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Abstract

We propose a novel probabilistic framework based on pore-scale probabilistic events
to derive a theory of hysteresis in multiphase flow in porous media. In particular,
we define the pore-space accessivity to contrast the serial and parallel arrangement
of different-radius pore slices, and the radius-resolved saturations to detail the pore-
scale distribution of immiscible fluids. We show that accessivity can be measured
by mercury cyclic porosimetry. Our microscopic theory of hysteresis produces simple
formulae that are suitable for use as hysteresis-enabling constitutive laws for cap-
illary pressure and relative permeabilities in conventional continuum simulations of
multiphase flow.
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Chapter 1

Introduction

Porous materials are truly ubiquitous in both nature and civilization. From rocks

and wood to concrete and heterogeneous catalysts, they vary widely in origin, proper-

ties, and applications. Despite their macroscopic appearance as solid objects, porous

media are distinguished by their ability to contain fluids internally, owing to their

heterogeneous microstructure - the solid matrix occupies only a portion of the macro-

scopic domain, while the complementary pore space is able to accommodate one or

more fluid phases [2].

As a result, transport phenomena in porous media are central to innumerable

engineering applications: after a storm, rainwater drains away by infiltrating through

a permeable city pavement [3]; at an oil and gas extraction site, hydrocarbons flow

under pressure through geological structures to reach production wells [4]; during the

day, humidity fluctuations in a house are buffered by the cyclic uptake and release of

moisture in wood layers in the floor and the wall [5]; in a chemical reactor, reactants

are delivered to the surface of a catalyst pellet in a packed bed before they diffuse

through pores into the pellet and react away on the internal catalytic surface [6]; ...

The design and operation of these and many other engineering systems thus draw

heavily on continuum models of porous media, where microscopic details at the

length scale of individual pores are smeared out to give way to homogenized macro-

scopic descriptions of the medium as a whole. In the typical case of well-connected

pores, continuum models tend to work well for diverse physical phenomena occur-
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ring in porous media, including fluid flow, heat and mass transfer, gas adsorption,

phase transformations, and chemical reactions [7]. Remarkably, these models encap-

sulate the essential features of the often nontrivial pore-space morphologies in a small

number of parameters like porosity (#), tortuosity (r), intrinsic permeability

(k,), specific surface area (a,), etc. - a well-known example is the eponymous

constitutive law of French engineer Henry P. G. Darcy for fluid flow in porous media:

k
q= (VP - pg), (1-1)

which Darcy proposed based on experimental observations of the steady flow of water

through a vertical column of sand [8]. Here, q is called the specific discharge or

Darcy velocity (defined as the volumetric flow rate of fluid per unit area of the

porous medium), y and p are the viscosity and the density of the fluid, respectively,

g is the gravitational acceleration, and p denotes the fluid pressure variable.

Over time, Darcy's law has acquired an axiomatic status so venerated that it

customarily serves as the starting point for modeling more complex flows in porous

media, some of which barely resembling Darcy's original experimental system. In con-

tinuum simulations, the intrinsic permeability is sometimes generalized to a spatially

dependent tensor, k,(x), to account for heterogeneity and anisotropy in real porous

media [2]; Forchheimer [9] and Klinkenberg [10] proposed corrections to Darcy's law

to include inertial and slip effects, which may become important when the Reynolds

number and the Knudsen number, respectively, are no longer much less than unity

[11]; in a seemingly far-fetched but now canonized attempt, Darcy's law was even

modified to describe dense granular flow [121; lastly, of principal importance to this

thesis is, naturally, the generalization of Darcy's law to multiphase flow in porous

media, where immiscible fluid phases (liquids or gases) jointly occupy the pore space

[13, 14]. In the special case of two-phase flow, denoting the two phases by w and n

(we will explain the physical significance of these labels in Section 2.1.3), the system

of continuum governing equations, consisting of several Partial Differential Equations
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(PDEs) and algebraic constraints, may be written as' [2, 15]:

# -- V -q,# = -V -qn, (1.2)
at at

k__k__(s_) k kn( sw)

q k = k (S) (Vp - pwg), qn = - (Vpn - png) , (1.3)
p pIn

Pn - Pw = Pc(sw), (1.4)

SW + sn = 1. (1.5)

In this formulation, either phase is associated with its own saturation, Darcy ve-

locity, relative permeability, and pressure, e.g., s,, qw, kr, and pw, respectively,

for phase w, in addition to standard fluid properties. Eq. (1.2) are differential state-

ments of mass conservation, where saturation is defined as the volume fraction of pore

space occupied by either fluid phase; the saturations of the two phases must sum to

unity by definition, which is reflected in Eq. (1.5). Darcy's law for single-phase flow,

Eq. (1.1), is modified to give Eq. (1.3), where multiplicative factors kr and krn ac-

count for deviations of Darcy velocities in two-phase flow compared to single-phase

flow. Eq. (1.4) imposes an algebraic constraint on the two pressure variable via Pc,

which is referred to as the capillary pressure. Conventionally, pc, krw, and k

are given as predetermined functions of s,. While the approach may work as a first

approximation, these relationships suffer from hysteresis, as illustrated in Figure 1-

1. Given a certain s, at some location in a porous medium, depending on the past

trajectory of sw, the capillary pressure and the relative permeabilities may assume

different values. For example, during drainage, which is when s" locally decreases,

the values of pc, krw, and k,, generally differ from those during imbibition, which is

when s, locally increases; these behaviors become more complex when s undergoes

arbitrary cyclic fluctuations.

In practice, hysteresis is often described empirically or neglected altogether in

continuum simulations of multiphase flow in porous media, although it is considered

crucial for making certain type of predictions, e.g., [16, 17, 18]. Thus, the overall

assuming that the solid matrix and the fluid phases are incompressible and all material properties
are homogeneous and anisotropic
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Figure 1-1: Qualitative features of hysteresis in the relationship between capillary
pressure and saturation as well as that between the relative permeability of either
phase and saturation in the conventional formulation of two-phase flow in porous
media.

objective of this thesis is to build upon conventional continuum formulations of mul-

tiphase flow in porous media to include the effects of hysteresis. The modifications

should reflect the pore-scale physical processes that are responsible for hysteresis in

the first place, but remain simple enough to be incorporated into current applications.

In the short term, the new concepts we propose may be incorporated into conventional

continuum models for incremental improvements, while in the long term, they may

be subject to pore-scale investigations, and ultimately play a role in future continuum

models of multiphase flow.
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Chapter 2

Modeling pore-space morphology

Certain transport processes in porous media, such as heat conduction, may involve

both the solid matrix and the pore space, while processes like electron conduction

may involve only the solid phase. Fluid flow in a porous medium, on the other

hand, occurs exclusively in the pore space, and is hence strongly influenced by both

the geometry of individual pore units and the way they are interconnected, or their

topology. We say that the geometrical and topological features of the pore space

constitute its morphology [19].

Therefore, the kinds of coarse-grained descriptions found in continuum models of

fluid flow in porous media should reflect essential characteristics of the pore-space

morphology. In this chapter, we will discuss existing notions related to physically

significant aspects of pore-space morphology. We will then introduce new concepts -

such as the pore-space accessivity - and establish a unified modeling framework

which we will use to derive many of the results in this thesis.
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2.1 Existing concepts

Like with other composite materials, we can record the precise microstructure of a

porous medium with the function:

Ps: * {0, 1}: x 1 the point x belongs to the pore space (2.1)
0 the point x belongs to the solid matrix,

where cS? R3 denotes the 3-D physical domain occupied by the medium. The

function ps(x) encodes the morphology of the pore space. We rarely have a precise

knowledge of p(x) for real porous specimens, although numerous image acquisition

and processing techniques can be used to estimate p5 (x) up to some spatial resolution

and sample size - see Section 7.2. This information would then enable the simulation

of physical processes at the pore scale, the challenges notwithstanding. As far as

continuum modeling is concerned, there are numerous quantitative properties that

are useful for characterizing the pore-space morphology at the continuum scale. We

will review some of them here.

2.1.1 Porosity

The average porosity of a porous sample occupying a domain of Q is defined as:

Ps(x) d2, (2.2)

which equals the ratio of the volume of the pore space in Q to that of S itself [2, 7].

Because p,(x) {0, 1}, Vx c , we have [0, 1]. In the limit$ -+ 0, the medium

becomes plainly the solid, while the limit of-+ 1 represents a homogeneous free

space available for fluid occupation.

For homogeneous porous materials or those with a periodic microstructure, it

seems reasonable to assign to each location within the medium a local porosity

that is equal to the average porosity in , namely, p(x) =-5. For example, con-
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sider a close-packing of monodispersed spheres, which has an average porosity of

S1- 7r/(3-F) ~ 0.26, the lowest among any infinite packing of equal spheres

[20, 21]; we may plausibly associate this porosity value with different macroscopic

regions in the close-packing, which are morphologically identical. On the other hand,

for heterogeneous media, the proper continuum definition of O(x) is more elusive.

The usual strategy is to consider a so-called representative elementary volume

(REV) surrounding each point x, which we denote by V here, and define:

#(x) = Ps(x) dV, (2.3)

V

where V C P is a neighborhood of x that is much smaller in size than Q, but large

enough 1 so that the value of #(x) obtained is insensitive to small changes in the size

of the REV [15].

The porosity informs many macroscopic properties of porous media. For example,

the average bulk density of a porous medium is given by:

p = pf + (1 - )Ps, (2.4)

where pf and p, are the densities of the pore-space fluid and the solid matrix, re-

spectively. Effective transport coefficients in a homogeneous porous medium, such

as the mean effective thermal conductivity, denoted by k,are generally not uniquely

determined from #, but are guaranteed to lie within certain bounds that are functions

of #. For example, in an anisotropic porous medium, k obeys the Wiener bounds [221:

1 -
1< k < #kf + (1 - #)ks, (2.5)

where kf and k, are the thermal conductivities in the pore-space fluid and the solid

matrix, respectively 2. The Hashin-Shtrikman bounds [23] for isotropic porous media

similarly depend on #.
'In the limit of V -+ 0, Eq. (2.3) returns a O(x) that equals either zero or unity, as given by

PS i m2ngetn modes of heat transfer other than conduction in the fluid, e.g., natural convection
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Finally, we note that the definitions given in Eqs. (2.2) and (2.3) correspond to

what one may call the total porosity. This term is created to distinguish it from

accessible porosity, which only accounts for the subset of the pore space that is

reachable from the outside of the porous medium via a continuous path through the

pore space [19]. Virtually all physical processes considered in this thesis involve fluid

flows of one kind or another, where a genuinely isolated pore pocket, into which fluids

cannot enter, is functionally equivalent to a part of the solid matrix. For that reason,

we favor accessible porosity as the physically relevant measure of porosity.

2.1.2 Tortuosity

Tortuosity, which is also referred to as the tortuosity factor, is sometimes taken

intuitively as:

r or T , (2.6)
L L

where L is the straight-line distance along a particular transport direction in the

porous medium, and Leis the typical arc length of a tortuous microscopic path span-

ning the distance that is followed by a tracer particle in the pore space 24], although

the more rigorous definition is based on the effective tracer diffusivity through the

porous medium 3

Deff = D,5 (2.7)
T

where D is the "true" diffusivity in the pore space. Based on the above, we expect

T C [1, 00).

In general, the macroscopic definitionof Tin Eq. (2.7) does not have a definitive

connection to its simplistic microscopic geometrical interpretation in Eq. (2.6), and

Tcan only be reliably determined by studying diffusion through the porous medium

[25]. Nevertheless, the limit of low tortuosity, T -+ 1, would plausibly be represented

sassuming that no diffusion occurs in the solid matrix
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by a collection of straight (i.e., least "tortuous") channels that are oriented parallel

to the direction of transport. As we raise T, the typical residence time of a tracer

particle undergoing diffusion in the pore space increases, leading to slower transport

[24], which is in fact due to branched, non-percolating paths and serial connections

in the pore network [7].

In the classical chemical engineering literature [26, 27, 28, 29], the intrinsic perme-

ability seen in Eq. (1.1) is similarly linked to porosity and tortuosity. Approximating

the pore space as a bundle of channels that are nearly identical in their cross-sectional

shapes and effective radii, the intrinsic permeability may be modeled as:

ks = C- 0 (2.8)
T

where the linear proportionality constant C has units of area and is dependent on

geometrical properties of the channels, such as analyzed in [30].

2.1.3 Pore-size distribution

Imagine tracing a straight line L in an infinite homogeneous porous medium in 3D.

Given the pore-space morphology as indicated by p(x), we may break L into a

collection of nonadjacent line segments that fall entirely within either the pore space

or the solid matrix. That is, we may express the setLi= {x c L : ps(x) = 1} as the

union of a number of nonadjacent and disjoint subsets. Repeating this process with

various L, we obtain a collection of such pore space-spanning line segments, whose

lengths give some indication as to the typical pore sizes in the porous medium.

Crucially, these pore sizes mark a length scale 4 at the level of individual pores

that is distinct from the macroscopic dimensions of a porous specimen. In truth, key

pore-scale physics are dictated by the local dimensions of the pore space.

To illustrate, suppose that a part of the pore space resembles a straight cylindrical

capillary of radius r. Then, viscous flow through the pore is described by the Hagen-

4or possibly a plurality of length scales in hierarchical porous materials
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Poiseuille equation [31]:

Q = ,r d_ (2.9)
8p dz

where Q is the volumetric flow rate, and jdP/dz| is the magnitude of the dynamic

pressure gradient along the pore axis5 . Intuitively speaking, the larger the radii of

pores, the smaller their resistances to flow.

Capillary phenomena are also strongly influenced by local pore dimensions. Note

that for a chosen combination of two immiscible fluids and a solid, we may identify

one fluid as the wetting phase, labeled w, and the other as the nonwetting phase,

labeled n; at equilibrium, along a contact line that simultaneously borders all three

phases, the static contact angle as measured in the wetting phase, which is defined

as the angle between the w-n interface and the s-w interface at the contact line, is less

than r/2, whose supplementary angle, which is greater than r/2, equals the contact

angle as measured in the nonwetting phase. Now, consider two immiscible fluids in

a straight cylindrical channel of radius r; at mechanical equilibrium, the meniscus

separating the two fluids takes the shape of a spherical cap that is symmetric about

the central axis of the channel7 , as shown in Figure 2-1. The interfacial pressure

difference, or the capillary pressure8 , can be evaluated using the Young-Laplace

equation [31]:

Pn -Pw = 2,n COS Oc (2.10)
r

with 9c being measured in the wetting phase. This equation is also known as the

5assuming that the Reynolds number and the Knudsen number are both small, i.e., Re=
pQ/pr «1 and Kn = A/r « 1, where A is the mean free path of a fluid molecule

6 The identities of the fluids as wetting and nonwetting phases are determined based on the three
interfacial tension values associated with the three pairwise interactions between phases, namely,
7Ywn, 7s., and yn, respectively, as we always have -y, < s. The equilibrium contact angle is given
by Young's equation or the Young-Dupre equation, -y cos 0c +7-, = yp, where a and # are
labels for the two fluid phases and 0c is measured in the wetting phase [31]. It is easy to verify that
7yS < 7NO <- < 7r/2 and that -y, > 7,<- 0c > 7r/2, given that 0c E (0, 7r).

7 assuming that the Bond number is small, i.e., Bo = |p - pnfgr 2 Y «18This pore-scale capillary pressure must be distinguished from the "macroscopic" capillary pres-
sure used in continuum models, e.g., in Eq. (1.4), although the two concepts are not unrelated.
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Washburn equation [32], which we will revisit in Section 4.1. Intuitively speaking,

for a fixed combination of two fluids and a porous medium, the smaller the radii of

pores, the larger the pressure in the nonwetting phase (relative to that in the wetting

phase) required to keep the meniscus in equilibrium, and hence the more favorable

for the wetting phase to imbibe and replace the nonwetting phase in those pores -

that is, it is generally more favorable for the wetting fluid to occupy smaller pores

9and the nonwetting fluid to occupy larger pores at equilibrium

phas w hse

Figure 2-1: Two immiscible fluids in a straight cylindrical channel of radius r. The
contact angle as measured in the wetting phase, 0c, is less than r/2.

Having established the paramount role pore dimensions play in pore-scale physics,

it would seem natural to condense the geometrical features of the pore space into a

pore-size distribution (PSD) that delineates the pore sizes present and how preva-

lent each size is. Unsurprisingly, there lacks a universally accepted definition of the

PSD despite its intuitive appeal, which is perhaps due to the concept being "vague

and imprecise" [19]. Traditionally, the PSD is actually defined based on macroscopic

measurements such as mercury porosimetry [32, 33, 34, 35, 36] and nitrogen

adsorption-desorption [37, 38, 39], similar to how tortuosity is defined based on the

effective tracer diffusivity in Eq. (2.7). More recently, advances in imaging methods

like synchrotron X-ray computed microtomography have allowed for direct measure-

ments of 3-D microstructures of porous materials, from which morphological data in

the form of a pore network can be extracted using a variety of methods [40, 41],

such as fitting maximally inscribed spheres in the pore space [42, 43].

In this thesis, we view the pore space as being assembled from cylindrical slices

of various radii (or effective radii if the cross sections of the slices are not perfectly

9We arrive at the same conclusion based on an energetic argument: because ', < yconverting
an s-n interface to an s-w interface by itself is always energetically favorable (while displacing the
fluid requires work); however, because the volume to surface area ratio is less in smaller pores, on a
per volume basis, imbibition is more favorable in smaller pores.
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cylindrical), and denote the probability density function (PDF) and the cumulative

distribution function (CDF) of the volume-based PSD with f(r) and F(r), respec-

tively, where r denotes the effective pore radius 10. Hence, f(ro) dr gives the volume

fraction of pore slices whose radii lie between ro and ro + dr, and the PDF and the

CDF are related by:

F(ro) = f(r) dr. (2.11)

Note that the cumulative function F is nondecreasing and right-continuous, and is

typically invertible over some interval [rminrmax], where rmin and rmax denote the

minimum and maximum radius present, respectively". Thus, in a practical sense,

there is a one-to-one correspondence between pore radii and values of the CDF. It is

thus acceptable to refer to any pore size ro by the corresponding F0 = F(ro) value;

in other words, we may say a pore slice is "of size Fo" when all pore slices of the same

radius or smaller make up a volume fraction of F0 of the pore space. As we shall

see in the subsequent analyses, using F as a surrogate for pore size is particularly

advantageous when the pore-scale events of interest are controlled by only the relative

order of pore radii rather than their absolute magnitudes. This way, we can express

the relevant results more generally and independently from specific PSDs.

2.2 Our probabilistic framework

In this section, we will establish additional continuum properties of porous materials

to describe other aspects of the morphology of pore space, which we conceptualize

using a new probabilistic framework.

'0Note that we may also define length-based PSD whose density function f1 (r) satisfies f(r)
r 2f(r)/ fo° r2fi(r) dr. One can similarly define a surface area-based PSD. The logarithm of pore
radius is also used as the independent variable in describing these distributions [19, 44].

"If F is not invertible, then we take the quantile function as its effective inverse, defined as
Q: [0, 1] [rmin, rmax] : Fo - inf{ro c [rmin, rmax] : F(ro) > Fo}.
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2.2.1 Skeletal representation of pore space

We make the simplifying assumption that the relevant features of pore-space mor-

phology can be reduced to a lower-dimensional representation based on the pore

skeleton in the form of intersecting space curves, as we illustrate in Figure 2-2.

While the precise definition of the skeletal representation may vary (see Section 7.2),

the basic idea is that there is a certain axial direction associated with any location

in the pore space. In this sense, a tracer - which could be a meniscus between two

immiscible fluid phases, for example - can traverse the pore space by moving along

the pore skeleton. At every point along on the pore skeleton, the cross section in the

transverse direction can be associated with an effective pore radius1 2 . To parame-

terize locations along the pore skeleton, we define an axial coordinate that measures

the "distance" of pore-space traversal, which could be based on the cumulative pore

volume, for example.

Figure 2-2: An illustration of the skeletal representation of a pore space in a hy-
pothetical 2-D porous sample. The black and white areas corresponds to the solid
matrix and the pore space, respectively, and the blue curves depict the pore skeleton.
Different branches of the pore skeleton intersect at junctions, which display various
coordination numbers. Reproduced from [1].

' 2 There are many possible definitions of the effective pore radius for irregular cross-sectional
shapes. For example, the definition could be based on capillary equilibrium, as implied by the average
curvature of a meniscus at equilibrium at the given axial location. The radius of an equivalent
straight cylindrical pore hosting a stationary meniscus with the same curvature under the same
conditions is then taken as the effective pore radius.

' 3 That is, the incremental difference in the axial coordinates of two nearby points on the pore
skeleton is equal to the volume of pore space "explored" by traveling between the two points. Other
measures of axial distance include the arc length of the pore skeleton and the exposed surface area
of the solid.
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As a tracer traverses the pore space along its skeleton, the effective pore radius

may change, which we may record as a function of the axial coordinate. By compiling

radius measurements across the pore skeleton weighted by the pore volume associated

with each radius, we also obtain a volume-based PSD. Also, the tracer may also

encounter junctions where parts of the skeleton that are oriented in different axial

directions intersect, or where the skeleton terminates. We refer to the joining region

between two adjacent junctions as a pore branch. The coordination number of

a junction, denoted by z, is equal to the number of pore branches emanating from it.

We have z = 1, 3, 4, ... , with z = 1 corresponding to a "dead end" in the pore space

or an opening on the outer boundary of domain of the medium, z = 3 corresponding

to a 3-coordinate junction, and so forth".

Note that the skeletal representation of pore-space morphology is expect to work

best when pore branches are long and thin and have axisymmetric cross sections, so

that the effective radii are readily identified along the skeleton. Aside from that, the

assignment of regions of the pore space to individual branches near a junction may

be ambiguous. Thus, like the determination of the PSD, the identification of pore

skeleton and the assignment of pore radii at axial locations may be inherently vague

for real porous media. We argue that this framework should be recognized primarily

for its usefulness in motivating continuum models.

2.2.2 Pore-space instance

In order to create continuum descriptions of pore-space morphology based on the pore-

scale skeletal representation introduced above, we resort to probabilistic methods.

Suppose a tracer enters the pore space of a control volume of a porous medium from

its boundary and traverses the pore space along its skeleton, multiplying at each

junction whose z > 3 - tantamount to a branching process - so as to traverse each

subsequent branch, until it encounters a 1-coordinate junction. Such an experiment

yields a pore-space instance, which includes the pore space explored by the tracer

"Note that z = 2 is not considered a valid coordination number because such a junction cannot
be meaningfully differentiated from an internal point on the skeleton of a pore branch

38



and any pore radius data. Figure 2-3 shows an example of such a pore-space instance.

4

Representative
control volume in /
porous medium /

Figure 2-3: A conceptual illustration of the branching process and the resulting pore-
space instance in a representative control volume of a porous medium. Junctions
of various coordination numbers may occur at distinct frequencies, each following
an independent homogeneous Poisson point process. The pore radius varies along
the axial coordinate of every branch, which is similarly described by an independent
homogeneous Poisson point process. Note the absence of loops in the instance.

As the tracer traverses the pore space, we assume that it encounters junctions of

each coordination number z at a fixed rate of A, which has units of the reciprocal of

those of the chosen axial coordinate. Hence, the occurrence of z-coordinate junctions

is described by an independent homogeneous Poisson point process5 for each z.

Similarly, we assume that the variation of pore radius along a branch is described

by a homogeneous Poisson point process with a constant rate of f-1. Strictly speaking,

this results in a series of constant-radius pore segments, whose axial dimensions

follow an exponential distribution with a mean of £, and whose radii are drawn at

random from a prescribed PSD. Because we expect the pore radius to vary smoothly

along the axial coordinate in real porous media, f may be interpreted as the typical

axial distance over which the pore radius becomes uncorrelated; if we examine r as

a function of the axial coordinate in the frequency domain, £ may correspond to the

i"See Appendix A for discussions about properties of homogeneous Poisson point processes.
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typical location of the peak signal. Of course, f may in reality also depend on the

instantaneous pore radius, e.g., if r varies more rapidly with respect to the axial

coordinate as it becomes smaller; for simplicity, we assume that there exists some

average £ that works across all pore sizes.

Hence, we conceptualize the overall pore space as an ensemble of all possible in-

stances constructed from a given set of rate parameters for the Poisson processes,

probabilistically weighted. Separate instances in the ensemble are accessed by tracers

in parallel. Note that no loops are present in the probabilistic branching process de-

scribed: within each instance, there exists exactly one path connecting any two points

on the pore skeleton. In that sense, the pore instances considered in this framework

resemble a Bethe lattice or Cayley tree [45, 46], although the coordination num-

ber may vary from junction to junction in our framework. Thus, the instances in

our framework can be regarded as having the topology of what we may elect to call

"generalized Bethe lattices".

We can derive expected properties of a pore-space instance using properties of

homogeneous Poisson point processes presented in Appendix A. Using those results,

we find that the expected axial dimension of a branch is given by:

(b) - 1 , Az+ = A2 and Z+ ={1, 2, 3,. .. }, (2.12)
AZ+ zEZ+

where we set A 2 = 0 for simplicity of notation. Subsequently, we find that the expected

axial dimension of an instance is given by:

1
(c) = 1 (2.13)

zez+ (2 - z)Az'

which is finite for an instance in a finite control volume, requiring that the denomi-

nator be greater than zero - see Appendix A.
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2.2.3 Pore-space accessivity

We now have all the ingredients to introduce the first important concept of this thesis,

the pore-space accessivity:

+a £+ (C)

which can also be equivalently written in the following form:

a = +q (c f = (2 -z)A2,
1+ q' (c) ZZ

(2.15)

implying that:

(2.16)
q = 1 - a.

We note that q C (0, oo) and a E (0, 1). Furthermore, the relationship between q and

a is shown in Figure 2-4.

q

1

0
0 142 1

(2.14)

Figure 2-4: Relationship between q and a as given by Eqs. (2.15) and (2.16).

We may interpret 1/q E (0, oo) as the expected number of pore-size variation

events per instance, and hence 1/a = 1 + 1/q E (1, oo) as the expected number of

different-radius pores found in an instance. Thus, a E (0, 1) is the average volume

fraction of an instance which corresponds to the constant-radius pore segments that
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are immediately accessible from the exterior of the control volume.

As a - 1, each instance contains only one pore radius, making it entirely accessi-

ble from the exterior by a tracer without experiencing variations in pore radius, and

different pore radii are only found in parallel instances in the ensemble. As a- 0,

an infinite number of distinct pore radii are observed in each instance, making a van-

ishingly small fraction of the constant-radius pore segments directly accessible from

the exterior, which means that different-radius pores are organized in a highly serial

manner.

According to Eq. (2.15), increasing A increases the rate of encountering 1-coordinate

junctions, which decreases the expected size of a pore instance with all other con-

ditions kept unchanged, hence increasing accessivity. On the other hand, increasing

A, for any z > 3 increases the occurrences of high-coordinate junctions, which in-

creases (c) and decreases a. Lastly, keeping all Az constant, accessivity increases with

increasing f.

We have established a precise microscopic definition of accessivity - given by

Eq. (2.14) or Eq. (2.15) - based on our probabilistic framework. Accessivity is a new

continuum property of porous medium that characterizes the pore-space morphology

in terms of the degree to which different-size pore segments are arranged in series

versus in parallel. For real porous media, it may not be straightforward to apply this

microscopic definition to compute a, but the conceptual picture may still hold. For

example, consider the illustrations in Figure 2-5, which highlight qualitative features

of the morphology of porous samples with low, medium, and high accessivities.

Like tortuosity, accessivity should be rigorously defined based on macroscopic

observations, as we will present in Chapter 4. Nevertheless, the microscopic definition

of a based on our probabilistic framework provides an intuitive starting point for

incorporating the concept in continuum descriptions of porous media.
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a ~ 0.5

Figure 2-5: Illustrations of samples of hypothetical porous media a trimodal PSD and
low, medium, and high accessivities, respectively. Black and white regions correspond
to the solid matrix and the pore space, respectively. Reproduced from [1].
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Chapter 3

Microscopic theory of capillary

pressure hysteresis

In this chapter, we will use the probabilistic framework introduced in Section 2.2 to

begin analyzing multiphase flow in porous media. We will define a new concept called

the radius-resolved saturations, and use it to describe the pore-scale distribution

of immiscible fluid phases across pore segments of various sizes. We will then use

our probabilistic framework to develop a theory of capillary pressure hysteresis by

analyzing quasistatic microscopic fluid redistribution.

3.1 Introduction

For certain simple physical processes in porous media, especially those involving a

single fluid phase in the pore space - such as single-phase flow [47, 48] and and heat

transfer [49, 50] - simple continuum formulations generally work well, and a rigorous

connection between the pore-scale and continuum-scale governing equations can be

sought. In comparison, it is considerably more challenging to develop predictive

continuum models for processes in porous media involving multiple fluid phases [2,

51, 52, 53, 54, 55, 56, 57, 58, 59]. In terms of connecting any continuum description

to pore-scale physics, while it is possible to upscale pore-scale equations by careful

averaging [60, 61, 62, 63, 64], the resulting model varies depending on the macroscopic
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state variables selected and the scaling laws assumed for the specific applications

considered, not to mention that the mechanisms for pore-scale fluid motions are highly

complex and are still actively researched [65, 66, 67, 68]. It appears that in formulating

continuum models of multiphase flow in porous media, there exists a trade-off between

mathematical simplicity and consideration of pore-scale physics.

In this section, we will review some current ideas in the literature on the continuum

modeling of multiphase flow in porous media, and discuss pore-scale physical processes

that underlie our theory of capillary pressure hysteresis.

3.1.1 Fluid saturations

In Section 2.1, we defined the function p, : - {0, 1} in Eq. (2.1) to characterize the

exact microstructure of a porous medium; there, {x - : ps(x) = 1} corresponds to

the pore space. In multiphase flow, the pore space may contain several fluid phases.

For each phase, say, phase w in two-phase flow, we can likewise define the function:

p. : - 0, 1} : x a(1 the point x belongs to phase w (3.1)
0 otherwise,

Analogous functions for all fluids present in the pore space fully characterize the

pore-scale distribution of fluid phases, which may evolve over time during flow [69].

As with ps(x), imaging techniques are available for estimating pw(x) in real porous

medium under both static [70, 71] and dynamic conditions [721. Pore-scale simulations

[73, 74, 75] and micromodel experiments [76, 65, 77, 78, 68] can also generate such

data (also see Section 7.2).

To describe p, at the continuum scale, we may define a saturation variable for
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each fluid phase in an REV (denoted by V in the equation below) surrounding x:

Pw(x) dV

s (x) =V pw(x) dV, (3.2)
fp.s(x) dV V

V

which is akin to the definition of porosity in Eq. (2.3), but normalized such that for

each x E Q, sW(x) E [0, 1], and that saturations of all phases sum to unity1 . Similar to

how porosity does not fully characterize the pore-space morphology, fluid saturations

do not perfectly describe the pore-scale distribution of fluid phases. However, they

are found to be useful quantities in virtually all continuum models of multiphase

processes in porous media.

3.1.2 Capillary bundle and connectivity effects

In Section 2.1.3, we have highlighted the central role played by local pore dimensions

in certain physical processes in porous media. To recapitulate, as far as multiphase

flow is concerned, pores with larger radii have higher hydraulic conductances, and

host menisci with smaller curvatures, which are associated with smaller equilibrium

Laplace pressures.

These phenomena make the PSD an intuitive concept for incorporating elements

of pore-space morphology into continuum descriptions of multiphase flow in porous

media. The quintessential demonstration of that can be found in the capillary

bundle model, which conceptualizes the pore space as a bundle of straight capillaries

that are directly accessible from the surface of the sample, where the volume fractions

of capillaries of different radii are given by the PSD. Because the capillaries are

arranged in parallel, they behave independently from one another. In our probabilistic

framework, the capillary bundle model may correspond to the following limits:

fA 1 -+ oo and -+ 0Vz {3,4,...} - a - 1, (3.3)
A,
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so that there is negligible branching and virtually no pore-radius variation along a

pore branch, rendering each pore-space instance a constant-radius pore branch. These

capillaries behave rather predictably during many pore-scale physical processes, thus

promising simple continuum descriptions of the corresponding ensemble of instances.

The simplistic nature of the capillary bundle model draws much criticism [79, 80],

while at the same time engendering widespread use in practice, e.g., in the standard

laboratory interpretation of mercury intrusion porosimetry data [32] and sorption

isotherms [38]. In particular, the capillary bundle model is unable to predict capillary

pressure hysteresis2 due to its neglect of connectivity effects, meaning that serial

connections between different-radius pore segments are completely absent.

To illustrate, we will derive the capillary pressure-saturation relationship entailed

by the capillary bundle model. Consider the process of primary drainage, where

the nonwetting fluid enters a porous specimen whose pore space is initially filled with

the wetting fluid, corresponding to an initial saturation of s" = 1. The pressure in

the nonwetting phase is sufficiently low compared to that in the wetting phase at first,

e.g., pc = 0, so that a meniscus separating the two phases cannot exist in equilibrium

in a capillary of any radius. As we gradually raise pc, the corresponding equilibrium

capillary radius, given by Eq. (2.10) and denoted here by rc, decreases. Hence, any

capillary whose radius is greater than rc will undergo complete drainage and become

filled with the nonwetting fluid. The volume fraction of the pore space filled with the

wetting phase is thus equal to the volume fraction of capillaries with radii that are

less than r, which is given by Fc -- F(rc), or the CDF of the PSD evaluated at the

equilibrium capillary radius. That is:

SW = Fe, (3.4)

2barring other explanations for hysteresis such as contact-angle hysteresis [441, which we will

consider in the context of mercury porosimetry in Chapter 4
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which gives the following pc-se relationship:

s = F 2.yCos (3.5)

In fact, the capillary bundle model predicts the same, nonhysteretic capillary pressure-

saturation relationship as written above during arbitrary drainage-imbibition cycles,

as capillaries of all radii are accessible by both fluid phases at all times.

These assumptions are generally not applicable in real porous media, where some

different-size pore slices may be arranged in series and hence not accessed completely

independently. For example, during primary drainage, pore slices whose radii are

larger than Fe at some imposed capillary pressure 3 will not drain if they are preceded

by a pore slice that is smaller than F, which the invading nonwetting phase cannot

enter. This means that, during primary drainage, the saturation of the wetting phase

may be higher than the volume fraction of pore slices with radii smaller than Fc, or:

s ;> F, (3.6)

and conversely, during primary imbibition, the wetting fluid may not be able to

imbibe into some pore slices that are smaller than Fe if they are preceded by pore

slices larger than F, meaning that:

sW < Fc. (3.7)

Either of the above may be true during arbitrary drainage-imbibition cycles. Thus,

the pc-sw relationship is generally hysteretic when serial connectivity between different-

size pore slices is present - which implies a < 1 in our probabilistic framework. This

phenomenon, which is often referred to as the ink-bottle effect [81, 82, 83, 15],

exemplifies the link between pore-space morphology and capillary pressure hysteresis

and serves as the basis for our microscopic theory.

3Recall from Section 2.1.3 that we may use the CDF of the PSD, F, as a surrogate for relative
pore radii.
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3.1.3 Continuum models based on saturations

In conventional models of two-phase flow that are widely accepted in practice, sat-

uration is the primary state variable, as we may recall from Chapter 1. Empirical

constitutive relationships are ordinarily employed to relate saturation to both cap-

illary pressure and relative permeabilities. Focusing on capillary pressure for the

purpose of this chapter, popular formulae include the Brooks-Corey model [841:

S = 1 pc E [0, Pb) (3.8)

(p/ I~r, Pc C [Pb,oo),

where PA and A are model parameters4 , and the van Genuchten model [851:

sW = , (3.9)
1+ (apc)n

where a, n, and m are model parameters. Such empirical models do not capture

hysteresis, but instead produces a single pc-sw curve, which is generally thought to

represent primary drainage. Nevertheless, they are widely used in practice for they

are often able to fit experimental data well by virtue of having several adjustable

model parameters [15].

There are also simple scaling laws that relate the pc-sw relationships for closely

related porous media. A classical example is the Leverett J-function [86, 87, 88]:

J(sW) = Pc k.   (3.10)
Ywn L;

Leverett finds that the pc(sw) curves for a number of sands form two branches when

plotted as J-functions, one for imbibition and the other for drainage. The form of

the scaling law can also be obtained from a dimensional analysis. We note that the

4Here, PA is called the bubbling pressure, which is equal to the lowest value of pc below which s"
becomes less than unity, and A is called the pore-size distribution index.

5 Sometimes the effective saturation, which may be given by swee (sw - swi)/(1 - swi) during
primary drainage, is used in place of sw, where sei, referred to as the irreducible saturation of
the wetting phase, constitutes an additional model parameter.
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J-function does not predict the extent of hysteresis, but may be used to extrapolate

Pcsw data to similar systems. Also, the domain theory of hysteresis also results

in scaling laws that predict hysteresis in the pc-s relationships based on primary

drainage data [89, 90, 91, 92, 93, 94, 95].

Many other popular continuum constitutive relationships in the literature are ex-

pressed in terms of the PSD, conceptualizing the pore space as interconnected "pores"

of various sizes and certain shapes, either implicitly or explicitly [96, 97]. The sim-

plest example is the capillary bundle model already discussed in Section 3.1.2, which,

as we have noted, does not predict hysteresis in either capillary pressure or relative

permeabilities due to its neglect of connectivity effects. Additionally, if one were to

interpret the conceptual picture of the capillary bundle in a literal manner, they may

conclude that the porous medium that it represent must be highly anisotropic because

flow is only allowed in the direction of the bundle [30], which appears unrealistic. In

order to address the shortcomings of the capillary bundle model, many have sought

its extensions or considered alternative geometrical representations of pore elements.

Examples include assuming that the pore radius fluctuates sinusoidally over its axial

length [98], approximating the solid matrix as a packing of spheres by utilizing the

grain-size distribution [99, 100, 101, 102], treating the appearance of pores as some

random stochastic process [54, 103], deriving analytical formulae based on simple

percolation models [45, 104, 46, 105], and others [96].

3.1.4 Continuum models based on additional state variables

Let us, for a moment, view hysteresis from a mathematical perspective. Suppose

we have a function of two variables, f : X1 x X2 -+ Y. It follows that for any

X1 E X 1 , X2 E X 2 , we have a unique corresponding y= f(Xi, x 2 ) E Y. However, for

each given xi E X1, there could be several y E {f(Xi, X 2) : X2 C X2}; thus, if we were

to plot the trajectory of y E Y versus x1 C X1, we would find that the relationship is

not unique and possibly history-dependent.

As we have alluded to in Chapter 1, conventional models of multiphase flow in

porous media suffer from hysteresis, suggesting that additional macroscopic state
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variables may be required to eliminate hysteresis. This is consistent with the physical

understanding that saturation alone is unable to fully characterize the pore-scale

distribution of fluid phases in the pore space, as we have shown in Section 3.1.1.

In this section, we will review additional continuum state variables proposed in the

literature for describing multiphase flow in porous media (also see [1061).

To begin with, many authors make the assumption that capillary pressure depends

on not only saturation, but also the "rate of saturation", Os,/t, or at least its sign,

thereby attributing hysteresis to nonequilibrium effects [107, 108, 109, 110, 111].

Others have, on thermodynamic grounds, identified the "specific interfacial area",

a,,, or the interfacial area between the wetting and nonwetting phases per unit

volume of the porous medium 6, as a physically relevant state variable, and have

advocated for its inclusion in continuum models to reduce capillary pressure hysteresis

[113, 109, 112, 114, 115]. This hypothesis seems to hold in many but not all cases, as

revealed by micromodel experiments [116, 117,118,78], lattice-Boltzmann simulations

[119], pore-network simulations [120, 121, 122, 123], and analysis [124], while the exact

form of any new constitutive relationships required may not be completely clear.

More recently, Hilfer put forth a new class of continuum models for two-phase flow

in porous media [125, 126, 127] involving four fluid saturation variables, {si, s2,8 3 ,S4},

as opposed the conventional two, {sw, s}, for the two fluid phases (in either case,

all saturation variables must sum to unity); we have sw = Si + s2 ands, = S3a + S4,

where si and S3 correspond to "percolating regions" of the respective fluid phases,

and S2 and S4 correspond to "non-percolating regions". By differentiating between

the contributions of percolating and non-percolating fluid "subphases", Hilfer's model

naturally predicts hysteresis as a result of the dynamics of these new state variables.

Because the model is not derived from the principles of the microscopic physics,

phenomenological assumptions are still required to, say, model the "mass transfer

rates" between si ands2, or S3 and S4 - namely, percolating fluid regions becoming

non-percolating and vice versa. These assumptions lead to model parameters that

6 While the specific interfacial areas between w and s and between n and s may also be of
interest, some authors argue that the dependencies of pc on a,, and an, may be dropped under
certain conditions, making am, the only relevant specific interfacial area {109, 112].
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may be difficult to interpret physically, though they can potentially be determined

from experiments.

It appears that modeling multiphase flow in porous media at the continuum scale

is an inherently difficult problem. It is likely that any continuum model to come in the

foreseeable future will not be able to match the performance of pore-scale methods

in terms of either predictability or connection to first principles. On the one hand,

conventional models continue to dominate continuum simulations of multiphase flow

in porous media for practical applications, despite their neglect or empirical treat-

ment of hysteresis. On the other hand, new continuum models, despite having rightly

introduced new and physically meaningful state variables so as to naturally predict

hysteresis, deviate significantly from conventional models. They involve somewhat

abstract constitutive laws with phenomenological constants which lack a clear con-

nection to pore-scale concepts, possibly due to the emphasis placed on reproducing

certain macroscopic observations. In this thesis, we would like to identify new phys-

ically meaningful concepts that can be readily incorporated into existing continuum

models of multiphase flow in porous media to capture hysteresis.

3.2 Our theory

In this section, we will continue to develop our theoretical framework to consider

the pore-scale redistribution of fluid phases under capillary forces. Our goal is to

characterize the pore-scale distribution of fluid phases at the continuum scale using

functions such as pw that are introduced in Section 3.1.1. The concepts we propose

here are general and can in principle be readily extended to systems involving any

number of immiscible fluids, though for simplicity, we shall confine our discussion to

two-phase systems.

3.2.1 Radius-resolved saturations

We propose the radius-resolved saturations, 0,(F) and 0,(F), to characterize

the distribution of fluids across pore slices of different sizes. Among all pore slices
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of a particular radius F0 = F(ro), by definition, 4.(F) is the volume fraction of

pore slices filled with the wetting phase, and 0n(F) is the fraction of pores filled

with the nonwetting phase. As with conventional saturations, we have 0'(F) +

4,(F) = 1, VF E [0, 1]. The name "radius-resolved saturations" reflects the fact that

the conventional saturations are easily recovered by integrating the radius-resolved

saturations:

sw = j0,w(F) dF, s, = j' On(F) dF. (3.11)

Namely, conventional saturations are simply averaged radius-resolved saturations,

weighted by the volume fraction of each pore radius.

1ial 1

0 0
0 Fe 1 0 Fe 1

F F

Figure 3-1: Examples of the radius-resolved saturation of the wetting phase, ow(F), at
some imposed Fc during quasistatic primary drainage. The shaded and unshaded ar-
eas correspond to the conventional saturations of the wetting and nonwetting phases,
respectively, following Eq. (3.11). When accessivity is nearly unity (left panel), all
pores with radii larger than Fc are accessible by the nonwetting phase and will un-
dergo drainage; when accessivity is less than unity (right panel), although all pores
larger than Fe still favor drainage, only a fraction of them ends up draining due to
the ink-bottle effect, which is captured by the4'w(F) function. Adapted from [1].

In Section 3.1.2, we have shown that, in the limit of the capillary bundle model

(which implies a -+ 1 in our framework), the saturation of the wetting phase is equal

to the CDF of the PSD evaluated at the equilibrium capillary radius even during

7Alternatively, we could have expressed radius-resolved saturations as functions of pore radius r,
i.e., Owb(r) and On(r), which would imply s,, = f"O @(r)f(r) dr and sn = f'O /n(r)f(r) dr because
dF = f(r)dr; also, Ow(r)f(r) (or n(r)f(r)) would then be PDF of the distribution of radii of pore

slices filled with the wetting (or nonwetting) phase.
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Figure 3-2: Examples of the radius-resolved saturation of the wetting phase, 0,(F),
at some imposed Fc during arbitrary drainage-imbibition cycles. The shaded and
unshaded areas correspond to the conventional saturations of the wetting and non-
wetting phases, respectively, following Eq. (3.11). When accessivity is nearly unity
(left panel), all pores with radii larger than Fe are occupied by the nonwetting phase,
and all smaller pores the wetting phase; when accessivity is less than unity (right
panel), both phases may be found in pore slices of each radius due to connectivity
effects, which are captured by the 0,(F) function. Adapted from [1].

arbitrary drainage-imbibition cycles, i.e., Eq. (3.4). At the pore scale, all pores with

radii smaller than Fc will become filled with the wetting phase, and all larger pores

the nonwetting phase. This corresponds to the following radius-resolved saturation

of the wetting phase:

0. (F; F c) 1 F Fe (3.12)
0 F>F,7

which, according to Eq. (3.11), gives s. = Fc and s,, = 1 - F, as expected. See

Figure 3-1.

Conversely, if some serial connectivity between different-size pores is present (which

implies a < 1 in our framework), then the radius-resolved saturation will generally

evolve differently. During primary drainage, we would expect, in general:

ri, F<GFe
(F; Fe) = (3.13)

Ivaries between 0 and 1 F > Fc.
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Since the pore space is saturated with the wetting fluid at the beginning of primary

drainage, all pores with radii smaller than Fc will certainly remain filled with the

wetting phase, but now with a < 1, some larger pores may remain filled with the

wetting phase, too. In fact, the integral f 'i/(F) dF corresponds to the volume

fraction of the pore space occupied by wetting fluid in pores with radii larger than F,

which favor drainage yet cannot drain because they are blocked from the nonwetting

fluid by pores smaller than Fc. In the context of primary drainage, this quantity

is precisely Hilfer's "S2", or the saturation of the "non-percolating water subphase"8

[125, 1261. Because s2 > 0, we have s. > Fc and s, < 1 - F, which is clear from

Figure 3-1.

Now, consider the general case where a control volume that has undergone a

number of arbitrary drainage-imbibition cycles before the capillary pressure is finally

brought to Pc. Figure 3-2 depicts the expected 0,b(F) profiles for porous media with

different accessivities. For a - 1, the radius-resolved saturation 0,(F) is identical

to that during primary drainage (given by Eq. (3.12) and plotted in the left panel of

Figure 3-1) because pores of all radii correspond to straight capillaries that are directly

accessible by both fluid phases, so that all pores with radii smaller (larger) than Fe

are filled with the wetting (nonwetting) phase. There is a one-to-one correspondence

between s, and 0,(F), i.e., one can reproduce the radius-resolved saturation function

from the conventional saturation at any capillary pressure, which correctly implies

that the capillary bundle model does not predict ink-bottle effect-based hysteresis in

Pc(Sw).

On the other hand, in a real porous medium with an accessivity lower than unity,

0(F) can acquire nontrivial profiles after arbitrary cycles of drainage and imbibition,

which is illustrated in the right panel of Figure 3-2. We see that @w(F) is a better

representation of the microscopic state of porous medium than s., as the former

registers the effects of the flow history on the current pore-scale distribution of fluid

phases.

Interestingly, ow(F) may have some loose connection to Hilfer's four saturation

8assuing the solid matrix is water-wet, or that "water" refers to the wetting fluid here
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F

Figure 3-3: The four "quadrants" in the right panel of Figure 3-2, whose areas define
four saturation-like variables with distinct physical interpretations. These lumped
saturation variables are reminiscent of (but different from) Hilfer's four saturation
variables based on percolation, yet lack the precise connection to the PSD found in
the radius-resolved saturation profile, 0.(F). Adapted from [1].

variables, Si, ... ,s 4 [125, 126]. We note that in the right panel of Figure 3-2, the

[0, 1] x [0, 1] area is divided into four "quadrants" by the red @m(F) curve and the

vertical dashed line at Fc. By recalling that each point in the shaded (unshaded) area

corresponds to a pore filled with the wetting (nonwetting) phase, and that a point

to the left (right) of the F = Fe line corresponds to a pore that favors imbibition

(drainage), we find it appealing to interpret the areas of the four "quadrants" as

follows:

j. (F) dF (stable w phase) ~ Hilfer's si,

(F) dF (metastable w
IF1

1 - 0,,,(F) dF (stable n

1 Fc

0/ 1 - 0,,(F) dF (metastable n

phase) ~ Hilfer's s 2 ,

phase) ~ Hilfer's s3 ,

phase) ~ Hilfer's s 4 ,

as shown in Figure 3-3.
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For instance, the integral in Eq. (3.15) corresponds to the area of the lower-right

"quadrant" in Figure 3-3, which gives the volume fraction of pores that are w-filled

but have large enough radii to favor drainage at the imposed Fc. We say these

pores contain "metastable w phase" because the wetting fluid would have drained

out of these pores if they were accessed by mobile menisci. In other words, the

wetting phase is trapped in these larger pores that are blocked by smaller pores,

and is not truly "stable" - like the wetting fluid in pores with radii smaller than F,

corresponding to the lower-left quadrant - because it would be spontaneously replaced

by the nonwetting phase if the pore were brought in direct equilibrium contact with

the nonwetting phase. We note that the four integrals identified in Eq. (3.14)-(3.17)

are not identical to Hilfer's definitions of si, ... , s4, which are based on percolation

rather than pore size. For instance, a pore with "stable n phase" is not necessarily

percolating to an external reservoir of the nonwetting fluid, and could be part of a

trapped ganglion. Nevertheless, it is remarkable that the conventional saturations (s.

and s) can be intuitively subdivided into four saturation-like variables in either case.

Our framework is different in that it also affords an intuitive and precise connection

to the PSD, and, in fact, goes beyond a four-variable description by characterizing

the microscopic distribution of fluid phases across a spectrum of pore radii using the

function 4'(F).

3.2.2 Quasistatic fluid redistribution during primary drainage

Now that we have established the concept of the radius-resolved saturations, which

are denoted by 0,(F) and ,(F) for two-phase flow, we will analyze quasistatic9

fluid redistribution at the pore scale using our probabilistic framework introduced in

Section 2.2. Our goal is to derive formulae for updating the radius-resolved saturations

in response to quasistatic changes in the imposed F, where the pore-space accessivity

controls the morphology of the pore space. To make our discussions more instructive,

we will begin by analyzing the comparatively simpler case of quasistatic primary

9 meaning that the imposed capillary pressure is varied in infinitesimally small steps, which allows

the control volume to reach new metastable states in response
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drainage before generalizing the results to arbitrary drainage-imbibition cycles.

During primary drainage, Fc is lowered from 1 to 0, causing s" to also decrease

from 1 to 0. We assume that any drainage that occurs can be attributed to the ad-

vancement of menisci into the ensemble of pore-space instances that make up the pore

space. We use w to denote the number of menisci per instance that may contribute to

further drainage, and assume w(Fc = 1) = 1, i.e., there is one meniscus per instance,

located at the surface of the control volume, at the beginning of primary drainage.

We shall then consider how s. and w change in response to differential changes dFc,

which are negative because Fc decreases during drainage.

Since s, will not change if Fe remains unchanged10 , we deduce that every meniscus

must be immediately upstream from a pore slice whose radius is smaller than Fe, which

would prevent the nonwetting phase from intruding further into that pore. We say

such a meniscus is in the pinned state. When Fe is reduced to F+dF, only menisci

that are adjacent to a pore whose size falls in the interval [Fc + dF, Fc) will advance

downstream. Thus, the number of menisci per instance that move in response to the

differential change in Fc is equal to:

-dFc
oadv= , (3.18)

where the fraction -dFc/Fc is the conditional probability that the size of the pore

next to the meniscus is in [Fc + dF, Fc), given that it is in [0, Fe).

Next, a meniscus that begins moving in response to dFe may experience either of

the following two independent events as it travels along the pore axial coordinate:

*The meniscus encounters a pore with a radius smaller than Fc and returns to the

pinned state, which occurs according to a homogeneous Poisson point process

with a rate parameter of":

Ar. - ; (3.19)

' 0 which follows from the premise that Fc changes quasistatically
"Recall the definition of £ from Section 2.2.2.
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e The meniscus encounters a junction (of any coordination number), which occurs

according to a homogeneous Poisson point process with a rate parameter of Az+

(see Eq. (2.12)).

We denote the mean total displacement of an advancing meniscus and all its

descendants by (d). It must follow the relation1 2 :

1 AZ(d) = A 1 + (z - 1) (d) (3.20)
Ic EZ+ c

1 1
=> (d) ( (3.21)

+ E+ (2-z)Az, Fc/ + q/f'
zEZ+

which we obtain by inserting the definitions of Ar and q found in Eqs. (3.19) and

(2.15), respectively.

We have seen that an advancing meniscus can potentially transform into many

descendent menisci. The mean number of descendants found in a pore-space instance

(including their progenitor), which we denote by (n), is given by1 3 :

(n) (A=c -(1))+ ( (z - 1) (n) (3.22)

A-+A-+ FA F z

->(n) - A°r F/el F+ (3.23)
A,- + E (2 - z) Az Fe|f + ql Fe + q'

zEZ±

which we obtain by inserting the definitions of Ar and q found in Eqs. (3.19) and

(2.15), respectively.
1 2See Appendix A for a general discussion of the derivation of relations of this form. Here,

1/ (Ar + Az+) is the rate at which the advancing meniscus either becomes pinned or encounters a
junction. Given that, it may be the case that the meniscus encounters a z-coordinate junction before

it gets pinned, which occurs with conditional probability Az/ (A,- + Az+); this would transform

the meniscus into (z - 1) independent menisci, each of which independently traverses one of the
additional pore branches, and is subject to the same two events described above. Note that in the
case of z = 1, the meniscus either encounters a dead end or exits the domain of the porous medium,
thereby reducing the number menisci responsible for further drainage to zero. On the other hand, if
the meniscus gets pinned before it encounters a junction, which occurs with conditional probability

Ar / (Ar- + Az+), drainage will stop, resulting in no further increase in (d).
1 3Again, see Appendix A for a general discussion of the derivation of relations of this form. Here,

an advancing meniscus remains one meniscus in the case that it becomes pinned, but becomes
(z - 1) (n) menisci if it encounters a z-coordinate junction.
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Now, we will combine the above results to write a system of Ordinary Differential

Equations (ODEs) for ss(Fc) and w(Fc). Firstly, as Fc is reduced to Fc + dF, the

differential change in the saturation of the wetting phase, ds", must satisfy:

-(c)ds. = 6Wadv(d). (3.24)

In other words, - (c)ds, is the differential amount of wetting fluid drained out of each

instance in response to dF, measured in the unit of the pore axial coordinate. It is

equal to the product of the number of advancing menisci per instance, 6 wadv, and the

mean total displacement of each meniscus, (d). Substituting Eqs. (2.15), (3.18), and

(3.21) into Eq. (3.24), we obtain an ODE for s. (Fe):

- (-)dsw= (wdc)( )
q Fe Fe|£ +g/l

ds_ W q (3.25)
d Fe Fe Fe + q

Secondly, as Fc is reduced to Fe + dF, the differential change in the number of

menisci per instance available for further mercury intrusion is equal to:

dw = SWad ((n) - 1) , (3.26)

where ((n) - 1) gives the net growth in the number of menisci per advancing meniscus.

Substituting Eqs. (3.18) and (3.23) into Eq. (3.24), we obtain an ODE for w (Fc):

--d Fe Fedw (Fc) (Fe + q
dcv cv qdF = - q (3.27)
dFe Fe Fe + q

Solving Eqs. (3.25) and (3.27) simultaneously, subject to sw(Fc = 1) =- 1 and
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w(Fc = 1) = 1, we obtain the following solutions:

q_(1-_Fc a(1- Fc)
sW (Fc) = w (Fc) = 1 - =c 1 - .c (3.28)

Fe + q (1 - ae)Fe + a*

Eq. (3.28) is our formula for the s (Fc) relationship during primary drainage, where

the accessivity, a, serves as a model parameter for controlling connectivity effects'5 .

The limit of the formula as a - 1:

a(1 - Fe)
lim s,(Fc) = 1 - lim - F (3.29)
a->1 a-1 (1 - a)Fc + a (29

coincides with the prediction of the capillary bundle model given by Eq. (3.4).

We may write sw (Fc) for quasistatic primary imbibition by simply replacing Fe

with (1 - Fe) and sw with (1 - s.) in Eq. (3.28), which gives:

aF
sW(Fc)= a F (3.30)

(1-a)(1 - Fc) + a'

where exactly the same reasoning used to derive Eq. (3.30) applies16, except that Fc

is now quasistatically raised instead of lowered, causing imbibition into increasingly

larger pores and hence increasing s,. Setting a -+ 1 in Eq. (3.30) similarly recovers

sW(Fc) = F, or the capillary bundle limit found in Eq. (3.4).

Figure 3-4 shows the sw (Fc) relationship for both quasistatic primary drainage and

quasistatic primary imbibition, corresponding to Eqs. (3.28) and (3.30), respectively,

for porous media of low, medium, and high accessivities.

As a a 1, both the drainage and imbibition curves tend toward the sw(Fc)=

Fe line (given by Eq. (3.4)), and capillary pressure hysteresis is completely absent.

1 4We integrate Eq. (3.27) as follows: = ff(c - dF - in w = In Fc -

In ( Fc) -> W(Fc = (q+°)F. = 1 -- F). On the other hand, comparing Eqs. (3.25) and

(3.27), we find: dw => s-= 1-> s.,(Fc)=
15dFc dFc dw -(F)

isThe solution for w, while not central to our microscopic theory of capillary pressure hysteresis,
may be useful as an indicator of the specific interfacial area between the two immiscible fluid phases.

16Note that by this simply analogy with primary drainage, Eq. (3.30) will not predict entrapment
of the nonwetting phase during imbibition, which is due to other pore-scale mechanisms such as
snap-off [65] unaccounted for in this simple analysis.
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Figure 3-4: Plots of s,.,(F,)for quasistatic primary drainage (solid curves, given by
Eq. (3.28)) and quasistatic primary imbibition (dashed curves, given by Eq. (3.30))
for a= 0.1 (green curves), a= 0.5 (blue curves), and a= 0.9 (red curves). The area
of the hysteresis loop between the primary drainage and primary imbibition curves
decreases as a increases. In the limit of a -+ 1, we expect to recover s, (Fe) = Fe for
both primary drainage and primary imbibition, which is consistent with the prediction
of the capillary bundle model, given by Eq. (3.4). Adapted from [1].

This is a result of different-size pores becoming overwhelmingly arranged in parallel,

which is the case in the capillary bundle model. When a < 1, serial connectivity

between different-size pores render s, > Fc for all Fe except the end points during

primary drainage (as seen in Eq. (3.6)), and s, < Fc for all Fe except the end points

during primary imbibition (as seen in Eq. (3.7)). This widens the hysteresis loop

between the drainage and imbibition curves, leading to more prominent hysteresis.

Connectivity effects become the strongest as a -+ 0, which corresponds to highly

serial connections between different-size pores. Primary drainage does not occur to

an appreciable extent when Fc is lowered at first because most larger pores are only

accessible through smaller ones. As Fe approaches zero, a larger fraction of pores
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become penetrable, resulting in a rapid drop in s, which is reminiscent of a 1-D

critical percolation transition [45, 46]. The primary imbibition curves mirror these

behaviors for increasing Fc.

We note that for quasistatic primary drainage, it is possible to algebraically derive

Eq. (3.28) without constructing ODEs. Instead of analyzing how s" responds to

differential changes in F, we can lower Fc from an initial value of 1 to its final value

directly, and consider the independent displacements of all advancing menisci at once.

Menisci pinned at pores whose radii falls within (Fe, 1] will begin advancing as a result.

The fraction of pore-space instances where this occurs is given by:

AWadv= 1 -- Fc. (3.31)

We have already derived the mean displacement of an advancing meniscus that be-

comes pinned at a rate of Fc/; the result is given by Eq. (3.21). The amount of

drainage in response to the abrupt lowering of Fc is thus equal to 7:

(c)s = AWadv (d). (3.32)

Substituting Eqs. (2.15), (3.31), and (3.21) into Eq. (3.32) gives Eq. (3.28) again.

Eq. (3.30) can also be similarly derived.

We would now like to express the above results in terms of radius-resolved satura-

tions. Based on the our probabilistic framework, during primary drainage, we expect

the radius-resolved saturation of the wetting phase to take the following form:

(F; F) = 1 F < F (3.33)

1)o (Fe) F > FeI

which is a special case of Eq. (3.13) where pores that are larger in radius than Fc are all

filled to the same extent because they are effectively indistinguishable to an advancing

meniscus, denoted here by o, while smaller pores all remain filled exclusively with

17cf. Eq. (3.24) for the differential lowering of Fc

64



the wetting phase. Comparing with Eq. (3.28)18, we obtain the following formulae

for updating 0$,(F) in response to quasistatic changes in Fc:

(F; Fe) = 1 F < Fc (3.34)
1 - a/ [(1 - a)Fc + a] F > Fc.

Similarly, for primary imbibition, we find:

.(F; Fc) = a/ [(1 - a) (1 - Fc) + a]F < Fe (3.35)
0 F> Fe,

which can be obtained by ostensibly exploiting the symmetry between the two fluid

phases in our framework, i.e., replacing Fc with (1 - F), F with (1 - F), and 0'

with (1 - 0) in Eq. (3.34). The radius-resolved saturations predicted by Eqs. (3.34)

and (3.35) are shown in Figures 3-5 and 3-6, respectively, for high, moderate, and low

accessivities.

3.2.3 Quasistatic fluid redistribution during arbitrary drainage-

imbibition cycles

Having analyzed primary drainage and primary imbibition, we can generalize the

above results to describe arbitrary quasistatic drainage-imbibition cycles using radius-

resolved saturation. Suppose a porous sample acquires a certain 0"(F; Fc) after begin

subject to arbitrary drainage and iibibition steps. We are interested in predicting

changes in 0,(F; Fe) from its current state for quasistatic changes in Fc. Specifi-

cally, we will modify Eqs. (3.34) and (3.35) by considering how general drainage and

imbibition compare with their primary counterparts.

The first point to consider is that, under quasistatic conditions, pores with radii

smaller (or larger) than Fe may only undergo imbibition (or drainage), respectively,

18Integrating Eq. (3.33) and comparing with Eq. (3.28), we write: Fe + f a(Fc)dF 1-

a(-F ~ ( F - 1-FF '0(Fc) 1- (1-aFc + •
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Figure 3-5: Evolution of the radius-resolved saturation of the wetting phase, 0,P(F),
during quasistatic primary drainage, according to Eq. (3.34). The shaded and un-
shaded areas correspond to the conventional saturations of the wetting and nonwet-
ting phases, respectively, following Eq. (3.11) and corresponding to the solid curves in
Figure 3-4. The blue dashed curve represents the trajectory of 1 - a/[(1 - a)Fc + a]

versus Fc. The left, middle, and right columns correspond to a = 0.9, a = 0.5, and
a = 0.1. During primary drainage, all nonwetting fluid remains "stable" according
to the categorization scheme in Figure 3-3, but "metastable" wetting fluid occurs in
pores larger than Fe due to the connectivity effects, whose amount increases as a
becomes lower. Adapted from [1].
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Figure 3-6: Evolution of the radius-resolved saturation of the wetting phase, ?P.(F),
during quasistatic primary imbibition, according to Eq. (3.35). The shaded and
unshaded areas correspond to the conventional saturations of the wetting and
nonwetting phases, respectively, following Eq. (3.11) and corresponding to the
dashed curves in Figure 3-4. The green dashed curve represents the trajectory of
a/ [(1 - a)(1 - Fc) + a] versus Fe. The left, middle, and right columns correspond to
a = 0.9, a = 0.5, and a = 0.1. During primary imbibition, all wetting fluid remains
"stable" according to the categorization scheme in Figure 3-3, but "metastable" non-
wetting fluid occurs in pores smaller than Fe due to the connectivity effects, whose
amount increases as a becomes lower. Adapted from [1].
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due to local capillary equilibria. Thus, when and only when the imposed Fc changes,

0/,(F) may only increase or remain unchanged for any F < F, and may only decrease

or remain unchanged for F > Fc. These observations are consistent with Eqs. (3.28)

and (3.30), respectively.

The second point concerns the rate of meniscus pinning. In our primary drainage

formula, Eq. (3.34), Fc is thought to be associated with the rate at which a moving

meniscus becomes "pinned" - see Eq. (3.19). Since all pores with F < Fe are occupied

by the wetting phase during primary drainage (as we demonstrated in Eqs. (3.13) and

(3.34)), a moving meniscus that encounters a pore slice with a radius smaller than Fe

during primary drainage will indeed be blocked by the wetting fluid that it contains.

However, in a control volume with an arbitrary history of fluid displacements, only

a fraction of the pore slices smaller than Fc are filled with the wetting phase and are

hence able to block an advancing meniscus during drainage. This fraction can be cal-

culated given the current 0'(F) from the definite integral in Eq. (3.14), which would

replace Fc to describe the true rate of pinning of advancing menisci. Accordingly, for

pores with F > F, at a newly imposed F, we expect 0,(F) to decrease to a value

of:

(w,dr 1 -apd - (3-36)
(1 - a) f ' °Ow dF + a

Likewise, for quasistatic imbibition starting from an arbitrary 0/,(F), we expect pores

with F < Fc to potentially acquire higher values of ow(F) given by:

ow~imf~l a(3.37)
(1 - a fc(1 -O) dF +a

where, the definite integral, as given by Eq. (3.16), represents the fraction of pore

segments that are larger than Fe and filled with the nonwetting phase, and, likewise,

replaces (1 - Fc) in Eq. (3.35), which would be the value of the definite integral for

primary imbibition.

Lastly, we combine the above results to arrive at an algebraic formula for updating
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the radius-resolved saturation of the wetting phase in response to quasistatic capillary

pressure variations during arbitrary drainage-imbibition scanning cycles:

max {fbw, w,im} = max (1, a(i F < Fe
(F; Fe) = 0 -a (1-@e) dF+a -. 8

min {w, ,dr}= min Ow, 1 ( Fc pdF+a F > Fc,

where w,dr and Ow,im are given by Eqs. (3.36) and (3.37), respectively. As we vary pc

and hence Fc quasistatically, bw,dr and bw,im change correspondingly, which indicate

the degree to which pores larger and smaller in radius than Fe can undergo drainage

and imbibition, respectively, based on the pore-space accessivity, o. We update Ow(F)

at the new Fe by comparing its previous value at each F with either w,dr Or'/w,im,

depending on whether F > Fc or F < Fc. That is, since pores larger than Fc may only

undergo drainage under quasistatic conditions, Ow for any F > Fe may only decrease

from its previous value, without becoming less than bw,d, which is the lower bound

for the extent of drainage based on accessivity; on the other hand, pores smaller than

Fc may only undergo imbibition, so Ow for any F < Fc may only increase, but never

exceeding an upper bound of w,im.

Eq. (3.38) simplifies to Eqs. (3.34) and (3.35) for primary drainage and primary

imbibition, respectively. Taking primary drainage for example, initially we have

Ow (F) = 0,VF c [0,1] when the pore space is filled exclusively with the wetting

phase in pore slices of all radii, and the capillary pressure is its minimum value, or

Fc = 1. As we reduce Fe from 1 to 0, 'w for any F < Fc must remain at 0, while Ow

for F > Fc readily decreases to w,d, which itself increases as Fe decreases according

to Eq. (3.36), where the definite integral simply evaluates to Fc. Consequently, we

recover the simpler result given by Eq. (3.34).

To illustrate, we apply Eq. (3.38) to a drainage-imbibition scanning cycle where Fe

is varied quasistatically as follows: starting at Fe = 1, it is lowered to 2/6, then raised

to 5/6, then lowered to 1/6, then raised to 5/6, then lowered to 2/6 and subsequently

to 0. The evolution of the radius-resolved saturation of the wetting phase as well

as that of the corresponding convention saturation are shown in Figure 3-7 for high,
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moderate, and low accessivities. We see that our model inherently predicts hysteresis

in the pc-sw relationship as a result of the evolution of $'(F), with a controlling the

amount of hysteresis present.

We would like to note that the key formulae that we have derived in this chapter

can also be expressed in terms of the conventional and radius-resolved saturations of

the nonwetting phase. The formula for updating the radius-resolved saturation of the

nonwetting phase during arbitrary drainage-imbibition scanning cycles becomes 19:

m(F;F,) {in {@O, Onim = min {n, -(1-a) P dF+a}

Max {n, 4 n,dr}= max (1-a)f(1-)dF+a}

F < F

F > Fe.
(3.39)

During quasistatic primary drainage where n (F) = 1, VF E [0, 1] initially, the con-

ventional saturation of the nonwetting phase is given by 20:

F a(1 - Fc)

(1- a)Fc +a
(3.40)

and for primary imbibition, we have 21:

sn(Fe) = 1 - - F.
(1 - a)(1 - Fc) + a

(3.41)

In the limit of a -+ 1, both Eqs. (3.40) and (3.41) become 22:

sn(Fc) = 1 - F, (3.42)

which holds for arbitrary drainage-imbibition cycles as well, since Eq. (3.39) simplifies

19cf. Eq. (3.38)
2 0 cf. Eq. (3.28)
2 1 cf. Eq. (3.30)
2 2 cf. Eq. (3.4)
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Figure 3-7: Evolution of the radius-resolved saturation of the wetting phase, 01'(F),
during an arbitrary drainage-imbibition cycle, according to Eq. (3.38). The shaded
and unshaded areas correspond to the conventional saturations of the wetting and
nonwetting phases, respectively, following Eq. (3.11), with the Fe--se trajectory plot-
ted in the bottom panel of each column. The blue and green curves are plots of 0,d,

and @b,imversus Fe evaluated using the current Ow(F), which are given by Eqs. (3.36)
and (3.37), respectively, with their values at F = Fe marked with an upward-pointing
and a downward-pointing triangle, respectively. The left, middle, and right columns
correspond to a = 0.9, a = 0.5, and a = 0.1. In general, the lower a is, the more
"metastable" fluids are produced due to meniscus pinning, as per our categorization
scheme in Figure 3-3. Adapted from [1].
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to2 3 :

0
On(F; Fc) =

whose definite integral over F c [0, 1] equals (1 - Fc).

2 3 cf. Eq. (3.43)
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Chapter 4

Application to mercury cyclic

porosimetry

Before integrating our microscopic theory of capillary pressure hysteresis into simula-

tions of multiphase flow in porous media, we would like to take a moment to consider

its application to mercury porosimetry in this chapter. The reason is twofold: on

the one hand, our simple algebraic formulae for quasistatic primary drainage and im-

bibition, Eqs. (3.40) and (3.41), can be readily adapted to improve the interpretation

of mercury porosimetry data, even without the explicit use of radius-resolved satura-

tions; on the other hand, as we have mentioned in the closing remarks of Chapter 2,

we would like to establish a standard method of measuring pore-space accessivity

based on macroscopic experimental observations, and the results in this chapter seem

to suggest that mercury porosimetry could be that experimental method.

We will begin this chapter by introducing the experimental technique of mercury

porosimetry, as well as the various ways it is modeled in the literature. We will

then propose our approaches to conducting mercury porosimetry measurements and

interpreting the resulting data based on an extension of our microscopic theory of

capillary pressure hysteresis presented in Chapter 3. We will then apply our theory

to a set of experimental measurements to demonstrate the determination of the pore-

space accessivity and the PSD from mercury cyclic porosimetry.

75



4.1 Introduction

Mercury porosimetry is a standard characterization technique that is routinely used

to infer a number of properties of porous materials, including the porosity, the spe-

cific surface area, and the PSD. The sample, whose pore space is first evacuated, is

immersed in mercury. As the applied pressure in mercury, p, is gradually raised, an

increasing volume of mercury, V, penetrates into the vacuum that pervades the pore

space of the sample; this step is known as mercury intrusion or pressurization.

After p reaches the maximum desired value, a subsequent mercury extrusion or

depressurization step is sometimes carried out, which involves the gradual lowering

of p. The pressure-volume relationship is generally hysteretic, meaning that the p-V

trajectories during intrusion and extrusion do not coincide. The reader is referred to a

great number of reviews [128, 129, 130, 131, 132, 133, 44] for the diverse experimental

protocols and applications of mercury porosimetry.

The method of mercury porosimetry was first conceived by Washburn in 1921

[32], before it was realized and subsequently improved upon by others [33, 34, 35,

361. Washburn noted that the pressure required to force mercury into a (cylindrical)

capillary pore is related to its radius r by:

-2 cos6 (4.1)
r

where - is the surface tension of mercuryl, and 6 is the contact angle as measured

in the mercury phase, which is greater than 7r/2 in most systems, making mercury

the nonwetting phase and the vacuum the "wetting phase". Eq. (4.1) readily follows

from Eq. (2.10) by recognizing that the pressure of a vacuum is approximately zero 2,

and that the contact angles in the wetting and nonwetting phases are supplemen-

tary. Referred to as the Washburn equation in the mercury porosimetry literature,

Eq. (4.1) expresses the condition for capillary equilibrium in a single straight cylin-

'There may be some uncertainty in the value of -y in Eq. (4.1), although a value of y = 0.485 N m-1

at room temperature is generally accepted [130, 132].
2The vapor pressure of mercury under typical experimental conditions of mercury porosimetry

[134] is many orders of magnitudes lower than the pressures applied to the mercury phase.
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drical pore, and serves as the theoretical basis for determining PSDs in the standard

interpretation of mercury intrusion measurements, which associates the differential

volume of mercury that penetrates into the sample near pressure p with pores whose

radii are near the corresponding r calculated from Eq. (4.1).

The chief assumption in the standard interpretation is that the pore space may

be conceptualized as a parallel bundle of straight cylindrical 3 capillaries that are

directly accessible by the mercury surrounding the sample [131, 79]; in other words,

we are assuming that Eq. (3.42) holds during mercury intrusion - or primary drainage,

borrowing terminologies from Chapter 3. However, as we have examined at length in

Section 3.1.2, it is possible that some pores are only reachable from the outer surface

of the sample via pores of dissimilar sizes, which, if smaller, would block mercury

intrusion into pores that the Washburn equation would predict to be penetrable -

these are referred to as "ink-bottle pores" [131, 133], "throats" [130, 132], "necks" [128],

and other terminologies in the mercury porosimetry literature. The ink-bottle effect

is thought to be responsible for the hysteresis commonly observed between mercury

intrusion and extrusion curves [130, 45, 131, 132, 133]. Also, when only the intrusion

curve is used to compute the PSD in the standard interpretation using Eq. (4.1), the

result may be biased toward smaller pores [131, 791. This is because, in reality, we have

s< 1 - Fc during primary drainage (cf. Eq. (3.42)), sO snmay be an underestimator

of the volume fraction of pores with radii larger than that predicted by the Washburn

equation. An common alternative view is that the radius distribution calculated from

mercury intrusion data corresponds to only the "pore throats", whereas that calculated

from extrusion measurements corresponds to only the complementary "pore bodies"

[128, 132], so that an intrusion-extrusion experiment results in two PSDs associated

with the same porous specimen.

Aside from connectivity effects, hysteresis in porosimetry measurements is also

attributed to a phenomenon known as contact-angle hysteresis 4 [130,131,132,133,

3Some authors argue that cylindrical pore shapes may poorly represent pore geometries found
in real porous media [132], and should thus be regarded as "effective" values [129, 130] - recall our
assessment of this matter in Section 2.2.

4 aka. the raindrop effect [2]
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44]. That is, 6 in Eq. (4.1) may take on different values during intrusion (known as

the advancing contact angle, intr) and extrusion (known as the receding contact

angle, Oextr), in addition to any variability from material to material. Both values are

referred to as dynamical contact angles to contrast with their static counterpart.

It is observed that the contact angle measured in the mercury phase may be lower

during extrusion than during intrusion [44]:

Ointr > exr 900, (4.2)

while the static contact angle may lie somewhere in between Ointr and extr [2]. Ac-

cording to Eq. (4.1), contact-angle hysteresis would alter the pore-scale capillary

equilibrium condition: pores of a certain radius would correspond to a lower equilib-

rium capillary pressure during extrusion than during intrusion. Some authors claim

that contact-angle hysteresis may be sufficient for explaining the hysteresis in mer-

cury porosimetry in at least some cases [135, 44], but that is likely untrue generally

[136, 132].

Pore-network modeling (see Sections 7.1, 7.2, and 7.3) is frequently used to nu-

merically model mercury porosimetry [137, 138, 139, 140, 141, 142, 143, 144], as is

classical percolation theory [145, 146, 147, 148, 45, 19]. For the latter, calculations

based on the Bethe lattice may yield analytical formulae, such as by considering the

concept of the accessibility function 5 in supercritical percolation [145]6. However, in

these models, separate PSDs are typically defined for the pore bodies and the pore

throats, which, unlike the PSD determined from Eq. (4.1), may be more difficult

to interpret without considering specific pore networks. Moreover, in supercritical

percolation, infinite clusters only arise when the occupation probability exceeds the

percolation threshold for the network considered; as a result, it may not be possible

to obtain the complete PSD in some cases [45].

5 defined as the map from a given occupation probability at a site to the fraction of sites belonging
to an infinite cluster

6sites belonging to an infinite clusters are said to be percolating and are considered to be con-
nected to the mercury reservoir via a continuous, mercury-filled path, allowing the accessibility to
be interpreted as s,
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Another interesting approach in the literature, called the Random Corrugated

Pore Structure Model, also produces analytical formulae for porosimetry curves 1149,
150]. The authors consider a collection of "corrugated pores" of equal length, where

each pore consists of a fixed number of equal-length cylindrical segments, whose

radii are randomly assigned based on a prescribed PSD 7. A pore is then exposed to

mercury at both of its openings simultaneously, and the capillary pressure is varied

to facilitate intrusion and extrusion. A critical pore constriction ratio is also specified

as the criterion for snap-off8 , thereby causing some mercury to become trapped

during extrusion [153. The ratio of the volume of mercury withdrawn at the end

of depressurization to the volume of mercury injected at the end of pressurization is

referred to as the withdrawal efficiency [76]. It is equal to one minus the residual

saturation 9 , denoted by SR, assuming that mercury fills the entire pore space of

interest at the end of pressurization.

4.2 Theory and methods

We will apply our theory of capillary pressure hysteresis presented in Chapter 3,

with some minor modifications for contact-angle hysteresis and mercury trapping,

to mercury cyclic porosimetry, which includes not only the initial pressurization

and depressurization steps, but also additional subsequent cycles. We define the

saturation of mercury as:

s V (4.3)
V.a

7A corrugated pore qualitatively resembles a single pore branch, or a pore-space instance with
no branching, in our probabilistic framework.

8 Snap-off is a pore-scale mechanism that depends strongly on the local geometry of the pore space,
and involves the formation of a saddle-shaped interface between the wetting and nonwetting fluids
during imbibition, leading to the nonwetting phase splitting into discontinuous regions [651. It is
affected by the so-called pore body-to-pore throat size ratio, pore throat-to-pore body coordination
number, the dynamical contact angles, and other factors [151, 1521, and is thought to be responsible
for the trapping of the nonwetting fluid during imbibition.

9 The term residual saturation is reserved for the nonwetting phase to contrast with the irreducible
saturation introduced in Section 3.1.3, which is reserved for the wetting phase.
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where Vmax is the maximum volume of mercury injected into the sample at any point

in during the experiment. Here, and for the remainder of this chapter, we omit the

subscript "n" and use s to refer to the saturation of the mercury phase.

We denote the PSD of the porous specimen by F(r), as defined in Section 2.1.3

and to be determined from the mercury cyclic porosimetry data. Note that rminmay

be limited by the maximum pressure reached during measurement, Pmax. We also

assume that Vmax reflects the true accessible volume of the pore space.

To model connectivity effects, we adapt the formulae derived in Chapter 3. For

primary mercury intrusion, i.e., pressurization, we have:

a(1 - F) (44

s (Fe) = "~ F,) (4.4)
(1 - a)Fc + a

for primary mercury extrusion, i.e., depressurization, we have:

s(Fc) = 1 - aF(4.5)
(1 - a)(1 - Fc) + a/(1- s)' (

and for secondary mercury intrusion, i.e., repressurization, we have:

s(F~) ~±a(Fo - Fe)s(Fc) = so + a( -c)(4.6)
(1 - a)(1 - (Fo - Fc)) + a/(1 - SRY

where Fo and so represent the starting conditions for secondary intrusion. Here,

Eq. (4.4) is identical to Eq. (3.40). Eq. (4.5) is derived from Eq. (3.41) by incor-

porating the residual saturation, SR; when SR = 0, Eq. (4.5) becomes the same as

Eq. (3.41). Eq. (4.6) is derived from Eq. (3.40); given (Fe, s) = (FO, so) satisfies

Eq. (4.5), in Eq. (4.6) we always have s(0) = 1 - that is, secondary intrusion follow-

ing incomplete extrusion achieves the same maximum injection volume as primary

intrusion; and for so = 0, Fo = 1, and SR = 0, Eq. (4.6) simplifies to Eq. (4.4). Fig-

ure 4-1 contains examples of the s(F) curves given by these equations. Note that for

a -* 1 and SR = 0, all of Eqs. (4.4), (4.5), and (4.6) collapse onto the s(F) = 1 - F

line given by Eq. (3.42).

Finally, we account for contact-angle hysteresis by using different values for 0 in

80



1.
a =0.5, SR =0.1

too.

#* 
too

---pressurization
- - - depressurization -
---------- repressurization

0
0 Fe

Figure 4-1: Plots of s (Fc) for pressurization, depressurization, and repressurization
from different starting values of Fc, given by Eqs. (4.4), (4.5), and (4.6), respectively,
with a = 0.5 and SR = 0-1.

Eq. 4.1 for intrusion and extrusion. We define the parameter:

COS Oextr

COS Ointr 
47

which is less than unity. Figure 4-2 is a contour plot of r. for feasible values of 0jnt,

and Oextr. Contact-angle hysteresis is absent when r, = 1.

Thus, in addition to the PSD, whose CDF we denote by F(r), there are a total of

four parameters in our model of mercury cyclic porosimetry: accessivity, a E [0, 1];

parameter for contact-angle hysteresis, r, E [0, 1]; residual saturation, SR E [0, 1]; and

the advancing contact angle, Oinir E [90°,7 180°].

Given the primary intrusion curve, we require only a, r,, and SR to predict the

primary extrusion curve and all secondary intrusion curves (given the starting value of

Fc for each). Therefore, we can determine a set of optimal values for a, r,, and SR given
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Figure 4-2: Contour plot of n versus the advancing and receding contact angles,
following Eq. (4.7). For a fixed int, the closer to Ointr and the larger extr is, the
larger r is.

the mercury cyclic porosimetry data for a porous material. Note that the end point

of the pressurization curve and the starting point of the depressurization curve share

the same s, but the p of the latter is lower at r times that of the former. Analogously,

the end point of the depressurization curve and the corresponding repressurization

curve also share the same s, while p of the latter is higher at 1/ times that of the

former. These changes in p at constant s between curves are caused by the contact

angle adapting to the reversal of the direction of change of p.

On the other hand, given the primary intrusion curve, we require only a and Ointr
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to compute the CDF of the PSD. Since a is determined based on fitting the mercury

cyclic porosimetry data, we may vary it, freely to shift the mean radius of the PSD 0 .

To convert s to F, we solve for Fe in our formula for primary intrusion, Eq. (4.4), to

obtain:

a(1 -s)(48Fc = e( , (4.8)(1- a)s + a

which, curiously, has the same form as Eq. (4.4), suggesting that the function s(Fc)

in Eq. (4.4) an involution [154]. The variable p is converted to r using Eq. (4.1).

Mercury porosimetry measurements were taken for numerous samples of a total

of four different commercially available porous materialsil, which we shall refer to as:

• "CPG": SCHOTT CoralPor@ porous glass 1000, produced from a borosilicate

mother glass that is subjected to thermal and chemical treatments, with the

typical average pore diameter ranging from 4 to 10 nm, according to the man-

ufacturer [1551;

* "Boehmite": SASOL Pural® 200, a high purity boehmite alumina (80% A1 2 03)

synthesized from aluminum metal, with a typical particle size (d5 0 ) of 40 nm,

according to the manufacturer [156];

* "Darco": an activated carbon;

* "GBac": an activated carbon.

Only a cursory examination of Darco and GBac were carried out, resulting in a single

mercury intrusion-extrusion porosimetry experiment for each material. Thus, for the

purpose of this thesis, we shall disregard those two materials and instead focus on

CPG and boehmite.

Mercury porosimetry measurements were taken in a commercial penotrometer

using mercury at a temperature of about 19 degrees Celsius. Each sample was initially

subjected to an evacuation pressure of 7 Pa for 5 min, before submerged in mercury

lVarying - in Eq. (4.1) has the same effect.
"supplied by coauthor Remi Goulet
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Table 4.1: Summary of the mercury porosimetry data sets for CPG and boehmite.

# Material Sample Pressuri- Depressu- Repressu- Plot
mass (g) zation rization rization

1 CPG 0.4960 once once - Figure 4-3,
red curves

2 boehmite 0.2611 once once - Figure 4-4,
red curves

3 CPG 0.2728 once twice once Figure 4-3,
blue curves

4 boehmite 0.3131 once twice once Figure 4-4,
blue curves

5 CPG 0.4789 once four times three times Figure 4-3,
green curves

6 boehmite 0.5100 once four times three times Figure 4-4,
green curves

at a pressure of anywhere from 3.5 x 103 to 4.0 x 103 Pa. Primary intrusion was then

carried out, where the pressure of mercury was raised in hundreds of small increments

before reaching the maximum value, Pmax, which was different for each experiment but

never exceeded 4.1 x 108 Pa. On a logarithmic scale, the magnitudes of the majority

of the pressure increments and decrements were comparable1 2 . An equilibration time

of 30 s was allowed after each pressure step change was effected. The mass of each

specimen ranged from 0.2611 to 0.5100 g.

4.3 Results and discussions

Mercury porosimetry measurements were conducted on a total of six specimens of

CPG and boehmite - three for either material. We summarize these experiments in

Table 4.1. The normalized porosimetry curves 13 for specimens of either material are

plotted on the same set of axes, resulting in Figures 4-3 and 4-4. The normalized data

12meaning that monotonic portions of the sequences of pressure readings may resemble a geometric
sequence

1 3Low pressure data were discarded for both materials where V rises steeply at the beginning
of primary intrusion, which can be believably attributed to the spacing between grains that make
up the solid matrix, or the so-called macropores [157]. High pressure data for boehmite were also
discarded due to the lack of change in the intrusion volume in that regime.
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Figure 4-3: Normalized mercury cyclic porosimetry data for CPG. The red, blue, and
green curves correspond to independent measurements on three different specimens
of CPG, and the solid, dashed, while dotted curves represent pressurization, depres-
surization, and repressurization steps. Data points with pressures below 8.2 x 105 Pa
are not shown.
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Figure 4-4: Normalized mercury cyclic porosimetry data for boehmite. The red,
blue, and green curves correspond to independent measurements on three different
specimens of boehmite, while the solid, dashed, and dotted curves represent pres-
surization, depressurization, and repressurization steps. Data points with pressures
below 1.3 x 106 Pa or above 2.1 x 108 Pa are not shown.
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agree well between specimens of the same material, and especially so for boehmite.

4.3.1 Determination of model parameters

For each material, we take the average of curves for different specimen that share the

same pressure end points, and use them to determine the best-fit model parameters

by minimizing the sum of squared errors of prediction. The best-fit predictions for

CPG and boehmite are plotted over the experimental measurements in Figures 4-5

and 4-4, respectively. For CPG, the best-fit parameters are a = 0.2626, n = 0.6511,

and 8s = 0.1944; for boehmite, we have a 1.0000, = 0.3601, and sR= 0.2011.

1

s -i

-- pressurization (fitted)
- -- depressurization (fitted)
•-.repressurization (fitted)

0
0 1x10 8  2 x108   3 x108  4 x108

p/Pa

Figure 4-5: Plot of the best-fit model (a = 0.2626, n = 0.6511, andsR = 0.1944)
compared against all experimental data for CPG.

We explore the sensitivity of the goodness of fit with respect to model parameters

in Figure 4-7. For each material, we fix a and K, and minimize the sum of squared

errors with respect to SR; we then produce a contour plot of the exponential of minus

the optimal solution value in the a-, plane near the point that represents the best-fit

solution.

We see that there is relatively little uncertainty in the numerical values of the

best-fit parameters. For CPG, the shapes of the contours imply that the goodness

of fit is not significantly worsened by simultaneously increasing a and decreasing K;
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Figure 4-6: Plot of the best-fit model (a -+ 1.0000, r = 0.3601, andSR = 0.2011)
compared against all experimental data for boehmite.
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Figure 4-7: Sensitivity of the goodness of fit to model parameters. The left and right
panels correspond to CPG and boehmite, respectively. The maximum in the a-K
plane (corresponding to the best-fit solution) is marked with a red plus sign. The fit
is worse outside of the shown a- domain.

nevertheless, a is expected to remain far below 0.5, indicating significant connectivity

effects or serial connectivity between different-size pore slices. For boehmite, the best-

fit a is approximately unity, indicating the complete absence of connectivity effects;
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however, our model does not perfectly fit the experimental data at lower pressures14

as seen in Figure 4-6.

We note that the effects of varying a and are "orthogonal" to each other: chang-

ing a affects the relationship between s and Fc (via Eqs. (4.4), (4.5), and (4.6)) and

hence shifts the predicted points on the depressurization and repressurization curves

vertically, changing K affects the relationship between p and r (via Eqs. (4.1) and

(4.7)) and hence shifts those points horizontally. Consequently, we are able to distin-

guish between the contributions of the ink-bottle effect and contact-angle hysteresis

to the overall hysteresis observed in the cyclic porosimetry measurements by fitting

our model.

4.3.2 Determination of the pore-size distribution

We compute the PSDs of the two materials using estimates of accessivities obtained

from mercury cyclic porosimetry. The results are plotted as solid blue curves in

Figures 4-8 and 4-9 for CPG and boehmite, respectively. For CPG, the PSD predicted

by the standard interpretation, which corresponds to a - 1 in our framework, is

also shown in Figure 4-8 as the green dashed curve. These predictions are then

compared against the PSDs estimated from 3-D images of the materials generated

by segmentation of TEM tomography data15, which are plotted as red solid curves in

Figures 4-8 and 4-9. We assume Ointr = 115° for CPG and 6 intr = 140° for boehmite

to better match our predictions with the tomography results.

For CPG, the low accessivity estimated from mercury porosimetry accentuates the

contrast between the PSDs predicted by our approach and by the standard interpre-

tation. The PSD predicted with a - 1 is narrower and is biased toward smaller pore

radii compared to that predicted with the best-fit value of a = 0.2626, which matches

the estimate obtained from TEM tomography more closely. This is consistent with

1 4Note that the shapes of the depressurization and repressurization curves at lower pressures are
notably different from that of the pressurization curve. A better fit may be obtained by discarding
the pressurization curve and considering the depressurization and repressurization curves only (after
renormailization), but that does not significantly affect our key findings for boehmite.

1 5supplied by coauthor Pierre Levitz
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Figure 4-8: Comparison of PDFs of PSDs of CPG extracted from TEM tomography
data (solid red curve), predicted by our approach with a = 0.2626 (solid blue curve),
and predicted by the standard interpretation, i.e., a -+ 1 in our approach (dashed
green curve). The PSD predicted using the best-fit value of accessivity obtained by
fitting mercury porosimetry data matches the TEM tomography results more closely
than that obtained from the standard interpretation, which overestimates the volume
fraction of smaller pores.
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Figure 4-9: Comparison of PDFs of PSDs of boehmite extracted from TEM tomog-
raphy data (solid red curve) and predicted by our approach with a -+ 1 (solid blue
curve), which coincides with that predicted by the standard interpretation. The mis-
match of these PSD predictions is not explained by our model.
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the consensus in the literature that the standard interpretation of mercury intrusion

porosimetry tends to overestimates the volume fraction of smaller pores [131, 79].

For boehmite, the PSD predicted from mercury porosimetry is notably different

from that estimated from the tomography data. While the tomography analysis

suggests that pore slices with radii smaller than 10 nm make up about 27% of the

pore volume, the mercury porosimetry measurements imply the near-complete absent

of such small pores, which is evinced by the plateauing of the intrusion curve past a

mercury pressure of approximately 1 x 10' Pa. It would appear that this discrepancy

cannot be explained by our theory: the advancing contact angle would have to be

usually low 6 for mercury porosimetry to predict a significant volume fraction of pores

with radii in the 1-10 nm range, even with a= 1. Therefore, we suspect that the

mismatch of the PSDs obtained from the two approaches may be due to different

definitions of pore radius, or isolated pores which are delectable in a 3-D image of

the material but inaccessible by mercury even at pressures as high as 4.1 x 108 Pa.

As we will see later in Figure 7-14, the water sorption isotherms for boehmite appear

nonhysteretic, which may corroborate our claim that connectivity effects are negligible

for this material.

Recall that only a and intr are required to transform the mercury intrusion data

into the PSD, using only two simple algebraic formulae, i.e., Eqs. (4.1) and (4.8).

Therefore, we can be assured that the PSDs obtained by our approach is no worse than

that obtained by the standard interpretation using Eq. (4.1) alone, as long as we have

a reasonable estimate for the pore-space accessivity, which can be obtained by fitting

mercury cyclic porosimetry measurements or, potentially, from other characterization

techniques for porous materials, e.g., vapor soprtion-desorption [158, 159, 160, 161,

105, 162, 163], water intrusion-withdrawal in gas diffusion layers [164, 165, 166, 167,

168], Wood's metal porosimetry [169, 170, 171], etc..

16 The value of Ointr required for a pressure of 1 x 108 Pa to correspond to an equilibrium capillary
pore radius of 1 x 10-9 m is, according to Eq. (4.1), as low as 96.
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Chapter 5

Microscopic theory of relative

permeability hysteresis

In this chapter, we will begin our examination of relative permeability hysteresis in

multiphase flow in porous media. Like capillary pressure hysteresis, for which we have

presented a microscopic theory in Chapter 3, hysteresis in relative permeabilities also

depends strongly on pore-space morphology and pore-scale fluid distribution; model-

ing them from first principles, however, turns out to be much more challenging. There

are several reasons for this. Firstly, the relationship between pore-space morphology

and permeabilities is highly nonlinear even for the idealized pore-space instances con-

sidered in our probabilistic framework because the hydraulic resistances of pore slices

are summed both in series and in parallel. Secondly, relative permeabilities pertain

to the dynamics of fluid flow, which is inherently a nonequilibrium process and may

be less amenable to a simpler quasistatic analysis. Thirdly, the pore-scale mechanics

of fluid flow are not yet fully understood, and may vary dramatically depending on

the local geometries of the pore space and the properties of the solid matrix and the

fluid phases.

Despite these challenges, we would like to apply our probabilistic framework to

relative permeabilities to arrive at simple continuum models of hysteresis with some

connection to microscopic physics. We will then propose models of varying degrees

of complexity and discuss their strengths as well inadequacies.
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5.1 Introduction

Recall from Chapter 1 that relative permeabilities are responsible for describing the

deviations of Darcy velocities in two-phase flow relative to single-phase flow. In fact,

we can already deduce several salient attributes in the relationships between relative

permeabilities and saturation based on the form of Eq. (1.3).

Firstly, when s, = 0, we must have kr = 0 because the Darcy velocity of the

wetting phase must be zero when the phase is absent from the pore space, while it is

also the case that kr = 1 so we recover the single-phase Darcy law, i.e., Eq. (1.1), for

the nonwetting phase. Conversely, when s, = 1, we must have krw = 1 and kn = 0.

Secondly, for intermediate values of s,, we generally expect krw, kn G [0,1] as

well as krw + kn E [0, 1] - intuitively speaking, the pore space should not become

more permeable overall by hosting multiple immiscible fluid phases, not to mention

that pinned interfaces and trapped fluids may further reduce relative permeabilities

by blocking off flow channels that would contribute to k, in single-phase flow [15].

Thirdly, the relative permeabilities of the wetting and nonwetting phases are gen-

erally not symmetric with respect to saturation - that is, it is typically the case that

krw(Sw) < krn(1 - sw). This is because the wetting phase tends to occupy pore slices

with smaller radii [15], which have lower hydraulic conductances, as we have pointed

out in Section 2.1.3.

Lastly, the relative permeability of the nonwetting phase usually exhibits more

hysteresis than that of the wetting phase. Additionally, at the same saturation, kn

is usually higher during drainage than during imbibition [15]. We note that all of the

above features can be observed in the illustration in the right panel of Figure 1-1.

In practice, simple power laws are commonly used to produce relative permeability

curves with the desired characteristics. An example is given by Corey [172]:

krw = sw4 , kmn = (1 - s.)2 (1 - sw 2 ), (5.1)

where, as detailed in Section 3.1.3, the effective saturation is often used in place of

saturation, as is the case in most other models in the literature to be discussed below.
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It is possible to adjust these empirical laws, e.g., by altering the scaling exponents

[173, 174, 84, 175, 1761, to fit experimentally measured relative permeability data,

including those that involve hysteresis [177, 15].

Some authors have developed a set of methods that seek to predict relative per-

meability curves from capillary pressure curves. These methods are essentially based

on the capillary bundle model or its basic variants, and are widely celebrated in prac-

tice' [34, 54, 179, 180, 172, 181, 178]. For example, the Burdine equations [180], as

presented in [84], write:

SW - 2 [

_ J2o [Pc)]   k [Pc(-w)] 2
krw= sW2 0 1 krn - (1- 8w) 2  1 (5.2)

/O ds, 
J ds,j [p[PeC))]2

where pc(sw) represents the capillary pressure data for the porous medium, and sw
denotes the dummy variable of integration. By considering two random cylindri-

cal capillary elements connected in series, Mualem proposed the following modified

formula for the wetting phase:

-Isw d 1 2

n o Pc(sw)Ikr1 = sI P ( , (5.3)

Pc~s.s

where the exponent n is allowed to vary as a model parameter, and may be either

positive or negative [178].

The pore-space morphology in real porous media are, of course, much more com-

plex, with different-size pore slices arranged both in parallel and in series. Even in

single-phase flow, establishing a simple theory that relates pore-space morphology to

the intrinsic permeability, k, is already challenging, although certain limiting cases

may be more amenable to analysis [30]. Recalling from our general discussion in

Section 2.2, coefficients of transport in composite materials cannot be determined

'The paper of Mualem [1781, for example, has received an impressive total of 6922 citations on
Google Scholar as of the submission of this thesis.
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uniquely based on its makeup, but only up to certain theoretical bounds. Similarly,

for resistors connected in an electrical network (i.e., both in series and in parallel),

which may represent the electrical analogy of the problem of intrinsic permeability in

porous media [182], it is also challenging to arrive at theoretical statements regarding

the total conductance of the network, e.g., [183], not to mention the complications

that arise when multiple immiscible phases are present [184].

Nevertheless, we would like to study the implication of our probabilistic framework

on relative permeabilities in multiphase flow in porous media. Our goal is to create

simple continuum models for relative permeabilities that not only bear some connec-

tion to pore-scale morphology via concepts in our probabilistic framework, but also

allow for the natural inclusion of hysteresis in conventional continuum simulations of

multiphase flow.

5.2 Our theory

Suppose we have a total of N resistors of resistances N, -.. ,OPN. The total resistance

of all resistors connected in series is given by:

N

Oseries S , (5.4)
i=1

while that of the resistors arranged in parallel is:

N -

Oparallel ( i- . (5.5)

Recall from Sections 2.2 and 3.2 that the pore-space instances in our probabilistic

framework are arranged in parallel and accessed by fluid phases independently. Thus,

conceptually speaking, the mean relative permeabilities of both fluid phases in the

ensemble of instances must take the form:

krw - TW (1/1,,) _k - T. (1/ 1,») (5.6)
(/ I,sat) (1/(PI,sat)
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Here, PI,sat denotes the hydraulic resistance of an instance if it were saturated by a

single fluid, while Wi,w (or S,n) denotes the hydraulic resistance of an instance that

allows the wetting (or nonwetting) phase to flow through given the current pore-scale

distribution of fluid phases 2 . The reciprocals of these hydraulic resistances are then

averaged to give the mean hydraulic conductances of instances of each type. Note

that (1/IP,sat) can be thought of as a measure of the intrinsic permeability of the

porous medium that the ensemble represents. Finally, T (or T) is the expected

fraction of instances that are "w-conducting" (or "n-conducting"), i.e., instances that

allow the wetting (or nonwetting) phase to flow through3 .

Let us contrast the hydraulic resistance of any instance against that of an instance

that is conducting to a particular fluid phase. Take OI,sat and OI,w for example -

the two random variables follow different probability distributions for two separate

reasons: firstly, w-conducting instances may contain pore branches that are blocked

and thus not w-conducting, i.e., only a fraction tw of branches in a w-conducting

instance may allow the wetting fluid to flow through; secondly, pore slices found in

w-conducting branches may have a different radius distribution than in the entire

ensemble of instances since the wetting fluids tend to preferentially occupy smaller

pores. To facilitate our subsequent discussions, we will call these two effects branch

blocking and pore-radius bias, respectively. Because branch blocking is the root

cause for entire instances to be blocked, i.e., t, and T are related, we refer to them

collectively as percolation effects.

Now, we will use these ideas to rationalize the aforementioned formulae of Bur-

dine (Eq. (5.2)), Mualem (Eq. (5.3)), and others. We will then propose a straightfor-

ward modification to their formulae using the concept of radius-resolved saturation

in our framework to enable the prediction of hysteresis. After that, we will reexamine

Eq. (5.6) and link it to our probabilistic framework more concretely and quantita-

2 Note that the hydraulic resistances of such instances are described by random variables desig-
nated by Grsat, , and OA,,, while their lower-case counterparts refer to specific values assumed
by the respective random variables.

3 1n words, Eq. (5.6) asserts thatO the relative permeability of phase w, say, is equal to the ratio
of the mean hydraulic conductance of an w-conducting instance to that of any instance, multiplied
by the fraction of instances in the ensemble that are w-conducting.
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tively.

5.2.1 Semi-empirical modification of the formulae of Burdine

and Mualem

We may rewrite Eqs. (5.2) and (5.3) in terms of the PSD by applying a theory

of capillary pressure, the simplest of which is the capillary bundle model, which

corresponds to the a -+ 1 limit in our theory detailed in Chapter 3. In this limit, it

follows from Eqs. (3.4) that:

ds. = dFc. (5.7)

Also, we know from Eq. (2.10) that:

PC oc (5.8)
rc

Thus, we may rewrite Eq. (5.2) as:

J r2 dF Jr2 dF

krW(SW) =s 2 0 , krn(Sw) (1- s) 2 Fc , (5.9)
r2 dF r2 dF

0 JO

where r is evaluated from F via the effective inverse of the CDF of the PSD defined

in Section 2.1.3.

The definite integrals that appear in Eq. (5.9) represent PSD-weighted averages of

r2 over different ranges of pore radii 4 , while the physical significance of the quantity

r2 is revealed through the definition of the PSD and Eq. (2.9). Consider a capillary

bundle consisting of straight cylindrical capillaries with the same length and subject

to the same pressure drop. Given the CDF of the volume-based PSD, F, the number

fraction of capillaries whose radii are near r is given by r-2 dF, while the volumetric

4This may seem more obvious if we change the variable of integration to r, e.g., fLFc r2 dF=

for Cr2 f(r) dr, where f denotes the PDF of the PSD.

96



flow rate through such a capillary is proportional to r4 . Thus, the volumetric flow

rate through all capillaries whose radii are near r is proportional to the product of

the two, namely, r2 dF. Integrating this quantity over a particular range of pore

radius gives the partial permeability associated with the corresponding subset of the

capillary bundle.

Instead, if we assume that the capillary bundle consists of capillaries that are of

the same volume, then there would be an equal number of capillaries of each radius

in the ensemble, but the length of each capillary becomes proportional to r-2 . Then,

according to Eq. (2.9), the volumetric flow rate through capillaries with radii near r

becomes proportional to r' dF. Hence, depending on the assumptions associated with

variations in the pore radius, which has to do with the pore axial coordinate chosen

to measure f in our probabilistic framework, the scaling exponent in the integrand in

Eq. (5.9) could conceivably vary, and thus be treated as a free parameter.

In any case, we see that the ratio of the definite integrals for the relative perme-

ability of either phase in Eq. (5.9) accounts for the combined effects of pore-radius

bias and T: in the a -+ 1 limit, all capillaries smaller than Fe are filled with the wet-

ting fluid and hence w-conducting, while all remaining capillaries are n-conducting.

In fact, we note that:

r2 dF r2dF

j 1 + F = 1, (5.10)

/ r 2 dF inr2 dF

meaning that all pore slices in the pore space are contributing to the flow of either

one of the two phases. Given that, the factors s,2 and (1 - s") 2 in Eq. (5.9) can

be taken as empirical descriptions of percolation effects. Without them, the relative

permeabilities of the two phases would always sum to unity, which is not typical for

real porous media, as explained in Section 5.1.

Now, we propose a modified form of these semi-empirical formulae for relative
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permeabilities:

2 r20(F)dFkrw [Ow(F)] =) f a F, 0 1 , (5.11)
(1 ( - a)fc 1(F)) dF + a) r2 dF

krn [b(F)]= ( ,r2(1 - w(F))dF (5.12)
(1- a) fo~ @Ow(F) dF + aO r 2 dF

where the relative permeabilities are now written as functionals of the radius-resolved

saturations 5 , which contains information about precisely which pore slices contain the

wetting phase. We replace the power-law factors for percolation effects with im,wFc

and 4 dr,n(1-Fc) from Eqs. (3.38) and (3.39) for krw and krn, respectively, and account

for pore-size radius based on /w(F). Because the evolution of Vw(F) inherently

captures any capillary pressure hysteresis according to our microscopic theory, the

trajectories of krw and kr also become naturally hysteretic for a < 1. In the limit of

a - 1, we recover Eq. (5.9) and thereby Eq. (5.2).

Note that:

j r2 ,w(F) dF J r2 (1 - @/(F)) dF

1 1 + 0 = 1, (5.13)
r2 dF jr 2 dF

so as before, if it were not for the semi-empirical factors for percolation effects, all

pore slices would be contributing to the flow of at least one fluid phase, even for

a < 1, which contradicts with the pore-scale picture entailed by our probabilistic

framework. This observation highlights the semi-empirical nature of Eqs. (5.11) and

(5.12). Nevertheless, we maintain that our formulae represent an incremental im-

provement over the formulae of Burdine, Mualem, and others: by setting a < 1, the

model naturally predict hysteresis in relative permeability hysteresis thanks to the

information contained in o/(F) about the pore-scale distribution of fluids.

5 which, as we recall, are related to the conventional saturations, sw and s,, via Eq. (3.11)
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kmn (gray curves) versus s, predicted by Eqs. (5.11) and (5.12) for three different
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Figure 5-1 contains predictions of our semi-empirical formulae for relative per-

meability hysteresis. The scanning curves are generated by varying Fc between the

following end points in the order they are listed: 0, 1, 2/6, 5/6, 1/6, and 5/6. We ob-

serve that hysteresis in the relative permeability of both phases vanishes in the limit

of a + 1, hence recovering the formulae of Burdine, given by Eq. (5.9) or Eq. (5.2).

The sum of krw and k,, remains lower than unity even in this limit, which is due

to the semi-empirical power-law factors for percolation effects. As the PSD becomes

narrower, the there is a greater degree of symmetry between k,. and k,, with respect

to the saturation of either phase, which is attributed to the reduced pore-radius bias.

5.2.2 Toward a microscopic theory

To achieve a more rigorous connection to our theoretical framework, we will relate

the quantities in Eq. (5.6) to descriptions of pore-space morphology based on our

probabilistic framework. Specifically, we will consider the relationships among the

hydraulic resistances of a constant-radius pore segment, a pore branch, and a pore

instance (see Section 2.2.2) in single-phase flow, which we represent with random

variables Os,sat, OB,sat, and OI,sat. We will then revise these relationships when the

control volume is partially saturated as described by some radius-resolved saturation

of 0,,(F), and derive similar expressions for the hydraulic resistances of w-conducting

(or n-conducting) constant-radius pore segments, branches, and instances, which are

denoted by Os,,, B,,, and 1 ,w (or OS,., B,n, and #I,n), respectively. Finally, we

will also model percolation effects by evaluating tw, tn, T, and Tn.

In our probabilistic framework, the axial dimension of a constant-radius pore seg-

ment follows the exponential distribution; according to Eq. (A.3), the mean axial

dimension of a segment on a branch' is given by 1/(A1z+ + 1/). As explained in

Section 5.2.1, depending on the definition of the pore axial coordinate, the hydraulic

conductance of the pore segment may be proportional to rm, where the scaling ex-

6termination of a segment on a branch can be caused by either the variation of the pore radius or
the occurrence of a junction, which each follows an independent homogeneous Poisson point process

(see Appendix A)
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ponent may reasonable vary between 2 and 6. The distributionof OS,sat can thus be

related to the PSD following our discussion on pore-radius bias in Section 5.2.1, while

the mean hydraulic resistance of a segment is proportional to and hence defined to

be 7 :

(1/(P,sat) = r" mdF. (5.14)

Next, we note that the hydraulic resistance of a branch is equal to the sum of

its constitutive constant-radius pore segments, while the number of such segments is

related to the sizes of the branch and each segment. Hence, we may approximate8

the relationship betweenPB,sat andOS,satwith:

1 w
OB,sat +W(OS,sat * OB,sat) + 1 S,sat, (5.15)

where we find it helpful to define the quantity9 :

w- = Az+, (5.16)
(b)

which is analogous to the definition of q in Eq. (2.15), but concerns a pore branch

rather than an entire pore-space instance. In Eq. (5.15), the "*" operator denotes the

convolution of the PDFs of the two random variables. Eq. (5.15) can be solved using

Fourier transform, resulting in:

OB sat= {i+ , sat}} (5.17)
' 1 + W - 9{0s,sat}

where "F" and "F-1" denote the Fourier transform and the inverse Fourier transform,

respectively. In the limit of w -+ oo, each branch contains just one a constant-radius

7 Our expressions for hydraulic conductances and resistances may be varied up to a multiplicative
constant for the same porous medium because our goal here is not to derive a predictive expression for
the intrinsic permeability, but rather to contrast it with the effective permeability in an unsaturated
medium.

8The occurrences of OB,sat and s,sat in Eq. (5.15) should in fact be uncorrelated. See our
discussion in Appendix A.

9considering the result in Eq. (A.4)
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pore segment, and the distributions of OB,sat and Os,sat collapse into one. Comparing

the mean hydraulic conductances of a branch to that of a segment, we find that

(1/SO,sat) / (1/P,sat) (0, 1], but approaches unity as w -+ oo.

The relationship between OB,sat and OI,sat follows from our discussions about

branching process in Appendix A. The mean hydraulic conductances of a branch

and an instance are related by0 :

OI,sat= OB,sat + z I,sat, (5.18)
A 2z+z- 1

zEZ+\{1}

which gives:

(1/(PI,sat)= 1 - 1 (1/(PB,sat). (5.19)
Az+ z- 1

L zEZ+\{i}1

We will now analyze cases where the pore space is only partially saturated. A pore

branch is w-conducting if and only if it does not include a pore segment containing

stable nonwetting fluid. Thus, we have:

Fe Az+ w Fe
t = , _ F (5.20)

fF(1- @o(F)) dF/ + Az+ f(I - ow (F)) dF + w

which is analogous to Fcw,im in Eq. (3.38) except that q (related to a via Eq. (2.16))

is replaced by w. Now, an instance is w-conducting if an only if its parent branch is

conducting and at least one of z - 1 the descendant instances past the z-coordinate

junction is w-conducting. We have the recursion formula:

,= t + 1 - (1 - T) z1 . (5.21)

Note that it is generally not possible to derive a closed-form formula for Tw, although

it is always the case that T < t. Additionally, if Az = 0 for z > 3, we have Tw = t"'

because every pore-space instance becomes a pore branch in the limit of no branching.

'0 Again, the different occurrences of PI,sat here should in fact be independent.
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The relationship between the mean hydraulic conductances of a w-conducting

branch and a w-conducting instance is obtained by modifying Eq. (5.19). We have:

Az v(z; T)1
zEZ+\{1}

(5.22)

where

v(z; T) =
z-i (z-1) TY(1 - T-1-

Y W ~

Y=1

1

yI- (1- -1
z = 3,4,. (5.23)

which, for a fixed Tw, attains its maximum value when z = 3, given by:

-3T2 + 2T_ 4 - 3T,
v(3; Tw) = 2 .

1-(1 - Tw)2 4 _ 2Tw
(5.24)

The conductances of a w-conducting segment and a w-conducting branch may

follow a relationship similar to Eq. (5.17); here, we make the simplifying assumption

that:

(5.25)

Finally, the mean hydraulic resistance of all w-conducting segment can be found

given the radius-resolved saturation of the wetting phase, as explained in Section 5.2.1.

We have:

(1/ps,w) =jr'gw (F) dF.
Sw 0

(5.26)

Substituting all of the above results into our initial proposition in Eq. (5.6), we
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have:

krw= TW (1/&I,,)
(1/pI,sat)

T1 - zEZ+\{1} + v (z; Tw)J (1/cpB,w)

A. 1
Ezez+\{} l j (l/IPB,sat)

T Z+\{1 g v(z; TW) (1/WsSm)
1 - LEzez+\{i}A~ 1 (1/Ps,sat)

1- zEZ+\{I} v(z; TW)§TJ r m pw (F) dF

1-Z+\f{} A A 1 i 1 (5.27)
EzC+\{1} Az+ z-1 SW JOm dF

0

which is still too complex to be of any practical utility. Thus, we consider the simpli-

fications resulting from the assumption that Az = 0 for all z > 4. Recall that an en-

semble of pore-space instances is completely characterized given Az for z = 1, 3, 4, .. .,

and f. Thus, the number of parameters required to fully specify an ensemble where

Az = 0 for all z > 4 is equal to 3. We define:

(b) q [0, 1], (5.28)
(c) w

which gives:

A 1+ , 3 - _ (5.29)
Az+ 2 Az+ 2

The ensemble is fully determined given a C (0, 1), [0, 1], and £ (in units of

the pore axial coordinate). Now we may revisit and solve Eq. (5.21) for the expected
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fraction of w-conducting instances:

T,= t , + A3 (1 -(1 -_T. -

TW 1 - #2
tw ( (1 - T1)2

T-t 1-1-0 ( _) w2
t 2

(5.30)

which is obtained by performing a regular perturbation expansion of Tw in A 3/Az+.

The expression slightly overestimates T..

Also, with A, = 0 for all z > 4, the sum in Eq. (5.22) is reduced to a single term.

Our simplified formula writes:

1

1 4-3Tw 1-03 r m %(F) dF
k =_ 4-2Tw 2 T J0

22 W r dF

4(2 - Tw) - (1 - #)(4 - 3Tw) Tw rmo "(F)dF

(3 + #)(2 - Tw) sW "1
(5.31)

10r dFIIJO Q1

which, together with Eqs. (5.30) and (5.20), is our set of formulae for the relative

permeability of the wetting phase. The formula for the nonwetting phase can be

similarly derived, and is given by:

1 - SW
(5.32)

rm dF
0

where, similar to Eq. (5.30), we have:

Tn~~ - #n1tn)
Ta t 1 2 (1 t) ,

(5.33)
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and similar to Eq. (5.20), we have:

w(1 - Fe)
tfl= . (5F~ F ~ ( .34)

f e $w( F ) d F + w

Eqs. (5.31) and (5.32) are plotted in Figure 5-2 for various a, #, and PSDs. We

select m = 2 as before. Compared to our semi-empirical formulae (Eqs. (5.11) and

(5.12)) and the formulae of Burdine (Eq. (5.2)) and Mualem (Eq. (5.3)), the model

produces a much richer set of behaviors.

Firstly, the true capillary bundle limit is reached when a -+ 1 and # = 1, which

corresponds to negligible pore-radius variation and branching. The result is that we

have k, + kn = 1 for all s, E [0, 1], as shown in three panels in the top row of

Figure 5-2, meaning that percolation effects are completely absent and all of the pore

space is invariably contributing to the flow of either one of the fluid phases. In the

limit where the PDF of the PSD becomes a delta function, we obtain kr, = s, and

krn = 1 - s".

Secondly, with a- 1, hysteresis in relative permeability hysteresis is always

absent, but reducing #lowers the value of kr, + k,, for intermediate saturations,

which may achieve a similar effect as the empirical power-law factors in the formulae of

Burdine (Eq. (5.2)) and Mualem (Eq. (5.3)). We can observe this effect by comparing

panels in the first, fourth, and seventh rows of Figure 5-2.

Thirdly, as the PSD grows wider, we clearly observe an increase in pore-radius

bias, with the asymmetry between k,, and kn becoming more prominent. This is

especially true when a is simultaneously lowered, where the hysteresis in k., is greatly

enhanced compared to that in k,.

Despite the extensive simplifying assumptions involved in the derivation of Eqs. (5.31)

and (5.32), we find that these formulae produce relative permeability curves that pos-

sess a number of features that can be linked to concepts in pore-space morphology in

our probabilistic framework. In future research, these connections can be investigated

further, and the formulae should be tested and potentially validated by macroscopic

data, although it would admittedly be much more difficult than what we have done
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with mercury porosimetry in Chapter 4 for capillary pressure hysteresis.
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different accessivities (a -+ 1, a = 0.7, and a = 0.4), three different values of #
(1,0.7, and 0.4), and three different PSDs (log-normal distribution with y = 0 and
o- = 0.01, a- = 0.5, and a = 2, where y and - are the mean and standard deviation of
the associated normal distribution).

110

1

krw

0

1

kr1

0C

1

0

k,

0

,n



Chapter 6

Application to continuum simulation

of multiphase flow in porous media

Continuum simulation of multiphase flow in porous media is perhaps the most rel-

evant application in the scope of this thesis, where the various models presented in

Chapters 3 and 5 can serve as constitutive relationships for capillary pressure and rel-

ative permeabilities that include hysteresis effects. In this chapter, we will show some

preliminary results that demonstrate the application of our theoretical framework to

conventional continuum simulation of multiphase flow.

6.1 General formulation and solution

Recall the system of governing equations in the conventional continuum model of

immiscible two-phase flow in porous media given in Eqs. (1.2)-(1.5). We will now

consider its numerical solution under a few assumptions. Firstly, we modify Eq. (1.2)

by adding a source term' to the right-hand side of the conservation equation of each

fluid, which we denote by and for the wetting and nonwetting phases, respec-

tively. These terms will allow us to describe uniform fluid injection and extraction in

a computational cell. Secondly, we consider 2-D horizontal flows, where the effects

of gravity are absent, allowing us to drop the hydrostatic stress terms in Eq. (1.3).
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Thirdly, for convenience of notation, we define a set of transport coefficients called

effective mobilities:

KW = kskrw/ipw, ;n kskrn/pn, K'T -w + n, (6.1)

which may vary during flow due to changes in the relative permeabilities of the two

phases.

Under these circumstances, Eq. (1.2) for the nonwetting phase becomes what we

shall refer to as the saturation equation:

Os
<t = V - (rnVp) + =n, (6.2)

while summing the conservation equations for the two phases given in Eq. (1.2) and

substituting in Eqs. (1.3), (1.4), and (1.5) result in the pressure equation:

V-(-rVpn+ Vpc)Z= - + -. (6.3)

The reformulation of Eqs. (1.2)-(1.5) is now complete given appropriately chosen

constitutive relationships for pc, k, and kr. The state variables in this formulation

are sn(x, t) and pn(X, t), from which the saturation and pressure of the wetting phase

may be computed if desired.

As we propose in Chapters 3 and 5, in our probabilistic framework, hysteretic-

enabling constitutive relationships for capillary pressure and relative permeabilities

rely on the radius-resolved saturation function as an additional continuum-scale de-

scriptor of the state of pore-scale fluid distribution. In general, we may write radius-

resolved saturation as Ow(F, x, t), which would be equivalent to an infinite-dimensional

vector that depends on space and time - we will discuss its representation using a fi-

nite number of variables in due course. Putting that aside, we may regard Ow(F, x, t)

as a collection of auxiliary variables that participate in the algebraic constitutive

relationships but not the PDEs.

The above formulation of two-phase flow, including Eqs. (6.2) and (6.3) and appro-
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priate constitutive relationships, is commonly solved numerically using what is called

the Implicit Pressure Explicit Saturation (IMPES) scheme. In this numerical

scheme, we march forward in time from tk to tk+1, where the superscripts denote the

indices of two adjacent time steps by sequentially updating the state variables in our

model, which are denoted by s,(x, tk), Pn(X, tk), and 0,(F, x, tk) at the current time

step. To advance to the next time step, the following calculations are carried out, in

the order they are listed2 :

1. Computation of capillary pressure: we compute pc from Fc at the current time

step using the prescribed PSD, which maps Fe to r, and Eq. (2.10), which

maps rc to pc. Note that Fc is either supplied as part of the initial conditions

or obtained during the update of the radius resolved saturation in the previous

time step (see "implicit radius-resolved saturation update").

2. Implicit pressure update: we solve implicitly for pn(, tk+1) in the discretized

form of Eq. (6.3).

3. Explicit saturation update: we march in time explicitly3 to find sn(x, tk+1) in

Eq. (6.2).

4. Computation of relative permeabilities: we use 0, (F, x,tk) to compute kr, and

krn, using either our semi-empirical formulae (Eqs. (5.11) and (5.12)), formulae

based on our microscopic theory (Eqs. (5.31) and (5.32)), or other empirical

formulae (such as (5.1)), and subsequently the effective mobilities in Eq. (6.1).

5. Implicit radius-resolved saturation update: given the new sn(x, tk+1), we solve

implicitly for the Fe to which we must subject 0,(F, x, tk) so that the result-

ing new radius-resolved saturation, $/(Fx,tk+1), integrates to the required

conventional saturation based on Eq. (3.11) (see further discussions below).
2Note that in some cases, steps 1 and 2 may be carried out less frequently in the so-called "outer

loop", while the remaining steps are carried out at all time steps in the so-called "inner loop". This
speeds up the simulation at the cost of its accuracy because since step 2 is typically the most
expensive step computationally. For all results presented in this chapter, we do indeed carry out all
updates at each time step without such a distinction between outer and inner loops.

3namely, approximating the time derivative by the forward Euler method
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The last step represents the main difference between the proposed formulation

and its conventional counterpart. Now, as we see in Chapter 3, it is more "natural"

to update the radius-resolved saturation by subjecting it to a new Fe, rather than a

new sw, which corresponds to the area under the curve of ow(F). Thus, the implicit

determination of <w(Fx,tk+1) in the above scheme is a somewhat expensive step.

However, since the radius-resolved saturation profiles in different computational cells

are independent from one another, the computational cost associated with solving for

Ow (F, x, tk+1) only scales linearly with the number of computational cells considered.

In future research, it may be of interest to consider model formulations' that avoid

the prescription of sw in updating the radius-resolved saturation.

Now we shall now discuss the data structure for representing the radius-resolved

saturation function, ow : [0, 1] - [0, 1] : F - o(F), for a given x and t. Perhaps the

most unpretentious approach is to simply discretize the domain of F into N fixed,

equal-size intervals, so that the components of some vector 1p E [0, 1]N give the

average values of the radius-resolved saturation in the corresponding intervals of F.

However, because 4'(F) may contain step discontinuities as seen in Eq. (3.38), a

large N may be required to accurately represent $w(F) - we observe that the sw-Fe

becomes bumpy at the edges of the intervals of F if a small N is chosen, which may

create artifacts in the simulation results.

On that account, we propose to represent the radius-resolved saturation as a

piecewise-constant function with variable intervals of F:

yi 0 < F < x1

w(F) = yi   F E (z_1 , zi], i = 2, ... , N - 1 (6.4)

YN XN-1 < F 1,

so that the radius-resolved saturation is represented by x c [0, 1 ]N-1 and y E [0,1]N

where N = 1, 2, ... , which constitute (2N - 1) numerical quantities to store at each

4 Examples to study include the mixed formulation of the Richards equation [185] and the careful
splitting of higher-order PDEs into DAEs [95].
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computational cell. Note that the components of x must always be sorted in ascending

order. The amount of data required to recreate 0.(F) is generally far fewer using

this representation compared to discretizing F into fixed intervals. For instance, if a

computational cell is undergoing primary drainage, then according to Eq. (3-5), N = 2

is sufficient for representing 0,,(F) exactly at all times; if the direction of change of

Fe is suddenly reversed, then N = 3 would suffice for the resulting 0"(F). The N

required to reproduce 0,/(F) exactly becomes large if the saturation of the control

volume oscillates over time with decaying magnitudes 5 , which may be countered by

specifying a maximum allowed N at the expense of creating some discretization error.

Also, when using this data structure, according to Eq. (3.11), we may evaluate the

conventional saturation with:

N-1

sW = xiyi + (i - Xi_1)yi + (1 - XN-1)yN. (6.5)
i=2

We can then update x and y at each time step according to Eq. (3.38). Specif-

ically, we insert into x a new component that equals the new value of Fc, which

correspondingly creates a duplicate of the component yi where i is such that, either,

xi_1 is the largest component of the previous x that is smaller F, or, i = 1 if no

such xi exists. Also, if adjacent components in y are equal, i.e., yi = yi+1 for some

i - {1,..., N - 1}, then it is acceptable to remove both xi and yi from x and y

respectively to free up storage, if desired.

6.2 Sample simulation results

In this section, we briefly report results of two simulation studies6 carried out using the

model formulation and numerical scheme presented so far. The key finding is that the

constitutive relationships we propose for capillary pressure and relative permeabilities

allow for the natural prediction of hysteresis as a result of the dynamics of the wetting-

5 As a purely hypothetical example, consider a oscillating s8 trajectory whose end points form

the sequence (((-0. 9 9 )k - 1)/2).
6performed by coauthor Mohammad Amin Amooie
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Figure 6-1: Contour plots of the saturation of the wetting phase at t = 1 year
during irregular injection in domains with accessivities of a -+ 1, a = 0.7, and
a = 0.4. Three locations in each domain, A = (0 m, 0 m), B = (0.1 m, 0.1 m), and
C = (0.25 m, 0.25 m) are marked with light-blue circles.

phase radius-resolved saturation, while the strength of the hysteresis effects can be

tuned by altering the pore-space accessivity.
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Figure 6-2: Time series of the wetting-phase saturations at location B (as identified in
Figure 6-1) during irregular injection in domains with accessivities of a c 1, a = 0.7,
and a = 0.4, which are given by the yellow, light-blue, and red curves, respectively.
The dashed black curve shows the time series for the case where we set Pc = 0 at all
locations and at all times in the simulation.

6.2.1 Alternating injection in a 2-D domain with capillary

pressure hysteresis alone

In this first study, we consider the case where hysteresis is only present in the pc-s

relationship, but not in the relative permeabilities - they were modeled using the

empirical formulae of Corey, or Eq. (5.1). The system domain was 100 m by 100 m in

size, and was initially saturated with the nonwetting phase, so that 0"(F, x,0) = 0

and s,(x, 0) = 1 for all F E [0, 1] and x E [0, 100 M] 2 . The domain was divided into

20 by 20 computational cells. The normal flux density at each point on the outer

boundary of the domain was kept at zero at all times. We injected the wetting and

nonwetting fluids alternately in the lower-left corner of the domain near x = (0 m, 0 m)

by prescribing zw and - in the corresponding computational cell in a time-dependent

fashion. Both regular and irregular cycles of injection were considered. For regular

injection, we switched between the two phases every 1 year; for irregular injection, the

wetting phase was injected for t/year e [0, 1) U [2.5,3) U [4.4,5.3) U [6,7.8) U [8.6,9.5)
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Figure 6-3: Trajectories of s, versus Fc at A= (0 m, 0 m), B (10 m, 10 m), and

C = (100 m, 100 m) (see labels in Figure 6-1) over the courses of the simulations.
The top three panels and the bottom three panels correspond to regular and irregular
injections, respectively. Accessivity in set to 0.4 in all cases shown. The convectional
saturations are obtained by integrating the radius-resolved saturations as specified in
Eq. (3.11), leading to the natural prediction of diverse hysteresis behaviors.

and the nonwetting phase for the remaining time. Other constant properties in the

simulation included: # = 0.22, k, = 2.5 x 10-12 M2,1 M = IL = 1 x 10-3 Pas.

Saturation profiles at t = 1 year during irregular injection are shown in Figure 6-1

for three values of accessivity, while the saturation time series at (10 m, 10 m) for the

same conditions are plotted in Figure 6-2, in addition to the case where pc is set to

zero at all times. It appears that lower accessivities result in higher wetting-phase

saturations during both drainage and imbibition. The Fc-sw trajectories at points

A, B, and C (as identified in Figure 6-1) over time in six simulation runs are shown

in Figure 6-3 for both regular and irregular cycles of fluid injection. Here, we have

a = 0.4. Again, we emphasize that these hysteretic scanning curves are inherently

predicted by the internal dynamics of ow(F, x, t) in the simulations. We observe

diverse hysteresis behaviors at different locations in the domain for different injection
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conditions.

6.2.2 Simulation with both capillary pressure and relative per-

meability hystereses

We repeat these simulations using the constitutive relationships for relative perme-

abilities presented in Section 5.2.2. Here, as an illustrative example, we set a = 0.4

and # = 0.4, and consider a "wide" log-normal distribution for the PSD with param-

eters y = 0 and a = 1, which is the same as those chosen to generate the scanning

curves in the bottom-right panel of Figure 5-2. Figure 6-4 is the contour plot of the

saturation field at the end of the simulation, while Figure 6-5 includes the time series

of the saturations of the wetting phase at three locations marked in Figure 6-4. The

s,-F, krw-Sw, and krn-Sw trajectories at the same three locations are shown in Fig-

ure 6-6. Again, the hysteresis observed naturally follows from the internal dynamics

of the radius-resolved saturation function. This example demonstrate that our con-

stitutive laws for capillary pressure and relative permeabilities are inherently able to

account for hysteresis effects in continuum simulations of multiphase flow in porous

media.
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Figure 6-4: Contour plots of the saturation of the wetting phase at t = 1 year during
irregular injection in a domain with a = 0.4, # = 0.4, and a wide PSD (log-normal
distribution with p = 0 and - = 1, where y and are the mean and standard
deviation of the associated normal distribution). Three locations in each domain,
A = (0 m,0 m), B = (0.1 m,0.1 m), and C = (0.25 m,0.25 m) are marked with
light-blue circles.

1

0
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Figure 6-5: Time series of the wetting-phase saturations at three locations (as identi-
fied in Figure 6-4) during irregular injection in a domain with a = 0.4,/#= 0.4, and
a wide PSD.
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Figure 6-6: Trajectories of sw versus Fc (top panels), k, versus sw (bottom panels,
solid curves), and k,, versus s. (bottom panels, dashed curves) at A = (0 m, 0 m),
B = (10 m, 10 m), and C = (100 m,100 m) (see labels in Figure 6-4) over the course
of the simulation.
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Chapter 7

Miscellaneous topics

In this chapter, we will touch on a few shorter topics that may not each warrant a

standalone chapter. Some deal with computational works that support, illustrate, or

partially validate our theory, while others demonstrate the possible extension of the

continuum modeling concepts proposed in this thesis to other physical processes in

porous media.

7.1 Invasion percolation simulation

In this section, we briefly summarize the use of invasion percolation simulations to

validate our microscopic theory of capillary pressure hysteresis. As we have alluded

to in Chapters 3, 4, and 5, percolation theory has been applied extensively to

model various processes in porous media [45, 19, 104], including capillary pressure

[186] and relative permeabilities [187] in multiphase flow. In a nutshell, in classical

percolation theory, we prescribe the probability that each sites (or bonds) of a regular

lattice are "occupied", and then study the statistics of clusters, which are collections

of adjacent occupied sites (or bonds). It turns out that we are only able to derive

analytical expressions of key statistics of clusters on very simple networks, such as

one-dimensional chains and Bethe lattices, although certain scaling results can be

obtained for other lattices. The concept of invasion percolation was put forth

[188] to describe cases where the occupation of a site (or bond) is not completely at
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random, but conditional on at least one of the neighbouring sites (or bonds) already

being occupied. This is extremely relevant to multiphase flow because many pore-

scale processes cannot occur without access via a continuous path through a fluid

phase to the exterior of the control volume.

Since many percolation problems can only be solved numerically, they are also

closely related to pore-network simulations. The idea of pore-network modeling

was first put forward in the seminal paper of Fatt [189], who proposed using 2-D

regular networks of "tubes of randomly distributed radii" to examine capillary pressure

and relative permeabilities. For example, the primary drainage curve is simulated

in such a pore-network model by considering invasion percolation: the network is

initially filled with the wetting phase, and the nonwetting phase then invades the

network from its boundary on rising capillary pressure. A tube is allowed to drain

only if it both has a large enough radius according to Eq. (2.10), and has direct access

to the wetting phase via one of its neighboring tubes. Fatt's model is extended to

give what later becomes the standard setup in the pore-network modeling approach,

where the pore space is formed by joining wide, rounded pores and narrow, channel-

like throats on 2- or 3-D lattices [150, 122]. Additional parameters and probability

densities are introduced to characterize the geometry and connectivity of the pore

space. These degrees of freedom are then tuned so that the model predictions match

relevant experimental results.

The pore-space instances considered in our probabilistic framework appear much

simpler in comparison, both in terms of geometrical and topological features. It is

therefore of interest to investigate the concepts in our framework in the contexts

of pore-network simulations. Here, we will simulate invasion percolation on two-

dimensional square lattices and compare the results against our theory.

Firstly, we construct an N-by-N square lattice whose bonds or edges are assigned

random "pore radii". Recall from Section 2.1.3 that we find it advantageous to refer to

a particular pore size by F, or the volume fraction of all pore slices in the sample that

are smaller than the given size. This way, we may simply assign to each edge on the

lattice an F drawn randomly and uniformly from the interval [0, 1], obviating the need
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Figure 7-1: Each of the leftmost two columns depicts quasistatic drainage on a two-
dimensional square lattice with side length N = 10, showing the fluid distribution at
various Fe as it decreases from 1 to 0. The thickness of each edge corresponds to its
F(r), where r is its randomly assigned pore radius. The rightmost column displays
the corresponding radius-resolved saturation of the nonwetting phase, 0,(F), as red
curves, based on a total of 2000 independent trials. The shaded areas represent
saturations of the two phases (see Eq. (3.11)). The black dashed curve shows the
trajectory of the mean value of 0,, for Fe < F < 1 as a function of Fe (see Eq. (3.34)).
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for prescribing a PSD. Repeating this process a great number of times would result in

an ensemble of realizations of lattices of the same dimensions, where the arrangement

of different-size edges is statistically similar, but distinct in each realization. The

leftmost two columns of Figure 7-1 represent two such realizations with N = 10.

Secondly, we suppose that the pore space is initially filled with the wetting phase

only (represented by the blue fluid in Figure 7-1), which would undergo drainage as it

is replaced by the nonwetting phase (represented by the yellow fluid in Figure 7-1) in

response to Fe decreasing in small increments from 1 to 0. We assume that all vertices

on the perimeter of the lattice have direct access to the invading nonwetting fluid,

and that all interior vertices are connected to sinks, into which the defending wetting

fluid may drain freely (alternatively, we may assume that the defending wetting fluid

is indefinitely compressible, like the vacuum phase in mercury intrusion porosimetry).

Under quasistatic conditions, at any prescribed F, each edge may be filled with either

the wetting or the nonwetting phase, but not both. We neglect the capacity of vertices

on the lattice, and consider bond percolation only (similar to [189]). Like in typical

invasion percolation calculations, an edge filled with the wetting phase will drain if

and only if both of the following two conditions are satisfied: (1) its size F is larger

than the imposed Fc; (2) at least one of its vertices belongs to an edge that is filled

with the nonwetting phase. As we see in either of the first two columns of Figure 7-1,

the n phase replaces the w phase in an increasing number of edges as Fc decreases,

until all edges are filled with the n phase when Fe goes to zero, although the exact

invasion percolation pattern is not the same in each realization due to the randomness

in the arrangement of different-size pores.

Thirdly, we compute the radius-resolved saturation of the nonwetting phase at

each F, denoted by 0,(F; Fc), by tallying edges of each size (given by F) filled with

either fluid (w or n), across all realizations of lattices with the same prescribed side

length. For example, at Fc = 4/6, we find that among all edges of sizes near F = 0.81

(i.e., in some small interval centered at this value depending on the discretization

level) across a total of 2000 realizations of N = 10 lattices, 71.7% are filled with the

nonwetting phase and the rest are filled with the wetting phase; therefore, 0,(F =
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0.81; Fe = 4/6) = 0.717, as we may identify in the second plot in the rightmost

column of Figure 7-1. Similarly, the figure also contains 0"(F) at other selected Fc.

We observe that in each profile, 0, = 0 for all F < F, and that 0, is nearly constant

for F > Fc. This is consistent with our proposition in Eq. (3.33). Denoting the mean

value of 0,(F; Fc) for F > Fe by 00 (Fe) (similar to Eq. (3.33)), we plot its trajectory

as black dashed curves overlaying the radius-resolved saturation profiles in Figure

7-1 (similar to Figure 3-1). Evidently, the 00 (Fc) trajectory is shaped differently in

either case; notably, 0o (Fc) approaches unity around Fe = 1/2 on two-dimensional

square lattices (see Figure 7-1), rather than at Fe = 0 in our statistical theory based

on pore branching (see Eq. (3.34) and Figure 3-1). These correspond to the critical

occupation probabilities (percolation thresholds) for bond percolation on a 2-D square

lattice and in 1-D, which are 1/2 and 1, respectively [45, 461.

Fourthly, we use Eq. (3.11) to compute s, from 0,(F) at each F, so as to obtain

the s, (Fc) relationship for quasistatic primary drainage. This calculation is then

repeated for various N ranging from 2 to 200, with selected results shown in the

left panel of Figure 7-2. For small N, nearly all pore segments on the lattice are

directly accessible by the invading fluid, and we have si,~ 1 - F, as the capillary

bundle model would predict. As N becomes larger, s, (Fc) deviates further from the

s" = 1 - Fc line, indicating a more prominent role of the ink-bottle effect. However,

in all cases, s, rapidly approaches 1 - Fc past the critical probability of 1/2, which is

reminiscent of the observations in [145], and differs from those shown in Figure 3-4.

Nevertheless, it is clear that when we increase N here, like when we decrease a in our

statistical theory, the porous sample behave in a way that is more and more distinct

from that of a capillary bundle, as a result of a greater degree of serial connections

between different-size pores.

Lastly, we capitalize on these observations to arrive at estimates for the accessiv-

ities of porous samples represented by the various square lattices considered. On the

one hand, according to our microscopic statistical theory, 1/a can be interpreted ge-

ometrically as the mean number of different-size pores encountered per pore instance

- see Section 2.2.3. Although this interpretation of accessivity, as we have discussed,
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is only strictly valid when the pore space contains no loops, we may still consider it in

the context of square lattices to obtain a "geometric estimate" for a. One can verify

that a 2-D square lattice with side length N = 2,3,..., as depicted in Figure 7-1,

has 2N(N - 1) edges, and that of those edges, 4(2N - 3) are connected to a vertex

on the perimeter. If we claim that each edge that is accessible from the perimeter

constitutes a pore instance for fluid displacement, and all the different-size edges are

shared among these instances, we may write:

1 _ total # edges on lattice 2N(N - 1) 2(2N - 3) (71)
ageom # edges on perimeter 4(2N - 3) N(N - 1)

These geometric estimates, shown as the black curve in the right panel of Figure 7-2,

are valid for all integers greater than or equal to 2. Note that ageom = 1 for both

N = 2 and N = 3 because in either case all edges on the lattice are also directly

accessible from its perimeter. On the other hand, from a macroscopic perspective, we

expect a to be correlated with the area of a hysteresis loop in a drainage-imbibition

cycle, which we shall denote by H. Based on our simple formulae for primary drainage

and imbibition, Eqs. (3.28) and (3.41), the area between each pair of curves for a given

a in Figure 3-4 is:

H= 2 f 1 a(l Fc) dFc = 1 + / + 1 , (7.2)
j (1 - a)Fc+a ±a1 -a (1 -(a

which implies that the area of the hysteresis loop on a s, (Fe) graph (e.g., Figure 3-4)

would vary from 0 to 1 as a -changes from 1 to 0. In contrast, in the left panel in

Figure 7-2, it appears that the area between the s, (Fc) curve and the s, = 1 - Fc

line only increases up to 1/8 as N - oc. The area of a full hysteresis loop, which

we shall denote by H', would hence only increase up to 1/4. If we consider H' = 1/4

and H = 1 analogous in the sense that they are both the maximum possible areas

of a drainage-imbibition hysteresis loop in either scenario, it is plausible to estimate

accessivity from invasion percolation data by substituting H = 4H' into Eq. (7.2) and

solving for a, which we shall we refer to asamarcobecause it is based on measurements

in terms of macroscopic quantities only. The results for various N are shown as red
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circles in the right panel of Figure 7-2. Remarkably, ageom and amarco agree quite well

with each other, even though they are both crude estimates based on our statistical

theory involving pore morphologies that are notably simpler than those considered

in these invasion percolation simulations. These results substantiate the view that

accessivity as a continuum property of porous media does indeed have a physically

intuitive pore-scale interpretation: because a measures the degree to which different-

size pores are arranged in parallel or series, it must correlate with the area of hysteresis

loops that arise due to connectivity effects, which holds true beyond the premise of

our simple statistical theory based on pore branching, at least in a qualitative sense,

even in pore networks that are plagued with loops.

Geometric estimate
0 Macroscopic estimate

0
0

Sa 0
0
0

00 302 10 100 200
Fe N

Figure 7-2: The left panel shows the s, (Fc) curves during primary drainage on 2-D
square lattices of side lengths N = 4, N = 9, and N = 35, which deviates further
from the s, = 1 - Fc (capillary bundle limit) as N grows larger. The right panel
compares the geometric and macroscopic estimates of accessivities of lattices with
various N (the horizontal axis uses a logarithmic scale), which are calculated from
pore-scale data and continuum-scale measurements, respectively, and seem to agree
well.

7.2 Skeletal representation of pore space

In this section, we will present elements of an image analysis routine that we have

developed and implemented to convert a given pore-space morphology to its skeletal

representation, which would then enable dynamical pore-network simulations on the

extracted skeleton, to be discussed in Section 7.3. As we have noted in Sections 2.1
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and 3.1.1, there has been a continued interest in the acquisition, analysis, and use of

2-D and 3-D image data of porous materials [190, 191, 192, 193, 194]. The grayscale

data obtained from methods such as X-ray tomography' are first subject to image

segmentation or image thresholding [195, 196, 197] in order to spatially resolve

the phases present and to essentially arrive at functions like those defined in Eqs. (2.1)

and (3.1). This information can be used to estimate certain statistical properties of the

porous medium [198], or enable pore-network simulations [199, 200, 201, 202] or direct

pore-scale simulations of multiphase flow [203, 74, 75]. Likewise, micromodels,

which allow multiphase flow to be directly visualized in experiments [68, 204], also

furnish pore images that can then be subject to various simulation methods [205, 206,

95, 207].

The need to extract a lower-dimensional skeletal representation2 of the pore space

arises from its use to construct pore-network models. A number of algorithms have

been reported in the literature [208, 209, 210, 211, 212, 213, 214].

pore space
solid matrix

micronil

EOR.PR.20.2

connected to
fluid reservoirs

Figure 7-3: Photograph and pore-space morphology of the MICRONIT EOR.PR.20.2
microfluidic chip. Graphics supplied by the manufacturer3.

We have developed and implemented a similar routine with concepts that are more

iaka. "data bricks" [190]
2 other names of this representation or processes for obtaining such a similar representation in-

clude: ultimate dilation of grains, erosion, morphological thinning, skeletization, medial axis, line
representation

3also see https://www.micronit.com/products/enhanced-oil-recovery.html
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closely related to our probabilistic framework, which we will describe using the exam-

ple of a pore image of a microfluidic chip. The chip is referred to as "EOR.PR.20.2",

or the Enhanced Oil Recovery Chip with physical rock network, and is designed and

manufactured by MICRONIT as a lab-on-a-chip device. A photograph of the chip

and its 2-D pore image 4 are shown in Figure 7-3. The depth of the pore space in

the direction perpendicular to the page as shown in Figure 7-3 is 20 m, while the

mean pore diameter in the plane of the page is in the 200-300 m range. The height

and width of the pore image 5 are 397 and 790 pixels, respectively, and each pixel

corresponds definitively to either the solid matrix or the pore space6 , which in effect

gives the discretized form of the function p, for the medium as defined in Eq. (2.1),

which we may represent with a binary data matrix P {0, 1}397x790.

The first step of our routine involves the labeling of connected components [215].

Here, each pixel in the solid matrix Pj C {Pj P : Pj = 1} an index c E C C N

such that two pixels in the solid matrix share the same index if and only if they

are connected via the solid phase, including in the diagonal direction 7. The result of

connected-component labeling is visualized in the upper left panel of Figure 7-4, where

each distinct index is given a unique color 8. Note that this method is only applicable

to a 2-D pore image because the entire solid matrix is necessarily connected in 3D,

causing every voxel in the solid matrix to be assigned the same index. Also notice

that some connected components identified have highly nonconvex shapes, such as

the largest several grains. This may create issues later on in the routine. Methods

such as convex decomposition (exact [216] or approximate [217]) may resolve these

issues, but were not implemented here.

The second step is referred to as pore-space coloring, and involves assigning each

pixel in the pore space Pcj E {Pcj E P : Pj = 0} an index from the previously

defined set of indices C for connected components. The index assigned to each pixel

4 Available as the mask used to fabricate the chip
5 considering only the central region of the chip that is meant to represent a porous medium, i.e.,

excluding the distributor channels on both sides of the chip
6i.e., no image segmentation is required
7 That is, a pixel P,, in the interior of a solid phase is considered connected to its nearest eight

neighboring pixels, {P±,,±}, given that each is also in the solid phase.
8 some colors may have been reused but not in a way that obscure this visualization
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Figure 7-4: Schematic showing the steps in the routine that we apply to the pore

image of EOR.PR.20.2.

in the pore space is equal to that of the closest solid pixel. In fact, to ensure that

no pore pixel is equidistant from two solid pixels with different indices, we refine

the resolution of the data matrix in this step to give c 0, 1}794x1580 such that

Pij = P2i-1,2j-1 = =2i,2j-1 = P2i,2j for alli= 1,... , 397 andj= 1,... , 790.

This way, every pore pixel in P is guaranteed to have exactly one closest solid pixel.

Also, in searching for the closest solid pixel, we only need to consider the boundary

pixels of all solid grains, which are defined as solid pixels that have at least one
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adjacent pore pixel. The result of this step is visualized in the upper right panel of

Figure 7-4. At this point, all pixels in the refined pore image are assigned an index

in C; pixels share the same index if and only if they are connected. We note that

if all solid grains are strictly convex, then the result of this step is equivalent to the

Voronoi tessellation of the binary pore image [218, 219], as exemplified by the pore

morphology considered in Section 7.3.

In the third step, we trace out the pore skeleton by highlighting all midpoints of

unit line segments separating two pixels with distinct indices, i.e., points that belong

to the borders of the color patches in the upper right panel of Figure 7-4. Each of

these points are exactly equidistant to at least two distinct nearby solid grains, and

can be assigned an effective pore radius that is equal to its distance to the nearest

solid grains. Also, if we define a "Euclidean distance function" [220] from points in

the pore space of the continuous domain of the porous medium to the distance to the

nearest point in the solid matrix, then the points highlighted in this step are local

maxima or saddle points of that distance function. The highlighted points are shown

as blue points in the bottom panel of Figure 7-4.

The fourth step of the routine involves the identification of pore branches and

junctions so as to construct an equivalent pore network that represents the mor-

phology of the pore space. Junctions are taken as pixels on the skeleton that are

equidistant to three or more solid grains 9 , located at the boundary of the domain of

the porous medium, or at the centroid of several nearby points with the above prop-

erties 1 (in which case such points are appended to the collection of points that trace

out the skelton). Now that all points highlighted as part of the skeleton are either

identified as a junction or not, we connect every point that is not a junction to its

closest two other points on the skeleton with a line segment. This results in the full

skeletal representation of the pore space. Additionally, the skeleton is unambiguously

divided up into individual pore branches that are joined together at junctions like de-

scribed in Section 2.2.1. We may also define an directed graph G(V, E) where vertices

9i.e., points of triple contact or beyond in the upper right panel of Figure 7-4
1 0e.g., three triple contact points that are no more than one unit length away from one another
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V E V = {0,..., Vi - 1} represent all junctions, and edges e E E = {0,... ,El - 1}

represent all pore branches. Each edge is mapped to a 2-tuple of vertices found at its

two ends, e - (LOV HI), where VLO and VHI are the vertices of the lower and higher

indices, respectively. It is permissible for different edges to map to the same 2-tuple

of vertices. The topology of the pore space is hence embedded in G. In this example,

G contains 692 edges and 522 vertices.

Finally, we parameterize each pore branch using some choice of pore axial coor-

dinate, such as the arc length (see Section 2.2.1). We then measure the pore radius

as a function of the pore axial coordinate, which we define as the distance to the

nearest solid pixel. We can then derive the PSD by computing the histogram of all

radius data on a pore volume basis. Figure 7-5 shows the result, as well as a fitted

log-normal distribution that seems to approximate the data well. The pore branches

are assigned volumes that match those of the corresponding pores, while the junctions

do not occupy any physical space.

0.2

f(r)

0 r
0 14

Figure 7-5: PDF of the PSD for EOR.PR.20.2, f(r), determined from our image
analysis routine. Radius data are reported in units of side length of a pixel. The raw
distribution, shown in blue, has a mean of 5.57 and a standard deviation of 1.90, while
the fitted log-normal distribution, shown in red, has a mean of 5.60 and a standard
deviation of 2.15.

We posit that these analyses may be extended to accommodate other concepts

"Note that although this definition makes pore radii easy to compute, it is not consistent with
our definition of effective pore radius discussed in Section 2.1.3. Ideally, we should consider the
curvature of a static meniscus between two hypothetical immiscible fluid phases located at each

axial location along the skeleton.
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from our theory, such as the determination of the radius-resolved saturations in pore-

scale simulations 1 2 and the estimation of pore-space accessivity by simulating qua-

sistatic invasion percolation (as discussed in Section 7.1). It may be of interest to

investigate these topics in future research.

7.3 Dynamical pore-network simulation

In this section, we present an illustrative example of performing dynamical pore-

network simulations based on the skeletal representation of pore space derived using

the methods detailed in Section 7.2. Here, we populate the pore skeleton with two

immiscible fluid phases 1 3, such that along each edge, we may have alternating slugs

of different fluids. Our goal is to simulate the dynamics of the redistribution of these

fluids on the skeleton in response to pressures imposed on the domain boundary, given

appropriate initial conditions.

Our overall solution scheme is as follows:

1. Computation of conductances and Young-Laplace pressures: at each instant,

the fluid filling along an edge entails its hydraulic conductance, as well as the

locations of any interfaces between different fluids, where pressure jumps occur

according to the pore radii at those locations, as described by Eq. (2.10).

2. Implicit vertex pressure update: for pseudosteady flows, e.g., Stokes flow, we

can use solve implicitly for the pressures at all vertices by enforcing material

conservation at all vertices.

3. Calculation of edge flow rates: we then compute the instantaneous volumetric

flow rates on all edges of the graph.

1
2 The key challenge there is to unambiguously associate every pore pixel with a pore slice of a

particular radius, which becomes exceedingly difficult as the shapes of pores deviate significantly
from straight cylinders. More generally speaking, perhaps the concept of radius-resolved saturations
should be extended to include different local patterns of fluid distribution, which could be assisted
by studying any correlations in the pw function defined in Eq. (3.1).

1 3 t ismuch easier to simulate single-phase flow based on the skeletal representation, although
the intrinsic permeabilities computed should be compared with direct pore-scale simulations or
micromodel experiments.
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4. Explicit edge saturation update: using the instantaneous flow rates found, we

then advect the fluid filling profile along each edge in the direction of the flow

explicitly in time.

This solution scheme, despite pertaining to pore-network modeling, is reminiscent

of the IMPES scheme introduced in Chapter 6 for solving conventional continuum

models of multiphase flow in porous media, underlining the analogies between pore-

scale and continuum-scale quantities.

7.3.1 Data structure

Recall that the pore skeleton is expressed mathematically as the graph G(V, E) defined

in Section 7.2. At each time t, we attribute a pressure value to each vertex, p. In

the case that a vertex resides on the domain boundary, we refer to it as an exterior

vertex, and assign to it the prescribed boundary pressure at that location. On the

other hand, each edge on the graph is associated with an instantaneous flow rate q,

which takes a positive value if the flow occurs from the "LO-vertex" to the "HI-vertex"

of that edge, and a negative value if the flow is in the opposite direction.

Forgoing potentially more elegant approaches, we record the fluid filling on the

skeleton by adopting a finite-difference discretization of the edge axial coordinate.

Each finite-difference node n is thereby assigned an effective pore radius r, and a

saturationsnof the nonwetting phase". The nodes are placed evenly along each edge

with respect to the pore axial coordinate 15, with the first and last nodes coinciding

with the vertices at both ends of the edge. Nodes over the entire skeleton are assigned

unique global indicesnEN= {0,...,|NI - 1} so that they grow both from the LO-

vertex to the HI-vertex on each edge and in increasing edge indices on the entire

graph.

1 4
1n this section only, the subscript n refers to the node index, not the nonwetting fluid. Where

necessary, we will refer to the wetting and nonwetting phases using upright letters w and n.
1 5i.e., the volume of pore space between every two adjacent nodes is the same
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7.3.2 Governing equations

The simulation begins at t = 0 subject to appropriately chosen initial conditions, and

then marches forward in time in dynamically determined increments. To initialize

the system, we specify the initial fluid filling by setting s, n E N. The value of s"

at finite-difference nodes that coincide with exterior vertices are dictated by the type

of fluid found in the reservoir connected to that vertex: unity if the reservoir fluid

is nonwetting, and zero if it is wetting. We also prescribe the values of pv at each

exterior vertices, which shall remain unchanged throughout the simulation.

Following the sign convention set out earlier, the instantaneous volumetric flow

rate on edge e is given by:

ge = Ce (PVe,LO- PVe,HI +Pcap,e) , (7.3)

where Ce is the total hydraulic conductance of the edge, Ve,LO and Pve,HI are the

pressures at the LO- and HI-vertices of the edge, and Pcap,e is the net capillary pressure

drop on the edge. Under the lubrication approximation, recalling our discussion about

hydraulic conductances from Section 5.2.1, we find that:

Ce8= 8jmx [()d] 8Acl"" 1 p +1 , (7 4)
T o [r (x)]' . 7r2nneL 2 rna rn+1

where x denotes the pore axial coordinate, along which the fluid viscosity y and the

effective pore radius r are allowed to vary, zmax,e is the total pore volume attributed

to egde e, and AV is the volume of a computational cell. The viscosity pu at node n

is evaluated using:

pn = w ps < 0.5 (7.5)
p Sn > 0.5,

where p, and p denote the viscosities of the wetting and nonwetting phases, respec-

tively.
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The net capillary pressure drop on edge e is defined as:

Pcap,e =2(-( Cos ), (7.6)E ( (X) r (z)
XEXcap,e

where Xcap,e denotes the set of all pore axial locations where there exists a meniscus

between the two fluids 16, and ((x) = sgn(d(s)/d(x)) across the interface17 . Eq. (7.6)

is discretized to:

ne,HI 1 F 0.5- s

Pcap,e 27wnCO 5 (n (rn + (rn+1 r- n+1 ;n

n=ne,LO .

where:

+1 sn < 0.5 and sn+I > 0.5 (positive interface)

(n = -1 Sn > 0.5 and sn+1 < 0.5 (negative interface) (7.8)

0 otherwise (interface absent).

We define the following dimensionless variables:

r p= q=
ro   

2 Ywn cos Oc/ro' rr0
4 (Pmax - Pmin)/8pflLm'

Ce V t
C = I t -- (7.9)

e wero 4 /8IpnLm' rro2LM 8pnLM2 / (Pmax - Pmin) r02'

and the following dimensionless parameters:

[LW P2 Ywcoa cro -Cam ro 2Ap
__a", j Priax ain , a,(7.10)

W pn I2-y,, cos 0c/rO C 87wnLM'(.0

where ro is any characteristic pore radius such as the mean or the minimum value, Lm

is the macroscopic length scale for the size of the entire porous medium, (Pmax - Pmin)

is the pressure drop imposed across the length of the porous medium, and Ca is the

"We say that an interface at location x is "positive" if s (x-) < 0.5 and s (x+) > 0.5, and
"negative" if s (x-) > 0.5 and s (x+) < 0.5.

1 7That is, ((x) = +1 if there is a positive interface at location x, and ((x) = -1 if there is a
negative interface.
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capillary number 18 , which is expected to be much less than unity because ro/L « 1.

Hence, Eqs. (7.3), (7.4), (7.5), and (7.7) become:

C
qe = (pve,LO - Pve,HI + cap,e)

CeAc nfe,HI-l ~ /[~w sn <0.5,

neHI-1 -

,HI- 1 n n~l w n <0.5
fcae n n n+ n-

n=ne,LO - +) n .

Material conservation at each interior vertex v writes:

E - qe = 0,
eEEv,HI eEEv,LO

where:

Ev,HI :]v e -4 (V'Iv)}, 8 o,LO {e:v',e-- (v, v')}.

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

This linear system of equations is solved iteratively by the Gauss-Seidel method,

where we make j5, the subject in each equation:

EZ( e v'±+jap ,e) + E (( e' - Tap,e)
~ E o,HI eEEoLO '

PV - ~ . (7.16)
eEv,HIU&v,LO

The solutions Tv may be substituted back into Eq. (7.11) to compute all qe.

Now, given the instantaneous flow rates on edges, we update the fluid filling at

all nodes over a small time increment to be determined. Essentially, we have to solve

the 1-D transient advection equation on each edge:

Os Os
- + qe = 0.

Ot ax
(7.17)

18For the same porous medium and fluid phases, the ratio of Aji to Ca is constant.
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An important dimensionless group to consider is the Courant number, which is written

for each edge as:

k ek k
Cok =q k (7.18)

where k indexes the simulation time so that each time increment Atk - tk+1 - tk. To

ensure stable time marching, at time index k, we set the time increment dynamically

by enforcing the Courant-Friedrichs-Lewy condition 1221]:

max{Cok}= 0.1 -> At -= = " ) AP 0.1 (7.19)
eEE a m ~k

eEE eEE

Eq. (7.17) is discretized using an explicit time-marching scheme with the first-

order upwind approximation for the advective term to give:

s1 (1 -- Cok) sk + Coksk_1, n = n,L + 1,. * ** > 0eH e

4¶lSn=eL+~feH ~> (7.20)

(1 -- Cok) s e + Co s+1, n = e, ,7 e,HI 1 e 0,

The boundary condition on edge e is supplied at the entry node19. If the entry node

coincides with an exterior vertex, then the saturation is set to represent the fluid type

in the connected reservoir; otherwise, we set the saturation at the entry node to20:

E' Cok,sk HI+ Cok ,ske n, el nef

e'E1Ko,HIH e'E1Ev,LO L

sk+1 _ 0
entry Co,+ + Co,

e'EEI,HI e'EEv,LO

^,>0 q*< 0

This completes the update of the fluid filling profile.

19 i.e., ne,LO if q*e > 0 and ne,HI if g<0
20 this is equal to the mean of the saturations exiting edges that have flows towards the coinciding

vertex, weighted by their respective Courant numbers
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Figure 7-6: Fluid distribution on the skeletal representation of a micromodel after the
first percolation event during primary drainage. Wetting and nonwetting phases are
shown in red and blue, respectively. Interfaces between the two phases are represented
with green squares.

7.3.3 Sample result

We carry out dynamical pore-network simulations on a skeleton extracted from the

pore image of a micromodel similar to that used in [68]. The micromodel consists of

circular posts of various sizes sandwiched in a Hele-Shaw cell. As shown in Figure 7-6,

the pore space is initially saturated with the wetting phase, and we carry out primary

drainage by exposing the the upper right corner of the device to a reservoir of the

nonwetting phase at a higher pressure. We have , = 0.8 and Aj= 10. The figure

shows the fluid distribution on the skeleton after the first percolation event.
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7.4 Kinetics of moisture transport in boehmite

In this section, we will briefly report our preliminary analysis of a set of experimental

data 2 1 on the kinetics of water sorption and desorption in boehmite2 2 . The uptake

and release of moisture in building materials create the effect of moisture buffering

[5] by reducing the fluctuation of humidity in the indoor humidity levels, which is

analogous to the use of phase change materials to lessen air temperature swings [222].

It is thus of interest to measure and model the transport of moisture in building mate-

rials in order to design building materials for better moisture buffering characteristics.

Models for moisture transport in porous media in the literature are based on a vari-

ety of pore-scale mechanisms [223, 224, 225, 56, 226, 58, 227, 59, 228]. Equilibrium

water sorption and desorption measurements are often fitted to parametric sorption

isotherms [229], while kinetics data of soprtion and desorption are often described

by a simple exponential decay [230] or superimposed exponential decays [231, 232],

which could be plausibly attributed to distinct physical origins, including any exter-

nal mass-transfer resistance from the bulk air to the surface of the sample in poorly

executed experiments.

7.4.1 Experimental setup

Figure 7-7 shows the experimental setup used to collect the sorption kinetics data.

In each experiment, the sample 2 3 was placed in a shallow glass cup atop the scale

located inside the climatic chamber. The sampler holder had a circular cross section

with a diameter of 85 mm, as shown in Figure 7-8. To minimize any external mass-

transfer resistance, a channel was designed to divert some of the inlet air to above the

sample on purpose. The relative humidity and temperature of the incoming air were

set by the user, with the latter kept constant at 20.0 °C throughout each experiment.

The time evolution of the mass of the sample subjected to climate variations was

21supplied by coauthor Remi Goulet
22 same material as that described in Section 4.2
2 3The boehmite powder was slightly compressed to prevent it from being blown away by the air

draft.
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Figure 7-7: (Courtesy of coauthor Remi Goulet.) Schematic of the sorption kinetics
bench used for measurements in this study. The left and right panels correspond to
the front and side views, respectively.
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sample holder
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Figure 7-8: Geometry of the sample holder. We denote the vertical downward depth
from the top surface of the sample with coordinate x.

measured, along with that of the relative humidity and of the air speed in the vicinity

of the sample. The air speed was such that it would cause the sample to vibrate,

leading to noisy mass measurements; hence, inlet air stream was periodically stopped

so that mass measurements may be taken when the air around the sample was still.

The uncertainties associated with measurements of the sample mass, the relative

humidity, and the air velocity are 25 mg, ±0.03, and 1.5 cm s-.

Four experimental trials were conducted, where samples of boehmite were sub-

jected to step changes in the relative humidity of air. Table 7.1 summarizes the
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Table 7.1: Summary of the water sorption kinetics data sets for boehmite.

# Approximate Humidity Humidity Powder Plot
range of relative steps during steps during height,
humidities sorption desorption H (mm)

1 0.5-0.8 one one 23.0 Figure 7-9
2 0.5-0.8 three three 23.0 Figure 7-10
3 0.1-0.9 eight eight 10.9 Figure 7-11
4 0.1-0.9 eight eight 10.7 Figure 7-12

experimentalconditions.

7.4.2 Theory

Based on the geometry of the sample depicted in Figure 7-8, we model moisture

transport by considering the following 1-D nonlinear transient diffusion problem:

PDE. 9 2 (Deff((s) as (7.22)at r zax)
as

BCs: s(0, t) = seq(hoo(t)), a(Ht) = 0 (7.23)ax
IC: s(X, to) = seq(hoo(to)). (7.24)

Here, the length coordinate x E [0, H] corresponds to the vertical downward distance

from the top surface of the sample, as shown in Figure 7-8; H is the height of the

sample, which is recorded in Table 7.1 for each experiment; s denotes the saturation

of water in the porous medium; Deffis the effective chemical diffusivity of water in the

porous medium, which may depend on s and may be hysteretic; h,(t) is the imposed

relative humidity in the climate chamber at time t, which we assume to be equal to

the relative humidity at the top surface of the sample24 ; seq(h) is the saturation in

a porous medium in equilibrium with an air at relative humidity h, which are given

by equilibrium sorption isotherms and may be hysteretic; and to denotes any time at

which we may assume the entire sample has achieved equilibrium with the humid air

2 by assuming good mixing in the climatic chamber and hence negligible external mass-transfer
resistance, given our experimental setup
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in the climatic chamber, e.g., immediately before each humidity step is effected2 .

For small changes in s, we may linearize the model by assuming Deffis constant.

Suppose h,(t) undergoes a step change from ho,_ to ho,+ at t = to, we define the

following dimensionless variables:

S - Seq(ho,_)

seq(ho,+)- seq(h,_o)'

- zX = - I
H'

~ t - to
H2/Def' (7.25)

which leads to the linear dimensionless problem:

PDE: ~
B : (I 1

BCs: e(Ot) = 1,
a0

a(1,)=-0

IC: e(Y, 0) = 0.

This linear problem can be solved analytically. The exact solution is:

e( ,I)= = sin (Anz)e- -
(F )n=o An

An = (n

which gives the dimensionless total mass of water in the sample as:

Fi(t) =j (I, t) di =Z 2 e-

n=O n

An = n + 1 r.

If we segment the time series of m(t) for each experimental run and match them

to the respective relative humidity steps, we can fit the response to the dimensional

form of the analytical solution in Eq. (7.30):

0A 2 (
m(t) = mo + Am E 2 exp

n=O An

-AH 2

H2/Deff ,)
where mo is the mass at the beginning of the segmented time series, and Am and

25assuming that h, has been kept constant for a sufficiently long time - e.g., a time that is much
longer than the diffusion time of the sample - prior to to
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(7.28)

(7.29)

(7.30)

An= (n (7.31)

1
+ -

2)

+ - 7r,
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Deff are free parameters2 .

7.4.3 Results and preliminary analysis

We plot the time series of sample mass (relative to the reading of the scale immediately

before the first humidity step is effected) and the imposed relative humidity in each

experimental trial in Figures 7-9, 7-10, 7-11, and 7-12. We note that the sample mass

occasionally changes nonmonotonically in response to a relative humidity step, which

we attribute to experimental uncertainties.

0.7497 100

m/g

h1%

0 -0
0 50 100 150 200 250 300

t/hours

Figure 7-9: Time series of relative sample mass and relative humidity in the first
water sorption kinetics experiment.

0.7727 100

m/g
h/%

0 -L( 0
0 50 100 150 200 250 300 350

t/hours

Figure 7-10: Time series of relative sample mass and relative humidity in the second
water sorption kinetics experiment.

Estimates of Deffof water in boehmite generated from all experimental data are

shown in Figure 7-13. Each arrow corresponds to the Deffobtained by fitting a seg-

mented m(h) response to a specific humidity step, which is implied by the horizontal

span and direction of the arrow. The color of the arrow indicates the experimental

2 Note that Am should be approximately equal to the total change in sample mass in response to

the humidity step, but is reserved as a fitting parameter considering the sample mass may not have

fully equilibrated at the end of the segmented time series.
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Figure 7-11: Time series of relative sample mass and relative humidity in the third
water sorption kinetics experiment.
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Figure 7-12: Time series of relative sample mass and relative humidity in the fourth
water sorption kinetics experiment.

trial that it is associated with. Results across all data set are in good agreement, and

remarkably, estimates obtained from the third and fourth trials are virtually iden-

tical, which may be due to the improved accuracy of measurements in these later

experiments.

We observe that Deffvaries nonmonotonically with h. It peaks around h = 40%

and becomes less for either lower or higher h. Overall, the values of Deff span a

little more than one order of magnitude. There is also mild hysteresis between the

Deff observed during sorption and desorption; desorption is generally associated with

higher Deffthan sorption over the same range for the relative humidity, except for

20% < h < 50%, where this trend is reversed. Given these observations, it is plausible

that the mechanism for moisture transport in the pore space may undergo a transition

near these values of h.
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Figure 7-13: Estimated effective chemical diffusivities of water in boehmite as a

function of equilibrium relative humidity. Results obtained from the four experimental

trials are shown in black, red, blue, and green, respectively. Each arrow corresponds

to the Deff calculated for a specific humidity step, which is indicated by its horizontal

span and direction. Note that many arrows for trials 3 and 4 coincide almost exactly.

7.4.4 Toward a microscopic theory

Moisture transport differs from immiscible multiphase flow in porous media. The

latter involves only mechanical equilibrium at interfaces between fluids, while the

former also involves chemical equilibrium because both the liquid and vapor phases

consist of the chemical species water. As a result, it may be necessary to consider a

different set of pore-scale physical processes in order to describe moisture transport at

the continuum scale 1233]. In doing that, it may also be able to incorporate elements

of our probabilistic framework to capture the effects of pore-space morphological

and fluid distribution. Here, we present a precursory microscopic theory of moisture

transport in porous media based on free energy which makes a connection to the PSD.

Using the framework of nonequilibrium thermodynamics [234, 235], we postulate

that the flux density of liquid water through the porous medium is driven by gradients
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of its chemical potential, which gives27:

(=TS -V - sVpL) (7.32)at (kBT

where (D/kBT) is known as the mobility, D is the tracer diffusivity 28 , and pL is

the chemical potential of liquid water in the pore space. Neglecting the interaction

between water vapor and the solid matrix, and denoting the equilibrium chemical

potential of liquid water or water vapor in the bulk with p*, we formulate the chemical

potential of the vapor phase as:

PG = + kBT In h, (7-33)

and that of the liquid phase as:

IL= - 2 CosOVm (7-34)
r

where kB is the Boltzmann constant, h is the relative humidity in the vapor phase,

y is the surface tension between liquid water and humid air, 0 is the contact angle

as measured in the liquid phase, Vm is the molecular volume of water, and r is the

radius of the pore hosting the liquid phase. Equating Eqs. (7.33) and (7.34) gives the

Kelvin equation [37]:

2,ycos 6Vm
ln h= - 2-y (7.35)

rekBT

which gives the equilibrium condition 2 9 between a vapor phase at relative humidity

he and a liquid phase residing in a pore slice of radius rc. Neglecting connectivity

effects, which corresponds to a - 1 in our probabilistic framework, then all pores

with radii smaller than rc will become saturated with liquid water in a porous medium

27We assume that variations in s is driven by fluxes of liquid water only, which may not be accurate
at lower relative humidities [228]. Also, hydraulic effects are also neglected in this analysis, i.e., no
dynamic pressure gradients.

28which is assumed to be constant in this simple analysis
29analogous to Eq. (2.10) in multiphase flow and Eq. (4.1) in mercury porosimetry
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in equilibrium with a humid air at relative humidity h, while all larger pores will

host the vapor phase. Thus, the saturation of liquid water is given by30

s = Fc = F(rc), (7.36)

where F is the CDF of the PSD. Assuming that the liquid and vapor phases in

the pore space are locally in equilibrium in any representative control volume of the

porous medium, we take the gradient of Eq. (7.34):

L= -(2eosOVm),V

=- 2cos OVM [d ()] [dFc] Vs
drc rc. drc,

2- cos OVm
= s Vs, (7.37)

rc2f,

where fc = f(rc) and f denotes the PDF of the PSD. We insert Eq. (7.37) into

Eq. (7.32) to obtain:

s D 2 y cosOVm .38)
at kBT re2f(

Comparing with Eq. (7.22), we obtain:

Deff 2-ycos 6Vm s S
- ' =- In h, (7.39)

D kBT re2fe refe

subject to Eqs. (7.35) and (7.36).

Thus, given the PSD or the equilibrium sorption isotherm, Eq. (7.39) enables the

calculation of Deffin the limit of o --+ 1. Some experimental sorption isotherms for

boehmite 3 1 are shown in Figure 7-14. Because there is negligible hysteresis in the

data, we use their average in Eq. (7.39) to derive the effective chemical diffusivity.

The result is shown in Figure 7-15. We see that Dff reaches its maximum value

around h = 40% and becomes lower as h either increases or decreases. The values

30 analogous to Eq. (3.4)
3 1supplied by coauthor Remi Goulet
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Figure 7-14: Experimental sorption and desorption isotherms at 20 °C (four sorption-
desorption cycles) and their average for use in our calculation.
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Figure 7-15: Ratio of effective chemical diffusivities to tracer diffusivity for water
in boehmite as a function of equilibrium relative humidity predicted by Eq. (7.39).
The qualitative behavior of Deff resembles the results determined from the sorption
kinetics data in Figure 7-13.
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of Deff in the range of relative humidities considered span approximately one order

of magnitude. These features match the Deff estimated from our sorption kinetics

measurements shown in Figure 7-13. This preliminary result suggests that it may be

possible to connect moisture transport at the continuum scale to the microstructure of

porous media, which we characterize using the PSD in this simple analysis. It would

be of interest to extend our theory by considering other concepts in our probabilistic

framework, such as pore-space accessivity and radius-resolved saturations.
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Chapter 8

Conclusion

In this thesis, we have proposed a number of novel concepts for modeling porous media

at the continuum scale in the context of immiscible multiphase flow and other related

physical processes. We have devised a probabilistic framework for connecting the

relevant microscopic properties and states of porous media to macroscopic quantities

of interest. Through experimental and computational studies, we have been able to

partially validate our theory and demonstrate its utility in diverse applications. Our

work has also revealed future research tasks that will help strengthen and broaden

our theoretical framework.

Central to the thesis is our probabilistic framework presented in Chapter 2, which

conceptualizes the pore space in a porous sample as an ensemble of pore-space in-

stances, each formed by a number of independent homogeneous Poisson point pro-

cesses corresponding to pore-scale events such as branching, pore-radius variation,

and meniscus pinning. As a result, we have defined continuum properties and state

variables for modeling porous media that have intuitive connections to pore-scale

concepts.

One such property is the pore-space accessivity, a, defined in Section 2.2.3 to

characterize the arrangement of different-radius pore slices that make up the pore

space. Its two limiting values, a - 0 and a -+ 1, correspond to different-radius pores

being arranged overwhelmingly in series and overwhelmingly in parallel, the latter

echoing the widely used capillary bundle model. We have demonstrated in Chapter 4
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that it is possible to measure the accessivity of a porous specimen by subjecting

it to mercury cyclic porosimetry, a common characterization technique for porous

materials.

In modeling capillary pressure and relative permeability hystereses in multiphase

flow in porous media, presented in Chapters 3 and 5, we have also defined the radius-

resolved saturations, $b(F) and 0,(F), to describe the pore-scale distribution of

fluid phases across different pore sizes. While 0$(F) and 0,(F) readily integrate to

conventional saturations, they are distinguished in their inherent ability to predict

hysteresis phenomena when used as state variables in continuum models. With the

aid of our probabilistic framework, we have arrived at a series of relatively simple

but physically meaningful formulae for hysteresis in capillary pressure (Eqs. (3.38)

and (3.39)) and relative permeabilities (Eqs. (5.11), (5.12), (5.31), and (5.32)). The

formulae have been successfully implemented as hysteresis-enabling constitutive re-

lationships in continuum simulations of multiphase flow in Chapter 6. We have also

discussed other topics of relevance to this thesis in Chapter 7.

In conclusion, we have demonstrated that it is possible to describe hysteresis in

multiphase flow in porous media with simple, physics-based continuum modeling con-

cepts. It is our hope that these concepts will augment current methods of portraying

hysteresis in multiphase flow, as well as gain broader utility in the theoretical, com-

putational, and experimental research of other physical phenomena in porous media.
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Appendix A

Useful properties of homogeneous

Poisson point processes

A.1 Preliminaries

Consider a homogeneous Poisson point process defined on a real line, whose

coordinate we refer to as a "distance". Suppose the process is associated with a rate

parameter of A, which has units of inverse distance, such that the expected number

of events occurring over an interval of distance x is equal to Ax; in fact, the number

of events occurring over a randomly chosen interval of distance x follows a Poisson

distribution. On the other hand, the distance between two adjacent events, which

we denote by the random variable X, follows an exponential distribution whose

probability density function (PDF) is given by:

p(x) = Ae- (A.1)

and whose cumulative distribution function (CDF) is given by:

P(x) = 1 - e-AX. (A.2)

It is easy to verify that the expected value of the distribution, (x), equals A'.
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A.2 Simultaneous independent processes

Now, consider a collection of simultaneous independent homogeneous Poisson point

processes indexed by i = 1, ... , N, each associated with its respective rate parameters

Ai. While we have stated that distance between two adjacent events from the same

Poisson process follows an exponential distribution, the same is also true for the dis-

tance between two adjacent events from any of the N independent Poisson processes,

whose CDF is given by:

N

Ptot (z) =I - (1 - Pi (z))
i=1
N

1- ]7 e-Aix
i=1

N

=1- e-At~t", A tot = A,(A. 3)

where Pi denotes the exponential CDF associated with event i. Thus, the expected

distance between two adjacent events from any of the N independent Poisson pro-

cesses is equal to Atot.

As we traverse the real line in either direction from an arbitrary starting point,

the probability that the first event encountered is from process i is given by:

oN N

] Ai(x)fJl(1 - Pj(x)) dx=] \ XiAXf eAdx
j=1 j=1

00=AiJflj e- x dx

00/\Af ejXot dx

-- tot 0

= *.(A.4)

Wtot

We may generalize this result by stating that the probability that the first event
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encountered is from one of the processes in the set A C {1,..., N} is given by

EiEAAi/Atot, since the occurrence of events associated with all the processes in A is

itself a homogeneous Poisson point process, as we have shown above.

A.3 Branching process

Suppose that the simultaneous independent homogeneous Poisson point processes

refer to a branching process. Specifically, let Az be the rate parameter for the event of

encountering a z-coordinate junction, z = 1, 3, 4, ... , as we traverse the real line. After

encountering z-coordinate junction, the real line will split into z - 1 independent real

linesi, on which the simultaneous independent homogeneous Poisson point processes

continue occurring in an independent fashion. Also define Az+ = EzEz+ Az (for

simplicity of notation, where we set A 2 = 0), which is the rate parameter for the

event of encountering a junction of any coordination number.

Suppose that there is a numerical property, u E R associated with the line segment

between the starting point on the real line and the location of the first junction of

any coordination number. Let this numerical property be represented by the random

variable U. Further suppose that each junction represents the algebraic operation of

summation, such that we may calculate a total for this numerical property that is

associated with all descendant line segments on this side of the starting point, which

we denote by v E R and represent by the random variable V. Because the z - 1

descendant real lines emanating from a z-coordinate junction are independent and

homogeneous Poisson point processes are "memoryless", the total numerical property

for each descendant real line and that of the parent real line are independent and

identically distributed (i.i.d.). This allows us to construct the following equation in

terms of random variables:

z -1

Vo=U + L V, (A.5)
zEZ+ j=1

'For z = 1, the real line simply terminates and hence all Poisson processes cease immediately.
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Note that the equation is linear with respect to all

random variables. Thus, we take the expected value of both sides of the equation to

obtain:

(Vo)= (u)+

(v)= (u) +

[1
zE

-z
zEZ+

-Z
zEZ+

(z - ) (v) =(u)

Az(z 1) ] (U)Az(1]v) u

E
zez+

zEZ+

A z-1

z E (Vj)Az+ j_

A2 (z- 1)(v)Az+

(V) AZ+ (u)
( zEZ+(2 - z)Az

where the ratio of (v) to (u) is positive if and only if:

(2 - z)Az > 0,
zEZ+

which further constrains the permissible values of {Az/Az+ E [0, 1] : z E Z+

instance, consider:

(2-1) + (2-z) z >0
AZ+ z=3 Az+

A,   00

Az+ >z=3z=3

A   00

A± z=3

1 >l-

A 1
Az+ 2

so A 1/Az+ E (1/2, 1]. We can similarly derive bounds for other rate parameters. Note

that as long as Eq. (A.7) holds, we always have (v) > (u), which readily follows from
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For

(A.8)

where all V are i.i.d. as V.

-2) Az
Az+

-2) Az
Az+



Eq. (A.6) by noting the definition of Az+.

To illustrate, we will use the result in Eq. (A.6) to compute the expected total

distance of all line segments on one side of an arbitrary starting point on the parent

real line. Because the line segment between the starting point and the first junction

of any coordination number has an expected distance of (u) = Az+, the expected

value of the total distance is given by:

(Az+ 1 1(v)+ (A.9)
Zez+(2 - z)A2 Az+ Ezz+(2 - z)A2.

We can also derive results similar to Eq. (A.6) for other algebraic operations at

junctions, as long as the governing equation is linear with respect to all random

variables.
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