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Abstract

Administering sedation to patients to avoid underdosing and overdosing is an impor-
tant clinical task that remains hard to control due to lack of precision in current meth-
ods of measuring sedation. The type of drugs administered, the procedure the patient
is undergoing, patient characteristics (age, gender, weight, height), even genotypes
can affect the way the patient’s body processes the sedation administered. Currently,
sedation is administered by an attending anesthesiologist who sets a target sedation
level and continuously monitors the patient with an EEG and adjusts the target level
accordingly. In this thesis, I apply Fitted Q-Iteration to learn a Reinforcement Learn-
ing Model that takes in a patient’s current state and predicts the dosage of sedation
to administer at each second during the procedure to keep the patient’s physiological
variables within clinically normal ranges. I experiment with different state and action
representations to demonstrate how different choices affect the policy learned by the
Reinforcement Learning Model. I evaluate the results qualitatively and quantitatively
through the implementation of Doubly Robust Policy Evaluation.

Thesis Supervisor: Peter Szolovits
Title: Professor
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Chapter 1

Introduction

Diagnostic procedures, such as gastrointestinal endoscopy often require sedation to

ensure that patients remain free of stress and pain and remain still during the pro-

cedure. Sedation is often administered through IV by an attending anesthesiologist

or nurse anesthesiologist through a Target-Controlled Infusion (TCI) pump, which

uses mechanistic models to attempt to maintain a target sedative concentration in

patients [4].

Sedation consists of a combination of powerful anesthetic and analgesic drugs,

such as the common combination of propofol and remifentanil. Anesthesia causes a

lack of response in a patient to harmful stimulus (such as undergoing a surgery) and

analgesia results in relief from pain [16]. Too little sedation can cause post traumatic

stress disorder and complications during the procedure but too much sedation can

slow down recovery and cause adverse postoperative outcomes [11]. However, it is

difficult to determine the optimal depth of sedation since drug absorption varies from

person to person and the combination of drugs given have synergistic effects that are

hard to model [13].

To address this issue, many systems have been developed to assess patients’ level of

sedation. For anesthetic agents which mainly alter brain function, electroencephalo-

graphic signal (EEG) derived measures are used. Recently, more complicated models

that take in more inputs have been developed to monitor sedation since it is hard to

quantify pain relief and model the synergistic effects of different drug combinations

13



[17].

Sedation was administered to prevent gag reflex during the insertion of the en-

doscopy tube for patients undergoing gastrointenstinal endoscopy. In this thesis work,

I implement a Reinforcement Learning model that learns an anesthetic/analgesic

administration policy for patients undergoing gastrointestinal endoscopy. The RL

model’s goal is to maintain the patient’s state within a clinician defined set of nor-

mal ranges for certain hemodynamic variables. Furthermore, the model should not

underdose and result in a patient having gag reflex at the insertion of the endoscopy

tube. I evaluate the results through the U-curve method and Doubly Robust Pol-

icy Evaluation but off-policy evaluation is a challenging domain that requires more

careful analysis.

1.1 Thesis Overview

Chapter 2 provides background on sedation control models, reinforcement learning,

and policy evaluation. Chapter 3 details the dataset analyzed and explains the clean-

ing and preprocessing measures taken. Chapter 4 discusses the various models im-

plemented and the results. Chapter 5 outlines the evaluation models and techniques

employed to examine the results. Chapter 6 concludes my thesis work and guides the

future direction of this approach.
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Chapter 2

Background

There is a huge variability in sedation response across patients as a result of many

different factors: age, gender, ethnicity, disease, surgical intervention, combination

of drugs administered, etc. There is no exact measure to determine how deeply a

patient is sedated, and there is a delay in response to the anesthesia that makes

the task of giving the optimal dose and assessing it even more difficult [26]. The

following measures have been developed to use as indicators for estimating the degree

of sedation.

Bispectral Index (BIS) of the EEG is one common way of measuring the hypnotic

effects of the drugs. BIS is a dimensionless number scaled from 0 (electric

silence) to 100 (fully awake) [1].

Auditory Evoked Potential (AEP) index is a single numerical parameter de-

rived from the AEP, electrical potentials evoked in the auditory pathway in

response to sound stimuli, in real time that can also serve to monitor anesthetic

depth.

Ramsay Sedation Score (RSS) is a scale of 0 to 6 that is often used to assess

sedation by checking a patient’s responsiveness to a stimulus. The meaning of

different RSS scores is shown in Table 1.1 below. The target score at the end

of a procedure is usually either 3 or 4.
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Score Level of sedation
6 Dangerously agitated and uncooperative.
5 Agitated.
4 Restless but cooperative
3 Calm and cooperative
2 Responsive to touch or name
1 Responsive only to noxious stimuli
0 Unresponsive

Table 2.1: RSS scores and corresponding patient response

Nociceptive (gag) response to the introduction of endoscopy tube. Gag response

is an automatic reflex triggered by the nervous system to protect the body from

damaging stimuli.

2.1 Sedation Control Models

Current standards for assessing sedation often involve measuring patient’s response

and behavior on a scale like RSS or Motor Activity Assessment Scale, which are

subjective to the judgment of the anesthetist [7]. More computational pharmoki-

netic pharmodynamic (PK-PD) models have been developed to model the effects

of sedation. These models often used EEG-derived measures (BIS monitoring and

M-Entropy) to augment the traditional behavior scale [19, 5]. BIS was used in a

proportional-differential control algorithm that titrated propofol to achieve target

BIS=50. The closed-loop algorithm, which measured the error between current BIS

value and the target and adjusted the propofol target accordingly, maintained the

target BIS with smaller adjustments than the clinicians [14]. Another model used

M-Entropy analysis on EEG signals to achieve a similar goal of maintaining patient

level of sedation within specified ranges for more periods of time than manual ad-

justments by the clinicians [15]. Auditory evoked potentials have also been used in

differential-control models in various studies [10].

EEG monitoring is not always used for determining depth of sedation. Instead,

one study calibrated a linear SVM model on electrocardiogram data to Richmond

16



Agitation Sedation Scale scores to determine sedation levels [19]. Another study used

a computerized test, CogState, to assess a patient’s psychomotor function, attention,

visual memory, and working memory to understand how propofol and remifentanil are

processed by a patient [2]. An adaptive neuro fuzzy inference system was implemented

by Gambus et al. to analyze the relationship between a variety of sedation measures

(AAI, BIS, RSS, Index of Consciousness) and the predicted effect-site concentrations

of propofol and remifentanil [4].

A major limitation of these methods is that it is still hard to predict how the var-

ious measures will change with a dose of anesthesia since each patient has different

responses to the sedation administered based on many different factors. One study

tried to actually model the changes in BIS after anesthesia was administered to a pa-

tient by applying machine learning with patient information and drug concentrations

targeted as features and successfully predicted BIS very closely to the actual BIS value

[3]. Several studies have attempted to study how drugs are processed in different sets

of patients and with different combinations of drugs. Hannam et al. found that a spe-

cific genotype thought to affect sedation response and noxious stimulation was not a

significant factor in determining the level of respiratory depression caused by propo-

fol and remifentanil administration, but age was [8]. One study applied an LSTM

model to understand the discrepancy between the predicted effect-site concentration

and measure BIS during intravenous anesthesia when propofol and remifentanil were

administered and showed that a deep learning model was more accurate at predicting

BIS than the traditional pharmodynamic models used [12]. Another study showed

that the type of anesthesia administered (IV vs general) and different surgical stimuli

affect the hemodynamic control a patient has upon waking [25]. In sum, there are

many factors that affect a patient’s response to anesthesia (genetics, age, surgical

intervention, type of anesthesia, combination of anesthetics administered, etc.) and

many models have been proposed to solve this issue but sedation control still remains

a process of trial and error.
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2.2 Reinforcement Learning

Reinforcement Learning is a set of algorithms to determine optimal policies over a

Markov Decision Process (MDP) with states, actions, and rewards. MDPs model an

environment as a set of states (S) and actions (A) to control the system’s state in a

sequential decision making problem to maximize total cumulative rewards collected

(R). MDPs make a Markov Assumption that the future dynamics of a system are

dependent only on its present state, not the past history of states. In a Reinforcement

Learning approach, we can define states to be over a set of discrete timesteps for a

total length of time T.

P [St+1|St] = P [St+1|S1, ..., St] (2.1)

The goal of an RL process is to maximize the total cumulative rewards achieved.

In order to do this we use a value function that predicts the value of a state Vt(s).

A value function is necessary because the value of state must denote the expected

long-term return, not just the reward at that state. Formally, we control this through

discounting future rewards, specified by γ : [0, 1]. We can write a function to denote

the rewards accumulated between time t and T as follows:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
T∑

k=t+1

γk−(t+1)Rk (2.2)

The γ denotes the discount factor on future rewards. In economics, this corresponds to

uncertainty about the future or how much to rely on future estimates being accurate

during the calculation of return. Computationally, γ may help aid in convergence of

the RL algorithm by ensuring that massive end state rewards don’t swamp immediate

rewards during training. A policy, π, is the mapping of states to probabilities of

selecting each action. The value of a state under a policy π is described by the

state-value function vπ.

vπ(s) = Eπ [Gt|St = s] = E

[
T∑

k=t+1

γk−t−1Rk

∣∣∣∣∣St = s

]
,∀s ∈ S (2.3)
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The action-value function calculates the expected reward of following a policy starting

from a state s and taking an action a. It maps (state, action) pairs to returns and is

described by qπ.

qπ(s, a) = Eπ [Gt|St = s, At = a] = E

[
T∑

k=t+1

γk−t−1Rk

∣∣∣∣∣St = s, At = a

]
(2.4)

Let p(s′, r|s, a) be the transition probability of moving to s′ from state s by taking

action a and getting reward r. We can write the Bellman Equation for vπ as follows:

vπ(s) = Eπ [Gt|St = s] =
∑
a

π(a|s)
∑
s′,r

p (s′, r|s, a) [r + γvπ(s′)] ,∀s ∈ S (2.5)

The equation simply computes the probability of the (a, s′, r) triple occurring, weights

the return expected by the probability, and sums over all the possibilities to get the

expected value of the policy. A similar equation can be written for the action-value

function. Solving an RL task means that we want to find a policy that achieves the

greatest return. According to the Bellman equation, we can see that the value of a

state under an optimal policy must equal the expected return from the best action

from that state. Formally we can write the solution to the Bellman equation as

follows:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ [Gt|St = s, At = a]

= max
a

∑
s′,r

p (s′, r|s, a) [r + γvπ(s′)]

(2.6)

The Bellman equation for the q-function is as follows:

q∗(s, a) = Eπ[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s, At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γq∗(s
′, a′)]

(2.7)

When the transition dynamics between states are known (p), an exhaustive search can

be conducted using Dynamic Programming to solve the Bellman optimality equation
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v∗ or q∗.

Off-policy Learning

However, in the clinical setting, we dont know if the actions the clinician took were

the best possible actions in relation to our goals and more importantly, the state

space is not discrete. This means we cannot just use Dynamic Programming to try

all possible state/action combinations and solve the problem. We cannot just learn

the policy the clinician followed and need to do “off-policy” learning. Furthermore,

since we do not know the transition probability distribution or reward function, we use

a “model-free” approach that does not explicitly compute the transition probability

from state-action pairs to the next state. Q-learning is a well known model-free off-

policy algorithm that updates the Q-function (or Value function) through trial and

error by keeping a table of Q-values and updating function based on the returns it

actually sees [27]. The function is initialized arbitrarily by the programmer on the

first iteration and gets better through many iterations. The update rule is formalized

below:

Q(st, at)← (1− α) ∗Q(st, at) + α(rt + γ ∗max
a
Q(st+1, a)) (2.8)

Here α is the learning rate and dictates how much to update Q-function with the

new Q-function vs keeping the old Q-function. Essentially the agent observes the

current state, selects an action a, observers the subsequent state, collects the reward,

and adjusts the Qn−1 values using the learning rate. With a sufficiently large num-

ber of iterations, the Q-function has been shown to converge [27]. The algorithm I

implemented in this thesis is a variation of Q-learning where the Q-function is approx-

imated and updated according to Eqn. 2.8. Fitted Q-Iteration(FQI) is a batch-mode

reinforcement learning algorithm where the entire data is available at the start, al-

lowing for the use of any supervised learning regression algorithm to approximate the

Q-function. The algorithm uses one-step transition tuples

F = {(〈snt , ant , snt+1〉, rnt+1), n = 1, ..., |F|}

20



to learn a sequence of function approximators Q̂1, Q̂2, ..., Q̂K where the optimal policy

after K iterations will be: argmax
a∈A

Q̂K(s, a).

Algorithm 1: Fitted Q-Iteration

Input : F = {snt , ant , snt+1, r
n
t+1}, n = 1, ..., |F|

Regression parameters θ
Output: θ

1 Intialize Q0(st, at) = R;
2 S = 〈(st, at), Q0〉, ∀st ∈ F , at ∈ A;
3 for k ← 1 to K do
4 f = regress(〈S, Qk〉, θ);
5 for i← 1 to n do
6 Qk(s

i
t, a

i
t) ← rit+1 + γmax

a′∈A
(f(〈sit+1, a

′〉, θ));
7 S ← 〈(st, at), Q(st, at)〉;
8 end

9 end

The state representation, action space, and reward function greatly dictate the

success of the algorithm in effectively modeling real world transition dynamics and

learning an optimal policy. For this reason, I experiment with different state repre-

sentations, different action spaces, and different reward functions. Another important

factor is the regressor used to learn the Q-value function and can also be varied with

a simple linear regression, decision trees, neural networks, etc.

2.2.1 Evaluation

In a clinical setting, evaluation of a learned policy (hereby referred to as “evaluation

policy”) is difficult because we cannot run the policy and test it to see how it works.

Off-policy evaluation is usually done in one of two ways. The first way is to fit an MDP

model from the data via regression and evaluate the policy against the fitted model.

After fitting an MDP model, we could estimate the value of the target policy through

recursively solving the Bellman Equations. However, learning an MDP is often really

hard since many state action pairs predicted may never be observed in the data and

applying a function approximation to solve this problem will introduce inherent bias.

Thus, in the case of clinical data, we apply the second class of approaches, Importance
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Sampling, which solves this problem by providing an unbiased estimate of the target

policy’s value by taking an average estimate of the trajectories [9].

Importance Sampling

The goal of Importance Sampling (IS) is to learn the value of the evaluation policy

based on data trajectories given by the behavior policy (clinician policy). Importance

Sampling reweights evaluation policy’s returns to account for differences in the likeli-

hood of the returns between evaluation and behavior policies. The approach takes a

probability of the first t steps of history H occurring under evaluation policy divided

by the probability of them occurring under the behavior policy.

VIS = ρ1:H ·

(
H∑
t=1

γt−1rt

)

Vstep−IS =
H∑
t=1

γt−1ρ1:tr
t

(2.9)

where ρt := πe(at|st)
πb(at|st)

is the importance ratio and 1:H is used to denote stepping over

each timestep in a patient’s history. Eqn. 2.9 formalizes the general IS estimator and

the step-wise IS estimator. If the evaluation policy and behavior policy greatly differ,

the IS estimator will have a high variance and have a large range of importance

weights. Doubly Robust is a variation of Importance Sampling that reduces the

variance by providing good estimates if either the model is accurate or the behavior

policies are known (hence, “doubly” robust). The Doubly Robust estimator (DR)

takes an estimated reward function and importance weight and calculates the value

as follows:

VDR = V̂ (s) + ρ
(
r − R̂(s, a)

)
(2.10)

where ρ := πe(at|st)
πb(at|st)

and V̂ (s) :=
∑

a πe(a|s)R̂(s, a). If R̂ is a good estimate of r,

the magnitude of r − R̂(s, a) will be much smaller than that of r, resulting in lower

variance than IS. The step-wise DR estimator is shown in Eqn. 2.11 where Q̂(st, at)
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is given or calculated via regression from training data set similar to R̂.

V H+1−t
DR = V̂ (st, at) + ρt

(
rt + γV H−t

DR − Q̂(st, at)
)

(2.11)

The algorithm I implemented for Doubly Robust Policy Evaluation is as follows:

Algorithm 2: Doubly Robust Policy Evaluation

Input : from training data: Q̂, R̂, πe, πb
Output: VDR

1 initialize: VDR = 0, γ = .8

2 for (s,a,r) ∈ H do

3 V̂ = 0;
4 for a ∈ A do

5 V̂+ = πe(a|s) ∗ R̂(s, a);
6 end

7 VDR+ = V̂ + πe(a)
πb(a)
∗ (r + γVDR − Q̂(s, a));

8 end

U-curve

A more qualitative evaluation method is the U-curve method which associates the

difference between the behavior policy and evaluation policy to some outcome. The

data in this study is from patients who received sedation (propofol and remifentanil)

prior to undergoing gastrointestinal endoscopy. An outcome in this case would be

whether the patients had a gag response when the tube is inserted. A plot of the

differences in outcome based on plot of difference between behavior policy’s recom-

mended actions and clinician policy’s recommended actions is shown to determine if

the RL model was better at identifying underdosed patients.

2.2.2 Prior Work in RL

Reinforcement Learning methods have been used in a variety of studies for differ-

ent clinical tasks. Prasad et al. used Reinforcement Learning to predict the weaning
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of mechanical ventilation for patients in the ICU [22]. They use an off-policy rein-

forcement learning algorithm with fitted Q-iteration to determine the best possible

action from sedation drug and dosage, ventilator settings, initiation of a spontaneous

breathing trial, or extubation at each patient state. Nemati et al. developed a deep

reinforcement learning algorithm that models the internal belief of a patient’s state

with a partially observable Markov decision process to learn an optimal heparin dos-

ing policy from EMR data [20]. Raghu et al. used a deep reinforcement learning

approach to deduce optimal treatment policies for patients with sepsis in the ICU

by binning actions into 5 bins for vassopressors and IV fluids and using 4hr windows

for the state representation [23]. Moore et al. tested Q-learning to control anesthetic

dosing in a volunteer study as an alternative to the proportional-integral-derivative

controllers. The model smoothed a patient’s past BIS values over 15s windows and

used a discretized action space of propofol targets to choose from to achieve a target

BIS [18]. Padmanaban et al. conducted a similar study on 30 simulated patients where

Q-learning was applied to create an RL-based controller to administer IV sedatives

that also took into account the synergistic effects of the combination of drugs used

for sedation [21]. Another interesting application of RL is actually Inverse RL which

essentially looks at the observational data and formulates the RL model setup to be

used to learn a policy. Yu et al. apply FQI with a Gradient Decision Tree regressor

to learn ventilator weaning policy from ICU data and then apply inverse RL to learn

the reward functions and compare the policy learned to the clinicians’ policy [28].

There are a lot of studies that applied RL in clinical settings with many different

MDP formulations. However, none of the studies have applied RL to predict actions

at such a short temporal resolution as I do in this work. Furthermore, the reward

function I use consists of not just the sedation measures (RSS, BIS) but also important

hemodynamic variables such as partial pressure of Carbon Dioxide (PCO2), Oxygen

Saturation (SpO2), and Heart Rate (HR). In practice, these variables are constantly

monitored to make sure a patient doesn’t experience hemodynamic depression for

an extended period of time to prevent complications and serve as useful calibration

measures for sedation dosing.
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Chapter 3

Data Overview

3.1 Background

The dataset consists of an anonymized database of 380 patients undergoing deep

sedation (Propofol and Remifentanil) for gastrointestinal endoscopy in Hospital Clinic

of Barcelona, Spain. Propofol and remifentanil were administered targeting the effect

site using a TCI system. Data collection started five minutes before starting drug

administration.

Table A.1 describes the full form of the variable acronyms used. Hemodynamic

variables (continuous heart rate, non-continuous arterial blood pressure), raw and pro-

cessed EEG (BIS, AAI derived features), pulse oximetry derived SpO2, and PCO2,

were all recorded. RSS was also assessed by a clinician at irregularly chosen times

throughout the procedure. In addition, continuous infusion rate and total infusion

volume was tracked for both Propofol and Remifentanil, along with PKPD deter-

mined plasma and effect site concentrations of each drug (CpPROPO/CpREMI and

CePROPO/CeREMI, respectively). Whether or not the patient gagged in response

to introduction of endoscopy tube (this was considered a nociceptive response) was

also recorded for all subjects. A subset of 210 patients were also monitored with

transcutaneous pCO2 (Sentec) and also had a screening for A118G polymorphism in

OPRM gene altering µ receptor spatial conformation and conditioning resistance to

the effects of opioids. Age, weight, height, and gender were also collected.
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Rugloop was the software used to download the data in real time with a resolution

of 1 datum/second except for ABP, 1 measurement every three minutes. RSS mesure-

ments, gag response, tube introduction and any other clinically relevant events were

entered as a comment with a predefined clinical code to allow analysis. Data from all

monitors and events were stored offline for further synchronization and analysis.

3.2 Exploratory Analysis

Since we are concerned with administering sedation, we will be using InfRatePROPO

and InfRateREMI, the drug infusion rates set on the TCI machine, as the variables we

care to track in our action space. A big problem with this is that the rates recorded

are often extremely close to 0. Some preliminary analysis on the measurements taken

across all the patients showed that 80.34% are 0s, after removing 7.34% of the data

which were NaNs. Furthermore, 90.62% of the data is ≤1. After aggregating the

Propofol and Remifentanil infusion rates across all patients, I plotted histograms of

the rates to visualize any skew in Fig. 3-1. The first row shows histograms of the

drugs without any removal of data and has a huge skew towards 0. The second

row shows the same rates after we drop the bottom 5% of the data. More of the

underlying data begins to show once this step is done. The third row shows the data

after removal of the lowest 5% and removal of rates equal to 0. This distribution is

more conducive to fitting an RL model. Without any processing, the action that the

model will predict will almost certainly always be 0. Furthermore, we don’t lose any

information by removing these datapoints because they occur as an artifact of the

data collection process which begins 5 minutes prior to start of the surgery (before

anesthesia was administered) and ends some time after the surgery is completed.

The reward function will take as an input the patient’s hemodynamic variables

recorded throughout the surgery. Fig. 3-2 shows a few of the main clinical variables

that are collected throughout a patient’s stay in the ICU and the variables doctors are

constantly monitoring to make sure they are within the clinically normal ranges. The

left axis shows the rate and the right axis shows the volume of the drug accumulated.
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Figure 3-1: Histograms of Propofol and Remifentanil Values

The shaded yellow regions correspond to “decompensatory” regions where the values

are not clinically normal. Note that the drug rates are continuously increased even

when the hemodynamic variables seem to be abnormal. This could indicate overdosing

and something we want the RL model to reduce.
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Figure 3-2: Plot of a patient’s hemodynamic variables across the length of stay and
the corresponding plots of propofol and remifentanil administered. The highlighted
regions correspond to the decompensatory regions where the variables are out of the
normal ranges.

28



Figure 3-3: Plot of a different patient’s hemodynamic variables across the length of
stay and the corresponding plots of propofol and remifentanil administered. The data
has been smoothed by taking a moving average over 30s window.
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3.3 Cleaning

Various features were collected at different frequencies, which means there will be

missing data in different time frequencies. There are also long regions of missingness

where sensors fall off during the procedure and aren’t immediately put back on. For

any data that was collected at a resolution of 5 seconds or less, linear interpolation

was applied to get data at a resolution of 1 second. Afterwards, any missing data was

imputed via forward fill imputation within each patient’s data. Each patients col-

lected data was also trimmed at the start of data collection and end of data collection

to remove 0s. A window of 30s of recorded measures for either Propofol or Remifen-

tanil was needed before the patients data was considered since each patient often

had a few minutes of 0 values recorded, 15s of max rates recorded, and 0s recorded

again until the procedure started. This is simply an artifact of the controller and

as such I trimmed each patient’s data till at least 30 seconds of continuous non-zero

measurements were recorded.
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Chapter 4

Experiments and Results

The following sections describe the various models implemented. There were many

variations on the state space, action space, and reward function that I tried and each

combination greatly impacted the resultant policy.

For the following three models, I first discretized the drug rates into actions to fit

the MDP. As described in section 3.2, the rates recorded were greatly skewed towards

0. Furthermore, the rates increase continuously. To discretize, I decided to bucket

the action ranges into a fixed number of bins, which can be done in two approaches.

One approach is to make the bins the same sizes and let the volume of rates that fall

in each bin vary. The second approach is to use quantiles which can vary in size of

each bin but have equal volume of rates fall in each bin. Because the data is skewed,

binning into equal sizes, not volume, resulted in an arbitrary output action bin of 0

for both propofol and remifentanil because the 0 bins had the majority of the values

for each drug. After experimenting with different number of quantiles, I found that 7

was the maximum number of bins that resulted in an equal volume of rates across all

the bins. Thus, for each of the drugs, I first determined the ranges for the 7 quantiles

and binned the rates to achieve a tuple as defined by (propofol ∈ {0,1,2,3,4,5,6},

remifentanil ∈ {0,1,2,3,4,5,6}). Then I applied a one-hot encoding of the resulting

7x7 action space to create a one-hot 49x1 vector that denoted the action taken at a

timestep. Bin number, ranges for each bin, and volume of rates are shown in Table

4.1.
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Table 4.1: Bins, ranges, and frequency used to discretize A

Propofol
Bin Range Volume

0 [0, 21.438) 75083
1 [21.438, 28.077) 75099
2 [28/077, 32.849) 75086
3 [32.849,38.825) 75059
4 [38.835, 44.652) 75121
5 [44.652, 53.948) 75085
6 [53.948, 1200.0] 75105

Remifentanil
Bin Range Volume

0 [0, 2.73) 75088
1 [2.73, 5.628) 75027
2 [5.628, 6.86) 75122
3 [6.86, 9.156) 75122
4 [9.156, 11.193) 75074
5 [11.193, 13.716) 75092
6 [13.716, 767.76] 75113

While final bucket seems to have a large range, the distribution of rates that fell

in each bucket are also skewed as can be seen in Fig. 3-1. It is clear that in bin 6,

even though the range is wide, the values are mostly centered around the lower bound

except for a few outliers falling at the upper bound.

Other setups I tried but are not described in further detail include running a model

with actions as a set of {0,1,2,...,48} where each number encoded a combination of

7x7 binned propofol and remifentanil dosing. The result from this model was to

always dose bin 1 for propofol and 0 for remifentanil. I also tried an action space

with 10 equally sized bins, which resulted in the model always outputting (0,0) for

all timesteps. The action space that seemed to work the best was using 7 quantiles

for each drug and I used this A in the 3 models described below, which vary in the

state representation and slightly in the reward function.
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Figure 4-1: Distributions Across Bins for Propofol

Figure 4-2: Distributions Across Bins for Remifentanil
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4.1 Single Step Model

The state space was a single timestep consisting of all the variables listed below. For

each step, the current state was represented by a 29x1 vector. S: [‘AAI’, ‘Age’, ‘BIS’,

‘BSA’, ‘BSAAI’, ‘BSBIS’, ‘CePROPO’, ‘CeREMI’, ‘CpPROPO’, ‘CpREMI’, ‘EM-

GAAI’, ‘EMGBIS’, ‘GABRB3’, ‘GAG’, ‘Gender’, ‘Height’,‘LBM’, ‘NIBPdia’, ‘NIBP-

mean’, ‘NIBPsys’, ‘OPRM1’, ‘PCO2’, ‘RSS’, ‘RespiRate’, ‘SQI09’, ‘TUBE’, ‘Weight’,

‘SpO2’, ‘HR’].

The action space was the one-hot encoded quantiles as described earlier. It was a

49x1 vector that denoted the combination. The reward function I used in this model

is a squared mean error penalty. It checks whether, at the next state, BIS is between

40 and 75, RSS between 3.5 and 4.5, PCO2 is at most 60, SpO2102 is at least 80,

and Heart Rate is between 45 and 100.

def calc_reward(row):

rew = 0

rew +=(row["BIS"]-57)**2

rew +=(row["RSS"]-4)**2

if row["PCO2"]>60:

rew+=(row["PCO2"]-60)**2

if row["SpO2"]<80:

rew+=(80-row["SpO2"])**2

rew+=(row["HR"]-72)**2

return -rew

I tried a LinearRegression and DecisionTreeRegressor from sklearn as the q-function

approximators. I ran the LinearRegressor for 100 and 200 iterations and the Decision-

TreeRegressor for 200 iterations. Below is a plot of the medians of the binned actions

for propofol and remifenatil that the RL model suggested vs doctor did, Q-values and

the difference in Q-values between doctor’s policy and RL policy, and a plot of the

respiratory markers for one patient. The medians for each bin were determined from

the training data. Figure 4-3 depicts the actions predicted for one patient at every
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timestep for the duration of the procedure the patient underwent. The RL model

seemed to always underdose both propofol and remifentanil when compared to the

actions taken by the clinician. The Q-values vary at the start but converge toward

the end to a higher Q-value than the clinician policy’s Q-value. Figure 4-4 shows the

Figure 4-3: Linear Regressor on Single Timestep model with medians of predicted
action bins plotted. Blue line corresponds to the RL actions, and red line corresponds
to doctor’s actions. This is for one patient.

same data but smoothed over a 30s moving window to visualize a less noisy depiction

of the policies for this patient. It is interesting to note that the RL model starts

off with dosing smaller amounts of drugs at the start and then increases the dosage

compared to the clinician who always doses the same amount.
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Figure 4-4: Linear Regressor on Single Timestep model with medians of predicted
action bins plotted and data smoothed to 30s. Blue line corresponds to the RL
actions, and red line corresponds to doctor’s actions. This is for the same patient
depicted in Fig. ??
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4.2 Rolling Window

In order to capture more information in a patient’s state representation, I used a

rolling window of 30s with 5 aggregate functions. I took mean, median, standard

deviation, min, and max of the previous 30s of data at each timestep for all the

variables listed in section 4.1 except the static variables (Height, Age, Gender, Weight)

which were left unchanged to achieve a state space of 125 variables. The action space

was kept the same as before with a one-hot encoded vector of 49 possible combinations

of propofol and remifentanil. The reward function was calculated similarly with the

minor change being that the 30s means of the reward variables were used to calculate

the error instead of just the raw values. I ran this model setup with Linear Regressor

and with Decision Trees Regressor for 200 iterations each. The following figures depict

the policy (smoothed and unsmoothed) learned for one patient in the training set and

one patient in the test set. An important point to note is that the patient for whom

the policy is shown in Figure 4-5 and Figure 4-6 is the same patient from Figure 4-3

and Figure 4-4. Yet the policy learned by this rolling window model is much different

than the policy learned by the single timestep model. In this policy, the RL model

almost always doses 0 for except a few timesteps where it doses a high rate as shown

in the unsmoothed Figure 4-5. In the smoothed version, the policy looks very close

to 0 for the patient in the training set. For the patient in the test set, the model

similarly underdoses when compared to the clinician but does have a few peaks that

are at a higher magnitude than the values predicted for the patient in the training

set. However, the differences in the Q-values between the clinician policy and RL

policy seem to always be 0 or positive, indicating that the RL model consistently

had higher or equivalent Q-values to the clinician. Note that the Pred Qs line was

plotted, however it is not visible because Doctor Qs line is overlaid on top of it since

the Q-values are so similar.
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Figure 4-5: Policy for one patient under the rolling window model with decision trees
regressor, unsmoothed.
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Figure 4-6: Policy for one patient under the rolling window model with decision trees
regressor smoothed over 30s with a moving average.

39



Figure 4-7: Policy for one patient in the test set under the rolling window model with
decision trees regressor, unsmoothed.
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Figure 4-8: Policy for one patient in the test set under the rolling window model with
decision trees regressor smoothed over a 30s with a moving average.
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4.3 Stacked Window

The last setup that I tried is stacking model. Instead of a rolling function, I took all

the data present in the 29 state vars over the last 15 seconds as for each timestep

and concatenated it. The action space remained the same. The reward was slightly

modified to penalize based on an individual patient’s baseline heart rate instead of

penalizing based on a general population baseline. I established baseline heart rates

for each patient by averaging the heart rate over the first 5 seconds of a patient’s

stay in the hospital. I then applied the penalty in 3 tiers where if the patient’s

heart rate was within 10% of the baseline, the penalty was only 10% of the squared

difference, if it was 20% within, the penalty was 20% of the squared difference, and

full squared difference otherwise. This was a decision made from discussion with Dr.

Pedro Gambus, our collaborator on this project, to adjust for each patient’s natural

heart rate instead of expecting every patient to be close to one normal value. I also

made the target value for SpO2 slightly higher to be closer to what clinicians aim for.

def calc_reward(row,bh):## next state r1 based on s2

rew = 0

rew +=(row["BIS"]-57)**2

rew +=(row["RSS"]-4)**2

if row["PCO2"]>60:

rew+=(row["PCO2"]-60)**2

if row["SpO2"]<90:

rew+=(90-row["SpO2"])**2

if bh*.10<=abs(bh-row["HR"]):

rew+=.10*(row["HR"]-bh)**2

elif bh*.20<=abs(bh-row["HR"]):

rew+=.20*(row["HR"]-bh)**2

else:

rew+=(row["HR"]-bh)**2

return -rew
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I ran this model for 100 iterations using a Linear Regressor with γ = .8. However the

actions predicted were trivial and always the same for every timestep across all the

patients–the model outputted 1 for propofol and 0 for remifentanil.
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Chapter 5

Evaluation

The following analyses were performed on the results from the rolling window model

with the decision tree regressor described in chapter 4. I chose this model to demon-

strate the evaluation techniques but the methods are generalizable to results from

any of the models outlined.

5.1 U-curve

First, I applied the U-curve method to qualitatively understand the RL policy. This

method involves associating the learned RL policy to some outcome. Because the pa-

tients in this study were undergoing gastrointenstinal endoscopy, one of the main goals

of sedation was to prevent patient gag reflex during the insertion of the endoscopic

tube. To understand how RL predicted actions and clinician actions correspond to gag

response, I first aggregated all the actions across a patient and then took a weighted

average of the predicted bins to output 2 values for each patient, corresponding to the

weighted average of RL actions and weighted average of clinician actions. The bin

values correspond to the ranges outlines in Table 4.1. I plotted the results and color

coded them based on whether the patient had gag reflex or not. As we can see in Fig.

5-1, the RL model predicted a much lower dosage on average than the doctor actually

dosed. However, gag reflex also only occurred only 25% of the time, as depicted in

green and cyan. Thus, it is possible that the clinician overdosed 75% of the time
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and the RL model underdosed 25% of the time. However, this cannot be concluded

definitively because the fact that gag response happened at all means that even the

clinician sometimes underdosed the patients. If the clinician, who consistently gave

a higher dose than the RL model, underdosed, it is possible the RL model is not just

undersoing 25% of the time but severely underdosing the patient most of the time.
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Figure 5-1: Plot of the average propofol action across each patient in the test set
according to the RL model and doctor and whether gag response occurred.
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Figure 5-2: Plot of the average remifentanil action across each patient in the test set
according to the RL model and doctor and whether gag response occurred. The green
and cyan correspond to gag response occurring.
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5.2 Doubly Robust Methods

I also implemented the doubly robust method in python to evaluate the RL policy.

This statistical approach uses importance sampling to output a value for each patient

of the policy learned. I first trained two state transition probability models (πb, πe)

on the training dataset that was used to learn the RL policy with x = S and y = A.

It is both extremely crucial and incredibly challenging to build well-calibrated models

that learn the behavior policy accurately in order to ensure the off-policy evaluation

method works [24]. The RL policy was not hard to learn with the training and

validation accuracies being 97.6% and 98.2%, suggesting that the model (πe) was well-

calibrated. However, the training and validation accuracies for the clinician policy

(πb) were 23.6% and 17.5%, suggesting that we were not able to learn the clinician

policy from a simple decision tree regressor with as high accuracy as is necessary to

ensure meaningful evaluation measures. Nevertheless, I implemented the evaluation

technique using Algorithm 2 to calculate the an estimate of the value of the learned

policy for each patient. Table 5.1 lists the value of the policy learned for each patient

when γ was set equal to .05.

This procedure needs extensive tuning and analysis because the choice of γ, the

choice of how much we choose to update V in each iteration, highly dictates the final

calculated value of the policy. A high γ leads to an overflow error and and low γ

leads to a negative value as seen in Table 5.1. Furthermore, in order to interpret

the value outputted, we also need to calculate the value of the clinician policy for

comparison. A more thorough analysis would be to also calculate the value of a

random action policy and value of no action policy to use for comparison to the RL

policy and determine if the RL policy in itself has a higher value or any policy would

result in a high value due to the way we set up the MDP. In fact, Gottesman et al.

showed that sometimes the way the action space is constructed can result in even a

random action policy having a comparable value to a thoroughly trained RL model.

This suggests that Importance Sampling methods may serve as a baseline, but alone

are not complete methods of evaluation.
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Patient Value
1 30107.682411837362
2 17162.509723541363
3 -20419.88674567981
4 -17665.156992367843
5 -20419.88674567981
6 -19489.288370987233
7 -19512.96176763476
8 779327.4757294233
9 -17084.933502924225
10 -20224.95008121079
11 10476.65024905686
12 -20419.88674567981
13 -13314.727608279367
14 -17740.480048234553
15 -20419.88674567981
16 -19991.607450652602

Table 5.1: Value of policy learned by the rolling window model with decision tree
regressor for each patient across the 16 patients in the test set.

5.3 Policy Discussion

Off-policy evaluation is a hard problem in the clinical setting. We don’t want to

just learn the policy the doctors followed since we want to do better yet we don’t

have model of all the possible transition dynamics for a patient. We only have the

historical state, action pairs seen. This problem is exacerbated in Reinforcement

Learning where Importance Sampling methods serve as a proxy in the absence of

being able to actually deploy the evaluation policy in a simulation or a volunteer

study. Moreover, the success of Importance Sampling methods greatly depends on

the calibration of the models to the actual patterns underlying the data.

A problem with the U-curve method is that we cannot evaluate every decision

made by the RL model at each timestep since the outcome measured only happens

1-2 times per patient. It is only possible to evaluate collections of decisions (the

decisions made leading up to the point at which the outcome is measured), not each

decision made by the RL model. Furthermore, one outcome may not be sufficient

to evaluate the learned policy. In this work, we use gag response as the outcome.
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However, gag response only serves as an indication of underdosing a patient. A

patient may be overdosed but we have no exact outcome that measures this other

interpreting the variables we used in the reward function to serve as indicators of

hemodynamic depression (consequence of overdosing). However since the RL model

was already trained to optimize for the control over these variables, the RL model

should, by design, be better than the clinician policy and hence leads to a biased

evaluation metric.
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Chapter 6

Discussion and Future Work

Reinforcement Learning in a clinical setting is a tough problem because choosing

the right state representation, action space, and reward function can greatly affect

the policy learned by the model. In this work itself, with the same reward function

and same state representation, an action space of 10 bins caused the model to output

(0,0) as the action to take at every timestep due to the underlying distribution of drug

values within each bin. Varying the state representation also drastically changed the

learned policy. The stacked window model with 15s of data always outputted one set

of actions whereas the other models outputted a varied set.

The state space representation is an extremely crucial piece of the puzzle. What

constitutes an accurate state representation of a patient? In the clinical setting,

doctors can see the entire history of a patient. However when we model this problem

as an MDP, we make the assumption that only the current state is necessary to

predict the action to take at the next timestep. Verifying that all the confounders

are included in the state representation is also hard to do and just incorporating all

the variables present in a dataset may only introduce noise into the model. There

are many ways to represent a state and one option could be to use dimensionality

reduction. Either clustering the state variables or applying PCA across a certain

window of time might be work better.

Careful choice over the action space is also crucial. There is a balance to achieve

between having too many options for the action space and having too few. Too few
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options and the model might recommend one action at a much higher rate than is

needed because of a lack of other options to choose from [6]. Too many options and

the problem may not be tractable for the RL model to converge. The approach I took

in this thesis is to bin a continuous action space into discrete set of actions. However,

the bins need to be sufficiently small for the policy to actually be clinically useful and

in practice, doctors don’t view sedation control as having to choose from a discrete

set of bins. Other options for action spaces worth noting are discretizing the action

space as {+1, -1, 0} where the model has to suggest whether to increase, decrease,

or keep the rate the same at each state and using an action space that discretizes the

entire range of possible values at a specified step size. For example, if the drug rate

can range between 0 to 6, the action space could be all the possible values in that

range at a step size of 0.1: {0,0.1, 0.2, 0.3,...,6.0}. At each state, the RL model would

have to chose a rate from all possible rates in this set.

Furthermore, our current reward function is a simple mean squared error across

key variables often used in sedation control to monitor for hemodynamic depression.

However, this should not be the only goal of an RL model dosing sedation. Gag re-

sponse and other EEG derived measures may be useful to achieve a more personalized

regime for each patient. The reward function can also be determined with Inverse

RL as described in Chapter 2 in order to learn the rewards from the data itself.

Finally the algorithm itself, FQI, can output different results based on the regres-

sor used to learn the Q-value function. In this work, I tried LinearRegressor and

DecisionTreeRegressor for the speed and simplicity. However, a neural network re-

gressor may be faster and better able to represent the q-values since at each iteration,

the model simply has to update the weights on the network, not retrain an entire net-

work. Batch FQI algorithms are another options which train on subsets of the data

instead of the entire dataset which might help in generalizing the Q-value function.

Ultimately, no matter what policy is learned, it is hard to evaluate it without being

able to test the policy in either a simulated environment or in real life. A potential

future direction of this work may be to extensively focus on building an accurate

simulation of a patient undergoing gastrointenstinal endoscopy and then test various

52



RL models and their learned policies to understand how different setups affect the

learned policies.
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Appendix A

Tables
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Table A.1: Acronyms used in the dataset

Acronyms Variable Definition

AAI Auditory evoked potential index
BIS Bispectral Index
BSA Body Surface Area

BSAAI Brain stem derived Auditory evoked potential index
BSBIS Brain stem derived Bispectral index

CePROPO Effect site concentrations of propofol
CeREMI Effect site concentrations of remifentanil

CpPROPO Plasma concentrations of propofol
CpREMI Plasma concentrations of remifentanil
EMGAAI EMG derived Auditory evoked potential index
EMGBIS EMG derived Bispectral index
GABRB3 Flag for genetic mutation associated with sedation response

GAG Measure of gag response when patient is intubated
HR Heart rate continuously measured

InfRatePROPO Continuous infusion rate of propofol
InfRateREMI Continuous infusion rate of remifentanil
InfVolPROPO Total infusion volume of propofol
InfVolREMI Total infusion volume of remifentanil

LBM Lean Body Mass
NIBPdia Noninvasive diastolic blood pressure

NIBPmean Noninvasive mean blood pressure
NIBPsys Noninvasive systolic blood pressure
OPRM1 Screening for A118G gene
PCO2 Partial pressure of carbon dioxide
RSS Ramsay sedation score

RespiRate Respiration Rate
SQI09 Signal Quality Index
TUBE Binary flag whether the patient is intubated
SpO2 Oxygen saturation
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