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ABSTRACT

A model of the inner ear has been developed which combines into a
simple, plausible mechanism the mechanical, dynamical, anatomical and
neurological details of the cochlear structure. This mechanism ade-
quately accounts for the results of a variety of physical and psycho-
logical experiments. It suggests a functional purpose for certain of
the anatomical details of the cochlear partition and it unifies into
a single consistent construct the experimental facts concerning: the
discrepancy between the sharpness of the excitation pattern along the
basilar membrane, as inferred from masking data, and the sharpness of
the vibration pattern, as observed by Bekesy: the localization of, and
relation between, the microphonic and action potentials: the increase
of sensation threshold at low frequencies: the abrupt inhibition of
Second-oraer neurons in the cochlear nucieus ot a cat as observed by
falarbos and Davis; the excraordinary pitch discrimination of the ear;
and the beats and other phase effects heard when listening to mistuned
unison or conconant tones.

The mechanism described here utilizes a phase principle which, irom
theoretical and experimental considerations, is shown, to be particu-
larl:y well suited for the recoverw of the characteristic frequencies
of the damped oscillations which comprise many common sounds, such as
those of speech. The use of a phase principle requires the measurement
of the phase difference between two related waves. Since phase may be
measured by detecting the instants at which the wave passes thru a value
of zero, a phase principle permits "all-or-none" elements, such as the
individual neurons of the nervous system, to utilize the neural phenomena
of facilitation, inhibition and summation in the accurate measurement of
phase differences over a wide range of stimulus intensity. Furthermore,
the two related waves needed to utilize a phase principle may be generatec
by plausible functions ascribed to the inner and outer hair cells and to
the tectorial and basilar membranes. The action of the tectoria’ mem-
brane is hypothesized to be such that the excitation of the ianer hair
cells is directly proportional to the displacement of the basilar mem-
brane whereas the outer-hair-cell excitation is proportional to the
curvature of the curvature of this displacement. With the additional
assumption that the outer-hair-cell neurons excite, and the inner-hair-
cell neurons inhibit, certain of the second-order neurons, a model is
obtained which accounts for the experimental facts summarized above,
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A THEORY OF HEARING

I, STATEMENT OF PROBLEM

‘Although the phenomenon of hearing has attracted scientific attention
for centuries, there still remains to be found an adequate explanation of
how we are able to perceive even the simplest of sounds, such as the click
and the steady sinusoidal tone, with the acuity that psychophysical data
show possible. For example, binsural measurements using clicks reveal
a temporal resolution between the two ears of as little as 12 microseconds
(K-1), and measurements using steady tones show that changes in frequency
as small as 1/2 percent can be discerned throughout much of the range of
audible tones, Whereas the known facts concerning the nervous system
do ensble one to construct certain neural mechanisms that would permit
the perception of the simultaneity of the stimuli, the best available
facts concerning the broadly tuned resonance phencmena that have been
observed in the inner ear by Bekesy and others have not appeared to be
compatible with the acute perception to slight changes in pitch displayed
by the human listener,

The ma jor problem, then, is to fird a plausible mechanism for audie
tory frequency analysis that will be consistent with experimental
psychophysical data and will use the known facts concerning the anatomical,
mechanical, and neurological properties of the ear. Since the temporal
aspects of neural behavior appear to offer the most precision, it 1s

desired that this mechanism should utilize the mechanical resonance



properties of the ear in such a way as to reduce the question of pitch
resolution to one of temporal resolution for which the available neural
phenomena of temporal inhibition, facilitation and summation may be
utilized. If such a mechanism can be found, the process of frequency
analysis will have been translated into the time domain and the temporal

and spectral aspects of hearing will have been unified.

II. BACKGROUND

Several recent publications cover the historical development of
various theories of hearing (W-1, 3-1) as well as the current state of
our knowledge concerning auditory phenomena and structural details of
the ear. (L-1, S-2) It is desired to review here only enough of this
history to show how certain ideas, such as Fourier's resolution of a
signal into sinusoidal components, have resulted in a biased and
unnatural interpretation‘of the essential phenomena involved.

The history of efforts to explain how the ear can detect the pitch
of a sound begins in 1605 with the formulation of the first resonance
theory of hearing by Caspar Bauhin, a Professor of Anatomy in the
University of Basle, Switzerland. The resonance was thought by Bauhin
to occur within the various cavities and labyrinths of the middle and
inner ear, which at that time (and, indeed, for 150 years following)
were all believed to be filled with air. By 1683, knowledge of the
anatomy of the inner ear had advanced to the point where DuVerney was
able to publish a treatise in which he gives a surprisingly good descrip-
tion of the cochlea with its two scalae, bony lamina, and basilar membrane.
However, DuVerney reasoned that the bony lamina, to which he wrongly

assigned the resonance property, would vibrate near the base of the
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cochlea for low tones and near the apex for high tones. It was not until
1760 when Cotugno, adopting the view that it was the membranous rather
than the bony lamina which resonated much as strings in a harp, concluded
thet the low tones should be localized near the apex of the cochlea, Thus,
for almost two centuries there has existed a theory, which must now be
accepted as a fact, that a resonance phenomenon ocrurs within the ear such
that a type of frequency analysis is possible on the basis of the spatial
distribution of the response within the cochlea.

By the middle of the 19th century, a number of ideas necessary for
the further refinement of a theory of hearing had developed, With the
perfection of the compound microscope around 1830, rapid progress was
made in the study of the finer anatomy of the cochlea; particularly
outstanding was the work of Corti. About the same time, Johannes Muller
presented his doctrine of "specific nerve energies" -- that n"sensation
consists in the sensorium receiving through the medium of the nerves,
and as a result of the action of an external cause, a knowledge of
certain qualities or conditions, not of external bodies, but of the
nerves of sense themselves." Contemporary to these ideas were the
mathematical notions of Fourier, who deduced that a periodic wave could
uniguely be resolved into sinusoidal harmonics, and of Chm who asserted
that the ear actually performs the type of analysis defined by Fourier's
theorem. It was the genius characteristic of Helmholtz that in 1857 he
was able to integrate these several different jdeas into a resonance
theory that has occupied a dominant place in the theory of hearing to
the present day.

Helmholtz conceived of the cochlea as being functionally equivalent
to a series of sharply tuned resonators with their frequencies of reso-

nance varying progressively, that tuned to the highest frequency being
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at the base and the lowest at the apex of the cochlea. This arrangement
differed little from that offered by Cotugno 100 years earlier. What
made Helmholtz' theory significant was that the anatomical evidence
avgilable at that time appeared to indicate that the cochlea did contain
‘the discrete resonators required for his theory and that each could have
associated with it a specific nerve fiber. The perception of sound could
thus be reduced to the perception of the mechanical response of a specific
set of resonators within the ear and, by Ohm's law and Muller's, this
conception of the mechanism of hearing was, and still is, appealing
because of its simplicity.

Despite its appealing simplicity, Helmholtz' notion of independent
resonators and specific nerve fibers associated with each pitch seems
to have been contradicted by nearly every new fact that has been learned
about the dynamics of the cochlea. By the beginning of the twentieth
century, the theory, which enjoyed almost universal acceptance 25 years
earlier, had become subject to vigorous attack from all sides, and
various other theories were, and have continued to be, proposed. (How-
ever, the mechanism to be described in this dissertation does account
for a high degree of specificity within the cochlea itself so that,
neurally at least, the situation could resemble that conceived by Helm-
holtz.)

The failure to find specific resonant elements within the cochlea
having the high selectivity required by the Helmholtz theory has
encouraged the notion that, perhaps, the analysis of frequency is not
performed in the peripheral organ of the ear at all, but rather, that
the auditory nerve transmits the details of the sound -~ telephone
fashion -- to the brain where the frequency analysis is completed.

When Rutherford presented in 1886 what might be called the first of
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these "telephone" theories, little was known about the limitations of

the auditory nerve. In the light of present day knowledge of neuro-
physiology as well as Békésy's direct evidence that a degree of place-
analysis does in fact occur within the cochlea; the "telephone® theory

in its simple form must be discarded. Nevertheless, modern psychoacoustic
data on binaural space localization of sound sources seem to indicate a
telephone mechanism for some aspects of the sound and Licklider's recent
"Duplex Theory of Pitch Perception" (L~2) suggests a neural mechanism
capable of performing the type of analysis required in such a theory.

’ Now, Ohm's acoustic law, relating to the resolution of & complex
wave into its sinusoidal frequency components, was deeply implanted in
hearing theory by Helmholtz and has remained there ever since. In his
recent book "Theory of Hearing", (W-1), Ernest Glen Wever gives an
accouat of the many theories that followed Helmholtz. Most of these
theories are the result of efforts to account for the analysis required
by Ohm's law in terms of the known anatomy and physiology of the ear
with the result that both theory and experiment since the time of Helm-
holtz have been predominantly directed toward the response of the ear
to sinusoidal tones. And, since the time of Helmholts, serious diffi-
culties have arisen because the "resonant® properties of the ear --
whether this "resonant" property be ascribed to the ordinary interchange
of kinetic and potential energies or to the selective attentuation or
interference of traveling waves — just do not seem to be capable of
explaining adequately the observed frequency discrimination of the hearing
mechaniam.

For historical reasons, the phenomenon of “"resonance® has come to

be associated almost inseparably with sinusoidal excitation as have also
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our notions relating to "frequency". The notion of "resonance" has, in
recent years, been broadened to include other waveforms. In its most
general form, "resonance" is fundamentally nothing other than the
nprinciple of resemblances" employed by the ancient Greek philosophers
to account for sensory perception of whom Wever (W=-1, p. 4) has this
to say:

"They began by accepting the naive (sic!) view that perception
is a mirroring of the external world, yet they soon found it
nacessary to complicate this outlook in order to account for the
obvious differences among the senses., They solved this problem
of sense variety by reference to the magic formula that 11ike
is perceived by like'. This is a formula handed down from
primitive thought, just 1s the mirroring principle was; and though
it may have seemed a more sophisticated jdea at the time, it still
was an expression of ihe same elementary kind of thinking, in
which all things are accounted for by direct analogies."

Now, resonance of a system may be said to occur when the exciting
wave approximately matches the natural (impulse) response of the system,
for then "like is perceived by like" and the forced response is enhanced.
Indeed, this principle finds its expression in modern times as the matched-

7ilter eriterion of Van Vleck and Middleton.* A tuning fork when sharply

# Middleton has recently shown that under very general conditions the
best possible detector of any signal imbedded in noise consists of a
suitable linear, matched filter followed by an appropriate non-linear
operator. If the signals to be detected consist of highly-damped
oscillatory components, then the best linear filter, for the case of
Brownian noise, must also possess high damping if optimum detection is

to be achieved. (D-2)

/
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struck produces as its characteristic transient a wave which, except
for a slight damping, is sinusoidal -- and it is, therefore, resonant
to a sine wave of this same frequency. An electrical capacitor when
struck by a current pulse produces as its characteristic transient a
constant voltage difference between its terminals -- and it is, there-
fore, resonant to a constant current impressed upon it.

Perhaps during the early development of man it was vital to his
safety that he should possess acute perception, not of the steady tones
so leisurely studied by his distant progeny, but rather of those sounds
of short duration caused, possibly, by the breaking of a twig, the grunt
of an animal, or a padéed foot striking the ground. It would be to
these sounds that Empedocles would have expected the ear to possess
sharp "resonances". And I, for one, am inclined to agree with Empedocles.
The theme developed throughout this dissertation is that sound should
be analyzed into exponential rather than sinusoidal components, and that
the struéture of the ear is adapted to this kind of analysis. If in
the process of describing a mechanism whereby the ear can perform a
generalized frequency analysis of this type we can account as a byproduct
for known facts about the response of the ear to sinusoidal stimulation,
this accomplishment would appear to provide further justification of
this underlying idea. |

The difficulty encountered here is.a most common one that generally
arises because the elements into which a thing is decomposed for analytical
reasons may not be "natural" ones nor reveal the essentially significant
structure or pattern of the thing itself. Once this decomposition has
been made, it is all too easy to concentrate upon these elements so

exclusively that the reaily important attributes of the thing are
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overlooked or lost. Certainly it would seem unreasonable to assert that,
because the sound pressure acting upon the eﬁr drum arises from the impact
of individual molecules, we should make the study of the auditory effects
of single molecular impacts the basis for our science of hearing. Such a
study would exclude the most important aspect of a sound wave which has
to do with the structural coherence, both in time and space, between

the many molecules striking the ear drums. It is this coherent structure
that is important -- not the effects of the individual molecules.

Yet, to decompose a given sound wave into an infinite spectrum of
infinitesimal sinusoidal components, and then to give major attention
to the auditory effects of each of these components with only slight
attention to the structural relationships between them, is to make a very
similar kind of error. Fortunately, the modern notion of a system func-
tion provides just the concise method needed to represent these struc-
tural aspects of a sound wave, (H-1) It reminds us that the sense of
hearing must obviously have as its main purpose not the detection of
the frequency components of the sound wave at the ear drum, but rather
the sensing of the temporal and structural aspects of the agency that
creates the sound, the sound itself being only a carrier and, in a
sense, no more important to the phenomena of hearing than the existence
of the individual gas molecules is to the important correlates of a
sound wave,

If it is granted that the purpose of the sense of hearing is to
recover the significant information from the sounds that we hear, it
follows that the precise nature of this information must play a signifi-
cantcant role in the development of any theory of hearing. Accordingly,

we first ask ourselves, "What is the meaningful information content of



a typical sound wave and how can it be represented and measured?"

III. THE REPRESENTATION OF MEANINGFUL SOUNDS

Information theory has given us some useful criteria for evaluating
the capacity of a channel for transmitting an information-bearing signal.
This capacity is expressed as an average rate over a very long time
interval T and the appropriate measure is, therefore, in terms of the
frequency bandwidth B of the channel which, by definition of the
Fourier spectrum, is also an average over all time. If we consider the
set of all possible signals that could be transmitted over a channel
having a frequency bandwidth B of, say, 5000 cps and a signal-to-
noise ratio of 30 db, we find that the maximﬁm rate at which information
could be conveyed would be, from I = 2B log,(l + %). about 50,000 bits
per second. The total number of distinguishably different waves, each
of 0.1 second duration, that would be transmitted would be about 101’500.
If in a hypothetical experiment a listener were presented with sounds
corresponding to each of these waves it is obvious that he would be able
to distinguish between only a tiny fraction of them, Just what this
fraction would be, I do not know, but it is likely that the rate at
which the information can be perceived may not be so very much in excess
of the rate at which it can be generated =- in the order of 20 bits per
second for man. It is apparent, then, that meaningful (i.e. distinguish-
able) sounds form a very small subset of the set of all possible sounds
that may be created from sinusoidal components lying within a given
frequency band. For this reason; we are led to suspect that the represen-
tation of meaningful sound can be accomplished in a less wasteful manner,

perhaps by a representation that seeks to specify the intrinsic pattern

9.



and structure of the sound wave rather than the 2BT sampling points
dictated by the measuring instrument. (S-4).

We have already remarked that a sound wave should be regarded as a
carrier that has encoded within it pertinent information about the
agency which creates it. To ask about the significance of a sound wave
is to ask about the significance of its source, for, at most, the signifi-
cant information in a sound wave can be no more than the information
required to describe its source. But the sources of many sounds are
vibrating dynamic systems that obey a few well-defined physical laws.
Thus, the nature of the physical world itself tends to limit the class
of possible sounds. If the sources of sounds commonly occurring in
nature may be shown to possess to within an acceptable approximation
a simple, compact representation, there would be some reason to suspect
that the function of the ear would be to analyze the sound so as to
deliver up to the nervous system of the listener a set of neural
messages corresponding to this compact representation of the source.
Certainly, such an assumption is no less acceptable than the common
notion that the ear delivers to the brain a fregquency analysis of the
sound.

Now, the class of sound sources in which we are interested are those
which during the evolutionary process will have been pertinent in determin-
ing the survival of the species. Obviously, unnatural sounds, such as
the informationless sinusoidal waves so frequently used in modern acousti-
cal measurements, are of little concern here. Instead, the important
sounds are those which were created by "something happening" to an object
or structure common to the organism's environment. The information

contained in the sound may be separated into two types: structural
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information that specifies what the object is, and temporal information

that specifies when and how violently "something" happened to the object.*

These two kinds of information may be considered independently, provided
the physical structure possesses the properties of a linear dynamical
system for which superposition of various forcings produces a response
that is the superposition of the individual responses. The assumption
of linearity is carried throughout this paper. Although many sounds are
created by systems that are not linear, nevertheless this approximation
provides a useful conception.

Only part of the structural information characterizing the source
can be implanted in the sound wave. The source may be described by many
independent parameters, such as its physical dimensions, shape, and the
mechanical properties of its materials. However, dimensional analysis
requires that its dynamic vibrations, and hence the radiated sound wave,
be determined by parameter groups each of which must have only the
dimension of "time". The number of such groupings is generally fewer
than the number of original parameters. For many of the parameters of
like kind, e.g. the linear dimesnions of different parts of the system,
combine in such a way that a small change in any one may have but little
effect upon the domi.ant vibration pattern of the source. Thus, the
encoding process whereby the characteristics of the source are translated
into sound is generally accompanied by a loss of information. The struc-

tural information derivable from the sound cannot exceed the information

% The adjective 'temporal' is here used to designate those aspects of
the sound wave which are peculiar to definite instants in time as
distinguished from the 'structural' aspects which are relatively

invariant under translation in time.
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content of this smaller set of derived parameters. However, the restric-
tion that these derived parameters all have the dimension of "time" does
not prevent them from conveying épatial information because the listener
may learn from experience something of the velocity of sound in different
media, and, with this information, the derived parameters do convey an
implicit notion of the size and shape of the sound source.

To express these ideas more concisely, we resort to mathematical
symbolism and denote by hiJQT) the value of the instantaneous sound
pressure observed at position "ig'rseconds after an impulsive forcing
of unit magnitude has been impressed upon the system at position "j".
This function hij(T) will be called the system function because it is
completely determined by the parameters of the system. It represents
all of the structural information that may be deduced from sound
rroduced by excitation of the system. It is, however, dependent upon
the particular positions that are used for execiting and observing the
system, To obtain a set of parameters that are invariant under changes
in the points of excitation and observation, we note that the system

function can often be represented by expressions of the form

(k)
Byyl) = 2 &y exiny) (r>0) (1)
0

(T<0)

where the Py = ck+jwk are the complex frequencies and the Aij are the
initial (complex) amplitudes of the exponential components of the system
function. Whereas the set of amplitudes (A(l), A(z), A(B), coo) Will

vary with changes in the points at which the system is driven and observed,

the natural frequencies (Pl’ P2s P3 c0o) are invariant under such changes



and therefore represent a most important property of the linear system,

It is precisely these natural frequencies that, having the dimension of
al

T 7, epitomize the various grouping of the physical parameters specify-

ing the sound source. By specificaticn of the structural content of a

sound wave, we shall mean, then, the specification of the P primarily,

(k)
and the Aij » secondarily.

This structural information provides a name, or signature, for the
physical system responsible for the sound. To complete the specifica-
tion of a meaningful sound, the excitation of the system must also be
given. Most systems are passive and ordinarily at rest. They emit a
sound only as a result of a forcing externally imposed upon them. The
values of a sound wave Si(t) at "i" resulting from an arbitrary

forcing wave fj(t) impressed upon the system at "j" may be represented

in terms of the system function by

5,(t) = f fj(t -7 )hij(‘T)d'T (2)
(o]

provided the system is linear.

The relation, expressed by Eq. (2), governing the generation of a
sound wave, suggests that the ear in analyzing the sound may first
separate it into its structural and temporal compoments, (H-1), However,
this relation alone will not permit unique factorization. The rroblem
involved here is rather like the problem of finding the two factors, x and
y, of some prescribed number, say 10; for every x there will be a
y = 10/x that satisfies the prescribed relation. Nevertheless, an unique
solution is possible if we regard the problem as one of statistical infer-
ence in which likelihood values have been assigned a priority to the

various permissible forecing and system functions. The problem is then

3.



solved by determining that particular pair which have the greatest joint
1liklihood of occurrence.

Now, the eseential characteristic of the foreing function is its
unpredictability in time. Who is to say at what instant the maid will
drop the dishes in the sink? Back of most acoustical events is a
trigger that sets them off. These trigger actions are characterized by
their time of occurrence, intensities, and nothing else. A forcing wave
which activates a sound source should include in its representation a
specification of the epochs and intensities of these trigger events.

If these triggers act through an auxiliary physical system, the forcing
function itself will have acquired structural content which, for our
purpose, may be considered to arise from an intermediary system function
hf(t) characterizing the forcing system. If we designate the epoch and
magnitude of the n'th trigger impulse by t, and Fp, respectively, the

forcing wave may be represented by an expression similar to Eq. (2):

£(t) = f{g P 8(t-t =)} By (P)AT (3)
n
0

where 6(t) represents a unit impulse cccurring at ¢t = 0.
By substituting Eq. (3) into Eq. (2), it may be shown that the two
system functions may be combined and the integration performed to obtain

for the sound,
s(t) = 2, Fyb(t=ty) ()
n

where h(7) includes the structural information of the source and is given

in terms of previously defined quantities by the convolution integral,

%,



@
n(r) = fhf('r'-f)hﬁ(§)d§ (5)
0
Equation (4) is the principal result of this section and is the basis
for furtheF analysis of the sound. We next inquire how the values of
the (F,) and (t,) parameters appearing in Eq. (4), and also the
() and (pg) parameters characterizing h(t), may be determined

by direct analysis of the sound wave.

IV. THE ANALYSIS OF MEANINGFUL SCUNDS

The temporal information represented by the set of tn's is perhaps
the easiest to recover from the sound. To accomplish this, we first con-
clude that, by Eq. (4), the sound wave is merely the superposition of
the sound waves that would have been created had each of the "trigger"
actions occurred separately. Now, a most important property of an
h(7) represented by Eq. (1) is that it will be everywhere repeatedly
time-differentiable except at 7= 0. At that point an impulsive singular-
ity will almost always develop after a few differentiations. The pumber
of differentiations required will depend upon the Agg) of the system
function and, hence, will provide a measure of the position of the excita-
tion with respect to the rest of the system including the listener. But,
the significant fact is that repeated differentiation of 3(t) with
respect to time will eventually lead to a series of impulses whose epochs
are the t, and whose magnitudes are proportional to the Fp. In this
manner, the temporal information as represented by the (tn) and (Fp)

parameters may, in principle, be completely recovered from the sound wave.

15.



The same representation for describing the impulsive excitations
may also be used to describe random or white-noise excitations. This
can be accomplished by letting the nﬁmber of impulses per second, v ,
become very large and the amplitudes of the individual impulses become
very small in such a way that: (a) the interval between any consecutive
epochs, t) and t, +1, is a random variable having a Poisson distri-
bution with a mean value of 1/v, and (b), the F, 2ll have the same
magnitude but with random polarities that are equally likely to be either
positive or negative. An argument similar to that just given for recovery
of the impulse excitation from the sound wave may be given for the detec-
tion of random noise excitation. It is conecluded that by forming succes-
sive time derivatives of the sound wave, the essential information may
be recovered for either impulse or random noise excitation of the system.

There is little need to describe how the analysis outlined above
can be accomplished with electronic circuits. However, it is pertinent
to mention that the simple mechanism of the inner ear to be developed
in this dissertation is capable of accounting for a fourth place-deriva-
tive along the basilar membrane. Assuming that the basal end of the
cochlea serves as a delay line, this mechanism together with a neural
gradient mechanism may conceivably provide neural stimulation proportional
to the sixth time derivative. (H-2). This would be adequate to recover
the excitation characteristics of most common sounds.

Is it possible that the structural information represented by the
set (Pk) of natural frequencies may likewise be recovered from a
segment of the sound wave? We have already stated that the system
function h(7T) possesses analytic properties of such a nature that
exact specification of its values over any small interval of positive

T is sufficient to definite it for all values of 7. Since differentiation
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of the system function with respect to time leaves these natural
frequencies unchanged and simply changes the original set of amplitudes
(Ac) into a new set (pAy), exact specification of any one of the time
derivatives of the system function over the corresponding interval

should also be adequate to determine the (p.). (This result may explain
why time-differentiated speech is still highly intelligible.)

Consider that segment of sound wave beginning just after the

impulsive excitation at tg and ending just before t,,, - By Eq. (4),
this particular segment may be represented by
g
s(t) = %’ F ZkAk exp p (t-t )
]
= % A exp Pk(t-tg) (6)
' £
where A = AT F exp Pk(tg'tm) (7a)
m=1

In other words, the sound wave occurring during the interval between any
consecutive pair of impulsive excitations is composed of exponential
components that have exactly the same complex frequencies as those of
the system function. And, just as with the system function, detailed
analysis of only this segment of a sound wave should permit determination
of the (Ak') and the (pk) that represent it. So, the anser is "Yes,
the values of the natural frequencieé‘are, in principle, determinable
from a finite segment of the sound." (The presence of noise or
uncertainty in the data of the sample will obviously limit the accuracy
with which this determination can be made.)

Furthermore, the (Ak') amplitude coefficients obtained from this

analytic sample of a sound wave will closely resemble the (Ak) para-
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meters of the system function if the time interval is sufficiently great
compared to the damping time of the exponential components. The explana-
tion for this is apparent from consideration of Eq. (7a), which may be

summed for the special case of repetitive impulsive excitation occurring

at regular intervals, 4 ,

F
N m

Al{ = 1 - GXP('pkA) ° Ak (7b)

If the damping, 'G‘k' of the k'th natural mode is so large that exp
(PkA) <<l it follows that Ay ' is nearly equal to FAy.

Perhaps the most remarkable thing about these exponential components
is their indestructibility when subjected to linear operations. For
instance, if h(t) is passed through a linear filter, whose own system

function is hf(t)= Zn B‘n exp(pnt) , the output of this filter will be

t
ho(t) =g/° h(t-'r)hf("!')d’r
AB (8)
=TT 5 | e - explp,t) |

and we see that the output consists of a set of these same natural
frequencies (p,) plus a new set (pn) associated with the filter. The
amplitude A, of the k'th component will be changed by the filter from
Ay to Ay Zon B/ (P, = Py}, By making all of the filter (p ) about equal
to a particular Py of the input signal, the amplitude of that component
may be greatly enhanced over those of all other components appearing in
the output of the filter. This initial enhancement will continue to be

effective, however, only if the damping of each of the (pp) natural
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frequencies of the filter is in excess of the particular py chosen, for
then these other components will die away more rapidly leaving after a
short time only the desired component in the output of the filter. Thus,
an ordinary linear filter, each of whose natural frequencies has a larger
decrement than the natural frequency to be measured, will provide a means
for selecting any one of the (pk) frequency components provided the
others are sufficiently separated in frequency. Assuming that this pre-
liminary filtering has been accomplished, we next seek a filtering prin-
ciple that will enable us to measure directly the complex frequency
¢1.+.jai of this single exponential component.

V., THE PHASE-PRINCIPLE AND COMPLEX-FREQUENCY ANALYSIS

Any device for measuring the complex frequency of a damped wave shouid

obviously yield the correct frequency value when applied to a sine wave
since the latter is but a sp;cial case of the former. Now, the common fea-
ture of both sine waves and damped waves is their phase. Accordingly, a de=-
vice that utilizes the phase of a signal, as determined by its zero crossings,
should function just as well for damped waves as for sine waves. It remains
to show how the phase characteri;tics cf simple tuned filters may be employed

to achieve the desired filtering action.

A. A Phase Filter for Obtaining Resonagrams

Consider a simple tuned filter represented in Fig. 1 by its natural

-G
A
X

5
Bl
S

’

*;J‘O

Fig. 1. Representation of the phase characteristic of a simple
tuned filter upon the complex-frequency plane.
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frequency A. If a sinusoidal input signal of frequency S is suddenly ap-
plied, the respone of the filter will consist of a component of frequency
S plus a component of frequency A. After a time determined by the excess
decrement of A over tﬁat of S, the output will consist for practical pur-
poses only of a wave having a frequency S. It is well known that, within
the accuracy of the narrow-band approximation, the phase angle between the
phases of the input and output waves of the filter is simply O, , the angle
between the ¢” -axis and the line drawn from the excitation frequency to the
natural frequency of the tuned filter. This angle, illustrated in Fig. 1,
will continue to be a correct representation of the input-output phase re-
lation even when the input is a complex-frequency wave which is growing or
decaying. This simple geometrigcal construction enables one to visualize
easily the phase angle 0, assoclated with an excitation wave of any complex
frequency. .

It is a fact of particular significance that increasing the damping of
the input wave has exactly the same effect upon the phase characteristic
as decreasing the damping of the filter. That is, the change in phase with
frequency will be more abrupt in the region of resonance if the input wave
is moderately damped than if it is undamped or growing in amplitude. This
suggests that a phase principle may prove particularly effective for analy-
zing sound into damped-wave components.

Next, consider a signal fed into two simple filters A and B, each having
the same bandwidth‘but A tuned slightly higher in frequency than B. Each
of these circuits will have a phase characteristic similar to that just
described. Since the same signel is fed into both, the phase angle between
the two ouput waves will be 91 = @4 — 6B &and will vary with the frequency
of the input signal as shown in Fig. 2. The variation of ©; with frequency

resembles rather closely the typical resonance curve of a double-tuned

v
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Fig. 2. Phase difference 63 = 83 — Op as a function of the fre-
quency of an input wave having zero decrement (solid line); de-
crement one-half that of the tuned circuits (broken line).
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circuit except that ol 48 independent of the amplitude of the forcing
signals

Figure 2 also shows the variation of g asa function of the frequency
of the damped input wave having a decrement one-half that of the filters.
As expected, the selectivity curve for these damped waves is indeed shar-
per than for sine waves. But even more significant, the maximum value of 9
may now be calibrated directly in terms of the decrement of the input wave.
We have thus found a principle for measuring the natural frequency ¢~+j
of an input wave: the frequency at which the meximum Gi occurs gives w
and the value of this maximum gives ¢~ .

The sharpness of the selectivity characteristic may be improved still
further by the addition of a third tuned filter. Let the natural frequen-

cies of these three circuits be arramged as indicated in Fig. 3. The quan-

tity |o; + o, ‘ will resemble the resonance curves shown in Fig. 2.
The quantityl 8 - 6 l will have the shape of a rectified discriminator
curve and, by subtracting some fraction of it from |[8; + &, s & much
sharper selectivity characteristic may be obtained as illustrated in Fig. 3.
A filter utilizing the phase principle illustrated in Fig. 3 has been
built and used in place of the ordinary filter in the sound spectrograph
which normally operates on an amplitude principle end is, therefore, in-
capable of separating the structural information from the temporal. This
filter was found to perform as expected. The output from each of the three
simple-tuned circuits was converted to a square wave by repeatedly amplifying
and 1limiting the wave. These square waves were than appiied to coincidence
circuits in which voltages proportional to (9, + 7772) and (85 + 772)
were developed. (Thedyh phase shift was added to the middle filter to
make the quiescent phase more nearly equal to the average phase for random

input noise.) These two voltages were filtered and combined in the desired
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Figo. 3. Sharpened response curve correaponding to

ey 02| = 3lo1-9,|-
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manner to control the marking amp;ifier of the sonograph. Figure 4 com=-
pares the sonagram and resonagram representations of the same speech sample,
#Say I Boy Out Go New," for two different amounts of sharpening. It is
epparent that the natural frequencies are revealed far more vividly in

the resonagrams than in the regular sonagrem. On the other hand, the
resonagrams provide very little information about the intemsity or excita-

tion of the source-——which is what was intended.

B, Random N Ex tio

In the preceding discussion, the single complex-frequency wave applied
to the input of the filter may be considered to have been produced by the
impulsive excitation of a resonator whose natural frequency is G; +—j“’s.
We wish next to inquire what the output of the phase filter would be if the
source resonator were excited by random white noise excitation instead of
by discrete impulses. It is also desirable to introduce at this time a
generalized representation for the three system functions® as shown in Fig.
5., In practice, the filter would be made to scan in frequency by a frequency

converter, also shown in Fig. 5. The phase relation would be measured simply

—> L,

Frea,
— K "

Conv.

Y
e

Fig. 5. Generalized Phase Filter.

*From laplace transform theory, if h(t)= Ek Ay exp(pyt) then H(p) =

Zk A/ (p~Ppy) so either expression specifies the system transformation.
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at some higher frequency by a coincidence circuit " (P " in which the output
current is bivalued:

= 1 if both i, and i; are positive;

i, 1

io-——" 0 if either i or 12 is negative.
It follows that the average value of i, will be a measure of the average
phase difference between i) and ij.

Now, it is well known that when the excitation of the source is a random
gaussian noise, the output currents i; and iz will likewise be random and
characterized by gaussian statistics, (R-2, M-2). In particular, the joint
probability that both currents will lie within the intervals (Il s 11 + dIl)
and (Ip, I,4dIy) is W(Ip, IZ)dI]_dIz, end the average value of i, is simply
the expectation, that both ij ana i will simultaneously be positive. For

a bivariate guassian distribution, this may be shown to be

<i°7uv= SW Sbw(zl, I,) dI; dI,
(] (o)

0,25 = (1/2%) sin~! (-r) (9)

in which r is the correlation between the output currents and is given by
the real part of the complex correlation. <.ii' iE}A / ( <i1 if%; <{2 iz> Av‘)‘i’
where the asterisk indicates that the complex conjugate of the quantity is
tc be taken. Incidentally, addition of a fixed phase shift to one of the
filters adds the same phase shift to the complex correlation coefficient.
Thus, the correlation of a sine wave with a cosine wave of the same frequency
has a complex value of "j"; its real part is zero, but if a 90-degree phase
shift were added to one of the channels, the correlation could be made

unity.
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To evaluate the correlation obtained for various source system functions ’
we utilize the fact that the second-order moments characterizing the bi-
variate distribution for white-noise excitation are proportional to the mo-

ments calculated from the response to a single unit impulse, for which case,

Ql 12> ji 1* at = L j l‘(Jm);Hg () dws (10)

where Hy (p) and H,(p) are the laplace transforms of the i;(t) and is(t)
resulting from this impulsive excitation. The integral on the right may
usually be evaluated by contour integration around the left half of the
p-plane so that

{atg) =2 Res BIG)E ()

where only the residues at the poles associated with Hl (p) are to be taken.

(11)

To illustrate with the simple case where the system functions are
each characterized by a simple resonance I“&(P) =1/(p - &) s we have

H = ° H and H2 —Hs ° Hbo Evalua‘bing m- ll, we find

Q‘l 2> : ) - !
Av P*-P* (pg + ) (pg + ¥ ) (Pa'f‘P:j'(ps‘\'Pg) J’

<il 15>A= P, = P [(p + p* )l-(p ) B T )l-(p Tor) | e
vV Fa 8 a s a a a s S s °
with a similar expression for <12 12*> Av obtained by interchange of sub-
scripts. If all frequencies are normalized so that the half-bandwidth (i.e.
the decrement) of each filter is unity, and the usual bandpass to low-pass
transformation is invoked so that the center of the band corresponds to
P =0, the various natural frequencies become: Py = (*1.-j), p, = (-1 +j),
= (6~ +) w), and we may calculate from the above equations the variation

of (s > as either 6 orw is varied. Since the resonance curves ob-
Lo’ Av
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tained for variation of ) are symmetrical, only the right half is shown
in Fig. 6. The curve for €=0 is identical to that for sinusoidal exci-
tation shown in Fig. 2. As the damping of the source resonator is increased,

the maximum value of <Zo decreases rather than increases as in Fig. 2.

Av
However, the value of this maximum still depends upon the damping of the
source r=sonator. The left half of Fig. 6 shows this maximum value, and
also the minimum value obtained with large detuning, as a function of & .
Thus, the phase filter provides a direct measurement of the bandwidth of the
source resonator when excited by either impulses or white noise--only the
calibration is different in the two cases.
C. A Bimplified Form of Phase Filter

Since completing the experiunental work on the resondagraph, it has become
evident that a phase filter of simpler form might offer superior performsnce.
Although this sinplified form has not been tested experirentally, it ap-
pears to be sufficiently straghtforward that, in view of the succesful
performance of the more complicated form, it deserves description here.

In this simplified form, the frequency-sensitive phase shifter is pro-
duced by a single all-pass section having a system function Hb(P) =
(1 -p)/(Q+p). For p=0, Hy(p) = 1 and there is no phase shift. But
for any wave for which “Qf >>l, Hp)2~|, and the all-pass section, in
effect, simply reversss the polarity of the wave. Thus, discrete impulses
or white noise applied to this phase filter will produce a vanishingly small

<l°2mr since i; and iy will nearly always be of opposite polarity. On the

other hand, when the input signal has acquired structural content approximating
that of the all-pass section, these phase relations are modified and a non-
zero value for <1;;2w is obtained.

Figure 7 shows the selectivity characteristics of this filter for a

source resonator of zero damping, and also for damping equal to one half that
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Fig. 7. Response of the simplified phase filter as a

function of the frequency of the source resonator when
subjected to impulsive excitation. A source damping of
zgero and of onme-half that of the filtar are considered.
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of the filter. These curves correspond to the curvés shown in Fig. 2. for

impulsive excitation of the source resonator. To measure successfully the
phase resulting from impulsive e;citation, it would be necessary to build
into the phase meter a sampling mechanism so that the phase angle is meas-
ured oﬁly during a brref interval of time whose beginning is delayed suffi-~
ciently after the epoch of the impule to permit the filter transients to
die away, and whose termination occurs before the damped signal component
has vanished into noise. The sampling mechanism could be triggered by the
energy spike and appears to be practical of realization. As indicated in
Fig. 7, the simplified phase-filter gives directly a sharply peaked re-
sponse, the maximum value of which is independent of the damping of the
input resonator--a feature that may be useful when driving the marking am-
plifier of a sonagraph.

The output of the simplified phase-filter, when the source resonator
is excited by white noise, may be calculgted by the equations of the pre-
vious section. Figure 8 shows the selectivity curves for a source damping
of zero, one-half, and equal to the filter damping. The maximum value of

(4;%& is related to the decrement of the source resonator by
v

e

) -i{ | +&5

(3)

to pax
and this form of phase filter should thus provide a more accurate method
of measuring the source bandwidth because ;Omax varies over its full range

of 0.5 to 0 as the source dawping is increased from 0 to oc »

D. The Masking Effect of A Second Resonance or Noise.

Thus far, the source has been considered to have a simple resonance.,
In this section, we investigate the effect of a second source resonance
occurring simultaneously at a nearby frequency- Since there is no amplitude

selectivity in the simplified form of phase filter, it will be used to
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Pig. 8., Same circuit as in Fig. 7 except noise source is ex-
cited by white noise,
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demonstrate these effects in their most serious form.

We assume that the source resonator is characterized by a principal
resonance at a complex frequency Pg and a secondary resonance having a
relative amplitude A and a complex frequency p 40 That is, h (t) = exp(pgt)

+ A exp (p4t) » and from the equations of the previous section, one finds

that
<L',i,">AU_ = <4L4)
2 A
s N (—-——-—)
- - - eGR), w

\Y4
[

"
| +
i, = -3 A Il PS] '
Av Zf's PA_""rS l"Px

A" A [""‘F‘r -
_[Z% XTI "P‘J ) (<

To obtain the response of the filter to two sine waves, one of unit ampli-

tude and frequency st » and the other of amplitude A and frequency J"'\)‘,_ s

we may set 6;=¢, =g and let g —>(0. This gives for the correlation co-

efficient,

| \—-fm): 1."'w41‘] I ¢
= e Lrvwr AT ] (9

Bquation (16) is easily generalized to include any number of incoherent
sinusoidal components~-the resulting correlation is simply the weighted
average of the correlations of the individual components, each being
weighted in proportion to the square of the amplitude of that component.
From this fact, it may be shown that the correlation resulting from a band
of white noise, A units wide and centered at W, applied directly to the

phase filter will be

o= /o) e (e on) = FanTlw -] -1 ()
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Thus, the masking effect of this band of noise, having a power N, upon a
single sinusoidal signal of unit power and frequency W; will be repre~-

sented by the resultant correlation

e 1§
S e L PR

Figure 9 shows the variation of the output of the phase filter as it
is scanned in frequency for the particular case where the two undamped re-
sonances of the source differ in frequency by 5 units. The relative
amplitude of the second resonance is taken as a parameter. These curves
clearly show the masking effect of a strong signal upon a weaker one, as
well as the reduction and broadening of the response to a strong signal
due to the phase modulation produced by a weaker one. It should be noted
that the shape of the response curves is determined by the ratios of the
signal characteristics in that the masking effect is proportional to the
difference of intensities in decjbels of the two signals—a fact bearing
upon the application of the phase-principle in auditory theory.,

Examination of Fig. 9 shows that the best indicator of resonance is the
marked downward curvature of the response curve at resonance. As Licklider
and I have already suggested, formation of the 2nd frequency derivative
of the response curve will considerably sharpen its selectivity in fre-
quency (H-2). This operation may be instrumented by employing three of the
simplified phase filters, the first tuned slightly higher and the second
tuned slightly lower in frequency than the third, and then combining their
output ;k s weighted by -1, -1, and 2 respectively. This composite
filter demonstrates how it may be possible by the use of phase alone to
achieve resolution of frequency with a structure that does not possess
any of the amplitude selectivity properties of the usual fitler.

According to this curvature hypothesis, the presence of a weak signal

will be noted only if it strong enough to produce a downward curvature
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component which 1s in excess of the upward curveture of the skirt of the
strong signal. Since i; and the correlatvion r are montonically reolated
by Eq. (9), we may think of the correlation r as being a messure of the
response of the filter, and curves of r versus frequency similar to those
of Fig. 9 may be plotted. As the second signal becomes weaker, the curva=
ture at the frequency of the wesk signal will eventumrlly become zero. If this
is assumed to be the masking threshold of the weak siznal, we mey study the
variation of this threshold as a function of the frequensy separation be—
tween the two tones as follows:

The correlation for & single frequency input 2t W= § is related to

the frequency w of the filter by Eq. lo with 4 = 0, or

f = =W~
|+ W2
1f the correlation is plotted as & function of the filter tuning W, the

(19)

curvature of this curve will be

d2r - _ 3™ (20)
TR IR A e OE

The maximum curvature, achieved at the frequency of the signal, is simply
4,

Consider now the effect of adcing a second weak signal of relative
amplitude A at & frequency differing from the first by § . By Eq. (16},
the resultant correlation is given by the weighted average of the indivi-
dual correlations, Similarly, the resultant curvature may be found by
forming the weighted average of the individual curvatures. Accordingly,
et the frequency of the weak signal, the resultant curvature in the

correlation spectrum will be

d*vr _ 1-38 ' (21)

Masking threhold occcurs, according to our hypothesis. when this curvature

vanigshes, or when
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38" -1
A=Yy ()

In order for the curvature to vanish, the weak signal must be sufficiently
separated in frequency to lie on the upward curvature parts of the S+VDw?
signal "skirts". Thus, to be distinguished as a separate signal ]SI must
exceed 'HT = 0.57.

The fact that there is a region, extending plus and minus 0.576 units
to either side of the frequency of the strong signal within which a second
signal cannot be discerned as a separate region of downward curvature, sug-
gests that this region may correspond to the critical bandwidth observed by
Fletcher in his study of the masking effects by noise in the ear. From
pe. 1009 of ref. s-2, this critical bandwidth is seen to be 73 cps at 1200 cps.
Thus, the half-bandwidth of the equivalent analyzing filter would be
0.576(BW/2) = 73 cps/2 or BW/2 = 6, cps. Using this frequency calibration,
we may compare in Fig. 10 the masking threshold, as calculated from Eq. (22),
with the experimental data taken by Wegel and Lane (S-2, p. 1006) for the
masking effect of a 1200 cps tone at 80 db sensation level upon a weaker
second tone of somewhat higher frequency. Two observations are partinent:

a) The frequency calibration obtained from the crictical-bandwidth
datum appears to give agreement as to frequency separation at which maximum
masking effect occurs and also the slope of the threshold curve at wider
frequency intervals.

b) The threshold for the ear appears to be nearly a constant 10 decibels
less than that based on the correlation model.,

It is possible to explain the difference in masking threshold predicted
by this simple model and that actually observed in the ear by noting that

the correlation value r is the average over all time. Actually, when the
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Fig. 10. Comparison of masking thresholds based en the curvature
hypothesis with the experimental data of Wegel and Lane for the
sensation thresholds of a higher frequency tone in the presence
of a 1,200 cps tone at an 80 decibel sensation level. The solid
curve marked 3*/§w? = O is based on the average cerrelation,
whereas the broken curve is for detection at the peak of the
"short-time correlation." One frequency unit is equal to &4 cps.
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two tones are close together, the apparent correlation observed during any
small time interval will at times be greater and other times smaller than this
average value by an amount that fluctuates in time with a frequency equal to
the difference between the frequencies of the components. If we then ask
"what is the maximum curvature obtained at the peak of ome of these beats?®,
we discover by evaluation of 1112* that the following term must be added
within the brackets of Eq. (21):

CI+S=)3 [(e’l -+ 38""" g ) cos St -+ g [I é‘ )3 in St] (Zla)

If one picks that instant in the beat cycle for which (21a) has the greatest
negative value, one finds that the lowest possible masking threshold varies
as shown by the broken line in Fig. 10. This curve may be expected to have
some validity provided the beats are sufficiently slow that the short-time
correlation is well defined. However, as the frequency separation of the
second tone is increased to about 2 units (i.e. to about 130 cps), each
beat period will include only about 10 cycles of the basic tomes, of which
number only about one-quarter, or roughly 2 cycles, will provide high cor-
relation. For this beat frequency and higher, it is apparent that the no-
tion of "peak correlation® becomes increasingly meaningless and the average
correlation becomes the only measure having significance. For a frequency
of § = 0.576, the average curvature vanishes for A = O because at that
point the correlation curve for the masking signal alone has no curvature.
For still asmaller frequency separations the average correlation for the
masking signal alone already has a strong downward curvature (since this
region is near the peak of the resporse curve) and the addition of a second
signal can only increass this downward curvature. However, if one tekes
into account the temporal fluctuation represented by Eq. 2la, it may be
shown that during certain parts of the beat (i.e. for scme values of St
in By, 2la), the curvature will pass through zero and reverse its sign.
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Howver the interpretation of the correlation model becomes rather dubious
here; & more satisfactory explanation for beats of mistuned unisons is given
in Section VIII of this thesis.

E._Inplications for Hearing.

It is believed that the phase principle has important implications in
auditory theogy: It ascribes functions to certain of the structural details
of the ear and offers explanations for certain rather puzzling facts., If
the ear di? use a phase principle, the high damping of the cochlear parti-
tion would become a virtue and a necessity rather than a conundywm.

Furthermore, a mechanism utilizing a phase principle would permit ef-
fective use of the available neural elements and their well-known mechanisms
of synaptic facilitation and inhibition. The measurement of phase may be
accomplished by measuring the time intervals between related zero crossing
of two waves., Since each time interval is independent of the amplitudes
of the wave, its accﬁrate measurement is possible over wide dynamic ranges
of signal intensity provided only that the zero crossing can be detected
accurately. Regardless of the type of analysis occuring in the ear, the
results must ultimately be delivered to the central nervous system in the
form of "ell or none" impulses. Such neural messages may convey temporal
date, such as the instants of zero crossings, with good accuracy; they are
poorly suited for conveying amplitudes and intensities. The classicel
place theory of maximal stimulation has been difficult to reconcile with
the wide dynamic range of the ear for, at the point of maximal stimulation,
the vibration amplitude would not be changing with place. But it is pre=~
cisely in this region of resonance (where the round top of the amplitude
envelope makes exact determination of the position of the maximum so
difficult) that the phgge of the vibration is generally changing most
rapidly. Thus, a phase principle could account for the ability of the ear
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to discriminate slight changes in frequency consistently over a wide range
of stimulus intensities.

Finally, in any mechanism utilizing a phase principle the masking effect
of one tone on another is a function of the ratio of their amplitudes. This
logarithmic-like property is precisely that needed to account for the masking
effects produced in the ear by two tones of nearly the same frequency. Fur-
thermore, as will be shown subsequently, when the tones are harmonically
related the phase of the zero crossings is modulated in such a manner as
to account for the observed beats and other effects such as the dependence
of the quality’of the sound upon the phase of the harmonic. (In this connec-
tion, our theory predicts that this phase modification should produce an
apparent change in the pitch of the fundamental as the relative phase of
the second harmonic is waried).

In the light of these considerations, we next inquire whether the known
structure of the cochlea does exhibit the elements necessary to utilize a

phase principle,

VI. A PHASE-MECHANISM FOR COCHLEAR FREQUENCY ANALYSIS
Only a brief and, consequently, incomplete summary of the mechanical
and structural properties of the inner ear will be given here. For addi-

tional details the reader may consult references W-1 and S-2.

A, Structural Properties of the Cochleg

The inner ear or cochlea, in which the first analysis of sound occurs,
consists of a spiral-shaped fluid-filled tube into one end of which the
sound vibrations are transmitted from the ear drum via the mechanical
linkages of the middle ear, parts of which may be discerned in Fig. 11.

This bone-imbedded tube is separated along most of its length into two
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parts by a partition which is actually a fluid-filled cut bounded on one
side by Reissner's membrane and on the other side by the basilar membrane
as shown in Figs. 12 and 13.

The elasticity and width of the basilar membrane increase markedly as
one progresses along the tube. As a consequenog differént portions of the
membrane exhibit a hydrodynamical resonence effect at different frequen-
cles, the resonant frequency starting at around 15,000 cps at the basal
or input and decreasing in a roughly exponential manner with distance to
about 500 cps at the apical or far end. The resonance effect along the
basilar membrane is not sharply localized and the problem of reconciling
this fact with the acute perception of slight changes in piteh displayed
by the human listener is one of the principle tasks of this dissertation.

The dynamics of the vibration of this cochlear partition may be vis-
ualized by considering its transverse displacement at different points along
its entire 35-mm length when excited by a sinusoidal tone of 1000 cps. If
the distance from the input end is represented by x, the sinusoidal dis-
placement Oflthe basilar membrane at the point x may be represented by the
complex quantity Y(x), the absolute magnitude ’YCX” being the amplitude
of the vibration at that point and the argument of Y(x) being the phase of
the vibration relative to some reference phase. An approximate analytical
solution for this vibration was made several years ago (H-3), and the
mathematical details are reported here in the appendices. The principle
results of these computations are sumuarized in Figs. 14 and 15.

Figure 1/ shows the variation of the amplitude and phase of this vibra-
tion along the entire length of the membrane when it is excited by a 1000-
cps tone. The resonance condition for this frequency is most marked in

the region of x = 20 mm. The traveling-wave character of these vibrations is
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(a)

(After Held) ARCH OF CORTT:

(b) X —=:

H(X)N d'4_Y
dxh

Fig. 16{A) Cross-section of the organ of Corti. (B} Side view
showing how the tectorial membrane acts as a beam to exert upon
the outer hair cells forces proportional to the fourth place-
derivative of the displacement of the basilar membrane.



revealed by replotting in Fig. 15 the data of Fig. 14 for two instants of
time separated by one-quarter of a vibration period. The solid curve re-
presents the instantaneous displacement of the cochlear partition. It shows
that the wave travels at first with a ery high velocity until it reaches the
region of resonance where it moves more slowly and is rapidly dissipated.

In Fig. 16(a) is sketched a cross-section of the cochlear partition
which shows some of the finer anatomical detail needed for our theory. The
basilar membrane is given additional mass by some rather large fatty cells,
fastened to its top. Near the axiael edge of this membrane, there is also a
truss-like arrangement of rods celled the "arch of Corti". Arrayed along
"the innermost edge of this arch is a single row of hair cells which, in some
way provide the means for converting the mechanical stimulation of their
cilia into excitation of the nerve fibers terminating around their base.
Several other closely packed rows of hair cells are also found on the out-
ward side of the arch of Corti. It is believed that the cilia of these
hair cells extend upward and are imbedded in another membrane that also
runs along most oOf the length of the:cochlear duct. This is the tectoerial
membrane and it plays a most important role in our theory.

The tectorial membrane has been reported by Bekesy (S-2, p. 1095)
to exhibit different elasticities in'different directions. "It seems to
exhibit stiffness in the longitudinal direction as noted by the fact that
upon tearing it away from its attachment a considerable segment comes off,
whereas the other membranes may be removed in quite small sectionS.co-..

This membrane is noteworthy for the ease with which it may be moved in

a direction perpendicular to the basilar membrane. Together with its
supporting structure it represents essentially a flat, delicate, very
thin-walled tube, filled with liquid, which can be rotated about the edge

that is attached to the bony shelf of the cochlear partition.®
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Now, H. de Vries has studied the microphonic voltages arising from
stimulating of the lateral line organs of fishes (V-1). These organs also
contain hair cells and de Vries' conclusions concerning the excitation of
these hair cells should also be applicable to those of the cochlegq to which
they are ontogenetically related. de Vries has suggested that these cells
resemble a nerve fiber in that they build up an internal negative charge
through migration of sodium ions into the cells The cell surface around
the hairs is believed to be particularly sensitive to mechanical disturbance
which allows the cell to discharge its ions with the results that %the
voltages are related to the tension in the hairs and that this tension is
accompanied by a negative voltage at the upper side of the organ." Using
this model, de Vries was able to account for the double-frequency micro-
phonic observed Qhen the line organ was stimulated by a sinusoidal water
current. He also remarks that "when the tectorial membrane moves relative
to the organ of Corti, the only possibility is a gliding motion (because
of the incompressibility of the endolymph). When the cochlear partition
bends upward (i.e. toward Reissner's membrane), the tectorial membrane
will glide over the organ of Corti to the left. This means that the guter
cells will be stretched. Since they are already in an inclined (inward)
position they will be streteched only once every periode soeoco

De Vries continues, "Undoubtedly there is some meaning in the fact that .
the jnner hair cells are inclined in the opposite direction. They will be
compressed when the outer hairs are stretched and vice versa. Up to now no
special attention has been paid to this, and it would take us too far to dis-
cuss here all of the possible implications of thig situation.”

These remarks of de Vries are very suggestive. I had the privilege
of discussing some of these questions with him while visiting Holland in

October, 1952. Based on his valid and helpful criticism of the beam hypo-
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thesis, which Licklider and I had previousl published (H-2), I wish to
present now a description of a plausiﬁle mechanical ection within the
cochlea that appears to agree with the éeculiar structure of the organ of
Corti and to account for the necessity of having two kinds of hair cells
located in the particular positions that they occupy.

Be _The Mechanical Action of the Cochles

We consider first the mechanical action resulting from uniform displace-
ments of the basilar membrane such as might occur for very low-frequency
sounds. The mechanical elements have been schematized as shown in Fig. 17 (a).
The organ of Corti, with its inner and outer hair cells, is assumed to pivot
about the point "A" near the place where the basilar membrane fastens onto
the bony shelrs. The cilia of the inmer and outer hair cells are inclined
in opposite directions and enter the tectorial membrane at an acute angle
80 that any sliding displacemént of the tectorial membrane will immediately
be effective in stretching their cilia. If the cilia entered at right angles,
small sliding displacements would produce negligible stretching and mostly
bending which would account, as de Vries has shown, for a double-frequency
microphonic.,

The inner edge of the tectorial membrane is assumed to be anchored on
the top of the spiral limbus which provides an elastic support that will
permit the tectorial membrane to move in a radial direction.

The reason de Vries states that the tectorial membrane can only move in
a sliding, tangential manner with respect to the surface of the organ of
Corti is that the thin layer of gelatinous fluid trapped ir between is in-
compressible and sufficiently viscous at audio frequencies to fix quite
rigidly the spacing between the two surfaces. But it should also be noted

that the gelatinous mass trapped in the internal spiral sulcus is likewise
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Fig. 17. Schema for the mechanical action of the cochlea.
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incompressible. As a result, dicplacements of the organ of Corti that would
otherwise tend to change cross-sectional area of internal spiral sulcus,
will cause corresponding distortions of the limbus and bordsring portions of
the tectorial membrane so as to keep the volume constent. Thus, a downwacd
displacement of the basilar membrane, as in Fig. 16(b), will cause the inner
hair cell to move outward and create a drop in pressure within the fluid of
the sulcus at this point. This pressure differential causes the limbus and
inner edge of the tectorial membrane also to move outward and downward.
Similarly, an upward displacement of the basilar membrane, with its accompany-
ing inward displacement of the inner hair cell, pushes the limbus and inner
edge of the tectorial membrane inward and upward, as indic.ted in Fig. 16(c).
The mechanical action just described differs markedly in its excitation
of the hair cells described by de Vries., In the case of the downward dis-
placement, illustrated in Fig. 16(b), the outward forces exerted upon the
limbus by the fluids of the sulcus, and perhaps, even by the deformation
of Reissner's membrune, cause a radially gutward motion of the tectorial
nembrane, If this outward motion is nearly equal to the outward movement
of outer hair cells, there will be little excitation of these cells. This
is assumed to be the case. Similarly, it is assumed that an upward dis-
placement will cause a radially inward movement of the tectorial membrane

that is just about eyual to the inward motion of the outer hair cells.

Thus, for low-freyuency stimulation, where essentially the whole length of
the basilar membrane moves in phase, there will be only siight excitation

of the outer hair cells.

Where, then, do the microphonics observed for low-frequency excita-
tion come from? If not from the outer hair cells, they must be caused by
excitation of the inner hair cells. Now, we have just described how an

upward movement of ihe basilar membrane could lead to an upward movement
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of tne inner edge of the tectorial mewbrane, tue outer edge of wanicn is
rigidly fastened via the entrapped fluid surrounding the cilia of tae
outer nair cells to the organ of Corti. From Fig. 16(c), it is apparent
that tne tectorial membrane can act muca like a lever to stretch the cilia
of the inner hair cell., Similarly, a downward movement tends to compress
the cilia of tne inner hair cell, Thus, uniform displacements of the
basilar membrane ecan produce a directly proportionzi tension upon the
celia of tne imner nair cell, Positive tension, corresponding to outward
movement of the stapes, should produce, according to de Vries' model of thne
hair ceil, a negative potential on tne vestibular side of the cochlear
duct. This agrees with the facts.

We next consider tne function of the outer hair cells, Tne mechanical
action that is visualized here produces little force upon the cilia of these
cells at low frequencies where tne entire membrane is displaced in phase,
However, as the draving frequency is increased, tne time required for the
displacement wave to propagate down the cocnlea becomes large in comparison
to the period of the vibration until, as shown in Figs. 1) and 15 for a
draving frequency of 1000 cps, nearly two undulations may exist along
tne basilar membrane at any instant, 1t is apparent that the upward transe
verse displacement of the basilar membrane produces, tarough rotation of
the organ of Corti about the pivot peimt "A", shown in Fig..16(a), a proper-
tional inward displacement (to toe left) of the outer hair cells.

When the displacement was everywhere uniform, tae tectorial
membrane was also displaced inward. However, for higher frequency
oscillations, such as shown in Fig. 15, one section of the tectorial
membrane is required to move radially ioward at the same tine that
an adjoining section is moving outward. This causes the tectorial
membrene to bepd in the plane for waich it has the greatest stiff-

pness, in & manner rather similar to the norml deformation of an
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"I® beam. The spiral limbus also appears to provide further stiffening,
for Bekesy has reported (S-2;, p. 1097) that "the cochlear partition pos=-
sesses near its bony edge considerable rigidity in the longitudinal direc-
tion, ees. (When under pressure of a probe) a considersble section of this
zone, up to 1/8 of a turn, is displaced simulteneously."

It is hypothesized, therefore, that the cilia of the outer hair cells
exert upon the tectorial membrane forces that tend to meke it follow at

each point the padial displacement of the outer hair cells. If the Torce

acting in a little region Ax at the point x is represented by W(x) » 4 x,
we have from the well-known relation for the bending of a beam that

wixy o dPYE fdx =)
Thus, our mechanism indicates that the outer hair cells will be excited in
proportion to the curvature of the curvature of the displacement.

We have thus described a relatively simple mechanism whereby mechan-
ical waves traveling down the cochlear psrtition can create two entirely
different waves of neural excitation--the first wave produced by forces,
acting on the inner hair cells, which are proportionel to Y(x), and the
second wave produced by forces, acting on the outer hair cells, which are
proportional to A‘“{/Jx’ o This simnple mechanism offers several interesting
features.

1) Sharpness of response==It is noted from Figs. 15 and 16 that the
region of intense excitation of the outer hair cells is far more localized
than has been previously believed possible in view of the broad natmre
of the displacement.

(2) Posgibility of a phase-sensitive mechanism--The exjstence of tuwn
distinct waves of neural stimulation now permits us to utilize s phase

principle for sharpening the frequency analysis. As indicated in Fig. 14,
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there is only one point along the entire membrsne where these two waves
will be exactly in phase. And this point is operstionally definable,
using accepted neural mechanisms, for damped waves, as well as for growing
waves, provided only that the damping of the foreing waves is somewhat
less than that of the cochlear partition. Furthermore, to the extent that
the excitation is well above threshold, this point of phase coincid=nce is
essentially independent of the amplitude of the excitation, and accurate
analysis of dumped waves is possible.

(3) Correct polarities of stimulation--Examination of Fig. (16)
indicates that the tension on the inner hair cells is proportional to tlhe
displacement y(x) in the upward direction. Assuming that an inwerd motion
relative to the organ of Corti corresponds to a positive deflection of the
tectorial membrane regarded as a thin beam, we see that this positive de-
flection is proportional to =Y(x), and that the tension (i.e. -W(x) ),
which must be applied along it to produce this deformation, will be propor-
tional to -dl’(-Y)/dx4 or, simply, dAY/dxA. Thus the polarities of the
excitation waves represented in Figs. 14 and 15 are correct.

(4) Relation between microphonic and action potentials--A slight
movement of the tectorial membrane relative to motion of the organ of
Corti at low frequencies may actually be beneficial. For smell, uniform,
upward deflection of the basilar membrane, this will cause the cilia of the
outer hair cells to be bent toward the vertical direction and no excitetion
will occur. For downward deflections, a smell microphonic voltage may be
produced wiilch would tend to neutyalize the positive microphonic potential
cregted by the inner hair cells. This voltage could account for the observed
distortion concerning which Wever says (W-1, p. 330), "For low (frequency)

tones, the responses show appreciable distortion ever at moderate lavels
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of stimulation--levels of the order of the human threshold." Wever con=-
tinues to point out that "complications in the action of the low-tones
appear also in the neural responses. when the imposed stimuli are strong
these responses mey contain more than one volley of impulses per cyclse.
In the simplest case there are two discharges in a cycle, one larger than
the other, one near a peak and the other near a trough." Wever assigns the
double firings to the generation of a second-harmonic distortion product,
but as these occur at low amplitudes; the alternate excitation of the
outer and inner hair cells by the action just described appears to be a
more probable explanation.

At higher frequencies, this effect could be beneficial and possibly
result in a sharpening of the frequency selectivity of the ear. It will
be noted from Fig. 14 that at a point about 1 3/4 millimeters either side
of the resonant (or in-phase) point, the phase of Y(x) and of W(x) differ by
180 degrees. Thus, the additional force due to Y(x) will cause the skirts
of the outer-hair cell selectivity curve to fall off more rapidly than
that indicated by W(x) alone. This effect is mentioned here only as being
one possibility; whether or not such an effect is present is immaterial
to the theory.

(5) The increase of sensation threshold at low freguencies=-The
place of maximum displacement indicated in Fig. 15 is located about 2.6
millimeters closer to the stapes than the place of maximum stimulation of
the outer hair cells. But, as Békésy has pointed out (B-1, Fig. 13),
the localization of "hearing™ as determined from pathological observations
is also displaced apicalward——about 3.5 millimeters from the point of maxi-
mum vibration. This fact, together with the greater selectivity exhibited

by the frequency response curves of the outer hair cells, leads us to
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assign to the outer hair cells the basic neural excitatory function. On
the other hand, the inner hair cells shall be assumed to creat neural waves
that have primarily an inhibitory function within the cochlear nucleus.

According to this hypothesis, as the frequency becomes very small,
the inhibitory neural waves generated by the inner hair cells dominate the
increasingly weaker neural waves created by the outer hair cells. This
would account in part for the fact that the sensation threshold of the ear
seems to vary as the cube of the frequency at very low frequencies despite
the fact that 60-cps cochlear microphcnics and action potentials may be
neasured at intensities which are 30 decibels below the threshold of
hearing (e.g. see - W-1, Figs. 102 and 103). At these low frequencies,
there would be only weak excitation of the outer hair cells and, hence,
little neurel response at the Ligher nerve centers because of the inhibiting
effect of the strong excitation of the inner hair cells.

Fletcher, in a recent paper (F-1), attributes the drop in response with
decreasing frequency to the imperfect transformer action of the middle ear.
Included in his analysis are the simple assumptions that the neural ex-
citation at a given point will be proportional to the energy of the vibration
(i.e. to the velocity squsred) and also to the frequency (below 300 cps).
These two together account for a variation proportional to the cube of the
frequency. Fletcher, however, extrapolates Békésy's experimental data into
the frequency range below 100 c¢ps. According to his Fig. 1, the ratio of
the pressure difference, P,, scross the tasilar membrane near the stapes,
to the external sound pressure, TLD ; acting on the eardrum continues to
fall off jndefinitely with decreasing frequency, for both an infinite inner-
ear impedance and for the "actual inner-ear impedance®, This obviously can-
Dot be so when the ear impedence is infinite for, as the frequency is inde-

finitely decreased, the ratio of these two pressures would not become
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zero but would approach a constant value. The correct curve for infinite
impedance at the stapes should resemble that of a low-pass amplifier having
simple shunt high-frequency peaking rather than as drawn by Fletcher.

For the actual ear impedance, Fietcher assumes bLhat Po/PED continues
to fall off at a rate of 30 2b per decsde decrease in frequency. Here, the
indefinite decrease in Po with decrease in frecquency is reasonable if one
assumes that the perilymph is a viscous fluid that can flow through the
helicotrema. However, if this is so the curve should fall off only at
the rate of 20 db per decade. In fact, careful examinotion of Béhésy's
data (Fig. 8 of ref. B2, suggests that at the lowest frequency point
(120 cps) the slope of the curve is indeed beginning to decrease.

Thus, although Fletcher assumes a transmission throush the middle
ear which falls off too repidly with decressing frequency, he still must
make the additional assumptions of the excitation being proportional to
the velocity squared and to the frequency. The reduction in the excitation
of the outer hair cells at low frequencies indicated by our theory may
provide an explanatio?,ﬁor Fletcher's additional assumpbions.

The fact that at very low frequencies the tnreshold for the appear-
ance of cochlear microphonics and action potentials seems to fall off
less rapidly than does the auditory threshold suggests than an experiuental
comparison éf these various thresholds should settle the question as to
whether this is caused by poor transmission through the middle ear as pro-
posed by Fletcher, or whether the sound is transmitted to the cochlea where
it stimulates the inner hair cells but, then, is ineffective in stimu-
lating the outer hair cells, as suggested by our theory.

However, much more conclusive evidence that the imner and outer hair

cells provide inhibitory snd excitatory neural stimuli, respectively, is
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found in the important experiments of Galambos and Davis. These experi-
mental results will now be examined in some detail, together with other

experimental data in support of the mechunism described here.

VII. DISCUSSION OF EXPERIMZNTAL EVIDENCE
Fortunately, there exists a large body of experimental data concerning
the phenomena of hearing against which we may test the mechanism postulated

in the previous section.

= . Cochlear Excitation Pattern Inferred from Masking Data.

The first importsnt fact is that the excitstion pattern of the outer
hair cells (i.e., W(x) ) agrees quite closely with estimates of this ex—
citation as inferred from psychophysical data on the masking of one tone
by another. Figure 18 shows the excitation function W(x) of Fig. 14
replotted on a logarithmic scule and compared with the stimulation pattern

inferred by Fletcher (traced from $-1, Fig, 73, 55-db curve).

B. lLocalization of Source of Microphonics.

An even more important property of this mechanism is that the phase
of the excitation of the outer hair cells chunges much more rapidly with
respect to place along the basilar membrane than does the phase of the
excitation of the inner hair cells.

Because of this very rapid variation of phase with respect to position,
as illustrated in Fiés,-lA and 15, the potential fields established by the
excitation ot the outer hair cells must be extremely loculized. At any
instant, a strong positive excitation of the outer hair cells at one place
will be accompanied by a strong negative excitation at adjoining places
separated by only a millimeter or two. Hence, the cochlear microphonic
as observed from more remote points must arise substantially from the inner

hair cells. Experimental data have recently been published that seem to
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confirm this theoretical expectation.

Tasski, Davis, and Legouix have studied the cochlear microphonics in the
guinea pig with a pair of differential electrodes located at each of several
different positions on opposite sides of the cochlear duct (T-1)s For a
given location along the basilar membrane, the curve showing the variation
of microphonic voltage with frequency showed an abrupt change in slope at a
frequency approximately equal to the resonant frequency usually associated
with that location. The phase of the microphonic at this critical frequency
was consistently observed to be about 2T radians. But from Fig. 14, it is
apparent that the phase of the inner-hair-cell excitation is about 21T radisns
at the point where the displacement amplitude is beginning to fall off
abruptly. Thus, these experimental data are in agreement with our model.

Taseki et sl. also observed that a marked, but localized, change in the
micropicnies was produced by pressing a thread of hair against the basilar
membrane or stria vascularis. Such an irregularity introduced along the
cochlear portion will obviously cause a discontinuity in the traveling wave
and consequently create a force density W(x) which need not integrate out to
zero, as in the case of the more usual force density function. Békésy also
observed that when a tiny vibrating electrode was brought in contact with the
outer lip of the tectorial membrane, a very large microphonic voltage was ob-
tained (B-3). He further showed that when the electrode was moved to the
opposite side of the cochlea; so that the radial motion created by the vibration
would be reversed in phase, the phase of the microphonic also reversed. If
this microphonic were due to excitation of the inner hair cells through
ordinary transverse displacement, the phase would not have been reversed.

The concentrated force exerted upon the tectoria by the vibrating electrode

adds an impulsive (i.e., delta function) discontinuity to W(x); its integral



over the place of resonance need no longer vanish--and a cochlear micro-
phonic arising from these external hair cells may now be observed st a
remote point.

If one ossigns to the outer hair cells a quadratic (i.e., double=-
frequency) component of excitation, it would follow that en appreciable d-c
component would appesar in the microphonic because the rectified contributions
of each of the hair cells would all have the same polaritiss and would not
cancel at a distant point, as in the case of the fundamental component in
the microphonic under these circumstances. However, the rapid phase change
along the membrans would tend to suppress this second-harmonic component even
more effectively than the fundamental. Thus, non-linearity in the outer-hair-
cell excitation characteristic will tend to produce a large d-c¢ potential in
the microphonic but very little else. This may be the source of the "sum-
mation" potentials described by Davis, Fernandez and McAuliffe (D-1).

Is there any direct experimental evidence of the very rapid phase change
along the outer hair celle In bthe discussion of a so-called "ghost nicro-
phonic® (on page 505 of Ref. T-1, Tasaki remarks "The fact thet we could
(by the differential method) record cochlear microphonics having a phase
difference of 90° at two points in the third turn separated by about one
millimeter is strong support for our argument.®

This is about the value that would be expected from our theory if the
electrodes had been placed in a position where they could pick up these
outer-hair-cell microphonics. Our notion that the inner and outer hair
cells may respond to different aspects of the wave motion in the ear has
not been widely publicized, so it is likely that no effort was made to dis-
tinguish between the two in most experiments. We can say, then, that
phase changes of the order of the predicted by our theory have been

observed experimentally (T=1).
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C. Response of Second-order Neurons.

Because of the difference between the phase characteristics of ihe inner-
and outer-hair cell excitations, there is only one point along the basilar
membrane where the excitations of a given frequency are in phase. This
important feature of our theory suggest three assumptions concerning the
neural phenomena associated with the ear:

a) The firing of the nerve fibers arborizing on the inner hair cells
temporarily inhibits the response of second-order neurons to certain
of the first-order neurons that terminate on the outer hair cells,
Thus, for periodic excitation, the second-order neural response
corresponding to the region of the basilar membrane extending from
the point of resonance (and phase coincidence) toward the apex will
be inhibited as sliown in Fig. 14. Response will be obtained from
the basal portion because here the excitatory outer cells will fire
slightly earlier than the inhibitory inner cells.

b) The stimulation threshold for firing of the inner-hair-cell nerve
fibers is 20 db higher than that for the outer-hair-cell fibers.

c) The nerve fibers arborizing on a given inner hair cell act as
inhibitors for those nerve fibers terminating on the group of
outer hair cells that are 1.5 mm basalwarde This assumption is
consistent with the observation that the fibers innervating the
outer hair cells issue from the habenula perforata, pass the inner
hair cells and hence, after reaching the outer-hair-cell region,
run basalward for a considerable distance before arborizing around
adjacent hair cells.,

The data of Galambos and Davis provide nearly ideal evidence in support of

our theory. Their observstions were made with microelectrodes inserted into
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the eighth nerve of anesthetized cats. The data were originally interpreted
as action potentials of the axons of the first-order neurons running from the
cochlea to the medulla (G-1). Later, however, evidence was found that the
unitary action potentials recorded were those of second-order meurons separated
by at least one synapse from the nerve cells which are excited by the inner
and outer hair cells (G-2). Hence, the data permit direct testing of assump-
tion (a) stated above.

To compare the theory with the experimental results of Galambos and Davis,
the data of Fig. 18 have been replotted in Fig, 19 to show the acoustic
stimulus required to stimulate the nerve fibers terminating on either the imner
or outer hair cells., The threshold for stimulation of the outer-hair-cell
neurons is assumed to be =100 db which, by assumption (b) above, fixes the
ninimum threshold for the imner hair cells at a valus 20 db higher, By as-
sumption (c) above, the entire inner-hair-cell curve is displaced 1.5 mm to
the right to bring the corfosponding inner- and outer-hair-cell data into
line,

Whether o= not the inhibitimg nerve fiber associated with the imner
hair cell will fire before or after the corresponding outer-hair-cell fiber
depends not only upon the phase angle between the two excitations but also
upon the amplitudes of the stimulation at the two hair cells relative to their
respective thresholds, For stimulation by very loud tomes, inhibition will
occur when the phase of the inner-hair-cell excitation leads that of the
outer by even a very small angle and the simple situation illustrated in
Fig, 14 applies, But for weak tones, approaching the threshold of the inner-
hair-cell fibers, the phase angle of the inner-hair cell excitation may
lead the outer by angles up to 90° without inhibiting the response, for

the more sensitive outer-hair-cell reaches threshold first, despite its
lag in phase.
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This boundary point, at which simultaneous firing of inner and outer
nerve fibers occurs, is easily determined as a function of stimulus inten-
sity using simple geometry and £he amplitude and phase date of Fig. 1l4. The
theoretical results indicate "response®™ and "inhibitory" areas, bounded by
the heavy lines in Fig. 19(a). Since 'place' along the basilar membrane is
roughly interchangeable with 'frequency," these theor=tical results nay be
compsred with the experimental data obtained by Galanbos and Davis, repro-
duced in Fig. 20. ‘The agreement is satisfactory. The theory even offers
an explanation for the cusp-like response area at the bottom end of the in-
hibition area. This must have appeared to Galambos and Davis as an unaccounted-.
for irregularity in their experimental data since they extrapolated the in-
hibitory region downward using the broken lines shown in Fig. 20(a). Also
shown in Fig. 19(b) are theoretical estimates, based on the calculated sen-
sitivity curves given inmediately above, of the effect of a second tone in
inhibiting the activity of a single second-order nerve fiber already subjected
to the steady excitation of a 1000-cps tone, 22 db above threshold (indicated
by the point T7 in Fige. 19(a) ). When the ear is driven simultaneously by
a second tone Tp of different frequency and amplitude, the average phase of
the resultant excitation at any point along the basilar membrane will be
conlrolled by that frequency component which has the grester amplitude.

The smaller component produces a phase modulation having a frequency equal

to the difference between the frequencies of the two componenis and an ampli-
tude given by the size of the smaller component relative to the larger. In
other words, our mechanism exhibits a "capture effect" just as in the inter-
ference between two f-m radio transmissions.

As the frequency of T, is varied, the effect will be similar to a dis=-

placement along the basilar membrane., Examination of Fig. 19(a) shows that

67



INHIBITION
AREA

20

g RESONSE AREA
:
3 ok
=
2
Fry
=3
N
3
i 60}
S
/
/
80+
[1300 ~v-94db]
100 | o | L
FREQUENCY IN Kcps
100
~ 90
(3]
bl
m 0 ®
A
2 -
= =50} T~~~
-4
" ¢
[do]
4 100l
[&]
P
| o | L L]
0.1 0.5 1 2 3 4 5

FREQUENCY T,, Keps

Fig. 20. Experimental data after Galambos and Davis for the response
of a single second-order neuron in the cochlear nucleus of a cat under
the same Telative stimulation conditions as represented by the theo-
retical curves of Fig. 19.

68



even with the strength of T2 held constant, changes in its frequency can cause
widely different effects, For a T2 at 4/~-db intensity and frequencies cor-
responding to the region between 26 and 27 mm, the excitation caused by T2
will have greater amplitude than that caused by Tl at both the inner and
outer hair cells.

Consequently, the response of the second-order neuron will be inhibited
because T2 lies in the inhibitory area. At other frequencies, corresponding
to a T, in the region of 16 mm, the inner-hair-cell excitation will be con-
trolled by T, whereas the outer-hair-cell excitation is controlled by Tlo
Since the firing of the inhibitory nerve fibers is then no longer synchro-
nized with the out-hair-cell excitation, it is reasonable to expect partial,;
but not complete, inhibition. The theoretical estimates shown in Fig, 12(%)
were determined for the same relative stimulus levels as the experimental
data, obtained by Galambos and Davis and reproduced in Fig. 20(b). (The
threshold of the particular nerve fiber studied by Galasbos and Davis is
6 db higher than that assumed in the theoretical curves, and all intensity
levels have, therefore, to be modified by that amount,)

It is apperart that the theoretical model accounts not only for the
abrupt transition between the response and inhibitory areés but also it
provides a reasonable explanation for the observed wvariation of the re-
sponse of this second-order neuron under double-tone stimulalion in which
the frequency and intensity of the second tone are varied. The author
knows of no other theory that will account for these experimental results,

Professor B. G, Wever has pointed out, in personal cowmunicution, that
other data of Galambos show different phenomena than that represented by
Fige 20. For instance, in some neurons investigated, the inhibitory area

was found at a lower frequency. Sometimes, two inhibitory areas on either
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side of the critical frequency would be observed. These data may be
accounted for with our mechanism if its assumed that the cilia on certain

of the outer hair cells are inclined in the outward direction, thus shifting
the phase of outer neural excitation by 180°. Reference to Fig. 14 will
show that, with the phase of W(x) modified by * 180° (or2*J] radians), there
will be produced a nairow inhibitory region at a lower frequency (i.e.,
closer to the stapes) and that the original inhibiting region will have been
shifted to a still higher frequency (i.e., closer to the helicotrema) where
it may escape observation. On the other hand, there is no logical reason
why the r8les of some of the inner and outer fibers should not occasionally
be reversed, thus reversing the areas of facilitation and inhibition.

Galambos and Devis also reported that, as the intensity of the pure tone
stimuli was increased from its sub-threshold value, at first the spontaneous
activity present in some neurons (even in the absence of a stimulus) is
sharply decreased and then, as the tone continues to grow in intensity,
the neural activity rapidly increases. This may be accounted for by the
assumption that at large amplitudes; some of the outer hair cells will be-
gin to be excited with a double-frequency component. This produces, in
effect, another excitatory impulse which, because it is shifted in phase by
1800, mey succeed in stimulating the second-order neuron whereas the normal
impulse was inhibited.

These simple possibilities, all of which are inherent in the mechanism
thus far described, may be combined in various ways to account in qualita-
tive way for much of the experimental data on the neural response of the
cochlea to steady tones.

Since our mechanism depends on accurate phase relations between the

neural excitations, the rather large jitter that seems to be present in the
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time within the microphonic cycle at which action potentials occur could
be a most serious limitation. However; it is believed that this jitter is
not nearly so large as it may at first appear. From Figs. 14 and 15, it is
observed at 1000 cps (where action potentials appear throughout most of the
cycle), that over the stimulated regions of both the inner and outer hair
cells, there are phase variations considerably in excess of 180°,

Thus, at any instant there will likely be some hair cell, the phase of
vhose excitation is suitable for firing its nerve. Each of these neural
responses shows up as an individual response. The cochlear microphonic, on
the other hand, consists of contributions baving different phases that arise
from the different portions of the cochlear partition. But since each of the
contributions is of the same frequency and roughly sinusoidal in wave shape,
they all combine into a single microphonic which does not reveal its com=
ponents as in the case of the action potentials.

Furthermore, it should also be noted that the microphonic potential
will be generated mostly by the inner hair cells., Little contribution can
be made by the miorophonic potentials created by the outer hair cells for

2.8

s 3
the simple reason that j —411"— dx = —‘"—-%— = 0,
° d. X d x 0

since the third dereivative essentially wvanishes at both limits of the integra-
tion. Expressed in another way, the electric field set up by the force wave
must be highly localized because a positive force acting upon the tectorial
membrane must necessarily be almost exactly balanced at every instant by
nearby negative forces. Consequently, one may expect high voltage gradients

to be established in the region of resonance where meximum forces of opposite
polarities may occur simultaneously within a distance 1.5 mm. The fact

that the nerve fibers imnervating the outer hair cells run basalward for at
least this distance suggests that the high local potential gradients may

be utilized to stimulate these nerves. In appendix IV it is shown that a

n



very simple model indicated that these fibers may be stimulated by the
gurvature of the potential field in which they are immersed--thus giving,

in conjunztion with the beaw hypothesis, & neural excitetion that varies as the
sixth place derivative of the instantaneous displacement. This would )rovide

a frequency serlectivity somewhat sharper than that indicated in Fig. 14.
However, even without this additional sharpening action, our mechanism

easily accounts for the ability of the ear to discriminate slight chenges in

the pitch of a sound, as we shall now show.

D, F Discriminati

From Fig. 14(b), it is apparent that the phase difference between the two
waves of neural excitation is changing most rapidly with respect to place in
the vicinity of resonance, specifically at the rate of 110o per uillimet-=r.
Relating this change in place to an eqguivalent change in frequency, one finds
that the phase difference between the excitation of the inner and outer hair
cells at a given point near the region of resonance will change by about 10°
for each percent change in frequency of a steady, 1000-cps tone.

Now, it seems reasonable to assume that sach cycle of the wave will provide
the nervous system with a single estimate of the in-phase point or, what is
equivalent, the frequency. There will be irregularities in the neural response
which will 1imit the accuracy with which this in-phase point can be deteriined,
but is seems plausible that available neursl elements could determine this
point of phase coincidence to within 30° (or 1/12 of a cycle). Bach estimate
thus provided would measure the frequency to an accuracy of about 2 percent.

But it is also reasonable bto believe that the nervous system is capable
of computing the average value of a large number of such samplings extending
over a time interval as great as 0.2 seconds. For a 1000-cps tone, this would

correspond to 200 estimates of the frequency. The accuracy of the mean value
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of these observations would be in the order of 3 percent /YW, where N is

the nunber of measurements, or sbout 0,002, If a short tone burst were
presented to the ear, the nouuwer of samples would ba reduced and the ability
of th2 ear to detect slight changes in pitch would also decrease. Békééy has
studied experimentally the smallest frequency change A F that may be detected
as a function of the duration of a 800 cps tone., His data, takan from Fig,
33 of Ref. S~1, for two different subjects; are compared in Fig. 21 with
values calculated from the equation 0.0B/Yrﬁ-derived from our theory. Here,
also, the theory seems to pe sabstantial agreement with experimental Cact.
Although the accuracy with which phase could be measured was assumed rather
arbitrarily, threshold considerations suggest that the error could not be
mach larger then 30 degrees. However, even with this large value, the

proprsed mechanism has no difficulty in accounting for the obserwved data.

VIII. PHASE EFFECTS IN MONAURAJL PERCEPTION

In this section we show how our cochlear mechanism can account for the
phase effects and beats that occur when two or more tones of different
frequency are presented siwultaneously to the ear.

Despite Ohm's acoustic law, which states that the ear analyzes a
complex sound into simple tones independent of each other, it was apparsent
to Helmholtz, end should now be to everyone, that whon the frequency com-
ponents lie so close together that the periodicity of the beats occuring
between various pairs may be resolved in time by the ear, then modifica=-
tion of the phase of these components will certainly change the temporal
pattern of the sound as heard by the ear, This could not be made clearer
than by the simple observetion that the Fourier amplitude specturm of,
say, a l-second sample of speech, is unchanged if the signal is reversed

in time-~-only the phase spectrum is changed in sign.- Yet, subjectively,
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the one-second speech semple would sound quite differently if reproduced
backwards in time. The frequency components would be spaced by only one cycle
per second and the change in the one-second temporal pattern of the sound
would certainly be resolved by the ear. On the other hand, if the siructural
content of the sound is characterized by widely separated natural frequencies,
the beats would be indiscernible to the ear. Furthermore, if the temporal
content is periodic, as for example in a steady-voiced vowel sound, reversal
in time would leave the temporal contént unchanged. The auditory perception

of such a sound would not be altered if time were reversed.

A. Beats of Mistuned Unisons.

Mathes and Miller studied the perception of small groups of tones, equally
spaced in frequency, whose amplitudes and phases could be systematically ad-
justed (M-1). Some of their most interesting studies were made with a sinu-
soidally modulated tsne in which either amplitude or frequency modulation
could be selected by simply shifting the phase of the carrier relative to
the upper and lower side bands. The amplitude of the carrier could be varied
independently to conirol the depth of the modulation. The following effects
were observed:

a. For a 100-cps tone, smplitude-modulated by a 50-cps signal,

flutter at the modulation frequency first appears at a low value

of the modulstion index M. As M is increased, the quality of the
tone becomes increasingly raucous "until it is judged to have a
very rough quality for values of M between 0.85 and 1.5. The
degree of roughness falls off quite rapidly for smaller values of
M, is a maximum for & value between 1.1 and 1.2, and diminishes for
large values of M to that associated with the beating of two

equal pure tones at a spacing of twice the modulation frequency".
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b, By shifting the phase of the carrier 90 degrees, an approximate
frequency modulation is produced. The AM and FM types of waves
produce two quite different sequences of aural sensation as the
modulation frequency was increased from a very low value, for
which "the actual fluctuation in the frequency as a function of
time for the FM wave gnd the similar swelling and diminishing

in the loudness in the Al case are readily followed. By the

time the signal (modulating frequency) has reached 7 to 10 cycles,

the FM sensabion is that of a warble while the 100-percent An
case has an interrupted character tending toward raucousness.,
"It is in the--region from 25 to 75 cycles, which provides
the greatest sense of roughness in the 100 percent AM case;
that the most striking difference is noted. In this region the
switch from the AM to the FM case is marked by the disappearsnce
of the roughness, which has a characteristic beat at the signal
frequency rate, to what sounds like a combination of pure tones
accompanied by an apparent pitch (i.e. modulation rate) sensa-
tion of twice the signal frequency. The latter effect correlates
with the rate at which amplitude mexima appear in the (envelope)
of the FM case. In these tests the carrier need not be harmoni-

celly related to the (modulation) signal.®

These experimental observations of lMathes and Miller also provide cor-

roboration of our theory. Using the data of Fig. 14, we may calculate

the stimulation of the organ of Corti for both the AM and FM modulated

waveforms that were employed in the experiment and show that the theo-

retical excitation patterns correlate with the subjective sensations.

The analytic representations for the pressure wave having a carrier

frequency, &) , modulated at a frequency, A , are, for the AM and FM

1
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cases respectively,

S I B (e 4 ) @3<)

p(l) = 2

o = &L+ BT re?*]

Now, for the assumed tuning of our model of the cochlea (see appendix A),

and

(k)

a change, A X cm., in place along the basilar membrane is nearly equivalent
to a change in the frequency by the factor -1.15 Ax. Thus the data of Fig.
14 may also be regarded as the variation with frequency of the intensity
and relative phases of the excitation of the inner and outer hair cells.

The stimulus is taken to be a 1000-cps tone which is modulated at 50 cpse
Assuming the 1000-cps carrier to be at x = 24 mm, the upper side band at
1,050 cps would correspond to x = 24.43 mm and the lower side band to x =
23.57 mm. By interpolation from the data of Fig. 14, one obtains the values

tabulated in Table 1.

_Frequency _x (mm) Y(x) W(x)
23. 0.123 /=220° 0.351 /=166°
950 23.57 | 0.115 /=224° 0.412 /=237°
1000 24,.00 0,107 /=267° 0.465 [/=294°
1050 2443 | 0.089 /=281° 0.375 /=352°
25.0 0.067 /=304° 0.246 [=430°

Table 1. Relative stimulation of inner and outer hair cells at

X = 2.4 cm caused by a sinusoidal pressure wave at the stapes of
unit amplitude for frequencies 950, 1000 and 1050 cycles per
second .
The amplitude and phase factors of Table 1 may now be applied to the fre-

quency components of Eqs. (23) to obtain mathematical representations for

the stimulation at the inner and outer hair cells at the point x = 2.4.
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Letting Wt = 0, we aave, for M = 1.00,

o pgs® j(sass - 2447)

0107 em ) + 0037 €& *
j(rose —241°)

+ 0049 € ’

0. 107 e‘i(e ~247) [ | + 0.9%9 cos (0.056 = 187) =
| ] w (0,056 =19 as5d

!

y(0)

jCo -294°) jloase - 237°)

, _ + o2obe
W(B) = 0 445¢€ J (1056 -3¢2°)
+ 0.187 &€ >

i(6-214°) [1 + ofyr cos(0078 -58°) -

= 0.465 €
- J 0.042 Sis (0056 —53")], Gsy

To study the effect of verious amounts of modulation we need only to divide
the "M®" in the brakets by M. Also, to consider the Fli case, simply replace
Lhe "1" with a "j". Thus, the remsining terms in the brackets may be
evaluated once and for all, thereby simplifying the computations.

The bracketed terms are of principle interest since they cepresent the
temporal effect of the modulation upon the relative intensity and the phase
of the excitations st the inner and outer hair cells at the point x = 2.4
cm. These terms have been evaluated and are plotted in Fig. 22 for the AM
case, and in Fig. 23 for the FM case.

In both instances, the envelope of the excitation temporal pattern
at the outer hair cells lags to the envelops of the pattern at the inner
hair cells. This is because of ths snarper selectivity and more rapid
change in phase with frequency of the former. Since this excess phase
change is, for the data of Table 1, about 7.2 degrees per percent frequency
change, the equivalent envelope delay (i.e. i%% ) is about 2.2 milliseconds.
For a 50-cycle modulation rate, this corresponds to the 40-degree shift
that is observed in Figs. 22 and 23. As a result for the AN case, at

the instant that the inhibitory stimulation at the inner cells has all
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but ceased, there remains a considerable stimulation of the outer exci-
tatory cells. Thus, during “he trough of the modulation; groups of
second-order neurons that had previously been inhibited because the imner
fibers were firing first, can now fire for a short fraction of the modula-
tion period. The fact that the phase of the outer excitation, relative

to that at the inmner, changes abruptly during this time, permits firing of
still other second-order neurons which during most of the cycle are
inhibited.

If the modulaticn were increased to M = 1/0,842 = 1,185, then the
excitation at the outer hair cells would be completely modulated and would
reach zero for a short instant at the 240-degree point of the modula-
tion cycle. This would, in effect, allow the outer neurons a brief
resting period so that when the envelope again builds up to threshold,
large numbers could fire in synchrony, In addition; because the excita-
tion at the immer cells is now overmodulated, the phase of the imner
excitation is captured by the side band@s with the result that the phase
curve is no longer bounded but is joined to the next branch, 360 degrees
awvay, and coni.inues to migrate through ever increasing phase angles in
an irregular but periodic mamner. This essentially means that bands
of second-order excitation step abruptly along the mapping of the place
domain in the higher neural centers; rssting for a greater part of the
time in the region associated with the pitch of the carrier. This
effect, I suggest, accounts for the sensation at maximum raucousness
encountered at M = 1.2,

When M 1is increased still further, the excitation wave of the outer
hair cells also bacomes overmocdulated--its phase now migrates at the
same rate as that of the inmmer hair cells and we return to a situaticn

wvhere the pelative phase between the two appears more like that of
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Fig. 22, Thus, the roughness decreases for M over 1.2, as observed by —
Mathes and Miller,

For the FM case, the phase difference between the innmer and outer
cells oscillates between O and =70 degrees in a fairly regular way, as
shown in Fig, 23. The place of the in-phase point along the organ of
Corti likewise oscillates between x = 24 mm and X = 24 - "%%;. = 23.22mm,
since it is seen from Table 1 that the relative phase is changed by
about 90 degrees per millimeter change in place. This should cause a
peak-to-peak fluctuation in perceived frequency of (1.15) (204 = 2.322)
or about 9 percent, a value easily discernible to the ear. The fluctuations
of amplitude of the FM wave occur at twice the frequency of the modulation,
so it is not surprising that the listener perceives a doubling of
modulation periodicity.
B, _Beats of Mistuned Consonances

The beating effects observed in the stimuli of the Mathes and Miller
experiment could be interpreted as the classical beats of imperfect unisons.
Another kind of beat arises when the frequency components depart slightly from
some interval relationship, as for example the octave relationship. The
classical resonance theory of hearing has had a hard time explaining the
beats of these mistuned consonances and has had to assume the existence of
overtones in the primary tones themselves or the gemeration of such overtonmes
through distortion within the ear. However; as Wever points out (W-1, p. 377),
"It is easy to dispute this explamation of the beats of mistuned consonances.
As Koenig stoutly maintained in opposition io Helmholtz, and as modern
experiments prove beyond question, these beats arise in the use of tones
in which physical overtones are absent or negligible. They arise also
when the level of stimulation is so low that no additional tcnes are generated

within the ear.®
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Accordingly, we next examine our theory to see what explanation it offers
regarding these beats of mistuned consonants. Without incurring loss of
generality, we shall investigate the simplest consonance relationship, the
octave, and shall show that, indeed, such beats are produced without the need
for mechanical non-linearities. Furthermore, the theory indicates a new
effect that has never been reported—the apparent pitch of the fundamental
should depend upon the relative phase of the 2'nd harmonic. Since the theory
gives quantitative relations between this change in pitch and the intensities
and relative phase of the two tones, it suggest a psychophysical experi-
ment that should be decisive.

To show how beats may arise, we first consider a 1000-cps tone plus
and a second-harmonic tone of 2000 cps which has a definite phase relation
with reference to the fundamental. To establish the vibration pattern of
of the organ of Corti for this sound, we first estimate the behavior of the
cochlee at 2000 cps by meking the reasonable approximation that the 1000~
cps® cells at x = 2.4 cm will have the same amplitude and phase relations
for a 2000-cps tone as the "500-cps" cells have for a 1000-cps tone. From
Equation A-7 of Appendix A, the "500-cps" cells are found to be those at
x =3.00 cm. From the data of Fig. 14, (with the level of W(x) adjusted
so that |W(2.4) is 20 db greater then |¥(2.4)] to account for the difference
in sensitivity between the inner and outer hair cells) we find that at
% = 3,00 cm., the ratio of inner to outer excitations is 2.3 86° « As~
suming, then, that the excitation of the inner-hair cells is composed of a
fundamental component of unit amplitude and a second harmonic of relative
amplitude A and relative phase d?, we may write for the stimulstion of the

inner cells at the "equal phase® point

y) = s b6 + A Sn(26+@) (2¢)
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where @ = 2 Tft as before. The stimulation of the outer cells at this
same place will be given by
Ww(8) = 10 Sm6 + O435A su(26 R -286°) @z)

The neurons associsted with either the inner or outer hair cells will fire
when the stimulation first reaches the threshold value. This threshold
value, measured relative to the amplitude of the fundsmental component
at the inner hair cell will be represented by T. Thus, increasing the
stimulation level is equivalent to decreasing T.

According to these assumptions, the inner neuron will fire at the

phase, 83, which satisfies the equation

T. (28)

(Only those phase angles, Qi, at which the stimulus is jpcreasing through

?[9) = Sihd + A Sm(26 +&)

the value T have meaning=-the other solution Gi, for which the stimulus

is dying away should be discarded). Similarly, the outer neuron will

fire at the phase angle 8, which satisfies the equation 617)
w(8) = D SK6, & 0435 A sin(26, +d-286")=T,

It is apparent from Eq. (28) that the presence of a second harmonic

will change the phase angle ©; at which the inner neuron fires. The

amount of change will be a function of the relative amplitude A of the

second h;rmonic, its relative phase ® ; and the threshold T. To see just

how big a change in phase of 8; is produced by adding a second harmonic

of amplitude A; we expand Iq. (28) in a power series in A about the value

8 = sin=l T for A= 0, This gives for the leading termss .
o, & sm'T — A[2T @ + %”"“’]. (3°)

The corresponding expression for 8, is,

6, =~ S;a."(-,-'E) - 0.0435 Al 02T cos(&® -286°)  +

t-oorTt o (0 -28¢ “’)]
/

’7 j—o0.0T*™
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6, & 5,,‘." -;E) w 0,04-A [0-21'05(&-?-86') +$n'\(4-lsb')J v (?l)

Because of the greater frequency selectivity of the outer hair cells,
the amplitude of the second harmonic is attenuated to a very small frac%ion,
i.e. 4 percent. Therefore, for practical purposes, the outer-hair-cell
excitation at x = 2.4 will be unaffected by the addition of a second
harmonice

However, since the phase of the inner-hair-cell excitation is grestly
modified, the point where inmer and outer neurons fire simultaneously
will shift to a different place along the basilar membrane and this should
result in a change in pitch at the fundamental as perceived by the listener.

Figure 24 shows the variation of ©; as a function of the phase € of a
second harmonic having an amplitude of 1, %, Or 1/4. The subjective pitch
change that should result from this shift in phase may be estimated from
the theoretical figure that the change in phase with.frequency is about
0.78 degrees per cycle in this region. From Eqe. (30) for T= 0, we then find
that the perceived change in frequency of the 1000-cps tone should be roughly

Af & 74 A Sn, €ps) @)
for small A.

As A becomes larger and approaches 1, the second harmonic begins to
control the firing of the inner nerve fibers. For instance, Fig. 24 shows
that with A = 1 (and grester), the inner neuron will fire twice during each
1000-cps oscillation. Although not illustrated here, one may show that when
A lies between 1 and 3 and/or the stimulation level is near threshold, the
double-frequency firing will occur if the phase angle of the second hermonic
lies within certain ranges. Outside of these ranges, at angles differing by
180 degrees, only one firing will occur per period. It is suggested that

this effect may account for thé statement in Ref. S-1, pg 203 that "g civen
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PHASE OF FUNDAMENTAL AT POSITIVE ZERO CROSSING
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PHASE OF SECOND HARMONIC—-Degrees
Fig. 24. Variation of phase of firing of the 1,000-cps inner-hair-
cell neuron as a function of the phase of a second harmenic at

2,000-cps of relative amplitude A. (Curves are for the large signal
case well above threshold, i.e. T = 0.
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tone, plus another tone of exactly twice the frequency, may sound either
louder or less loud than the fundamental alone. The phase (of the harmonic)
yielding maximal loudness ditfers from that giving minimai loudness by 180°."
And on pg 205, "Not only does a change of phase alter the loudness of a
harmonic, and of the total experience, but it produces noticeable differences
in quality, provided the fundamental is a low-tone of 100 cycles., The phase-
relation giving minimal loudness is characterized by smoothness, whereas the
opposite phase, which leads to maximal loudness, carries with it a rough

or dissonant element." The similarity of the neural excitation pattern
obtained here to that obtained with the type of stimuli used by Mathes and
Miller, who also observed the sensation of roughness, provides further
indication that abrupt and discontinuous movements of the "in-phase" poiat
along the organ.of Corti may be the neuro-phsyiological correlate of the
sensation of tonal roughness.

When A is unity or larger, the second harmonic captures control of the
phase of the inner-hair-cell excitation at x= 2.4 cm. The outer-hair-cell
excitation at this point is, of course, still controlled by the fundamental
tone. Consequently, if the frequency of the second-harmonic is detuned
slightly, iisphase,ce,'will change slowly but continuously with time, As
indicated in Fig. 2L for A=1, this will cause bands of "in-phase® regions
to move continuously along the organ of Corti; toward the stapes when the
second harmonic is tuned high and away from the stapes when it is tuned low.
The reversal in the direction of movement caused by mistuning on the other
side of consonance suggests that the beats may have a different quality for
the two cases.

C. Is There A Phase-Masking Effect? -- A Decisive Experiment.

A more interesting possibility is that this sweeping motion of the in-
phase points caused by a large, slightly detuned, second-harmonic tone
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may be used to prevent the ear from using a phase principle in perceiving

the pitch of the 1000-cps tone. If the second harmonic is detuned by about
10 cps, the sharp localization of pitch, such as that illustrated in Fig. 21
should no longer be possible because the M"in-phase® points would continuously
move across the resonance region and the sharp demarcation assumed in the
mechanism of Fig. 21 could not be obtained.

In other words, our theory suggests thet a kind of phase-masking
may occur. The usual masking effect, where one tone cannot be heard in
the presence of a stronger second tone, is probably associated with the
amplitude pattern of the stimulation along the outer hair cells (See Fig.
18). However, it is apparent that a second tone widely separated in fre-
guency can disturb the phase pattern of the inner nerve excitation long
before it is sufficiently intense to produce any significant change in the
outer-hair-cell execitation pattern.

This phase masking would influence only lhose aspects of hearing
which are dependent on the phase mechanism. Thus, we may predict that
as the amplitude of the mistuned octave tone is increased, the accuracy
with which the ear can determine the pitch of the 1000-cps tone will
change from its small vaelue of about 4 cps for A <<1, to about 60 cps,
which is the critical bandwidth of the ear as determined by its amplitude
selectivity, for A> 1.

One possible way in which these effects could be tested experimentally
would be to present the fundamental and its harmonic to one ear, and ask
the subject to tune an oscillator supplying the tone to his other ear so
as to match the fundamental frequency. With this set up, one could in-
vestigate both the apparent changes of pitch as a function of the
phase angle of the harmonic as well as the predicted widening of the
just-noticeable-piteh differences caused by the "phase-masking" effect

described above.
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In order to obtain a value of A =1 at the inner hair cells, the sound
pressure wave at the eardrum must have a second-harmonic component which is
2.6 times as intense as the fundamental component. This is necessary because
the point being comsidered (x = 2.4 em) is resonant at 1000 cps, instead of
2000 cps. From Fig. 14, comparison of Y(x) for x = 24 and x = 30 mm. indicates
thet the response will be attenusted by a factor of 0.38 below its peak
value.

Finally, if the phase of the second harmonic is such that it has a

velue of zero at the instant that the fundamental component is just reaching

the threshold value, then the phase of firing will be independent of the am-
plitude of the second harmonige. This occurs when the bracketed expression

in Fq. (30) vanishes, or when

3 A it L e = =72 S/ =T (33)

Using this relationship, we ﬁay design a test that will avoid diplacusis
errorgs. The subject would first match the fundamental tones in bis two ears.
The second-harmonic tone would then be introduced into one ear and its phase
would be adjusted by the subject until the pitech.of the fundamental tones in
the two ears is again matched. The relationship between this critical phase
angle, given by Eq. (32), and Lhe intensity of the stimulation is plotted in
Fige. 25.

It is hoped that these experiments mey be conducted in the near future.
The outcome will be of considerable importance because our theory clesrly
indicates that such changes in pitch of the fundamental should occur—-yet,
the literature on beats nowhere indicates that such pitch changes have been
observed at moderate stimulation levels. AL very high intensities, wavers
of both the fundamental snd beating harmonic are observed, but this may be

attributed to mechanical non-linear effects within the ear.
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Fig. 25. Variation of critical phase angle of second harmonic fer

which no change in pitch should occur, as a function of the stimula-

tion level relative to the threshold of the inner-hair-cell neuron.
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APPENDIX A
Analysis of the Mechanical Response of the Cochlea

A number of mathematical models of the cochlea have been described
in the literature, the most realistic of which allow for the motion
of the fluid within the scalae and may be classified together, there-
fore, as hydrodynamical models, The solution of the equations represent-
ing these models is in general very difficult and exact analytic expres-
sions can be given only when rather extreme simplifications are made as,
for example, J. Zwislocki's neglect of the mass (Z-1)., O. F. Ranke has
insisted for years that the simple one-dimensional model of the cochlea
isn't adequate and that the motion of the fluid in both transverse and
longitudinal directions must be ccnsidered. He claims to have obtained
solutions for the motion of the cochlear portion when subjected to
sinusoidal sounds but remarks that "This work leads to very unpleasant
equations (which) are very difficult to handle.", (R-1).

Now, it is not justified to argue here the relative merits of
these various models, nor is it reasonablq,in view of the rather broad
scope of this dissertatioq’to attempt to develop here stili another
mathematical model of the hydrodynamics at the cochlea: this problem
alone has been and will likely continue to be the subject of other
Doctoral dissertations. Nevertheless, since the present thesis is
concerned with phenomena subsequent to and influenced by the mechanical
displacement at the cochlear portion, some single specification of
its vibration is necessary if only for the purpose of achieving con-
sistency between the various derived results, We seek therefore a
mathematical expression which, primarily? is in reasonable agreement

with the vibration patterns of the cochlear partition as actually
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observed by G. von Békééy and which, only secondarily need be derivable
from the more sophisticated hydrodynamical considerations and differen-
tial equations. In short, we would beeatisfied with an empirical
representation for Békésy's data, but lacking even that, it is better
to deduce the form of such a representation by obtaining an approximate
solution of one of the more precise mathematical models.

In 1950, Peterson and Bogert formulated a hydrodynamical model of
the cochlea and solved by numerical methods the associated equations
for the special case where dissipation is ignored (P=2). The effect
of damping was later investigated experimentally by measurements made
on a 175-section electrical-network analogue of the cochlea (B=4).
Recently, Fletcher solved numberically essentially the same fundamen-
tal differential equation arising in the Feterson-Bogert study but
with dissipation ‘included (F-2). The displacement amplitudes and
phases so obtained appear to be in good agreement with the experimental
results of Békésy. We are encouraged, therefore, to seek an approxi=-
mate analytic solution of these equations which will enable us to
derive such thinss as déy(x)/dxu by differentiating the analytical
expression for y(x) . Such a solution was found in August 1950 and
the numberical values shown in Figs. 14 and 15 were calculated at that
time. It is based on the simple transmission-line model of the basilar
membrane proposed by Wegel and Lane in 1924 which leads to an equation
that differs by a negligible amount from the differential equation given
by Peterson and Bogert for the transverse pressure mode. In this model,
the series impedance Z(x) of the transmission line at a distance X from
the stapes represents the inertial effects of the current I(x) flowing

inward through the scala vestibula and outward through the scala tympani;

92



in electrical terms Z(x) is an inductance. The shunt admittance M(x)
represents the compliance qf the cochléar partition. In electrical
terms, it consists of capacitance (representing the elastic effect of
the basilar membrane) in series with an inductance (representing the
mass of organ of Corti and fluid loading) and a resistance representing
the viscous damping. The pressure differential P(x) across the cochlear
partition corresponds to voltage across the transmission line.

We start with the same basic data for the physical dimensions and
mechanical properties of the cochlea as used by Peterson and Bogert,
but we shall approximate certain of these data by functional forms
which lead to a simpler form of differential equation that may then be
solved approximately by the methods applicable to transmission lines
having continuously varying parameters (5=3). The accuracy of this
approximate solﬁtion is improved by including the dissipation since
the "reflections", caused by the rapid variation of M(x) and 2(x)
along the line, are damped out. Thus, the more realistic model which
includes damping happily offers improved accuracy in the approximation.

We describe only inertial effects to the longitudinal flow of the
fluid in the two scalae, leaving all viscous dissipation to be accounted
for in the motion of the cochlear partition. 2(x) is thus analogous
to an inductahce whose value is equal to the momentum associated with
a unit current through the cross section So(x) of the scala vestibuli.
Because there is an equal and opposite flow in the two scalae at every

point, the effective density is twice the density f% of the perilymph

2
%(x) = ( s€° > P (a-1)
(o}
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where p 1is the time-derivative operator.

Petersen and Bogert have already examined the available experimental
data on the variation of the cross section So(x) with x , as well as the
variation of the width b(x) and the elasticity k(x) of the basilar mem-
brane. They concluded that the ratio of width to cross section may be
approximated by

PC 0,661 e¥°5%% (A-2)

S
[

where x is in centimeters throughout.
Instead of using their linear expression for b(x) , we shall use an

exponential approximation
b(x) ~ 0.019 &% (&-3)
Taking the density ¢, of the perilymph as lg/cm3 , we obtain finally
8(x) = 69.6 ¢0+2¥% 5 (A-4)

as the series impedance of the transmission line.
To evaluate the shunt admittance M(x) of the line, we start with
the empirical expression for the volume elasticity given by Petersen

and Bogert.

K(x) *1.72 x 10° o >%(dyne/cm) (a-5)

Thus, the 'capacitance' C(x) of a strip dx long and b wide is

C(x) dax = -!é%%%5~ (cm3/unit pressure)
or C(x) = --—!131-5 e2x | (a-6)
1.72 x 10

We further assume that the mass of the cochlear partition varies with

in such a manner that the resonant frequency is also an exponential

p2A



function of x with a value of Skcps at x =1 cm. , and 500 cps at

x =3 cm,
That is,

£ v 31.15(204-1) (kch) (A—?)
or wix) =2nf = 105 ¢1-15% (radians/sec) (2-8)

The "nductance” of the cochlear partition is, therefore, by Egs. (6)

and (3).

L(x) 1 __
wZ(2)C(x)

R

l
9 (dyne-secz/cm ) (4-9)
The damping R(x) is assumed to give everywhere a logarithmic decrement
of about 0.5m 'so that the shunt admittance may be represented by

M(x) = 1. P (A-10)

? Pz + 0.5pw +w2

where, of course, ¥ is a function of x given by Eq. (8).

The transmission line equations for the cochlea are

g = =21
ax (&-11)
gi_ = -M-P
ax

By differentiating the first equation and using the second to eliminate

I, one obtains a second-order linear differential equation for the

pressure
% 4am , B g (512)
ax” ax ax
It should be noted in passing that this equation may also be written as
1.1
z[E— - BM:P =0 (A-12a)
B
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which, considering that Z’VI/So , is found to be of form identical
to Petersen and Bogert's Eq. (16) for the transverse pressure mode:

1 N 2 2bp C?

(8F ) & w 14+ o P =0 .

S 0 = St Sm———a—— -
The two expressions are identical except for the "1" appearing in the
second parenthesis which accounts for the compressibility of the fluid
itself and, according to Fig. 3 from the Fetersen Bogert paper, is at

2
most but a few percent of the value, ,be%c . Hence its neglect in
sO

setting up the M of Eq. (A-12a) will yield negligible error, and we
may consider our Eq. (A-12) to be equivalent for practical purposes to
the Petersen-Bogert equation.

Our procedure will be to find from Eq. (A-12) an approximate solu-
tion for the pressure wave in response to a 1 dyne/cm2 s 1000-cps
pressure differential at the stapes. Then, in any infinitesimal length,
dx, the shunt current will be M-F dx ; the volume displacement will be
the time integral of this current; and the displacement Y(x) of the
partition will be this volume displacement divided by the area b(x) dx

of the partition-seszment. Thus, the displacement of the membrane will

ultimately be found from

—L—  M(z) - P(x) (A-13)

T(x) pb(x)

Now, by Egs. (9) and (10), Eq. (12) may be written as

& . 0.248 -g-l-'-;- -84 P=0 (A-12b)

dz?

We define Y =V ZM  and assume a solution of the form

P o= P (x) e'f Yax (A-12¢)
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in hope that by substituting Eq. (A-12c) into (A-12b) we shall obtain
a new differential equation in F o(x) which will have a simpler solution.

This substitution leads to the following equation in ¥ (x)

2" 'xl 2 '( - L'\: =
ar, - (2v + 0,248) aPo + (N.243 r Po 0 (A=)

s as— E———

dxz dx

There is some justification for assuming that Po will change so
slowly with x that the second derivative term may be neglected. Our
procedure will be to make this usual approximation and obtain an analytic
expression for P o However, we shall later justify this approximation
by comparing the solution thus obtained with an 'exact' solution obtained

from 7q. (A-12b) by numerical integration.

By ignoring the 2-nd derivative, we may write Eq. (A-14) as

-y &
2% + 0,248 (A-lka)

g

)

(o)

ke d]

Now, over the range of x where Y»>»0,124 , Eq. (A-l4a) may further be

approximated by

("da'}:?g') ¥ 0k -3 (%) (A-14b)

P
which has as a solution
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with co an arbitrary constant to be determined.*

The expression (A-l2c) for the pressure wave may now be written

P(x) = c, .,-g 90.124:: -[ Yax (A-15)

and it remains to evaluate the integral [‘de

Since Y = {8 , it follows from Eqs. (A-4) and (A-10) that

0.124x

p P
Y=2.79e . —_ = 9.63 wojo‘gv.w_. (A-16a)
where
¥ = p2+0.5pw + w2 . (A-16b)
w = 100 ¢ l+15% (A-16¢)
Replacing x by w in the integral, one finds
x wio) gy
f Yax = 8.36pf 1108 — (A-17)
0 w(x) v v
Integrating by parts,
w(o)
j'[w-o.loej[ aw ] . w"°°1°8f ; _‘_0.108/“’_—1.108.
wr(o)
¢ W
w(x) b V W wV . 3 . \
Vv (A-18)

wr(x)

%Evaluation of Y(x) as a fn of X shows that Y is 0,176 at the
stapes but that by =x = 1.0 cm, Yhas increased to nearly 1 and
reaches a magnitude of about 5. in the region of resonance so that
the error of neglecting the constant term in the denominator of
(A-1lhc) is significant only in the region near the stapes -- a
region which is relatively unimportant in our study.

98



Over the range of X extending from the stapes to the point of reso-
nance, ¥ 'is large, the value of the first integral w}ll be small,

and the value of the second part of the bracket will be much smaller
because of the extra factor 0.108/w. Thus, only near the helicotreme
(x =+ 3.5 cm)will the contribution of the second part have appreciable
value, and since we are interested primarily in the region near
resonance (i.e. x = 2.4 e¢m), we shall neglect this second part. The

first integral is easily found to be (Pierce 182).

W+
—dw. .21 108[V-_ > + 0.25] (A-19)
wlf ¥ P v
so that finally,
x
f Yax = 8.36 LQ(x) - Q)] (a-20)
(o
where Ux) = w0108 14g [___.W+P +0-25] (A-21)
W

By absorbing the Q(0) in the constant multiplier C; of

Eq. (A-15), the approximate expression for the pressure at X becomes

Y-% eo.lzhx - 8.36 Q(x)

P(x) = GO (A-22)
and the displacement Y(x)} by Eq. (A-13), becomes
=0.3x
Y(x) % 5.85 e g . P(x) (a-23)
2 2 ‘

P~ 4+ 0.5pW + W
Egs. (A-16), (A-21), (A-22) and (4-23) thus give an analytic expres-

sion for the magnitude and phase of the displacement of the basilar
membrane at a point x which, because of the approximations involved
in the derivations, must be remote from both stapes and helicotrema.
Rather than éttemptnto analyze mathematically the errors involved in

these approximations, we shell next carry through, by numerical

99



integration, an accurate solution of the pressure differential equation
(A-12b). By comparing this accurate numerical solution with the results
calculated from Eq. (A-22) we will be able to verify the range of X
over which the approximations are valid and, furthermore, we shall be
able to determine the constant multiplier C0 appearing in Eg. (A=22).
Because Eq. (A-12b) yields a solution which oscillates, a numerical
integration requires that much smaller increments be used than would be
necessary were the solution non-oscillatory. This suggests that a
change in variable should first be made such that the new variable is
not oscillatory and changes more slowly than the P(x) variable. A new

variable (x) defined by
[ () = -1 ?x) (A-24)

has the desired properties. Its real part represents the amplitude of
the oscillation expressed in nepers below some reference amplitude and
its imaginary part is the phase of the oscillation in radians. It is

apparent that T'(x) changes far more smoothly than P(x) and, hence,

a numerical solution for [Yx) will be easier to obtain.

Observing that

P = e
] [}

p o= - P

(4-25)
n 1
P"-_- ‘-.T‘ +(T’)ZJ'P
we easily find that Egq. (a-12b) becomes

(A=26)

r -(P'+o¢%)ﬂ + B8 =0
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“’00 1 2
w 216 p

where M =93 (A=27)

P2 + 0.5 pw'¥ wz
Equation (A-26) is now a non-linear differential equation in T‘l, the
integration of which may be easily carried out by nunerical methods
for any given frequency end boundary condition at the helicotrema. The
significant deteils of this numerical solution for a 100C-cps. driving
frequency are outlined in Appendix (B).

Figure A-1 compares the approximate solution for |Y(x)‘ given
by Eq. (A=23) with the "exact" solution obtained by numerical methods
and Table II of Appendix 4, for a frequency of 1000 cps.

Figure A-2 compares the phase lags of the two solutions. Both
solutions are quite similar, particularly in the important region of
resonance around x = 24 mm. where the amplitudes differ only by a
nearly constant factor of about 2. As was reéarked in the derivation
of the approximate expression, errors were to be expected near the
stapes and near the helicotrema. These are, in fact, the regions where
appreciable errors do occur, as the figures show. However, the error
is gquite small in the important region of resonance, and we are therefore
Justified in using our approximate as an analytic expression for the

vibration in this region.
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APPENDIX B

Solution of Bquation (A=-26) by Milne's Numerical Method

Equation (A-26) is a first-order, second-degree non-linear differential
equation in Y = r";

Yoo (Y +0.248)Y + &M = 0, (A=-26)
(Note that this Y represents a different quantity than the Y of

Appendix A).

Provided the boundary value of Y at the helicotrema is specified, this
equation may be integrated numerically in a step-by-step process starting
at the helicotrema and working back towards the stapes.

The particular numerical method duve to W. E. Milne (M-3) which is used
here gives values of Y at discrete values of x = nh which are separated

by a small interval h. This is a step-by-step process using the formala

Lh . 28 ,5.(5) (B-1)
Y =Y — (Y . ¥ Y9
a1 = Yoz 3 Bp m Yaar F ) oo B
as a predictor, and Simpson's rule
_ h o 1 .5 (5)
v = - 9 P 1 . -
n+l Yn—l * 3 ('Yn+l * L“n * Yn-l) 90 b’y (B-2)

as a corrector. The procedure is as follows: assuming that values
Yn-2° Yn—’ R Yn are known, the differential equation then gives

values of the first derivative at these points: viz

v/ = (v +0.248)Y - &M (a-26)

From Eq. (B-1), the next value, Yoep 0 18 predicted and the correspond-

ing Y;+l computed from the preceding equation. Simpson's rule (B-2)
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is then used to recompute the value of Yn+l which should check closely
with the predicted value provided the interval h is sufficiently small.
This process is then repeated to determine Yn+2 , etc. The interval h

is in practice so small that the Sth-derivative term y(5)

appearing in
(B-1) and (B-2) may be ignored.

In carrying through this computation, a rather interesting error of
alternating sign arose which was unstable and because of its rapid
growth threatened to destroy the solution. These alternations resulted
in the values of Yn for, say, n even being too large and for n odd
being too small.

The cause of this difficulty is found in the predictor and corrector
formulas which, it may be noted, use only the values of Yn-h and Yn-z
in computing Yn . Thus, the intermediate values Yn-l and Yn-B do
not contribute in the same manner and the series of Yn tends to disasso-
ciate into two interleaving series which are tied together only through
the first derivatives Y; . Since the error tends to altermate, it is
apparent that some sort of smoothing operation would reduce this error
and damp out the instability.

A smoothing operator which is satisfactory for this purpose has been
described by W. E. Milne and V. Rojansky. Assuming that the true value
of the function is regular so that the fourth differences for equal argu-
ments are zero; the sum of the squares of the errors may be reduced by

i by the following formula

- l -— -
Yn-l = ~I5 [}Yn-B + hYn_z + 6Yn_1 + an - Yn+1] (B-3)

In operation, after Yn+1 has been predicted by Eq. (B-1), the smoothed

value of ?;_ is computed from Eq. (B-3), and it is this smoothed value

1
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of 7!1_1 which is used in Simpson's Bule (B-2) for correcting Y .
Also, the values Yn_z and 'Yn_3 might as well be the smoothed values
determined on two previous steps. With this modification, the numerical
process is perfectly gstable and the error remained small throughout the
range at integration.

The next point to be considered is the determination of the boundary
condition at the helicotrema which we shall assume acts as an "inductive"
orifice of 1 mm. length having the same jnductance as the basilar membrane
at that point but with an jnfinite elastance. Thus, the terminating
admittance : My rcpresenting the helicotrema 1s, from Bq. (A-10)

Y

1
= == e (0.1) (B-4)
Mh 7 p2 + 0.5wD

For example, assuming & frequency of 1000 cps. or p = J6,240 and that the
nelicotrema corresponds to X = 3.5 cm,), or w-(3.5) =1,780 from Eq. (A-B))
we obtain

0.1 1
M= 3 850 7 je.om0  Mhos

as the terminating admittance. We must now translate thin termination into
the value of Y at x =3.5 to establish the proper boundary value for
our differential equation.

We note that the current at the helicotrema will be
1 = Mh e P (3-5)

Now, from Eq. (A-11)

But from Bq. (A-25), e = -Y:P 8o that



Y = T'l = Z'Hh (3-6)

This equation may be used to establish the value of Y at the helicotrema.

Setting x = 3.5 cm. and f = 1000 cps., we find

Y(3.5) = 1.81 [8,1° nepers/cm.

In order to start the numerical method of integrating the differen-
tial equation, the first four consecutive values of Y must be determined.
The method described by W. E. Milne (ref.M-3) was used here to find values
of Y, ‘Y‘ at x = 3.55, 3.50, 3.45, and 3.40, after which the step-by-
step process was applied with h = 0.05 cm up to x = 2.65. In the region
at rescnance from x = 2.65 to x = 2,15 a smaller interval h = -0.025 cm.
was used, and from x = 1,40 to x =0, h=0.1lcmn. vas sufficiently small.
Intezrating these values of Y = T" by Simpson's rule gave the values for
T? indicated in Table B-1.

x(mm) 'T',(‘nepera) X (radians) x(mm) ,T‘l(nepera) X (radians)

0 0.000 0 23 1.618 2.614
2 0.060 0.058 24 1.956 2.922
4 0.124 0.123 25 2.368 3.180
6 0,196 0.212 26 2.814 3,376
8 0.272 0.314 27 3.264 3.516
10 0.356 0.438 28 3,708 3.626
12 0.448 0.594 29 4,146 3.710
14 0.554 0.786 30 4,576 3.780
16 0.676 1.032 31 5.002 3.838
18 0.830 1.348 32 5.416 3.892
20 1.038 1.762 33 5.810 3.938
21 1.182 2.016 34 6.154 3.982
22 1.368 2.302 35 6,40k 4,016

Table B-1. Attenuation and Phase ldg of Pressure wave at
1,000 cps.
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To find the displacement Y(x) at the point x , Eq. (A-13) may be

evaluated to obtain

1l
pb(x)

Y(x) + M(x) « P(x) (B-13)

1.8818 x 1077 e 0:3x -T

1+ <%§af + 0.5 ;E;;

Here, also, it is convenient to express Y(x) in logarithmic units;

(B-13a)

7
log Y(x) = log( —1-—“8(;%19:;-5—_—_—_} 0.3x-T (B-13b)

in which the real part represents the amplitude of the oscillation in
nepers below 1 cm. and the imaginary vart is the phase of the displacement
relative to the pressure at the stapes. ZFvaluating this expression at
100N cps. and using values for =x and T' tabulated in Table B-1 gives

values tabulated in Table 3-2.

x @\ |[r@)| X x  hjr)| o X
¢ -5.148 0.0058 0.01 ~ 23 -1.453 0.234 1.19 mw
2 -4,303 0.0082 0.03 m 24 -1.598 0.202 l.42 m
L 4,458 0.0116 0.06 m 25 -2.010 0.134 1.64 o
6 -4,13¢ 0.0161 0.09 26 -2.580 2076 1.9
8 =3.794 0.0225 0.13 = 27 -3.180 0.0416 1.92 w
10 -3 464 0.0314 0,17 m 28 -3.762 n.0222 1.99 m
12 -3.135 0.0436 0.23 m 29 4,316 0.0133 2.05
14 -2.309 0.0603 0.30m 30 -L, 843 0.0079 2.1C n
16 -2.476 0.0841 040 ~ 31 -5.351 NLOook7T 2,13 T
18  -2.14%0  0.1178  0.54 n 32 -5.835  0.0029 2.16 7w
20 -1.800 0.165 0.7 33 -6.291 n,001% 2.9
21 -1.640 0.194 n.84 34 -6.689 n.0012 2.21 ™
22 -1.505 0.222 DYy T 35 -£.989 0.,0009  2.24 7

Tsble B-2. asmplituée and phase lag of displacement wave at
1,000 cos. D;snlacement 1 exnresced in millimicrons (i.e. 16-9 meters).
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APPENDIX C

Summary of Zquations for W(x) = -%£§

In Appendix 4, an approximate analytic expression for the displacement
Y(x) was obtained. Here, we wish to summarize the steps involved in
differentiating Y(x) four times with respect to x , the end result of
vhich was an approximate analytic representation for the outer-hair-cell=-
force density W(x) .

BReference is made to Eq. (A-~15) through (A-23) of the first appendix
for definitions of symbols. The various derivatives of Y(x) may be
expressed as the product of two factors; one being simply Y(x) itself ,
and the other indicating the sharpening actiom that results from the
differentiation process. This factor, for the first derivative, will be
represented by g » and it is defined as the first derivative of log Y
with respect to x. Thus, since

ay
—g;(log T = § = '%E"

we have,

day

IR (1)
By repeatedly differentiating this equation, one obtains the following

expressions for the higher derivatives

o S [gz + -%xs-:{ . Y (c-2)

dx?

Qa

3y, - [33 .jia , %7 _
g okl e

i [g" + 682 :—fz- + g f% + 3(-%)2%]1 (C-t)

dx

£
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Equation (C-4) may be used to obtain an expression for w(x)
provided we can express g and its derivatives in terms of the frequency
(p) and place (x) variables. To do this we first normalize certain

of the variables by introducing the quantities =z and D defined by
2 = pw, D = w/wz (C-5)

so that equation (A-16a) becomes

Y = 2.79 eo.lzlbx z (C=6)
Y D
and g may be closely represented by
= -0.18 + 1,38 (3-“—%'-5-2-) =Y (¢c-7)
Next,
48 . -
e A== (c-8)
Z 2
where A = - 0.795 -D'Z—[l +22 +82 ) (C-8a)
—g!—— = . C=
m &Y (C-8b)
g = 0.124 + 0.575 (2%4-%> (C-8c)
Then,
2 2
_i_g_. = B-C'A __d-l- (0-9)
ax? ax?
2
where B = b2 2+ 2_+)6% (C-9a)
D
C = 2.302(2740.5) (C-9v)

D
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.f.“i. =[-d-§- + 32,]"’ (C-9¢)

ax
_g;s_ - _°~_§.6_12_[0’5 - i‘*_%r.ﬁl_] , (6-9a)
Finally,
2
:13:3 . _Losaestegs) gy 4
D
2
42405 2(22+0.5)
- 2,65 Zi:fjs-‘* - n2 } A -
2 3
-—df +_cf; ¢ -Lr (c-10)
dx dx dx3
where Oy ' a%§ a8 3 '
= - (Y + 3§ +g>w (C-10a)
ax

2
26 _ z.;oz <_%IS_) +9..;3§Z;(_3+322,z), (c-101)

¥When these values are substituted into Eq. (C-4) numerical values for

2
¥(x) are obtained. The results of the computations for Y(x), d g
uY ax
and £T are given in Table C-1 for the case of a 1,000-cps. tone.
dx
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a3 Y
x Y(x) N d;f_
Amplitude FPhase | Amplitude Phase Amplitude Phase

0 0.0058 -0.01 = 0.000392 =0.07 @ 0,000029 =0.20 n
5 0.0111 -0.06 0.000806 ~-G.18 ~= 0.000077 -0.39
10 0.0217 -0.153 | 0.00183 -0.368 7| 0.00025% ~0.65 7
15 0.0462 -0.335 m | 0.00576 =0.680 m| 0.00147 =-1.03 m
18 0.0740 -0.515 7| 0,0161 -0.975 nw| 0.00777 -1.38 =
20 0.0985 -0.720 = | 0.0334 -1.279 w| 92.0272 -1.75 m
21 0,113 -0.858 | 0.0521 -1.488 | 0.0511 -2.06
22 0.128 -1.023 =~ | 6.0885 «1.779 | 0.1610 =242 n
23 0.127 -1,227 w | 0.128 -2.127 7| 0.350 -2.94 7
24 0.107 1,462 = | 0.137 2,598 m| 0.470 -3.63
25 N, 0673 -1.69 w 0.0782 =3,06 ™ 0.230 4,38 n
26  0.0374  -1.86n | 0.0328 -3.31 7 | 0,0685 -4.90
27 0.0200 -1.98 m n.n127 3,64 1 0.0178 -5.26
28 0.0112 -2.08 m 0.00€612 -3.78 m 0.0065 -5.46
30 0.0035 -2.22 77 0.00121 4,04 o 0.0C068 -5.82 m
32 0.0012 -2.32 0.00033¢€ 4,19 ™ 0.000131 -6.02 ™
35 0.0002 2,44 0,.000049 4,35 0.000013 -6.23 m
Teble C-l. Calculated values of the disolacement end its second

end fourth place 3erivetives.

nillimeters).
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APPENDIX -

A Neurel Sharpening Mechanism

In the text, a mechanism for exciting the outer hair cells has been
described which creates microphonic notentials that change in phase by
roughly 100 degrees per millimeter increase in distance from the stapes.
At the same instant that certain of the hair cells in the reglon of
resonance are carrying a maximum pozitive potential at one vlace, the
sotential may have comparable negative values at adjoining places spaced
only 1.5 millimeters on either side.

Consider, then, a nerve fiber that runs through these positive and
negative regions. The simplest model of a nerve fiber, consists of a
conducting core covered by an insulating sheath across which a d-c
potential is develoved. In the passive condition, the interior of the
fiber takes on a negative potential of the order of tens of millivolts with
respect to the outer medium. When the nerve fiber is stimulated at some
point, by an externally avplied cathodic current, a complex action sets
in which, a-parently, is little understood. But in effect, the membrane
at that point of stimulation appears to break down electrically and
positive current flows from the external surrounding region into the core
of the fiber. This causes a decrease in the external potential of the
adjoining regions of the nerve fiber. 3ut the reaction of the membrane
appears to be such that a decrease {i.e. negative change) in potential
across the membrance increases itc excitability and will lead to further
breakdown. Thus, from the point of initial stimulation, two electro~-
chemical waves propagate in both directions along the fiber.

By observing the potential at some point along the fiber with a
sensitive amplifier and oscilloscope, ons can establish the time pattern

of these waves. It is found that they travel with a velocity which in
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meters per second is roughly six times the diameter of the fiber in micronse—
Conduction velocities lying between 10 and 100 meters per second are
easily obtained in mammalian nerve fibers.

wa, the velocities with which a wave 1s propagated along the cochleer
portion 1ie in this same range. For exsmple, Bekesy (S-2, pg 1101, Fig. 30)
glves data showing that when the stapes is suddenly displaced, a bulge
travels aloung the partition toward the helicotrema, reaching the paint
x =2 cm. in about 104 geconds and the helicotrema in about 20102 seconds.
These correspond to average velocities in the order of 200 and 2 meters per
second,

If it is assumed that the induced negative potential is a causetive
agent in the propagation of an action potential along a nerve fiber, then
it would appear that an external source of negative potential waves that
travel with the proper velocity along the fiber would tend to establish
across the nerve membrane something of the same potential conditions that
occur under actual propagation of a nerve spike, This type of external
field could conceivably be a very effective stimulus for the nerve fiber,
as had already been suggested by Ranke, (R-1).

In the absence of specific facts as to how these potential fields
do, in fact, stimulate the nerve fiber, we may teke as a working hypothesis
that the effective excitation of any point is determined by the voltage
across the insulating sheath, It is possible to estimate what this
voltage will be for a nerve fiber running along the outer hair cells which
are creating a local potential wave W(x) previously defined.

As illustrated in Fig, D-1, the non-conducting fiber is assumed to
consist of a core conductor; having resistance R per unit length and

covered by an insulating dielectric sheath of capacitance C per unit
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Fig. D-1.(A). The path followed by a single nerve fiber innervating
the outer hair cells. (B} 4 simple model of a nerve fiber.
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length. The potential & (x) ie impressed upon the outside of the mnerve
‘sheath and, because of the conduction of the core, a voltage ¢(x) is
developed across the sheath at the point x. By writing the difference
equations for the voltage wave and letting Ax->0, it is a gsimple matter
to show .hat the voltage across the sheath is related to the external

potent.al by the partial linear differential equation.

.2 2

2 Qv . me 2¥ (D-1)
. 2 Iy 2 ot -
D X

If we assume sinusoidal time variation, represented by ejw‘; the above

equation becomes

_d_zwiz)_ —  &®W(x) __  JusBRCV(x) {D-2)
2 2
dx dx

and gives us a relation between the force density ¥W(x) and the sheath
voltage distridbution V(x) for which we now solve D-2 explicity.

If we assume that _ dzngl vanishes at all x except at the point

ax?

X, where it is equal to a unit impulse {( (x - xo), ve may find the Green's
function (i.e. space "system function” of the nerve) n(x) from which we
mey by superposition, through the use of the convolution integral, obtain

2 .
the resultent V(x) for any givenn‘-g—E$§2-° This space welghting

2
aw
v _o,f 1 poi
function must satisfy (D-2), with- 4 =0 » for all po nts except
dx?
at x — x. where the right hand side must reduce to {/ {x - x,). That is,

(2]

at x, =X, , there will be a cusp in the distribution of ‘éf!_, Solving
dx2

the homogeneous equations and invoking the physiceal requirement that V(x)

must die away as one recedes from X0 One obtains
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A AGH) (x)
22 (1+3)

n(x) =

» (x>x)

and
-1 e3\(1*'3) (x-x,)

n(x) =
27 (1+))

(x<xo) . (p-3)

where A\ =\/ wgc ropresents both the attenuation in nepers and phase
in radians per unit change in x .

Fow, by superposition,

©

V(x) = J g:‘; n(x-%) 43 (D-4)

where we assume, for simplicity, thet the fiber is of infinite length so

that the integrand vanishes at both limits. (The modification for finite-
length fibers will be discussed later). Equation D-4 may then be integrated

by parts, to obtain
®

@®
V) = . a(x-z)| - [-E-.dB 4 (D-5)
x ax_ n(x: §-‘ _:[: ar | & 3

The first term vanishes. The second term may be split into two integrals,

X
_QW__Q..,Q +

Vi) = -
d d
K 3 &
aas

X

where M- = %0-7\(1+‘1) (§ -x) , (§'>x°)

= 3 o (14) (§ -x)

(< x).
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Integrating Eq. (D-6) again by parts, one finds that

X co
V(x) = -¥ -‘%—l -V -‘%- +
- %
&n
+ | ¥ > 4% (2-7)
ax .

The first two terms in Eq. (D-7) are each equal to ¥(x)/2 which may

finally be written as

Tx) = W@ - DLl J'w@)e*“l"i)lx-ilag (D-8)
-

The voltage across the sheath at the point x 1is thus seen to be the
difference between the external potential Ww(x) and the internmal potential,
which consists of contributions arising from all parts of the surface
potential, each little part W(§)d¢ being weighted by the factor

A+1) _=n(1+3)a
2 e

the point in question. With this simple interpretation, wv may now

- where 4 is the distance from that part to
write down the expression for the voltage at the point x when the fiber
terminates in an open circuit at the point xo , as shown in Fig. D-1l. The
open circuit creates a reflected voltage wave which at the point x, is
just equal in value to the incident wave. Thus, in addition to the direct
induced potential indicated by ®q. (D-8), there will be another component
due to this refiected wave. The total path over which the reflected wave
travelsffrom g to x, and back to x or a total distance at 4 = 2x°~x-§ .

Thus, the voltage at the point X will be
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x
o
V(x) = W(x) - -M-;-ﬂl- j W(§)[e°‘\(1+3” x=3l ,
x

1

+ e->‘(1+J)'(2xo -x-3 )J dS (D-9)

where we have utilized the fact indicated in Fig. D-1 that W(¢) vanishes

outside of the range x,< §<xo .

At the terminal buds of the nerve fiber, =x = X and the voltage

across the sheath is
x

‘ 0
Vix,) = W(x,) ->~(1+.i)f WD) (b-r)
X

1

The integration required by Zq. (D-10) was performed numerically
using Simson's rule and the data for W(x) from Table 1 of Appendix C
to obtain the veltage across the end twigs for nerve fibers that run
basalward along the outer hair cells for distances x, - x of 0.8
and 1.6 millimeters. The esults are shown in Fig. D-2, which compares
the smplitudes |[7(x)| with |W(x)| and in Fig. D-3 which compares the
phases of V(x) and VW(x). .

It is noted that basalward from the region of resonance, the phase
continues to change more rapidly than does the phase of W(x), and
apicalward, the response falls off more rapidly. This greater selectivity

2
in place is consistent with the fact that, by Eq. (D-2) when WRC >>-LZ- /v,
ax

the voltage V(x) across the sheath is essentially equal to the curvature

4% of the external potential field. Hence, this effect may produce the
dx

equivalent, in conjunction with the beam hypothesis, of a neural excitation

proportional to the sixth-place derivative of the displacement.



VOLTAGE ACROSS END TWIG, \V(x){

0.5

0.1

0.01

0.001

10

DISTANCE FROM STAPES--Millimeters

Fig. D=2, Distribution of voltage amplitude lV(x)\ across the end
twigs of the outer-hair-cell neurons which run basalward for a dis-
tance of _£ millimeters. The external potential distribution IW(x)l
is shown for comparison. 1,000-cps. tone.
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PHASE LAG IN RADIANS

Figo =
Figo D-2,

Phase data associzted with the amplitude curves of
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