunivak lherzolites:

1. Varying degrees of fractional crystallization from a common

parent liquid.

2. Varying degrees of melting of a common, upper mantle, parent

solid.

3. Relicts of variations found in the upper mantle reflecting

metamorphic equilibrium under varying P-T conditions and/or

bulk composition.

1. The first possibility appears the least likely. For any reasonable

distribution coefficients, the degree of crystallization required to

produce the range of Ti values observed in the lherzolite clinopyroxenes

(Figures 6-15 and 6-8) must produce an even larger variation in their Cr

contents. This phenomena is not observed (Figure 6-15). In addition,

studies of spinel cumulate horizons in the Stillwater Complex, Montana

(Jackson, 1969), the Greak Dyke of Southern Rhodesia (Ebrst, 1958), and

the Bushveld Complex, South Africa (Wager and Brown, 1968) reveal that

Cr/Cr + Al and Mg/Mg + Fe ratios decrease in spinel as crystallization

proceeds. Such a trend, however, is perpendicular to that exhibited by

the spinel population of the Nunivak lherzolites (Figures 6-14, 6-2, and

6-3). These considerations virtually rule out the possibility that the

Nunivak lherzolites are cumulates from their host basalts.

2. * The case for the role of melting in the origin of the chemical

variations in the lherzolite phases is less clear. Despite the limita-

tions of treating Cr and Ti as trace elements, it will be qualitatively

useful to use these elements to evaluate partial and fractional melting
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processes. Using an equilibrium melting model, over 60% partial fusion

is required to produce the Ti variation observed in the lherzolite

clinopyroxenes assuming a distribution coefficient of 20 (K = conc. Ti

in melt/conc. Ti in crystal). This would result, however, in more than .a

100% increase in the Cr content of the residual clinopyroxene assuming

a Cr distribution coefficient of 0.1. This increase is not observed

(Figure 6-15). A fractional melting model (Gast, 1968) will more closely

match the observed variations in the lherzolite clinopyroxenes. Assuming

the same distribution coefficients-, approximately -13% melting is required

to produce the range of Ti values. This will be accompanied by a 13%

increase in the Cr content of the clinopyroxene. If the distribution

coefficient for Ti is reduced to 10, then 25% melting is required and

the Cr content of the residue will increase by 30%. Such Cr increases,

though not apparent in Figure 6-15, may be obscured in the scatter in

the clinopyroxene Cr analyses.

The Mg/Mg + Fe and Cr/Cr + Al variations in the lherzolite spinels

cannot be explained solely by partial melting. On the basis of thermo-

dynamic (section IVb) and crystal chemical considerations, as melting

proceeds the spinels must become enriched in Mg and Cr at the expense of

Fe and Al. This enrichment trend is perpendicular to that observed in

the lherzolite spinels (Figures 6-2, 6-3 and 6-14). Therefore the varia-

tion in the chemistry of the lherzolite spinels cannot reflect equili-

bration with a liquid over varying degrees of partial melting. Partial

melting in the past, however, cannot be ruied out. For example, for

small degrees of melting, one would expect the Mg number of lherzolite

olivine to be virtually unchanged. As cooling occurs after melting, the
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Mg/Mg + Fe ratio of the spinel will decrease, buffered by its associated

olivine. The spinel is, however, considerably more Cr-rich than before

the melting took place. Since spinel is the main storage place for Cr

in lherzolite assemblages, the Cr/Cr + Al of the spinel will remain

fairly constant during cooling. If the lherzolite assemblage re-

equilibrates to the P-T conditions it experienced before melting took

place, its spinel must become more Fe-rich than it was before melting

(Figures 6-2 and 6-3). Thus, the result of partial melting followed by

cooling and re-equilibration will be a spinel relatively enriched in Fe

and Cr at the expense of Mg and Al. This is precisely the trend that is

observed in the spinels of the Nunivak lherzolites.

The differences between the clinopyroxenes of the amphibole lherzo-

lites and the four phase, fresh lherzolites cannot be bridged by partial

melting. Although incipient (10%) melting of the jadeite-rich clino-

pyroxenes does produce residual rims similar in composition to the clino-

pyroxenes of the four phase, fresh lherzolites, this process is accom-

panied by a sharp rise in the clinopyroxene's Cr content (section Vd).

Yet the jadeite-rich clinopyroxenes of the amphibole lherzolites often

contain more Cr than the more magnesian clinopyroxenes of the four

phase, fresh lherzolites. Similarly partial melting of the Cr-rich

spinels of the amphibole lherzolites could not produce the more alumi-

nous spinels of the four phase lherzolites.

3. The proceeding arguments indicate that the variations in the phase

chemistry of the lherzolite xenoliths are not compatible with equilibra-

tion with a silicate liquid phase. Rather the nature of the spinels
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suggests that the trends observed in the lherzolite phases reflect meta-

morphic equilibrium in response to varying P-T conditions and/or bulk

composition. Although it is unlikely that fractional crystallization

has ever played a role in the lherzolite chemistry, the occurrence of

partial melting in the past cannot be ruled out. The Nunivak lherzolites

are therefore concluded to be accidental fragments whose chemical varia-

tions are relicts of those existing in the upper mantle.
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FELDSPATHIC AND DUNITE XENOLITHS

This chapter deals with xenoliths which, on the basis of mineralogi-

cal and chemical criteria, have been interpreted to have had a cumulate

origin. These include pyroxene granulites, dunites and harzburgites

whose olivines have Mg numbers less than 0.89. Petrographic investi-

gation has revealed that the gabbroic nodules are feldspar-rich end-

members of the pyroxene granulite xenolith suite.

I Pyroxene Granulites

Nodules belonging to this suite are metamorphic rocks exhibiting

corona structures developed around primary olivine and plagioclase. This

texture is so pervasive that olivine and plagioclase never coexist, but

are always separated by mantles of radially disposed orthopyroxene and

spinel-clinopyroxene symplectite. Hoare (1968) recognized that this

suite consists of a continuous spectrum of xenoliths ranging from plagio-

clase dominated specimens to olivine dominated specimens. Despite this

fact, it will be clearer for textural and mineralogical reasons to de-

scribe the typical end-members first and then proceed to the more common

intermediate examples. Many of these xenoliths contain textural evidence

for partial melting. For clarity, the following general descriptions

will be restricted to specimens which do not exhibit such textures and a

later section will deal with the textural modifications which are intro-

duced by partial melting.
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No consistent differences have been recognized between the idding-

sitized members of this suite found in splatter cones and the fresh mem-

bers occurring in the maars.

a) Olivine-Rich Pyroxene Granulites

The bulk of each of these nodules consists of a xenomorphic-granular

aggregate of .5 to 4 mm. olivine grains. Deformational banding and undu-

latory extinction are strongly developed in these olivine grains. Anhe-

dral, 1 to 3 mm. grains of clinopyroxene are sometimes present as an

accessory phase intergrown with the olivine. This pyroxene typically has

a turbid appearance due to the presence of numerous preferentially

oriented, colorless rods ranging from 1 to 10 microns in length and

approximately 1 micron in diameter. In reflected light these inclusions

have a characteristic high reflectivity and are thus probably spinel.

Interstitial, green spinel is also present as a few, .4 mm. embayed

grains.

This matrix contains oblate to irregular corona structures ranging

from .1 to 1 cm. in size. These structures frequently have a common

orientation, defining a foliation in the nodules. The outer layer of

these coronas, adjacent to the olivine matrix, consists of a .1 to 1 mm.

mantle of anhedral, but elongate, colorless orthopyroxene crystals dis-

posed perpendicularly to the contact. Inside the orthopyroxene mantle is

an oval body of spinel-clinopyroxene symplectite. Near the orthopyroxene

contact this symplectite consists of anhedral .01 to .04 mm. clinopyro-

xene intergrown with .01 or smaller, equant, green spinel. The interiors

of the symplectite bodies, however, consist of coarser grained (.1 to .6
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Plate 7-1 (top): Olivine-rich pyroxene granulite. Note iddingsite and

fine opaques in relict olivines.

Plate 7-2 (bcttom): Close up of corona structure of pyroxene granulite

with remnants of both olivine and plagioclase (dark grain).
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mm.), elongate.d and radially disposed clinopyroxene grains. Here the

spinel occurs as a vermicular intergrowth in the clinopyroxene. This

intergrowth is. developed on such a fine scale that, though it is diffi-

cult to find clear areas large enough to obtain a clinopyroxene analysis

with the microprobe, the individual spinel grains are not isotropic be-

cause they do not extend through the thickness of the thin section.

Spinel also occurs as chains of single, .01 to .05 mm., equant grains

lining the contact between the orthopyroxene mantle and the spinel-clino-

pyroxene symplectite and along the suture line of the radially disposed,

core clinopyroxene (Plate 7-1 and 7-2).

Occasionally an embayed and turbid plagioclase crystal is found at

.the center of the spinel-clinopyroxene symplectite. The turbidity is

caused by numerous, .004 to .02 mm., equant, but rounded inclusions of

spinel. This texture is pervasive, but appears to be crystallographi-

cally controlled. The plagioclase commonly exhibits both albite and

pericline twinning and has concentricly zoned extinction near its margin,

which is free of inclusions for a depth of about .01 mm. (Figure 7-2).

b) Feldspathic Pyroxene Granulites

The feldspar-rich granulites in many respects mirror the olivine

granulites. They consist largely of .2 to 3 mm., anhedral, interlocking

plagioclase with lessor amounts of similar clinopyroxene. In many slides

the plagioclase exhibits a hazy brown discoloration due to numerous

rounded inclusions on a 1 micron scale. In two slides the feldspar con-

tains networks of .01 to .03 mm., rounded to elongate inclusions of

spinel. The arrangement of strings of these grains into a network
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pattern suggests crystallographic control by their plagioclase host.

Interstitial clinopyroxene is also present, but typically finer grained

than the feldspar. The larger grains commonly exhibit fine orthopyroxene

lamellae. The appearance of these pyroxenes varies from very turbid

brown to clear, Cr-green in different slides. A couple of sections con-

tain .4 to 2 mm., anhedral crystals of olive green to brown amphibole.

In this matrix are frequent, .5 to 1+ mm., oblate corona structures.

The mineralogy of these bodies is the reverse of those described in the

section on olivine granulites. The outer mantle consists of a hazy tur-

bid brown (almost opaque) layer, .1 to .3 mm. in thickness. Rotation of

the microscope stage under crossed nicols reveals .01 to .2 mm., ghost-

like, radially disposed crystals. The turbidity appears to be caused by

a crytic intergrowth of spinel and clinopyroxene, much finer grained than

its counterpart in the olivine granulites. The inner margins of this

spinel-clinopyroxene symplectite is markedly more opaque than that co-

existing with the feldspar. This is interpreted to be due either to a

finer grain size or more intense spinel exsolution. The ghost-like

crystal outlines cannot be distinguished in this region.

Inside the spinel-clinopyroxene symplectite is colorless, pure

orthopyroxene. Its habit varies from radially disposed, .01 to .15 mm.,

elongated crystals to an aggregate of anhedral crystals. Occasionally

an embayed olivine crystal(s) occurs at the center of this orthopyroxene

core. In addition to being present in the symplectite, green spinel

again occurs as chains of .02 to .05 mm., equant crystals lining the con-

tact between the symplectite and the orthopyroxene.
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With increasing feldspar content, these feldspathic granulites

grade into rocks which are better termed gabbros. A careful search under

the microscope, however, usually detects a few, small, remnant corona

structures.

c) Intermediate Pyroxene Granulites

As the relative amounts of olivine and plagioclase become more com-

parable, the extent and grain size of the mantles of orthopyroxene and

spinel-clinopyroxene symplectite increase markedly. The overall granular

texture of the end-members is replaced by an intricate and spectacular

corona-reaction texture. In thin section these nodules consist of pods

of granular aggregates of olivine or feldspar mantled by radially dis-

posed orthopyroxene or spinel-clinopyroxene symplectite respectively.

These isolated, mantled pods are connected by double chains of radial

crystals of either orthopyroxene or symplectite, depending on which pre-

dominates in the slide, lending a network-like appearance to the entire

specimen.

As described in the section on olivine-rich granulites, the spinel-

clinopyroxene symplectite adjacent to the orthopyroxene bands is typi-

cally finer grained than usual and consists of a granular aggregate of

anhedral clinopyroxene and equant spinel. Further from the contact, the

clinopyroxene becomes coarser grained and elongate, while the spinel

occurs largely as wormy intergrowths in the clinopyroxene. These larger

clinopyroxene crystals, however, occasionally abut directly against the

orthopyroxene mantles. Here an unusual texture results. The half of

the clinopyroxene closest to the orthopyroxene is free of spinel inclu-
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sions. In plane polarized light the boundary of the orthopyroxene grains

appears to follow the edge of the spinel irclusions, which under crossed

nicols is seen to be well into the clinopyroxene crystal (Figure 7-2).

In other words, the apparent interface between the clinopyroxene and the

orthopyroxene as defined by crystal boundaries does not correspond to

that defined by the change in birefringence. Replacement of the ortho-

pyroxene by the clinopyroxene is suggested.

d) Melting and Retrograde Textures

In many thin sections, patches of the spinel-clinopyroxene symplec-

tite have been replaced by areas consisting of .01 to .4 mm., skeletal

olivine in a matrix of laths to anhedral grains of plagioclase (Figure

7-3). This texture is most commonly developed near the contacts with the

orthopyroxene mantles or adjacent to remnant plagioclase cores. In a

small number of specimens the entire symplectite has been replaced. The

orthopyroxene bands, themselves, do not appear to be affected. Equant

(.01 to .05 mm.) grains of dark green spinel and remnants of the symplec-

tite clinopyroxene are commonly found in these olivine-feldspar zones.

In the feldspathic granulites, zones similar to those just described

commonly separate primary clinopyroxene and amphibole from the coexisting

plagioclase. Those surrounding the amphibole contain considerable

amounts of clinopyroxene in addition to olivine and plagioclase.

Strangely, this clinopyroxene has an embayed appearance and contains

equant inclusions resembling the spinel found in the symplectite clino-

pyroxenes. These textures are interpreted to have been caused by partial

melting of the granulite nodules.
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Plate 7-3: Melt zone at the contact between orthopyroxene and symplectite

containing skeletal olivine with laths of plagioclase.
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Occasionally chains of .02 to .04 mm., equant, olivine grains are

found between the chains of equant spinel and the orthopyroxene mantles.

No trace of associated secondary plagioclase is found with these olivines.

This texture may be produced by the reaction of orthopyroxene + spinel to

more aluminous orthopyroxene + olivine with increasing temperature.

e) Cumulate Textures

Two of the intermediate granulite members (12014 and 12024) contain

unusually high concentrations of what is interpreted to be primary clino-

pyroxene (to 25%). This clinopyroxene occurs as turbid, intercumulous

grains ranging to greater than 1 cm. in size and poikiliticly encloses

olivine. The olivine occurs as rounded to euhedral .5 to 3 mm., cumulate

crystals. Plagioclase is also abundant, but tends to occur in separate

aggregates of anhedral 'grains. Where olivine and plagioclase do coincide,

reaction rims of spinel-clinopyroxene symplectite and orthopyroxene have

developed. The texture exhibited by the interstitial clinopyroxenes in

these specimens is textbook evidence for a cumulate origin.

II Phase Chemistry of the Pyroxene Granulites

The chemistry of the phases of four pyroxene granulite xenoliths was

studied in detail:

12000 A feldspar-rich granulite with only minor, remnant olivine.

12001 A granulite with approximately equal proportions of remnant

olivine and feldspar.

12004 An olivine-rich granulite with minor remnant feldspar. The
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olivine in this specimen is characterized by pervasive

iddingsitization and opaque precipitation.

12017 An olivine-rich granulite in which the spinel-clinopyroxene

symplectite has been largely replaced by quench olivine and

feldspar.

a) Olivines

The compositions of the interstitial olivines of these four nodules

are presented in Table 7-1. The forsterite content of the remnant oli-

vine from the feldspar-rich granulite (12000) is only 72% while those of

the fresh olivines in the feldspar-poor nodules (12001,12017) are approx-

imately 87%. The iddingsitized olivine of specimen 12004 is considerably

more magnesium rich. This probably reflects the loss of iron during the

development of its pervasive opaque inclusions. Despite efforts to de-

tect it, no chemical zoning was found in the olivines near their contacts

with the secondary orthopyroxene mantles.

The skeletal olivine developed with plagioclase in the spinel-clino-

pyroxene symplectites is characteristicly more magnesium-rich (Fo:90)

than its associated interstitial olivine. The compositions of the

skeletal olivines from specimen 12001 and 12017 are listed with those

of the interstitial olivines in Table 7-1. In addition to higher Mg

numbers, these skeletal olivines are also characterized by relatively

higher calcium contents than the interstitial olivines. This is in

accord with the conclusion based on textural arguments that these skele-

tal olivines are quench crystals associated with the partial melting of

the spinel-clinopyroxene symplectite (Simkin and Smith, 1970).
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TABLE 7-1

PYROXENE GRANULITE OLIVINES

INTER INTER

12000 12001

35.94
0.16
0.04
0.00
0.00

25.30
36.93
0.55,
0.07,
0.35
0.00

40.11
0.00
0.01
0.00
0.05
12.40
47.34
0.15
0.06-
0.00
0.00

INTER INTER QUENCH QUENCH

12004 12017 12001

40.31
0.00
0.02
0.00
0.02?
7.68

51.72
0.15
0.C4
0.00
0.00

40.50
0.00
0.04
0.03
0.00
12.81
47.75
0.17
0.04
C.02
0.01

40.22
0.00
0.29\
0.00
0.0'3
9.70

48.50
C.15
0.50
C.00
0.00

12017

40.70
0.00
0.29
0.00
0.08
9.02
49.48
0.17
0.32
0.00
0.00

TOTAL 99.34 100.12 99.S4 101.34 99.39 100.06

FORMULA UNITS ASSUMING 4 OXYGENS

SI 0.963 0.994 0.981 0.993 0.993 0.994
TI 0.003 0.000 0.000 0.000 0.000 0.000
AL 0.001 0.000 0.001 0.C01 0.008 0.008
FE3+ 0.000 0.000 0.000 0.000 0.000 0.000
CR 0.000 0.001 0.000 0.003 0.001 0.002
FE2+ 0.567 0.257 C.156 0.263 0.200 0.184
MG 1.475 1.749 1.876 1.745 1.784 1.801
MN 0.012 0.C03 C.3C3 0.CC4 0.003 0.004
CA 0.002 0.002 0.001 0.001 0.013 0.008
NA 0.018 0.000 C.OCO 0.001 0.000 0.000
K 0.000 0.0C 0.0co 0.000 0.0O 0.0)0

TOTAL

MG/MG+FE

3.042 3.005 3.019 3.0C7 3.003 3.001

0.722 0.872 0.923 0.869 0.899 0.907

UNLESS OTHFRWISE SPECIFIEC; TOTAL IRCN AS FE)
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b) Feldspars

Table 7-2 presents representative analyses for the interstitial or

remnant feldspar of the four pyroxene granulite nodules. The intersti-

tial plagioclase of the feldspar-rich granulite (12000) has a composition

of An 73.4. However, adjacent to areas of spinel-clinopyroxene symplec-

tite this feldspar becomes depleted in calcium. In the most extreme case

in this specimen, the composition of the feldspar is reduced to An 59.8.

In comparison, the remnant plagioclase of specimens 12001 and 12004 are

very albite-rich (An 23 to 26). These plagioclases appear to be chemi-

cally homogenous; their inclusion free rims being essentially identical

in composition to their cores. Since it is unlikely that the original

feldspar of these olivine-rich nodules would have anorthite contents 'less

than that of the feldspathic granulite (12000), it must be concluded that

the formation of the two pyroxene plus spinel assemblages depleted these

feldspars in calcium. In support of this conclusion, the secondary

plagioclase associated with quench olivine, which is interpreted to have

crystallized from liquid produced by the partial melting of symplectite,

is enriched in calcium (to An 80). Individual analyses of secondary

plagioclase in any one melt zone may exhibit a range of anorthite con-

tents of up to 8%. This may reflect chemical zoning in individual cry-

stals or lateral inhomogeneity. Because of the small grain-size of the

quench plagioclase crystals' this ambiguity could not be resolved.

c) Orthopyroxenes

Selected analyses of orthopyroxenes comprising the coronas developed

on primary olivine are presented in Table 7-3. One of the striking
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TABLE 7-2

PYROXENE GRANULITE FELOSPARS

PRIM RESIC RESID RESID RESID QUENCH QUENCH

12000 120C0 12001

47.91
0.00

33.57
0.00
0.00
C.0c
0.00
0.00,
15.41
3.05
0.05

52.01
0.08

30.26
0.00
0.37
0.11
0.04
0.02
13.28
4.17
0.07

61.78
C.3c

25.67
c. cc
0.00
C.00
0.00
0 * 00
5.17
7.95
C.39

12004 12004 12017 12000

61.17
0.00

23.85
c.00
0.02
0.18
0.08
0.02
5 .14
8.52
C .67

61.08
0.00

23.82
0.00
0.0'2
0.14
0.11
0.01
5.08
8.87
0.55

48.73
0.00

31.93
0.00
0.00
0.39
0.53
0.03
16.12
2.21
0.01

46.30
0.00

34.51
0.00
0.00
0.00
0.29
0.00
17.80
1.42
0.06

TOTAL 99.99 100.11 1OC.S6 99.65 99.68 99.95 100.38

FORMULA UNITS ASSUMING 8 OXYGENS

SI 2.194 2.361 2.7C9 2.734 2.730 2.234 2.122
TI 0.000 0.003 0.000 0.000 0.000 0.003 0.000
AL 1.812 1.619 1.327 1.256 1.255 1.726 1.864
FE3+ 0.000 0.000 0.000 0.003 0.000 0.000 0.000
CR 0.000 0.0C3 0.00CC .001 0.001 0.000 0.000
FE2+ 0.000 0.004 0.000 0.007 0.005 0.015 0.000
MG 0.000 0.003 0.000 0.005 0.007 0.036 0.020
MN 0.000 0.001 0.000 0.001 0.000 0.001 0.030
CA 0.756 0.646 0.243 0.246 0.243 0.792 0.874
NA 0.271 0.367 0.676 0.731 0.769 0.196 0.126
K 0.003 0.004 0.022 0.033 0.031 0.001 0.004

TOTAL

AN

5.036 5.011 4.76 5.026 5.042 5.001 5.010

73.4 63.5 25.8 24.1' 23.3 80.1 87.1

UNLESS OTHERWISE SPECIFIED; TOTAL IRCN AS FEO
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things about these analyses is the constant value of .88 for the Mg

numbers of the orthopyroxenes for the olivine-rich granulites. The mag-

nesium number for the orthopyroxene from the feldspathic granulite, how-

ever, is significantlyllower at .77. All of these values are signifi-

cantly lower than the lower bound of .90 for the Mg numbers of lherzolite

orthopyroxenes. The distribution coefficients for iron and magnesium

between coexisting olivine and orthopyroxene (K = (Mg/Mg + Fe) o/(Mg/Mg +

Fe) ) are .989 and .988 for specimens 12001 and 12017 respectively.

The same coefficient for the feldspar-rich granulite (12000) is only .935.

The aluminum contents of the orthopyroxenes of the three olivine-

rich granulites are similar to those characteristic of lherzolite ortho-

pyroxenes (3 to 4 weight percent Al203). The orthopyroxene developed

in the feldspathic granulite (12000), however, contains considerably less

aluminum.

In each specimen, detailed microprobe traverses were run across the

orthopyroxene mantles in an .effort to detect chemical zoning between the

olivine and symplectite boundaries. In all cases the orthopyroxene man-

tles proved to be compositionally uniform throughout.

d) Clinopyroxenes

Table 7-4 compares the compositions of interstitial clinopyroxenes

and symplectite clinopyroxenes of the pyroxene granulites. The former

are characterized by higher Ti and Cr, but lower Na, Al, and Mg numbers

than the latter. In Figure 7-1, the interstitial clinopyroxenes are

poorer in octahedrally coordinated aluminum (jadeite) and slightly higher

in tetrahedral aluminum than the symplectite clinopyroxenes. There is a

direct correlation between the Al, Ti, and Cr contents of the intersti-
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TABLE 7-3

PYROXENE GRANULITE

SPEC.

CRTHCPYRCXENES

12000 12000 1200.1 12001 12004 12017

53.19
0.10
1.71
0.0
0.00
15.54
28.27
0.66,
0.5C
0.14
0.00

54.13
0.C5
2.32
0.00
0.04

14.57
28.42
0.219
0*44
0.17
0.01

100.11 100.44

54. *
c.00
3.45
0.00
0.C8
7.90

33.11
0*18
0.37
C.00
0.00

55.22
0.00
3.46
0.00
0.08
7.86

32.69
0.19
0.39
0.00
0.00

100.06 99.89

55.23
0.00
3.94
0.00
C.10
7.76

32.28
0.17
0.37
0.00
0.00

54.92
0.00
3.31
030
0.12
7.95

32.58
0.20
0.45
0.30
0.00

55.65
0.00
3.05
0.00
0.12
7.97

32.54
0.19
0.47
0.00
O.00

99.85 99.53 99.99

FORMULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

1.923
0.003
0.073
0.000
0.000
0.470
1.524
0.020
0.019
0.010
0.000

1.934
0.001
0.098
0.000
0.001
0.435
1.514
0.0C9
0.017
0.012
0.000

6 OXYGENS

1.910
0.000
0.141
0.000
0.002
0.23-3
1.715
C.0C5 ,
0.014
0.000
0.000

1.920
0.000
0.142
0.003
0.002
0.229
1.695
0.006
3.015
0.000
0.000

TOTAL

MG/MG+FE

4.042 4.021 4.018 4.008

0.764 0.777 0.882 C.881

3.999 4.011 4.002

0.831 0.880 0.879

UNLESS OTHERWISE SPECIFIED; TOTAL IRCA AS FEO
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S102
T102
AL203
FE203
CR203
FEO
MGO
MNO
CAO
NA20
K20

TOTAL

1.919
0.000
0.161
0.000
0.003
0.225
1.672
0.005
0.014
0.000
0.000

1.919
0.000
0.136
0.000
0.003
0.232
1.697
0.006
0.017
0.000
0.000

1.934
0.000
0. 125
0.000
0.003
0.232
1.685
0.006
0.017
0.000
0.000



TABLE 7-4

PYROXENE GRANULITE CLINOPYROXENES

PRIMARY

SPEC.

S102
T102
AL203
FE203
CR203
FEO
MGO
MNO
CA 0
NA20
K20

TOTAL

SYPPLECTITE

12000 12024 12008 12000 12001 12004

51.63
0.56
2.96
0.00
0.61
5.77
14.53
0.16
22.14,

0.89
0.01

51.69
0.64
3.18
0.00
0.76
3.58
15.53
0.16
22.81
0.53
0.20

51.60
0.85
4.50
0.00
1.06
3.49

15.22
0.7

21.68
C.C5
0.00

49.55
0.18
5.77
0.00
0.24
6.46

15.55
0.08

22.29
'0.29
0.00

53.82
0.02
5.73
0.00
0.07
2.69
14.86
0.09
20.78
1.98
0.02

53.7C
0.00
6.56
0.00
0.08
2.82

13.91
0.12

20.21
2.43
0.01

12017

53.07
0.00
4.15
0.00
0.?6
2.77

15.63
0.10

21.85
1.07
0.00

99.26 99.08 99.42 100.41 100.06 99.84 98.90

FORMULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

TOTAL

1.921
0.016
0.130
0.000
0.018
0.180
0.806
0.005
0.883
0.064
0.000

1.912
0.018
0.139
0.000
0.022
0.111
0.856
0.0%5
0.904
0.038
v .009

6 OXYGENS

1.8S4
0.023
0.1c5
0.000
0.031
0. 1C7
0.332
0.0C2
0.852
0.C68
0.0000

1.828
0.005
0.251
0.300
0.007
0.199
0.855
0.0C2
0.881
0.021
0.000

1.939
c.00l
0.243
3.000
0.002
0.C 81
0.798
0.003
0.802
0.138
0.001

1.937
0.000
0.279
0.000
0.002
0.085
0.748
0.004
0.781
0.170
0.0030

1.942
0.000
0.179
0.000
0.008
0.085
0.853
0.003
0.857
0.076
0.000

4.022 4.014 4.0C4 4.049 4.008 4.007 4.002

MG/MG+FE 0.818 0.885 C.886 0.811 0.908 C.898 0.910

MODAL OL. 1 % 25 % 59 % 1 29 % 27 % 45 %

UNLESS OTHERWISE SPECIFIEC; TOTAL IRON AS FEO
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tial clinopyroxenes and the modal olivine content of their nodules

(Table 7-4).

The compositions of the symplectite clinopyroxenes are remarkably

uniform in individual specimens, despite the variety of textures they

exhibit. Grain-size, presence or absence of spinel inclusions, and posi-

tion with respect to orthopyroxene or relict plagioclase have no

influence on the symplectite clinopyroxene's composition. These clino-

pyroxenes have Mg numbers similar to those of the lherzolite clinopyro-

xenes (.900 to .910). Unlike the latter, however, the symplectite

clinopyroxenes contain negligible concentrations of Cr and Ti. This re-

flects their origin by reaction from olivine and plagioclase, phases

which do not contain these elements. The distribution coefficients for

Mg and Fe between symplectite clinopyroxene and orthopyroxene (K = (Mg/

Mg + Fe) /(Mg/Mg + Fe) cpx) are .942, .972, .982, and .967 for specimens

12000, 12001, 12004, and 12017 respectively. These distribution coeffi-

cients are characteristic of igneous assemblages (Kretz, 1963).

e) Spinels

The range of spinel compositions found in the granulite nodules is

compared to those of the two lherzolite suites in Figures 6-2 and 6-3.

For equivalent chromium contents, the granulite spinels are characteris-

tically more iron-rich than the lherzolite spinels. The granulite spinel

population exhibits generally lower chromium contents and Mg numbers than

the lherzolite spinels.

The spinels exhibit the greatest chemical variations of any phase in

the pyroxene granulites. Despite this fact, the locii of the spinel
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TABLE 7-5

PYROXENE GRANULITE SPINELS

OPX OPX OPX SYMPL SYMPL SYMPL FELDS

12017 12001 12001 12001 12004 12004

0.31
0. 00

50.38
0.0

15.32
14,21
18.63
0 * 33,
0.02
0.00
0.00

0.79
0.00

57.36
0.00
9.72

12.56
19.32
0.24
0.04
0.00
3.00

99.20 100.03

0.63
c.co

63.91
0.00
2.51;

11.35
21.40
0.12
0.02
C.co
0.00

1.05
0.00

65.60
0.00
0.82
10.54
21.72
0.06
0.11
C.00
0.00

100.02 99.90

0.63
0.00
65.72
0.00
0.76
10.33
21.32
0.04
0.04
0.00
0.00

1.05
0.00

64.44
0.00
0.37
10.35
23.39
0.07
0.12
0.00
o.30

1.44
0.00
66.03
0.00
0.00
9.51

21.86
0.08
0.06
0.00
0.00

S8.84 99.79 98.98

FORMULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

0.308
0.000
1.607
0.000
0.328
0.322
0.751
0.009
0.001
0.000
0.000

0.021
0.000
1.755
0.000
0.200
0.273
0.748
0.005
0.001
0.000
0.00c

4 OXYGENS

0.016
0.000

0.uC0
C .052
0.239
3.803
0.003
0 0 0C1
o.ccc
0.000

0.026
0.000
1.928
0.000
C.016
0.223
0.807
0.001
0.003
C.C00
0.000

TOTAL

MG/MG+FE
CR/CR+AL

3.024 3.002 3.010 3.002 3.001 3.022 2.993

0.730 0.733 0.771 0.786 0.786 0.801 0.804
0.169 0.102 0.026 0.108 0.008 0.004 0.000

UNLESS OTHFRWISE SPFCIFIED; TOTAL IRCN AS FE0
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IN:

SPEC. 12004

S102
T102
AL203
FE203
CR203
PEO
MGO
MNO
C-AO
NA20
K20

TOTAL

0.016
0,000
1.S51
0.000
0.015
0.218
0.800
0. 001
0.001
0.000
0.000

00026
0.000
1.897
0.000
0.037
0.216
0.871
0.001
0.003
0.000
0.000

0.036
0.000
1.942
0.000
0.000
0.198
0.813
0.002
0.002
0.000
0.000

- - - - - - - - - - - - - - -



compositions in Figures 6-2 and 6-3 are modeled quite well by equipo-

tential curves (Chapter 6, section IVb) for olivine of composition Fo 87

calculated at 1200*C. and 1300*C. respectively. This suggests that in

spite of its variable composition, the spinals are in metamorphic equili-

brium with their associated olivines. This is an interesting phenomena

because most of the spinel is found in the orthopyroxene mantles or sym-

plectite, physically removed from- the olivine. The most chromian

spinels occur as large blebs in the orthopyroxene mantles (Table 7-5).

This spinel is similar in color and composition to the olive green

spinels of the iddingsitized lherzolite suite. The chromium content of

this spinel in one specimen may vary from 2 to 15 weight percent Cr2 03

however, each grain appears to be homogenous. Spinels occurring as

chains along orthopyroxene-symplectite contacts or as intergrowths within

the symplectite contain significantly less chromium. Chromium is unde-

tectable in the spinel occurring as inclusions in relict plagioclases.

III Summary and Conclusions on the Pyroxene Granulites

The contrast between the corona texture of the orthopyroxene, spinel-

clinopyroxene symplectite assemblage and the tectonic fabric of the -

granular aggregates of olivine and feldspar invites the conclusion that

the former is a secondary feature formed by the incomplete reaction of

the latter. If this interpretation is correct then the original rock

was a troctolite consisting largely of varying proportions of olivine

and plagioclase with lessor amounts of primary clinopyroxene. With in-

creasing modal feldspar and clinopyroxene this rock type graded to
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gabbro. The original feldspar of the olivine-rich granulites was proba-

bly similar in composition to that in the faldspar-rich granulites, where

the ratio of plagioclase to olivine was suci that the former was little

affected by the reaction of the two. The feldspar in the olivine-rich

granulites was depleted in calcium and silicon during the formation of

the two pyroxene plus spinel assemblage. This, combined with the intro-

duction of magnesium and iron, left albite-rich, relict plagioclase con-

taLning numerous spinel inclusions. There appears to have been little

fractionation of iron and magnesium during the reaction of the primary

olivine. The relatively chromium rich spinel found as large blebs in

the orthopyroxene coronas must also be a primary phase because there is

no source for its chromium in the other primary phases. The variable

composition of this spinel in individual specimens indicates that it

participated in the reaction of the primary olivine and plagioclase as

a source for the low chromium concentrations found in the secondary

spinels.

The relatively higher Mg numbers of the corona orthopyroxenes and

clinopyroxenes when compared to the primary olivines is balanced by the

more iron-rich nature of the symplectite spinels. The absence of chemi-

cal zoning in either the secondary or relict primary phases implies that

the incompleteness of the reaction of the latter was not due to kynetic

problems. According to this interpretation, the reaction terminated when

the'relict plagioclase became too Na-rich for it to continue under the

prevailing P-T conditions. The relative enrichment of the skeletal oli-

vine and plagioclase in magnesium and calcium, respectively, is consis-

tent with the interpretation that they are quench crystals derived by
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the partial melting of the secondary clinopyroxene and orthopyroxene.

Equant spinel grains appear to remain as a refractory during this process.

To test the preceding qualitative conc..usions, the "mineral distri-

bution program" of Wright and Doherty (1970, was used to balance the

equation:

Olivine + Plagioclase ± Spinel = relict Plagioclase + Cpx + Opx + Spinel

The compositions of phases from granulite 12001 were used in this calcu-

lation. The only exception was the assumption that the original compo-

sition of the plagioclase was that of the interstitial feldspar of the

feldspathic granulite 12000. An excellent mass balance was attained by

combining the relevant phases in the following weight proportions:

121 Plagioclase (An 72) + 100 Olivine (Fo 87) + 7 Spinel (Cr/Cr + Al) =

.102) = 16 Plagioclase (An 25.8) + 87 Clinopyroxene (Mg/Mg + Fe = .908)

+ 75 Orthopyroxene (Mg/Mg + Fe = .882) + 49 Spinel (Cr/Cr + Al = .008).

Y- Iresiduals| = 1.29 weight percent

oxides

The residuals for individual oxides do not exceed 0.25 weight percent and

the stoichiometry closely matches the estimated mode. Thus the composi-

tion of this pyroxene granulite can be accounted for by a primary assem-

blage of olivine and plagioclase with minor spinel.

In conclusion, the nodules described in the foregoing sections are

pyroxene granulites after the nomenclature of Ito and Kennedy (1970) and

are transitional between the low and intermediate pressure granulites of

Green and Ringwood (1967). Rocks similar to these nodules are commonly

reported in deep seated anorthosite and gabbro bodies where the reaction
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of olivine and plagioclase to form the asseriblage two pyroxenes plus

spinel is interpreted to reflect isobaric cooling (Gardner and Robbins,

1974; Whitney and McLelland, 1973; Griffin iet al., 1973, 1971, 1969).

These pyroxene granulites are, however, rare as volcanic inclusions.

The only documented occurrences the author is familiar with are the

Kerguelen Archipelago (McBirney and Aoki, 1973) and Iki Island, Japan

(Aoki, 1968).

The occasional poikilitic character of the interstitial clinopyro-

xenes and the general phase chemistry suggest that the primary phase

assemblages of the pyroxene granulites were cumulates. With varying

proportions of the primary phases olivine, plagioclase, and clinopyroxene,

the original rocks ranged from feldspathic dunites through troctolites

to gabbros. The tectonic fabric of the relict, primary phases and the

evidence for metamorphic equilibrium in the spinels indicate, however,

that the pyroxene granulites are not cumulates from their host basanites.

This conclusion is supported by the evidence for partial melting in the

corona structures, which themselves postdate the deformation in the pri-

mary phases. The Nunivak pyroxene granulites are therefore concluded to

be accidental xenoliths, probably derived from the lower regions of the

earth's crust.

IV Dunites

This section deals with a few olivine-rich xenoliths which are

interpreted to have been formed by cumulate processes. These nodules

were originally selected, with others, to represent olivine-rich end-
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members of the fresh lherzolite suite. Subsequent microprobe analyses

of the phases of these xenoliths has revealed that they have Mg numbers

which are too low to be compatible with those characteristic of the

corresponding phases in spinel lherzolites. The chemistry of two of

these dunites was studied in detail (specimens 15009 and 15011). They

are xenomorphic-granular aggregates consisting largely of .5 to 2 mm.

olivine. Deformational banding and undulatory extinction are strongly

developed in these grains. Spinel is the second most abundant phase,

occurring as .2 to 1.5 mm., interstitial, anhedral grains. Unlike the

lherzolite spinels, those of the dunites are black in color. This

spinel is typically concentrated into spinel-rich layers, defining a

compositional foliation in each of the nodules. Specimen 15009 is very

spinel-rich (to 20%), while specimen 15011 contains only a few percent

spinel, concentrated in widely spaced bands. No fine-grained zones are

observed about the spinel in either nodule. Clinopyroxene and orthopyro-

xene are present as minor accessories.

Specimen 15011 contains a few 1 mm., fine-grained areas of irregular

shape which are not associated with interstitial spinel. These areas are

filled with a porous network of closely packed, commonly oriented, .02 to

.1 mm., prismatic crystals with high birefringence and inclined extinc-

tion. These crystals are believed to be clinopyroxene. The majority of

these prismatic crystals have a common extinction position. However, the

extinction position of the remaining crystals define bands which crosscut

the network Gf drystals at an angle to its preferred orientation. Nu-

merous, equant spinel inclusions (10 microns) riddle this prismatic

clinopyroxene. In addition, larger, .05 mm., equant opaque grains are
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common in rounded, glass lined voids which- comprise up to 30% of the area

of these fine-grained zones. Two of these fine--grained zones have adja-

cent grains of interstitial clinopyroxene which have extinction positions

identical to those of the prismatic crystals within the zones. This

indicates that the fine-grained zones in this specimen are produced by

the melting of interstitial clinopyroxenes.

The olivine of specimen 15009 has a Mg number of .897, intermediate

between those of the lherzolite and granulite olivines, while the olivine

of specimen 15011 has a Mg number of .868, identical to those of granu-

lite olivines. The Cr/Cr + Al ratios of the spinels are .308 and .160

for specimens 15009 and 15011 respectively. In both cases their respec-

tive Mg numbers (.597 and .580) are considerably lower than those of the

lherzolite spinels with similar chromium contents. The compositions of

these spinels are such that large amounts of calculated ferric iron are

required to achieve ideal stoichiometry (15009: 10.94 weight percent

Fe203 ; 15011: 10.51 weight percent Fe203). These values are signifi-

cantly larger than those typically calculated for the lherzolite spinels

(av. = 5 weight percent Fe203). After these calculations the Mg numbers

of these spinels increase markedly, with that of nodule 15009 (.735) re-

sembling those of the lherzolite spinels and that of nodule 15011 (.705)

resembling those of the granulite spinels (compare Figures 6-2 and 6-3).

The higher Mg number of nodule 15009's spinels probably reflects the

higher Mg number of its olivine (.897). Clinopyroxene in specimen 15009

has a low Na20 content and is similar to that of the four phase, fresh

lherzolites and iddingsitized lherzolites with red-brown spinel.
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The high. proportions of spinel and the low Mg numbers of both the

olivine and spinel indicate that these dunites are not -nembers of the

lherzolite xenolith suites. The well developed compositional banding

suggests that the dunites are cumulates. The ubiquitous deformational

strain exhibited by the interstitial olivines and the evidence for

partial melting in specimen 15011, however, imply that they are acciden-

tal to their host basanites. These dunite xenoliths are interpreted to

be olivine rich end-members of the pyroxene granulite xenolith suite.

145



ORIGIN AND SIGNIFICANCF OF THE NUNIVAK XENOLITHS

I Pressure--Temperature Estimations

Figure 8-1 represents an attempt to use the available experimental

data and theoretical techniques to estimate the relative and absolute

P-T histories recorded in the Nunivak xenoliths. The sources of the

various experimental curves are listed in Table 8-1.

The minimum equilibrium temperature of each xenolith- was calculated

by a direct application of the Wood and Banno (1973) pyroxene geothermo-

meter. A direct application of MacGregor's technique (1973) of correlat-

ing pressure with Al203 content of orthopyroxenes could not be used be-

.cause the majority of the lherzolite xenoliths plotted in the garnet

field. MacGregor (1973) suggests that 2 weight percent Al 203 must be

added to the observed aluminum content of orthopyroxenes in clinopyro-

xene saturated assemblages. Rather than apply this arbitrary scheme,

a different approach was taken. The relative pressures of the Nunivak.

xenoliths were determined using MacGregor's Al203 isopleths for spinel

assemblages (or their metastable extensions in the garnet field). The

absolute pressure recorded by granulite nodule 12001 was then estimated

from the experimental data on the stability of plagioclase and olivine

assemblages (Kushiro and Yoder, 1966; Emslie, 1970; and Green and

Hibberson, 1970). The absolute pressures of the other nodules were

assigned by comparison with that of specimen 12001. The small tempera-

ture differences calculated for these nodules (Figure 8-1) require very

accurate analyses. For example, an error of 0.15 weight percent in the
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Table 8-1

Sources for Experimental and Theoretical Curves in Figure 8-1

1 Anoithite plus forsterite to 2 pyroxenes plus spinel;

Kushiro and Yoder, 1966.

2 Plagioclase (An 73) plus olivine (Fo 73) to 2 pyroxenes plus

spinel; Emslie, 1970.

3 Two pyroxenes plus spinel to plagioclase plus olivine; Green

and Hibberson, 1970.

4 to 7 Garnet out curves for water saturated lherzolites; 66SAL-1,

66PAL-3, 618-138b.1, and Ga-p(l) respectively; Mysen, 1973.

8 to 10 Amphibole out curves for water saturated lherzolites; Ga-p(l),

618-138b.1, and 66PAL-3 respectively, Mysen, 1973.

11 Garnet lherzolite to spinel lherzolite; O'Hara, Richardson,

and Wilson, 1971.

12 Wet spinel lherzolite solidus; Kushiro, Syono, and Akimoto,

1968.

13 and 14 Wet solidus curves for lherzolites Ga-p(l) and 618-138b.1

respectively; Mysen, 1973.

15 Oceanic geotherm; Ringwood, MacGregor, and Boyd, 1964.
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MgO analysis cf a typical orthopyroxene will result in a temperature

shift of 10*C. Because of the positive P-T slope of MacGregor's Al2 03

isopleths, such a temperature error will in turn result in a significant

error in the estimated pressure. An additional source of error is in-

herent in the assumption that MacGregor's experimental data can be

applied to amphibole-bearing assemblages.

Despite these uncertainties, a number of important features can be

recognized in Figure 8-1:

i. All xenoliths yield temperatures considerably higher than those

predicted by conventional geotherms. In addition, the P-T slope defined

by the lherzolite xenoliths is significantly shallower than that of any

-conventional geotherm.

ii. The majority of the lherzolite xenoliths fall close to the

experimentally determined stability limits of both garnet and amphibole.

iii. The granulite nodules record the lowest temperatures and

pressures.

iv. The iddingsitized lherzolites with aluminous spinels and tscher-

makitic pyroxenes record the shallowest depths in the lherzolite suite,

just below those of the granulite xenoliths. There is, however, a large

temperature discontinuity between the lherzolite xenoliths and the granu-

lite xenoliths.

v. There is a slight tendency for the amphibole and glass-bearing

lherzolites to record lower temperatures for a given pressure, or vice

versa, than do the other lherzolites.

One feature which is not explicit in Figure 8-1, is that the idding-

sitized and fresh, four phase lherzolites which overlap with the amphibole
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and glass-bearing lherzolites in P-T space tend to contain more chromium-

rich spinels C.nd less aluminous orthopyroxenes than those which do not.

II Origin of the Amphibole Lherzolites

The conclusion has been reached, on the basis of chemical and

textural arguments, that 50% of the fresh lherzolites contained amphibole

prior to entrainment in basanitic magmas. The nature and origin of this

amphibole must be understood before implications arising from the simi-

larity of its composition to those of the Nunivak basalts can properly

be evaluated.

Three alternatives for the origin of the Nunivak amphibole will be

examined:

1. The amphibole is a primary, integral phase of a stable upper

mantle assemblage containing olivine, orthopyroxene and clino-

pyroxene.

2. The amphibole is secondary, after primary spinel and clinopyro-

xene.

3. Both the amphibole and spinel are secondary phases produced by

the decomposition of primary garnet.

a) Amphibole as a Primary Phase

The possibility that the amphibole is a primary phase in the upper

mantle is an appealing concept. Not only would it provide a handy

storage place for water, but the similarity of its Na/Na + K ratio to

those of the Nunivak basalts could lead to a whole range of genetic

speculations. There are a number of arguments which support a primary
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origin for the amphibole:

i. The majority of the lherzolites plot in the experimentally

determined P-T stability fields for amphibole in water saturated perido-

tites. In addition, the works of Holloway (1973) and Eggler (1974) indi-

cate that these stability fields will expand to higher temperatures for

water undersaturated conditions.

ii. Where amphibole is present, spinel does not occur as an inter-

stitial phase. Rather, spinel, when present, occurs as intergrowths in

the amphibole or as minor inclusions in other silicate phases.

iii. The clinopyroxenes of the amphibole lherzolites are distinct

from those which characterize the spinel lherzolites (Chapter 6, sections

Ia and IXb). These differences may reflect equilibrium with amphibole

in one case and spinel in the other..

In a primary amphibole model, the lherzolites would originally have

consisted solely of olivine, orthopyroxene, clinopyroxene, and amphibole.

The spinel inclusions found in many of the amphiboles and at the center

of the fine-grained, glass-bearing zones would have originated in part by

exsolution from the amphibole and in part by the incongruent :melting of

the amphibole after it was incorporated into its host basalt. There are,

however, a number of serious problems with such a model:

i. The occasional subhedral habit of some of the amphibole grains

and pseudomorphic outline of a few of the fine-grained, glass-bearing

zones are inconsistent with the granular, metamorphic texture exhibited

by the other lherzolite phases.
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ii. Calculations (Chapter 6, section VIIIf) have shown that the

amphibole compositions can be accounted for by the phases of the fine-

grained, glass-bearing zones without considering the relict spinels.

In support of this observation, both Best (1974) and Varne (1970) have

described the partial melting of chromium-bearing amphibole to produce

fine-grained zones of glass with euhedral pyroxene, olivine and spinel.

No relict spinel is reported. These considerations require that the re-

lict spinels of the fine-grained, glass-bearing zones were not produced

by the incongruent melting, but were present as inclusions in the origi-

nal amphibole.

iii. Because of the preceding argument, one must conclude that the

chemical zoning documented in the relict spinels (Chapter 6, section -IVc)

predates the melting of the amphibole. This conclusion is supported by

the occurrence of zoning in the unmelted amphibole and its enclosed

spinel in specimen 10016. This chemical zoning could not survive for any

length of time under the P-T. conditions of the upper mantle. Thus the

spinel-amphibole intergrowths must be a relatively recent phenomena.

iv. The large modal proportions of relict spinel in a few fine-

grained, glass-bearing zones are incompatible with its origin by incon-

gruent melting or exsolution from amphibole.

b) Amphibole after Spinel

The second alternative, namely that the amphibole is secondary after

spinel, is particularly attractive because it is the only one of the three

hypotheses which provides an explanation for the chemical zoning observed

in the amphibole and its enclosed spinel. The formation of amphibole
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about spinel should selectively remove aluminum. As the process conti-

nues, the amphibole would be forced to incorporate more chromium into its

structure. The end result would be that which is in fact observed;

amphibole becoming increasingly chromium-rich towards its included spinel

which in turn would exhibit chromium-rich borders and aluminous cores.

The more complete the replacement process, the more chromium-rich the

spinel.

A replacement model is consistent with:

i. The presence of spinel inclusions in anhydrous silicates of

the amphibole lherzolites which are significantly more aluminous than

the spinel associated with the amphibole (Chapter 6, section IVd).

ii. The subhedral morphology of some of the amphibole grains and

the embayed and vesicular appearance of the spinel inclusions in amphi-

bole and the relict spinels in the fine-grained, glass-bearing zones.

iii. The large modal proportions of relict spinel found in a few

of the fine-grained, glass-bearing zones.

iv. The lack of distinction between the P-T conditions determined

for the amphibole lherzolites and the chromium-rich, four phase lherzo-

lites. Conqugrd (1971) has described spinel lherzolite near Ariege,

France which contains local pockets of secondary(?) amphibole lherzolite.

The development of the amphibole apparently depends on access to vola-

tiles.

Griffin (1973) has described a suite of lherzolites from the Fen

alkaline complex, Norway, in which amphibole is found surr6unding embayed

grains of spinel. The spinel is chemically zoned with chromium-rich

margins and, according to Griffin's interpretation, is being replaced by
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the amphibole. Though the textural relationships of this occurrence

sound remarkably similar to those observed in the Nunivak lherzolites,

there are- some differences. The phases of the Norwegian lherzolites are

considerably more aluminous than those of their Nunivak equivalents. The

spinels are olive green in color and run only 8 to 14 weight percent

Cr203. The associated pyroxenes exhibit high degrees of tschermakitic

substitution. In total, the Norwegian lherzolites resemble those at the

aluminous-end of the iddingsitized lherzolite suite of Nunivak Island.

As we shall see in a later section, aluminous lherzolites of this type

are probably derived from considerably shallower depths than the Nunivak

amphibole lherzolites.

Best (1974) interprets Cr-pargasites in xenoliths from the western

Grand Canyon to be secondary after spinel. He proposes the reaction;

chromian spinel + diopside + fluid -+ amphibole. The "mineral distribu-

tion program" of Wright and Doherty (1970) was used to evaluate this

reaction as a mechanism for the formation of the Nunivak amphiboles.

The initial assumption required concerns the composition of the elusive

fluid phase. For simplicity, the model fluid was assumed to consist

solely of Na, K, and water. Trial solutions for Best's reaction yielded

unacceptibly large total residuals (> 9 weight percent), with the calcu-

lated amphiboles typically containing more than 5 weight percent excess

CaO. A more complex fluid composition might, of course, produce a

better fit. The inclusion of orthopyroxene as one of the reactants,

however, improves the results significantly. The following two reactions

represent the best solutions obtained:
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i. Specimen 10016

Fluid (Na/Na + K = .863) + 71 Spinel (Cr/Cr + Al = .376) + 28 Orthopyro-

xene + 54 Cliropyroxene -* 57 Spinel (Cr/Cr + Al + .465).+ 100 Amphibole

(Cr203 = 2.19 weight percent)

Z jresidualsi = 4.58 weight percent

oxides

ii Specimen 10013

Fluid (Na/Na + K = .721) + 39 Spinel (Cr/Cr + Al .288) + 19 Orthopyro-

xene + 61 Clinopyroxene -- 23 Spinel (Cr/Cr + Al = .435) + 100 Amphibole

(Cr203 = 2.85 weight percent)

E Iresidualsi = 7.24 weight percent

oxides

In both solutions excess MgO and CaO in the calculated amphiboles contri-

bute approximately 3 percent of the total residuals. Individual resi-

duals for the other oxides do not exceed 1 weight percent.

If the hypothesis that the Nunivak amphibole is secondary, replacing

spinel, is correct, then one is forced to conclude that a recent, per-

vasive amphibolization event has occurred in the upper mantle. Such an

event might resemble the light element metasomatism model proposed by

Loyd and Bailey (1973), the upward migration of aqueous, alkalic magmas

from-the low velocity zone proposed by Wilshire (1971), or the introduc-

tion of a migratory, highly undersaturated liquid, enriched in the incom-

patible elements, proposed by Frey and Green (1974). The amphiboles

usually attributed to such processes, however, are characteristically
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titanium and iron-rich: Dish Hill, California (Wilshire, 1971); St.

Peter and St. Paul Rocks (Nelson et al., 1967); and possibly Ariage,

France (Conqusrg, 1971). The interstitial amphibole of the Victorian

lherzolites (Frey and Green, 1974) does, however, resemble the composi-

tion of the Nunivak amphibole (compare Tables 6-6 and 6-7). Because of

their low titianium and iron contents, the Nunivak amphiboles are un-

likely to have been produced by the direct action of a basanitic fluid.

Wilshire (1971) has documented the conversion of interstitial pargasite

to titianiferrous kaersutite by reaction with basanite.

The preceding discussion has emphasized the textural and chemical

arguments supporting a secondary origin for the Nunivak amphibole. There

are, however, problems with this hypothesis:

i. The reactions which best model the replacement of spinel by

amphibole consume large quantities of clinopyroxene and orthopyroxene,

yet there is no apparent deficiency of these phases in the amphibole

lherzolites.

ii. The distinctive jadeite-rich character of many of the amphi-

bole lherzolite clinopyroxenes cannot be explained by a replacement model.

iii. An amphibole lherzolite collected on a return trip to Nunivak

Island contains both amphibole and interstitial spinel which are not

texturally related.

c) Amphibole after Garnet

The third alternative for the origin of the Nunivak amphibole

lherzolites involves the recrystallization of primary garnet lherzolites

in a hydrous environment. One of the main advantages of this model is
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that the clinopyroxenes of garnet lberzolites, like those of the Nunivak

amphibole lherzolites, are characterized by higb ratios of octahedral

aluminum to tetrahedral aluminum. Boyd (1971) has attributed inter-

growths of spinel and Cr-pargasite in harzburgites from the Wesselton

and Monastery (Smith, 1973) kimberlite pipes of South Africa to the re-

action of garnet and clinopyroxene. The amphibole and spinel in these

xenoliths and their counterparts in the Nunivak suite are nearly identi-

cal in composition (Table 6-6, Figures 6-3 and 6-11). In addition to

the absence of clinopyroxene in the harzburgites, however,- there are a

number of differences between the spinel-amphibole assemblages of the

kimberlite and Nunivak nodules. In the harzburgites, the intergrowths

are described as "finger print" symplectites (Smith, 1973), while in the

Nunivak examples the spinel is present as embayed and vesicular, core

inclusions in amphibole. No chemical zoning has been reported in the

amphibole or spinel of the kimberlite xenoliths.

The Nunivak amphibole occurrence may more closely resemble the

amphibole-spinel assemblages which are commonly found in the kelyphite

reaction rims developed about garnets in eclogites and kinberlites

(Holmes, 1936; -Kushiro and Aoki, 1968). Haggerty (1973) has made obscure

reference to skeletal grains of Cr-spinel in these kelyphite rims which

commonly exhibit complex zoning patterns. The significance of these

kimberlite features to the Nunivak amphibole-spinel occurrence is diffi-

cult to evaluate because of the lack of detailed studies on the former.

The "mineral distribution program" of Wright and Doher ey (1970) was

used to evaluate the reaction proposed by Boyd (1971) for the formation

of spinel and amphibole from garnet, clinopyroxene, and fluid. The
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parent garnet was specified in terms of the end-members; pyrope,

almandine, grcssularite, spessartite, and knorringite; whose relative

proportions were to be determined by the computer program. The fluid

involved in the reaction was assumed to consist solely of Na, K, and

water. Probe analyses were used for the compositions of the elinopyro-

xene, amphibole and spinel. Excellent solutions were obtained using the

above model for three of the amphibole lherzolites:

i. Specimen 10016

Fluid (Na/Na + K = .864) + 67 Garnet + 35 Clinopyroxene - 7 Spinel

(Cr/Cr + Al = .585) + 100 Amphibole (Cr203 = 2.55 weight percent)

I Jresidualsj = 2.17 weight percent

oxides

ii. Specimen 10013

Fluid (Na/Na + K = .763) + 66 Garnet + 32 Clinopyroxene - 3 Spinel

(Cr/Cr + Al = .435) + 100 Amphibole (Cr203 = 2.85 weight percent)

E Iresidualsi = 2.77 weight percent

oxides

iii. Specimen 10006

Fluid (Na/Na + K = .880) + 79 Garnet + 26 Clinopyroxene - 10 Spinel

(Cr/Cr + Al = .585) + 100 Amphibole (Cr203 = 3.24 weight percent)

- Iresidualsi = 1.44 weight percent

oxides

No oxide has a residual greater than 0.4 weight percent and the majority
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of the individual oxide residuals are less ':han 0.2 weight percent. The

garnet compositions calculated in these sol-itions are listed in Table

8-2 with selected compositions of chromium-searing garnets from garnet

lherzolites described in the literature. The CaO contents of the calcu-

lated garnets fall within the range (4 to 7 weight percent) of those

characteristic of chromium-bearing garnets in lherzolite assemblages

(Sobolev, 1973). The similarity between the calculated and observed

garnet compositions is striking.

At this point it is of interest to speculate on the possible

mechanisms of the proposed transition from garnet lherzolite to spinel

lherzolite. The estimated equilibrium conditions for the amphibole

lherzolites lie close to the experimentally determined upper stability

limits of garnet lherzolite in water saturated systems (Figure 8-1). The

general positive slopes of the garnet-out curves suggest a thermal

mechanism for the breakdown of garnet lherzolite. If the upper mantle

originally supported a geothermal gradient similar to that predicted by

conventional geotherms, then, for their estimated depths, the amphibole

lherzolites would lie within the stability field of garnet lherzolite.

Accordingly much of the upper mantle would have been garnet lherzolite.

The initiation of igneous activity in the upper mantle beneath Nunivak

Island would be proceeded by rising temperatures and the introduction of

volatiles. The result of this isobaric temperature increase would be the

formation of amphibole at the expense of garnet and clinopyroxene.

Eventually fragments of this amphibolized upper mantle material would be

entrained in the basanitic magmas and reach the surface as partially

melted, lherzolite xenoliths. According to this model the source of the
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TABLE 8-2

CHROMIUM-BEARING GARNETS

CALCULATED GARNETS ** SELECTED GARNET ANALYSES

10006 10016 1001.3 1573 LBM 11 UD-5 UD-3

41.41
0.00
17.04
0.00
9.50
5.69

20.31
0.39
5.66
0.30
0.00

41.79
0.00
18.C8
0.00
8.28
5.65

21.72
0.51
3.97
0.00
0.0 C

4 1.E5
0.00
19.76
0.00
5.82
5.82

20.11
0.51
6.14
c. 00
0.00

41.20
0.05
17.60
0.00
8.30
6.50
17.90
C.50
7.70
0.05
0.00

41.95
0.13
19.71
0.00
5.38
7.26

20.47
0.35
5.24
0.00
-*.00

41.68
0.80
16.58
2.30
7.15
5.39

20.40
0.27
5.90
0.30
0.00

41.75
0.16

19.66
1.99
5.07
5.82

19.24
0.38
5.68
0*00
0.00

100.00 100.00 10C.C 99.80 1(,0.49 100.47 99.75

FORMULA UNITS ASSUMING 12 0XYGENS

3.000
0.000
1.455
0.000
0.544
0.345
2.193
0.024
0.439
0.000
0.000

3.000
0.0CC
1.530
0.000
0.470
0.339
2.324
0.031
0. 3C5
0.00
0. rco

3 * 000
0.000
1.670
0.000
0 * 330
0.349
2.149
0.031
0.472
0.300
0.000

3.010
0.0C3
1.515
0.000
0.479
0.397
1.949
0.031
0.603
0.C7
0.000

3.000
0.007
1.661
0.000
0.304
0.434
2.182
0.021
0.401
0.000
0.000

3.006
0.043
1.40S
0.125
0.408
0.325
2.193
0.016
0.456
0.000
0.01 0

3.005
0.009
1.668
0.108
0.289
0.350
2.064
0.023
0.438
0.000
0.000

8.000 8.000 8.000 7.994 8.011 7.980 7.954

KG/MG+FE 0.364 0.873 0.86C 0.831 C.834 0.871 0.855
CR/CR+AL 0.272 0.235 0.165 0.240 0.155 0.224 0.147

BOYC GURNEY SOBOLEV

UNLESS OTHERWISE SPECIFIED; TOTAL IRCN AS FEO
160

SPEC.

S102
T102
AL203
FE203
CR203
FEO
MGOJ
MNO
CAO
NA 20
K20

TOTAL

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

TOTAL



basanites and the volatiles which preceded them would be significantly

deeper than the source of the xenoliths, probably the low velocity layer.

There are, however, a number of difficulties with a garnet parent

model for the Nunivak amphiboles:

i. There appears to be little significant difference between the

P-T conditions estimated for the amphibole lherzolites and the chromium-

rich, four phase lherzolites (both iddingsitized and fresh). This may

be in part due to the inability of the geothermometer used, or the

analytical precision, to differentiate the small temperature differences

involved. In addition, Mysen (1973) has demonstrated that the transition

from garnet to spinel lherzolite is very sensitive to bulk composition.

Compositional layering in the upper mantle may have supported intercalated

layers of garnet and spinel lherzolite.

ii. The chemical zoning exhibited by the amphibole and its included

sPinel is contrary to what one might predict. The experimental work of

MacGregor (1971) indicates that the first spinel to be produced by the

breakdown of garnet should be relatively enriched in chromium. This

would result in spinels zoned from chromium-rich cores to aluminous rims;

opposite to what is observed.

In summary, of the three proposed origins for the Nunivak amphiboles,

the first seems the least likely. The choice between the last two

hypotheses; i.e., whether the amphibole is secondary after spinel or

garnet; is difficult. The strongest arguments for the former are the

textural relationships and chemical zoning of the relict spinels, while

the latter is supported by the jadeitic nature of the amphibole lherzo-

lite clinopyroxenes and the fact that the proposed conversion reaction
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better accounts for the chemistry of the phases while consuming signifi-

cantly less clinopyroxene.

III Nature of the Source Regions

a) Lherzolites and the Upper Mantle

One prime interest of ultramafic xenoliths is the possibility that

they retain information about the upper mantle. At the end of Chapter 6,

the lherzolite xenoliths were concluded to be metamorphic assemblages de-

rived from the upper mantle. The slope of the P-T curve defined by the

locus of the lherzolite nodules is considerably less, however, than that

of conventional, calculated geotherms (Figure 8-1) and is, in fact, less

than that of MacGregor's (1973) Al203 isopleths for orthopyroxene co-

existing with spinel and olivine. The validity of this observation is

supported by the close approximation of the lherzolite spinel compositions

to that predicted by a theoretical isotherm (Chapter 6, section IVb).

This leads to the remarkable conclusion that the Al203 content of ortho-

pyroxene is inversely proportional to depth of origin. The conclusion

is the reverse of what would be predicted for lherzolite assemblages con-

strained to a conventional geotherm (Ringwood et al., 1964) whose P-T

slope is greater than that of MacGregor's Al203 isopleths. If the lher-

zolites in Figure 8-1 were labeled with the Al203 content of their

orthopyroxenes, one would see that the foregoing conclusion would be

upheld in getieral, but that the decrease oi Al203 with estimated depth

would not be monotonic. Because of the sensitivity of pressure estimates

to small errors in the calculated temperatures, however, the alumina
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content of orthopyroxene by itself may be a more reliable measure of the

relative depths of the Nunivak lherzolites.

If the preceding observations are corract, then the chemical varia-

tions in the lherzolite phase chemistry illastrated in Figures 6-14 and

6-15 may represent vertical zoning in the upper mantle in response to

increasing pressure and changing bulk composition with depth. This pro-

posed gradient in bulk composition may reflect the accumulated effects of

past episodes of partial melting and light element metasomatism. On a

more speculative level, the correlation between the lherzolite phase

chemistry and the alumina content of their orthopyroxenes can be used to

construct a model for the upper mantle beneath Nunivak Island immediately

prior to the eruption of the alkalic magmas. Figure 8-2 is a cartoon

which illustrates such.a model. At the base of the crust (~ 30 km.) the

mantle would consist of lherzolite material characterized by aluminous

spinels and Na-rich, tschermakitic pyroxenes. With increasing depth,

the spinels become more chromic while the pyroxenes become less tscherma-

kitic. The Na, Al, and Ti contents of the clinopyroxenes decrease as

they approach an endiopside composition. There is a concomitant increase

in the Mg numbers of all the lherzolite phases except spinel.

At some depth (40 to 50 km.) horizons of amphibole-bearing lherzo-

lite appear. The clinopyroxenes of this assemblage are relatively en-

riched in jadeite, but poor in calcium tschermak component. Intercalated

with the amphibole lherzolite are horizons of spinel lherzolite. This

Lssemblage would be continuous with its counterpart above the amphibole-

bearing horizons, with its spinel becoming even more chromium-rich with

depth. The clinopyroxene of the spinel lherzolite would contain slightly
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more calcium tschermak component than adjacent amphibole lherzolite

clinopyroxene, but little or no jadeite. Tie reason for the persistence

of spinel lherzolite horizons after the appaarance of amphibole would

depend on the origin of the amphibole. If :he amphibole formed by the

replacement of spinel, then the problem may simply be one of access to

volatiles. On the other hand, the amphibole lherzolites may represent

former garnet lherzolite. The works of Nysen (1973) and MacGregor (1970)

indicate that the transition from spinel lherzolite to garnet lherzolite

is very sensitive to bulk composition.' The amphibole-bearing horizons

may represent material whose composition was such that garnet was stable

and vice versa for the adjacent spinel lherzolite horizons. In either

case the amphibole is a relatively recent phenomena and reflects the wide

scale introduction of fluids in the upper mantle.

b) Dunites and Pyroxene Granulites and the Lower Crust

The dunite and pyroxene granulite nodules of Chapter 7 were concluded

to be cumulates which are accidental to their alkalic basalts. The pri-

mary mineralogy of the granulites is interpreted to consist of feldspar

and olivine with lesser amounts of clinopyroxene and spinel. The origi-

nal rock types range from feldspathic dunite through troctolite to gabbro,

depending on the relative proportions of these primary phases. -The P-T

relationships of these primary rock types cannot be determined because of

the absence of quantitative petrogenetic indicators in their primary

mineralogy. There is a striking similarity, however, between the primary

rock types of this xenolith suite and those which characterize the

transition zone of alpine ophiolite complexes (Church, 1972; Dewey and
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Bird, 1971). In particular, the interbandEd dunites, feldspathic

dunites, troctolites, and gabbros of the "Critical Zone" in the Bay of

Islands complex (Smith, 1958) are all repres:ented in the Nunivak xenolith

suite. Malpas (1974) has placed his "Petrological Moho" at the gradation

between the basal, 350 foot, dunite layer of this "Critical Zone" and the

interbedded harzburgites and dunites below. Although the crust beneath

the Bering Sea shelf is not oceanic, it appears reasonable to conclude

that the dunite-granulite xenolith suite may represent an analogous tran-

sition zone beneath Nunivak Island. The mineralogy of the corona struc-

tures indicates that this zone is located at an approximate depth of 30

km.

According to the foregoing interpretation, the Mohorovicic discon-

tinuity beneath Nunivak Island would correspond to a transition from

aluminous spinel lherzolite to a cumulate, chromite-rich dunite. With

decreasing depth, interbedded layers of what were originally feldspathic

dunite and troctolite would appear and become increasingly abundant.

These rock types would eventually grade into overlying gabbros (Figure

8-2). The thickness of this hypothetical transition zone is uncertain,

but its counterpart in the Bay of Islands has an approximate thickness of

1 mile (Smith, 1958).

The development of the corona structures between olivine and plagio-

clase may reflect increasing pressure or isobaric cooling. There has

been some debate as to whether the P-T slope of the olivine-plagioclase

Aeaction curve is small enough to permit the later mechanism in a geolo-

gic setting (Gardner and Robbins, 1974). Students of corona structures

in deep seated anorthosite bodies, however, argue that the field
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relations usually support the isobaric coolLng -mechanism (Griffin, 1973,

1971, 1969; Gardner and Robbins, 1974; Whitaey and McLelland, 1973). The

absence of deformation in the Nunivak coronas and the large differences

between the estimated temperatures of the pyroxene granulites and the

aluminous lherzolites 10025 and 10211 (Figure 8-1) support an isobaric

cooling model. However, a gradual thickening of the crust accompanying

the accumulation of sediments on the Bering Sea shelf could be proposed

as a mechanism for a pressure increase. In the absence of field rela-

tions, neither of these models can be eliminated.

IV Concluding Statement

The most significant finding of this thesis is the evidence for Cr-

bearing, interstitial amphibole in 50% of the fresh lherzolite xenoliths.

This amphibole is believed to be secondary, the product of a pervasive

metasomatic event in the upper mantle. The remarkable similarity of the

Na/Na + K ratios of the basalts and amphiboles implies that the fluids

which formed the latter are genetically related to the basalts. However,

the textural relations require that the amphibole predates the alkalic

basalts and the composition of the amphiboles precludes its formation by

the direct interaction of alkalic basalt and lherzolite. The metasomatic

fluids and basalts may have a common source in the low velocity zone.

According to this interpretation the upward migration of basalts was pre-

ceded by the infiltration of alkali-rich fluids and the development of

interstitial amphibole in the upper mantle. The comments about the
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nature of the upper imantle and the lower crust in the preceding section

are intended as a speculative interpretation of the available data rather

than a rigid model. They are presented in the belief that a report of

observations without speculation is an insult to the scientific curios4-ty

of both the reader and the author.
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Appendix 1

Sources for Yenoliths Sources for Xenoliths

Host Vent Comments

1) Fresh Lherzolites

10001 NA3-9 glass bearing
10002 NA4-7 glass bearing
10003 NA4-7 glass bearing
10004 NA3-7 four phase
10005 MD3-1 glass bearing
10006 MD3-1 amphibole bearing
10007 NA3-7 four phase
10008 NA4-7 four phase
10009 NA4-7 glass bearing
10010 NA4-7 glass bearing
10012 NA3-7 four phase
10013 NA4-7 amphibole bearing
10016 NA4-6 amphibole bearing
10017 NA4-6 mica bearing
10041 NA4-7 mica bearing
10043 NA3-9 four phase
10045 maar glass bearing
10046 maar glass bearing
10050 MD3-1 amphibole bearing
10051 MD3-1 amphibole bearing
10052 MD3-1 amphibole bearing

2) Iddingsitized Lherzolite

10022 MD4-4
10023 MD4-3
10024 MD4-3
10025 NA4-2
10026 NA4-1
10027 MD4-9 glass bearing
10029 NA3-5
10211 MD4-6
10212 MD3-1
10213 NA4-6
10214 NA3-4
10215 MD4-1
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Iddingsitized Lherzolite (cont'd)

10216
1027
10218
102L9
10220
10221

3) Granulites

. 12000
12001
12004
12008
12017
12024

4) Dunites and Harzburgites

15005
15009
15011

5) Megacrysts

13000
13020

NA3-9
NA3-4
NA3-4
MD4-4
MD4-1
MD4-3

iddingsitized
iddingsitized
iddingsitized

iddingsitized

maar
NA3-7
maar

NA4-7
NA4-12

kaersutite
clinopyroxene
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NA3-2
MD4-4
NA3-5
mD4-5
NA4-6
NA4-5



181

APPENCIX 2-1

CLIVINE

FRESH LHERZOLITE SUITE

SPEC. 1CO01 1CCO2 1CCO3 1CCO4 1CCO5 1CCC6 ICCO7

40.39
0.01
C. cc
0.CC
0.Cc
9.C8

49.74
0.13
0.C5
0.CC

.0 cc

4C.75
c.C1
0.00
0.00
c.co
9.14

49.12
0.10
0.05
Q.C0
c.co

41.03
C.01
C.co
C.Cc
c.cc
9.40

49.45
C. 14
C.06
c.co
c.Cc

4C.63
C.01
0.00
C.co
C.c0
9.46

49.35
C. 12
0.08
c.00
c.00

99.40 99.17 100.09 99.65

FCRPULA UNITS ASSUPING

41.35
C.C1
0.00
0.00
0.CC
8.95

50.24
0.13
0.05
0.00
0.00

40.90
C.C2
0.00
0.00
C. co
8.72

50.02
C. 12
0.04
0.00
0.00

100.73 99.82 99.75

4 OXYGENS

0.993 1.003
c.0c0 C.cco
0.0CC 0.000
C.oCC 0.c00
0.0CC C.CCO
0.187 0.188'
1.823 1.802
C.003 0.C02
C.001 c.c01
0.0C C.C00
0.0CC C.Co0

1.C02 0.997 1.001
0.CC 0.C00 C.CCC
0.CC0 0.COO 0.000
0.CCC 0.CO0 0.C00
C.CCC C.Co0 C.CCC
0.192 0.194 0.181
1.8C0 1.806 1.813
C.C03 C.C02 C.C03
0.002 0.C02 0.001
0.CCC 0.COO 0.000
C.CCC 0.CCO 0.000

0.999
C.CCC
0.000
0.0C0
C.CCC
0.178
1.820
C.CC2
0.001
0.C00
c.CCC

0.998
0.Cc0
0.cco
0 .COO
0.CcC
C.172
1.829
0.C02
0 .C01
0 .CCO
.CCc

3.007 2.997 2.998 3.C02 2.999 3.001 3.C02

PC/PG+FE 6.907 C.905 0.904 0.903 0.909 0.911 0.914

UNLESS OTHERhISE SPECIFIEC; TCTAL IRON AS FEC

S IC2
T IC2
ALM2C3
FE2C3
CR203
FEC
MGC
MAhC
CAC
N-A2C
K2C

TCTAL

40.88
C.C2
0.C0
0.00
c.c0
8.44

5C.27
C. 10
C.04
S.00
0.00

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NA
K

TCTAL
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CLIVINE

FRESH LHERZOLITE SUITE

SPEC.

SIC2
T IC2
AL203
FE2C3
CR2C3
FEC
?MGC

CAC
NA2C
K 2C

1C008 1C009 ICC10 ICC13 1C013 1C013 10C16

40.48
0.02
0.CC
0.cC
0.Cc
8.84

49.69
0.14
0.06
0.Cc
0.Cc

40.53
C.02
0.00
0.00
0.00
8.66

49.88
0.12
0.04
0.00
C.C0

4C. 55
C.01
0.00
C.co
C.cc
8.74

49.73
C.12
0.05
c.co
c. c

4C.28
C.00
0.03
0.00
C.03

10.99
48.98
C.20
0.07
0.00
0.00

4C.14
0.0 0
0.01
0.00
C.02

10.97
49.53
C.15
C.07
0.00
0.00

39.82
C.CC
0.02
0.00
C.C4

1C.77
49.59

C.16
C.C7
0.00
0.00

40.83
c.c0
0.04
0.00
C.02
9.35

49.96
C. 16
C.05
C.0l
0.00

ICTAL 99.23 99.25 99.20 100.58 100.89 1C0.47 100.42

FCRMULA UNITS ASSUPING 4 CXYGENS

SI
TI
AL
FE3+
CR
FE2+
MG
toN
CA
NA
K

TCTAL

0.996
0.0CC
c.0c0
c.CCC
0.0CC
0.182
1.822
0.003
C.002
c.CCc
0.0CC

C.996
0.C00
0.000
0.C00
0.000
0.178
1.826
C.002
0.001
C.C00
C.CCO

0.997
0CCC
0.C00
0.C00
C.CCc
0.180
1.822
0.CC2
0.001
0.CCO
0 .CC

0.988
0 .CC0
0 .c01
0.C00
0.001
0.225
1.791
C.C04
0.C02
0.C00
O.coo

0.982
C .CCC
0.000
0.000
0.C00

0.224
1.806
0.CC3
0.002
0.000
C. CCO

C.978
C .CCO
0.001
0.000
C.CC1
C.221
1.815
C.CC3
0.002
0.000
C. CC

0.994
0.c0
0.C01
0.C00
c.CCC
0 . 19C
1.814
C.CC3
0.c(1
0.CCO
C. CCC

3.0C4 3.004 3.C03 3.011 3.018 3.021 3.005

,jG/PG+FE 0.909 0.911 0.91C 0.E8b C.889 0.891 0.905

UNLESS CTHERWISE SPECIFIEC; TCTAL IRCN AS FEC
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CLIVIAE

iRESH LHERIOLITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR2C3
FEC
MGC

CAC
NA20
K2C

TCTAL

SU ITE

10017 1CC17 ICC17 1CCC7 I042 1C043

39.48
0.CC
0.cc
0.CC
0.01

17.67
42.73
0.31
0.06
0.CC
o.cc

39.17
O.C0
0.03
0.00
C.C8

19.20
41.92
0.35
0.08
C.C0
0.00

38.86
C.C c
C.03
C.C
0.05

16.25
44.37
C.30
0.04
C.cc
C.CC

38.39
c.Co
C.02
c.c
C.06

20.67
40.86

0.37
0.09
0.00
0.00

1C0.26 100.83 99.90 100.46 98.89 99.44

FCRPULA UNITS ASSUPING

SI
TI
AL
FE3+
CR
FE2+
PG
pA
CA
NA
K

1.CC1
0.0CC
C.0CC
C.CCC
C.oCC
0.375
1.615
C.007
0.002
c.0CC
0.0CC

C.995
0.Co
0.C01
C.Cco
C.C02
0.408
1.588
C.c08
C.CC2
0.000
C.Cco

4 CXYGENS

C.985
C.0CC
0.C01
0.CCC
C.CCI
0.344
1.676
C.CC6
C.CC I
0.CC0
c.CCC

0.988
0.CC
0.C01
0.C00
0.C01
0.445
1.567
0.C08
C.C02
0.C00
0.C00

2.999 3.003 3.014 3.011 3.002 2.993

"G/PG+FE C,. 812 C.796 0.83C 0.77 0.911 0.906

UNLESS OTHERWISE SPECIFIEC: TOTAL IRON AS FEC

40.48
C.C1
0.00
0.00
C.Cc
8.67

49.52
C. 14
0.07
0.00
0.00

41.07
c.c1
0.00
0.00
C. cc
9.C7

49.10
0. 15
0.04
0.00
0.00

0.998
c.CCC
0.C00
0.000
C.CC
0.179
1.820
0.003
C.CC2
0.CCO
0.CCO

I.007
C.CC
0.CC0
0.000
C. CCC
0.186
1.795
0.003
C.CCI
C.CCO
C.CCO

TCTAL

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - -- - - - - - - - - - - - - - - - - -



APPENCIX 2-2

EUhEDRAL OLIVINE

FRESH LHERZCLITE SUITE

SPEC. 1CCC2 1CCC6 1CC10 1C017 1C017 10045

41.C1 38.65 4C.99 39.27 39.90 40.84
0.C2 0.C0 C.C1 0.C0 0.00 0.C0
0.24 0.28 C.12 C.08 0.07 0.C7
0.CC C.C0 C.Co .0.00 0.00 0.00
0.21 C.82 C.18 0.22 0.11 0.20
7.22 7.46 6.55 14.04 11.14 6.93

50.10 51.63 51.03 45.31 48.17 5C.73
0.12 C.C9 C.C8 0.24 0.20 0.11
0.24 0.06 C.20 C.25 0.19 C.14
0.14 0.03 C.IC 0.00 0.00 0.03
0.CC 0.C0 C.01 0.00 0.00 0.00

99.30 99.02

FCRVULA UNITS ASSLVING

99.27 99.41

4 CXYGENS

99.78 99.05

SI
TI
AL
FE3+
CR
FE2+
MG
MN
CA
NAL
K

TCTIAL

1.001
C.0CC
C.007
0.CC0
C.CC4
C.147
1.822
C.002
C.006
0.007
0.0CC

C.954
C.C00
C.CC8
0.000
C.016
C.154
1.899
C.CC2
C.002
0.C01
C.C00

C.998
c.ccc
C.C03
C.CCo
C.CC3
0.133
1.851
0.C02
0.005
0.C05
0.C00

0.990
0.c00
0.C02
0.000
0.004
0.296
1.702
0.C05
0.C07
0.C00
0 .C00

0.988
0.000
C.CC2
0.c00
0.002
0.231
1.778
0.004
0.005
0.CCc
0.000

0.998
0.CCO
C.CC2
0.0CC
0.004
C.142
1.847
0.002
0.004
c.Cc1
0.0CO

2.997 3.035 3.CC1 3.C07 3.01C 3.CCO

PG/PG+FE 0.925 0.925 0.933 0.852 0.885 0.929

UNLESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC

SIC2
TIC2
AL2C3
FE2C3
CR203
FEC
PGC
MAC
CAC
NA2C
K2C

TCTAL

- - - - - - - - - - - - - - - - - -
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OLIVINE INCLUDED

FRESH LHERZOLITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR2C3
FEC

C C
PNC
CAC
N-A 2 C
K2C

TCTAL

IN CLINCPYRCXENE

SUITE

1CC06

40.83
0.C1
0.C5
0.CC
0.CC
8.81

5C.C7
0.14
0.C9
0.CC
0.cC

ICc.CC

FCRYULA UNITS ASSUPING

SI
TI
AL
FE3+
CR
FE24
VG
MN
CA
NA
K

TCTAL

4 CXYGENS

0.996.
C.cCO
C.C01
c.cCc
c.0CC
C. 18C
1.821
C.CC3
C.CC2
C.CCC
c.CC

3.003

FG/PG+FE C.91C

UNLESS OTHERhISE SPECIFIED; TCTAL IRON AS FEC

- -- - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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APPENCIX 2-4

INTERSTITIAL AAD RELICT CR-SPINEL

FRESH LHERi0LITE SUITE

SPEC. 1COC2 1C002 1CCO3 1CC03 10004 10005 10006

0.CC 1.21 C.CO 0.CO
0.C1 C.C2 C.07 C.00

29.02 36.46 45.C5 3S.70
0.CC 0.00 C.Co C.00
37.6C 29.77 2C.83 27.69
16.48 14.32 13.28 13.37
16.42 17.19 15.81 18.20
0.69 0.57 C.43 0.33
0.CC C.C5 C.C0 C.CO
0.CC C.C2 C.00 C.Co
0.CC 0.00 C.Co C.00

0.00 0.CO
0.13 0.06

50.52 41.17
0.00 0.C0

15.29 25.41
12.83 14.35
21.32 20.01
0.35 0.54
0.00 0.00
0.CC C.C0
0.00 0.C0

1Co.22 S9.61 9S.47 99.29 1C.44 101.54 1CC.15

FCRFLLA tNITS ASSLVIAG

C.CO 0.034
C.CCC C.C00
1.015 1.225
C.CCC 0.C00
C.882 C.671
0.-409 C.341
C.727 C.730
C-017 C.C14
0.CCC C.CC2
0.0CC C.C01
C.CCC 0.000

4 CXYGEAS

0.CCo
0.C01
1.46C
0.CCO
0.453
0.3C5
C .812
0.C10
C.CCC
C.C
0.C00

0.COO
0.000
1.322
0.C00
0.618
0.316
0.766
0.008
0.000
0.CCO
0.000

0.coo
0.003
1.583
0.000
0.321
0.285
0.845
0.008
O.C0o
C.CC
0.000

0.CCO
0.001
1.336
0.CCO
0.553
0.330
0.821
0.013
0.C00
C.CCC
C.000

0.CC
0.001
1.367
0.CC
0.531
0.324
0.E 13
0.C13
0.000
o .ccc
0.CCO

3.051 3.018 3.C42 3.C30 3.045 3.054 3.C50

YG/PG+FE '.640 0.681 0.727 0.703 0.748 0.713 0.715
CR/CR+AL C.465 C.354 C.237 0.319 0.169 0.293, 0.280

UNLESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC

SIC2
TIC2
AL 203
FE2C3
CR203
FEC
?GC
tNC
CAO
NA2C
K2C

TCTAL

c.CC
0.05

41.77
C.C0

24.18
13.96
1c.65
0.54
0.00
C.CC
0.C0

SI
TI
AL
FE3+
CR
FE2+
PG
P K
CA
NA
K

TCTAL
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APPENCIX 2-4

INTERSTITIA. AND RELICT

FRESH LHERZOLITE SUITE

CR-SP INEL

1CCC6 1CCC7

0.cc
0.cc

27.75
0.Cc

39. 84
14.86
16.15
0.46
0.c0
.Ce

0.Cc

0.C0
C.09
31.67

35.C0O
15.63
17.00
0.06
0.C0
0.00
0.C0

ICCC8 1CC09 10009 10010 10043

c.c0
C.03

45.68
C.C0

21.49
12.32
19.99

C.35
C.*.CC
0.00
C.C0

0.00
C.06

41.52
C.00

23.80
16.74
18.75

C.44
C.c0
0.00
0.00

0.00
0.01

38.30
0.00

27.53
15.98
17.41
0.38
0. cc
0.00
0.00

0.00
0.00

27.05
0.00

40.29
14.54
17.13
0.73
0.00
0.C0
0.00

0.06
0.05

45.77
0.00

22.39
13.34
18.77
0.30
c.01
C.01
0.01

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR2C3
FEC
PGC
MNC
CAC
NA2C
K2C

TCTAL

FCRPULA UNITS ASSUMIAG

SI
TI
AL
FE3+
CR
FE2+
MG
mA K
CA
NA
K

TCTAL

A CXYGENS

C.CCO C.CCO .CC 0.COO 0.000 0.0CC 0.002
0.0C0 C.C02 0.001 0.001 0.COO C.CCO 0.CC1
0.982 1.097 1.468 1.359 1.290 G.952 1.467
C.CCC C.CCo 0.CC 0.OO 0.000 0.000 0.CCO
0.946 C.813 C.463 0.523 0.622 0.952 0.481
0.373 0.384 0.281 0.389 C.382 C.363 0.3C3
0.723 0.745 0.813 0.776 0.741 0.763 0.761
C.'C12 C.C01 0.C08 0.C10 C.009 C.018 0.CO7
C.0CC C.CC0 C.CCC 0.CC0 0.CCC C.CCC 0.CCC
C.0CC 0.000 0.CC 0.C00 0.000 C.0CC 0.CC1
3.0CC 0.00 0.CCO 0.000 0.000 0.CC0 0.000

3.036 3.043 3.034 3.058 3.044 3.048 3.024

MG/MG+FE C.66C C.660 C.743 0.66o 0.660 0.671 0.715
CR/CR+AL C.491 C.426 0.240 0.278 0.325 0.5.CC 0.247

UNLESS CTHERIISE SPECIFIEC; TCTAL IRCN AS FEC

99.06 99.45 99.86 101.31 99.61 99.74 10C.71
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APPENCIX 2-4

INTERSTITIAL ANC

FRESH LHERZOLITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR203
FEC
VGC
MAC
CAC
NA2C
K2C

RELICT CR-SPINEL

SUITE

1C013 1C013 ICC16 ICC17 ICC17

0.14
0.C5

41.96
0.cC

25.35
14.62
17.95
0.41
0.02
0.cc
0.cc

0.60
0.06

36.02
C.cCc

3C.63
15.31
16.96
0.48
0.03
0.00

.co

1.c0
c. C1

35.87
C.Cc

32.17
13.75
16.79

C.61
C.C2
C .'Go
C.00

1C0.50 1CC.C9 ICC.22 ICC.10 99.C6

FCRPULA UNITS ASSt'IAG

0.004 0.017
C.0C1 C.CC1
1.374 1.215
C.CCC 0.000
C.557 C.693
0.34C C.366
0.743 0.723
C.,010 0.012
C.CCI C.CC1
c.0Cc C.C0
C.0CC C.CCo

4 CXYGENS

0.C28
C.CCC
1.2C2
0.CCo
C.723
C.327
C.712
0.015
0.001
C.CCC
C.cCC

0.026
0.035
0.611
0 .C00
1 .C90
0.856
0.440
0.027
0.002
0.CCO
c.0cc

0.020
0.008

0.00
1.046
0.649
0.527
0.018
0.001
0.C00
C. CCC

3.C3C 3.028 3.C08 3.088 3.055

PC/PG+FE 0.686 C.664 C.685 0.239 C.448
CR/CR4AL 0.2E8 0.363 0.376 0.641 0.571

UNLESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC

C.78
1.42

15.62
0.00

41.52
30.83
8 .89
0.97
C.07
0.00
0.00

0,.62
C.35

20.84
0.00

41.32
24.22
11.03
0.66
C.02
0.00
0.00

SI
TI
AL
FE3+
CR
FE2+
FG
Ph
CA
NA
K

TCTAL
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APPENCIX 2-5

EUHEDRAL CR-SPINEL

FRESH LHERZ0LITE SUITE

SPEC. 10001 1C002 1C010 1C017 1C017

SIC2 0.39 1.54 0.90 1.41 0.92
TIC2 0.22 C.C7 C.08 2.41 1.07
AL2C3 47.16 36.30 37.43 17.45 21.44
-FE2C3 0.CC 0.Co C.CO C.00 c.CC
CR2C3 19.19 29.CO 3C.04 37.36 40.78
FEC 9.31 11.31 1C.16 26.35 19.92
FCC 21.53 2C.07 2C.45 12.72 14.20

A 0.22 0.52 C.58 0.81 C.88
CAC 0.06 0.23 0..14 0.07 0.01
NA2C 0.02 0.10 C.04 0.00 0.00
K2C 0.CO 0.C0 0.01 C.00 0.00

TCTAL 98.10 99.14 99.83 98.58 99.22

FCRPULA UNITS ASSUMING 4 OXYGENS

SI C.01l C.C43 C.C25 C.C46 0.029
TI 0.004 C.C01 C.CC2 0.C59 0.025
AL 1.508 1.206 1.231 0.667 0.788
FE3+ C.CCC C.Co0 c.cco 0.C00 0.000
CR C.412 C.646 C.663 0.958 1.005
FE2+ C.211 C.267 C.237 0.715 C.519
FG 0.871 0.843 0.850 0.615 0.660
Ph C;0C5 C.012 0.014 0.022 0.023
CA 0.002 0.007 0.004 0.C02 0.C00
NA 0.001 C.005 C.C02 0.CCO 0.CCC
K 0.0Co 0.000 0.CCO 0.C00 0.COO

~~---------------

TCTAL 3.025 3.032 3.C28 3.083 3.050

PG/G+FE C.805 0.760 C.782 0.462 0.560
CR/CR+AL 0.214 C.349 0.350 0.590 0.561

UNLESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC



APPENCIX 2-6

CR-SPINEL INCLUDED IN AMPHIBOLE

FRESH LHERiOLITE SUITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR2C3
FEC
GCC

FAC
CAC
NA2C
K2C

TCTAL

1CC13 1C016 1CC16

0.CC
0.06

30.9C
0.CO

35.47
16.74
15.61
0.45
0.CC
0.c0
0.C0

1.91
. 04

21.61
0.00

45.32
16.59
13.77
0.94
0.19
0.00
0.Cl

1.47
C.C5

23.95
c.co

43.08
16.30
14.14
C.87
co.1
C.05
c.ol

99.23 1CC.38 10C.03

FCRVULA UNITS ASSUPING

SI
TI
AL
FE3+
CR
FE2+
FG
MAK
CA
NA
K

TCTAL

4 OXYGENS

C.CCC C.C58 C.C45
0.001 C.001 0.CO
1.C84 C.776 0.855
0.0CC C.CCo C.CCC
0.834 1.092 1.C32
0.417 0.423 0.413
C.692 C.626 0.638
C.-011 C.C24 0.C22
0.0C0 C.C06 0.CO4
C.OCO 0.C00 0.C03
C.CCC C.Cco 0.CCO

3.04C 3.CC7 3.C13

FG/G+FE C.624 0.597 0.607
CR/CR+AL C.435 C.585 0.547

UNLESS CTHERhISE SPECIFIEC; TCTAL IRCN AS FEC

- - - - - - - - - - -



APPENCIX 2-7

CR-SPINEL I4CLUCEC IN CRTVCPYROXENE

FRESH LHERZOLITE

SPEC.

S IC2
TI C2
AL2C3
FE2C3
CR2C3
FEC
MGC
PAC
CAC
NA20
K2C

TCTAL

SUITE

1CCC3 1CC13

C.CC
0.cc

41.33
CCO

26.C4
13.09
18.51
C. 3C
0.Cc
0.cc
0.co

0.00
0.C

47.24
C.co

19.85
14.C8
18.71
0.23
0.c0
c.C0
0.co

99.27 1CC.11

FCRFUtA UNITS ASSLUING

SI
TI
AL
FE3+
CR
FE2+
MG
FA K
CA
NA
K

TCTAL

C.CCc
c.cc
1.365
C.0CO
C.577
C.307
C.773
C.OC7
C.ccc
c.CCc
C.ccC

4 CXYGENS

c.Cc0
C.Cc0
1.516
C.C00
0.427
C.321
C.759
C.CC5
a.cco
C.Ccc
C. CCO

3.029 3.028

FG/VG4FE C.716 C.703
CR/CR4AL 0.297 C.220

UNLESS CTHERMISE SPECIFIEC; TCTAL IRCN AS FEC

- - - - - - - - - - - - - - - - - - - - - - - - -
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APPENCIX 2-8

CR-SPINEL INCLUEEC IN CLIVINE

FRESH LHERZ0LITE SUITE

SPEC. 1COC3 ICC06 1CC13 ICC16

.Ce
0.cc

40. 3C
0.Cc

26.72
13.38
18.49
0.31
0.cc
0.Cc
0.CC

c.co
0.0

42.81
0.C co

23.52
13.40
18.83
0.25
0.00
0.00
0.00

99.20 98.81

FCRMULA UNITS ASSUPING

C.C0o
C.CCC
1.338
c.cC0
C.595
0.315
0.777
C,007
C.CCC
0.0CC
c.0CC

0.000
0.000
1.411
0.000
C.520
0.313
0.785
0.006
C.cc0
0.000
C.000

C .CC
C.03

39.77
c.cc

25.96
16.09
16.89
C.32
c.cc
C .c0
C.CC

C.C0
C .03

42.88
C.co

24.85
13.13
17.85

C.35
C.C0
C.00
C.00

99.C6 99.09

4 CXYGENS

c.ccc
0.cci
1.339
0.CC0
0.586
0.384
C.719
0 .C08
c.CC0
C .CC0
c.CC

O.coo
O.C01
1.412
0.CO
0.549
0.307
0.743
0.C08
0.C00
0.000
0.CCO

3.033 3.035 3.C37 3.019

PC/PG+FE
CR/CR+AL

C.711
C.3C8

C.715 C.652 0.703
0.269 0.305 0.280

UNLESS CTHERhISE SPECIFIEC; TCTAL IRON AS FEC

S IC2
TIC2
AL2C3
FE203
CR2C3
FEC
PGc
MAC
CAE
NA2C
K2C

TCTAL

SI
TI
AL
FE34
CR
FE2+
IG
MN
CA
NA
K

TCTAL

- - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - --

- - - - - - - - - - -
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APPENCIX 2-9

ORTHOPYRCXENE

FRESH LHERZOLITE SUITE

1C002 1C003 ICCO4 1CC05 1C006 1CC07 1CCO8

56.44
0.c0
3.23
0.CC
0.43
5.98
33.22
0.11
0.58
0.26
CC C

55.21
0.01
3.34
C.C0
C.40
6.0C5

34.49
0.14
0.60
C.06
C.C0

55 . 53

C.C4
3.76
C.CC
C.41
6.11

33.C3
C.14
C.61
C.2C
C.C0

56.95
0.05
2.86
C.00
0.44
5.85

33.68
0.12
0.55
C.04
C.01

56.32
o .03
3.C3
0.C0c
0.46
5.77

33.79
0.12
0.53
C.03
C .CC

57.13
O.01
2.46
C. cc
0.45
5.60

34.29
0.15
0.59

0.07
0.C0

56.49
C.03
3.37
C.Cc
0.43
5.81

33.91
C.13
0.59
0.04
C.Cc

SPEC.

SIC2
TIC2
AL203
.FE203
CR2C3
FEC
MGC
MNC
CAC
NA2 C
K2C

TCTAL

FCRMLLA LNITS ASSLPING

SI
TI
AL
FE3+
CR
FE2+

CA
NA
K

TCTAL

1.94C
0.CC
C.131
C.0cc
C.012
C.172
1.702
C.0C3
C.C21
C.017
0.000

1.903
0.C00
C.136
C.CCO
0.011
C.174
1.772
C.004
C.022
C.004
C.Cco

6 CXYGENS

1.92C
0.001
C.153
c.cCc
0.011
0.177
1.702
0.C04
C.C23
0.C13
0.CCC

1.948
0.C01
0.115
0.CC0
C.C12
0.167
1.717
0.003
0.020
0.003
0 .000

1.937
0.C01
0.123
C.CCC
0.013
0.166
1 . 732
0.003
0.020
C.002
C.C 00

1 .950
0.CCO
C.099
C.CCC
C.012
0.160
1.745
C.004
0.022
0.005
C.CCO

1.929
0.C01
0.136
0.CCC
0.C12
0.166
1.726
0.C04
0 .C22
o.C03
0.C00

3.998 4.026 4.C04 3.988 3.996 3.996 3.998

PC/G+FE C.908 C.910 C.9C6 0.911 0.913 0.914' 0.912

UNLESS CTHERhISE SPECIFIEC; TCTAL IRCA AS FEC

1CO.25 100.30 99.83 1CC.55 1CC.08 1C0.75 100.80
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APPENCIX 2-9

ORTHOPYRCXEVE

FRESH LHERZOLITE SUITE

10009 10010 1CC13

55.82
0.C2
2.69
O.cC
0.38
5.97

34.85
0.13
0.44
0.16
0.CC

56.69
0.00
2.27
c.c0
0.52
5.79

34.29
C.C7
0.54
0.20
c.c0

55.7C
C.04
3.34
c.cc
C.45
6.77

32.82
0.18
C.56
C.20
C.C c

1C013 1C016 10043 ICC45

55.87
C .04
3.21
c.c0
0.38
6.80

33.01
0.16
0.65
C.34
c.c0

57. C7
0.01
2.78
C.cc
0.43
5.82

34.01
0.15
0.41
0.08
C .CC

56.36
C.02
3.43
C.cCc
0.42
5.69

33.48
0.17
0.58
0.00
C.CC

56.18
0.01
2.76
C.CC
0.34
6.07

34.29
C.16
0.46
0.16
C .CC

1CO.46 1CO.37 1CC.06 1CC.46 100.76 1CO.15 100.43

FCRFULA UNITS ASSUYING

SI
TI
AL
FE3+
CR
FE2+
MG
tjAN
CA
NA
K

TCTAL

1.919
c.oC1
C.1c9s
0.CC
C.01C
C.-172
1.786
0.-004
C.016
0.011
C.oCC

1.946
0.000
C.092
c.CCo
0.014
C. 166
1.754
0.002
C.C20
C.013
C.CCo

6 CXYGENS

1.927
0.00 1
C. 136
C.CCc
0.012
0.196
1.692
0.005
C.C21
0.C13
C.CCc

1.927
0 .C01
0.130
0.cc0
0.010
0.196
1.697
0.005
0.024
0.C23
0 .C00

.948

.CCO

.112
. CCC
.012
.166
.730
.004
.015
.005
.CCC

1.935
C .CC1
C.139
C.CCC
0.011
0.163
1.714
0.C05
0.021
c.cCo
C.CcO

1.930
0.cco
0.112
0.CCO
0.CC9
0.174
1.756
0.CC5
0.C17
0.011
0.CC0

4.026 4.C08 4.C04 4.013 3.993 3.989 4.C14

PG/PG+FE C.912 C.913 0.896 0.896 0.912 0.913 0.91C

UNLESS OTHERWISE SPECIFIEC; TCTAL IRONA

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR2C3
FEC
FGC
AC

CAC
NA20
K2C

TCTAL

- - - - - - - - - - - - - - - - - - -

AS FEC
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APPENCIX 2-1

CRIHOPYRCXE qE

FRESF LHERZOLITE SUITE

SPEC.

SIC2
TIC2
AL203
FE2C3
CR2C3
FEC
PGC
MAC
CAC
NA2C
K2C

ICIAL

10046

56.38
0.c1
2.8T
0.CC
0.53
5.54

34.36
0.12
0.53
0.14
0.CC

1CO.48

FCRVULA UNITS ASSLYING

SI
TI
AL
FE3+
CR
FE2+
FG
Ph'
CA
NA
K

TCTAL

6 OXYGENS

1.932
0.0CC
C. 116
C.CCC
C.014
C. 159
1.755
C.-CC3
C.019
C.009
C.CC

4.0C8

PG/VG+FE C.917

UNLESS CTHERIISE SPECIFIEC; TCTAL IRCA AS FEC

---------------
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APPENDIX 2-10

ORTHCPYRCXENE INCLUDEC IN CLINCPYROXENE

FRES- LHERZOLITE SUITE

SPEC.

SIC2
TIC2
AL2C3
FE203
CR2C3
FEC
MGC

ACCAC
NA2C
K2C

TCTAL

100C6

57.43
0.cc
1.25
0.cC
0.22
5.42

34.e3
0.15
0*60
0.14
0.c

1CO.04

FCRPULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
FG
FNG I

CA
NA
K

TCTAL

6 OXYGENS

1.973
c.CC
C.051
C.ccC
C.006
C. 156
1.783
C.0-C4
C.C22
C.CC9
c.cco

4.004

MG/FG+FE C.920

UNLESS OTHERUISE SPECIFIEC; TCTAL IRCA AS FEC

- - - - - - - - - - - - - - -- - - - - -
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APPENDIX 2-11

CLINCPYRCXEIE

FRESH LHERZOLITE SUITE

1C001 1C002 1CC03 LCCO4 10005 10006 10C06

53.35
0.13
2.92
0.cc
0.87
2.45

17.52
0.C8

22. C8
0.87
C.Cl

54.82
0.07
4.45
C. CO
0.90
2.83
16.55
C.07

I.77
2.57
0.00

53.20
0.08
3.27
C.C 0
0.60
2.20

16.72
C.11

22.25
C.94
C.01

53.56
0.20
4.22
C.C0
0.66
2.66

17.14
0.07

20.90
1.14
0.C0

54.C3
0.04
2.98
C. CC
0.68
2.53

16.84
C.09

20.48
1.74
C.01

55.58
0.00
4.00
C. CC
0.85
2.81
16.22
C.07

17.46
2.97
C.C0

56.46
C .C0
3.82
C.C0
0.69
2.96

15.85
C.11

17.80
2.67
C.C2

SPEC.

SIC2
TIC2
AL203
FE2C3
CR2C3
FEC
YGC

CAC
NA20O
K2C

TOTAL

FCRPULA UNITS ASSLING

SI
TI
AL
FE3+
CR
FE2+

CA
NA
K

1.930
C.004
C.125
C.CCC
C.025
C.074
0.945
0.-002
C.856
0.061
C.0CC

1.953
0.002
C.187
C.cco
C.025
C.084
C.879

0.002
C.717
C. 178
C.CCO

6 CXYGENS

1.939
0.C02
C. 14C
C.CC
0.017
0.C67
c.9C8
0.003
0.869
C.C66
0 .CC

1.924
0 .005
0.179
C.C00
0.019
0.080
0.918
0.002
0.805
C.079
0 .CCo

TCTAL

FG/FG4FE

UNLESS CTHERISE SPECIFIEC; TCTAL IRCA AS FEC

1CC.28 101.03 99.38 1CC.55 99.42 99.96 100.38

1.963
0.001
C.128
0.C00
0.020
C.077
0.912
0.003
0.797
C.123
C .CcO

1.992
C.CCO
0.169
C.0 00
0.024
0.084
0.866
0.C02
0.670
0.2C6
C.CCO

2.C12
0.CCO
0.160
0.CCc
0.C19
0.088
C.842
0.CC3
0.680
0.184
0.C01

4.022 4.027 4.C13 4.C11 4.024 4.015 3.991

C.927 C.912 0.931 0.920 0.922 C.911 C.9C5

-------------------------------------------------
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APPENDIX 2-11

CLIACPYRCXENE

FRESP LHERZOLITE SUITE

SPEC. 100C6 ICC06 1CC07 1CCO8 1C009 1C013 ICC16

SIC2 55.64 55.20 53.4C 52.46 53.26 53.81 54.83
TIC2 0.C3 0.03 C.06 0.10 0.09 0.01 0.02
AL203 4.28 4.66 2.71 3.25 2.51 4.77 3.27
-FE2C3 0.CC 0.C0 C.CC C.Co 0.CC C.C0 C.CO
CR2C3 0.87 0.86 C.91 0.68 0.52 0.96 0.78
FEC 2.8C 2.93 2.35 2.47 2.27 3.24 2.42
mGC 15.94 15.49 12.C7 17.40 17.34 16.C4 16.22
MAC 0.13 C.11 C.10 0.05 0.09 0.10 C.13
CAC 17.61 17.72 21.70 23.01 22.52 18.82 19.89
NA20 2.71 2.E4 C.81 0.48 0.94 2.44 2.12
K2C 0.C2 C.C1 C.01 c.C0 C.01 C.C0 C.CI

TCTAL 1C0.03 99.85 99.12 99.90 99.55 100.19 99.69

FCRFULA UNITS ASSUMING 6 OXYGENS

SI 1.991 1.982 1.950 1.910 1.942 1.940 1.981
TI C.001 C.001 0.C02 0.C03 0.002 C.CCO 0.C01
AL C.181 C.197 0.117 0.139 0.108 C.203 0.139
FE3+ 0.CCC C.CCo C.CCC 0.CO0 0.CC C.CCC C.CCC
CR C.025 0.024 0.026 0.020 0.015 C.027 0.022
FE2+ C.084 0.088 0.072 0.075 0.069 0.098 0.C73
MG C.85C C.829 0.929 0.944 0.942 0.862 0.873

A 0.-004 C.003 0.CC3 0.C02 C.CC3 0.CC3 0.CC4
CA 0.675 C.682 0.849 0.898 0.880 0.727 0.770
NA 0.168 C.198 C.C57 0.034 0.066 0.171 0.148
K C.001 C.Cco C.CCC 0.Co0 C.CCC c.CC0 C.CCC

TCTAL 4.0CC 4.005 4.C06 4.025 4.028 4.030 4.012

C/MG+FE 0.910 C.9C4 0.928 0.926 C.932 C.893 C.923

UNLESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC



APPENCIX 2-A.1

CLIACPYRCXEllE

FRESH LHERZULITE

SPEC.

SIC2
T IC2
AL2C3
-F E 2 C 3
CR203
FEC
PGC
MAC
CAC
NA2C
K2C

TCTAL

SUITE

10017 10017 1CC43 ICC45 1CC46

53.8
0.27
4.36
0.CC
2.39
5.64

14.43
0.24

16.53
2.76
0. C2

54.53
C.11
4.15
0.00
1.08
5.85

15.49
0.22

15.69
2.75
C.c0

1C0.52 99.87 99.43 99.47 99.91

FCRPULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
VG
PA
CA
NA
K

TCTAL

1.953
C.007
0.186
0.0C0
C. 068
C.171
0.780
C.007
C.642
0.194
0.001

1.977
C.C03
C. 1177
0.000
C.031
C. 177
C.837
0.007
C.610
C. 193
c.cc0

6 CXYGENS

1.929
0.CC2
0.146
0.C00
0.020
C.C78
0.910
0.004
0.880
0.C32
C. CC

1.974
0.C00
0.140
0.C00
0.018
C.C79
0.E79
0.C02
0.782
0.146
0.C00

1.965
0.cco
C. 138
0.C00
0.024
0.072
C. 888
0.002
0.806
0.118
C.CCc

4.01C 4.012 4.C02 4.020 4.013

MG/PG+FE C.820 C.825 0.921 0.91L 0.925

UNLESS CTHERhISE SPECIFIEC; TCTAL IRGN AS FEC

199

52.86
C.C8
3.40
c.cc
C.7C
2.56

16.74
C.13

22.5C
0.45
C.01

54.43
C.01
3.27
C.00
C.63
2.59

16.26
C.08

2C. 12
2.08
0.00

54.39
c.C1
3.24
0.00
0.84
2.37

16.49
0.06

20.83
1.68
0.00
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APPENDIX 2-12

CLOUDY CLINOPYROXENE

FRESH LHERZOLITE SUITE

SPEC.

S132
TIJ2
AL233
FE 203
CR233
FEO
MG3
MNO
CA3
NA23
K20

TOTAL

10006 10016 1C016 10016 10045 10045 10046

55.05
0.06
3.06
C.03
0.69
2.32
16.53
0. 09
23.96

1.51
0.20o

54.99
0.08
2.55
0.00
0.50
2.26

16.58
0.09

21.20
1.67
0.00

54.96
3.06
2.87
0.00
0. 65
2.12

16.64
0.10

21.96
1.51
0.30

130.27 99.92 100.87 99.94 99.66 100.0 100.13

FORMULA UNITS ASSUMING 6 OXYGENS

1.978
0.002
0.130
0.000
0.020)
0.073
0.885
0.003
0.807
0.105
0.000

1.985
0.002
0. 138
0.003
0.014
0.068
0.892
0.003
0.820
0.117
0.030

1.969
0.002
0.121
0.)300
0.018
0.n64
0.388
0.003
0.343
0.105
0.003

1.944
0.002
0.134
0.003
0.019
J.C68
0.924
0.002
0.826
0. 115
0.0003

1.975
0.001
0.127
0.000
u.016
3.C74
0.884
U. 0303
0.811
0.124
U. 030

3.993 4.010 4.012 4.035 4.015

MG/MG+FE 0.927 0.929 0.933 0.931

1.959
0.001
0.127
0.000
0.018
0. 069
0.873
0.003
0.844
0.110
0.003

1.960
0.001
0.126
0.000
L.4 23
3.070
0.903
0.002
U. 833
0.102
0.000

4.012 4.017

0.923 0.927 0.928

UNLESS OTHERWISE SPECIFIED; TOTAL IRON AS FEO

53.68
0.08
3.15
0.00
0.66
2.26

17.11
0.06

21.29
1.64
0.01

54.52
0.02
2.98
0.00
0.56
2.45

16.37
0.09

20.90
1.77
0.00

54.46
0.05
2.98
0.00
0.63
2.28

16.15
0.10

21.73
1.57
0.00

54.29
0.03
2.96
0.03
0.70
2.33

16.78
0.06

21.53
1.45
0.03

SI
TI
AL
FE3+
CR
FE2+
MG
M N
C A
NA
K

TOTAL
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APPENCIX 2-13

RIF CLINCPYROXENE

NRESH LHERZOLITE SUITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR203
FEC
MGC

KNC
CAC
NA 2C
K2C

TCIAL

1CCC2 1CCC5 ICCC6 1CCO6 1CC17 1C017

53.64
0.04
3.98
0.CC
1.19
2.73

17. 9C
0.10

19.54
1.35
0. C3

53.21
C.04
2.44
c.0
1.31
2.55

18.03
0.11

21.84
0.71
C.03

54.39
C .03
2.15
c.C c
1.35
2.73

17.44
C.16

2C.56
C.77
C.07

53.03
C .04
2.87
c.00
1.77
2.42

16.63
C.09

21.72
0.95
C.03

1CO.50 1CO.27 99.65 99.55 lCC.06 1CC.65

FCRFULA UNITS ASSUING

SI
TI
AL

CR
FE2+
1vG
MN
CA
NA
K

TCTAL

1.926
C.001
C.168
C.CCC
C.034
0.082
C.958
C.003
0.752
C.094
C.CC1

1.928
c.cC1
0.104
c.c00
C.038
0.077
C.974
C.003
C.848
0.050
C.C01

6 CXYGENS

1.972
c.Cc1
0.C92
c.CCO
C .C39
0.C83
0.943
C.CC5
0.799
0.054
0.C03

1.936
0.CC1
0.123
0.000
0.C51
0.074
0.905
0.C03
0.849
0.067
0.C01

1.917
C.013
C . 145
0.000
C.058
0.152
0.900
C.006
C.735
0.081
C.C02

1.925
C.C05
0.134
0.C00
C.056
0.123
0.920
0.CC6
C.766
0.077
0.001

4.019 4.025 3.990 4.010 4.010 4.014

,G/'MG+FE C.921 C.926 0.919 0.925 0.855 0.882

UNLESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC

52.50
0.46
3.38
0.00
?.C1
4.98

16.54
0.20

18.80
1.15
C.04

53.18
C.2C
3.13
0.00
1.97
4.06
17.05
C. 19

19.74
1.10
0.03
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APPENCIX 2-14

EUI-ECRAL CLINOPYROXENE

FRESH LHERZOLITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR203
FEC
GCc

MAC
CAC
NA2C
K2C

TCTAL

SUITE

10CC1 ICCC2 ICCC6 1CCO6 10013 10013 10010

49.79
0.79
7.26
0.cc
1.71
2.28

15.30
C. C4

21.32
1.C2
0. Cl

49.57
0.08
6.96
C.Co
3.62
2.29

15.56
C.C6

20.03
1.30
0.00

51.33
C.15
6.41
C.co
2.66
2.43
16.06
C.C7

2C.63
1.13
C.C0

51.30
0.09
4.64
0.00
2.59
2.20

16.97
0.09

2C.61
0.85
0.03

99.52 99.47 1CC.87 99.37 ICC.4C ICC.21 99.79

FCRPULA UNITS ASSLUING

SI
TI
AL
FE3+
CR
FE2+
PG
MK
CA
NA
K

TCTAL

1.819
C.022
0.313
C.0CC
C.049
C.07C
0.833
C.C01
0.835
0.072
C.CCC

1.816
C.CC2
C.301
0.000
C. 105
C.C70
0.850
C.CC2
C.786
0.092
C.C00

6 CXYGENS

1.849
C.C04
0.272
0.C00
0.076
0.C73
0.862
0.CC2
C.796
0.079
0.C00

1.875
0.002
0.2CC
0 .COO
0.C75
0.C67
0.925
0.C03
0.807
0.060
0.c001

1.809
C.007
C.31S9
0.000
0.094
C. C72
0.834
0.003
0.798
0.081
0.000

1.822
0.007
0.292
0.cc0
C.087
C. 073
0.647
0.003
0.814
C.070
0.001

1.882
0.c01
0.240
0.C00
0.C70
C.C62
0.E89
0.C02
C.768
0.C96
0.CCO

4.014 4.025 4.C13 4.C16 4.C18 4.017 4.C10

PG/FG+FE C.923 0.924 0.922 0.932 0.920 0.921 0.935

UNLESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC

49.84
0.25
7.45
0.00
3.29
2.38

15.42
0.10

2C.51
1.15
0.01

50.08
0.27

6.82
0.00
3.01
2.40

15.62
0.10

2C. 89
0.99
0.03

51.95
0.03
5.62
0.00
2.44
2.C5

16.47
0.08

19.79
1.36
0.C0
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APPENCIX 2-14

EUHEDRAL CLINCPYRCXENE

FRESH LHERZOLITE SUITE

SPEC.

SIC2
TIC2
AL 2C3
FE2C3
CR2C3
FEC
FGC
VAC
CAC
NA20
K2C

TOTAL

10045

49.36
0.09
7.62
0.cc
3.47
2.07
14.54
0.12

21. 1C
1.2C
0.cc

99.5T

FCRFULA UNITS ASSUMING

SI
TI
AL
FE34
CR
FE2+
FG
MN
CA
NA
K

TCTAL

6 CXYGENS

1.809
C.0C2
C.329
c.ccC
C. 101
0.063
0.794
0.004
0.829
C.085
c.ccc

4.016

t-:GI/G+FE O'.926

UNL.ESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC



2C4

APPENCIX 2-15

CR-BEARING AIAPHIBCLE

FRESF LHERZOLITE SUITE

10006 1CCC6 ICC13 10013 10013 10013 ICC13

45.99
0.08

12.91
0.00
3.14
3.42

18.45
C.C7
9.C7
4.79
0.92

44.68
C.24

13.73
C.Co
2.11
4.23

1E.16
C.05
9.64
3.64
1.28

44.26
0.27

13.52
0.00
2.19
3.99

18.19
0.06
9.63
3.55
1.28

44.54 44.67 44.27
0.38 0.32 0.33
13.42 13.53 13.78
0.00 c.Co C.Co
2.85 2.23 2.48
4.13 3.91 3.94
17.68 17.94 17.71
0.11 0.11 0.15
9.79 9.75 9.84
3.83 3.98 3.93
1.31 1.24 1.24

98.60 98.84 97.96 96.94 98.04 97.68 97.67

FCRFULA UNITS ASSLFING 23 CXYCEhS

6.449
C.CC8
2.134
0.Cc0
C.348
C.4C1
3.856
C.C08
1.363
1.302
C.165

6.363
C.C26
2.294
0.Ccc
0.237
C.5C2
3.838
0.CC6
1.464
1.CC1
0.232

6.343
0.029
2.283
0.Coo
0.248
0.478
3.885
0.C07
1.479
0.986
0.234

6.336
0.041
2. 25C
0.000
0.321
0.491
3.748
0.013
1.492
1.C56
0.238

6.3 58
0.034
2.270
C.CCo
0.251
0.465
3.8C6
0.013
1.487
1.098
0.225

16.018 16.035 15.962 15.973 15.986 16.CC9 16.CIC

.jG/FG+FE C.910 0.906 0.884 0.896 0.884 0.891 0.889
NA/NA+K C.887 C.888 C.8-12 0.808 0.816 0.830 0.828

UNLESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR203
FEC

GC C
t NC
CAC
NA20
K2C

TCTAL

47.60
C. 11

12.06
0.cc
1.45
3.43

19.35
0. C6
8.73
4.87
0.94

SI
TI
AL
FE3+
CR
FE2+
14G
F N

CA
NA
K

TCTAL

6.642
C.C12
1.983
C.CCC
C.16C
C.4CC
4.024
C.007
1.3C5
1.317
C. 167

6.3 12
0.035
2.316
0.cc0
0.280
0.470
3.764
0.018
1.503
1.C87
0.226



2C5

AFPENCIX 2-15

CR-EEARING AMPhIBOLE

FNESH LHERZOLITE SUITE

ICC16 1C16 1CC16

46.69
0.C7

11.64
0.CC
2. 19
3.23

19.C4
C. 10
9.38
4.55
0.72

46.43
C.C9
12.09
C.Co
3.24
3.38

18.73
0.11
9.42
4.38
0.72

46.75
c.11

11.51
C.0C
2.55
3.29

19.01
C.11
9.43
4.39
0.72

SPEC.

SIC2
TI C2
AL2C3
FE2C3
CR203
FEC
PGC
"AC
CAC
NA2C
K2C

TCTAL

FCRYLLA UNITS ASSUFING 23 OXYGENS

6.595 6.518 6.595
C.CC7 C.010 0.C12
1.938 2.CCO 1.914
C.0C0 C.CCC 0.CCC
0.245 0.360 0.284
C.393 C.397 C.388
4.009 3919 3.997
C.012 C.013 0.013
1.420 1.417 1.425
1.246 1.192 1.2C1
0.13C C.129 C.13C

15.994 15.954 15.959

[sG/VG4FE C.911 C.9C8 C.911
NA/NA4K 0.9C6 C.c02 C.9C3

LALESS CTHERaISE SPECIFIEC; TCTAL IRCN AS FEC

97.71 98.59 97.87

SI
TI
AL
FE34
CR
FE2+
Mc
Ph
CA
NA
K

TCTAL
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APPENCIX 2-16

CR-EEARING PHLCGCPITE

ERESH LHERZOLITE SUITE

SPEC.

S IC2
TIC2
AL2C3
FE2C3
CR2C3
FEC
MGC
MAC
CAC
NA20
K2C

TCTAL

1COC6 IC013 ICC13 1CC16 1CC17 1C017 ICC17

38.31
0.14
16.72
0.cc
2.48
3.75

23. 53
C.C5
0.cc
0.82
9.19

38.53
0.43

17.62
c.C0
1.93
4.13

22.78
C.C5
0.00
0.92
8.60

38.68
0.48

17.47
C.C c
2.11
3 .88

23.14
C.C5
C.01
C.99
8.49

39q.91
0.20

17.75
C.c0
2.17
3.43

23.76
C.05
0.00
1.47
7.30

94.99 94.99 95.3C 96.04 95.09 95.65 95.79

FCRtLA UNITS ASSUFING

SI
TI
AL
FE3+
CR
FE2+
MG
MA
C A
NA
K

TCTAL

22 CXYGENS

5.464 5.470 5.468 5.540 5.464 5.543 5.636
C.015 C.046 0.C51 0.021 0.318 0.182 0.216
2.811 2.948 2.911 2.904 2.543 2.628 2.538
C.CCC C.CC0 C.CCC 0.CCO C.CO0 0.C00 0.C00
C.280 C.217 C.236 C.23P 0.213 C.235 0.151
C.447 C.490 0.459 0.398 0.963 0.730 0.785
5.003 4.820 4.876 4.916 4.386 4.563 4.529
C.CC6 C.C06 C.CC6 0.CC6 C.014 C.011 C.CC8
.CCC C.0CO 0.C02 0.CO0 0.000 0.C00 0.CCO

C.227 C.253 C.271 0.396 0.276 0.330 0.290
1.672 1.557 1.531 1.293 1.6C6 1.576 1.589

1--------------------------------17 C 7 . 5

15.925 15.807 15.E09 15.712 15.782 15.797 15.743

[..G/MG+FE C.918 C.9C8 C.914 0.925 C.82C 0.8(2 C.F52

NA/NA+K C.119 0.140 0.151 0.234 0.147 0.173 0.154

UNLESS CTHERhISE SPECIFIEC; TCTAL IRON AS FEC

37.58
2.91

14.84
0.cc
1.85
7.92

20.24
0.11
0.00
0.98
8.66

38.80
1.69

15.61
c.Cc
2.08
6.11

21.43
C.C9
0.00
1.19
8.65

39.55
2.C2

15.11
C.CC
1.34
6.59

21.32
C .C7
0.00
1.05
8.74



2C7

APPENCIX 2-17

GLASS FRCM FIAE-GRAIAEC ZCAES

FRESP LHERZOLITE SUITE

SPEC. 1C0 1CCO2 1CC03 IC010 1CC13 1C013 1CC13
------------ -----------------------------

SIC2 52.9C 55.61 57.79 58.99 51.15 51.35 52.32
TIC2 1.32 C.18 C.29 0.16 0.52 0.56 0.51

- 3 22.29 23.84 23.94 2C.87 21.52 23.07 23.44
FE203 0.CC C.Co C.CC C.CO 0.CC C.CO C.CC
CR2C3 0.C5 0.15 C.13 C.09 0.58 0.68 0.11
FEC 3.78 3.37 2.72 2.77 3.94 3.60 4.01
MGC 4.3C 4.CC 2.84 3.60 5.01 4.34 3.98
tA 0.C6 0.03 C.06 0.07 0.09 C.C9 0.09
CAC 9.11 7.46 6.44 6.58 8.80 8.05 8.02
NA2C 3.94 3.45 3.09 4.57 4.22 4.66 4.29
K2C 2.CC 1.42 1.23 2.10 3.07 3.71 2.92

TCTAL 99.75 99.51 98.53 99.80 98.90 100.11 99.69

FCRFLLA UNITS ASSUFING 10 CXYGENS
- - - - -- - - - - - - - - - - - - - - - - - - - - - - - - -

SI 3.080 3.180 3.289 3.356 3.042 3.017 3.C61
TI C.058 C.CC8 0.C12 0.007 0.023 0.025 0.022
AL 1.53C 1.607 1.6C6 1.399 1.509 1.598 1.616
FE3+ C.oCC C.CCO 0.CCC .CC0 C.CCC C.CCC C.CCC
CR C.0C2 0.007 0.C06 0.C04 C.027 0.032 0.C05
FE2+ C.184 C.161 0.129 0.132 0.196 C.177 0.196

C.373 C.341 C.241 0.3C5 C.444 C.380 C.347
tA 0.003 C.CO1 0.C03 0.C03 0.005 C.C04 C.C04
CA C.568 C.457 0.393 0.401 0.561 0.507 0.503
NA C.445 C.383 0.341 0.504 C.487 C.531 0.487
K C.149 0.104 0.089 0.152 0.233 C.278 0.218

- -----------------------------

TCTAL 6.392 6.248 6.108 6.264 6.526 6.548 6.459

AG/VG+FE 0.670 C.679 0.650 0.698 0.694 0.682 0.639

NA/NA+K C.75C C.787 C.792 0.768 0.676 0.656 0.691

UNLESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC



2C8

APPENCIX 2-17

GLASS FRCM FINE-GRAINEC

1-RESF LHERZOLITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR2C3
FEC
tjGC c
FAC
CAC
NA2O
K2C

TCTAL

ZCNES

SUITE

1CC45 1CC45 1CC46 1C017 1C017

55.19
0.14

21.25
0.cc
0.15
3.37
4.46
0.09
8. 5C
4.39
1.9C

53.49
C. 17

21.04
0.00
0.63
3.63
5.63
0.09
9.49
4.84
1.73

53.11
C. 38

22.53
0.00
C.09
3.C6
4.69
C .07
9.95
5.3C
1.33

54.88
1.33

19.87
0.00
0.13
5.41
3.18
0.10
5.76
3.69
4.21

99.44 1CC.74 100.51 98.56 98.83

FCRFLLA UNITS ASSUPING

Sl
TI
AL
FE3+
CR
FE2+
PG
MN
CA
NA
K

TCT AL

IC CXYCENS

3.2CC 3.098 3.C7C 3.251 3.279
C.0C6 0.007 0.017 0.059 0.087
1.452 1.436 1.535 1.387 1.294
C.0CC C.CCO C.CCC 0.CCO 0.000
C.007 C.029 C.CC4 0.006 0.CC8
C.163 C.176 0.148 0.268 0.353
C.385 C.486 C.4C4 0.281 0.279
C.004 C.C04 C.C03 C.C05 0.08
0.528 C.589 C.616 0.366 C.354
0.494 0.544 0.594 0.424 0.350
C.141 C.128 0.C98 0.318 0.297

6.381 6.497 6.49C 6.364 6.308

;G/VG+FE C.7C2 0.734 0.732 0.512 0.441

NA/NA+K C.778 C.e10 0.58 C.571 0.540

LALE.SS CTHERhISE SPECIFIEC; TCTAL IRCN AS FEC

55.26
1.94

18.51
0.C0
0.16
7.12
3.15
0.15

5.57
3.04
3.93

-----------------------------------------------------------
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APPENCIX 2-18

CRYSTALLIZED GLASS

FRESH LHERZOLITE SUITE

1CCC6 ICCC6 ICCC6 1CC06 1CC06

63.97
0.18

25.37
C.Cc
0. C6
0.47
0.32
0.CC
0.89
6.14
3.39

57.29
C.14
24.44
c.c
0.69
c.80
2.77
C. C2
3.74
7.07
2.29

55.7
C.12

24.64
c.cc
C.92
1.04
3.59
C.03
4.91
7.46
C.99

63.95
C.22

23.87
0.00
c.C0
C.C8
C .32
c.00
0.21
5.91
6.19

59.11
C. 06

28.72
0.00
0.00
0.12
0.18
0.00
1.03

1C.C4
1.40

SPEC.

SIC2
T IC2
AL2C3
FE2C3
CR2C3
FEC
FGC

CAC
NA2C
K2C

TCTAL

FCRFULA LNITS ASSLFIAG

SI
TI
AL
FE3+
CR
FE2+
MG
FN
CA
NA
K

TCTAL

8 CXYGENS

2.795 2.605 2.527 2.828 2.610
C.CC6 C.CC5 C.CC4 0.C07 0.002
1.307 1.310 1.333 1.244 1.495
C.0CC C.CCo 0.CCC C.CCo C.CCC
0.002 C.025 0.C33 0.COO 0.C00
C.017 C.C30 C.C40 0.C03 0.004
C.021 C.188 C.246 0.021 C.012
0.CCC C.CCI C.CCL C.CCO 0.cCC
C.042 0.182 0.241 0.010 0.049
C.52C C.623 0.664 0.507 0.860
C.189 C.133 C.C58 0.349 0.079

4.899 5.101 5.147 4.970 5.110

fNA/NA+K C.734 C.824 0.920 0.592 0.916

UNL.ESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC

1C0.79 99.25 98.77 ICO.75 100.66
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APPENCIX 2-19

GLASS WITH CLINOPYROXENE

FRESH LHERZCLITE SUITE

SPEC. 1CCC6 1CCC6

SIC2 62.83 59.80
TIC2 0.CI C.C1
AL2C3 28.C7 29.63
FE2C3 0.CC 0.00
CR2C3 0.CC C.Co
FEC 0.43 C.27
?VGC 0.29 0.30
1"AC C.CC C.CO
CAC 0.66 1.C9
NA2C 6.87 9.17
K2C 1.18 0.83

TCTAL 1C0.34 1C1.10

FCRVULA UNITS ASSUPING 1C CXYGENS

SI 3.411 3.263
TI C.CCC C.CCO
AL 1.796 1.9C6
FE3+ C.CCC C.CCO
CR c.ccC c.cCo
FE2+ C.C2C C.C12
FG C.C23 C.C24
FN C.CCC C.CCO
CA C.038 C.064
NA C.723 C.970
K C.082 C.058

TCTAL 6.093 6.298

NA/NA+K C.898 C.944

UhL-ESS CTHERWISE SPECIFIEt; TCTAL IRON AS FEC
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APPENCIX 2-20

CR-SPINEL

ICCINGSITIZEO LFERZCLITE SUITE

1C22 1C023 ICC25 1CC26

0. Ce
C.C9

37.CC
0.CC

27.44
16.22
18.61
0.48
0.CC
0.cC
C. CC.

1.01
C. 11

52.30
c.C0

14.46
11.04
20.79
0.29
C.c0
0.00
C.C0

C.95
C.11

0.00
17.29
10.36
21.26

C.36
c.Cc
0.00
c.Cc

0.26
0.13

58.37
0.00
8.11

1C.62
21.93

0.20
c.C0
0.00
0.00

1C026 1C027 10C27

0.87
0.13

59.21
0.00
8.26

10.51
21.49

0.19
C. cc
0.00
0.00

1.09
0.04

44.73
0.c0

19.61
13.61
20.67
0.45
C. cc

.0 co
o.co

0.66
0.03

44.91
C.Co

20.27
15.13
19.28
0.48
C.Cc
C .Co
0.00

99.92 1CO.CO 99.93 99.62 100.66 ICC.20 1CC.76

FCRFULA UNITS ASSUPING

SI
TI
AL
FE3+
CR
FE24
I'G
MA t
CA
NA
K

TCTAL

C.CC2
C.0C2
1.246
C.CCC
C.62C
C.3E8
C.793
C.C 12
0.0CC
C.CCC
C.CCC

C.C27
C.C0C2
1.619
C. CCO
C.3C0
C.243
C.814
C.CC6
C.cCO
0.C00
C.CCO

4 CXYGENS

C.C25
C.CC2
1.549
0. CC
C.362
C.230
0.84C
c.cce
C.CC
0 .cc0
c.CCc

0.C07
0.C03
1.772
0.C00
0.165
0.229
0.842
0.CC4
0.cC00
0 .C00
0.c00

0.022
C.C02
1.774
0.000
0.166
C.223
0.814
0.C04
C. CCC
0.C00
0.000

0.030
0.CC1
1.433
0.000
0.421
C.3C9
0.838
0.010
C. CCC
C .CCO
c.CCo

0.018
c.cC1
1.444
0 .CCO
0.437
C.345
0.784
0.C11
C.CCC
0 .0CC
0.C00

3.063 3.011 3.017 3.022 3.006 3.042 3.C41

I/,G/MG+FE C.672 C.770 0.785 0.786 0.785 0.730 0.694
CR/CR4AL C.332 0.156 0.190 0.085 0.086 0.227 0.232

LNLESS CTHERhISE SPECIFIEC; TCTAL IRCA AS FEC

SPEC.

SIC2
TI C2
ALM23
FE2C3
CR203
FEC
ivGC
MNC
CAC
NA2C
K 2C

TCTAL

------------------------------------------------ 
------ ---
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APPENCIX 2-20

CR-SPIAEL

ICEINGSITIZED LFERZCLITE SLITE

SPEC.

S0IC2
T IC2
AL2C3
FE 2 03
CR203
FEC
FGC
MAC
CAC
NA2C
K2C

TMTAL

1C027 1CC29 1C211

0.53
C.C2

44.68
0.C

19.96
13.87
19.58
0.47
0.CC
0.c0
CC

C.C4
C.C2

41.35
C.Co

25.19
11.67
20.86
0.48
C.CO
0.00

0co

C.21
C.14

6C.36
C.Cc
5.94

10.44
22.41
C.20
c.CC
C.C0
C.C0

99.11 99.61 99.70

FORMULA UNITS ASSLPING

SI
TI
AL
FE3+
CR
FE2+
FG
F h
CA
NA
K

TCTAL

4 CXYGENS

0.015 C.CC C .C05
C.CCC C.CCO C.CC3
1.453 1.351 1.816
C.0CC 0.CCO 0.CCC
C.436 C.552 0.120
0.320 C.270 C.223
C.8C5 C.862 O.853
C.011 0.011 0.C04
C.CCC C.CCO 0.CC0
C.0CcC0.CC0 C.CCC
C.0CC C.CCO C.CCC

3.041 3.047 3.C24

t'G/YG+FE C.716 C.761 C.793
CR/CR+AL 0.231 0.290 0.062

UNLESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC

- - - - - - - - - - - - - - - - - -

--- - ----------------- - - - ------- - --------------
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APPENCIX 2-21

ORTHCPNRCXENE

ICCINGSITIZED LPERZLITE SUITE

SPEC.

SIC2
11C2
AL 203
FE2C3
CR2C3
FEC

MNC
CAC
N A 20
K2C

TCTAL

1C022 10023 1024 1C025 10026 1C027 1CC27

56.6C
C. C3
2.74
0.cC
0.45
5.94

34.36
0.15
0.57
0.16
0.cC

55.26
C.C6
3.90
c.00
0.40
5.86

34.03-
0.14
0.62
0.02
0.00

56.60
C.01
3.61
c.C0
0.47
5.80

32.75
0.16
C.69
C.09
c.C0

55.86
0.03
3.74
Co.00
0.42
5.86

34.03
0.15
0.61
0.10
0.00

1C1.CC 1CO.29 ICC.18 ICC.80 101.15 ICO.60 1CC.11

FCRFLLA UNITS ASSUYING

SI
TI
AL
FE3+
CR
FE2+
'G

IV K
CA
NA
K

TCTAL

1.933
C.CC1
C. 1 1C
C.0cc
C.012
C. 17C
1.749
C.004
C.021
C.011
C.0CC

1.9C1
C.CC2
C. 158
C.c0
0.011
C. 169
1.745
0.004
C.C23
C.c01
0.C00

6 CXYGENS

1.943
0.C00
C. 146
C.Ccc
0.013
C.167
1.676
0.005
0.025
C.CC6
0.C00

1.911
0.C01
0.151
0.cC 0
0.011
C.168
1.735
0.C04
0.022
0.CC7
0.000

1.888
0.004
0.185
C.CCC
0.008
0.187
1. 71C
0.005
0.022
C.CC'9
0.000

1.929
0.001
0.124
C.CCC
0.010
0.176
1.737
0.CC5
0.0 17
C.co9
C.CCO

1.916
0.C01
0.120
C. CC
0.CC9
0.183
1.764
0.CC6
0.C17
0.cc1I
0.cC0

4.01C 4.014 3.980 4.C10 4.017 4.008 4.019

.G/PG+FE 0.912 C.912 0.910 0.912 0.902 0.908 C.9C6

UNL.ESS CTHERWISE SPECIFIEC; TCTAL IRCN AS FEC

55.16
0.14
4.58
C.cCC
0.31
6.52

33.52
0.18
0.60
C. 14
0.00

56.24
0.02
3.C6
C.C0
0.38
6.15

33.97
0.18
0.46
C. 14
0.00

55.48
0.03
2.96
C .C0
0.34
6.35

34.27
0.19
0.47
C.C2
C.C0
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APPENDIX 2-21

CRTHCPYRCXENE

iCCINCSITIZEC LFERZCLITE SLITE

SPEC. 10029 10211 10218

SIC2 56.43 55.15 56.46
TIC2 0.02 0.14 C.01
ALM23 2.87 4.53 3.19
FE2C3 0.CC C.0 C.CC
CR2C3 0.42 0.22 C.51
FEC 5.70 6.41 5.57
MGC 33.9C 32.87 33.54
PAC 0.09 C.13 C.10
CAC 0.51 0.65 C.55
NA2C C.2 0.12 C.04
K2C 0.CC C.CO C.CC

TC1AL 99.96 1C0.22 99.97

FCRIULA UNITS ASSUNING 6 CXYGENS

SI 1.941 1.9C1 1.941
TI C.0C1 C.CC4 C.CCC
AL C.116 0.184 0.129
FE3+ C.0CC C.CCC 0.CCO
CR C.011 C.CC6 C.C14
FE2+ 0.164 C.185 C.160
tG 1.738 1.689 1.719
Ph C.CC3 C.CC4 C.C03
CA C.019 C.C24 C.C20
NA C.001 C.CC8 C.CC3
K 0.CCo C.C00 0.CCO

TCTAL 3.995 4.CC4 3.989

iG/FG+FE C.914 C.901 0.915

UNLESS CTHERhISE SPECIFIEC; TCTAL IRCA AS FEC
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APPENCIX 2-22

CLINCPYRCXENE

ICCINGSITIZEC LIERZCLITE SUITE

SPEC. 10022 10023 1C024 1C025 1C026 1C027 1CC27

52.95 52.51 53.47 53.19 51.66 53.20
O.C5 0.20 C.15 0.16 0.58 0.C3
2.94 4.37 4.63 4.26 6.87 2.76
O.cc 0.00 C.CC C.Co C.CC C.CC
0.74 0.67 C.75 0.71 0.68 0.46
2.58 2.70 2.72 2.62 2.87 2.55
17.54 17.63 16.35 16.38 15.06 17.55
0.C6 0.14 0.11 C.08 0.05 C.07
22.91 22.27 2C.10 20.38 19.66 23.27
0.41 C.57 1.64 1.51 2.13 0.30
0.CC C.CO C.CC C.01 0.00 0.C

53.46
0.04
2.73
C.cc
0.49
2.44

17.18
C.C6

23.35
0.19
C.Cc

1C0.18 1C.C6 99.92 99.30 99.56 1CO.19 99.94

FCRPLLA LNITS ASSUPING

SI
TI
AL
FE3+
CR
FE2+
PG

CA
NA
K

ICTAL

1.921
C.0C1
C. 126
C.CCC
C.021
C.078
0.949
C.0C2
C.891
C.029
C.Cc

1.888
0.005
C. 185
C.CcO
0.019
C.081
C.945
0.004
C.858
C.C40
c.CCO

6 CXYGENS

1.931
0.C04
0.197
0.CCC
0.021
C.C82
0.E e8
0.003
C.778
C. 115
c.CC

1.934
0.004
0.183
c.ccO
0.020
0.080
0.888
0.C02
0 .794
C . 106
0 .C00

1.877
0.016
0.294
C.CCO
0.020
0.087
0.815
0.C02
0.765
0.150
0. CC

1.929
0.001
0.118
C.CCC
C.013
0.077
0.949
0.002
0.904
C.021
C.CCO

1.941
0.C01
0.117
0.CC0
0 .C 14
0.C74
0.93C
0.CC2
0.908
0.013
0.CcC

4.018 4.C25 4.C13 4.013 4.026 4.015 4.C00

rG/FG+FE C.924 0.921 0.915 0.916 C.9C3 0.925 0.926

UNt-ESS CTHERMISE SPECIFIEC; TCTAL IRCA AS FEC

SIC2
TIC2
AL 203
FE2C3
CR2C3
FEC
MG 3
MAC
CAC
NA20
K2C

TCTAL
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APPENCIX 2-22

CLINCPYRCXENE

iCCINGSITIZED LfERZOLITE SUITE

SPEC. 10027 10029 1C029 1C029 10211 1C211 1C211

53.5C 53.77 53.22 53.04 51.91 51.97
0.10 0.00 C.04 0.05 0.69 0.68
3.C3 2.92 3.08 3.13 7.14 6.99
O.CC C.CO C.CC C.C0 C.CC C.C0
0.54 0.62 0.69 0.72 0.49 0.54
2.66 2.54 2.68 2.52 2.90 3.05
16.99 17.23 16.94 17.00 14.85 14.96
0.12 0.03 C.07 C.08 0.11 0.C7

23.54 21.68 21.70 21.99 19.16 19.79
0.16 C.82 C.66 C.57 2.28 2.16
0.CC .0 C .C0 C.0 C.Co C. 0.C0

51.45
0.65
7.25
C.C0
0.53
2.91

14.80
C.09

19.31
2.35
0.C0

1CO.64 99.61 99.08 99.10 99.53 ICO.21 99.34

FCRPLLA LNITS ASSLNAG

SI
I I
AL
FE 3 4
CR
FE2+
FG
FA \
CA
NA
K

TC7AL

1.932
C.0C3
C.129
c.cC
C.015
c.C8C
C.914
C.004
C.911
0.011
C.0cC

1.952
c.cco
C. 125
C.CCO
0.018
C.C77
C.932
0.001
C.843
C.C58
c.cco

6 CXYGENS

1.945
0.C01
C.133
C. cc
0.020
0.C82
C.923
0.C02
0.850
C.C47
S.CCC

1.938
0.C01
0.135
0.C00
0.021
0.C77
C.926
0 C02
0.861
0.040
0 .CC0

1.F82
C.019
C.305
C.0CC0
0.014
0.088
C. 8C3
C.003
0.744
0.160
C .CC

1.877
C.018
0.297
c.Cc0
0.015
0.092
0.8C5
C.CC2
0.766
0.151
C.CCO

1.E72
0.018
0.311
0.CC0
0.C15
0.C89
0.80C3
0.CC3
0.753
0.166
0.C C

3.9c9 4.CC6 4.C01 4.C03 4.019 4.024 4.030

:G/'G+FE C.919 0.924 0.918 0.92- 0.9C1 C.897 C.9C1

UNLESS CTHERhISE SPECIFIEC; TCTAL IRCN AS FEC

S IC2
TIC2
AL 203
FE203
CR2C3
FEC
MGC
PAC
CAC
NA20
K2C

TCTAL
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APPENCIX 2-22

CLINCPYRCXENE

iCCINGSITIZED LIERZCLITE SUITE

SPEC.

SIC2
TIC2
AL 203
FE2C3
CR2C3
FEC
PGC
VA C
CAC
NA20
K2C

TCTAL

10213 10214 10215 10216 10217 10218 10219

51.86
0.69
7.C3
0.(C
0.64
2.96

14.51
0.07
19.58
1.95
0.01

52.13
0.56
7. CO
0.00
0.75
3.00

15.18
C.08
19.51
2.04
0.01

52.82
0.10
3.53
C.C0
0.86
2.49

16.80
C .06

22.19
C.73
C.C c

52.09
C.18
3.85
c.c0
0.65
2.72

16.88
0.11

22.11
C.44
c.c0

99.3C 1CC.26 99.58 99.03 99.74 99.91 100.45

FCRFULA UNITS ASSUMING

SI
T I
AL
FE3+
CR
FE2+
V G

CA
NA
K

TCTAL

1.886
0.019
C.3C1
C.0CC
C.018
C.09C
C.787
C.002
C.763
C.137
C.0CC

1.879
0.015
C.297
c.C0
0.021
C.090
C.816
C.002
C.753
C. 143
c.Cc0

6 CXYGENS

I.924
0.003
0.152
0.cC0
0.025
0.C76
0.912
0.002
0.866
0.C52
0.CCc

1.910
0.C05
0.166
0.C00
0.019
0.083
0.922
0.003
0.868
0.031
0.cc00

1 .920
0.C02
0.148
C. CC0
0.024
0.077
0.915
0.002
0.882
0.045
0.C00

1.964
0.CC3
0.151
C.CCC
C.023
0.074
C.871
0.002
0.795
0.125
C.cco

1.937
0.C01
0.119
c.CCC
0.018
O.C71
0.941
0.C02
0.899
0.014
0.CC

4.004 4.018 4.C11 4.009 4.015 4.008 4.002

C/FG+FE C.897 C.9CO 0.923 C.917 0.922 C.922 0.930

UNLESS OTHERWISE SPECIFIEC; TCTAL IRCA AS FEC

52. 7C
C .07
3.45
C.CC
0.82
2.54

16.86
0.05

22.61
0.64
0.C0

54.40
0.12
3.55
C. cc
0.80
2.44

16.19
0.08

20.55
1.78
c.C0

53.64
C.02
2.79
0.C0
0.63
2.36

17.48
C.08

23.25
0.20
C.c0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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APPENDIX 2-22

CLINCPYRCXENE

ICEINGSITIZED LEERZOLITE SLITE

SPEC. 10220 10221

SIC2 53.55 53.38
TIC2 0.07 0.08
AL2C3 3.C3 2.54
FE2C3 0.CC 0.C0
CR2C3 0.82 0.68
FEC 2.C5 2.43
MGC 16.f6 16.71
PYlC 0.1C C.C5
CAC 22.78 22.70
NA2C 0.E6 0.92
K2C 0.CC C.C0

TCIAL 99.92 99.49

FCRVULA UNITS ASSUMING 6 CXYGENS

SI 1.942 1.949
TI C.002 C.C02
AL 0.13C 0.109
FE3+ C.CCC C.CCO
CR C.024 C.C20
FE2+ C.062 C.C74
FG C.9C1 C.909
PN C.0C3 C.CC2
CA C.885 C.Ee8
NA 0.060 C.065
K C.0CC 0.000

TMTAL 4.009 4.017

'G/FG+FE C.935 C.925

UNLESS CTHERWISE SPECIFIEC; TCTAL IRCN AS FEC
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APPENDIX 2-23

RIP CLINCPYRCXENE

ICCINCSITIZED LFERZCLITE SLITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR2C3
FEC
MGC
mC hC

CAC
RA2C
K2C

10211 10214 10218

50.74
0.86
3.91
0.cc
0.65
3.69
16.15
0.11

21.41
0.65
0.0c

51.51
0.58
4.85
c.c0
0.84
3.18

16.20
C.C6

21.74
C.57
C.C1

54.21
C.10
1.87
c.cc
C.70
2.05

17.97
C.C8

22.54
C.68
c.Cc

TCTAL 98.17 99.54 10C.20

FCRVULA UNITS ASSUMING 6 CXYGENS

SI 1.8E8 1.883 1.958
TI C.024 C.016 C.CC3
AL C.171 0.20"1 0.C80
FE3+ C.CCC C.CCO 0.CCO
CR C.019 C.024 0.C20
FE2. C.115 C.097 C.C62
FG C.896 0.882 0.968
FN C.CC3 C.CC2 C.CC2
CA C.853 C.F51 C.872
NA C.047 C.040 C.C48
K C.CCC 0.C00 0.C00
----------------------------------------

TCTAL 4.016 4.C05 4.C13

VG/IG+FE C.886 C.9C1 C.940

UNLESS CTHERUISE SPECIFIEC; TCTAL IRCt AS FEC
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APPENDIX 2-24

ELHEDRAL CLIACFYRCXENE

ICCINGSITIZEC LFERZCLITE SLITE

SPEC.

SIC2
TIC2
AL203
FE2C3
CR2C3
FEC
FCC

CAC
NA2C
K2C

TCIAL

10027

48.25
0.39
8.25
0.cc
1.86
2.84
15.Ce
0.C3

22.C8
C.5C
0.cc

99.26

FCRYULA UNITS ASSUPING

SI
TI
AL
FE3+
CR
FE2+
V.G
F h
CA
NA
KM

TCTAL

6 CXYGENS

1.778
c.011
C.358
C.ccC
C.054
C.087
C.827
C.CCI
C.872
C.036
0.0CC

4.023

PG/PG+FE U.904

UNLESS CTHERWISE SPECIFIEC; TCTAL IRCA AS FEC
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APPENCIX 2-25

GLASS kITH INTERSTITIAL CLINCPYRCXENE

ICCINGSITIZED LHERZCLITE SUITE

SPEC. 10025 10211

SIC2 57.56 53.73
TIC2 0.53 0.05
AL203 23.C7 28.24
FE2C3 0.CC C.co
CR2C3 0.CC 0.02
FEC 1.1C 0.53
GCC 2.19 C.15
t\C 0.C2 C.C1
CAC 6.26 11.37
NA2C 7.55 4.99
K2C 0.E8 0.36

TCTAL 99.16 99.45

FCR"ULA UNITS ASSUYING 1C CXYGENS

SI 3.28C 3.C63
T1 C.023 C.C02
AL 1.549 1.897
FE3+ C.CCC C.CCo
CR C.CCC C.CCL
FE2+ C.052 C.C25
tG 0.186 C.013
FA C.CCL C.CCO
CA 0.382 C.695
NA C.834 C.552
K 0.064 C.026

TCTAL 6.372 6.274

VG/lG+FE 0.78C C.335
NA/NA+K C.929 C.955

UNLESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC
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APPENCIX 2-26

PRIMARY CLIVINE

PYRCXENE GRANULITE SUITE

SPEC. 12CCC 12CCO 12C01 12C01 12004 12017 12C17

37.63
0.15
0.11
0.C0
C.CC

25.48
36.30

0.53
0.02
0.2C
0.CC

35.94 4C.37 40.11
0.16 C.C 0.00
0.04 C.CO C.01
0.00 C.CO 0.00
C.CO C.C2 0.05

25.30 12.49 12.40
36.93 47.88 47.34
C.55 C.18 0.15
0.07 C.C5 C.06
C.35 C.Co 0.00
C.co C.C 0.00

40.31
0.00
C .C2
0.00
0.02
7.68

51.72
0.15
C.04
0.00
0.00

40.50
C CO
C.C4
0.C0
0.00
12.81
47.75
0.17
C. 04
C.02
0.01

40.84
0.00
C.C2
0.c0
0.03

12.69
47.23
0.19
C.C4
0.C0
C.00

1C0.42 99.34 1CC.99 1CC.12 99.94 1C1.34 101.C4

FCRFULA UNITS ASSUNING

SI
TI
AL
FE3+
CR
FE2+
PG
tA h
CA
NA
K

TCTAL

0.992.
C.0C3
C.003
C.0CC
C.CCC
C.562
1.426
C.012
C.CC1
C.01c
C.CCC

0.963
C.CC3
C.C01
0.C00
C.CCO
C.567
1.475
C.012
C.CC2
C.018
C.C00

4 CXYGENS

C.992
C.CCC
C. CC
0.0 0
0.C 00
C.257
1.754
0.C04
C.CC1
0.CCO
c.CC0

O.994
0.CC0
C.CC0
0.C00
0.C01
0.-257
1.749
0.C03
C.C02
0.C00
0.C00

0.981
0.C00
C. Cc1
0.C0
0.C00
0. 156
1.876
0.003
C.C01
0.c00
0.000

0.993
c.cco
c .cC1
0.C0 CO
0.c00
C.263
1.745
0.004
C.C01
c.ccI
0.000

1.C02
0.C00
0.CC1
0 .C00
0.001
0.260
1 .728
0.C04
c.CC1
0.CCO
0.000

3.009 3.042 3.CC8 3.CC5 3.019 3.007 2.997

VG/G+FE 0.717 0.722 0.872 0.812 0.923 0.869 0.869

UNLESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC

SIC2
T IC2
AL2C3
FE2C3
CR203
FEC
"GC

CAC
NA2C
K2C

TCIAL
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APPENCIX 2-27

QUENC CLIVINE

PYRCXEAE GRANULITE SUITE

SPEC. 120C1 12017

SIC2 40.22 40.70
TIC2 C.CC C.CO
AL2C3 0.29 0.29
FE2C3 0.CC O.CO
CR2C3 C.C3 0.C8
FEC 9.170 9.C2
PGC 48.5C 49.48
11ANC 0.15 0.17
CAC 0.50 0.32
N-A20 0.CC 0.00
K2C 0.CC c.CO

TCTAL 99.39 1C0.C6

FCRPLLA UNITS ASSUPING 4 OXYGENS

SI 0.993. C.994
TI C.0(0 0.000
AL C.CC8 C.CCo
FE3+ C.CCC C.CCO
CR C.001 C.002
FE2+ C.2CC 0.184
FG 1.7E4 1.201
ti C.0C3 C.CC4
CA C.013 C.CC8
NA C.0CC 0.cco
K C.CCC C.CCO

TCTAL 3.003 3.0C01

PG/PG+FE t~dc9 0.907

UNLESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC
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APPENCIX 2-28

PRIVARY SPINEL

PYRCXENE GRANULITE SUITE

12CC1 12001 12C01 12004 12017 12017 12C17

0.63
0.CC

63.91
0.C
2.59

11.35
21.40
0.12
C.C2
O.cc
0.C0

0.52
c.c0

61.99
0.00
5.19

11.76
2C.70
0.18
C.C5
0.C0
0.00

0.79
c.C0

57.36
c.c0
9.72

12.56
19.32
0.24
C.C4
C.CC
C.c0

0.69
0.00

60.81
0.00
6.28

11.23
2C.71

0.18
0.03
C.co
0.00

0.48
0.00

62.14
0.00
5.23

12.02
2C .49
0.13
C.03
0.C0
0.00

0.57
0.00

64.34
0.0
3.72

11.64
20.46
0.11
0.02
C.Cc
0.C0

0.42
0.C0

53.519
0.C0

12.76
13.32
19.62
0.26
0.04
C.cc
c.c0

SPEC.

SIC2
TIC2
AL 2C3
FE2C3
CR2C3
FEC
1GC
tACr
CAC
NA2C
K2C

TCTAL

FCRPLLA UNITS ASSUYING

SI
TI
AL
FE3+
CR
FE2+
PG
PA
CA
NA
K

TCTAL

C.016.
c.ccc
1.897
0.cc0
C.052
C.239
0.803
C.003
C.0C1
C.CC
C.0CC

0.013
c.Cco
1. 853
c.cc0
0.104
C.249
C.783
0.004
C.c01
C.ccO
0.C00

4 CXYGENS

0.C21
c.CCC
1.755
c.C cc
C.2CC
C.273
C.748
0.C05
0.C01
C.ccc
0.CCO

0.018
0.C00
1.829
0 .CCO
0.127
0.240
C.788
0.C04
0.C01
c.cco
0 .C00

0.012
0.000
1.857
0.CCC
0.105
0.255
C.774
0.003
0.C01
C. CC
0.C00

C.014
0.000
1.9C0
C.CCO
0.074
0.244
C.764
0.CC2
0.001
C. CCC
C.cco

C.Ci1
0.C0
1.669
0.CC
0.267
0.294
0.173
0.C06
0.C01
0. CCC
0.C00

3.010 3.CC8 3.CC2 3.C05 3.C07 2.999 3.C21

MG/PG+FE 0.771 C.758 0.733 0.767 0.752 0.758 0.724
CR/CR+AL C.026 0.053 C.102 0.065 0.053 0.037 0.138

UNLESS CTHERtNISE SPECIFIEC; TCTAL IRON AS FEC

1CO.C2 ICC.39 1CC.C3 99.93 1CO.52 1C0.86 1CC.C1
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APPENCIX 2-28

PRIVARY SPINEL

PYRCXENE GRANCLITE SUITE

SPEC.

SIC2
TIC2
AL203
FE2C3
CR2C3
FEC
tcc
F NC'
CAC
NA 20
K2C

TCTAL

12017

0.31
0.cc

50.38
0.cc

15.32
14.21
18.63
0.33
C.C2
c.cc
0.cc

99.2C

FCRVULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
MG
MV K
CA
NA
K

TCTAL

4 OXYGENS

c.0c
C.0CC
'1.607
C.CCC
0.328
C.322
C.751
C.0C8
C.001
C.CC
c.Ccc

3.024

FG/FG+FE C.7CC
CR/CR+AL C.169

UNLESS CTHERWISE SPECIFIEC; TCTAL IRCN AS FEC
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APPENDIX 2-28

SECONCARY SPINEL

PYRCXENE GRANULITE SUITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR203
FEC
1GCc
MNC
CAC
N-A 2 C
K2C

TCTAL

12CC 12CCI 12C04 12C04 12C04 12017 12C17

1.C5
0.cc

65.6C
0.cc
0.82
10.54
21.72
0.06
0.11
0.Cc
0.Cc

1.21
C.co

65.65
C.CO
C.C0
1C.C8
21.55
c.07
0.27
0.00
C. Co

1.C5
.CoC

64.44
c.cc
C. 37
lC.35
23.39
C.07
C. 12
C.CO
c.Cc

C.99
C.C0

65.15
0.00
1.17

1C.47
21.29

0.08
C.23
0.00
0.00

99.9C 98.83 99.79 99.38 98.84 99.49 101.12

FCRFULA UNITS ASSLIING

SI
TI
AL
FE3+
CR
FE2+
FG
MN
CA
NA
K

TCMAL

C.026.
0.0CC
1.928
C.0CC
C.016
0.220
C.807
C.001
C.003
C.CCc
C.C0C

C.030
C.CCO
1.942
0.000
C.C00
C.212
0.806
C.CCl
C.C07
0.C00
C.C00

4 CXYGENS

C.026
C.CCO
1.897
0.O0
C.C0C7
C.216
0.871
0.C01
C.C03
0.CC0 0
0.CC0

0.C25
0.C00
1.927
0 .CO
0.C23
0.220
0.797
0.002
0.C06
0.C00
0.C00

0.016
0.C00
1.951
0.0C0
C.015
C.218
0.800
0.001
c.C01
0.CCO
0.000

0.016
C.C00
1.882
0.000
C.044
C.214
0.860
0.002
C.CC3
C.CCO
0.c00

0.015
0.C00
1 . C6
0.CCO
0.C49
C.225
0.8C9
0.C001
C.CC3
0.CC0
0.CC0

3.0C2 2.999 3.C22 3.CCO 3.CC1 3.021 3.CC8

MG/FG+FE L.786 0.792 G.801 0.784 0.786 0.801 0.782
CR/CR4AL C.0C8 C.C00 C.C04 0.C12 0.C08- C.023 0.025

LNLESS CTHERaISE SPECIFIEE; TCTAL IRCh AS FEC

0.63
0.C0

65.72
0.00
0.76
1C.33
21.32

0.04
C.C4
0.00
0.00

0.63
0.00

63.40
0.00
2.20
1C.15
22.91
0.10
C. 10
0.C0
0.00

0.59
0.00

65.13
0 .Co
2.50

10.86
21.86
0.07
C.11
C .C0
o.co
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APPEACIX 2-28

SECCNCARY SPIAEL

PVRCXENE GRANULITE SUITE

12017 12C17 12CC4 12C01

1.C6
0.C

63.72
0.(C
2.59

11.04
21.79
C.C7
0.C8
0.(C

C0co

1.02
c.c0

62.07
C. CO
3.97

11.36
21.21

C.11
C. 13
C.CO
0.00

1.44
C.Cc

66.03
C.C0
C.C0
9.51

21.86
C.08
C.C6
C.C0
0.C0

1.38
C.C0

65.80
0.00
C.c0
10.33
19.89
0.11
0.42
C.00
0.00

SPEC.

SIC2
T IC2
AL2C3
FE2C3
CR2C3
FEC
FGC
FAc
CAC
NA 2 C
K2C

TCTAL

FCRPLLA LNITS ASSUCFING

SI
TI
AL
FE3+
CR
FE2+
M c
PAh
CA
NA
K

4 CXYCENS

C.027 C.026 0.036 0.035
C.CCC C.CCO 0.0CC 0.Coo
1.881 1.854 1.942 1.964
C.0Cc C.CCO C.CCo 0.CCc
C.051 0.080 0.CCO 0.000
C.231 C.241 0.198 0.219
0.814 C.801 0.813 0.751
C.001 C.0C2 C.CC2 0.C02
C.0C2 0.004 0.002 0.011
C.0CC C.CCO C.CCC 0.COO
.CCC c.CCO C.CCC C.CCO

TCIAL 3.007 3.007 2.993 2.983

MC/PG+FE C.779 C.769 C.8C4 0.774
CR/CR4AL C.027 C.C41 C.CCC 0.CCO

LNLESS CTHERWISE SPECIFIEC; TCTAL IRCN AS FEC

1CO.35 99.87 98.98 97.93
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APPENCIX 2-29

PRI'ARY ANC RESICUAL FELDSPAR

PYROXENE GRANULITE SUITE

SPEC. 120CC 12CCO 12CCC 120CC0 2CC1 120C4 12C04

47.91 52.75 51.80 52.01 61.'78
0.CC o.oo C.07 0.08 0.CO

33.57 29.37 3C.57 30.26 25.67
0.CC 0.C0 C.CC 0.00 0.00
0.CC 0.C0 C.05 C.07 0.00
0.CC 0.00 C.24 C.11 0.00
0.CC 0.C0 C.13 C.04 0.C0
0.C0 0.00 C.02 C.02 C.CC
15.41 13.?1 13.31 13.28 5.17
3.C5 4.85 4.09 4.17 7.95
0.05 C.09 C.C8 C.07 0.39

61.17
C0o

23.85
0.00
0.02
0.18
0.08
C.C2
5.14
8.52
C.67

61.08
C.CC

23.82
0.00
0.02
0.14
0.11
0.C1
5.08
8.87
C.55

99.99 1C0.27 10C.36 100.11 100.96 99.65 99.68

FCRFULA UNITS ASSUNING

SI
TI
AL
FE3+
CR
FE2+
Mc
M h
CA
NA
K

2.194
C.CCO
1.812
C.CCC
C.CCCo
C.CCC
C.0CC
C.0CC
C.756
C.271
C.0C3

TCTAL

2.393
0.000
1.57-0
C.C CO
0.C00
C.CCO
C0 cc

C.CCO
0.642
C.427
C.C05

8 OXYGENS

2.348
0.C02
1.633
0.C 00
0.C02
0.C09
C.C09
.cci

0.646
0.359
C.CC5

2. 361
0.003
1.619
0.c00
0 .C03
0.C04
0.003
C.C01
0.646
0.367
C.C04

UNLESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC

S IC2
TIC2
AL2C3
FE203
CR2C3
FEC
MGC

CAC
KA20
K2C

TCTAL

2. 7C9
0.C00
1.327
0.000
0.C00
0.000

C CO
c.CCC
0.243
0.676
C.022

2.734
C.CCO
1.256
C.CCO
0.C01
0.007
C.CO 5
C.cci
0.246
C.738
C. 038

2.73C
0.CCO
1.255
0.C00
0.CC1
0.C05
0.C07
0CCC
0.243
0.769
C.C31

5.036 5.038 5.014 5.011 4.976 5.026 5.042

73.4 C9.8 64.0 63.5 25.8 24.1 23.3

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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APPENCIX 2-30

CUENCF FELCSPAR

'(YRCXENE GRANULITE SUITE

SPEC.

SIC2
T IC2
AL2C3
FE2C3
CR2C3
FEC
?GC
MNC
CAC
NA2C
K2C

TCTAL

120CC 12C17 12C17

46.30
0.cc

34.51
c.CC
0.c0
0.cc
0.29
0.CC

17.80
1.42
C. C6

48.73
c.C0

31.93
0.C0
0.00
0.39
0.53
0.03

16.12
2.21
0.01

AE.76
C.CC

33.07
C.C0
c.cC
0.37
C.54
C.03

16.32
2.41
c.co

1CO.38 99.95 1CI.5C

FCRFULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
t'G
IN
CA
NA
K

TCTAL

1.061
C.0CC
0.932
C.000
C.CC
C.CCC
C.01c
C.c0C
C.437
C.063
C.002

1.117
0.CCO
C.863
0.000
C.CCO
C.C07
C.018
C.001
C.396
C.098
c.c00

2.505 2.501

4 CXYGENS

1.102
C.cc0
C.E81
0.C00
0.CC0
0.C07
0.C18
0.C01
0.395
0.106
c.CC0

2.510

87.1 Fo.1 78.9

UNLESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC

- - - - - -- - - - - - - - - - - - - -
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APPENDIX 2-31

SECCNDARY CRTFCPYRCXENE

PNRCXENE GRANULITE SUITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR203
FEC
MGC
t4AC
CAC
NA20
K2C

TCTAL

120CC 12CCO 12CC1 12C01 12CC4 12017 12C17

53.19
0.10
1.71
C.CC
0.Co

15.54
28.27

0.5C
0.14
0.CC

514.13
C.05
2.32
c.co
C.C4

14.57
28.42
0.29
0.44
0.17
0.01

54.97
c.cc
3.45
C.00
C.08
7.90

33.11
C.18
0.37
C.c0
C.c0

55.22
0.C0
3.46
C.c0
C.08
7.86

32.69
C.19
0.39
0.00
C. 00

1CO.11 100.44 100.06 99.89 99.85 99.53 99.99

FCRVULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
MG
PA
CA
NA
K

TCTAL

6 GXYGENS

1.923 1.934 1.910 1.920
0.003 0.001 0.CCC C.CCO
C.073 0.098 0.141 0.142
c.CCc c.cCo c.ccC c.cc0
C.0CC C.C01 C.CC2 C.C02
C.470 0.435 0.230 0.229
1.524 1.514 1.715 1.695
C.02C C.C09 C.C05 0.C06
C.019 0.017 0.014 0.015
C.01C C.012 0.CCO 0.C00
0.CCC C.CC 0.CCC 0.000

1.919 1.919
C.CCC C.CCC
0.161 0.136
0.C00 0.000
C.CC3 C.CC3
0.225 0.232
1.672 1.697
C.C05 C.CC6
0.014 C.017
0.C00 0.00
C.CCC C.CCC

4.042 4.021 4.C18 4.C08 3.999 4.011 4.C02

PG/PG+FE C.764 C.777 C.882 0.881 0.881 0.880 0.E79

UNLESS OTHERWISE SPECIFIEC; TCTAL IRON AS FEC

55.23
C.CC
3.94
0.C0
0.10
7.76

32.28
C.17
0.37
0.00
0.0

54.92
C.c0
3.31
0.00
C. 12
7.95

32.58
C.20
0.45
0.00
0.00

55.65
c.Cc
3.05
0.00
C.12
7.97

32.54
0.19
C.47
C.C0
0.00

1.934
0.CCC
0.125
0.00
0.CC3
0.232
1.685
C.CC6
0.C 17
0.CCO
C.CCC

- - - - - - - - - - - - - - - - - - - - - -- - - - - -



231

APPENDIX 2-32

PRIARY CLINCPYRCXENE

ICCINGSITIZED LFERZCLITE SUITE

SPEC.

S IC2
TIC2
AL2C3
FE2C3
CR203
FEC
FGC
MAC
CAC
NA2C
K2C

TCTAL

120CC 12024 12CC8

51.63
0.56
2.96
c.cc
0.61
5.77

14.53
0. 16

22.14
0.89
C.C1

51.69
0.64

3.18
c.C0
0.76
3.58

15.53
C. 16

22.8l
0.53
0.20

51. 60

C.85
4.50
C.C0
1.06
3.49

15.22
C.C7

21.68
C.95
C.c0

S9.26 99.08 9S.42

FCRVULA UNITS ASSUPING

SI
TI
AL
FE3+
CR
FE2+
F G
FA
CA
NA
K

TCTAL

6 CXYGENS

1.921 1.912 1.894
C.016 C.C18 C.C23
C.13C C.139 C.195
C.CCC C.COO 0.CCC
C.C18 C.022 C.C31
C.180 C.111 0.107
0.806 C.856 0.832
C.005 0.C05 0.C02
C.883 C.9C4 0.852
C.064 C.038 C.C68
0.C0c C.CC9 C.CCC

4.022 4.014 4.C04

rG/FG4FE 0.818 C.885 C.886

UNLESS CTHERISE SPECIFIEC; TMTAL IRON AS FEC
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APPENCIX 2-33

SECCACARY CLINCPYROXENE

PYROXENE GRANULITE SUITE

SPEC. 12CCC 12CC1 12CCI 120C1 12CC4 12017 12C17

SIC2
TIC2
AL2C3
FE203
CR2C3
FEC
MGC
MNC
CAC
NA 2C
K2C

TCTAL

49.55
0.18
5.77
0CC
0.24
6.46
15.55
0.C8

22.29
0.29
0.Cc

53.82
0.C2
5.73
C.o0
C.07
2.69

14.86
C.C9

20.78
1.98
C.C2

54 .C3
C.CO
5.27
c.Cc
C.12
2.64

14.93
c.1C

20.69
1.85
c.Cl

53.06
C.32
5.54
0.c0
C.65
2.54

14.95
C.08

20.47
1.96
0.02

53.70
C .0
6.56
0.C0
0.08
2.82

13.91
0.12

20.21
2.43

-0.01

53.07
c.c0
4.15
C.00
C. 26
2.77

15.63
C. ic

21.85
1.07
0.00

52.93
C.CC
4.02
0.00
C.25
2.79

15.73
C. 11

21.73
C.97
0.00

1C0.41 100.06 99.64 99.59 99.84 98.90 98.53

FCRMULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
FG
MN
CA
NA
K

1.828
C.005
C.251
C.CCC
C.007
C.199
C. 855
C.002
0.881
C.021
C.CCC

1.939
C.C01
0.243
C.C00
C.C02
0.081
C.798
C.CC3
C.802
0.138
C.C01

6 OXYGENS

1.953
0.ccC
0.224
c.cco
0.CC3
S.C8C

C804

C.C03
C.801
C.130
C.CCc

1.924
C.C09
0.237
0.C00
C.C19
0.077
0.808
0.C02
C .795
0.138
0.C01

TCTAL 4.049 4.008 3.999 4.009 4.C07

eG/PG+FE C.811 0.908 C.91.91913 0.898

4.CC2 4.CCC

0.910 0.909

SPECIFIEC; TCTAL IRON AS FEC

1.937
c.ccc
0.279
0.000
C.C02
C.085
0.748
0.C04
0.781
0.170
c.CCo

1 *942

C.CC0
C.179
C.000
C.CC8
C.085
0.853
0.C03
0.857
0.076
C.CCO

1.944
0.cCC
0.174
0.C00
C.CC7
0.C86
0.861
0.C03
C.E55
0.069
0.C00

UNLESS CTHERWISE
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AFPENCIX 2-33

SECCNCARY CLINCPYROXENE

PYRCXENE GRANLLITE SUITE

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR2C3
FEC
F GC
F NC
CAC
NA20
K2C

TCTAL

12C17

51.81
0.cc
4.64
0.CC
0.56
2.89

15.89
C. 11

21.85
0.96
0.cc

98.71

FCRYLLA UNITS ASSUPING

SI
TI
AL
FE3+
CR
FE2+
MG
F N
CA
NA
K

TCIAL

6 CXYGENS

1.907
C.cC
C.2C1
C.CC
C.016
C.C89
C.872
C.0C3
C.862
C.C69
c.ccc

4.019

0G/FG+FE C.9C7

UNLESS OTHERWISE SPECIFIEE; TCTAL IRON AS FEC
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APPENCIX 2-34

CLIVINE

DLNITES, HARZBLRGITES, ANC PYRCXENITES

SPEC.

SIC2
T IC2
AL2C3
FE2C3
CR203
FEC
PGC
MAC
CAC
NA2C
K 2C

15CC3 15C05 15CC9 1511 15C13 15013

38.9C
0.01
0.02
0.cc
0.C1

15.50
45.33

0.24
0.05
0.C4
0.cCc

39.88
c.c1
0.00
0.C0
c.c0

12.45
47.45
0.19
C.C3
0.C0
C.C0

4C.86
C.C2
c.cc
C.c0
c.cc
9.86

48.32
C.14
C.C6
c.co
c.cc

4C.18
C .03
C.C0
c.00
0.00

12.65
46.50
0.17
C.04
C.00
C.00

39.82
0.03
0.00
0.00
0.C0
12.27
46.90

0.17
C. C5
0.0
0.00

TCTAL 1C0.10 ICC.0l

FCRPULA UNITS ASSLPING

99.26 99.57 99.24 99.24

4 CXYGENS

SI
TI.
AL
FE3+
CR
FE2+
PG
F N
CA
NA
K

TCTAL

C.981
C.OCC
C.0Cl
c.0c0
C.0CC
0.327
1.703
C.0C5
C.001
C.002
C.0CC

C.990
C.CCO
C.cco
0.000
c.cc0
0.259
1.756
C.004

.c01
C.CCO
c.cc0

1.008
C.CCC
c.CC c
0.C00

.CC0
C.2C3
1.776
0.C03
0.CC2
0.CCc
0.CC

1 .001
0.00l
0.CCC
0.C00
0.00
0.264
1.728
0.C04
0.001
C.c00
0.CO

0.995
0.001
0.CCC
0.000
0.c00
C.256
1.747
0.004
0.001
c.cco
0.000

0.995
0.001
C.ccc
C.c00
c.cco
C.256
1.747
0.004
C.C01
C.CCO
C.CCO

3.020 3.C10 2.992 2.998 3.CC4 3.CC4

IIG/PG+FE C.839 C.872 0.897 0.866 0.872 0.872

UALESS CTHERhISE SPECIFIEC; TCTAL IRON AS FEC

39.82
0.03
0.C0
0.00
0.C0

12.27
46.90
0.17
C. C5
0.C0
0.00
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APPENCIX 2-35

CR-SPINEL

C'-hITES,HAR!BURCITES, ANC PYRCXENITES

SPEC.

SIC2
TIC2
AL2C3
FE2C3
CR2C3
FEC
IG C
FAEC
CAC
NA20
K2C

TCTAL

150C2 15C03 15C05 15009 15011

0.32
0.18

58.86
0.CC
5.17
14.66
20.16

0.17
0.CC
0.cc
0.cc

2.10
0.94

24.83
0.00

20.58
38. C6
11.93
0.51
0.68
c.01
0.co

C.o
C.06

23.CC
0.00

4C.37
24.09
11.87
0.86
C.CO
C .C
C.C c

99.52 99.64 10C.25

0.00
0.27

36.51
0.00

24.28
21.12
17.59
0.50
C.00
C.00
c.co

100.27

0.00
0.02

46.44
0.C0

13.15
22.36
17.29
0.32
0.00
Q.CO
c.cc

99.58

FCRVLLA UNITS ASSUPING

SI
TI
AL
FE3+
CR
FE2+
PGC
M N
CA
NA
K

T CL AL

4 CXYGENS

C.0C8 C.C67 C.CCC C.CCC C.CCC
C.004 0.023 0.001 0.C06 0.CCO
1.8C7 C.939 0.852 1.247 1.537
0.0CC C.CC0 C.CCC 0.CCO 0.CC0
0.106 C.522 1.CC4 0.556 C.292
0.319 1.021 0.634 0.512 0.525
C.783 C.570 0.556 0.760 0.724
C.004 C.C14 0.C23 0.012 0.008
C.OCO C.023 0.CC 0.C00 0.CCC
C.OCC 0.001 0.CCO 0.000 0.C00
C.0CC C.CCO 0.CCO 0.000 0.000

3.031 3.180 3.C70 3.093 3.085

?G/PG+FE C.710 0.358 0.468 0.597. 0.580

CR/CR+AL 0.056 C.357 0.541 0.308 0.160

UNL'ESS CTHERfISE SPECIFIEC; TCTAL IRCN AS FEC

- - - -- - - - - - -
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APPENCIX 2-35

ORT CPYRCXENE

DUTES, HARZBURGITES,

15001 15CC

54.97
0.07
2.24
c.cC
0.19
8.92

32.78
0.25
0.45
0.04
0.CC

54.97
C.C7
2.24
C.00
0.19
8.92

32.78
0.25
0.45
C.C4
c.co

ANC PYRCXEAITES

15CC5

54.18
C.C2
3.72
C.Cc
C.23
E.5C

32.09
C.16
C.28
C.C5
C.01

99.91 99.91 99.24

FCRLtA UNITS ASSUVING

SI
TI
AL
FE3*
CR
FE2+
MG
IVAN
CA
NA
K

TCIAL

1.926
C.CC2
C.092
C.0CC
C.0C5
C.261
1.712
C.007
C.017
C.0C3
C.OCO

1.926
C.CC2
C.C92
C.Cco
c.c05
C.261
1.712
C.CC7
0.017
C.C03
C.CCO

6 OXYGENS

1.905
C.CC1
C. 154
C.cCC
0.CC6
0.250
1.682
C.CC5
0.C11
0.C03
C.CCc

4.025 4.025 4.C16

tG/VG+FE (.868 C.868 C.E71

UILESS CTHERWISE SPECIFIEC; TCTAL IRON AS FEC

SPEC.

S IC2
TIC2
AL2C3
FE2C3
CR203
FEC
GC

FAC
CAC
NA20
K2C

TCTAL

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
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APPENCIX 2-36

CL INCPYRCXENE

DMNITES, HARZBURGITES,

15CC1 15CCI

53.52
0.22
2.13
0.CC
0.32
3.26

17.2C
0.11

23.67
0.11
0.CC

53.52
0.22
2.13
C.00
0.32
3.26

17.20
C.11

23.67
0.11
0.00

ANC PYRCXENITES

15003 15C09 15C13

52.86
C.16
2.13
C.C0c
C.26
3.63

16.76
C.13

23.46
0.35
C.00

53.77
C.24
3.11
C.00
C.53
2.60

16.78
C.08

23.21
0.60
0.00

51.37
0.14
3.C7
0.C0
0.87
3.45

17.36
0.15

23.17
0.19
0.00

100.54 1C0.54 99.74 1CC.92 99.77 99.77

FCRVULA UNITS ASSUMING

SI
TI
AL
FE3+
CR
FE2+
PGC
VN
CA
NA
K

TCTAL

1.941
C.CC6
C.091
C.0CC
C.CC9
0.0 99
0.93C
C.ZC3
C.92C
C.0C8
C.CCC

1.941
C.CC6
C.091
0.C00
0.009
C.099
0.930
C.C03
C.920
C.C8
C.CCO

6 CXYGENS

1.938
C. C04
0.C92
0.C00
C.C08
C.111
0.916
C.004
0.922
C.C25
C.CCO

1.935
0.006
0.132
0 .C00
0.015
C.078
0.900
0.C02
0.895
0 .C42
0.c00

1.887
0.C04
C.133
0.0C0
0.025
C. 16
0.951
0.005
0.912
0.014
0.000

1.887
0.C04
C.133
c.cco
0.025
C.1C6
0.951
0.C05
0.912
C.014
0.CCO

4.007 4.C07 4.C20 4.C06 4.C36 4.C36

FG/PG+FE C.904 0.904 0.892 0.920 0.9C0

SPECIFIEC; TCTAL IRON AS FEC

SPEC.

SIC2
TIC2
AL23
FE2C3
CR203
FEC
PG C
MAC
CAC
NA2C
K2C

15013

51.37
0.14
3.C7
0.00
0.87
3.45

17.36
0.15

23.17
0.19
0.co

TCTAL

0 . 9 cc

UNLESS OTHERISE


