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Abstract 

 

The durations of other indicators have been researched extensively in real estate studies, 

primarily the time on market and the duration of residence in housing units. Despite their 

importance, empirical research on the duration of vacancies is relatively limited and focused 

mainly on the housing sector. This paper aims to fill this gap and analyze the determinants of 

vacancy durations in the office sector. The analysis is based on a dataset of individual office 

suites located in New York City, NY that became vacant between 2012 and 2015. 

 

Vacancy durations are a form of time-to-event data and as such can be examined using survival 

analysis. We present several parametric and non-parametric survival models. Four key 

characteristics – unit size, asking rent, building height, and floor number – are found significant 

across all model specifications. Specifically, vacancy durations are affected the most by unit size 

and asking rent. Survival probabilities are found to considerably vary over time, which appears 

to be driven by variations in employment growth. 
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1. Introduction 

 

Vacancy rates can be expressed as the product of vacancy incidence and duration. Incidence 

measures the probability that a unit becomes vacant, while duration expresses the length of time 

a unit remains vacant. Analogous to unemployment rates in the labor market, decomposing 

vacancy rates into their two components reveals important information about the underlying 

space market. Higher levels of vacancy incidence might reflect profit-maximizing turnover of 

rental stock or preference for shorter lease terms. Higher levels of vacancy duration might, in 

turn, expose structural mismatches between supply and demand in the space market (Gabriel & 

Nothaft, 2001). 

 

It is generally accepted that real estate markets have “natural” non-zero vacancy rates. Natural 

vacancy rates, and, therefore, non-zero vacancy durations, exist due to several reasons: (1) time 

is required for both landlords and tenants to conduct their searches. (2) Time is required for 

landlords to make any necessary improvements between tenants. (3) Landlords might maximize 

their total return at a rent that generates a positive vacancy rate. (4) In a market with increasing 

(declining) rents, landlords (tenants) benefit from waiting to enter into a lease (Smith, 1987).  

 

Despite their importance, empirical research on vacancy durations is relatively limited. This can 

be partly attributed to a lack of data needed for such analysis, especially in the commercial 

sector. This paper aims to fill this gap and analyze the determinants of vacancy duration in the 

commercial sector. Specifically, it focuses on the office sector and utilizes a dataset of office 

suites located in New York City, NY and collected between 2012 and 2018. 
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Vacancy durations are a form of time-to-event data and as such can be examined using survival 

analysis. Survival models are commonly used in bioscience assessing the survival time of 

biological subjects (for instance, Symmans, et al., 2007), or analyzing unemployment in labor 

economics (for instance, Gamerman & West, 1987). In real estate studies, survival models are 

mainly adopted to explore the durations of various housing indicators, such as the duration of 

residence. We adopt this approach and presents several parametric and non-parametric survival 

models. 

 

The paper is organized as follows. In the first section, it reviews existing research and lays out 

the methodology. In the second section, it describes the dataset and presents the results based on 

a Cox proportional hazards model. Lastly, it presents a parametric survival model allowing to 

estimate the expected vacancy duration depending on unit-level characteristics, and shows its 

application in calculating the elasticity of vacancy duration. 
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2. Literature Review 

 

The durations of other indicators have been researched extensively, primarily the time on market 

for housing units (Anglin, Rutherford & Springer, 2003; Haurin, 1988; Knight, 2002) and the 

duration of residence (Deng, Gabriel & Nothaft, 2003; Speare, 1974). Previous research on 

vacancy durations in the rental market is more limited and focused mainly on the housing sector, 

where the availability of data is higher.  

 

Guasch & Marshall (1985a) were one of the first researchers to derive a theoretical framework 

linking residential unit characteristics to vacancy statistics in the rental market. Their framework 

incorporated the transiency of tenants and proposed that units that attract more transient tenants – 

typically smaller units and units in larger buildings – display longer vacancy durations. In their 

subsequent paper (1985b), they extended the framework to account for unit age, which is shown 

to increase vacancy durations. 

 

Sternberg (1994) built on this research and proposed a hazard model to analyze the effects of 

additional characteristics on vacancy durations. He confirmed the previous findings that older 

units experience longer vacancy spells, but found an opposite effect than Guasch & Marshall 

(1985a) for units in larger buildings. Units that are more atypical are identified to be associated 

with longer average vacancy durations.  
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Gabriel & Nothaft (2001) analyzed vacancy duration determinants across different markets. They 

also supported the hypothesis that heterogeneity among available units increases the mean 

vacancy duration due to higher tenant search costs and greater differences in reservation prices. 

Furthermore, vacancy durations were found to be generally higher during times of economic and 

housing market weakness. 

 

Orr, Dunse, & Martin (2003) analyzed the interaction between vacancy durations in the 

commercial market and asking and transacted rents. In line with the other studies on vacancy 

durations (Guasch & Marshall, 1985a) or time on market (Anglin et al., 2003; Trippi, 1977), Orr 

et al. found a positive relationship between durations and asking rents or prices. Nevertheless, 

the research did not specifically focus on other determinants affecting vacancy indicators.  
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3. Methodology 

 

We relied on survival analysis to assess the determinants of vacancy duration. In general, 

survival analysis is appropriate for data where the dependent variable is the time until the 

occurrence of a specific event and the data include censored observations. Survival functions, 

which denote the probability that the event has not occurred by a certain time, form the basis of 

survival analysis. To identify the determinants of vacancy durations, the effects of various 

covariates on survival functions were evaluated. 

 

3.1. Survival and Hazard Functions 

 

A continuous random variable T is assumed to have a failure density function f(t) and cumulative 

distribution function 𝐹(𝑡) = 𝑃{𝑇 < 𝑡} at time t. Its survival function, which represents the 

probability that the observed event has not occurred by t. In this paper, the survival function 

characterizes the probability that an office suite has remained vacant until time t. It can be 

described as: 

 

𝑆(𝑡) = 𝑃{𝑇 ≥ 𝑡} = 1 − 𝐹(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑡

 

 

The derivative of S(t) becomes: 

 
∂𝑆(𝑡)

∂𝑡
= −𝑓(𝑡) 

(1) 

(2) 
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As the derivative is equal to the inverse of the failure density function, 𝑆(𝑡) can be derived from 

𝑓(𝑡) and vice versa.  

 

The hazard rate, sometimes referred to as the failure rate, is denoted as λ(t), and characterizes the 

instantaneous rate of failure at time t given that the event has not occurred by t. For the 

distribution of T, the hazard rate is: 

 

𝜆(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
 

 

The equation (3) suggests that the hazard rate equals the failure density at time t divided by the 

cumulative survival probability that the event has not occurred by t. Combining equations (2) 

and (3), the hazard rate can be rewritten as: 

 

𝜆(𝑡) = −
∂

∂𝑡
𝑙𝑜𝑔𝑆(𝑡) 

 

In other words, the hazard rate can be derived also from 𝑆(𝑡) and hence 𝑓(𝑡).  

 

Within our context, the hazard rate represents the instantaneous rate that an office suite becomes 

leased at time t given that it has remained vacant until t.  The hazard rate forms an integral part 

of proportional hazards models that will be discussed later in this chapter. 

 
 

(3) 

(4) 



11 
 

3.2. Kaplan-Meier Estimator 

 

The Kaplan-Meier (KM) estimator is one of the simplest non-parametric models used to estimate 

the survival function. It involves calculating the survival probability at each time interval. Its 

primary advantage is that it is able to account for right-censored observations. Right censoring 

occurs when a subject has not experienced failure by the end of the observation period. When no 

censoring is present, the KM estimator is equivalent to the empirical distribution function. The 

estimator can be expressed as:  

 

𝑆(𝑡) =
𝑛𝑖 − 𝑑𝑖

𝑛𝑖
 

 

where 𝑛𝑖 represents the number of subjects at risk at time t, and 𝑑𝑖 the number of failures that 

occurred at time t. This means that the survival probability is equivalent to the number of 

subjects surviving longer than time t divided by the total number of subjects at risk at time t. The 

probability of survival until time t is then calculated by multiplying survival probabilities at all 

preceding time periods: 

 

𝑆𝑡 = ∏ (1 −
𝑑𝑖

𝑛𝑖
)

𝑖:𝑡𝑖≤𝑡
 

 

We used the KM estimator to perform an initial survival analysis of the office suites in our 

sample and to identify the likely factors affecting vacancy durations. Seven key unit-level factors 

were hypothesized to influence vacancy durations – unit size, rent, building height, floor number, 

building age, lease type, and location variables. 

(5) 

(6) 
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The key disadvantages of the estimator are that it is a univariate model and does not easily 

extend to numerical variables. For this reason, numerical variables (unit size, initial asking rent, 

building height, floor number, and building age) were each separated into two subcategories 

depending on their values and assigned binary values.  

 

Another limitation of the estimator is that it does not allow for a statistical comparison between 

the total survival functions among different groups, but rather allows a comparison only at 

individual periods. We addressed this shortcoming by including the log-rank test, which tests the 

equality of the survival functions. It is based on comparing the difference between the expected 

and observed number of failures in each period and for each sample group. The null hypothesis 

is that there is no difference in the survival rate among different groups at any time point. 

 

The log-rank test examines only the significance of the differences in various survival functions 

– it does not quantify the size of the difference. For this, we turned to the Cox proportional 

hazards model. 

 

3.3. Cox Proportional Hazards Model 

 

The Cox model (Cox, 1972), commonly used in medical research for analyzing the survival time 

of patients, is an extension of univariate survival methods and allows incorporating both 

continuous and categorical variables.  



13 
 

The approach proposed by Cox assumes that the hazard rate for an individual with characteristics 

𝑥𝑖 at time t is: 

  

𝜆𝑖(𝑡|𝑥𝑖) = 𝜆0(𝑡)𝑒∑ (𝛽∗𝑋𝑖)𝑛
𝑖=0  

 

Where 𝜆0(𝑡) is the baseline hazard function for 𝑋𝑖 = 0. The term 𝑒∑ (𝛽∗𝑋𝑖)𝑛
𝑖=0  denotes a relative 

increase or decrease in the hazard rate corresponding with non-zero values of 𝑋𝑖. The baseline 

hazard function is not itself estimated within the Cox model, and 𝜆0(𝑡) is calculated by setting all 

covariates to zero. This represents one of its main advantages, as there is no need to assume a 

specific shape of the baseline hazard function. The 𝛽 coefficients are estimated by maximizing 

the partial likelihood function and represent the marginal change in the log of the hazard ratio for 

a one-unit change in 𝑋𝑖, holding other factors constant. 

  

The Cox model is non-parametric with the exception of its assumption of proportionality; the 

hazard rate in any group is assumed to be a constant multiple of the hazard rate in any other 

group. In other words, the hazard rate for different characteristics 𝑋𝑖 remains constant over time 

t. The assumption can be demonstrated by calculating the ratio of two hazards rates for subjects j 

and k:  

 

𝜆𝑗(𝑡|𝑥𝑗)

𝜆𝑘(𝑡|𝑥𝑘)
=

𝜆0(𝑡)𝑒∑ (𝛽∗𝑋𝑗)𝑛
𝑖=0

𝜆0(𝑡)𝑒∑ (𝛽∗𝑋𝑘)𝑛
𝑖=0

=
𝑒∑ (𝛽∗𝑋𝑗)𝑛

𝑖=0

𝑒∑ (𝛽∗𝑋𝑘)𝑛
𝑖=0

 

 

Equation (8) shows that the hazard ratio for subjects j and k depends on covariates 𝑋𝑗 and 𝑋𝑘 but 

not on time t.  

(8) 

(7) 
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To test the proportionality assumption, we employed a test of non-zero slope in a linear 

regression of the scaled Schoenfeld residuals on time (Grambsch & Therneau, 1994). The null 

hypothesis of zero slope corresponds to testing that the log hazard function is constant over time. 

 

The results of violating the non-proportionality assumption differ among authors. For instance, 

Allison (1995) suggests that in such cases the estimate can be interpreted as the average effect of 

the covariate over time. Conversely, Hosmer, Lemeshow and May (2011) claim that alternative 

models should be used to obtain a more precise interpretation of the estimates. 

 

To err on the side of caution, we also considered three alternative extensions of the Cox model to 

allow for both covariates and their effects to vary over time. Firstly, we extended the model to 

allow for time-dependent coefficients: 

 

𝜆𝑖(𝑡|𝑥𝑖) = 𝜆0(𝑡)𝑒∑ (𝛽(𝑡)∗𝑋𝑖)𝑛
𝑖=0  

 

An important feature of equation (9) is that the hazard rate is no longer proportional but is 

assumed to depend on time t. If coefficients 𝛽(𝑡) are significantly different from zero, the 

proportionality assumption in the time-independent model is violated. The time-dependence 

form in this model is parametric and needs to be specified. This, in turn, allows greater flexibility 

in specifying the model as the form can take any shape. 

 

(9) 
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Secondly, we considered a Cox model stratified on calendar periods to remove any potential bias 

in the coefficients 𝛽 resulting from variations in the baseline hazard rate over time. The 

proportional hazards model with fixed time effects thus becomes: 

  

𝜆𝑖,𝑔(𝑡|𝑥𝑖) = 𝜆0,g(𝑡)𝑒∑ (𝛽∗𝑋𝑖)𝑛
𝑖=0  

 

 
 

where 𝑔 represents different strata (calendar periods). The stratified model assumes equal 

coefficients 𝛽 across strata but a different baseline hazard function for each stratum 𝑔. This 

extension of the basic Cox model is typically used to control for a predictor that does not satisfy 

the proportional hazard assumption. However, as the stratified variable is not included in the 

model, it is not possible to estimate directly its effects on the likelihood function.  

 

Lastly, we extended the model by including time-dependent covariates to account for the main 

factors driving potential variations in the hazard rate over time: 

 

𝜆𝑖(𝑡|𝑥𝑖(𝑡)) = 𝜆0(𝑡)𝑒∑ (𝛽∗𝑋𝑖(𝑡))𝑛
𝑖=0  

 

We hypothesized that the time-varying covariates likely affecting the hazard functions are the 

market vacancy rate and employment growth in New York City. The vacancy rate reflects 

market demand and supply factors, while employment growth serves as a proxy for office 

employment growth and firm expansion. 

 

 

(11) 

(10) 
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3.4. Parametric Model and Its Applications 

 

The Cox model describes the effects of individual factors on the hazard rate at each period. 

However, of interest is also the relationship with the expected duration of the vacancy spell. The 

mean survival time can be calculated as the area under the survival function with boundary 

conditions 𝑆(0) = 1 and 𝑆(∞) = 0. The expected vacancy duration is defined as the integral of 

the survival function: 

 

𝑇 = ∫ 𝑆(𝑡)𝑑𝑡
∞

0

 

 

As both the Kaplan-Meier estimator and Cox model are non-parametric, their estimated survival 

functions generally do not reach zero in the presence of censored data. As a result, the expected 

duration can be calculated only within some time interval. To calculate the expected survival 

over the entire time interval, we next considered a parametric survival model, which follows an 

exponential distribution: 

 

𝑆(𝑡) = 𝑒−λ𝑗t 

 

Assuming the “risk” of a vacant suite becoming leased is constant over time, which 

approximately reflects the observed distribution, the resulting survival function has an 

exponential distribution. An advantage of this specification is that equation (12) collapses to: 

 

𝑇 =
1

λ𝑗
 

(12) 

(13) 

(14) 



17 
 

The parameter λ𝑗 is defined as: 

 

λ𝑗 = 𝑒∑(𝛽∗𝑋𝑗) 

 

Where 𝑋𝑗 represents the independent variables affecting vacancy durations. This specification 

allows to easily calculate the effects of various variables on the expected duration. 

 

Given that the exponential parametric model allows to calculate the expected duration depending 

on individual suite characteristics, it can also be used to determine the optimal rent that 

maximizes the landlord’s total income. Future rent payments that the landlord will receive can be 

summarized as an annuity with constant payments, and their present value calculated as: 

 

𝑃𝑉𝑡=𝑇 = 𝑟𝑖 (
1 − (1 + 𝑦)−𝑛

𝑦
) 

 

Where y is the discount rate, n the duration of the lease, 𝑟𝑖 the initial rent, and 𝑇 the duration of 

the vacancy. As the payments are received only after finding a tenant, the present value at t=0 

becomes: 

 

𝑃𝑉𝑡=0 =
𝑟𝑖(1 − (1 + 𝑦)−𝑛)

𝑦(1 + 𝑦)𝑇
 

 

 

 

(15) 

(16) 

(17) 
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Next, we extended the present value formula to reflect any holding costs that the landlord incurs 

during the time the suite is vacant. The present value of these costs is defined as:  

 

𝑃𝑉𝑡=0 = 𝐶
(1 − (1 + 𝑦)−𝑇)

𝑦
 

 

Where C is the holding cost of vacant space. Combining equations (17) and (18), the present 

value of the landlord’s total profit becomes: 

 

𝑃𝑉𝑡=0 =
𝑟𝑖(1 − (1 + 𝑦)−𝑛)

𝑦(1 + 𝑦)𝑇
− 𝐶

(1 − (1 + 𝑦)−𝑇)

𝑦
 

 

By combining equations (14) and (19), we get a function expressing the landlord’s profit 

dependent on individual suite characteristics, including asking rent. For any set of suite 

characteristics, the equation can be optimized with respect to the rent variable. This potentially 

provides a tool for landlords to calculate the optimal rent that maximizes their total profit. The 

applications of this approach are discussed in Chapter 8. 

 

  

(18) 

(19) 
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4. Data Description 

 

This paper estimates the presented survival models using a unit-level data set of office suites 

located in Manhattan, New York City. The full data set includes 21,269 observations of office 

suites that became vacant between 2012 and 2018 and their individual characteristics. 

Specifically, the data include vacancy durations1, unit size, initial asking rent2, number of stories 

in the building where the suite is located, floor number of the suite, building age3, lease type4, 

and location variables5.  

 

An important feature of survival models, including the Cox proportional hazard model used in 

this paper, is that the estimation is based only on subjects who are at risk (i.e. suites that are 

vacant and available for lease) at any given point in time. As a result, the presence of censored 

observations in the sample does not bias the results if the censored subjects are not substantially 

different from the rest of the sample. In other words, it is assumed that survival probabilities are 

the same for subjects regardless of when they entered the study. 

 

                                                 

1 As the data set includes only quarterly observations, vacancy durations are measured as the number of quarters a 

unit is on the market and available for lease. 
2 Unit’s initial asking rent is converted into  
3 Building age measured at the time a unit became vacant. 
4 Specifies whether the space is first generation (new), second generation or later (re-let), offered as a sublease, or an 

executive suite.  
5 Suites are categorized based on their zip code into four main Manhattan submarket – Midtown, Midtown South, 

Downtown, and Upper Manhattan. Although the zip codes allow for a more detailed classification, its explanatory 

power would be relatively low due to small sample sizes in each category. 
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This assumption is likely violated in our dataset as suites becoming vacant towards the end of the 

sample period display disproportionally higher survival probabilities than those becoming vacant 

in earlier years. For instance, 82% of suites that became vacant in Q2 2016 are leased at the end 

of 2018. However, the share drops to 61% for suites that became vacant only a quarter later. 

Another similar drop within just one quarter occurs again in 2017. 

 

Figure 4.1: Share of Suites Leased by Vacancy Start Date 

 

 

These rapid declines might indicate issues with the collected data rather than actual changes in 

survival probabilities. To obtain unbiased coefficient estimates even in our models that do not 

adjust for different calendar periods, we limited the sample period to the years 2012 - 2015. This 

more conservative approach lowered the sample size to 14,686, but results in relatively 

homogeneous survival probabilities over time. Descriptive statistics of this dataset are shown in 

Figure 4.2. 
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Figure 4.2: Descriptive Statitics (2012 – 2015 Dataset) 

 
 

As Figure 4.3 shows, the average market rent in Manhattan during the period increased 

substantially from $59 per square foot in 2012 to over $71 at the end of 2015. Using nominal 

asking rents would result in biased coefficients as it does not account for the change in 

underlying market rents. Therefore, we instead used as a ratio of a suite’s rent divided by the 

average market rent in that particular period. A ratio greater than one suggests that a suite has a 

higher rent than the market average, while a ratio of less than one indicates that it is priced lower 

than the average.      

 Mean Median Std. Dev. # of Observations 

Vacancy Duration (quarters) 3.41 2.00 3.49 14,686 

Unit Size (sq.ft.) 8,394.55 4,368.00 13,345.96 14,686 

Rent ($ / sq.ft. / year) 48.56 46.00 16.16 5,123 

Rent Ratio .76 .71 .24 5,123 

Building Age (years) 76.01 85.30 27.91 14,686 

Number of Stories 26.88 23.00 14.85 14,686 

Floor Number 13.68 11.00 10.47 14,422 

Lease Type     

     New Space    421 

     Re-Let Space    10,396 

     Sub-Let Space    3,668 

     Executive Suite    201 

Submarket     

     Midtown    8,883 

     Midtown South    3,653 

     Downtown    2,000 

     Upper    150 



22 
 

Figure 4.3: Average Market Rent6 

 
 

In the survival model with time-dependent covariates, we include the market vacancy rate and 

employment growth. Figure 4.4 illustrates that the vacancy rates of offices in Manhattan 

increased from 9.1% in 2012 to a high of 11.0% in 2013 and displayed a downward trend from 

2014 onwards. Similarly, New York City employment growth rebounded from a low of 2.0% 

year-over-year in 2013 to above 3.0% in 2014, and has remained above 2.5% since that time. 

 
Figure 4.4: Market Vacancy Rate7                     Figure 4.5: Employment Growth8 

      
                                                 

6 Source: Cushman & Wakefield Manhattan Office Snapshot. 
7 Source: Cushman & Wakefield Manhattan Office Snapshot. 
8 Total non-farm seasonally adjusted employment growth in New York City, NY. Source: New York State 

Department of Labor. 
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Before estimating survival models, we started with a simple empirical distribution of vacancy 

durations in the sample. Figure 4.6 shows that 66.3% of suites remained vacant after one quarter, 

while conversely, 33.7% of suites leased within one quarter. The share of vacant suites decreased 

to 44.0% within two quarters, 30.1% within three quarters, and 22.1% within one year. After two 

years, only 7.6% of all suites remained vacant. Over the 2012 – 2015 sample period, only 3.7% 

of all suites remained vacant for three years or longer. 

 

Figure 4.6: Empirical Distribution of Vacancy Durations 

 
 

 

However, a primary disadvantage of the empirical distribution is that it does not account for 

censorship. In other words, it does not distinguish between the suites that are still vacant as of the 

end of the sample period and those that are leased. For this reason, we turn to the KM estimator 

to obtain more precise survival function estimates. 
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5. Kaplan-Meier Analysis 

 

Figure 5.1 shows the KM survival function for our sample. It illustrates that 66.4% of office 

suites leased after one quarter, 44.0% after two quarters, 30.1% after three quarters, and 22.1% 

after one year. The probability of remaining vacant decreases to 7.6% after two years and 3.8% 

after three years. These estimates differ from the empirical distribution by less than 0.1 

percentage points and are essentially identical. This can be attributed to the fact that only 2.5% of 

suites remained vacant at the end of the sample period. In other words, the effect of censorship 

was negligible.  

 

Figure 5.1: KM Survival Function 

 

 

 

 

 

 

 

Next, we analyzed the effects of the variables expected to influence vacancy durations – unit 

size, rent, building height, floor number, building age, lease type, and location – by estimating 

separate survival functions. 
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First, the sample was split into large and small suites. Large suites were defined as having an 

area of at least 8,400 square feet.9 Figure 5.2 shows that the survival probability for large suites 

was substantially higher than for smaller ones. In summary, large offices stayed vacant longer. 

Nevertheless, the difference between the survival functions does not appear to be constant over 

time, which suggests a potential violation of the proportionality assumption. 

 

Second, the suites were divided into two categories, depending on whether their initial asking 

rents were lower or higher than the average market rent at the time they become vacant. Suites 

with higher rents (rent ratio higher than one) appeared to have higher survival probabilities and 

remained vacant longer. Similarly as for the unit size variable, the difference between the 

survival functions appeared to decline over time. 

 

Figure 5.2: KM – Unit Size                                 Figure 5.3: KM – Rent Ratio

    

     

                                                 

9 The mean area in the sample is 8,395 square feet. 
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In the next step, buildings were categorized into three groups according to the number of stories. 

Mid-rises include buildings with less than 12 stories, high rises are those between 12 and 40 

stories, and skyscrapers are above 40 stories. Figure 5.4 shows that the difference in survival 

probabilities for mid and high rises is relatively small and likely not statistically significant. 

Conversely, skyscrapers seem to display substantially higher survival probabilities (longer 

vacancy durations). Building height is intrinsically linked to a floor number. Figure 5.5 shows 

that the survival probability for suites on a 12th or higher floor is also slightly higher than for the 

ones on lower floors. 

 

Figure 5.4: KM – Building Height                Figure 5.5: KM – Floor Number 

   

 

We then divided the sample based on the building age. A building is defined as old if it is 15 

years old or more. Interestingly, older office suites display lower survival probabilities, i.e. lower 

vacancy durations, than newer space.  
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Figure 5.7 shows the survival probabilities for different lease types. They exhibit considerably 

larger differences than other variables. Additionally, re-lets and sub-lets display significantly 

lower survivals (lower vacancy durations) than first-generation space. This conclusion is the 

same as for other attractive features, such as being located in a skyscraper, on a higher floor or in 

a newer building. A potential explanation is likely collinearity between these features and rent, 

which results in the individual survival probabilities of these variables being imprecise. 

 

Figure 5.6: KM – Building Age                           Figure 5.7: KM – Lease Type 

    

 

Lastly, Figure 5.8 shows survival functions depending on the submarket. There appears to be 

only a negligible difference between offices located in Downtown, Midtown or Upper 

Manhattan. However, suites in the Midtown South submarket, which includes Chelsea, Tribeca, 

Hudson Square, SoHo, Greenwich Village, and Gramercy Park, display lower survival 

probabilities. As these are currently considered the trendiest office destinations in Manhattan, 

their popularity seems to translate into lower vacancy durations. 
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Figure 5.8: KM – Submarket 

 

 

In order to formally check the differences between the estimated survival functions, the log-rank 

test was performed for the same binary groups. Results are shown in Figure 5.9. All of the 

analyzed differences were highly significant and confirmed the results obtained from the KM 

survival functions. The very high 𝛸2 statistic of unit size suggests that it is one of the primary 

determinants of survival, and hence vacancy duration. Although still highly significant, the effect 

of building age appeared to be weaker than other variables.  

 

Figure 5.9: Log-Rank Test 

  𝛸2 P-Value 

Unit Size 1280.73 0.0000 

Rent Ratio 579.83 0.0000 

Building Height                  258.80 0.0000 

Floor Number 177.85 0.0000 

Building Age 65.07 0.0000 

Lease Type 775.83 0.0000 

Submarket 274.55 0.0000 
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6. Results 

 

6.1. Time-Independent Model 

 

One of the primary disadvantages of the KM estimates or the log-rank test are their inability to 

estimate survival adjusted for other covariates and to quantify the size of their effect on survival. 

The Cox Proportional Hazards Model addresses these shortcomings. 

 

Firstly, we fit a simple proportional hazard model as described in equation (7), with only one 

variable – unit size – which is expected to have the largest effect. To reduce the highly positive 

skew in the unit size variable, it was logarithmically transformed. Figure 6.1 shows the 

regression output. The hazard ratio of 0.71 suggests that a 10% increase in a unit’s square 

footage is associated with a 3.2% decrease10 in the hazard rate – the risk of a unit getting leased 

at any particular point in time. 

 

Figure 6.1: Cox PH Model (1) 

No. of observations 14686      LR chi2(1) 2101.53 

No. of failures 14321      P-Value 0.000 

    

Variable Haz. Ratio Std. Err. P-Value 

ln Unit Size .7098389 .0052125 0.000 

                                                 

10 The hazard ratio of .7098389 translates into a coefficient of -0.3427 (𝛽̂ = ln(. 7098389)). The effect of a 10% 

increase in the unit size is calculated as 𝑒−0.3555∗ln(1+10%) − 1 = −0.0321. 
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Secondly, we added the rent ratio, which is defined as a suite’s rent divided by the average 

market rent in a particular period, to the regression model. The interpretation of the rent ratio is 

less straight forward, as it depends on both the unit’s rent and the average market rent. For 

instance, a suite that is priced at 200% of the market rent is 36.0%11 less likely to lease at any 

point than one priced at 100% of the market rent. It is also important to note that for this analysis 

the sample size was substantially decreased, as unit rent was is available for only a third of the 

overall sample. Despite the decrease in sample size, the overall model remains highly significant. 

 

Figure 6.2: Cox PH Model (2) 

No. of observations 5123      LR chi2(2) 861.32 

No. of failures 5080      P-Value 0.000 

    

Variable Haz. Ratio Std. Err. P-Value 

ln Unit Size .6892161 .0091549 0.000 

Rent Ratio .6395043 .0385941 0.000 

 

 

Next, we added the building height and floor number to the model. Each additional floor in 

building height decreased the “risk” of getting leased by 1.0%12, while an increase in the floor 

number increased the hazard by 0.4%13.  

 

                                                 

11 Calculated as 0.6395043 − 1 = −.3605. 
12 Calculated as . 989599 − 1 = −.0104. 
13 Calculated as 1.004242 − 1 = .0042. 
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Although building height and floor number are intrinsically related, the negative effect of 

building height outweighs the positive effect of the floor number. Consequently, offices in high-

rise buildings display, on average, longer vacancy duration. 

 

Figure 6.3: Cox PH Model (3) 

No. of observations 5022      LR chi2(4) 918.62 

No. of failures 4981      P-Value 0.0000 

    

Variable Haz. Ratio Std. Err. P-Value 

ln Unit Size .7016622 .0096235 0.000 

Rent Ratio .6663167 .0426237 0.000 

Building Height .989599 .0014800 0.000 

Floor Number 1.004242 .0022524 0.059 

 

 

Figure 6.4 shows the impact of adding building age at the start of the vacancy spell into the 

model. The effect of building age on survival is not statistically significant, which is contrary to 

the substantial difference identified by the KM estimator (Figure 5.6).  

 

Subsequently, the lease type variable was added to the model (Figure 6.5). As expected, 

executive suites have the same hazard rate compared to the baseline category (newly constructed 

suites). Conversely, offices offered as sub-leases are 43.0% more likely to become occupied than 

new ones. The hazard rate for second generation space or later is 26.7% higher but significant 

only at the 10% level.  
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Figure 6.4: Cox PH Model (4) 

No. of observations 5022      LR chi2(5) 919.80 

No. of failures 4981      P-Value 0.0000 

    

Variable Haz. Ratio Std. Err. P-Value 

ln Unit Size .7027707 .009692 0.000 

Rent Ratio .6754746 .0440169 0.000 

Building Height .9901105 .0015515 0.000 

Floor Number 1.004156 .0022544 0.065 

Building Age 1.00077 .0007112 0.279 

 

 
 

Figure 6.5: Cox PH Model (5) 

No. of observations 5022      LR chi2(8) 930.83 

No. of failures 4981      P-Value 0.0000 

    

Variable Haz. Ratio Std. Err. P-Value 

ln Unit Size .705919 .0098641 0.000 

Rent Ratio .6808302 .0443564 0.000 

Building Height .9903338 .0015569 0.000 

Floor Number 1.003726 .0022575 0.098 

Building Age 1.000807 .0007137 0.258 

Lease Type 14    

     Executive Suites 1.025946 .2764057 0.924 

     Re-Lets 1.267279 .1644253 0.068 

     Sub-Lets 1.429788 .1955316 0.009 

 

                                                 

14 Lease Type = 0 for newly constructed buildings.  
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As the last step in constructing the base Cox model with no time-dependent coefficients or 

covariates, we added the sub-market variables. The results presented in Figure 6.6 offer slightly 

different conclusions than the KM estimator. When adjusted for other covariates, offices in the 

Downtown and Upper Manhattan submarkets are 33.7% and 57.7% respectively, less likely to 

lease than comparable offices in Midtown. On the other hand, Midtown South appears to be the 

most popular submarket and the hazard rate is 14.3% higher than in Midtown.  

 

Figure 6.6: Cox PH Model (6) 

No. of observations 5022      LR chi2(11) 1143.67 

No. of failures 4981      P-Value 0.0000 

    

Variable Haz. Ratio Std. Err. P-Value 

ln Unit Size .7049870 .0100017 0.000 

Rent Ratio .4378216 .0346429 0.000 

Building Height .9921973 .0016074 0.000 

Floor Number 1.005573 .0022767 0.014 

Building Age .9988757 .0007733 0.146 

Lease Type 15    

     Executive Suites 1.074328 .2894814 0.790 

     Re-Lets 1.300351 .169123 0.043 

     Sub-Lets 1.431648 .1963057 0.009 

Sub Market 16    

     Downtown .6633815 .0282077 0.000 

     Midtown South 1.143338 .0400507 0.000 

     Upper Manhattan .4225273 .047931 0.000 

 

                                                 

15 Lease Type = 0 for newly constructed buildings.  
16 Sub Market = 0 for Midtown. 
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The estimated hazard ratios appear to be relatively robust, as they remain stable across different 

model specifications (Figure 6.7). The only significant change is the increase in the negative 

effect of rent when adjusted for different submarkets. This is attributable to the collinearity 

between the rent and submarkets variables – rents in the attractive submarkets tend to be on 

average higher, and vice versa. Without controlling for different submarkets, the rent ratio 

coefficients largely represent the combined effect of both rent and submarket attractiveness. 

 

Figure 6.7: Cox PH Model Summary 

Model (1) (2) (3) (4) (5) (6) 

No. of obs. 14686 5123 5022 5022 5022 5022 

No. of failures 14321 5080 4981 4981 4981 4981 

LR chi2 2102 *** 861 *** 919 *** 920 *** 931 *** 1144 *** 

       

Variable Hazard Ratios 

ln Unit Size .710 *** 0.689 *** 0.702 *** 0.703 *** 0.706 *** .705 *** 

Rent Ratio  0.640 *** 0.666 *** 0.675 *** 0.681 *** .438 *** 

Building Height   0.990 *** 0.990 *** 0.990 *** .992 *** 

Floor Number   1.004 * 1.004 * 1.004 * 1.006 ** 

Building Age    1.001 1.001 .999 

Lease Type       

     Executive     1.026 1.074 

     Re-Lets     1.267 * 1.300 ** 

     Sub-Lets     1.430 *** 1.432 *** 

Sub Market       

     Downtown      .663 *** 

     Midtown South      1.143 *** 

     Upper       .423 *** 
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The main assumption of the Cox model is the hazard proportionality. To test this assumption, we 

employed a test based on the Schoenfeld residuals on time (Grambsch and Therneau, 1994). The 

null hypothesis corresponds to a zero slope of residuals over time, which indicates 

proportionality. The test results shown in Figure 6.8 indicate that the null hypothesis must be 

rejected, and the overall model displays non-proportional hazards. Specifically, the largest 

contributor to the non-proportionality is unit size. As a result, the basic Cox model provides a 

reasonable estimate of the average effects over time but more complex specifications are needed 

to account for specific time fixed effects. 

 

Figure 6.8: Proportionality Test 

 𝛸2 P-Value 

ln Unit Size 41.22 0.0000 

Rent Ratio 3.69 0.0546 

Building Height 0.51 0.4760 

Floor Number 5.61 0.0179 

Building Age 4.98 0.0256 

Lease Type   

     Executive Suites 0.02 0.8926 

     Re-Lets 0.14 0.7096 

     Sub-Lets 0.01 0.9182 

Sub Market   

     Downtown 8.74 0.0031 

     Midtown South 0.34 0.5615 

     Upper  10.13 0.0015 

Global Test 87.08 0.0000 
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6.2. Time-Dependent Coefficients 

 

The first estimated alternative model follows equation (9) and incorporates time-dependent 

coefficients. This specification allows the effects of variables on survival to vary over the 

duration of vacancy. In other words, it allows variables to have different effects at the start and 

towards the end of the vacancy spell. The primary advantage of this specification is that hazard 

rates are no longer required to be proportional. 

 

The results of the survival model with time-dependent coefficients are reported in Figure 6.9. 

They are consistent with the findings of the proportionality test, showing that unit size is the 

main factor driving the variation in effects over time, while the effect of the other variables is 

less significant. The unit size hazard ratio at 𝑡 = 0 equals .633, which suggests that a 10% 

increase in a suite’s square footage is associated with a 4.3% decrease17 in the hazard rate. The 

decrease is slightly higher than under the proportional hazards model (7) that results in a 3.3% 

decrease given a 10% increase in a suite’s size. However, with each quarter, the unit size effect 

increases (becomes less significant) by 4.4%18. The total effect of a 10% increase in a unit’s size 

is a 3.9% decrease in the hazard after one quarter19, 3.5% after two quarters, 3.1% after three 

quarters, etc.  

 

                                                 

17 The hazard ratio of .633 translates into a coefficient of -0.457 (𝛽̂ = ln(. 633)). The effect of a 10% increase in the 

unit size is calculated as 𝑒−.457∗ln(1+10%) − 1 = −.043. 
18 The hazard ratio for the interaction of unit size with time is 1.043974. The effect is calculated as 1.043974 −
1 = .0439.  
19 The hazard ratio at 𝑡 = 1 becomes . 633 ∗ 1.044 = .661. The effect of a 10% increase in the unit size is then 

𝑒ln(.661)∗ln(1+10%) − 1 = −.039. 
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Figure 6.9: Survival Model with Time-Dependent Coefficients (7) 

No. of observations 5022      LR chi2(11) 1207.47 

No. of failures 4981      P-Value 0.0000 

    

Variable Haz. Ratio Std. Err. P-Value 

ln Unit Size .6331831 .0138083 0.000 

Rent Ratio .4099188 .0460023 0.000 

Building Height .9910342 .0024399 0.000 

Floor Number 1.01001 .0035158 0.004 

Building Age 1.001213 .0011897 0.308 

Lease Type    

     Executive Suites 1.117549 .3018055 0.681 

     Re-Lets 1.322996 .1728501 0.032 

     Sub-Lets 1.455143 .2003395 0.006 

Sub Market    

     Downtown .667364 .028708 0.000 

     Midtown South 1.130477 .0397265 0.000 

     Upper Manhattan .4314963 .0489649 0.000 

Interaction Variable 20    

ln Unit Size 1.043974 .0068617 0.000 

Rent Ratio 1.023609 .03191 0.454 

Building Height 1.000214 .0005451 0.694 

Floor Number .9987622 .0008732 0.157 

Building Age .9992320 .0003208 0.017 

 

 

  

                                                 

20 Variables interacted with a linear function of time (vacancy duration). 
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The diminishing effect of unit size on survival can also be illustrated graphically. Figure 6.10 

shows the survival functions of two hypothetical suites – a smaller suite (1,000 square feet) and a 

larger one (10,000 square feet)21. The survival function for the smaller suite is consistently below 

the larger suite, which reflects the smaller suite’s greater probability to lease at any point, i.e. a 

shorter vacancy duration. However, the difference between these two functions shrinks over the 

duration of the vacancy and becomes negligible after three years. 

 

The only other variable whose effect over time is found to be significant is the building age. 

Nevertheless, as its base coefficient is not significant, the time interaction term has only a weak 

impact on survival (Figure 6.11). The remaining base coefficients do not change considerably 

compared to the proportional hazards model. These findings indicate that non-proportionality is 

attributable primarily to unit size, while the other coefficients appear robust. 

 

Figure 6.10: Unit Size Function                          Figure 6.11: Building Age Function  

     

                                                 

21 The other characteristics are assumed to be the same for both suites. Specifically, it is assumed that the offices are 

in a new building with 10 stories, priced at the market average rent and located in Midtown Manhattan. 
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6.3. Stratified Survival Model 

 

Although the model with time-dependent coefficients addresses the issue of non-proportionality, 

it implicitly assumes that the baseline hazard is the same for all time periods during the duration 

of the study. As our sample includes suites that became vacant between 2012 and 2015, the 

model assumes that the baseline probability of getting leased did not change throughout this 

period.  

 

We introduced a survival model stratified on calendar periods. This relaxes the assumption of 

constant hazards and allows the baseline hazard, and hence vacancy durations, to vary over time. 

The specification assumes a different baseline hazard at each stratum (calendar period), which 

can be interpreted to reflect the combined effects of unobserved time-dependent variables on 

vacancy durations. The effects (coefficients) of suite-specific variables are assumed to stay 

constant over the different strata. 

 

Figure 6.12 shows that the estimated coefficients remained virtually unchanged compared to the 

base model with constant hazards over time (6). The results indicate that the time fixed effects do 

not have a considerable impact on the coefficients of the other independent variables. In other 

words, their effects do not appear substantially different in periods with higher or lower market 

demand and supply. Instead, different periods seem to uniformly affect survival probabilities 

across all suite characteristics. 
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Figure 6.12: Stratified Survival Model (8) 

No. of observations 5022      LR chi2(11) 1133.16 

No. of failures 4981      P-Value 0.0000 

    

Variable Haz. Ratio Std. Err. P-Value 

ln Unit Size .6989084 .0100966 0.000 

Rent Ratio .4077532 .0334942 0.000 

Building Height .9922883 .0016323 0.000 

Floor Number 1.006202 .0023055 0.007 

Building Age .9985376 .0007859 0.063 

Lease Type    

     Executive Suites 1.080132 .294475 0.777 

     Re-Lets 1.374352 .1813336 0.016 

     Sub-Lets 1.464198 .2038176 0.006 

Sub Market    

     Downtown .6696573 .0287637 0.000 

     Midtown South 1.153744 .0408853 0.000 

     Upper Manhattan .4310614 .0496252 0.000 

 

 

6.4. Time-Dependent Covariates 

 

One of the primary disadvantages of the stratified model is that it does not allow to directly 

observe the impact of the time-dependent covariates. To address this shortcoming, we extend the 

base proportional hazards model to include two main time-dependent covariates – the market 

vacancy rate and employment growth. It was hypothesized that changes in these two covariates 

were the main drivers of variations in the hazard rate over time. 

 



41 
 

Figure 6.13 indicates that employment growth market vacancy rate has a positive effect on the 

hazard rate, which suggests that vacancy duration is lower in periods with high employment 

growth. It suggests that a 1 percentage point increase in the year-over-year employment growth 

increases the probability of getting leased by 14.0%. Conversely, market vacancy was found to 

have no impact on the hazard rate during the observation period. 

 

Figure 6.13: Survival Model with Time-Dependent Variables (9) 

No. of observations 5022      LR chi2(13) 1163.85 

No. of failures 4981      P-Value 0.0000 

    

Variable Haz. Ratio Std. Err. P-Value 

ln Unit Size .703794 .0100111 0.000 

Rent Ratio .4260358 .0339573 0.000 

Building Height .9922358 .0016088 0.000 

Floor Number 1.005845 .0022773 0.010 

Building Age .9987181 .0007735 0.098 

Lease Type    

     Executive Suites 1.059283 .2856193 0.831 

     Re-Lets 1.283458 .1670116 0.055 

     Sub-Lets 1.396614 .191691 0.015 

Sub Market    

     Downtown .6629584 .0281847 0.000 

     Midtown South 1.144707 .0400731 0.000 

     Upper Manhattan .4264626 .0484041 0.000 

Market Vacancy 1.000439 .0202229 0.983 

Employment Growth 1.140027 .0335223 0.000 
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6.5. Parametric Model 

 

Figure 6.14 shows the results of estimating the exponential parametric model. In line with the 

previous results, unit size, rent ratio and building height have a highly negative effect on hazard 

– higher values result in longer vacancy durations. The effect of floor number is less pronounced 

but still significant at the 5% level. Offices on higher floors display shorter vacancy spells. The 

negative coefficient of building age suggests that suites in older buildings might experience 

longer vacancy durations, but the effect is relatively small and significant only at the 10% level.  

 

Figure 6.14: Parametric Model (10) 

No. of observations 5022      Wald chi2(11) 1161.97 

No. of failures 4981      P-Value 0.0000 

    

Variable Coefficient Robust Std. Err. P-Value 

ln Unit Size -.278242 .0120909 0.000 

Rent Ratio -.6272015 .0765517 0.000 

Building Height -.0068808 .001517 0.000 

Floor Number .0041236 .0019892 0.038 

Building Age -.0010482 .0006131 0.087 

Lease Type    

     Executive Suites .1705677 .2426152 0.482 

     Re-Lets .2309308 .1045888 0.027 

     Sub-Lets .3260999 .1107898 0.003 

Sub Market    

     Downtown -.3037686 .0356884 0.000 

     Midtown South .0967476 .0282379 0.001 

     Upper Manhattan -.6786591 .0914888 0.000 

_cons 1.788928 .1678158 0.000 
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7. Expected Vacancy Duration 

 

Next, we used the estimated coefficients reported from the parametric survival model to calculate 

the expected vacancy duration depending on suite characteristics. For instance, for a suite with 

average characteristics located in Midtown, the expected duration is calculated as:   

 

𝑇̂ =
1

𝑒−.278∗ln(𝑠𝑖𝑧𝑒)−.627∗𝑟𝑒𝑛𝑡−.007∗ℎ𝑒𝑖𝑔ℎ𝑡−.004∗𝑓𝑙𝑜𝑜𝑟−.001∗𝑎𝑔𝑒+2.020
 

 

𝑇̂ = 3.25 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠 = 0.81 𝑦𝑒𝑎𝑟𝑠 

 
 

The expected survival time of 3.25 quarters is similar to the mean vacancy duration of 3.41 

quarters for the entire sample, which suggests that the exponential parametric model fits the data 

relatively well.  

 

The estimated coefficients can be thought of as the elasticity of vacancy duration with respect to 

the individual variables. The elasticities are plotted and shown in Figures 7.1 – 7.5. The expected 

duration appears to be the most elastic with respect to unit size and asking rent. As unit size 

increases from 1,000 to 10,000 square feet, the duration increases from 0.6 years to 1.1 years. If 

the rent ratio increases from 0.5 to 1.5, the duration increases from 0.9 to 1.6 years. 

  

(20) 

(21) 
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Figure 7.1: Mean Duration – Unit Size22          Figure 7.2: Mean Duration – Rent Ratio 

     

 
Figure 7.3: Mean Duration – Height                  Figure 7.4: Mean Duration – Floor 

     

 

Figure 7.5: Mean Duration – Age 

 

                                                 

22 In Figures 7.1 – 7.5, the remaining variables are assumed to be fixed at their mean values. 
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8. Rent Optimization 

 

As the last step, we illustrated the potential application of the survival model in setting an 

optimal asking rent depending on suite characteristics. Using the estimated coefficients from the 

parametric survival model, the expected vacancy duration for a suite with average 

characteristics23 and unknown asking rent is defined as:  

 

𝑇 =
1

𝑒
−0.7024−.627∗

𝑟𝑖
𝑟𝑚

 

 

Where 𝑟𝑚 represents the current average market rent. By combining equations (19) and (22), we 

get an equation expressing the present value of the landlord’s profit as a function of the asking 

rent. This function24 is graphed in Figure 8.1. The optimal rent for an average suite is $235 per 

square foot, which is associated with the vacancy duration of 3.8 years.  

 

Figure 8.1: Present Value of Landlord Profit 

 

 

 

 

                                                 

23 Average unit size 8,395 sq.ft., number of stories 26.88, floor number 13.68, building age 76.01 years. The average 

unit is assumed to be located in Midtown and offered as a re-let. 
24 It is assumed that y = 10%, n = 5 years, C = $30, and 𝑟𝑚 = $72.5. 
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The optimal rent is considerably higher than the current average market rent of $72.5 per square 

foot. This has several possible explanations. 95% of all suites in the dataset have rent ratios 

(asking rent divided by market rent) between 0.5 and 1.2 times the market rent. Extrapolating the 

relatively inelastic demand in this range to higher rent values might yield unrealistic results. 

Furthermore, the parametric survival model also assumes that the relationship between expected 

duration and asking rent is exponential. The true relationship might follow some other form, 

possibly with a steep change in the slope after a certain rent value. Lastly, the true profit-

maximizing rent might be considerably above the current market rent, but other constraints, such 

as financing covenants, prevent landlords from waiting for several years to find a tenant.  
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9. Discussion 

 

The paper aimed to fill the gap in existing research by identifying the main determinants of 

vacancy durations in the office sector. It applied survival analysis to offices that experienced a 

vacancy between 2012 and 2015. First, the paper presented a Cox proportional hazards model 

and several of its extensions introducing various forms of time dependency. Four key 

characteristics – unit size, asking rent, building height, and floor number – were significant 

across all model specifications. 

 

Unit size was found to be positively related to vacancy durations. The conclusion is contrary to 

previous studies in the housing sector (Guasch & Marshall, 1985a), where smaller units have 

been found to display longer durations. A potential explanation is that smaller offices are more 

homogeneous than larger ones. This decreases tenant search costs and, hence, vacancy durations.  

 

We found asking rents to have a positive effect on vacancy durations, which supports the results 

of Orr et al. (2003) for commercial, or Guasch & Marshall (1985a) for residential units. These 

results are in line with the search theory proposed in previous research. The theory suggests that 

landlords who are motivated to transact quickly discount asking rents, while high-priced suites 

attract fewer potential tenants and trade in a thinner market.  
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Building height was found to increase average durations, while suites on higher floors lease 

faster. This could be attributable to the fact that the transiency of office tenants is higher in larger 

buildings, which in turn results in longer durations. However, the negative impact of building 

height is partially mitigated by the attractiveness of offices located on higher floors. 

 

Survival probabilities were found to contain significant time fixed effects. These time effects 

seem to be driven predominantly by employment growth – vacancy durations are generally lower 

during the times of rapid growth in employment, which is accompanied by increased demand for 

office space. The overall market vacancy rate was found not to affect durations. Nevertheless, a 

longer observation period is needed to obtain a more robust conclusion. 

 

Lastly, the paper presented an exponential parametric survival model. It further confirmed the 

effects unit size, asking rent, building height, and floor number as identified by the previous 

survival models. The estimated coefficients were used to calculate the expected vacancy duration 

and to show its elasticity with respect to the main characteristics. Vacancy durations appear to be 

the most elastic with respect to unit size and asking rent. Their elasticity with respect to other 

variables is less pronounced.  
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