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Abstract

This thesis develops a physics-informed k-nearest neighbors approach, which draws
from both physics-based modeling and data-driven machine learning. In doing so, our
method achieves robustness and increased accuracy with small datasets, while being
cheap to apply. Our method tackles the challenges of high-dimensional inverse prob-
lems governed by complex physical models. Such inverse problems arise in important
engineering applications, such as heat transfer, medical and structural imaging, and
contaminant control. In particular, we consider the goal-oriented inverse problem
setting, where unknown model parameters are inferred from observations in order
to calculate some low-dimensional quantity of interest (QoI). When computational
resources and/or time are limited, it is infeasible to solve the full inverse problem for
inferred parameters to obtain the QoI.

This thesis describes an algorithm that bypasses solving the inverse problem, in-
stead directly giving rapid QoI estimates for observations. We generate a library
of physics-informed maps based on local approximations to the goal-oriented inverse
problem. Applying tensor decompositions to these approximate problems gives com-
pact multilinear physics-informed maps. These maps are calculated and stored in
an offline preparatory phase, and then applied to online observations to give rapid
QoI estimates. This thesis also describes tailored active learning algorithms, which
efficiently choose training points in observation space at which to generate these
physics-informed maps. This improves the online prediction performance given a
limited offline computational and/or storage budget.

We demonstrate our rapid QoI estimation and active learning algorithms on a
quality-control problem for additive manufacturing. The proposed physics-informed
approach achieves 5% relative QoI error in 0.1% of the time to solve the full inverse
problem. Our physics-informed mappings give a third of the QoI estimate error that
black-box regression methods do for small datasets, and are more robust when the
offline dataset does not well represent the online test points. The tailored active
learning algorithms produce datasets that reduce maximum QoI error by 25% and
misclassification by 15%, compared to randomly chosen datasets.
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Chapter 1

Introduction

In scientific and engineering contexts, observations about a physical system can be

used to inform decisions or actions that affect it. The observations are used to cal-

ibrate models of the physical system, which can then be used to predict quantities

relevant to the decision. When these decisions need to be made quickly and/or on

platforms with limited computational power, the calibration step may be infeasibly

expensive. In this thesis, we develop methods that accelerate the process of obtaining

these prediction quantities from observations.

In this chapter, we motivate and give context to this problem of informing decisions

with observations, and review the literature on relevant approaches. In Section 1.1,

we frame the problem of using observations to inform decisions, and motivate the

need for algorithms that accelerate this process. In Section 1.2, we discuss physics-

based approaches that make strategic approximations to the expensive model cali-

bration. In Section 1.3, we discuss black-box data-based approaches, many of which

give cheaper estimates of the prediction quantities for observations, but require large

training sets for accuracy. Our proposed algorithm will draw from both physics-based

and data-based approaches in order to combine their strengths and ameliorate their

drawbacks. We review existing combined approaches in Section 1.4. To improve QoI

estimation given a limited offline and/or storage budget, we will draw from active

learning approaches, discussed in Section 1.5, to efficiently choose our training sets.

In Section 1.6, we introduce our thesis objectives and outline the remaining chapters

17



of the thesis. In Section 1.7, we define notation and terminology that will be used in

developing our algorithm.

1.1 Context and Motivation

In scientific and engineering contexts, observations about a physical system can be

used to inform decisions or actions regarding it. The observations are used to infer

the parameters of a mathematical model of the physical system, and the inferred

parameters are then used to compute quantities relevant to the decision or action.

For example, one might load a manufactured part and gather observations of its

response to infer its internal structure, which can then be used to predict its behavior

in extreme cases and decide its acceptability. Another example occurs in imprint

lithography for nanofabrication, where measurements from optical sensing techniques

are used to infer the presence of contaminant particles on a candidate substrate

wafer [61, 125]. The inferred contamination state can be used to predict damage to

an expensive template from imprinting on the wafer, and decide whether to proceed

with the imprinting process.

Solving the inverse problem for the parameters based on observations presents a

major computational challenge, involving repeated evaluations of the mathematical

model. For our target engineering and scientific problems of interest, each model

evaluation is expensive. In many cases the unknown parameters are spatially and/or

temporally distributed, leading to discretized parameter spaces of high dimension,

which require many model evaluations to explore.

We frame the process of obtaining a decision-relevant prediction quantity from

observations as a goal-oriented inverse problem. In the goal-oriented inverse problem,

the purpose of inferring parameters is to use them in predicting some low-dimensional

prediction quantity of interest (QoI). This prediction quantity may then be used to

inform a decision; for example, one may infer characteristics of a system in order to

predict the outcome of a potential action under evaluation (e.g., remediation strategy

[101], injecting carbon [86]), or to inform a decision target (e.g., future ice mass
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flux [69]). The relation between observations, parameters, and prediction QoI is

depicted in Figure 1-1. In contrast to the inverse problem, the inferred parameters in

  

true
parameters

observations

noise

QoI

observation
process

inverse
problem

prediction
process

inferred
parameters

+

Figure 1-1: The observations are modeled as noisy outputs of the model with a set
of true parameters. Given observations, the goal-oriented inverse problem (in blue)
seeks to infer parameters (inverse problem) from the observations in order to calculate
a prediction QoI (prediction process).

the goal-oriented inverse problem are only a means to an end (the QoI), and are not

themselves of interest.

In settings where one has limited time and/or computational resources in which to

calculate the QoI from observations, it may not be feasible to solve the inverse prob-

lem. Such time- and computation-constrained settings occur, for example, when an

engineer wishes to make quick optimization calculations during a manufacturing pro-

cess using a mobile device [121], or when an unmanned aerial vehicle needs to decide

its flight path based on structural health observations obtained during flight [124],

using only its onboard computational resources. The issue of limited computational

resources is compounded if one needs a QoI for each of multiple observations. For

example, one may need to estimate the QoI from observations of a single system at

each of many points in time (e.g., structural health monitoring), or observations cor-

responding to different instances of similar systems (e.g., testing each product of man-

ufacturing process for quality assurance). We seek an algorithm that enables rapid

QoI estimation from observations, in settings with limited computational resources.

We assume an offline preparatory phase, where one can make expensive calculations
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and store quantities, followed by an online resource-constrained phase, where one uses

these stored quantities to enable rapid QoI estimation for online observations.

1.2 Accelerating Inverse Solution for QoI

To obtain a QoI from observations, one solves an inverse problem for model param-

eters that best reproduce the observations, subject to any additional user-imposed

constraints or penalties. These inferred parameters are then used to compute the

QoI. When the unknown parameters are discretized fields that are spatially and/or

temporally distributed, the parameter space can become very high-dimensional. The

cost of obtaining the QoI is then dominated by the cost of solving a large-scale opti-

mization problem. To accelerate the process of obtaining the QoI from observations,

one can use techniques for accelerating the solution of large-scale optimization prob-

lems. For example, one can use preconditioned Krylov subspace methods [3,17,75]. If

available, cheaper surrogate models can also be used to drastically reduce the need for

expensive model evaluations. This approach has been applied to optimization prob-

lems [2, 49] and statistical inverse problems [31, 37, 41, 48]; a review of multifidelity

model management for outer-loop applications can be found in [106].

Further acceleration can be achieved by taking advantage of the particular struc-

ture of the inverse problem. Since the observations are often sparse, noisy, and indi-

rect, they are insufficiently informative to fully determine the parameters. Regular-

ization, in the form of a penalty term or constraint on the solution space, introduces

additional information to give unique inferred parameters for observations. Even with

regularization, the sparsity of observed information introduces low-dimensional struc-

ture in the mapping between observations and the inferred parameters. In Bayesian

inference, where one infers a posterior distribution of the parameter instead of a single

estimated value, existing approaches have exploited this low-dimensional structure to

efficiently sample from the parameter posterior [24, 40, 52, 92]. In the deterministic

setting, existing approaches have reduced the cost of solving the inverse problem by

approximating it; the forward model, which relates parameters to their predicted ob-
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servations, is replaced with a cheaper alternative. In [9, 25,45,64,66,84,87,100], this

cheaper alternative is a reduced-order model created by projecting the state and/or

parameter space of the governing equations into a reduced space. The reduced space

is chosen to efficiently approximate the relationship between parameters and their

predicted observations, and thus efficiently approximate the inferred parameters.

A greater reduction in computational cost can be achieved by considering the

ultimate goal when approximating the inverse problem. In the goal-oriented inverse

problem, not only are the parameters incompletely informed by the observations, but

their full resolution is also unnecessary to preserve the often low-dimensional QoI.

Rather than constructing a reduced-order or surrogate model to accurately infer the

parameters, one sacrifices accuracy in the inferred parameters in a controlled fashion,

so as to minimize error in the QoI. This controlled trade-off can be done, for example,

by constraining the inferred parameters to a particular low-dimensional subspace; in

the case of a linear goal-oriented inverse problem, [85] show that one can choose such a

low-dimensional subspace without sacrificing any accuracy in the QoI. Goal-oriented

mesh refinement [10] and goal-oriented model adaptivity [82] derive an error estimate

for the QoI from solving the (cheaper) inverse problem with a coarser mesh or lower-

fidelity models; this error is relative to the QoI from the (expensive) inverse problem

in infinite dimensions, or with the highest-fidelity model. The error estimate is used

to guide adaptive mesh and/or model refinement, resulting in an approximate inverse

problem that is less expensive to solve, but which gives an accurate QoI estimate.

By approximating the inverse problem in a principled fashion, one is able to ob-

tain an accurate QoI estimate from observations at reduced cost by solving a lower-

dimensional and/or less nonlinear optimization problem. However, this approach still

requires that an optimization problem, albeit a cheaper one, be solved for each set

of online observations for which we wish to estimate a QoI. For settings where one

does not have the time and/or computational resources to solve even an approximate

inverse problem, it may be appropriate to choose a black-box data-based approach,

which can give a cheaper QoI estimate.

21



1.3 Black-box Data-based Approaches

For a given input, black-box data-based methods can be used to obtain an output

estimate by applying a direct mapping that is cheap to evaluate. This mapping is

determined (‘trained’) based on a set of known input-output pairs (training data),

with its form and/or parameters chosen to match (exactly or with minimal penalty)

the training pairs. The trained mapping is black-box in that it seeks to emulate

the input-output relationship that generated the training set without requiring any

additional information about its structure. Such black-box data-based methods can

be found in various communities. Engineering applications have traditionally utilized

a wide range of statistical and machine learning approaches, with methods such as

response surfaces [20,21,28,74,114], kriging or Gaussian process regression [78,93,109],

radial basis function approximation [22, 107, 146], neural networks [94, 113, 115], k-

nearest neighbors [29,39,51], and support vector machines (SVMs) [19,38,135].

Black-box data-based methods are both flexible (able to represent a wide range

of input-output relationships) and cheap to evaluate (give rapid output estimate for

given input). These characteristics make them especially useful when the true input-

output relationship is unknown or only known implicitly. The flexibility and relatively

cheap evaluation costs of data-based methods have been utilized in the setting of

computing prediction QoI from observations, where the observations and QoI are

connected by models with a shared set of parameters. In [90, 128], an observation-

to-QoI mapping is trained in the context of structural health monitoring, mapping

strain measurements to coefficients describing the capability or damage state. In

these works, the “true” QoI for observations is not obtained through solving an inverse

problem. Instead, the training observation-QoI pairs are generated by choosing a set

of parameter values, representing possible or expected damage and health states. For

each parameter instance, a corresponding pair of observations and QoI is generated

through forward model simulations. In contrast, by relating observations to their QoI

through a goal-oriented inverse problem, we are able to make use of past observations

(e.g., from past products of manufacturing process) as training points containing
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information about expected online observations.

Due to their flexible representation and relatively cheap evaluation costs, black-

box data-based methods are useful for accelerating the process of obtaining QoI esti-

mates from observations informing parameters of expensive models. However, these

data-based mappings often require large training sets in order to give accurate QoI

estimates. Each training point requires evaluation of the expensive model, so a large

training set is expensive to obtain. The need for large training sets can be reduced

by introducing information about the structure of the goal-oriented inverse problem,

to supplement the information contained in the observation-QoI training pairs.

1.4 Combining Physics- and Data-based Approaches

In Sections 1.2 and 1.3, we discussed two types of approaches to accelerating the

process of obtaining a QoI from observations informing the parameters of an expen-

sive model. In Section 1.2, we discussed physics-based approaches that approximate

the inverse problem while preserving its goal; the approximate goal-oriented inverse

problem can be solved for different observations to obtain their QoI. This contrasts

with the black-box data-based approaches discussed in Section 1.3; these methods use

no knowledge of the structure of the goal-oriented inverse problem, but give cheap

mappings from observations to estimated QoI. These methods have the drawback of

requiring large expensive training sets for accuracy. Combining physics- and data-

based approaches can produce methods which combine their strengths and ameliorate

their respective weaknesses.

Methods combining physics- and data-based approaches have been applied to a

variety of problems, with a spectrum of emphasis on either the physics-based or

data-based aspects. ‘Theory-guided data-science’ is introduced in [72] as a paradigm

for combining data and scientific knowledge to create generalizable and interpretable

models, and gives a review of such combined approaches. The loosest coupling can be

found in methods where black-box data-based mappings are trained on the results of

numerical physics-based model simulations. Results from data-based mappings can
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also be post-processed with physics-based models; for example, data-based mappings

in [62] are used to cheaply generate candidate material structures that are then pruned

using more expensive physics-based simulations.

In more tightly coupled methods, physical knowledge can inform the structure and

parameters of the data-based mapping, or how it will be trained. For example, domain

knowledge has been used to choose a feature space [90, 119, 128], and to encourage

(through penalty terms) or enforce (through restrictions on mapping structure and/or

parameters) physically meaningful properties and behaviors [8, 83, 89, 91, 127]. Data-

based mappings can also be used to augment physics-based models; for example, data-

based terms can serve as a correction to projected reduced-order [13,14,47,143,148],

or otherwise simplified [123, 147], physical models, capturing missing dynamics or

other phenomena.

We extend this notion of combining physics- and data-based approaches to the

goal-oriented inverse problem setting in order to obtain favorable characteristics from

both. We construct a library of observation-to-QoI mappings, each based on local

approximations to the goal-oriented inverse problem about a ‘training’ point. Each

local mapping is informed by the structure and physics of the goal-oriented inverse

problem, but has the low evaluation cost of (data-based) polynomial regression. Com-

pared to purely data-based approaches, the additional physics information in the local

mappings results in fewer training points being needed for a desired QoI estimate ac-

curacy. However, the accuracy of the QoI estimate still depends on the quality of

the training set. Since each training point requires expensive model evaluations, it is

desirable to choose a training set efficiently. We review methods in the literature for

efficiently querying expensive information in the next section.

1.5 Efficient Training with Active Learning

When a data-based mapping is trained to emulate an input-output relationship, its

prediction accuracy is dependent on the quality of its training data. Large training

sets can often give improved performance, but can also be expensive to obtain and
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utilize. Rather than randomly choose training points, one can iteratively use the

mapping, trained on an initial subset of training points, to choose subsequent training

points to best achieve the goal of accurate predictions.

Such techniques can be found in the active learning, optimal experimental design

(OED), and Bayesian optimization literature. A review of active learning methods

can be found in [117]. An introduction to OED [126] can be found in [99]; reviews of

OED methods can be found in [46,53]. Bayesian optimization [71,79,95,152] focuses

on the particular case where the emulated input-output relationship is an optimization

objective function; a review can be found in [120]. In the contexts of active learning,

OED, and Bayesian optimization, mappings are trained (fitted parametrically, or

constructed nonparametrically) based on a set of known input-output points; these

points are called the ‘training set’ or ‘experimental data’. The true output (or ‘label’)

for a given input point is obtained by ‘querying’, or performing an ‘experiment’, at

the input point. Large training/data sets can be expensive, both due to the cost

of performing many queries/experiments, and due to the cost of fitting the trained

mapping to large training/data sets. Thus, choosing the training/data sets efficiently

can reduce the costs of both obtaining and using them.

In active learning and OED, one chooses training/data points to (greedily or

optimally) minimize some criterion, often a (local or integrated) measure of error

or uncertainty in the mapping parameters or outputs. These criteria are calculated

using the mapping trained/calibrated on the training/data points thus far available;

one iterates between choosing training/data points and updating the mapping. For a

class of mappings from which one chooses a member that best fits the known input-

output pairs, different criteria can be computed and used for choosing training/data

points. One possible criterion is the size of the version space (space of mappings

consistent with known training pairs). For some classes of mappings, the size of their

version space can be estimated, so they are conducive to active learning approaches

that focus on reducing this space [42, 57, 131, 132]. For example, the version space

for SVMs corresponds to the region of overlap between half-planes whose separating

hyperplanes are defined by the training points; in [131], this property is used to choose
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subsequent training points that most nearly halve the version space and thus have

the greatest potential to reduce the version space.

While halving the version space can lead to attractive prediction error decay rates

with training set size [54], directly estimating the size of the version space is only

tractable for particular classes of mappings. One can alternatively estimate, and seek

to minimize, the error or uncertainty in the mapping output. If one is able to estimate

the error or uncertainty at input points, and can characterize how adding a training

point will affect the resulting trained mapping, then one can choose training points

whose addition will minimize integrated error or variance. For example, in [30, 151],

training points are chosen to minimize an integrated output error, using expressions

for the asymptotic expansion of the error for certain classes of nonparametric re-

gression. In [88], no direct error expression is available, so the error is estimated by

describing possible outputs with a random field, and comparing them to the output

estimate of the mapping when trained on potential training sets. In [34], training

points are chosen to minimize integrated variance for Gaussian mixtures and locally

weighted regression. If one can not characterize how adding a training point will af-

fect the resulting trained mapping, then one can greedily select input points with the

greatest error or uncertainty to add to the training set, as is done in [27,33,56,80,149].

1.6 Thesis Objectives and Outline

The process of making a decision based on observations of a physical system appears

in many engineering applications, and can be framed as a goal-oriented inverse prob-

lem. In time and/or resource constrained settings, it is not feasible to infer for the

parameters, especially when the parameters are high-dimensional and/or the model

is expensive to evaluate. Both physics-based and black-box methods have been used

to accelerate the process of obtaining the QoI for observations. Existing physics-

based methods strategically approximate the inverse problem so that the parameters

can be more cheaply inferred. However, estimating the QoI for given observations

still requires solution of an optimization problem after the observations are obtained.
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In contrast, black-box data-based methods produce explicit observation-to-QoI map-

pings that are cheap to apply, giving rapid QoI estimates for online observations.

However, these mappings require many expensive offline training points for accuracy.

We seek a method to give rapid QoI estimates for online observations without

requiring large expensive training sets. To this end, we take inspiration from (a) work

in combining physics- and data-based approaches, and (b) work in active learning to

efficiently select training points. We propose an algorithm that creates a library of

multilinear maps based on local approximations to the goal-oriented inverse problem,

where these local approximations can be efficiently chosen using our tailored active

learning strategies. The maps can be calculated and stored in an offline preparatory

phase, and applied to online observations to obtain a rapid QoI estimate.

The objectives of this thesis are to:

∙ develop an algorithm that bypasses the solution of an expensive, high-dimensional

inverse problem to directly give rapid QoI estimates for observations;

∙ develop tailored active learning strategies for efficiently choosing offline evalua-

tions at training observations;

∙ demonstrate through numerical experiments that the algorithm gives improved

accuracy and robustness when compared to black-box data-based methods;

∙ demonstrate that the proposed active learning approaches can give improved

QoI estimation and classification performance over random sampling.

The remainder of this thesis is organized as follows. Section 1.7 defines tensor

terminology and notation that will be used in developing our algorithm. Chapter 2

describes the deterministic nonlinear goal-oriented inverse problem and derives our

proposed algorithm. Chapter 3 describes active learning strategies for our algorithm.

Chapter 4 describes numerical results from applying our algorithm to a goal-oriented

tomography problem. Chapter 5 gives concluding remarks and directions for future

work.
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1.7 Tensor Terminology and Notation

Let 𝐵 ∈ R𝑝×···×𝑝 be an order-𝑑 symmetric tensor with length 𝑝 along each of its 𝑑

dimensions (or modes), with elements 𝐵(𝑖1, . . . , 𝑖𝑑) = 𝑏𝑖1...𝑖𝑑 . A symmetric tensor is

invariant under permutation of indices, and a diagonal tensor has nonzero elements

only along its superdiagonal, i.e., 𝑏𝑖1...𝑖𝑑 ̸= 0 only if 𝑖1 = · · · = 𝑖𝑑.

Following [77], let the 𝑛-mode tensor-vector product of tensor 𝐵 and vector 𝑣 ∈ R𝑝

as 𝐵 ×̄𝑛 𝑣 be denoted by

(𝐵 ×̄𝑛 𝑣)𝑖1...𝑖𝑛−1𝑖𝑛+1...𝑖𝑑 =

𝑝∑︁
𝑖𝑛=1

𝑏𝑖1...𝑖𝑑𝑣𝑖𝑛 , (1.1)

which gives an order-(𝑑−1) tensor of length 𝑝 in each dimension. The 𝑛-mode tensor-

matrix product of tensor 𝐵 and matrix 𝑈 ∈ R𝑞×𝑝 is 𝐵 ×𝑛 𝑈 , which gives an order-𝑑

tensor with length 𝑞 along its 𝑛-th dimension and length 𝑝 along the others, with

(𝐵 ×𝑛 𝑈)𝑖1...𝑖𝑛−1𝑗𝑖𝑛+1...𝑖𝑑 =

𝑝∑︁
𝑖𝑛=1

𝑏𝑖1...𝑖𝑑𝑢𝑗𝑖𝑛 . (1.2)

Let the 𝑚-linear form 𝐵(𝑣(1), . . . , 𝑣(𝑚)) denote a series of tensor-vector products,

written

𝐵(𝑣(1), . . . , 𝑣(𝑚)) = 𝐵 ×̄1 𝑣
(1) . . . ×̄𝑚 𝑣(𝑚), (1.3)

where 𝑣(𝑗) ∈ R𝑝, for 𝑗 = 1, . . . ,𝑚. Note that when 𝑚 = 𝑑, the multilinear form

𝐵(𝑣(1), . . . , 𝑣(𝑑)) gives a scalar. Similarly, let 𝐵(𝑈 (1), . . . , 𝑈 (𝑚)), 𝐵(𝑗) ∈ R𝑞×𝑝 denote a

series of tensor-matrix products

𝐵(𝑈 (1), . . . , 𝑈 (𝑚)) = 𝐵 ×1 𝑈 (1) . . . ×𝑚 𝑈 (𝑚) (1.4)

resulting in an order-𝑑 tensor of length 𝑞 in the first 𝑚 dimensions and of length 𝑝 in

the last 𝑑−𝑚 dimensions.
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The Frobenius norm of a tensor is defined by

‖𝐵‖𝐹 =

⎯⎸⎸⎷ 𝑝∑︁
𝑖1=1

· · ·
𝑝∑︁

𝑖𝑑=1

𝑏2𝑖1...𝑖𝑑 , (1.5)

analogous to the Frobenius matrix norm. Its spectral norm is defined by

‖𝐵‖spec = sup
𝑣(1),...,𝑣(𝑑) ̸=0⃗

(︂
|𝐵(𝑣(1), . . . , 𝑣(𝑑))|
‖𝑣(1)‖2 . . . ‖𝑣(𝑑)‖2

)︂
. (1.6)

29



30



Chapter 2

Nonlinear Goal-Oriented Inference

with Physics-Informed Maps

In this chapter, we describe and derive our algorithm for rapidly obtaining a QoI

estimate for given observations. Section 2.1 introduces and relates the linear and

nonlinear goal-oriented inverse problems. Section 2.2 describes our algorithm for

rapidly estimating the QoI corresponding to the inferred parameters of online ob-

servations. We then detail the different components of the algorithm. Section 2.3

describes local approximations to the goal-oriented inverse problem. Section 2.4 de-

tails different ways to build and store physics-informed maps corresponding to these

local approximations. Section 2.5 describes an error estimate for the QoI of the ap-

proximate goal-oriented inverse problems. Section 2.6 describes how to choose maps

corresponding to different local approximations from a library of maps, and how to

combine their QoI estimates, given online observations. Section 2.7 summarizes the

chapter and motivates the work in the next chapter.

2.1 Deterministic Goal-Oriented Inverse Problem

In Section 2.1.1, we review the linear goal-oriented inverse problem and the favorable

properties of its analytically known observation-to-QoI map. In Section 2.1.2, we

introduce the more general nonlinear goal-oriented inverse problem that is the focus
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of this thesis.

2.1.1 Linear Goal-Oriented Inverse Problem

In this subsection, we describe the linear goal-oriented inverse problem, for which

there exists an observation-to-QoI map with desirable properties. We review this

map and its favorable properties, which we aim to emulate in the nonlinear case.

The deterministic inverse problem seeks to infer parameters from (noisy, indirect)

observations 𝑦 ∈ R𝑛𝑦 . In the linear case, one can relate parameters to predicted

observations through a linear mapping. When the observations are sparsely informa-

tive, the problem of seeking parameters to minimize the mismatch between predicted

and observed observations has non-unique solutions. Using Tikhonov regularization

to address this ill-posedness, the linear inverse problem is given by

𝑥⋆ = arg min
𝑥

1

2
‖𝑦 −𝑂𝑒𝑥‖22 +

1

2
‖𝑅𝑥‖22, (2.1)

where 𝑥⋆ ∈ R𝑛𝑥 are the inferred parameters, 𝑂𝑒 ∈ R𝑛𝑦×𝑛𝑥 maps parameters to ex-

pected observations, and 1
2
‖𝑅𝑥‖22 is the Tikhonov regularization term with Tikhonov

regularization matrix 𝑅 ∈ R𝑛𝑥×𝑛𝑥 . In the goal-oriented inverse problem, the purpose

of inferring parameters is to use them in predicting an 𝑛𝑧-dimensional QoI. In the

linear case, the QoI is also linear in the parameters, and is described by

𝑧⋆ = 𝑂𝑝𝑥
⋆, (2.2)

where 𝑂𝑝 ∈ R𝑛𝑧×𝑛𝑥 .

For the linear goal-oriented inverse problem, one can combine the analytical ex-

pression for inferred parameters 𝑥⋆ in terms of observations 𝑦 [129] with Equation (2.2)

to obtain a map

𝑀 = 𝑂𝑝(𝑂
𝑇
𝑒 𝑂𝑒 + 𝑅𝑇𝑅)−1𝑂𝑇

𝑒 (2.3)

that can be applied to any observations to obtain their corresponding QoI: 𝑧⋆(𝑦) =

𝑀𝑦. Since the map 𝑀 ∈ R𝑛𝑧×𝑛𝑦 itself is low-dimensional and does not depend on
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the observations, it can be computed once and stored, and then applied to any future

observations to rapidly obtain their QoI predictions.

We seek a similar ability to obtain rapid predictions given observations in the

case where 𝑂𝑒 and/or 𝑂𝑝 are generalized to nonlinear operators, using stored small

multilinear mappings from observations to prediction estimates.

2.1.2 Nonlinear Goal-Oriented Inverse Problem

We now describe the nonlinear goal-oriented inverse problem that is the focus of our

algorithm. Again, we consider the case where the observations are sparsely informa-

tive, and Tikhonov regularization is used to formulate a well-posed inverse problem:

𝑥⋆ = arg min
𝑥

1

2
‖𝑦 −𝒪𝑒(𝑥)‖22 +

1

2
‖𝑅𝑥‖22, (2.4)

where 𝑥⋆ ∈ R𝑛𝑥 are the inferred parameters, 𝒪𝑒 : R𝑛𝑥 → R𝑛𝑦 is a continuous ob-

servation operator that maps parameters to expected observations, and 1
2
‖𝑅𝑥‖22 is

the Tikhonov regularization term with Tikhonov regularization matrix 𝑅 ∈ R𝑛𝑥×𝑛𝑥 .

We assume that the regularization is sufficient for Equation (2.4) to have a unique

solution.

Remark 1. Although the inverse problem in Equation (2.4) is regularized about zero,

one can use the same form to describe an inverse problem with Tikhonov regularization

about a nonzero point 𝑥𝑅 ∈ R𝑛𝑥. Such an inverse problem can be written as

𝑥⋆ = arg min
𝑥

1

2
‖𝑦 −𝒪𝑒(𝑥)‖22 +

1

2
‖𝑅(𝑥− 𝑥𝑅)‖22. (2.5)

Solving Equation (2.5) is equivalent to solving

(∆𝑥)⋆ = arg min
Δ𝑥

1

2
‖𝑦 −𝒪𝑒(∆𝑥)‖22 +

1

2
‖𝑅(∆𝑥)‖22, (2.6)

where

𝒪𝑒(·) = 𝒪𝑒(· + 𝑥𝑅), (2.7)
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and 𝑥⋆ = (∆𝑥)⋆ + 𝑥𝑅. Equation (2.6) fits the form of Equation (2.4).

The QoI corresponding to the inferred parameters is described by

𝑧⋆ = 𝒪𝑝(𝑥
⋆), (2.8)

where the continuous prediction operator 𝒪𝑝 : R𝑛𝑥 → R𝑛𝑧 maps the parameters to a

𝑛𝑧-dimensional prediction output. We consider problems where the observations are

only sparsely informative (represented by 𝑛𝑦 ≪ 𝑛𝑥) and the QoI is scalar (𝑛𝑧 = 1).

If the prediction is low-dimensional but not scalar, we can consider each element of

the prediction vector as a separate scalar prediction.

2.2 Algorithm for Scalable Online Nonlinear Goal-

Oriented Inference

In Section 2.1.1, we reviewed the linear goal-oriented inverse problem, where one can

derive a small, linear, observation-independent mapping that can be applied to obser-

vations to rapidly obtain their corresponding QoI. In this section, we introduce our

algorithm for similarly obtaining rapid QoI estimates for the nonlinear case described

in Section 2.1.2, by applying stored multilinear maps to online observations.

Algorithm 1 describes our algorithm for quickly estimating the QoI 𝑧⋆ correspond-

ing to parameters inferred from observations 𝑦. In the offline phase, we choose a set of

expansion observation points and solve the full inverse problem for these observations.

At each expansion point, the inferred parameters are used to build a local approxi-

mation to the goal-oriented inverse problem. The form of the approximation allows

one to obtain the QoI for the approximate problem by applying small, observation-

independent, multilinear maps to the observations. Since the maps are independent

of the online observations they can be applied to, the maps for each expansion point

are calculated and stored offline, forming a library of locally accurate maps, similar in

spirit to the model reduction approach of [112]. In the online phase, the appropriate

maps can be selected and applied to the online observations 𝑦 to obtain rapid QoI
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estimates 𝑧⋆(𝑦). This algorithm is scalable, in that the online cost of obtaining a

QoI estimate does not increase with the dimensionality of the parameters. This is in

contrast to solving the full inverse problem to obtain the exact QoI, which becomes

more expensive as the dimensionality of the parameters increases.

Algorithm 1 Algorithm for scalable online goal-oriented inference.
1: Define number of expansion points 𝑁𝑒 and prediction approximation order 𝑡.
2: procedure OfflinePreparation(𝑁𝑒,𝑡)
3: Obtain set of 𝑁𝑒 expansion point observations 𝑦(𝑖), 𝑖 = 1, . . . , 𝑁𝑒.
4: for 𝑖 = 1, . . . , 𝑁𝑒 do
5: Solve for parameters 𝑥⋆

(𝑖) inferred from observations 𝑦(𝑖):

𝑥⋆
(𝑖) = arg min

𝑥

1

2
‖𝑦(𝑖) −𝒪𝑒(𝑥)‖22 +

1

2
‖𝑅𝑥‖22.

6: Linearize observation operator 𝒪𝑒 about 𝑥⋆
(𝑖); define 𝐺(𝑖) = 𝜕𝒪𝑒

𝜕𝑥

⃒⃒
𝑥=𝑥⋆

(𝑖)

.
7: Approximate prediction operator 𝒪𝑝 with its Taylor expansion about 𝑥⋆

(𝑖),
truncated at order 𝑡.

8: Calculate and store offline QoI contribution (see Section 2.3).
9: Build and save observation-to-QoI maps for expansion point 𝑦(𝑖) (see

Section 2.4).
10: end for
11: end procedure
12: Obtain observations 𝑦.
13: procedure OnlinePredictionEstimate(𝑦)
14: Choose expansion point(s) (see Section 2.6).
15: Calculate QoI estimate 𝑧⋆(𝑦) using stored observation-to-QoI map(s) and

offline QoI contribution(s) (see Section 2.6).
16: end procedure

The set of expansion points may correspond to (a subset of) past observations

that we expect to be representative of future online observations, or be a set of (noisy

or noise-free) synthetically generated observations. Efficient selection of expansion

points from a pool of potential candidates is described in Chapter 3. The remaining

sections of this chapter describe various aspects of the algorithm in more detail,

for a given set of expansion points. Section 2.3 describes the local approximate goal-

oriented inverse problems. Section 2.4 describes different ways to build and store maps

corresponding to these local approximations, each appropriate for different situations.

Section 2.5 describes an estimate for the QoI error from approximating the goal-

35



oriented inverse problem. Section 2.6 describes how to choose and combine maps,

and their resulting QoI estimates, from the library in the online phase.

2.3 Approximate Goal-Oriented Inverse Problem

In this section, we derive an approximate goal-oriented inverse problem that can be

used to estimate the QoI for given observations. Sections 2.3.1 and 2.3.2 describe two

equivalent expressions for the approximate QoI, and their tradeoffs in practice.

2.3.1 Expansion about Inferred Parameters

Recall the nonlinear goal-oriented inverse problem introduced in Equations (2.4)

and (2.8), where both the expected observations 𝒪𝑒(𝑥) and the prediction output

𝒪𝑝(𝑥) are nonlinear functions of the parameters. We will approximate the nonlin-

ear goal-oriented inverse problem in a way that gives small, observation-independent,

multilinear mappings from observations to the approximate QoI.

Assume the observation operator 𝒪𝑒 is first-order differentiable. Approximate 𝒪𝑒

with its linearization about an expansion point 𝑥0 ∈ R𝑛𝑥 :

𝒪𝑒(𝑥) ≈ 𝒪𝑒(𝑥0) + 𝐺(𝑥− 𝑥0), (2.9)

where

𝐺 :=
𝜕𝒪𝑒

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥0

∈ R𝑛𝑦×𝑛𝑥 . (2.10)

Let 𝐺 denote the Jacobian of 𝒪𝑒; note that 𝑂𝑒 is used (as in Equation (2.1)) when

𝒪𝑒(𝑥) = 𝑂𝑒𝑥 is linear in 𝑥 and the observation operator is completely determined by

its Jacobian. Equation (2.9) leads to the approximate inverse problem

�̃�⋆ = arg min
𝑥

1

2
‖𝑦 − (𝒪𝑒(𝑥0) + 𝐺(𝑥− 𝑥0))‖22 +

1

2
‖𝑅𝑥‖22. (2.11)

Equation (2.11) is a linear inverse problem with perturbed observations 𝑦−∆𝑦, where
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∆𝑦 = 𝒪𝑒(𝑥0) −𝐺𝑥0, with solution

�̃�⋆ = (𝐺𝑇𝐺 + 𝑅𝑇𝑅)−1(𝐺𝑇 (𝑦 − ∆𝑦)). (2.12)

Remark 2. For fixed 𝑦, when the linearization point 𝑥0 = 𝑥⋆, the approximate in-

ferred parameters �̃�⋆ are exactly equal to the inferred parameters 𝑥⋆ of the original

inverse problem. This need not hold for higher-order approximations of 𝒪𝑒. For

higher-order approximations of 𝒪𝑒, the solution of the corresponding approximate in-

verse problem has no direct analytical expression and may not be unique.

We next approximate the prediction operator 𝒪𝑝. Assume 𝒪𝑝 is 𝑡-order differen-

tiable and can be approximated using a truncated Taylor expansion about 𝑥0:

𝒪𝑝(�̃�
⋆) ≈ 𝑧⋆ := 𝒪𝑝(𝑥0) +

𝑡∑︁
𝑑=1

1

𝑑!
𝑇𝑑(�̃�

⋆ − 𝑥0, . . . , �̃�
⋆ − 𝑥0⏟  ⏞  

𝑑 times

), (2.13)

where 𝑇𝑑 ∈ R𝑛𝑥×···×𝑛𝑥 is an order-𝑑 symmetric tensor representing the 𝑑-th derivatives

of 𝒪𝑝 with respect to the parameters. Recall from Equation (1.3) that each tensor 𝑇𝑑

acts as a multilinear map.

Let 𝑥0 = 𝑥⋆(𝑦0) be the inferred parameters for observations 𝑦0. For the rest of this

thesis, we will use ‘expansion point’ to refer to either 𝑥0 or 𝑦0, depending on context.

Then Remark 2 lets us write

𝑥0 =
𝜕�̃�⋆

𝜕𝑦
(𝑦0 − ∆𝑦), (2.14)

where 𝜕�̃�⋆/𝜕𝑦 is known from Equation (2.12). Using Equation (2.14) and tensor-

matrix multiplication, we rewrite Equation (2.13) in terms of observations, giving

𝑧⋆ = 𝒪𝑝(𝑥0) +
𝑡∑︁

𝑑=1

𝐴𝑑(𝑦 − 𝑦0, . . . , 𝑦 − 𝑦0⏟  ⏞  
𝑑 times

), (2.15)

where

𝐴𝑑 =
1

𝑑!
𝑇𝑑

(︂
𝜕�̃�⋆

𝜕𝑦

𝑇

, . . . ,
𝜕�̃�⋆

𝜕𝑦

𝑇)︂
∈ R𝑛𝑦×···×𝑛𝑦 . (2.16)
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Equation (2.15) gives the approximate QoI 𝑧⋆ from applying multilinear 𝐴𝑑 to the

perturbed observations 𝑦 − 𝑦0.

Equation (2.15) assumes Equation (2.14) holds. In practice, 𝑥0 is rarely exactly

equal to the solution of the inverse problem for observations 𝑦0. Having a large

gradient at 𝑥0 can induce significant additional error in the approximate QoI from

violating Equation (2.14), so it is important to solve the inverse problem for 𝑦0 to near

optimality. Section 2.3.2 describes a different grouping of terms to obtain equivalent

expressions for the approximate QoI 𝑧⋆ that avoid assuming Equation (2.14), at the

cost of potentially less favorable error behavior when reducing the rank of maps to

meet cost constraints (see Sections 2.4.2 and 2.4.3).

2.3.2 Expansion about Arbitrary Parameters

The approximate QoI described by Equation (2.15) can be written in terms of 𝑦 rather

than 𝑦 − 𝑦0, avoiding the assumption that 𝑥0 is the solution to the inverse problem

for observation 𝑦0.

Recall Equation (2.13), which expresses the approximate QoI as a function of

the solution to the linearized inverse problem. Recall from Equation (1.3) that each

tensor 𝑇𝑑 acts as a multilinear map. Using this multilinearity and the symmetry of

𝑇𝑑 to expand each term of the summation in Equation (2.13) gives

𝑧⋆ = 𝒪𝑝(𝑥𝑝) +
𝑡∑︁

𝑑=1

1

𝑑!

𝑑∑︁
𝑙=1

(−1)𝑑−𝑙

(︂
𝑑

𝑙

)︂
𝑇𝑑(�̃�

⋆, . . . , �̃�⋆⏟  ⏞  
𝑙 times

, 𝑥0, . . . , 𝑥0⏟  ⏞  
𝑑−𝑙 times

). (2.17)

Rather than keep terms grouped by their combined order in 𝑥0 and �̃�⋆, we can rewrite

the summation in Equation (2.17) by grouping together terms that share the same

order in �̃�⋆, giving

𝑧⋆ = 𝑧𝑜,𝑇 +
𝑡∑︁

𝑑=1

𝑇𝑑(�̃�
⋆, . . . , �̃�⋆⏟  ⏞  
𝑑 times

), (2.18)

where

𝑇𝑑 =
𝑡∑︁

𝑗=𝑑

(−1)𝑗−𝑑

𝑗!

(︂
𝑗

𝑑

)︂
𝑇𝑗(𝑥0, . . . , 𝑥0⏟  ⏞  

𝑗−𝑑 times

) (2.19)
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is an order-𝑑 symmetric tensor and

𝑧𝑜,𝑇 = 𝒪𝑝(𝑥0) +
𝑡∑︁

𝑑=1

(−1)𝑑

𝑑!
𝑇𝑑(𝑥0, . . . , 𝑥0) (2.20)

denotes terms that do not depend on �̃�⋆ and thus do not depend on observations 𝑦.

Since �̃�⋆ is the solution to a linearized inverse problem, 𝑇𝑑(�̃�
⋆, . . . , �̃�⋆) can be

written in terms of the observations. Let 𝐺 be the linearized observation operator in

Equation (2.10). Using Equation (2.12), we can rewrite Equation (2.18) to express

the approximate QoI 𝑧⋆ written as

𝑧⋆(𝑦) = 𝑧𝑜,𝐴 +
𝑡∑︁

𝑑=1

𝐴𝑑(𝑦, . . . , 𝑦), (2.21)

where

𝐴𝑑 =
𝑡∑︁

𝑗=𝑑

(−1)𝑗−𝑑

(︂
𝑗

𝑑

)︂
𝐵𝑗(∆𝑦, . . . ,∆𝑦⏟  ⏞  

𝑗−𝑑 times

), 𝐵𝑗 = 𝑇𝑗

(︂
𝜕�̃�⋆

𝜕𝑦

𝑇

, . . . ,
𝜕�̃�⋆

𝜕𝑦

𝑇)︂
(2.22)

and

𝑧𝑜,𝐴 = 𝑧𝑜,𝑇 +
𝑡∑︁

𝑑=1

(−1)𝑑𝐵𝑑(∆𝑦, . . . ,∆𝑦) (2.23)

encompasses terms that do not depend on �̃�⋆ and thus do not depend on the obser-

vations 𝑦.

Equation (2.21) gives the QoI from an approximate goal-oriented inverse problem,

where the observation and prediction operators are expanded about parameters 𝑥0.

This approximation does not require the expansion parameters 𝑥0 to correspond to

inferred parameters, so 𝑥0 can be arbitrarily chosen from R𝑛𝑥 . However, if 𝑥0 is

chosen without relation to any offline observations 𝑦0, it is then difficult to judge the

suitability of the resulting approximate goal-oriented inverse problem for estimating

the QoI of online observations 𝑦. Thus, for the sake of interpretability, we will assume

𝑥0 is the solution to the inverse problem for observations 𝑦0, rather than arbitrary

parameters.
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Equation (2.15) and Equation (2.21) are equivalent expressions for the approxi-

mate QoI in terms of the (perturbed) observations, assuming that 𝑥0 is the inferred

parameters for observations 𝑦0. As noted in Section 2.3.1, this assumption does not

exactly hold in practice when the inverse problem is solved numerically. As Equa-

tion (2.21) does not rely on this assumption, it may be preferable when 𝑥0 is only

coarsely resolved and not very close to optimality. However, numerical experiments

(see Section 4.3.2) suggest that Equation (2.21) gives less favorable error behavior

when the tensors 𝐴𝑑 and 𝐴𝑑 must be approximately stored due to cost constraints

(see Sections 2.4.2 and 2.4.3).

2.4 Observation-to-Approximate-QoI Maps

In Sections 2.3.1 and 2.3.2, we derived two equivalent expressions for an approximate

QoI 𝑧⋆(𝑦) of online observations 𝑦. This approximate QoI is multivariate polynomial

in the observations, with coefficients represented by tensors 𝐴𝑑 or 𝐴𝑑. Although they

give the same QoI estimate, different representations of 𝐴𝑑 and 𝐴𝑑 give different

observation-to-QoI maps with different storage and application costs. These maps

are appropriate for different cases, depending on the number of observations 𝑛𝑦, the

order 𝑡 of the prediction Taylor expansion, and the structure of the prediction operator

𝒪𝑝. Three different cases and their appropriate maps are discussed in the following

Sections 2.4.1 to 2.4.3, and summarized in Table 2.1. We will refer to the QoI estimate

described by Equation (2.15); the analysis is similar for Equation (2.21).

2.4.1 Multilinear Observation-to-QoI Maps

Equation (2.15) shows that the approximate QoI 𝑧⋆ can be obtained by applying

tensors 𝐴𝑑 as multilinear maps to perturbed observation 𝑦 − 𝑦0. For small number

of observations 𝑛𝑦 and small order 𝑑, one can directly store 𝐴𝑑 at a storage cost of

(𝑛𝑦)
𝑑. To obtain 𝑧⋆ for observations 𝑦 requires tensor-vector multiplication of these

derivative tensors with perturbed observations 𝑦 − 𝑦0 for each non-constant term of

the Taylor expansion, at an online application cost of 𝒪((𝑛𝑦)
𝑑).
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Table 2.1: Comparison of observation-to-QoI maps for order-𝑑 term of approximate
QoI 𝑧⋆(𝑦).

Online
Storage Application Notes

Multilinear maps
(𝑛𝑦)

𝑑 𝒪((𝑛𝑦)
𝑑)(See Section 2.4.1)

Factored tensor
(See Section 2.4.2)

Canonical 𝑟(𝑛𝑦 + 1) 𝒪(𝑟(𝑛𝑦 + 𝑑 + 1))
𝑟 ≤ symmetric
canonical rank

Tucker 𝑟𝑑 + 𝑟𝑛𝑦 𝒪(𝑟𝑑 + 𝑟𝑛𝑦) 𝑟 ≤ 𝑛𝑦

Tensor-train 𝑑𝑛𝑦𝑟+ 𝒪(𝑑𝑛𝑦𝑟 + 𝑑𝑟3)
𝑟 ≤ canonical rank,

(𝑑− 2)𝑟3 𝑟 ≤ (𝑛𝑦)
𝑑/2

Intermediate QoI additively
(See Section 2.4.3) separable 𝒪𝑝

Truncated
𝑟(𝑛𝑦 + 1) 𝒪(𝑟(𝑛𝑦 + 𝑑 + 1)) 𝑟 ≤ 𝑛𝑥intermediate QoI

Reduced rank 𝑟𝑑 + 𝑟𝑛𝑦 𝒪(𝑟𝑑 + 𝑟𝑛𝑦) 𝑟 ≤ 𝑛𝑦

2.4.2 Factored Tensor Observation-to-QoI Maps

If 𝑛𝑦 and/or 𝑑 are large enough that 𝒪((𝑛𝑦)
𝑑) storage and/or online application costs

are prohibitive, these costs can be reduced by replacing 𝐴𝑑, 𝑑 ≥ 2, with a rank-𝑟

factorization. Different tensor decompositions correspond to different generalizations

of matrix rank and have different storage requirements for given 𝑟; unless otherwise

specified, we will use ‘rank’ to refer to any of these generalizations. Factorization

alone may sufficiently reduce storage and/or application costs. Otherwise, if we must

choose 𝑟 too small to recover 𝐴𝑑 exactly, we then seek to minimize the QoI error

incurred by approximating 𝐴𝑑 with a rank-𝑟 tensor 𝐴𝑑,𝑟, defined by

𝐴𝑑,𝑟 = arg min
rank(𝐴)≤𝑟

(︃
sup

‖𝑣‖2=1

|𝐴(𝑣, . . . , 𝑣) − 𝐴𝑑(𝑣, . . . , 𝑣)|

)︃
, (2.24)
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where 𝑟 is the chosen maximum rank. This is equivalent to

𝐴𝑑,𝑟 = arg min
rank(𝐴)≤𝑟

‖𝐴− 𝐴𝑑‖spec (2.25)

by definition of the spectral norm ‖ · ‖spec and a result by Banach [7,65,104,130]. For

𝑑 = 2, the optimal decomposition is the truncated SVD or eigendecomposition. For

𝑑 > 2, minimizing the spectral norm directly is difficult since calculating the spectral

norm of a general tensor is NP-hard [65]; we can instead minimize the error in the

Frobenius norm, which is an upper bound of the spectral norm (due to the spectral

norm being a special case of the induced norm [142] and by the Cauchy-Schwarz

inequality).

We compare three potential options for direct factorization of 𝐴𝑑 for 𝑑 > 2:

1. Canonical: The canonical (or tensor-rank) decomposition gives the greatest

reduction in storage costs; constraining the decomposition to be symmetric, the

tensor 𝐴𝑑 can be represented exactly with storage costs of 𝑅𝑆(𝑛𝑦 + 1), where

𝑅𝑆 is the symmetric tensor rank. However, the cost of exact representation

may be difficult to gauge, as 𝑅𝑆 may be large (exceed 𝑛𝑦) but is NP-hard

to calculate [65]. 𝐴𝑑 may also be degenerate, a non-rare event [36, 44] where

Equation (2.25) is ill-posed; this can cause problems for iterative algorithms,

such as those reviewed in [60, 77]. Using the canonical decomposition gives

online application costs of 𝒪(𝑟(𝑛𝑦 + 1 + 𝑑)) for the 𝑑-th non-constant term of

the expansion of 𝑧⋆.

2. Tucker: The Tucker decomposition [133] (or multilinear SVD [43]) can be used

to represent 𝐴𝑑 with an order-𝑑 symmetric core tensor of length 𝑟 along each

dimension and a 𝑟-by-𝑛𝑦 factor matrix, for storage cost of 𝑟𝑑 + 𝑟𝑛𝑦; here 𝑟 is

the multilinear rank, which need not exceed 𝑛𝑦 to exactly represent 𝐴𝑑. One

can further reduce storage costs by seeking sparser core tensors [4, 63, 133].

Equation (2.25) is well-defined for the multilinear rank; there are algorithms for

computing an exact [43] decomposition, an optimal reduced multilinear rank

decomposition [60,77], and a suboptimal but error-bounded decomposition [43,
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134]. Using the Tucker decomposition gives online application costs of 𝒪(𝑟𝑛𝑦 +

𝑟𝑑) for the 𝑑-th non-constant term of the expansion of 𝑧⋆.

3. Tensor-Train: The tensor-train decomposition [102] is most appropriate in

cases where 𝑑 is large but calculating the canonical decomposition encounters

numerical difficulties. If the tensor-train ranks are chosen to be 𝑟, then the

storage cost is 𝑑𝑛𝑦𝑟 + (𝑑 − 2)𝑟3 after applying a Tucker decomposition to fur-

ther compress the core tensors. An algorithm presented in [102] can be used to

obtain a quasi-optimal tensor-train decomposition. Using the tensor-train de-

composition gives application costs of 𝒪(𝑑𝑛𝑦𝑟 + 𝑑𝑟3) for the 𝑑-th non-constant

term of the expansion of 𝑧⋆.

2.4.3 Observation-to-Intermediate-QoI Maps

When 𝑛𝑦 or 𝑑 are large, obtaining maps for the approximate QoI 𝑧⋆ by factoring

tensors as in Section 2.4.2 can be costly in the offline phase. Iterative algorithms

for the canonical decomposition are not guaranteed to give good approximations

[77, 102], and computing the Tucker and tensor-train decompositions using [43, 102]

requires matrix factorization of unfolded tensors whose number of elements grows

exponentially in the tensor order.

In the case where 𝒪𝑝 is additively separable (𝒪𝑝(𝑥) =
∑︀𝑛𝑥

𝑖=1 𝑓𝑖(𝑥𝑖) for some func-

tions 𝑓𝑖), one can obtain maps for 𝑧⋆ while avoiding this costly tensor decomposi-

tion. Such structure can occur when, for example, the parameters correspond to a

discretized field and the QoI is an integral of a function of the field, or when 𝒪𝑝

corresponds to a truncated high-dimensional model representation (HDMR) [81].

Recall the expression for the approximate QoI given in Equation (2.13). The first

term 𝒪𝑝(𝑥0) is independent of the observations 𝑦. For 𝑑 = 1, the term 𝑇1(�̃�
⋆ − 𝑥0)

can be obtained by directly applying Equation (2.3) with 𝑂𝑝 = 𝑇1 to obtain an

observation-to-QoI map 𝑀1 such that 𝑀1(𝑦 − 𝑦0) = 𝐴1(�̃�
⋆ − 𝑥0).

For 𝑑 > 1, we use the symmetric tensor rank decomposition (over R) for an order-𝑑
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symmetric tensor [67, 68], writing

𝑇𝑑 =

𝑅𝑆∑︁
𝑖=1

𝑠𝑖 𝑎𝑖 ⊗ · · · ⊗ 𝑎𝑖⏟  ⏞  
𝑑 times

=

𝑅𝑆∑︁
𝑖=1

𝑠𝑖𝑎
⊗𝑑
𝑖 , (2.26)

where 𝑎𝑖 ∈ R𝑛𝑥 , 𝑠𝑖 ∈ R, and the symmetric tensor rank (over R) of 𝑇𝑑 is the small-

est 𝑅𝑆 for which Equation (2.26) holds with equality. 𝑇𝑑(�̃�
⋆ − 𝑥0, . . . , �̃�

⋆ − 𝑥0) can

be written as a simple function of intermediate linear outputs of �̃�⋆ − 𝑥0; we may

use Equations (2.3) and (2.14) to calculate observation-to-intermediate-QoI maps for

these intermediate linear outputs. Construct a factor matrix 𝑃 ∈ R𝑛𝑥×𝑅𝑆 so that its

𝑖-th column is 𝑎𝑖. We generate the observation-to-QoI map 𝑀𝑑 for the intermediate

linear output 𝑧𝑑 = 𝑃 𝑇 (�̃�⋆ − 𝑥0) so that once observations 𝑦 are obtained online, we

apply the observation-to-QoI map to obtain 𝑧𝑑 = 𝑀𝑑(𝑦 − 𝑦0); the 𝑑-th non-constant

term in the approximate prediction output can then be obtained by

𝑇𝑑(�̃�
⋆ − 𝑥0, . . . , �̃�

⋆ − 𝑥0⏟  ⏞  
𝑑 times

) =

𝑅𝑆∑︁
𝑖=1

𝑠𝑖(𝑧𝑑 ∘ · · · ∘ 𝑧𝑑⏟  ⏞  
𝑑 times

)𝑖, (2.27)

where ∘ denotes the Hadamard (element-wise) product.

When 𝒪𝑝 is additively separable, its Hessian and higher-order derivative ten-

sors 𝑇𝑑, 𝑑 ≥ 2, are diagonal. Their symmetric tensor rank decomposition in Equa-

tion (2.26) is immediately available, with 𝑅𝑆 = 𝑛𝑥; note that this diagonal structure

is lost if 𝑇𝑑 is transformed into 𝐴𝑑 as in Equation (2.15). Combining Equation (2.13)

and Equation (2.27), we can generate observation-to-QoI maps 𝑀𝑑 for intermediate

QoI 𝑧𝑑 and obtain approximate QoI

𝑧⋆(𝑦) = 𝒪𝑝(𝑥0) +
𝑡∑︁

𝑑=1

𝑛𝑥∑︁
𝑗=1

𝑠𝑗 ((𝑀𝑑(𝑦 − 𝑦0)) ∘ · · · ∘ (𝑀𝑑(𝑦 − 𝑦0)))𝑗 (2.28)

at a storage cost of 𝑛𝑥(𝑛𝑦 + 1) and online application cost of 𝒪(𝑛𝑥(𝑛𝑦 + 1 + 𝑑)) for

the 𝑑-th non-constant term of the expansion of 𝑧⋆.

To avoid storage and application costs scaling with 𝑛𝑥, one can control the size of

the maps 𝑀𝑑 by truncating the intermediate QoI or by using a low-rank approximation
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of 𝑀𝑑. The former is cheapest to calculate and, for a given 𝑟, gives smaller storage

and application costs, but potentially more error.

To truncate the intermediate QoI, scale the decomposition in Equation (2.26) so

that ‖𝑎𝑖‖2 = 1 and truncate it, keeping only the 𝑟 terms with the largest |𝑠𝑖|. This

reduces the dimension of the intermediate QoI 𝑧𝑑 from 𝑛𝑥 to 𝑟, thus reducing the size

of 𝑀𝑑 from 𝑛𝑥-by-𝑛𝑦 to 𝑟-by-𝑛𝑦, and the storage costs to 𝑟(𝑛𝑦 + 1) and application

costs to 𝒪(𝑟(𝑛𝑦 + 1 + 𝑑)), for the 𝑑-th non-constant term of the expansion of 𝑧⋆. The

elements of the intermediate QoI most sensitive to the parameters may be insensitive

to the observations, so keeping them may do little to minimize the error induced by

reducing the size of the map.

A low-rank approximation of 𝑀𝑑 can induce less error for a given 𝑟, at the expense

of greater storage and application costs. Let the decomposition in Equation (2.26)

be scaled so that |𝑠𝑖| = 1. The simplest rank reduction corresponds to approximating

𝑀𝑑 with its rank-𝑟 SVD reconstruction; this minimizes worst-case error in the inter-

mediate QoI. With enough information about the distribution of online observations,

one can instead minimize an average error. We seek a low-rank approximation �̃�𝑑,𝑟

satisfying

�̃�𝑑,𝑟 ∈ arg min
rank(𝑀)≤𝑟

E
[︀
‖𝑀𝑑𝑦 −𝑀𝑦‖22

]︀
, (2.29)

where the expectation is over the distribution of online observations. Equivalently,

�̃�𝑑,𝑟 ∈ arg min
rank(𝑀)≤𝑟

‖(𝑀𝑑 −𝑀)Γ
1/2
𝑌 ‖𝐹 , (2.30)

where Γ
1/2
𝑌 (Γ

1/2
𝑌 )𝑇 = Γ𝑌 and Γ𝑌 ≻ 0 is the covariance of the online observations.

Using the results of [55], we can write

�̃�𝑑,𝑟 = (𝑀𝑑Γ
1/2
𝑌 )𝑟Γ

−1/2
𝑌 , (2.31)

where (·)𝑟 indicates the rank-𝑟 SVD reconstruction.

Approximating 𝑀𝑑 with either its rank-𝑟 SVD or the weighted SVD in Equa-

tion (2.31) gives a rank-𝑟 map of size 𝑛𝑥-by-𝑛𝑦. In both cases, we can avoid storage
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and online application costs scaling with 𝑛𝑥. We form and store a tensor 𝑆(𝑈𝑟, . . . , 𝑈𝑟),

where 𝑆 is a diagonal tensor whose diagonal elements are 𝑠𝑖, and 𝑈𝑟 are the left singu-

lar vectors of 𝑀𝑑 or 𝑀𝑑Γ
1/2
𝑌 , respectively; the product of the corresponding singular

values and right singular vectors are also stored. This gives storage and application

costs of 𝒪(𝑟𝑑 + 𝑟𝑛𝑦) for the 𝑑-th non-constant term of the expansion of 𝑧⋆.

2.5 Error Estimate for Approximate QoI

In this section, we describe a first-order estimate for the error |𝑧⋆(𝑦) − 𝑧⋆(𝑦)| of the

QoI estimate 𝑧⋆(𝑦) for online observations 𝑦. Section 2.5.1 describes the construction

of this estimate by viewing 𝑧⋆ as a function of its expansion point, given fixed online

observations 𝑦. Section 2.5.2 gives a finite difference method to estimate the neces-

sary gradient. Section 2.5.3 introduces further approximations to the error estimate

expression that facilitate more rapid online error estimation.

2.5.1 Approximate QoI as a Function of Expansion Point

Recall from Sections 2.3.1 and 2.3.2 that the QoI estimate 𝑧⋆ corresponds to the Taylor

series approximate output of a linearized inverse problem. Recall from Remark 2 that

the inferred parameters of the linearized inverse problem are exact when linearization

occurs about the solution of the original inverse problem. A Taylor series expansion

is also exact when evaluated at its expansion point. Thus, the approximate QoI is

exact (𝑧⋆ = 𝑧⋆) when its expansion point is the exact inferred parameters (𝑥0 = 𝑥⋆,

equivalent to 𝑦0 = 𝑦); the exactness of the approximate QoI in this case is most

obvious in Equation (2.15).

It follows that 𝑧⋆ may not be exact when constructed by expanding about 𝑦0 ̸= 𝑦.

For the rest of Section 2.5, we will use 𝑦 to refer to the online observations, and

𝑣 ∈ R𝑛𝑦 to refer to the expansion point observations when viewed as a variable, with

𝑣0 referring to a particular fixed expansion point. In the offline stage, we solve the

inverse problem (Equation (2.4)) for expansion point observations 𝑣0. Expanding 𝒪𝑒

and 𝒪𝑝 about 𝑥⋆(𝑣0) (as in Equations (2.9) and (2.13)), we obtain an expression (see
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Equations (2.15) and (2.21)) for the approximate QoI 𝑧⋆(𝑦) of online observations 𝑦.

We define a parameterized function 𝑓 so that 𝑓(𝑣0; 𝑦) denotes this approximate QoI

from expanding about 𝑥⋆(𝑣0) and applied to online observations 𝑦. Choosing different

expansion point observations 𝑣 gives different QoI estimates 𝑓(𝑣; 𝑦) for fixed online

observations 𝑦; written this way, we emphasize the QoI estimate as a function of the

expansion point, parameterized by the online observations. For given 𝑦, the error in

the QoI estimate is a result of evaluating 𝑓 at the wrong 𝑣; the error is a result of

expanding about 𝑣 ̸= 𝑦. When 𝑣 = 𝑦, we have 𝑓(𝑦; 𝑦) = 𝑧⋆(𝑦).

We wish to estimate the error in the QoI estimate from expanding about expansion

point 𝑣0 and applying its maps to online observations 𝑦; we seek |𝑧⋆(𝑦) − 𝑧⋆(𝑦)| =

|𝑓(𝑦; 𝑦) − 𝑓(𝑣0; 𝑦)|. Viewing the QoI estimate as a function of the expansion point,

we use the linear Taylor expansion of 𝑓(𝑣; 𝑦) about 𝑣0 to obtain the first-order error

estimate

|𝑧⋆(𝑦) − 𝑧⋆(𝑦)| = |𝑓(𝑦; 𝑦) − 𝑓(𝑣0; 𝑦)| ≈

⃒⃒⃒⃒
⃒ 𝜕𝑓(𝑣; 𝑦)

𝜕𝑣

⃒⃒⃒⃒𝑇
𝑣0

(𝑦 − 𝑣0)

⃒⃒⃒⃒
⃒ . (2.32)

There is generally no analytical expression for the gradient 𝜕𝑓(𝑣; 𝑦)/𝜕𝑣. In Sec-

tions 2.5.2 and 2.5.3, we describe two finite difference approaches to numerically es-

timate the gradient, with different tradeoffs in terms of accuracy and online expense.

2.5.2 Finite Difference Gradient Approximation

Fix online observations 𝑦 for which we are calculating the QoI error estimate. To

obtain a numerical estimate for the gradient 𝜕𝑓(𝑣; 𝑦)/𝜕𝑣, we use the finite difference

method described in [11], which requires evaluation of 𝑓(𝑣(𝑖); 𝑦) at 𝑛𝑔 other finite

difference expansion points 𝑣(𝑖), 𝑖 = 1, . . . , 𝑛𝑔, where 𝑛𝑔 ≥ 𝑛𝑦 for a first-order gradient

estimate and 𝑛𝑔 ≥ 𝑛𝑦(𝑛𝑦 + 1) for a second-order gradient estimate. The gradient

estimate 𝑔 is the least-squares solution to the (potentially overdetermined) system

𝐷𝑔 = (𝛿𝑓), (2.33)
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where difference matrix 𝐷 ∈ R𝑛𝑔×𝑛𝑦 has elements 𝐷𝑖𝑗 = 𝑣
(𝑖)
𝑗 −(𝑣0)𝑗 and the right-hand

side (𝛿𝑓) ∈ R𝑛𝑔 has elements (𝛿𝑓)𝑖 = 𝑓(𝑣(𝑖); 𝑦) − 𝑓(𝑣0; 𝑦).

Each 𝑓(𝑣(𝑖); 𝑦) corresponds to the QoI estimate for online observations 𝑦, where

maps for the QoI estimate are obtained from expanding 𝒪𝑒 and 𝒪𝑝 about the inferred

parameters of expansion point 𝑣(𝑖) (see Section 2.5.1). If the number of expansion

points 𝑁𝑒 ≥ 𝑛𝑔 + 1, then we can choose 𝑣(𝑖) from among the expansion points already

in the library, avoiding the need to solve new inverse problems and generate new

maps in the online phase. We can use existing maps in the library to compute

𝑓(𝑣(𝑖); 𝑦) and estimate the gradient at only the cost of applying the maps and solving

Equation (2.33).

The quality of the gradient estimate depends on the spread of the expansion

points. If the library is small, then neighboring expansion points may be far apart

and give a poor finite difference estimate of the gradient. Expansion points that are

closely clustered together may be useful for gradient estimation, but not efficient (in

terms of QoI estimation accuracy for a given number of expansion points).

Estimating the gradient using Equation (2.33) requires evaluation of 𝑛𝑔 + 1 QoI

estimates by applying maps from 𝑛𝑔 + 1 expansion points in the library, which may

become expensive for large 𝑛𝑦. In Section 2.5.3, we describe how one can make

further approximations to the error expression in Equation (2.32) to obtain a more

rapid online QoI estimate, at the cost of its accuracy being further locally restricted

about 𝑣0.

2.5.3 Approximations for Rapid Online QoI Error Estimation

Computing the error estimate in Equation (2.32) by solving Equation (2.33) can be

expensive in the online phase because the gradient depends on the online observations

𝑦. For online observations close to the expansion point (small ‖𝑦 − 𝑣0‖), we can

approximate 𝑦 with 𝑣0 in the gradient in Equation (2.32). This gives the following
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estimate for the QoI error from expanding about 𝑣0 for online observations 𝑦:

|𝑧⋆(𝑦) − 𝑧⋆(𝑦)| = |𝑓(𝑦; 𝑦) − 𝑓(𝑣0; 𝑦)| ≈

⃒⃒⃒⃒
⃒ 𝜕𝑓(𝑣; 𝑣0)

𝜕𝑣

⃒⃒⃒⃒𝑇
𝑣0

(𝑦 − 𝑣0)

⃒⃒⃒⃒
⃒ . (2.34)

This new gradient 𝜕𝑓(𝑣; 𝑣0)/𝜕𝑣 can also be estimated by using other expansion points

in the library to obtain a finite difference estimate, as described in Section 2.5.2.

Since 𝜕𝑓(𝑣; 𝑣0)/𝜕𝑣 is independent of the online observations, it can be estimated

in the offline phase. Rather than choose finite difference points from among existing

expansion points, we can choose finite difference points that are better placed for an

accurate finite difference gradient estimate. If the majority of the cost of obtaining

the maps for each expansion point comes from solving the inverse problem, rather

than from expanding 𝒪𝑒 and 𝒪𝑝 and computing the maps, then these finite difference

expansion points can be obtained more cheaply by avoiding solution of the full non-

linear inverse problem. The maps of these finite difference points are not stored for

use in the online phase, since they are usually close to 𝑣0, but of lower quality from

bypassing the full inverse problem.

Let 𝑣(𝑖), 𝑖 = 1, . . . , 𝑛𝑔 be our set of finite difference points, chosen randomly from

a ball of some user-specified radius and centered at 𝑣0. Instead of solving Equa-

tion (2.33), we solve for gradient estimate 𝑔 as the least-squares solution to

�̃�𝑔 = (𝛿𝑓), (2.35)

where the approximate difference matrix �̃� ∈ R𝑛𝑔×𝑛𝑦 has elements �̃�𝑖𝑗 = 𝑣
(𝑖)
𝑗 − (𝑣0)𝑗

and the right-hand side (𝛿𝑓) ∈ R𝑛𝑔 has elements (𝛿𝑓)𝑖 = 𝑓(𝑣(𝑖); 𝑦) − 𝑓(𝑣0; 𝑦). The

elements of �̃� and 𝛿𝑓 correspond to approximately solving the inverse problem at the

finite difference points, in the manner described below.

For each 𝑣(𝑖), we solve the linearized inverse problem (see Equation (2.11)), with

𝒪𝑒 linearized about 𝑥⋆(𝑣0), for observations 𝑣(𝑖):

(�̃�⋆
𝑔)

(𝑖) = arg min
𝑥

1

2
‖𝑣(𝑖) − (𝒪𝑒(𝑥

⋆(𝑣0)) + 𝐺(𝑥− 𝑥⋆(𝑣0)))‖22 +
1

2
‖𝑅𝑥‖22, (2.36)
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where 𝐺 is the Jacobian of 𝒪𝑒 at 𝑥⋆(𝑣0). We define 𝑓(𝑣(𝑖); 𝑦) to be the QoI estimate

for online observation 𝑦, constructed by expanding 𝒪𝑒 and 𝒪𝑝 about (�̃�⋆
𝑔)

(𝑖), as in

Section 2.3, to obtain an approximate goal-oriented inverse problem.

To partially compensate for the fact that (�̃�⋆
𝑔)

(𝑖) is only an approximation to

𝑥⋆(𝑣(𝑖)), we use a perturbed step matrix �̃� based on 𝑣(𝑖), which we define as the

observations for which (�̃�⋆
𝑔)

(𝑖) is closest to being the exact inferred parameters. Let

𝐽(𝑥, 𝑣) denote the objective function of the full inverse problem (see Equation (2.4))

evaluated at parameters 𝑥 and observations 𝑣:

𝐽(𝑥, 𝑣) =
1

2
‖𝑣 −𝒪𝑒(𝑥)‖22 +

1

2
‖𝑅𝑥‖22. (2.37)

Then we define 𝑣(𝑖) as

𝑣(𝑖) = arg min
𝑣

⃦⃦⃦⃦
⃦ 𝜕𝐽(𝑥, 𝑣)

𝜕𝑥

⃒⃒⃒⃒
(�̃�⋆

𝑔)
(𝑖)

⃦⃦⃦⃦
⃦
2

, (2.38)

which corresponds to the solution of an overdetermined linear system with 𝑛𝑥 equa-

tions in 𝑛𝑦 variables:

(︃
𝜕𝒪𝑒

𝜕𝑥

⃒⃒⃒⃒
(�̃�⋆

𝑔)
(𝑖)

)︃𝑇

𝑣(𝑖) = 𝑅𝑇𝑅(�̃�⋆
𝑔)

(𝑖) +

(︃
𝜕𝒪𝑒

𝜕𝑥

⃒⃒⃒⃒
(�̃�⋆

𝑔)
(𝑖)

)︃𝑇

𝒪𝑒. (2.39)

The error estimate in Equation (2.34) can be rapidly computed in the online

phase, requiring only the dot product of a stored gradient estimate with the difference

𝑦 − 𝑣0, where 𝑣0 corresponds to an expansion point. The stored gradient estimate

can be computed in the offline phase without additional expensive solutions of the

full nonlinear inverse problem, either by using existing maps in the library, or by

expanding about the solutions to linearized inverse problems. The latter option is

more costly, but potentially more accurate due to the ability to choose finite difference

points. Note that the latter option induces additional error in the gradient estimate

when the approximate QoI 𝑧⋆ corresponds to reduced-rank representations of 𝐴𝑑, due

to the violation of Equation (2.14), as discussed in Section 2.3.1.
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2.6 Choosing and Combining Local Approximations

In the offline phase of Algorithm 1, we approximate goal-oriented inverse problems

(see Section 2.3) and generate observation-to-QoI maps to map observations to their

approximate QoI (Section 2.4). These approximations are localized about the inferred

parameters 𝑥⋆
(𝑖) of expansion point observations 𝑦(𝑖), 𝑖 = 1, . . . , 𝑁𝑒. For given online

observations 𝑦, each of the 𝑁𝑒 expansion points in the library corresponds to its own

QoI estimate, with the 𝑖-th expansion point having QoI estimate denoted by 𝑧⋆(𝑖)(𝑦).

Given this library of approximate problems, we wish to minimize the error in the QoI

estimate, either by choosing the QoI estimate of a single best expansion point or by

synthesizing the estimates corresponding to multiple expansion points.

For given online observations 𝑦, we write the final QoI estimate 𝑧⋆(𝑦) as a weighted

sum of the QoI estimates 𝑧⋆(𝑖)(𝑦) corresponding to individual expansion points:

𝑧⋆(𝑦) =
𝑘∑︁

𝑖=1

𝑧⋆(𝑖)(𝑦)
𝜑(𝛿𝑖(𝑦))∑︀𝑘
𝑗=1 𝜑(𝛿𝑗(𝑦))

, (2.40)

where the weighting (or kernel) 𝜑 is some function of the distance 𝛿𝑖(𝑦) between

the current evaluation point and the 𝑖-th expansion point. The 𝑘 nearest neighbors

over which we average are chosen based on 𝛿𝑖(𝑦). We note that Equation (2.40) has

similarities to k-Nearest Neighbors (kNN), also referred to as ‘kernel regression’ or

‘distance weighted averaging’, in that both estimate the unknown output at a query

point using a weighted sum of values at neighboring points [98, 122,144]. The black-

box kNN estimate 𝑧⋆(𝑦) can be written

𝑧⋆(𝑦) =
𝑘∑︁

𝑖=1

𝑧⋆(𝑦(𝑖))
𝜑(𝛿𝑖(𝑦))∑︀𝑘
𝑗=1 𝜑(𝛿𝑗(𝑦))

, (2.41)

where 𝑘 is the number of nearest neighbors over which the average is taken, and

the weighting 𝜑 is some function of the distance 𝛿𝑖(𝑦) = ‖𝑦 − 𝑦(𝑖)‖2 between the

current evaluation point and the 𝑖-th expansion point. In contrast, we will refer to

our approach in Equation (2.40) as physics-informed kNN, since the values being
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combined are based on outputs of maps built using knowledge about the physics

and structure of the goal-oriented inverse problem. We note that Equation (2.41)

is equivalent to Equation (2.40) when 𝒪𝑝 is approximated with a zero-order Taylor

expansion. Given this equivalence, we will interchangeably refer to our expansion

points as ‘training points’ for the rest of this thesis.

This similarity between physics-informed and black-box kNN allows us to borrow

weighting functions used in black-box kNN. One can weight all neighbors equally

(𝜑(𝛿) = 1), although one usually weights nearby points more favorably. A common

choice of 𝜑 is the inverse distance weighting 𝜑(𝛿) = 𝛿−1; another option is a Gaussian

weighting (𝜑(𝛿) = exp(−𝛿2)). The choice of weighting kernel 𝜑 reflects the relative

importance of nearby and distant points.

In regression, the distance 𝛿𝑖(𝑦) reflects one’s beliefs about the similarity of the

function value at different points, with nearby points more likely to have similar

values. Recall from Section 2.5.1 that for a given online 𝑦, we can view the QoI

estimate as a function of the expansion point. In our case, the distance 𝛿𝑖(𝑦) reflects

our beliefs about the similarity of the QoI estimates from using either 𝑦(𝑖) or 𝑦 as the

expansion point. The simplest distance function is 𝛿𝑖(𝑦) = ‖𝑦 − 𝑦(𝑖)‖2.

One can potentially obtain a more accurate QoI estimate 𝑧⋆(𝑦) by using an error

estimate to help choose neighboring points to average over. This error estimate

should be rapidly obtainable in the online phase. To estimate the error from using

the maps of expansion point 𝑦(𝑖) to calculate the QoI for online observations 𝑦, we

use Equation (2.34) to obtain the error estimate 𝜖𝑖(𝑦), defined as

𝜖𝑖(𝑦) =

⃒⃒⃒⃒
⃒ 𝜕𝑓(𝑣; 𝑦(𝑖))

𝜕𝑣

⃒⃒⃒⃒𝑇
𝑦(𝑖)

(𝑦 − 𝑦(𝑖))

⃒⃒⃒⃒
⃒ . (2.42)

Since the error estimate is only locally accurate, we use it to choose and weight nearest

neighbors by defining 𝛿𝑖(𝑦) = ‖𝑦−𝑦(𝑖)‖2+𝛼𝜖𝑖(𝑦). The tuning factor 𝛼 is a conservative

way to balance the error estimate with its accuracy, avoiding the selection of faraway

points whose error is greatly underestimated. Although Equation (2.42) gives a less

accurate error estimate than Equation (2.32), it is more rapidly obtainable in the
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online phase and can still be useful for choosing and combining library estimates.

Such an example is given in Section 4.4.

2.7 Chapter Summary

In this chapter, we described and derived our algorithm for obtaining rapid QoI

estimates given observations. The algorithm computes and stores compact multilinear

maps in an offline preparatory phase, and applies these maps to online observations

to obtain rapid estimates of their QoI. The maps are based on local approximations

to the full nonlinear goal-oriented inverse problem. Since the online observations are

unknown in the offline phase, and the maps are only locally accurate, we generate a

library of maps, each localized about a training (expansion) point.

A large library is more likely to have a training point close to the online obser-

vations, and thus likely to give a more accurate QoI estimate. However, generating

and/or utilizing large training sets may not be feasible, since each training point

requires an expensive solution of the full inverse problem, and each training point

corresponds to multilinear maps that must be stored. In the next chapter, we ex-

amine approaches for efficiently choosing members of the training set, in order to

increase online estimation accuracy given a limited offline computational budget.
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Chapter 3

Active Learning to Efficiently

Generate Physics-Informed Maps

Algorithm 1 enables rapid QoI estimates for online observations by generating a

library of observation-to-QoI maps in the offline stage. Each map in the library cor-

responds to a local approximation to the goal-oriented inverse problem, constructed

by expansion about the solution to a full inverse problem. In this chapter, we propose

methods for efficiently choosing these expansion points, so as to reduce errors from

estimating the QoI with physics-informed maps given a limited offline computational

budget and/or map storage budget. In Section 3.1, we define the scenarios in which

we develop our active learning approaches. Section 3.2 describes an active learning

approach that seeks to efficiently minimize the largest QoI error. We then consider

the specific case where our QoI is used for classification. Section 3.3 describes an

uncertainty-based greedy sampling approach for this classification case. Section 3.4

describes a more expensive variation that uses a more complex notion of utility to po-

tentially choose more efficient training sets. We summarize the chapter in Section 3.5.

3.1 Active Learning Scenarios

In this section, we describe the scenarios in which we develop our active learning

approaches. Section 3.1.1 describes assumptions about the observations available in
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the offline phase. Section 3.1.2 describes how we extend our continuous QoI to a

classification goal.

3.1.1 Pool-based Sampling

We focus on the pool-based sampling scenario, where a large, static pool of offline

observations is available at once. We let 𝒰 denote the total pool of offline observations.

Our goal in active learning is to efficiently choose 𝑁𝑒 points from 𝒰 to form the training

set 𝒯 ⊂ 𝒰 . In cases where the learned input-output map must be (expensively)

updated each time the training set changes, there may be a benefit to adding a batch

of points to the training set at a time. In our case, there are no savings to be gained in

this batch setting, so we will sequentially choose single points to add to the training

set by solving their inverse problem and create maps from their local expansions.

We assume that the distribution of points in this offline pool is representative of the

expected distribution of observations in the offline phase.

Given the parallels with black-box kNN and the borrowing of ideas from the ma-

chine learning literature, we will use similar terminology to refer to parallel concepts.

Specifically, we will use ‘labeling’ or ‘querying’ an observation point to refer to the act

of solving its full inverse problem and computing the corresponding physics-informed

maps, as described in the offline portion of Algorithm 1.

3.1.2 Classification from Regression

Thus far, we have considered the goal-oriented inverse problem where the QoI is

a continuous, differentiable function of the parameters (see Section 2.1.2). We can

extend this continuous regression setting, and our Algorithm 1, to some cases where

the ultimate goal is classification. We describe two scenarios where a continuous QoI

can be simply processed to obtain a classification. We will continue to use ’Quantity

of Interest’ to refer to the continuous output of the inferred parameters, even when

the classification is the ultimate goal.

A common way to extend continuous regression to classification is to define a
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‘plug-in’ classifier [29], where the vector QoI �⃗�(𝑥) is a vector of class probabilities; each

element 𝑧𝑖(𝑥) is equal or proportional to the probability of parameters 𝑥 belonging

to the 𝑖-th class. The estimated class is then the one with greatest probability. The

case of a plug-in classifier can arise when the prediction operator 𝒪𝑝 corresponds

to a statistical model. For example, 𝒪𝑝 might correspond to a multinomial logistic

regression model, where the weightings have previously been tuned based on a training

set of parameter-class pairs. The model gives 𝑧𝑖(𝑥) = exp(
∑︀

𝑗 𝑓
(𝑖)
𝑗 (𝑥)) proportional to

the probability of 𝑥 belonging to the 𝑖-th class, where 𝑓 (𝑖)
𝑗 is the 𝑗-th feature of the 𝑖-th

class. If 𝑓 (𝑖)
𝑗 are continuous and differentiable, then we can generate physics-informed

maps using Algorithm 1 to rapidly classify observations without having to first infer

for their corresponding parameters.

We focus our active learning approaches on a simpler extension to classification,

where a scalar continuous QoI is mapped to a class through a (combination of) thresh-

olding function(s). For example, suppose the QoI corresponds to the predicted per-

formance of an object with the inferred material parameters. Then the object may

be classified as acceptable or unacceptable based on whether the QoI exceeds some

threshold. A more complex classification might use multiple thresholds to define mul-

tiple grading classes for the object (‘poor’, ‘good’, ‘excellent’). Another example is

where one has a support vector machine (SVM) trained on parameter-class pairs to

give binary classifications for parameters. In this case, one can define a QoI equal

to the dot product of the parameters with the separating hyperplane normal (in the

transformed feature space); for given observations, whether the QoI exceeds some

threshold determines the class of the observations. In both of these examples, we can

obtain rapid QoI estimates 𝑧⋆ for online observations with Algorithm 1, then apply

simple thresholding functions to the QoI to classify the online observations.

Compared to the general regression case, the goal of an active learning approach

in the classification case is to efficiently reduce misclassification rates, rather than

efficiently reduce QoI errors. For the QoI thresholding case, it is more important for

the QoI estimate and exact QoI to be on the same side of the threshold(s) than for

the QoI estimate to closely match the exact QoI.
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3.2 Minimizing Maximum Error

In this section, we present an active learning approach that seeks to minimize the

largest online QoI error. We will describe a min-max error formulation and the

obstacles to solving it directly for our training set, and then give an approximate

formulation that can be optimally solved with an existing method for which we can

compute the necessary quantities.

Assume the offline pool of observations is representative of the spread of observa-

tions that will be obtained in the online phase. In the online phase, we will choose

one expansion which gives the least QoI error (𝑘 = 1). For candidate training set 𝑇

and observations 𝑢, this choice gives the minimal QoI error min𝜏∈𝑇 |𝑓(𝑢;𝑢)−𝑓(𝜏 ;𝑢)|,

where 𝑓(·; ·) is as defined in Section 2.5.1. The maximum online QoI error, estimated

using the observation pool 𝒰 , is described by max𝑢∈𝒰∖𝑇 min𝜏∈𝑇 |𝑓(𝑢;𝑢)− 𝑓(𝜏 ;𝑢)|. To

minimize the maximum online QoI error, we choose 𝑁𝑒 points from 𝒰 to form the

training set 𝒯 such that

𝒯 = arg min
𝑇⊂𝒰 , |𝑇 |≤𝑁𝑒

(︂
max
𝑢∈𝒰∖𝑇

min
𝜏∈𝑇

|𝑓(𝑢;𝑢) − 𝑓(𝜏 ;𝑢)|
)︂
. (3.1)

Define 𝑑(𝑢, 𝑣) = |𝑓(𝑢;𝑢) − 𝑓(𝑣;𝑢)|. If we assume 𝑑(·, ·) satisfies the directed

triangle inequality 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑤) ≥ 𝑑(𝑢,𝑤), then Equation (3.1) is an asymmetric

𝑁𝑒-center problem. Greedy algorithms for solving the asymmetric 𝑁𝑒-center problem

are described in [5,103]. These algorithms are asymptotically optimal [32]. Although

we have a QoI error estimate (see Equation (2.32)), we cannot feasibly apply any of

these algorithms to our active learning problem. We can only evaluate 𝑑(𝑢, 𝑣) for 𝑣

already in the training set, whereas the aforementioned algorithms require the ability

to evaluate 𝑑(𝑢, 𝑣) for any pairs 𝑢, 𝑣 ∈ 𝒰 .

Instead, we use the distance between pairs of observation points as a proxy for

their QoI error, from expanding about one to estimate the QoI at the other. Assuming

the error from expanding about training point 𝜏 to estimate the QoI for observations

𝑢 increases with the distance between 𝜏 and 𝑢, we can replace the QoI error |𝑓(𝑢;𝑢)−

𝑓(𝜏 ;𝑢)| in Equation (3.1) with the distance ‖𝑢−𝜏‖2. Then the active learning problem
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becomes one of choosing 𝑁𝑒 points from 𝒰 to form the training set 𝒯 such that

𝒯 = arg min
𝑇⊂𝒰 , |𝑇 |≤𝑁𝑒

(︂
max
𝑢∈𝒰∖𝑇

min
𝜏∈𝑇

‖𝑢− 𝜏‖2
)︂
, (3.2)

where min𝜏∈𝑇 ‖𝑢− 𝜏‖2 describes the distance between observations 𝑢 and the candi-

date training set 𝑇 . Equation (3.2) corresponds to the symmetric 𝑁𝑒-center problem,

which can be solved approximately in a greedy fashion using the algorithm described

in [59]. This algorithm reduces the objective function to within a factor of two of the

optimal value, which is the best that can be achieved by a polynomial time approxi-

mation algorithm [50].

Solving Equation (3.2) using the method in [59] to obtain a training set has sim-

ilarities to the active learning approach in [139]. In [139], a variation of this greedy

algorithm is used to select training points for a nearest-neighbors classifier. The pro-

jected distance of a query point to its nearest group of training points, representing

a shared class, is used as a proxy for the uncertainty in the query point belonging

to that class. The query point with the greatest uncertainty is next added to the

training set.

In our case, we use the distance between a query point and its nearest training

point as a proxy for the QoI error in that query point given the current training set.

At each iteration, we greedily add the point with the greatest error proxy (greatest

distance to the current training set) to the training set. Solving the distance-based

formulation in Equation (3.2) with the greedy algorithm in [59] is feasible in that it

only requires the evaluation of the distance between observations, rather than error

estimates between arbitrary pairs of points. We note that there exist other active

learning methods and clustering approaches which use only characteristics of the pool

of input points, such as [73,105,150], which may also be useful for active learning in

an approximate error minimization framework.
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3.3 Physics-Informed Uncertainty Sampling

In this section, we describe an uncertainty sampling approach to active learning for

threshold-based classification, extending ideas from uncertainty sampling for kNN

classification to our physics-informed maps. In an uncertainty sampling approach,

the training set is usually seeded with a random initial selection of points. Each

unlabeled point is assigned a score related to the uncertainty in its classification,

given the current input-output mapping trained on the current training set. A point

with the greatest uncertainty score is then chosen as the next query point to add

to the training set. The trained mapping is updated, the uncertainty scores of the

remaining unlabeled points are re-evaluated where necessary, and then the process

repeats.

Uncertainty sampling approaches for different classes of trained mappings use dif-

ferent ways of estimating the probability of each class at a point, depending on the

structure of the trained mapping. For all classes of trained mappings, when there

are more than two classes, one also has different choices of uncertainty measure with

which to map a distribution over classes to a scalar uncertainty score. The choice of

uncertainty measure, such as information entropy or margin (gap between probabili-

ties of two most likely classes), affects the behavior of the uncertainty sampling; some

choices of uncertainty measure are compared in [118]. We will focus on tailoring es-

timation of the probability distribution of classes at a point to our physics-informed

kNN. Once the probability of different classes at a point is estimated, any of the

uncertainty measures can be applied to map the distribution to an uncertainty score.

For classification kNN, the class of a point is estimated as the most common class

among its 𝑘 nearest neighbors in the training set. Similarly, when performing un-

certainty sampling, the probability distribution over the classes at a point can be

estimated with the empirical distribution of the classes of its 𝑘𝑎 nearest neighbors in

the training set. We will refer to uncertainty sampling with this estimate of classifica-

tion probabilities as uncertainty sampling with training neighbors (USTN). Described

this way, greater uncertainty tends to correspond to points near the boundaries be-
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tween classes, as estimated by the classification kNN mapping trained on the current

training set. Placing more training points near the estimated boundary helps re-

duce misclassification rates, since the accuracy of a classifier depends on accurately

capturing the boundaries between classes. Points near the estimated boundary have

more uncertainty, as their class is more prone to change with small changes in the

boundary.

For our physics-informed kNN, we propose a different method of computing an

uncertainty score to use in uncertainty sampling. Rather than computing the un-

certainty of a point based on the classes of its nearest training points, we compute

uncertainty based on the estimated classes of its nearest neighbors in the pool 𝒰 .

If these neighbors are also in the training set 𝒯 ⊂ 𝒰 , then their estimated class is

exact (see Remark 2). By computing uncertainty based on the estimated classes of

neighbors, we are better able to find points close to the boundary between classes,

as estimated by physics-informed kNN. We illustrate this with a schematic in Fig-

ure 3-1, which compares estimating uncertainty based on either training or estimated

neighbors.

Algorithm 2 describes an uncertainty sampling approach for threshold-based clas-

sification with physics-informed maps, using this idea of estimating uncertainty based

on estimated neighboring classes. We first seed the training set with 𝑛𝑠 randomly cho-

sen points from the pool. Then, at each iteration, we estimate the class of each point

in the pool using the physics-informed maps in the current iteration of the library.

Each point not in the training set is then given an uncertainty score based on the

empirical distribution of the estimated classes of its 𝑘𝑎 nearest neighbors in 𝒰 . At

each iteration, we choose a point with the greatest uncertainty score to query. In us-

ing this method, we associate uncertainty with proximity to the estimated boundary,

and seek query points close to this estimated boundary.

An expensive step in Algorithm 2 is finding the 𝑘𝑎 nearest neighbors in 𝒰 for each

point in 𝒰 , although this step only has to be performed once. For large pools, one can

reduce the expense of this step by approximately finding nearest neighbors [15,58,97].

At each iteration, one also has to search over |𝒰∖𝒯 | points to find one with the largest
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  estimated boundary

  candidate training point
neighbors for  uncertainty  estimation

  estimated boundary

neighbors for  uncertainty  estimation
  candidate training point

(a) Equal uncertainty of two candidate training points (left and right), based on training neighbors

  estimated boundary

  candidate training point
neighbors for  uncertainty  estimation

  estimated boundary

  candidate training point
neighbors for  uncertainty  estimation

(b) Green candidate training point (right) more uncertain, based on estimated neighbors

Figure 3-1: Example pool 𝒰 , divided into two estimated classes (red and blue) with
estimated boundary (purple dotted line) based on training points (filled-in circles).
For two candidate training points (circled in grey (left) or green (right)), the uncer-
tainty score is computed based on classes of indicated (opaque) points. In (a), the
classes of the three nearest training neighbors is used to estimate uncertainty, and
the two candidate training points have equal uncertainty score. In (b), the estimated
classes of the three nearest neighbors in the pool is used to estimate uncertainty; the
green-circled candidate (right), which is closer to the estimated boundary, has greater
uncertainty.
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Algorithm 2 Uncertainty sampling with estimated neighbors (USEN) for threshold-
based classification with physics-informed maps.
1: Define number of training (expansion) points 𝑁𝑒, number of nearest neighbors 𝑘𝑎

for uncertainty estimate, number of randomly selected seed training points 𝑛𝑠.
2: Define pool of offline observations 𝒰 = {𝑢(𝑖)}|𝑈 |

𝑖=1 and training set of expansion
points 𝒯 ⊂ 𝒰 .

3: procedure USENTrainingSet(𝑁𝑒,𝑘𝑎,𝑛𝑠)
4: for 𝑢(𝑖) ∈ 𝒰 do
5: Find and store indices of its 𝑘𝑎 nearest neighbors in 𝒰
6: end for
7: Select 𝑛𝑠 points randomly from 𝒰 to query and add to 𝒯 .
8: for 𝑖 = 1, . . . , |𝒰| do ◁Store distances and estimated classes.
9: Store distances 𝛿(𝑖) = min𝜏∈𝒯 ‖𝑢(𝑖) − 𝜏‖2.

10: Estimate the class 𝑐(𝑖) of observations 𝑢(𝑖) using physics-informed maps in
𝒯 with 𝑘 = 1.

11: end for
12: for 𝑗 = (𝑛𝑠 + 1), . . . , 𝑁𝑒 do ◁Choose one training point at a time.
13: for 𝑢(𝑖) ∈ (𝒰∖𝒯 ) do ◁Compute uncertainty scores.
14: Compute uncertainty score for 𝑢(𝑖) based on the empirical

distribution of the estimated class of its 𝑘𝑎 nearest neighbors.
15: end for
16: Choose 𝑢⋆ ∈ (𝒰∖𝒯 ) with greatest uncertainty measure to query and

add to 𝒯 . ◁Add most uncertain point to training set.
17: Update distance 𝛿(⋆) and class 𝑐(⋆) of newest training point 𝑢⋆.
18: for 𝑢(𝑖) ∈ (𝒰∖𝒯 ) do ◁Update distances and estimated classes.
19: Update 𝛿(𝑖) and 𝑐(𝑖) if current 𝛿(𝑖) > ‖𝑢(𝑖) − 𝑢⋆‖2.
20: end for
21: end for
22: end procedure

uncertainty score, and to check whether their estimated classifications and distances

to the training set need to be updated. These searches can also become expensive

for large |𝒰|. One way to reduce this expense is to produce a smaller effective pool

using a preprocessing step. For example, in [140], similar points are clustered and a

point is chosen to represent them; the collection of the representative points of these

clusters gives a compact pool from which to choose query points.

The method described in [140] can also be used directly for active learning in our

case, as it requires only 𝒰 and the classes of points in 𝒯 . The method uses query

synthesis to avoid searching over the entire pool 𝒰 , and may be more appropriate
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when the cost of active learning is dominated by searching and updating over 𝒰 rather

than querying points (solving the full inverse problems). When the inverse problem

solves dominate the cost, Algorithm 2 is better able to explore distant regions of the

boundary with small training set sizes 𝑁𝑒.

3.4 Physics-Informed Uncertainty-based Utility Sam-

pling

Rather than focusing on the uncertainty of single points, we can use uncertainty scores

to calculate a measure of utility that suggests how querying a point might impact the

total uncertainty of the pool of points. A point whose class is uncertain but that is

close to few other points may occur in an area of low density, and thus be less likely

to impact the classification accuracy of online points that rarely fall nearby. This idea

is the motivation behind the uncertainty-based utility sampling approach in [56].

Algorithm 3 describes a similarly motivated uncertainty-based utility sampling

approach for threshold-based classification with physics-informed maps. After seeding

the training set with a few randomly chosen initial points, we then iteratively add to

𝒯 the unlabeled point with the greatest utility. We let the utility of a potential query

point 𝑢(𝑖) be the total uncertainty of all points in 𝒰 that are closer to 𝑢(𝑖) than to

𝒯 . Equivalently, the utility of a point 𝑢(𝑖) is the total uncertainty of all points whose

nearest training neighbor (and estimated class) would (or could) change if 𝑢(𝑖) were

added to the training set. The uncertainty of a point is calculated using estimated

neighbors, as described in Section 3.3, and the uncertainty of any points in 𝒯 is

zero. Defining utility in this manner lets us choose training points that may most

reduce the total uncertainty of unlabeled points in the pool. In the case where all

potential query points have a zero utility score, we recompute the utility scores with

the assumption that all unlabeled points have equal, nonzero uncertainty score. This

is equivalent to choosing the point 𝑢(𝑖) for which there are the most points whose

nearest training neighbor (and estimated class) would (or could) change if 𝑢(𝑖) were
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added to the training set.

When the pool |𝒰| is large, we can use the approaches referenced in Section 3.3 to

reduce the cost of searching for nearest neighbors or reduce the size of the effective

pool. As the utility measure is more expensive to compute and update than the

uncertainty measure, Algorithm 3 is more expensive than Algorithm 2, but potentially

achieves a smaller misclassification rate for a given training set size 𝑁𝑒. The two are

compared in a numerical example in Section 4.7.1.

3.5 Chapter Summary

In this chapter, we described active learning algorithms that can be used to effi-

ciently choose training points for our physics-informed kNN (see Algorithm 1). For

the regression case, we described an active learning approach aimed at minimizing

the worst-case error in the QoI estimate. For the classification case, we described two

active learning approaches which seek to reduce the misclassification rate by greed-

ily choosing training points near the estimated boundary between classes. In the

next chapter, we demonstrate our physics-informed mapping and its active learning

algorithms on a nonlinear goal-oriented tomography problem.
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Algorithm 3 Uncertainty-based utility sampling with estimated neighbors (utilEN)
for threshold-based classification with physics-informed maps.
1: Define number of training (expansion) points 𝑁𝑒, number of nearest neighbors 𝑘𝑎

for uncertainty estimate, number of randomly selected seed training points 𝑛𝑠.
2: Define pool of offline observations 𝒰 = {𝑢(𝑖)}|𝑈 |

𝑖=1 and training set of expansion
points 𝒯 ⊂ 𝒰 .

3: procedure utilENTrainingSet(𝑁𝑒,𝑘𝑎,𝑛𝑠)
4: for 𝑢(𝑖) ∈ 𝒰 do
5: Find and store indices of its 𝑘𝑎 nearest neighbors in 𝒰
6: end for
7: Select 𝑛𝑠 points randomly from 𝒰 to query and add to 𝒯 .
8: for 𝑖 = 1, . . . , |𝒰| do ◁Store distances and estimated classes.
9: Store 𝛿(𝑖) = min𝜏∈𝒯 ‖𝑢(𝑖) − 𝜏‖2.

10: Estimate the class 𝑐(𝑖) of observations 𝑢(𝑖) using physics-informed maps in
𝒯 with 𝑘 = 1.

11: end for
12: for 𝑗 = (𝑛𝑠 + 1), . . . , 𝑁𝑒 do ◁Choose one training point at a time.
13: for 𝑢(𝑖) ∈ 𝒰 do ◁Compute uncertainty scores.
14: if 𝑢(𝑖) /∈ 𝒯 then
15: Compute uncertainty score 𝛽(𝑖) for 𝑢(𝑖) based on the empirical

distribution of the estimated class of its 𝑘𝑎 nearest neighbors.
16: else
17: Set 𝛽(𝑖) = 0.
18: end if
19: end for
20: for 𝑢(𝑖) ∈ (𝒰∖𝒯 ) do ◁Compute utility scores from uncertainty scores.

21: Calculate utility 𝛾(𝑖) =
∑︀|𝒰|

𝑘=1 𝛽
(𝑘)
1(𝛿(𝑘) > ‖𝑢(𝑖) − 𝑢(𝑘)‖2).

22: end for
23: if max𝑢(𝑖)∈(𝒰∖𝒯 ) 𝛾

(𝑖) = 0 then ◁Compute alternate utility scores, if necessary.

24: for 𝑢(𝑖) ∈ (𝒰∖𝒯 ) do
25: Calculate utility 𝛾(𝑖) =

∑︀|𝒰|
𝑘=1 1(𝛿(𝑘) > ‖𝑢(𝑖) − 𝑢(𝑘)‖2).

26: end for
27: end if
28: Choose 𝑢⋆ ∈ (𝒰∖𝒯 ) with greatest utility to query and add to 𝒯 . Update

its corresponding 𝛿(⋆) and 𝑐(⋆). ◁Add highest utility point to training set.
29: for 𝑢(𝑖) ∈ (𝒰∖𝒯 ) do ◁Update distances and estimated classes.
30: Update 𝛿(𝑖) and 𝑐(𝑖) if current 𝛿(𝑖) > ‖𝑢(𝑖) − 𝑢⋆‖2.
31: end for
32: end for
33: end procedure

66



Chapter 4

Numerical Experiments and Results

In this chapter, we give numerical results from applying our physics-informed kNN

algorithm to an example of goal-oriented tomography. Section 4.1 describes the setup

for our numerical experiments. We first consider the case where the single nearest

training expansion point is chosen for online QoI estimates. For this case, we present

relative timing and error performance in Section 4.2, and error behavior for different

methods of map rank reduction in Section 4.3. We then consider the more general

case where the QoI estimates from multiple neighboring training points are combined

to give a final QoI estimate. In Section 4.4, we explore the effects of choosing and

weighting these neighboring estimates with different kernels and distance scores. In

Section 4.5, we explore the accuracy of online QoI estimates for different training set

sizes when using our physics-informed kNN, compared to several black-box regression

approaches. Finally, we explore the effects of generating training sets with active

learning approaches. In Section 4.6, we compare QoI errors from using physics-

informed kNN with either randomly or actively sampled training sets. In Section 4.7,

we compare misclassification rates from using our physics-informed or a black-box

approach, with randomly or actively sampled training sets.
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4.1 Setup for Goal-Oriented Tomography

We apply Algorithm 1 to non-destructive inspection of objects, such as parts created

via additive manufacturing techniques. Parts that are nominally the same, in that

they were made with the same materials and patterns, can show significant variability

in their material properties [23]. Non-destructive tests can help find imperfections

among these parts without damaging them; techniques include tomography with X-

rays or ultrasound [35,70,141]. Rapid assessment of the quality of a part soon after or

while it is being manufactured can inform decisions as to whether to finish or discard

the part, or whether to modify how the next part is made. In our numerical experi-

ments, we simulate the case where observations from past products of a manufacturing

process are available in the offline phase; in the online phase, we evaluate products

from the same manufacturing process by computing QoI for their observations.

In X-ray computed tomography, one examines the interior of an object by passing

an X-ray beam through it; by comparing the emitted and received intensities, one

can infer the attenuation coefficient function 𝑓 of the object. Different materials have

different attenuation coefficients for different energy levels. We consider two models,

describing monochromatic and bichromatic cases.

In the monochromatic case, the beam is composed of photons of a single energy

level. Following [96], we consider 𝑓 over a rectangular domain and discretize it into

𝑛𝑥 piecewise-constant pixels, so that 𝑓𝑗 is the value in pixel 𝑗. Then the observed log

ratio of received-to-emitted intensities for ray 𝑖 is

𝑦𝑖 =
𝑛𝑥∑︁
𝑗=1

𝑎𝑖𝑗𝑓𝑗, (4.1)

where 𝑎𝑖𝑗 is the distance that ray 𝑖 travels through pixel 𝑗. Although inferring directly

for 𝑓 would give a linear inverse problem, doing so would allow for unrealistic negative

attenuation coefficients. Since Algorithm 1 does not produce inferred parameters

which we can examine for reasonableness, we enforce positivity in 𝑓 by inferring for

𝑥 = log(𝑓). This setup gives a nonlinear observation operator defined by 𝒪𝑒(𝑥) =
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{𝑎𝑖𝑗} exp(𝑥).

Most X-ray sources emit a spectrum of energies; we consider the simplest multi-

energetic case with a bichromatic beam of two energy levels. Let 𝑓 be discretized as

in the monochromatic case, and let the emitted intensity be equal for both energy

levels. Following [116], the observed ratio of received to emitted intensities for ray 𝑖

is

𝑦𝑖 = exp

(︃
−

𝑛𝑥∑︁
𝑗=1

𝑎𝑖𝑗𝑓
(1)
𝑗

)︃
+ exp

(︃
−

𝑛𝑥∑︁
𝑗=1

𝑎𝑖𝑗𝑓
(2)
𝑗

)︃
, (4.2)

where 𝑓
(1)
𝑗 and 𝑓

(2)
𝑗 are the attenuation coefficient in pixel 𝑗 at the two energy levels.

To enforce positivity in the attenuation coefficients and to have different attenuation

at different energy levels, we let 𝑓 (1) = exp(𝑥) and 𝑓 (2) = 2 exp(𝑥), where 𝑥 are the

inferred parameters.

The domain Ω is a 2×2 square centered at the origin and discretized into a square

grid. We have 𝑛src photon sources on one side of the object, evenly spaced along an

origin-centered arc of radius 4 to give 90 degrees of illumination; each source emits a

fan of 𝑛𝑟𝑎𝑦𝑠 equally spaced rays which pass through the domain and are observed by

receivers on the other side. This setup is illustrated in Figure 4-1.

Figure 4-1: Setup of X-ray tomography example. Sources are represented by red stars,
detectors by black arc, and rays from one source by blue dotted lines. Discretized
domain contains circular object with a randomly placed and sized circular anomaly
with random reduced attenuation coefficient.

Training and test observations are generated analytically from non-discretized

images containing a unit circle of uniform attenuation coefficient. Each circular object

contains a circular anomaly whose location (polar coordinates) and size are sampled
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from scaled uniform distributions; each anomaly has density distributed as 𝒰(0, 0.2)

and is contained completely within the unit circle. We then add Gaussian white

noise 𝜖 ∼ 𝒩 (0, 𝜎2𝐼), where 𝜎 = 10−4, to simulate noisy observations from previously

available objects.

Common choices of regularization matrix 𝑅 include the identity (to encourage

small parameter values), the first difference operator (to encourage small spatial

changes in parameter), and the second difference operator (to encourage smoothness

in parameter values) [136]. We use a diagonal regularization matrix, with magnitude

0.05 for pixels inside the unit circle, and heavier weightings (up to 0.5) for pixels

outside the unit circle to represent the belief that these pixels correspond to the air

around the object.

We consider two QoI prediction outputs of the form

𝑧 =

∫︁
Ω

𝑞(𝑥(𝜉, 𝜁), 𝜉, 𝜁) d𝜉d𝜁 (4.3)

where 𝜉 and 𝜁 are spatial coordinates and 𝑞 is some continuous, sufficiently differen-

tiable function; this gives a prediction output that is additively separable in terms of

the discretized parameters. First, we consider the case where one has a target pattern

𝑥target to match, where 𝑥target corresponds to the pristine circle. We use

𝑞(𝑥, 𝜉, 𝜁) = 𝑤(𝜉, 𝜁) exp
(︀
−𝑎(𝑥− 𝑥target)

2
)︀
, (4.4)

where weighting 𝑤(𝜉, 𝜁) reflects the increased importance of the region inside the unit

circle compared to the rest of the domain, and 𝑎 = 2 controls how heavily deviations

from the target are penalized.

As a second prediction output, we consider the case where a part is evaluated

based on its predicted performance; anomalies may be acceptable if they are in areas

not critical to the performance of the part. Suppose the domain represents the cross-

section of a slender beam with uniform cross-section throughout its length. Slender

beam theory predicts the beam’s deflection given some specified loading configuration

using only its length, details of the loading configuration, and the area moment of
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inertia of the cross-section. Assuming small anomalies, the area moment of inertia

about the neutral axis is approximated with the area moment of inertia about the

origin, giving

𝑞(𝑥, 𝜉, 𝜁) = 𝐸(𝑥)𝜉2, (4.5)

where 𝐸(𝑥) is the modulus of elasticity. For the purpose of testing Algorithm 1, we let

𝐸(𝑥) = 𝑓(𝑥); in practice, numerical simulations or experiments can be used to better

determine the relationship between attenuation coefficient and modulus of elasticity

for the objects of interest (for example, tomography can be used to infer bone mineral

density, which is experimentally correlated with Young’s modulus [138]).

In the following numerical experiments, we consider the bichromatic inverse prob-

lem with the target mismatch QoI, and/or the monochromatic inverse problem with

the area moment of inertia QoI. While both prediction outputs are nonlinear in the

observations, the nonlinearity of the former is stronger, as suggested by the Frobe-

nius norms of the observation-to-QoI tensors 𝐴𝑑 (defined in Equation (2.16)). These

norms for the two goal-oriented inverse problems, for the setup in Section 4.3.1, are

shown in Figure 4-2.

(a) Bichromatic, target mismatch (b) Monochromatic, area moment of inertia

Figure 4-2: Distribution over training expansion points of Frobenius norm of 𝐴𝑑 for
various Taylor orders 𝑑, for (a) target mismatch QoI of bichromatic inverse problem
and (b) area moment of inertia QoI of monochromatic inverse problem.
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Unless otherwise noted, we use the approximate QoI expression given by Equa-

tion (2.15). In all sections other than Section 4.3, we use the additive separability

of the QoI to generate observation-to-QoI maps as described in Section 2.4.3, with-

out any additional map rank reduction. Tensor operations are performed using the

Tensor Toolbox [6].

4.2 Timing and Error Comparison

Consider the bichromatic inverse problem with the target mismatch QoI. We discretize

the domain with a 32 × 32 grid (𝑛𝑥 = 1024) and model 𝑛src = 10 sources with

𝑛rps = 10 rays per source (𝑛𝑦 = 100). In the offline stage, we generate observation-to-

QoI maps for 256 expansion points corresponding to training observations, generated

as described in Section 4.1. We test the algorithm on 500 similarly generated test

observations.

Figure 4-3 compares solving the full inverse problem for the test observations to

applying our observation-to-QoI maps for different Taylor orders 𝑡 in approximating

𝒪𝑝; we choose the nearest expansion point based on distance in 𝑦. For each test ob-

servation 𝑦, the relative QoI error is computed as |(𝑧⋆(𝑦)− 𝑧⋆(𝑦))/𝑧⋆(𝑦)|, where 𝑧⋆(𝑦)

and 𝑧⋆(𝑦) are the estimated and exact QoI, respectively. The full inverse problem

is solved using Matlab’s fminunc; we use the subspace trust-region method, where

the subspace in each iteration is approximately obtained using preconditioned con-

jugate gradients. The gradients and Hessian-vector products needed are calculated

analytically and without forming the full Hessian.

Increasing the Taylor order 𝑡 generally gives reduced time savings, but potentially

less error in the QoI, compared to solving the full inverse problem. In this case,

increasing the order 𝑡 from 𝑡 = 1 to 𝑡 = 2 gives a 30% reduction in average relative

QoI error; increasing the order further from 𝑡 = 2 to 𝑡 = 3 gives another 10% reduction

in average relative QoI error. Note that there is no guarantee that using a higher-

order representation will monotonically decrease QoI error for all QoI outputs or for

a particular online observation 𝑦.
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Figure 4-3: Top: Ratio of time needed to obtain QoI (approximate (using observation-
to-QoI maps) to exact (using full inverse solve)) for different orders of Taylor approx-
imation of 𝒪𝑝. Bottom: QoI error (relative to exact values) from using observation-
to-QoI maps for different orders of 𝒪𝑝 approximation.
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On average, for 𝑡 = 3, the relative QoI error is less than 4%, obtained in less

than 0.1% of the time necessary to solve the full inverse problem and apply 𝒪𝑝 to

the inferred parameters. A QoI estimate with 𝑡 = 3 takes on average the time of

three evaluations of the inverse problem objective function. Fully solving the inverse

problem requires an average of 24 iterations and the time of 4000 objective function

evaluations. In this particular example, using expansion order 𝑡 = 1 may best balance

online evaluation time and QoI estimation accuracy. We will approximate 𝒪𝑝 with

𝑡 = 3 for the numerical experiments in the rest of this chapter.

4.3 Reduced Rank Maps

As discussed in Sections 2.4.2 and 2.4.3, when 𝑛𝑦 and/or 𝑡 are large, storage and/or

online application cost limitations may require that we use lower-rank approximations

of the observation-to-QoI maps. In Section 4.3.1, we compare different rank-reduction

approaches when applied to the tensors 𝐴𝑑 of the approximate QoI expression given by

Equation (2.21). In Section 4.3.2, we give numerical evidence that reducing the rank

of the tensors in Equation (2.15) gives better behavior than similarly approximating

the tensors of the equivalent expression in Equation (2.21).

4.3.1 Comparison of Factorization Approaches

In this example, we discretize the domain with a 32×32 grid (𝑛𝑥 = 1024), and model

𝑛src = 10 photon sources with 𝑛rps = 10 rays per source (𝑛𝑦 = 100). We have 256

expansion points from the offline stage, and consider the average error over 500 test

observations. For the each of the test observations, we choose the nearest expansion

point (𝑘 = 1). For a chosen reduced rank 𝑟, one can directly factor the tensors 𝐴𝑑 of

derivatives of the QoI with respect to observations (see Section 2.4.2), or, since 𝒪𝑝 is

additively separable, one can either truncate the dimension of the intermediate QoI

or reduce the rank of the observation-to-intermediate-QoI maps (see Section 2.4.3).

In Figure 4-4, we compare the average QoI error (relative to the QoI estimate

without any rank reduction) when reducing rank with these approaches, for rank
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𝑟 = 2 to 𝑟 = 32. We compute a symmetric Tucker decomposition using an iterative

method based on [110] and provided by the Tensor Toolbox [6], and compute an

optimal non-symmetric canonical decomposition using a nonlinear least-squares algo-

rithm provided by the Tensorlab toolbox [137]; we use the default parameter settings.

When used for rank reduction, the observation covariance Γ𝑌 is calculated from the

offline training observations.

(a) Bichromatic, target mismatch (b) Monochromatic, area moment of inertia

Figure 4-4: Average relative QoI error for different approaches (truncated intermediate
QoI; intermediate QoI with weighted SVD or truncated SVD rank reduction; direct
factorization (canonical or Tucker)) to reducing storage of observation-to-QoI maps,
for different values of reduced rank 𝑟.

For fixed 𝑟, directly factoring 𝐴𝑑 with a canonical factorization gives comparable

storage and online application costs to truncating the dimension of the intermediate

QoI. When 𝒪𝑝 is additively separable, truncating the intermediate QoI gives equiv-

alent observation-to-QoI maps to a truncated canonical decomposition of 𝐴𝑑, which

is generally suboptimal for given rank when 𝑑 > 2; this inefficiency is visible in Fig-

ure 4-4. When 𝒪𝑝 is additively separable, both approaches will give exact recovery for

some 𝑟 ≤ 𝑛𝑥. In general, the canonical decomposition may require rank larger than
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𝑛𝑥 for exact recovery, and may also encounter convergence issues with computing the

factorization, depending on the algorithm used and the degeneracy of 𝐴𝑑.

For fixed 𝑟, factoring 𝐴𝑑 with the Tucker decomposition gives comparable storage

requirements to reducing the rank of the observation-to-intermediate-QoI maps. Com-

pared to direct canonical factorization and truncation of the intermediate QoI, these

approaches have greater storage and online application costs for given 𝑟 (𝒪(𝑟𝑑 +𝑘𝑛𝑦)

compared to 𝒪(𝑟 + 𝑟𝑛𝑦 + 𝑑)), but induce no additional error from rank reduction by

𝑟 = 𝑛𝑦. If this extra cost for fixed 𝑟 is acceptable and 𝒪𝑝 is additively separable,

Figure 4-4 suggests that rank reduction using the weighted SVD is both most efficient

and cheaper to compute than direct Tucker factorization of 𝐴𝑑.

4.3.2 Factoring Tensors in Equivalent Expressions

Equation (2.15) and Equation (2.21) give equivalent expressions for the approximate

QoI in terms of the observations, using different groupings that result in different

tensors 𝐴𝑑 and 𝐴𝑑. For given order 𝑑, both 𝐴𝑑 and 𝐴𝑑 are symmetric and of the same

size, and thus amenable to the same approaches for reducing their storage and appli-

cation costs using lower-rank approximations. We previously noted in Section 2.3 that

Equation (2.21) is more robust to coarse solutions of the inverse problem at expan-

sion points. Here, we give numerical evidence that this robustness comes at the cost

of less favorable error behavior when its tensors 𝐴𝑑 are approximated with reduced-

rank approximations. We use the setup described in Section 4.3.1 and consider the

monochromatic inverse problem with the area moment of inertia QoI.

In Figure 4-5, we compare the average QoI error (relative to the QoI estimate

without any rank reduction) when reducing rank with the approaches described in

Sections 2.4.2 and 2.4.3, for rank 𝑟 = 2 to 𝑟 = 32. We see that, for a given 𝑟,

factoring 𝐴𝑑 from Equation (2.15) gives less relative error than factoring 𝐴𝑑 from

Equation (2.21). Factoring 𝐴𝑑 also gives better decay in error as 𝑟 increases.

Regardless of which equivalent expression we are factoring the coefficient tensors

of, there is no guarantee that a higher 𝑟 will give less error. Additionally, although

their error behaviors differ at small 𝑟, the tensors 𝐴𝑑 and 𝐴𝑑 have the same size,
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(a) Separate derivative terms (b) Combined derivative terms

Figure 4-5: Average relative QoI error versus reduced rank 𝑟 for different approaches to
reducing storage of observation-to-QoI maps, when factor expression uses (a) separate
or (b) combined derivative terms.

and thus share an upper bound on the 𝑟 necessary for exact recovery, for any of

the approaches besides direct canonical decomposition. For this experiment, the

error from reducing the rank of the observation-to-intermediate-QoI maps for 𝐴𝑑

does not decay consistently below the error at 𝑟 = 2 until after about 𝑟 = 70 (not

shown in range of Figure 4-5). Experiments with smaller 𝑛𝑦 empirically confirm

that the decomposition approaches are exact at ranks matching the theoretical upper

bound (reviewed in Sections 2.4.2 and 2.4.3). They also support the observation that

factoring 𝐴𝑑 gives less relative error than factoring 𝐴𝑑 for given 𝑟, although the error

decay at smaller 𝑟 when factoring 𝐴𝑑 is less stagnant than in Figure 4-5.

The behavior observed in Figure 4-5 (and in numerical experiments with smaller

𝑛𝑦) suggests that if cost constraints require the tensor be stored approximately with

a reduced rank, then using Equation (2.15) is preferable. Otherwise, Equation (2.21)

is preferable in providing robustness to possible convergence issues when solving the

full offline inverse problems.
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4.4 Choosing and Combining Local Approximations

In this section, we numerically explore different approaches to weighting QoI esti-

mates from different expansion points in the library (see Section 2.6). Section 4.4.1

explores the use of different kernels to weight the QoI estimates from different local

approximations in the library. Section 4.4.2 explores the use of an error estimate in

choosing and weighting local approximations.

4.4.1 Kernel Comparison

As noted in Section 2.6, there are many kernel functions that can be used to encode

the relative importance of nearby and distant points. We consider three common

choices: inverse distance (𝜑(𝛿𝑖) = (𝛿𝑖)
−1), Gaussian (𝜑(𝛿𝑖) = exp(−𝛿2𝑖 )), and equal

(𝜑(𝛿𝑖) = 1), where 𝛿𝑖(𝑦) = ‖𝑦 − 𝑦(𝑖)‖2 is the distance between the online observations

𝑦 and the expansion point 𝑦(𝑖). We also consider an inverse distance kernel where the

distance between the observations and expansion point is measured with a fractional

norm:

𝜑(𝛿𝑖) = (𝛿𝑖)
−1, 𝛿𝑖(𝑦) =

(︃
𝑛𝑦∑︁
𝑗=1

|𝑦𝑗 − 𝑦
(𝑖)
𝑗 |𝑝
)︃1/𝑝

, (4.6)

with 𝑝 = 0.5. Using a fractional norm can reduce the error from choosing and

interpolating nearest neighbors in high-dimensional spaces [1, 16].

In this example, we discretize the domain with a 16 × 16 grid (𝑛𝑥 = 256), and

model 𝑛src = 10 photon sources with 𝑛rps = 5 rays per source (𝑛𝑦 = 50). We compute

the average QoI error over 500 test observations. We consider the monochromatic

inverse problem with the area moment of inertia QoI. Figure 4-6 shows the average

relative QoI for different training set sizes and choices of kernel. For each training

set size and kernel, we plot the best average error among four choices of number of

nearest neighbors to average over (𝑘 = 1, 2, 4, 8).

We see that different choices of kernel give little, if any, improvement over the

inverse 2-norm distance kernel. In this experiment, using a fractional norm to find

and weight nearest neighbors does not give improved performance over the Euclidean
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Figure 4-6: Average relative QoI error for different training set sizes and kernels.

norm. It may be possible to obtain different relative performance with more intensive

tuning of 𝑘 and the addition of a bandwidth term to scale the distances for different

kernels. For the numerical experiments presented in the rest of this chapter, we

will use the inverse distance kernel with the Euclidean distance in observation space,

unless otherwise stated.

4.4.2 Choosing Points with Error Estimate

For a given kernel choice, one can potentially obtain a more accurate QoI estimate by

using a more general ‘Kdistance score’ to choose nearest neighbors and to weight their

QoI estimates. As suggest in Section 2.6, this distance score can include an estimate

of the error from using different expansion points, so that expansion points giving

more accurate QoI estimates are chosen and weighted more heavily. Our suggested

first-order error estimate can also be interpreted as the projected distance between

observations, in a subspace defined by the gradient.

Using the same setup as in Section 4.4.1, we compare the QoI error from using

the inverse distance kernel, using two types of distance score to choose and weight
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the QoI estimates from neighboring expansion points. First, we let the distance

score for online observations 𝑦 and an expansion point 𝑦(𝑖) simply be the Euclidean

norm of their difference. Second, we let the distance score be a weighted sum of the

Euclidean distance and the estimated error, as described in Section 2.6; we use the

weighting 𝛼 = 50. We compute the offline gradient for each training point by solving

Equation (2.35) with 𝑛𝑔 = 100 finite difference points, chosen randomly from a sphere

of radius 10−4 centered at the training point.

Figure 4-7 compares the average relative QoI error from using these two notions of

distance scores. We see that using the error estimate to choose and weight neighboring

estimates is most helpful when the training set is large. For the largest training set,

including the error estimate gives a 20% reduction in error compared to using only

the Euclidean distance between observations. The error estimate is most accurate

locally, and is most useful for choosing between expansion points which are similarly

close to the online observations in the Euclidean sense, but which lie in directions

where the QoI error is differently sensitive to changes in the observations. When the

training set is small, it is unlikely that there will be multiple expansion points with

similar distances to the observations in the Euclidean sense; in this case, including

the error estimate in choosing nearest neighbors will make little difference.

We note that not all values of 𝛼 will give improved error compared to using only

the Euclidean distance. If 𝛼 is too small, the inclusion of the error estimate will not

noticeably affect the choice and weighting of nearest neighbors. If 𝛼 is too large, the

error estimate may drastically underestimate the error from distant expansion points

and choose them as nearest neighbors, in which case including the error estimate

may give more QoI error than just using the Euclidean distance. Tuning of 𝛼 can

be performed with cross-validation in the offline phase. Cross-validation generalizes

poorly for small training sets, but in this case, including the error estimate is unlikely

to improve the QoI for any 𝛼 anyways.
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Figure 4-7: Average relative QoI error when error estimate is or is not considered
when choosing and weighting estimates from nearest neighboring expansion points.

4.5 Comparison with Black-Box Interpolation

Viewing the QoI 𝑧⋆(𝑦) as a function of observations 𝑦, we can apply black-box regres-

sion techniques to estimate 𝑧⋆(𝑦) based on training pairs (𝑦(𝑖), 𝑧⋆(𝑦(𝑖))). Section 4.5.1

compares our approach to kNN for different training set sizes, and Section 4.5.2

compares our approach to several black-box regression techniques in the case where

training observations do not well represent online test observations.

4.5.1 Physics-Informed vs Black-Box k-Nearest-Neighbors

As noted in Section 2.6, our approach bears similarities to kNN, a black-box approach

that estimates the unknown value of a function (𝑧⋆(𝑦)) at a query point (𝑦) as a

weighted average of the values at neighboring points (𝑧⋆(𝑦(𝑖))), where the weighting

is usually based on the distance between the query point (𝑦) and its neighbors (𝑦(𝑖)).

In this example, we compare physics-informed kNN (Equation (2.40)) to black-

box kNN (Equation (2.41)). We discretize the domain with a 16×16 grid (𝑛𝑥 = 256),

and model 𝑛src = 5 photon sources with 𝑛rps = 3 rays per source (𝑛𝑦 = 15). From a

pool of 2048 potential training points, we generate training sets by randomly selecting
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subsets of up to 512 training points. For each training set, we calculate the mean QoI

error over 500 test points; we then average this mean error over 40 random training

sets. In Figure 4-8, we plot this average mean QoI error for our physics-informed

kNN and for black-box kNN.
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(a) Bichromatic, target mismatch
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Physics-Informed kNN

(b) Monochromatic, area moment of inertia

Figure 4-8: Average mean QoI error over test observations for (a) target mismatch
and (b) area moment of inertia QoI outputs using physics-informed or black-box kNN
for different choices of number of nearest neighbors 𝑘.

In the examples considered, our physics-informed kNN requires fewer training

expansion points than black-box kNN to achieve a given level of accuracy; in order

to obtain the level of accuracy achieved by physics-informed kNN with eight training

points, black-box kNN requires at least 128 training points. Physics-informed kNN

takes averages over QoI estimates that are based on local approximate problems, built

using knowledge of the physics and structure of the full goal-oriented inverse problem.

Using this additional knowledge allows physics-informed kNN to achieve reduced QoI

error compared to black-box kNN with fewer training points.
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4.5.2 Training-Test Mismatch

We compare the performance of our Algorithm 1 to black-box interpolation ap-

proaches when the online test observations and offline training observations are gen-

erated by different processes. In addition to black-box kNN, we will also consider two

other linear smoothers [26] for black-box regression. One comparison case is radial

basis function interpolation, in which 𝑧⋆(𝑦) is approximated by

𝑧⋆(𝑦) =
𝑁𝑒∑︁
𝑖=1

𝑤𝑖𝜑(‖𝑦 − 𝑦(𝑖)‖2), (4.7)

where 𝜑 is a radial basis function and the weights 𝑤𝑖 are chosen to satisfy

𝑧⋆(𝑦(𝑗)) =
𝑁𝑒∑︁
𝑖=1

𝑤𝑖𝜑(‖𝑦(𝑗) − 𝑦(𝑖)‖2), ∀𝑗 = 1, . . . , 𝑁𝑒. (4.8)

Solving for the weights requires a linear solve of a size 𝑁𝑒 system, but this can

be performed in the offline stage. The radial basis function 𝜑 describes how much

influence the QoI at some observation has on nearby observation values. A common

choice for 𝜑 is the multiquadratic 𝜑(𝛿) = (𝛿2 + 𝛿20)1/2 [108], where 𝛿0 is a scale factor

we choose to be equal to the average nearest-neighbor distance.

A second comparison case is regression with basis functions fitted using the proce-

dure described in [111]. Let 𝑘 be a chosen number of nearest neighbors to interpolate

over, and 𝑛𝑞 be the number of nearest neighbors with which to build a quadratic basis

function. The QoI is approximated by

𝑧⋆(𝑦) =
∑︁
𝑖∈𝒦𝑖

𝑤𝑖(𝑦)∑︀
𝑗∈𝒦𝑖

𝑤𝑗(𝑦)
𝜑𝑖(𝑦), (4.9)

𝑤𝑖(𝑦) =

(︂
𝑅− ‖𝑦 − 𝑦(𝑖)‖2
𝑅‖𝑦 − 𝑦(𝑖)‖2

)︂2

, 𝑅 = max
𝑖∈𝒦𝑖

‖𝑦 − 𝑦(𝑖)‖2, (4.10)

𝜑𝑖(𝑦) = 𝑦𝑇𝐴(𝑖)𝑦 + 𝑏𝑇(𝑖)𝑦 + 𝑐(𝑖), (4.11)

where 𝒦𝑖 are the 𝑘 nearest neighbors of 𝑦(𝑖). The basis functions are fitted in the

sense that 𝐴(𝑖) ∈ R𝑛𝑦×𝑛𝑦 , 𝑏(𝑖) ∈ R𝑛𝑦 , 𝑐(𝑖) ∈ R are computed for each of the 𝑁𝑒
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known (𝑦(𝑖), 𝑧⋆(𝑦(𝑖))) pairs by means of a least-squares fit on their 𝑛𝑞 nearest neighbors

while enforcing 𝜑𝑖(𝑦
(𝑖)) = 𝑧⋆(𝑦(𝑖)). Based on the recommendations of [18], we use

𝑛𝑞 = 1.5𝑛DoF and 𝑘 = min(1.5𝑛𝑞, 𝑁𝑒), where 𝑛DoF is the number of degrees of freedom

in the basis functions being fitted; we fit linear or constant basis functions instead

when there are not enough training points.

We compare the performance of Algorithm 1 and the various black-box interpo-

lation methods in the case where the training and test observations are generated

by the same process, and in the case where they are not. The latter simulates a

case where the manufacturing process has changed from that used to generate the

training objects. We use the same experimental setup as in Section 4.5.1. In the

case of training-test mismatch, the training observations are generated from circular

objects with one random anomaly, but the test observations are generated from cir-

cular objects with two random anomalies. The results for the case where the training

and test observation distributions do and do not match are shown in Figure 4-9 and

Figure 4-10, respectively. For physics-informed and black-box kNN, for each training

set, we select from among 𝑘 = 1, 2, 4, 8 to obtain the lowest mean QoI error over

the test points. For each approach considered, at each training set size, we plot the

average, and 0.25 and 0.75 quantiles, of these mean QoI errors over the 40 random

training sets.

In both cases, the physics-informed approach of Algorithm 1 is more accurate than

the black-box approaches with small numbers of training points. When the training

observations well represent the test observations, the basis interpolation methods are

able to achieve greater accuracy than Algorithm 1 when there are many training

points available. However, when the training and test distributions do not match, the

improved error of the basis interpolation methods over Algorithm 1 for large training

sets is greatly reduced or disappears. Here, physics-informed kNN is more robust to

a mismatch in the distribution of training and test observations.

84



Black-box
kNN

Physics-Informed kNN

Radial Basis
Interpolation

Fitted Basis
Interpolation

(a) Bichromatic, target mismatch

Black-box
kNN

Physics-Informed kNN

Radial Basis
Interpolation

Fitted Basis
Interpolation

(b) Monochromatic, area moment of inertia

Figure 4-9: Average mean QoI error over test observations for (a) target mismatch
and (b) area moment of inertia QoI outputs using physics-informed kNN or black-
box interpolation methods. Vertical bars indicate 0.25 and 0.75 quantiles over random
training sets.
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Figure 4-10: Average mean QoI error over test observations for (a) target mismatch
and (b) area moment of inertia QoI outputs using physics-informed kNN or black-
box interpolation methods when training and test observations are generated from
different processes. Vertical bars indicate 0.25 and 0.75 quantiles over random training
sets.
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4.6 Active Learning for Minimizing Worst-Case Re-

gression Error

For a given training set size, one can obtain more accurate QoI estimates with physics-

informed KNN if the expansion points are chosen in a principled fashion, rather than

at random. In this example, we discretize the domain with a 16× 16 grid (𝑛𝑥 = 256),

and model 𝑛src = 10 photon sources with 𝑛rps = 5 rays per source (𝑛𝑦 = 45). We

start with a pool of 2048 unlabeled points, and randomly select eight initial points

to seed the training set. We then pick the remaining training expansion points either

at random, or with an active learning approach by greedily solving the 𝑁𝑒-center

problem (see Section 3.2)).

In Figure 4-11, the QoI error from using these training sets is averaged over 500

test points; this average QoI error is then averaged for 45 randomly seeded training

sets. For each training set, we select from among 𝑘 = 1, 2, 4, 8 to obtain the lowest

mean QoI error over the test points. We see that for given training set size 𝑁𝑒,

our proposed active learning approach usually gives small improvements in average

QoI error, compared to random selection. The performance of the active learning

approach varies with the random seed training points, especially at small training

set sizes. If instead we examine maximum error, which our active learning approach

is designed to minimize, we see a larger gap in the performance of the active and

random approaches. In Figure 4-12, we take the largest QoI error incurred over the

test points, then average this maximum error over the 45 randomly seeded training

sets. For each training set, we select from among 𝑘 = 1, 2, 4, 8 to obtain the lowest

maximum QoI error over the test points. For most training set sizes, using the active

learning approach does indeed give better average maximum QoI error than random

selection. The active learning approach also gives less variability in the maximum

QoI error over the random training set seeds.

As with all active learning approaches, there is no guarantee that the proposed

active learning approach will outperform random selection for all goal-oriented inverse

problems and sets of offline and online observations. In particular, the performance of
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Figure 4-11: Average mean QoI error over test observations for (a) target mismatch
and (b) area moment of inertia QoI outputs using physics-informed kNN with training
sets generated by random selection or active learning by solving the distance-based
𝑁𝑒-center problem. Vertical bars indicate 0.25 and 0.75 quantiles over training sets
with different random seeds.
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Figure 4-12: Average maximum QoI error over test observations for (a) target mis-
match and (b) area moment of inertia QoI outputs using physics-informed kNN with
training sets generated by random selection or active learning by solving the distance-
based 𝑁𝑒-center problem. Vertical bars indicate 0.25 and 0.75 quantiles over training
sets with different random seeds.
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the proposed active learning approach depends on the quality of the offline observation

pool and the nonlinearity of the goal-oriented inverse problem. The proposed greedy

active approach benefits from an offline observation pool whose spread well represents

that of the online test observations, although larger pools will increase the cost of

choosing each training point. Recall that in deriving the active learning approach

(see Section 3.2), the distance between observations is used as a proxy for the QoI

error incurred by using one as an expansion point for the other. Approximating the

error minimization problem with the distance minimization problem may not work

well for highly nonlinear predictions and/or inverse problems.

Even when the offline pool is representative of the online test points, and the

distance minimization problem well approximates the error minimization problem,

the greedy algorithm may not optimally solve the distance minimization problem.

However, compared to random selection, the greedy algorithm is more consistent,

and its performance relative to the optimum has a known bound.

4.7 Active Learning for Classification

In this section, we give numerical results comparing misclassification rates from using

our physics-informed or a black-box approach, with randomly or actively sampled

training sets, for threshold-based classification. Section 4.7.1 compares different ac-

tive learning approaches for generating the training set of physics-informed kNN.

Section 4.7.2 compares the performance of combinations of physics-informed and

black-box offline sampling and online classification approaches.

4.7.1 Active Learning for Physics-Informed Classification

As described in Section 3.3, when the continuous QoI of the inverse problem is used

for classification by thresholding, one can perform active learning by choosing train-

ing points close to the estimated boundary between classes. In this example, we use

the same setup as in Section 4.6, with the same test points. We then pick the remain-

ing training expansion points either at random, or with one of the active learning
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approaches described in Sections 3.2 to 3.4. We use 𝑘𝑎 = 5 neighbors to determine

uncertainty for the USEN and utilEN active sampling approaches. For each training

set, we estimate the class of each of the 500 test points by estimating its QoI using

physics-informed kNN with that training set, and then calculate the misclassification

rate. Misclassification from using our physics-informed maps is determined relative

to the class from solving the full inverse problem, not from the truth parameters

used to generate the observations. We then average the misclassification rate over 45

randomly seeded training sets.

We consider two types of thresholding to map the continuous QoI to a class. First,

we consider a single QoI threshold that divides the offline pool into two classes based

on whether their QoI is greater or less than the threshold. We can interpret this

as an object being acceptable if it sufficiently matches the target (target mismatch

QoI), or if it sufficiently resists bending (area moment of inertia QoI). We choose the

threshold so that 40% of the offline pool points belongs to one class, and 60% to the

other. Figure 4-13 describes the average misclassification rate from applying a single

threshold to the QoI estimate of physics-informed kNN, with randomly or actively

sampled training sets; we show the lowest misclassification rate among online number

of nearest neighbors 𝑘 = 1, 2, 4, 8.

Second, we consider a classification mapping with two thresholds, so that the QoI

values between them correspond to one class, and other QoI values are mapped to

the other class. We apply this mapping to the area moment of inertia QoI, which

can be interpreted as designating an object acceptable if it is neither too stiff nor

too pliable (QoI values between the thresholds). We choose the thresholds so that

20% of the QoI values of the offline pool points fall between them. We consider two

pairs of thresholds: the 0.3 and 0.5 quantiles of the offline pool QoI, and the 0.5

and 0.7 quantiles. Figure 4-14 shows the average misclassification rate from applying

this double threshold to the QoI estimate of physics-informed kNN, with randomly or

actively sampled training sets; again, we show the lowest misclassification rate among

online number of nearest neighbors 𝑘 = 1, 2, 4, 8.

As seen in Figures 4-13 and 4-14, greedily solving the distance-based 𝑁𝑒-center
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(a) Bichromatic, target mismatch (b) Monochromatic, area moment of inertia

Figure 4-13: Average misclassification rate for thresholding QoI when training sets for
physics-informed kNN generated through different active learning approaches (binary
classification with single threshold). Vertical bars indicate 0.25 and 0.75 quantiles
over training sets with different random seeds.
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(a) thresholds at 0.3 and 0.5 quantiles (b) thresholds at 0.5 and 0.7 quantiles

Figure 4-14: Average misclassification rate for double-thresholding QoI from physics-
informed kNN, with training sets generated through different active learning ap-
proaches, for monochromatic case with area moment of inertia QoI. Vertical bars
indicate 0.25 and 0.75 quantiles over training sets with different random seeds.
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problem in order to reduce worst-case QoI error (see Section 3.2) is not as efficient

as the other approaches in the classification setting. Large QoI errors do not matter

so long as the estimate and truth are on the same side of the threshold(s). Note

that this active learning approach depends only on the location of the pool points

and not their QoI values; the training sets chosen using this approach are the same

between Figure 4-11b and Figure 4-14. The QoI errors shown in Figure 4-11b, for

both the active and random offline sampling, correspond to the misclassification rates

shown in Figure 4-14. In Figure 4-11b the active sampling approach is able to give

better average mean QoI error than random sampling at larger training set sizes;

however, in Figure 4-14, random sampling gives lower average misclassification rates

at all training set sizes.

In Figures 4-13 and 4-14, none of the active learning approaches consistently give

the lowest misclassification rate for any given training set size. However, random

selection does not give the lowest average misclassification rate for any of the training

set sizes, suggesting that some form of active learning is advisable. The lowest aver-

age misclassification rate is often obtained by one of the active sampling approaches

(USEN or utilEN) tailored to physics-informed kNN, although neither consistently

performs better than the other. There is no guarantee that either USEN or utilEN

will be the best active learning approach for all threshold-based classification inverse

problems. The tailored approaches are also more expensive to compute than the

other approaches considered, since they require using the physics-informed maps to

estimate the classes of the pool points, with utilEN being more expensive than USEN

due to the more complex calculation of utility.

4.7.2 Physics-Informed vs Black-Box Active Learning and On-

line Classifier Combinations

Using the same setup as was used for the results in Figure 4-13, we compare the

performance of physics-informed active learning (see Sections 3.3 and 3.4) and online

QoI estimation approaches with that of black-box active learning and online QoI
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estimation approaches. For physics-informed classification, we threshold the QoI

estimated using physics-informed kNN, as described in Section 3.1.2. For black-

box online classification approaches, we consider two approaches: (a) thresholding

the black-box kNN QoI estimate (see (Equation (2.41)), and (b) using classification

kNN, where the estimated class of an online point is the most popular class among

its 𝑘 nearest neighbors in the training set. For these black-box online classification

approaches, we compare uncertainty sampling (USTN, see Section 3.3) with random

sampling.

Figure 4-15 describes the average misclassification rate for different combinations

of training set selection and online classification approaches; we show the lowest mis-

classification rate among 𝑘 = 1, 2, 4, 8. Greedily solving the distance-based 𝑁𝑒-center

problem (see Section 3.2) can also be considered a black-box active sampling ap-

proach, but gives inferior classification accuracy compared to uncertainty sampling,

so we do not plot it. Overall, both physics-informed and black-box classification

approaches benefit from active sampling in the offline phase, although no active sam-

pling approach is guaranteed to give better classification for all training set sizes. For

this example, one is generally able to achieve the lowest misclassification rate for a

given training set size by using a combination of physics-informed active sampling

and physics-informed kNN for online QoI estimation. For small randomly selected

training sets, classification by thresholding a physics-informed QoI estimate is most

accurate. This parallels the behavior seen in Section 4.5.1, though we note that reduc-

ing QoI error does not always reduce misclassification rate, since a QoI with a large

error can still be on the correct side of the threshold (as discussed in Section 4.7.1).

As in Section 4.5.2, we also explore the performance of different offline sampling

and online classification approaches when the online and offline observation distribu-

tions do not match. We again consider online test observations generated from objects

with two random anomalies, compared to offline training observations generated from

objects with just one random anomaly. Figure 4-16 describes the performance of the

different offline sampling and online classification approaches when applied to this

mismatched test set. We see that overall, both physics-informed and black-box clas-
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Figure 4-15: Average misclassification rate for (a) target mismatch and (b) area
moment of inertia QoI outputs, by thresholding estimates from physics-informed kNN
or black-box kNN, or by classifying using classification kNN.

sification approaches still benefit from boundary-seeking active sampling in the offline

phase, even though different portions of the boundary between classes are relevant for

the different offline and online test observation distributions. We also see a larger gap

in the performance of the best physics-informed and black-box offline-online combi-

nations; this parallels the behavior seen in Section 4.5.2.
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Figure 4-16: Average misclassification rate for (a) target mismatch and (b) area
moment of inertia QoI outputs, by thresholding estimates from physics-informed kNN
or black-box kNN, or by classifying using classification kNN, when training and test
observations are generated from different processes.

96



Chapter 5

Conclusion

In this concluding chapter, we summarize the work and contributions of this thesis

(Section 5.1), and point to directions for future work (Section 5.2).

5.1 Thesis Summary

In this thesis, we sought to address the problem of rapidly estimating a QoI from ob-

servations informing the parameters of an expensive model, in a resource-constrained

setting where solving the full nonlinear goal-oriented inverse problem is not feasible.

To this end, we have developed an algorithm that computes and stores a library of

compact, observation-independent, multilinear maps in an offline preparatory phase,

and applies these locally accurate maps to online observations to obtain rapid esti-

mates of their QoI. We have developed methods to reduce the storage and application

costs of these maps, and an error estimate that can be quickly calculated in the on-

line phase. Our algorithm, which we refer to as ‘physics-informed kNN’, draws from

and shares characteristics with both data-based and physics-based approaches. Like

black-box data-based methods, our mappings are cheap to apply (similar application

costs to polynomial regression) and are based on a training set of points where the

true QoI (from solving the full inverse problem for inferred parameters) for a set of

training observations is known. Unlikely purely data-based methods, our mappings

also contain information about the structure and physics of the goal-oriented inverse
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problem. The observation and prediction operators include physical models, and

are approximately represented by their truncated expansions when calculating the

mappings. Incorporating physics information into the mappings enables rapid QoI

estimation, with fewer training points needed than black-box data-based methods to

achieve a similar accuracy.

We have developed active learning methods tailored to our physics-informed kNN,

enabling the efficient choice of training points from a potential pool. Each training

point requires solution of the full inverse problem, and the calculation and storage of

its corresponding observation-to-QoI maps, so efficiently choosing training points can

reduce errors from estimating the QoI, given a limited offline computational budget

and/or map storage budget. We developed active learning methods for both regres-

sion and classification. For the regression case, where one seeks to reduce error in

the QoI estimate, we formulated the problem of choosing training points to greedily

reduce the worst-case QoI estimation error, and made approximations to allow for a

feasible solution. For the classification case, where the continuous QoI is mapped to a

discrete class, we developed two active learning approaches which seek to reduce the

misclassification rate by greedily choosing training points with greatest uncertainty

in their classification. In the first, we greedily choose points with greatest uncer-

tainty, where the estimated uncertainty is associated with proximity to the estimated

boundary between classes. In the second, we greedily choose points based on a more

expensive utility score, where the utility score suggests how querying a point might

impact the total uncertainty of the pool of points.

We have demonstrated our physics-informed kNN and its associated active learn-

ing algorithms on a nonlinear goal-oriented tomography problem. For this problem,

our proposed physics-informed approach achieved small QoI errors in a fraction of the

time to solve the full inverse problem. For the same random training sets, the physics-

informed mappings achieved greater accuracy in the QoI estimate for small training

sets compared to the black-box regression methods tested. The physics-informed esti-

mates were also more robust in the case where the training set did not well represent

the test set. Similar behavior was observed when using active learning approaches to
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choose different training sets for the physics-informed and black-box data-based map-

pings, and when the QoI estimate was used for classification. When physics-informed

kNN was used to estimate the QoI, the proposed active learning approaches were

able to achieve reduced maximum QoI errors and misclassification rates compared

to randomly choosing training sets. Neither of the two active learning approaches

developed for classification with the physics-informed maps was consistently better

than the other. However, in the numerical experiments performed, one or both of the

active learning approaches gave lower misclassification rates than random sampling,

suggesting that some form of active learning is advisable.

The contributions of this thesis are:

∙ development of a physics-informed kNN algorithm that bypasses the solution

of a high-dimensional inverse problem to directly give rapid QoI estimates for

observations, using a library of physics-informed maps;

∙ development of active learning strategies for efficiently choosing offline evalua-

tions with which to generate the library of maps;

∙ numerical evidence that physics-informed kNN gives improved accuracy and

robustness, compared to black-box methods;

∙ numerical evidence that the proposed active learning approaches can give im-

proved QoI estimation and classification performance over random sampling.

5.2 Directions for Future Work

5.2.1 Large-scale Problems

Additional work may be needed to apply our physics-informed kNN to large-scale

and/or highly nonlinear problems. The cost of applying our physics-informed maps

does not scale with parameter dimension, in contrast to solving the full inverse prob-

lem. Storage and online application costs do, however, increase with observation

dimension. Although we assume the observations to be much lower dimensional than
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the parameters, the observation dimension can still be large for large-scale problems

with millions of parameters. High-dimensional observations will further increase the

need for reduced-rank representations (see Sections 2.4.2 and 2.4.3). In addition, if

one can afford larger training sets, choosing maps based on the Euclidean distance

between their training point and online observations may not work well for high-

dimensional observation space [16]. Using different norms (e.g., a fractional norm [1])

to measure distance may help. Seeking low-dimensional structure in the relationship

between observations and QoI may also help. Global low-dimensional structure may

be useful in finding a reduced effective observation space in which to store and choose

maps. Local low-dimensional structure may be useful in choosing appropriate maps

to apply in the online phase, in a similar fashion to our error estimate (see Sections 2.6

and 4.4.2).

We have also thus far assumed the QoI to be a scalar or very low-dimensional

vector. Considering each element as a separate scalar QoI and generating a library

of maps for each can become expensive. For vector-valued QoI, rather than con-

sider each element as a separate QoI, one may more effectively choose training points

and compute factored reduced-rank map representations by considering the QoI as a

whole. To reduce storage and online application costs for vector-valued QoI, one may

wish to choose a single training set and use a single library of maps for the QoI as

a whole; developing active learning strategies suited to vector-valued QoI would be

useful in this regard. Having a single training set may also allow for more efficient fac-

tored (and potentially reduced-rank) representations of our physics-informed maps.

In addition to the non-symmetric versions of the tensor decompositions discussed in

Section 2.4.2, one may also make use of tensor decompositions that treat one dimen-

sion differently from the others, such as the T-SVD [76]. Techniques for handling

vector-valued QoI would be useful for extending continuous QoI to classification with

many classes by defining a plug-in classifier (see Section 3.1.2).

Since our physics-informed maps are based on local approximations to the goal-

oriented inverse problem, one may expect our algorithms to encounter difficulties in

highly nonlinear cases. In particular, we use a linear approximation of the observa-
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tion operator; the resulting approximate inverse problem is more analytically tractable

than when higher-order approximations to the observation operator are used. The or-

der of the Taylor approximation to the prediction operator can be increased for greater

accuracy, at the cost of greater expenses in storage and online application. However,

increased order is not guaranteed to give better accuracy, and not all continuous,

sufficiently differential functions have convergent Taylor approximations. For highly

nonlinear goal-oriented inverse problems, the accuracy of our local physics-informed

maps may be further restricted to regions near training points. Thus, highly nonlin-

ear problems have increased need for effective tailored active learning approaches in

the offline phase, and methods for choosing appropriate maps in the online phase.

5.2.2 Parameterized Family of Predictions

The work in this thesis was motivated by the need to rapidly estimate the QoI cor-

responding to observations in resource-constrained settings, such as when the QoI is

needed to inform a decision. In deriving our algorithm, we assumed a fixed prediction

operator (mapping parameters to QoI) in the online phase that is known in the offline

preparatory phase. When the effect of the inferred parameters can be summarized

by a low-dimensional quantity that does not depend on the decision variables, then

it is fair to assume such a known and fixed prediction operator.

For more complex decisions, this assumption may not hold. For example, con-

sider a contaminant control problem where one wishes to use observations of past

concentration levels to decide a remediation strategy, with the aim to control fu-

ture concentrations in some sensitive area. Suppose one infers for the strengths of

sources that can not be controlled, and then seeks the optimal strengths of control-

lable sources in order to counteract the non-controllable sources. If the concentrations

are nonlinearly related to the sources, then the effects of the inferred parameters and

the control variables on the future concentration can not be separated. The effect of

the inferred parameters can not be encapsulated in a way that is independent of the

control variables, which are not known in the offline stage.

Enabling rapid decision-making from observations in these more complex, coupled
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problems motivates extending our physics-informed mappings to the case where the

goal-oriented inverse problem has a family of prediction outputs. An immediate path

forward would be to sample prediction operators from this family, and generate a

library of physics-informed maps for each. Techniques would need to be developed

to efficiently choose both prediction operators and observations for which to gener-

ate maps in the offline phase. Potential inspiration can be drawn from parametric

model-order reduction (surveyed in [12]), which seeks to build approximations for

a parameterized family of models. Another potential source of inspiration is trans-

fer learning (surveyed in [145]) for black-box data-based methods, where one seeks

to ‘transfer’ information from one input-output relationship to another, through the

training points and/or the trained data-based mappings.

5.2.3 Robustness to Training-Test Mismatch

In our numerical experiments, we saw that physics-informed kNN was more robust

to the case where the training observation points did not well match the online ob-

servations (see Sections 4.5.2 and 4.7.2). If one is aware of the mismatch, one can

potentially take steps to use the physics-informed maps differently, so as to obtain

better QoI estimation accuracy. One may again take inspiration from transfer learn-

ing methods, which have also been developed for the case where the true input-output

(observation-QoI) relationship remains constant, but there is a mismatch in the dis-

tribution of input points in the offline training and online test phases. Such methods

can potentially be extended to our physics-informed mappings, to further improve its

robustness to a mismatch in the distribution of training and test observations.
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