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ABSTRACT

The uniformity of process output characteristics is a critical problem in improving
process quality. Because of the difficulties of modeling, uniformity has been optimized
using off-line methods. However, off-line methods cannot respond to changes of
process conditions and compensate for incoming material variations. This work is
aimed at developing a new on-line control methodology of process uniformity.

This methodology extends the robust design method (o support the on-line control of
processes. Process variabilities are categorized into non-tunable and runable.
Process parameters are classified according to their effects on non-tunable and tunable
variabilities, respectively. Robustness factors are used in off-line optimization to
minimize the non-tunable variability due to stochastic disturbances and highly
nonlinear effects. Tuning factors are used for the on-line control of tunable varabilities
in the face of process condition changes and incoming material variations. Adjustment
factors are used to adjust the process mean to target. Since only the tunable
variability is controlled on-line, the risk of applying on-line control of uniformity is
reduced, and simple control algorithms are applied effectively.

The methodology is applied to single wafer plasma etching processes for the
improvement of within-a-wafer uniformity. The radial component of the uniformity is
categorized as a tunable variability, and the circumferential component is catcgorized
as a non-tunable variability by considering the axisymmetry of the single wafer plasma
etching equipment. It is shown that radial uniformity is improved by on-line control
using single or multiple tuning factors while also maintaining the circumferential
uniformity as optimized off-line. This on-line control methodology results in higher
within-a-wafer uniformity compared with off-line optimization alone.

Thesis Supervisor: Emanuel Sachs
Title: Associate Professor of Mechanical Engineering
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CHAPTER 1
INTRODUCTION

1.1 Motivaidon

Process quality has been controlled by statistical process control (SPC)
methods since control charts were introduced by Shewhart in the late 1920s and
promoted by Deming in the 1950s [1]. In mass production systems of the past, the
SPC method was an effective tool for process quality control, because the number of
one kind of products was large enough to render the statistical modeling of processes
meaningful. When a mass production system is in control, the process conditions of
the system are believed to remain invariant, and the characteristics of the products are
assumed to have a stable distribution with constant means and constant variances.
Once the distribution of process output characteristics is statistically modeled, the
models are used to monitor process conditions by comparing the measured values of
product characteristics with model predictions in order to detect if there is an out of
control status. It is only when the process output characteristics show the out of
control status that process engineers are called upon to check and tune the process
[2].

Production systems have evolved from mass production systems to flexible
manufacturing systems that produce many kinds of products with a low quantity of
products, and each product is produced in small quantities [3]. In flexible
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manufacturing systems, product specifications change frequently, and process
conditions are adjusted accordingly. Processes are no longer stable in a statistical
sense, and the SPC method should be modified to monitor process quality properly
[4]. In pursuit of higher quality, it is imperative not only to monitor process quality
using the SPC method but also to control it actively. Hence, it becomes necessary to
develop a new methodology for quality control in flexible manufacturing systems.

Quality control during actual production is referred to as on-line, control
whereas quality control during product and process designs is referred to as off-line
control [5]. On-line control has the possibility of achieving higher quality since it
controls the process while the actual products are being manufactured. Every process
experiences process condition changes whether they are slow or abrupt. On-line
control can compensate for the changes so that higher process quality may be
achieved. On-line control can also maintain high quality by compensating for incoming
material variations. Since on-line quality control requires on-line measurements of the
product characteristics, it is now possible to accomplish on-line control with the
development of automated measurement devices. In flexible manufacturing systems,
process conditions change frequently in order to manufacture products with different
specifications, which makes on-line control a critical control methodology for higher
quality.

Even though on-line process control has advantages over off-line process
control for flexible manufacturing systems, there are still some problems to be solved.
On-line control is based on on-line measurements that cannot cover all the
characteristics of a product. Characteristics such as product reliability, product life
time, and end-product performance, for example, may not be measured on-line but may
affect the process quality. Therefore, on-line control based only on on-line measurable
characteristics has the potential to degrade those characteristics that cannot be
measured on-line. Also, some product characteristics may be too complex for on-line
control. For example, when product characteristics have a very highly non-linear
relationship with the process parameters, it is difficult to control them on-line.

This thesis is motivated by the need to develop an effective and a simple
methodology for on-line process quality control. Among many process characteristics,
the uniformity of the process output characteristics is important for higher quality.
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However, uniformity is very difficult to model because of its stochastic nature and
highly non-linear dependency on process parameters. This thesis is an attempt to
develop a new on-line control methodology of process uniformity.

1.2 Process Quality Control

1.2.1 Process Quality

In manufacturing systems, quality is determined by how closely process
outputs meet the target values such as the physical dimensions of the parts, the
material properties of the products (e.g., mechanical, electrical, chemical, etc.), and the
material characteristics of the products (e.g., surface finish, color, shape, etc.).
Process outputs usually have some distribution of their characteristics, and the
distribution is often found to be normal as expected by the central limit theorem [6].

Figure 1.1 shows the normal distributions of output characteristics from three
different processes with the same target value. It shows that the output
characteristics of process C have a mean value that deviates from the target value,
and the output characteristic mean of process B is the same as the target. Processes
B and C have the same output characteristic variances. Process A has the same
mean as process B but has smaller variance. From the comparisons of the mean
values and variances, process A is the best in terms of quality since it has more
products with output characteristics closer to the target, and process C is the worst
since it has only a small number of products with output characteristics close to the
target.

In order to improve process quality, it is necessary not only to adjust the mean
values of the output characteristics to the target (from process C to process B in
Figure 1.1) but also to minimize the variances of the output characteristics (from
process B to process A in Figure 1.1). Control of the mean values has been applied
by using the methods explained in Section 1.2.3, and the mean values are controlled to
meet the target by tuning process parameters. After the mean values are adjusted to
the target, reducing the variances is the key to improving quality. Hence, it is
necessary to measure appropriately the quality loss caused by the variances.
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frequency

process A

process B

/ process C

target output characteristic

Figure 1.1  Output characteristic distributions

frequency

/ process D
/ process E

T : target

LSL : lower specification limit

USL : upper specification limit

LSL T USL output characteristic

Figure 1.2 Comparison of processes using the fraction defective method

The quality of a process is usually measured by the fraction of the products
whose output characteristics are out of the specification limits. Processes with the
same fraction of defective products, however, can have a significantly different
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distribution of their output characteristics as shown in Figure 1.2. The figure
illustrates that process D and process E have the same mean values that meet the
target exactly and a similar fraction of defective products. However, when the
products within the specification limits are compared, process D has a larger
percentage of products whose output characteristics are closer to the target value than
process E; hence, process D is a better process.

The fraction defective method explained above does not appropriately measure
the quality of the processes due to the variances, because the products within the
specification limits are treated equally regardless of the magnitude of deviations from
the target. The quality loss increases stepwise as the output characteristic crosses
the specification limits as shown in Figure 1.3.A, which is not realistic. Instead, a
continuous function is proposed for measuring the quality of a process [7}].

quality loss

0 ;
LSL T UsSL
A. fraction defective quality loss function

output characteristic

quality loss

01 i\ } /f
LSL T USL

B. quadratic quality loss function

output characteristic

Figure 1.3  Quality loss functions

A quality loss function, QL(y), is defined as a continuous function of the output
characteristic, y, in order to calculate quality loss due to the variations. The function is
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expressed by the Taylor series approximation around the target of the output
characteristic, T, as follows:

QL(y) = Gy + Cx(y -T) + Cx(y -T)? + Cyx(y -T) + e (Eq. 1.1)

In the above expression of the quality loss function, coefficient Cy is zero since
the quality loss is zero when y meets the target T, and coefficient C, is also zero since

the quality loss is minimum wheny =T, i.e.,

QL(T) =0, and ["’(aLyL)]FT:o .

Disregarding the higher-order terms, the quality loss function can be represented as a

quadratic function as follows:
QL(y) = Kx(y -T)* (Eq. 1.2)

where K is the quality loss coefficient [8]. The quality loss coefficient is
obtained by comparing the magnitudes of specification limits with the magnitudes of
actual loss (often in dollar value) when the product is out of specification limits.
Figure 1.3.B shows the quadratic quality loss function.

1.2.2 MIT Process Control System

A modular framework of a process control system is under development at MIT
[9]. The MIT process control system is being developed for an application to VLSI
(very large scale integration) fabrication processes, but the algorithms of the control
system are general enough to be applicable to other manufacturing processes. The
objective of the control system is to improve process quality by applying optimization
and control. Figure 1.4 is the schematic block diagram of the system.

For the effective control of processes, the process control system has three
main modules: the flexible recipe generator (FRG), the run by run (RbR) controller,
and the real time controller (RTC). The modules cover different ranges of process
parameter space respectively, and have different strategies for optimization and
control. FRG is for the off-line optimization of processes using the equipment models
when new specifications or new designs are given. FRG covers the widest range of
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process parameter space and generates the initial recipe (process parameter value)
that is considered to be in the region of global optimization according to the equipment
models inside. The equipment models of FRG are usually constructed using the data
from off-line designed experiments. FRG is also invoked later when it is indicated
that the processes need a new parallel optimization.

The RbR controller is for the optimization and control of the processes on a run
by run basis. The RbR controller uses pre-process measurement data for feed-forward
control and post-process measurement data and summarized in sifru measurement
data for feedback control. The RbR controller covers the region of global optimization
that is around the initial recipe. First, the optimization of the processes is performed
sequentially, starting with the initial recipe from FRG and continuing until optimization
is no longer necessary. Sequential optimization improves the quality of the processes
further because it explores the region of global optimization thoroughily. After the
optimization, on-line control maintains the optimized quality by generating updated
recipes for each run. The recipes are determined by the equipment models that rcside
in the RbR controller and that are updated on a run by run basis. The model
adaptation is performed in two ways: gradual model modification and rapid model
modification. The gradual model modification is aimed to compensate for slow changes
of process conditions such as aging, tool wear, material buildup, process condition
drifts, etc., and the rapid model modification is for sudden changes such as cleaning,
material change, preventive maintenance, equipment part replacement, etc. [10]. The
RbR controller is also responsible for determining which type of modification is
necessary [11].

RTC accepts in situ measurement data as inputs and controls the process
parameter values while the processes are being run. RTC controls the processes real
time by making minor changes to the process parameters; hence, it covers the
smallest range of the process parameters that is closer to the updated recipe
determined by the RbR controller. Since in situ measurement data are used for real
time control, any differences of the process output characteristics from the target can
be controlled even when they are unknown to the RbR controller. Finally, RTC has
the responsibility for controlling the processes so the target may be satisfied.
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;,rﬂexible recipe generator
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Figure 1.4  Schematic block diagram
of the MIT process control system for VLSI fabrications

By dividing the control actions into the terms of time scales and the process
parameter ranges, the control system has more flexibility and efficiency. Algorithms
appropriate for each module either have been developed or are under development.
Several algorithms have been implemented and the application examples are as
follows: modeling and optimization of an LPCVD (low pressure chemical vapor
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deposition) process, uniformity control of a silicon epitaxy process, a tungsten CVD
(chemical vapor deposition) process, single wafer plasma etching processes, etc. The
developed process control system will also be incorporated in the MIT CAFE

(computer aided fabrication environment) System [12].

1.2.3 Related Works

This section introduces existing process optimization and control methods such
as the traditional SPC method, the generalized SPC method, the sequential
optimization method, the multiple response surface method, the method combining the
automatic control and the traditional SPC method, and the multivariate SPC method.

The SPC method begins with the idea that every process has a certain amount
of inherent variability no matter how well it is designed and no matter how carefully it
is controlled. In the SPC method, a process is regarded in statistical control as long
as the magnitude of process variability is within certain limits. These limits are
determined by the magnitude of inherent variability. When process varability
becomes large enough to make process performance unacceptable, it is regarded that
the source of variability is not a so-called chance cause but a special cause or an
assignable cause. The objective of the SPC method is to detect the presence of
assignable causes as quickly as possible so corrective actions may be taken to reduce
the number of non-conforming products during the manufacturing process. However,
the SPC method alone does not provide the guidance on how to correct the process
conditions in order to restore process variability when the assignable causes are
detected.

The traditional SPC method assumes that the processes are statistically
stable with inherent variabilities when they are in control. Process conditions should
not be changed for processes to remain statistically stable. Hence, this method is not
appropriate for processes that are being controlled, since controlling action changes
the process conditions and makes the processes no longer statistically stable. In
order to make it possible to detect the presence of assignable causes while the
processes are controlled, a generalized version of a traditional SPC method was
developed by combining traditional control charts and the regression analysis method
[11][13]. In the generalized SPC method, regression models of processes are used
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to predict process output characteristics when the control inputs change. The
differences between the model predictions and the measured output characteristics are
monitored: only the measured output characteristics are monitored in the traditional
SPC method. By monitoring the differences, the effects of the controlling actions are
accounted for of and only the true variability of the processes is measured.

Control charts from the traditional SPC method and the generalized SPC
method are compared in Figure 1.5. Figure 1.5.A is an individual control chart of a
statistically stable process by the traditional SPC method. The figure shows the
center value of output measurements as well as the upper control limit (UCL) and the
lower control limit (LCL). No output is beyond the control limits, which means the
process is in control.

Figure 1.5.B is a plot of the process output characteristic versus the control
input when the control inputs are increased from x; to x9; the output characteristic is
modeled as a linear regression function of the control input. The differences between
the measurements and the model predictions are due to either model errors or inherent
variabilities of the process. All the actual output characteristics are within the
confidence limits, which shows that the process is statistically stable. However, if the
traditional SPC method is applied, false alarms will occur as shown in Figure 1.5.C.
The figure shows that measurements of runs i4, 15, 16, and 17 are beyond the control
limits when the traditional SPC method is used. They are caused by control actions
not by assignable causes, which means that the process is not out of control. The
figure also shows the control chart when the generalized SPC method is applied; it is
plotted as open circles. These represent the differences between the model
predictions and the measured output characteristics and show no false alarms. The
generalized SPC method was implemented in the RbR controller of the MIT process
control system to detect sudden changes and to invoke accordingly the rapid model
modification algorithm.

In manufacturing systems, it is often required to improve process performances
while the actual production continues. Sequential optimization methods are applied
during actual production to enhance process quality. Also, experiments are designed
in a small range around the current process parameter value to reduce the risk of
producing scraps.
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Figure 1.5 Traditional SPC method vs. generalized SPC method

Figure 1.6 shows how the sequential optimization of a process is performed.
The process performance, Y, is shown to be optimized using one process parameter,
X, for simplicity. Figure 1.6.A shows experimental data around the current process
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parameter value Xo. The entire performance response is unknown yet but is drawn for
illustration purposes. Using the current experimental data, a quadratic model of the
process performance is constructed as shown in Figure 1.6.B. Note that the quadratic
model is valid only in the vicinity of the current process parameter value. Then the
performance is optimized using the currently available model by determining the
optimizing process parameter value. Figure 1.6.C shows the current model and its
optimizing process parameter value X;. It is noted that the moving distance from Xg

to X, is confined because of the uncertainty of the model.

Y, Y,
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Figure 1.6 Illustration of sequential optimization

Other experiments are then designed around X, and a new model is
constructed. A new optimizing process parameter value X is determined using the
new model and other experiments are designed again around X;. These sequences
continue until the true global optimizing process parameter value, Xop , is found as
shown in Figare 1.6.D. The figure also shows that the local models are different from
the other local models since they are based on the local experimental data.
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Evolutionary operation (EVOP) is one of the sequential optimization methods
{14]. In EVOF, the improvement of process performances is achieved gradually by
changing the process parameter values in the direction of the increasing process
performances. These are determined by the experimental results that are performed in
the vicinity of the current operating process parameter value. Well-organized
worksheets are prepared so the procedure may be performed easily on manufacturing
floors.

Another sequential optimization algorithm is implemented by a commercial
software package called Ultramax® [15]. In Ultramax®, the data from the previous
experiments as well as all the historical data are used for building process models.
The data are weighted according to their age, i.e., larger weights are given to more
recent data. The sequential optimizer also has the capability of exploring the process
parameter space when designing the next experiments so the process can bc modeled
more accurately [16]. The models become more precise around the optimum point as
more runs are performed as suggested by the optimizer, which increases the
performance of optimization over the parallel optimization methods.

The on-line control of processes requires the capability of rapid model
adaptation for higher performance. A new modeling methodology called the multiple
response surface method was developed, and spatial uniformity of processes was
modeled effectively [17}. In the methodology, multiple, low-order polynomials are
used to model the output characteristics at each of the measurement sites within a
batch of products. Process performance models are then obtained by combining these
multiple models. Using the combined process performance models, process
performance is optimized and controlled. The advantages are effective modeling using
a small number of data, rapid adaptation of the models for the process condition
changes, and better immunity against process noises.

Besides the MIT process control system, other approaches were to combine
the traditional SPC method and the automatic feed-forward/feedback control theory to
exploit the strengths of both [18][19]. Automatic control theory concepts are used to
minimize the deviations from the target by making frequent preoess adjustments while
fundamental improvements are gained by using SPC concepis that detect changes
from past performances and lead to the identification of their root causes. Dynamic
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behaviors of processes, for example, are modeled using a time series analysis method,
and appropriate control actions are determined based on the model. When changes in
process performances are so large that the automatic control cannot compeasate, their
root causes are identified by the SPC metiiods and are eliminated.

Process quality is often determined by more than a single process output
characteristic. When multiple process output characteristics are measured, it is
possible that they are cross-correlated. In such cases, univariate approaches for the
process quality measurement are not appropriate and can be misleading, since the
control limits of each output characteristic are affected by the correlation with others.
Multivariate statistical process control methods have been developed to monitor
process conditions using multiple in situ process condition measurements or multiple
post-process measurements of process output characteristics [20][21]. Multiple
measurements are combined to calculate a statistic, such as Hotelling's T2 statistic or
Mahalanobis's D2 statistic, and the statistic is monitored in a single control chart to
detect process condition changes.

1.2.4 Robust Design Method

As stated in Section 1.2.1, the adjustment of the mean values of the output
characteristics to the target as well as the minimization of variations are necessary to
improve process quality. The method of robust design has been developed to meet
such iwofold goals [22]{23]. In this method, variances of output characteristics are
considered the effects of process disturbances and are minimized by finding the
process parameter values that make the processes robust against process
disturbances. The magnitude of the effects of the process disturbances is measured
by a defined quantity called the SN ratio [24]. The mean values are then adjusted to
the target using a process parameter called an adjustment factor. Based on the
experimental results, the adjustment factor is selected among the process parameters
to change the mean value without changing the robustness of the process.

The following example illustrates how the robustness of a process is optimized
[19]. Output characteristics are usually non-linear over a wide range of process
parameters. Because of the non-linearity, output characteristics have different
sensitivities to process parameter variances at different process parameter values.
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The variances are often due to stochastic noise, disturbances from the environment,
aging of the equipment, ¢tc. In order to optimize the robustness, proper values of the
process parameters are determined so that the process has the minimum sensitivity.
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Figure 1.7 Illustration of robustness optimization

In Figure 1.7, an output characteristic, Y, which has a non-linear relationship
with a process parameter X, is considered for simplicity. Because of the ncn-linearity,
the output characteristic sensitivity at process parameter value X, is different from the
sensitivity at process parameter value Xj;. The sensitivities are represented as the
slopes of two tangential lines to the output characteristic response curve in the figure.
When the process parameter is set at X;, the output characteristic has a larger
sensitivity to the process parameter variations than when the process parameter is
set at X;. For the same magnitude of process parameter variations, AX;| and AX»,
variations in the output characteristic have different magnitudes. AY;, the output
characteristic variation at X, is larger than AY, the output characteristic variation at
X,. Therefore, X, is more effective than X; for optimizing robustness. The mean
output characteristic value Y is to be adjusted to the target value using the
adjustment factor in a following procedure.
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In the example above, the variation of the process parameter is considered a
disturbance to the process. The concept of disturbances may be extended to the
different kinds of causes. For example, when spatial uniformity is of concern, the
disturbance is the difference of the product positions. Due to the position differences,
the products experience different process conditions, which causes non-uniformity.
Such process condition disturbances are represented as AX in Figure 1.7. Since the
sensitivities vary for different X values, the effect of the same magnitude of
disturbances resulting from positional dependence can be minimized by selecting the
proper process parameter values.

SN ratios are used for the measurement of process robustness. They are
defined according to the characteristics of each process. For example, when there is a
target value for the process output characteristics, the SN ratio is defined as follows:
Total quality loss, QL, due to the deviations of n products from the target, T, is

n
QL=KY (Y,-D*=K[n-T?+¢7 (Eq. 1.3)
i=1
where K is the quality loss coefficient, u is the mean, and o2 is the variance. When
the mean is adjusted to the target, the towal guality loss becomes as follows:

QL =K T [3]2 , (Eq. 1.4)

where QL, is the total quality loss after adjustment.
The SN ratio is defined from the total quality loss after adjustment by taking
2
log transforms of [ﬂ as follows:

2
SN ratio = - 10 1oglo[ﬂ2 = 10 loglo[%J . (Eq. 1.5)

The total quality loss after adjustment is to be minimized by maximizing the
SN ratio. The adjustment factor is a process parameter that has little effect on the SN
ratio so the mean can be adjusted without changing the process robustness.

The SN ratio above is derived from the quadratic quality loss function under the

assumption that the standard deviation of the output characteristics changes
proportionally to the mean of the output characteristics. Another performance
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measure called PerMIA (performance measures independent of adjustment) is also
proposed as an extension of the SN ratio [25]. PerMIA's can be used when the
assumption of proportionality between the mean and the standard deviation is not
valid.

In the case of dynamic systems, where process output characteristics are
expected to follow signal factor values, a scaling factor is sclected to tune the
proportionality between the signal factor value and the process output characteristic
value, just as the adjustment factor is selected to adjust the mean to the target in the
above static process. In dynamic systems, the SN ratio is defined as follows:

2
SN ratio = 10 log, , [—B—} , (Eq. 1.6)

o
e

where B is the slope of the regression line in the process output characteristic and
signal factor space, and G is the regression error variance. Maximizing the SN ratio
leads to a reduction in sensitivity to noise factors as well as to the non-linearity of the
relationship of the process output characteristic and the signal factor. The scaling
factor is selected as a process parameter that has little effect on the SN ratio.

In the robust design method, experiments are designed using orthogonal arrays
[26]. The orthogonal arrays facilitate the calculation of the main effects of the process
control parameters on the SN ratios, reduce the number of experiments, and make the
experiments economical.

In the robust design method, process quality is optimized in two steps: a
robustness optimization step and a mean adjustment step [27]. In this method,
optimization is an unconstrained problem because the mean adjustment is decoupled
from robustness optimization, which is much simpler than the constrained optimization
problems of the classical statistical exper'ment design methods. In the classical
statistical experiment design methods, robustness is optimized under the constraint
that the mean must meet the target.

Even though the robust design method shares the principles of planning
experiments and data analysis with the classical statistical experiment design
methods, the fundamental differences are as follows [8][28]. In the classical
statistical experiment design methods, mathematical equations of the mean responses
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are derived assuming that the variances are constant over the process parameter
ranges. When the variances are not constant, techniques such as blocking,
randomization, and transformation of variables are tried to control the variances to
increase the model predictability. Hence, the classical statistical experiment design
methods are not appropriate for improving process quality by both adjusting the mean
and minimizing the variances. The robust design method attempts to model the
effects of process parameters on process robustness and to determine the proper
process parameter values for the maximum robustness. The maximum robustness
corresponds to the minimum variance; hence, high process quality. Accurate modeling
of the mean response is not critical in the robust design method, since the mean is
easily controlled by the adjustment factor after the robustness optimization.

1.3 Background and Approach

The goal of process control systems, including the MIT process control system,
is to increase process quality by controlling the process output characteristics so the
target values can be met. In order to control the process output characteristics, it is
necessary to have accurate models that describe their behavior, which is a function of
the process parameters that are available for control. Several methods have been
developed in order to model process output characteristics. For example, physically
based modeling methods are used to accurately model process output characteristics
and to determine the process parameter values in order to achieve the desired output
characteristic values. Response surface modeling methods can also be used to
construct process output characteristics models using experimental data when the
underlying physics is too complicated or not readily understood.

To improve process quality, the means as well as the variances of the process
output characteristics should be controlled as explained in Section 1.2.1. Process
output characteristic variances are not easily modeled and, therefore, are difficult to
control. They are often caused by stochastic noise in the process, disturbances from
the environment, variability of incoming materials. Therefore, the physically based
modeling of variances is almost unrealistic. Response surface modeling of variances
is also not practical, because the variances have a wide spread in their distribution ()2

distribution) even when the process output characteristics have a purely normal
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distribution. Hence, a large amount of data are required in order to model the process
output characteristics with sufficient confidence.

Several methods have been developed to improve the process quality by
controlling the process output characteristic variances; for example, the multiple
response surface (MRS) method [17]. In the MRS method, spatial uniformity is
modeled first by constructing models for each mecasurement and then by combining the
multiple models. The spatial uniformity is equivalent to the process output
characteristic variance.

For example, in a baich-type LPCVD process of VLSI fabrication processes,
where a batch of wafers are put into the furnace in a row and processed
simultaneously, uniformity of the deposited film thickness down the tube (within-a-
batch uniformity) is modeled by first making multiple thickness models for each wafer
and then by combining the multiple models. Control or optimization or both that is
based on the MRS method still does not deal with the variability that is not modeled,
i.e., within-a-wafer uniformity and batch-to-batch uniformity. It is unknown how the
control or optimization or both of the modeled uniformity affects the unmodeled
uniformity.

The robust design method explained in Section 1.2.4 deals with the process
output characteristic variances by maximizing process robustness. This method
decouples the mean control from the robustness optimization and allows on-line
control of the process output characteristic mean. However, it is not sufficient to
control only the process output characteristic mean on-line for higher quality of the
processes. Another difficulty is that parts of the process robustness may vary due to
the process condition changes, even though it is claimed that the process robustness
includes all kinds of process variability and just the optimization of the process
robustness can make processes robust enough. Also, it is often necessary to change
the robustness (the uniformity in more understandable terms) because of specification
changes.

For example, in a single wafer VLSI fabrication process where one wafer is
processed at a time, within-a-wafer uniformity is important. With robust design
method, the within-a-wafer uniformity combined with the run-to-run uniformity is
treated as a robustness problem. Then, only the process output characteristic mean is
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controlled on-line. The method does not provide how to control parts of the within-a-
wafer uniformity, i.e., the radial uniformity that is often observed as a so-called bull's
eye paitern when the process condition changes. Also, the method does not provide
how to compensate for the incoming non-uniformity that can hbe measured before the
process step.

One interesting observation from the MRS modeling is that the model fitness
is better when the group mean values of multiple measurements are modeled than
when all the measurements are modeled separately. Hence, it is possible that the
uniformity can be grouped according to process output characteristics. The differences
among the group means can be modeled and controlled while the uniformity within

each group is treated as a robustness problem.

group 3
— group 2
group 1

* : measurement site

Figure 1.8 Grouped measurement sites of a wafer

For example, in the case of single wafer processes where the bull's eye pattern
is a typical non-uniformity pattern, the multiple measurements are grouped according
to the radial distances from the wafer center as shown in Figure 1.8. The differences
among the group means represent the radial uniformity, and the variabilities within
each group represent the circumferential uniformity. As can be seen from the results
of Appendix F, sequential optimization of only the radial uniformity did not improve the
overall within-a-wafer uniformity since the circumferential uniformity was degraded
while the radial uniformity was optimized. Hence, it was shown that the
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circumferential uniformity needs to be optimized off-line by the robust design method
while the radial uniformity is modeled and controlled on-line.

A new methodology of on-line process quality control is contributed in this
thesis. First, the process variability is categorized so that one part of the variability
can be treated as a robustness problem and the other part can be modeled and
controlled on-line. Several questions are then posed on how to define the robustness
appropriately, how to dectde which process parameter is appropriate for on-line control
while maintaining the robustness as optimized, how to define the on-line controllable
process variability, and how to perform on-line conirol effectively. This thesis
proposes solutions to these questions. A new methodology for process optimization
and control is developed and applied to some examples, which will be explained in the
following chapters.

1.4 Outline

In chapter 2, the on-line control methodology developed in this work is
discussed. It is explained how to categorize process variabilities by using some
examples of several processes and how to classify process parameters. It is also
explained how to define process robusiness and on-line controllable variability.
Procedures of robustness optimization, parameter identification, and on-line control
are also described in detail.

Examples of applying the methodology tc the on-line control of the within-a-
wafer uniformity in single wafer plasma etching processes are shown in Chapter 3.
Robustness optimization and the on-line control of uniformity of the oxide etching
processes were performed with different numbers of process parameters. The results
of the on-line control expe.iments are compared with the results of optimization-only
experiments. The polysilicon etching process was also optimized and controlled on-
line, and the results are compared.

In Chapter 4, the results of the sequential optimization of within-a-batch
uniformity in an LPCVD process simulation are described. The sequential
optimization of the categorized process variability was performed with a tuning factor
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after the robustness optimization. The effectiveness of using a tuning factor for the
optimization of categorized process variability is discussed.

Chapter 5 includes discussions on the work. Conclusions and future works are
discussed in Chapter 6.

Experimental data of Chapters 4 and 5 are listed in Appendices B, C, and D, In
Appendix E, on-line control using multiple site models is discussed. The results of the
on-line control of an oxide etching process are compared with the results of the
experiments without control. Appendix F shows the results of sequential
optimization using all process paramelters.



36

CHAPTER 2
ON-LINE CONTROL METHODOLOGY

2.1 Overview

Process quality controls are divided into on-line control and off-line control,
according to when they are performed. On-line control is performed during the actual
production, whereas off-line control is accomplished before the actual production
begins. In batch production systems, on-line control is performed both on a run by run
basis and in real time. The run by run process control is based the measurements of
the process output characteristics both before the process and after the process.
Using the pre-process measurements, incoming material variability is detected and
compensated for by the process parameter controls. Using the post-process
measurements, the process conditions are monitored and the process parameter
values for the next run are decided accordingly. Real time control varies process
parameter values during a run based on real time measurements. In this chapter, a
new methodology is developed for the on-line control of process uniformity, which is to
be implemented for both the run by run control and the real time control of process
uniformity.

An equipment model is the basis for control of a process. An equipment model
is defined as a forward simulation of a manufacturing process and related equipment
[9]. In the equipment model, the process and the equipment are treated as one unit as
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shown in Figure 2.1, which shows a generic model of a manufacturing process and

related equipment.

specifications —
parameler _1_("controllable inputs >

incoming | & process output
materials characteristics
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disturbances —@ncomrollable inpu@—)

Figure 2.1 Generic model of manufacturing process and related equipment

There are two types of inputs in the manufacturing processes: controllable
inputs and uncontrollable inputs. The controllable inputs include the specifications of
the products, process parameter settings, and incoming materials. The uncontrollable
inputs are stochastic disturbances to the process o1 to the equipment. The outputs of
the manufacturing processes are the process output characteristics of interest. The
equipment model represents the functional relationship betwcen controllable inputs
and process output characteristics as shown in Figure 2.2. The equipment model of a
process is suited for process control, since the controllable input values are
determined to get the desired process output characteristics.

(controllable inputs )—>> | equipment model | —>> “’:’h":r‘f‘csm"r‘i‘;{’i‘é;

Figure 2.2 An equipment model

An equipment model may be constructed in a mechanistic way, or in an
empirical way, or as a combination of both. Mechanistic models are derived from
understanding of the underlying physics and are expressed in closed forms or via
numerical solution. It often takes too much time and effort to develop mechanistic
models because the underlying physics is not easy to model, especially when the
process output characteristics are not readily understandable. Also, developed
mechanistic models may be too complex for on-line control purposes. Empirical
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models are derived from analyzing experimental data and are usually polynomial
regression models [29]. The experimental data are best obtained through
experiments that are designed systematically. Empirical models are generally faster
to construct than mechanistic models. Low-order polynomial regressions are usually
used as empirical models, because they are simple and appropriate for on-line control.
In on-line control, process parameter ranges are usually small enough to make low-
order polynomial approximations effective.

The combination of mechanistic modeling and empirical modeling results in
semi-empirical models. The semi-empirical models combine the advantages of
mechanistic and empirical models and are possible even when the underlying physics
is not completely understood. For example, unknown coefficients of the mechanistic
models can be calibrated using data from designed experiments [30])[31]. The semi-
empirical modeling method can be more effective than the empirical modeling method
in designing experiments and utilizing experimental data, because the effects of the
process parameters are qualitatively understood in advance. For example, the
process parameters are transformed into grouped parameters based on the
dimensional analysis of the process, and the regression model can have better
modeling accuracy using the grouped parameters [32]-[34].

In this thesis, on-line controllable variabilities are modeled using empirical
models because their dependency on process parameters is either not readily
understandable or very complicated. For the purpose of the on-line control of an on-
line controllable variability, regression models of the on-line controllable variability, as
simple as first-order linear models, are used to approximate the behavior of the on-line
controllable variability in small process parameter ranges.

When it is guaranteed that a process does not experience any changes in the
process conditions, the off-line control method is best suited. A one iime process
optimization performed before the actual production is enough, and it is not necessary
to intervene to check and control the process conditions during production. All
processes, however, experience changes in process conditions and variations in
incoming materials. Changes of process conditions may be slow, such as the changes
due to tool wear, aging, material deposition, etc., as well as abrupt, such as the
changes due to tool change, cleaning, preventive maintenance operation, etc. When
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such changes occur, it is necessary to compensate for them by re-scuting the process
parameters. This re-setting procedure is called nveaking the process parameters.

On-line control is a procedure for modifying equipment settings so the desired
target values of the process output characteristics can be satisfied even when there
are changes in process conditions and incoming materials. Changes in the process
conditions are detected by measuring process output characteristics after the process
and comparing the post-process measurements with the predicted values, providing a
feedback control loop. By measuring the incoming material characteristics, proper
parameter values can be determined to compensate for the incoming material
variations. This pre-process measurement enables feed-forward control. Figure 2.3
illustrates feed-forward and teedback paradigm of an on-line control system.

[ on-line controller J
2

-'.1

parameter
settings

post-process
t measurement

pre-process
measurement

feed-forward feedback
control control

incoming

-------- > measurements
—> process parameter controls

—>> material flow

Figure 2.3 Feed-forward and feedback control in on-line control system

By combining the feed-forward and feedback control schemes, on-line control
can properly tweak process parameters in order to achieve the maximum quality all
the time. Since the control action is based on the equipment model of a process, the
equipment model needs to be adapted in order to catch up with any changes that may
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have occurred in the process conditions during production. Effective mcdel adaptation
algorithms are critical for an on-line control of the processes.

On-line control is based on on-line measurements that includes both pre-
process and post-process measurements. On-line measurements, however, cannot
cover all the aspects of process output characteristics. Some oi the process output
characteristics may not be measured on-line. On-line control based only on the on-line
measurable characteristics has a risk of degrading the other characteristics that are
not measured on-line.

Actual manufacturing environments require a simple and an effective control
algorithm. Some of the process output characteristics, however, may be too complex
to be controlled on-line. When a process output characteristic has a highly non-linear
relationship to the process parameters or has complex interactions with other process
output characteristics, the control scheme should be very elaborate, which may not be
appropriate for on-line control in actual marufacturing environments.

In this thesis, a new methodology for the on-line control of process unifermity
is developed. Process uniformity has been regarded as difficult to control because of
its stochastic nature and highly non-linear dependency on the process parameters. It
is critical, however, to control the uniformity since it is closely related to process
quality. The on-line control of uniformity is considered an effective way to achieve
higher process quality, because it can handle both process condition changes and
incoming material variations.

2.2 Process Variability

2.2.1 Categorization of Process Variabilities

Variability of processes is defined as the difference between designed values
and the actual measurement values of the process output characteristics. Examples of
process output characteristics are the physical dimensions of the products,
functionality of the products, and material properties such as mechanical, electrical,
physical, chemical, etc. In manufacturing processes, designed process output
characteristic values are targets to be satisfied when proééssing incoming materials or
workpieces. Process quality is determined by the magnitude of process variability and
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should be improved by reducing the process variability. Process quality is evaluated
by quality loss caused by the process variability as explained in Section 1.2.1.

Process variabilities are inevitable in actual manufacturing processes. They
come from stochastic disturbances to process conditions, variability in incoming
materials or workpieces, imperfect equipment conditions, environmental variations,
etc. The goal of process optimization and control is to reduce the quality loss by
minimizing the process variabilities even though it is impossible to eliminate them.

In this thesis, process variabilities are categorized into non-tunable variability
and tunable variability according to their characteristics. Non-tunable variability is
defined as process variability that is difficult to model and control since it is due to
stochastic disturbances or the effects of process parameters that are not readily
understood to model and control. Tunable variability is defined as on-line controllable
process variability that is relatively easy to model and control. Hence, it is the
degree of difficulty of modeling and controlling that categorizes non-tunable and
tunable variabilities. The categorization of variabilities is specific to each process and
needs knowledge and experience on the process and equipment.

Tunable variability consists of two components: the deviation of the mean
process output characteristic from the target and tunable uniformity. The process
output characteristic mean is often the easiest to model and control. Many methods
have been developed for modeling process output characteristic mean values. For
example, process output characteristic means are often modeled by understanding the
underlying physics of the processes. Tunable uniformity is defined as the process
uniformity that is to be modeled and controlled. The parts of tunable variability other
than the mean deviation are tunable uniformity. When uniformity is considered in
many processes, multiple measurement sites are selected to measure the
characteristics, and uniformity is calculated from ther. It is difficult to model all the
multiple measurements of product characteristics, but the multiple measurements can
be grouped so that the means of each group may be medeled. Multiple measurements
can be grouped so that measurement sites in a group have similar proczss conditions.
For example, many kind of equipment are designed to have symmetry in order to
increase uniformity, and the measurements at the symmetric positions can be grouped.
Figure 2.4 shows the categories of process variabilities.
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Figure 2.4 Categories of process variabilities

Non-tunable variability is to be optimized off-line, where the most favorable
process parameter values for the minimum non-tunable variability are determined.
The optimal process parameter values are expected to bring the processes to a
position of process parameter space so that the effects of stochastic disturbances may
be minimized. Also, the effects of controlling other process parameters are expected
to be small in the position.

Tunable uniformity and mean are controlled on-line based on the models that
are obtained either mechanistically or empirically. Ii is only through on-line control
that changes of both process conditions and incoming materials or workpieces can be
compensated for.

2.2.2 Examples

The categorization of process variabilities is illustrated in this section by using
examples of several processes: a straight turning process, an injection molding
process, and a single wafer process and a batch process in VLSI fabrication
processes.

In the straight turning process, goal of process control is to obtain perfect
circular cross sections of a designed diameter along the axis of a workpiece by
machining the workpiece using a tool as shown in Figure 2.5 [35]. It is assumed that
the diameters are measured in m positions along the axis of the workpiece and n
measurements are performed along the periphery of the cross section at each position.
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Figure 2.5  Straight turning process and measurements of diameter

The process variabilities of this example are categorized as follows. The
differences between the n measured diameters at each cross section are categorized
as nion-tunab'e variability because they are due to stochastic disturbances, such as
vibrations and chattering. The n measurements of the diameters at each cross section
are averaged. The differences between the m average diameters are categorized as
tunable uniformity since they are on-line controllable by changing the distance
between the tool tip and the center line of the workpiece as the tool moves. The
overall average diameter of mxn measurements is caiculated, and the deviation from

the target diameter is defined as the mean deviation.

In the injection molding process with multiple cavity molds, the goal of process
control is to obtain the correct dimensions of the parts from all the cavities. The
dimensions are measured at several peints on each part, and the differences between
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the measurement and the designed value are the variabilities. The process
variabilities in this example are categorized as follows. The variability within a part is
categorized as non-tunable variability, since control of local process conditions of the
mold is difficult. The variability between the parts is categorized as tunable
variability, since global process conditions of the mold, such as the temperature
distribution, is on-line controllable. The overall average of the differences is the mean
deviation from the target.
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Figure 2.6 Multiple cavity mold of injection molding process

In single wafer processes in the VLSI fabrication, within-a-wafer uniformity is
critical for process quality. It is known that more than 70% of single wafer process
equipment has axisymmetry in their configurations in order to increase process quality
[36]. Figure 2.7 shows the examples of axisymmetric configurations. Even in those
instances when the equipment does not have axisymmetry, the wafer is rotated in
order to provide an axisymmetric process condition io the wafer as shown in Figure
2.8.

Axisymmetry provides similar process conditions around the circumference of a
wafer. The result of the axisymmetric process condition is often shown as a so-called
bull's eye pattern, which is caused by the dominant radial non-uniformity of the
process. Figure 2.9 shows an example of the bull's eye pattern, where the thickness
of the etched film has radial non-uniformity. The thickness variation is represented by
the different gradations of darkness in the figure. Because of axisymmetry, the
process conditions in the radial direction are easier to control than the circumferential
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process conditions. Variations in the circumferential direction are categorized as non-
tunable variability and variations in the radial direction as tunable uniformity.

reaction gas electromagnets

circular reaction chamber radial gas flow rotating magnetic field

Figure 2.7 Examples of axisymmetric configuration
in single wafer process equipment
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Figure 2.8 Rotating wafer in single wafer process equipment

Figure 2.9 Bull's eye pattern of single wafer plasma etching processes
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In batch VLSI fabrication processes, a batch of wafers experience different
process conditions since they are located at different positions within a machine. The
process conditions at each wafer position are controlled by using multiple control
devices such as temperature controllers and gas injectors. Hence, the wafer-to-wafer
variation is categorized as tunable uniformity. Variations within each wafer or
variations of the wafers at the same positions from different batches are categorized
as non-tunable variability, since they are due to the non-uniform process conditions
over the wafer or stochastic disturbances, both of which are difficult to model.

2.3 Process Parameters

Process parameters are controllable inputs to processes by which process
conditions are controlled. Examples of the process parameters are the set values of
temperature, pressure, power, feed rate, spindle speed, gas flow rates, process time,
etc. Process output characteristics are optimized and controlled by setting the
process parameters to proper values. The effects of varying process parameters on
process output characteristics are often difficult to model, because the configurations
of the equipment as well as the underlying physics of the processes must be
understood clearly.

For the effective optimization and control of the process variabilities, process
parameters are classified into robustness {actors, tuning factors and adjustment
factors in this thesis. A robustmess factor is defined as a process parameter that has a
large effect on the non-tunable variability and a small effect on the tunable variability.
A tuning factor is defined as a process parameter that has a small effect on the non-
tunable variability but a large effect on the tunable uniformity. An adjustment factor is
defined as a process parameter that has a small effect on both the non-tunable
variability and the tunable uniformity but a large effect on the mean. The effects of
each factor are summarized in Table 2.1.
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effects on
non-tunable variability | tunable uniformity | mean
robustness factor large * *
tuning factor small large *
adjustment factor small small large

( * : irrelevant )

Table 2.1  Effects of process parameters on categorized variabilities

The purpose of classifying process parameters is to enable the on-line control
of the tunable variability. One of the difficulties of on-line control is the degradation of
the non-tunablc variability due to the control action. The classified process
parameters can properly handle both the non-tunable and tunable variabilities and
reduce the risk of applying the control. The use of each classified process parameter in
the optimization and control of process is shown in Figure 2.10. The following
sections will explain how the process parameters are classified and used for the
optimization of non-tunable variability and the control of tunable variability.

process parameter

robustness factor tuning factor adjustment factor
Y
optimization of
non-tunable variability
A
: control of
[tunable umforrmt)J &)nlrol of meanj

: z

Figure 2.10  Process parameter classification and their use
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2.4 Definition of Robustness

In order to minimize the non-tunable variability of processes, it is necessary to
define a quantity that measures properly the magnitude of non-tunable variability. In
this thesis, a quantity called robustness is defined to measure the magnitude of non-
tunable variability. Robustness is to be used t0 optimize non-tunable variability as
well as to identify the tuning factor and adjustment factor, which will be explained in
the following sections.

Consider a batch process in which the process output characteristics are
measured at multiple measurement sites. The purpose of process control in this case
is to make the process output characteristics as uniform as possible. The process
output characteristics can be grouped according to the process conditions as explained
in Section 2.2. Each group has group means and group variances. It is assumed that
it is relatively easy to model and control the group means on-line using the process
parameters, i.e., the differences of the group means are tunable variabilities.
However, the variabilities of the measurements within each group are assumed to be
non-tunable, i.e., they are difficult to model and control on-line. Let m be the number of
the groups and n be the number of the measurements within each group. The groups
may have different numbers of process output characteristic measurements within
each group, but for simplicity it is assumed here that each group has the same number
of measurements.

In Figure 2.11, the mxn measurements of a procass output characteristic to be
controlled are plotted along the horizontal axis. The measurements are scattered
around the target value of the product characteristic, T. It is this scattering that
causes poor quality of the process. The measurements are grouped according to the
process conditions, and the groups are indicated in the figure.

process output characteristic

groupl group2 group3 - groupi - group m

Figure 2.11  Process output characteristic measurements from a batch process
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In Figure 2.12, the group means and group variances of each group are shown;
the open circles represent the group means and the error bars represent the magnituds:

of the group variances.

process output characteristic

group 1 group2 group3 group m

Figure 2.12 Group means and group variances for each grouped measurements

In Section 1.2.1, the quality loss of a process is defined as a quadratic function
of the deviation from the target (Eq. 1.2). In this example, total quality loss, QL, due
to the deviations of the process output characteristics from target value, T, is

_ m n ] )
QL=K X T (Y;T)

’ (Eq. 2.1)
where Yij is the process output characteristic measurements of the j-th measurement
points in the i-th group, and K is the quality loss coefficient.

After the measurements are grouped as shown in the figures above, the total
quality loss can be expressed using the group means and the group variances as

follows:
m J— — _
QL=nK|({Z [62+(Y, -Y,)'1}+{m(Y,-T)y}|, (Eq. 2.2)
where Y, is the grand mean of all the measurements, and 71 and c:lz are the group

mean and the group variance of the i-th group, respectively, i.e.,

Y, = Fnli i)=:l J)_:l i (Eq. 2.3)
V=32 Y, (Eq. 24)

and
ie = flf Z (Ylj B ?1-)2 (Eq. 2.5)

Refer to Appendix A for the derivation of Eq. 2.2.
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In Eq. 2.2, the first summation term corresponds to the quality losses due to
the non-tunable variability (the group variances) and the tunable uniformity (the group
mean deviation from the grand mean). The second term is the quality loss due to the
grand mean deviation from the target.

In the methodology developed in this thesis, the on-line control of the tunable
variability is decoupled from the off-line optimization of non-tunable variability. The
optimized non-tunable variability is not to be affected while the on-line control is
performed. On-line control includes both the tuning of the tunable uniformity and the
adjustment of the mean. Therefore, it is necessary to define the robustness so that it
can anticipate the magnitude of the non-tunable variability after the tuning and
adjustment procedures. By optimizing the defined robustness in the off-line
optimization procedure, the non-tunable variability is minimized ahead of the tuning
and adjustment procedures.

Since both the tuning and adjustment factors are the process parameters that
control the tunable uniformity and the mean, respectively, without affecting the non-
tunable variability, they are identified by comparing the amount of the robustness
change corresponding to the process parameter changes. The smaller the robustness
change is when a process parameter varies, the better candidate for use as a tuning
factor or adjustment factor the process parameter is.

A number of tuning factors can be used in the on-line tuning of the tunable
uniformity. In the simplest case, it can be performed with one tuning factor. On the
other hand, it can be performed with as many tuning factors as the number of the
differences among the group means, (m-1).

In the former case, one quantity representing the tunable uniformity is to be
controlled. In order to explain tunable uniformity with one quantity, a linear regression
of the group means is performed with the group numbers as explanatory variables
[371-[40]. The slope of the linear regression line is used to represent the magnitude
of the tunable uniformity and is tuned to zero on-line to minimize the differences
among the group means. Figure 2.13 shows the procedure of tuning of the slope with
one tuning factor.
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A. before tuning procedure
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B. after tuning procedure

Figure 2.13 Tuning procedure with one tuning factor

In the latter case, (m-1) quantities are to be controlled using (m-1) tuning
factors. The (m-1) quantities are the (m-1) differences of m group means. When the
tuning of (m-1) differences is perfecily performed, all the differences are made zero as
shown in Figure 2.14. In the figures, only the group means and the group variances

are plotted for simplicity.

process output characteristic

groupl group2 group3 - groupi e group m

Figure 2.14 Group means after tuning procedure with (m-1) tuning factors
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The number of tuning factors is between one and (m-1) when there are m
groups in the process. It is determined by the number of available process
parameters, the interaction among the process parameters, and by how tunable
uniformity is defined. According to the numbers of the group means and tuning facters,
robustness is defined accordingly as follows.

First, assume that we have (m-1) tuning factors so that all the group means,
Y;.. may be made identical, i.e., the tunable uniformity is completely controlled. The

total quality loss after the tuning procedure, QL is as follows:

n Y. -
Q=nK| { X (=6} +m(X.-T)) | . (Eq. 2.6)

ie
which is derived from Eq. 2.2, assuming that the group standard deviations, Gj.'s,

—x

change proportionally to the changes of group means. Y, is a new grand mean after

the tuning procedure. In the equation, the first summation term is the quality loss due
to the non-tunable variability, and the second term is the quality loss due to the grand
mean deviation from the target. Note that the quality loss due to the tunable
uniformity has disappeared since the tunable variability was tuned. Figure 2.15
shows the process output characteristics that are obtained after the tuning procedure.

—

In the figure, it is noted that there is a difference between the new grand mean, Y, ,

and the target value, T, after the tuning procedure.

process output characteristic

] 1 ] ] 1
| ! 1 I I

groupl group2 group3 - - groupi e group m

Figure 2.15 Process outpui characteristic measurements after perfect tuning

After the tuning procedure, the new grand mean, ?., is adjusted to the target

value using the adjustment factor to minimize quality loss. The quality loss after
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the tuning and adjustment procedures, QLja, is

m G
QL =nKT ;:31(?'—)2]. (Eq. 2.7)

The quality loss is now due to only the non-tunable variability. The product
characteristics after the tuning and adjustment procedures are shown in Figure 2.16,
where the grand mean meets the target value.

process output characteristic

T B S o A S St SPP A A %

l | |
I I | !
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groupl group2 group3 - groupi e group m

Figure 2.16  Process output characteristic measurements
after perfect tuning and adjustment

Now assume that we have one tuning factor and the tuning of tunable
uniformity is performed by making the regression line slope zero as shown in Figure
2.13. From the linear regression of the group means, we get the regression

predictions of the group means, ?i.'s, for each ?i- as shown in Figure 2.17. In the

figure, only the group means and the regression predictions are plotted for simplicity.

O group mean (Vi)

process output characteristic ® regression prediction (Yj.)

/ linear regression line of group means

| l ] ] |
| I | L |

groupl group2 group3 - groupi e group m

Figure 2.17 Group means and regression predictions for single tuning factor
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When the tuning is performed wi‘h one tuning factor, the slope of the linear
regression line is controlled to be zero to minimize the differences between the group
means. After the tuning procedure, all the regression predictions become identical to

the new grand mean, Y, as shown in Figure 2.18. The total quality loss after the

oo’

tuning procedure, QLy, is as follows:

m ?:lo ?o*o— —% —k
Q=nK| {2 (=6, +(=Y, -Y.)? }+(m (¥, -T)} |,
i=1 -Y—'- ? !

(Eq. 2.8)
which is derived from Eq. 2.2, assuming that the group standard deviations, &,'s, and

the group means, Y. 's, change proportionally to the changes of the regression

predictions. In the equation, the first part of the summation is the quality loss due to
the non-tunable variability, and the second part is the quality loss due to the deviation
of the group means from the grand mean after the tuning procedure. The last term in
the equation is the quality loss due to the grand mean deviation from the target.

o group mean (Yj.)

® regression prediction ( Yijs)

process output characteristic

y zero slope linear regression line after tuning
O
) (- S S —
T e -
i i t i %
groupl group2 group3 groupi - group m

Figure 2.18 Group means and regression predictions
after tuning with single tuning factor

—%
After the tuning procedure, the new grand mean, Y, , is adjusted to meet the

target value, T. The total quality loss after the tuning and adjustment procedures,
QLta! is
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m G, ?.-%-.
QU =nKT| T { (=) +(—=—)) | (Eqg. 2.9)
=Y Y

1° 1°

In the equation above, the quality loss due to the grand mean deviation from the target
is eliminated since the mean was adjusted to target.

Note that QL; with one tuning factor (Eq. 2.9) becomes the same as QL¢a
with (m-1) tuning factors (Eq. 2.7), if the group means, Y;., coincide with the
regression predictions, -%i- It means that tuning with one tuning factor has the same
effect as tuning with (m-1) tuning factors, when the group means are exactly aligned in
a straight line as shown in Figure 2.13.

When the number of tuning factors is between 1 and (m-1), the total quality
loss is defined according to how tunable uniformity is defined. The magnitude of the
total quality loss is between QLa with one tuning factor (Eq. 2.9) and QL¢, with (m-
1) tuning factors (Eq. 2.7).

Using QL¢a's (Egs. 2.7 and 2.9), robustness is defined as follows:

m Gl 2 1
robustness = _Zl (? ) (Eq. 2.10)
1= .
ll
for the (m-1) tuning factor case and
—_ -1
m (Il. 2 Yi'- Y'l' ’
robustness = (=) +(—= )"} (Eq. 2.11)
i=1 -Y_ ?

for one tuning factor case.
The inverse of the quality loss is taken in the above definition of robustness
above so that small quality loss corresponds to high robustness.

2.5 Definition of Tunable Variability

Whereas non-tunable variability is characterized as the process variability due
to stochastic disturbances on the process conditions and stochastic non-uniformity of
the process conditions, tunable variability is characterized as the process variability
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that is relatively easily controlled, because it is due to the deviation of the process
output characteristic mean from the target value and the controllable uniformity of the
process conditions.

When underlying physics of the processes and equipment is well understood,
tunable variability is modeled as a function of the process parameters in a mechanistic
way. When underlying physics of the processes and equipment is too complicated to
be modeled mechanistically, statistical methods are used for the mcJeling of tunable
variability.

The process output characteristic mean is one of the tunable variabilitics and
should be controlled to meet target value. Often, it is simple to model the process
output characteristic mean using the process parameters. Process time, for example,
is the main parameter for controlling the process output characteristic mean in many
processes where the rate of the process is constant or can be approximated as
constant [41]. Once the rate of a process is determined, the process output
characteristic mean is easily controlled to meet the target value by selecting the
proper process time.

When non-uniformity of the process output characteristics is due to controllable
variability of the process conditions, it is considered tunable uniformity. The
equipment of batch processes is designed to increase the spatial uniformity of process
conditions for the product. For example, the equipment is designed to have symmetric
configurations and to rotate the products in order to generate axisymmetric process
conditions. However, it is difficult to get a complete spatial uniformity of process
conditions. For example, reaction chemicals deplete as they flow in chemical
processes, uniform temperature distribution is difficult to achieve in thermal
processes, and stiffness of the structure changes as the configuration changes in
mechanical processes. Hence, it is necessary to model the spatial uniformity as
tunable uniformity and to tune it on-line by proper process parameters.

Tunable uniformity is specific to the process output characteristics and
equipment configurations being considered. Hence, it must be defined according to the
specific problem. Tunable uniformity is modeled as a function of the process
parameters in either a mechanistic or an empirical way. Even though mechanistic
modeling is possible, the empirical modeling method is often used because the tunable
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uniformity has a complex relationship with the process parameters.  For the purpose
of on-lin¢e control, the most effective parameter for controlling tunable uniformity is
identified as the tuning factor and then the tunable uniformity is modeled as a tunction
of the wning factor. The on-line control of tunable uniformity is performed hased on the
constructed model. In on-line control, models are adapted in order to catch up with any
changes in the process conditions whenever necessary.

2.6 Robustness Optimization and Parameter Identification

2.6.1 Designed Experiments

Process  variabilities are categorized specifically according to  the
characteristics of the processes being controlled.  As explained in the previous
sections, robustness is defined to measure the magnitude of non-tunable variability,
and tunable uniformity is defined specitically according to process characteristics and
equipment confligurations. After the robustness and tunable unitormity are defined, the
tuning factor and adjustment factor are identified through a set of designed
experiments.

In order to be used for optimization anrd control, process parameters should be
casy 10 set and there should be no extra cost in changing them. Since on-line control
requires tweaking the process parameters between or during the process, the process
parameters that are used for on-line control should be casy to set.

The operating ranges of the process parameters are usually determined
according to the process characteristics. Since the purpose of performing designed
experiments is to measure the effects of the process parameters on robustness and
tunable uniformity, it is preferred to usc a large range of the process parameter.. The
ranges, however, should not be so large 10 include the process parameter ranges
where the process is in a different condition from its normal state. For the purpose of
identifying tuning factors and adjustment factors, measuring first-order or second-order
effects is sufficient in most problems. Hence, two or three factor levels are used in
designing experiments.

Once the parameters and their levels have been determined, orthogonal arrays
are used because of simplicity in application. Orthogonal arrays can evaluate the
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effects of several process parameters in a small number of experiments [25].
Orthogonal arrays evolved from Plackett and Burman designs. and were rearranged by
Taguchi [42][43]. Even though orthogonal arrays are used primarily to analyze the
main effects of the process parameters, the effects of interactions between the process
parameters can also be evaluated.

Using orthogonal arrays with two levels for each process parameter, first-order
effects are evaluated by averaging the results of the experiments. For example, Table
2.2 shows an L8 orthogonal array for up to seven process parameters with two levels.
The main effects of process parameter 1, m, ,  for the low level, and ﬁl'high for the
high level are obtained by averaging the results from experiments 1, 2, 3, and 4, and
the results from experiments 5, 6, 7, and 8, respeciively, as follows:

_ m+m +m +m
m = mz4m3 4 (Eq. 2.12)
and
_ +m +m, +
e = (Eq.2.13)
parameter
experiment measurement
number 1 2 3 4 5 6 7

1 low | low | low | low | low | low | low m,

2 low | low | low | high | high | high | high m,

3 iow [ high | high [ low | low | high | high m,

4 low | high { high | high | high | low | low m,

5 high | low | high [ low | high | low | high m,

6 high | low | high | high | low | high | low m,

7 high | high | low | low | high | high | low m,

8 high | high | low | high | low | low | high mg

Table 2.2 L8 orthogonal array for up to seven parameters with two levels

Because of orthogonality, other process parameters are evenly included in the
calculation of the main effects of process parameter 1, and their effects are averaged
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when calculating the main effects of process parameter 1, which are plotted in Figure
2.19. The main effects of the other process parameters are similarly calculated.

ﬁil.low—

M, pigh T

—
-

process parameter 1
low high

Figure 2.19 Main effect analysis of process parameter | for two-level design

When three levels are used, the first-order eftect as well as the second-order
effect are analyzed. By calculating three main effects for each level, quadratic fitting is
performed, as shown in Figure 2.20. In the figure, the main effects of process
parameter 1 and the corresponding second-order curve are plotied.
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Figure 2.20 Main effect analysis of process parameter 1 for three-level design
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2.6.2 Robustness Optimization

From the results of designed experiments, robustness is maximized by
determining the process parameter values called the maximum robustness operating
points. When no interactions are included in the orthogonal array design, the
maximum robustness operating points for each process parameter can be determined
independently for each process parameter. When interactions are included as high-
order terms, non-linear optimizers are used to calculate the maximum robustness
operating points [44].

Robustness measures the magnitude of non-tunable variability, which is not
easily modeled. Hence, only the low-order effects of the process parameters on
robustness are evaluated by using the data from desigined experiments. When two
levels are used in designed experiments, only the first-order effects of the process
parameters are analyzed, and the maximum robustness operating points are one of the
levels used in the experiments. When a three-level design is used, second-order
effects are analyzed, and the maximum robustness operating points are determined by
finding the process parameter values that maximize quadratic models within the
operating ranges.

The higher-order effects of the process parameters are not considered because
of the difficulties of modeling robustness.

2.6.3. Parameter Identfication

Using the results of designed experiments, the tuning factors and adjustment
factors are also identified among the process parameters. To identify the tuning factor
and adjustment factor, the effects of the process parameters on robustness, tunable
uniformity, and mean are evaluated. The magnitude of changes and the average
values of robustness, tunable uniformity, and mean are measured respectively when
each process parameter changes from its lowest value to highest value within the
operating ranges while the other process parameters are fixed at their maximum
robustness operating points. Using the measurements, index values are defined for

each process parameter as follows:
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A _robustness
average of robustness

index, =| J : (Eq. 2.14)

A tunable uniformity
average of tunable uniformity

and

[ A tunable uniformity }

index_ = averag[e of tunable umf(])rmny . (Eq. 2.15)

A mean
average of mean

Index, (Eq. 2.14) represents the ratio of the relative change of robustness to
the relative change of tunable uniformity. Index, (Eq. 2.15) represents the ratio of the
relative change of tunable uniformity to the relative change of mean. An ideal tuning
factor can conirol tunable uniformity without changing robustness; hence, it has a zero
value of index,. An ideal adjustment factor can control mean without changing
robustness and tunable uniformity; hence, it has zero values of both index, and index,.

In real problems, it is unusual to have ideal tuning factors and adjustment
factors. Therefore, the process parameters whose index; values are small are
identified as the tuning factors. The process parameter with the smallest index,
among the process parameters whose index;'s are small is identified as an adjustment
factor. The number of tuning factors depends on the number of tunable uniformities as
explained in Section 2.4. In order to control the mean, one adjustment factor is
necessary. Because of the way in which tuning factors and adjustment factors are
defined, the tuning of tunable uniformity is decoupled from the robustness
optimization, and the adjustment of mean is decoupled from both the robustness
optimization and the tuning of tunable uniformity.

2.7 On-line Control of Tunable Variability
2.7.1 Modeling of Tunable Variability

The tunable variability is controlled on-linc while the robustness is optimized
off-line. The differences between on-line control and off-line optimization are as
follows: on-line control is being performed during production, while off-line optimization
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is completed before production begins; it is necessary to explore small ranges of the
process parameters for on-line control to avoid scraps; and on-line control needs
modeis that are updated continuously to describe the current process conditions
correctly. Since the tunable variability is characterized as the process variability,
which is relatively easy to model and control, it is readily modeled as a function of the
tuning factor and adjustment factor. The tunable uniformity is modeled as a function of
the tuning factors, and the mean is modeled as a function of the adjustment factor.
Although the mechanisiic modeling of tunable variability is not impossible, the
empirical modeling is preferred because it is simple and appropriate for on-line control.
Since on-line control is usually performed in small ranges of the tuning factor and
adjustment factor, the tunable variability is modeled with a low-order approximation.
For example, the mean is modeled as a first order linear function of the adjustment

factor as follows:

mean = Co + Cl x(adjustment factor) , (Eq. 2.16)

where Cg and C; are the constant and first-order coefficient. respectively. Cg and C,
are determined by fitting experimental data and are updated when necessary.

The tunable uniformity is defined specifically according to the process and
equipment characteristics. For example, the tunable uniformity might be represented
by a quantity such as the slope of the regression line of group means as explained in
Section 2.4, where one tuning factor is necessary to conirol the slope. In such a case,
the goal of on-line control of the tunable uniformity is to make the slope zero. For the
purpose of on-line control, the slope is modeled as a first-order linear function of the
tuning factor as follows:

slope = D0 + Dlx(tuning factor) , (Eq. 2.17)

where Dg and D; are the constant and first-order coefficient, respectively. Dg and D;
are also determined by fitting experimental data and are updated when necessary.
When more than one tunable uniformity is considered, appropriate quantities are
defined to explain the magnitude of the tunable uniformities, and multiple tuning
factors are identified. The appropriate quantities are then modeled as functions of
multiple traing factors.
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As explained in Section 2.6.1, while robustness optimization uses a non-lincar
characteristic of the processes 10 maximize the robustness by exploring wide ranges
of the process parameters, on-line control of tunable variability is performed in smali
ranges of the tuning factors and adjustment tactor based on local models. The models
are first-order approximations of the mean and the tunable uniformity as functions of
the adjustment factor and tuning factors, respectively, as shown in Egs. 2.16 and 2.17.
First-order approximations of the mean and the tunable uniformity are considered

appropriate for the purpose of on-line control.

2.7.2 Control Algorithms

In the on-line control of the tunable variabilities, values of the tuning factors
and adjustment factor are determined for the next process so the tunable uniformity
may be maximized and the mean may be adjusted to the target value. In calculating
the control values of the tuning factors and adjustment factor, the models described in
the previous section are used. The use of first-order linear models for the tunable
uniformity and the mean simplifies the determination of the control values of the tuning
factors and the adjustment factor. For example, when the tunable uniformity is
represented by the slope of the regression line of group means, the slope is modeled
as shown in Eq. 2.17, and the control value of the tuning factor is determined as
follows:

: Dy
tuning factor control value = - D. ’ (Eq. 2.18)
1
since zero slope is required for the maximum uniformity. Similarly, the control value of
the adjustment factor is determined as follows:

target value - G
C

adjustment factor control value = (Eq. 2.19)

1

On-line control uses the feedback of the post-process measurement data in
order to adapt models for the tunable uniformity and the mean. When a process
experiences changes in its conditions, it is necessary to adapt models to accurately
describe the process. Since first-order linear models are used for the tunable
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variability, two coefficients, i.e., constant and first-order coefficient, must be updated
for model adaptation.

Algorithms have been developed to adapt models when processes experience
either gradual changes or abrupt changes in process conditions. When there are
gradual changes such as drifts in process conditions, an EWMA (exponentially
weighted moving average) algorithm is used to weight historical data for proper model
adaptation [45][46]. In the EWMA algorithm, historical data are weighted with
exponentially decaying weights: the data from the previous run have the largest
weight and the weights decrease exponentially as the data become dated. Figure 2.21
shows the weights in the EWMA algorithm, which are calculated as follows:

weight for i-th data = w (1-w)" (fori=1.2,....1), (Eq. 2.20)

where t is the current run number. In the figure, value of 0.1 is used for w. The
calculated weights are used for the modification of model coefficients in order to control

(t+1)th run.

weight
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Figure 2.21 Weight values for calculation of t-th model coefficient

Consider the example where the model of the slope (Eq. 2.17) is being updated
by modifying the constant, Dg, using the EWMA algorithm. When the historical data
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up (o the t-th run are available, the updated constant after t-th run, D , is calculated

as follows:

DO'[ = [ w(l-w)"i X {(slope)i - Dlx(tuning factor)l] ] + Do,o X (l-w)l .

i=1

(Eq. 2.21)

where w is the weight value, (slope); is the i-th measured slope value, and D00 is the

initial constant.

When there are sudden changes such as shifts in process conditions due to
maintenance operations, it is necessary to adapt models based cn the differences
between the model prediction and the current measurement. Because there is a
degree of uncertainty in measuring the magnitude of the change, compensation factors
are used to reduce the risk of incorrectly modifying the models. For example, the
compensation factor can be calculated using Bayesian inferences [10][11].

When a process shows periodic behavior due to cyclic environment changes, a
time series analysis method can be applied to estimate the model coefficients. The
cyclic environment changes are often due to daily temperaiure changes, periodic
maintenance operations, seasonal changes, etc. Seasonal time series analysis can
detect periodic changes of the processes and construct seasonal ARIMA
(autoregressive integrated moving average) models [47][48]. The seasonal ARIMA
model is used to forecast future process conditions, which enables the adaptation of
model coefficients and control parameter values.

2.8 Summary and Illustration

The procedures of the off-line optimization of the robustness and the on-line
control of the tunable variability are summarized as follows. Figure 2.22 illustrates
the procedures.

Given a process, process variabilities are categorized into tunable variability
and non-tunable variability based on the unique characteristics of the process and
equipment. Tunable variability is easier to control than non-tunable variability and
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includes the tunable uniformity and the mean. The rcbustness of a process is defined
depending on how the tunable uniformity is characterized.

process variability categorization

— [ tunable variability
[ non-tunable variability

Geﬁnition of robustness & tunable uniformity)

Cselcction of process parameters and their levels)

@esign of experimcnts)

processes
(experiments)

v

measurements

Gobustness optimization)

@ robustness operatm

Figure 2.22 Procedures of methodology

The process parameters that will be used in the optimization and control are
selected next. Considering the magnitude of process parameter ranges, the levels of
the process parameters are determined in order to design experiments. In designing
experiments, two or three levels are usually used, and orthogonal arrays are often
used in designing experiments.
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Figure 2.22 Procedures of methodology (continued)

The robustness is optimized with the analysis of experimental data from the
designed experiments. It is maximized by determining the process parameter values
called the maximum robustness operating points. Among the process paramelers
used in optimization, the tuning factors and the adjustment factor are identified based
on the analysis of experimental data. The magnitude of the changes of the robustness,
the tunable uniformity, and the mean are measured, and indices are calculated to
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explain the effects of the process parameters on the robustness change, the tunable
uniformity change, and the mean change. According to the index values, the tuning
factors and adjustment factor are identified.

After the tuning factor and adjustment factor are identified, the tunable
uniformity and mean are modeled as functions of the tuning factors and the adjustment
factor, respectively. Usually simple first-order linear models are used to approximate
the tunable uniformity and mean. The control value of the tuning factor for the
maximum tunable uniformity and the control value of the adjustment factor for bringing
the mean to the target value are determined using models of the tunable uniformity
and mean.

After a process is run using the control values of the tuning factor and the
adjustment factor, product characteristics are measured. The post-process
measuremeni data are used to update the tunable uniformity model and the mean
model. By adapting the models, the controller compensates for changes that have
occurred to the process. Model adaptation and the determination of the control values
of the tuning factor and adjustment factor are performed on a run by run basis, which
keeps the process tunable variability ai a minimum at all times.

ring 3
ring 2
ring |

¢ : measurement site

Figure 2.23 Measurement points grouped as ring 1, ring 2, and ring 3

The procedures are illustrated using a single wafer etching process of the VLSI
fabrication processes. As explained in Section 2.2.2, process variabilities of single
wafer processes can be divided into radial uniformity and circumferential uniformity.
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The radial uniformity is categorized as tunable variability and the circumferential
uniformity as non-tunable variability. In other words, the radial uniformity can be
modeled and controlled on-line.

Figure 2.23 shows a wafer with the measurement sites. In the figure, 12
measurement sites are grouped as three rings. Differences between the group means
correspond to the radial uniformity, and variations within each group correspond to the
circumferential uniformity. Within-a-wafer uniformity of etching depths is controlled in
this example for the purpose of illustration, and it is assumed that a target etching
depth is given.

In Figure 2.24, the etching depth profile of the initial state is drawn as a
response surface over the wafer, and the 12 measurements of the etching depths are
plotied as grouped in three rings. The radial uniformity is represented by the slopes of
the lines connecting group means. For the maximum radial uniformity, the slopes
should be controlled to be zero. In Figure 2.24.A, the initial state of the etching depth
uniformity is shown, which needs to be controlled to increase process quality. In the
figure, both the radial and circumferential uniformities are shown to be poor.

Figure 2.24.B illustrates the result of off-line robustness optimization. The
circumferential uniformity is optimized off-line by determining the maximum
robustness operating points through designed experiments. Improved circumferential
uniformity is shown as the reduced variations within each group. Note that the radial
unifcrmity is not imnproved during the robustness optimization.

In Figure 2.24.C, the result of controlling the radial uniformity is shown. In this
illustration, it is assumed that the ideal tuning factors exist. With ideal tuning factors,
the radial uniformity can be controlled without degrading the optimized circumferential
uniformity. Zero slopes of the lines connecting the group means show that radial
uniformity is maximized. Note, however, that there is still a discrepancy between the
grand mean of etching depths and the target value.

In Figure 2.24.D, where the grand mean is adjusted on-line to the target value
using an adjustment factor, it is shown that all the measurements are made close to
the target value; hence, the overall uniformity is maximized. Note that the mean
adjustment is performed without degrading the optimized circumferential uniformity
and the tuned radial uniformity.
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Figure 2.24 Illustration using & single wafer etching process example



CHAPTER 2 ON-LINE CONTROL METHODOLOGY 71

etching depth cetching depth

[
arget T+ gt ..

] target ¢tching depth , | |
A l ' '

ringl ring2 ring3

D. after on-line mean adjustment

Figure 2.24 Illustration using a singlc wafer etching process example
(continued)

2.9 Discussions

The characteristics of the on-line control methodology developed in this work
are as follows: The methodology is based on categorized process variabilities, it
classifies the process parameters and uses them for different purposes, it decouples
the procedures of robustness optimization and tunable variability control, and it
increases process quality by the on-line control of tunable variability without
degrading the process robustness.

The categorization of process variabilities requires an understanding of the
process and equipment to be optimized and controlled. Understanding the underlying
physical phenomena is helpful but a thorough understanding is not required since
empirical modeling methods are usually used to approximate process responses.

Process parameters are classified into the robustness factor, the tuning factor
and the adjustment factor. In many traditional methods of process optimization and
modeling, all the available process parameters are used, with the expectation that the
more process parameters are used, the more accurately process responses are
explained. In real processes, however, disturbances to the processes as well as
measurement noises cause large variabilities in the process responses, and the use of
all the process parameters in modeling may be misleading. In this work, the tuning
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factor and adjustment factor are selected as the most effective process parameters for
modeling and control of tunable variabilities. By limiting the number of process
parameters to be used in on-line control, modeling is simple and effective and
adaptation of the model is fast, which is important for a rapid recovery {rom the
deteriorated process performance due to the step changes in the process conditions.

The tuning factors and adjustment factors are selected so they do not degrade
the process uniformity that has been optimized or controlled in previous steps. The
tuning factors should control the tunable uniformity on-line without changing the
robustness that has been optimized before on-line control begins. The adjustment
factor should control the process mean on-line without degrading the robustness and
the wnable uniformity. Therefore, the sequence of off-line robustness optimization,
on-line control of the tunable uniformity, and on-line control of the mean improves
process quality further without the deterioration of the preceding results. Hence, the
risk of increasing process variability by tampering is reduced by using the tuning
factors and adjustmcnt factor.

The on-line control methodology contributed in this work can be compared with
the robust design method. In robust design, process quality is optimized by two
steps: robustness optimization and mean adjustment. The robust design method is
based on the assumption that the process is so stable that the off-line optimization of
process robustness is enough. In real manufacturing environments, however, process
conditions change, and off-line optimization is not able to anticipate all the possible
changes. In order to deal with any changes in process conditions, on-line control is
necessary and can result in better process performance.

The algorithm developed in this work fits into the structure of the MIT process
control system. The robustness optimization is performed off-line by FRG, and the
on-line controls are performed by the RbR controller and RTC. It is expected that the
implementation of the developed algorithm will enhance the system by enabling the
on-line control of the process output characteristic mean as well as the process output
variance.
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CHAPTER 3
ON-LINE CONTROL EXAMPLES

The on-line control methodology developed in this thesis was applied to the
uniformity control of single wafer plasma etching processes. Within-a-wafer
uniformity of the etching processes was optimized and controlled on-line to improve

quality of the etching processes.

3.1 Single Water Plasma Etching Process

Etching processes are used to make patterns of windows and holes on the film
of various materials that are deposited on the wafer surfaces. The film functions as a
barrier to the diffusion or implantation of impurities, and the windows define the area
through which the impurities pass. The holes are used to make electrical connections
to the underlying film [49]. The mask patterns are transferred from the masks to the
photoresist by using a process called photolithography. The photoresist is light-
sensitive material which is evenly coated on top of the wafer surface by a spinning
process. After the photoresist is exposed and developed, mask patterns of the
photoresist are formed on top of the film.

Patterns of the film are formed by etching parts of the film that are exposed
through the windows of the photoresist mask pattern. After the etching process, the
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photoresist pattern is removed, and the film patterning process is accomplished.
Figure 3.1 shows the initiai state of the film, which is evenly deposited on a wafer, the
patterned photoresist mask on top of the film, and the final result of the etching
process after the photoresist mask pattern is removed. It is shown that the pattern of

pattemed film —\

the photoresist mask is transferred to the film.

photoresist mask pattern

photolithography etching

Figure 3.1 Pattern transfer to film by etching processes

A plasma etching process is a dry etching process that reduces particulate
contamination, safety hazards and treatment of waste compared with the wet etching
process that uses liquid chemicals such as acids; hence, the plasma ctching process is
preferred for VLSI fabrication processes. The plasma etching process generates
etchant species using glow discharges. The plasma serves as a source of etchant
species such as atoms, free radicals, and ions which are created from reactant gases
at room temperature [50]. The reactant gases are selected so the etchant species can
react chemically with the materials to be etched. The etchant species diffuse to the
film surface and are adsorbed on the surface. A chemical reaction occurs between the
etchant species and the film material and volatile byproduct is produced. The
byproduct is desorbed from the surfaces, diffuse into the bulk of gas, and is carried
away, which concludes the etching process [51]. The steps of the plasma etching
process are shown in Figure 3.2.

The plasma etching process has the capability of replicating precisely
lithographic mask patterns to underlying thin film by anisotropic etching. An electric
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tieid created by the plasma directs ion bombardment along the normal to the wafer
surface and the directionality of the ion flux causes a larger etching rates in a vertical
direction, which results in anisotropic etching. Figure 3.3 compares isotropic etching
used in the wet etching process and anisotropic etching in the plasma etching process.
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reactant gas f1
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1. generation of etchant species — 2. diffusion to surface of film
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—>» 3. adsorption —> 4. chemical reaction —> 5. desorption
—>» 6. diffusion into bulk of gas

Figure 3.2  Process steps in plasma etching processes

photoresist mask

A. isotropic etching B. anisotropic etching

Figure 3.3 Isotropic etching vs. anisotropic etching

Etching equipment is classified into single wafer etchers and batch etchers
according to the number of wafers in a process. Single wafer etchers have several
advantages over batch etchers: the etching uniformity is well controlled, the end point
detection is more accurate, and automation and load-locking is easier to implement.
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However, single wafer etchers have lower throughput rates than batch ctchers. In
order to increase the throughput of single wafer etchers, the wafer size becomes
larger. As the wafer size becomes larger, within-a-wafer uniformity becomes more
critical. In the plasma etching process, the rate of etching is diffusion-limited, i.c., the
etching rate is controlled by the rate of diffusion of ctchant gases to the wafer surfaces
[52]. Therefore, in the case of single wafer plasma ectchers, a uniform concentration of
etchant gases should be maintained over the wafer surface to produce high within-a-
wafer uniformity.

In the experiments of this thesis, two single wafer plasma etchers were used:
AutoEtch™ 590 by Lam Research Corp. for oxide etching experiments and Precision
5000 by Applied Materials, Inc., for polysilicon etching experiments.

AutoEtch™ 590 is an automated single wafer plasma etching equipment. It is
equipped with two circular, parallel electrodes. A wafer is positioned on the bouttom
electrode, and the gap spacing between the top and bottom electrodes is controlled by
a movement mechanism of the top electrode. Mixed reactant gases are injected onto
the wafer surface from the top electrode through a shower head nozzle of more than
1,000 uniformly distributed hcles and flow radially over the wafer surface. Operating
pressure, RF plasma power, gap spacing, and gas flow rates are under automatic,
closed-loop feedback control [53]. Figure 3.4 is a schematic diagram of the reaction
chamber of AutoEtch™ 590.

top electrode |

(carbon) reactant gas
[

gap spacing
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4
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Figure 3.4 Schematic diagram of AutoEtch™ 590 single wafer plasma etcher
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In the experiments, mixture of He, CHF3, and CF, gases is used for oxide
etching. A standard recipe for oxide etching is listed in Table 3.1.

parameter value
pressure 3 torr
power 900 watts
gap spacing (.36 cm
He flow rate 125 sccm
CHF; flow rate 30 sccm
CF,4 flow rate 90 sccm

Table 3.1 Standard recipe for oxide etching processes of AutoEtch™ 590

Precision 5000 is a magnetron ion etcher where a magnetic field is applied to
enhance excitations by the electrons [54][55]. The magnetron ion etcher has high
rates of both reactant species production and ion bombardment at low powers and
pressures. It reduces some of the drawbacks of the single wafer plasma etcher such
as bulk radiation damage and resist erosion due to the high power density and
pressure. Hence, the magnetron ion etcher can maintain the high etch rates necessary
for high throughputs in a single wafer plasma etcher.
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Figure 3.5 Schematic diagram of Precision 5000 single wafer plasma etcher
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The magnetic field of the Precision 5000 is generated by two pairs of diagonally
positioned electromagnets that create a rotating magnetic ficld orthogonal to the
electric field of the RF discharge. The rotating magnetic field provides uniform process
conditions over the wafer. The electrodes are of unequal areas, and a wafer is placed
on the smaller electrode, which is powered. to expose it to the high energy ion flux.
The reaction gases are injected downward into the reaction chamber through two rings
of nozzle holes and flow radially over the wafer surface. The process parameters are
operating pressure, RF plasma power, gas flow rates, magnetic field strength, and
frequency of the rotating magnetic field. Figure 3.5 is a schematic diagram of the
reaction chamber of the Precision 5000.

In the experiments, a mixture of HBr and Cl, gases is used for polysilicon
etching. A standard recipe for polysilicon etching is listed in Table 3.2.

parameter value
pressure 100 mtorr B
power 250 watts
HBr/Cl; gas flow rates 10/30 sccm
magnetic field strength 175G
magnetic field frequency 2 Hz

Table 3.2 Standard recipe for polysilicon etching processes of Precision 5000

Within-a-wafer uniformity of the single wafer etching processes was calculated
using 12 measurement data of a wafer. Figure 3.6 shows 12 measurement sites of a
wafer. The initial thickness of the film before the process is measured first. In the
experiments, the etching procedures are stopped before the etching of the film is
completed and the thickness of the remaining film is measured. The etching amounts
are calculated by comparing the thickness differences before and after the process.

The thickness of the oxide film and polysilicon film were measured by using the
Nanospec/AFT automatic film thickness measurement system by Nanometrics, Inc.
which uses the optical interference method [56]. It measures the reflected light
intensity in the wavelength range of 480-790 nm using a micro spectrophotometer and
calculates the thickness of the film based on the interference [51]. In the case of oxide
film thickness measurements, the interference occurs between the lights reflected from
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the air/SiO; interface and the Si/SiO; interface. In the case of polysilicon film
thickness measurements, there is an oxide layer of 1000 A thickness underneath the
polysilicon film; hence, the interference occurs between the lights reflected from the
air/polysilicon interface and from the polysilicon/SiO; interface. The device has an
accuracy of +2% when it measures SiO; film thickness in the range of 400A 1o
30,000A.
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Figure 3.6 Positions of 12 measurement sites on a wafer

3.2 Related Works on Plasma Etching Process

In plasma etching processes, many chemical reactions occur simultaneously:
electron impact reactions to generate etchant species, gas-to-gas reactions, gas-to-
wafer surface reactions, etc. Although the reactions can be modeled by understanding
the creation, transport, and loss of species by the use of methods such as continuum
approaches, Monte Carlo simulations, or finite element methods, the rate constants
and the diffusion coefficients for most reactions need to be assumed, which makes the
mechanistic modeling difficult [57]. Hence, statistical approaches to the modeling of
plasma etching processes have been used instead.

Jenkins et al. showed that the response surface methodology can quantitatively
and efficiently characterize the plasma etching processes [58]. The etching rate was
modeled using polynomials of process parameters. They also observed three
distinctive etching patterns and found that radial etching uniformity can be modeled
and optimized.
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Riley modeled etching rate and uniformity in a SiO, etching process using fully
Quadratic models with four process parameters [59]. The models have 15 coefficients
to be fitted, and a Box-Behnken design was used for designing 27 experiments. He
showed that fully quadratic models provide a significantly better fit to the experimental
data than do linear models. From the models, it was found that SiO, etching
uniformity is virtually insensitive to changes in pressure between 1,000 and 1,300
mtorr with rcactant gases of either CHF; or C,F.

May et al. modeled the etching rate, uniformity, selectivity, and anisotropy of a
polysiiicon etching process using the AutoEtch™ 490 single wafer plasma etcher [60].
Riley et al. also studied characteristics of the SF¢/He plasma of the AutoEtch™ 490 in
Si3Ng, thermal SiO;, and photoresist etching processes using response surface
mcthodology [61]. They showed that interelecirode spacing nas significant effects on
etching uniformity and modeled the etching uniformity with full quadratic polynomials.

The response surface methodology was also used to develop a new process
and to identify new process parameter windows. The effects of the process
parameters are first characterized through designed experiments, and then the
optimum process parameter values are determined based on the model constructed
from the experimental data. For example, Riley er al. used response surface
methodology in developing a multi-step SiO; plasma etching process and a
magnetron-enhanced plasma process for a tungsien etchback process [62][63].
Daniel er al. used response surface methodology to identify a new process paramelter
window for a single-wafer plasma etcher [64].

Real time monitoring of plasma etching processes was studied to detect
problems. Barna monitored both an endpoint trace and the analog values of all the
process control parameters [65]. Using the end point trace, it was determined
whether the processed wafer had experienced any anomalous processing conditions.
The analog values of all the process control parameters were monitored during the
entire etching process for each wafer and were analyzed for only the misprocessed
wafers. It was shown that the combination of two measurements enhanced
significantly the reliability and the uptime of etchers .

Real time control was performed with multivariabie control system analysis
[66]. Linear dynamic models of process variables such as species concentrations, and
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dc bias, were constructed as functions of manipulated variables such as pressure,
power, gas flow compositions, etc. Since it is difficult to measure performance
variables such as etching rate, sclectivity, anisotropy, uniformity, etc., in real time,
correlations of the process variables and the performance variables were modeled
using regression analysis methods.

Multivariate statistical process control method was also applied to the plasma
etching processes with real time measurements of process conditions [20]. The real
time measurement data were filtered by time series models of the processes, and a
multivariate statistical process control was performed on the filtered data to monitor
the process conditions.

One example of the quantitative studies of the effects of the proces..
parameters in the plasma etching process is an analysis of the effects of gas flow
rates in the etching of silicon materials in fluorocarbon gases. Chapman er al. defined
a utilization factor to describe the extent to which reaction gases are converted to
volatile products and showed that many process characteristics can be explained

using the utilization factor [67].

3.3 Process Variability in Single Wafer Plasma Etching Process

Non-uniformity in single wafer plasma etching processes is considered to be
caused by reactant gas flow patterns, local concentration variations caused by the
reactant recombination, wafer temperature uniformity, and electrode conditions such
as polymeric film buildup and surface contamination. Single wafer plasma etchers are
usually designed to have axisymmetry in their configurations to ensurc the
circumferential symmetry. Hence, within-a-wafer uniformity in single wafer plasma
etching processes are divided into radial uniformity and circumferential uniformity.
Because of the axisymmetry, control of circumferential uniformity cannot be easily
accomplished. The radial uniformity, however, is readily controlled with process
parameters. Hence, the radial uniformity is categorized as tunable variability, and the
circumferential uniformity is categorized as non-tunable variability. Mean etch depth,
another component of tunable variability, is easily controlled to meet the target
thickness by changing process time. Therefore, process time is identified accordingly
as the adjustment factor.
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Figure 3.7 Process variabilities in single wafer plasma etching processes

tunable variability

Since the adjustment factor is clearly defined, the uniformity of etching rates is
considered instead of the uniformity of etching depths. The etching rates of 12
measurement sites are calculated by dividing the etching depths by process time. The
Mmcasurement sites are as shown in Figure 3.6. The 12 etching rate data are grouped

into three rings, according to the distance from the center of the wafer, and each group
mean, Y;,, is calculated as follows:

Ma

Y, =4lj=l Y; (fori=1,2,3), (Eq. 3.1)

where Yij is the etching rate at J-th measurement site of i-th ring.

First, consider the case where the radial uniformity is controlled using a single
tuning factor. The radial uniformity is represented by slope defined as the relative
slope of the regression line of three group means as follows:

—Y—s.‘ ?l.
slope = 100 x (—) , (Eq. 3.2
p 27 q.3.2)

~

where Y,  and ?3. are regression predictions of the group means 71_ and ?3.,

respectively, and ? is the grand mean of 12 measurements, i.e.,
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3 4
y =L
V.=LZZy, . (Eq. 3.3)

Figure 3.8 shows 12 measur~d etching rates, each group mean, and the
regression line. The zero value of slope corresponds to the maximum radial

uniformity.

etching rates . . .
linear regression line

_Y—3.__ ............................

?2'—1. .............
?l.__. ........

ring 1 ring 2 ring 3

Figure 3.8 Slope for singl. tuning factor

The circumferential uniformity is represented by robustness defined in Eq. 2.11
as follows:

-1

) ) , (Eq. 3.4)

- Y,

robustness = Z { (—) +(
Y. Y.

where oi.'s are group standard deviations, i.c.,

2 _
= ,\/ 4L2 (Y, - Y)? . (Eq. 3.5)
=1

When the radial uniformity is controlled using two tuning factors so that all the

group means may be identical, the radial uniformity is represented by not only the
slope defined above but also the deviation of ring2 group mean, Y,,, from the line

connecting ringl group mean, ?1-' and ring3 group mean, 73.. The deviation explains
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the radial profile of etching rates and is defined as curvature. The slope and curvature

are calculated as follows:

Y"‘.o B Y]o
slope = 100 X (————) (Eq. 3.6)
2Y,,
and L
— (Yo +Y,)
Y,.- 3771
curvature = 100 x _2 . (Eq. 3.7)
2 Y..

Figure 3.9 shows 12 measured etching rates, each group mean, and the
rcgression line. The zero values of both slope and curvature means the maximum

radial uniformity.

etching rates

Y3:
Y3e+Y1e
2 J—
Y2e
Yie

ring 1 ring 2 ring 3

Figure 3.9 Slope and curvature for two tuning factors

When two tuning factors are used, the circumfcrential uniformity is represcnted
by robustness defined in Eq. 2.10 as follows:

3 G |
robustness = %1 (?—) . (Eq. 3.8)
ie

Note that the slopes of Eq. 3.2 and of Eq. 3.6 are identical since the regression

is performed on 3 group means in this example.



CHAPTER 3 ON-LINE CONTROL EXAMPLES 8S

Figure 3.10 shows compiled data of overall uniformity versus slope of the oxide
etching experiments using the AutoEtch™ 590 over a long period of time and with a
wide range of process parameter values. In order to represent the total quality of
processes, overall uniformity is also defined as follows:

G..
overall uniformity (%) = 100 x ?— , (Eq. 3.9)
where
3 4 .
cu=A/ LT T (V;-Y.92 . (Eg. 3.10)
12 i=1j=1

Hence, the overall uniformity is directly related to the total quality of the processes.

overall uniformity (%)
5 .

T T l T T ISIOPC
30 20 -10 0 10 20 30

Figure 3.10 Overall uniformity vs. slope of AutoEtch™ 590 experimental data

It is shown that overall uniformity is improved by making slope zero. It is also
shown that the zero slope is not enough to improve the overall uniformity, considering
the wide spreads of overall uniformity at cach siope value. The spreads are due to the
magnitudes of the circumferential uniformity. Therefore, it is concluded that it is
necessary to make slope zero as well as to control the circumferential uniformity to
improve overall uniformity effectively.
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3.4 Oxide Etching Process Experiments

3.4.1 Single Tuning Factor Experiments
The experimental results ot applying on-line control using a single tuning factor
to the oxide etching process are included in this section. Since one tuning factor was
used, the slope defined in Eg. 3.2 was controlled on-line after the robustness defined

in Eq. 3.4 was optimized oft-line.

3.4.1.1 Robustness Optimization

Among the process parameters of the oxide etching process using the
AutoEtch™ 590, gap spacing between the top and bottom clectrodes (gap) and CHF;
gas flow rate (CHF;) were used as process parameters in the single tuning factor
experiments. Two parameters were used to show the effects on robustness and slope
as response surfaces in three dimensions. Gap and CHF; were selected among the
process parameters since they were known to have significant effects on the slope and
the robustness from the results of preliminary experiments.

In order to decide a tuning factor and a maximum robustness operating point
between two process parameters, 22 full factorial experiments were designed as
shown in Figure 3.11, using two levels of each parameter. The values of the other
process parameters, which were fixed in the experiments, are also shown in the figure.
Each experimental design was performed twice as replicates, and eight ¢xperiments
were performed in total.

CHE (sccm)

15T @ o pressure: 3 torr

_2’6 4’8§ power: 900 watts

: experiment : He flow rate: 200 sccm

numbers CE 1l 2

15 37 B flow rate: sccm
0T . """""""" e process time: 40 sec

| |

I |

0.4 0.6 gap (cm)

Figure 3.11 Process parameter values for 22 full factorial experiments
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Using the experimental data listed in Appendix B.1.1, the robustness and slope
were calculated as shown in Table 3.3. The robustness and slope were then modeled
respectively as functions of gap and CHF; as follows:

robustness = 546.2- 296.7x(gap) - 388.6x(CHF;)
+ 310.0x(gap)x(CHF3), (Eq. 3.11)

and

slope = -4.1488 - 1.0663x(gap)- 2.7463x(CHF3)
- 5.9988x%(gap)x(CHF,) . (Eq. 3.12)

Being based on the 22 full factorial design experimental data, the models have
first-order terms and an interaction term as shown in Egs. 3.11 and 3.12. In the above
equations, gap and CHF; are normalized to have values between -1 and 1. The
standard errors of coefficients are 103.3 and 0.5074 in Eq. 3.11 and Eq. 3.12,
respectively.

The response surfaces of the robustness and slope are plotted in Figures 3.12
and 3.13, respectively. It is shown that the low levels of both gap and CHF; are
maximum robustness operating points since they results in high robustness.

experiment | o495 (cm) |CHF3 (scem)| robustness slope
number
1 04 0 1154.5 -5.735
2 04 15 158.5 ~ -1.531
3 0.6 0 202.5 4448
4 0.6 15 100.2 -13.826
5 04 0 1928 4 -6.941
6 04 15 130.2 1.865
7 0.6 0 453.5 2614
8 0.6 15 2415 -14.086

Table 3.3 Results of 22 full factorial experiments
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CHF; (sccm)

robustness o
S
1000 £ m~
SIS SANS
500 SRR ASS
RIS
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o~
0
0.6 ~~gap (cm)

Figure 3.12 3D plot of robustness response surface

CHF3 (scecm)

0.6 gap (cm)

Figure 3.13 3D plot of slope response surface

In order to identify a tuning factor, indices (Eq. 2.14) for gap and CHF; at the
maximum robustness operating points were calculated as follows:

[ A robustness ]

average of robustness ' (Eq. 3.13)
oA slope 1

| l_averagc of slopeJ I

index( =
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and their values are listed in Table 3.4.

gap CHF;
robustness average 934.8 842.9
difference 1213.4 1397.2

slope average -1.403 -3.083
difference 9.865 6.505
index, 0.1846 0.7856

Table 3.4 Index values for gap and CHF;

Since gap has the smaller index value, it was selected as a tuning factor, and
CHF; was used as a robustness factor. Using the previous experimental data for low
values of CHF3, slope was modeled as a first-order linear function of gap as follows:

slope = -1.4025 + 4.9325x(gap) , (Eq. 3.14)

where gap is normalized to have values between -1 and 1. The standard error of
coefficient is 0.5487.

slope
104 prediction
1 (Eq. 3.14
by slope model (Eq ) pressure: 3 torr
Py power: 900 watts
._.-. He flow rate: 200 sccm
CF, flow rate: 20 sccm
071 process time: 40 sec
CHF; flow rate: ( sccm
regression line
based on confirmation experimental data
-10 : = - gap (cm)
0.4 0.5 0.6

Figure 3.14 Results of confirmation experiments

After the slope model was obtained, a set of experiments were performed in
order to confirm the model. In the experiments, CHF; was set to its maximum
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robustness operating point. Figure 3.14 shows the results of the confirmation
experiments with the first-order regression line of the measurements.

The slope of the regression line is shown as similar to that of the slope model
(Eg. 3.14). Therefore, it is concluded that the model needs to be adapted by updating
only the constant term to compensate for the process condition differences between

the two sets of experiments.

3.4.1.2 On-line Control

In Section 3.4.1.1, robustness was optimized by finding the maximum
robustness operating point of CHF3. After the robustness optimization, the slope
was controlled on-line using the selected tuning factor. In order to compare the
efficiency of on-line control, another experiments were performed without control at the
same time and the resuits of both experiments were compared. The optimization-only
experiments were performed with the process parameter values as determined by the
robustness optimization; hence, the results of the optimization-only experiments are
expected to have a good uniformity. On-line control is expected to compensate for any
changes in the process conditions, which are to be reflected in the results of the
optimization-only experiments.

Table 3.5 shows the process parameter values for the optimization-only
experiments and the on-line control experiments, respectively. A series of parallel
experiments were performed over several days so the process condition changes can
be seen in the results of the optimization-only experiments.

optimization-only on-line control
pressure (torr) 3 3
power (watts) 900 900 ]
gap (cm) 0.53 tuning factor
He flow rate (sccm) 200 200
CHF; flow rate (sccm) 0 0
CF, flow rate (sccm) 20 20
process time (sec) 40 40

Table 3.5 Process parameter values for experiments
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For the on-line control experiments, the slope model (Eg. 3.14) was adapted
by updating the constant term of the model. Figure 3.15 illustrates how the model
adaptation algorithm works. Using the current slope model shown as @ the gap
value @ is determined io make the model prediction zero.  After an experiment is
performed, the slope is measured as @ The slope is different from zero since cither

the model is not correct or there is a change in process conditions. The constant term
of the model is the updated so the model can fit the measured value of the slope. The

adapted model is shown as @ By using the adapted model, the gap vaiue for the
next run @ is calculated. This model adapiation algorithm is equivalent o the

EWMA algorithm explained in Section 2.7.2, with a weight value of 1.

slope

n-casured slope @_) 4o
fiom cuirent run :

e

0

/
®

gap value for next run

@ adapted model for next run

gap

}

@ current gap value for zero slope

@ current model for slope

Figure 3.15 Illustration of model adaptation algorithm

15 runs of paired optimization-only and on-line control cxperiments were
performed. A step change was introduced after the 9th run to check the performance of
the on-line control. The process parameter values, other than the tuning factor and
robustness factor, were changed after the 9th run so that the process conditions
change stepwise. Table 3.6 shows the process parameter values before and after the
step change.
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before after
pressure (torr) 3 4
power (watts) 9({) 700
He flow rate (sccm) 200 125
CF4 flow rate (sccm) 20 75
process time (sec) 40 40

Table 3.6  Proccss parameter shifts as a step change

Data of the experiments are listed in Appendix B.1.2. Table 3.7 shows the
values of the constant term of the slope model and the gap values that were generated
based on the model for each run. It is shown that the constant term value was
updated from a negative to a positive value after the step change was introduced 10

compensate for the process condition changes.

run number constant gap (cm)
] -1.4025 053
2 -3.0225 0.56
3 -1.2125 0.52
4 27825 | 056
5 -0.5425 0.5
6 -1.6525 053
7 -53625 | 060
3 -5.9225 0.60
9 -5.4825 0.60
10 -5.4825 . 060
1 -1.9625 0.54
Y 0.1370 0.50
13 1.7800 046
14 3.3730 0.43
15 53028 040

Table 3.7 Constants and gap values of on-line control

In Figure 3.16, the slope values of the optimization-only and on-line control
experiments are plotted. The target value of slope is zero for the radial uniformity.
The slopes are shown to be controlled by the on-line control algorithm so that they are
close to the zero slope, while the slope values of the optimization-only experiments
represent the process condition fluctuations.
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Figure 3.16 Historical data of the slope of single tuning factor experiments
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Figure 3.17 shows the historical data of overall uniformity defined in Ea. 3.9. It
is shown that overall uniformity of the on-line control experiments are better than that
of the optimization-only experiments, which means that within-a-water uniformity was

controlled effectively by on-line control of the slope.

3.4.1.3 Discussions

It was shown that the slope is controlled by using a first-order linear model and
by applying the constant term update algorithm. By controlling the slope, the overall
uniformity was improved when compared with the results of the optimization-only
experiments. Even when a step change was introduced, the on-line control was able
to compensate for the change, resulting in better within-a-wafer uniformity.

Figure 3.18 shows the average values of the slopes before and after the step
change for the optimization-only experiments and on-line control experiments,
respectively. The slopes of the on-line control experiments are shown to be closer to
the zero slope which is the target slope for control. In the figure, the crror bars
represent the magnitude of two standard deviations of the average slope values.

slope

5071 %

257 3

<before>
0.0 T } <after>
257 I .
o optimization-only

50T ® on-line control

Figure 3.18 Average slopes before and after the step change

Figure 3.19 shows the averages of the overall uniformity before and after the
step change for the optimization-only experiments and on-line control experiments,
respectively. It is shown that on-line control improved the overall uniformity by a
factor of 2.2 before the step change and by a factor of 1.5 after the step change. The
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on-line control also kept overall uniformity at similar va'ues before and after the step
change. In the figure, the error bars represent the magnitude of two standard

deviations of the average overall uniformity values.

overail unitormity {%) ..
o optimization only

6 1 & on-line control
|

] L

4 i
é °
2 —
0 N
<before> <after>

Figure 3.19  Average overall uniformity before and after the step change

One concemn of using on-line control is whether the variability of a process is
increased or not by tweaking process parameters. If the process conditions are stable
enough, then the process variability may increase by tweaking [68].

O'sjopc
> . B controlled
4- L34 O uncontrolled
3 .
5- 1.801 1.987
1 0.532
0

<before> <after>

Figure 3.20 Standard deviations of the slopes before and after the step change

in Figure 3.20, the standard deviations of the slopes of the optimization-oniy
and the on-line control experiments before and after the step change are compared. It
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is shown that the standard deviations of the slopes were reduced by applying on-line
control. Hence, it is concluded that the process conditions are not so stable that on-
line control of the slope was actually necessary to improve overall uniformity. The
effectiveness of on-line control is shown by the reduced standard deviation.

The overail uniformity consists of the radial uniformity and the circumferential
uniformity. In the on-line control experiments, the radial uniformity was on-line
controlled and the circumferential uniformity was oft-line optimized and maintained as
optimized during on-line control. Figure 3.21 shows the magnitudes of the radial and
the circumferential uniformities for the on-line control experimental data. The fact that
the circumferential non-uniformity became large for runs 7,8, and 9 means the tuning
factor used in the experiment was not ideal. The tuning factor dees have some effect
on the robustness, even if the effect of the tuning factor was the smallest among the
process parameters. Also, it is shown that the circumferential uniformity became
degraded due to the process condition changes after the step change was introduced
after the 9th run, while the radial uniformity was still well controlled.

overall uniformity (%) O circumterential uniformity
6 radial uniformity
step change

run number

1 23 456 78 9101112131415

Figure 3.21 Portions of the radial and circumferential uniformitics

342 Multiple Tuning Factor Experiments

The experimental results of applying on-line contro! using multiple tuning

factors tc the oxide etchmg process are included in this section. Since there are three
group means, two tuning factors were used. The slope and curvature for two tuning
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iactors were defined in Eqs. 3.6 and 3.7, respectively. Both the slope and the
curvature were controlled on-line using two selected tuning factors after the

robustness was optimized off-line.

3.4.2.1 Robustness Optimization

In this example, all the process parameters of the oxide etching process using
the AutoEtch™ 590 were used in robustness optimization except for process time,
which was the adjustment factor. The process parameters are RF plasma power
(power), pressure of the reaction chamber (pressure), gap spacing between the top
and bottom electrodes (gap), He gas flow rate (He), CHF; gas flow rate (CHF3), and
CF, gas flow rate (CF4). Three levels of each process parameter were decided for the
experiments as shown in Table 3.8.

low medium high
prassure (torr) 3 4 5
power (waltts) 500 700 900
gap (cm) 0.4 0.5 06
He flow rate (sccm) 100 150 200
CHF; flow rate (sccm) 0 8 15
CF4 flow rate (sccm) 40 95 135

Table 3.8 Levels of process parameters

Since there are six process parameters with three levels each, an LI18
orthogonal array was used to analyze the main effects of each process parameter. The
L18 orthogonal array is shown in Table 3.9.

According to the array, the experiments were designed as shown in Table 3.10.
After the experiments were performed, the robusiness, the slope and the curvature
were calculated; these are also listed in the table. The robustness values were
transformed using a logarithm function for ease of calculation. The experimental data
are listed in Appendix B.2.1.
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level
ex::r:tl;; ?_m pressure| power [ gap He | CHF; | CFy4
1 1 ! 1 1 1 1
2 2 1 2 2 2 2
3 3 1 3 3 3 3]

4 1 2 1 2 2 3

5 2 2 2 3 3 1

5 3 2 3 1 1 2

7 i 3 2 1 3 2

8 2 3 3 2 1 3

9 3 3 1 3 2 1

10 1 1 3 3 2 2

11 2 1 1 1 3 3

12 3 1 2 2 1 1

13 1 2 2 3 1 3

14 2 2 3 1 2 1

15 3 2 1 2 3 2

16 1 3 3 2 3 1

17 2 3 1 3 1 2

18 3 3 2 1 2 3

Table 3.9 L18 crthogonal array for designed experiments

ex ressure| power | ga He |CHF3| CF,4
numger p(torr) (F\);vatts) (%rrlx)) {(sccm)|(sccm)|(sccm) robustness| slope |curvature

1 3 500 04 100 0 45 29.280 0.326 1.056
2 4 500 0.5 150 8 90 8.427 30.016 -1.802
3 5 500 0.6 200 15 135 18.500 13.228 0.742
4 3 700 04 150 8 135 26.249 3.600 0.324
5 4 700 0.5 200 15 45 26.522 8928 | 1.026
6 5 700 0.6 100 0 90 25.04 8.605 0.612
7 3 900 05 100 15 90 26.813 6.880 0.521
8 4 900 0.6 150 0 135 19.788 -1.650 1.474
9 5 900 04 200 8 45 25.429 7.284 0.889
10 3 500 0.6 200 8 90 30.041 0.574 0.342
11 4 500 04 100 15 135 19.386 11.877 -0.544
12 5 500 0.5 150 0 45 27.035 2.097 0.257
13 3 700 0.5 200 0 135 30.991 0.062 1.923
14 4 700 06 100 8 45 20.543 5.792 -0.016
15 5 700 04 150 15 90 19.461 14.352 1.383
16 3 900 0.6 150 15 4> 29.242 0.569 1.714
17 4 900 04 200 0 90 28.756 -0.356 0.902
18 5 900 0.5 100 8 135 29.695 8.899 0.377

Table 3.10 Designs and results of experiments
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Using the experimental results shown in Table 3.10, robustness, slope, and
curvature were modeled as second-order polynomials without interaction terms as
follows:

robustness = 16.0273 - 2.2877x(pressure) + 5.9113x(pressure)?
+ 2.2545%(power) - 0.4357x(power)? - 0.4503x(gap)
- 0.6039x(gap)? + 0.7898x(He) + 4.2163x(He)2
- 1.7475%(CHF3) + 1.5613%(CHF3)2 - 1.1202%(CF4)
+2.1313%x(CFy4)2, (Eq. 3.15)

slope = 19.1306 + 3.5378x(pressure) - 3.5615x%(pressure)?
- 3.0410x(power) - ().2445x(power)? - 0.8304x(gap)
- 4.1303%x(gap)? - 1.0549x(He) - 2.1558x(He)2 + 3.8958x(CIiF3)
- 3.7078x(CHF3)2 + 0.9183x(CF4) - 4.9275x(CF4)2 , (Eq. 3.16)

and

curvature = -0.7659 - 0.1350x(pressure) + 0.6717x(pressure)?
+0.4855x(power) - (.3813x(power)2 + 0.0715%x(gap)
+0.3562x(gap)? + 0.3182x(He) + 0.0942x(He)? - 0.1152x(CHF3)
+ 0.8995%(CHF3)? - 0.0525%(CF4) + 0.4422x(CF4)2 . (Eq. 3.17)

The functions above were obtained by quadratic curve fiiting of the
experimental data using normalized parameter values. Each parameier value is
normalized to have values between -1 and 1. In Eq. 3.15, the standard errors of
coefficients for constant, 1st-order term coefficients, and 2nd-order term coefficients
a.e 4.491, 1.523, and 2.639, respectively. Similarly the standard errors of coefficients
are 5.696, 1.932, and 3.347, respectively in Eq. 3.16, and 0.422, (0.143, and 0.248,
respectively in Eq. 3.17.

The robustness was maximized using the model above (Eq. 3.15). Process
parameter values for the maximum robustness can be determined independently with
other parameters, since the robustness model does not include interaction terms. The
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calculated maximum robustness operating points, the process parameter values that
maximize the robustness, are listed in Table 3.11.

puameier | ™ sobuncs
pressure (torr) 3 ]
power (waltts) 900
gap (cm) 0.46
He flow rate (sccm) 200
CHF; flow rate (sccm) 0
CF4 flow rate (sccm) 45

Table 3.11 Maximum robustness operating points

The effect of each process parameter on the robustness, the slope, and the
curvature were investigated to identify tuning factors. The changes of the robustness,
the slope, and the curvature corresponding to the changes of each process parameter
are plotted in Figure 3.22. In the figures, each response is obtained with the other
process parameters fixed at their maximum robustness operating points.

robustness slope curvature

401 ZT 3¢

37- 27 25+

34+ -61 21

31+ -10+ 1.5+

28 t + t t -14 1 t . 1 t —
3 4 5 3 4 5 3 4 5

A. pressure (torr)

Figure 3.22  Robustness, slope, and curvature
at maximum robustness operating points
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Figure 3.22 Robustness, slope, and curvature

at rnaximum robustness operating points (continued)
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Figure 3.22  Robustness, slope, and curvature
at maximum robustness operating points (continucd)

In order to identify two tuning factors among the process parameters, indices
were calculated for each process parameter. Indexy (Eq. 2.14) was defined in this

example as follows:

[ A robustness ] [ A _robustness ]
index, = average of robustness average of robustness . (Eq. 3.18)
A slope [ A curvature
average of slope average of curvature

which includes effects on both the slope changes and the curvature changes.
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In Table 3.12, index values at the maximum robustness operating points for
each process parameter are listed. By comparing the values, CHF; and gap were
identified as the tuning factors since they have small index values. The other process
parameters were then classified as the robustness factors, and their values are fixed
at the maximum robustness operating points during on-line control.

pressure| power gap He CHF, CF4
robustness| average | 31.467 | 35.731 | 37.410 | 34.095 | 34.907 | 35.154
difference 8.42 4.509 1.138 5.043 3.798 2.810
slope average | -2.266 | -4974 | -9.290 | -5.686 | -1.810 | -3.975
difference | 7.978 6.082 5.002 3.340 8.627 5.889
curvature | average 1.507 1.858 2.186 1.709 1.375 1.742
difference | 0.813 1.022 0.431 0.636 1.018 0.496
index, 0.572 | 0.3326 | 0.2108 | 0.6493 | 0.1698 | (.3347

Table 3.12 Index values for each parameter

Both the slope and curvature need to be modeled as functions of the tuning
factors to be controlled on-line. In order to make the models, parallel experiments of
22 full factorial design were performed with the robustness factors at their maximum
robustness operating points. Figure 3.23 shows the experiment points with the
robustness factor values, and Table 3.13 lists the results of the experiments.
Experimental data are listed in Appendix B.2.2.

CHE, (sccm)
151 '26 """" 48. pressure: 3 torr
T power: 900 watts
: expenlr)nent He flow rate: 200 sccm
1 5num e;s7 : CF, flow rate: 45 sccm
O—_.-' process time: 40 sec
; |
0.4 06 &P (cm)

Figure 3.23  Process parameter values for 22 experiments
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exgs;gznt gap (cm) |CHF;3 (sccm) slope curvature
1 04 0 -3427 -2.921
2 04 15 -9.213 3.069
3 0.6 0 4.004 -2.135
4 0.6 15 -4.533 4.037
5 04 0 -3.833 -2.537
6 04 15 -9.631 3.987
7 0.6 0 4.093 -1.596
8 0.6 15 -5.464 3.864

Table 3.13 Results of 22 experiments

Using the experimental data, the slope and curvature were modeled as
functions of CHF; and gap as follows:
slope = -3.5005 + 3.0255%(gap) - 3.7098x(CHF?3)
- 0.8138x(gap)x(CHF3) , (Eq. 3.19)
and
curvature = 0.7208 + 0.3214x(gap)+ 3.0184x(CHF3)
- 0.1100x(gap)x(CHF3) , (Eq. 3.20)

where CHF; and gap are normalized to have values between -1 and 1. The mndels
include first-order terms as well as an interaction term. The standard errors of
coefficients of Egs. 3.19 and 3.20 are 0.1377 and 0.1430, respectively.

The response surfaces of the slope and curvature are plotted in Figs. 3.24 and
3.25, respectively. As can be seen from the figures, the interaction of CHF3 and gap is
small and the effects of gap on the curvature are small, which was also verified by the
t-ratio test of the regression model. Hence, the interaction term was deleted in both of
the models, and gap was excluded from the curvature model as follows:

slope = -3.5005 + 3.0255%(gap) - 3.7098x(CHF;) , (Eq. 3.21)
and

curvature = 0.7208 + 3.0184x(CHF;) , (Eq. 3.22)
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where CHF3 and gap were normalized to have values between -1 and 1. The models
have the standard errors of coefficients of (0.3842 and (.3626. respectively. The above
models were used in on-line control of the slope and curvature.

CHE, (sccm)

15

1.5

06 gap (cm)

Figure 3.24 3D plot of slope response surface

CHF3 (sccm)

0.6 gap (cm)

Figure 3.25 3D plot of curvature response surface
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3.4.2.2 On-line Control

In Section 3.4.2.1, robustness was optimized by finding the maximum
robustness operating points of the robustness factors. CHF3 and gap were also
sclected as tuning factors. After the robustness optimization, the slope and the
curvature were controlled on-line using the selected tuning factors. In order to
compare the efficiency of on-line control, another experiments were performed without
on-line control at the same time and the results of both experiments were compared.
The optimization-only experiments were performed with the process parameter values
as determined by the robustness optimization. On-line control is expecied to
compensate for any changes in the process conditions, which are to be retlected in the
results of the optimization-only experiments.

Table 3.14 shows the process parameter values for the optimization-only
experiments and the on-line control experiments, respectively. A series of paired
experiments were performed over several days so the process condition changes can
be seen in the results of the optimization-only experiments.

optimization-only on-line control
pressure (torr) 3 3
power (watts) 900 900
gap (cm) 0.58 tuning factor
He flow rate (sccm) 200 200
CHF; flow rate (sccm) 6 tuning factor
CF4 flow rate (sccm) 45 45
process time (sec) 40 40

Table 3.14  Process parameter values for experiments

On-line control was performed by adapting the constant terms of the slope
model (Eq. 3.21) and the curvature model (Eq. 3.22) using the model adaptation
algorithm as explained in Section 3.4.1.2. 15 runs of the paired optimization-only and
on-line control experiments were performed. A step change was introduced after the
8th run to see the performance of on-line control. The process parameter values, other
than the tuning factors, were changed after the 8th run so that the process conditions
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change stepwise. Table 3.15 shows the process parameter values before and after the

step change.

before afier
pressure (torr) 3 4
power (waltts) 900 700
He flow rate (sccm) 200 125
CF4 flow rate (sccm) 45 75
process time (sec) 40 40

Table 3.15 Process parameter shifts as a step change

The experimental data are listed in Appendix B.2.3. Takle 3.16 shows the
values of the constant terms of the slope model and of the curvature model,
respectively, and the values of gap and CHF; that were generated based on the
models for each run. It is shown that the constant term values changed by large
amounts before and after the step change, which is due to the compensating function of

the on-line control algorithm.

slope model |curvature model
run number cgnstan ( constant gap (cm) | CHF; (sccm)
1 -8.738 0.529 0.60 6
2 -5.190 0.408 0.60 6
3 -4.568 0.577 0.60 6
4 -4.597 0.589 0.60 5
5 -5.470 -0.018 0.60 8
6 4.515 0.999 0.60 3
7 -5.012 0.128 0.60 7
8 -6.269 -0.069 0.60 8
9 -6.269 -0.069 0.60 8
10 2.399 0.333 043 4
11 3.954 1.925 0.40 3
12 5.407 2.298 0.28 0
13 2415 3.253 0.29 0
14 3.803 3319 0.25 0
15 2.185 3.130 0.25 0

Table 3.16 Constants and tuning factor values of on-line control
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In Figure 3.26, the slope values of the optimization-only and on-line control
experiments are plotted. Before the step change, the slope values were controlled Lo
be close to the zero slope. After the step change was introduced, on-line control was

able to the bring the deviated slope value back to zero slope in a couple of runs.

w - target

@ on-line control

O optimization-only

-8 | E— T | E— T T T T T T T —— run number
1 23 456 7 8 9101112131415
Figure 3.26 Historical data of the slope of multiple tuning factor experiments
curvature
8 -
6 -
41
2 1
07 " target
-2 1 |
-4 ! @ on-line control
6 - ': O optimization-only
-8 — T T T T T 1 IVT —— T fun number

1

23456 7 8 9101112131415

Figure 3.27 Historical data of the curvature of multiple tuning factor experiments
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In Figure 3.27, the curvature values of the optimization-only and on-line control
experiments are plotted. Before the step change, the curvature values of the on-line
control experiments showed the same magnitude of fluctuations as the optimization-
only experiment curvature values. After the step change, however, the curvature
values of the on-line control experiments were improved, resulting in closer values o
zero curvature.

Figure 3.28 shows the historical data of the overall uniformity defined in Eq.
3.9. It is shown that the overall uniformity of the on-line control experiments is better
than that of the optimization-only experiments, which means that within-a-wafer
uniformity was controlled effectively by on-line control of the slope and curvaturc.

overall uniformity (%)

_ step change
10 )
!
I
1
X @ on-line control
8 ! L
: O optimization-only
1 :
e
67 v
]
|
47 :
]
2" \
1
w ;
0 T T | T 1 T T T T T —— run number

1 23 456 7 8 9101112131415

Figure 3.28 Historical data of the overall uniformity
of multiple tuning factor experiments

3.4.2.3 Discussions

It was shown that the slope and curvature were controlled by using first-order
linear models and by applying the constant term update algorithm. By controlling the
slope and curvature, the overall uniformity was improved when compared with the
results of the optimization-only experiments. Even when a step change was
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introduced, on-line control was able to compensate for the change, resulting in better
uniformity.

The average values of slopes and curvatures before and after the step change
for the optimization-only experiments and the on-line control experiments are shown
in Figures 3.29 and 3.30, respectively. In the figures, the error bars represent the
magnitudes of two standard deviations of the average values. It is noted that the
slope was controlled both before and after the step change, but the curvature was
controlled only after the step change. The curvature values before the step change of
both the optimization-only and the on-line control experiments were close to zero,
which means the process parameter values before the step change were already
optimized and resulted in good curvatures. It was only after the step change was
introduced that the on-line control of curvature showed an improvement.

slope
501 .
257 }
<before>
0.0 £
s <after>
257 0 o optimization-only
® on-line control
501

Figure 3.29  Average slopes before and after the step change

curvature
5071
257
° e

0.0 °—5

<after>

<before>
257 o optimization-only
® on-line control

501

Figure 3.30  Average curvatures before and after the step change
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Figure 3.31 shows the averages of the overall uniformity before and after the
step change for the optimization-only experiments and on-linc control cxperiments,
respectively.  The error bars in the figure represent the magnitudes of two standard
deviations of the average overall uniformity. The on-line control improved overall
uniformity by a factor of 1.2 before the step change and by a factor of 1.3 after the step

change.

overall uniformity (%) o optimization-only

6 1 ® on-line control

;
4 ’

[{e]]

0 <before> <after>

Figure 3.31  Average overall uniformity before anu after the step change

Figure 3.32 shows the magnitudes of the radial and the circumferential
uniformities for the on-line control experimental data.  When compared with the
results of the single tuning factor on-line control experiments (Figure 3.21), it is noted
that the radial uniformity portion is generally smaller, which indicates that the radial
uniformity was controlled more effectively with multiple tuning factors. However, the
circumferential non-uniformity portion is larger when compared with the single tuning
factor experiments, because the process robustness variation becomes larger when
the process is controlled by tuning factors that are not ideal. The improvement of the
radial uniformity is offset by the degradation of the circumferential uniformity, resulting
in similar overall uniformity in both experiments. Therefore, it is concluded that as
small as possible number of tuning factors is recommended for an effective control of
tunable variability without degrading non-tunable variability when the tuning factors
are not ideal.
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overall uniformity (%) radial uniformity
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Figure 3.32 Portions of radial and circumferential uniformities

3.5 Polysilicon Etching Process Experiments

The experimental results of applying on-line control using a single tuning factor
to the polysilicon etching process are included in this section. One tuning factor was
selected from the analysis of the slope defined in Eq. 3.2 and the robustness defined in
Eq. 3.4. The on-line control of the slope was performed with a tuning f~tor to increase

the within-a-wafer uniformity.

3.5.1 Robustness Optimization

Among the process parameters of the polysilicon etching process using the
Precision 5000, magnetic field strength (field) and RF plasma power (power) were
used as process parameters in the experiments. They are selected since it was found
from the preliminary experiments that both have significant effects on the slope and
robustness. In order to decide a tuning factor and a maximum robustness operating
point from two process parameters, 22 full factorial experiments were designed as
shown in Figure 3.33 using two levels of each parameter. The values of the other
process parameters, which were fixed in the experiments, are also shown in the figure.
Each experimental “esign was performed twice as replicates and eight experiments

were performed in total.
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Figure 3.33  Process parameter values for 22 full factorial experiments

Using the experimental data listed in Appendix C.1, the robustness and slope
were calculated as shown in Table 3.17. The robustness and slope were then modeled
respectively as functions of field and power as follows:

robustness = 1155.3 - 78.3x(field) + 739.8x(power)

- 291. I1x(field)x(power) , (Eg. 3.23)

and

slope = 1.1251 - 4.2791x(field)- 0.9551x(power)

+ 1.8101x(field)x(power) . (Eq. 3.24)

Being based on the 22 full factorial design experimental data, the models have
first-order terms and an interaction term as shown in Eqs. 3.23 and 3.24, respectively.
In the above equations, field and power were normalized to have values between -1
and 1. The standard errors of coefficients of medels in Egs. 3.23 and 3.24 arc 99.27
and 0.9377, respectively. The response surfaces of robustness and slope are plotted
in Figures 3.34 and 3.35, respectively. It is shown that the high levels of both ficld
and power are maximum robustness operating points since they corresponds to high

robustness.
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experiment field (G) | power (watts) | robustness slope
number
1 10 125 819 4.496
2 10 375 1911.4 2.552
3 100 125 753.3 -3.465
4 100 375 14734 -2.820
5 10 125 323.6 11.843
6 10 375 26177 2726 |
7 100 125 503.3 -4.553
8 100 375 1578.1 -1.778

Table 3.17 Results of 22 full factorial experiments

power (waltts)

robustness

100 field (G)

Figure 3.34 3D plot of robustness response surface
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power (watts)

field (G)

Figure 3.35 3D plot of slope response surface

In order to identify the tuning factor, indices for field and power were calculated
using Eq. 3.13 and are shown in Table 3.18.

field power
robustness average 1895.1 1077.0
difference 425.6 897.4

slope average 0.170 -3.154
difference 4938 1.710
index, 0.0077 1.5369

Table 3.18 Index values for field and power

Since field has the smaller index value, it was selected as a tuning factor, and
power was used as a robustness factor. Using the previous experimental data for high
values of power, the slope was modeled as a first-order linear function of field as

follows:

slope =0.17 - 2.47x(field) , (Eq. 3.25)
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where field is normalized to have values between -1 and 1. The standard error of
coefficients is 0.2641 in the model.

After the slope model was obtained, a set of experiments were performed (o
confirm the model. In the experiments, power was set to its maximum robustness
operating point. Figure 3.36 shows the results of the confirmation experiments with
the first-order regression line of the measurements. The slope of the regression line is
shown as similar to that of the slope model (Eq. 3.25), which means the slope has the
same sensitivity to field even if the process condition has been changed due to time

interval between two sets of experiments.

slope
31 regression line
£ / based on confirmation experimeni data
.. pressure: 100 mtorr
.. power: 375 watts
0T HBr/Cl, gas flow rate: 10/30 sccm

magnetic field frequency: 2 Hz

process time: 40 sec

prediction by slope model

(Eq. 3.25)
20 60 100 field (G)

Figure 3.36 Results of confirmation experiments

3.5.2 On-line Control

In Section 3.5.1, the tuning factor was identified and the robustness was
optimized by finding the high level of power as the maximum robustness operating
point. The slope is controlled on-line to maximize the process uniformity even when
the process condition drifts. In order to see the effectiveness of on-line control,
another experiments were performed without on-line control at the same time, and the
results were compared as in Section 3.4.1.2. Note that the process parameter values
of the optimization-only experiments are also the maximum robustness operating
points; hence, uniformity was already optimized.
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Taole 3.19 shows the process parameter values for the optimization-only
experiments and the on-line control experiments, respectively.

optimization-only | on-line control
pressure (mtorr) 100 100
power (watts) 375 375
HBr/Cl, gas flow rates (sccm) 10/30 10/30
magnetic field strength (G) 75 tuning factor
magieﬁc field frequency (Hz) 2 2

Table 3.19  Process parameter values for experiments

For the on-line control of the slope, the slope model (Eq. 3.25) was adapted by
updating the constant term using the algorithm explained in Section 3.4.1.2. 12 runs of
the paired optimization-only and on-line control experiments were performed. After
six runs, it was assumed that the incoming wafers have non-uniform radial thickness;
therefore, it was necessary to compensate for the initial non-uniformity by controlling
the slope. The value of 2 was set as a new target slope after the 6th run.

The experimental data are listed in Appendix C.2. Table 3.20 shows the
values of field for each run.

run number field (G)
1 58.0
2 60.7
3 779
4 89.2
5 846
6 68.8
7 276
8 214
9 46.7

10 19.0
11 310
12 259

Table 3.20 Magnetic field strength values of on-line control
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In Figure 3.37, the slope values of the optimization-only and the on-line control
experiments are plotted. It is shown that slopes are controlled so that they are close
to the zero slope before the target change and arc approaching 1o the slope of 2 that is
a new larget after the target change. An overshoot in the slope values was obscrved

just after the target change.

slope target change
5 7
4 —

new target
3 =

24 e AN
1 -

@ on-line control

O optimization-only

-3 T T T T T T T T T T T — run number
1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.37 Historical data of the slope of single tuning factor experiments

3.5.3 Discussions

Figure 3.38 shows the average values of slope before and after the target
change for the optimization-only experiments and the on-line control experiments,
respectively. The error bars in the figure represent the magnitudes of two standard
deviations of the average slope values. It is noted that slope of the on-line control
experiments is closer to the target value both before and after the target change,

which illustrates the effectiveness of on-line control.



CHAPTER 3 ON-LINE CONTROL EXAMPLES 119

slope
3 4

14 new target

0

[[el}

<before> <after>

o optimization-only

e on-line control

Figure 3.38  Average slopes before and after the target change

Before the target change, the goal was achieve a uniform etching rate all over
the wafer surface. Figure 3.39 compares the overall uniformities defined in Eq. 3.9 for
the optimization-only experiments and the on-line control experiments, respectively.
The error bars in the figure represent the magnitudes of two standard deviations of the
average overall uniformity values. Although the slope was well controlled to be close
to the zero slope value, overall uniformity was not improved by on-line control as
shown in the figure.

overall uniformity (%)

2 .

0 I %
optimization-only  on-line control

Figure 3.39  Overall uniformity comparison
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In Figure 3.40, the portions of the radial uniformity and the circumferential
uniformity of the on-line control experiments are shown. It is noted thai the radial
uniformity was controlled as the slope was controlled but that the circumferential
uniformity was degraded as well. Therefore, it is concluded that on-line control of this
example was not effective in improving the overall uniformity since the circumferential
uniformity was not preserved. The average overall uniformity, however, is equivalent
to the results of the optimization-only experiments.

overall uniformity (%)

2 —
(0 circumferential uniformity
radial uniformity

1 =

0 == run number

1 2 3 4 5 6

Figure 3.40 Portions of radial and circumferential uniformities

After the target was changed to the slope value of 2, the on-line control
experimental results show that the target was achieved after four runs. Hence, it is
shown in this example that on-line control can compensate for the incoming material
variations by meeting new target values so that the quality of the processes may be
maximized at all times.
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CHAPTER 4
A SEQUENTIAL OPTIMIZATION EXAMPLE

4.1 Introduction

The uniformity of film thickness in a low pressure chemical vapor deposition
(LPCVD) process was optimized by categorizing the process variabilities into tunable
variability and non-tunable variability. Optimization was performed in two steps: the
parallel optimization of the non-tunable uniformity and the sequential optimization of
the tunable uniformity. After the robustness factor and tuning factor were identified
through parallel designed experiments, the non-tunable uniformity was optimized by
setting the robustness factors to their maximum robustness operating points. In the
sequential optimization siep, the tuning factor was used to optimize tunable
uniformity. The sequential optimization of the tunable uniformity is expected to
improve overall uniformity further when compared with the overall uniformity of only
parallel optimization, because the process parameter space of the tuning factor is
explored more closely in the vicinity of optimum points.

In the LPCVD process, desired materials contained in reactant gases are
deposited onto the wafer surface by adsorption. In a typical LPCVD reactor, a batch
of wafers is placed in a low pressure furnace and heated by radiation, and reactant
gases are injected into the furnace through nozzles. Reaction occurs on the wafer
surface and the desired material is adsorbed on the wafer surface, the result of which
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is a deposition of film. Figure 4.1 is a schematic diagram of a LPCVD furnace, where
the quartz tube, liner, wafers sitting on wafer boats, load injector, center injector,

source injector, and thermocouple sheath are shown.

quartz tube
liner

wafers

b\

o S -' - P N N O R K S T ]

VIS IL ",

s

source injector
— center injector
thermocouple sheath

load injector

Figure 4.1 Schematic diagram of a LPCVD furnace

The LPCVD process of polysilicon deposition using silane (SiH4) gas as the
reactant gas is considered in this example. Silane gas breaks down inside the furnace
and solidifies as polysilicon crystals on the hot wafer surfaces [49][69].
Concentration of silane gas is not uniform inside the furnace due to the depletion of
reactant gas as it flows and the generation of byproduct gas (H; gas in this example).
This non-uniformity of silane gas concentration alcng the furnace causes non-uniform
deposition rates of polysilicon for the wafers along the tube. As shown in Figure 4.1,
multiple injectors are equipped in order to increase the reaction gas concentration
uniformity.

A simulation program of the polysilicon LPCVD process was developed based
on the equipment modeling of the process [30]. Inputs to the program are equipment
settings such as pressure, temperature, gas flow rates, and injector positions.
Outputs of the program are polysilicon deposition rates of each wafer along the
furnace. In this example, the simulation program was used as a process to be
optimized. In order to simulate real manufacturing conditions, random noises were
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superimposed both on the equipment settings as input noises and on the calculated

deposition rates as measurement noises.

4.2 Process Variability of LPCVD Process Simulation

The uniformity of film thickness in the polysilicon LPCVD simulation process
has two components: within-a-batch uniformity and batch-to-batch uniformity. Within-
a-batch uniformity is caused by the depletion effect as explained in the previous
section, and batch-to-batch uniformity is due to disturbances to the process conditions.
The within-a-batch uniformity is considered to be controlled easily, because the
process 18 equipped with multiple injectors. Hence, the within-a-batch uniformity is
categorized as tunabie variability. The batch-to-batch uniformity, however, is difficult
to control and categorized as non-tunable variability. Figure 4.2 shows the categories
of process variabilities.

The mean thickness of polysilicon film, another component of tunable
variability, can be easily controlled to meet the target thickness by changing the
process time since the deposition rates are assumed constant. Therefore, process
time is identified as the adjustment factor in this example. In opiimization, the
uniformity of the deposition rates was controlled instead of the uniformity of film

thicknesses.

uniformity

in LPCVD simulation process

I I

|
within-a-batch batch-to-batch
uniformity uniformity

non-tunable variability

tunable variability

Figure 4.2 Process variabilities in LPCVD process simulation
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Within-a-batch uniformity is calculated using the measurements of three
wafers from a batch of wafers, and batch-to-batch uniformity is calculated using the
variations of three measurement wafers from five batches. The positions of the
measurement wafers from one batch and from five batches are shown in Figure 4.3.
Tha deposition rates of three measurement wafers from five batches were measured.
The measurement Y;; represents the measured deposition rate of i-th wafer in j-th
batch. The measurement wafers from five batches at the same position are grouped
as shown in the figure. The differences between the group means are (unable
uniformity, and the differences within each group are non-tunable uniformity.

wafers from a batch

~ measurement wafer 3
measurement wafer 2

measurement wafer 1

group 3
cr“, -r“ ‘wv‘v‘ =< v‘ q,“‘ group12
W N YL N v‘ SO A

batch 1 batch 2 batch 3 batch 4 batch 5

Figure 4.3 Process outputs of LPCVD process simulation

Figure 4.4 shows an example of the measurement data plotted in groups. In
the figure, measurements of three measurement wafers from five batches are plotted

together, respectively.
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Figure 44 Grouped measurement data and regression line
The i-th group mean, Y shown in the figure is defined as follows:

5
; (fori=1,2,3). (Eq. 4.1)

¥ =1
l°5 _|

Linear regression is performed on the group means, and the resulting
regression line is also plotted in the figure. Tunable uniformity was represented by
the slope of the lincar regression line. In order to measure the magnitude of tunable
uniformity, slope is defined as follows:

-Y,.

Je
slope = 100 X (——) , (Eq. 4.2
P oY q.4.2)

<>

where Y-;_ is the regression prediction of the i-th group mean ?i-' and ?" is the grand
mean of ail the measurements, i.e.,

=L)3:

V.= Z Yy (Eq. 4.3)

Mo

The magnitude of non-tunable variability is represented by robustness defined
in Eq. 2.11 as follows:
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— =~ -1
3 Gl. 2 Yin - Yio 2
robustness = | X {(=—)" +(——)") , (Eq. 4.4)
i=1 ? ?‘

where G, is the i-thi-th group standard deviation, i.e.,

5 —
G, = \/ %Z (Y, - Y . (Eq. 4.5)

4.3 Robustness Optimization

Among the process parameters of the LPCVD process, pressure inside the
furnace (P), gas flow rate from the load injector (Q;), gas flow rate from the center
injector (Qc), and position of the source injector (X;) were used for optimization of the
process. Table 4.1 shows the levels of the process parameters used in the designed

experiments.

low medium high

P (lorr) 0.20 0.25 0.35
Q; (sccm) 30 45 60
Qc (sccm) 40 55 70
X (cm) 118 124 130

Table 4.1 Levels of process parameters

Since therc are four parameters with three levels each, an L9 orthogonal array
was selected for the design of the experiments as shown in Table 4.2. Using the L9
orthogonal array for four parameters with three levels each, the main effects of each
parameter were analyzed.

For a set of process parameter levels, the simulation program was executed
five times each with random noises superimposed. Using the results of the deposition
rates from the simulation program listed in Appendix D.1, the robustness and the
slope were calculated. The resulits are listed in Table 4.3.
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level
cxperiment P Q, Qe X,
number
1 1 1 1 |
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 |
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Table 4.2 L9 orthogonal array for designed cxperiments

exnp;gll;r::nl P (torr) { Q; (sccm) | Q. (sccm)| X (cm) | robustness slope
1 0.20 30 40 118 1568.9 5.550
2 0.20 45 55 124 585.3 -1.367
3 0.20 60 70 130 485.5 -9.305
4 0.25 30 55 130 10224 2.194
5 0.25 45 70 118 3399 -2.419
6 0.25 60 40 124 1512.2 -4.043
7 0.35 30 70 124 238.0 2458
8 0.35 45 40 130 964.1 -0.050
9 0.35 60 55 118 540.3 -6.424

Table 4.3 Results of designed experiments

The robustness and slope were modeled as functions of the process

parameters using the experimental data listed in Table 4.3 as follows:
robustness = 663.6 - 149.6xP - 227.8xP2 - 48.6xQ, + 264.8xQ,2
-497.0xQ. + 135.4xQ.2 + 3.8xX + 41.7xX,2 , (Eq. 4.6)
and

slope = - 1.0008 + 0.1867xP - 0.1825xP2 - 4.9950xQ; - 0.3150xQ;?2
- 1.7883xQ; + 0.5650xQ.2 - 0.6467xX - 0.7600xX,2 . (Eq. 4.7)
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The functions above were obtained by quadratic curve fitting of the
experimental data using normalized paramcter values. Each parameter valuc is
normalized to have values between -1 and 1.

After the robustness was modeled (as shown above) as a function of the
process parameters, it was maximized by determination of the optimizing process
parameter values. The optimizing proccss parameter values could be determined
independently with the other parameters, because the robustness function does not
include any interaction tcrms. Maximum robustness operating points, the process
parameter values that maximize the robustness, are listed in Table 4.4.

parameter ma:l;z:g‘ngmg:isl:";ss
P (torr) 0.24

Q) (sccm) 60

Q. (sccm) 40

X, (sccm) 130

Table 4.4 Maximum robustness operating points

After the maximum robustness operating points were determined, the effects of
the process parameters on the robustness and the slope when they vary from a low to
a high value were investigated to identify the tuning factor. The changes of
robustness and slope corresponding to the changes of each process parameter are
plotted in Figure 4.5. In the figure, each response was obtained with the other
process parameters fixed at their maximum robustness operating points.

robustness slope
1900 - 107
4001 T~
0-
900 i
4m I 1 T 1 -10 T 1 T T
0.2 0.35 0.2 0.35
P (torr)

Figure 4.5 Robustness and slope at maximum robustness operating points
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Figure 4.5 Robustness and slope at maximum robustness operating points
(continued)

In order to identify the tuning factor among the process parameters, indices
were calculated for each process parameter. Index, (Eq. 2.14) was defined as follows:
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e

average of robustness

indf:xl = [ J . (Eq. 4.8)

A slope
average of slope

In Table 4.5, index values for each process parameter are listed. By comparing
the indices, Q, was identified as the tuning factor because it has the smallcst index
value. The other process parameters were classified as robustness factors, and their
values were fixed at the maximum robustness operating points during sequential
optimization.

P Ql Qc xs
robustness average 1474.27 1446.73 987.39 1550.66

difference 401.96 218.46 994 45.59

slope average -5.43 -0.11 -1.48 -4.15
difference 0.42 9.99 3.58 1.54
index, 3.5250 0.0017 2.1034 0.0792

Table 4.5 Index values f.. each parameter

4.4 Sequential Optimization

In Section 4.3, robustness was optimized by finding the maximum robustness
operating points as shown in Table 4.4. After the robustness optimization, tunable
uniformity was optimized using a sequential optimization method.

Sequential optimization was performed using a commercial software called
Ultramax® [15]. In the sequential optimization method, a process is optimized
sequentially using a model that is updated every time new data are available. With
the updated model, the process is more precisely described, especially in the vicinity
of the optimum point; hence, better optimization is expected.

In Section 4.2, tunable uniformity was represented by the slope of the linear

regression line (Eq. 4.2). In order to perform sequential optimization of the tunable
uniformity, a new performance index was defined as follows:
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3 ?-io - Yoo 2
performance index = X, (———)" . (Eq. 4.9)

i=1 .o

The performance index is the squared sum of relative deviations of each group
mean from the grand mean, which includes the effect of group mean deviation from the
regression line as well as the effect of the regression line slope. By minimizing the
performance index, both the deviations and the regression line slope are minimized.

The performance index was modeled as a function of the tuning factor using the
multiple response surface method. First, multiple response surfaces for each relative
group mean deviation from the grand mean were modeled as a first-order function of
the tuning factor (Eq. 4.10) and then combined to caiculate the performance index (Eq.
4.11), i.e.,

Yie Yoo _cpvcu@  (fori=123) (Eq. 4.10)

and

3
performance index = Y, (Cj, + C"Ql)2 . (Eq. 4.11)

i=1
Since each response surface has only two coefficients, the model adaptation can be
performed quickly with a small quantity of data, which increases the speed of
optimization.

Figure 4.6 shows the results of sequential optimization of the performance
index, which are listed in Appendix D.2. It is shown that the sequential optimizer
explores the parameter space as well as minimizes the performance index further as
more data become available. Because of the parameter space exploration, the
performance index has some fluctuations. The performance index was optimized with
orders of magnitude decrease by the sequential optimization.

The improvement of tunable uniformity by sequential optimization resulted in
an increase of overall uniformity in conjunction with the optimized non-tunable
uniformity. The non-tunable uniformity was not degraded during the sequential
optimization of tunable uniformity. The overall uniformity defined in Eq. 3.9 is plotted
in Figure 4.7.
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Figure 4.6 Performance index in sequential optimization
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Figure 4.7 Qverall uniformity in sequential optimization
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4.5 Discussions

The uniformity of film thickness in the polysilicon LPCVD simulation process
was improved by the robustness optimization that improved the batch-to-batch
uniformity and by the sequential optimization of tunable uniformity that improved
within-a-batch uniformity. Among the process parameters, gas flow rate from the load
injector (Qy was identified as a tuning factor based on the analysis of index.

The results showed that the sequential optimization of tunable uniformity after
parallel non-tunable uniformity optimization improves the overall uniformity more than
only the parallel optimization of ncn-tunable uniformity. With sequential optimization,
the overall uniformity was improved from 5% just after the non-tunable unifortity
optimization to 1.3% in ten runs. The use of the tuning factor in sequential
optimization enabled the optimization of tunable uniformity without degrading the non-
tunable uniformity, which is indicated by similar decreasing patterns of the
performance index (Figure 4.6) and the overall uniformity (Figure 4.7).

It is instructive to compare the results of sequential optimization using the
tuning factor in this chapter with the results of sequential optimization using all the
parameters in Appendix F. In Appendix F, all the process parameters were used to
model and control the radial uniformity of a single wafer plasma etching process. The
radial uniformity was considered to be tunable variability and was optimized
sequentially. The performance index (Eq. F.4), which is similar to Eq. 4.9, was
minimized sequentially as shown in Figure F.2. In this example, however, the non-
tunable uniformity was not optimized, and all the process parameters were used for
the optimization of only tunable uniformity. Circumferential uniformity, the non-tunable
variability, was actually affected by the sequential optimization of tunable uniformity.
Also the process parameters were not differentiated as tuning and robustness factors,
and both were used in the sequential optimization of tunable uniformity. The result
was that there was no improvement of the overall uniformity (shown in Figure F.3)
even though the performance index was optimized.
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CHAPTER §
DISCUSSIONS

The application examples of Chapter 3 showed that the on-line control of
process uniformity improves the within-a-wafer uniformity of single wafer plasma
etching processes when it is combined with the optimization of non-tunable process
variability. The example of Chapter 4 also showed that sequential optimization of
tunable variability increases process uniformity more than the off-line parallel
optimization result.

In the oxide etching process, on-line controls using single and multiple tuning
factors were applied. The radial uniformity of wafers was categorized as tunable
variability and circumferential uniformity as non-tunable variability. It was shown that
both methods are effective in controlling the radial uniformity when compared with the
optimization-only experiments that were performed simultaneously without on-line
control. The selected tuning factors in the experiments were not ideal tuning factors,
since the effects of the tuning factors on the robustness was not absolutely absent.
As a result, on-line control with multiple tuning factors degraded circumferential
nniformity more than on-line control with a single tuning factor, which can be shown by
comparing Figs. 3.21 and 3.32. By comparing the results, it is suggested that as small
as possible number of tuning factors are preferred to preserve the optimized non-
tunable variability when the ideal tuning factors are not available in real processes.
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In the polysilicon etching process, on-line control using a single tuning factor
was applied. The robustness optimization resulted in high overall uniformity, and on-
line control could not improve the overall uniformity substantially even though the
tunable uniformity was weli controlled. The effects of degraded non-tunable uniformity
due to the control action offset the on-line controlied tunable uniformity, which resulted
in no improvements in overall uniformity. However, it was shown that the radial
uniformity can be controlled effectively to compensate for incoming material variations.
A new target value for the slope, which represents the radial uniformity, was set to
compensate for the radial non-uniformity of incoming wafers. On-iine ccntrol using the
tuning factor showed that the new target value was achieved quickly.

The concept of categorization of the process variability is useful for on-line
control as well as optimization of the process uniformity as shown in Chapter 4. The
sequential optimization result of Chapter 4 is compared with the results of Appendix
F. In Appendix F, the sequential optimization of the defined performance index did not
improve the overall uniformity due to the effects of process variability, which is not
included in the definition of the performance index. In Chapter 4, it was shown that the
sequential optimization of tunable variability using a tuning factor increased the
overall uniformity effectively after the non-tunable variability was minimized by
robustness optimization.

In Appendix E, the multiple response surface metiiod was applied to the
contro! of within-a-wafer uniformity. It was shown that the method is effective in
controlling the overall uniformity on-line as long as the process is stable. When the
process expericnces a step change in process conditions, the multiple response
surfaces were not able to predict the behavior of the process correctly, resuliing in
poor overall uniformity.

In the on-line control examples of this work, the simplest control algorithm was
applied as explained in Section 3.4.1.2. Even though it was shown that the tunable
variability is controlled well using the simplest control algorithm, more elaborate
control algorithms that are now being developed for the MIT process control system
are expected to increase the effectiveness. For example, when there is a long, slow
drift in the process conditions, the EWMA algorithm, explained briefly in Section 2.7.2,
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is appropriate, and when there is a sudden shift, such as step changes in process
conditions, a control algorithm developed using Bayes's rule is appropriate [10).

On-line control was applied to examples of the plasma etching process, which
is very complex and not fully understood. Control of the plasma etching process needs
a very careful control scheme, since it is possible to introduce side effects that are not
straightforward to understand [70)]. The goal of the on-line control mcthodology
developed in this work is to reduce the risk of applying on-line control to the process.
In the developed methodology, the risk is reduced by confining the number of process
parameters with which on-line control is performed. Therefore, it is very appropriate
to apply the developed control methodology io the plasma etching process.

In many single wafer processes, efforts have been directed to increase the
radial direction uniformity. For example, a circularly symmetric three-zone lamp
system was developed for a single wafer rapid thermal process in order to control the
temperature profile in the radial direction of a wafer [71]. In such a system, the
circumferential uniformity is still necessary to optimize or control, and the
methodology of this work is applicable for betier process uniformity.

Process optimization and control may have different algorithms and
methodologies according to how ideal the process is for optimization and control.
Table 5.1 compares the ideal processes for optimization and control with the real
processes. In dealing with real processes in manufacturing environments, a proper
method should be developed accordingiy.

When a process is stable, on-line control is not necessary. According to
Deming [68]: “Action taken on a stable system in response to variation within the
control limits, in an effort to compensate for this variation, is tampering, the results of
which will inevitably increase the variation and increase costs.” However, it is very
difficult for manufacturing processes to be stable enough not to require on-line control
or another off-line optimization [72]. The robust design method is known as an
effective methodology for process quality improvements as long as the processes are
stable [73][74]. The advantage of the methodology of this work is to improve the
robust design method so that on-line control of process variability may be possible
while keeping the optimized process robustness.
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The methodology developed in this work is best suited for the processes
whose process variability is readily categorized into tunable and non-tunable
variabilities, whose process conditions are drifting and shifting, and whose incoming

materials have variations.

ideal processes real processes
process | - process physics fully understood | - complex process physics
physics
process | - tunable variability only - tunable variability
variability - non-tunable variability
process - stable or predictable change - drifts and shifts
conditions
process | - physically based modeling - empirical or semi-empirical
modeling | - dynamic modeling modeling
- statistical modeling
- response surface modeling
- dynamic modeling is difficult
optimization | - global optimization - sub-optimization within or near
to process parameter window of
experiments
- robustness optimization
control - control of process response - SPC: monitoring of process
using all available parameters conditions
- real time control: use of real - control: using limited number of
time measured data parameters fer safe control
- real time control: stochastic,
adaptive control is required

Table 5.1 Ideal vs. real processes for optimization and control
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CHAPTER 6
CONCLUSIONS & FUTURE WORKS

6.1 Conclusions

Motivated by the need for an effective and a simple methodology of on-line
process quality control that can be implemented in a manufacturing environment, a
new methodology of on-line control is developed. The characteristics of the developed
methodology are: it is based on the categorization of process variabilities, it classifies
process parameters and uses them for different purposes, it decouples the procedures
of robustness optimization and on-line tunable variability control, and it increases
process quality by on-line control of the tunable variability without degrading process
robustness.

Process variability is categorized into non-tunable variability, defined as
process variability that is difficult to model and control, and tunable variability, defined
as on-line controllable process variability that is relatively easy to model and control.
Process parameters are classified into the robustness factor, the tuning factor, and the
adjustment factor according to the magnitudes of their effects on non-tunable and
tunable variability. The robustness factor is for the optimization of non-tunable
variability, the tuning factor is for the control of tunable uniformity, and the adjustment
factor is for the control of mean. Non-tunable variability is optimized off-line, and
tunable uniformity and mean are controlled on-line.
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The procedures of the on-line control of tunable uniformity and mean arc
decoupled from the optimization of non-iunable variability due to the use of classified
process parameters. It is this decoupling effect that enables on-line control with a
reduced risk of tampering the process variability.

The developed methodology were applied to the examples of single wafer
plasma etching processes and an LPCVD simulation process. The results showed
that process uniformity was improved by applying on-line control of uniformity. On-
line control was able to reduce the effecis of natural variations in the process
conditions as well as to make the process robust against step changes in the process
conditions. Also, it was shown that on-line control can compensate for incoming
material variations by controlling tunable uniformity accordingly.

The concept of categorizing process variability was also shown to be useful in
optimizing process uniformity. The sequential optimization of tunable variability was
successful in improving process unitormity more than the optimized uniformity with
parallel designed experiments.

The categorization of process variability is concluded to be useful for both
optimization and control of process uniformity. On-line control of process uniformity
using categorized variability is shown as an effective control methodology that
reduces the risk of tampering and the side effects without a complex and elaborated
model of processes.

6.2 Future Works

In this work, only the uniformity of processes was considered. In real
manufacturing processes, process optimization and control have multiple objectives.
For example, in the plasma etching processes it is necessary not only the uniformity of
etching depths but also selectivity, loss of critical dimensions, directionality, and
throughput rates. Therefore, on-line control methodology should be extended so that it
can handle more than one objectives.

Developments in sensor technology make it possible to measurc many
characteristics of processes in real time. The in situ measurement data are valuable,
because they record the history of process condition changes during a process. When
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on-line control is performed in a real time mode, an effective strategy on how to use in
situ measurement data should be developed since the amount of in situ measurement
data is usually large. On-line control performed both on a run by run basis and in real
time is expected to enhance critically the process performance. The algorithms which
can integrate pre-process and post-process measurements for the run by run control
as well as the real time control should be developed.

A more elaborate control algorithm, other than the modification of the constant
term that was used in this work, needs to be developed and applied to increase the
effectiveness of on-line control. It is also necessary to decide how to select the best
algorithm applicable for a given example appropriately.

The on-line control methodology developed in this work is to be integrated into
the MIT process control system, and the integrated process control software is to be
incorporated with the CAFE system at MIT.
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APPENDIX B

OXIDE ETCHING PROCESS EXPERIMENT DATA

B.1 Single Tuning Factor Experiments

B.1.1 22 Designed Experiments

[experiment 1]
thickness (A) | etching rate | relative
site | before | after | (A/min) | deviation
1 | 7181 | 2830 6526.5 0.043
2 | 7149 | 2792 6535.5 0.044
3 | 7127 | 2752 6562.5 0.049
4 | 7167 | 2799 6552.0 0.047
5 | 7185 | 2937 6372.0 0.018
6 | 7159 | 2886 6409.5 0.024
7 | 7072 | 2789 6424.5 0.027
8 | 7190 | 2918 6408.0 0.024
9 | 7034 | 3192 5763.0 -0.079
10 | 7253 | 3353 5850.0 -0.065
11| 7038 | 3140 5847.0 -0.066
12| 7199 | 3302 5845.5 -0.066
robustness 1154.5
slope -5.735

[experiment 2]
thickness (A) | etching rate | relative
site | before | after | (A/min) |deviation
1 | 7323 | 3954 5053.5 -0.013
2 | 7279 | 3932 5020.5 -0.019
3 | 7307 | 3947 50400 -0.015
4 | 7346 | 3994 5028.0 -0.018
5 | 7349 | 3763 5379.0 0.051 |
6 | 7212 | 3563 5473.5 0.069
7 | 7324 | 3671 5479.5 0.071
8 | 7362 | 3739 5434.5 0.062
9 | 7346 | 4156 47850 -0.065
10 | 7185 | 3857 4992.0 -0.025
11| 7444 | 4163 4921.5 -0.039
12| 7208 | 3997 4816.5 -0.059
robustness 158.5
slope -1.531
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OXIDE ETCHING PROCESS EXPERIMENT DATA

B2

[experiment 3}
thickness (A) | etching rate | relative
site | before | after | (A/min) | deviation
1 | 7492 | 6331 1741.5 -0.009
2 | 7471 | 6325 1719.0 -0.022
3 | 7491 | 6343 1722.0 -0.020
4 | 7494 | 6341 1729.5 -0.016
5 | 7492 | 6399 1639.5 -0.067
6 | 7447 | 6332 1672.5 -0.048
7 | 7515 | 6408 1660.5 -0.055
8 | 7469 | 6356 1669.5 -0.050
9 | 7501 | 6245 1884.0 0.072
| 10| 7475 | 6214 1891.5 0.076
11 | 7637 | 6411 1839.0 0.046
12| 7278 | 5996 1923.0 0.094
robustness 202.5
slope 4448
[experiment 5]
thickness (A) | etching rate | relative
site | before | after | (A/min) | deviation
1 | 6813 | 2295 67770 0.062
2 | 6806 | 2284 6783.0 0.063
3 | 6832 | 2324 6762.0 0.059
4 | 6833 | 2326 6760.5 0.059
S | 6753 | 2421 6498.0 0.018
6 | 6688 | 2330 6537.0 0.024
7 | 6641 | 2312 6493.5 0.017
8 | 6790 | 2487 6454.5 0.011
9 | 6532 | 2609 5884.5 -0.078
10| 6754 | 2796 5937.0 -0.070
11| 6465 | 2553 5%68.0 -0.081
12| 6679 | 2780 5848.5 -0.084
robustness 1928 4
slope -6.941

[experiment 4]}
thickness (A) | etching rate | relative
site | before | after | (A/min) |deviation
1 | 6331 | 4874 2185.5 0.103
2 | 6325 | 4864 2191.5 0.106
3 | 6343 | 4857 2229.0 0.125
4 | 6341 | 4863 22170 0.119
5 | 6399 | 5050 2023.5 0.021
6 | 6332 | 5026 1959.0 -0.011
7 | 6408 | 4869 2308.5 0.165 |
8 | 6356 | 5003 2029.5 0.024
9 | 6245 | 5102 1714.5 -0.135
10 | 6214 | 5143 1606.5 -0.189
11 | 6411 | 5257 1731.0 -0.126
12| 5996 | 4943 1579.5 -0.203
robustess 100.2
slope -13.826
[experiment 6)
thickness (A) | etching rate | relative
site | before | after (A/min) |deviation
1 | 7608 | 4379 4843.5 -0.053
2 | 7602 | 4420 4773.0 -0.067
3 | 7580 | 4323 4885.5 -0.045
4 | 7598 | 4360 4857.0 -0.051
5| 7598 | 3960 5457.0 0.066
6 | 7639 | 3987 5478.0 0.071
7 | 7548 | 3873 5512.5 0.077
8 | 7577 | 3927 5475.0 0.070
9 | 7426 | 4083 5014.5 -0.020
10| 7764 | 4424 5010.0 -0.021
11| 7524 | 4144 5070.0 -0.009
12 | 7507 | 4155 5028.0 -0.017
robustness 130.2
slope 1.865
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B3

{experiment 7} [experiment 8)
thickness (A) | etcking rate | relative thickness (A) | etching rate | relative
site | before | after | (A/min) | deviation site | before | after | (A/min) |deviation
1| 6274 | 5099 1762.5 -0.017 1 5099 | 3668 2146.5 0.100
2 | 6324 | 5138 1779.0 -0.008 2 | 5138 | 3700 21570 0.115
3 | 6327 | 5137 1785.0 -0.004 3 | 5137 | 3680 2185.5 0.129
4 | 6278 | 5091 1780.5 -0.007 4 | 5091 | 3643 21720 0.122
S | 6204 | 5070 1701.0 -0051 5 | 5070 | 3732 2007.0 0.037
6 | 6353 | 5197 17340 -0.033 6 | 5197 | 3871 1989.0 0.028
7 | 6383 | 5208 1762.5 -0.017 7 | 5208 | 3831 2065.5 0.067
8 | 6201 | 5048 1729.5 -0.035 8 | 5048 | 3700 2022.0 0.045
9 | 5961 | 4739 1833.0 0.022 9 | 4739 | 3698 1561.5 -0.163
10| 6275 | 5016 1888.5 0.053 10 | 5016 | 3961 1582.5 -0.182
11| 6512 | 5238 1911.0 0.066 11| 5238 | 4116 1683.0 -0.130
12 | 6074 | 4841 1849.5 0.032 12 | 4841 | 3739 1653.0 -0.146
robustmess 453.5 robustness 241.5
slope 2614 slope -14.086
B.1.2 On-line Control Experiments
mnl
[optimization-only] [on-line control]
thickness (A) etching rate thickness (A) etching rate
site before after (A/min) site before after (A/min)
1 7345 5884 21915 1 7508 6062 2169.0
2 7302 5843 2188.5 2 7545 6094 2176.5
3 7250 5795 21825 3 7498 6043 2182.5
4 7201 5838 2179.5 4 7454 6005 2173.5
5 7415 6085 1995.0 5 7504 6148 2034.0
6 7297 5935 20430 6 7603 6223 2070.0
7 7119 5713 2109.0 7 7487 6066 21315
g 7237 5858 2068.5 8 7309 5895 21210
9 7431 6057 2061.0 ) 7449 6067 20730 |
10 7261 5863 2097.0 10 7586 6178 21120
11 6843 5437 2109.0 11 7459 6029 21450
12 7014 5630 2076.0 12 7016 5619 2095.5
slope -2.366 slope -1.625
overall uniformity 294 % overall uniformity 7.80 %
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[optimization-onlyj

[on-line control]

thickness (A) etching rate
site before after (A/min)
1 8050 6871 1768.5
2 8091 6904 1780.5
3 8042 6858 1776.0
4 7992 6814 1767.0
5 8051 6907 1716.0
6 8143 6987 1734.0
7 8032 6862 1755.0
8 7825 6679 1719.0
9 8015 6798 1825.5
10 8114 6880 1851.0
11 8010 6768 1863.0
12 7522 6315 1810.5
slope 1.811
overall uniformity 2.60 %

[on-line control]}

thickness (A) etching rate
site before after (A/min)
1 7900 6426 2211.0
2 7956 6474 22230
3 7912 6425 2230.5
4 7848 6377 2206.5
5 7861 6534 1990.5
6 8021 6677 2016.0
7 7911 6560 2026.5
8 7691 6359 1998.0
9 7715 6187 22920
10 7998 6445 2329.5
11 7883 6370 2269.5
12 7365 5861 2256.0
slope 1.589
overall uniformity 5.53 %
[optimization-only]
thickness (A) etching rate
site before after (A/min)
1 8217 6761 21840
2 8262 6804 2187.0
3 8223 6761 2193.0
4 8164 6705 2188.5
5 8214 6858 2034.0
6 8322 6949 2059.5
7 8242 6854 2082.0
8 7988 6530 2037.0
9 8190 6773 2125.5
10 8331 6893 21570
11 8262 6811 2176.5
12 7596 6166 21450
slope -0.871
overall uniformity 2.77 %

thickness (A) etching rate
site before after (A/min)
1 9262 7683 2368.5
2 9525 7958 2350.5
3 9475 7913 2343.0
4 9209 7639 2355.0
5 8954 7516 2157.0
6 9722 8270 2178.0
7 9594 8122 2208.0
8 8780 7336 2166.0
9 8424 6903 2281.5
10 9677 8136 2311.5
11 9504 7978 2289.0
12 8052 6552 2250.0
slope -1.568
overall uniformity 3.29 %
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|optimization-only]
thickness (A) ctching rate

site before after (A/min)
1 8262 6765 22455
2 8278 6781 22455
3 8266 6762 2256.0
4 8240 6742 22470
5 8245 6867 2067.0
6 8297 6900 2095.5
7 8275 6864 2116.5
8 8132 6744 2082.0
9 8144 6647 22455
10 8305 6780 2287.5
11 8295 6765 2295.0
12 7780 6288 2238.0

slope 0.409
overall uniformity 3.69 %

[optimization-only]
thickness (A) etching rate
site before after (A/min)
1 8637 7229 2112.0
2 | 8666 | 7252 | 21210 |
3 8653 7212 2161.5
4 8615 7179 21540
5 8607 7334 1909.5
6 8689 7399 1935.0
7 8666 7361 1957.5
8 | 8492 | 7204 | 19320 |
9 8518 7162 2034.0
10 8677 7324 2029.5
11 8652 7280 2058.0
12 8161 6787 2061.0
slope -2.244
overall uniformity 4.17 %

lon-line control]

thickness (A) ctching rate
site before after (A/min)
] 8388 7210 1767.0
2 8403 7225 1767.0
3 8393 7211 1773.0
4 8367 7188 1768.5
5 8378 7244 1701.0
[ 8412 7249 1744.5
7 8403 7227 1764.0
8 8253 7097 1734.0
9 8335 7111 1836.0
10 8406 7162 1866.0
11 8408 7164 1866.0
12 7931 6713 1827.0
slope 2.238
overall uniformity 2.82 %

{on-line control]

thickness (A) ctching rate
site before after (A/min)
1 8721 6996 2587.5
2 8747 7019 2592.0
3 8737 6997 26100
4 8701 6979 2583.0
5 8692 7145 2320.5
6 8866 7204 24930
7 8745 7172 2359.5
8 | 879 | 7027 | 23280
9 8608 6910 25470
10 8758 7040 25770
11 8731 7041 25350
12 8235 6574 2491.5
slope -1.109
overall uniformity 4.10 %
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[optimnization-only]

[on-line control]

thickness (A) etching rate

site before after (A/min)

1 9674 7236 3657.0

2 9682 7256 3639.0

3 9686 7263 3634.5

4 | 9660 | 7238 | 36330

5 | 9666 | 1426 | 33600

6 9669 7424 3367.5

7 9703 7447 3384.0

8 9541 7309 3348.0

9 9692 7462 3345.0

10 9635 7375 3390.0

11 9676 7388 34320

12 9183 6937 3369.0
slope -3.709
overall uniformity 3.68 %

[on-line control]

thickness (A) etching rate
site before after (A/min)
1 9659 7098 3841.5
2 9688 7123 384175
3 9691 7075 3924.0
4 9641 7074 3850.5
5 9623 7374 3373.5
6 9794 7446 3522.0
7 9687 7417 3405.0
8 9497 7328 3253.5
9 9577 7508 3103.5
10 9646 7479 3250.5
11 9616 7410 3309.0
12 9112 6901 3316.5
slope -8.872
overall uniformity 7.89 %
[optimization-only]
thickness (A) etching rate
site before after (A/min)
1 6078 3074 4506.0
2 6112 3723 3583.5
3 6061 3690 3556.5
4 6022 3667 35325
5 6165 4063 3153.0
6 6239 4149 31350
7 6088 3878 3315.0
8 5909 3801 3162.0
9 6081 3851 3345.0
10 6194 3903 34306.5
11 6044 3749 34425
12 5629 3412 3325.5
slope -5.889
overall uniformity 10.11 %

thickness (A) etching rate
site before after (A/min)
1 6229 4845 2076.0
2 6269 4886 2074.5
3 6212 4845 2050.5
4 6166 4796 2055.0
5 6380 5082 1947.0
6 6515 5162 2029.5
7 6374 5007 2050.5
8 | 6186 | 4859 | 1990.5
9 6168 4838 1995.0
10 6411 5044 2050.5
11 6246 4886 2040.0
12 5779 4439 2010.0
slope -0.988
overzll uniformity 1.81 %
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[optimization-only]

{on-line control]

thickness (A) etching rate
site before after (A/min)
1 6895 4517 3567.0
2 6929 4548 3571.5
3 6884 4484 3600.0
4 6838 4452 3579.0
5 6934 5080 2781.0
6 7012 5154 2787.0
7 6881 4884 2995.5
8 6699 4786 2869.5
9 6820 4634 3279.0
10 6903 4682 3331.5
11 6794 4533 3391.5
12 6336 4105 3346.5
slope -3.717
overall uniformity 9.35 %
[optimization-only]
thickness (A) etching rate
site before after (A/min)
1 7023 6340 1024.5
2 7046 6365 1021.5
3 7025 6346 1018.5
4 7008 6324 1026.0
5 7172 6494 1017.0
6 7233 6551 1023.0
7 7198 6498 1050.0
8 7056 6360 1044.0
9 6935 6220 1072.5
10 7066 6346 1080.0
11 7065 6296 1153.5
12 6596 5802 1191.0
slope 4.793
overall uniformity 514 %

thickness (A) etching ratc
site before after (A/min)
1 6942 5599 2014.5
2 7051 5726 1987.5
3 7001 5657 2016.0
4 6878 5540 2007.0
5 7047 5761 1929.0
6 7370 6053 1975.5
7 7210 5855 20325
8 6784 5459 1987.5
9 6871 5553 1977.0
10 7274 5948 1989.0
11 7148 5812 2004.0
12 6358 5046 1968.0
slope -0.546
overall uniformity 1.31%
[on-line control]
thickness (A) etching rate
site before after (A/min)
1 7030 6800 345.0
2 7053 6323 345.0
3 7042 6814 342.0
4 7006 6780 339.0
5 7534 7306 342.0
6 7583 7359 336.0
7 7406 7182 336.0
8 7334 7102 348.0
9 7224 7002 333.0
10 7144 6928 324.0
11 7089 6861 342.0
12 6675 6444 346.5
slope -0.938
overall uniformity 1.91 %
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[optimization-only]

{on-line control]

thickness (A) etching rate thickness (A) etching rate
site before after (A/min) site before after (A/mir)
1 9283 8503 1170.0 1 8503 7837 999.0
2 9295 8525 1155.0 2 8525 7862 994.5
3 9320 8546 1161.0 3 8546 18717 1003.5
4 9309 8503 1209.0 4 8503 7829 1011.0
5 9209 8365 1266.0 5 8365 7678 1030.5
6 9247 8461 1179.0 6 8461 7778 1024.5
7 9349 8516 1249.5 7 8516 7811 1057.5
8 9331 8418 1369.5 8 8418 7706 1068.0
9 8906 7994 1368.0 9 7994 7292 1053.0
10 8939 8074 1297.5 10 8074 7374 1050.0
11 9351 8427 1386.0 11 8427 7707 1080.0
12 9389 8447 1413.0 12 8447 7733 1071.0
slope 7.582 slope 2.966
overall uniformity 7.26 % overall uniformity 2.79 %
[optimization-only] [on-line control]
thickness (A) etching rate thickness (A) etching rate
site before after (A/min) site | before after (A/min)
1 9868 9130 1107.0 1 9130 8391 1108.5
2 9907 9169 1107.0 2 9169 8427 1113.0
3 9887 9139 1122.0 3 9139 8391 1122.0
4 9851 9103 11220 4 9103 8354 1123.5
5 775 9016 1138.5 5 9016 8257 1138.5
6 9937 9172 1147.5 6 9172 8402 1155.0
7 9879 9085 1191.0 7 9085 8298 1180.5
8 9760 8977 11745 8 8977 8199 1167.0
9 9376 8618 1137.0 9 8618 7869 1123.5
10 9887 9103 1176.0 10 9103 8314 1183.5
11 9858 9054 1206.0 11 9054 8253 1201.5
12 9515 8737 1167.0 12 8737 7969 1152.0
slope 24719 slope 2.108
overall uniformity 275% overall uniformity 2.56 %
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[on-line control]

thickness (A) etching rate
site before after (A/min)
1 6575 5781 1191.0
2 6704 5909 11925
3 6616 5817 1198.5
4 6508 5706 1203.0
5 6112 5291 12315
6 6456 5629 1240.5
7 6295 5437 1287.0
8 6056 5227 1243.5
9 5365 4557 12120
10 6024 5195 1243.5
11 6074 5211 1294.5
12 5567 4760 1210.5
slope 1.785
overall uniformity 2.70 %

[on-line control]

[optimization-only]
thickness (A) etching rate
site before after (A/min)
1 7478 6575 1354.5
2 7587 6704 1324.5
3 7519 6616 1354.5
4 7424 6508 1374.0
5 7079 6112 1450.5
6 7393 6456 1405.5
7 7277 6295 1473.0
8 7039 6056 1474.5
9 6360 5365 1492.5
10 7004 6024 1470.0
11 7073 6074 1498.5
12 6557 5567 1485.0
slope 4.708
overall uniformity 422 %
[optimization-only]
thickness (A) etching rate
site before after (A/min)
1 9641 8914 1090.5
2 9664 8937 1090.5
3 9662 8925 1105.5
4 9652 8914 1107.0
5 9529 8781 1122.0
6 9676 8920 1134.0
7 9645 8861 1176.0
8 9647 8876 1156.5
9 9200 8457 1114.5
10 9642 8871 1156.5
11 9608 8809 1198.5
12 9677 8909 1152.0
slope 2514
overall uniformity 292 %

thickness (A) etching rate
site | before after (A/min)
1 8914 8039 1312.5
2 8937 8067 1305.0
3 8925 8043 1323.0
4 8914 8022 1338.0
5 8781 7888 1339.5
6 8920 8020 1350.0
7 8861 7922 1408.5
8 8876 7955 1381.5
9 8457 7577 1320.0
10 8871 7975 1344.0
11 8809 7865 1416.0
12 8909 8009 1350.0
slope 1.404
overall uniformity 254 %
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{on-line control]

thickness (A) etching rate

site before after (A/min)
1 6203 5131 1608.0

2 6295 5219 1614.0
3 6231 5148 1624.5
4 6150 5061 1633.5
5 5827 4766 1591.5
6 6086 5005 1621.5
7 5927 4807 1680.0
8 5857 4760 1645.5
9 | 5288 | 4201 | 1630.5
10 5809 4688 1681.5
11 5734 4557 1765.5
12 5705 4608 1645.5

slope 1.846
overall uniformity 2.69 %

[on-line control]

[optimization-only]
thickness (A) etching rate
site before after (A/min)
| 7013 6203 1215.0
2 7100 6295 1207.5
3 7046 6231 1222.5
4 6975 6150 1237.5
5 6660 5827 1249.5
6 6911 6086 1237.5
7 6793 5927 1299.0
8 6720 5857 1294.5
9 6119 5288 1246.5
10 6674 5809 1297.5
11 6623 5734 1333.5
12 6556 5705 1276.5
slope 2.694
overall uniformity 3.01 %
[op<imization-only]
thickness (A) etching rate
site before after (A/min)
1 9615 8676 1408.5
2 9654 8728 1389.0
3 9666 8715 1426.5
4 9642 8679 1444.5
5 9474 8490 1476.0
6 9656 8634 1458.0
7 9670 8629 1561.5
8 9636 8616 1530.0
9 9116 8127 1483.5
10 9613 8606 1510.5
11 9630 8566 1596.0
12 9685 8686 1498.5
slope 3.543
overall uniformity 3.99 %

thickness (A) etching rate
site before after (A/min)
1 6421 5273 17220

2 | 6544 | 5414 | 16950 |
3 6503 5353 17250
4 6395 5214 17715
5 5894 4745 1723.5
6 6311 5128 1774.5
7 6189 4967 1833.0
8 6058 4853 1807.5
9 5241 4055 1779.0
10 6007 4827 1770.0
11 6009 4784 1837.5
12 5988 4798 1785.0

slope 1.823
overall uniformity 244 %




APPENDIX B OXIDE ETCHING PROCESS EXPERIMENT DATA

Bll

B.2.1 L18 Designed Experiments

[experiment 1]

B.2 Multiple Tuning Factor Experiments

[experiment 2]

thickness (A) etching rate thickness (A) etching rate
site before after (A/min) site before after (A/min)
1 7706 6692 1521.0 I 7872 7545 490.5
2 7748 6722 1539.0 2 7923 7565 537.0
3 7809 6771 1557.0 3 7978 7625 529.5
4 7779 6755 1536.0 4 7936 7621 472.5
S 7547 6522 1537.5 5 7709 7303 609.0
6 7714 6667 1570.5 6 7907 7335 858.0
7 7864 6784 1620.0 7 8034 7505 793.5
8 7812 6761 1576.5 8 7942 7594 522.0
9 7263 5267 14940 9 7427 6919 762.0
10 7664 6636 15420 10 7869 6981 13320
11 7840 6764 1614.0 11 8000 7270 1095.0
12 7854 6825 1543.5 12 7925 7557 552.0
robustness 29.280 robustness 8.427
~_slope 0.326 ~ slope 30.016
curvature 1.056 curvature -1.802
[experiment 3] [experiment 4]
thickness (A) etching rate thickness (A) etching rate
site before after (A/min) site | beforc affter (A/min)
1 8020 7473 820.5 1 9087 7982 1657.5
2 8051 7511 810.0 2 9155 8046 1663.5
3 8108 7594 771.0 3 9192 8067 1687.5
4 8092 7570 783.0 4 9135 8012 1684.5
5 7861 7196 997.5 5 8894 17765 1693.5
6 8015 7360 982.5 6 9163 8007 1734.0
7 8148 7572 864.0 7 9251 8048 1804.5
8 8147 7558 883.5 8 9106 7935 1756.5
9 7542 6784 1137.0 9 8517 7390 1690.5
10 7984 7220 1146.0 10 9115 7911 1806.0
11 8132 7512 930.0 11 9245 7975 1905.0
12 8244 7612 948.0 12 9077 7882 1792.5
robustmess 18.500 robustness 26.249
slope 13.228 slope 3.600
curvature 0.742 curvature 0.324
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{experiment 5]
thickness (A) etching rate
site before after (A/min)
1 3807 7114 2539.5
2 8841 7141 2550.0
3 8858 7124 2601.0
4 8839 7117 25830
5 8677 6824 2779.5
6 8843 6922 2881.5
7 8875 6888 2980.5
8 8839 6919 2880.0
9 8364 6415 29235
10 8827 6736 3136.5
11 8869 6711 3237.0
12 8846 6842 3006.0
robustness 26.522
slope 8.928
curvature 1.026
[experiment 7]
thickness (A) etching rate
site before after (A/min)
1 9485 7429 3084.0
2 9510 7473 3035.5
3 9513 7426 3130.5
4 9498 7398 3150.0
5 9376 7178 3297.0
6 9509 7321 3282.0
7 9503 7185 3477.0
8 9476 7193 3424.5
9 9035 6754 3421.5
10 9457 7106 3526.5
11 9459 6941 3771.0
12 9424 7066 3537.0
robusimess 26.813
slope 6.880
curvature 0.521

[experiment 6]
thickness (A) etching rate
site before after (A/min)
1 9242 8601 961.5
2 9457 8814 964.5
3 9610 8948 993.0
4 9408 8753 982.5
5 8727 8034 1039.5
6 9456 8729 1090.5
7 9820 9072 1122.0
8 9318 8604 1071.0
9 7960 7235 1087.5
10 9319 8532 1180.5
11 9726 8903 12345
12 9178 8420 1137.0
robustness 25.044
slope 8.605
curvature 0.612
[experiment 8]
thickness (A) etching rate
site before after (A/min)
1 9432 8574 1287.0
2 9466 8586 1320.0
3 9479 8557 1383.0
4 9460 8551 1353.5
5 9298 8465 1249.5
6 9458 8584 1311.0
7 9483 8523 1440.0
8 9460 8512 14220
9 8959 8190 1153.5
10 9409 8577 1248.0
11 9453 8502 1426.5
12 9507 8607 1350.0
robustness 19.788
slope -1.650
curvature 1.474
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[experiment 10]

[experiment 9]
thickness (A) etching rate

site before after (A/min)
1 9311 7562 2623.5
2 9338 7556 2673.0
3 9353 7584 2653.5
4 9339 7594 2617.5
5 9i87 7262 2887.5
6 9332 7323 30135
7 9352 7443 2863.5
8 9343 7448 28425
9 8859 817 3063.0
10 9282 7085 3295.5
11 9305 7333 2958.0
12 9383 7435 29220

robustness 25429

slope 7.284

curvature 0.889

thickness (A) etching rate
site before after (A/min)
1 8484 8032 678.0
2 8508 8053 682.5
3 8525 8067 687.0
4 8511 8060 676.5
5 8363 7912 676.5
6 8510 8049 691.5
7 8538 8066 708.0
8 8523 8068 682.5
9 8039 7589 675.0
10 8512 8046 699.0
11 8551 8076 712.5
12 8:i57 8111 669.0
robustness 30.041
slope 0.574
curvature 0.342

[experiment 11]

[experiment 12]

thickness (A) etching rate
site before after (A/min)
1 8375 7702 1009.5
2 8399 7708 1036.5
3 8412 7704 1062.0
4 8403 7711 1038.0
5 8257 7538 1078.5
6 8404 7617 1180.5
7 8421 7583 12570
8 8418 7661 1135.5
9 7927 7137 1185.0
10 8409 7486 1384.5
11 8428 7447 1471.5
12 8463 7651 1218.0
robustness 19.386
slope 11.877
curvature -0.544

thickness (A) etching rate
site before after (A/min)
1 8247 7727 780.0
2 8268 7747 781.5
3 8286 7157 793.5
4 8281 7754 790.5
5 8126 7603 784.5
6 8274 7736 807.0
7 8298 7744 831.0
8 8307 7769 807.0
9 7782 7266 774.0
10 8290 7744 819.0
11 8327 7751 864.0
12 8375 7826 823.5
robustness 27.035
slope 2.097
curvature 0.257
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[experiment 13]

(experiment 14]

thickness (A) etching rate
site before after (A/min)
1 8437 7837 900.0
2 8525 7928 895.5
3 8629 8025 906.0
4 8556 7958 897.0
5 8155 539 924.0
6 8489 7858 946.5
7 8745 8113 948.0
8 8589 7974 922.5
9 7699 7117 873.0
10 8436 7823 919.5
11 8729 8112 925.5
12 8641 8051 885.0
robustness 30991
slope 0.062
curvature [ 1.923
[experiment 15]
thickness (A) etching rate
site before after (A/min)
1 8618 7626 1488.0
2 8657 7662 1492.5
3 8673 7646 1540.5
4 8647 7617 1545.0
5 8482 7351 1696.5
6 8665 7525 1710.0
7 8698 7397 1951.5
8 8633 7344 1933.5
9 8163 6935 1842.0
10 8658 7399 1888.5
11 8693 7220 2209.5
12 8601 7147 2181.0
robustness 19.461
slope 14.352
curvature 1.383

thickness (A) etching rate
site beforc after (A/min)
1 8711 7598 1669.5
2 8744 7595 17235
3 8758 7601 1735.5
4 8737 7609 1692.0
5 8587 7466 1681.5
6 8749 7521 18420
7 8776 7504 1908.0
| 8 8728 7524 1806.0
9 8276 7159 1675.5
10 8739 7442 1945.5
11 8777 7372 21075
12 8718 7431 1930.5
robustness 20.543
slope 5.792
curvature -0.016
[experiment 16]
thickness (A) etching rate
site before after (A/min)
1 9171 8206 1447.5
2 9174 8207 1450.5
3 9185 8206 1468.5
4 9194 8220 1461.0
5 9077 8087 1485.0
6 9152 8138 1521.0
7 9167 8135 1548.0
8 9214 8207 1510.5
9 8767 7814 1429.5
10 9098 8088 1515.0
11 9126 8111 1522.5
12 9253 8301 1428.0
robustness 29.242
slope 0.569
curvature 1.714
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[experiment 17]

[experiment 18]

thickness (A) etching rate
site before after (A/min)
1 9099 8058 1561.5
2 9120 8067 1579.5
3 9135 8073 1593.0
4 9127 8078 1573.5
5 8983 7946 1555.5
6 9112 8043 1603.5
7 9136 8037 1648.5
8 9136 8075 1591.5
9 8662 7655 1510.5
10 9075 8027 1572.0
11 9110 8020 1635.0
12 9167 8137 1545.0
robusmess 28.756
slope -0.356
curvature 0.902

B.2.2 22 Designed Experiments

[experiment 1]
thickness (A) etching rate

site before after (A/min)
1 7989 6659 1995.0
2 8054 6701 2029.5
3 8073 6722 2026.5
4 8019 6687 1998.0
5 7772 6587 1777.5
6 8015 6761 1881.0
7 8054 6803 1876.5
8 7942 6738 1806.0
9 7396 6154 1863.0
10 7915 6739 1764.0
11 7981 6678 1954.5
12 7889 6593 1944.0

slope -3427

curvature -2.921

thickness (A) etching rate
site before after (A/min)
1 9149 7745 2106.0
2 9211 7795 21240
3 9180 7754 21390
4 9107 7687 2130.0
5 9099 7561 2307.0
6 9270 7678 2388.0
7 9191 7605 2379.0
8 8921 7369 2328.0
9 9010 7352 24870
10 9262 7501 2641.5
11 9138 7419 2578.5
12 8505 6867 2457.0
robustness 29.695
slope 8.899
curvature 0.377
[experiment 2]
thickness (A) _[etching rate
site before after (A/min)
1 7125 5241 2826.0
2 | 7152 | 5255 | 28455
3 7136 5219 2875.5
4 7129 5231 2847.0
5 6837 5035 2703.0
6 6935 5071 2796.0
7 6901 5006 28425
8 6933 5116 2725.5
9 6427 4907 2280.0
10 6746 5082 2496.0
11 6723 5104 2428.5
12 6856 5369 2230.5
slope -9.213
curvature 3.069
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[experiment 3]
thickness (A) etching rate
site before after (A/min)
1 8609 8160 673.5
2 8822 8364 687.0
3 8959 8497 693.0
4 8770 8314 684.0
5 8038 7587 676.5
6 8738 8289 673.5
7 9082 8614 702.0
8 8612 8160 678.0
9 7245 6765 720.0
10 8540 8060 720.0
11 8916 8405 766.5
12 8427 7923 756.0
slope 4.004
curvature -2.135
[experiment 5]
thickness (A) etching rate
site before after (A/min)
1 7551 6268 1924.5
2 7570 6260 1965.0
3 7631 6321 1965.0
4 7627 6341 1929.0
5 7311 6152 1738.5
6 7342 6123 1828.5
7 7510 6298 1818.0
8 7602 6441 1741.5
9 6927 5730 1795.5
10 6986 5838 17220
11 7280 6035 1867.5
12 7564 6342 1833.0
slope -3.833
curvature -2.537

[experiment 4]
thickness (A) etching rate
site before after (A/min)
1 6703 6115 882.0
2 6731 6140 886.5
3 6780 6189 886.5
4 6764 6175 883.5
5 6531 5924 910.5
6 6677 6065 918.0
7 6794 6173 931.5
8 6771 6170 901.5
9 6276 5742 801.0
10 6645 6098 820.5
11 6773 6226 820.5
12 6836 6315 781.5
slope -4.533
curvature 4.037
[experiment 6}
thickness (A) etching rate
site before after (A/min)
1 7481 5788 25395
2 7518 5807 2566.5
3 7600 5870 2595.0
4 7577 5869 2562.0
5 7206 5576 24450
6 7367 5658 2563.5
7 7580 5838 2613.0
8 7566 5911 2482.5
9 6796 5450 2019.0
10 7228 5751 2215.5
11 7520 6052 2202.0
12 7621 6302 1978.5
slope -9.631
curvature 3.987
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[experiment 7]
thickness (A) etching rate
site before after (A/min)

1 7845 7390 682.5
2 7933 7472 691.5
3 8035 7570 697.5
4 7964 7509 682.5
S 7547 7087 690.0
6 7866 7409 685.5
7 8122 7651 706.5
8 7983 7518 697.5
9 7122 6635 730.5
10 7829 7340 733.5
11 8120 7610 765.0
12 8058 7553 757.5

slope 4.093

curvature -1.598

B.2.3 On-line Control Experiments

[optimization-only]
thickness (A) etching rate
site before after (A/min)
1 6244 5716 792.0
2 6248 5715 799.5
3 6254 5720 801.0
4 6266 5734 798.0
|5 6165 5652 769.5
6 6264 5737 790.5
7 6253 5724 793.5
8 5316 5791 787.5
9 5822 5333 733.5
10 6300 5791 763.5
11 6254 5733 781.5
12 6365 5836 793.5
slope -1.890
curvature 0.156
overall uniformity 239 %

mnl

[experiment §]

thickness (A) etching rate
site before after (A/min)
1 7611 7033 867.0
2 7607 7011 894.0
3 7613 7016 895.5
4 7622 7030 888.0
5 7477 6886 886.5
6 7533 6925 912.0
7 7517 6898 928.5
8 7536 6939 895.5
9 7170 6654 774.0
10 7455 6903 828.0
11 7384 6848 804.0
12 7443 6935 762.0
slope -5.464
curvature 3.864
[on-line control]
thickness (A) etching rate
site before after (A/min)
1 6383 5868 7725 |
2 6400 5882 777.0
3 6427 5907 780.0
4 6425 5908 775.5
5 6297 5796 751.5
6 6478 5967 766.5
7 6521 6009 768.0
8 6526 6017 763.5
9 5689 5218 706.5
10 6441 5933 762.0
11 6455 5939 774.0
12 6437 5920 775.5
slope -1.423
curvature -0.196
overall uniformity 2.49 %
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[optimization-only]

thickness (A) etching rate
site before after (A/min)
1 7513 6991 783.0
2 7533 7006 790.5
3 7546 7017 793.5
4 7539 7014 787.5
5 7404 6899 757.5
6 7537 7019 777.0
7 7556 7030 789.0
8 7557 7045 768.0
9 7077 6592 727.5
10 7546 7041 757.5
11 7568 7036 798.0
12 7592 7082 765.0
slope -1.719
curvature -0.158
overall uniformity 251 %

[optimization-only]
thickness (A) etching rate
site before after (A/min)

1 6486 5921 847.5
2 6515 5941 861.0
3 6468 5894 861.0
4 6452 5882 855.0
5 6297 5747 825.0
6 6399 5822 865.5
7 6258 5682 864.0
8 6305 5744 841.5
9 5937 5427 765.0
10 6258 5722 804.0
11 6108 5574 801.0
12 6284 5760 786.0

slope -4.037

curvature 1.590

overall uniformity 397 %

fon-line control}

thickness (A) ctching rate
site before after (A/min)
1 6644 6174 705.0
2 6643 6171 708.0
3 6636 6161 712.5
4 6652 6180 708.0
5 6518 6055 694.5
6 6578 6111 700.5
7 6538 6059 718.5
8 6634 6170 696.0
9 6115 5667 672.0
10 6473 6013 690.0
11 6410 5923 730.5
12 6626 6162 696.0
slope -0.801
curvature -0.027
overall uniformity 203 %

{on-line control]

thickness (A) etching rate
site before after (A/min)
1 7630 7143 730.5
2 7628 7136 738.0
3 7601 7108 739.5
4 7604 7116 732.0
5 7582 7115 700.5
6 7664 7189 712.5
7 7588 7109 | 7185
8 7619 7142 715.5
9 7405 6920 727.5
10 7738 7269 703.5
11 7654 7167 730.5
12 7818 7331 730.5
slope 20.830
curvature -1.193
overall uniformity 1.71 %
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[optimization-only]

thickness (A) etching rate
site before after (A/min)
1 6643 6112 796.5
2 6623 6084 808.5
3 6647 6114 799.5
4 5670 6141 793.5
5 6403 5874 793.5
6 6420 5882 807.0
7 6532 6004 792.0
8 6575 6052 784.5
9 6021 5507 771.0
10 6236 5721 772.5
11 6517 6004 769.5
12 6668 6164 756.0
slope -2.049
curvature 0.691
overall uniformity 1.99 %
[optimization-only]
thickness (A) etching rate
site before after (A/min)
1 6746 6226 780.0
2 6730 6200 795.0
3 6737 6209 792.0
4 6762 6242 780.0
5 6780 6287 739.5
6 6811 6300 766.5
7 6806 6290 774.0
8 6896 6397 748.5
9 6441 5936 757.5
10 6874 6390 726.0
il 6743 0236 760.5
12 6851 6363 732.0
slope -2.803
curvature -0.541
overall uniformity 2.86 %

[on-line control]

thickness (A) etching rate
site before after (A/min)
1 7280 6794 729.0
2 7266 6776 735.0
3 7262 6780 723.0
4 7289 6807 723.0
5 7212 6746 699.0
6 7227 6751 714.0
7 7211 6744 700.5
8 7324 6855 703.5
9 7029 6560 | 7035
10 7246 6770 714.0
11 7273 6798 712.5
12 7521 7047 711.0
slope -1.208
curvature -1.024
overall uniformity 1.55%

[on-line control}

thickness (A) etching rate
site before after (A/min)
1 5253 4762 | 1365 |
2 5266 4773 739.5
3 5231 4733 747.0
4 5242 4748 741.0
5 5045 4560 727.5
6 5083 4579 756.0
7 5016 | 4505 | 7665
8 5124 4635 733.5
9 4916 4435 721.5
10 5092 4616 714.0
11 5114 4625 733.5
12 5379 4917 693.0
slope -1.737
curvature 1.201
overall uniformity 251 %
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[optimization-only]

[on-line control]

thickness (A) etching rate
site before after (A/min)
1 6278 5749 793.5
2 6268 5733 802.5
3 6331 5793 807.0
4 6352 5817 802.5
5 6164 5658 759.0
6 6132 5611 781.5
7 6307 5775 798.0
8 6450 5926 786.0
9 5743 5258 727.5
10 5849 5361 732.0
11 6045 5523 783.0
12 6351 5830 781.5
slope -2911
curvature 0.157
overall uniformity 327 %

[optimization-only}]

thickness (A) etching rate
site before after (A/min)
1 7401 6889 768.0
2 7484 6964 780.0
3 7581 7066 772.5
4 7520 7004 774.0
5 7098 6617 721.5
6 7419 6901 777.0
7 7661 7145 774.0
8 7530 7020 765.0
9 6648 6151 745.5
10 7349 6849 750.0
11 7619 7097 783.0
12 7564 7059 757.5
slope -0.957
curvature -0.454
overall uniformity 222 %

thickness (A) etching rate
site before after (A/min)
1 5799 5324 712.5
2 5816 5339 715.5
3 5879 5402 715.5
4 5877 5403 711.0
5 5586 5132 681.0
6 5667 5205 693.0
7 5847 5384 694.5
8 5920 5455 697.5
9 5461 4992 703.5
10 5758 5285 709.5
11 6058 5579 718.5
12 6313 5822 736.5
slope 0.239
curvature -1.683
overall uniformity 1.97 %
[on-line control]
thickness (A) etching rate
site before after (A/min)
1 6302 5782 780.0
2 6292 5764 792.0
3 6287 5759 792.0
4 6331 5806 787.5
5 6195 5703 738.0
6 6153 5644 763.5
7 6184 5668 774.0
8 6286 5774 768.0
9 5995 5507 732.0
10 6217 5732 721.5
11 6200 5699 751.5
12 6343 5838 757.5
slope -2.996
curvature -0.270
overall uniformity 2.86 %
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[optimization-only]

thickness (A) etching rate
site before after (A’min)
1 6550 6034 774.0
2 6455 5921 801.0
3 6564 6039 787.5
4 6532 6009 784.5
5 6274 5767 760.5
6 6413 5891 783.0
7 6286 5762 786.0
8 6297 5717 780.0
9 5918 5419 748.5
10 6374 5870 756.0
11 6177 5665 768.0
12 6146 5633 769.5
slope -1.694
curvature 0.242
overall uniformity 1.86 %

[optimization-oniy]

thickmess (A) etching rate
site before after (A/min)
1 3997 2886 1666.5
2 4054 2957 1645.5
3 4079 2963 1674.0
4 4031 2897 1701.0
5 3498 2268 1845.0
6 3798 2636 1743.0
7 3894 2684 1815.0
8 3739 2452 1930.5
9 2820 1596 1836.0
10 3664 2495 1753.5
11 3941 2720 1831.5
12 3765 2400 2047.5
slope 5.455
curvature 1.785
overall uniformity 6.34 %

lon-line control]

thickness (A) etching rate
site before after (A/min)
1 6998 6504 7410 |
2 7013 6512 751.5
3 7024 6525 748.5
4 7021 6526 742.5
5 6906 6428 717.0
6 7025 6529 744.0
7 7037 6541 744.0
8 7051 6566 727.5
9 6601 6114 730.5
10 7048 6567 721.5
11 7044 6563 721.5
12 7089 6622 700.5
slope -1.869
curvature 0.064
overall uniformity 201 %

[on-line control]
thickness (A) etching rate
site before after (A/min)
1 5268 4421 1270.5
2 5250 4394 1284.0
3 5302 4448 1281.0
4 5328 4482 1269.0
5 5178 4283 13425
6 5118 4207 1366.5
7 5264 4336 1392.0
8 5426 4532 1341.0
9 4791 3867 1386.0
10 4866 3918 14220
11 5027 4054 1459.5
12 5339 4408 1396.5
slope 5.177
curvature 0.534
overall uniformity 452 %
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[optimization-only]

thickness (A) ewching rate
site before after (A/min)
1 6018 5021 1495.5
2 6026 5035 1486.5
3 5996 5008 1482.0
4 6006 5009 1495.5
5 5888 4823 1597.5
6 5940 4892 15720
7 5876 4846 1545.0
8 5939 4856 1624.5
9 5644 4512 1698.0
10 5927 4869 1587.0
11 5894 4873 1531.5
12 6060 4931 1693.5
slope 4.390
curvature 0.831
overall uniformity 4.64 %

{optimization-only}]

thickness (A) etching rate
site before after (A/min)
1 5021 3917 1656.0
2 5035 3934 1651.5
3 5008 3899 1663.5
4 5009 3901 1662.0
5 4823 3647 1764.0
6 4892 3727 1747.5
7 4846 3670 1764.0
8 4856 3680 1764.0
9 4512 3285 1840.5
10 4869 3679 1785.0
11 4873 3686 1780.5
12 4931 3714 1825.5
slope 4.295
curvature 0.770
overall uniformity 3.69 %

{on-line control]

thickness (A) elching rate
site before after (A/min)
1 5704 4145 2338.5
2 3676 4096 2370.0
3 5674 4092 2373.0
4 5712 4143 2353.5
S 5769 4170 2398.5
6 5762 4062 2550.0
7 5733 4069 2496.0
8 5859 4231 2442.0
9 5454 3827 2440.5
10 5867 4106 2641.5
11 5677 3953 2586.0
12 5831 4186 2467.5
slope 3.567
curvature 0.516
overall uniformity 5.80 % |

[on-line control]
thickness (A) etching rate

site before after (A/min)
1 4697 3513 1776.0
2 4719 3534 1771.5
3 4778 3593 1777.5
4 4776 3594 1773.0
5 4475 3203 1908.0
6 4566 3315 1876.5
7 4737 3477 1890.0
8 4803 3572 1846.5
9 4332 3002 1995.0
10 4670 3364 1959.0
11 4942 3645 1945.5
12 5158 3896 1893.0

slope 4.607

curvature 0.487

overall uniformity 402 %
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[optimization-only]
thickness (A) etching rate

site before after (A/min)
1 4859 3964 1342.5
2 4875 3980 1342.5
3 4891 4005 1329.0
4 4895 4005 1335.0
5 4747 3795 1428.0
6 4898 3948 1425.0
7 4927 3999 1392.0
8 4952 4021 1396.5
9 4123 3164 1438.5
10 4829 3858 1456.5
11 4843 3925 1377.0
12 4859 3911 14220

~ slope 3.102

curvature 1.079

overall uniformity 3.08%

[optimization-only]

thickness (A) etching rate
site before after (A/min)
1 4003 3131 1308.0
2 4034 3154 13200
3 4040 3142 13470
4 4036 3150 1329.0
5 3855 2959 1344.0
6 3983 3061 1383.0
7 3962 2975 1480.5
8 4040 3098 1413.0
9 3500 2570 1395.0
10 3982 3041 1411.5
11 3883 2829 1581.0
12 4098 3125 1459.5
slope 4.856
curvature 0.402
overall uniformity 543 %

[on-line control]
thickness (A) etching rate
site before after (A/min)
1 5239 4022 1825.5
2 5287 4052 1852.5
3 5302 4059 1864.5
4 5275 4056 1828.5
5 5065 3872 1789.5
6 5243 4002 1861.5
7 5252 3982 1905.0
8 5266 4059 1810.5
9 4676 3512 1746.0
10 5234 4002 1848.0
11 5178 3903 17725
12 5309 4118 1786.5
slope -0.531
curvature 0.235
overall uniformity 2.54 %

[on-line control]

thickness (A) etching rate
site | before after (A/min)
1 6121 5070 1576.5
2 6064 5004 1590.0
3 6101 5020 1621.5
4 6154 5091 1594.5
5 6069 5014 1582.5
6 5873 4788 1627.5
7 6007 4891 1674.0
8 6163 5088 1612.5
9 5942 4880 1593.0
10 5568 4465 1654.5
11 5922 4819 1654.5
12 6131 5044 1630.5
slope 1.159
curvature 0.301
overall uniformity 1.87 %




APPENDIX B OXIDE ETCHING PROCESS EXPERIMENT DATA
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[optimization-only]

[on-line control]

thickness (A) etching rate
site before after (A/min)
1 3131 2193 1407.0
2 3154 2205 1423.5
3 3142 2177 1447.5
4 3150 2197 1429.5
5 2959 2008 1426.5
6 3061 2073 1482.0
7 2975 1944 1546.5
8 3098 2096 1503.0
9 2570 1656 1371.0
10 3041 2031 1515.0
11 2829 1753 1614.0
12 3125 2093 1548.0
slope 2.883
curvature 0.680
overall uniformity 4.61 %
[optimization-only]
thickness (A) etching rate
site_| before after (A/min)
1 3974 2835 1708.5
2 3989 2840 1723.5
3 4014 2859 1732.5
4 4014 2882 1698.0
5 3805 2549 1884.0
6 3957 2702 1882.5
7 4007 2709 1947.0
8 4028 2809 1828.5
9 3175 1981 1791.0
10 3867 2583 1926.0
11 3931 2603 1992.0
12 3919 2660 1888.5
slope 5.011
curvature 2,127
overall uniformity 5.28 %

thickness (A) etching rate
site before after (A/min)
1 6075 4344 2596.5
2 6179 417 2643.0
3 6166 4377 2683.5
4 6106 4359 2620.5
5 5874 4199 2512.5
6 6134 4350 2676.0
7 6041 4300 2611.5
8 5982 4253 2593.5
9 5302 3726 2364.0
10 5736 4004 2598.0
11 5859 4017 2763.0
12 5753 4105 24720
slope -1.669
curvature 0.112
overall uniformity 3.87 %
[on-line control]
thickness (A) etching rate
site | before after (A/min)
1 530i 4239 1593.0
2 5444 4380 1596.0
3 5384 4295 1633.5
4 5243 4163 1620.0
5 4776 3718 1587.0
6 5161 4056 1657.5
7 5002 3842 1740.0
8 4886 3791 1642.5
9 4076 3089 1480.5
10 4857 3761 1644.0
11 4813 3653 1740.0
12 4832 3758 1611.0
slope 0.253
curvature 1.289
overall uniformity 4.06 %
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APPENDIX C

POLYSILICON ETCHING PROCESS
EXPERIMENT DATA

C.1 22 Designed Experiments

[experiment 1]
thickness (A) etching rate
site before after (A/min)

1 5350 4961 583.5
2 5350 4953 595.5
3 5352 4949 604.5
4 5349 4943 609.0
5 5350 4903 670.5
6 5344 4996 522.0
7 5343 4900 664.5
8 5354 4927 640.5
9 5342 4928 621.0
10 5337 4923 621.0
11 5349 4896 679.5
12 5342 4878 696.0

robustess 819

slope 4.496

[experiment 2]
thickness (A) etching rate

site before after (A/min)
1 5412 3267 3217.5
2 5426 3331 3142.5
3 5404 3331 3109.5
4 5393 3326 3100.5
5 5409 3312 3145.5
6 5438 3294 3216.0
7 5405 3273 3198.0
8 5406 3295 3166.5
9 5415 3236 3264.0
10 5443 3215 3342.0
11 5417 3190 3340.5
12 5407 3221 3279.0

robustness 19114

slope 2.552




APPENDIX C POLYSILICON ETCHING PROCESS EXPERIMENT DATA

C2

[experiment 3]

thickness (A) etching rate
site before after (A/min)
1 5413 4250 1744.5
2 5411 4251 1740.0
3 5410 4251 1738.5
4 5408 4254 1731.0
5 5416 4261 17325
6 5450 4262 1782.0
7 5420 4285 1702.5
8 5415 4256 1738.5
9 5442 4342 1650.0
}_lO 5408 4344 1596.0
11 5454 4360 1641.0
12 5413 4349 1596.0
robustness 752.2
slope -3.465
[experiment 5]
thickness (A) etching rate
site before after (A/min)
1 5353 5039 471.0
2 5356 5027 493.5
3 5363 5031 498.0
4 5352 4996 534.0
5 5364 4992 558.0
6 5367 4992 562.5
7 5359 4985 561.0
8 5353 4983 555.0
9 5364 4953 616.5
10 5369 4961 612.0
11 5347 4909 657.0
12 5356 4926 A45.0
robustess 323.6
slope 11.843

[experiment 4]
thickness (A) etching rate
site before after (A/min)
1 5401 2245 63120
2 5398 2258 6280.0
3 5403 2247 63i2.0
4 5401 2246 63100
h] 5402 2255 6294.0
6 5412 2242 6340.0
7 5408 2260 6296.0
8 5406 2259 6294.0
9 5417 2415 6004 .0
10 5405 2388 6034.0
11 5412 2467 5890.0
12 5402 2457 5890.0
robustness 1473.4
slope -2.820
[experiment 6]
thickness (A) etching rate
site before after (A/min)
1 5395 3288 3160.5
2 5381 3268 3169.5
3 5334 3278 3159.0
4 5388 3286 3153.0
5 5388 3255 3199.5
6 5384 3239 3217.5
7 5363 3224 3208.5
8 5369 3249 3180.0
9 5392 3196 32940
10 5392 3133 3388.5
11 5353 3098 3382.5
12 5359 3171 32820
robustness 2617.7
slope 2.726




APPENDIX C POLYSILICON ETCHING PROCESS EXPERIMENT DATA

C3

[experiment 7]
thickness (A) etching rate

site before after (A/min)
1 5392 4236 1734.0
2 5397 4208 1783.5
3 5397 4202 1792.5
4 5395 4233 1743.0
5 5399 4244 1732.5
6 5397 4211 1779.0
7 5389 4209 1770.0
8 5394 4233 1741.5
9 5406 4316 1635.0
10 5403 4307 1644.0
11 5388 4319 1603.5
12 5384 4352 1548.0

robusmess 503.3

slope -4.553

C.2 On-line Control Experiments

[optimization-only]
thickness (A) etching rate
sitt | before after | (A/min)
1 3787 1553 4468.0
2 3767 1527 4480.0
3 3774 1546 4456.0
4 3790 1501 4578.0
5 3797 1493 4608.0
6 3765 1480 4570.0
7 3772 1522 4500.0
8 3800 1527 4546.0
9 3801 1510 4582.0
10 3757 1463 4588.0
11 3762 1543 4438.0
12 3817 1606 | 44220
slope 0.133
overall uniformity 140 %

[experiment 8]
thickness (A) etching rate

site before after (A/min)
1 5404 2355 6098.0
2 5406 2375 6062.0
3 5404 2359 6090.0
4 5411 2367 6088.0
5 5408 2399 6018.0
6 5403 2367 6072.0
7 5401 2268 6266.0
8 5405 2386 6038.0
9 5408 2459 5898.0
10 5407 2433 5948.0
11 5403 2501 5804.0
12 5404 2488 5832.0

robusiness 1578.1

slope -1.778

[on-line control]
thickness (A) etching rate

site before after (A/min)
1 3759 1508 4502.0
2 3754 1483 4542.0
3 3756 1497 4518.0
4 3753 1514 4478.0
5 3759 1491 4536.0
6 3745 1440 4610.0
1 3745 1475 4540.0
8 3762 1523 4478.0
9 3741 1487 4508.0
10 3707 1405 4604.0
11 3700 1457 4486.0
12 3757 1509 4496.0

slope 0.149

overall uniformity 0.94 %
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[optimization-only]
thickness (A) etching rate

site before after (A/min)
1 3413 1018 4790.0
2 3411 1007 4808.0
3 3392 1011 4762.0
4 3412 1020 4784.0
5 3380 975 4810.0
6 3358 948 4820.0
7 3367 961 4812.0
8 3383 990 4786.0
9 3371 934 4874.0
10 3336 892 4888.0
11 3372 947 4850.0
12 3416 992 4848.0

slope 0.820

overall uniformity 0.76 %

[optimization-only]

thickness (A) etching rate
site | before after (A/min)
1 5423 3042 4762.0
2 5418 3044 4748.0
3 5421 3041 4760.0
4 5423 3043 4760.0
5 5427 3027 4800.0
6 5427 3008 4838.0
7 5414 3008 4812.0
8 5415 3014 4802.0
9 5429 3002 4854.0
10 5429 2971 4916.0
11 5428 2992 4872.0
12 5413 3005 4816.0
slope 1.112
overall uniformity 1.02 %

[on-line control]
thickness (A) etching rate
site [ before afiter (A/min)
| 3220 784 48720
2 3226 784 4884.0
3 3205 780 4850.0
4 3216 788 4856.0
5 3201 736 4930.0
6 3199 712 49740
7 3204 724 4960.0
8 3202 747 4910.0
9 3203 722 4962.0
10 3197 675 5044.0
11 3205 735 4940.0
12 3222 778 4888.0
slope 0.945
overall uniformity 1.11 %
[on-line control]
thickness (A) etching rate
site before after (A/min)
1 5423 2716 5414.0
2 5421 2716 5410.0
3 5428 2716 54240
4 5419 2718 54020
5 5434 2688 54920
6 5427 2682 5490.0
7 5422 2685 54740
8 5407 2690 5434.0
9 5423 2686 5474.0
10 5431 2653 5556.0
11 5415 2696 5438.0
12 5415 2689 54520
slope 0.619
overall uniformity 0.78 %




APPENDIX C

POLYSILICON ETCHING PROCESS EXPERIMENT DATA

[optimization-only]

[on-line control]

thickness (A) ctching rate
site before after (A/min)
1 5405 2605 5600.0
5408 2602 5612.0
3 5454 2605 5698.0
4 5452 2611 5682.0
5 5405 2596 5618.0
6 5405 2583 5644.0
7 5456 2588 5736.0
8 5450 2590 5720.0
9 5408 2607 5602.0
10 5422 2593 5658.0
11 5444 2628 5632.0
12 5427 2634 5586.0
slope -0.252
overall uniformity 0.85 %

[on-line control]

thickness (A) etching rate
site before after (A/min)
1 3042 618 4848.0
2 3044 6'3 4862.0
3 3041 611 4860.0
4 3043 619 4848.0
5 3027 574 4906.0
6 3008 545 4926.0
7 3008 555 4906.0
8 3014 576 4876.C
9 3002 531 49420
10 2971 474 4994.0
11 2992 527 4930.0
12 3005 567 4876.0
slope 0.827
overall uniformity 087 %
[optimization-only]
thickness (A) etching rate
site [ before after (A/min)
1 5417 3075 4684.0
2 5413 3070 4686.0
3 5412 3072 4680.0
4 5412 3073 4678.0
5 5426 3058 4736.0
6 5422 3042 4760.0
7 5408 3041 4734.0
8 5411 3058 4706.0
9 5424 3037 47740
10 5420 3022 4796.0
11 5409 3039 4740.0
12 5409 3058 | 47020
slope 0.752
overall uniformity 0.81 %

thickness (A) etching rate

site before after (A/min)

1 5451 2586 5730.0

2 5436 2653 5566.0

3 5423 2641 5564.0

4 5417 2583 5668.0

5 5442 2642 5600.0

| 6 5444 2633 5622.0

7 5411 2634 55540

8 5412 2636 5552.0

9 3442 2650 5584.0

10 5444 2634 5620.0

11 5419 2648 5542.0

12 5407 2642 5530.0
slope -0.563
overall uniformity 1.00 %
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loptimization-only]

thickness (A) etching rate
site before after (A/min)
1 5456 3105 4702.0
2 5454 3118 4672.0
3 5414 3116 4596.0
4 5416 3101 4630.0
5 5449 3104 4690.0
6 5443 3101 4684.0
7 5401 3103 4596.0
8 5453 3103 4700.0
9 5460 3104 47120
10 5462 3075 4774.0
11 5460 3104 47120
12 5454 3118 | 46720
slope 0.721
overall uniformity 1.04 %

[optimization-only]

thickness (A) etching rate
site before after (A/min)
1 5109 2591 5036.0
2 5121 2594 5054.0
3 5115 2585 50690.0
4 5117 2591 5052.0
5 5114 2573 5082.0
6 5127 2563 5128.0
7 5119 2571 5096.0
8 5114 2588 5052.0
9 5115 2584 5062.0
10 5154 2559 5190.0
11 5139 2596 5086.0
12 5113 2617 49920
slope 0.315

lon-line control]
thickness (A) ctching rate

site before after (A/min)
1 5470 2976 4988.0
2 5470 2977 4986.0
3 5454 2972 4964 .0
4 5447 2979 4936.0
5 5477 2963 5028.0
6 5479 2055 5048.0
7 5466 2964 5004.0
8 5420 2063 49140
9 5479 2970 5018.0
10 5479 2963 5032.0
11 5458 2998 4920.0
12 5405 3004 4802.0

slope -0.257

overall uniformity 1.33 %

[on-line control]

thickness (A) ctching rate
site before after (A/min)
1 5005 3298 34140
2 5007 3282 3450.0
3 5015 3204 3442.0
4 4974 3204 3360.0
b} 4965 3279 33720
6 5015 3260 3510.0
7 5017 3253 3528.0
8 4967 3286 33620
9 4967 3238 3458.0
10 5026 3196 3660.0
11 5026 3220 36120
12 4958 3260 3396.0
slope 1.660
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[optimization-only]

thickness (A) etuaing rate
site before after (A/min)
1 4731 2672 4118.0
2 4742 2667 41500
3 4736 2668 4136.0
4 4718 2666 4104.0
5 4716 2623 4186.0
6 4745 2586 4318.0
7 4736 2600 42720
8 4700 2633 41340
9 4711 2584 42540
10 4736 2618 42420
11 4731 2576 43100
12 4688 2639 4098.0
slope 1.180
{optimization-only]
thickness (A) etching rate
site before after (A/min)
1 5208 3166 4084.0
2 5206 3174 4064.0
3 5208 3165 4086.0
4 5202 3166 40720
5 5220 3155 4130.0
6 5209 3110 4198.0
7 5204 3125 4158.0
8 5202 3161 4082.0
9 5225 3166 4118.0
10 5218 3075 4286.0
11 5213 3154 4118.0
12 5208 3205 4006.0
slope 0.674

[on-line control]

thickness (A) etching rate
site before after (A/min)

1 4363 3036 26540 |
2 4362 3031 2662.0
3 4358 3035 2646.0
4 4361 3039 2644.0
5 4363 3023 2680.0
6 4333 2967 27320
7 4339 2972 27340
8 4370 3026 2688.0
9 4357 2950 2814.0
10 4307 2793 3028.0
11 4321 2818 3006.0
12 4339 2956 2766.0

slope 4574
[on-line control]

thickness (A) etching rate
site before after (A/min)
1 5187 3256 3862.0
2 5187 3250 3874.0
3 5181 3254 3854.0
4 5181 3252 3858.0
5 5184 3257 3854.0
6 5183 3213 3940.0
7 5175 3214 3922.0
8 5172 3246 3852.0
9 5192 3252 3880.0
10 5170 3173 3994.0
11 5171 3216 3910.0
12 5166 3259 3814.0

slope 0.483
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[optimization-only]

thickness (A) etching rate
site before after (A/min)
1 3783 1712 41420
2 3787 1704 4166.0
3 3781 1706 41500
4 3780 1710 41400
5 3787 1706 4162.0
6 3790 1679 42220
7 3787 1690 4194.0
8 3780 1709 41420
9 3792 1726 41320
10 3791 1677 4228.0
11 3791 1709 4164.0
12 3786 1745 4082.0
slope .024
[optimization-only]
thickness (A) etching rate
site before after (A/min)
1 5296 3267 4058.0
2 5289 3263 4052.0
3 5293 3267 4052.)
4 5300 3265 4070.0
5 5296 3259 4074.0
6 5292 3233 41180
7 5292 3238 4108.0
8 5300 3258 4084.0
9 5299 3262 4074.0
10 5302 3228 4148.0
11 5304 3261 4086.0
12 5294 3299 _3990.0
slope 0.202

[on-line control]

thickness (A) etching rate
site before after (A/min)
1 3648 1949 2548 .5
2 3659 1938 25815
3 3655 1936 2578.5
4 3652 1945 2560.5
5 3659 1931 2592.0
6 3685 1893 2688.0
7 3679 1891 2682.0
8 3648 1924 2586.0
9 3685 1951 2601.0
10 3694 1829 27797.5
11 3694 1828 2799.0
12 3644 1932 2568.0
slope 2.358
[on-line control]
thickness (A) etching rate
site before after (A/min)
1 5298 3808 2980.0
2 5305 3801 3008.0
3 5302 3802 3000.0
4 5301 3804 26940
5 5303 3796 30140
6 5308 3778 3060.0
7 5301 3771 3060.0
8 5295 3794 3002.0
9 5309 3773 3072.0
10 5339 31734 32100
11 5306 3766 3080.0
12_| 5290 | 377i | 303R0
slope 1.717
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[optimization-only]

[on-line control]

thickness (A) etching rate
site before after (A/min)
1 4157 1660 4994.0
2 4162 1656 5012.0
3 4157 1655 5004.0
4 4152 1662 4980.0
5 4179 1665 5028.0
6 4150 1626 5048.0
7 4152 1631 5042.0
8 4177 1661 5032.0
9 4183 1678 5010.0
10 4155 1602 5106.0
11 4162 1644 5036.0
12 4174 1701 | 4946.0
slope 0.269

thickness (A) etching rate
site before after (A/min)
1 3740 2067 2509.5
2 3751 2046 2557.5
3 3746 2050 25440
4 3742 2064 25170
5 3749 2039 2565.0
6 3760 2098 24930
7 3749 2101 24720
8 3739 2032 2560.5
9 3753 2025 25920
10 3759 1968 2686.5
11 3753 1981 2658.0
12 3746 2028 25770
slope 1.882
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APPENDIX D
LPCVD PROCESS SIMULATION DATA

D.1 L9 Designed Experiments

[experiment 1]
wafer 1 | wafer 2 | wafer 3
run | 4893 52.37 54.14
run 2 47.35 50.73 52.67
run 3 4795 50.22 52.82
run 4 4740 4998 53.05
run 5 47.52 50.59 54.60
robustness 1568.9
slope 5.550
[experiment 3]
wafer 1 | wafer 2 | wafer 3
run 1 58.48 53.53 4692
run 2 58.14 54.68 47.52
run 3 59.58 53.90 47.74
run 4 57.09 56.50 48.60
rn 5 55.98 55.94 48.66
robustness 485.5
slope -9.305

[experiment 2]
wafer | | wafer 2 | wafer 3
run 1 5294 52.73 51.71
run 2 51.46 5000 | 5045
run 3 52.58 51.04 5091
run 4 51.11 48.50 49.53
run 5 5199 53.75 5047
robustness 585.3
slope -1.367
[experiment 4]
wafer | | wafer 2 | wafer 3
run 1 49.75 52.72 52.05
run 2 48.81 51.18 50.58
run 3 49.15 50.48 5040 |
run 4 48.67 52.18 51.33
run S 49.36 51.06 52.50
robustness 10224
slope 2.194




APPENDIX D LPCVD PROCESS SIMULATION DATA D2
{experiment 5] [experiment 6]
wafer 1 | wafer 2 | wafer 3 wafer 1 | wafer 2 | wafer 3
run 1 55.39 56.06 53.82 nn 1 56.09 53.51 5240
run 2 57.11 58.7 54.14 run? 58.53 54,00 53.32
run 3 56.62 57.52 5243 run 3 57.61 55.00 53.62
run 4 56.06 56.76 52.59 run 4 57.98 55.61 53.19
run 5 55.89 60.19 54.58 run 5 58.15 56.06 53.50
robustness 3399 robustness 1512.2
slope -2416 slope -4.043
[experiment 7] [experiment 8]
wafer 1 | wafer 2 | wafer 3 wafer 1 | wafer 2 | wafer 3
run 1 55.04 60.49 59.46 run 1 54.76 54.24 55.54
run 2 5391 58.32 57.63 | mun?2 55.82 53.76 5520
run 3 54.77 60.43 57.79 run 3 55.53 56.06 54.52
run 4 55.52 61.14 55.99 run 4 56.44 57.71 56.33
run 5 55.73 61.94 58.30 un 5 55.78 57.08 56.46
robustness 238.0 robustmess 964.1
slope 2.458 slope -0.050
[experiment 9]
wafer 1 | wafer 2 | wafer 3
run 1 64.75 62.99 56.17
run 2 65.07 62,07 56.23
| mun3 6503 | 6443 | 57.55
run 4 63.42 63.06 55.78
run 5 62.44 61.02 55.76
robustness 540.3
slope -6.424
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D.2 Sequential Optimization Expennments
[run i] [run 2]
wafer 1 | wafer 2 | wafer 3 wafer 1 | wafer 2 | wafer 3
runl 46.85 49.50 50.79 run 1 57.08 54.11 51.16
run 2 4748 50.15 5243 run 2 55.57 5398 51.62
run 3 45.94 49.28 53.18 run 3 57.51 52.94 50.82
run 4 4631 48.86 52.50 run 4 57.73 53.58 52.35
run 5 47.25 46.69 52.78 un 5 56.42 53.65 50.72
performance ] performance )
index 6.49x10-3 index 5.30x10-3
slope 5.645 slope -5.123
overall overall
uniformity 499 % uniformily 435 %
[run 3] [nm 4]
wafer 1 | wafer 2 | wafer 3 wafer 1 | wafer 2 | wafer 3
run 1 52.09 50.21 52.20 run 1 51.20 S51.11 51.70
run 2 51.86 50.78 52.12 run 2 48.92 50.38 51.64
run 3 52.64 52.09 49.82 nun’ 48 .84 50.05 52.20
run 4 5243 52.36 50.70 run 4 49.52 48.59 49.62
run 5 51.54 52.65 51.75 run 5 50.88 50.89 53.61
performance performance
index 1.20x104 index 7.88x104 B
slope -0.768 slope 1.859
overall overall
uniformity 1.67% uniformity 2.66 %
(3] [nm 6]
wafer . | wafer 2 | wafer 3 wafer 1 | wafer 2 | wafer 3
run 1 5494 5398 51.50 run 1 51.77 50.52 5243
yun 2 54.66 52.76 50.87 rnun 2 50.93 51.37 50.06
run 3 55.31 54.09 50.75 run 3 5255 51.10 51.55
run 4 5361 51.36 51.23 run 4 5252 50.37 51.95
run 5 55.00 51.66 50.66 run 5 50.44 52.12 51.92
performance performance §
index 2.46x10-3 index 6.78x10-6
slope -3.504 slope -0.058
overall over 1]
uniformity 3.20 % uniformity 1.57%
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(rum 7] |run 8)
wafer 1 | wafer 2 | wafer 3 wafer 1 | wafer 2 | water 3
run | 51.77 50.22 51.20 run | 5343 52.72 50.51
run 2 50.92 51.81 S1.81 run 2 52.04 50.08 50.69
run 3 50.29 52.31 52.93 run 3 53.37 51.70 50.93
run 4 50.42 51.08 S144 run 4 53.38 52.05 S51.85
run § S0.85 52.23 52.09 run 5 52.58 50.59 50.49
rformance rrformance
e 2.12x10 P o 8.59x10-4
slope 1.OIS slope -1.996
overall overall .
uniformity 151 % uniformity 2.17%
(un 9]
wafer 1 | wafer 2 | wafer 3
run 1 50.94 50.68 51.35
run 2 50.70 50.93 51.02
run 3 5098 51.47 S1.81
[ mna [ 5114 | sL12 | sL17
run 5 51.08 52.67 5295
perforiaance 9.18x10-5
slope 0.674
overall 125 %

uniformity
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APPENDIX E
ON-LINE CONTROL
USING MULTIPLE SITE MODELS

E.1 Multiple Response Surfaces and On-line Control

The multiple response surface mcthod is used for the on-line control of
uniformity, where each measurement site is modeled as a function of the process
parameters. The resulting multiple response surfaces are called multiple site models.
Uniformity of a process is calculated from the multiple site models. Whenever any
changes occur in the process conditions, the multiple site models are adapted to
describe the measurements accurately, and as a result the uniformity function is also
adapted. On-line control is performed by optimizing the uniformity function. The
optimization of the uniformity function generates the optimum process paramcter
values that will be used for the next run of the process. Since the uniformity function
i1s changing due to the adaptation of multiple site models, the optimum process
parameter values also change accordingly, which results in on-line control.

The multiple response surface method has the advantage of fast adaptation,
since each response surface is constructed using low-order polynomials, which have a
small number of coefficients to be fitted. Because of this fast adaptation capability, the
multiple response surface method is appropriate for the on-line control of processes.
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E.2 Uniformity in a Single Wafer Plasma Etching Process

The multiple response surface method was applied to the on-line control of
within-a-water uniformity in a single wafer plasma etching process using the
AutoEtch™ 590 single wafer plasma etcher. The experiments were performed in
conjunction with the experiments of Section 3.4.1 to compare the on-line control
results with the results of the optimization-only experiments.

In the experiments, gap and CHF; were the process parameters. Both process
parameters were used to model the multiple site models and to control the uniformity,
which was calculated using the multiple site models. Using 12 measurements of
etching rates of a wafer as shown in Figure 3.6, relative deviations of cach site ctching
rate from the mean etching rate were modeled as first-order linear functions with an
interaction term as follows:

Y. -Y,

T = CO,i + Cl'ix(gap) + g'ix(CHF3) + C3.ix(gap)x(CHF3) . (Eq.E.l)

fori=1,2, .., 12, where ?. is the mean etching rate of 12 measured etching rates for

each run.

Since it was found that the relative deviation models have a better fit than the
absolute etching rate models, the relative deviation models were used to increase
model accuracy. The relative deviations are also best suited for representing within-a-
wafer non-uniformity patterns. The overall uniformity was represented with
performance index defined as follows:

12 Y. -Y,
performance index = Y, ( '? 2. (Eq. E.2)

i=t

The performance index was minimized in order to maximize the within-a-wafer
uniformity using a non-linear optimizer.

Using the results of 22 full factorial experiments (refer to Section 3.4.1.1), the
relative deviations of each site were calculated as listed in Table E.l. The
experimental data are listed in Appendix B.1.2.
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exp 1 exp 2 exp 3 exp 4 exp § exp 6 exp 7 exp 8

gap (cm) 04 04 06 0.6 04 04 0.6 0.6

CHF3 (sccm) 0 15 U 15 0 15 0 15
site 1 0043 | -0.013 | -0.009 0.103 0.062 | -0053 | -0017 0.109
site 2 0044 | -0.019 | -0.022 0.106 0.063 | -0067 | -0.008 0.115
sitc 3 0.049 | -0.015 | -0.020 0.125 0.059 | -0045 | -0.004 0.129
site 4 0047 | -0018 | -0.016 0.119 0.059 | -00s1 -0.007 0.122
site 5 0.018 0.051 -0.067 0.021 0.018 0.066 [ -0.051 0.037
site 6 0.024 0069 | 0.048 | 0011 0.024 0.071 | -0.033 0.028
site 7 0.027 0.071 -0.055 0.165 0.017 0.077 | -0.017 0.067
site 8 0.024 0062 | -0.050 0.024 0.011 0.070 | -0.035 0.045
site 9 -0079 | -0.065 0.072 -0.135 | -0.078 [ -0.020 0022 | 0.193
site 10 -0.065 | -0.025 0.076 | -0.189 | 0.070 | -0.021 0.053 | -0.182
site 11 -0066 | -0.039 0046 | 0.126 | 0081 | -0.009 0066 | -0.130
site 12 -0.066 | -0.059 0094 | 0203 | 0084 | -0017 0.032 | -0.146

Tablc E.1 Rclative deviation data from 22 full factorial experiments

The multiple site models for 12 sites were the constructed as shown in Table
E.2. Whenever new data were available from the previous run, the multiple site
models were adapted by updating the constant terms of each model respectively. The
model adaptation algorithm explained in Section 3.4.1.2 was used to update the

constant terms.

site

model

1

0.0280 + 0.0185x(gap) + 0.0085x(CHE;) + 0.0511x( gap)x(CHF3)

0.0264 + 0.0213x(gap) + 0.0071x(CliE;) + 0.0555x(gap)x(CHF3)

0.0346 + 0.0228x(gap) + 0.0138x(CHF;) + 0.0559x(gap)x(C HF;)

0.0320 - 0.0226x(gap) + 0.0112x(CHEF;)) +0.0548x(gap)x(CHE;)

0.0117 - 0.0267x(gap) + 0.0323x(CHE,) + 0.0120x(gap)x(CHF,)

0.0154 - 0.0316x(gap) + 0.0237><(CHF3) + 0.0008x(gap)x(CHE;)

0.0440 - 0.0039x(gap) + 0.051 lx(CHF3) + 0.0251><(gap)x(CHF3)

0.0188 - 0.0229x(gap) + 0.0314x(CHF;) + 0.0073x(gap)x(CHE;)

O || (| jwin

-0.0595 + 0.0011x(gap) - 0.0437x(CHE,) - 0.0618x(gap)x(CHE;)

—
[=]

-0.0529 - 0.6077x(gap) - 0.05 l4><(CHF3) - 0.0738x( gap)x(CHE;)

—
—

20,0423 + 0.0062x(gap) - 0.0338x(CHE;) - 0.0584x(gap)x(CHF,)

—
[ o8]

-0.0562 + 0.0004x(gap) - 0.0501x(CHF;) - 0.0685x(gap)x(CHF;)

Table E.2 12 site models from 22 full factorial experiment data
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In order to compare the results of on-line control based on multiple site models,
the experiments were performed at the same time as the optimization-only
experiments, whose parameter values were fixed. Table E.3 shows the parameter
values for the optimization-only experiments and the on-line control experiments,
respectively. A total of 15 runs of the experiments were performed with a step change
introduced after the 9th run as explained in Section 3.4.1.2. The experimental data are
listed in Appendix E.4.

optimization-only on-line control
pressure (torr) 3 3
power (waltls) 900 900
gap (cm) (.53 control parameter
He flow rate (sccm) 200 200
CHF; flow rate (sccm) 0 control parameter
CF,4 flow rate (sccm) 20 20
process time 40) 40

Table E.3  Process parameter values for experiments

Table E.4 lists the historical data of the constant terms of all 12 multiple site
models for 15 runs of the experiments.

run 1 un 2 run 3 run 4 run 5 run 6 run 7 run § rn 9

site 1 00280 { 0.0711 { 0.0935 | 00107 | 0.0607 | 0.0102 | 0.0678 | 0.0577 | 0.0228
 site 2 0.0264 | 0.0785 | 0.0946 | 00104 [ 0.0576 | 0.0298 | 0.0651 | 0.0451 | 0.0130
site 3 0.0346 | 0.0921 | 0.1006 | 0.0181 | 0.0660 | 0.0348 | 0.0755 [ 0.0482 | 0.0096
site 4 0.0320 | 0.0804 | 0.0951 | 00114 | 0.0600 | 0.0211 | 0.0659 | 0.0374 | 0.0018
site 5 00117 | 0.0317 | 0.0087 | 0.0308 | -0.0273 | 0.0126 | 0.0230 | -0.0061 | -0.0169
site 6 0.0154 | -0.0295 | -0.0235 | 0.0353 | -0.0296 | 0.0170 | 0.0119 | -0.0170 | -0.0305
site 7 0.0440 | 0.0077 | 0.0142 | 0.0709 | 0.0013 | 0.0671 | 0.0363 | 0.0571 | 0.0535
site 8 00188 | -0.0224 | 00130 | 0.0424 | -0.0293 | 0.0274 | 0.0152 | 0.0062 | 0.0290
site9 | -0.0595 | -0.0741 | -0.0768 | -0.0585 | -0.0351 | -0.0779 | -0.1002 | -0.1203 | -0.0722
site 10| 0.0529 | 0.0674 | -0.0888 | 0.0000 | -0.0325 | -0.0592 | -0.0872 | -0.1132 | -0.9768
site 11| -0.0423 | -0.0334 | 0.0825 | -0.0287 | -0.0291 | -0.0214 | -0.0747 { 0.0301 | 0.0370
site 12| -0.0562 | 0.0713 | -0.1221 | 0.0866 | -0.0627 | -0.0614 | -0.0984 | -0.0253 | 0.0297

Table E.4 Adapted constants for on-line control experiments
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run 10 | run 1l run 12 runl13 | minl4 | run 1S
site 1 0.0228 | -0.0838 | -0.2340 | -0.2618 | -0.2100 | -0.2085
site 2 0.0130 | -0.1446 | 03054 | -0.2732 | -0.2647 | -0.2164
site 3 0.0096 | -0.0879 | -0.2840 | -0.2451 [ -0.2481 | -0.2278
site 4 0.0018 | -0.0516 | -0.2293 | -0.2458 | -0.2038 | -0.228!
site 5 | -0.0169 | €.7°26 | 0.0587 | -0.0691 | 0.0216 | 0.0034
site6 | -£0305 | -0 483 | 00768 | -0.0214 | -0.0582 | 0.0706
site 7 0.0535 | 0.0404 | -0.1300 | -0.0109 | -0.1174 | -0.0987
site 8 0.0290 | 0.0652 | 0.0390 | -0.0113 | 0.0259 | -0.0904
site9 | -0.0722 | 0.0757 | 04245 | 0.1731 | 0.3382 | 0.2641
site 10| -0.0768 | 0.0507 | 0.2722 | 03219 | 0.2335 | 04927
site 11| 0.0370 | 0.0839 | 0.1195 | 03953 ( 0.1361 | 0.1683
site 12| 0.0297 | 0.0775 | 03456 | 0.2484 | 0.3469 | 0.0708

Table E.4 Adapted constants for on-line control experiments (continued)

Figure E.l1 shows the contour plots of the performance index function that is
calculated from the multiple sitc models. The contour plots were constructed to show
the optimum process parameter values for each run using the multiple sitc models
adapted using the data of the previous run. In the figures, the black dots indicate the
position of the optimum process parameter values for the next run.

As explained in Section 3.4.1.2, a step change was introduced after the 9th run
to check the effectiveness of on-line control. It is shown in Figure E.1 that the effect of
the step change on the multiple site models was so large that the contour of the
performance index changed significantly before and after the step change.

15 forrun 1 5 for run 2 5 for run 3
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Figure E.1 Performance index contours
and optimizing process parameter values for each run
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and optimizing process parameter values for each run (continued)
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Figure E.2 shows tne historical data of overall uniformity defined in Eq. 39. It
is noted that the on-line control using the multiple site models was effective in
controlling the process uniformity before the step change (from Ist run to 9th run),
while the optimization-only experiments showed large variations. The on-line control
using the multiple sitz models, however, resulted in worse overall uniformity than the
optimization-only experiments after the step change was introduced (from after 11th
run).

overall unitormity (%)

step change
20 '
16 - !
1 |
12 - .:
1 O.. E ,
SR @ on-line control
81 ..-O ;' o} O optimization-only
4 - 0 .0
g oo
0 T T T T T T T T T T T T T run number

123 45 6 7 8 9101112131415

Figure E.2  Historical data of the overall uniformity

E.3 Discussions

The application of the multiple response surface method to the on-line control of
uniformity in a single wafer plasma etching process showed that the on-line control
improved the overall uniformity by a factor of 1.3 when no step change was introduced.
However, when there was a step change in process conditions, control based or
multiple site models was unable to control the overall uniformity properly. Figure E.3
shows the overall uniformity of the optimization-only experiments and on-line control
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experiments before and after (he step change. In the figure, the error bars represent
the magnitude of two standard deviations of the average overall uniformity values.

The on-line control using the multiple siic models was cffective when (he
process was relatively stable. When the process condition experienced a step
change, the multiple site models were not robust enough to describe the process
condition correctly. Since the multiple site models describe both non-tunable
variability and tunable varability, it is difficult to expect robust prediction capability of
the models when the process conditions experience a stepwise change.

overall uniformity (%) © optimization oniy

20 1 ® on-line control

¢

10 7

HOH

0
<before> <after>

Figure E.3 Average overall uniformity before and after the step change
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E.4 Experiment Data
[run 1] [run 2]
thickness (A) |etching rate | relative thickness (A) [etching rate | relative
site | before | after | (A/min) |deviation site | before | after | (A/min) !deviation
1| 7732 | 6211 2281.5 0.054 1| 8488 | 6915 2359.5 0.077
2| 7786 | 6253 2299.5 0.063 2| 8608 | 7032 23640 0.079
3| 7738 | 6194 23160 0.070 3| 8550 | 6974 2364.0 0.079
41 7679 | 6148 2296.5 0.061 4| 8420 | 6848 2358.0 0.076
5| 7697 | 6360 | 20055 | -0.073 5| 8435 | 7022 | 21195 | 0033
6| 7853 | 6499 2031.0 -0.061 6| 8718 | 7338 2070.0 -0.055
7| 7731 | 6358 2059.5 -0.048 7| 8585 | 7185 2100.0 -0.042
8| 7523 | 6168 2032.5 -0.061 8| 8156 | 6770 2079.0 -0.051
9| 7569 | 6149 2130.0 -0.016 9| 8280 | 6846 21510 -0.018
10| 7835 | 6394 2161.5 -0.001 10| 8681 | 7253 2142.0 -0.022
11| 7695 | 6220 | 21990 | 0016 11] 8543 | 7150 | 21195 | -0033
12| 7201 | 5766 21525 -0.005 12| 7718 | 6339 2068.5 -G.056
overall overall
uniforraity 5.10 % uniformity 3.60 %
[nm 3] [rund]
thickness (A) |etching rate| relative thickness (A) |etching rate | relative
site | before | after | (A/min) |deviation site | before | after | (A/min) |deviation
1| 8257 | 7139 1677.0 -0.021 1| 8495 | 6659 2754.0 0.052 |
2| 8288 | 7170 1677.0 -0.021 2| 8515 | 6682 2749.5 0.050
3| 8270 | 7150 1680.0 -0.019 3| 8504 | 6668 2754.0 0.052
4| 8226 | 7110 1674.0 -0.022 4| 8475 | 6645 2745.0 0.049
5] 8233 | 7124 1663.5 -0.029 5] 8473 | 6832 2461.5 -0.060
6| 8325 | 7196 1693.5 -0.011 6| 8527 | 6875 2478.0 0053
7| 8289 | 7148 1711.5 -0.001 71 8512 | 6854 2487.0 -0.050 |
8| 8072 | 6942 1695.0 -0.010 8| 8363 | 6724 2458.5 -0.061
9| 8165 | 6990 1762.5 0.029 9| 8387 | 6627 2640.0 0.009
10 | 8365 | 7176 1783.5 0.042 10 | 8521 | 6743 2667.0 0.019
11| 8319 | 7120 1798.5 0.050 11 | 8508 | 6755 2629.5 0.005
12| 7642 | 6487 1732.5 0.012 12| 8023 | 6300 2584.5 -0.013
overall overall
uniformity 258 % uniformity 443 %
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[um 5]
thickness (A) |etching rate | relative
site | before | after | (A/min) |deviation
1| 8821 | 4693 6192.0 -0.040
2| 8848 | 4666 62730 -0.027
3| 8834 | 4617 6325.5 -0.019
4| 8798 | 4644 52310 -0.033
S| 8787 | 4256 6796.5 0.054
6| 8867 | 4288 6868.5 0.065
7] 8840 | 4155 | 70275 | 0.090
8| 8675 | 4085 6885.0 0.068
9| 8672 | 4657 6022.5 -0.066
10 | 8856 | 4709 6220.5 -0.035
11| 8820 | 4563 6385.5 -0.010
12 | 8312 | 4222 6135.0 -0.048
overall
uniformity 5.14%
[nmn 7]
thickness (A) |etching rate | relative
site | before | after | (A/min) |deviation
1| 6780 | 6103 1015.5 0.030
2| 6794 | 6125 1003.5 0.017
3| 6778 | 6111 1000.5 0.014
4| 6755 | 6093 993.0 0.007
S| 6885 | 6268 925.5 -0.062
6| 6917 | 6299 9270 -0.060
7| 6883 | 6233 9750 -0.011
8| 6754 | 6125 943.5 -0.043
9| 6653 | 6021 948.0 -0.039
10| 6792 | 6149 964.5 -0.022
11| 6776 | 6051 1087.5 0.103
12| 6303 | 5602 1051.5 0.066
overall 481 %

uniformity

[run 6]
thickness (A) |ctching rate | relative
site [ before | after | (A/min) |deviation
1| 9907 | 7143 4146.0 0.056
2( 9930 | 7170 4140.0 0.055
3( 9895 | 7125 4155.0 0.058
4 9865 | 7113 4128.0 0.051
51 9903 | 7320 3874.5 -0.013
6] 9959 | 7381 3867.0 -0.015
7] 9827 | 7256 | 38565 | 0018
8| 9756 | 7189 3850.5 -0.019
9| 9891 | 7405 37290 -0.050
10 | 9897 | 7356 3811.5 -0.029
11| 9439 | 6912 3790.5 -0.035
12 [ 9396 | 6887 3763.5 -0.041
overalil
uniformity 4.03 %
(run 8]
thickness (A) |etching rate | relative
site | before | after | (A/min) |deviation
1| 7233 | 6423 1215.0 0.008
2| 7248 | 6445 | 12045 | 0001
3| 7237 | 6442 1192.5 -0.011
4] 7212 | 6421 1186.5 -0.016
5| 7268 | 6519 1137.0 -0.057
6| 7274 | 6519 | 11325 | -0.061 |
7| 7251 | 6450 1201.5 -0.003
8] 7121 | 6324 | 11955 | -0.008
91 7131 | 6340 1186.5 -0.016
10| 7183 | 6389 1191.0 -0.012
11| 7188 | 6317 1306.5 0.084
12| 6733 | 5854 1318.5 0.094
overall
uniformity 443 %
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[nm 9]

thickness (A) |etching rate | relative

site | before | after | (A/min) |deviation
1| 6340 | 5456 1326.0 0.067
2| 6365 | 5486 1318.5 0.061
3| 6346 | 5481 1297.5 0.044
4| 6324 | 5467 1285.5 0.035
5| 6494 | 5703 1186.5 -0.045
6| 6551 | 5758 1189.5 -0.043
7| 6498 | 5693 1207.5 -0.028
8| 6360 | 5563 1195.5 -0.038
9| 6220 | 5437 1174.5 -0.055
10 | 6346 | 5538 1212.0 -0.025
11 | 6296 | 5438 1287.0 0.036
12 | 5802 | 4982 1230.0 -0.010

overall
uniformity 433 %
[nm 11)

thickness (A) |etching rate | relative

site | before | after (A/min) |deviation
1| 8391 | 7470 1381.5 0.174
2| 8427 | 7580 1270.5 -0.240
2] 8391 | 7513 1317.0 0212
41 8354 | 7418 1404.0 -0.160
51 8257 | 7072 1777.5 0.063
6| 8402 | 7389 1519.5 -0.091
7| 8298 | 7273 1537.5 -0.081
8| 8199 | 7036 1744.5 0.043
9| 7869 | 6362 2260.5 0.352
10 | 8314 | 7002 1968.0 0.177
11| 8253 | 7070 1774.5 0.061
12 | 7969 | 6561 2112.0 0.263

overall 1843 %

uniformity

[run 10}
thickness (A) |etching rate | relative
site | before | after | (A/min) |deviation
1] 7837 | 6609 1842.0 -0.084
2| 7862 | 6714 1722.0 0.14
3 7877 | 6660 1825.5 -0.093
4] 7829 | 6561 19G2.0 -0.054
51 7678 | 6324 2031.0 0.010
6| 7778 | 6512 1899.0 -0.056
71 7811 | 6457 2031.0 0.010
81| 7706 | 6297 2113.5 0.051
91 7292 | 5825 2200.5 0.094
10| 7374 | 5933 2161.5 0.075
11| 7707 | 6240 2200.5 0.094
12| 7733 | 6259 22110 0.099
verall
(run 12]
thickness (A) |etching rate | relative
site | before | after | (A/min) |deviation
1] 5781 4892 1333.5 -0.184
21 5909 | 5026 1324.5 -0.189
31 5817 | 4894 1384.5 -0.153
4| 5706 | 4788 1377.0 -0.157
51 5291 | 4258 1549.5 -0.052
6| 5629 | 4571 1587.0 -0.029
7| 5437 | 4281 1734.0 0.061
8| 5227 | 4133 1641.0 0.004
9| 4557 | 3393 1746.0 0.069
10 | 5195 | 3900 1942.5 0.189
11| 5211 | 3785 2139.0 0.309
12 | 4760 | 3529 1846.5 0.130
overall
uniforzlity 1522%
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[nm 14]
thickness (A) |[etching rate | relative
site | before | after (A/min) {deviation
1| 5131 | 3884 1870.5 -0.130
2| 5219 | 3975 1866.0 -0.132
3| 5148 | 3908 1860.0 -0.135
4| 5061 | 3827 1851.0 -0.139
S| 4766 | 3302 2196.0 0.021
6| 5005 | 3480 2287.5 0.063
7| 4807 | 3411 2094.0 -0.026
8| 4760 | 3433 1990.5 -0.075
91 4201 | 2538 2494.5 0.160
10 | 4688 | 2738 29250 0.360
11 | 4557 | 3005 2328.0 0.082
12| 4608 | 3242 2049.0 -0.047
=

[run 13]
thickness (A) |etching rate | relative
site | before | after | (A/min) |deviation
1] 8039 | 7009 1545.0 0.132
2| 8067 7095 1458.0 -0.181
3| 8043 | 7041 1503.0 -0.156
4| 8022 | 6972 1575.0 -0.115
5| 7888 | 6655 1849.5 0.039
6| 8020 | 6911 1663.5 -0.065
71 7922 | 6789 1699.5 -0.045
8| 7955 | 6719 1854.0 0.042
91 7577 { 6113 2196.0 0.234
10| 7975 | 6669 1959.0 0.101
11| 7865 | 6619 1869.0 0.050
12 | 8009 | 6551 2187.0 0.229
overall
uniformity 1344 %
[run 15]
thickness (A) | etching rate| relative |
site| before | after | (A/min) |deviation
1] 7597 | 6421 1764.0 -0.114
2., 7668 | 6544 1686.0 -0.153
31 7638 | 6503 1702.5 -0.145
4| 7561 6395 1749.0 -0.121
51 7360 | 5894 2199.0 0.105
6| 7585 | 6311 1911.0 -0.040
7| 7448 | 6189 1888.5 -0.051
8 7413 | 6058 2032.5 0.021
91 6966 | 5241 2587.5 0.300
10 | 7430 | 6007 21345 0.072
11| 7323 | 6009 1971.0 0.010
12| 7493 | 5988 2257.5 0.134
overall 12.94 %

uniformity
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APPENDIX F
SEQUENTIAL OPTIMIZATION

USING ALL PARAMETERS

F.1 Introduction

Process uniformity was optimized by applying the sequential optimization
method. In the optimization, the objective function was modeled as a function of all
the process parameters of a process. Optimization was performed using a commercial

software package called Ultramax® [15].

All the process parameters were used in the sequential optimization, with the
expectation that the process behavior would be described more accurately with all the
process parameters. The objective function to be optimized was constructed using
multiple response surfaces so that model adaptation would be performed quickly and
efficiently as the sequential optimizer approached the optimum point. Multiple
process output characteristics were modeled as linear functions of all the process
parameters, and the objective function was calculated using the multiple response
surface models to evaluate the uniformity of the process output characteristics.

F.2 Uniformity in a Single Wafer Plasma Etching Process

Sequential optimization, using all the process parameters was performed to
optimize within-a-wafer uniformity in a single wafer plasma etching process using the
AutoEtch™ 590 single wafer plasma eicher. Included first in the characterization
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experiments of the process were all the process parameters, i.c., RF plasma power
(power), pressure of the reaction chamber (pressure), gap spacing between the top
and bottom electrodes (gap), He gas flow raie (He), CHF; gas flow ratc (CHF3), and
CF,4 gas flow rate(CF;). In the characterization experiments, 9 sites of a wafer were
selected as measurement sites as shown in Figure F.1. From the understanding that

the equipment has an axisymmetric configuration, it was decided to model the output
characteristics of the process, Y,,Y,, and Y5, as follows:

Y, =Y, . (Eq. F.1)

— Y, +Y,+Y,+Y
Y,=-2 34 43 (Eq. F.2)

and
Y =Y6+Y7+Y8+Y9
3 4 ?
where Yi's are elching rates at measurement site i (fori =1, 2, ..., 9).

(Eq. F.3)

e : measurement site

Figure F.1  Positions of 9 measurement sites on a wafer

During the modeling of Y], Y2, and Y3, it was found that pressure does not
have a significant effect on the models, and the output characteristics were modeled as
first order linear functions of power, gap, He, CHF3, and CF, as follows:

Y, = G, + C;x(power) + G,x(gap) + Cyx(He) + C,x(CHE,) + C;x(CF,) , (Eq. F.4)

Y, = D, + D;x(power) + D,x(gap) + D;x(He) + Dyx(CHF,) + Dgx(CF,) , (Eq. F.5)
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and
73 = E0 + E]x(power) + sz(gap) + ij(He) + E4x(CHF3) + ESX(CF4) . (Eq. F.6)

The coefficients of the models above were first decided by the sequential
optimizer according to the measurement data and were updated as new data became

available in order to describe the process conditions more correctly.

After the output chrracteristics were modeied, an objective function called
performance index was defined to represent the uniformity of the process as follows:

Yl-Y.2 Y2—Y_2 Yg-Y_2
performance index = (—) +(—)" +(—)" , (Eq. F.7)
Y Y Y,

_ 9
where Y, =Y Y; . (Eq. F.8)
i=1

The performance index defined above represents the radial uniformity.

Sequential optimization experiments were performed using the process
parameter values that were designed by the sequential optimizer. The process
parameter values were chosen so the performance index may be optimized using the
output characteristic functions, whose coefficients were updated using the
measurement data up to that point. The process parameter values for each run are
listed in Table F.1. The experimental data are listed in Appendix F.4.

He flow rate |CHF3 flow rate| CF4 flow rate

ressure
run pumber p(lon') gap (cm) (sccm) (sccm) (sccm)
1 500 0.30 100 15 45
2 677 0.34 133 28 50
3 762 0.39 123 26 82
4 754 0.31 129 36 79
5 646 0.34 146 34 105
6 667 0.34 124 44 76
7 692 0.30 135 39 78
8 508 0.32 131 38 73
9 626 0.32 149 38 62
10 627 0.30 139 44 82

Table F.1  Process parameter values in sequential optimization experiments
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The results of the sequential optimization experiments are shown in Figure
F.2, where the performance index is shown to be improved scquentially as the
optimization sequence continued. The fluctuations of the performance index in the

sequential optimization are due to the exploration of the parameter space.

performance index

0.20

1

0.15

0.10 7

0.05 7

T T T T

0.00 T T T T T 1
1 2 3 4 5 6 7 8 9 10
run number

Figure F.2 Performance index in sequential optimization

F.3 Discussions

Within-a-wafer uniformity in a single wafer plasma etching process was
optimized using a sequential optimization method. The performance index, which was
defined to represent within-a-wafer uniformity, was shown to be optimized
sequentially.

The performance index was calculated using the output characteristics defined
in Egs. F.1, F.2, and F.3. It is noted that the output characteristics represent only the
radial etching rate profile, and information on the magnitudes of circumferential
variation was not included in modeling the output characteristics. The process
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parameters were not classified either. Therefore, it was shown that the actual within-
a-wafer uniformity, which is defined as in Eq. 3.9, was not improved even though the
performance index was shown to be improved. The historical data of overall uniformity
is shown in Figure F.3; little improvement is indicated because improvement of the

performance index was oftset by the degraded circumferential uniformity.

overall uniformity (%)

10

8_

run number

Figure F.3  Overall uniformity in sequential optimization

Therefore it is concluded that it is necessary to optimize the radial uniformity
as well as the circumferential uniformity to improve overall uniformity in the single
wafer plasma ctching process. It is also shown that the use of all the process
parameters for the optimization of the radial uniformity can deteriorate the
circumferential uniformity. Hence, it is necessary to select a as small as possible
number of process parameters for the effective control of the radial uniformity without
degrading the circumferential uniformity.



APPENDIX F SEQUENTIAL OPTIMIZATION USING ALL PARAMETERS

F6

F.4 Experiment Data

(run 1]
thickness (A) etching rate
site before | alter (A/min)
1 6299 | 4270 6087.0
2 6412 4287 6375.0
3 6271 4101 6510.0
4 6234 4090 6432.0
5 6266 4144 6366.0
6 6323 4399 57720
7 6032 4050 5946.0
8 6308 4390 5754.0
9 6331 4432 5697.0
rformance
. 0.146
overall 5.00 %
uniformity
[run 3]
thickness (A) etching rate
site before after (A/min)
1 6399 3158 9723.0
2 6528 3216 9936.0
3 6368 2910 10374.0
4 6315 2914 10203.0
5 6363 3152 9633.0
6 6423 3419 9012.0
7 6096 3078 9054.0
8 6369 3369 9000.0
9 6463 3785 8034.0
rformance
pe o 0.192
overall 734 %
uniformity

[run 2]
thickness (A) etching rate
site before after (A/min)
1 6359 3562 8391.0
2 6522 3558 8892.0
3 6328 3337 8973.0
4 6266 3260 9018.0
h) 6329 3299 9090.0
6 6435 3737 8094.0
7 6079 3234 8535.0
8 6331 3510 8463.0
9 6515 3812 8109.0
performance 0.117
index
overall 424 %
uniformity
[run 4]
thickness (A) etching rate
site | before after (A/min)
1 6300 3389 8733.0
2 6429 3430 8997.0
3 6288 3221 9201.0
4 6221 3128 9279.0
5 6267 3325 8826.0
6 6408 3467 8823.0
7 6051 3037 9042.0
8 6324 3456 8604.0
9 6383 3680 8109.0
performance 0.070
index
overall 3.75%
uniformity
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[run 5]
thickness (A) etching rate
site before after (A/min)
1 6583 3935 79440
2 6677 3893 83520
3 6593 3763 8490.0
4 6518 3785 8199.0
5 6525 3871 7962.0
6 6633 3925 81240
7 6406 3797 7827.0
8 6415 3881 7602.0
9 6639 4186 7359.0
performarce 0.093
index
overall 422%
uniformity
[run 7]
thickness (A) etching rate
site before after (A/min)
1 6332 3795 7611.0
2 6443 3807 7908.0
3 6294 3633 7983.0
4 | 6261 | 355 | 80880
5 6345 3757 7764.0
6 6259 3743 7548.0
7 6446 3822 7872.0
8 5866 3396 7410.0
9 6448 4056 7176.0
performance 0.081
index
overall 361 %

uniformity

(run 6]
thickness (A) cening rate
site before after (A/min)
1 6346 4227 6357.0
2 6475 4300 6507.0
3 6323 4028 6885.0
4 6265 3921 7032.0
S 6332 4128 5612.0
6 6406 4205 6603.0
7 6278 4055 6669.0
8 5928 3734 6582.0
9 6520 4553 5901.0
rformance
i index 0.077
overal 1607
uniformity
(run 8]
thickness (A) etching rate
site before after (A/min)
1 6500 4572 57840
2 6630 4688 5826.0
3 6480 4446 - 61020
4 6412 4255 6471.0
5 6462 4423 6117.0
6 6579 4688 5673.0
7 6399 4305 6282.0
8 6070 4010 6180.0
9 6627 4807 5460.0
perfprmance 0.065
index
overall 508 %
uniformity
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[rm 9]
thickness (A) etching rate
site before after (A/min)
1 6574 4261 6939.0
2 6703 4351 7056.0
3 6531 4108 7269.0
4 6488 3958 7590.0
5 6550 4142 7224.0
6 6605 4357 6744.0
7 6437 3958 7437.0
8 6095 3669 7278.0
9 6696 4566 6390.0
performance 0.069
index
ovcrall 489 %

uniformity

{run 10]
thickness (A) etching rate
site ’_Vbefore after (A/min)
1 6622 4266 7068.0
2 6777 4351 72780 |
3 6560 4080 7440.0
4 6509 4063 7338.0
5 6621 4249 7116.0
6 6618 4250 7104.0
7 6447 3986 7383.0
8 6056 3679 7131.0
9 6769 4562 6621.0
performance 0.048
index
overall 322%
uniformity




