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ABSTRACT

Optical beam steering has numerous applications including light detection and ranging
(LIDAR) for three-dimensional (3D) sensing, free space communications, additive manufac-
turing, and remote sensing. In particular, there is an increasing demand for LIDAR in a
variety of applications including autonomous vehicles, unammaned aerial vehicles (UAVs),
robotics, and remote sensing. Ideal solutions are small in size, weight, and power consump-
tion (SWaP) while maintaining long range, high resolution, and large field of view (FOV).

Here I present a design for a planar Luneburg lens for use in a silicon photonics optical
beam steering device fabricated using CMOS-compatible techniques. The gradient index of
the lens is achieved using a photonic crystal consisting of amorphous silicon patterned with
a triangular lattice of holes layered on top of silicon nitride. Multiple waveguides can be
placed along the focal circle of the lens and the lens is designed to collimate the beam from
the waveguides. Through full-wave simulations, the lens is shown to be diffraction-limited
with a beamwidth of 0.55' for a lens with radius R = 100 um. The lens is also studied for
robustness to fabrication variations. The lens would allow a solid-state on-chip optical beam
steering device with a FOV of 1600 with no off-axis aberrations.

Thesis Supervisor: Marin Soljaeid

Title: Professor of Physics
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Chapter 1

Introduction

Optical beam steering consists of actively controlling the direction of a laser beam over a

range of angles. It has numerous applications [1, 2] including light detection and ranging

(LIDAR) for mapping and navigation [3], free-space optical communications, projection [4],

and additive manufacturing.

In LIDAR, a three-dimensional (3D) map of an environment or remote object is con-

structed by sending out a pulsed laser light at various angles and measuring the reflected

pulse. Analagous to radar, LIDAR uses the return time and wavelength of the reflected light

to compute the distance and relative velocity at each direction in space. The number of re-

ceived photons can also be used to measure reflectance of the surface. LIDAR has long been

used for creating detailed 3D maps of terrains for construction [5], mining [6], agriculture

[7], archaeology [8], environmental science (e.g., flood mapping, forestry, vegetation map-

ping, erosion of sandy beaches) [9], and many more applications. More recently, commercial

interest in more portable LIDAR has increased dramatically for applications in self-driving

vehicles [10], autonomous robots [7], and unmanned aerial vehicles (UAVs) [11].

Free-space optical communications encodes information in a modulated light pulse to

wirelessly send information to a remote receiver and is useful in scenarios where physical

connections are impractical such as communications with vehicles, aircraft, or spacecraft. It
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is also attractive because the bandwidth of optical communications is orders of magnitude

greater than that of radio-frequency (RF) communications. While optical communications

typically uses LEDs as the light source, there is large interested in using a steered laser beam

to improve efficiency, range, and security [12].

With increasing use of robots, vehicles, and drones, there is also increasing interest in

LIDAR or free-space optical communications devices that are suited for these platforms.

These applications requires low weight, size, power, and cost (SWAP-C) while maintaining

performance metrics such as range, resolution, scan rate, and field of view (FOV). Because

these platforms are moving and often undergo harsh conditions, they require high reliability

and robustness. Additionally, the increasing commercial interest in LIDAR requires future

solutions to be more scalable. All of these factors drive towards solid-state on-chip solutions

for optical beam steering [13].

Current commercial solutions for optical beam steering typically use lasers that are

mounted on a rotating stage or stationary lasers that are redirected using a moving mir-

ror, lens, prism, or diffraction grating. However, the moving parts make these solutions

bulky, heavy, power-hungry, difficult to mass manufacture, and unreliable. There have been

a number of solid-state solutions for optical beam steering that do not use moving parts,

although they all currently face tradeoffs in the aforementioned factors. A tunable spatial

light modulator (SLM) using liquid crystals as the tunable element can be used as a passive

optical phased array (OPA) where the liquid crystal controls the phase of a reflected or trans-

mitted beam at each point in space, thus tuning the direction of the reflected or transmitted

beam [1, 13, 14, 15, 16]. Metasurfaces that are actively controlled through electronically

tunable materials such as vanadium oxide can be used in a similar manner to redirect the

phase front of a transmitted beam through the metasurface [17]. Microelectromechanical

systems (MEMS) optical beam steering typically consists of actuated mirrors fabricated on

a silicon chip to steer a beam [18, 19, 20, 21, 22]. MEMS offers greater reliability and smaller

SWAP-C characteristics than macro-mechanical solutions because of the on-chip integration,

14



but it is not truly solid-state because of the moving parts and so it still suffers from sensitiv-

ity to vibrations. Active OPAs use an array of optical antennas that are actively controlled

in phase to steer the outgoing beam [2, 3, 4, 23, 24, 25, 26, 27]. Active OPAs are attractive

because of their fully integrated and solid-state design but still suffer from limited FOV

due to sidelobes and have high complexity of phase controls. Another solution uses discrete

switching between different waveguides combined with a 3D lens for beam steering, although

this is not on-chip and would require an extra alignment step in manufacturing [28, 29].

Edge Fiber MZI Switch Waveguide Slab-Waveguide Aplanatic 1D
Coupling Matrix Feed Interface Lens Grating

Si02 Silicon Nitride Amorphous Silicon

Figure 1.1: Architecture of lens-based chip-scale LIDAR system. Figure from [30] @2017
MIT.

An alternative architecture for chip-scale LIDAR has been proposed [30] and experimen-

tally demonstrated [31] to address the shortcomings of other optical beam steering solutions,

and a schematic of the architecture is shown in Figure 1.1. In this architecture, a tunable

laser source centered at 1550 nm couples into an on-chip waveguide made of silicon nitride

(SiN) encapsulated in silicon dioxide (SiO 2 ). The waveguide feeds into a switch matrix com-

posed of Mach-Zehnder interferometers that can route the signal into one of N waveguide

ports. The waveguide ports feed into a SiN slab at different azimuthal (in-plane) angles,

where an aplanatic lens consisting of amorphous silicon (a-Si) layered on top of SiN colli-

mates the beam from each port. Thus, by switching the port that the signal routes through,

this architecture can change the in-plane angle of the collimated beam. Finally, a grating

consisting of a-Si rulings on top of SiN scatters the beam out of plane. By tuning the wave-

length of the source, one can change the out-of-plane angle, thus enabling two-dimensional

15
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(2D) beam steering.

This architecture has much lower power consumption than OPAs due to the need to

control only O(log2 N) switches at a time as opposed to M phase tuners for OPAs. It also

has the advantage of reduced thermal management, simpler control systems, and robustness

to environmental factors. However, this architecture has an azimuthal FOV of 20' due to

off-axis aberrations of the lens, which limits its applications. There are a number of wide

angle lens designs with FOV up to 1900, but these suffer from asymmetric behavior of the

entrance pupil and aperture size as one moves off-axis [32] which would reduce performance

off-axis and make the following grating more difficult to design.

Here, I propose a new lens design based on the Luneburg lens that has a theoretical

FOV of 3600. The Luneburg lens is a spherically symmetric lens that maps two spheres

onto each other. It is a gradient-index (GRIN) lens in that the index of refraction smoothly

varies across the lens. Here, a photonic crystal is used to realize the gradient index of the

lens. The lens is designed within the constraints of CMOS-compatible fabrication techniques.

Full-wave electromagnetic simulations are used to predict the behavior of the lens as well as

study the robustness of the lens to variations in fabrication.
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Chapter 2

Luneburg Lens Theory

Focal sphere

Parallel rays Luneburg Lens

S

Point source

Figure 2.1: Ray tracing of the Luneburg lens in normalized coordinates such that the radius
of the lens is R = 1. The Luneburg lens focuses two spheres concentric with the lens onto
each other. In this example, the conjugate focal spheres have radii ro = 00 and r1 = s such
that rays emanating from a point source are collimated by the lens.

The Luneburg lens is a spherically symmetric gradient-index lens that focuses two spheres

concentric with the lens onto each other, where the focal spheres have radii equal or greater

than that of the lens as shown in Figure 2.1 [33]. For example, in the case where the object

sphere has radius ro = oo and image sphere has radius r1 = R where R is the radius of the

lens, then parallel rays coming from any direction focus onto a point on the surface of the

lens opposite of the incoming rays. Vice versa, rays emanating from a point source on the
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surface of the lens will be collimated by the lens on the opposite side of the lens from the

point source. As opposed to traditional lenses that use a single material with a constant

index of refraction, the index of refraction of the Luneburg lens n(r) varies smoothly as a

function of the radial position r < R inside the lens, thus making it a gradient-index lens.

The gradient index causes the rays to bend inside the lens, enabling focusing.

For simplicity in this discussion, assume that n(r) is normalized by the index of the

surrounding medium, no, and that radial quantities (r, ro, and ri) are normalized to R. For

the case where ro - so and r1 = 1, Luneburg presented the simple solution

n(r) = v2 -r 2  (2.1)

While this case permits a simple analytical solution, it is not ideal for our application of

an on-chip planar lens. First, the index variation is too high to achieve with our materials as

it requires a maximum index contrast of V2 - 1 ~ 41%. For reference, the 2D effective index

of the SiN slab with thickness 200 nm is 1.584 and the effective index of a-Si with thickness

30 nm on top of the SiN slab waveguide is 1.775, giving an available index contrast of 12%.

Second, the beam exiting the waveguides into the SiN slab has a beam divergence angle of

13.50 [30], which would not use the full aperture of the lens. The reduced aperture of the

exiting beam would increase the beam divergence in the far-field and reduce performance.

Thus, we look for solutions for the case where r1 5 1. The scenario where ro = so and

r, = s > 1 is shown in Figure 2.1. Luneburg derived a general solution for the index profile:

n = exp [W(p, ro) + w(p, r1 )]

p = nr (2.2)

W(p, s) = I arcsind(,) p , s ;> 1 (2.3)

In the case where ro = o and r1 = 1, this reduces to the explicit expression in Equation

18



(2.1). Otherwise, this is a transcendental equation without closed-form solutions so solutions

must be solved numerically. Additionally, solutions are not unique, which gives us flexibility

to find a solution that accomodates fabrication constraints. Fixing ro = 00, solutions for

various r1 = s are shown in Figure 2.2(a). Note that fixing ro oc simplifies Equation (2.3)

to:

w(p, oo) = 0

(a) 15(b) 1,
_s=1 

... 
- n =1...

1.14 s= =1&3

(D - s=31.15E 1.3 E

1.1 1.15
1.2

"0 1.05

1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Radius r (normalized) Radius r (normalized)

Figure 2.2: Luneburg lens normalized refractive index as a function of normalized radius.
(a) Original Luneburg formulation for fixed ro = oc and various r1 = s. (b) Generalized
formulation with an outer shell of constant index nc, ro = oc, and r, = 2. n, = 1 is equivalent
to the original Luneburg formulation. Note that setting n, > 1 increases the maximum
refractive index required but also decreases the range of the refractive index required.

The original formulation of the index profile derived by Luneburg sets n(1) =1 such that

the index at the surface of the lens matches that of the surrounding medium. In this case,

the lens and surrounding medium are index-matched and there are minimal reflections off

of the surface of the lens. There also exist generalizations of the Luneburg lens in which the

index is not necessarily smoothly varying and may have discontinuities or where the index at

the edge of the lens does not match the index of the surrounding material [34]. In particular,

consider the case where the lens can have an outer shell with a specified index profile. The

index of the lens inside the shell can then be solved under the constraints of the outer shell.
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The index profile is modified to:

1
n= - exp [W(p, ro) + W(p,' ri) - Q(p)]a

Q(p) = - arctan (jj _) 1/2 (2.4)
gr p2(r) - I r

where a < 1 is the radial distance that separates the inner core and the outer shell and P(r)

defines p(r) in the outer shell. p and w(p, s) are defined as in Equations (2.2) and (2.3)

respectively.

Additionally, consider a lens which has an outer shell with a constant index of refraction

nc. Suppose the index profile is continuous at the transition radius r = a. Then this gives

in the outer shell a < r < 1:

P(r) =r/a

n, =1/a (2.5)

Additionally, Equation (2.4) simplifies to:

Q (p) = 2 (w (p, an,) - w(p, nc))

This results in an upper limit on the index n,. If ro = oc and r1  s, then this upper

limit is:

n < 2s s- /s2-1 (2.6)

which also imposes an upper limit on the thickness of the outer shell through Equation (2.5).

The lens index profile for this case is shown in 2.2(b). It turns out that with a homo-

geneous outer shell, although the maximum index of the lens increases and the lens is no

longer impedance-matched to the environment, the range of n(r) decreases. This is more

amenable in the case where the available material to construct such a lens can only achieve
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a limited range of n, as is the case with our photonic crystals.

Finally, note that Equation (2.3) as formulated by Luneburg has a singularity in the

integral at K = p. While the integral does not diverge, the transcendental equations are

solved for numerically and it can be troublesome to evaluate Equation (2.3) through nu-

merical techniques without special care. Southwell uses a change of variables to remove the

singularity and present an alternative version of w(p, s) that, while seems more complex, is

numerically easier to solve [35]:

1 (1) 1 p 1-P 2 arcsin ( ) y
w(p, s) = - 2 arcsin - - ] d y

7r 1+p o s2 _ (y + p)2 y + 2p y + 2p

Because we are interested in collimating a beam from a source, I set ro = 00 and for

simplicity rename the focal length r1 = s. The generalized Luneburg lens index profile is

used with an outer shell at the upper limit of n, shown in Equation (2.6). s can be optimized

to fit the parameters of the architecture, and the challenge then becomes how to implement

the gradient-index lens.
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Chapter 3

Lens Implementation

As the goal is to design a lens for optical beam steering using an integrated silicon platform,

we must design an implementation of the lens subject to fabrication constraints. GRIN

lenses such as the Luneburg lens are difficult to implement in practice because of the need

for a continuous range of refractive indices, which is not available in natural materials.

In microwave frequencies, Luneburg lenses have been implemented using discrete shells

of different materials to approximate the gradient-index [36, 37, 38, 39, 40, 41].

Planar Luneburg lenses have been design and demonstrated for integrate optics by ther-

mal evaporation [42] or sputtering [43] on glass, where the gradient index is realized through

varying the thickness of the deposited material. Similar lenses have been demonstrated on

silicon photonics platforms using sputtering [44, 45], focused ion beam [46], and grey-scale

lithography [47].

Another way to implement GRIN lenses is through metamaterials and photonic crystals,

which are periodic structures with periodicity smaller than or comparable to the wavelength

of light A. By slowly varying unit cell of the periodic structure, one can vary the effective

index across the structure and realize a GRIN lens. Graded photonic crystals to implement

the Luneburg lens have been analyzed [48, 49, 50, 51, 52] and experimentally demonstrated

using electron beam lithography [53]. However,electron beam lithography is expensive and
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not scalable. Thus, we explore the implementation of a Luneburg lens constrained by scalable

fabrication techniques using photonic crystals.

3.1 Materials and Fabrication

In particular, low pressure chemical vapor deposition (LPCVD) is a CMOS-compatible and

scalable fabrication technique that can pattern silicon nitride (Si3 N4 or SiN) and amorphous

silicon (a-Si).

Silicon nitride is becoming a choice material for photonics due to its low loss at visible

to infrared wavelengths and its ability to handle high power [54, 55] compared to silicon-

on-insulator (SOI). The index of refraction of SiN is 1.996 at a wavelength of 1.55 Jim and

deviates less than 0.1% in the wavelength range 1.5 pm to 1.6 pim [56]. The thickness of SiN

is assumed to be 200 nm.

Additionally, a-Si can be patterned on top of the SiN layer, and we refer to this stack as

the "a-Si slab." I assume that the thickness of a-Si can range 20 nm to 40 nm, although the

actual fabricated thickness can vary from the desired thickness. This effect is explored in

the Results section. The refractive index of a-Si is taken to be 3.48 [57]. The SiN and a-Si

are surrounded by a silicon dioxide (Si0 2 ) cladding, which has a refractive index of 1.44.

Because of the higher index of SiN relative to Si0 2, we can create a waveguide using SiN.

The minimum feature size and minimum gap size of a-Si are assumed to be 100 nm.

3.2 Photonic Crystals

Metamaterials and photonic crystals are periodic structures with periodicity smaller than

or comparable to the wavelength of light, A, and thus cannot be analyzed directly using

common approximations such as ray optics which assume that A is significantly smaller than

all physical features of the system. The periodicity of metamaterials is typically less than

~ A/10, which allows them treated with an effective index of refraction [58, 59] and achieve
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refractive indices not found in natural materials, including negative index of refraction [601.

Photonic crystals are typically dielectric structures with periodicity on the order of A/2 that

can be designed to display a wide variety of fascinating optical phenomena that do not exist

in natural materials [61] such as supercollimation [62] and the superprism effect [63].

(a) (b)

a-Si d'

x60'
200 nmj

,,SiNa

Figure 3.1: (a) 3D Schematic of the photonic crystal consisting of a layer of a-Si with a

triangular lattice of holes sitting on a layer of SiN. The a-Si and SiN layers have thicknesses

t and 200 nm, respectively. (b) Top view of the photonic crystal. The lattice has periodicity

a and the holes have diameter d.

Here we consider the effective index of such a periodic structure. By slowly varying

the unit cell of the periodic structure across the material, one can vary the effective index

across the structure and realize a GRIN lens. This relies on the assumption that the unit

cell is varying slowly enough such that the structure is still approximately locally periodic

and thus can be treated as a metamaterial or photonic crystal at each point in the mate-

rial. The structure used to implement the Luneburg lens, which we refer to as a photonic

crystal, is a triangular lattice of holes in amorphous silicon (a-Si) layered on top of a solid

200 nm layer of silicon nitride (SiN) encapsulated in Si0 2 . The a-Si layer has a thickness

of t =20 nm to 40 nm, where t is fixed for a particular implementation of the Luneburg lens

and can be optimized. The triangular lattice has periodicity a and the hole has diameter d.

A schematic of the photonic crystal is shown in Figure 3.1.

The periodicity a has to be carefully chosen to optimize for performance while taking

into account fabrication constraints. The smallest hole diameter achievable is dmin = 100 nm

based on the minimum gap size, and the largest hole diameter achievable is dm, = a -
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100 nm based on the minimum feature size. A small periodicity ensures that the unit cells

are sufficiently sub-wavelength such that we can accurately treat the material using an

effective index, but it limits the range of achievable refractive index due to limitations on the

rnage of achievable hole diameters. A larger periodicity allows a greater range of achievable

refractive index, but may violate the effective index approximation, and is ultimately limited

by a < A/2 as violating this limit would cause significant diffractive effects. Thus, I choose

a = 400 nm as a compromise. Simulation results of the effect of periodicity on the lens

performance is presented in Section 5.1, and shows that treating the structure with an

effective index is a valid approximation. a = 400 nm is on the order of ~ A/2, and so I refer

to our material as a photonic crystal although we use the effective index approximation, as

the distinction between metamaterials and photonic crystals can be quite nebulous.

0

M K
* ----- -

* 0

Figure 3.2: Reciprocal lattice of the triangular lattice. The dotted line represents the Bril-
louin zone and the shaded triangle represents the irreducible Brillouin zone. The corners of
the irreducible Brillouin zone are denoted as the ', K, and M points.

It is convenient to deal with the effective 2D properties because we are only considering

guided modes inside either the waveguide or the slab. To do this, I simulate the electromag-

netic behavior of the waveguide slabs and the photonic crystal using an open-source software

package, MPB [64]. MPB uses frequency-domain methods to solve Maxwell's equations to

find the modes of a structure at a given wavevector k. Because the boundary conditions in
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MPB simulations are periodic, space is added in the z directions of the simulation such that

the guided mode has decayed sufficiently away from the waveguide slab or photonic crystal.

The reciprocal lattice of the triangular lattice is shown in Figure 3.2. Along each of the

edges of the irreducible Brillouin zone, I extract the dispersion w(k) of the photonic crystal

as a function of k = 1, the wavenumber. An effective index of refraction is calculated using

the relation ne f = k) where c is the speed of light. This is also known as the phase index

since it is calculated using the phase velocity vP = 'k. Unless otherwise specified, assume

that neff and v, are extracted along the F - M edge of the Brouillin zone, although we will

see shortly that this choice does not have a large impact.

1.65

17, i tfr=20
aSi ft30

1.65 aSI th-40
-asi ui=5a

16 SIN

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
Lambda [nm

Figure 3.3: Wavelength and thickness dependence of refractive index of a-Si layer.

I use the TE mode (where the magnetic field is pointing out of plane, i.e., E, = 0 and

Hx = HY = 0). This mode is the fundamental mode of the waveguide. Because the electric

field is in plane, this mode also maximizes the index contrast between SiN and a-Si, giving us

a greater index contrast and thus a greater range of the refractive index. For the waveguide

slabs, the effective indices of SiN and a-Si are shown in Figure 3.3 as a function of wavelength

and a-Si thickness.

By changing d in the photonic crystal, we tune the dispersion w(k) and thus the effective

index. For periodicity a = 400 nm, the hole diameter can range from dmai = 100 nm to

dmax = 300 nm. The effective index of the photonic crystal is shown in Figure 3.4 as a
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function of d and t. Here, I refer to "3D" as simulating the full 3D structure of the photonic

crystal unit cell. For comparison, I also analyze the unit cell using 2D simulations where the

hole region and a-Si regions use the 2D effective indices of SiN and a-Si slabs, respectively.

The 2D effective indices are also shown in Figure 3.4. These are used to build 2D simulations

which are more computationally feasible relative to full 3D simulations. The plot of neff for

the 2D dispersion is extended out to d = 350 nm so that it contains the full range of neff of

the 3D dispersion.
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Figure 3.5: Anisotropy of the photonic crystal as measured
indices at the K and M points in (a) 3D and (b) 2D.
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by the ratio of the effective

The triangular lattice was chosen because it has the highest degree of symmetry for 2D

lattices and thus minimizes anisotropic behavior. The anisotropy of the photonic crystal
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refractive index is illustrated in Figure 3.5(a) through a plot of nm/nK, where nM and nK

are the effective indices extracted along the F - M and F - K edges in the reciprocal lattice.

The anisotropy. increases with t which is expected since the electromagnetic behavior of the

photonic crystal deviates further from that the isotropic SiN slab as t increases. However,

the anisotropy is less than 0.2% across all parameter ranges of interest, so we can ignore

anisotropic effects in our modeling. The anisotropy of the photonic crystal modeled in 2D

is less than 0.03%, so this is a valid substitute model of the 3D system assuming negligible

anisotropy.

(a) 1.26 (b) 1.012
t=20 nm 1 --- t=20 nm
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Figure 3.6: Validity of the effective index approximation of the photonic crystal as measured
by the ratio of phase to group index in (a) 3D and (b) 2D.

To further validate the assumption of an effective index, I compare the phase index of

the photonic crystal to its group index ng = - where v9 = is the group velocity. In the

regime where the use of an effective index is valid, the dispersion should be linear such that

VP = vg and thus nr = ng. The ratio np/ng is plotted in Figure 3.6 for both the 3D model

and the equivalent 2D model. For the 3D model, the ratio increases with t and is on the

order of - 20% which is not negligible. Because we are interested in the lensing behavior,

i.e., how the phase front is transformed by the lens, I use the phase index as opposed to the

group index for designing the lens. The 2D model shows a relatively small ratio of - 1%, so

2D simulations will fail to show the effects of this discrepancy. However, because the lens is

such a small structure relative to the entire system (as opposed to a waveguide), the effects
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of the group index can be ignored.

3.3 Photonic Crystal Lens
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Figure 3.7: (a) Luneburg lens index profile for s = 2.8 (blue) and the effective index achieved
by the photonic crystal (orange). (b) Photonic crystal d as a function of lens radius to achieve
the Luneburg lens index profile.

To build the lens using the photonic crystal, the hole size is slowly varied across the

lens to realize the GRIN structure. In particular, a triangular lattice with periodicity a is

superimposed on the lens, and at each unit cell in the lattice, the required refractive index

of the lens is calculated and the hole size d is determined to match that index. If d required

is outside of the range 100 nm to 300 nm, then d is either (1) truncated to the ends of the

range 100 nm to 300 nm, (2) set to d = 0 nm (solid a-Si slab with no holes), or (3) set to

d = oc (SiN slab without an a-Si layer).

An example of a Luneburg lens index profile with s = 2.8 and the realized index profile

by the photonic crystal are shown in Figure 3.7(a) and the corresponding d is shown in

Figure 3.7(b). We can see for r < 0.31R, the desired index profile is too high to achieve for

the photonic crystal and so we set d = 0 nm (a-Si slab with no hole). In the range 0.31R <

r < 0.41R, the index is approximated with d = 100 nm. In the range 0.90R < r < 0.97R,

the index is approximated with photonic crystal of d = 300 nm. In the range r > 0.97R, the

desired index is too low for the photonic crystal and so we set d = oc, which is just the SiN
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slab. Because the surrounding medium is also the SiN slab, this is equivalent to truncating

the radius of the lens. The resulting lens is shown in Figure 3.8(a). Figure 3.8(b) shows the

case for s = 5. Note that the lens truncation is more apparent for s = 5 because a larger s

requires a lower desired index.

(a) (b)

Figure 3.8: Photonic crystal implementation of the Luneburg lens with R = 10 Jim. Black
represents the a-SI slab while white represents the SiN slab. (a) s = 2.8. The index profile
is shown in Figure 3.7. Note the region in the center of the lens where d = 0 Jim and it is a
solid a-Si slab. (b) s = 5. The dotted line represents the desired perimeter of the lens, but
the desired the index is too low to achieve with the photonic crystal and so the lens region
is truncated.

3.4 Other Photonic Crystals

Other photonic crystal structures were considered to implement the GRIN lens. A triangular

lattice of posts would achieve a range of refractive indices lower than that of the lattice of

holes. Combining both holes and posts would thus achieve a greater total range of refractive

indices, giving us greater flexibility in design. However, from a fabrication perspective, it

is easier to use just one type of photonic crystal because each type of shape (holes versus

posts) needs to be calibrated separately. Thus, for simplicity, we opted to use only a lattice

of holes. We will see in the next section that truncating the lower range of effective index

does not significantly harm the performance of the lens.

Additionally, while the triangular lattice offers the highest degree out of any 2D regular
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lattice and thus minimizes anisotropy, non-regular lattices were also considered including

concentric rings of holes or posts and randomized positions of holes or posts. However, while

non-regular lattices can decrease anisotropy or reduce unwanted diffraction orders [65], they

are often much more complex to design.
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Figure 3.9: (a) Cross and (b) 3-stepped cross shapes for a triangular lattice. The crosses are
inscribed in a regular hexagon (inner dotted line) which is concentric with and oriented the
same way as the hexagonal unit cell that it lies in (outer dotted line). The dimensions of
the crosses are determined by a single parameter, d.
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Figure 3.10: (a) Ratio nross/nhole where neross and nhole are the refractive indices of the cross
and circular hole-based photonic crystals, respectively. (b) Ratio ncross/nhole where ncross
and nhole are the refractive indices of the 3-stepped cross and circular hole-based photonic
crystals, respectively.

Another photonic crystal structure I considered is a triangular lattice of holes where the

holes are not circular, such as crosses or 3-stepped crosses as shown in Figure 3.9. The
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boundaries of these unit cells are aligned with the Cartesian coordinates which simplifies

the process of physically writing the lithography mask because the laser or electron beam

that etches the mask usually travels along the Cartesian coordinates. The size of these non-

circular holes is defined by d and can range from dmin = 100 nm to dmax = a - 100 nm based

on the minimum feature size and minimum gap size. The refractive indices of these alternate

photonic crystals is very similar to that of the circular-hole photonic crystal for a given d as

shown in Figure 3.10.
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Figure 3.11: Anisotropy of the photonic crystal as illustrated by the ratio nM/nK for (a) the
cross photonic crystal and (b) the 3-stepped cross photonic crystal.

The anisotropy of these alternate photonic crystals are shown in Figure 3.11. Both

structures are more anisotropic than the circular-hole photonic crystal, as suspected, because

the new structures reduce the symmetry from 6-fold to 4-fold symmetry. However, the

anisotropy is still small enough that it can be safely ignored.

For simplicity of analysis, I implement the lens using the circular-hole photonic crystal.

However, as previously stated, the alternate photonic crystals can be simpler and faster to

implement in fabrication.
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Chapter 4

Methods for Lens Simulation

To characterize and optimize the lens performance, simulations of the lens are carried out us-

ing the finite-difference time-domain (FDTD) method using MEEP, an open-source software

package [66]. MEEP is a full-wave electromagnetic solver that simulates the electromag-

netic fields exactly using Maxwell's equations. While ray-tracing is often used to simulate

electromagnetic phenomena such as lens behavior, it is only valid in the limit where feature

sizes are much larger than the wavelength of light. Photonic crystals by definition have sub-

wavelength features and so we must treat it using Maxwell's equations to study the effects

of the photonic crystal.

Because full-scale 3D simulations of the lens are prohibitively computationally expensive,

2D simulations are used to simulate the lens. The effective refractive indices of the a-Si and

SiN slabs are used in place of the bulk indices for a-Si and SiN. The hole sizes are determined

using the 2D effective indices plotted in Figure 3.4 while also being constrained to the index

ranges of the 3D structure.

The 2D MEEP simulations implement open boundaries using a perfectly matched layer

(PML) with a thickness of 1 pm. The boundaries of the simulation 10 im away from the

edges of the lens. The resolution of the simulation is 30 mesh cells per pm. Increasing these

values do not make any appreciable difference to the simulation results. The waveguide that
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feeds into the waveguide slab is 5 pm long and 1 jim wide. To accurately represent the source,

I take advantage of MPB's integration with MEEP to calculate the fundamental mode of

the waveguide, and use a current source that excites this mode. The point at which the

waveguide feeds into the waveguide slab is placed at the focal point of the lens.

(a) (b)

Figure 4.1: (a) Permittivity profile of the 2D simulation in MEEP. Black is a-Si, grey is SiN,
and white is SiO 2. (b) Resulting magnetic field, Hz of the MEEP simulation.

The permittivity profile of the simulation along with the resulting magnetic field H, are

shown in Figure 4.1 for a lens with radius R = 5 rim. This small size is chosen to display the

photonic crystal structure in the lens. We can see from the H, profile that the waveguide

mode spreads after it enters the waveguide slab, passes through the lens, and is collimated on

the other side of the lens. There is some energy that does not impinge on the lens and thus

does not get collimated. Additionally, there appears to be diffraction of the electromagnetic

field in and around the lens due to the small size of the lens, but these effects become

insignificant as the lens size increases.

The far field is calculated in MEEP by using a Fourier transform to extend the fields

out 1 m from the edge of the simulation along all 4 boundaries of the simulation. This

is far enough such that any Gaussian beam with a waist size equal to the lens radius we

are simulating reaches the far field, allowing us to measure the far field beam divergence

accurately. A polar plot of the farfield of a lens with radius R = 30 Jim is shown in Figure

4.2(a), where the angle 0 = 0' is aligned with the x-axis. The farfield is normalized to the
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maximum power.
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We can see that most of the energy is in the main lobe, demonstrating
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Figure 4.2: Farfield plots for a lens with radius R = 30 pm.
the SiN slab. (b) Farfield corrected for air and zoomed into
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of the farfield in

The background and boundaries of the simulation are in the SiN slab. However, we want

to know how the beam behaves when it exits the chip into air. Thus, we correct for this

using Snell's Law by multiplying the angle of the farfield plot by the effective refractive index

of SiN. A farfield plot corrected for air and zoomed into the main lobe is shown in Figure

4.2(b). To measure the degree of collimation of the outgoing beam from the lens, we use the

-3dB farfield beamwidth, also known as the full-width half-max (FWHM), as our primary

figure of merit. The FWHM is proportional to the beam divergence and gives us a measure

of how well collimated. the beam is and thus the resolution of beam steering that can be

achieved. The remainder of the farfield plots shown in this thesis are corrected for air.
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Chapter 5

Results

5.1 Lens Performance

There are three assumptions that we made when designing the lens: (1) the size of the lens is

sufficiently larger than the wavelength of light such that we can approximate the light as rays

(which is how the semi-analytical formulation of the Luneburg lens was derived), (2) the rays

are emanating from a point source, and (3) the gradient-index lens is sufficiently realized by

the photonic crystal. For reference, we simulate an "idealized lens" with the exact desired

index of refraction at each point in the lens without discretization from a metamaterial or

photonic crystal. The idealized lens achieves a true gradient index and fulfills our third

assumption so that we can examine the first two assumptions in isolation.

To examine the first assumption, I run the lens setup "in reverse" using the idealized lens,

in which I send a plane wave from the +x direction onto the idealized lens and analyze how

the lens focuses the energy. This setup is shown in Figure 5.1 where we can see from the field

profile and the energy profile that the wave is focused into a tight spot. The time-averaged

energy density is calculated by pOiHj 2/2, where H is the complex magnetic field.

The focal length of the lens is measured by calculating the location of the maximum in

the magnetic field energy density. The error in the measured focal length relative to the
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(a) (b)

Figure 5.1: Simulation of the lens (gray) with a plane wave sent in from the right so that
we can see focusing. (a) H, profile (red and blue). (b) Time-averaged magnetic field energy
density, toIH1 2 /2 (orange).
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(a) Error in the focal length measured by the location of the maximum field. (b) Resolution
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minimum, 6, and the analytical solution for the Rayleigh diffraction limit. The points for
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designed focal length is plotted in Figure 5.2(a) for various R and s. Surprisingly, despite

our expectations of smaller diffraction effects for larger lenses, the error appears to increase

for larger lenses, which is an area for further investigation. However, while the absolute error

increases for larger lenses, the error when normalized to the lens radius decreases.

Additionally, at the measured focal length, I take a cross-section of the energy density

transverse to the beam propagation direction and measure the Rayleigh resolution criterion,

which is the -distance from the maximum to the first minimum. The analytical solution for

the Rayleigh diffraction limit is:

0.61A0
n usinO0

where A = 1.55 pim is the wavelength in free space, n 1.584 is the effective index inside

the SiN slab, and 0 = arctan (1) is the half-angle of the focused beam. The measured

and analytical Rayleigh resolution limits are plotted in Figure 5.2(b). Interestingly, the

measured resolution limit is better than the analytical resolution limit. This may be due

to the analytical limit assuming a uniformly illuminated aperture which produces a sinc

function at the focal point. Implicitly, this also assumes a flat lens. However, the Luneburg

lens is not flat and focuses the fields inside the lens, thus resulting in a non-uniform energy

profile at the exit aperture of the lens. We can conclude that approximating the light as

rays is a valid approach to designing the lens index profile and that the idealized lens is a

diffraction-limited system.

To examine the second assumption, I use a dipole source at the point of the idealized

len's designed focal lens and analyze how well the beam is collimated. Figure 5.3 shows

the permittivity profile of a simulation where a dipole source is placed at the focal point of

the lens and the resulting H, field. The dipole source emits isotropically and the field that

impinges on the lens is collimated. As seen in Figure 5.4, the farfield FWHM of the collimated

waveguide source is much larger than that of the collimated dipole source, demonstrating

that the waveguide does not approximate a point source very well. This is expected as the
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Figure 5.3: H, (red and blue) overlayed on the permittivity profile (greyscale) of a simulation
of a dipole source and an ideal lens with s = 2 and R = 25 pm.
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Figure 5.4: Far field FWHM of the collimated beam using an ideal lens and both a dipole
source and waveguide (WG) source. The dotted line is the analytical FWHM assuming a
uniformly illuminated aperture, which results in a sinc function pattern in the farfield.
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waveguide mode has a non-zero width, and this mode propagates in a non-trivial way once

it exits the waveguide.

Interestingly, the dipole farfield FWHM is approximately constant as a function of s for

a fixed value of R, whereas the waveguide farfield FWHM decreases as s increases for a fixed

value of R. This is because for a small s, the waveguide beam does not fully illuminate

the lens, decreasing the effective aperture and increasing the farfield FWHM. For larger s,

the waveguide beam fully illuminates the lens so the lens sees a more uniform source. The

tradeoff is that some of the energy from the waveguide may miss the lens, thus increasing

losses in the system.
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Figure 5.5: Behavior of a waveguide mode traveling from a waveguide into a waveguide slab.
(a) H, (b) Streamlines of the time-averaged Poynting vector, S. Only vectors above an
aribtrary threshold are plotted to better visualize the beam in the lab. The point at which
the waveguide meets the slab waveguide is at x = 0.

To characterize the output from the waveguide, I simulate the waveguide mode as it

travels from the waveguide into the slab waveguide without a lens. The time-averaged

Poynting vector is calculated as S = !R (E x H*) where E and H are the complex electric
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and magnetic fields,. respectively. The H, field and a streamline plot of S are shown in

Figure 5.5 which shows the beam spreading as it exits the waveguide. Additionally, the

streamline plot contains straight vectors across the entire beam, which suggests that we can

approximate the beam using ray optics and find the focal point of these rays.
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Figure 5.6: The predicted focal point at each yi along several slices in xi.

At each point in the slab waveguide (xi, yi) (in units of lim) where (xi = 0, yi = 0) is at

the point where the waveguide meets the waveguide slab, we calculate where a ray parallel

to S would intersect the line y = 0 which represents the focal point xf:

_YiSX

Xf Xi-

where Sx and Sy are the x and y components of S. This quantity is plotted as a function of

yi for various cuts along the x-axis in Figure 5.6. We can see that most of the vectors point

away from x = 0 as expected. There is a dip at y = 0 showing that it does not represent a

perfect point source. However, the shift is small so I do not adjust the waveguide position

to account for this.

Finally, to examine the final assumption, I simulate the lens constructed with the photonic

crystal. Figure 5.7 shows the field results for lenses built using various a. For now, we

ignore the fabrication constraints on minimum feature size and gap size so that we are not
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(a)

(b)

(c)

Figure 5.7: Effect of photonic crystal periodicity. Lens simulation with (a) a = 300 nm, (b)
400 nm, and (c) 500 nm.

truncating the lens index profile. This allows us to separate the effects of discretization and

index truncation. For a = 300 nm, the field looks well-behaved and collimated on the far side

of the lens, with the only diffraction being the edge diffraction from the edges of the lens.

For a = 400 nm, there are small signs of diffraction inside the lens, and for a = 500 nm, the

field shows clear signs of diffraction both inside and outside the lens. As previously stated,

a = 500 nm is above the A/2 limit so we would expect to see diffraction effects. Additionally,

in the 3D case, this would allow the electromagnetic fields to couple out-of-plane, increasing

scattering losses. Because of this, we set a = 400 nm to avoid diffractive effects and increase

the range of achievable indices compared to a = 300 nm.

To study the effects of the fabrication constraints, I simulate the photonic crystal lens

with the truncated index profile. The far field of the collimated beam using the photonic

crystal lens and the idealized lens match very closely, as seen in Figure 5.8. Thus, treating

the photonic crystal as a homogeneous medium with an effective refractive index is a suitable
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Figure 5.8: Far field of photonic crystal lens and idealized lens for R = 30 Pm.

approximation. Additionally, the truncation of the realized n(r) compared to the analytical

solution results in a negligible difference in the far-field pattern.
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Figure 5.9: (a) Far field of the photonic crystal lens for various radii. (b) FWHM of the
photonic crystal lens, idealized lens, and idealized lens illuminated by a dipole source for
various lens radii. For reference the analytical FWHM of an Airy disk profile and a Gaussian
beam are also plotted.

As seen in Figure 5.9(a), the FWHM is inversely proportional to the lens radius and the

level of the sidelobes do not change appreciably. As stated before, this is as expected because

the diameter of the lens is equivalent to the aperture size which is inversely proportional to

the beam width. In Figure 5.9(b), the far field FWHM is plotted as a function of R for the

photonic crystal lens, the idealized lens, and the idealized lens illuminated by a dipole source.

For comparison, the expected FWHM assuming an Airy disk profile where the aperture is

equal to the lens diameter is plotted as well as the expected FWHM corresponding to a
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Gaussian beam where the beam waist is equal to the lens radius. The photonic crystal

lens matches the airy disk profile closely. The Gaussian beam represents the upper limit of

performance since the Gaussian beam has infinite width in the transverse direction. The

far-field FWHM in air is 0.550 for a lens with radius R = 100 um.

Although the Luneburg lens is circularly symmetric and thus has a theoretical 3600 FOV,

in practice the FOV is limited by the placement of the waveguides as they may obstruct the

beam from other waveguides. Giving a clearance of 4 im between any particular wavegudie

and the collimated beam from any other waveguide, this gives us an effective FOV of 160.50.

Assuming that the waveguide feeds are spaced 4um apart and that beamwidth is inversely

proportional to the lens size, we can extrapolate and predict that a lens with radius R =

491um can accommodate 1024 waveguide ports (corresponding to 1024 resolvable points)

where each beam would have a beamwidth of 0.11'.
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0

V -0.002-

U_

-0.004 -

0 5 10 15 20 25 30
Lens rotation 0 [*]

Figure 5.10: Far field of photonic crystal lens as a function of lens rotation.

To confirm the rotational symmetry of the lens, I simulate the lens performance for the

lens rotated at various angles. Because of the 6-fold symmetry of the photonic crystal, it is

only necessary to simulate lens rotations up to 300. The results are shown in Figure 5.10

and show that the lens is indeed rotationally symmetric.
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5.2 Robustness to Fabrication

Although we can theoretically design a lens and analyze its performance given some design,

the fabrication processes have some tolerance associated with them and do not necessarily

hit the exact geometry that we specify. Ideally, the lens is robust enough to these fabrication

variations, which includes thicknesses of the materials and location of deposited material.

5.0-

4.5 - R=30 pm

R4.0=50 P

3.5

313.0
1 .

2.5

2.0

1.5-

1.0-

26 27 28 29 30 31 32 33 34
Fabricated a-Si thickness [nm]

Figure 5.11: Measuring robustness to fabricated a-Si thickness, where the designed a-Si
thickness is t = 30 nm.

The largest source of uncertainty is in the fabricated a-Si thickness. Figure 5.11 shows

the FWHM of lenses that vary in the fabricated a-Si thickness using a designed a-Si thickness

of t = 30 nm. We can see that as we increase R, the performance improves at the desired

thickness, but also gets more sensitive to the fabricated thickness.

For optimization, we can also fix the number of ports and the FOV of a design and

optimize s for robustness. Figure 5.12 shows the case for 64 ports spaced 41rm apart over a

1600 arc, thus allowing a 1600 FOV. We range s from 2.4 to 3.0, and for each s design the lens

radius to accomodate the 64 ports. For s = 2.4, the FWHM is dramatically worse because

the photonic crystal cannot achieve the required index range. We also note that s = 2.6

performs better than s = 2.8, 3.0 due to the increased aperture, but is also less robust.

Another source of variation is the a-Si pattern that is fabricated. One way this can

manifest itself is through the fabricated hole size. To explore this, I apply independent
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Figure 5.13: Robustness of the lens performance to the hole size by applying Gaussian noise

Q ~- A(pAd, 9-d) to the hold size as d = d + e. This is measured fractional change of the
FWHM with respect to the unperturbed lens as a function of (a) Ad for ad = 10 (the dotted
line represent the case where Ad = and -= 0 and (b) Ud for Ad = 0.
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Gaussian noise to each hole size, d' = d + Ed where Ed - /(pd, cd) and Pd and cd are the

mean and standard deviation of the Gaussian noise, respectively. The FWHM results are

shown in Figure 5.13. Figure 5.13(a) varies PA while fixing 0 d = 10 which is valid because

the variations in hole sizes are likely to be strongly correlated in the fabrication if the mask is

under- or over-exposed. We can see that the FWHM varies by ~ 10% and actually decreases

for negative values of Pd. This implies that the lens is not perfectly optimized and agrees

with the results in Figure 5.11 as both decreasing the hole size d and increasing a-Si thickness

t results in a higher lens index.

Figure 5.13(a) varies ad and shows that the lens performance is rather robust with respect

to random perturbations in the hole size. This is likely because locally the perturbations

tend to cancel each other out so that the mean index is still equal to the originally desired

index.
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Figure 5.14: Robustness of the lens performance to the hole location by applying Gaussian
noise C, ~ A(p,, a,) to the coordinates of each hole as x' = x+c, and y' = y+Er. Set P, = 0.
This is measured as the fractional change of the FWHM with respect to the unperturbed
lens.

Another way that variations in the fabrication pattern can manifest itself is through the

hole position. I apply independent Gaussian noise to the coordinates of each hole, x' = x + C,

and y' = y + Cr where E, ~ A(pr, r-,.) and Pr and c-r are the mean and standard deviation

of the Gaussian noise, respectively. The results are shown in Figure 5.14 for the case where

50



Pr = 0 (/, $ 0 is just equivalent to shifting the entire lens). The lens performance is robust

to variations in the hole location as the FWHM only deviates by 1.5% for U-, = 50 Pm and

R = 25 pm. As before, this can be explained by perturbations cancelling each other out so

that the propagating beam still sees the mean index in the lens.

51



52



Chapter 6

Conclusion and Outlook

In summary, I have proposed a circularly symmetric lens based on the Luneburg lens design.

The gradient index is realized with a photonic crystal that is subject to CMOS-compatiable

fabrication constraints. Simulations show that the lens can achieve a FWHM in the farfield

of 0.550 and that this is expected to scale inversely with the lens size. Additionally, the lens

was tested for robustness to fabrication variations including a-Si thickness and fabricated a-

Si pattern. The lens can enable wide-angle optical beam steering with circularly-symmetric

performance (including beamwidth, sidelobe level, and power efficiency) with an FOV of

160'. This solid-state optical beam steering design could enable inexpensive, robust, and

miniaturized LIDAR sensors and optical communication devices.

There are several aspects in which the lens performance can be improved. It is clear that

the lens is not perfectly optimized and may either have a different focal length than expected

and that the point of divergence cannot be assumed to be at the edge of the waveguide. A

simple way to adjust for this would be to optimize the waveguide placement and/or an offset

to the hole sizes. Another path would be to use Hamiltonian ray optics for fast simulations

and numerically optimize over the lens profile to take into account the non-point nature of

the waveguide source. For the highest degree of accuracy, optimization methods could be

used on the lens's sub-wavelength structure directly through full-wave simulations, although
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this would be extremely computationally expensive and likely reserved for the last stage of

optimization to fine-tune the local optima.

Some potential future directions for this project include studying different fabrication

processes and material stacks to see how the lens should be optimized differently. For

example, the loss in a-Si is one of the limiting factors of the efficiency of the previous system,

so one could use a different material or even pattern SiN directly. In addition, while the

previous design was fabricated using low pressure chemical vapor deposition, other techniques

such as electron beam lithography can achieve much greater fabrication resolutions and can

thus relax many of the fabrication constraints, allowing for a greater range of lens designs

that may be more robust or higher-performing. Finally, while this architecture for optical

beam steering is composed of numerous components that work together (e.g., switch tree,

waveguides, collimating lens, and grating), one could imagine a photonic crystal to combine

the functionality of multiple elemnts, such as a device that collimates the beam and directs

it out-of-plane at the same time to replace the lens and the grating.
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