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Abstract

The composite members of the human gut microbiome encounter a myriad of selective pressures

from the host environment and other microbial members in the ecosystem. Understanding the

evolutionary dynamics of microbial species in the gut microbiome requires sequencing

information that differentiates strains and even single cells. In this thesis, I present efforts that

investigate the evolution of bacterial strains in their complex natural environments. In the first

project, I discover that a commensal species, Bacteroidesfragilis, undergoes within-person

adaptive evolution in the absence of antibiotics. Combining culture-based whole genome

sequencing with metagenomes, I uncover genes important to B. fragilis survival in the human gut

microbiome and describe evolutionary dynamics within individuals and across populations. In

the second project, I developed a strain-tracking method that predicts personal microbiomes.

Using this method to track closely-related strains, I discover signals of adaptive evolution for

Bacteroidetes strains, potentially over decades of colonization in adult twins. In the final project,

this strain-tracking method is applied to advance the analysis of microbial transmission within

social networks of Fiji islanders. These projects demonstrate the power of genome-resolved and

strain-resolved methods in revealing insights of evolutionary dynamics of the gut microbiome.

Future studies are expected to further investigate other taxonomical groups in depth and

technical breakthroughs are needed to improve the throughput of evolutionary studies of

complex systems like the gut microbiome.

Thesis Supervisor: Eric Alm

Title: Professor of Biological Engineering
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Chapter 1

Introduction

1.1 Fundamental questions in the evolutionary dynamics of the human gut microibome

The human gut microbiome is a dynamic and complex ecosystem consisting of four major phyla

of micro-organisms: Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria, and has

large diversity with hundreds of distinct species (Lloyd-Price et al. 2017; Arumugam et al.

2011). Gut microbiome helps human resist pathogen invasion (Britton and Young 2014), harvest

otherwise inaccessible nutrients (Peter J Turnbaugh et al. 2009), and modulate host behaviors

(Gilbert et al. 2016). In addition, the gut microbiome has been shown to play roles in complex

diseases such as inflammatory bowel diseases (IBD), obesity, diabetes and autism (Wlodarska,

Kostic, and Xavier 2015; Methe et al. 2012), and has recently been shown to significantly impact

the treatment of cancer immune therapies (W. Li et al. 2019; Routy, B.. et al. 2018; Aquino-

Michaels et al. 2015). Although the ecological dynamics of the intestinal microbiome has been

extensively studied in recent years, relatively little has been done to understand how our

microbial inhabitants evolve during their colonization of the gut. Characterizing within-host

evolution of the microbiome will provide insights into the selective pressures and ecological

forces encountered in the gut.

The gut microbiome has enormous potential for evolution during the colonization of human

hosts. About 10"l de novo mutations are estimated to emerge in the microbiome of an individual

host per day: a total of 10"1 bacterial cells live in the human gut, a typical bacterial genome size

is on the order of 106 bp, the bacterial replication error rate is 10-9 per base pair, and gut bacteria

replicate on average once per day (Sender, Fuchs, and Milo 2016; Biek et al. 2015; Good et al.
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2017). Although most of the mutations may be lost from the populations due to random drift

and/or deleterious effects, there is still enormous potential for evolution. In addition, comparative

genomic studies showed evidence that microbiome has co-evolved with human hosts for millions

of years, mainly through mutations in genes involved in host interaction and nutrient utilization

(J. Xu et al. 2007; Walter and Ley 2011; I. L. Brito et al. 2016). Evolution of bacterial species

within a timescale of host lifespan is the building block of those long-term evolutionary events.

However, fundamental questions remain about the evolutionary dynamics of commensal species

living in the gut microbiome. In particular, it is unknown whether adaptive evolution or purifying

evolution dominates the within-person evolution of commensal gut species. Studies on

pathogenic species have shown that within-host evolution is driven by strong host selection (Ley

et al. 2008; Didelot et al. 2016). However, it is unclear if the lessons learned from pathogens can

be generalized to members of our gut microbiome. In contrast to pathogens, whose natural

environment is clearly outside the human body, the majority of bacterial species in the gut

microbiome are commensal (neutral or beneficial to the host) and they have been co-evolving

with human hosts for millions of years (Walter and Ley 2011). It is possible that the long history

of colonization has exhausted adaptive mutations, and neutral or purifying selection has been

dominating commensal species. On the other hand, an individual's gut ecosystem is a

personalized and dynamic system, factors like pressures from the host immune system or diet

may impose strong selections for contemporary adaptive mutations. We need empirical evidence

to reveal the dominating force for within-person evolution of the commensal gut microbiome.

Understanding the selective pressures and ecological forces shaping the within-host evolution of

the intestinal microbiome may fundamentally change our view of how personalized each
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individual's microbiome is and may have significant translational implications. Recent years

have witnessed the emergence of fecal microbiota transplant (FMT) as a highly efficient

treatment for recurrent C.difficile infections (Crum-Cianflone, Sullivan, and Ballon-Landa 2015).

Inspired by this novel treatment, several clinical trials have been initiated to test microbiome

therapeutics on IBD patients (Grinspan and Kelly 2015), and attempts have been made to

develop synthetic microbiome drugs to treat various diseases (Petrof and Khoruts 2014; Routy,

B. et al. 2018). Knowledge of adaptive evolution in the gut may reveal mutations that increase

the fitness of our personalized microbiomes (Klemm et al. 2016; Coombes 2016). These

adaptations may provide orthogonal insights to optimize therapeutics design and even underscore

the importance of an autologous therapeutics (microbiome-based drugs derived from patients

themselves before disease onset) (Grinspan and Kelly 2015). Moreover, mechanistic

understandings of the microbiome within-host evolution may inspire future therapeutic direction

by targeting genes under strong selective pressures (Lieberman et al. 2011; Lee et al. 2013;

Donaldson et al. 2018).

1.2 Methods to investigate the within-person evolutionary dynamics of gut microbiome

Technical limitations have hindered attempts to characterize the within-host evolution process of

microbiome. The standard approach for the microbiome field-metagenomic sequencing-is

inefficient, when used alone, in resolving mutations emerged within the human gut (P.J.

Turnbaugh et al. 2007; Meth6 et al. 2012). Mutations between different bacterial cells can be

identified by aligning metagenomic reads to reference genomes, but SNPs identified this way

may arise from homologous regions shared by closely-related lineages (Schloissnig et al. 2013).

In addition, it is difficult to differentiate low frequency de novo mutations to Illumina sequencing

errors. Previous attempts using metagenomes have thus been focused on using comparative
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genomic analysis to analyze strains carried by different human hosts (Schloissnig et al. 2013).

Those genomes are usually separated by thousands of years of evolution, and these studies reveal

long-term evolutionary dynamics. Culture-based whole-genome sequencing circumvents the

limitations of metagenomes by enabling precise identifications of mutations between recently

diverged genotypes and phylogenetic inference. However, due to the high complexity of the

microbiome, previous reports have not optimize the sampling schemes to gain enough number of

isolates at the right genetic distance for investigating within-person evolution (Forster et al.

2019; Zou et al. 2019; Browne et al. 2016; J. J. Faith et al. 2013).

In this thesis, I systematically study the within-host evolution of commensal species from the

human gut microbiome using a combinatorial approach. The culture-based whole-genome

sequencing framework is adopted in large scale to investigate a single bacterial species-

Bacteroidesfragilis (Chapter 2). Although metagenomes are of low-efficiency at detecting de

novo SNPs, they are valuable sources to track the mutational dynamics. I, therefore, combine the

SNPs identified via whole-genome analysis with metagenomes from the same human subjects

and describe the evolutionary dynamics within subjects. In addition, I develop a strain-tracking

method that rapidly and accurately detects closely-related strains from different metagenomic

samples. This method allows me to identify strains shared by family members potentially over

decades. SNP analysis is performed for these strains and within-person evolutionary history is

revealed (Chapter 3).

1.3 Bacteroidesfragilis undergoes within-person adaptive evolution

In the second chapter, I present one of the pioneering works that investigated the within-person

evolutionary processes of one prevalent and abundant species-Bacteroides fragilis. Six hundred
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and two B. fragilis isolates are cultured and sequenced from twelve healthy donors'

microbiomes. We find that B. fragilis within-subject populations contain substantial de novo

nucleotide and mobile element diversity, which preserve years of within-person evolutionary

history. This evolutionary history contains signatures of within-person adaptation to both

subject-specific and common selective forces, including parallel mutations in sixteen genes.

These sixteen genes are involved in cell-envelope biosynthesis and polysaccharide utilization, as

well as yet under-characterized pathways. Notably, one of these genes has been shown to be

critical for B. fragilis colonization in mice (Lee et al. 2013), indicating that key genes have not

already been optimized for survival in vivo. This lack of optimization, given historical signatures

of purifying selection in these genes, suggests that varying selective forces with discordant

solutions act upon B. fragilis in vivo. Remarkably, in one subject, two B. fragilis sublineages

coexisted at a stable relative frequency over a 1.5-year period despite rapid adaptive dynamics

within one of the sublineages. This stable coexistence suggests that competing selective forces

can lead to B. fragilis niche-differentiation even within a single person. By mining publicly

available deeply sequenced metagenomes from different countries, we identify an evolutionary

signal that is enriched in Western metagenomes than Chinese. We conclude that B. fragilis

adapts rapidly within the microbiomes of individual healthy people, providing a new route for

the discovery of key genes in the microbiome and implications for microbiome stability and

manipulation.

1.4 A strain tracking method detects personal microbiome and signature of adaptive

evolution for Bacteroides species

In the third chapter, I introduce a metagenome-based approach that facilitates the investigation of

the evolution of microbial strains in the metagenomes. This method-DonorFinder-can rapidly
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compare strains from different metagenome samples and identify closely-related strains from

different metagenomes. DonorFinder assumes that many commensal strains carried by different

individuals are distinct in accessory genomic contents and are stably colonizing for years. This

interpersonal variability of strains thus helps us understand the personal signatures of the

microbiome and the transmission of strains between individuals. DonorFinder achieves near-

perfect specificity and sensitivity in predicting metagenome donors and discovers a pair of

metagenomes with labels switched in the HMP metagenomes. In addition, we apply DonorFinder

to metagenomes from TwinUK registry and discover 6 closely-related Bacteroidetes strains that

are shared between the twins. Analyses of point mutations swept in either twin in these strains

indicate genome-wide within-person adaptive evolution during the time that these strains

diverged between the twins' microbiomes.

1.5 Additional application of the strain tracking method reveals social networking of Fiji

islanders

In the fourth chapter, a modified version of DonorFinder is applied to a metagenome dataset

from Fiji Islanders. In a closed society of 287 people from the Fiji Islands, we examined how

bacterial strains transmit across people via oral and gut microbiomes. Strain-level variations are

tracked using both SNP-based analysis and a modified version of DonorFinder. Using both

methods, we find strong transmission patterns enriched within households and between spouses.

We also find that the host gender is strongly associated with strain-sharing patterns and the

transmission patterns of gut and oral microbiomes are not necessarily the same.
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Chapter 2

Adaptive Evolution within Gut Microbiomes of

Healthy People

Shijie Zhao, Tami D. Lieberman, Mathilde Poyet, Kathryn M. Kauffman, Sean M. Gibbons, Mathieu

Groussin, Ramnik J. Xavier and Eric J. Alm

The contents of this chapter have been published as: "Adaptive evolution within gut microbiomes of healthy

people" at Cell Host & Microbe on April 23, 2019.

Abstract

Natural selection shapes bacterial evolution in all environments. However, the extent to which

commensal bacteria diversify and adapt within the human gut remains unclear. Here, we

combine culture-based population genomics and metagenomics to investigate the within-

microbiome evolution of Bacteroidesfragilis. We find that intra-individual B.

fragilis populations contain substantial de novo nucleotide and mobile element diversity,

preserving years of within-person history. This history reveals multiple signatures of within-

person adaptation, including parallel evolution in sixteen genes. Many of these genes are

implicated in cell-envelope biosynthesis and polysaccharide utilization. Tracking evolutionary

trajectories using near-daily metagenomic sampling, we find evidence for years-long coexistence

in one subject despite adaptive dynamics. We used public metagenomes to investigate one

adaptive mutation common in our cohort and found that it emerges frequently in Western, but
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not Chinese microbiomes. Collectively, these results demonstrate that B. fragilis adapts within

individual microbiomes, pointing to factors that promote long-term gut colonization.

2.1 Introduction

The human gut microbiome harbors a large potential for within-person bacterial evolution and

adaptation. Commensals can stably colonize a person for decades (Faith et al., 2013), and during

this time billions of bacterial mutations are generated daily (Table 1). Should adaptive mutations

arise and be detectable within individual microbiomes, they are likely to indicate genes and

pathways whose fine tuning is critical for long-term bacterial persistence in the human body

(Feliziani et al., 2014; Lieberman et al., 2011). In bacteria, adaptive evolution can be detected by

the independent recurrence of similar mutations in genes under selection (parallel evolution or

convergent evolution) or by an increase in mutational frequency that is inconsistent with neutral

drift (Lieberman et al., 2011; Wichman et al. , 2012; Woods et al., 2006). The selective forces

driving within-person adaptation might be person-specific, exposure-specific (e.g. diet), or

widespread, and their identification could guide microbiome-targeted therapies-including the

selection or engineering of therapeutic bacteria for long-term colonization. Additionally, within-

person adaptation, if it occurs, may contribute to the stability of microbiome communities and

their resilience to invasion (Martinez et al., 2018).

However, relatively little is known about how commensals evolve within humans. To date,

identification of contemporary adaptive point mutations has only been described during

infections and in laboratory experiments. In these cases, the bacteria under study were exposed to

environmental conditions clearly novel to them: the presence of antibiotics (Mwangi el al., 2007;

Snitkin et al., 2013), a new host species (Didelot et al., 2016), or artificial laboratory
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environments (Barrick et al., 2009). However, human commensal bacteria have been colonizing

mammalian digestive tracts for potentially hundreds of thousands of years (Moeller et al., 2016;

Groussin et al., 2017). After long periods of evolution in a relatively unchanging environment,

only neutral or very weakly beneficial mutations are expected to be available (Wiser et al., 2013;

Didelot et al., 2016). Consistent with this expectation, investigations into healthy carriage of

commensals have not revealed signals of within-person adaptive evolution (Golubchik et al.,

2013; Ghalayini et al., 2018) and several studies have found signals of long-term purifying

selection in the gut microbiome (Schloissnig et al., 2012; He et al., 2010). Yet, gut microbiomes

are heterogeneous and individualized ecosystems that may vary over time (Lloyd-Price et al.,

2017). Encounters with other microorganisms, host immune systems, and diets may impose

novel selective pressures on bacteria, and it is possible that these variable forces provide the

potential for within-person genomic adaptation of certain commensal species (Nemergut et al.,

2013). Empirical data is needed to understand whether the environments within and between

human gut microbiomes are variable enough to enable adaptation within individual people. To

date, technical challenges have limited characterization of within-person evolution in the gut

microbiome. One major challenge of metagenomics is discriminating de novo mutations (those

that arise within an individual) from variants in homologous regions shared by co-colonizing

bacteria (e.g. multiple-strain colonization or the presence of closely related species with shared

mobile element) (Schloissnig et al., 2012). Moreover, it is difficult to resolve the phylogenetic

relationships between de novo SNPs using metagenomic-based approaches (Garud et al., 2017).

Culture-based whole-genome sequencing circumvents these limitations by enabling precise

measurements of mutational distances between coexisting genotypes and phylogenetic inference.

However, culture-based approaches have so far been limited to a small number of closely-related

isolates from the gut microbiome (Faith et al., 2013).
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Here, we systematically characterize the within-host evolution and adaptation of Bacteroides

fragilis, a prevalent commensal in the large intestine of healthy people. We use culture-based

population genomics to identify de novo mutations and complement these analyses with

comparisons to metagenomic data. We find extensive within-person diversification and multiple

signals of adaptation, including within-person parallel evolution in 16 genes. Our findings

provide a genome-wide understanding of B. fragilis within-person evolution, highlight the

potential of commensals to adapt to individual microbiomes, and provide a roadmap for

discovering genes important to commensal gut colonization and persistence.

2.2 Results

Within-person B. fragilis diversity is consistent with a single colonization event

We set out to survey intra-species diversity and evolution of B. fragilis within 12 healthy

subjects, all donors to the OpenBiome stool bank (ages 22-37; Table Si). A total of 30 fecal

samples from these subjects were studied. These fecal samples included longitudinal samples

from 7 subjects spanning up to 2 years and single samples from 5 subjects (Table S2). Subjects

did not take antibiotics for at least 3 months prior to initial sampling or during longitudinal

sampling. We sequenced the genomes of 602 B. fragilis isolates cultured from 30 fecal samples.

Each isolate was derived from an independent single cell in the original microbiome community.

Previous investigations have suggested that each person's B. fragilis population is dominated by

a single strain (Lee et al., 2013; Verster et al., 2017). To confirm this in our donor population,

we compared all 602 isolates via alignment of short reads to a public B. f-agilis reference

(Methods). We identified single nucleotide polymorphisms (SNPs) between these 602 isolates
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and built a phylogeny for these isolates. Isolate genomes from different subjects differed by more

than 10,000 SNPs, while genomes from the same subject differed by fewer than 100 SNPs (with

one isolate exception; Figures lA-1B). This pattern confirms that each subject was colonized by

a unique lineage.

B. fragilis populations diversify for years within individuals, with occasional sweeps

To ascertain if the sublineage diversity present in each person could have emerged within the

subject's lifetime, we estimated the coalescence time of each person's B. fragilis population. To

include mutations in accessory genomic regions, we built a draft genome for each lineage using

reads from all isolates. We then identified polymorphisms and constructed person-specific

phylogenies using these draft genomes (Methods, Figures 2A and S1-S3). This sensitive

approach detected between 8 and 182 polymorphic positions per subject (Figure 2B), and it

enabled us to estimate the rate at which B. fragilis accumulates SNPs in the human gut (Figures

2C-2D; Methods). Our molecular clock estimate of ~0.9 SNPs/genome/year is within the range

of what has been reported for bacterial species during infections of humans (Didelot et al., 2012).

Combining this rate and each population's phylogeny, we inferred that 11 of 12 lineages had B.

fragilis populations that emerged from an ancestral cell between ~1.1-10 years before the initial

sampling (time to most recent common ancestor, tMRCA; Figure 2E). These values are

consistent with an expansion from a single cell that existed years prior to the initial sampling.

Given the low acquisition rate of Bacteroides (Faith et al., 2013), it is likely that the sublineage

diversity emerged within each subject. We conclude that a typical B. fragilis population

diversifies for years within the human gut.

One lineage, L08, was an outlier with an estimated tMRCA of 43, and we suspected that this
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high estimate of tMRCA was due to hypermutation. Hypermutation is an excess of mutations

due to a defect in DNA repair, is commonly observed in laboratory experiments and during

pathogenic infections, and is associated with adaptation (Giraud, 2001; Jolivet-Gougeon et al.,

2011; Marvig et al., 2013; Lieberman et al., 2014; Chu et al., 2017). To test this hypothesis, we

examined the type of mutations accumulated and the intrapersonal phylogeny. We found that the

excess of mutations in L08 relative to other subjects was due solely to an increase in GC to TA

transversions within one sublineage, supporting hypermutation (P<0.001, Chi-squared test,

Figure 2F) (Jolivet-Gougeon et al., 2011). The topology of the rooted phylogeny and the

tMRCA of non-hypermutator sublineages (9.9 SNPs/genome) suggest that the hypermutation

phenotype emerged within this subject (Figure 2F).

We noticed that estimates of divergence time were substantially smaller than each subject's age.

These low values are consistent with colonization later in life, as well as early life colonization

followed by loss of diversity through a neutral or adaptive sweep of a single sublineage.

Consistent with the later scenario, we lost the ability to detect some sublineages in 3 of the 7

lineages using longitudinal samples over time (Figures S2C, S2D and S2F). Thus, the low

values of tMRCA may have emerged because sweeps occasionally purge within-person B.

fragilis population genetic diversity. We examine the role of adaptation, which might have

driven these sweeps, in a later section.

Detection of mobile element transfer within individual microbiomes

We next assessed the relative contribution of horizontal gene transfer to within-person evolution

of B. fragilis. We identified within-lineage mobile element differences (MEDs), which we define

as DNA sequences with multi-modal coverage across isolates (Methods). We found MEDs in 11
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of the 12 lineages (Figure 2B), including putative plasmids, integrative conjugative elements

(ICEs), and prophages (Table S3). Using parsimony, we inferred 10 MEDs gained, 12 lost, and

17 ambiguous loci in ~50 cumulative years of evolution (using tMRCAs at initial samplings).

This provided lower-bound event estimates of ~0.05 gain/genome/year and ~0.04

loss/genome/year and genomic change estimates of ~1.3 kbp gain/genome/year and ~1.9 kbp

loss/genome/year. We did not find evidence of homologous recombination in these 12 lineages.

To identify MEDs transferred from the microbiome, we compared isolate genomes and

metagenomes from the same subjects. We reasoned that a transferred region should have

increased coverage in the metagenome compared to the rest of the B. fragilis genome, owing to

its presence in other species (Table S4, Methods). We leveraged stool metagenomes available

from 8 subjects, scanning for genomic regions with high relative coverage and high identity

(>3X and >99.98%, respectively; Methods). We found evidence of one inter-species MED

transfer within Subject 04 (38X relative coverage in the metagenomes; Methods; Figures 3A-

3B). This MED, a putative prophage, was absent from all isolates at Day 0 yet present in 68% of

isolates at Day 329. This combination of longitudinal genomic and metagenomic evidence

suggests that this prophage was acquired by B. fragilis during the sampling period.

This same approach enabled us to identify three additional putative inter-species transfer events

(Table S4; Figure 3C). We detected no difference in coverage between isolates for these regions

(no MED), but an excess of coverage in the metagenomes. We confirmed one candidate from

Subject 01, an integrative conjugative element (ICE) containing a type VI secretion system

(Coyne et al., 2016) (T6SS), by culturing and sequencing 94 isolates of other Bacteroides

species from this subject. This ICE was present in 3 species (82 isolates) and harbored only 4
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SNPs across these species, suggesting recent transfer (Figures 3D and SIB-SIC; Methods).

T6SSs mediate inter-bacterial competition and have been shown to be shared by members of the

same microbiome (Coyne et al., 2014; Verster et al., 2017). The prevalence of this ICE in this

subject suggests it confers a strong selective advantage to its recipient species. In general,

however, there are limited statistical tools for distinguishing adaptation from neutral evolution

for mobile element exchanges.

Parallel evolution reveals genes involved in within-person adaptation

To systematically assess if adaptive mutations were a significant driver of within-person B.

fragilis evolution, we searched for genes that underwent parallel evolution. Parallel evolution is

the independent emergence of similar mutations on closely related genetic backgrounds, is a

hallmark of positive selection, and is often used to identify putative targets of natural selection

(Lieberman et al., 2011; Wichman et al. , 2012; Woods et al., 2006). We searched for genes that

accumulated recurrent mutations within at least one person, leveraging the phylogeny to only

include those events in which distinct mutations occurred in different sublineages (Figure 4B).

We identified 16 such genes from the 12 lineages (Figures 4B and 4C). This represents a

significant deviation from a neutral model in which mutations occur randomly on the genome

(P<0.00 1, Figures 4C; Methods). To confirm that adaptation, rather than mutational bias, was

driving this clustering of mutations, we examined how many of the mutations encoded for an

amino-acid change and compared this distribution to a neutral model (dN/dS, a canonical

measure of selection). We found a significant enrichment for nonsynonymous mutations for

these 16 genes, indicating adaptation (Figure 4D, dN/dS = 6.03, CI = (1.57, 51.3); Methods). We

did not discover additional genes under adaptive evolution when including a search for parallel

evolution across lineages (Figures S4A-S4F). We therefore conclude that some or all of these 16
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genes underwent adaptive evolution within these subjects.

We found evidence of both subject-specific selection and selective forces shared across multiple

subjects. Supporting person-specific selection, three Sus genes (BF1802, BF1803, and BF3581)

were each mutated multiple times within one subject (P < 0.003 for each, Fisher's exact test) and

no times in other subjects. In contrast, five genes under selection were mutated in multiple

subjects, with two genes even acquiring mutations at the same amino-acid residue in different

subjects (BF 1708 and BF2755; Figure 4B). We discuss one of these mutations in detail in a

following section.

Genes under parallel evolution are involved in polysaccharide utilization and cell envelope

biosynthesis

The genes under parallel adaptive evolution reveal insights into the challenges to B. fragilis

survival in vivo. The 16 genes include 5 involved in cell envelope biosynthesis, a dehydratase

implicated in amino-acid metabolism, and 4 with unclear biological roles (Figure 4B). The

remaining 6 genes all encode for homologs of SusC or SusD, a large group of outer-membrane

polysaccharide importers (Table S5). A typical B. fragilis lineage has 75 distinct SusC/SusD

pairs (out of ~4300 genes) and their main substrates are thought to be complex polysaccharides

(Cerdeno-Tarraga, 2005; Martens et al., 2009). SusC proteins form homodimeric -barrels

capped with SusD lids (Glenwright et al., 2017), and the observed mutations were enriched at the

interface between the barrel and lid (Figure 4E; P<0.001, Methods).

Notably, one of these SusC homologs (BF358 1) has been shown to be critical for IgA-mediated

colonization in mice. This locus has been designated as commensal colonization factor (ccl) (Lee
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et al., 2013) and was the most significant locus discovered in a genome-wide screen for

colonization determinants. The essentiality of the ccf locus is thought to be related to its

regulation of capsular polysaccharide synthesis genes (Donaldson et al., 2018). Therefore, while

mutations altering Sus proteins might reflect pressures to utilize host or diet-derived

polysaccharides (Martens et al., 2009), selection on these genes might also reflect pressure to

modify the B. fragilis cell envelope directly or indirectly. Additionally, the presence of Sus

proteins in the outer membrane and their co-occurrence on this list with genes involved in cell

envelope synthesis (Figure 4B) hints that selection on these genes might be driven by the

pressure to evade the immune system (Merino and Tomis 2015) or phage predation (Stummeyer

et al., 2006).

Dense time-series reveals evolutionary dynamics and stable co-existence of sublineages

To better understand within-person evolutionary dynamics, we made use of the available densely

sampled metagenomic time-series from Subject 01 and Subject 03. We closely examined the

evolutionary dynamics for each lineage by tracking abundant SNPs, whose evolutionary

relationships were previously identified from comparing isolate genomes. We inferred the

population dynamics of sublineages, defined as clades with linked SNPs (Methods). These

densely sampled time-series allowed us to track dynamics of de novo SNPs and to assess the

strength of selection upon these mutations.

In both LOI and L03, we found SNPs that steadily increased in frequency, suggesting a fitness

advantage of the lineages carrying them relative to their ancestors (Figures 5 and S5). Given the

large population sizes of B. fragilis in these subjects (>10 11; Figure S5), these relatively rapid

rises in frequency are incompatible with neutral drift (Moran 1957). In LOl, two linked
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mutations emerged around day 150 and swept a major sublinage (SL1) around day 400,

increasing in frequency at a rate of 1.9% daily (Figures 5A-5B). One of these mutations was an

amino-acid change in BF1802, a gene previously identified as under parallel evolution within

this subject (Figures 5C-5D). The other mutation was 260 nucleotides upstream of a SusC gene

not identified as under parallel evolution. In L03, the frequency of an amino-acid changing

mutation in a glycosyltransferase (BF 1196) rose from 0.5% at day 0 to 21% at day 144,

corresponding to an average daily increase of 2.6% (Figures 5E-5F). While BF 1196 did not

show a signal for within-person parallel evolution, it was also mutated once in L10, suggesting

this is an additional gene that may be under selection. Assuming that B. fragilis divides between

1-10 times per day, we estimate that these mutations provide a fitness gain (selection

coefficients) of 0.2-2% for the two sweeping mutations from LO1 combined, and 0.3-3% for the

L03 mutation (Methods). These estimates are further evidence of adaptive evolution occurring

within individuals in the absence of antibiotics.

Notably, in LO 1, the ratio between two major sublineages remained stable throughout the

sampling period, despite the mutational sweep within SL 1 (Figure 5C). We estimate that these

major sublineages diverged ~8 years prior to sampling. This persistent coexistence suggests that

the sweeping genotype, while 0.2-2% more fit than other genotypes from SL 1, are not more fit

than bacteria from SL2. This might result from frequency-dependent selection, ecological cross-

feeding, or the occupation of distinct, perhaps spatially segregated, niches (Plucain et al., 2014;

Chung et al., 2017; Good et al., 2017; Rocabert et al., 2017). The fact that 11 of 12 intragenic

mutations separating these sublineages are amino-acid changing furthers the notion that they are

functionally distinct.
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To test if the two sublineages stably coexist in vitro, we competed combinations of isolates from

different sublineages in vitro (Methods). Tracking their ratios using targeted amplicon

sequencing, we found that both selected isolates from SL2 quickly outcompeted both selected

isolates from SL 1 (Figure 5A; Figures S5G-S5J). The growth profiles suggested active killing

of SL 1 in the presence of SL2 (Figure S5K). We noticed that all isolates from SL2 carried a

prophage-like genomic element (MEDO 1-2+), while only 14 of the 111 SL 1 isolates were

MEDO1-2+ (Figures 5E and SlA), and the above tested SLI isolates both lacked this element

(MEDO 1-2-). To test the importance of MEDO 1-2, we performed additional competition

experiments including SL I isolates that were MEDO 1-2+ (Methods). We observed that,

regardless of the sublineage-background, MEDO 1-2+ isolates quickly outcompeted MEDO 1-2-

isolates, (Figures 5F and 5G). In contrast, we observed stable coexistence of SLI and SL2 when

both competing isolates were MEDO1-2+ (Figure 5H). These results supported a pivotal role of

MEDO1-2. To confirm that MEDO1-2 is a prophage and is responsible for SL2's in vitro

competitive advantage, we performed phage plaque assays using 1000 donor-recipient

combinations from L01 (40 donor isolates and 25 recipient isolates, Methods). Filtrates of

MEDO1-2+ isolates from either SLI or SL2 formed plaques on lawns of MEDO1-2- bacteria, but

almost no plaques were found for other combinations (Figure S5L and Table S6). These results

are consistent with an advantage of MEDO 1-2+ isolates mediated by prophage-dependent killing.

These in vitro results are at odds with the observed within-person population dynamics. The

years-long coexistence of SL 1 and SL2-including SL 1 isolates lacking MEDO 1-2- suggests a

balancing advantage for SL 1 isolates that is not captured by our experiments. Alternatively,

MEDO1 -2 may provide a much weaker fitness advantage within Subject 01. These experimental

results reflect the challenge of reconstructing within-person dynamics in vitro and highlight the
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power of dense and deeply analyzed timeseries for observing within-person evolutionary and

ecological dynamics.

Parallel evolution in BF2755 is enriched in Western populations relative to Chinese

populations

Lastly, we further investigated an amino acid change that had a high incidence across subjects.

The mutant allele emerged four independent times across three subjects and was found in all

isolates from L12 (QlOOP mutation in BF2755, glutamine to proline). The function of BF2755 is

unknown, but it is predicted to be periplasmic (Yu et al., 2014) and has structural similarity to a

beta-lactamase inhibitor (Das et al., 2010). The high incidence of this mutation provided the

opportunity to investigate its prevalence across human populations. We leveraged four available

deeply-sequenced metagenome datasets: two from China (Qin et al., 2012; Qin et al., 2014), one

from the USA (Lloyd-Price et al., 2017), and one from the UK (Xie et al., 2016) (Methods).

Unexpectedly, the mutant allele was at high prevalence in Western samples but nearly absent in

the Chinese samples. Among Western metagenomes with evidence of B. fragilis, 15% had reads

supporting the Q100P mutation, compared with only 1.5% in Chinese metagenomes (n=162 and

n=136, respectively). This between-population difference was significant (Figure 6A, p<0.0001,

Fisher's exact test) and robust to subject health status metadata (Figure S6A). To rule out the

possibility that this difference was due to limited dispersal of a strain carrying this allele within

Western populations, we reconstructed the evolutionary relationships among the B. fragilis

strains within each metagenome (Figure 6B). We found that the occurrences of the QIOOP

mutations were on distinct and independent B. fragilis backgrounds (Figure 6B). In addition, 10

out of the 26 Western individuals with the derived allele showed evidence of coexistence of this
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mutation with the ancestral allele. This polymorphism, given that only a single lineage of B.

fragilis colonizes each person (Lee et al., 2013; Verster et al., 2017), supports independent

emergence of this mutation within each of these individuals. Further, a genome-wide search

showed that this mutation is the most different locus between Western and Chinese populations

(Figure S6B). In total, this data suggests a selective pressure to change this residue that is

enriched in Western populations relative to Chinese populations.

2.3 Discussion

B. fragilis populations are dominated by single lineages (Figure 1A) which diversify within each

individual to form coexisting sublineages (Figure 2A). Here, we report multiple lines of

evidence that these sublineages acquire de novo mutations with significant beneficial effects, in

the absence of antibiotic treatment and despite perhaps hundreds of thousands of years in

mammalian digestive tract. This evidence includes: (1) independent, parallel acquisition of point

mutations in the same gene among co-existing sublineages within individuals, concentrated in a

few key pathways (Figure 4B); (2) an enrichment of amino-acid changing mutations relative to

amino-acid preserving mutations, compared to a neutral model, in the target genes of parallel

evolution (Figure 4D); and (3) rapid and continuous increases in the frequency of a few

mutations (~2% daily increase, Figures 5B-5C and S5E-S5F). Adaptation of B. fragilis appears

to be common feature of within-person B. fragilis evolution; 9 of 12 subjects had at least one

mutation in the 16 genes we identified as under parallel evolution. The tempo of evolution

observed here enables the straightforward identification of genes contributing to within-host

adaptation, and therefore to long-term colonization in the microbiome, from either longitudinal

sampling or investigation of many coexisting isolates.

25



This study was limited to a single species, and we hope that it will inspire similar studies for a

variety of commensal organisms. Additional studies are needed to identify whether rapid

adaptation is specific to B. fragilis or a common feature of gut commensals. Evidence that our

results may be generalizable is provided by a recent study using metagenomics to track

microbiome evolution across species (Garud et al., 2017). This study detected that, averaged

across species, single nucleotide variants at low frequency in the human population had a value

of dN/dS consistent with either neutrality or adaptation-hinting at a possible microbiome-wide

signature of adaptive evolution. In contrast, an investigation into F. coli within-microbiome

evolution in one person uncovered only signatures of neutral diversity (Ghalayini et al., 2018).

While there are many possible explanations for the discrepancy between this finding for E. coli

and our results, we speculate that genetic drift plays a larger role for F. coli due to its low

population size within microbiomes (Lloyd-Price et al., 2017). Future studies may identify

taxonomic groups, bacterial life history strategies, human disease states, or other features that

determine within-person evolutionary dynamics of commensals.

Selective forces that drive within-person adaptation

We report 16 genes in which adaptive mutations are concentrated, which warrant further study

and whose identities provide hints about the nature of within-person selection. Six of the genes

identified as under selection are members of the SusC/SusD family of nutrient import proteins.

One pair of SusC/SusD genes (BF1802 and BF 1803) have orthologs in Bacteroides

thetaiotaomicron shown to be upregulated by milk oligosaccharides (Marcobal et al., 2011)

(Table S5). It is possible that some of the selective pressures driving mutations in these genes

are in response to host diet. On the other hand, many of these genes are implicated in outer-

membrane biosynthesis or encode for nutrient importers which sit in the outer membrane. In
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particular, a cell-envelope biosynthesis gene (BF2848) essential for the biosynthesis of 7 out of

the 8 capsule polysaccharides was mutated in 3 lineages (Coyne et al., 2008) (Figure 4B). We

speculate that these genes are under pressure to evade phage predation or alter interaction with

the immune system (Merino and Tomis 2015; Stummeyer et al., 2006).

These same major pathways (capsule synthesis and SusC/SusD loci) are also controlled by

invertible promoters in B. fragilis. At these loci, inducible integrases vary which gene in of a set

of homologs is driven by a particular promoter. Using this mechanism and additional regulation,

each B. fragilis isolate expresses only 1 of 8 capsule polysaccharides at a time (Kuwahara et al.,

2004; Cerdeno-Tarraga, 2005). It is interesting that the variation provided by invertible

promoters does not preclude de novo mutations in these genes from contributing to within-person

adaptation. More importantly, this overlap suggests that further elucidation of the pressures

driving variation at these loci in vivo will illuminate the pressures driving within-person

evolution.

Evolutionary dynamics within and across human subjects

The same genes identified here as under positive selection within individual people show

signatures of purifying selection across lineages separated by thousands of years (Figure 6C;

Methods). The discrepancy in signals between timescales raises the possibility that adaptive

mutations in B. fragilis may incur collateral fitness costs in the context of other selective forces

(e.g., following transmission to a new human host or invasion by a new species). We propose

four scenarios that might reconcile the discrepancy between timescales (Figure 6D). The non-

constant selective forces could be (1) specific to some people or lineages, (2) recently introduced

into the human population (emerging), (3) present only at particular times during colonization, or
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(4) coexisting within individual people. These models are not mutually exclusive and are

agnostic to whether these forces are ecological or abiotic in nature. Our study, which was limited

to 12 subjects, points to the existence of multiple of these non-constant selective forces.

A point of particular interest is whether the selective forces driving adaptation are person

specific. In support of person specific selection, 11 of the 16 identified genes had mutations in

only one subject. In particular, all six Sus genes under selection were mutated only in a single

subject each. Furthermore, we did not find additional genes under adaptive evolution by

grouping mutations from all subjects together (Figures S4A-S4F). We therefore speculate that

person-specific or lineage-specific selection play important roles in shaping within-person

evolution of the microbiome.

We also find evidence supporting other modes of contemporary selection. Five genes present

signs of common selective forces (Figure 4B). Our finding of an amino acid frequently mutated

in Western, but not Chinese, microbiomes, hints to a selective pressure that is enriched in

Western populations (Figures 6A-6B). Studies tracking larger numbers of human subjects, as

well as those tracking the same lineage in independent hosts (e.g. following fecal transplant), are

needed to unravel the nature and specificity of pressures driving adaptation in these genes.
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2.5 Methods

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Stool samples from OpenBiome This paper N/A

Critical Commercial Assays

Nextera DNA Library Preparation Kit Illumina FC-121-1031

MoBio PowerSoil kits Qiagen 12955-4

PureLink Pro 96 Genomic Purification Kit Thermo Fisher K 182104A
Scientific

Bacteroidies Bile Esculin plates BD 221836

Nextera XT DNA Library Preparation kit Illumina FC- 131-1096

Deposited Data

Raw sequencing data for isolate whole genomes This paper NCBI-SRA BioProject: PRJNA524913

Raw sequencing data for competition experiments This paper NCBI-SRA BioProject: PRJNA524913

BAM files of the 352 metagenomes This paper NCBI-SRA BioProject: PRJNA524913

Lineage assemblies with gene annotations This paper NCBI-SRA BioProject: PRJNA524913

Oligonucleotides
Targeted Amplicon 1 Forward Primer: This paper N/A

ATCTTCTATCGCCTGCCGTG
Targeted Amplicon 1 Reverse Primer: This paper N/A

CGTGTATTCCGCCCTCTACC
Targeted Amplicon 2 Forward Primer: This paper N/A

GCCAAAAACAAGGCAAATGACG
Targeted Amplicon 2 Reverse Primer: This paper N/A

GGTCGCTTCCTTACGGGTAT
Software and Algorithms

Cutadapt (version 1.9.1) (Martin 2011) https://cutadapt.readthedocs.io/en/stable

Sickle (Joshi and Fass https://github.com/najoshi/sickle
2011)

Bowtie2 (version 2.2.6) (Langmead and http://bowtie-
Salzberg 2012)l bio.sourceforge.net/bowtie2/index.shtm

SAMtools (version 1.2) (H. Li et al. 2009) http://samtools.sourceforge.net/

Spades (version 3.10.0) (Bankevich et al. https://github.com/ablab/spades
2012)

Prokka (version 1.11) (Seemann 2014) https://github.com/tseemann/prokka

FigTree (version 1.4.3) N/A http://tree.bio.ed.ac.uk/software/figtree/

PHYLIP (version 3.69) (Plotree and http://evolution.genetics.washington.ed

Plotgram 1989) u/phylip.html
CD-HIT (Fu et al., 2012) https://github.com/weizhongli/cdhit

PyMol (version 2.2.3) (Schr6dinger, LLC https://pymol.org/2/
2015)
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PaperBLAST (Price and Arkin http://papers.genomics.lbl.gov/cgi-
2017) bin/litSearch.cgi

CELLO (C.-S. Yu et al. http://cello.life.nctu.edu.tw/
2014)

Consurf (Ashkenazy et al., http://consurf.tau.ac.il/2016/
2010)

Clustal omega (McWilliam et al. https://www.ebi.ac.uk/Tools/msa/clusta
2013) lo/

PDBePISA (Krissinel and http://www.ebi.ac.uk/pdbe/pisa/
Henrick 2007)

Other
Virulence Factors Database (Chen et al. 2004) http://www.mgc.ac.cn/VFs/

Contact for reagent and resource sharing

Further information and requests for resources should be directed to and will be fulfilled by the

Lead Contact, Eric J. Alm (ejalm@mit.edu).

Experimental model and subject details

Stool samples were obtained from OpenBiome, a non-profit stool bank, under a protocol

approved by the institutional review boards at MIT and the Broad Institute (# 1510271631). All

12 subjects were healthy people screened by OpenBiome to minimize the potential for carrying

pathogens and had ages between 22 and 37 years and body-mass indexes between 19.5 and 26.2

at initial sampling. Subjects were de-identified before receipt of samples. Table S1 contains

detailed information about each subject.

Study cohort and sample collection

OpenBiome received and processed fresh stool donations within 6 hours of generation. Most

samples were homogenized in a buffer containing 12.5% glycerol and 0.9% sodium chloride by

mass (relative ratio of buffer to stool was either 10:1 or 2.5:1 volume/mass). Some samples were
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homogenized in proprietary buffers (1:1 volume/mass). Homogenized samples were passed

through a 330-micron filter and stored at -80*C. Subjects 01-07 had multiple samples from

which B. fragilis was selectively cultured, with time-series spanning 31 to 709 days. For Subjects

08-12, only one sample was selectively cultured for B. fragilis. Metagenomic sequencing was

performed on stool samples from 8 of the 12 subjects (319 stool samples in total). Detailed

information about samples used for isolation, including handling conditions prior to sample

receipt, is in Table S2.

Library construction and Illumina sequencing

Samples were serially diluted in phosphate-buffered saline (PBS) and cultured for B. fragilis on

Bacteroidies Bile Esculin plates (BD 221836) in an anaerobic environment. Single colonies

suspected of being B. fragilis based on colony morphology were re-suspended in 50pL of PBS

with 0.1% L-cysteine. For future characterization, 15ptL of the re-suspension was mixed with

15ptL of 50% glycerol and stored at -801C. DNA was extracted from the remaining 35ptL using

the PureLink Pro 96 genomic purification kit, following the manufacturer's instructions.

Genomic DNA libraries were constructed and barcoded using a modified version of the Illumina

Nextera protocol (Baym et al., 2015) (Library Prep. 1). Libraries from one sample (SO 1-0259,

Day 709) were prepared by the BioMicroCenter at MIT using a different protocol, with lower

input DNA and a final Pippin size-selection step (Library Prep. 2). Genomic libraries were

sequenced either on the Illumina Hiseq platform with paired-end 1 00-bp reads or on the Illumina

Nextseq platform with paired-end 75-bp reads by the Broad Institute Genomics Platform (Table

S2).

SNP-calling and identification of major lineages
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To estimate the distance between isolates across subjects and identify major lineages, we aligned

all short reads to publicly available reference genome NCTC9343 (NCBI accession:

CR626927.1) and identified SNPs. Reads were first trimmed and filtered using Cutadapt (Martin

2011) and Sickle (Joshi and Fass, 2011) (pe -q 20 -l 50) and aligned using Bowtie2 (Alignment

parameters: -X 2000 --no-mixed --very-sensitive --n-ceil 0,0.01 --un-conc) (Langmead and

Salzberg 2012). Isolates for which more than 70% of reads aligned to the reference and which

had average coverage of greater than 10 reads across the genome were included for analysis

(These filters excluded 1 isolate from subject 10 and 13 isolates from subject 06). Candidate

SNPs were identified using SAMtools (Li et al., 2009) and filtered using methods from previous

work (Lieberman et al., 2014). In particular, genomic positions were considered to be candidate

SNP positions if at least one pair of isolates was discordant on the called base and both members

of the pair had: FQ scores (produce by SAMtools) less than -60, at least 7 reads that aligned to

each of the forward strand and reverse strand, and a major allele frequency of at least 90%. If the

median coverage across samples at a candidate position was less than 10 reads or if 33% or more

of the isolates failed to meet filters described above, this position was discarded. For each SNP

position identified, a nucleotide call was assigned to each isolate using the major allele call

across reads for that isolate at that position. If fewer than 7 reads aligned to either forward or

reverse strand of a position in an isolate, or the major allele frequency was smaller than 90%, an

ambiguous call was assigned to the isolate at that SNP position. See "code availability" for more

information.

We generated a neighbor-joining tree from the concatenated list of variable positions from

conserved genomic regions present in all B. fragilis isolates from all subjects. When computing

the distance between each pair of isolates, we only used variable positions that had unambiguous
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nucleotide calls from both isolates. This tree showed 12 major clades corresponding to the 12

subjects and one minor clade containing a single isolate from Subject 10 (Figure 1A). Within

each major clade, all isolates differed from one another by fewer than 100 SNPs. We therefore

operationally defined a lineage as a set of isolates that differ by fewer than 100 SNPs and refer to

specific genotypes within a lineage as sublineages. All lineages differed by over 10,000

mutations (Figure 1B); given the molecular clock estimated by this work, this represents at least

thousands of years of evolutionary distance.

De novo assemblies of lineage genomes and within-lineage SNP identification

To enable us both to detect variants within genes carried only in a subset of lineages and to

detect gains and losses of genomic regions that are specific to single lineages, we created a pan-

genome for all isolates from each major lineage. For each major lineage, we concatenated reads

(trimmed and filtered) from all isolates and used this concatenated file as the input for de novo

genome assembly via Spades v3. 10.0 (parameter: --careful) (Bankevich et al., 2012). To limit the

memory required for assembly, we used 0.25 million pairs of reads from each isolate (-7x

coverage). Isolates prepared by the Library Prep. 2, as well as a few isolates with apparent cross

contamination (genome assemblies built only using reads from single isolates were larger than

6MB) were excluded in building assemblies. Isolates not used to build the genome assemblies

are indicated as such in the metadata associated with the uploaded raw data (see Data

availability). Statistics of these genome assemblies are in Table S1. Assembly genomes were

annotated using Prokka v1. 11 (Seemann 2014). Lineage pan-genomes successfully assembled

regions present in only a single isolate (e.g. Figures SlA, S2C, S2E and S3A) and enabled

detection of mutations that would have been missed by comparison to a single reference (e.g.

mutations in CL4395, Figure 4B). A genome assembly of the minor lineage from Subject 10
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was built using all reads from this isolate.

Within-lineage mutations were identified by alignment of short reads to the corresponding

lineage genome assembly, using the same parameters as described in the previous section. For

lineage 10, the major allele frequency filter was set to 95% to exclude an apparent false positive.

Candidate positions in MEDs were also discarded (see below for information on MED

identification). Detailed information of intra-subject SNPs from the 12 subjects is listed in

Tables S6.

The gene content across the 12 major lineage genomes and the NCTC9343 reference varied

between 10%-20%.

Toxin detection

None of the B. fragilis genome assemblies showed evidence of pathogenicity. We compared the

genome assemblies of the 12 major lineages and 1 minor lineage to the Virulence Factors

Database, which contains >2400 virulence factors (Chen et al., 2004), via BLAST using a

threshold bit score of 200. We found only two hits to the database: Cps4J in L 11 and ospC4 in

LO 1. Both hits were not toxins previously characterized for B. fragilis. In contrast, this method

identified 171 hits to known B. fragilis-related toxins from 30 out of 88 B. fragilis genomes from

National Center for Biotechnology Information (NCBI).

Phylogeny of isolates from each B.fragilis lineage and identification of ancestral alleles

We used parsimony to reconstruct the evolutionary relationship between isolates from the same

lineage. For each major lineage, a phylogeny of all isolates was built using a list of concatenated
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intra-subject SNPs, the closest lineage as an outgroup, and the dnapars program from PHYLIP

v3.69 (Plotree and Plotgram, 1989). When parsimony could not resolve which allele was more

likely to be ancestral, we inferred the ancestral allele to be the majority nucleotide at this

genomic position across all other lineages with this genomic region. If a region was unique to a

lineage, we assigned the ancestral allele that minimized the average mutational distances to the

most recent common ancestor (dMRCA) for all isolates (3 cases).

dMRCA of each B.fragilis major lineage, molecular clock, and tMRCA

To calculate dMRCA for each subject at each time point, we counted the number of positions at

which the called allele was different than the ancestral allele for each isolate, assessing only SNP

positions that were polymorphic among isolates from the particular time point, and averaged the

results. For each lineage with multiple time points, we computed the average number of new

SNPs brought in per isolate from a later time point compared to the collection of SNPs identified

at the initial time point. We then used linear regression to estimate the rate of evolution. The

slope of the regression is our estimation of the evolutionary rate (Figure 2C). This method

allows us to combine longitudinal data from different lineages to compute a molecular clock. In

addition, we computed a molecular clock for L01, used tip-to-root distances overtime and

obtained similar estimate (Figure 2D).

Each tMRCA was calculated by dividing dMRCA by the estimated molecular clock (Figure 2E).

We stress that tMRCA is not an estimate of time to colonization, but simply an estimate of the

age of the coexisting diversity. While potential systematic false negative and false positive SNPs

may have impacted tMRCA values, these sources of error would have had a similar impact on

our molecular clock estimation, as SNP-calling was consistent throughout. Other possible
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sources of error in estimating tMRCA include incorrect designation of ancestral versus derived

allele and undersampling of the population, though collector curves for dMRCA indicate that

sampling was usually sufficient (Figures S7A-S7L). Interestingly, collector curves for the

number of de novo SNPs reflect that the number of SNPs identified did not saturate (Figures

S7M-S7X).

Mutation spectrum of hypermutator sublineage

SNPs were categorized into 6 types, based on the chemical nature of the single nucleotide

changes (Figure 2F). For L08, we computed the frequency of each type separately for the

hypermutator sublineage and non-hypermutator sublineages (Figure 2F, purple and yellow bars).

For the remaining lineages (LO1-L07 and L09-L 12), we computed the mutation spectrum for

each lineage and then computed the mean and standard deviation of each of the 6 types (Figure

2F, gray bars). The mutation spectrum was significantly different between the hypermutator

sublineage and the non-hypermutator sublineages (Chi-squared test, P<0.001), as well as the

mean across the other 11 lineages (Chi-squared test, P<0.001). No significant difference was

found between the 11 other lineages and the non-hypermutator sublineages from L08 (Chi-

squared test, P=0.4). When excluding the GC-TA type of mutation from the analysis, we found

no significant difference between the hypermutator sublineage in L08 from the 11 other lineages

(P=O. 11, Chi-squared test), suggesting that the hypermutation phenotype was exclusively due to

an increase in GC-TA mutations.

Metagenomic library construction and Illumina sequencing

Genomic DNA was extracted from stool samples for metagenomic sequencing by the Microbial

Omics Core at the Broad Institute using MoBio PowerSoil kits (Qiagen 12955-4) according the
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manufacturer's instructions. Genomic DNA libraries were constructed and barcoded by the

Broad Technology Labs from 100-250pg of DNA using the Nextera XT DNA Library

Preparation kit (Illumina) according to the manufacturer's recommended protocol, with reaction

volumes scaled accordingly. Pooled libraries were sequenced on the HiSeq platform with paired-

end 1 00bp reads by the Broad Technology Labs.

Identification of MEDs

We aligned short reads to the assembled genome of each major lineage as above and identified

candidate regions that were at least 500nt in length, had low relative coverage (< 0.2X) at every

nucleotide in at least one isolate, and had >0.9X coverage at every nucleotide in at least one

isolate. For LO 1, we excluded isolates from the final time point, as these isolates' genomic

libraries were prepared differently than the other isolates and therefore had different coverage

pattern genomewide.

To account for the fact that single mobile elements could have been separated into multiple

pieces in the genome assembly, we grouped regions suspected to emerge from the same event.

We clustered sequences that had identical presence/absence patterns across all isolates, where

presence was defined by >0.4X average relative coverage over the region. On 3 occasions, we

noticed regions that had the same presence/absence pattern but had different coverage

distribution across isolates, suggesting they came from distinct mobile elements. In these cases,

we separated these clusters of sequence regions into clusters with consistent coverage

distribution patterns. Detailed information of all MEDs is in Table S3.

MED gain and loss rates
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We used parsimony to infer whether a MED was a gain or loss event. For each MED, we

inferred events on the phylogenetic tree generated from whole genome data. If a single change of

one type (e.g. gain) could explain the distribution, but more events were required for the other

type (e.g. loss), the MED was categorized as such (Table S3; Figure 2B). Seventeen MEDs

were classified as unknown because either: multiple gain or multiple loss events were required to

explain the distribution (e.g. MEDO1-2); or both a single gain event and a single loss event were

consistent with the distribution. Interestingly, one putative MED from LI 1 appeared to have

been lost many times among isolates during culture (Figure S3D). To estimate lower bounds for

the rates at which gain and loss events change B. fragilis genomes, we weighted each observed

MEDJ by its frequency within lineage i (fi). We then divided the weighted sum of events by the

total time of diversification, estimated by the sum of tMRCA at initial sampling. The following

equation was used for gain and loss events, separately: i ffi / i tMRCA TOj. To estimate the

absolute contribution of gain and loss events to the size of B. fragilis genomes, we accounted for

length of each MED (L;): ij (Lijfj) / i tMRCAToJ

Inter-species mobile element transfer

For each lineage, we scanned the assembled genome for regions with high average relative

coverage when aligning metagenomic reads to the lineage genome assembly (>3X). The

coverage of metagenomic reads over the B. fragilis assembly varied over as much as 1000 folds

due to reads from homologous regions of different species. Therefore, to normalize against the

true expected coverage of the B. fragilis genome, we divided observed coverage at each position

by the mean coverage across positions between the 3 0 '11 percentile and 7 0 *h percentiles (median

was not precise given the low coverage in some samples). To identify recent transfer events, we

searched the genome for candidate regions >5000 nucleotides in length and in which the
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consensus genome from metagenomes was <0.02% different from the consensus genome from

isolates of the same subject. We found 14 candidate regions in 3 lineages. We found only two

candidate regions that overlapped with MEDs, all of which were in Subject 04 (representing one

MED). Information about these candidate regions is listed in Table S4.

We identified two genomic regions (31 Kb and 62 Kb, respectively) that were candidates for

inter-species mobile element transfer in Subject 01. These two regions contained distinct ORFs

homologous to conserved genes from type 6 secretion system of genomic architecture 2 (Figures

SIB-SIC), consistent with a single transfer event. This transfer event was inferred to be an

integrative conjugative element (ICE) because it contains the tra genes associated with

integrative conjugative elements and a tRNA gene at one edge of a transfer region (Table S4).

To test if the putative ICE was indeed transferred between species, we cultured and sequenced

the genomes of 94 Bacteroides isolates from this subject. We examined 53 Bacteroides vulgatus

isolates (43 isolates one B. vulgatus lineage, 10 isolates from a different B. vulgatus lineage,

Figures SiB-SiC), 25 Bacteroides ovatus isolates, 4 Bacteroides xylanisolyens isolates, 10

Bacteroides stercoris isolates and 2 Bacteroides salyersiae isolates. We sequenced these isolates

as described for B. fragilis and aligned reads to the mobile element candidates, using the same

parameters for B. fragilis. Strikingly, both genomic regions were present (average coverage >10

reads) in all B. ovatus, B. xylanisolyens, and B. vulgatus isolates profiled, but absent in all

isolates of the other two species. The perfect co-occurrence of these two genomic regions further

supports that they were from a single transfer event.

Parallel evolution
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We counted a gene as under parallel evolution if, in at least one subject, the gene had multiple

independent SNPs and more than 1 SNP per 2,000 bp (to account for the fact that long genes are

more likely to be mutated multiple times by chance). Cases in which two SNPs in the same gene

always occurred together in the same isolates were not included as parallel evolution (one case

from L04). To identify nucleotide positions that mutated multiple independent times within a

person, we leveraged the parsimony phylogenies described above. We inferred the genotypes of

all internal nodes using the parsimony assumption and counted the number of mutation events.

This method identified 3 nucleotides that were mutated multiple times within an individual

(Figures SiA, S3A, and S3C). All genes under parallel nucleotide evolution also underwent

parallel evolution involving distinct amino acid residues within at least one lineage. To

determine whether the number of genes under parallel evolution represented a significant

departure from what would be expected in a neutral model, we performed for each subject 1,000

simulations in which we randomly shuffled the mutations found across the lineage genome

assembly and calculated how many genes showed a signature of within-person parallel evolution

(Figure 4C). To compare genes from different assemblies, coding sequences identified by

Prokka from all lineages were clustered using CD-HIT with at least 98% identity and 90%

coverage (Fu et al., 2012). Detailed information for each gene under parallel evolution is in

Table S5. Simulations performed for metrics of cross-subject parallel evolution did not yield

additional signatures of adaptive evolution (Figures S4A-S4F).

dN/dS

Mutations were categorized as synonymous (S) or non-synonymous (N) based on open-reading

frame annotations created by Prokka (Seemann 2014). To calculate dN/dS for sets of de novo

mutations emerged within subjects (Figure 4D, first two categories), we normalized the
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observed N/S ratios by the expected N/S ratios. For any given set of SNPs, we calculated the

expected N/S for these SNPs, accounting for both (1) the different probabilities of acquiring

nonsynonymous mutations for different types of mutations and (2) the codon compositions of the

genes in which these SNPs occurred. This method is similar to what we have done previously

(Lieberman et al., 2014), but accounts for different codon composition between genes. 95%

confidence intervals were calculated using binomial sampling.

To compute dN/dS for mutations across lineages (Figure 4D, third category), we leveraged

publicly available sequences. We downloaded fastq files of 55 publicly available B. fragilis

isolate sequencing runs. We then identified mutations across these genomes and the 12 major

lineages from this study (one isolate per lineage) using the same approach and parameters

described above (Identification of major lineages and SNPs). The NCTC9343 genome was used

as reference and ancestor. Expected N/S ratio was calculated with the same method described

above, using all the SNPs identified across lineages.

We calculated dN/dS for cross-lineage mutations in individual genes (Figure 6C). Since lineages

are separated by tens of thousands of SNPs (Figure 1) and the molecular clock for B. fragilis is

-1 SNP/genome/year (Figure 2C-D), this metric reflects selection over thousands of years.

Expected N/S ratio was calculated with the same method described above, using only cross-

lineage SNPs identified within the particular genes. For 3 genes not present in the NTCT9343

genome (Figure 4B), we used the de novo assemblies to recruit reads from the publicly available

sequences. No cross-lineage SNPs were identified in these 3 genes and dN/dS was not reported

for these genes.
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Annotation of genes under selection

To discover homologs of the sixteen genes under within-person parallel evolution, we used

blastp to search against the RefSeq database, excluding proteins from B. fragilis genomes. Top

hits with 3-4 letter gene names were searched against the B. fragilis genome to confirm whether

they are true orthologs. We used the organisms from which these gene names were initially

described to avoid false propagation of misannotation. We also used PaperBLAST to aid in

identifying candidate gene names (Price and Arkin, 2017). Cellular localizations were predicted

using CELLO (Yu et al., 2014).

Conservation scores for each mutated residue was predicted using the Consurf web service

(Ashkenazy et al., 2010). For each gene, we used blastp to find homologs from the RefSeq

database (first 100 hits; sequence similarity from 35% to 95%; query coverage > 80%). A

multiple sequence alignment (MSA) was created using Clustal omega from the EMBL-EBI web

service (McWilliam et al., 2013) (default parameters). We then used each MSA to generate

conservation score at each amino-acid residue using Consurf (default parameters). Detailed

information is in Table S5.

SusC and SusD protein structures and interface residues

Available crystal structures of a SusC homolog (BT1763) from Bacteroides thetaiotaomicron

(Glenwright et al., 2017) was used to visualize the mutations observed in Sus genes under

parallel evolution. We aligned the five B. fragilis SusC proteins under parallel evolution and

BT1763 using Clustal Omega from the EMBL-EBI web service (McWilliam et al., 2013)

(default parameters). For all non-synomymous mutations, we identified their aligned positions on

the BT1763 crystal structure. Two amino acid residues aligned to the first 211 amino-acid

43



region, which encodes for a plug domain and is not available in the crystal structure of BT1763

(Glenwright et al., 2017). Eight non-synonymous mutations from Sus genes under parallel

evolution are marked in red in Figure 4E, using PyMol software (Schrddinger, LLC, 2015).

To test if the mutated residues were enriched at the interface between SusC and SusD, we used

the PDBePISA web service (Krissinel and Henrick, 2007) (default parameters) to classify

residues on the BT 1763 crystal structure as in contact or not in contact with the SusD homolog.

Of 806 residues, 119 were inferred to be interface residues. Among the 8 residues that were

mutated in parallel, 4 of them were predicted to be interface residues in both programs, a

significant enrichment (P=0.02, Fisher's exact test). A similar result was obtained using the

PyMol function InterfaceResidues (cutoff=1.0; P=0.02, Fisher's exact test).

Enrichment of membrane proteins

For all genes from the 12 major lineage genome assemblies, we used CELLO (Yu et al., 2014) to

predict the cellular localization. Genes were considered to be membrane-related if they were

annotated as inner membrane, periplasmic, or outer membrane. To compare our observation to

the null expectation, we performed simulations. For each of the sixteen genes, we randomly

selected one gene from the genome assembly of the lineage in which parallel evolution was

identified. If a gene had parallel mutation in multiple lineages, we randomly chose one of the

lineages. The cellular localization of n SNPs was assigned based on the CELLO prediction of

this randomly picked gene, where n is the number of SNPs the original gene had across lineages.

The proportion of SNPs from membrane-related genes was inferred using all sixteen such

randomly picked genes (repeat genes not allowed). This procedure was repeated 1000 times to

draw a null distribution of proportion of membrane-related SNPs. We calculated that in the
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sixteen genes under selection, 79% of the SNPs are from membrane-related genes, a significant

deviation from the null distribution (Binomial test, P<0.001).

Signatures of subject-specific adaptation

Fisher's exact statistic was used to test subject-specific adaptation, comparing the number of

SNPs in a tested gene within a particular lineage, the number of SNPs in other genes within this

lineage, the number of SNPs in this gene from all other lineages combined, and the number of

SNPs in other genes from all other lineages combined. We tested 10 genes that were present in

multiple subjects but mutated only in one subject. The p-values for BF1802, BF3581, BF1803,

are all less than 0.005, suggesting person-specific adaptation.

Mutation dynamics from metagenomes

Metagenomic reads from Subject 01, acquired as described above, were aligned to the assembled

genome of LO 1 using the same parameters described for aligning isolates reads. We tracked the

frequency of each SNP found in 4 or more isolates from LO 1; SNPs found in fewer isolates were

not abundant in the metagenomes. For each of the 21 SNPs that met this threshold, we calculated

the frequency of reads at each position that agreed with the mutation (derived) allele. As the total

metagenomics sequencing coverage was limited and B. fragilis represented only ~5% of reads on

average (Figure S5A), not every SNP was covered at every time point. For each SNP, we

visualized its dynamics by using time points with non-zero read counts and smoothing the

trajectory using the Savitzky-Golay method with a span of 25 and degree of 0 (Figure 5B).

To plot a schematic of the population dynamics of different sublineages (Figure 5C), we

averaged frequencies of SNPs that were shared by a particular sublineage to estimate the relative
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abundance of this sublineage. To fill the time points where no stool community was sampled, we

generated a continuous relative abundance trajectory for each sublineage using Fourier curve

fitting (Matlab model fourier8). To visualize parent and child sublineages separately, we

subtracted the relative abundance of a parent sublineage by the sum of relative abundances of its

child sublineages. When the combined relative abundance of child sublineages exceeded that of

their parent sublineage, we set the frequency of the parent sublineage to 0. After Day 180, we

manually set the frequency of the SL 1 parent genotype to zero, and reduced discontinuities

caused by this assignment by an additional Fourier curve fitting step (Matlab parameter:

fourier8). The imputed relative frequencies were then renormalized so that they sum up to 1. We

also examined L03's dynamics during colonization using 74 metagenomes collected over 144

days (Figures S5C-S5F). The same methods were used as described above, with the exception

that mutations in at least 3 isolates were able to be tracked, owing to the higher relative abundance

of B. fragilis in Subject 03 (Figure S5C).

Selection coefficient was inferred using (1 + s)- = f, where f represents the change in

genotype frequency, g represents the number of generations and s represents the selection

coefficient.

Competition experiments

We performed competition experiments using pairs or trios of isolates from different LOl

sublineages. Frozen stocks were restreaked on brain heart infusion plates (Sigma-Aldrich 53286-

500G) supplemented with haemin and vitamin K (BHIS) and revived for two days. Isolates were

cultured concurrently using the following procedure in order to ensure reproducibility. Single

colonies were inoculated in 1 mL of BHIS liquid media (hour -64). After 24 hours of growth,
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each pure culture was diluted 1:100 into 1 mL of BHIS liquid media and grown for another 24

hours. At hour -16, each pure culture was diluted 1:5 and grown for another 16 hours. All

operations were performed in an anaerobic chamber and bacteria were grown at 37 'C.

Synchronized and saturated pure cultures were mixed at hour 0. Co-cultures were diluted 1:100

in 1 mL of BHI liquid media and grown at 37 'C anaerobically. At indicated points, 80 ptL

aliquots of each co-culture was taken for OD measurement and targeted amplicon sequencing.

For the experiments shown in Figures S5G-S5K, time points were taken at 0, 6, 9, 12, 15 and 22

hours. For the experiments shown in Figures 5E-5G, we passaged the co-culture for another

round of dilution at hour 18, and timepoints were taken at 0, 9, 18 and 27 hours.

Targeted amplicon sequencing

To determine the relative abundances of different sublineages in co-cultures, we picked two

mutations from BF 1802 that distinguished sublineages: D526N (T to C) mutation distinguished

SLI from SL2, and T340M (A to G) separated SLI-a-1-1 from all other sublineages. We

designed two sets of primers that covered these mutations: 5'-ATCTTCTATCGCCTGCCGTG-

3' and 5'-CGTGTATTCCGCCCTCTACC-3' for D526N and 5'-

GCCAAAAACAAGGCAAATGACG-3' and 5'-GGTCGCTTCCTTACGGGTAT-3' for

T340M. Each primer was linked to an Illumina adapter overhang nucleotide sequence (See

online manual: Illumina 16S Metagenomic Sequencing Library Preparation). The co-culture was

first incubated in alkaline PEG solution at 95 'C for 10 minutes (Chomczynski and

Rymaszewski 2006). The target sequences were amplified individually using the KAPA HiFi

HotStart Ready Mix, 2 ptL lysis product, and 0.5[tM of forward and reverse primers. Libraries

were diluted 30X and barcoded using 2.5 pL diluted PCR products as template for PCR, the
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KAPA HiFi HotStart Ready Mix, and 0.5pM Nextera primers (Baym et al., 2015). Amplicon

sequencing libraries were sequenced on the Illumina Miseq platform with paired-end 250-bp

reads by the Broad Institute Genomics Platform. Sequencing reads were aligned to the assembled

genome of LO 1 using the same parameters described for aligning isolates reads. Relative

abundances were inferred by counting the number of nucleotides assigned to different

sublineages at the targeted mutation loci.

Phage plaque assay

All pairs of donor-recipient assays were performed on three different media: BHIS, BPRM and

BPRM+Bile (Media recipes can be found in Table S6). At hour 0, selected isolates from the

freezer were restreaked on three different media plates. At hour 48, 10 colonies from each

restreak were picked and inoculated into 500 tL of the corresponding liquid media. We then

transferred 10 pL of the well-mixed pre-inoculum into 3.5 ml of media in a deep well 48-well

culture block. Media for overnight cultures was aliquoted into tubes and culture blocks

aerobically and these were transferred into the anaerobic chamber immediately prior to

inoculation. To prepare donor filtrates at hour 73, we transferred 200 ptL of donor cultures to

0.22 pm filter-bottom plate wells (MED Millipore MSGVS2210) attached to a receiver plate

(Greiner Bio-One #651261) and centrifuged (3,200 rcf for 45 minutes) them in an aerobic

environment. Lawns of recipient strains were generated using tube-less agar overlay approach

using 130 p.L of overnight culture with 3.2 mL of molten top agar, and 32 mL bottom agar

plates, for each media respectively (Kauffman and Polz 2018). Lawns of recipient strains were

prepared at hour 74, 75 and 76 for BHIS, BPRM and BPRM+Bile respectively. Waiting for 20

minutes until top agar solidified, 4 ptL of donor filtrates were pipetted onto the surface of each

recipient lawn. Following drying of the drop spots, the plates were transferred to incubator at
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37 'C in an anaerobic chamber to form phage plaques. Counting results are summarized in Table

S6.

Identification of mutations in publicly available metagenomes

Four datasets were collected: the Human Microbiome Project (Lloyd-Price et al., 2017) (536

samples from 250 subjects; http://hmpdacc.org), the TwinsUK study (Xie el al., 2016) (250

subjects; ERP010708), a Chinese type 2 diabetes study (Qin et al., 2012) (368 subjects;

SRA045646 and SRA050230) and a Chinese liver cirrhosis study (Qin et al., 2014) (237

subjects; ERP005860). These datasets were chosen because they are deeply sequenced, have

large sample sizes and have comparable collective sample sizes from both Western countries and

China (Figures S6C-S6E). For each sample, metagenomic reads were filtered and aligned to the

B. fragilis reference genome (NCTC9343) as above. For HMP subjects with multiple samples,

only the sample with highest average coverage over B. fragilis genome was included. Alignment

information for positions previously identified as de novo SNPs or inter-lineage SNPs were

examined across metagenomes (56,272 SNP positions). Samples with average sequencing

coverage <1 or with potential multiple-lineage colonization (>3% of positions with major allele

frequency <95%) were discarded. In total, 347 samples passed our filters (n=90, 81, 100, and 76

for the four datasets, respectively). To minimize false positive polymorphisms emerging from

homologous regions in other organisms, for each sample, genomic positions with average

mapping quality < 41.9 (>95% of reads having maximum mapping quality) or with coverage

outside the 1%-99% quantile of genome-wide coverage were masked. For the QI OOP mutation

position from BF2755 (nucleotide position 3213109 in the NCTC9343 genome), 288 of the 347

samples met our filters. For a given sample, a variable position was defined as polymorphic if the

major allele frequency was between 50% and 95%.
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We also searched for other potential mutations under population-specific selective pressure. We

examined SNP positions in which >80% samples had sufficient mapping quality and more than I

read covering that position (23,395 SNP positions in total, also used to build phylogeny in

Figure 6B). We did not find SNPs with a comparable signal to the Q100P mutation (Figure

S6B)

Quantification and statistical analysis

Statistical significance was calculated using Fisher's exact text, Mann-Whitney U-test, Chi-

squared test, Binomial test and simulations as reported in the text.

Data and software availability

FASTQ files for the 602 B. fragilis isolates and the 667 targeted amplicon sequencing reactions,

with adaptors removed and filtered for quality, as well as the BAM files of the 352 metagenomes

aligned to B. fragilis lineage assemblies, are available from NCBI Sequence Read Archive

(BioProject PRJNA524913). Commented MATLAB and Python scripts are available at

https://github.com/shijiezhao/Within-person-evolution-of-Bacteroides-fragilis.

2.6 Figure titles and legends

Figure 1 1 Each subject's B.fragilis population is dominated by a single lineage.

(A) Phylogenetic reconstruction shows that isolates cluster by subject (n=602), with one outlier

isolate from Subject 10. Isolates are colored according to subject. (B) Isolates from same subjects

generally differ by < 100 single nucleotide differences (SNPs) while isolates from different
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subjects differ by >10,000 SNPs. Mutational distances between all pairs of isolates. Inset: Intra-

subject pairs separated by >18,000 SNPs all involve the outlier isolate from Subject 10.

Figure 2 1 B.fragilis lineages diversify for years in healthy individuals via de novo SNPs and

MEDs.

(A) The phylogeny of isolates from L05 is shown as an example, demonstrating both SNP and

mobile element differences (MEDs; see also Figures S1-S3). Thin lines connect each isolate to a

colored circle, which indicates the timepoint of isolation. Relative coverage (compared to the

mean genomewide) across two MEDs is also shown. (B) The number of SNPs and MEDs

identified for each lineage. (C-D) Estimate of the B. fragilis molecular clock using two different

methods. (C) Each shape represents the average number of new SNPs per isolate from the

indicated timepoint not present in the set of SNPs at initial sampling. (D) Estimate of molecular

clock using root-to-tip distances for LOI only. (E) Distance and inferred time to most recent

common ancestor at initial sampling (dMRCA and tMRCA, respectively). Gray dots represent

individual isolates and bars represent averages. For L08, purple dots represent hypermutator

isolates, and the average presented excludes these. (F) The spectrum of mutations in the

hypermutator sublineage (purple) differs substantially from that of the normal sublineages of L08

(yellow) and 11 other lineages (gray). Error bars represent standard deviation across the 11 other

lineages. Inset: Phylogeny for L08.

Figure 3 1 Mobile elements are transferred within the microbiome of individual people.

(A-B) The phylogeny of isolates from L04 illustrates the gain of MED04-1 over time. Shading

reflects the average relative coverage of the MED (compared to the mean genomewide). (B)

Average relative coverage across the length of MED04-1 for different samples (46 isolates and 2
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metagenomes). Colors are as indicated in (A). (C-D) Combining isolate whole genomes and

metagenomes reveals an inter-species mobile element transfer event. (C) Isolates from LO 1

(n=187) show ~1X relative coverage of a putative integrative conjugative element (ICE), while

isolates from other 11 lineages show relative coverage close to zero (n=415). Metagenomic

libraries from all time points of LO 1 (n=206) show high relative coverage of this (ICE). (D) A

rooted parsimonious phylogeny of the putative ICE across 4 species. Isolates with identical ICE

sequences from a same phylogenetic group were merged into a single node (see also Figures

SiB-SiC).

Figure 4 1 Genes involved in polysaccharide utilization and cell envelope biosynthesis

undergo parallel adaptive evolution within individual subjects.

(A) An example gene under parallel evolution from L02 is shown, demonstrating that observed

mutations are of independent origin and occur in distinct isolates. Nodes represent individual

isolates and are colored by sampling dates. (B) A total of 16 genes were identified as undergoing

parallel evolution in the 12 lineages. These 16 genes are grouped by inferred function (Table 5).

Each dot in the table represents an independent mutation event, colored by type of mutation. (C)

The number of genes mutated in parallel within at least one lineage deviates significantly from

neutral simulations (P<0.001, Methods). (D) A classic signature of selection, dN/dS, indicates

adaptive evolution in genes under parallel evolution (P<0.001, Binomial test), but not for other

genes mutated within subjects. Mutations across lineages show a significant signature of

purifying selection (P<0.001, Binomial test). Error bars represent 95% confidence intervals. (E)

Mutations in SusC homologs under selection were enriched at the interface between the proteins

(P< 0.001, Binomial test, Methods).
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Figure 5 1 Evolutionary dynamics over a 1.5 year sampling period reveals a steady increase

in mutational frequencies and a stable coexistence of two sublineages.

(A-C) We combined 206 stool metagenomes and 187 isolate whole genomes to infer

evolutionary dynamics within LO 1. (A) Branches with at least 4 isolates are labeled with colored

squares that represent individual SNPs. One SNP was inferred to have happened twice and is

indicated in both locations (purple). (B) Frequencies of labeled SNPs were inferred from

metagenomes. Circles represent SNP frequencies inferred from isolate genomes. (C) We

combined these data types to infer the trajectory of sublineages prior to and during sampling.

Sublineages are labeled with names and colored as in (A). The two major sublineages, SL 1 and

SL2, are separated by dashed lines. Black diamonds represent transient SNPs from genes

presented in Figure 4. (D) The identity of SNPs shown in (B-C). SNPs in the 16 genes under

positive selection are bolded and transient mutations in these genes are indicated with

parentheses. Negative numbers indicate mutations upstream of the start of the gene. (E) All

isolates from SL2 (n=76), but only 13% from SLI (n=1 11) carry putative prophage MEDO1-2.

(F-H) Relative abundances of pairs of isolates during competition assays, over two rounds of

passages. Dashed lines represent 1:100 dilution at hour 18. Each line represents the average of 3

technical replicates, and error bars represent standard error of the mean.

Figure 6 1 Comparison to published metagenomes reveals a mutation that emerges

independently and frequently in Western, but not Chinese populations

(A) We examined the prevalence of a common amino acid change in available metagenomes.

The percentage of metagenome samples with a polymorphism or fixed proline at this position

was greater in Western populations than in Chinese populations (n=152, 136 respectively). Error

bars represent standard error. (B) A neighbor-joining phylogeny of inferred B.fragilis genotypes
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within public metagenomes demonstrates that this mutation emerged independently and

repeatedly. Phylogeny is shown as a dendrogram to better visualize the independent emergence

of QI OOP mutations. (C) Between lineages, 12 genes under parallel evolution and with inter-

lineage mutations show significant signatures of purifying selection (dN/dS>1, Binomial test,

Methods). BF2755 does not show signs of purifying selection for inter-lineage mutations. This

analysis represents tens of thousands of years of evolution (Methods), in contrast to Figure 4D.

Error bars represent 95% confidence interval. The dashed line represents the average dN/dS for

all inter-lineage SNPs. (D) Four models that could account for the discrepancy of natural

selection at different timescales.

Table 11 Estimation of the number of mutations occurring daily within

microbiome

the human

Number of

bacteria

(cells/microbiom

e) (Sender et al.,

2016)

101 -1014

Mutation rate

(SNP/nucleotide/replicati

on) (Barrick and Lenski

2013)

10-10 -10-9

Bacterial

genome size

(nucleotide/ce

11) (Nayfach

and Pollard

2015)

2-6x 106

Range of

replication

rate

(replication/da

y) (Korem et

al., 2015)

1-10

Estimated number

of

de novo mutations

(SNP/microbiome/d

ay)

2x109 - 6x1012
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Figure S1 I Within-person evolution of Bacteroides from Subject 01, Related to Figure 2

(A) The phylogeny for isolates from B. fragilis is shown. Colored circles represent isolates from

samples collected at the indicated dates. For each isolate, the relative coverage across identified

MEDs is shown. Shading of MED regions reflects the average relative coverage of the MED in

that isolate. Red stars indicate when the same nucleotide mutation emerged multiple times within

the same lineage (inferred via parsimony, Methods). More details on the exact mutations and

MEDs found are in Table S3. Inset: dMRCA values across sampling times. (B-C) Analysis of

the integrative conjugative element (ICE) found to be transferred in Subject 01, identified from

two candidate interspecies transfer regions (ISTO1-1 and ISTO1-2, Methods). (B) A phylogeny

was constructed for all B. vulgatus isolates cultured from Subject 01, using a publicly available

reference genome (GCF_0000 12825.1) and the same parameters and methods for B. fragilis SNP

identification and evolutionary inference. (C) A phylogeny was built using reads aligned to the

ICE from all isolates of 4 Bacteroides species from Subject 01 (Figure 3D). The sequences of

ISTO 1-1 and ISTO 1-2 in the LO 1 assembly were used as the reference and the same methods

were used as for B. fragilis SNP evolutionary inference. Among the 4 SNPs identified, we found

2 SNP locations whose 200-bp flanking sequence had matches in NCBI with >85% similarity,

and we used these alleles as outgroups to root the tree. For the remaining 2 SNP locations, we

assigned ancestral alleles that minimized the variance of dMRCA of all isolates. Colors represent

isolates from the same phylogenetic group. The consensus ICE sequence in the LO 1 B. fragilis

genome is represented by a single circle (black). We note that three SNPs were identified within

this ICE in B. fragilis LOI, each in a single isolate.

Figure S2 | Within-person B.fragilis evolution in L02-L07, Related to Figure 2
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(A-F) The phylogeny for isolates from L02 to L7, respectively. Colored circles represent isolates

from samples collected at the indicated dates. For each isolate, the relative coverage across

identified MEDs is shown. Shading of MED regions reflects the average relative coverage of the

MED in that isolate. Dark green diamonds indicate SNPs associated with putative sweeps and

are labeled with gene ID and type of mutation. Within-sample dMRCA changes over time are

shown adjacent to the phylogeny. In (F), the SNP that was shared by all isolates from the latest

time point (dark blue) was not included as a sweep because it might be an artifact of

undersampling at the later time point (Figure S7G). More details on the exact mutations and

MEDs identified from these lineages are in Table S3.

Figure S3 I Within-person B.fragilis evolution in L08-L12, Related to Figure 2

(A-E) The phylogeny for isolates from L08 to L12, respectively. All lineages were sampled

once. For each isolate, the relative coverage across identified MEDs is shown. Shading of MED

regions reflects the average relative coverage pattern of the MED in that isolate. Red stars

indicate when the same nucleotide mutation emerged multiple times within the same lineage

(inferred via parsimony, Methods). (D) The presence/absence pattern of MED 11-1 suggests

many loss events on the phylogeny. More details on the exact mutations and MEDs identified

from these lineages are in Table S6 and Table S3.

Figure S4 I Search for parallel evolution across lineages did not yield additional genes

under selection, Related to Figure 4

We searched for genes mutated multiple times across lineages, counting the number of total

SNPs obtained in each gene (M), the number of lineages a gene was mutated in (n), and the

maximum number of mutation a given gene was mutated in any lineage (mmax). Simulations were
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performed as described in the Methods. (A) A search with the criteria of M 2 yielded results

consistent with a null model. (B) When this threshold was increased to M 3, 11 genes were

observed. Interestingly, 9 of these genes were already discovered with the criteria used in the

main text, miax! 2 . The 2 genes that are newly discovered with this metric (mmax< 2 & M3) do

not show a signal for positive selection (F). (C-D) Similar results were obtained for the metric n,

with the only 2 new genes discovered being identical to the analysis in (A-B). Further, dN/dS of

genes discovered with the n metric did not show a significant signal for adaptive evolution (F).

(E) The number of intergenic mutations is consistent with a null model. (F) dN/dS calculated

across groups of genes defined with various metrics for parallel evolution. Together, these results

are consistent with the evidence of person-specific selection forces found in the main text and

suggest that when a selection pressures is shared across subjects, it can usually be detected from

just studying a single subject.

Figure S5 I Evolutionary dynamics of L01 and L03 and the phage-mediated competition

between LOl sublineages; Related to Figure 5

(A) For each metagenome from stool samples from Subject 01, we calculated the percentage of

metagenomic reads that aligned to the LOI genome assembly and plotted it against the time of

sample collection. Reads potentially from other species (in regions with >5X median coverage)

were excluded. This percentage estimates the relative abundance of B.fragilis in the stool

community. The black line indicates the mean across samples. (B) For each sample, the ratio of

SL 1: SL2 was estimated using total number of reads aligned to alleles corresponding to either

sublineage at the SNPs that separate them. Samples with fewer than 40 reads aligned to these

SNP locations were excluded. The black line indicates the mean across samples. (C) The relative

abundance of L03 B. fragilis inside Subject 03 was estimated in 74 metagenomes spanning 144
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days, using the same method described in (A). (D) The phylogeny of isolates from L03.

Branches with at least 3 isolates are labeled with colored octagons that represent individual

SNPs. Circles represent individual isolates and are colored according to sampling date. (E)

Frequencies of labeled SNPs over time in the B. fragilis population were inferred from 74 stool

metagenomes (Methods). Colored circles represent SNP frequencies inferred from isolate

genomes at particular time points. (F) The evolutionary history of sublineages during sampling

was inferred (see Methods). Sublineages are defined by their signature SNPs and labeled with

the identity of SNPs and colored as in (D). (G-J) We picked one SL 1-a-I isolate, one SL- 1-a-i -1

isolate and two SL2 isolates to perform competition experiments. Neither of the two SL 1 isolates

carried MEDO 1-2. We performed multiple competitions and treated those with different SL2

isolates as biological replicates. Saturated and synchronized pure cultures of the indicated

isolates were mixed at the indicated ratios diluted 1:100 to begin the competition. Relative

abundances were estimated using targeted amplicon sequencing (Methods), and OD

measurements were used to convert these to absolute abundances. Absolute abundances are

displayed as the average of replicates (top panels) and relative abundances are displayed

separately for each replicate (bottom panels). (G) Competition between SL 1-a-I and SL 1-a-I-1,

both were MEDO 1-2-, showed stable coexistence over 22 hours. (H-I) Both SL 1-a-i -1 isolate

and SL 1-a-I were outcompeted by SL2 within 22 hours. (J) In the trio competition, both SL 1-a-I

and SL I-a-i -1 were outcompeted by SL2 and their ratio did not change over time, suggesting

that SL 1-a-i -1 did not have obvious advantage over SL I-a-I in this experimental setting. (K)

Growth curves for pure cultures and competition co-cultures show that mixtures of SL 1 and SL2

had slower overall growth than pure cultures, suggesting actively killing of SLI by SL2. (L)

Phage plaque assay showed that the isolates with MEDO 1-2+ formed phage plaques on isolates

that are MEDO 1-2-. Each dot represents the number of plaques formed for a distinct donor-
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recipient pair, color coded by the media the recipient was grown on (Methods). Results are

grouped by the donor-recipient pair. The difference between the D+,R- group and each of the

other four groups are all significant (P <5x 10-12, Mann-Whitney U test). Between the other four

groups, there are no significant differences (P > 0.15, Mann-Whitney U test).

Figure S6 I BF755 Q100P difference between Chinese and Western populations are robust

to subject health conditions and are the most significant difference; Related to Figure 6

(A) For all four datasets, we inferred the total fraction of samples with QI OOP polymorphism or

fixed for subjects with different disease conditions. The HMP consists of healthy subjects.

TwinsUK subjects are elderly people and a small fraction of them are diagnosed with diabetes.

For the two Chinese studies, patients and healthy controls were plotted separately. Light gray

represents the fraction of samples with QI OOP polymorphism, and dark gray represents fraction

of samples with P mutation fixed (stacked bar chart). Error bars represent standard error of

percentage of samples with either fixed or polymorphic mutation. We do not find any association

between subject health and the prevalence of Q lOOP mutation. (B) Manhattan plot shows that the

QI OOP mutation in BF2755 is the only mutation that is under differential selective pressure

between Western and Asian populations. Each dot represents the p-value of a Fisher's exact test

of a variable position on the B. fragilis genome, comparing the number of samples with

polymorphism between Western (TwinsUK and HMP) and Chinese metagenome datasets. Gray

dots are synonymous mutations positions while blue dots are non-synonymous mutation

positions, the red dot represents Q100P mutation from gene BF2755. (C) Among samples

passing filters, those that were polymorphic did not have different sequencing coverage relative

to those with the ancestral allele (Q, p=0.37, Mann-Whitney test). Samples with all reads

pointing to P had slightly lower coverage comparing to samples with the ancestral allele (p=0.03,
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Mann-Whitney test). (D) Western samples and Chinese samples have similar overall coverage

(p=0.49, Mann-Whitney test). (E) Coverage over the QI OOP position is comparable with

genomewide average coverage for the included metagenome samples. Colors scheme is the same

with panel (C).

Figure S71 Collector curves suggest sufficient sampling for dMRCA, yet numbers of SNPs

identified depends on number of isolates collected, Related to STAR Methods

(A-L) For each lineage and time point, we created a collector curve for dMRCA (one curve if the

lineage was sampled once). For an isolate population from a particular time point, we

subsampled the population to x isolates (0<x<n, n = total number of isolates at the time point),

reconstructed the MRCA, and recomputed dMRCA. For each x, we simulated 100 subsamples

and computed the mean (dots) and standard deviation (bars) for the simulation results. dMRCA

was undersaturated only in 2 time points from L07 (0 and 168 Days). (M-X) For each lineage

and time point, we created a collector curve for the number of SNPs identified (one curve if the

lineage was sampled once). For an isolate population from a particular time point, we

subsampled the population to x isolates (0<x<n, n = total number of isolates at the time point),

and recomputed the number of SNPs identified. For each x, we simulated 100 subsamples and

computed the mean (dots) and standard deviation (bars) for the simulation results.
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Figure S7
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2.7 Supplementary tables

Table S1

Table SI: Subject information and per-lineage statistics

Donor ID Sol S02 S03 S04 S05 S06 S07 SOS S09 S10 Sit S12

Donor Information -7_77

Age at first sample (years) 28 22 37 27 27 36 29 26 35 25 31 32

Sex M M M F F M M M M F F F

BMI 23 26 26 21 21 22 22 23 24 22 21 20

Pr-donor SMnpin nformation
Number of stool samples for culturing 10 3 2 2 3 2 3 1 1 1 1 1
Number of time points for culturing* 6 2 2 2 3 2 3 1 1 1 1 1
Time between first and last culture samples (days) 713 31 144 329 250 324 168 0 0 0 0 0

Number of metagenome samples 206 29 74 2 0 2 0 0 0 2 2 2

Time between first and last metagenome samples (days) 539 147 144 329 0 324 0 0 0 172 133 125

Within-person. evolution suntmar$ statistles
LineageID LOI L02 L03 L04 L05 L06 L07 L08 L09 LIO** Li1 L12

Number of SNPs 81 9 21 32 36 8 18 182*** 29 21 29 27

Number of gain events 1 0 0 3 0 1 0 4 0 0 1 0

Number of loss events 2 1 0 0 2 2 2 0 2 1 0 0

Number of mobile element differences of unclear direction 3 0 0 1 0 4 0 5 1 0 2 1
dMRCATO (SNPs/genome) 8.57 1.56 2.32 5.88 5.13 0.95 1.26 38.9**** 4.34 3.72 3.09 1.45

Tajima's D -0.36 -0.30 -0.66 -0.53 -0.21 -0.10 -0.93 0.01 -0.70 -0.12 -0.45 -0.76

Genome assembly statistics
Number of contigs (>500 bp) 428 242 84 83 98 157 84 112 164 117 105 98

Size of the largest contig (bases) 504979 294815 732334 504646 367565 716540 506896 479793 260986 578609 474008 442488

Genome Size (from contigs>500 bp, bases) 5480571 5366007 5319470 5230166 5348204 5202614 5191962 5331732 5334688 4897447 5235138 5287402

GC (%) 43.27 43.13 43.12 43.23 43.4 43.3 43.17 43.34 43.74 43.26 43.14 43.13

N50 (bases) 190337 142996 221751 169000 151088 189635 213368 197256 102101 241706 157794 170662

* Samples were defined as from the same time point if they were sampled within a 5-day window

** One isolate from SIO was not in linage LIO (see Extended Data Figure 1)
* 35 SNPs if suspected hypermutator-induced mutations are removed

**** dMRCATO=9.9 if suspected hypermutator-induced mutations are removed

N/A = Not available I I
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Table S2

Table S2: Stool samples used for culturing single-colony isolates

Number of isolates Average fold
15
15
16
16
15
16
34
15
(5
30

7
9
23
28
20
24
22
16
15
16
21
12
23
20
4
30
32
30**
32
31

30.75
42.15
40.99
39.71
33.59
41.84
59.9)
40.72
37.11
109.12
59.21
56.61
62.84
62.67
96.58
85.26
90.20

59.50
28.21
48.22
54.87
68.70

65.91
65.57
80.01
55.60
78.18
81.44
77.80
60.86

Percentage inads
98.12%
98.33%
98.38%
98.44%
97.69%
97.76%
98.51%
97.40%
97.91%
99.06%
95.88%
97.41%
97.39%
98.69%
98.87%
98.46%
98.33%
98.80%
98.73%
98.64%
94.89%
98.23%
98.74%
98.75%
98.74%
98.34%
98.24%
98.48%
98.71%
98.61%

Metagenomic
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
Yes
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes

Sequencing platform Read length (bp,
HiSeq 100
HiSeq 100
HiSeq 100
HiSeq 100
HiSeq 110o
HiSeq 100
NextSeq 75
HiSeq 100
HiSeq 100
HiSeq 100
NextSeq 75
NextSeq 75
NextSeq 75
NextSeq 75
NextSeq 75
Ne(tSeq 75
NextSeq 75
NextSeq 75
NextSeq 75
NexSeq 75
NextSeq 75
NexiSeq 75
NextSeq 75
NextSeq 75
NextScq 75
NextSeq 75
NextSeq 75
NextSeq 75
NextSeq 75
NexSeq 75

Buffer per Ig stool
10
10
10
2.5
2.5

2.5
2.5
2.5

10
(0

10

(0
I0

(0
10

***

10
10
t0
10
10
10

10
10
10
10
10
10
10

* Libraries prepared differently (by BioMicroCenter a( MIT)
*One of the isolates from this sample was from a minor lineage
*** This sample was prepared by OpenBiome using proprietary stool formulation I
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Sample ID
so I-000 I
SIl-0002
S1-0072
SOI-0073
501-l(55
5O1-0156
S01-0171

SOl1 -0228
SO1-0231
SI1-0259*
S02-00013
S02-0003
S02-0024
S03-0001
S03-0090

S04-0((67
SO4-0107
S05-0002
S05-0068
S05-0105
S06-0001
S06-0122
507-000 I
S07-0068
S07-0134
SO8-O(89

S09-0001
S 10-0039
SI I-000
S 12-0002

Sampling date
0
(1
174
175
372
373
404
534
539
713
0
2
31
0
144
0
329
0
185
250
0
324
0
83
168
0
0
0
0
0

Timepoint

SO 1-I
Soll-I
SO1-2
SO(-2
SO(-3
SO1-3

SO(-4
SOI-5
SO-5

SOI-6
S02-1
S02-1
S02-2
S03-1
S03-2
S04-1

S04-2

S05-2

S05-3
S06-1
S06-2
S07-1
S07-2
S07-3
S08-1
S09-I1
SIlO-I
S1-1
S12-I



Table S3

Table S3: Mobile element difference (MED) information

Summary information of each MED group
Name of the MED Total Length Present in % of isolates Inference of gain or loss

estimated (bp)

MEDO1-1* 8142 66.0%,loss
MEDO1-2* 8952 48.1% unknown
MEDO1-3 13173 7.5% unknown
MEDO1-4 5026 15.5% unknown
MEDOI-5 1807 0.5% gain
MEDOI-6 1645 99.5% loss
MED02-1 1061 97.4% loss
MEDO4-1 71205 32.6% gain
MED04-2 20906 4.3% unknown
MED04-3 19089 28.3% gain
MED04-4 2389 2.2% gain
MED05-1 5071 97.9% loss
MED05-2 82461 36.2% loss
MED06-1 41834 97.0% loss
MED06-2 58606 72.7% loss
MED06-3 92253 42.4% unknown
MED06-4 4168 48.5% unknown
MED06-5 8791 9.1% unknown
MED06-6 1329 9.1% unknown
MED06-7 1073 3.0% gain
MED07-1 3335 97.9% loss
MEDO7-2 21018 76.6% loss
MED08-1 38315 43.3% gain
MED08-2 9310 43.3% gain
MED08-3 80644 93.3% unknown
MED08-4 14373 93.3% unknown
MED08-5 24705 50.0% gain
MED08-6 32102 6.7% unknown
MED08-7 43112 6.7% unknown
MED08-8 11150 6.7% unknown
MED08-9 1568 6.7% gain
MEDO9-1 9455 96.9% loss
MED09-2 571 87.5% loss
MED09-3 1202 93.8% unknown
MED1O-1 44181 89.7% loss
MEDJ 1-1 55204 50.0% loss
MED11-2 2751 40.6% gain
MED 11-3 882 68.8% unknown
MED12-1 3000 96.8% unknown
* MEDOI -1 and MEDO 1-2 are hypothesized to be prophages, as they both include phage signature
genes XerD and Structural protein P5. MEDO1-1 and MEDOl-2 share -42 kbp homologous
regions, which are not included in this table.
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Table S4

Table S4: Candidate inter-species transfers

Name of the Contig
candidate inter-
specie tranfer
ISTO1-1
ISTO1-2
ISTO4-1
IST04-2*
IST04-3*
ISTO4-4
IST04-5
IST12-1
IST12-2
IST12-3
IST12-4
IST 12-5
IST12-6
IST12-7

* Also MEDO4-1

1
22
20
23

23
30
34
5
5
5
5
8
8
8

Start position End poistion
in the contig in the contig

24

36
77555
35
65459
31588
24
116489
141569
155340
266374
119631
141365
164711

31097
62123
100359
52467
71206
44576
47830
137934
149751
189468
274530
141361
162157
171213

Length

31073
62087
22804
52432
5747
12988
47806

GC content Average relative

0.44
0.47
0.48
0.39
0.38
0.41
0.46

coverage in coverag
metagenome samples isolates

45.4 1.04
47.7 0.93
20.8 0.69
38.4 0.38
34.0 0.37
21.5 1.24
24.6 1.12

21445 0.45 14.3
8182 0.39 14.9

34128 0.50 13.1

8156 0.49 10.3
21730 0.50 28.7
20792 0.51 27.0
6502 0.49 27.5

0.82
0.97
0.74
0.74
1.65
1.57
1.69

Average relative Prokka annotation
e in the

putative deoxyribonucl
hypothetical proteinhy
Tyrosine recombinase.
Tyrosine recombinase
hypothetical protein;hy
hypothetical protein;Ti
hypothetical protein;hy
hypothetical protein;hy
Actin cross-linking tox
hypothetical protein;Ai
hypothetical protein;hy
Tyrosine recombinase
hypothetical protein;hy
hypothetical protein;hy
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Table S5

Table S5: Genes under seletion in wo

Prokka annotation Prdicted bialolical roe Annotation In F1gre 3 Annotated hamolopg [orgnpaa Mutated inage [locations ontas Celuar Notes

TonB-dcp-Wdav mealpar -uC P-1ysa-auaaride potubikdi SWsC tarily protein M8 I2 AW E0Dj

Tas-dpsndantlpaepaa r SaC P .ysar.a ip-bdi Su a mly psosn L5: 1A702S, 1991
SuaI-laikc poatin Petsf ha&.e impstimdain SfD family pracin 101; [G312A, 1340M,13526141

TssB-dpsstssaosrsSuC P.aoahril iarm cl/ng S,C family prass L02:N293K, D572N

To0-dp-ld sasraqp SuC P jolsrideimpos .ing ScaCOamily paian [Oh: [E769K. S]
TanB-dsp aaorsass-aC Pfolsaaid upO/inlung .sCfily sprscin (a5C) csf? [aCaka frgIw I Lot: [P240t, K751, Q974R
tipid A a A I-bding/pnnme Cd cawelpc biosynhesis ABC srasparr abA .sbA [&asrde s[saa L0:1D61N, K485QproteinMbh

5a O5'k Meat
4,4 Outer Mamrniaac
, 2 i Osslsr MWbra Upagaulasd in mice eaWd with ahumh mAk oligosaccharidas [1]

6,8 0""sh M "&l- UPsqalaiasasis scas win' human silk Ilga..ashasds II]
1, NA 11,"r Msmrans

S , s Outer Mmbrae Shown slo be Wias t for Iniztolo n m mouse mxdls [l 2

I 9 lana Manbra T-spasa lipid A.

Ckak-a
13

asasiWsaslHa) 110330763 [BaIs Ilaholog in B. 5awoasvrs (BT1335) is in dh caasm polysaccharid 4 las.
Hypokea prolc Call -top. banosynC t ia Chain-mgth dalarmiWor (cps4) ,aas L: [1077E, A 3S, 1246N) 111: [A3Id 6,9,7,9 shsaw. to b. is sUraa ft sindkIg IgA [31

112P6-* Call enlcl-p biosyl-dpih CPC Cdasasyaran aagl [B. gaos NC1 9343) LO1 , M em Delion of this - aa0gaa0s [y[7-i.i of 7 of d. I cap0ir poly0ccPris [4dchydssAaau4D)__ . - 5 _481C);1:IV94LI ____ NA I~a~lla ~saa0gstsaa.aa.57013aalsa d~~ ~
Hypothetical prokin C.l11 a p hsiaas G aycosyllr teras.s(ftD) .13D[E-3 ,ri" hic LIl:I52L)[PI65S 33a Out.as bra

PLaive Sghcosylafa Esall Cls -slops b)sya s Glyoaslrasfras. s [Pa) a sll p. oal lason '99] LI: WI 56C, W156W, WWI % , 6 Cysaplopasi No l found f.s EpsliH O s BLAST uai 05.s A pbsta .a

Hypsthticad pruaAi UakUan Tasa.Ilsstdmaa aal Cs 3 123S Lt:O IA16V, 1: L04: [A154V 1. NA, I PWIplasi

IflH-typ rsiptional aguslary Uakasasgn ssssslaiOs Tgaaspisql.1, lsasor ualdb -&p. a L)a:asK62 , L I65S ]; L07:0 Qp62*] 1,9.1 Cy.plsam H. 23%.mi.a ideily to Cysh in B. bah.
1681

Acano wWdabh.. Dehydrau-dcaulghydras y AM [E-landrrtheeg-n A TCC LS G1VR3 I
Amino acid assyt (760) 354691 [OS:1041\ , 354C)

Unkowan Oyaoldicalprii LOS: JE53, R-2911

LOl01: Q00P. Q100PILOS :[JQ36H, QI00P 1,1,9,1,1 Paupla H.sassasdyyaah.asoaaqasasay.lsa
,0 , P H r y - y

Ah lssed 55bB. Hmologs hav b- implical d in yacsbaism 1a1 and -1, 7 moytan abnc*livm [61, with connucticans W virn- .
NA, 9 lCylaiplacaic

*When a hootol was present in the NCTC_9343 gnaome. we used this I'ous tag. Otherisc. we used the cluster ID (Supplementary Table 19)
*Sores correspond to individual mutations in the previous calumn. in the same order. Scors are predictal by Consurf (Methods). Sos range from I to 9. which me moms variable and 9 nscainm,,,. c-en ed

NA means that noscore is available for a synonymous mutation. or that not enough hoSsosos information was available to infer a meaningful comervationt score at that residue position, Scores of 7 ,r au, cwerY
considered 'highly conserved.

*Predicted byCELLO(Methods)

Refensaes:.
li] Maca, A. t. Bacacruid. in h. infas glm -suA iosahis" via n -uilizaeon pahway,. Callf, iAlrs 10,507 514(2011).

121 )1., S. M. ad, Bacteriai dlsiaa s control spbciicity and stability oft glamicrobia.Aarre 501, 426-429 (2013).
[3])PdrOaaD.lA,XMcNa4y, N. P..Gusgp. 1. &10Gsdsa.Jl I lA Rapasensysbio asiua.Na a isall GtHosta. Cllo Anok .32i3', 00

[41 Cacoy, N.JChJa, daki-llanis., ., Padd, L C. & C "d. L E. RLsal gly-a synia in coloninaaion afd. mlamali gut by lha bacacda s,,bil I,,, oido Iragil, h- < , \ .d : 1 D 11(- 104.(2.'X

161Connolly, J. P.R. al. A Highly Ces d Bact e t. r
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BF2755 Hypo11-ical Isolte

BF3560 Hypothetical pr5ein

yp p

10101M4
BIROM93
13FIB02
EFIS03
BV2942
Firm81
BF8188

1IF1709

IF2W48
7"380
SL4395

EIp9991

3FI174
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Chapter 3

DonorFinder predicts personal microbiomes and

reveals recent adaptive evolution

Shijie Zhao, Chengzhen L. Dai, Eric Alm

The contents of this chapter are from a manuscript under preparation.

Abstract

The human gut microbiomes are individualized ecosystems that consist of bacterial strains stably

colonizing for up to years. The interpersonal variability of strains can help understand the

personal signatures of the microbiome and the transmission of strains between individuals. Here,

we introduce a reference-based microbiome strain tracking approach (DonorFinder) that

determines whether distinct metagenomes harbor closely-related strains and classifies if a pair of

metagenomes belong to the same donor. Focusing on a set of 30 species, DonorFinder achieves

>96% specificity and -100% sensitivity in predicting metagenome donors and discovers a pair of

metagenomes with labels switched in the Human Microbiome Project. Applying DonorFinder to

the metagenomes of adult twins from the TwinUK registry, we identify 6 cases of closely-related

strains carried by both twins. Identification of point mutations in these shared strains reveals

evidence of genome-wide within-person adaption, potentially over decades of colonization.

Overall, we demonstrate that DonorFinder predicts closely-related strains from metagenomic

samples, with applications to revealing microbiome donors and recent evolution events.
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3.1 Introduction

The human gut microbiome harbors a complex community of microbial species stably colonizing

for years or even decades (Lloyd-Price et al. 2017; J. Faith et al. 2013). Although different

individuals from a human population tend to have a similar set of species, the strains carried by

distinct people - defined by genomic variations such as single nucleotide polymorphisms (SNPs)

and gene presence/absence - are usually person-specific (Truong et al. 2017; Scholz et al. 2016).

Thus, understanding the composition and identity of strains in a metagenome has enabled the

prediction of individual microbiome donors with up to 80% accuracy (Franzosa et al. 2015;

Hampton-Marcell, Lopez, and Gilbert 2017). In addition, tracking closely-related strains paves

the way to understanding how microbial strains are transmitted between family members, across

social networks and after fecal microbiota transplantation (Smillie et al. 2018; Ferretti et al.

2018; Ilana L. Brito et al. 2019). Monitoring strains from the gut microbiome, therefore, has the

potential to reveal fine-scale interactions between microbial species and their human hosts.

To date, various computational methods have been developed to resolve strains from

metagenomic samples. Several methods resolve strains via identification of SNPs across

different metagenomes by aligning short reads to targeted species reference genomes (Luo et al.

2015; Truong et al. 2017; Costea et al. 2017; Smillie et al. 2018). However, as the process of

calling SNPs is prone to false positives, high-resolution strain profiling usually requires careful

and iterative tuning of filtering parameters (Ilana Lauren Brito and Alm 2016). Another

commonly-used approach involves the analysis of pangenomes, particularly the accessory

genomic regions carried by distinct strains (Ilana Lauren Brito and Alm 2016). Unlike SNP-

based methods, pangenome-based approaches are more robust to parameter changes, yet they
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still require a large database of pangenomes and substantial computational resources (Scholz et

al. 2016; Zhu et al. 2015).

Here, we introduce a flexible and lean method-DonorFinder-that uses a single reference for

individual species to compare strain identities between metagenomes and classifies if two

metagenomes are from the same individual. Our approach is based on the assumption that the

accessory genomes of microbial species are highly individual-specific and stable over time

(Figure IA). We compare the accessory genomes of 40 prevalent gut bacteria species and show

empirical data supporting this assumption for 25 out of the 40 species. We also design a

classification rule that leverages these comparisons to predict whether two metagenomes belong

to the same individual. We demonstrate near-perfect specificity and sensitivity of DonorFinder

using metagenomes from the Human Microbiome Project (HMP) and the Broad Next 10 (BN 10)

project. We find evidence supporting a mislabeling of donor IDs in a pair of the HMP

metagenomes. When applied to members of the same family, DonorFinder fails to differentiate

samples between certain family members, consistent with the occurrence of strain transmission

between family members. Lastly, when applying DonorFinder to track strains from a dataset of

adult twins, we find that these twins can share strains for potentially over decades of colonization

and discover signatures for adaptive evolution in these shared strains. The datasets and code used

in this work are available for download from https://github.com/shijiezhao/DonorFinder.

3.2 Results

Accessory genome difference (AGD) as a metric to define inter-sample strain variance

We developed a bioinformatic workflow (DonorFinder) to achieve strain-level comparison by

first aligning metagenomic reads against a single well-assembled reference genome for
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individual species. Specifically, metagenomics reads are aligned and compared against a curated

set of 40 abundant or widely-studied representative gut bacterial species (Lloyd-Price et al.,

2017; Xie et al., 2016, Table Si). To quantify the differences of strains between metagenomes,

we developed a metric that estimates the fraction of a reference genome that is variable between

two metagenomes. For any given species, we calculated the relative sequencing depth for every 5

kb genomic window within a metagenomic sample and compared the relative sequencing depth

of each genomic window between sample pairs (Methods). If a genomic window was present

with a relative sequencing depth of >0.5X in one sample but was present with <0.05X in another

sample, this genomic region is designated as a differential region. The fraction of these regions

in the reference genome is defined as the accessory genome difference (AGD; Methods).

To demonstrate how AGDs can reveal personalized strain signatures, we examined Bacteroides

vulgatus, a prevalent species inhabits the large intestine (Yatsunenko et al. 2012), across HMP

metagenomic samples. A pair of distinct metagenomic samples from a same HMP donor had an

AGD of 0 (Figure 1B), while a pair of metagenomes from two different HMP subjects showed

an AGD of 0.040 (Figure 1C). We estimated AGDs for all pairwise HMP metagenomes for B.

vulgatus and observed a clear difference between the inter-subject and intra-subject AGD

profiles (Methods; Figures 1D). We generated a receiver operating characteristic (ROC) curve

and calculated the area under curve (AUC) to be 0.989 (Figure 1E). We picked an AGD cutoff

that maximized Youden's index (sensitivity + specificity -1; Methods) for B. vulgatus.

DonorFinder designates that two metagenomes have personalized signature for B. vulgatus if the

AGD of this species is smaller than the cutoff. Expanding this inter-subject and intra-subject

AGD profiles comparison to all of 40 species, we calculated an AUC and a species-specific

AGD cutoff for each species (Figure S1, Table Si).

83



DonorFinder predicts personal microbiomes for distinct people

We reasoned that a pair of metagenomes from the same individual can usually share strains for

multiple species, while a pair of unrelated metagenomes are unlikely to have personalized

signature for multiple species (Lloyd-Price et al. 2017; Franzosa et al. 2015). We therefore

designed a classification rule that when DonorFinder predicts that more than two species share

personalized signatures, these two samples are predicted as from the same donor (Figure 2,

Methods). To minimize false predictions for individual species, we excluded species that with an

AUC < 0.975 in the AGD analysis (Figure Sl; Table Si).

To demonstrate the performance of DonorFinder, we used it to predict donors for all pairs of 535

HMP metagenomic samples. These samples are from 250 distinct human subjects and 161 of the

subjects have more than one samples (Lloyd-Price et al. 2017). When comparing all pairwise

samples from HMP, our classifier provided us with a sensitivity of 95.79% and a specificity of

99.99% (Figure 2A, Methods). To validate DonorFinder with an independent test dataset, we

applied DonorFinder to the Broad Next 10 datasets, consisting of 410 metagenomic samples

from 50 distinct individuals, and achieved 100% specificity and 100% sensitivity (Figure 2B).

From the HMP dataset, we noticed a potential mislabeling of donor IDs for a pair of

metagenomic samples. We observed that the sample SRS045244 from subject 763880905 is

predicted by DonoFinder to belong to share a microbiome donor with two samples from subject

763536994 (SRSO14287 and SRS062427); meanwhile, the other sample from subject 763880905

(SRSO14948) was matched to the remaining sample from subject 763536994 (SRS050422,

Figure 2C). Given that the empirical estimation of false negative rate is < 5% and false positive

rate is < 0.02% (Figure 2A), we estimated that the probability of observing these donor
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matching patterns is <10- 7 (Figure 2C). However, if we assumed that the donor labels of sample

SRS050422 and SRS045244 were shuffled, the estimated probability of observing the predicted

pairings is ~1 (Figure 2D). This analysis suggested that there is a mislabeling in the HMP

metagenomes and we offered a parsimonious solution to correct that. After correcting for this

putative label-shuffling, DonorFinder had an updated sensitivity of 96.4% for the HMP

metagenomes.

DonorFinder is limited when applying to samples from family members

Both HMP and BN 10 donors consist of mostly unrelated individuals from the US, and it is

therefore expected that distinct donors carry distinct strains. However, members from a same

household may share strains to extensive levels, especially for children whose microbiome may

derive directly from the parents (Ferretti et al. 2018). To test whether DonorFinder can be

applied to people from a same family, we examined the metagenomes of an 8-member family:

mother, father, and six children of ages 0, 2, 4, 6, 8, and 10 years old (Schloss et al. 2014). Each

family member had from 1 to 3 metagenomic samples available (Figure S2). While most pairs of

family members can be successfully separated by DonorFinder, we found that certain family

members shared closely-related strains that complicated the classification accuracy. In particular,

the microbomes of the 4-year old, 6-year old and 8-year old children are predicted to be from the

same individual (Figure S2). These three children shared similar strain signatures for multiple

species, including Bifidobacterium and Bacteroides strains. While such results suggest that our

method is limited in differentiating the microbiomes of family members, they demonstrate the

ability of DonorFinder in tracking the transmission of strain.
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Adult twins share closely-related strains at low frequency, potentially for decades

We next explored the ability of DonorFinder to track strains shared by different human subjects

over longer period of time (potential transmission events). We selected a dataset from adult twins

in the UK Twin Registry, including 125 pairs of adult twins between their 50s to 70s (Xie et al.

2016). We first calculated the inter-twin AGDs for the 25 species that are used in DonorFinder

predictor. While majority of the species do not have inter-twin AGDs smaller than the species-

specific cutoffs, we nonetheless identify 27 cases in which a species shared a personalized

signature between twins (Table S2).

To validate if these identified personalized signatures reveals real transmission events between

the twins, we examined the evolutionary history of these strains to rule out apparent false

positives. We identified genome-wide distribution of SNPs for these strains by searching for

nucleotide positions in which the major alleles are discordant between twins (Methods). Species

with a signature of multiple-strain colonization, defined by an excess of genomic positions with

major allele frequency smaller than 0.95, are excluded (Methods). We also excluded twin-

species combinations containing genomic regions with more than 20 SNPs/Kb (Methods, Table

S2, Figure S3). Given that the documented molecular clock for bacterial species in natural

environment ranges from 0.5-5 SNPs/year, these numbers of SNPs are inconsistent with recent

transmission events and are likely false positives or complicated by homologous recombination

events. After filtering, we had 6 cases of shared closely-related strains showing evidence of

recently-emerged mutations. Our analysis suggested between 4 to 74 SNPs separating the strains

harbored by distinct twins (Figure 4A-B, Table S2). It is worth noting that our SNP analysis can

only detect mutations that reached high frequency within either twin's microbiome. Given the

molecular clocks for bacterial species (Didelot et al. 2016), these numbers of SNPs suggest years
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to decades of evolutionary divergence between the twins. Since these twins usually have been

living apart for 30-50 years, it is thus likely that these mutations emerged and accumulated

independently within the gut of each twin and some shared strains may have been colonizing

both twins for decades.

Strains shared by twin pairs show signatures of adaptive within-person evolution

The shared strains between adult twins and the recently emerged SNPs (years to decades)

provide an opportunity to investigate the within-person evolutionary process of these strains.

Since our method only included SNPs with major allele frequency larger than 80%, these point

mutations have partially or completely swept one of the twin's microbiome. We identified 6

strains that passed our filtering criteria.

To examine if these point mutations reflect adaptive evolution within these twin subjects, we

calculated the canonical measure of selection, dN/dS, for mutations arising from a same species.

dN/dS is the normalized ratio of non-synonymous mutations to synonymous mutations and is a

canonical measure of selection (Methods). For all species that we tested, we found the values

dN/dS are larger than or very close to 1 (Figure 4B). When combining SNPs identified from all

these species, we obtained a dN/dS that is significantly bigger than 1, suggesting genome-wide

adaptive evolution dominates the within-person evolution for these species. We therefore

conclude that the mutations that swept in these twins were driven by adaptive evolution.

3.3 Discussion

Here, we introduce a new metagenomic analysis framework (DonorFinder) for the rapid

identification of closely-related strains between metagenomes. Comparing to other strain-
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tracking methods, DonorFinder has a lean implementation and is flexible to be modified for

different tasks. Leveraging the assumption that unrelated human subjects carry strains with

unique accessory genome profiles, we build DonorFinder with 25 species that have distinct intra-

personal and inter-personal AGD profiles. Such differences allow us to infer with confidence

whether two metagenomic samples share strains and further predict personal microbiomes with

near-perfect accuracy. DonorFinder performs particularly well for HMP and BN10

metagenomes, with only a few cases of misclassification in HMP samples. Our sensitivity and

specificity are better compared to a previously reported classifier with 80% accuracy in

recovering HMP microbiome donors (Franzosa et al. 2015). Our results suggest that this method

may have applications in microbiome-based forensics and tracking transmissions. In addition, we

find at least one convincing case that a pair of metagenomes were incorrectly labeled. This

mislabeling has been hinted in the supplementary materials from a previous report from the Bork

lab (Schloissnig et al. 2013).

Our method also enables us to track closely-related strains across metagenome samples and helps

identify strains shared by twin pairs, potentially over decades of colonization. Further analysis of

the point mutations between the twin pairs revealed evidence that these shared strains experience

genome-wide adaptive evolution. Our analysis only accounts for mutations that nearly sweep

either twin and is likely missing mutations that are present at medium or low frequencies. In

addition, we identified only 6 shared strains and these strains are all from the Bacteroidetes

phylum. Nonetheless, our results demonstrated that adaptive evolution may dominates at short

timescale genome-wide. This is striking given compelling evidence that purifying selection

dominates evolution at timescales for over thousands of years (Zhao et al. 2019; Schloissnig et

al. 2013). To solve this discrepancy, we propose two theoretical scenarios to reconcile signals
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from the two timescales. One possibility is that many strains carried by an individual will be lost

over transmission between human populations, thus within-person adaptive mutations rarely

transmitted to new human hosts. Another possibility is that within-person adaptive mutations are

person-specific and usually lead to selective disadvantages in new human hosts, and over time,

these adaptive mutations will be selected against by natural forces. Future studies with larger

sample sizes and more species diverse taxonomical groups are needed to test these hypotheses.
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3.5 Methods

Metagenomic datasets used in this study

We considered three publicly available datasets for this study: the Human Microbiome Project

(Lloyd-Price et al. 2017) (535 samples from 250 sbujects://hmpdacc.org), the TwinsUK study

(Xie et al. 2016) (250 samples from 250 subjects; ERPO 10708), and a gut microbiome study of

an eight member family (Schloss et al. 2014) (15 samples from 8 family members). We also
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included datasets from the Broad Next 10 project (410 samples from 50 subjects); the manuscript

of the BN 10 resource paper is under review and the BN 10 metagenomes will be public upon

acceptance.

Reference genomes

Our accessory genome comparison requires that this strain has adequate sequencing depths from

both metagenomic samples. To meet this criterion, we manually curated species that are

abundant and prevalent in the HMP and TwinsUK datasets and included some well-characterized

species found in the gut microbiome (e.g., F. coli), totaling 40 species. A representative

reference genome for each species was obtained from NCBI and a single fasta file was generated

that contains these 40 genomes. To simplify downstream analysis, for references with multiple

scaffolds, we connected the sequences from different scaffolds to form an artificial single contig.

The list of references used in this study can be found in Table S1.

Metagenomic reads alignment

Metagenomic reads were trimmed and filtered using Cutadapt and Sickle (Martin 2011; Joshi

and Fass 2011). The filtered reads were aligned to the combined reference genome using

Bowtie2 (Langmead and Salzberg 2012) (Parameters: -X 2000, --no-mixed, --very-sensitive, --n-

ceil 0,0.01, --un-conc). Alignment files (sam format) were converted to pileup files using

Samtools (H. Li et al. 2009) (Step 1: samtools view -bS; Step 2: samtools sort; Step 3: samtools

mpileup -q30 -x -s -O -d3000). From these pileup files, we extracted information about read

depth at each genomic position from the combined reference.

AGD calculation
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AGD is defined as the fraction of accessory genomic regions that are different between two

metagenomic samples. AGD is used to quantify strain-strain distance between a pair of

metagenomes. We first divided the single contig (Methods: Reference genomes) for the targeted

species into 5Kb genomic windows. Average sequencing depth was calculated for each of the

genomic windows from either metagenome. A genomic region is designated as different when its

sequencing depth is lower than 5% of the average sequencing depth in one sample but is higher

than 50% of the average in the other sample. To avoid inaccurate estimation of average

sequencing depth due to abnormal alignment at mobile genomic regions, average sequencing

depth is defined as the mean sequencing depth for regions that are in the 25% and 75% percentile

for a given sample.

For each species, we generated a cutoff that maximizes the differentiation of inter-subject and

intra-subject AGD profiles (Figure 1D, Table Si)

DonorFinder predictor

DonorFinder predictor includes 25 species that the AGD analysis shows AUC > 0.975. These

species all have sharply different intra-subject and inter-subject AGD profiles. For a given pair

of metagenomes, we performed metagenomic alignment to the 25 species references and

calculated the AGD for each species between the two metagenomes. For each of the 25 species,

the AGD is compared to the species-specific AGD cutoff (Table Si). If AGD is smaller than the

cutoff, this species is classified to have personalized signature between the two samples. If more

than two species share personalized signature between the two metagenomes, DonorFinder

predicts that these two samples belong to a same stool donor (Figure 2).
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Identification of mutations between twins

For each species that share personalized signature between a twin pair, candidate SNPs were

identified using SAMtools and filtered using filters optimized from previous work (Lieberman et

al. 2014, 2011). In particular, genomic positions were considered to be potential SNP positions if

the twin pair were discordant on the called base and both samples had: FQ score less than 30, at

least 1 read aligning either forward strand or reverse strand, and a major allele frequency of at

least 80%. The median coverage across samples must be more than 1 read. Samples with

potential multiple-strain colonization are discarded in the analysis (>3% of the variable positions

have <95% major allele frequency). In addition, regions that are not within 50%-200% of

average sequencing depth of the genome are discarded, as these polymorphisms are likely from

species that share homologous sequence to the reference. Detailed information of between-twins

SNPs for the shared strains are listed in Table S2.

dN/dS

Mutations were categorized as synonymous (S) or non-synonymous (N) based on open-reading

frame annotations from the genbank files of the reference genomes. To calculate dN/dS for sets

of de novo mutations (Figure 4, Table S2), we normalized the observed N/S ratios by the

expected N/S ratios (Zhao et al. 2019). For any given set of SNPs, we calculated the expected

N/S for these SNPs, accounting for both (1) the different probabilities of acquiring

nonsynonymous mutations for different types of mutations and (2) the codon compositions of the

genes in which these SNPs occurred.
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3.6 Figure and Table legends

Figure 1 I Accessory genome difference (AGD) as a metric to define inter-sample strain

variance for B. vulgatus

(A) An example showing that B. vulgatus strains from distinct human subjects differ in accessory

genomes. Sequencing depths over the B. vulgalus reference are presented for 4 HMP

metagenomes. Genomic regions that are differentially present between the samples are colored in

red; genomic regions that are present in all four metagenomes are colored in gray.

(B) Graphical illustration of calculating AGD for B. vulgatus for a pair of metagenomic samples

from a same subject. Each dot represents the sequencing depths of a 5Kb genomic window.

(C) Graphical illustration of calculating AGD for B. vulgatus for a pair of metagenomic samples

from two different subjects. Each dot represents the sequencing depth of a 5Kb genomic

window. Genomic windows that are differentially present between the two samples are colored

in red (Methods)

(D) Density histograms for intra-subject AGD profile (red) and inter-subject AGD profile (green)

of B. vulgatus.

(E) ROC analysis for the AGD profiles of B. vulgatus. To obtain (sensitivity, specificity) sets to

draw the curve, we set cutoffs from 0 to I with 0.0001 intervals.

Figure 2 1 DonorFinder predicts personal microbiomes for distinct people

For a given pair of metagenomes, inter-sample AGDs are calculated for each of the 25 species

(Table Si). For each species, the inter-sample AGD is compared to the species-specific AGD

cutoff (Table Sl) and DonofFinder predicts the metagenomes share personalized signature for

this species if the AGD is smaller than the species-specific cutoff. When more than two species
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share personalized signature between the two metagenomes, DonorFinder predicts that these two

samples belong to a same stool donor.

Figure 3 1 DonorFinder achieves >96% sensitivity and -100% specificity in predicting

metagenome owners

(A) Contingency table shows the results of using DonorFinder to predict if a pair of HMP

metagenomes belong to a same donor. Numbers in the parentheses are after correcting for

misclassifications due to the putative mislabeling illustrated in (C) and (D).

(B) Contingency table shows the results of using DonorFinder to predict if a pair of BN 10

metagenomes are from a same donor.

(C) Predictions for a set of 5 HMP metagenomes with apparent misclassifications. Samples

labeled by HMP as from different donor subjects are labeled with different colors. Given the

empirical false positive rate and false negative rate, the probability of observing these predictions

is < 10-17.

(D) If shuffling the donor IDs of SRS050422 and SRSO45244, the probability of observing the

DonorFinder predictions is ~1. The colors of sample names are recolored according to donor

IDs.

Figure 4 I Strains shared by twin pairs show signatures of adaptive within-person evolution

(A) - (B) Phylogenies of a B. caccae strain shared between the twin pair P121 and a B.

cellulosilyticus strain shared between the twin pair P58. Diamonds represent mutations in genes

with more than one SNPs identified within the twins. Individual genes are colored with distinct

colors and annotated.
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(C) dN/dS is calculated for SNPs identified in each individual species and combined. dN/dS is

also calculated for combined SNPs excluding B. intestinihominis, as this species appears to be a

hypermutator. Error bars represent 95% confidence intervals.

Figure Si I Accessory genome difference (AGD) as a metric to define inter-sample strain

variance for B. adolesentis

(A) An example showing that B. adolesentis strains from different human subjects are different

in accessory genomes. Sequencing depths over the B. adolesentis reference are presented for 4

HMP metagenomes. Genomic regions that are differentially present between the samples are

colored in red; genomic regions that are present in all four metagenomes are colored in gray.

(B) Graphical illustration of calculating AGD for B. adolesentis for a pair of metagenomic

samples from a same subject. Each dot represents the sequencing depth of a 5Kb genomic

window.

(C) Graphical illustration of calculating AGD for B. adolesentis for a pair of metagenomic

samples from two different subjects. Each dot represents the sequencing depths of a 5Kb

genomic window. Genomic windows that are differentially present between the two samples are

colored in red (Methods)

(D) Density histograms for intra-subject AGD profile (red) and inter-subject AGD profile (green)

of B. adolesentis.

(E) ROC analysis for the AGD profiles of B. vulgatus. To obtain (sensitivity, specificity) sets to

draw the curve, we set cutoffs from 0 to 1 with 0.0001 intervals.

Figure S2 I DonorFinder is limited when applying to samples from family members

DonorFinder is applied to 15 metagenomes from 8 family members. Columns and rows represent
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distinct metagenomic samples. Row labels and column lables represent the identity of the family

member. If two metagenomes are predicted by DonorFinder as from a same donor, they are

colored with green color in the heatmap. We notice that DonoFinder cannot distinguish

metagenomes from the 4-year old, 6-year old and 8-year old children.

Figure S3 I AO and AP between UK twin pair P126 shows signs for recombination or false

positive due to

The Alistipes onderdonkii and Alistipes putredinis strains predicted by DonorFinder as having

personalized signature between the twins. Both genomes contain regions enriched for SNPs (>20

SNPs/Kb), suggesting that these two species underwent homologous recombination or they are

not closely-related strains.
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3.7 Figures and Tables

Figure 1

BBactero/des vulgatus

15647978RS11

t 

Il l. I. 1  
9Tl' 'T99 11  0 a: 103092734 R8104327

103027  14 M253

Genomic regions (5KB)

0 0.05

Compare metagenomes
from a same subject

AGD=0

Metagenomic sequencing depth
Suec: 103092734

Sample: SRS104327

0.10

C

CI4

cot

u
5

"

C

0)

CD

E

0.15

Compare metagenomes
from different subjects

AGD=0.040

Metagenori sequencing depth

Sample: SRS104327

AGD

97

A

(D

0)

C0

(D

0

0)
CO

Dl

a0.5

0

Intra-subject AGDs

Inter-subject AGDs
AUC = 0.989

1 - Specificity



Figur 2
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DonorFinder performance on HMP metagenomes
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DonorFinder performance on BN10 metagenomes
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Figure 4

A C
Bacteroides caccae phylogeny

unknown

unknown

25 SNPs
0

araC_3 IpxC yesS_2

Bacteroides ce//u/os//yticus phylogeny

ptk 3

unknown
A'

P12102

C')

lw P12101 z 232 SNPs

22 SNPs

21 SNPs

P5802 0.5

P58_01

8

B

wON

~&j~ ~
unknown

100

.,\)S Xs \J NP,
0 S\ 0. 00

NeS \\A9
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Table Sl: Species used in DonorFinder; related to Figure 1 and Figure 2

Species
[Eubacterium] eligens
[Eubacterium] rectale,
Acidaminococcus intestini
Akkermansia muciniphila
Alistipes finegoldii
Alistipes onderdonkii
Alistipes putredinis
Alistipes shahii
Bacteroides caccae
Bacteroides cellulosilyticus
Bacteroides dorei
Bacteroides eggerthii
Bacteroides fragilis
Bacteroides helcogenes
Bacteroides massiliensis
Bacteroides ovatus
Bacteroides stercoris
Bacteroides thetaiotaomicron
Bacteroides uniformis
Bacteroides vulgatus
Bamesiella intestinihominis
Bifidobacterium adolescentis
Bifidobacterium longum
Collinsella aerofaciens
Coprococcus comes
Dialister invisus
Dorea formicigenerans
Escherichia coli
Faecalibacterium prausnitzii
Odoribacter splanchnicus
Parabacteroides distasonis
Parabacteroides merdae
Paraprevotella clara
Parasutterella excrementihominis
Roseburia hominis
Roseburia intestinalis
Roseburia inulinivorans
Ruminococcus bromii
Sutterella wadsworthensis
Tyzzerella nexilis

AUC

NA

NA

0.948

0.944

0.978
0.934
0.979
0.988
0.976
0.973
0.979
0.989
0.983
1.000
0.974

1.000
0.983
0.992
0.999
0.989
0.983
0.980
0.987
0.968
0.979
0.994
0.923
1.000
0.608
0.941

0.990
0.989
0.990
0.998
0.987
0.918
0.973
0.971

0.973
0.984

cutoff
0.0036
0.0044
0.0001
0.0001
0.0027
0.0039
0.0001
0.0054
0.0011
0.0022
0.0085
0.0001
0.0029

NA
0.0087
0.0055
0.0075
0.0056
0.0043

0.003
0.0015
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0022
0.0033
0.0035
0.0053
0.0034
0.0024

0.0018
0.007

0.0091
0.0062

NA
0.0001
0.0001

TP rate
96.0%
96.8%
95.6%
95.0%
99.7%
98.3%
99.5%
99.1%
97.8%
99.9%
99.3%

100.0%
99.8%

NA
98.9%
98.7%
99.5%
99.4%

99.3%
99.9%
98.8%
98.5%
93.7%

100.0%
98.9%
97.4%

100.0%
90.1%
93.3%
99.9%
98.4%
98.6%
99.5%
99.0%
94.3%

98.9%
96.0%

NA

TF rate
84.8%
88.3%

100.0%
92.5%
95.5%
97.2%
95.0%
94.6%

95.9%
98.2%
94.7%

100.0%
93.5%

NA
99.2%
95.0%
99.1%
98.1%
96.4%
96.9%
94.6%

94.1%

100.0%
92.3%

100.0%
89.2%

100.0%
50.0%
91.2%
98.1%
97.6%
95.8%
98.3%
99.0%
88.5%
90.0%
85.7%

NA
94.6% 100.0%
96.8% 100.0%
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Table S2: closely-related strains shared between adult twins; related to Figure 4

Twin Pairs Species Conclusion from SNP Number of SNPs

I_ analysis swept in twin 1

Possibly mixed strains
Closely-related strains
Possibly mixed strains
Possibly mixed strains
Possibly with recombination
Possibly with recombination
Closely-related strains
Closely-related strains
Possibly mixed strains
Closely-related strains
Possibly mixed strains
Closely-related strains

P64
P97
P113
P119
P126
P126
P121
P58
P73
P15
P19
P27
P29
P35
P54
P89
Pill
P7
P15
P29
P45
P62
P70
P100
P103
P15
P47

Alistipes onderdonkii
Alistipes onderdonkii
Alistipes onderdonkii
Alistipes onderdonkii
Alistipes onderdonkii
Alistipes putredinis
Bacteroides caccae
Bacteroides cellulosilytic
Bacteroides ovatus
Bacteroides uniformis
Bacteroides uniformis
Bacteroides uniformis
Bacteroides uniformis
Bacteroides uniformis
Bacteroides uniformis
Bacteroides uniformis
Bacteroides uniformis
Bacteroides vulgatus
Bacteroides vulgatus
Bacteroides vulgatus
Bacteroides vulgatus
Bacteroides vulgatus
Bacteroides vulgatus
Bacteroides vulgatus
Bacteroides vulgatus
Barnesiella intestinihomi Closely-related strains

Collinsella aerofaciens Possibly mixed strains
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Possibly
Possibly
Possibly
Possibly
Possibly
Possibly
Possibly
Possibly
Possibly
Possibly
Possibly
Possibly
Possibly

NA
8

NA
NA
NA
NA

57
43

NA
4

NA
56

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

74
NA

mixed
mixed
mixed
mixed
mixed
mixed
mixed
mixed
mixed
mixed
mixed
mixed
mixed

strains
strains
strains
strains
strains
strains
strains
strains
strains
strains
strains
strains
strains
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Abstract

The human microbiome, described as an accessory organ because of the crucial functions it

provides, is composed of species that are uniquely found in humans. Yet, surprisingly little is

known about the impact of routine interpersonal contacts in shaping microbiome composition. In

a relatively 'closed' cohort of 287 people from the Fiji Islands, where common barriers to

bacterial transmission are absent, we examine putative bacterial transmission in individuals' gut

and oral microbiomes using strain-level data from both core single-nucleotide polymorphisms

and flexible genomic regions. We find a weak signal of transmission, defined by the inferred

sharing of genotypes, across many organisms that, in aggregate, reveals strong transmission

patterns, most notably within households and between spouses. We were unable to determine the
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directionality of transmission nor whether it was direct. We further find that women harbour

strains more closely related to those harboured by their familial and social contacts than men,

and that transmission patterns of oral-associated and gut-associated microbiota need not be the

same. Using strain-level data alone, we are able to confidently predict a subset of spouses,

highlighting the role of shared susceptibilities, behaviours or social interactions that distinguish

specific links in the social network.

4.1 Main text

Host specificity rather than generalist life histories dominate in the colonization of the gut. Thus,

colonization probably depends on direct interpersonal interactions where individuals are exposed

to other humans' microbiota. Nevertheless, the extent to which regular, repeated bacterial

exposures result in transmission is unknown. Mother-to-child transmission can be detected early

in life (S. et al. 2016; Ferretti et al. 2018), but these patterns fade, whereas other factors-

environment (Rothschild et al. 2018), behaviours and genetics (Goodrich et al. 2014)-impact

the strain-level composition of each adult's microbiome (Yatsunenko et al. 2012; Xie et al.

2016). The human microbiome remains remarkably stable in composition over days (David et al.

2014) and even years, at the level of strains (Xie et al. 2016; J. Faith et al. 2013), raising the

question: do we exchange oral and gut commensals with our closest family and friends?

Here, we take advantage of rich familial and social network data obtained as part of the Fiji

Comunity Microbiome Project (FijiCOMP) (Figure Ia and Supplementary Tables 1 and 2) to

explore the role of transmission in human populations with strain-level resolution. Our data

consist of shotgun metagenomic sequences from 287 people living in 5 agrarian villages in the

Fiji Islands (Supplementary Tables 3 and 4). Paired gut and oral microbiome samples were

deeply sequenced to enable molecular epidemiological analyses. The presence of locally
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endemic bacterial disease suggests that commensal bacteria may also spread widely within the

community. Owing to the relative isolation of these villages and the reliance on local food and

water, we hypothesized that, with comprehensive sampling of eligible individuals in each

village, we could capture all human sources and sinks of human-associated bacteria, enabling the

tracking of strains within this comparatively 'closed' network.

The bacteria present in the FijiCOMP microbiomes are largely distinct from those in existing

databases (I. L. Brito et al. 2016), resulting in poor read alignments to reference genomes

(Supplementary Figure 1). Thus, we binned reads derived from oral or gut microbiomes using

latent strain analysis (LSA) (Cleary et al. 2015), and de novo assembled a set of draft genomes

(Supplementary Table 5). There were little-to-no detectable differences in species-level sharing

than expected by chance across any relationship type in either the gut or oral microbiome

samples (Figure 1 b,c and Supplementary Figure 2), a finding at odds with that of households in

Kenya (Mosites et al. 2017), Israelis (Rothschild et al. 2018) or metropolitan Americans

(Yatsunenko et al. 2012), yet one that may reflect the high contact rates between individuals in

this cohort.

To achieve strain-level resolution within individuals' microbiomes, we employed two orthogonal

approaches, focusing on either polymorphisms in core proteins, or the presence or absence of

flexible genomic regions. The former involved aligning sequencing reads to sets of core genes

from each of the assemblies (Supplementary Table 5), similar to several established methods

(Rothschild et al. 2018; Goodrich et al. 2014), adjusted for use within the context of a social

network. Specifically, we calculated the Manhattan distances between pairs of individual's

putative genotypes, inferred by the dominant single-nucleotide polymorphism (SNP) at each
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polymorphic position in the alignment. For individuals in the same village, household members

or non-nuclear connections, we compared the distances for each genome of all connected pairs

and a balanced random subset of unconnected pairs, whereas we simply shuffled the associations

of spouses and mother-child pairs. We performed 100 bootstraps of the unconnected pairs or

shuffles, each time tallying the number of genomes for which the median Manhattan distance

was lower in connected individuals versus unconnected individuals (Figure 1 b,c). We next

implemented an alternate strategy, largely based on the previous observation that flexible

genomic regions may be highly personalized (Franzosa et al. 2015). Coverage of 1-kb windows

of contigs over 10 kb were compared across pairs of individuals. Shared genotypes were defined

by the complete lack of outlying 1-kb regions present in one individual and absent in the other

(Supplementary Figure 3). We tallied the number of assembled genomes more frequently shared

in each relationship type in over 100 shuffles or bootstraps, again controlling for class

imbalances, resulting in the distributions in Figure 1.

Transmission, loosely defined by shared inferred genotypes, has been observed for strains within

the gut microbiomes of mother-child pairs (Segata et al. 2018), albeit most notably in the first

year of life, in cases in which faecal material was used for transplantation (Smillie et al. 2018),

and between twin pairs (Xie et al. 2016). Within the village setting, we are unable to determine

whether strain transfer is direct or indirect, or from a common source, nor can we infer its

directionality. However, we refer to the presence of shared genotypes as 'transmission' as the

putative explanation for the observed patterns. Here, consistent patterns of transmission were

revealed across individuals' social networks in both gut and oral microbiomes, independent of

the metric used (Figure lb,c and distributions of P values in Supplementary Figure 4). Household

members showed high levels of strain similarities in their gut microbiomes, across mother-child
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pairs and, most notably, among spouses, who share no genetic relatedness. The length of

cohabitation was positively correlated, albeit weakly, with the measure of strain dissimilarities

(Supplementary Figure 5), which may reflect long-term changes in intimacy or lifestyle.

The signal varies across our two metrics, potentially highlighting interactions in which

organisms versus mobile genetic elements are transmitted between individuals. Using a set of gut

microbiome mobile genes previously identified in the FijiCOMP cohort (I. L. Brito et al. 2016),

we find mobile genes weakly shared between spouses (Supplementary Figure 6). Using strain-

level metrics, the transmission signals are robust. Transmission within villages in both gut and

oral microbiomes was detectable in core gene SNPs, even when we rarefied the number of

village pairs from over 1,000 down to 10 pairs each of connected and unconnected individuals

(Supplementary Figure 7). Furthermore, our results were consistent even when we reduced the

number of genomes considered using only those genomes from LSA-informed assemblies with

low putative contamination (Supplementary Figure 8). In all cases, shuffling network relations,

while retaining network architecture, ablated observable transmission patterns (Supplementary

Figure 9).

We next examined the contributions of specific organisms, as familial transmission has been

previously observed for certain gut and oral commensals (Goodrich et al. 2014). There was no

consistent signal of transmission across any single phyla (Supplementary Figure 10). Instead,

each pair of connected individuals had a unique signature of shared organisms (Figure 2a,b and

Supplementary Figs. 11-18), suggesting that transmission may be largely driven by chance

events and indirect transfer. Interestingly, the fidelity of our LSA-informed assemblies did not

strongly affect our results, as transmission may still be observed even if core genes are shuffled
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between assemblies (Supplementary Figure 19), supporting the notion that signatures of

transmission are distributed broadly over many strains. Microbiome functional profiles also

failed to capture transmission signals (Supplementary Figure 20), although this does not negate

the potential contributions of individual virulence-associated or transmission-associated genes

contributing to transmissibility. We hypothesized that perhaps the abundance of each organism

would be indicative of its overall transmissibility, favouring a mass-action model of

transmission, yet this was not the case (Figure 2c,d).

These findings lead to an apparent paradox: if most bacteria are transmitted directly between

members of the community, then why don't we observe clearer patterns of transmission? We

believe there are several factors that contribute to the 'diffuse' signal for transmission observed

across this population. First, despite this relatively 'closed' network of individuals, there are

inherent difficulties in capturing the full range of individuals' contacts and exposures. Our best

approximations of direct transfer may be far from actual events, where indirect transfer between

individuals outside the network or transmission from unknown and unsampled environmental

reservoirs may play a consequential role. Second, we focus on a snapshot in time, not knowing a

priori what types of interpersonal interactions result in transfer nor whether transmission occurs

during particularly volatile points in an individual's microbiome history. Third, despite our

achieved sequencing depth, perhaps longer-read sequencing or a massive increase in sequencing

depth is required to achieve greater strain resolution. We reached the limit of detecting

transmission when we rarefied samples to 5 million reads (Supplementary Figure 21). Last, this

community may actually be more prone to transmission between a wide range of community

members, even when compared to other non-industrialized populations. This is best illustrated by

regular gatherings to drink kava, in which a communal vessel and cup are shared.
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Borrowing from the framework of disease ecology, we sought to test the effect of specific

individuals within the social network on overall network-level transmission. 'Superspreading' is

a phenomenon observed for the transmission of diseases, such as severe acute respiratory

syndrome and human immunodeficiency virus, in which the majority of the transmission

observed is attributable to a relatively small number of people (Lloyd-Price et al. 2017). Across

our cohort, there were detectable differences in transmission per individual of both stool and

saliva (Figure 3a-c,e and Supplementary Figure 22). As we cannot determine the direction of

transmission, we refer to this phenomenon as 'supersharing' in this cohort. Supersharing was

largely agnostic to the individual's read depth, once a threshold is achieved for obtaining

accuracy in Manhattan distances (Supplementary Figure 23). Interestingly, individuals who were

strong supersharers of gut microbiota were not the same as those of oral microbiota (Figure 3g),

revealing differences between the transmission routes of commensals. There was also no specific

association with individual's overall sharing and their network positions, either in terms of the

number of connections ('degree') or the centrality (measured by 'betweenness') (Supplementary

Figure 24).

Surprisingly, sharing of both gut and oral microbiota was more associated with females in the

network (P <0.005 for gut microbiomes; P < 0.05 for oral microbiomes, Pearson correlation;

Figure 3d-f and Supplementary Figure 25), yet had no relationship with age (Supplementary

Figure 26). Although gender-related differences in pathogenic bacterial transmission are well

known, as are the myriad factors that affect exposure and susceptibility, these are less well

understood for commensal microbiota with no clear mechanisms of transmission. Nevertheless,

exposure risks may be associated with occupations and behaviours that are highly gendered
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within this cohort (housekeeping: P < 10-15; farming and fishing: P < 10-15; caring for ill

family members: P <0.05; and soap usage: P < 0.05, chi-squared tests). It remains to be

determined how the transmission observed in this low-income, agrarian population would

compare to a population living in an industrialized nation, where interventions such as the use of

antiseptics, disinfectants and antibiotics, sanitation infrastructure and food safety restrictions may

influence the transmission of commensal bacteria.

We next asked whether strain-level information alone could be used to predict specific social

relationships. We implemented a machine learning approach that utilized organism abundances,

core SNP profiles, flexible region similarity or combinations thereof, without considering

demographics. Our household predictions were moderately accurate (area under the curve

(AUC)= 0.64 0.02 and 0.61 0.01 for gut and oral microbiomes, respectively), whereas our

model to predict spousal relationships performed better (AUC = 0.70 0.03 and 0.72 0.02 for

gut and oral microbiomes, respectively) (Figure 4 and Supplementary Figure 27). Despite the

poorer overall performance of our household models, the predictions seemed to be dependent on

the network structure, as all of the relationships within some households were accurately

predicted, in both gut and oral samples. Remarkably, our model reveals that close to 25% of

spouses are exceedingly easy to predict with high confidence (Figure 4c,d). Within the

household network, some of these spousal pairs were obscured, highlighting the subtle nature of

these transmission signals. Why certain couples are easier to predict than others is unknown, but

may reflect shared susceptibilities, specific behaviours or the relative importance of extra-marital

relationships. Interestingly, spouses have been found to share immune repertoires (Carr et al.

2016) and households display family-specific signatures (Scott et al. 2014), providing evidence

for shared exposures.
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Although it is well established that shared environments significantly affect the gut microbiome

composition and phenotype of isogenic mice (Aquino-Michaels et al. 2015; Rosshart et al. 2017)

and that social interactions shape wild primate microbiomes (Moeller, Foerster, et al. 2016), this

work opens the door to understanding the process of transmission and its implications in human

society. Within this small community of individuals with relatively homogeneous living

environments, diets and microbiomes, bacterial DNA alone can be used to accurately predict

certain intimately linked pairs of individuals. Our research begins to tease apart relevant

transmission patterns evident in a social network and a role for gender in commensal

transmission, revealing that long-term intimate interactions that occur later in life, such as

through marriage or cohabitation, can result in stochastic transmission events in both the gut and

the oral microbiomes. Given the wide array of microbiome-associated health conditions, this

study further hints at the possibility that diffuse transmission patterns of pathogenic or protective

commensals may contribute to the overall health status of individuals.

4.2 Methods

Social network construction

The FijiCOMP consisted of interviewing and sampling the gut and oral microbiomes of almost

300 individuals living in 5 village communities in 2 districts approximately 50 miles away from

one another on Vanua Levu in the Fiji Islands. The sampling all took place within a 4-week

period, each village taking approximately 1-2 weeks. Institutional Review Board approval was

received from Institutional Review Boards at Columbia University (New York City, NY, USA),

the Massachusetts Institute of Technology (Cambridge, MA, USA) and the Broad Institute

(Cambridge, MA, USA), and ethics approvals were received from the Research Ethics Review
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Committees at the Fiji National University and the Ministry of Health in the Fiji Islands.

Informed consent was obtained from all study participants.

As part of the survey, each head of the household was asked to draw their family trees, including

all members of their household, even if they are not related. Individuals were specifically asked

to name their spouse, if married, and the number and ages of their children. We inferred the

number of years a married couple lived together by the age of their oldest child. We excluded 6

of the 63 couples from our analysis of the time they lived together because either they did not

have any children or their children's ages were inconsistent (for example, if children came from

a previous marriage). As houses commonly have names rather than specific addresses in these

villages, individuals were asked the name of the house in which they live. Responses by

individuals were cross-referenced for consistency and ambiguous links were removed from our

analysis. Minor discrepancies, such as slight differences between spouses in the reporting of their

children's ages that differed by 1 year were permitted. Individuals were further asked to provide

the names of five individuals with whom they spent the most amount of time. Although the

individuals mentioned the type of relationship (for example, mother-child, cousin, sister-in-law,

friend, classmate and churchmate, among others), these relationship types were not solely relied

on to define a particular relationship type. In a small number of examples, individuals cited

social interaction with a third party whose identity could not be verified and were therefore not

included in our analysis. In addition, some individuals mentioned siblings or parent-child

relationships that could not be verified, so these were also counted as merely social interactions.

This resulted in 489 unique social or familial interactions, in addition to household-level

interactions. For the purposes of anonymity, the ages of individuals were rounded to the nearest

5-year increment and the number of children per person was not reported. Not all children of
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each family were surveyed, either because the children did not meet the inclusion criteria (they

needed to be at least 8 years of age) or because they were inaccessible during the time when we

were sampling. The social network was plotted using R package igraph (v.1.0.1). Network

metrics (that is, betweenness and degree) were calculated using igraph standard functions.

Additional information was obtained from all participants, including having individuals name

their occupation (of which domestic duties, farmer and fisherman were all possible answers),

whether the individual had cared for a sick family member in the past year and whether they

used soap (with possible answers: always, sometimes and never).

Alignments and identification of SNPs

We calculated the Manhattan distances between the dominant SNPs within pairs of individuals'

core gene alignments. This involved aligning each individual's reads to core genes in the

assembled LSA partitions, extracting polymorphic loci and determining the dominant allele at

each locus. For each pair of individuals, we computed the Manhattan distance at each locus,

averaged these distances across loci and computed this quantity for every assembled genome.

These distances were then used for the network comparisons described in the 'Network

comparisons' section.

More precisely, quality-filtered, dereplicated metagenomic data sets (on average, over 52 million

and 10 million reads for our gut and oral microbiomes, respectively), devoid of human genetic

material (filtered as described in Brito et al. 13), were partitioned before assembly using LSA14

according to covarying k-mer content across samples. Read partitions were then assembled using

Velvet (Bankevich et al. 2012). Sets of core genes were identified using AMPHORA2 (Wu and
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Scott 2012). Core genes were assigned taxonomies using genera-level best hits using BLAST+

against the NCBI nr database. Partitions with complete (31 single-copy genes for bacteria) or

near-complete gene sets of AMPHORA genes deriving from the same genera were retained for

analysis (Supplementary Tables 3 and 4). If a core gene set contained more than two of the same

assembled gene, we removed both copies of that gene.

Each individual's samples were then aligned to the sets of core genes using BWA-MEM (Heng

Li 2013). Reads were subjected to more stringent trimming using TRIMMOMATIC (Bolger,

Lohse, and Usadel 2014) (in addition to trailing low-quality base pairs (quality <4), we also

implemented a sliding window, trimming when the quality was <15). Reads were then aligned to

regions that included one read length (100 bp) downstream and upstream of each core gene to

avoid edge effects within the alignments. One-hundred base pairs from each end of the

alignment, regardless of whether the gene was positioned at the end of the contig, were then

trimmed from the final pile-up. Reads were filtered to retain those with >40% of the length

aligning at 90, 95, 97 or 99% identity. A lower cut-off was chosen to capture a wide variety of

strains for each alignment. Setting a lower threshold would be more inclusive of strains more

distantly related to the reference, which would only obfuscate a signal for a given species should

it include too distant strains. Previous work 19 estimated the species boundary at approximately

85-90% identity in core genes (analogous to ~97% in the 16S rRNA gene). Ninety percent

identity also resulted in the most consistent coverage across core genes, and it was therefore

chosen for all subsequent SNP-level calculations. Reads with soft or hard clipping were

removed. To further validate our gene sets, we filtered out genes with abnormal coverage relative

to the rest of the gene set. We expected the depth of each gene to be uniform across a genome,

and sequencing depth to be Poisson distributed at each locus. To avoid including genes within
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species' genomes recruiting abnormal numbers of reads compared to the remainder of the

genome (and thus more likely to be recruiting reads from other species), we computed a chi-

squared goodness-of-fit test for each gene between the empirical coverage distribution and the

equivalent Poisson distribution of the same mean. Genes with a median P <0.05 across subjects

were discarded from any subsequent analysis. Results were mostly bimodal, where most genes

fit the equivalent Poisson distribution very well, giving us confidence that reads were being

recruited uniformly across the full length of the considered genes.

To calculate genome-wide statistics (Figure 1, left), we built a table of the median coverage

across the SNP tables within the core genes, across different assemblies. Then, for each pair of

people, we counted the number of these genomes that they shared and compared that between

related and a balanced set of unlinked pairs.

Polymorphic loci were then identified from the alignment, resulting in a counts matrix for each

genome containing read counts for each allele at each locus in each individual. We retained the

dominant allele for each individual (the allele with the highest number of read counts) at each

site, then computed the Manhattan distance between each individual's dominant allele at each

site and averaged these distances across each genome to obtain an average Manhattan distance

per SNP for each genome in a given pair of individuals. For each pair of individuals in a given

social network (for example, the same household), this average Manhattan distance per SNP was

computed for every genome, and the median distance for a given genome compared to the

median distance observed in unrelated pairs of individuals. This calculation is described in more

detail in the 'Network comparisons' section.
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As a comparison, we also ran the quality-filtered forward metagenomic reads through the

MetaPhlan2 (Truong et al. 2015) pipeline.

Abundance comparisons of 1-kb windows in assembled genomes

Contigs under 10 kb were removed from LSA-assembled draft genomes. Reads were aligned to

contigs with 95% identity. Reads with hard and soft clipping were removed, as were

supplementary alignments. We only considered pairs in which both individuals had a median

coverage of 10 or more across the genome. One-kilobase regions were considered present in an

individual and absent in another if its coverage was greater than the median in the first

individual, and lower than one-thousandth of the median in the other. Pairs of individuals were

considered to share the same strain if there were no such 1-kb regions across the entire genome

(that is, all regions were either present or absent in both individuals) and that it was present with

a median coverage of 10 or more in both individuals.

Mobile genetic element analysis

For Supplementary Figure 6, we used the abundances of mobile genes identified in Brito et al. 13

to determine whether there was a transmission signal. We calculated the Jensen-Shannon

divergence between all pairs and compared the number of pairs within each group with a

balanced, subsampled group.

Functional contribution to transmission

Genes in the LSA-assembled genomes were first clustered at 90% identity using CD-HIT (Fu et

al. 2012). Representative genes were then annotated using DIAMOND (Buchfink, Xie, and

Huson 2014) against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (release
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73.0). Abundances for each gene were then calculated as the median read depth across genes

with over 85% coverage. Abundances were summed for each functional gene family

(represented by a single KO number). For each pair, the Jensen-Shannon divergence was

calculated.

Network comparisons

Network comparisons on the mean pairwise SNP distance were performed by comparing the

median value of the mean pairwise distance per SNP in related pairs with those in unrelated pairs

for each genome. If a genome's median pairwise distance was lower in related pairs than in

unrelated pairs, it was counted as a positive hit for related, and vice versa. The total number of

genomes that fell in favour of related and unrelated was then compared. Similar analyses were

performed comparing sharing of 1-kb windows in assembled genomes. A genome was assigned a

positive hit for related if the number of related pairs sharing the same strain of that genome

exceeded the number of unrelated pairs sharing the same strain, and vice versa. To avoid

artefacts arising from the fact that the number of unrelated pairs often vastly exceeds the number

of related pairs, we downsampled each of the sets of unrelated pairs 100 times, resulting in the P

value distributions observed in Supplementary Figure 4.

Networks considered were spousal relationships (spouses versus non-spouse), household

relationships (same versus different household), mother-child relationships (mother-child versus

non-mother-child), any social network connection (any connection versus no connection) and

village (same versus different village). To ensure fair comparisons in the case of spousal

relationships, a set of non-spousal pairs was constructed by considering all pairs possible

between males of one marriage with females of a different marriage. Similarly, in the case of
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household relationships, a set of different household pairs was constructed by considering all

pairs possible between members of one household and members of another. In addition,

comparisons were also made between randomized networks of related and unrelated pairs, in

which the identity of the network's nodes was shuffled but the connections preserved, thus

preserving the structure of the network.

Social network predictions

For each pair of individuals, we created feature vectors containing the mean pairwise SNP

distance for each genome, the relative abundance of that genome in each individual, the number

of shared genomes using 1-kb outlier regions and true or false values for whether a given

genome was considered to be the same strain in both individuals using the 1-kb outlier regions.

These features were then used to train random forest classifiers to predict spousal and household

connections, in which class-balanced data sets were constructed by downsampling the number of

unrelated pairs to equal the number of related pairs (spouse/non-spouse; same

household/different household). To train the random forest classifiers on different data than those

used in the predictions, we performed a threefold split of the related pairs and trained on two-

thirds of the data while predicting on the remaining one-third. Predictions from the three separate

test sets were combined. Receiver operating characteristic (ROC) curves were constructed from

the average of ten sets of threefold cross-validation, and P values were computed for the

resulting AUCs using a Mann-Whitney U-statistic on the confusion matrices.

Code availability

The code for the analyses in this paper start with an alignment table in the form of a Python

dictionary containing individual core genes as its highest-level keys, where for each core gene
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there is a M x N x 4 numpy array, for M subjects, N loci and four different alleles (A, G, C and

T). The code for filtering these alignment tables into SNP tables and Manhattan distance

calculations, and scripts for identifying non-shared mobile genetic elements from 1-kb regions

are posted on GitHub at https://github.com/thomasgurry/fi-jiComp-transmission.

Data availability

Additional information on the samples can be obtained from www.fijicomp.org. All samples

may be downloaded from the NCBI Short Read Archive under Bioproject PRJNA217052. Note

that the name for sample SRS475548 in the Short Read Archive was incorrectly entered; it

should be the oral microbiome sample from M2.33, not W2.33. All accession numbers are listed

in Supplementary Table 1. Sample collection was voluntary; thus, not all of the individuals have

oral and gut microbiome samples associated with the surveys.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

4.3 Figures titles and legends

Figure 11 Household membership results in shared bacterial lineages

a, The family and social network of the FijiCOMP cohort, coloured by village

membership. Four villages are in the same district, whereas the fifth village is in a

different district. Spousal relationships are designated by edges coloured red, whereas

mother-child relationships are designated by green edges. Grey edges represent all

other familial or social network relations. b,c, In the gut (b) and oral (c) microbiome
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samples, the number of shared genomes, the number of genomes with shared core gene

SNP profiles, determined by Manhattan distances, and the number of genomes sharing

flexible genomic regions, determined by 1-kb genomic windows, were significantly

associated with pairs of linked, rather than unlinked, members of the social network. A

'genome' refers to each assembled set of core proteins for each species (left and

middle), or to each assembled LSA partition (right). Any connection refers to

friendship or distant familial connections in the network, excluding nuclear family and

household connections. Full P value distributions for the distributions shown are in

Supplementary Figure 4. The violin plot distributions represent results from comparing

the linked pairs in a given social network (red) or the shuffled network (grey) with

n= 100 independent sets of the unlinked pairs obtained by bootstrapping. Whiskers

inside the violin extend to points within 1.5 interquartile ranges of the lower and upper

quartiles for a distribution, and the centre points represent its median. The numbers of

linked pairs for each network (stool or saliva) are as follows: household (101 out of

224); spouse (29 out of 36); mother-child pairs (24 out of 50); any connection (116 out

of 169); and village (3,711 out of 8,486).

Figure 2 1 Organisms vary in their transmissibility across the social network

a,b, The mean Manhattan distance, prevalence (the number of individuals who harbour

that organism), logl0[mean abundance] and phyla are plotted for organisms in the gut

(n = 29) (a) and oral (n =36) (b) microbiomes of spouses. c,d, The mean abundance of

each organism across each pair of individuals is plotted against the Manhattan distance

123



of that organism for that pair of individuals in the gut (n = 1,988) (c) and oral

(n = 1, 111) (d) microbiomes. Linear regressions are plotted in red.

Figure 3 1 Some individuals are 'supersharers'

a,b, For each person in the network, the average distance, defined as the median of the

mean Manhattan distances across all genomes to all directly connected individuals, is

plotted for organisms within the gut (a) and oral (b) microbiomes. The arrows point to

examples in which the sharing patterns of individuals are different for gut and oral

microbiota. The red and blue in plots a and b match the values plotted in parts c and e,

respectively. c,e, Histograms of the average distances for each individual to all of their

directly connected individuals is plotted for individuals' gut (n = 173) (c) and oral

(n = 243) (e) microbiomes. d,f, The distribution of the average distances for each

individual to all of their directly connected individuals is plotted for female and male

individuals' gut (n = 173) (d) and oral (n =243) (f) microbiomes. Boxes indicate the

upper and lower quartiles, the whiskers extend to the highest and lowest values

excluding outliers, and the centre lines indicate the medians. P values were obtained

from one-tailed Wilcoxon rank-sum tests. g, Each individual's median of the mean

Manhattan distances to all individuals within the same village is plotted for their gut

and oral microbiomes (n = 142).

Figure 4 1 Machine learning predicts a subset of spouses with high confidence.

a,b, ROC curves for a random forest model predicting household membership based on

shared gut (a) or oral (b) microbiome strain-level data are plotted for models using
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SNP profiles, shared flexible regions, both, or both with organismal abundances.

Random forest models were constructed from 1,000 decision trees and without

constraint on maximum tree depth. The dotted line shows an ROC in which false

positives equal false negatives. The legend reports the means and standard deviations

for each classifier's AUC. c,d, The social network plotted with predicted true-positive

household pairs and false-negative household pairs using gut (c) or oral (d)

microbiome data.e,f, ROC curves for a random forest model predicting spousal

relationships based on shared gut (e) or oral (f) microbiome strain-level data are

plotted for models using SNP profiles, shared flexible regions, both, or both with

organismal abundances. Random forest models were constructed from 1,000 decision

trees and without constraint on maximum tree depth. The dotted line shows an ROC in

which false positives equal false negatives. The legend reports the means and standard

deviations for each classifier's AUC. g,h, The social network plotted with predicted

true-positive spousal pairs and false-negative spousal pairs using gut (g) or oral (h)

microbiome data.

Supplementary Figure 1 Alignments of FijiCOMP reads to the HMP reference genomes

and LSAbinned FijiCOMP assemblies.

The total number of primary read alignments of (a) gut (N=176) and (b) oral FijiCOMP

metagenomes (N=244) (each represented by a red circle) to either the 2,191 reference genomes

that make up the Human Microbiome Project (HMP) reference genome collection (downloaded

from https:// www.hmpdacc.org on August 3, 2018) or the complete collection of LSA-binned

FijiCOMP assemblies. Reads were filtered at 95% identity. Boxplots are drawn with lines at the
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median, whiskers that show quartile values, and black circles representing those samples that fall

outside the quartile values.

Supplementary Figure 2 1 Transmission of species using MetaPhlan2-annotated

metagenomes.

The number of MetaPhlan2-annotated species shared between related pairs and 100 bootstraps

of unrelated pairs are shown for the (a) gut and (b) oral microbiomes. The violin plot

distributions represent results from comparing the linked pairs in a given social network (red) or

the shuffled network (gray) with N= 100 independent sets of the unlinked pairs obtained by

bootstrapping. Whiskers inside the violin extend to points within 1.5 IQRs of the lower and

upper quartile for a distribution, and center points represent its median. The numbers of linked

pairs for each network (gut/oral) are as follows: household (101/224); spouse (29/36); mother-

child pairs (24/50); any connection (116/169); village (3,711/8,486). Red violin

Supplementary Figure 3 1 Example of 1kb windows in a pair of individuals that share and

do not share a strain.

Median read depths, averaged across all sites within each 1kb window, are plotted for two

individuals. The example shown here is gut microbiome partition 3558 for two individuals who

share (left) the organisms versus two individuals who are not counted as sharing the organism

(right). Outliers are shown in red. One partition is shown for two pairs of people, those that (a)

share the same strain; and (b) those that do not. To consider that two individuals shared the same

strain, they were not allowed to have any outlying 1kb windows.

Supplementary Figure 4. Distributions of p-values for the down-sampled networks.
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p-values for the core gene SNPs and 1kb windows shown in Figure 1 are the median p-values are

for one-sided binomial tests between the linked members and subsampled unlinked members.

Here, we show the full range of log(p-values), without multiple test correction, for the SNPs and

1kb windows in the (a) gut and (b) oral microbiomes for 100 subsampled networks each. The

violin plot distributions represent results from comparing the linked pairs in a given social

network (red) or the shuffled network (gray) with N= 100 independent sets of the unlinked pairs

obtained by bootstrapping. The numbers of linked pairs for each network (gut/oral) are as

follows: household (101/224); spouse (29/36); mother-child pairs (24/50); any connection

(116/169); village (3,711/8,486).

Supplementary Figure 5 1 Strain transmission in spouses according to the length of

cohabitation.

The length of cohabitation, inferred by the age of the couple's oldest child, is plotted for each

spousal pair against the mean Manhattan distances across genomes for that pair in the (a) gut

(N=25) and (b) oral (N= 18) microbiomes. Linear regressions are shown in red.

Supplementary Figure 6 1 Transmission of mobile genes is mildly detectable between

spouses using a previously identified set of mobile genes.

We calculated the JensenShannon divergence for the vectors of abundances of mobile genes

identified in Brito et al., (2016) in individuals' gut microbiomes across social networks. The

violin plot distributions represent results from comparing the linked pairs in a given social

network (red) or the shuffled network (gray) with N= 100 independent sets of the unlinked pairs

obtained by bootstrapping. Whiskers inside the violin extend to points within 1.5 IQRs of the

lower and upper quartile for a distribution, and center points represent its median. The numbers
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of linked pairs for each network are as follows: household 101; spouse 29; mother-child pairs 24;

any connection 116; village 3,711.

Supplementary Figure 7 1 Transmission is detected even at small numbers of pairs in our

network.

We rarefied the number of people considered in each iteration of our network analysis to

determine the detection limit for the observed transmission patterns, to N=10, 20 50, 100, 500, or

1,000 pairs of individuals for the gut microbiome (left) and oral microbiome (right) samples.

Whiskers inside boxplots extend to points within 1.5 IQRs of the lower and upper quartile for a

distribution, and center points represent its median. The box plot distributions represent results

from comparing the linked pairs in a given social network (red) or the shuffled network (gray)

with N= 100 independent sets of the unlinked pairs obtained by bootstrapping.

Supplementary Figure 8 1 Transmission signals are maintained with fewer, albeit higher

quality, partitions.

We reanalyzed 1kb segments from partitions with low amounts of putative contamination (less

than 10% as determined by CheckM) for signals of transmission within the Fij iCOMP cohort. 46

out of 207 gut microbiome partitions were removed, in addition to 34, for which CheckM was

unable to run. 258 partitions out of 1,091 oral microbiome partitions were removed. The number

of genomes shared according to 1kb segments for the (a) gut and (b) oral microbiomes are

shown. The violin plot distributions represent results from comparing the linked pairs in a given

social network (red) or the shuffled network (gray) with N= 100 independent sets of the unlinked

pairs obtained by bootstrapping. The numbers of linked pairs for each network (gut/oral) are as

follows: household (101/224); spouse (29/36); mother-child pairs (24/50); any connection
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(116/169); village (3,711/8,486). Whiskers inside the violin extend to points within 1.5 IQRs of

the lower and upper quartile for a distribution, and center points represent its median.

Supplementary Figure 9 1 Transmission signals are ablated with the shuffled networks.

First the network was shuffled, maintaining the overall network structure. In the (a) gut and (b)

oral microbiomes, the number of shared genomes (left); the number of genomes with shared core

gene SNP profiles, determined by Manhattan distances (middle); or the number of genomes

sharing flexible genomic regions, determined by 1kb genomic windows (right), whose data are

represented in Figure 1; are shown for linked and subsampled unlinked members of the social

network as indicated for the shuffled networks. The violin plot distributions represent results

from comparing the linked pairs in a given social network (red) or the shuffled network (gray)

with N= 100 independent sets of the unlinked pairs obtained by bootstrapping. The numbers of

linked pairs for each network (gut/oral) are as follows: household (101/224); spouse (29/36);

mother-child pairs (24/50); any connection (116/169); village (3,711/8,486). Whiskers inside the

violin extend to points within 1.5 IQRs of the lower and upper quartile for a distribution, and

center points represent its median.

Supplementary Figure 10 1 Phylogeny does not correlate with transmission patterns.

In the (a) gut and (b) oral microbiome samples, the number of genomes with shared core gene

SNP profiles, determined by Manhattan distances, were determined for organisms according to

their phylum. For each social group, we compared 'related' versus 'unrelated', shorthand for

directly linked and unlinked in the network. There were no consistent phyla associated with

greater sharing across social contexts in either gut or oral microbiomes. The box plot

distributions represent results from comparing the linked pairs in a given social network (red) or
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the shuffled network (gray) with N= 100 independent sets of the unlinked pairs obtained by

bootstrapping. Whiskers inside boxplots extend to points within 1.5 IQRs of the lower and upper

quartile for a distribution, and center points represent its median. The numbers of linked pairs for

each network (gut/oral) are as follows: household (101/224); spouse (29/36); mother-child pairs

(24/50); any connection (116/169); village (3,711/8,486).

Supplementary Figure 111 Heatmaps show a dispersed transmission signal across

organisms and pairs of individuals.

For the core gene SNPs, a z-score of the Manhattan distance was calculated for each organism

across the gut microbiomes of pairs of individuals living in the same household.

Supplementary Figure 12 1 Heatmaps show a dispersed transmission signal across

organisms and pairs of individuals.

For the core gene SNPs, a z-score of the Manhattan distance was calculated for each organism

across the gut microbiomes of spouses.

Supplementary Figure 13 1 Heatmaps show a dispersed transmission signal across

organisms and pairs of individuals.

For the core gene SNPs, a z-score of the Manhattan distance was calculated for each organism

across the oral microbiomes of pairs of individuals living in the same household.

Supplementary Figure 14 | Heatmaps show a dispersed transmission signal across

organisms and pairs of individuals.
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For the core gene SNPs, a z-score of the Manhattan distance was calculated for each organism

across the oral microbiomes of spouses.

Supplementary Figure 15 1 Heatmaps show a dispersed transmission signal across

organisms and pairs of individuals.

For the 1kb genomic regions, we simply plot the presence and absence of a shared partition for

gut microbiomes in pairs of individuals living in the same households.

Supplementary Figure 16 1 Heatmaps show a dispersed transmission signal across

organisms and pairs of individuals.

For the 1kb genomic regions, we simply plot the presence and absence of a shared partition for

gut microbiomes in spouses.

Supplementary Figure 17 1 Heatmaps show a dispersed transmission signal across

organisms and pairs of individuals. For the 1kb genomic regions, we simply plot the presence

and absence of a shared partition for oral microbiomes in pairs of individuals living in the same

households

Supplementary Figure 18 1 Heatmaps show a dispersed transmission signal across

organisms and pairs of individuals. For the 1kb genomic regions, we simply plot the presence

and absence of a shared partition for oral microbiomes in spouses.

Supplementary Figure 19 1 Shuffling core genes does not ablate signals of transmission.
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We shuffled the core genes that contributed to each of the genomes in the (a) gut and (b) oral

microbiomes. Briefly, an equal number of new, synthetic partitions were created from the

original LSA partitions, and core genes from the originals were distributed randomly to the new

partitions, with the constraint that a partition could only have one copy of a given core gene. The

violin plot distributions represent results from comparing the linked pairs in a given social

network (red) or the shuffled network (gray) with N= 100 independent sets of the unlinked pairs

obtained by bootstrapping. Whiskers inside the violin extend to points within 1.5 IQRs of the

lower and upper quartile for a distribution, and center points represent its median. The numbers

of linked pairs for each network (gut/oral) are as follows: household (101/224); spouse (29/3 6);

mother-child pairs (24/50); any connection (116/169); village (3,711/8,486).

Supplementary Figure 20 | Functional profiles are not indicative of transmission routes.

We calculated the Jensen-Shannon divergence for abundances of genes in the (a) gut and (b) oral

microbiomes, aggregated by KEGG pathway, between pairs according to each relationship type.

Classes were balanced for comparison. The violin plot distributions represent results from

comparing the linked pairs in a given social network (red) or the shuffled network (gray) with

N= 100 independent sets of the unlinked pairs obtained by bootstrapping. Whiskers inside the

violin extend to points within 1.5 IQRs of the lower and upper quartile for a distribution, and

center points represent its median. The numbers of linked pairs for each network (gut/oral) are as

follows: household (101/224); spouse (29/36); mother-child pairs (24/50); any connection

(116/169); village (3,711/8,486).

Supplementary Figure 211 Transmission signals are not reliable detected after rarefying

read counts.
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We rarefied individuals' metagenomic libraries to 5 million quality-filtered reads and re-

computed the number of shared genomes in the (a) gut and (b) oral microbiome according to

their shared core gene SNP profiles, determined by Manhattan distances, and compared these

with the shuffled social network computed using this many reads. The violin plot distributions

represent results from comparing the linked pairs in a given social network (red) or the shuffled

network (gray) with N= 100 independent sets of the unlinked pairs obtained by bootstrapping.

Whiskers inside the violin extend to points within 1.5 IQRs of the lower and upper quartile for a

distribution, and center points represent its median. The numbers of linked pairs for each

network (gut/oral) are as follows: household (101/224); spouse (29/36); mother-child pairs

(24/50); any connection (116/169); village (3,711/8,486).

Supplementary Figure 22 1 Distributions of Manhattan distances between all direct

linkages for each individual.

For simplicity's sake, distributions of Manhattan distances for (a) gut and (b) oral microbiomes

for individuals living in one of the villages are shown (N=51). Whiskers inside boxplots extend

to points within 1.5 IQRs of the lower and upper quartile for a distribution, and center points

represent its median.

Supplementary Figure 23 1 Supersharing is agnostic to read depth.

The number of quality-filtered reads per individual's (a) gut or (b) oral microbiomes are plotted

against their median of mean Manhattan distances across all genomes to all of their directly

connected individuals (N=141).

Supplementary Figure 24 1 Network statistics do not capture 'supersharing' metrics.
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Node degree and 'betweenness' are plotted for each person in the (a,b) gut and (c,d) oral

microbiomes.

Supplementary Figure 25 1 Females average strains are closer to their female links.

The distribution of mean Manhattan distances for each individual to all of their directly

connected female or male linkages is plotted for female (N=125) and male (N=118) individuals'

(a) gut and (b) oral microbiomes. Boxes indicate the upper and lower quartiles, whiskers extend

to highest and lowest values excluding outliers, and center lines indicate medians. P-values

reflect a two-tailed Wilcoxon Rank-sum test.

Supplementary Figure 26 1 Age is unrelated to 'supersharing'.

Individuals are plotted according to their age and their mean Manhattan distance to all

individuals they are connected to in the (a) gut and (b) oral microbiomes.

Supplementary Figure 27 1 Precision-recall curves for predictive family and social

interaction models.

Precision-recall curves for the models in Figure 4, namely (a) gut microbiomes of household

members; (b) gut microbiomes of spouses; (c) oral microbiomes of household members; and (d)

oral microbiomes of spouses.

Supplementary tables are not included due to space limit and can be found at

httos://www.nature.com/articles/s4 1564-019-0409-6
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Supplementary Figure 5
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Supplementary Figure 7
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Supplementary Figure 9
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Supplementary Figure 11

Gut microbiomes, SNPs
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Supplementary Figure 12

Gut microbiomes, SNPs
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Supplementary Figure 13

Oral microbiomes, SNPs
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Supplementary Figure 17
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Supplementary Figure 19
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Chapter 5

Discussion

In this thesis, I present the description of rapid within-person adaptation for a bacterial species,

Bacteroidesfragilis, whose native niche is the human intestine, as well as the most time-resolved

description of bacterial within-person evolutionary dynamics to date. Within the gut microbiome

of individual people, B. fragilis acquires adaptive point mutations in key genes, including

polysaccharide importers and capsule synthesis genes, under the pressure of natural selection

(Chapter 2). Continuing adaptation suggests there is no single optimal B. fragilis sequence for

survival in the human microbiome and points to competing selective forces. From the TwinUK

metagenomes, we also discovered 6 Bacteroidetes strains undergoing adaptive evolution during

colonization periods up to decades (Chapter 3). It is therefore likely that species in the

Bacteroidetes phylum share similar within-person adaptive evolutionary patterns.

Nonetheless, additional studies are necessary to show whether adaptive within-person evolution

is specific to B. fragilis (and Bacteroidetes in general) or is a common feature of gut

commensals. A recent evolutionary analysis of multiple commensal species using HMP

metagenomes provides hope that our results are generalizable (Garud et al., 2017). Their results

hint that SNPs detected with low frequency provide a dN/dS value that may be compatible with

positive selection. However, conclusions might still be complicated, as another recent

investigation into E. coli evolution detected only signatures of neutral diversity (Ghalayini et al.,

2018). Many factors can contribute to the discrepancy between the conclusions for . coli and

152



our results. For example, E. coli has a much smaller population size in the micrbiome compared

to those of Bacteroidetes strains (Lloyd-Price et al. 2017), and genetic drift may play a major

role in E. coli's evolution. To draw a more complete picture of within-person evolution of the

commensal microbiome, I am currently applying culture-based evolutionary approaches to more

species, including Parabacteroides distasonis, Bifidobacterium longum, Bifidobacterium

adolescentis and Escherichia coli. I will further explore whether evolutionary dynamics is

different between healthy subjects and IBD patients. This study may provide both fundamental

insights into the dynamics of human microbiomes and provide a discovery route for

understanding genes and pathways important to bacterial survival within the microbiome; many

of these species lack efficient genetic tools to characterize gene functions (Lee et al. 2013)(Price

et al. 2018). We may also determine how taxonomy, bacterial life strategies, and human health

states affect evolutionary dynamics of commensals within micrbiomes.

Two complementary approaches-Culture-based and culture-independent-are introduced in

this thesis to study the evolutionary dynamics of gut microbiome. Culture-based population

genomics allows precise detection of mutations emerged within-person; culture-independent

metagenomic sequencing is broadly applied and has a huge number of public datasets (Almeida

et al. 2019; Pasolli et al. 2019). While metagenome alone falls short in revealing high-resolution

evolutionary signals, we manage to develop two strategies to utilize metagenomic samples. In

the first strategy, we identify SNPs with culture-based genomics and combine these SNPs with

metagenomes to track the dynamics of different genotypes over time. Alternatively, we use

DonorFinder to track closely related strains from metagenomes and identify strains transmitted in

recent history. Strains thus identified have been diverged for the right amount of time for

observing insights of within-person evolution. Culture-based approach can be labor-intense and
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is not yet optimized for many species. Culture-independent metagenomes lack the resolution to

differentiate low-frequency mutations, which may constitute the majority of the information for

within-person evolution. A future might simply be high-throughput single cell microbiome

sequencing techniques. Current single cell techniques lack in throughput and usually have low

genome completeness for individual cells (L. Xu et al. 2016; F. B. Yu et al. 2017). To advance

single cell technique in the microbiome field, I am collaborating with David Weitz's lab to

develop high-throughput experimental and computational pipelines. We endeavor to significantly

increase the number of cells sequenced from a single microbiome sample with drop-based

microfluidics, obtaining tens of thousands of single cell-level genomes for many bacterial

lineages. Although individual single cell genomes likely still have relatively low quality and

completeness, the large number of cells may compensate for this weakness and provide the

opportunity to identify intra-strain variations via proper inferences.

Should within-person adaptive evolution be a common feature of gut commensals, as it is for

many opportunistic pathogens of the cystic fibrosis lung (Smith et al., 2006; Lieberman et al.,

2014; Chung et al., 2017), it may have far-reaching implications for the microbiome field.

Within-person evolution, in addition to ecological forces, may need to be considered as a

possible driver of community dynamics, such as increases or decreases in species abundances

over time. In particular, the eco-evolutionary force of monopolization-in which adaptation to a

unique local environment enables early colonizers to prevent subsequent invasion by new

potential colonizers (De Meester et al., 2016)-may need more attention in the microbiome field.

Monopolization may be responsible for the observed stability of individual lineages in the

microbiome and the microbiome's ability to provide colonization resistance (Faith et al., 2013;

Martinez et al., 2018). Further, pressures specific to individuals or populations may necessitate
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the need for careful selection or engineering of probiotic strains to maximize the potential for

long-term colonization. Future work is needed to understand the importance of within-person

evolution to the design of microbial-based therapeutics, as well as its interplay with ecological

forces. Our work demonstrates the power of culture-based evolutionary approaches for providing

insights into the dynamics of human microbiomes and for discovering genes and pathways

critical to bacterial survival within the microbiome.
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