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Abstract 
 

We propose an exit strategy from the COVID-19 lockdown, which is based on a risk-sensitive levels of 
social distancing. At the heart of our approach is the realization that the most effective, yet limited in 
number, resources should protect those at high risk rather than applied uniformly across the population. By 
generalizing the SEIR model to mixed populations, and based on existing data in Israel, we present an 
analysis of the maximal load on the health system and the total mortality. We argue that risk-sensitive 
resource allocation combined with risk-sensitive levels of social distancing enables to lower the overall 
mortality toll in parallel to resumption of economic activity. 
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Abstract

We propose an exit strategy from the COVID-19 lockdown, which is based on a risk-sensitive levels of social
distancing. At the heart of our approach is the realization that the most effective, yet limited in number, resources
should protect those at high risk rather than applied uniformly across the population. By generalizing the SEIR model
to mixed populations, and based on existing data in Israel, we present an analysis of the maximal load on the health
system and the total mortality. We argue that risk-sensitive resource allocation combined with risk-sensitive levels of
social distancing enables to lower the overall mortality toll in parallel to resumption of economic activity.

1 Introduction
The COVID-19 outbreak toolbox contains available, inexpensive and unlimited measures such as social distancing,
hygiene and the use of facial masks. On the other hand, there are “finite resources”, the use of which is limited, such
as PCR testing, technological systems for “closing the circuit” for detecting and quarantining infected persons through
contact-tracing technologies, and quality epidemiological surveillance for quarantining people who have come into
contact with verified infected individuals.

These limited resources are inherently expensive and are based on assumptions that only experience over time
can calibrate. For example, the “closing the circuit” system is heavily affected by the percentage of asymptomatic
infected persons (those who are contagious but will be invisible to the system) and on the extent of civil cooperation
which likely might be compromised over time (complacency among the low-risk population and failure to report
symptoms). Thus, under certain conditions such as 50% asymptomatic subjects and low percentage of cooperation,
the effectiveness of containment will be low and may even lead to a new outbreak.

The key question in the proposed strategy is how to divide available resources in a way that ensures complete
control, over time, until a vaccination is obtained, while allowing the economy to continue undisturbed.

The principle proposed is to focus on the part of the population which is sensitive to ”leakage” that is, leakage
in containment of the spread for whatever reason which will lead to flooding of the health system and from there to
high mortality rates. Israeli data shows that 84% of those on ventilators have a pre-existing condition (most common:
hypertension, diabetes, cardiac) or are over 65 years of age, i.e. a high-risk population. Accordingly:

1. It is desirable to focus most of the expensive resources to the benefit of the high-risk population.

2. However, it is necessary to determine whether leakage in the containment of the spread among the low-risk
population will lead to flooding of the health system.

The main innovation in this document is the argument that using the available and unlimited resources of social
distancing, hygiene rules and masks can protect the low-risk population while ensuring that the health system is not
flooded. Furthermore, we extend the SEIR model to account for a mixed high and low risk populations with different
degrees of containment.

∗Both authors are affiliated with the Hebrew University of Jerusalem.
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2 Guidelines
In a paper [3], the mathematical foundations for bounding the capacity of the health system (i.e., number of respiratory
systems) using concentration bounds were developed using statistical confidence intervals and assuming that there is
data on the percentage of carriers among the low-risk population by a random sample. In this document, we will
use existing data (without the need for a survey) to make a ”back of the envelope” calculation (without confidence
intervals) of the maximum number of critical ICU beds (i.e., people on respiratory systems) required to contain the
peak of the outbreak from the low-risk population, given an exponential spread of R0 = 1.4 according to the SEIR
model (a detailed description of the model deferred to Appendix A). That is, an infected person infects on average
1.4 people. We chose to set the ”basic reproduction number” R0 to 1.4 as it is in the low range of R0 reported in the
literature [2]. The reason for taking the low-range of R0 is that we would consider releasing the low-risk population
from quarantine under social-distancing guidelines, hygiene, facial masks and restrictions of gatherings above certain
thresholds. Later on, we will tackle the problem of modeling potential leakage from the low risk population to the
high risk population.

The graph below shows the percentage of infectious persons according to the SEIR model (see captions for details).
As can be seen, the curve has a “bell-shape”, and the largest load on the health system will happen at the peak of the
curve. ForR0 = 1.4, at the peak of the curve we have 1.78% infectious persons. Multiplying this by the probability of
an infected person from the low risk population needing a ventilator, and by the ratio between the average ventilation
time (11 days) and average infection time (2.9), we can obtain the percentage of the low risk population that will need
a ventilator at the peak of the outburst.
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Figure 1: The percentage of infectious people as a function of time according to the SEIR model (see Appendix A),
with the parameters τi = 2.9, τe = 5 and several options for the R0 parameter.

The probability of needing ventilation can be calculated from existing data: As of 7th April, 2020, there were
19 ventilated infected persons in Israel from the low-risk population (out of a total of 116). Ten days earlier, there
were around 5,000 verified infected persons. Clearly, a lower bound on the number of infected persons would be twice
the number of verified infected persons due to the fact that around 50% of infected people are without symptoms [1].
Furthermore, a recent survey in Austria1 found that the true number of infected persons is two to five times the number
of verified infected persons. Taking the worst case of a factor of two, suppose the true number of infected individuals
were 10,000. From the analysis of the age distribution of infected persons one may conclude that 15% are over 65.
Suppose there is another 10% of infected persons below the age of 65 but with acute background diseases. Therefore,
in the absence of data with a confidence interval from a representative survey, we discern from existing information

1COVID-19 Prevalence, SORA, April 10, 2020. https://www.sora.at/uploads/media/Austria_COVID19_Prevalence_
BMBWF_SORA_20200410_EN_Version.pdf
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that: Probability of ventilation in low-risk population ≈ 19/7500 = 0.0025. Note that the probability of requiring
ventilation given infected is a fixed number (to a particular population) regardless of the time the estimation was made.

The size of the low-risk population is approximately 7 million people (8.8 million minus 1.2 million over 65 minus
600,000 people with acute background diseases).

The number of ventilated at peak of outbreak is therefore

0.0025 · 0.0178 · (11/2.9) · 7, 000, 000 = 1, 181

It is not inevitable that the actual number of infected persons is significantly greater than factor two of verified
infected. As mentioned above, according to the Austrian survey, the factor can reach as much as five times, i.e., the
number of those on ventilators at the peak of the outbreak will range from 472 to 1,181. Thus, even with the worst
case assumptions, preparation for ≈ 1200 ventilated infected persons may be easily arranged considering the ability
of the existing healthcare system and procurement mechanisms in Israel.

In addition, it is easy to see that the “leakage” of the spread of the disease in the low-risk population does not
translate into an unmanageable increase in the number of those on ventilators. For example, suppose the basic repro-
duction number R0 is 1.5 (“leakage” from 1.4), then, according to the SEIR model, the number of needed ventilators
will increase to about 1,600.

It is important to note that accurate data and estimates can be obtained by a sample survey that will almost
certainly alleviate the worst-case assumptions adopted in estimating the true number of infected persons in
relation to the verified infected persons.

The conclusion from which operative measures can be derived is that the sensitivity to leakage in the low-risk
population is dramatically lower than the sensitivity to leakage in the high-risk population. Moreover, the State of
Israel will be able to prepare for the maximum number of ventilated patients under the worst-case assumptions adopted.

2.1 Extending SEIR Model to Handle Cross-Groups Leakage
So far, we have ignored the high risk population. In reality, however, there will be some leakage from infectious people
in the low risk population to the high risk population and leakages among the high-risk population. In Appendix B
we generalize the SEIR model so that it will take into account a division to two populations. This is modeled by four
values of the basic reproduction number: Rl,l

0 , R
l,h
0 , Rh,l

0 , Rh,h
0 , representing low-to-low, low-to-high, high-to-low, and

high-to-high infections.
As above, we set Rl,l

0 = 1.4 which represents the spread of the virus among the low-risk population to an infected
person infecting (on average) 1.4 persons. The leakage from low to high groups, Rl,h

0 is assumed to be small because
both populations understand the risks and we set it to 0.02 (meaning that on average 50 infected people from the
low group will infect one person from the high group). For example, in Israel people are told ”stay away from your
grandparents” and this, by and large, is being self-imposed across the country. The leakage from high to low is not
material to our model but for the sake of symmetry we set it to Rh,l

0 = 0.02 as well. What remains is to set reasonable
expectations to the possible leakage among the high-risk population. Given that (i) the population is under stricter
social distancing, and (ii) by and large the group is heavily tilted towards senior citizen ages where the percentage of
single-person household is heightened, then it is reasonably to assume that Rh,h

0 < 1 and we set it to 0.7. The results
are displayed in Figure 2 showing that the added number of critical ICU beds (on top of the 1181 for the low-risk
group) stands on 872 (under pessimistic assumptions).

Taken together, taking into accounts leaks between the two risk groups and among the high-risk group, with a
worst-case assumption of factor 2 between the validated positives and true positives, the total number of critical ICU
beds needed at the peak of the outbreak stands on 2053 — which translates to 20 critical beds per 100, 000 inhabitants.

3 Operative Measures
The operative proposal does not change the basket of means and resources but rather their focus. Due to the low
sensitivity to leakage in the low risk population, the lockdown upon that population may be released subject to social
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distancing guidelines, hygiene rules and masks. At the same time, it will be possible to restore the economy and the
education system to routine, while the retail, leisure and restaurant sectors may be restored subject to restrictions. The
high tolerance to leakage allows for great flexibility in the “dosage” of lockdown release.

At the same time, the high-risk population will be managed according to stricter social distancing guidelines, with
”closing the circuit” resources directed primarily at this population and those treating them (nursing homes, hospitals,
etc.). Among this population, the leakage sensitivity is high (with a risk of flooding the health system) and therefore,
it is desirable that the expensive and limited resources be diverted in greater measure to prevention of leakage in the
spread of the virus among high-risk individuals. By monitoring the seriously ill in this population, one may control
the level of intensity of the guidelines and social distancing rules.

As for mortality, it is important to note that, by segregation according to risk groups as suggested here, total
mortality across the general population will be lower compared to methods that apply across the general population.
The alternative is an ongoing lockdown, or ongoing rounds of lockdown and release depending on the effectiveness of
”closing the circuit” among the entire population. As mentioned, the success of ”closing the circuit” critically relies
on the cooperation of the population and it is safer to assume that those who in the high-risk group would be more
cooperative in reporting symptoms as soon as they arise.

A back-of-the-envelope estimation of mortality of the low-risk group (which under this proposal are consciously
subjected to the risk of infection), to date there is zero mortality among the low-risk group in Israel. Given that there
were 19 individuals using ventilators a lower-bound on the probability of mortality is 1/19 the probability to require
a ventilator, i.e., 0.0025/19 = 0.00013 which is 0.013% of the low-risk population. Given R0 = 1.4 the total number
of people infected (over a period of roughly 200 days) is around 50% (see Figure 4 right-most panel). This translates
to a figure of 455 under the worst case assumption of factor 2 between the validated positives and true positives (if the
factor is larger, say factor 5, then the mortality figure would be 182). For the sake of calibration, the annual mortality
in Israel due to traffic accidents stands around 350.

A The SEIR model
The Susceptible-Exposed-Infected-Recovered (SEIR) model is a simple compartmental mathematical model of infec-
tious disease. In this model, the total population is divided into S susceptible persons (people that did not get the
disease yet), E exposed persons (people that has been exposed but are still not ill), I infected persons (people that has
been infected and can infect others), and R recovered persons (people that may be recovered/dead/or still be sick, but
are not infectious any more). The total population size is the sum N = S + E + I + R. Every day, the relative sizes
of the different compartments change. We denote by S[t], E[t], I[t], R[t] the number of persons in each compartment
on day t. The update of the sizes is according to the following rules:

• Let τi be the average number of days a person can infect others. Recall that in our model, the Recovered
compartment includes people that can no longer infect others (either because they recovered, or because they
died, or because they are still sick but are no longer infectious). Therefore, every day, a fraction of 1/τi of the
Infected compartment is moved to the Recovered compartment. This yields:

R[t+ 1] = R[t] + (1/τi) I[t] (1)

• Let τe be the average number of days from the moment a person is exposed to the virus until he becomes infec-
tious. Then, every day, a fraction of 1/τe of the Exposed compartment is moved to the Infected compartment.
This yields:

I[t+ 1] = I[t]− (1/τi) I[t] + (1/τe)E[t] (2)

• The basic reporduction number, denoted R0, is the average number of persons an infected person will expose
in total, if he will just meet persons from the S compartment. The probability to meet a person particularly from
the S compartment on day t is S[t]/N . Therefore, the total number of persons an infected person will expose
on day t is R0S[t]/N . Spreading this over τi days of infection, we get that on every day, each person from the I
compartment exposes R0 · (S[t]/N) · (1/τi) persons. It follows that

S[t+ 1] = S[t]− I[t]R0S[t]/(Nτi) (3)
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Figure 2: The mixed SEIR model with the parameters τi = 2.9, τe = 5, Rl,l
0 = 1.4, Rh,h

0 = 0.7, Rl,h
0 = Rh,l

0 =
0.02, N l = 7, 000, 000, Nh = 2, 000, 000. The bottom graph is an estimation of the number of severe cases based on
a pessimistic statistics of 4%, 0.25% probabilities to be severe in the high/low risk groups respectively. These estimate
are based on the same calculations as in Section 2.

and
E[t+ 1] = E[t] + I[t]R0S[t]/(Nτi)− (1/τe)E[t] (4)

To get some intuition, the graphs below depict the values of S[t]/N,E[t]/N, I[t]/N,R[t]/N , where we set τi =
2.9, τe = 5, R0 = 3.0.

As can be seen, the Susceptible compartment monotonically decreasing and the Recovered compartment is mono-
tonically increasing. The Infected and Exposed compartments have a “bell-shape”, where initially they are growing
fast and then they decay fast. The basic reproduction number, R0, determines the “flatness” of the bell-shape: what
is the height at the peak and on which day we arrive to the peak. The basic reproduction number also determines the
size of the Recovered compartment at the end of the pandemic (how many people got sick sometime in the past and
are now either recovered or died). The graphs below depict the height of the peak, day at the peak, and the recovered
compartment at the end of the pandemic, as a function of R0.
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Figure 3: SEIR model with the parameters τi = 2.9, τe = 5. Left: R0 = 3.0. Right: R0 = 1.5.
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Figure 4: The effect of the basic reproduction number.

The SIR model: In the pure SIR model, there are only three compartments: Susceptible, Infected, and Recovered.
The formulas are similar

S[t+ 1] = S[t]− I[t]R0S[t]/(Nτi)

I[t+ 1] = I[t] + I[t]R0S[t]/(Nτi)− (1/τi) I[t]

R[t+ 1] = R[t] + (1/τi) I[t]

The derivative (change) of I[t] is I[t+1]− I[t] = (R0S[t]/(Nτi)− (1/τi)) I[t]. When the derivative of I[t] equals to
zero, we reached the peak of the pandemic, and from there on, the number of infected persons will decrease over time.
Based on the above expression, this will happen when S[t]/N = 1/R0. Denoting the portion of the population which
is not susceptible by φ[t] := 1− S[t]/N , then we obtain that the peak of the pandemic is when φ[t] = 1− 1/R0.Note
that this formula is incorrect for the SEIR model. And, in any case, we do not need to rely on the formula as we are
simulating the entire dynamic.

B A SEIR model with a division to High and Low Risk Populations
We now describe a variant of the SEIR model, in which there are two populations: those of high risk and those of low
risk. As in the SEIR model, each sub-population is divided into the four compartments of Susceptible, Exposed, In-
fectious, and Recovered. We denote the 8 compartments at time t by Sl[t], El[t], I l[t], Rl[t], Sh[t], Eh[t], Ih[t], Rh[t],
where the upper script l or h designates low or high risk groups. We assume mild social distancing within the low risk
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group and strict social distancing between the low and high risk groups as well as within the high risk group. This
is modeled by four values of the basic reproduction number: Rl,l

0 , R
l,h
0 , Rh,l

0 , Rh,h
0 , representing low-to-low, low-to-

high, high-to-low, and high-to-high infections. The update equations for I l, Ih, RI , Rh are similar to the vanilla SEIR
model. As to the move from suspects to exposed: each person in I l potentially infects Rl,l

0 /τi persons in one day if
he happens to meet someone from Sl (which will happen with probability Sl/N l where N l is the size of the low risk
population), and in addition, potentially infects Rl,h

0 /τi persons in one day if he happens to meet someone from Sh

(with probability Sh/Nh). Similarly for each person in Ih. This gives the following difference equations:

Sl[t+ 1] = Sl[t]− (Rl,l
0 /τi) (S

l[t]/N l)I l[t]− (Rh,l
0 /τi) (S

l[t]/N l)Ih[t]

Sh[t+ 1] = Sh[t]− (Rh,h
0 /τi) (S

h[t]/Nh)Ih[t]− (Rl,h
0 /τi) (S

h[t]/Nh)I l[t]

El[t+ 1] = El[t] + Sl[t]− Sl[t+ 1]− (1/τe)E
l[t]

Eh[t+ 1] = Eh[t] + Sh[t]− Sh[t+ 1]− (1/τe)E
h[t]

I l[t+ 1] = I l[t]− (1/τi) I
l[t] + (1/τe)E

l[t]

Ih[t+ 1] = Ih[t]− (1/τi) I
h[t] + (1/τe)E

h[t]

Rl[t+ 1] = Rl[t] + (1/τi) I
l[t]

Rh[t+ 1] = Rh[t] + (1/τi) I
h[t]

The graphs below show the percentage and infected cases for the two populations. The parameters we used are
where we set τi = 2.9, τe = 5, Rl,l

0 = 1.4, Rh,h
0 = 0.7, Rl,h

0 = Rh,l
0 = 0.02, N l = 7, 000, 000, Nh = 2, 000, 000.

The rational for the parameters is that the low risk group has a mild social distancing measures while the high risk
group has strict social distancing measures, and in particular, any contact between the two groups must be with a
significant protection (masks, gloves, etc.).
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