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Abstract

With the increasing demand on large scale in-memory databases, researchers have applied
sharding techniques to split the data load into multiple disjoint data servers to make it
possible to run the system on commodity machines and avoid the need of a single large
DRAM which is believed to be inefficient. A typical transaction on such systems from time
to time will need to query data from another server.

Distributed transactions are such transactions with remote data access. They usually
suffer from high network latency (compared to the internal overhead) during data operations
on remote data servers, and therefore lengthen the entire transaction executiont time. This
increases the probability of conflicting with other transactions, causing high abort rates.
This, in turn, causes poor performance.

In this work, we constructed Sundial, a distributed concurrency control algorithm that
applies logical timestamps seaminglessly with a cache protocol, and works in a hybrid
fashion where an optimistic approach is combined with lock-based schemes.

Sundial tackles the inefficiency problem in two ways.
Firstly, Sundial decides the order of transactions on the fly. Transactions get their commit

timestamp according to their data access traces. Each data item in the database has logical
leases maintained by the system. A lease corresponds to a version of the item. At any logical
time point, only a single transaction holds the 'lease' for any particular data item. Therefore,
lease holders do not have to worry about someone else writing to the item because in the
logical timeline, the data writer needs to acquire a new lease which is disjoint from the
holder's. This lease information is used to calculate the logical commit time for transactions.

Secondly, Sundial has a novel caching scheme that works together with logical leases.
The scheme allows the local data server to automatically cache data from the remote server
while preserving data coherence.

We benchmarked Sundial along with state-of-the-art distributed transactional concur-
rency control protocols. On YCSB, Sundial outperforms the second best protocol by 57%
under high data access contention. On TPC-C, Sundial has a 34% improvement over the
state-of-the-art candidate. Our caching scheme has performance gain comparable with
hand-optimized data replication. With high access skew, it speeds the workload by up to
4.6 x.
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Chapter 1

Introduction

The transaction programming model is friendly for users who work on large parallel and con-

current systems like databases. Due to its useful properties including atomicity, consistency,

isolation, and durability, the programmers do not have to spend significant time worrying

much about data racing and conflict detections, task scheduling, and most importantly the

complexity of multi-threaded program design. There has been an ongoing research effort on

optimizing On-Line Transactional Processing (OLTP) database systems.

As the scale of data increases, the computational workload and the storage demand often

go beyond the capability of a typical single server. When this happens, people often turn to a

distributed database management system, where the data storage is often split into multiple

disjoint shards, named partitions. Each partition is held on an independent server, sharing

nothing but communication channels with other servers. If fortunately a transaction only

access data locally, it is processed without any difference from a typical local transaction.

However, chances are that some transactions visit multiple servers for data access, leading to

a downgraded performance. The reasons fall into two categories. On one hand, remote data

access itself will bring high network latency, making the transaction execution much slower.

On the other hand, longer execution time naturally makes it more likely to conflict with

another transaction, causing more aborts and re-trials. Thus, the performance for distributed

transactions are often not up to par.

Recent related research that aims to ameliorate the performance of distributed concur-

rency control algorithms focuses mainly on two aspects, designing a better protocol, or
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optimizing the hardware. New protocols often improve the system overhead in synchro-

nizing among transactions [47, 59, 31, 48], and therefore the abort rate drops. However,

we have observed that they still have limited performance because of higher protocol com-

plexity. Hardware optimizations include utilizing special techniques like Remote Direct

Memory Access that enables low network latency on a remote data access. However, such

specialized hardware tends to increase the overall cost. In our system, we want to achieve

good performance on average commodity servers.

For caching schemes, people have proposed to replicate read-intensive data items across

multiple servers [20], so that some transactions do not have to perform remote data fetching

and can be processed as local transactions. However, such replication usually requires human

intuition on hotspot data items or systematically profiling the whole database workload.

Ideally, the database system should automatically and dynamically provide a caching scheme

to replicate this data without human intervention.

To fulfill these two ideas, we designed Sundial [67], an in-memory distributed concur-

rency control protocol that outperforms existing approaches in standard benchmarks. The

Sundial project started before I joined the group. In this work, Xiangyao Yu primarily did

significant work including coming up with the core idea extended from his previous work

[66] and maintaining the codebase from [4]. My contribution in this work mainly lies in

* Proposing potential optimizations to improve the performance of the system (will be

discussed in Chapter 5) as well as related implementations and experiments;

" Conducting a series of evaluation experiments of the main system over well-known

benchmarks;

" Designing a variant of YCSB benchmark to capture the behaviors in social networks

which reveals the non-trivial performance gain from the caching scheme of Sundial;

" Comparing Sundial with the most closely related baseline MaaT [47]. This includes

reproduction of the codebase of MaaT, extending the MaaT system into the multi-

server-multi-threaded model to ensure fairness (since Sundial is designed to run in

multiple threads on every server), as well as other discussion, experiments and analysis

related to MaaT;
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" Adding the idealized MVCC as an imaginary baseline to indicate the performance

bounds of a series of MVCC systems in the same environment.

" And other efforts in maintaining the codebase.

To reduce the problem of long network latency, Sundial naturally integrates with a data

caching in a server's local memory without sacrificing serializability, and decides whether it

should use cached data based on access patterns and heuristics.

To reduce the extra overhead of coordinating transactions, Sundial combines lock-based

and optimistic concurrency control protocols. It reduces unnecessary aborts by reordering

transactions dynamically that have read-write conflicts.

The technique we used in Sundial is logical leases, which, with a little more information

stored per data item, enable the database system to dynamically re-arrange the logical order

among transactions based on their data access patterns, while enforcing serializability.

For each data item, we attach a logical lease to it. A logical lease consists of two logical

timestamps marking the starting point and ending point of the lease. Only within this range

is the tuple valid. The database system finds a commit timestamp for the transaction such

that it overlaps with all the logical leases of the tuples of the specific versions accessed

by the transaction. It has been shown in prior work that logical leases are effective in

improving overall performance and concurrency for both hardware cache coherence [65]

and concurrency control protocols on a single machine with multicore processors [66]. As

far as we know, Sundial is the first database system to integrate logical leases with a natural

caching scheme working seamlessly with the concurrency control protocol in a distributed

and shared-nothing setting.

We implemented Sundial and evaluated it with standard benchmarks along with three

state-of-the-art candidates as baselines: Google Fl [53], MaaT [47], and typical two-phase

locking with the Wait-Die scheme [12, 34]. We used two YCSB and TPC-C workloads

with different configurations. Sundial achieves up to 57% higher throughput and 41 % lower

latency than the best baselines. We also evaluated the caching scheme and it improved the

throughput by up to 4.6 x for read-intensive workloads with skew.
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Chapter 2

Background and Related Work

Transactional processing systems require that the concurrency controls maintain the atom-

icity and isolation of transactions. Atomicity makes sure that either the full transaction is

applied or none of the changes made is applied to the database. Isolation specifies when a

transaction's changes are publicly available to other transactions. There are different levels

of isolations. In Sundial, we fulfill serializability. Conflicting transactions generate the same

effects as if they are executed sequentially.

While serializability provides a strong guarantee and easy-to-understand programming

features for programmers, procotols with such property usually come with large overhead in

a database system. This has been shown in previous studies of concurrency control in both

the multi-core processor setting [64] and distributed setting [34]. This observation is even

more obvious in a distributed database system because of high network roundtrip latencies

between geographically scattered database servers.

Existing concurrency control protocols [12] mainly follow two paradigms. One is two-

phase locking (2PL for short) and the other one is timestamp reordering (T/O). People often

consider 2PL [12, 30] schemes as pessimistic protocols as they by default assume more

frequent conflicts and aborts. So they act in a conservative way that a transaction accesses

a tuple only after the lock of that tuple is acquired with corresponding permission (e.g.,

read or write). Timestamp reordering decides the commit order of transactions with logical

timestamps on the fly. A well-known category of concurrency control schemes is called

Optimistic Concurrency Control, where the system executes transactions with an optimistic
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assumption that no conflict might occur and performs conflict checking and resolution

(usually just direct aborts) after execution. OCC allows the transactions to execute in a non-

blocking manner, but it is expected to bring more aborts and more re-trials. Multi-Version

Concurrency Control (MVCC) is another typical class of concurrency control algorithms,

where the system dynamically maintains and keeps track of more than one version of data to

reduce conflicts. Both OCC and MVCC are special cases of T/O. Sundial combines the pros

of OCC and 2PL by applying different techniques for different types of conflicts (namely,

write-after-write conflicts and read-after-write conflicts). Sundial is also MVCC-aware. It

contains some optimizations with the spirit of MVCC, which will be discussed in details

in Chapter 5. Sundial further prevents some of the unnecessary aborts due to read-after-write

conflicts via utilizing logical leases (see Chapter 3).

2.1 Distributed Concurrency Control

A number of attempts have been made to design distributed concurrency control proto-

cols [19, 28, 47, 53, 61]. Spanner [19] and F1 [53] follow the 2PL paradigm. MaaT [47]

and Lomet et al. [46] are based on T/O. Among these protocols, MaaT [47] shows the most

similarities with Sundial. They both coordinate transactions with logical timestamps and

calculate the commit order of them dynamically. However, they use different techniques.

MaaT assigns timestamp intervals to transactions and requires explicit manipulation of the

logical time range of each transaction, which entails much higher overheads and causes

more unnecessary aborts. Sundial does not let transactions interfere with other transactions

directly. It works with the timestamp meta-data (i.e., a logical lease) assigned to each data

item to indirectly infer the logical order. Futhermore, an efficient caching scheme is used in

Sundial to reduce cost from the network latency of remote data access, whereas the design

of MaaT does not support caching.

The work of Lomet et al. [46] presented a design of concurrency control protocol

that applies the multi-version technique and the system decides the commit timestamp

of a transaction using timestamp ranges similar to [47]. The protocol can be deployed

to a single-server multicore architecture or a distributed cluster of servers. The protocol
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dynamically detects conflicts and whenever there is one, the timestamp ranges of involved

transactions are shrunk accordingly to eliminate the conflict. Sundial prevents such shrinking

operations by applying logical leases. Furthermore, the database system working with Lomet

et al.'s procotol needs to store multiple versions of data. We analyzed and compared the

performance of Sundial and Lomet et al.'s construction, and our results are presented

in Chapter 6.

2.1.1 Multicore Concurrency Control

Usually people will naturally try to extend and apply an idea used in multicore setting to

distributed scenarios. Intensive research has been done in how to achieve efficient transaction

processing on single-server multicore systems [38, 43, 49, 60, 62, 63, 68, 66]. Some of

them are not out-of-box ready for the distributed setting because some operations become

expensive due to the latency in a network roundtrip, as an example. We integrate some of

the ideas from these works into Sundial.

In this work, we mainly look into the protocols for distributed concurrency control,

and therefore those protocols which are specifically designed for single-server multi-core

systems are not compared to.

2.1.2 Data Replication and Cache Coherence

Data replication [20, 50] is well-known to be effective for frequently accessed read-only data.

When people replicate these data across servers, this replication can reduce unnecessary

network requests and system overheads.

However, data replication requires human knowledge of spotting and identifying those

frequently accessed data, or a systematic profiling on the workloads, both of which are

daunting tasks for rapidly evolving databases. When the database updates these hot spots,

all the servers hosting replicas of these data needs to be updated carefully to maintain the

consistency, which is quite expensive. Furthermore, data replication increases the total

memory usage, and is problematic if the size of replicated data is large.

Compared to data replication, a caching scheme is usually a better and more flexible
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choice to take advantage of hot spot data, especially when the database system is of very

large scale, with complicated data relationships, evolving and changing fast, or simply does

not support easy human interventions. With hot spot data cached, a query that reads such

data does not need to visit the distant data partition and thus avoids a network round trip,

reducing both network latency and traffic.

The most critical challenge to build a caching scheme is to guarantee cache coherence

(i.e., making sure that the data being read is still valid and updated). Cache coherence is one

of the most 'classic' problems in the fields of computer architecture and computer systems.

Significant efforts have been made to design and implement elegant caching schemes

with cache coherence for multi-core and multi-socket architectures [9, 54, 70], distribtued

shared memory systems [37, 42], distributed storage systems [33], and databases [8, 32,

51]. Conventionally, concurrency control algorithms and caching schemes are studied and

designed independently in database systems. Both of them are difficult to construct and

verify [55].

In Chapter 4, we will show that Sundial provides a harmonious and lightweight combi-

nation of both a concurrency control algorithm and a caching scheme, unifying them into a

single protocol with the help of logical leases.

2.1.3 Integrating Concurrency Control and Cache Coherence

In a series of work on data sharing systems [52] such as IBM DB2 [36], Oracle RAC [15],

Oracle RDB [45], and Microsoft Hydra [13], the idea of integrating concurrency control

and cache coherence has been intensively studied. In these examples, the data is stored in

a shared structure in distributed servers. Each server can read and write all the data in the

database, with a cache buffer of recent accesses. The protocol guarantees the coherence of

the cache. Any data fetched from the cache are not stale.

Sundial differs from these data sharing systems in two ways. First, data sharing systems

are usually built on shared-disk architectures while Sundial can be run on commodity

shared-nothing servers. Sundial scales better than usual data sharing systems. Second, the

coherence protocol and the concurrency control scheme typically follow the 2PL paradigm,
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whereas Sundial applies logical leases for both the concurrency control protocol and the

cache coherence scheme, which is unified into a single lightweight and simple protocol.

G-store [22] is another related work that supports transaction processing over a key-value

store. The system executes a protocol to transfer the ownership of all the keys that the

transaction is going to access before the transaction actually starts. Ownership transfer in

G-Store is equivalent to acquiring exclusive data copy in a coherence protocol; however,

both reads and writes require exclusive ownership, which means transactions on different

servers cannot read the same key concurrently.

The disadvantages of this include: (1) The DBMS needs to do static analysis or some

other preprocessing to get the knowledge of what keys the transaction is going to access

beforehand. (2) If more than one transaction wants to read a particular key, the system has

to postpone all but one of them. In Sundial, we overcame these drawbacks by supporting

concurrent data access and dynamic working sets.
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Chapter 3

Sundial Concurrency Control

In this section we presents the details of the Sundial as a distributed concurrency control

protocol. To make it easy to explain, we assume that the distributed system is built on top

of a cluster of homogeneous commodity servers linked with a typical Local Area Network

(LAN). The data is evenly split and deployed across these servers. Each data item gets

assigned to a home server, where the data piece physically lies on. Every server can execute

transactions as a coordinator, a.k.a., the transaction starts from this server, or the server helps

process remote data access from a transaction coordinated at another server on behalf of

it. The server that starts the transaction is called the coordinator of the transaction. Other

servers which help process the remote data access requests of the transaction are called the

participants of the transaction.

3.1 Logical Leases

In Sundial, a logical lease consists of two logical timestamps, marking the beginning and

the ending of the lease. The logical timestamps in the systems specify a partial logical

order among concurrent transactions. A logical lease corresponds to a version of the data

item (although we do not actually keep multiple versions of the data), which is valid within

the lease. If a transaction requests to write a new version of the data item, it has to acquire

a new lease which logically comes after the current one. The two logical timestamps are

represented by two 64-bit timestamps, wts and rts. wts is the logical timestamp when the
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tuple was recently modified. rts marks the end of the lease, meaning the furthest future by

which the system is sure that the version is valid. It is natural that we require for every lease

wts < rts. A transaction can write to the data after the current version of the data 'expired'

in terms of logical order. Namely, the transaction needs to write to the tuple at a timestamp

no earlier than rts + 1. Note that since the leases are in logical timespan, the transaction

that performs the writing does not necessarily have to wait in physical time for the lease to

expire. It simply jumps ahead in logical time beyond the lease.

To enforce serializability, the concurrency protocol scheme decides committs of a

transaction such that it falls within the leases of all the tuples the tranasction has ever

accessed. For each committed transaction, we calculated a commit timestamp committs

for it. The system requires that for each transaction with commit timestamp committs,

and each data tuple dt it read, we have dt.wts < committs < dt.rts, where dt.wts and

dt.rts represents the logical lease the transaction acquired for the exact version it has

accessed. In the logical timestamp space, the transaction gets executed atomically at the

timestamp committs. The system picks committs by solving an inequality group with all

the coefficients from the metadata (a.k.a., the logical lease information) of the data items.

Thus, it does not require any direct interaction or coordination between transactions across

the whole system. When we cannot find a valid solution for the inequality group, we do not

immediately abort the transaction. We will try to see if any of the data that the transaction

read could extend its lease to a larger timestamp, for example, because it has not been written

and assigned to a new logical lease. While such an extention does not always succeed, it can

reduce the unnecessary aborts. We will discuss this optimization in Chapter 5.

To more clearly explain our scheme, Fig. 3-1 illustrates an simple example of the high-

level idea behind Sundial's concurrency control scheme. The system is going to execute two

transactions T1 and T2. Among these two, Ti reads tuples A and B with logical leases [0, 1]

and [1, 2] respectively (in this work we represent a logical lease that starts from x and ends

at y by the symbol [x, y]). Ti also writes to D and creates a new lease of [1, 1] for the new

version of the data item. Ti commits at timestamp 1 as it is the earliest feasible solution that

overlaps with all the logical leases of the data versions Ti accessed.

T2 writes A so it creates a new version for A with a new lease [2, 2]. The starting point
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0 1 2 3

LogiRead(A)

Read(B)

Write(A)

T ime-- -x- -- - -i
atnso

cal

4 Read(C)

5 Write(D) ---- - -- -- -------

T1 commits @ TS=1 T2 commits @ TS=3

Figure 3-1: Logical Lease Example - Example schedule of two transactions, Ti and T2, accessing
tuples A, B, C, and D. Ti's and T2's operations are shadowed in light yellow and dark green respectively.
The horizontal and vertical axis means the order of logical timstamp and physical time, respectively.
Since the logical timestamps are discrete, we represent each timestamp as an interval on the horizontal
axis in the figure.

of the new lease equals the previous rts + 1, meaning that the new version is valid after the

previous lease expires. T2 reads C at [3, 3] because the current version of C was written

by some other transaction and its logical lease starts from logical timestamp 3. Notice that

these logical leases do not overlap, meaning there is no solution to the inequality group. In

this case, as mentioned earlier, the scheme extends the end of the lease on A from 2 to 3 such

that both logical leases are valid at 3. If no other transaction has written to A at timestamp 3,

the lease extension succeeds. T2 has a valid solution of its commit timestamp at 3.

Another observation in this simple example is that T2 has already modified A before Ti

commits, whereas A has already read by T1. In conventional OCC protocols, the system

will check the data items that Ti touched, making sure no one has modified them. In this

case, we can see that the writing operation from T2 caused Ti to abort. In Sundial, with the

support of logical timestamps, such a situation does not cause Ti to abort because Sundial

serializes transaction in logical timestamp order rather than physical time order. Therefore,

the transactions can jump in physical time, as long as their logical timestamp order is sound

and valid. As shown in this example, although T1 commits with a smaller logical timestamp,

it commits after T2 in physical time order. This dynamic scheduling feature allows the

19
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database system to gain performance by enabling more transactions to commit compared to

traditional OCC protocols and reducing unnecessary aborts caused by read-write conflicts.

The abort rate is therefore lowered and concurrency is improved.

3.2 Conflict Handling

Sundial applies two kinds of approaches to resolving two categories of conflicts between

transactions being processed. Previous work that embeds similar hybrid schemes exist both

in database field [25, 56] and software tranasctional memory [27]. In Sundial, we handle

read-write conflicts with an OCC style protocol, and write-write conflicts by the pessimistic

2-phase locking scheme. For write-write conflicts, our design decision results from an

observation we made about database applications, that writing operations mainly consists

of read-modify-writes. Two such writing operations on the same target would certainly

cause a conflict, if no extra semantic knowledge about the operation like commutativity is

exploited. Handling such conflicts with OCC will result in all but one of the conflicting

transactions to abort and most of the computation resources are unfortunately wasted. For

read-write conflicts, using OCC prevents a transaction from wasting time in waiting for

locks, especially on some hot spot data items, which are likely to cause a bottleneck in

transaction execution and greatly reduce the parallelization. More importantly, this allows

the system to dynamically change the execution order of transactions and give up early on

some of the transaction executions. Combined with the techniques of logical timestamps,

the system can further reduce unnecessary aborts.

To better explain this, Fig. 3-2 shows an example to illustrate the difference between

2-phase locking, traditional OCC, and Sundial in dealing with read-write conflicts. In

2-phase locking, the database system notices that the transaction Ti requests to perform a

read operation. It then acquires a lock for Ti before it actually reads it. Another transaction

T2 tries to write to the exact same tuple. The lock held by Ti blocks the progress of T2

from its writing operation. This increases the execution time of T2 because all the following

operations of T2 are in turn affected.

Things are different when it comes to traditional OCC protocols. A transaction does
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Figure 3-2: Read-Write Conflict Example - Example schedule
write conflict in 2-phase locking, traditional OCC, and Sundial.

Sundial

T1

R( a s

lease
[11, 11]

T2

W(A)

Commit
TS=11

Commit

TI commits
logically before T2

of two transactions with a read-

not need to acquire a lock before accessing data items. Therefore, T2 finishes and commits

before T1, although it wrote to the data tuple A in the database. When Ti finishes execution,

the system finds that the data tuple A which Ti accessed earlier has been changed to a new

value by T2. Then, because of this conflict, the OCC protocol aborts the transaction Ti since

the effects proposed by Ti might not be serializable any more.

However, in this simple schedule example, both Ti and T2 could have successfully

committed because there exists a logical commit order where T2 commits after Ti that

still preserves serializability. The concurrency control scheme behind Sundial is able to

discover this order with the help of logical leases and enforce it. For example, Ti accessed

the version of A with a lease of [0, 10]. It commits at a timestamp inside the range, a.k.a., at

timestamp 0 (here we assume there is no other constraint for Ti). T2 performs its writing

operation to A and creates a new logical lease of [11, 11]. Then T2 commits at timestamp

11 (similarly, we assume there is no other constraint for T2). Although Ti in physical time

committed after T2, in logical order Ti commits before T2. Both transactions are approved

to commit and take effect onto the data storage.
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3.3 Protocol Phases

Fig. 3-3 shows the lifecycle of a typical distribuetd transaction executed in Sundial. It

consists of three phases-(1) execution, (2) prepare, and (3) commit. The coordinating

server (the first column) starts the transaction. In the execution phase, the coordinator server

follows the content of the transaction and executes it. Whenever necessary, the server sends

requests on behalf of the transaction to access remote data items. Then, the coordinator starts

the prepare phase after the transaction finishes execution. The prepare phase and commit

phase compose a typical 2-phase commit process. In the prepare phase, the coordinator

sends prepare requests to all the remote servers that have been accessed in the transaction

execution. Each server responds with a message indicating whether or not the corresponding

transaction can be committed according to their local knowledge. If all the responses are

positive, the coordinator server pushes the transaction into the commit phase, where it starts a

new network roundtrip to all the remote servers that participated and finishes the transaction.

Otherwise, the database system aborts the transaction, giving up changes before they are

applied, and releasing all the locks. The system is designed to tolerate server crash-stop

failure as well as network failure. The prepare phase and the commit phase apply the typical

logging strategy widely used in 2-phase commitments. Details of logging are illustrated in

Fig. 3-3.

During the commit phase of a transaction, the changes are applied into the database.

Only at this point, the metadata associated with the previous data version is erased and

modified into a new logical lease corresponding to the new version. As mentioned above,

the system might extend the logical lease of a data item when needed and lease overlap will

be caused. In this case, the rts of the logical lease are modified but no new data version is

created. The logical leases for any particular data item is disjoint and non-overlapping. The

wts and the rts of a tuple increase monotonically while the transaction processing progresses.

The database system piggybacks the necessary logical timestamp information in its network

messages. We now present a detailed explanation in the following parts of this section.
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Request from a user application

Coordinator Participant 1 Participant 2

,Ra/Write Request

Execution Phase Response

repare Request

Prepare Phase OK/Abort

*1 COMMitJAbort

Commit Phase ACK
---------------

Figure 3-3: The lifecycle for a Distributed Transaction - A typical distributed transaction in
Sundial goes through the execution phase, prepare phase and commit phase.

3.3.1 Execution Phase

The content of the transaction is executed in the execution phase. The database system

performs the logics of the transaction and processes read and write requests on behalf of

the transaction. Each data item is assigned a logical lease. The logical lease consists of two

64-bit integers, wts and rts. In Sundial, the protocol handles write-and-write conflicts using

the 2-phase locking scheme (of the wait-and-die flavor) [12]. To implement this scheme, the

meta-data field also maintains the lock owner and a variable length wait-list of transactions

waiting for the lock. In this work, we denote the metadata together with the data of a tuple

in the database DB with the symbol DB[key], where key is the primary key of the tuple.

DB[key] = {wts, rts, owner, waitlist, data}

Sundial resolves read-write conflicts with an OCC scheme. Therefore, the system keeps

track of the read set (RS) and the write set (WS) of each transaction. Different from

traditional OCC's, we not only record the data itself in a read/write set element, but also the
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logical timestamp of the data version. Formally, each element in the read/write set looks

like below.

RS[key] = fwts, rts, data},

WS[key] = (data},

where data represents a full copy (though sometimes for a large data item, we might store

an incremental change instead) of the database tuple that the transaction reads or writes.

The detailed pseudo code of the execution phase is shown in Algorithm 1. We design the

execution phase to listen to the read and write events of the transaction. The code marked

in gray shadow is related to the caching scheme in Sundial. We will explain it later in

Chapter 4.

Whenever the transaction initiates a read request, the database will check if the data

item is already in the read set or the write set of the transaction. If yes, the database system

simply feeds the request with the data on hand (lines 2-5), reflecting the latest update of

the data. Otherwise, the system sends a remote procedure call (RPC,) to the server hosting

that data item. The RPC will read the metadata and data atomically, and return them to the

home server to add them to the read set of the transaction (lines 10-12). The coordinator

then updates the committs of the transaction to be no smaller than the wts of the tuple (line

14). This corresponds to the inequality that the commit timestamp should be larger than

the wts of all the logical leases it acquired (i.e., the commit event happens after the time

when the data version was written, in the logical order). The other part of the inequality (i.e.,

the commit event should happen before the end of the lease) will be enforced later. The

procedure returns the data to the transaction execution at the end (line 15).

Similarly, for the write operation the database system does a check if the tuple is already

in the write set of the transaction. If found, the database system simply updates the local

data in the write set to reflect the lastest change (line 17). Otherwise, it locks the tuple by

initiating an RPC to the server hosting that data item (lines 18-20). The RPC returns a

message indicating whether the lock is successfully acquired. And if so, the wts and rts of

the locked tuple will be piggybacked in the return message. Otherwise, if the data tuple
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Algorithm 1: Execution Phase of Transaction T - Tcommit ts is initialized to
0 when T begins. Caching related code is highlighted in gray (cf. Chapter 4).
1 Function read(7, key)
2 if key E T WS:
3 | return WS[key].data
4 elif key E TRS:
S | return RS[key].data
6 else:
7 ik E Cache and Cache.decideread(:
8 TRS[key].[wts, rts, data] = Cache[key].[wts, rts, data!
9 else:

10 n = get home node(key)

11 # read data() atomically reads wts, rts, and data and return them back
12 TRS[key].[wts, rts, data] = RPC,::readdata(key)

13 Cache[keyJ.{wts, rts, data] = TRS[key].[wts, rts, data]
14 Tcommitts = Max(T committs, TRS[key].wts)
15 return RS[key].data

16 Function write(T key, data)
17 if key V T WS:
18 n = get homenode(key)

19 # lock() tries to lock the tuple DBfkey/; if locking is successful, it returns wts and rts
of the locked tuple

20 [success, wts, rts] = RPC,::lock(key)
21 if not success or (key E TRS and wts 4 TRS[key].wts):
22 | Abort(T)
23 else:
24 | Tcommitts = Max(T committs, rts + 1)
25 T WS[key].data = data

is already locked by another transaction, the transaction aborts. If the lock is successfully

acquried but coordinator finds that the locked key exists in the read set of the transaction,

and the wts from the remote server does not match the wts recorded in the read set, the

system will also abort the transaction since in this case someone else has already acquired

the lock, written another version of the data, and released the lock. The system will advance

the commit timestamp of the transaction to rts + 1 (i.e., the wts assigned to the new version

that is going to take effect in the database if the transaction successfully commits), and

add a new element to the write set of the transaction with the data intended in this write

operation. The content in the write set will only be visible after the transaction is committed

(Section 3.3.3).
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As mentioned earlier, read-write conflicts in Sundial are processed in a non-blocking

fashion. Even if a tuple is locked, a read operation from a transaction is still permitted.

And that read will return the corresponding logical lease associated with the version stored

in the database at that time. In this case, apparently someone else is trying to write to

that exact tuple, and the read operation happens before the data change takes effect. The

database system will make sure that the commit timestamp of the reading transaction is

going to be smaller than that of the writing transaction (i.e., the lock owner of that data

tuple). And thereby both transactions are able to commit as long as they successfully handle

other conflicts.

3.3.2 Prepare Phase

Following the paradigm of 2-phase commitment, the prepare phase determines if all the

remote servers involved, as well as the coordinator, agree that inequalities originated from

the read and write operations of the transaction are satisfied at the committs calculated at the

coordinator server. The logic of the prepare phase is shown in Algorithm 2; validatereadset

is executed at the coordinator. renewlease is a remote procedure call actually executed at

the participating servers.

At this time, the transaction is holding a lock for each of the tuples recorded in the write

set. No other transaction could have the chance of modifying the data tuple. The database

system only validates those tuples that were accessed but not written. Notice that some keys

might appear in the record elements of the read set of the transaction but also exist in the

write sets. For these keys, the database system does not have to perform validations for

them because the locks for them are being held. For each key in the read set but not the

write set (line 2), the system checks if committs is within the time interval of the logical

lease, i.e., RS[key].wts < committs < RS[key].rts. Since during the read operation in

the execution phase we already make sure that RS[key].wts < committs, we only have

to check the right part of the inequality, i.e., committs < RS[key].rts. If any part of the

validation fails, before aborting the transaction, the system does one more thing to try to

save it. The coordinator server sends an RPC to the home server of the tuple to extend the
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Algorithm 2: Prepare Phase of Transaction T - validateread set() is executed
at the coordinator; renewjlease() is executed at the participants.

1 Function validateread set(T)
2 for key C T RS.keys() \ T WS.keys():
3 if committs > TRS[key].rts:
4 n = get home node(key)
5 # Extend rits at the home server

6 resp = RPC',::renew lease(key, wts, commit ts)
7 if resp == ABORT:

8 Cah4 ve(key)
9 return ABORT

10 return COMMIT

11 # renew__lease() nmst be executed atomically
12 Function renewlease(key, wts, commit-ts)
13 if wts 4 DB[key]. wts or (committs > DB[key]. rts and DB[key]. is_locked()):
14 1 return ABORT
15 else:
16 DB[key].rts = Max(DB[key].rts, commit-ts)
17 return OK

lease (lines 4-6) (i.e., to see if the rts could be increased). If the lease cannot be extended,

the server aborts the transaction.

At the remote server, when a request of extending the logical lease is received, the server

performs the renewlease function for lease renewal. The logic is simple. If the current wts

in the database is different from the wts observed by the transaction during the execution

phase, or the tuple has been locked by another transaction, then the database system will

return an ABORT signal to the sender that the extension could not be done. Otherwise, the

logical lease can be extended to be at least committs by the server. And a OK signal is

returned to the coordinator server. If all the servers involved returned a OK message, the

coordinator pushes the transaction into the commit phase. Otherwise, the transaction is

aborted.

Note that both wts and rts of a tuple never decrease.
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Algorithm 3: Commit Phase of transaction T - The transaction is committed or
aborted here.
1 Function commit(T)
2 for key E T WS.keys():
3 n = get homenode(key)
4 RPC,,::updateand_unlock(key, T WS[key].data, Tcommitts)

5 Cache[key].wts = Cache[key].rts = Tcommitts

6 Cachg[kyyj.ta = T WS[Ue J.data

7 Function abort(T)
8 for key E T WS.keys):
9 n = get homenode(key)

10 # nlock() releases the lock on DBfkev
11 RPC,::unlock(key)

12 Function update-andinlock(key, data, commit ts)
13 DB[key].data = data
14 DB[key].wts = DB[key].rts = commitTs
15 unlock(DB[key])

3.3.3 Commit Phase

If the coordinator decides to abort the transaction, the system executes a cleanup procedure

for it to release all the locks. Otherwise, the transaction is committed and all the tempo-

rary modifications in the write set are applied into the database, with the locks released.

Algorithm 3 shows the logic of this phase. The function abort is executed for aborting

transactions and commit is executed for committing transactions.

If the transaction is a read-only transaction, the system goes through a shortcut where the

whole commit phase is skipped. Or, If a transaction does not perform any write operation

on a remote server, the coordinator will skip this server during the commit phase and that

server, observing the transaction being read-only, will simply drop the transaction (since

whether it aborts or not will not make any difference to that server's point of view). Such

small optimzations help reduce network traffics. Finally, for either committed or aborted

transactions all the servers involved drop the transaction's local read and write set, and

release the memory.
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Figure 3-4: Concurrent Index Read/Scan and Insertion in Sundial - Logical leases are embed-

ded into the leaf nodes of a B+tree index to enable high concurrency in index accesses.

3.4 Indexes and Phantom Reads

Beyond regular reads and writes, indexes must support inserts and deletes. As a result,

an index requires extra concurrency control mechanisms for correctness. Specifically, a

phantom read occurs if a transaction reads a set of tuples twice using an index but gets

different sets of results due to another transaction's inserts or deletes to the set. Serializability

does not permit phantom reads. This section discusses how Sundial avoids phantom reads.

By treating inserts and deletes as writes to index nodes, and lookups or scans as reads

to index nodes, the basic Sundial protocol can be extended to handle index accesses. This

way, each index node (e.g., a leaf node in a B+tree index or a bucket in a hash index) can be

treated as a regular tuple and the protocol discussed in Section 3.3 can be applied to indexes.

The logical leases can also be maintained at a finer granularity (e.g., each pointer in the

leaf node or each block in a bucket) to avoid unnecessary aborts due to false sharing; in

Sundial, we attach a logical lease to each index node. In order to ensure that multiple index

lookups/scans to the same index node return consistent results, later accesses must verify

that the index node's version has not changed.

Fig. 3-4 shows two examples of transactions concurrently accessing a hash index (Fig. 3-

4a) and a B+tree index (Fig. 3-4b). In the hash index example, T1 reads all the tuples mapped

to a given bucket with a lease of [0, 10]. T2 then inserts a tuple into the same bucket, and

updates the lease on the bucket to [11, 11]. Ti and T2 have a read-write conflict but do not
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block each other; both transactions can commit if each finds a commit timestamp satisfying

all the accessed leases.

In the B+tree index example, Ti performs a scan that touches two leaf nodes, LN1 and

LN2, and records their logical leases ([0, 10] and [0, 5]). After the scan completes, T2 inserts

a new key into LN1. When T2 commits, it updates the contents of LN1 , as well as its logical

lease to [11, 11]. Similar to the hash index example, both Ti and T2 may commit and Ti

commits before T2 in logical time order. Thus, concurrent scans and inserts need not cause

aborts.

3.5 Fault Tolerance

Sundial tolerates single- and multi-server failures through the two-phase commit (2PC)

protocol, which requires the coordinator and the participants to log to persistent storage

before sending out certain messages (Fig. 3-3). The logical leases in Sundial, however,

require special treatment during 2PC: failing to properly log logical leases can lead to

non-serializable schedules, as shown by the example in Listing 3.1.

The example contains two transactions (Ti and T2) accessing two tuples, A and B, that

are stored in servers 1 and 2, respectively. When server 2 recovers after crashing, the logical

leases of tuples mapped to server 2 (i.e., tuple B) are reset to [0, 0]. As a result, the DBMS

commits Ti at timestamp 0, since the leases of tuples accessed by Ti (i.e., A of [0, 9] and B

of [0, 0]) overlap at 0. This execution, however, violates serializability since T1 observes

T2's write to B but not its write to A. This violation occurs because the logical lease on B

is lost and reset to [0, 0] after server 2 recovers from crash. If server 2 had not crashed,

Ti's read of B would return a lease starting at timestamp 10, causing Ti to abort due to

non-overlapping leases and a failed lease extension.

Listing 3.1: Serializability violation when logical leases are not logged - Tuples A and B are

stored in servers 1 and 2, respectively

T1 R(A) lease [0, 9]

T2 W(A), W(B), commit @ TS=10

Server 2 crashes

Server 2 recovers
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lease [0, 0]

One simple solution to solve the problem above is to log logical leases whenever they

change, and restore them after recovery. This, however, incurs too much writing to persistent

storage since even a read operation may extend a lease, causing a write to the log.

We observe that instead of logging every lease change, the DBMS can log only an

upper-bound timestamp (UT) that is greater than the end of all the leases on the server. After

recovery, all the leases on the server are set to [UT, UT]. This guarantees that a future read to

a recovered tuple occurs at a timestamp after the wts of the tuple, which is no greater than

UT. In the example shown in Listing 3.1, Ti's read of B returns a lease of [UT, UT] where UT

is greater than or equal to 10. This causes Ti to abort due to non-overlapping leases. Note

that UT can be a loose upper bound of leases. This reduces the storage and logging overhead

of UT since each upper bound is logged once only when the maximum lease exceeds the last

logged.

3.6 External Consistency

External consistency (or linearizability [35]) is an isolation level not required in traditional

DBMSs but supported in some systems [18, 3]. It brings the following salient feature

to a DBMS - if a transaction starts after the commit of a previous transaction, the later

transaction is also after the previous transaction in the logical serialization order. This feature

is useful when the two transactions have a causal relationship due to some external event

(i.e., a phone call) outside the database. However, supporting external consistency typically

requires synchronizing the clocks across the database servers which can be prohibitive.

Sundial does not support external consistency by default due to its usage of logical time.

But external consistency can be supported by exposing the logical timestamps to the external

world. Specifically, the commit timestamp of a transaction can be returned to the end users,

who forward it to dependent transactions. A dependent transaction feeds this timestamp to

the database as its minimum commit timestamp thereby forcing the commit order.

To enforce the commit order between transaction T1 and T2, we can feed Ti's commit

timestamp as an input argument to T2. This sets T2's initial mincommitts to Ti's committs.
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Therefore, T2 will commit with a greater commit timestamp and be ordered after Ti.

There are other distributed DBMSs that also support external consistency (e.g., Span-

ner [19] and CockroachDB [3]). These systems, however, use globally synchronized clocks

(based on atomic clocks or NTP) for consistent time. Compared with these designs, Sundial

does not require any global clock synchronization for external consistency. One downside

of Sundial, however, is that the commit timestamps of the predecessor transactions have to

be sent to successor transactions. These messages can, however, piggyback on an external

communication channel between these transactions.
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Chapter 4

Sundial Data Caching

Caching a remote partition's data in a server's local main memory can reduce the latency

and network traffic of distributed transactions, because reads that hit the local cache do

not contact the remote server. Caching, however, causes data replication across servers;

it is a challenging task to keep all the replicas up to date when some data is updated, a

problem known as cache coherence [10]. Due to the complexity of maintaining coherence,

existing distributed DBMSs rarely allow data to be cached across multiple servers. As we

now present, Sundial's logical leases enable such data caching by integrating concurrency

control and caching into a single protocol.

Fig. 4-1 shows an overview of Sundial's caching architecture in a DBMS. The system

only caches tuples for reads and a write request updates both the tuple at the home server

and the locally cached copy. For a read query, the DBMS always checks the coordinator's

local cache. For a hit, the DBMS decides to either read the cached tuple or ignore it and

send a query to the tuple's home server. Later in Section 4.2, we will show that the decision

depends on the scenario.

To avoid centralized bottlenecks, Sundial organizes the cache into multiple banks. A

tuple's bank is determined by hashing its primary key. Each bank maintains the metadata

for the tuples it contains using a small index. When the bank is full, tuples are replaced

following a least-recently-used (LRU) policy.
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Figure 4-1: Caching Architecture - The cache is at the network side, containing multiple banks
with LRU replacement.

4.1 Cache Coherence with Logical Leases

In a system where data can be cached at multiple locations, a cache coherence protocol

enforces that the value at each location is always up-to-date; namely, when one copy is

updated, the change must propagate to all the copies. Existing coherence protocols either

(1) require an invalidation mechanism to update or delete all the shared copies, or (2) check

the data freshness by contacting the home server for each read request.

The downside of the invalidation-based approach is the complexity and the performance

overhead of broadcasting each tuple update. The downside of the checking approach is that

each read request incurs the round-trip latency (though data is not transferred if the cached

copy is up-to-date), reducing some of the benefits of caching.

The caching mechanism in Sundial is a variant of the checking approach mentioned

above. However, instead of checking freshness for each read request, the use of logical

leases reduces the number of checks. Specifically, a transaction can read a cached tuple as

long as its committs falls within the lease of the tuple, even if the tuple has been changed at

the home server-the transaction reading the "stale" cached copy can still be serializable

with respect to other transactions in logical time order. In this sense, Sundial relaxes the

requirement of cache coherence: there is no need to enforce that all cached copies are

up-to-date, only that serializability is enforced. Logical leases provide a simple way to

check serializability given the read and write sets of a transaction, regardless of whether the
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reads come from the cache or not.

Supporting caching requires a few changes to the protocol presented so far (Section 3.3);

they are shadowed in gray in Algorithms 1-3. During the execution phase, a remote

read request checks the cache (Algorithm 1, lines 7-8) and either reads from the cache

(Section 4.2) or requests the home server home server (line 13). In the validation phase, if

a lease extension fails, the tuple is removed from the cache to prevent repeated failures in

the future (Algorithm 2, line 8). Finally, if a transaction commits, it updates the data copies

in both the home server and the local cache (Algorithm 3, lines 5-6). These are relatively

small protocol changes.

The caching mechanism discussed so far works for primary key lookups using an equality

predicate. But the same technique can also be applied to range scans or secondary index

lookups. Since the index nodes also contain leases, the DBMS caches the index nodes in the

same way it caches tuples.

4.2 Caching Policies

We now discuss different ways to manage the cache at each server and their corresponding

tradeoffs.

Always Reuse: This is the simplest approach, where the DBMS always returns the

cached tuple to the transaction for each cache hit. This works well for read-intensive tuples,

but can hurt performance for tuples that are frequently modified. If a cached tuple has an

old lease, it is possible that the tuple has already been modified by another transaction at the

home server. In this case, a transaction reading the scale cached tuple may fail to extend

the lease of that tuple, which causes the transaction to abort. These kinds of aborts can be

avoided if the locally cached stale data is not used in the first place.

Always Request: An alternative policy is where the DBMS always sends a request to

the remote server to retrieve the tuple, even for a cache hit. In this case, caching does not

reduce latency but may reduce network traffic. For a cache hit, the DBMS sends a request to

a remote server. The request contains the key and the wts of the tuple that is being requested.

At the home server, if the tuple's wts equals the wts in the request, the tuple cached in the
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requesting server is the latest version. In this case, the DBMS does not return the data in

the response, but just an acknowledgment that the cached version is up-to-date. Since data

comprises the main part of a message, this reduces the total amount of network traffic.

Hybrid: Always Reuse works best for read-intensive workloads, while Always Request

works best for write-intensive workloads. Sundial uses a hybrid caching policy that achieves

the best of both. At each server, the DBMS maintains two counters to decide when

it is beneficial to read from the cache. The counter votecache is incremented when

a tuple appears up-to-date after a remote check, or when a cached tuple experiences a

successful lease extension. The counter voteremote is incremented when a remote check

returns a different version or when a cached tuple fails a lease extension. The DBMS uses

Always Reuse when the ratio between votecache and voteremote is high (we found 0.8 to

be a good threshold), and Always Request otherwise.

4.3 Read-Only Table Optimizations

Care is required when the logical lease of a cached tuple is smaller than a transaction's

committs. In this case, the DBMS has to extend the tuple's lease at its home server. Frequent

lease extensions may be unnecessary, and hurt performance. The problem is particularly

prominent for read-only tables, which in theory do not require lease extension. We now

describe two techniques to reduce the number of lease extensions for read-only tables.

The DBMS can enable both optimizations at the same time. We evaluate their efficacy in

Section 6.4.1.

The first optimization tracks and extends leases at table granularity to amortize the cost

of lease extensions. The DBMS can tell that a table is read-only or read-intensive because it

has a large ratio between reads and writes. For each table, the DBMS maintains a tabwts

that represents the largest wts of all its tuples. The DBMS updates a table's tabwts when a

tuple has greater wts. A read-only table also maintains tab_rts, which means all tuples in the

table are extended to tabrts automatically. If any tuple is modified, its new wts becomes

Max(rts +1, tabrts +1, wts). When the DBMS requests a lease extension for a tuple in a

read-only table, the DBMS extends all the leases in the table by advancing tabrts. The
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tab_rts is returned to the requesting server's cache. A access hit of a tuple in that table

considers the lease to be [wts, Max(tabrts, rts)].

Another technique to amortize lease extension costs is to speculatively extend the lease

to a larger timestamp than what a transaction requires. Instead of extending the rts (or

tabrts) to the committs of the requesting transaction, Sundial extends rts to committs +

3 for presumed read-only tables. Initially being 0, 6 is incrementally increased over time

as the DBMS gains more information that the table is indeed read-only. This reduces the

frequency of lease extensions since it takes longer time for an extended lease to expire.
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Chapter 5

Discussion

Given Sundial's concurrency control protocol and caching scheme described in the previous

sections, we now characterize the different types of transaction aborts that can occur in the

DBMS and discuss potential solutions for reducing them. We also compare Sundial with

dynamic timestamp allocation [I 1] algorithms and show Sundial's advantages over these

previous approaches.

We will also compare Sundial with an implementation of an idealized Multi-Versioning

Concurrency Control system. As we will see, even without the complexity of multi-

versioning, Sundial can achieve the same level of performance. Then, we discuss Dynamic

Timestamp Allocation (DTA) systems which also utilize logical timestamps to control

concurrency conflicts. As a typical example of DTA schemes, MaaT [47] will be compared

with Sundial in some detail. MaaT reorders transactions for higher concurrency.

5.1 Transaction Aborts

As described in Section 3.2, write-write conflicts are difficult for a DBMS to prevent and

thus they are not the main focus of Sundial. These kinds of aborts are inevitable if we choose

not to delay or abort the writing operations of other transactions. Therefore, we focus on

aborts caused by read-write conflicts.

There are three conditions in Sundial that a transaction's commit timestamp must satisfy

before the DBMS is allowed to commit it:
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Figure 5-1: Transaction Aborts due to Read-Write Conflicts - Three cases where the DBMS

aborts a transaction in Sundial due to read-write conflicts.

T.committs > tuple.wts, Vtuple G T.RS (5.1)

T.commit-ts < tuple.rts, Vtuple c T.RS (5.2)

T.commitgts > tuple.rts + 1, Vtuple G T.WS (5.3)

Condition (5.1) is always satisfied since committs is no less than the wts of a tuple when

it is read by a transaction (Algorithm 1) and that each write locks the tuple to prevent it from

being changed by another transaction. Likewise, Condition (5.3) is also always satisfied

because each write locks the tuple and updates the transaction's committs, and no other

transaction can modify the tuple's rts because of the lock.

Therefore, during the prepare phase, the DBMS can abort a transaction only if it fails

Condition (5.2), i.e., the transaction fails to extend a lease since the tuple was locked or

modified by another transaction (Algorithm 2). There are three scenarios where a transaction

T fails Condition (5.2), which Fig. 5-1 illustrates:

Case (a): The tuple's wts in the database is greater than or equal to T's committs.

The DBMS must abort T because it is unknown whether or not the version read by T is

still valid at T's commit ts. It is possible that another transaction modified the tuple after

T.RS[key].rts but before commit_ts, in which case the DBMS has to abort T. But it is also

possible that no such transaction exists such that the version in T's read set is still valid at
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committs and thus T can commit. This uncertainty could be resolved by maintaining a

history of recent wts's in each tuple [66].

Case (b): Another transaction already wrote the latest version of the tuple to the database

before T's committs. The DBMS is therefore unable to extend the lease of the transaction's

local version to committs. As such, the DBMS has to abort T.

Case (c): Lastly, the DBMS is unable to extend the tuple's rts because another transac-

tion holds the lock for it. Again, this will cause the DBMS to abort T.

For the second and third conditions, Sundial can potentially avoid the aborts if the DBMS

extends the tuple's lease during the execution phase. This reduces the number of renewals

during the prepare phase, thereby leading to fewer aborts. But speculatively extending the

leases also causes the transactions that update the tuple to jump further ahead in logical time,

leading to more extensions and potential aborts.

5.2 A WOCC variant of Sundial

It is natural to consider the use of OCC-style schemes for write-write conflicts. We call

such a variant of Sundial the WOCC variant. In this section we discuss the potential aborts

introduced by the WOCC variant and why we stick to a hybrid design in Sundial.

For the WOCC variant of Sundial, a transaction only locks the write set after it finishes

the execution phase. Since the lifespan of the lock does not depend on the execution logic,

we can expect fewer aborts caused by locks. Although this can reduce the kinds of aborts of

case (c) in Fig. 5-1, it raises the possibility of other potential aborts. An obvious kind of

extra aborts happens when some data item in the write set get written by another transaction.

The conventional practice of OCC-style protocols will find such conflicts and abort the

transaction in validation phase. However, due to the fact that we allow transactions to extend

a lease (a.k.a., to extend the rts of the data item), we expect a non-trivial kind of extra aborts

in the system.

A-1e"th Lloca pILpaation, the coordinator sends a timestamp which is valid locally

to all the remote servers involved in the transaction. Upon receiving the timestamp, a

remote server goes through the read set and write set of its sub-transaction and checks if
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Figure 5-2: Extra aborts caused by remote execution. Another transaction has extended the rts of
the data item.

the timestamp is valid. If it finds any of the inequalities in (5.1)-(5.3) not satisfied, it will

abort the transaction and inform the coordinator. During the validation, in addition to the

kinds of aborts discussed above, we expect an extra case of aborts. Shown in Fig. 5-2, the

remote server might find the timestamp proposed by the coordinator to be less than (rts + 1)

of a tuple in its write set (because another transaction has already extended the rts of the

tuple), which violates the condition in (5.3). The conditions in (5.1) and (5.2) are guaranteed

by the coordinator. Notice that since during the execution phase the remote server will

return the rts and wts to the coordinator to make sure the coordinator knows them locally

before the preparation phase, the timestamp proposed by the coordinator always satisfies the

restrictions by these tuples although they are on the remote servers.

Sometimes the aborts in this case are unnecessary. Notice that the coordinator always

tries to propose the minimal timestamp to the remote servers. In reality, it might accept

timestamps (slightly) larger than the proposed one (as long as the timestamp is less than rts

of all the tuples in Read Set). Therefore, it is possible that there exists a larger timestamp

that can actually satisfy all the conditions, both for the coordinator and the remote servers.

If the coordinator tells the remote servers all the acceptable time ranges, it is possible that

the transaction gets saved. In later sections we will explain this case in detail.
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5.3 Abort-Reduction Techniques

In the above sections we showed some cases where some aborts are actually avoidable. In

this subsection we are going to introduce some useful techniques to reduce some unnecessary

aborts. Some of these are only applicable to the WOCC variant of Sundial.

5.3.1 Multi-Versioning

As shown in Figure 5-1(a), sometimes the wts of the latest version is strictly greater than

(rts + 1) of our cached version. This actually hides the information we want to know, i.e.,

whether it is valid to commit at the timestamp commit__ts. To solve this problem, we can

dynamically keep m latest versions of rts and wts of the tuple. At each time that we need

to check whether committs is valid for the tuple, we iterate through the latest m versions

and try to find a version v with v.wts = T.RS[r].wts. If we successfully find such a v, we

can see if v.rts is greater or equal to committs. Then, we can decide whether to abort the

transaction or not. The implementation is easy and straightforward. It does bring 0(m)

extra computation cost, but we assume the network communication is the bottleneck and

therefore local computation cost is negligible. Notice that in is a parameter which can be

tuned, or computed dynamically from runtime statistics with some heuristics. Intuitively, in

should be large when the average lifespan of this tuple is small, and vice versa.

In Section 6.6 we will compare Sundial with an idealized Multi-versioning concurrency

control system and will show that the number of aborts that can be saved by implementing

multi-versions are actually negligible.

5.3.2 Extended Leases

To prevent other transactions from writing too aggressively, besides locking, we can also

choose to "reserve" a certain amount of timespan in case we need to extend the rts. Specifi-

cally, during the execution phase of Sundial, we can try extending r.rts right away if we find

some of the conditions of (5.2) are not satisfied. This will help reduce the amount of aborts

shown in Figure 5-1. Also, for some tuple r' even if committs < r'.rts, we can still extend

r'.rts to nax(r'.rts, committs + L), where L is the length of the lease, a parameter which
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can be pre-set empirically or dynamically tuned from heuristics and statistics. Leases can

help the algorithm reduce the possibility that in the future the monotonically non-decreasing

commit_ts might violate the condition (5.2) for r'.

Range Information

For the WOCC variant, in order to reduce some unnecessary aborts at the remote server,

during the preparation phase, the coordinator can send a range of acceptable timestamps

(tmin, tmax) instead of a single minimum timestamp. Upon receiving the range, the remote

server can compute the inequalities raised by sub-transactions and update the range as

(t'min, t'nax) C_ (trnin, tmax). Then, it sends (t'Min, t'Max) back to the coordinator. After

the coordinator gets all the responses from the remote servers, it can decide whether the

transaction can commit or not.

Notice that for the coordinator there are two ways to produce the range. If the coor-

dinator wants to be conservative, it only needs to report twin = max{maxrET.Rs r.WtS,

maxwETIs w.rts + 1}, tmax = 1minrCT.RS r.rts. Any time in this range is guaranteed safe

to commit. However, if the coordinator wants to be aggressive, it can report tmax

minrET.RSADB[r].wts>r.rts r.rts, in other words, it only needs to upper bound the timestamps

with those tuples that have already been written by other transactions and therefore impos-

sible to get extensions for. If there are no such tuples, the coordinator can simply report

tmax = o0. However, for an aggressive coordinator the available timestamp range might

change when waiting for the responses from the remote servers. So it needs to utilize other

techniques to ensure the validity of the range. For example, it might want to lock the tuples

that have not been written by others, or set leases on these tuples. Similarly, the remote

server can also choose to be conservative or aggressive.

Generally, this will help the algorithm deal with the cases shown in Figure 5-2.

5.4 Executing-Phase Pre-Abort

We can detect if there is a feasible solution when executing the transaction.
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5.4.1 Aggressive Locking

As mentioned before, a brute-force way to avoid these aborts is to stop other transactions

writing these tuples. We can set locks on tuples in the read set before we start validation.

We called this procedure aggressive locking. It will surely prevent all the cases in Figure 5-

1, which raises the probability of the current transaction getting committed. However,

it has several drawbacks. First of all, locking tuples in the read set will prevent other

transactions from accessing them, which will hurt the overall performance when the task

is write-intensive. Secondly, locking read tuples will increase the probability of having

deadlocks.

5.4.2 Shared Locking

Different from aggressive locking, we will allow rts extension even if some other transactions

have locked the tuple. We call this kind of locking as shared locking. Notice that extending a

tuple's rts will not decrease the chance to get committed for any transactions with this tuple

in their read sets, though it might affect the transactions who has this tuple in their write

sets by postponing their writing time. In read-intensive tasks shared locking is expected to

decrease the abort rate.

We found that the WOCC variant of Sundial indeed introduced more transaction aborts

than the hybrid version of Sundial in write-intensive benchmarks. The WOCC variant also

increases the complexity of the whole system framework. For the sake of simplicity and

efficiency, we dropped the description of the WOCC variant in our conference paper [67].

5.5 Sundial vs. MaaT

Similar to Sundial, previous concurrency control protocols have also used timestamp ranges

to dynamically determine the transactions' logical commit timestamps. The technique, first

proposed as dynamic timestanp allocation (DTA), was applied to both 2PL protocols for

deadlock detection [11] and OCC protocols [14, 40, 41]. More recently, similar techniques

have been applied to multi-version concurrency control protocols [46], as well as to MaaT, a
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single-version distributed concurrency control protocol [47].

In all these protocols, the DBMS assigns each transaction a timestamp range (e.g., 0 to

oc) when the transaction starts. After detecting a conflict, the DBMS shrinks the timestamp

ranges of transactions in conflict such that their ranges do not overlap. If a transaction's

timestamp range is not empty when it commits, the DBMS can pick any timestamp (in

practice, the smallest timestamp) within its range as the commit timestamp; otherwise the

transaction aborts.

Timestamp-range-based protocols have one fundamental drawback: they require the

DBMS to explicitly coordinate transactions to shrink their timestamp ranges when a conflict

occurs. In a distributed setting, they incur higher overhead than Sundial.

We use MaaT [47], a distributed DTA-based concurrency control protocol, as an ex-

ample to illustrate the problem. In MaaT, the DBMS assigns a transaction with the initial

timestamp range of [0, +oo]. The DBMS maintains the range at each server accessed by the

transaction. When a transaction begins the validation phase, the DBMS determines whether

the intersection of a transaction's timestamp ranges across servers is empty or not. To

prevent other transactions from changing the validating transaction's timestamp range, the

DBMSfreezes the timestamp range at each participating server. Many transactions, however,

have ranges with an upper bound of +oo. Therefore, after the DBMS freezes these ranges

in the prepare phase, it must abort any transaction that tries to change the frozen timestamp

ranges, namely, transactions that conflict with the validating transaction. We believe this

problem is fundamental because simple fixes like adapting better time-range initialization

scheme, better time-range shrinking upon conflicts, or better heuristics to decide commit

timestamp within the range will not solve the problem from its root.

This problem also exists in other timestamp-range-based protocols. Chapter 6 shows

that these aborts degrade the performance of MaaT.

5.6 Limitations of Sundial

As discussed above, the two advantages of Sundial are (1) improving concurrency in

distributed transaction processing, and (2) lightweight caching to reduce the overhead of
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remote reads. Sundial also has some limitations, which we now discuss, along with potential

ways to mitigate them.

First, Sundial requires extra storage to maintain the logical leases for each tuple. Al-

though this storage overhead is negligible for large tuples, which is the case for workloads

evaluated in this work, it can be significant for small tuples. One way to reduce this overhead

is for the DBMS to maintain the tuples' logical leases in a separate lease table. The DBMS

maintains leases in this table only for tuples that are actively accessed. The leases of all

'cold' tuples are represented using a single (coldwts, coldjrts). When a transaction accesses

a cold tuple, the DBMS inserts an entry for it to the lease table with its lease assigned as

(coldwts, cold-rts). When a tuple with (wts, rts) is deleted from the lease table (e.g., due

to insufficient space), the DBMS updates coldwts and coldrts to Max(cold_wts, wts) and

Max(coldrts, rts), respectively.

The second issue is that Sundial may not deliver the best performance for partitionable

workloads. Sundial does not assume whether the workload can be partitioned or not and thus

does not have special optimizations for partitioning. Systems like H-Store [6] perform better

in this setting. Our experiments show that if each transaction only accesses its local partition,

Sundial performs 3.8 x worse than a protocol optimized for partitioning. But our protocol

handles distributed (i.e., multi-partition) transactions better than the H-Store approaches.

Finally, the caching mechanism in Sundial is not as effective if the remote data read by

transactions is frequently updated. This means the cached data is often stale and transactions

that read cached data may incur extra aborts. A more detailed discussion can be found in

Section 6.4.
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Chapter 6

Experimental Evaluation

We now evaluate the performance of Sundial. We implemented Sundial in a distributed

DBMS testbed based on the DBx1000 in-memory DBMS [64]. We have open-sourced

Sundial and made it available at https: //github. com/yxymit/Sundial. git.

Each server in the system has one input and one output thread for inter-server commu-

nication. The DBMS designates all other threads as workers that communicate with the

input/output threads through asynchronous buffers. Workload drivers submit transaction

requests in a blocking manner, with one open transaction per worker thread.

At runtime, the DBMS puts transactions that abort due to contention (e.g., lock acquisi-

tion failure, validation failure) into an abort buffer. It then restarts these transactions after

a small back-off time randomly selected between 0-1 ms. The DBMS does not restart

transactions caused by user-initiated aborts.

Most of the experiments are performed on a cluster of four servers running Ubuntu

14.04. Each server contains two Intel Xeon E5-2670 CPUs (8 cores x 2 HT) and 64 GB

DRAM. The servers are connected together with a 10 Gigabit Ethernet. For the datacenter

experiments in Sections 6.7 and 6.8, we use the Amazon EC2 platform. For each experiment,

the DBMS runs for a warm-up period of 30s, and then results are collected for the next 30s

of the run. We also ran the experiments for longer time but the performance numbers are

not different from the 1 minute runs. We assume the DBMS logs to battery-backed DRAM.
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Figure 6-1: Performance Comparison (YCSB) - Runtime measurements when running the con-

currency control algorithms for the YCSB workload. The throughput, abort rate, average latency and

traffic is evaluated on a commodity 4-server cluster. The latency and traffic breakdown are measured

on a single server in the cluster with 16 threads.

6.1 Workloads

We use two different OLTP workloads in our evaluation. All transactions execute as stored

procedures that contain program logic intermixed with queries. We implement hash indexes

since our workloads do not require table scans.

YCSB: The Yahoo! Cloud Serving Benchmark [17] is a synthetic benchmark modeled

after cloud services. It contains a single table that is partitioned across servers in a round-

robin fashion. Each partition contains 10 GB data with 1 KB tuples. Each transaction

accesses 16 tuples as a mixture of reads (90%) and writes (10%) with on average 10% of the

accesses being remote (selected uniformly at random). The queries access tuples following

a power law distribution controlled by a parameter (0). By default, we use 0=0.9, which

means that 75% of all accesses go to 10% of hot data.

TPC-C: This is the standard benchmark for evaluating the performance of OLTP

DBMSs [58]. It models a warehouse-centric order processing application that contains
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Figure 6-2: Performance Comparison (TPC-C) - Runtime measurements when running the

concurrency control algorithms for the TPC-C workload. The throughput, abort rate, average latency,

and traffic is measured on a commodity 4-server cluster. The latency and traffic breakdown are

measured on a single server in the cluster with 16 threads.

five transaction types. All the tables except ITEM are partitioned based on the warehouse

ID. By default, the ITEM table is replicated at each server. We use a single warehouse per

server to model high contention. Each warehouse contains 100 MB of data. For all the

five transactions, 10% of NEW-ORDER and 15% of PAYMENT transactions access data across

multiple servers; other transactions access data on a single server.

6.2 Concurrency Control Algorithms

We implemented the following concurrency control algorithms in our testbed. All the codes

are available online.

2PL: We used a deadlock prevention variant of 2PL called Wait-Die [12]. A transaction

waits for a lock only if its priority is higher than the current lock owner; otherwise the

DBMS will abort it. We used the current wall clock time attached with the thread id as the

metric of priority. This algorithm is similar to the approach that Google Spanner [19] used
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for read-write transactions.

Google Fl: This is an OCC-based algorithm used in Google's Fl DBMS [53]. During

the read-only execution phase, the DBMS tracks a transaction's read and write set. When

the transaction begins the commit process, the DBMS locks all of the tuples accessed by the

transaction. The DBMS aborts the transaction if it fails to acquire any of these locks or if

the latest version of any tuple is different from the version that the transaction saw during its

execution.

MaaT: This is a state-of-the-art distributed concurrency control protocol discussed in

Section 5.5 [47]. We integrated the original MaaT source code into our testbed. We also

improved the MaaT implementation by (1) reducing unnecessary network messages, (2)

adding multi-threading support to the original single-thread-per-partition design of MaaT,

and (3) improving its garbage collection.

Sundial: Our proposed protocol as described in Sections 3 and 4. We enabled all

of Sundial's caching optimizations from Chapter 4 unless otherwise stated. Each server

maintains a local cache of 1 GB. Sundial by default uses the hybrid caching policy.

6.3 Performance Comparison

We perform our experiments using four servers. For each workload, we report throughput

as we sweep the number of worker threads from 1 to 28. After 28 threads, the DBMS's

performance drops due to increased context switching. To measure the benefit of Sundial's

caching scheme, We run Sundial with and without caching enabled. In addition to throughput

measurements, we also provide a breakdown of transactions' latency measurements and

network traffic. These metrics are divided into Sundial's three phases (i.e., execution,

prepare, and commit), and when the DBMS aborts a transaction.

The results in Figs. 6-la and 6-2a show that Sundial outperforms the best evaluated

baseline algorithm (i.e., 2PL) by 57% in YCSB and 34% in TPC-C. Caching does not

improve performance in these workloads in the current configuration. For YCSB, this is

because the fraction of write queries per transaction is high, which means that the DBMS

always sends a remote query message to the remote server even for a cache hit. As such, a
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transaction has the same latency regardless of whether caching is enabled. In TPC-C, all

remote requests are updates instead of reads, therefore Sundial's caching does not help.

Fig. 6-I b, Fig. 6-1 c and Fig. 6-2b, Fig. 6-2c presents the variance of the abort rate and

the average latency of Sundial in YCSB workload and TPCC workload, respectively, when

the number of threads changes. Sundial achieves better abort rate and average transaction

execution latency compared to other baselines. The only exception is that in the TPCC

workload, MaaT achieves better abort rate when the number of threads per server is larger

than 12. We think this is caused by the limited parallelizability of MaaT system, as we can

notice the throughput of MaaT is decreasing slightly when the number of threads per server

goes up. Turning on or off the cache scheme does not affect the result much (in fact, the

lines representing Sundial with and without cache schemes almost always overlap with each

other) in both YCSB and TPCC.

From Fig. 6-ld and Fig. 6-2d we can see that in YCSB, turning on the caching scheme

saves around 23% of the total network traffic. In the TPCC benchmark, the caching scheme

does not help (later we will discuss our caching scheme in TPCC workload in more details).

The network traffic consumed by Sundial is small compared to that required by other

baselines.

Figs. 6-1 e and 6-1 f show the latency and network traffic breakdown of different concur-

rency control protocols on YCSB at 16 threads. The Abort portions represent the latency

and network traffic for transaction executions that later abort; this metric measures the

overhead of aborts. It is clear from these results that Sundial performs the best because of

fewer aborts due to its dynamic timestamp assignment for read-write conflicts. Enabling

Sundial's caching scheme further reduces traffic in the execution phase because the DBMS

does not need to send back data for a cache hit. Section 6.4 provides a more detailed analysis

of Sundial's caching mechanism.

Another interesting observation in Fig. 6-1 e is that F 1 and MaaT both incur higher

latency in the commit phase than 2PL and Sundial. This is because in both 2PL and Sundial,

the DBMS skips the commit phase if a transaction did not modify any data on a remote

server. In Fl and MaaT, however, the DBMS cannot apply this optimization because they

have to either release locks (Fl) or clear timestamp ranges (MaaT) in the commit phase,
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Sundial 2PL F1 MaaT
Throughput (Kilo Txns/s) 134.26 136.57 100.80 97.95

Figure 6-3: Performance Comparison (YCSB with Low Contention) - Performance of different

protocols evaluated with YCSB at low contention (90% read) and with all accesses uniformly random.

which requires a network round trip.

The latency and traffic breakdown of TPC-C (Figures 6-2e and 6-2f) show trends similar

to YCSB in that Sundial achieves significant gains from reducing the cost of aborts. Since

only one warehouse is modeled per server in this experiment, there is high contention on

the single row in the WAREHOUSE table. As a result, all algorithms waste significant time

on execution that eventually aborted. Both 2PL and Sundial incur little network traffic for

aborted transactions because contention on the WAREHOUSE table happens at the beginning of

each transaction. In 2PL, the DBMS resolves conflicts immediately (by letting transactions

wait or abort) before sending out any remote queries. Sundial also resolves write-write

conflicts early; for read-write conflicts, Sundial's logical leases allow it resolve most conflicts

without having to abort transactions.

We also evaluated these protocols with YCSB at low contention (90% read, all accesses

are uniformly random), and found that Sundial and 2PL have the same performance, which

is around 35% better than that of F1 and MaaT. Specific results are shown in Fig. 6-3. The

performance gain comes from the optimized commit protocol as discussed above.

6.4 Caching Performance

We describe the experimental results of different aspects of Sundial's caching in this section.

6.4.1 Caching with Read-Only Tables

We first measure the effectiveness of Sundial's caching scheme on databases with read-only

tables. For this experiment, we use the TPC-C benchmark which contains a read-only

table (i.e., ITEM) shared by all the database partitions. To avoid remote queries on ITEM,

the DBMS replicates the table across all of the partitions. Table replication is a workload-

specific optimization that requires extra effort from the users [50, 20]. In contrast, caching
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is more general and transparent, thereby easier to use. We use two configurations for the

ITEM table:

" Replication (Rep): The DBMS replicates the table across all the partitions, thereby

all accesses to the table are local.

" No Replication (NoRep): The DBMS hash partitions ITEM on its primary key. A

significant portion of queries on this table have to access a remote server.

For the configuration without table replication, we test two different caching configura-

tions:

* Default Caching (Cache): The original caching scheme described in Section 4.1.

o Caching with Optimizations (OptCache): Sundial's caching scheme with the read-

only optimizations from Section 4.3.

According to Fig. 6-4, the DBMS incurs a performance penalty when it does not replicate

the ITEM table. This is because the table is accessed by a large fraction of transactions (i.e.,

all NewOrder transactions which comprise 45% of the workload) that become distributed if

ITEM is not replicated. The performance gap can be closed with caching, which achieves

the same performance benefit as manual table replication but hides the complexity from the

users.

From Fig. 6-4, we observe that the read-only table optimizations from Section 4.3 are

important for performance. Without them, a cached tuple in the ITEM table may require extra

lease extensions during the prepare phase. This is because contentious tuples have rapidly

increasing wts; transactions accessing these tuples have large committs, leading to lease

extensions on tuples in ITEM. These lease extensions increase both network delays and the

amount of network traffic, which hurts performance. With the read-only table optimizations,

the DBMS extends all leases in the ITEM table together which amortizes the extension cost.

6.4.2 Caching with Read-Write Tables

In this section, we measure the effectiveness of caching for read-write tables. We use a

variant of the YCSB workload to model a social network application scenario. A transaction

writes tuples following a uniformly random distribution and reads tuples following a power
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Figure 6-4: Caching with Read-Only Tables - Performance of different TPC-C configurations in
Sundial with caching support. We can see that without caching the system experiences a performance
loss compared to Rep, and this loss can be compensated with OptCache.

law distribution. This is similar to the social network application where the data of popular

users are read much more often than data of less- popular users. We sweep the skew

factor (i.e., 0) for the read distribution from 0.6 to 1.7. The percentage of read queries per

transaction is 90% for all trials.

Fig. 6-5 shows the performance of Sundial with and without caching, in terms of

throughput, network traffic, and latency breakdown. When the read distribution is less

skewed (0=0.6), caching does not provide much improvement because hot tuples are not

read intensive enough. As the reads become more skewed, performance of Sundial with
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Figure 6-6: Caching Policies - Performance measurements for Sundial with the caching policies
from Section 4.2 when varying the percentage of write queries per transaction in the YCSB workload.

caching improves significantly because the hot tuples are read intensive and can be locally

cached. With a high skew factor (0=1.7), the performance improvement derived from caching

is 4.6 x; caching also reduces the amount of network traffic by 5.24 x and transaction latency

by 3.8 x.

6.4.3 Cache Size

We now evaluate how sensitive the performance is to different cache sizes. Table 6.2 shows

the throughput of Sundial on the same social-network-like workload as used in Section 6.4.2

with a skew factor 0 = 1.3.
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Table 6.1: Throughput (in Kilo Txns/s) with Different Cache Sizes in Sundial.

Cache Size 0 MB 16 MB 64 MB 256 MB 1 GB 4 GB
Throughput 129 429 455 467 462 462

At this level of skew, performance is significantly improved even with a small cache

size of 16 MB. Performance further increases as the cache gets bigger, until it plateaus with

256 MB caches.

6.4.4 Caching Policies

We now evaluate different caching policies in Sundial (see Section 4.2). We control the per-

centage of write queries in transactions. This changes whether or not the DBMS designates

reading from cache as beneficial or not. For these experiments, both reads and writes follow

a power law distribution with 0=0.9. We use the following caching configurations:

" No Cache: The Sundial's caching scheme is disabled.

" Always Reuse: The DBMS always reuses a cached tuple if it exists in its local cache.

" Always Request: The DBMS always sends a request to retrieve the tuple even if it

exists in local cache.

" Hybrid: The DBMS reuses cached tuples for read-intensive tables only when caching

is beneficial (cf. Section 4.2).

The results in Fig. 6-6 show that Always Reuse improves the DBMS's performance

when the data is read-intensive. In this workload, the cached tuples are unlikely to be stale,

thus there will be fewer unnecessary aborts. As the number of writes increases, however,

many transactions abort due to reading stale cached tuples. The performance of Always

Reuse is even worse than No Cache when more than 1% of queries are writes.

In contrast, Always Request never performs worse than No Cache. It has the same abort

rate as no caching since a transaction always reads the latest tuples. The DBMS incurs lower

network traffic than No Cache since cache hits on up-to-date tuples do not incur data transfer.

For a read intensive table, Always Request performs better than No Cache but worse than
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Abort Cases Abort Rate
Case (a): committs < DB[key].wts 1.79%
Case (b): committs > DB[key].wts 1.56%
Case (c): tuple locked 6.60%
Aborts by W/W Conflicts 4.05%
Total 14.00%

(a) Sundial

Abort Cases Abort Rate

Conflict with [x, oc) 42.21%
Empty range due to other conflicts 4.45%
Total 46.66%

(b) MaaT

Figure 6-7: Measuring Aborts - Different types of aborts that occur in Sundial and MaaT for
the YCSB workload. For Sundial, we classify the aborts due to read-write conflicts into the three
categories from Section 5.1.

Always Reuse.

Lastly, the Hybrid policy combines the best of both worlds by adaptively choosing

between Always Reuse and Always Request. This allows the DBMS to achieve the best

throughput with any ratio between reads and writes.

6.5 Measuring Aborts

We designed this next experiment to better understand how transaction aborts occur in the

Sundial and MaaT protocols. For this, we executed YCSB with the default configuration.

We instrumented the database to record the reason why the DBMS decides to abort a

transaction, i.e., due to what type of conflict. A transaction is counted multiple times in our

measurements if it is aborted and restarted multiple times. To ensure that each protocol has

the same amount of contention in the system, we keep the number of active transactions

running during the experiment constant.

The tables in Fig. 6-7 show the percentage of transactions that the DBMS aborts out of

all of the transactions executed. We see that the transaction abort rate under Sundial is 3.3 x

lower than that of MaaT. The main cause of aborts in MaaT is due to conflicts with the frozen

range of [x, oo) where x is some constant. As discussed in Section 5.5, this happens when

a transaction reads a tuple and enters the prepare phase with a timestamp range of [X, 00).
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While the transaction is in this prepare phase, the DBMS has to abort any transaction that

writes to the same tuple as it cannot change a frozen timestamp range. In Sundial, most of

the aborts are caused by Case (c) in read-write conflicts, where a transaction tries to extend

a lease that is locked by another writing transaction. There are also many aborts due to

write-write conflicts. The number of aborts due to Cases (a) and (b) are about the same and

lower than the other two cases.

6.6 Dynamic vs. Static Timestamps

One salient feature of Sundial is its ability to dynamically determine the commit timestamp

of a transaction to minimize aborts. Some concurrency control protocols, in contrast, assign

a static timestamp to each transaction when it starts and use multi-versioning to avoid

aborting read queries that arrive later [25, 3, 43]. The inability to flexibly adjust transactions'

commit order, however, leads to unnecessary aborts due to write conflicts from these late

arriving transactions (i.e., writes arriving after a read has happened with a larger timestamp).

In this experiment, we compare Sundial without caching against a multi-version con-

currency control (MVCC) protocol with varying amounts of clock skew between servers.

Our MVCC implementation is idealized as it does not store or maintain the data versions,

and therefore does not have associated memory and computation overhead (e.g., garbage

collection) [62]. This allows us to compare the amount of concurrency enabled by Sundial

and MVCC. We use ptp [7] to synchronize the servers' clocks and then adjust the drift from

1 to 10 Ms.

In Fig. 6-8, we observe that even with no clock skew (less than 10 ts) that the DBMS

performs worse with MVCC than with Sundial. This degradation is mostly caused by the

extra aborts due to writes that arrive late. Sundial's dynamic timestamp assignment allows

the DBMS to move these writes to a later timestamp and thus reduce these aborts. Increasing

the clock skew further degrades the throughput of the MVCC protocol. This is because

writes from servers that fall behind in time will always fail due to reads to the same tuples

from other servers. The DBMS's performance with Sundial does not suffer with higher

amounts of clock skew since its timestamps are logical.
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Figure 6-8: Dynamic vs. Static Timestamp Assignment - Performance comparison between
Sundial and a baseline MVCC protocol that statically assigns timestamps to transactions.
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Figure 6-9: Scalability - Throughput of concurrency control algorithms for the YCSB workload on
Amazon EC2.

6.7 Scalability

For the final two experiments, we deployed DBx1000 on Amazon EC2 to evaluate its

performance at a larger scale. We first study the scalability of the concurrency control

protocols as we increase the number of servers in the cluster. Each server is an m4. 2xlarge

instances type with eight virtual threads and 32 GB main memory. We assign two threads

to handle the input and output communications, and the remaining six threads as worker

threads. We run the YCSB workload using the workload mixture described in Section 6.1.

The first notable result in Fig. 6-9 is that the performance of all the protocols drop

to the same level when the server count increases from one to two. This is due to the

overhead of the DBMS having to coordinate transactions over the network [34]. Beyond

two servers, however, the performance of all of the algorithms increases as the number of

servers increases. We see that the performance advantage of Sundial over the other protocols

remains as the server count increases.
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Protocol Sundial Sundial (No Cache) 2PL MaaT F1

Throughput 161 158 122 107 113

(a) Throughput (Txns/sec)

I[= execution M prepare M commit abort

3000
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0 Sundial Sundial 2PL MaaT Google F1

(b) Traffic per Transaction

Figure 6-10: Cross-Datacenter Transactions - Throughput and Traffic per Transaction when

servers are placed in different data centers.

6.8 Cross-Datacenter Transactions

Lastly, we measure how Sundial performs when transactions have to span geographical

regions. In the previous experiments, all of the servers are located in the same data center

and therefore have low communication latency with each other. We deployed DBx 1000 on

Amazon EC2 in an eight-server cluster with each server located in a different datacenter'.

We ran the YCSB workload again and compared the different concurrency control protocols.

Fig. 6-10 shows the throughput and per-transaction network traffic of the protocols

in this environment. All of them suffer from much higher network latencies (-100 ms

per round trip) due to cross-continent communications, which leads to three orders of

magnitude reduction in performance. The average network latency is estimated as 140ms

for a round trip. From the throughput we can see that Sundial performs better than the other

3 candidates. The results show that Sundial still outperforms the other baseline concurrency

control protocols. Caching slightly improves the performance of Sundial due to the reduction

of network traffic, which is especially expensive in this operating environment.

In Section 5.1 we discussed several cases of aborts which could be potentially avoided if

we keep multiple versions of a data tuple. However, in this subsection we will see that even

an idealized multi-versioning has little gain, which implies that the portion of such aborts is

relatively negligible.

INorth virginia (us-east-1), North California (us-west-1), Ireland (eu-west-1), Frankfurt (eu-central-1), Singapore (ap-southeast- 1),

Sydney (ap-southeast-2), Tokyo (ap-northeast-1), and Mumbai (ap-south-1).
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Figure 6-11: Sweep the number of queries per transaction in YCSB.

Idealized MVCC is an idealized multi-versioning concurrency control algorithm where

we don't actually store previous versions but let every read on previous versions succeed.

And because of this, idealized MVCC is not applicable to the TPC-C benchmark since

the value fetched from previous read may affect the following writes. We only do the

comparison for the YCSB benchmark. The result shows that the performance of Sundial

and Idealized MVCC is at the same level with negligible difference.

6.8.1 Queries per Transaction

Fig. 6-11 shows the throughput as the number of queries changes in each transaction in the

YCSB workload. Note that the y-axis shows the throughput in terms of queries per second

which is different from the transactions per second metric used in other experiments. When

each transaction only contains a single query, both 2PL and Sundial have good performance;

2PL performs slightly better due to lower overhead of metadata management. As the number

of queries increases, contention also increases and the performance of 2PL quickly goes

down, while the performance of Sundial remains at a high level.

6.9 Comparison to Dynamic Timestamp Range

In Chapter 2, we qualitatively discussed the difference between Sundial and Lomet et

al. [46]. In this section, we quantitatively compare their performance and discuss why
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Sundial performs better. Our implementation of [46] strictly follows procedures I to 3 in

the paper of Lomet et al. [46]. To simplify our implementation, we made two changes to

their protocol.

First, instead of implementing it in a multiversion database, we only maintained a single

latest version for each tuple. For the YCSB workload that we used for the evaluation, this

offers a performance upper bound of the protocol; this is similar to what we did for the

idealized MVCC in Section 6.6.

Second, the original protocol in [46] requires a centralized clock which all threads

have access to. There are two ways to adapt this design to a distributed environment - a

centralized clock server which all transactions get the timestamp from, or synchronized

distributed clocks. We picked the second design and used ptp [7] for clock synchronization.

We run both protocols with the YCSB benchmark - each transaction accesses 16 tuples

where each access has 90% probability to be a read and 10% probability to be a write.

Two different contention levels are tested - with low contention tuples are accessed with

uniformly random distribution; with high contention tuples are accessed following a power

law distribution with a skew factor of 0 = 0.9, meaning that 75% of accesses go to 10% of

hot data.

Table 6.2: Performance comparison between Sundial and Lomet et al [46]

Low Contention High Contention
Sundial 130.3 99.6

Lomet et al. [46] 110.9 58.5

Table 6.2 shows the performance of the two protocols. At low contention, their per-

formance is similar, with Sundial outperforming by 17.5%. In this setting, both protocols

incur very few aborts. The performance improvement is mainly due to the lower cost

of managing the metadata in Sundial, because there is no need to adjust the timestamp

ranges for other transactions when conflicts occur. Compared to per-transaction timestamp

ranges, the per-tuple logical leases are a more lightweight solution to dynamically determine

transactions' commit timestamps.

At high contention, the performance difference between Sundial and [46] becomes a

more significant 70%. In this setting, Sundial has lower abort rate and thus performs better.
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One reason of this is that [46] has to decide how to shrink the timestamp ranges of conflicting

transactions at the moment the conflict occurs. Failing to choose the best way of shrinking

can hurt performance. Sundial, in contrast, delays the decision to the end of the transaction

in an optimistic way, thereby avoiding some unnecessary aborts.
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Chapter 7

Related Work

Most of the existing work on Distributed Transactional Database System improve their

efficiency by graph partitioning to reduce the desired number of cross-partition transactions

(such as [21] and [57]).

As a transactional distributed database system, Sundial is related to work in lots of areas.

7.1 Distributed Concurrency Control

Enforcing strong consistency (i.e., serializability) in a distributed transaction processing

system is an active research area. Classic database systems incur high overheads to achieve

strong consistency. NoSQL systems-exemplified by BigTable [16], Dynamo [23], and

Cassandra [39]-favor weak consistency and shift the burden of writing correct concurrent

programs to the programmers.

NewSQL is a class of database management systems that provide ACID transactions

while trying to achieve the same level of performance of NoSQL systems. NewSQLs

save the programmers from handling consistency issues and make them focus on writing

transactions, which are much more natural and easy to understand. Examples of NewSQL

include Clustrix [1], NuoDB [2], CockroachDB [3], Google Spanner [18], and F1 [53].

Many of these systems use 2PL as their concurrency control scheme. Some use multi-version

concurrency control and rely on synchronized clocks across servers. Most of the distributed

NewSQL DBMS were designed to achieve scalability by partitioning the data into parts.
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And they try to make sure that every transaction only accesses tuples in a single part

of data. From early distributed DBMSes like the GAMMA project from the University of

Wisconsin-Madison [24] to DBMSes with heterogeneous architectures like MemSQL and

NuoSQL, distributed transactional database systems achieved better performance.

Prior work has proposed many distributed concurrency control algorithms [47, 44, 26, 48,

29]. Sundial is unique in that it uses logical leases to exploit concurrency with low overhead.

Among these previous algorithms, MaaT [47] is similar to Sundial in that it uses dynamic

timestamp ranges for its concurrency control where each transaction starts with a range of

[0, inf] and adjusts its ranges when conflicts occur among transactions. One downside of

MaaT is that transactions that have conflicts on the same tuples need to explicitly coordinate

with each other to adjust the timestamp ranges, which increases complexity and may hurt

performance. Sundial is simpler since each transaction only interacts with the tuples it

accesses but not with other transactions.
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Chapter 8

Future Work

We now discuss future research directions for extending Sundial to more system configura-

tions and application scenarios.

Our evaluation of Sundial in this work used a 10 Gigabit Ethernet over standard TCP/IP

network stack. Recent technology improvements significantly reduce network latency

and the associated computation overhead through new software and hardware supports.

Examples of them include remote direct memory access (RDMA) [28, 69] and Intel's data

plane developer kit (DPDK) [5]. Leveraging these kernel bypass methods to further improve

the performance of Sundial is part of our future research.

Additionally, the current implementation of Sundial also does not take high availability

(HA) into account. To support HA, the DBMS must replicate data across multiple servers

to ensure that if some of the servers go down, the backup servers can continue serving

incoming transactions. We plan to extend the Sundial protocol to support these replicated

environments. Based on the observation that Sundial efficiently supports caching and

that caching is similar to data replication, we believe that logical leases can facilitate the

management of data replication.

Finally, this work focuses on transactions in the form of stored procedures. We would

like to study how Sundial performs with ad-hoc transactions in the future.
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Chapter 9

Conclusion

We presented Sundial, a distributed concurrency control protocol that outperforms all other

ones that we evaluated. Using logical leases, Sundial reduces the number of aborts due to

read-write conflicts, and reduces the cost of distributed transactions by dynamically caching

data from a remote server. The two techniques are seamlessly integrated into a single

protocol as both are based on logical leases. Our evaluation shows that both optimizations

significantly improve the performance of distributed transactions under various workload

conditions.
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