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Abstract

Reaction diagrams in chemistry papers contain essential reaction information that is
not available in the text. In order to extract comprehensive reaction information from
chemistry literature, it is vital to convert these diagrams into a format compatible
with searchable cheminformatic databases. Existing methods rely on rule-based pro-
cedures that have difficulty generalizing to noisy or different styled images. In this
thesis, I implement a deep learning pipeline for identifying molecules in chemical dia-
grams and ’translating’ the images into their corresponding SMILES strings. Diagram
segmentation is performed using Mask R-CNN trained on an automatically generated
set of diagrams. Translation to SMILES strings is performed using a neural machine
translation model augmented with domain adaptation. Experimental results suggest
that this model outperforms both rule-based and machine learning based models on
diagrams extracted from real chemical literature.
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Chapter 1

Introduction

The design and discovery of novel pharmaceuticals requires access to large, accurate

databases of chemical reactions. Recent machine learning methods of drug discovery

especially rely on reaction information has been translated to a computer-readable

and process-able format. Databases of this reaction information are mined from

real chemistry literature. Manual extraction methods remain tedious and inefficient.

They also expose the process to human error. With the amount of chemical liter-

ature growing exponentially, shown in Figures 1-1 and 1-2, automatic information

extraction methods may prove to be the key to keeping chemical reaction databases

up to date with current publications. Additionally, automatic extraction methods al-

low pharmaceutical companies to mine reaction information from pre-existing sources

that have not been logged in digital forms.

The problem of digitizing chemical literature is not new. Previous methods, dating

back decades, have addressed mining the text of chemistry papers. These methods

range from grammar-based parsers to NLP machine translation models. But reaction

data is unique in that much of the essential content like reaction conditions and reac-

tants is only contained in the figures. Comprehensive reaction information extraction

necessitates mining the image-based information.

Thus, I propose a deep-learning pipeline to identify molecules in chemical diagrams

and convert them to a computer readable format. The pipeline consists of six steps,

shown in Figure 1-3:
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Figure 1-1: Exponential Growth of PubMed Articles

Figure 1-2: Increase of Chemistry Patent Applications
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Figure 1-3: Full System Pipeline

A) The chemistry literature begins as PDF documents.

B) Diagrams are extracted form the documents using existing python libraries like

pdfrw.

C) The locations of individual molecules within diagrams are identified.

D) The individual molecules are extracted from diagrams and input to translation

models.

E) Translation models convert the molecular images to a SMILES string.

F) Databases of SMILES strings can be built from large amounts of chemistry

literature, and used as input to drug discovery models.

1.1 Project Overview:

The chapters of this work cover, in order:
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1. Related Work: In this chapter, I explore the positive and negative aspects of

previous work in chemical information extraction.

2. Diagram Segmentation: This chapter focuses on the segmentation step of

the pipeline. It outlines the use and modification of Mask R-CNN for bounding

box identification.

3. Image to SMILES Translation: In this chapter I describe the creation of

a domain adversarial model for converting an extracted molecule into its cor-

responding SMILES string. The foundation of this model is a neural machine

translation model with convolutional and recurrent encoders, and an attention-

based recurrent decoder.

4. End-to-End Pipeline: The final goal of this project is to create a user-friendly

end-to-end pipeline where a user can submit a diagram and the recognized

molecules will be returned, along with their predicted SMILES strings.
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Chapter 2

Related Work

2.1 Chemical Information Extraction

Information extraction methods have shown promising results extracting important

chemical entities from document text [21]. However, these methods ignore reaction

diagrams, thus losing essential reaction information in some cases.

To prevent this loss of information, rule-based methods were created to convert

diagrams to computer-readable formats.

These programs generally follow the same five step pipeline with some variation:

1. applying algorithms that identify connected components that may be atoms or

bonds

2. vectorizing the image to get a graph of vectors in place of multi-pixel wide lines

3. identification of dashed and standard bond lines

4. optical character recognition to identify atoms

5. reconstruction of the connection graph of the entire molecule using the vector-

ization.

Kekule, the first program of this kind, developed by McDaniel et al.[15], uses neural

nets to assign confidence rankings on ocr for individual tokens within the diagram. It

17



does not perform ocr at the entire diagram level. OSRA [4] is an open-source library

released in 2009 that improved the rule-based pipeline by performing extraction at

three different resolutions and choosing the interpretation with the highest confidence

value. ChemOCR [2] looked to enhance the final step of connection graph reconstruc-

tion by selecting the best-matching chemical structure fragment against sub-graphs

of chemical structures stored in a database using a graph-matching algorithm.

Other works like CliDE [23] and ChemREADER [16] also advance the ’rule-based’

pipeline, but no amount of augmentation to rule-based methods will solve an under-

lying problem - namely that these methods require precise knowledge of the image

data domain to define thresholds and procedures. Molecular diagrams can contain

complex, rare, or ambiguous representations that are difficult to account for in a

rule-based system. As such, they are not robust to features that are not explicitly

addressed in their rules, and may not perform as well on noisy images.

These problems are identified by Staker et al. [20], who contend with the prob-

lem by applying deep learning techniques to molecule recognition. Their structure

prediction model consists of a convolutional encoder and an attention-based decoder

constructed with three GridLSTM cells.

They were able to produce accuracies from 41% to 83 %. However, their model

required on the order of millions of training examples. As pointed out in the Staker

et al. [20] work, annotating new training data from real literature is extremely time-

consuming, requiring someone to manually redraw the molecular diagrams into ren-

dering programs that can output their SMILES. It is impractical to generate datasets

of that size for diagrams taken from real literature. Additionally, because their exact

datasets are not publicly released, it is difficult to accurately gauge their performance

on molecules of varying styles or compare to other methods.

We seek to improve model transferability to noisy diagrams and diagrams from

new data domains without requiring millions of new labelled training examples. To

improve comparison across implementations for molecule ocr, we release our system

and data as a benchmark.

18



2.2 Unsupervised Domain Adaptation

Our model resembles domain adaptation methods based on work by Ben-David et al.

[3] that align the feature space between source and target domains.

Works from Ganin et al. [5] and Ajakan et al. [1] use feature extraction layers

with two separate classifiers on their output. In addition to the task-specific output

classifier, they add a classifier responsible for discriminating between examples from

the source and target domain. These domain adversarial neural networks (DANNs)

minimize the task-specific loss while trying to maximize the domain classification loss.

Tzeng et al. [22] and Long et al. [13] replace the domain classification output with

the Maximum Mean Discrepancy (MMD) metric [8] to measure "distance" between

samples in the feature space. These models minimize the MMD metric between

featurized batches from the source and target domain. The Deep Domain Confusion

Network by Tzeng et al. [22] minimizes the MMD loss of a single output layer from

the neural net, while Long et al. [13] compute the MMD at multiple layers.

In this work, we apply the maximum mean discrepancy method to an optical

character recognition model by minimizing the MMD between the featurized output

of the recurrent encoding layer.

2.3 Image Segmentation

In 2012, the publication of AlexNet [11] ignited a storm of innovation in the field

of computer vision using deep learning. The first of its kind, AlexNet became a

cornerstone of image processing - the convolutional neural net (CNN). This innovation

was extended from image classification to other foundational tasks of computer vision

- image segmentation, bounding box identification, object classification, and instance

segmentation. Iterations of the original CNN now permit a single neural net to

perform all of the tasks. To fully understand current deep learning computer vision

models, we can follow the timeline of computer vision, from AlexNet in 2012 to the

current state-of-the-art Mask R-CNN model in 2017.

19



In 2014, VGG [19] was released and marked a substantial improvement over

AlexNet with a mere 7.3% error rate on ImageNet. The principle of VGG was straight-

forward: in computer vision, the networks must be deep and simple. VGG used a

staggering 19 layers, but managed to keep the number of parameters down by re-

ducing the kernel size. Instead of using kernels with edge lengths of 11 or 7, they

relied on multiple layers of kernels with edges sizes of 3 or 2. This results in the same

receptive field as using larger kernel sizes with fewer layers.

In 2013, around the same time that the creators of VGG were having great success

with extremely deep convolutional models, researchers at UC Berkeley began working

on region-based object detection models. Instead of solely classifying which objects

were contained in an image, they devised architectures that could determine the exact

locations of recognized objects.

In the R-CNN [6], this process is split into region proposal and classification. The

first iteration of region based methods used a non machine learning based method of

region proposal: selective search. The 2,000 regions proposed by the region proposal

network are fed into a CNN that acts a feature extractor. The featurized vector is

then fed into separate neural nets for each class, and classified as the output with

the highest probability. It is also input to a bounding box regressor to fine-tune the

bounding box.

However, R-CNN was slow and inefficient, requiring approximately 53 seconds

per image. To improve runtime, the order of region proposal and feature extraction

were switched. Instead of running a CNN on each proposed region, Fast R-CNN [7]

proposed regions within the featurized representations. Later iterations of R-CNNs

sought to replace the non deep-learning based modules with neural nets. Faster R-

CNN [17] used a region proposal neural network, instead of selective search to identify

regions of interest in the featurization.

The most recent iteration, Mask R-CNN [9], replaced the object classification and

bounding box refinement models with neural nets, but it also introduced a new task

to the region-based networks. As the name implies, Mask R-CNN also computed a

pixel-level mask of the exact location of the object. This mask is computed using

20



a fully convolutional network, with deconvolution to reconstruct the original image

size. In this paper, I experiment with Mask R-CNN to identify molecule bounding

boxes and segmentation masks with varying levels of success.
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Chapter 3

Diagram Segmentation

Diagram Segmentation is the process of identifying specific objects in an image - in this

case molecules. In this section, I evaluate the results of segmenting chemical diagrams

by identifying molecule bounding boxes and pixel-level segmentation masks. While

highly effective models exist for segmentation, they rely on large training datasets.

No labelled training datasets for molecule diagrams segmentation currently exist, so

the main challenge in the stage of the pipeline is generating large training datasets.

3.1 Data Generation

There are no existing open source datasets for molecular bounding box identification.

A major challenge was generating enough clean data to train a segmentation model.

Roughly, the steps for generating this data were:

1. Use existing rule-based libraries to identify the locations of molecules in chem-

istry papers.

2. Replace those identified bounding boxes with automatically generated molecules

with known segmentation masks.

Because existing extraction libraries are imperfect, this process involves filtering

and quality control. The following sections detail the data generation procedure.
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Figure 3-1: Example of Repopulated Diagram with Corresponding Segmentation Mask

3.1.1 Automatically Generated Diagrams

Training Mask R-CNN requires a specific format of labelled data. Each training

sample must consist of a single sample image, with separate mask files for each object

in the image. A mask file is a binary image of the same size as the original image.

The binary image contains white in pixels that correspond to object pixels in the

original image, and black elsewhere. As example is shown in Figure 3-1.

There are no published datasets for this task, and manual pixel level annotation is

impractical. For these reasons, diagrams with known pixel masks had to be automat-

ically generated. To make sure that the diagrams resembled real chemistry diagrams,

I created the automatic diagrams using real diagrams as a foundation. I also had

access to 100,000 molecule-only images. Pixel masks for these images could be easily

generated because all black pixels belonged to the molecule, and white pixels were

background. These images merely had to be inverted to get their truth mask.

The data generation pipeline consisted of the following steps:

1. Use the rule-based molecule extraction program, OSRA, to identify the locations

24



Table 3.1: Data Generation Statistics
Description Number of Samples
ACS Papers 4000
Diagrams Extracted from Papers 45253
After Manually Filtering Poor OSRA Results 20280
Final
Train 16280
Test 2000
Valid 2000

of molecules in diagrams form chemistry papers.

2. Manually filter out every diagram that OSRA did not work well on, approxi-

mately 60% of the diagrams.

3. On the remaining images, ’white-out’ all bounding box areas that contain

molecules.

4. Repopulate the ’white-out’ areas with the automatically generated molecules

with known truth masks, adding this to a truth mask of the entire image.

Data statistics for each step of the pipeline are shown in Table 3.1.

3.2 Model

3.2.1 Mask-RCNN for Instance Segmentation

The model that was used to identify molecular structures within diagrams is Mask R-

CNN. Mask R-CNN is an open source deep convolutional network that was created in

2017 [9]. Mask R-CNN can perform three different computer vision tasks: bounding

box identification, pixel-level instance segmentation, and object classification. We

only have a single object class to look for (molecules), so we are only concerned with

the accuracies of the bounding box and segmentation outputs.

As an image moves through the Mask R-CNN model, the following four outputs

are detected using convolutional layers, each with a separate loss that are summed to

find the total loss.
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1. Up to 1000 regions of interests are identified. Regions of interest (ROI) are

rectangular areas in the image that meet a probability threshold of containing

an object. The ROIs are extracted from the image and fed through to following

three fully convolutional networks in parallel.

2. A bounding box detection model refines the ROI bounding box detections.

3. A classifier identifies which class an identified object belongs to.

4. Segmentation layers detect a binary mask that identifies exactly which pixels

belong to the object.

Specific details of final model configuration are relegated to the appendix.

3.3 Results

3.3.1 Evaluation Metric

The metric that is commonly used to evaluate object detection and segmentation tasks

is maximum average precision (mAP). The calculation of mAP scores is calculated

using precision, recall, and Intersection over Union (IoU). Traditional definitions of

precision and recall are used:

TP = True Positive FP = False Positive FN = False Negative

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

An IoU metric is used to measure the overlap between two bounded areas, as

shown in 3-2.

IoU =
area of intersection

area of union

In order to find average precision values, we have to treat bounding box identifi-

cation as a classification problem. An IoU threshold is selected and bounding boxes
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Figure 3-2: Visual Representation of IoU Calculation

with IoU less than that threshold are considered incorrectly classified, and IoU values

greater than the threshold are considered correctly classified.

We can rank our bounding box predictions by the predicted confidence level, and

then measure the precision and recall values of our model as we add each predicted

bounding box to our calculations, in the order of most confident to least confident.

We graph these values with precision on the y-axis and recall on the x-axis, and

find average precision by calculating the area under this curve. The only change

in calculating maximum average precision is that each precision value is replaced

with the maximum precision value so far. This can be represented mathematically

by replacing the precision value 𝑝 at recall 𝑟 with the maximum precision value 𝑝 for

any recall greater than 𝑟:

𝑝(𝑟) = max
𝑟≥𝑟

𝑝(𝑟)

Since our data was formatted using the COCO style, this research reports the

standard metrics for COCO datasets, defined in Table 3.2.

3.3.2 Model Performance

Examples of the bounding box and segmentation results are shown in Figure 3-3.

More examples of results are in Appendix B. The bounding boxes are indicated by
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Table 3.2: Standard COCO Dataset Metrics
Average Precision (AP)
AP % AP at IoU=0.50:0.05:0.95
AP𝐼𝑜𝑈=0.50 % AP at IoU=0.50
AP𝐼𝑜𝑈=0.75 % AP at IoU=0.75
AP across scales
AP𝑠𝑚𝑎𝑙𝑙 % AP for small objects: area ≤ 322

AP𝑚𝑒𝑑𝑖𝑢𝑚 % AP for medium objects: 322 ≤ 𝑎𝑟𝑒𝑎 ≤ 962

AP𝑙𝑎𝑟𝑔𝑒 % AP for medium objects: area ≥ 962

the dashed lines, and the segmentation are the shaded regions.

The segmentation results are not accurate enough to pass on to the SMILES

translation model. They consistently fail to identify the branches of molecules, or any

fine-grained regions. This effect is predictable, as Mask R-CNN is more commonly

used to identify large continuous segmentation regions. Mask R-CNN only uses a

single up-sampling layer to enlarge the pixel-level mask to the size of the original

image. This differs from segmentation models that are specifically designed to identify

fine-grained features. Such models, like U-Net [18], include multiple upsampling layers

that have residual links to original down-sampling layers, so that the model has some

notion of the original image as it upsamples.

However, the abysmal performance of Mask R-CNN in identifying pixel level masks

is made up for in its bounding box performance. For this reason, I chose to focus on

generating highly accurate bounding boxes, and disregard the pixel level segmenta-

tion masks.

3.3.3 Realistic Data Results:

Because the realistic data are not annotated, it is not possible
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Figure 3-3: Visual Representation of IoU Calculation

3.4 Post-Processing Methods

When analyzing the visualized results on the realistic dataset, I found that the bound-

ing boxes often failed to include the entire molecule. For example, they would include

nearly all of a molecule, except a single bonded atom. This phenomenon is demon-

strated in 3-4. This doesn’t influence the IoU value significantly, so the model may

have trouble learning these extra, unconnected atoms. Instead of introducing more

training data, I defined a simple post-processing method and tweaked the heuristics

using a small subset of 200 realistic training examples.

A naive approach to pre-processing would be to simply extend all bounding

boxes by a pre-defined threshold amount, such as 10-20 pixels. However, the size

of molecules can vary widely, from 200 pixels - 2000 pixels. This approach would fail
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Table 3.3: Mask R-CNN Precision Results
Average Precision (AP)
AP 0.529
AP𝐼𝑜𝑈=0.50 0.911
AP𝐼𝑜𝑈=0.75 0.590
AP across scales
AP𝑠𝑚𝑎𝑙𝑙 0.138
AP𝑚𝑒𝑑𝑖𝑢𝑚 0.569
AP𝑙𝑎𝑟𝑔𝑒 0.541

Table 3.4: Mask R-CNN Recall Results
Average Precision (AP)
AP 0.130
AP𝐼𝑜𝑈=0.50 0.528
AP𝐼𝑜𝑈=0.75 0.596
AP across scales
AP𝑠𝑚𝑎𝑙𝑙 0.134
AP𝑚𝑒𝑑𝑖𝑢𝑚 0.572
AP𝑙𝑎𝑟𝑔𝑒 0.625

Figure 3-4: Example of Inadequate Bounding Box
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Figure 3-5: Post-Processing Thresholds Visualized. Double bond connected to Oxygen
atom.

in most cases.

The post-processing method relies on the fact that most of the features that

weren’t included were atoms occurring at the end of a bond line. By that logic, the

boundary should only be extended if there are non-white pixels outside the boundary

that are in the same row or column as non-white pixels inside the boundary. I define

two thresholds:

1. Extension threshold: how many columns outward to look for non-white pixels

2. Distance threshold: how far apart laterally the non-white pixels inside and

outside the boundary can be.

A visualization of the two threshold is shown in 3-5. In the case of the figure,

the green line indicates the original boundary, and the red line indicates the average

non-white pixel row location on the outermost right column within the bounding box.

Columns are checked for non-white pixels, outward to the extension threshold. At

each column, the average non-white pixel location of that column is calculated. If that

location falls within the distance threshold from the average non-white pixel location

within the boundary, the boundary is extended to that column. Additionally, once

the boundary has been extended to a new column, it extends until it reaches the next

all-white column, to assure that the entire atom symbol is added.
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The example shown in Figure 3-5 shows a double bond to an Oxygen atom. The

green line indicates the boundary identified by Mask R-CNN. The red dashed line

shows the average row location of non-white pixels in the right-most column of the

bounded region, in this case, between the two bond lines. Columns to the right of the

boundary are checked to see if their average non-white pixel row location falls near

the red line.

As shown in Figure 3-5, the extensions threshold would not go far enough to

reach the oxygen atom; the bounding box would not be altered. However, if the

extension threshold were larger, it would reach the first column of the oxygen atom.

That column clearly has a similar average non-white pixel location to the red dotted

line, so the boundary would be extended to encompass the entire O. As shown in the

original Figure 3-4, having the distance threshold for the mean pixel location prevents

the yellow bounding box from being extended to included the reaction arrow. Similar

procedures are followed for each other boundary of the bounding box.

The post-processing is applied to the realistic dataset. Because the realistic

dataset is not annotated, it is not possible to get new bounding box IoU metrics

on the post-processing technique. However, qualitative analysis of the results showed

that, while it only helped approximately 75% of the images, the post-processing tech-

nique never negatively affected the bounding box.
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Chapter 4

Image to SMILES Translation:

In this section I seek to demonstrate that a domain adaptation based learning model

improves the robustness of optical molecule recognition to different drawing styles

and noisy images and create a benchmark for converting realistic molecular images

to their corresponding SMILES representations.

Problem Definition

We only have access to labelled training examples for automatically generated molecules.

However, we would like our ocr model to perform well on molecules with styles that

are not included in our automatically generated dataset. Thus we frame this as a

domain adaptation problem, where the automatically generated molecules are our

source domain 𝑆, and the realistic molecules are our target domain 𝑇 .

Optical Molecule Recognition

We use the neural machine translation model implemented by Klein et al. [10] as the

foundation for our domain adaptation model. Our model consists of an encoder and

decoder.

The decoder is made up of a convolutional and a recurrent encoder. The convolu-

tional encoder is able to encode spatial information in the image, while the recurrent

encoder can encode important sequential information about the molecular structure.

33



Figure 4-1: Architecture of Optical Molecule Recognition Model

The encoded feature representation is passed to the decoder. The decoder gen-

erates the SMILES string token by token. The generated token at time 𝑡 depends

upon the previous token 𝑡 − 1, as well as a weighted combination of all features in

the encoded feature vector. Because our decoder is attention-based, the weights are

learned during training, representing how much "attention" the model should pay

to different features in the encoding when generating each token. Specific details of

model architecture are relegated to the implementation section.

Improving Robustness with Domain Adaptation

The OpenNMT model relies only on labelled training data, however we only have la-

belled training data for our source domain. We need to ensure that the model encodes

data from the source domain and the target domain into the same feature space. We

add an output after the encoder layers, shown in Figure 4-1. This output layer takes

the encoded feature vectors form the source and target domain and calculates the

’distance’ between them, quantified by the maximum mean discrepancy. Minimizing

this distance suggests that the source and target domain have been mapped to the

same feature space, and only contain features that the decoder can accurately decode.

Training

During training, the labelled source data and unlabelled target data are separately

split into smaller training batches. At each iteration, a batch from the source and tar-

34



get domain are passed through the encoding layers. The maximum mean discrepancy

is calculated between the two encoded batches.

The encoded source batch is fed through the decoder and the translation loss is

also calculated. Both the translation loss and MMD loss are backpropogated to train

the model weights.

Dataset Construction

Labelled Data

The domain adaptation model requires labelled data from our source domain and

unlabelled data from our target domain.

The source domain consisted of molecular structures with corresponding SMILES

labels. It was automatically generated using ChemDraw. There were three different

domains of images contructed using ChemDraw, shown in Figure 4-2. The standard

domain contained only single atom labels and traditional bond lines. The abbrevia-

tions domain contained superatom symbols. The stylized domain contained additional

bond and molecule drawing styles.

Figure 4-2: Automatically Generated Molecules

Unlabelled Data

Our target domain molecules were extracted from real chemical literature using a

Mask R-CNN model [9] that is trained specifically on chemical diagrams to identify

molecules. An example of the bounding boxes recognized by Mask R-CNN are shown

in Figure 4-3.

35



Figure 4-3: Mask R-CNN Output

This unlabelled dataset contains molecules that were not drawn using ChemDraw.

Thus, it differs from the automatically generated molecules in rendering style, scale,

resolution, font, and line style and width. Additionally, the Mask R-CNN model

does not have 100% accuracy, so extracted molecules may contain artifacts such as

captions, arrows, and other extraneous text. The model also extracts some diagrams

that are not molecules. In this paper, no quality control filtering was performed

on the images extracted by Mask R-CNN, so the unlabelled data contains these

imperfections. We suspect that the molecule recognition model could be improved

by implementing some quality control on which extracted images we allow in the

unlabelled target domain dataset.

Data Preprocessing

Both the labelled and unlabelled data were split into training,test, and validation

sets then run through the same preprocessing pipeline. There are two stages to
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Table 4.1: Data Statistics
Initial After Preprocessing

Train 90000 83450
Realistic Validation - -

Test 121 121
Train 150000 14856

Auto-Generated Validation 20000 19311
Test 20000 19421

preprocessing.

1. Preprocess the images. To reduce the data size, all images were downsam-

pled (by a factor of 2 for the labelled data, and 6 for the unlabelled data due

to unlabelled images being larger in size). Pad images with white space so that

they match the size of predetermined buckets. This step is essential to create

batches of images with the same size during training.

2. Filter large data. Remove any data samples with SMILES strings longer than

150 tokens. No unlabelled data is filtered out in this preprocessing step because

they do not have associated SMILES strings. Filter out images larger than the

maximum allowed width x height (200 x 500 for labelled data, and 400x400 for

unlabelled data, due to unlabelled images being larger in size).

Experimental Setup

Evaluation

Results are evaluated using three different metrics: exact SMILES matching accuracy,

valid SMILES strings, and BLEU score.

Exact SMILES matching accuracy is defined as the ratio of test examples whose

predicted string is an exact match to the true string.

The model may predict SMILES strings that are not a valid representation of a

molecule - for example, a SMILES string that does not have correct alignment of
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opening and closing parenthesis. The valid SMILES metric is the ratio of predicted

strings that are valid.

The BLEU score, commonly used to evaluate machine translation tasks, is a mea-

sure of the amount of n-grams that are present in both the predicted and actual

SMILES string, where an n-gram is defined as a series of n adjacent tokens in the

SMILES string.

Baselines

We verify the efficacy of our domain adaptation approach (referred to going forward

as OpenNMT*A) against rule-based and non-adversarial approaches, comparing to

the following two baselines:

1. OpenNMT: the OpenNMT model without the domain adaptation augmenta-

tions

2. OSRA: a rule-based approach to molecule ocr

The models are evaluated on their performance on the set of 200 test images ex-

tracted from real chemistry papers. On each, we report our three evaluation metrics.

Implementation Details

Our model was built using the OpenNMT library [10] with the following architecture.

The convolutional encoder has six 2D-convolutional layers, each with stride 1,

kernel size of 3, and 1 unit of padding. The number of filters for each layer, in order,

is [64, 128, 256, 256, 512, 512]. After each convolutional layer is a 2D-maxpool layer

with kernel size of 2 and stride of 2. The recurrent encoder is a bidirectional LSTM

cell with 64 features in the hidden state. The attention-based rnn decoder has 128

hidden states, uses Luong attention [14], a scaled-dot product [24] alignment score

function, and softmax global attention function.
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Results

Table 4.2 compares the results of all three extraction methods. Both versions of

the OpenNMT model outperform the rule-based OSRA. The domain adversarial

model performs markedly better on the realistic dataset than both OSRA and non-

adversarial OpenNMT. The domain adversarial model saw the greatest improvement

in how many valid SMILES are produced on the realistic dataset, suggest that the

domain adversarial training allows the model to learn some type of rules for what

SMILES strings are valid. Even when tested on realistic data containing new and

ambiguous symbols, OpenNMT*A is still able to return mostly valid SMILES strings.

The problem of forcing models to return valid SMILES strings is ongoing in deep learn-

ing for chemistry, even in tasks not related to information extraction. These results

suggest the experimentation with domain adaptation could improve such models.

Table 4.2: Evaluation Results on Realistic and Automatically Generated Data
Auto-Generated Realistic

Model BLEU valid exact BLEU valid exact
OpenNMT*A - - - 40.63 88.5 17.9
OpenNMT 78.3 95.0 54.0 34.5 63.5 11.6
OSRA 64.0 72.0 56.4 24.1 31.0 12.0
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Chapter 5

Information Extraction Pipeline:

The previous sections detail the design and training of optical molecule recognition

models. This section focuses on creating a pipeline that can run the information

extraction procedure from end-to-end. The pipeline is designed to take as input

a single chemistry PDF and return a folder including the extracted images, their

SMILES strings, and important entities from the text. The pipeline is also modular,

allowing for easy changes in which parts of the system to run.

5.1 Designing an End-to-End Pipeline:

The pipeline is structured as a single class, with individual methods representing

different steps of the pipeline. Some methods require other preprocessing steps, while

others can be run stand-alone.

By structuring the pipeline in this way, the user can easily design customized

extraction pipelines. For instance, if a user only wants to insert diagrams, instead

of entire PDFs, for image-based information extraction, an extraction sequence can

be designed to skip the text-based method. If a user does not want the extracted

images to be displayed, the HTML visualization step can be skipped in the extraction

method.

The different types of extraction must be explicitly defined in code, but the mod-

ular design makes it easy to create these new extraction methods.
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5.1.1 Modules:

1. EXTRACTOR INITIALIZATION

This is the initial step when a user inputs a PDF file. The PDF extractor class is

initialized with the PDF filename, and a project folder is created on the server.

Each project folder is given a six-digit random ID, to prevent concurrency errors

when multiple users are running the demo.

2. GET CHEMISTRY DOCUMENT

This module performs text-based information extraction. For the current pipeline,

this step relies on ChemDataExtractor, which is a grammar-based text parser.

3. GET DIAGRAMS

The PDF document is searched for images. A Python library called pdfrw is

used to identify and save all XObjects as png files.

4. CREATE JSON

The image input to Mask R-CNN must be in the same JSON format as the

MS-COCO dataset [12]. This method acts as a pre-processing module for the

diagram input to the segmentation model.

5. GET SEGMENTATIONS

This module uses a JSON file as input to the Mask R-CNN model. It runs seg-

mentation inference on the diagrams and saves the visualized bounding boxes,

as well as extracted molecules, to the project folder.

6. OMR DATA PREP

The SMILES translation model requires a text file with a list of molecule dia-

gram filenames. This method simply creates that list using the diagram direc-

tory.

7. TRANSLATE TO SMILES:

This module calls the inference process for SMILES string translation. It creates

a text file with all of the SMILES strings listed.
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8. CREATE HTML DATA:

The final module is only necessary if you would like to display the visualized

and extracted molecules with their SMILES strings. It creates a file list that is

compatible with how Flask hosts and sends file names to HTML templates.

5.2 Web Demo:

The pipeline can run stand-alone as a python program. For users with no program-

ming background, I designed a web-based application that can run the pipeline.

The pipeline is wrapped in a web application built using the Flask API. A graph-

ical user interface promotes easy use. Screenshots of this interface are show in 5-1

and 5-2.

Figure 5-1: Web Demo Home Page

The GUI is designed to minimize ambiguity in how to run the software. The

main page simply asks a user to upload a PDF, then runs the entire pipeline and

automatically sends the output zip file to the user’s device for download. The contents

of the zip file can be modified using the modular structure described in the previous

section.

Because the Mask R-CNN model and segmentation model are trained on different

version of Pytorch, they are not compatible and cannot be run in the same demo.
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Figure 5-2: Web Demo Results Page

Recently, a version of Mask R-CNN has been released for PyTorch 1.0. Demo pipelines

that includ both of these modules are left for future work.
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5.3 Conclusion

In this thesis, I built a pipeline for recognizing molecules in chemistry literature.

While the molecule extraction model did not perform well in pixel level segmentation

as hypothesized, the bounding boxes were precise enough to be an alternative. With

some post-processing the extracted molecuels could be fed to the SMILES translation

model. Domain adaptation of the SMILES translation model led to clear improvement

on different style drawings over models without domain adaptation. Though the

accuracy still needs to be increased to be reliable enough for information extraction,

this model marks a substantial improvement over preious methods. Finally, I created

an end-to-end pipeline that allows a user to submit a PDF for information extraction.

This pipeline runs quickly, taking less than a second to perform text and image based

extraction per PDF page.

5.3.1 Future Work

While this pipeline serves as a good starting benchmark for deep learning based optical

molecule recognition, there is much room for improvement in each step. Errors made

in converting the PDF to diagrams propogate to the segmentation model which then

propogate to the translation model etc. Small improvements in early parts of the

pipeline can have a snowball effect, resulting in much better final results. In this

section I propose potential avenues of research that would improve the model.

The segmentation model can be improved in many ways. First, unlike the trans-

lation model, the segmentation model was not trained on datasets of different styles.

Simply augmenting the dataset by populating some generated diagrams with molecules

extracted from real data, as opposed to the automatically generated molecules, could

have a noticeable effect on the results on real literature. In addition to data aug-

mentation, the layers in Mask R-CNN that identify the pixel level mask could be

improved to resemble segmentation models specifically designed for fine-grained im-

ages. By creating a model that could identify exact masks, we could solve the problem

of captions or unwanted identifiers being present in the bounding boxes.
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Improving the translation model would rely heavily on data augmentation. The

model can only identify tokens that exist in the training set vocabulary. Its failures

often occured on data examples with uncommon atoms in. However, the model has

been proven to have high accuracy on molecules that contain features that exist in

the training set. Augmenting the data would require more human analysis of symbols

in chemistry literature that could be added to the training set.

The full pipeline could be explored in many ways. The most ambitious improve-

ment would be to create a single end-to-end neural network that locates molecules

and subsequently translates them to their SMILES strings. One benefit of a joint

model is that errors in the SMILES strings can provide feedback to both modules

- segmentation and translation. Both Mask R-CNN and OpenNMT are large com-

plex models, so building and training a joint version would certainly be challenging,

though not impossible.
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Appendix A

Model Configurations

A.1 Segmentation

The open source Mask R-CNN library allows customization of the model architecture.

Our optimal model hyper-parameters are described here.

Architecture:

Convolution Body: Resnet 101 Feature Pyramid

Number of Regions of Interest: 2000

Bounding Box Layers:

Pool Resolution: 7

Pool Scales: 0.25, 0.125, 0.0625, 0.03125

Pool Sampling Ratio: 2

Mask Layers:

Pool Scales: 0.25, 0.125, 0.0625, 0.03125

Pool Resolution: 14

Pool Sampling Ratio: 2

Resolution: 28
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A.2 Translation

Our model was built using the OpenNMT library [10] with the following architecture.

The convolutional encoder has six 2D-convolutional layers, each with stride 1,

kernel size of 3, and 1 unit of padding. The number of filters for each layer, in order,

is [64, 128, 256, 256, 512, 512]. After each convolutional layer is a 2D-maxpool layer

with kernel size of 2 and stride of 2. The recurrent encoder is a bidirectional LSTM

cell with 64 features in the hidden state. The attention-based rnn decoder has 128

hidden states, uses Luong attention [14], a scaled-dot product [24] alignment score

function, and softmax global attention function.

48



Appendix B

Figures
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Figure B-1: Mask R-CNN Output

Figure B-2: Mask R-CNN Output
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Figure B-3: Mask R-CNN Output
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