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Abstract

The general problem of active vibration isolation for flexible structures is investigated
in order to determine the impact of structural flexibility on the performance of passive
and active mounts. A mechanical and control design approach is proposed in which
compensators are first designed for an active isolator mounted to a rigid base, and
then re-implemented with little or no changes when the actuator is later attached to
a flexible structure. A general model for an isolator mount is developed and used to
characterize the impact of structural flexibility in terms of a dimensionless parameter
that is a function of isolated mass, modal damping and modal mass. It is shown
that for values of the dimensionless parameter small compared to one, the effect of
flexibility on the isolator transfer functions and passive performance can be ignored.
For values of the parameter large compared to one, a parametric multiplicative error
model is proposed to bound the perturbations to the nominal (rigid base) plant model.
Low order dereverberated mobility models, based on a frequency average of complex
base or equipment mobility, are proposed as a means to incorporate knowledge of the
approximate base structural dynamics into the nominal plant model. The individual
effects of mechanical design, passive isolation, and choice of output sensor on the
degree of modal decoupling are described.

Three active isolators are constructed for the purpose of reducing structural vi-
brations at optics mounting locations on the SERC Interferometer Testbed. Open
loop tests of the active mount illustrate the advantages of a mechanical design that
decouples uncertain base dynamics from the loop transfer function. LQG compen-
sators employing acceleration feedback are implemented stably with the active mount
attached to both a rigid test stand and to the flexible testbed. The impact of base
flexibility, and the performance limitations of modes within the active mount it-
self, are quantified. Three simultaneous, independent pathlength control actuators
mounted to the same flexible testbed are shown to each provide 12 dB of broad-
band vibration improvement over 10 to 500 Hz in three laser pathlength outputs.
The individual and combined contributions of mechanical redesign, passive vibration
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isolation, passive damping and active pathlength control to the improvement of the
testbed performance metric are shown. Results of this thesis emphasize the advan-
tages of mechanical design for control in which the open loop plant is conditioned to
robustly accept low order, high gain compensation.
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Chapter 1

Introduction

1.1 A Controlled Structures Design Framework

The problem of vibration reduction in flexible mechanical systems is encountered
1. numerous aerospace, industrial and commercial applications: instrument pointing
and microgravity processing aboard spacecraft, rider comfort and interior noise in
passenger vehicles, machinery isolation within submarines, precision machining op-
erations, and many others. Design solutions — historically using passive means but
increasingly employing active control — enable the product, process or system to meet
a desired level of performance in the presence of disturbances. Within the aerospace
industry the set of analysis and design tools for active and passive control of struc-
tural vibration is known as Controlled Structures Technology (CST). The use of CST
to enhance or enable the successful mission performance of future spacecraft designs
has been the focus of significant research effort for more than a decade. A number of
laboratory testbeds [10,56,53,18,72] and at least one shuttle flight experiment [50]
have been dedicated to this topic.

A framework for CST design [10] is shown in Figure 1.1. Subdisciplines are pic-
torially arranged in relation to the way in which the disturbance enters the structure
(input conditioning and isolation), is transmitted (structural design, passive damp-
ing), and is modified by active control (high and low authority control, sensor and

actuator dynamics, output isolation). It is expected that a layered synthesis of passive
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Figure 1.1: Controll.d Structures Technology (CST) design framework.

and active control will be required to meet the stringent disturbance environments
required for many proposed precision optical spacecraft missions [40]. An alternate
representation of the CST design approach is illustrated in Figure 1.2 [72] which em-
phasizes a layered control approach: isolation of disturbance at its source, structural
quieting, and output compensation. The structural quieting layer generally requires
a distributed implementation of passive damping and low authority control (LAC),
while the isolation layer is fundamentally a local design problem. ‘i'he third layer
in Figure 1.2, output compensation, may consist of either local isolation of sensitive
equipment or a global high authority control (HAC) architecture using distributed

actuators to control a stated performance metric.

Early research in CST addressed different aspects of the structural quieting layer
in Figure 1.2: sensor and actuator design, structural plant modelling, identification,

and passive and active damping (or LAC). Structural quieting is accomplished by the
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dissipation of vibrational energy within the structure; special hardware such as the
passive D-Strut [2] and active piezoelectric struts using collocated force and strain
feedback [42] have been developed for truss structures. The performance improvement
due to structural quieting is limited, however, and once the base structural resonant
peaks have been significantly reduced by active and passive damping, further treat-
ment will yield small increases in performance [5]. To achieve greater disturbance
rejection additional high authority control layers are added to the plant to modify
the structural frequencies and mode shapes. One option is the use of distributed in-
duced strain actuators for high authority control; this approach has been investigated
for beam and plate structures [3,41] as well as for truss structures [21, 54]. While
significant performance improvements have been demonstrated, the resulting HAC
control designs have been characterized by high model and compensator order and
a high sensitivity to plant uncertainty and plant variations, which has made general

application of this approach difficult.

Recently there has been renewed interest in passive and active isolation in con-
trolled structures design, both at the disturbance source (Figure 1.2) and at the

output compensation stage. Isolation is attractive because it can be applied directly
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at disturbance sources or at critical output locations. In principle, the active isolation
open loop plant will be collocated and will be dominated by local mount dynamics,
permitting the design of low order compensators that neglect base dynamics. The
presence of base resonant flexibility, however, can influence the performance and sta-
bility of the active mount and the isolation design must be considered as part of a
coupled CST design. Open research questions, to be investigated in this thesis, are:
when must active isolation be considered a control-structure interaction (CSI) prob-
lem, how does base or equipment modal flexibility influence active isolation design
for controlled structures, and how are sensors, actuators and local mechanical design
features selected to permit robust implementation of low order, high gain compensa-

tion.

1.2 The Isolation Concept

The purpose of mechanical isolation is to attenuate the transmission of disturbances
between equipment and a structural foundation by inserting a compliant mount at
the interface, as illustrated in Figure 1.3 for a single degree of freedom system. The
two classical isolation problems are presented: in Figure 1.3(a), the mount blocks the
transmission of base motion from the sensitive equipment; while in Figure 1.3(b),
the compliant mount isolates the foundation from forces generated by vibrating
equipment. In the simplest idealization, the foundation is assumed to have infinite
impedance (compared to the isolator or equipment impedance), and the equipment
blocked disturbance force Fjg(s) and base free disturbance velocity v} are assumed
to be prescribed.

One measure of the performance of an isolation mount is the transmissibility of
force or displacement across the interface, defined by

ve(s) _ Fis)

T(S) = f(s) - Fg(s) (]1)

The characteristic transmissibility for a passive isolation system is illustrated qual-

itatively in Figure 1.4, and represents the case in which the equipment is modelled
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Figure 1.3: The two standard disturbance isolation problems: (a) compliant
mount | used to isolate base motion v} from sensitive equipment
E, and (b) compliant element used to isolate machinery blocked
disturbance force F, from foundation.

as a rigid mass and the isolator is miodelled as a massless viscously damped spring.
The mount attenuates disturbance frequencies above 2w, where w, is the mount
natural frequency, and amplifies disturbances for all frequencies below v/2w,. The
design tradeoff is to make w, low enough to provide low transmissibility at high fre-
quencies, while limiting static deflection and transient dynamic deflections due to
impulse disturbances. A second tradeoff involves the level of viscous damping in the
isolator interface: damping is required to limit the transmissibility at resonance, yet
the presence of isolator damping degrades the performance of the isolator at high

frequencies. Harris [31] provides an extensive reference for passive isolation design.

Active control can be used to enhance the transmissibility provided by a passive
mount, or to provide a level of isolation when the passive mount is stiff. Sensor mea-
surements such as equipment or base acceleration, interface force or gap are used to
command an actuator (represented by blocks labeled “A”), arranged in one of the
configurations illustrated in Figure 1.5. Actuators may be electromagnetic, piezoelec-
tric, pneumatic, hydraulic, electromechanical, or other, and will have finite output
impedance which governs the load carrying ability at zero power and determines

whether the actuator may be considered to command force or displacement. Fig-
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Figure 1.4: Qualitative transmissibility of a passive isolation mount.

ure 1.5(a) is a typical configuration for a force actuator used to soften an already
soft passive mount. In Figure 1.5(b), the series passive isolation element may pro-
vide isolation for a stiff displacement actuator, or perhaps provide decoupling of the
active element reaction force from the base. In both Figure 1.5(a) and Figure 1.5(b),
the equipment is used as the reaction mass for the active stage; in Figure 1.5(c)
and Figure 1.5(d), a separate mass is vsed for the reaction force. The two latter
instances might be termed momentum compensation and force cancellation instead of
isolation, but the control objective remains the same - to modify the passive trans-
missibility of disturbances using an active control force applied at or near the mount
interface. Examples of each of the cases shown in Figure 1.5 may be found in the
literature (82,15, 79, 78].

Because an active mount is not constrained by the constitutive relations of passive
materials, active control permits much greater freedom in the design of mount trans-
missibility. Figure 1.6 illustrates the qualitative effects of broadband and narrowband
cortrol on the closed loop transmissibility. Reasons for using active mounts include

the following:

(i) the passive mount natural frequency can be reduced while eliminating static

deflection

(ii) addition of inertial damping to reduce resonant transmissibility without degrad-

ing high frequency attenuation
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Figure 1.5: Four actuator configurations used to modify the passive transmis-
sibility between a vibrating base and sensitive equipment E (with
output velocity v.). P and A represent passive and active elements,
while R represents a reaction mass. Configurations (c) and (d) are
not typically considered to be isolators, but can be used to modify
the passive transmissibility between base motion and output veloc-
ity, which is the active isolation problem. These configurations also
apply directly to the force isolation problem, in which the equipment
is the vibration source and the base is the receiver,

(iii) more flexibility in tailoring frequency dependence of the transmissibility

(iv) ability to create time-varying notches in the transmissibility for narrowband

disturbances
(v) possible weight or size improvements.

A number of authors have investigated the effects of feedback on local mount
transmissibility [75], [60], [26]. Numerous demonstrations of broadband control can

be found in the literature [60], [71], [82], which has been demonstrated to eliminate
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Figure 1.6: Qualitative effects of active control on the isolator transmissibility:
(a) broadband and (b) narrowband compensation.

resonant amplification and to reduce the mount natural frequency up to a factor of
25 for single stage systems [80], limited mainly by sensor dynamic range and mount
or foundation resonances. The literature in narrowband control is extensive; design
approaches using classical, higher harmonic, LMS feedforward, and modern control
have been developed; Sievers and von Flotow [67] review and show the equivalence

between these narrowband design methods.

1.3 Literature Review

1.3.1 Examples of Isolation for Spacecraft

Passive isolation has been utilized in spacecraft missions where the disturbance en-
vironments required by cameras or telescopes are particularly stringent. The three-
thousand pound HEAO-B X-ray telescope was isolated from its host spacecraft by four
silicone elastomeric mounts [29]. The mounts were designed with 21-35 Hz natural
frequency to attenuate shock loadings during handling, provide controlled spacecraft-
telescope interface during launch, and to minimize spacecraft induced thermal loading
during on-orbit operation. A more well known example is the passive isolation of HST

reaction wheel assemblies (RWAs) using viscoelastic fluid dampers [58]. Due to ro-
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tational imbalances and bearing imperfections, each RWA would generate multi-axis
disturbances up to 0.12 N at numerous harmonics of wheel speed, which could range
from zero to 3000 rpm (50 Hz). Each 48-kg RWA was mounted on 3 pairs of isolators
which provided a 20 Hz axial corner frequency and 50 percent improvement in tele-
scope jitter, while allowing control torques generated by the RWAs to be passed to
the spacecraft. Passive isolation has been considered for a base mounting for space
station gimbal systems [84] as well as for low pass filters within high precision payload
pointing systems [69].

An active magnetopneumatic mount has been used to isolate a 400 pound missile
guidance platform during launch [60] in which the mount had a 5 Hz corner frequency
and zero static deflection. Active isolation was proposed [35] for the isolation of at-
titude control system disturbances from a quiet spacecraft and telescope structure.
Most spacecraft applications of active isolation have been for vernier stages or im-
age motion compensation stages of precision pointing systems such as the Annular
Suspension and Pointing System and the Instrument Pointing System [37,32]. A mul-
tilayer design approach is necessary because main gimbal actuators are low bandwidth
(0.5 Hz) and because the gimbal mounts are stiff above this frequency {39,63]. Mag-
netic isolation mounts [30,25] are typically used to isolate the vernier stage in these
applications. Recently interest in micro-g isolation of shuttle and space station pay-
loads has motivated work on ultra-low frequency active isolation using magnetic and
piezoelectric bimorph actuators [1,26, 73, 34,22, 68]. Active narrcwband momentum
compensation and isolation are currently under investigation for the attenuation of
disturbances for the Oxford cryogenic cooler which is being considered for numerous

remote sensing spacecraft instruments [14,15].

1.3.2 Isolation of Non-Rigid Structures

Flexibility of the base structure, isolated equipment or the isolation mount itself
can degrade the performance of passive and active mounts. The transmissibility
defined in Eqn. 1.1 will overestimate the performance of a passive isolation mount,

and base resonant dynamics will participate in the local plant dynamics leading to a
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risk of instability with active control, unless measures are taken to compensate these
dynamics in the controller or by mechanical redesign. Base flexibility first became
important in the isolation of vibrating machinery from ship hulls and is of current

interest for machinery isolation and precision pointing aboard spacecraft.

The concept of passive isolator effectiveness was introduced in the 1950’s as a
dimensionless measure of vibration reduction defined as the ratio of unisolated mount
variables (force and velocity) to the isolated variables [17). Sykes [77] used mechanical
impedance methods to calculate the effectiveness of isolation of machines (both rigid
and flexible) isolated from non-rigid foundations modelled as a general impedance as
well as by simple mechanical analogies: spring, mass, damper, and single resonator.
The effectiveness of the isolator was found in almost all cases to decrease above
the machine-foundation resonance when the foundation exhibited flexibility. Ruzicka
and Cavanaugh [59] analyzed the problem of isolation of flexible equipment from a
rigid base and compared results to a flexible beam experiment. Swanson, Miller and
Norris [76] extended the analysis of Sykes to a multidimensional isolation of flexible
structures and used singular values to express bounds on the isolator effectiveness

based on the measured impedances of a flexible engine and structural frame.,

The active isolation of rigid equipment from a flexible base has been investigated
in several recent papers. Watters et al. [82] regulated the transmitted force from a
machine to a flexible base using an electromagnetic actuator and showed that base
dynamics are nearly decoupled from the force measurement, yet base acceleration
exhibited strong interaction with base modes, prohibiting simple broadband control
design with this sensor. However in an analytical study, Kaplow and Velman [35] used
base acceleration effectively for active isolation of machinery vibration, although in
this case resonant dynamics occurred well above the passive mount corner frequency.
Scribner et al. [62] demonstrated isolation of force from a modally rich plate using
piezoelectric actuators and found that an active control solution is simplified when the
base input mobility has high modal overlap, a function of both damping and relative
modal density. Isolation of equipment vibration from the JPL Phase B Testbed using

gap feedback was implemented by Spanos et al. [72]. Interaction with structural
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resonances was minimal due to the high level modal damping (5 percent); resonances
internal to the passive flexure within the isolation hardware were found to limit the
active isolator performance. A second implementation using force feedback on an
undamped structure showed the same type of base flexibility decoupling as in the
study by Watters et al. In each of these cases, the compensators were designed using
plant models based on measurements taken with the isolator already mounted to a
flexible structure.

Isolation and positioning of sensitive equipment mounted to flexible bases has also
been investigated. Garcia, Sievers and von Flotow [24] experimentally demonstrated
the broadband isolation of a lightweight mirror bonded to a multilayer piezoceramic
actuator mounted to the tip of a flexible cantilevered beam. They found that the
participation of base flexibility in the transfer function from piezoelectric actuator

voltage to laser output was governed by the dimensior.less parameter

1m
5% (1.2)

where m is the mass of the mirror and (, and 7, are the damping and modal mass
of the base resonance. The result indicates that if the actuated mass is small relative
to the modal mass, or if structural damping is large, then the mass can be actively
isolated from base motion with little risk of unstable interaction with base modes.
In another study, Spanos et al. [72] used two layers of output isolation - reactionless
piezoelectric actuation and voice coil — as the fine and coarse pathlength control of a
lightweight mirror on the JPL Phase B Testbed, achieving a factor of 137 reduction
in disturbance level. Base resonances were evident in the voice coil loop; their effects
on the loop stability were lessened by the addition of 5 percent damping to the base
modes by a structural quieting layer. Lurie et al. have also investigated the use of
bridge feedback to modify the impedance of a piezoelectric actuator for use as an
active isolator [43]. Base flexibility will also interact with the control of gimballed
payloads when the gimbal axis is not through the payload center of gravity [57,69].
The inclusion of a passive isolation stage can reduce the degree to which base flex-

ibility appears in the plant transfer function for active isolation or payload pointing.
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Watters et al. [82] chose a soft passive mount, in the parallel configuration of Fig-
ure 1.5(a), to reduce frequency response variations due to base resonances in the open

loop transfer function using transmitted force as the regulated variable. A passive

isolation stage in series with an active stage (Figure 1.5(b)) may be used to decouple
the foundation dynamics from the plant transfer function above some frequency if the
passive stage includes an inertia against which the force actuator can react. Complete
decoupling is ideally provided by reactionless linear piezoelectric actuators (72, 48],
and reactionless gimbals for payload pointing [38,9] have been designed and tested.

In each of these applications, the objective of the design is to dynamically decouple
the unknown resonant base dynamics from the open loop plant, such that the active
isolation or pathlength control is low order and need only account for local mount
dynamics, and is relatively insensitive to changes in the base structure. Passive
isolation stages, therefore, provide not only open loop disturbance attenuation (add
performance) but also can be designed to condition the open loop transfer functions
(add robustness) for the active stage by decoupling unknown base dynamics from the
more well known local mount dynamics.

The dual performance/robustness roles of passive and active isolation are com-
pared to the familiar performance/robustness roles of passive and active damping
in Tables 1.1 and 1.2. Passive damping has a dual role of attenuating disturbance
transmission while also adding adding phase lead to lightly damped structural poles,
thus adding robustness to low and high authority control loops. Low authority con-
trol fulfills a similar role in disturbance rejection and addition of robustness to high
authority loops. Active isolation attenuates high frequency structural disturbances
and thus limits the required control bandwidth of other global high authority control
loops in the CST design architecture.

1.4 Thesis Objectives and Contributions

While passive and active vibration isolation of equipment from rigid foundations

has been well developed in the literature, a shortcoming is the treatment of active
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Table 1.1: The roles of passive and local control — for both per-
formance and added robustness for active control — are
analogous to the performance and stability roles of pas-
sive isolation,

Role Passive Damping Local Control

reduce disturbance to | reduce disturbance to

Performance
performance output performance output

Robustness ;(fcstab(iilili—‘.largargin to | add stability to HAC
an

Table 1.2: Passive isolation provides both disturbance attenuation
- and robustness for local isolation control by decoupling
flexible modes from the loop transfer function. Ac-
tive isolation removes control burden from other (HAC)
loops in a CST design.

Role Passive Isolation Active Isolation

reduce disturbance to | reduce disturbance to

Performance
performance output performance output

decouple base flexible | reduce control author-
Robustness | modes from active is»- | ity required for HAC
lation plant model loops in CST design
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Figure 1.7: The proposed design approach is to design compensators for the ac-
tive mount based on the rigid base transfer functions, to validate
stability and performance on a rigid test stand, and then to imple-
ment the active mount (with the same compensator) on a flexible

structure.

isolation for flexible structures, for both force and displacement transmissibility. The
degradation of performance and degree of coupling with base flexibility has been
investigated for passive mounts only (effectiveness concept) and not for active mounts ;

additionally the issue of stability must be considered for active systems.

Although active isolation for flexible structures has been demonstrated in recent
papers [82,72,71], in each case the compensation has been designed using plant models
based on in situ measurements of the isolated mounted to the flexible structure. Thus,
a central research issue is to test and model an active mount first on a rigid test stand,
and to develop a controller that will remain stable and provide known performance
in the presence of structural flexibility in the foundations to which the mount will
later be attached, as illustrated in Figure 1.7. Given this design approach, a natural
extension of the research is to determine what information about the base structure
could (or should) be added to the rigid based design model to either improve stability

or enhance performance.

The plant to be controlled is described by the coupling of two mechanical systems:
the local mount (well known and low order) and the base structure (usually of high

order, with uncertainty in modal parameters of natural frequency, damping and mode
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shapes, particularly at higher frequencies). For a large class of isolation problems,
the local mount dynamics dominate the loop transfer function for the active control,
and two modelling options are obvious: (1) augmentation of the plant dynamics to
account for the poorly known, weakly coupled base flexibility, or (2) the local mount
dynamics are chosen as the known model and base dynamics are treated as parametric

and unstructured uncertainty in the plant. Parametric uncertainties arise because the

resonances, while unstructured uncertainty arises because base modes add unmodelled
dynamics to the true open loop plant. The approach taken in this thesis is to include
parametric “backbone” mobility models of the base structure in the isolator plant

transfer function, and to treat base resonances as unstructured uncertainty.

Objectives: The objective of this thesis is to first investigate the impact that me-
chanical flexibility, in the base structure or isolated equipment, has on the perfor-
mance and stability of active isolation. A second objective is to demonstrate, in
analysis and experiment, the importance of mechanical design for an active mount
to permit robust implementation of low order, high gain control that is insensitive
to the presence of unmodelled modal flexibility in the base structures to which the
mount is attached. The experimental objective of this thesis is to demonstrate that
an active mount can be first controlled on a rigid test stand, and then installed on a

flexible structure with little or no modifications to the compensator.

Contributions: The power of mechanical design for control, as opposed to control
design for difficult mechanical systems, is demonstrated in this thesis. In analysis and
experiment it is demonstrated how the decoupling inherent in isolation architectures,
enhanced by mechanical design of the active mount, permits a control design approach
in which base modal flexibility is ignored (within certain limitations) during the design
process. Work by Sykes [77] and Ruzicka [59] on passive isolation for flexible structures
is extended in two ways: first, a dimensionless coupling parameter is introduced to

describe the perturbations due to base and equipment flexibility on the passive isolator
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effectiveness; second, frequency averaged mobility models (dereverberated and linear
magnitude average) of complex base structures or equipment, are added to improve

the accuracy of passive isolator performance using a modified effectiveness function.

The thesis further demonstrates the impact of base and equipment structural flex-
ibility on the active mount transfer fusictions, for two actuator configurations and a
set of sensor outputs. The perturbations in magnitude and phase are characterized
in terms of a dimensionless parameter, which can be used for mechanical design to
quantify the level of decoupling provided by the mount. A new parametric multiplica-
tive error model based on the coupling parameter is introduced for control design,
and dereverberated mobility models of the base or equipment are shown to improve
the nominal plant transfer functions. Finally, laboratory experiments on the SERC
Interferometer Testbed demonstrate multiple, independent isolation and pathlength

control on a flexible structure.

1.5 Thesis Description

A general model for passive isolation is developed in Chapter 2 which allows the study
of mechanical flexibility in the base structure or isolated equipment, using four-pole
mobility methods. It is shown how the mount passive sensitivity function (the inverse
of the mount effectiveness) is most useful for characterizing mount performance. Sev-
eral examples are shown that illustrate the impact of base and equipment flexibility
on this function, parameterized by the dimensionless coupling parameter. A new
methnd using averaged mobility models of the base structure is shown to improve the
models of mount passive sensitivity when an isolator is mounted to base structure

with high modal content.

In Chapter 3 the dimensionless coupling parameter is used to characterize the
effects of structural flexibility on the magnitude and phase of the local mount transfer
functions. The general mobility analysis reveals a great deal of similarity between the

effects of base and equipment flexibility, leading to simplifications in the presentation
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and in development of a simple multiplicative error model. Both parallel and series
actuation configurations are studied.

The SERC Interferometer Testbed is described in Chapter 4, and the testbed
performance metric is motivated by the requirements of proposed orbiting observato-
ries. Measurements of the tested performance metric are shown, and a modal test of
the test block demonstrates that it is effectively rigid for the purpose of the isolator
component tests.

Chapter 5 presents the design and open loop tests of three hardmount and soft-
mount actuators used for active isolation and pathlength control. Transfer functions
of the actuators, measured both on the rigid test block and on the testbed, illustrate
the advantages of softmount or reactionless mechanical design, for both individual
and multiple isolator control.

Control designs for acceleration feedback and pathlength control are presented for
the three active mounts in Chapter 6. LQG design methods are used to design com-
pensators for isolator plant models derived from rigid test block measurements. The
compensators are implemented stably on the actuator, mounted first to the test block,
and then to the testbed with little or no modifications to the compensators. Path-
length control using three independent mounts demonstrates a dramatic improvement
in the testbed performance metric. A summary of the thesis results and a discussion

of the contributions is provided in Chapter 7.
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Chapter 2

Passive Isolation

2.1 Objectives

The objective of this chapter is to develop a general model for passive mechanical
isolation, which can be used to investigate the effect that modal flexibility — in the
base structure or isolated equipment — has on inount transmissibility and passive
sensitivity. Frequency domain analysis based on a four-pole mobility representation
is used to develop equations of motion and to determine dimensionless parameters
governing isolator performance and the impact of flexibility. State space methods
are then introduced for numerical simulations of isolation. Finally, it is shown how

frequency averaged mobility models of complex base dynamics can provide simple yet

accurate models of mount passive sensitivity when isolators are mounted to flexible

base structures.

2.2 Review of Mobility Analysis Methods

This section presents, in a consistent notation, mechanical mobility a.id impedance,
concepts used throughout this thesis. Frequency domain analysis is useful for pro-
viding insight for low order problems, which can then easily be extended to more
complex structures. Within the frequency domain framework, a mobility represen-

tation is preferred to that of impedance because of the similarity between mobility
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and the form of plant transfer functions used for control design. In particular, this
section presents mobility concepts using four-pole mobility methods [51], a method

that facilitates the derivation of system equations and aids in their interpretation.

Basic Definitions: Figure 2.1 illustrates a free body diagram of a linear mechanical
system that is acted upon by two sinusoidal forces at points i and j. Consider first the
case in which only fi(t) acts on the system and represent that force by a magnitude

and phase
filt) = |fil & (2.1)

The velocity at point ¢ (in the same direction as f;) at the driving frequency is

v(t) = fog] 49

= |u;] eIP vt (2.2)

Velocity v;, displacement z; = v;/jw and acceleration %; = jwwv; all occur with fixed
phase relative to the driving force. Let f;(s) and v;(s) be the Laplace transforms of the
force and velocity. Mechanical impedance is defined as the ratio of the driving force
to the resulting velocity of the system; when the force and velocity are collocated this

ratio is termed the mechanical driving point impedance or simply the point impedance

Zig(s) = %‘3 (2.3)

where s = jw. The mechanical driving point mobility, or point mobility, is defined by

the ratio of velocity to the collocated force

vi(s)
Yi(s) = 2.4
(2) fi(s) (24)
fi 1 mechanical J fi
A system T

;i -'_... vj

Figure 2.1: General passive linear mechanical free body diagram. Forces f; and
fi act on the system.
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Similarly, the mechanical transfer mobility is defined by the ratio of the noncollocated

velocity v;(s) to the force fi(s)

vi(s)
Y'g 8)= J 2.5
J ( ) f‘( s) ( )
In matrix notation the mobility matrix Y relates the two velocities and forces
;i Y Y ;
NI (26)
vj Yi Yii || fi

Dependence on the Laplace variable s is suppressed below for brevity. A passive lin-
ear system exhibits reciprocity which implies that Y;; = Y;;. A thorough treatment of
mechanical impedance and mobility, including representations for many lumped pa-

rameter models and rules for assembling system equations, can be found in references

by Hixson [33] and Crandall [16].

Four-Pole Mobility Method: The four-pole representation of mechanical mobil-
ity [61] applies to systems with two identifiable ccnnection points. Here the most
general framework is introduced, followed by four simple examples. Figure 2.2 illus-
trates the four-pole conventions for the same mechanical system shown in Figure 2.1.
F; is a force which acts upon the system at input point 4, and F; is the force exerted
by the system at output point j on an external load; the reaction force on the system

is —F;. Comparison with Figure 2.1, in which both f; and f; act on the system, yields
F, = f;
Fj = -f; (2.7)

With these definitions the mobility matrix of Eq. 2.6 can be rearranged to the

input-output form known as the four-pole representation:

i Yii 1
F; Yii Yi || Fj
v YaVij =YV Ya || o,
_ 11 Q12 Fj - o Fj (2.8)
] Qo1 (gp vy ]
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mechanical J
system

Figure 2.2: Conventions for four-pole mobility representation. Force F; acts on
the system, and Fj is the force exerted by the system.

For all passive linear systems det(a) = 1 since ¥;; = Yj;, which can be checked by

Eq. 2.8. Using the notation of Ruzicka [59], the four-pole parameters oy can be
expressed in terms of the system velocity transmissibility (Tv)’:f

;i and free transfer
mobility (Y)fjf when station j is free (F; = 0), defined by

F; 1

Q1 = — = g (2.9)
Uilg=o (V)Y
Uy 1

Qop = — = g (2.10)
YilF=o (T”)Z.‘;f

and in terms of the system force transmissibility (Tp);:? and blocked transfer mobility
(Y)Z;’ when station j is blocked (v; = 0), defined by

F; 1

Q11 = — = g (2.11)
Fj v;=0 (TF).Z;

an == = (V)P (2.12)
Fj vj=0

Based on the reciprocity theorem [27] the transfer mobilities between points 7 and
J are the same in both directions, so the order of the subscripts in the blocked and

free transfer mobilities does not matter:

V= )E=Y} (2.13)
(V)i = (V)i =Y} (2.14)

According to the transmissibility theorem [77] the velocity and force transmissibilities

in opposite directions across the mechanical element are identical
) .
(T = (Tr); (2.15)
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thersfore the parameter o5 can be expressed as

1 1
T Ty T T (2.16)

where in Eq. 2.16 it is assumed in the definition of force transmissibility that station
7 1s blocked, and in the definition of velocity transmissibility that station < is free. In
general (T,); does not equal 1/(T,);. Using the notation of Egs. 2.11 to 2.16, the

four-pole representation of Eq. 2.8 becomes simply

1
nl_| @ s (2.17)
u | % 1 ij '
(To)ss

The four-pole matrices for four simple examples are shown below.
mass: A rigid mass exhibits no flexibility between points ¢ and j so v; = v;. The

constitutive relation F; — F; = msv; expressed in four-pole represeatation is

F;

1 ms

0 1

F;
(2.18)

Vg 'U_.,'

spring: A massless spring has unity transmissibility of force F; = F; and the

constitutive equation k(v; — v;)/s = F;. The four-pole form is

F; L 0 g
= (2.19)
i % 1 Vj

damper: Similarly for a massless damper, F; = F; and the constitutive equation

c(v; — vj) = F; expressed in four-pole form is

(2.20)

Ol

spring and damper in parallel: Applying the rule for four-pole elements in paral-

lel [51] to Egs. 2.19 and 2.20 the four-pole matrix becomes
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(2.21)

The four-pole representation of 2.17 is in a convenient form for symbolic ma-
nipulation, although in some instances an alternate representation for a;; and as,
is required. Using the notation of Ruzicka [59], the point mobilities of Eq. 2.4 are

expressed as

Yi= 2 =2 =¥ (j free) (2.22)
fi £i=0 E F;=0
v; v ;

Vo, = -2 2 = v (7 free) (2.23)

The point mobility Y} is often referred to as the system input mobility, and Y;; as the
system output mobility. Comparison of Eqs. 2.8 and 2.17, along with the notation of

Egs. 2.22 and 2.23, leads to the following representation of the c;; and as; wour-pole

parameters: )
1 i _ Y’
Q1 = - = 0 = (224)
(12)si Y Y4
1 Y; vif
Qg = = = = == (2.25)
(To)i  Ya Vi

Vibration Source Modelling: Figure 2.3 illustrates a vibration source modelled
as a mechanical system with output (point) mobility denoted simply as Ys, which
when connected to an external system, exerts a force F} on that system with velocity

v; at the interface. The output force and velocity are related by the equation

1
7

where F} is defined as the blocked force, or that force exerted by the source on an

F; = Fb — (2.26)

infinitely rigid external system (v; = 0). When point j is not connected to a load,
F; = 0 and the velocity v; from Eq. 2.26 becomes the free velocity v_{. of the vibration
source

vl = Y5} (2.27)
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] Y. vibration J
source

Figure 2.3: Vibration source model. The output mobility of the source at ter-
minal j is Ys. The boundary conditions on input terminal  may be
unspecified as long as Ys is known.

In matrix form Eq. 2.26 becomes

(2.28)

or

F.

b=y 1|7 (2.29)
Vj

Model of Force Actuator: A force actuator can be modelled using four-pole

methods as illustrated in Figure 2.4, in which the actuator is represented by a passive

actuator mobility in parallel with a commanded force pair f,. The four-pole matrix

for the passive component of the actuator is

1

F; T.)i Y F;
| @ 7 ’ (2.30)

Vi y‘f; 1 V5

(To)ss
Using velocity continuity v; = v; and v; = vj, and force equilibrium

R = -Fg, - fa (231)
F; = F; - fa (2.32)

the four-pole representation of the actuator with both active and passive elements

included is expressed as

11 1
F' Ty)i Y:f F’ 1—-—=
j J _ | ) 1’ [ ar (To)si | f. (2.33)
v; ) LY ~Y;
7 (L)
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Vs V5

F; actuator F;
F | passive mobility i F;
—_—r— —®
' f a '
'Ui 'UJ'

Figure 2.4: General actuator model, useful for describing either force or induced
strain actuation.

Eq. 2.33 can be used to represent both force and displacement actuators.

For the special case in which the passive actuator mobility is that of a massless
spring, the blocked transfer mobility Y,g = 3/k, the free transfer mobility YJ = 00,
and 1/(T,)j; = 1/(Ty)i;; = 1. Substitution into Eq. 2.33 yields

Fi=F;j=F (2.34)

(i = v5) = 7(F ~ fu) (2:35)

Eq. 2.35 indicates that when one or both ends of the actuator are free (or when the
mobility of the external system is very large compared to that of the actuator), F =0

and (v; —v;) = —sfa/k, or
(z; —z;) = % (free displacement) (2.36)

In this instance the actuator is considered to be a displacement actuator. Conversely,
when both junctions of the actuator are attached to external systems of zero mobility
(or when the mobility of the external system is very small compared to that of the

actuator), v; = w, = 0 and the actuator generates the blocked force
F=f,  (blocked force) (2.37)

In this case the actuator is considered to be a force actuator.
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2.3 General Model for Passive Isolation

In this section four-pole mobility methods are used to derive functions that describe
the performance of a general passive isolation mount, in particular the functions of
mount transmissibility and mount passive sensitivity. A sufficiently general model
is developed to investigate how the classical isolation model - based on the assump-
tions of rigid base, rigid equipment mass, and ideal massless isolator — is affected by
mechanical flexibility in the base or isolated mass. This analysis approach helps in
identifying connections between different isolation problems, leading to simplifications
that will be used throughout the thesis. This section follows the work of Sykes [77]
and Ruzicka and Cavenaugh [59] in the derivation of mount passive sensitivity, but is
cast in terms of component mobility (instead of impedance) and further explores the
dimensionless parameters governing the effects of modal flexibility. Importantly, this
section is used for comparison with the models of active isolation mounts developed

in Chapter 3.

2.3.1 Mount Transmissibility

Transmissibility of Velocity (Vibrating Base): Figure 2.5 illustrates the gen-
eral velocity isolation problem. Equipment E is to be mounted to a moving base B
that exhibits a free velocity v5; the base free velocity is measured at the mounting
location before the equipment or isolator is attached. An isolator I is a mechanical
element placed between the equipment and base to attenuate the disturbance veloc-
ity that is transmitted to the equipment. The transmissibility function T, for the
velocity isolation problem is defined as the ratio of velocity at the equipment output

terminal 3 to the free velocity of the foundation:

B v3(s)
Ts(s) = oL(5) (2.38)

Only when the base structure is rigid does the velocity v; of the coupled structure
equal v{;; otherwise, these velocities are different.
Four-pole mobility methods are used to determine the velocity transmissibility

from the base disturbance to the equipment output point 3. No assumptions (other
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isolated E
equipment

isolator I
v{; F 2
I 1 1 9
base
B structure B

(a) (b)
Figure 2.5: The general velocity isolation problem. The unloaded base B exhibits

a free velocity v;, which is equal to the loaded velocity v; when the
base is rigid.

than the connectivity shown in Figure 2.5) have been placed on the mobility properties
of E, I and B. Using notation developed in the previous section, and suppressing
dependence on the Laplace variable s for brevity, the general four-pole matrix for the

equipment illustrated in Figure 2.6(a) is expressed as

11
F. T, Yt F.
2 — ( )32 23 3 (2'39)
v vh o o | L
(Tv )23

In the velocity isolation problem, the output terminal 3 is assurned to be free, therefore

F3 =0 and Eq. 2.39 becomes

1
F iz
Pl=] 2 (2.40)
V2 _i_
(Tu)23
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F, F
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Figure 2.6: Four-pole models of system components.

The passive isolator in Figure 2.6(b) is represented by
11 -
(T) Y [ Fy
1
Yb e I_ Vo
12 (Tv)12

The base structure in Figure 2.6(c) is modelled as a velocity disturbance source in

Fy

(2.41)

accordance with Eq. 2.29

v£=[YB 1] f (2.42)

"

The velocity v; at terminal 1 only equals v,’; when the base is rigid (Yp = 0) or when
terminal 1 is free (F; = 0). The coupled system equations are obtained by applying
the rule for four-pole systems arranged in series [51] to Egs. 2.40, 2.41, and 2.42:

11 L
To)2 YZ Yy

v{,:[yB 1] ( ;2 1”3 vs (2.43)
Yo

(T)iz J L (T)as
which upon expansion leads to the velocity transmissibility function T},
1
1 Yh ( 1 1 )
st o+ Ye +
(Tv)12(Tv)23 Yz{s (Tu)zlyz{’. (Tu)zsylfz

The expression is simplified by multiplying the numerator and denominator by (T}, )23

T, (s) = :—;"- = (2.44)
B

and applying Eq. 2.25 ;
Y,

(Tv)2s = ??% (2.45)
2
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where Yza‘f = Yg is simply the input mobility of the equipment at terminal 2 when

terminal 3 is free (F3 = 0). With these simplifications Eq. 2.44 becomes

T,
= vE (To)es ; - (2.46)
e 7] (L.
T | e B((T,,)MYE*KQ)

Tus(s) =

B &

where

Ye = the input mobility of the equipment at terminal 2; the ratio of
velocity ai terminal 2 due to force F, applied to the equipment

Yp = the output mobility of the base structure at terminal 1; the
ratio of velocity at terminal 1 due to f; = —F} applied to the
base

Y, = the isolator point mobility at terminal 1 when terminal 2 is

blocked

Y7, = the isolator point mobility at terminal 1 when terminal 2 is free

(Ty,)12 = the velocity transmissibility across the isolator; the ratio of
velocity at terminal 2 due to imposed velocity at terminal 1
with terminal 2 free

(Ty)21 = the velocity transmissibility in the opposite direction across the
isolator; the ratio of the velocity at terminal 1 due to an
imposed velocity at terminal 2 with terminal 1 free

(Ty)2s = the velocity transmissibility across the equipment; the ratio of
velocity at terminal 3 due to imposed velocity at terminal 2
with terminal 3 free.

If only the velocity transmissibility to the input terminal 2 of the equipment is desired,
terminals 2 and 3 in Figure 2.6 are allowed to coincide. In this case (T})2 = 1 and

the transmissibility of Eq. 2.44 becomes

1

_.__}_ + yl_bz + Y; }____.. + 1 .
(Tv)12 Ye 5 (Tv)21YE Ylfz

(2.47)

Eq. 2.47 differs from Eq. 2.46 only by the factor (7},)23.
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(a) ] ®
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structure B

(b)
Figure 2.7: The general force isolation problem. Terminal 3 is assumed to be
free (F3 = 0).

Transmissibility of Force (Due to Vibrating Equipment): The similarity
between the velocity isolation problem and the force isolation problem illustrated
in Figure 2.7 is now shown. In the force isolation problem, vibrating equipment E
generates a blocked force FY, measured by the force transmitted to a rigid base when
the equipment input terminal 2 is blocked (v, = 0), as shown in Figure 2.7(a). An
isolator is used to attenuate the force F) transmitted to a base structure, which may
be rigid or flexible. The equipment output terminal 3 is assumed to be free.

The transmissibility function T for the force isolation problem is defined as the
ratio of force F; at the base interface to the blocked force generated by the vibrating

equipment:
F1 (3)

Trle) = F(s)

(2.48)

Unlike the definition of component force transmissibility in Eq. 2.11, in Eq. 2.48 it is

not assumed that force F; is measured at the input to a rigid base.

The source model for the vibrating equipment is slightly different from that of
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vibrating base model because the blocked force F}, is measured at the input terminal
to the equipment (Figure 2.7(a)), instead of at the output terminal (Figure 2.5(a)).
The point mobility (input mobility) of the nonvibrating equipment at terminal 2 is
Yg = v2/F5. The relationship between the force F; and velocity v, when the vibrating

equipment is connected to any external system at terminal 2 is expressed as

F, = FE,- + —1—’02 (2.49)
Yg
or
1 F,
Fb = [ 1 —— ] 2.50
E YE Ve ( )

When terminal 2 is blocked, v, = 0 and F, = Fg. If terminal 2 is free, F; = 0 and
the equipment has free velocity vzf = —YgF}.

To assemble the four-pole equations for the force isolation problem, the inverse of
the four-pole matrix is required. Since det(a) = 1 for all passive linear systems, the

inverse is easily found to be

o1
F; T); Yi{||F
3| | Bk g (2.51)
(] _Kb 1 (A
T (T
The inverse four-pole matrix for the passive isolator in Figure 2.6(b) is therefore
1 1
Fy _ (T2 Yl’; Fy (2.52)
R v L
(Tu)21

The mobility of the base Yp relates the force Fy, exerted by the base on an external

system, to the velocity of the interface at point 1 in Figure 2.6(c)
vy = —-YgFy (2.53)

Egs. 2.50, 2.52 and 2.53 are assembled to express the force transmissibility Tr

1 1
o :
Fg:[l __1_] (Lhe Yy YR (2.54)
YE __Kb 1_ -YB
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T == = 2.
R A MR ( 1“‘+‘1‘) o
(T Y " \(T)aYs ' Y
A comparison of Eq. 2.55 to Eq. 2.47 leads to the conclusion
Tu,(s) = Tr(s) (2.56)

The presence of {lexibility in the base, isolator cr equipment does not affect this re-
sult, since these effects are captured by the general four-pole mobility representation.
However, when the output terminal of the equipment is not collocated with the in-
terface point to the isolator, then the velocity transmissibility T, differs from the
force transmissibility T by the factor (T,).3, representing the equipment velocity

transmissibility between terminals 2 and 3.

2.3.2 Mount Passive Sensitivity

Passive Sensitivity (For a Vibrating Base): Alternate measures of isolator
performance are the mount passive effectiveness £(s) [77] and its inverse function
the mount passive sensitivity P(s), defined below, which relate the velocity of the
isolated equipment to the equipment velocity when hardmounted to the base. The
effectiveness concept is most easily understood by example, as illustrated for the
general velocity isolation problem in Figure 2.8. As before, the base structure, with
output mobility Yp, produces a free disturbance velocity 'u}; in Figure 2.8(a). When
the equipment is rigidly mounted to the base in Figure 2.8(b), the resulting velocity
of the (unisolated) equipment at terminal 3 is denoted by v:(,"). An isolator, installed
between equipment and base in Figure 2.8(c), produces the (isolated) equipment
velocity v:(f). The mount effectiveness &,, is defined as the ratio of the unisolated

velocity to the isolated velocity at terminal 3

_ o)

0= )

(2.57)
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Figure 2.8: The general velocity isolation problem: definitions for mount pas-
sive sensitivity P(s), defined by the ratio of isolated velocity v:(,’) to
unisolated velocity v{").

The two velocities in the definition for mount effectiveness cannot be simultaneously
observed in the mount; the addition or removal of the isolator I is required between
measurements. The definition of effectiveness in Eq. 2.57 is somewhat undesirable,
since at high frequencies the function is unbounded. The inverse of Eq. 2.57 is used
to define the mount passive sensitivity function P, for velocity vs
Pus(s) = ”(g;))(s)
v3 ()

The term passive sensitivity is selected because of the similarity of this function to

(2.58)

the closed loop sensitivity function S(s), which relates the closed loop output to the

open loop output of a standard regulator with output y:

s 1) s

The form of Eq. 2.58 is also preferable for the reason that as the base mobility

decreases to zero, the familiar rigid base transmissibility function Ty is recovered. An
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important advantage of the passive sensitivity definition is that it does not require a
measurement of the free velocity of the base 'ujg, measured when the equipment E is
removed, which is an important consideration when the base is flexible. In other cases,

a measurement of the free velocity v{; may be available and the mount transmissibility

T,, of Eq. 2.38 can be used.
The passive sensitivity function may also be interpreted as the ratio of two trans-
missibility functions. Define the softmount transmissibility Ts as T, from Eq. 2.38

and Figure 2.8(a)

(i)
Ts(s) = ”Bf—(s) (2.60)
vp(s)
and the hardmount transmissibility Ty (corresponding to Figure 2.8(b)) as
(u)( )
vy (s
Tu(s) = 2=+ (2.61)
vh(s)
The passive sensitivity function of Eq. 2.58 is the ratio of these two transmissibilities:
Ts(s)
us(8) = 2.62
Pule) = 7200 (2.62)

The passive sensitivity P,, for the general model in Figure 2.8 is derived in this
manner. Using Eqs. 2.40 and 2.42 and setting [F; )7 = [Fy v,)7, the expression

for the unisolated velocity at terminal 3 is (with s dependence suppressed)

u 1
o§") = Y i vh (2.63)
Y4 i (Tv)2a

By multiplying numerator and denominator by (7,).3, and by using the definitions

of Eq. 2.45 and Y3/ = Yg, the unisolated velocity is expressed as

o = ?,(;:D& " (2.64)
Yo |

The isolated velocity v:(,i) can be determined from Eq. 2.46, and when substituted
along with Eq. 2.64 into Eq. 2.58, leads to the passive sensitivity for the mount

velocity v

(%) - + 1
. ’U3 - YE
Pu(s) = vgu) 1 Y +Y ( 1 N 1 > (2.65)
(The  Yg '  ° !
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In a comparison of Eq. 2.46 and Eq. 2.65 it can be seen that the functions P., and
Ty, will be identical when two conditions are satisfied: 1) the base mobility Yp is
zero, and 2) the equipment transmissibility (T, )23 equals 1, which occurs when the
equipment output terminal 3 coincides with input terminal 2.

The passive sensitivity for velocity at the input location of the equipment is found
in a similar nanner. The unisolated velocity at terminal 2 is found by letting terminals

2 and 3 coincide in Eq. 2.64, so that Y = ¥*f = Yg and (Ty)a =1

< 1
Ye

which together with Eq. 2.47 yields the expression for the passive sensitivity of velocity

at terminal 2

Yg
(') Y, + 1

(u) 1 le’2 ( 1 1 )
Ye| ———— + —
(f )12 + + B (T))n Yz ”;

An important observation is that Eq. 2.67 is identical to Eq. 2.65, therefore P,, = P,,.

Pu,(s) = (2.67)

Passive Sensitivity (For Vibrating Equipment): The mount force effectiveness
Er for transmitted force is defined in the literature as the ratio of the base interface
force, when isolated, to the base interface force whe: the equipment is hardmounted

(as illustrated in Figure 2.9):

(“)( )
Er(s) = F( )( ) (2.68)
The passive sensitivity of force Pr is defined here as the inverse of the mount force
effectiveness @)
Fy"(s)
Pr(s) = =3 2.69
)= L) (2.6

The unisolated interface force Fl(") is found by assembling the equipment vibration
source model of Eq. 2.50 with the output mobility of the base structure, given by
v = —~YF™ = ~ Y5 F{" to produce

=15
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Figure 2.9: The general force isolation problem: definitions for mount passive
sensitivity P(s), defined by the ratio of isolated force F{) to uniso-
lated force F\™.

(2.71)

Substitution of Eq. 2.71 and Eq. 2.55 into Eq. 2.69 leads to the following expression

for the mount passive sensitivity for force

Y (2.72)

which is identical to the velocity passive sensitivity functions P,, and P,,. Continuing
with the force isolation problem of Figure 2.9, the base output mobility v; = =Yg F
at terminal 1 is unchanged by the mounted equipment or isolator. Therefore, the
mount passive sensitivity for force Pr not only represents the ratio of isolated to

unisolated interface force Fj, but also represents the ratio of isolated to unisolated
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interface velocity v; [77)
Fl(t) 'Ugi)

PF(S) = Fl(;‘j = ;gj) (2'73)

This is an important result, since the ultimate objective of force isolation is usually to
attenuate the base structure response due to the vibrating equipment; the interface
force is just an intermediate variable. In addition, the result of Eq. 2.73 holds for any
point on the base structure (not only at the interface terminal 1), since the relation of
velocity at any other point in the base is fixed by a four-pole matrix to the force and
velocity at terminal 1. This conclusion is not affected by the presence of structural
flexibility in the base, isolator or equipment. Structural flexibility will, however, affect

the achievable performance by the isolation mount, as is investigated in Sections 2.5

to 2.7.

2.3.3 Summary

Table 2.1 summarizes the results of this section. For the velocity isolation problem,
it was shown that the passive sensitivity function P, is the same for both terminals
2 and 3 of the equipment. This function is identical to the force and velocity passive
sensitivity functions Pr of the force isolation problem. The symbol P will be used to

represent all four functions:

P(s) = (2.74)

____1_ + Y_lbz. +Y; (__}__ -+ i.)
(The Yz @ " \(T)aYs ' YL

In this section it is also shown that the transmissibility function T, for the velocity

isolation problem is identical to the transmissibility function T of the force isolation

problem; the symbol T is chosen to represent both of these functions:

1

L By (————1 +—1—)
(Tv)12 Y& B (TV)a1Ye Ylfz

T(s) =

(2.75)

The transmissibility 7" is equal to the passive sensitivity P when Yz = 0 (rigid base).

Further, T,,3 = T when the velocity transmissibility across the equipment (T,)s3 = 1.
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Table 2.1: Definitions of isolator performance.

Functions Represented

Symbol velocity isolation problem | force isolation problem
(vibrating base) (vibrating equipment)
Q] (1) (4) (¥
Passive Sensitivity P(s) % % Ftu) v(lu)
V2 U3 Fy !
Transmissibility T'(s) l)% —F—,l;
(] FE
Transmissibility T, (s) _v_}, -
VB

In the next section, the passive sensitivity P is investigated for the classical isolation

problem.

2.4 Classical Passive Isolation Model

The classic velocity and force passive isolation model is a subset of the general model

of Figures 2.8 and 2.9 with the following additional assumptions:

(i) base structure B is rigid
(ii) equipment E modelled as a rigid mass m
(iii) passive isolator I is massless

(iv) passive isolator I modelled as a viscously damped spring. The spring
and viscous damping constants are frequency independent.

Figure 2.10 illustrates the classical velocity isolation model. The assumptions simplify
the general expression for the mount passive sensitivity P given by Eq. 2.74. A rigid
base implies Yp = 0, therefore the passive sensitivity P is equal to the transmissibility

T. Assumption (ii) implies that Yz = 1/ms and that the velocities at terminals 2
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Figure 2.10: Classical passive isolation model: velocity isolation. The vibrating

base is assumed to be infinitely stiff, and the isolator and equipment
are modelled by simple lumped-parameter elements.

and 3 are identical. When the isolator is modelled as massless,

(Tohe = (To)n =1 (2.76)
and

Yd = o0 (2.77)

Finally, the four-pole representation for a massless viscously damped spring is given
by Eq. 2.21

Y8 = s/(cs + k)

(2.78)
As before, the isolator blocked transfer mobility Y}, is denoted simply by ¥;. With

these definitions the passive sensitivity becomes

cs+k
T ms?+es+k (2.79)
where the symbol P, is adopted to highlight that this function is the rigid base passive

sensitivity, which will serve as a basis for comparison. By defining the following
dimensionless parameters

k c
w;,:_ (o=
m

= (2.80)

the rigid base passive sensitivity P, can be represented in modal form

2(,w,s + wf
Pr(s) - 32 + 2400\)08 +U)§ (2.81)
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Figure 2.11: Passive sensitivity P,(5) for classic isolation model for various
mount damping ratios (,.

Finally, the passive sensitivity can be expressed in terms of the normalized fre-
quency 3 = jo = jw/w,:

P.(5) = 20,3 + 1

24235 +1 (2:82)

The magnitude of P, is plotted in Figure 2.11 for several values of damping (,. As
shown in the previous section (summarized by Table 2.1), this function describes not
only the passive sensitivity for the velocity isolation problem, but also the passive
sensitivity for the force isolation problem as well. Figure 2.11 shows that regard-
less of the level of interface damping, the passive sensitivity magnitude at @ = /2
equals unity. At all greater frequencies the mount attenuates disturbance; at all lower

frequencies, the mount amplifies.

The effect of increasing interface damping ratio (, is to attenuate the resonance
near @ = 1 at the cost of increased sensitivity at high frequencies. For zero damping,
P, rolls off with a logarithmic slope of —2; at finite values of damping a real zero at

@ = 1/(2(,) increases the logarithmic slope of the high frequency asymptote to —1.
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The magnitude of the passive sensitivity at high frequency is

[Py(o0)| = 2o (2.83)

and at the damped resonance @q is approximated (to within 10% for ¢, < 0.2) as [61]

P (jwo)| = 2—1(— (¢ <0.2) (2.84)

An additional performance metric is the static deflection in a 1-g field

A= fa (2.85)

For example, for a mount with corner frequency of 20 Hz the static deflection is 0.6
mm, and at 1 Hz the static deflection is 25 cm. For microgravity mounts with passive
corner frequencies on the order of 0.1 to 0.3 Hz, the static deflection is in the range
of 2.8 to 24 meters, which poses obvious difficulties for multi-axis ground test and
validation.

The classical isolation problem has been investigated thoroughly by many re-
searchers. Ruzicka and Derb; [61] have analyzed the effects of damping mechanisms
other than viscous on the mount transmissibility, such as coulomb, quadratic, viscous
with deadband, and elastically coupled damping. Elastically coupled or viscoelastic
damping models are important in that many mount materials such as rubber exhibit
these types of damping.

It is desirable to design a mount with elastically coupled damping since its per-
formance is superior to that of a viscously damped mount. An isolator mount with
elastically coupled damping is modelled using the Zener model (also called the stan-
dard linear solid) shown in Figure 2.12. At low frequencies the mount has spring
stiffness kiky/(k1 + k2), while at high frequencies the damper “locks up” and the
mount stiffness increases to k. For an isolation mount modelled with a Zener spring,
the high frequency rolloff of the passive sensitivity function approaches a logarithmic
slope of -2, superior to the viscously damped mount. The Zener model parameters
can be tuned to provide high damping near mount resonance while allowing recovery

of a logarithmic slope of -2 at high frequency. A full treatment of this model is given
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Figure 2.12: Zener model for isolator,

by Ruzicka and Derby [61]. In this thesis, viscously damped mounts will be used
for simplicity in the analysis, and the results obtained are applicable to tuned elas-
tically damped mounts. The Zener model for isolator mounts could be incorporated
into the frequency domain analysis framework of this thesis with some minor added

complexity of calculation.

2.5 Effects of Flexibility on Passive Isolation

The passive mount passive sensitivity P, for cases in which the base or equipment
exhibit flexibility, is compared to the rigid base effectiveness P, for the classical
isolation model of Section 2.4. For purpose of comparison, the classical model is
assumed to have a mount damping ratio of 10%. Insights drawn from studying
the effects of simple flexibility models on the function P are useful fur .nterpreting
experimental data in which the base or equipment mobility are meie .omplicated

functions of frequency.

2.5.1 Base Flexibility

Consider a passive isolation mount that is identical to that of the classical model,
with the exception that the base structure exhibits flexibility. Beginning with the
general expression for the mount passive sensitivity P in Eq. 2.74, the assumption of
a flexible base implies that Yp # 0. Assumptions (ii), (iii) and (iv) of the classical
model still hold: therefore (T, )12 = (T,)21 = 1 and Yy, = oo, and the blocked transfer
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Tabie 2.2: Base mobility models and perturbation term.

base model mobility perturbation
Yp(s) Yp(3)
Ys(s —_— L
5(s) Ye(s) Yg(5)
ass 1 m m
mas Ms M M
damper —1— ms (mwo) 5
P C C c )°
eosi 3 s’m kN,
pring 7 Ve % 3

mobility Y, of the massless, viscously damped spring is again denoted by Y;. With

these assumptions, the passive sensitivity function becomes

LB
P(s) = YT (2.86)
1 + Ye + Ys

where Y1 = 5/(k + cs) and Yg = 1/(ms). By comparing Eq. 2.86 with Eq. 2.79 it
is evident that the perturbation term in Eq. 2.86 is Y5 /Yg; when the perturbation
is very small, the rigid base passive sensitivity P, function is recovered. The degree
of “smallness” of this term is considered for four cases of base flexibility: the base
modelled as a (a) mass, (b) damper, (c) spring, and (d) single resonant mode. Ta-
ble 2.2 lists the output base mobility models (at terminal 1 in Figures 2.8 and 2.9)
and perturbation term Yp/Yg for the first three cases. The perturbation is expressed
in terms of the dimensionless frequency § = jw/w, in the third column. The dimen-
sionless coefficients of powers of 3 in the last column appear in the expressions for
the passive sensitivity P(3) derived below, and are treated as the variable parameter
in plots of the passive sensitivity function. It is reasonable to expect that for values
of each coefficient much less than one the rigid base passive sensitivity P.(3) will be

nearly recovered.
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Figure 2.13: Passive sensitivity P(3) for base modelled as rigid mass M.

Base Modelled as a Mass: The base mobility model for a mass from Table 2.2
and the expressions for Y7 and Yg are substituted into Eq. 2.86. Using the definitions
of modal parameters w, and (, defined in Eq. 2.80, the passive sensitivity as a function

of normalized frequency becomes

N (1 + %) (263) + 1
P(5) = P (1 N %) - (1 7 %” (2.87)

Figure 2.13 is a plot of the magnitude of the passive sensitivity P for different values
of the parameter m/M. For base masses that are more than a factor of 10 greater than
that of the isolated mass, the change in the passive sensitivity P is small. However,
when the base is of comparable or smaller mass than the isolated mass, the resonant
frequency of P occurs at a higher frequency and is more heavily damped. The base
mass mobility has no effect on the real zero of the passive sensitivity P in Eq. 2.87,
and thus no effect ou the slope of the high frequency rolloff, aithough the magnitude

is clearly increased.
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Figure 2.14: Passive sensitivity P(5) for base modelled as massless damper C.

Base Modelled as a Damper: Substitution of the base mobility model for a
damper into Eq. 2.86 leads to

()£ o )5

(1 + 2(,,m ") 324 (2(,, + mg°) 541

P(3) = %
C

(2.88)

For large 3 and finite values of mount damping (,, this function approaches the

constant

P(o0) = 8 (2.89)
1 +

2(,muw,

where 2{,muw, is equal to the mount interface damping factor, c¢. The passive sensi-
tivity P is plotted in Figure 2.14 for several values of the dimensionless parameter
muw,/C. As the base damping factor C' is decreased, the passive sensitivity reso-
nance becomes more heavily damped, and the high frequency magnitude is increased,

reaching a constant value determined by Eq. 2.89.
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Figure 2.15: Passive sensitivity P(3) for base modelled as massless spring K.

Base Modelled as a Spring: For the base modelled as a spring K, the passive

sensitivity P becomes
k -3 k -2 -
(2(,,K)s + (K)S +2(5+1

kE\ , kY _
(ZCOK)S +(1+K>s +205+1

For finite values of mount damping, P(c0) = 1. Figure 2.15 is a plot of the passive

P(3) = (2.90)

sensitivity magnitude for several values of the parameter k/K. A zero occurs at a
frequency that corresponds to the resonance of the equipment hardmounted to the
undamped base spring. As the base spring constant K decreases relative to k, the
resonance in P decreases in frequency and becomes more lightly damped, a trend
that is opposite to the case illustrated in Figure 2.13, in which the base is modelled
as a rigid mass.

A conclusion from from these three examples is that any finite mobility in the
base reduces the performance of the isolation mount at high frequencies. In the case

of the spring base mobility, the performance is band limited.
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Figure 2.16: Passive isolator mounted to base modelled as a single resonant
mode,

Base Modelled as a Resonant Mode: In this case the base mobility is expressed

in standard second crder modal form

Ya(s) = — 3% (2.91)
82 4 2(wps + w} '

where (, and w, are the modal damping and frequency of the (uncoupled) base res-
onance, and ¢ is the mass normalized mode eigenvector of the (uncoupled) base
at output terminal 1. Figure 2.5.1 illustrates a passive isolator mounted to a base
modelled as a single resonant mode.
The real-valued term ¢} is defined as the modal residue Ay, which is the inverse
of the driving point modal mass 7:
by = Ap = . (2.92)
In the expression for the passive sensitivity P of Eq. 2.86, the perturbation is the
dimensionless term Yp/Yg. In terms of the dimensionless frequency 3 = jw/w,, this

term is expressed as
52, 12
‘*'_/‘_3.(5) - 5"mdy
Yz 5% 4 203 + @}

where @, = wp/w,. This function is plotted in Figure 2.17 for two values of @, = wy Jwo:

(2.93)

the plot resembles that of the accelerance of a single resonator with natural frequency

@y, damping ¢, And residue m¢?. For small (;, the resonance frequency of the base
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Figure 2.17: Perturbation term Yp(5)/Yg(3) for two values of wy/w,.

mobility is well approximated by @ = @, and the function in Eq. 2.93 reaches a

maximum gain of

By = max
_ ™ (2.94)

The coeficient B, is dimensionless because ( is dimensionless and m¢f is the ratio
of isolated mass m to base modal mass My = 1/¢7. In Figures 2.18, 2.19, and 2.20
the passive sensitivity P is plotted for three different values of @,. The base modal
damping ratio ( is assumed to be 1%, the mount damping is assumed to have 10%
damping (defined for a rigid base mounting) and each figure is parameterized by S
Figure 2.18 shows the magnitude of P for @, = 3. The base resonance contributes
a closely spaced pole-zero pair to P: the zero corresponds to the resonant frequency
of the equipment mass hardmounted to the flexible base, and the pole corresponds to
the (higher) frequency of the isolated equipment on the flexible base. For B, < 1 (the
ratio of equipment mass to modal mass is less than twice the base modal damping

ratio () the perturbation to P is small, but as the modal mass is decreased relative to
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Figure 2.18: Passive sensitivity P(3) for base modelled as resonant mode. Pa-
rameters: By = m¢}/(2(), wp/w, =3,(, =0.1,(, = 0.01.
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Figure 2.19: Passive sensitivity P(3) for base modelled as resonant mode, Pa-
rameters: B, = m¢}/(2(), ws/w, = 0.3,(, = 0.1, = 0.01.
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Figure 2.20: Passive sensitivity P(35) for base modelled as resonant mode. Pa-
rameters: By = mdz/(2(), wpfwo =1, = 0.1,( = 0.01.

m, the pole-zero separation grows wider and the magnitude perturbation increases.
The zero frequency decreases because the unisolated equipment loads the lighter base
mode more strongly, and the pole frequency increases slightly because the base modal
mass My has decreased relative to the constant isolator spring stiffness k. The isolator
resonance at @, = 1 decreases and becomes more lightly damped as G is increased,
since below @, the base mobility appears to be that of a spring of constant k, = myw?.
The observed effect on the isolator resonance is consistent with that for the base spring

model plotted in Figure 2.15.

In Figure 2.19, the base modal frequency is at frequency @, = 0.3. The pole-zero
pair separation frequency, and the perturbation to the magnitude of P, are smaller
compared to Figure 2.18 for a given value of fy, because in this frequency range the
isolator has little or no effect, and the equipment velocity v3 or interface force Fy are
nearly identical before and after addition of the passive isolator. Above @, the base
mobility appears to be that of a mass 7, and as expected from Figure 2.13, the

mount resonance near @, = 1 increases and becomes more heavily damped for modal
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masses that are of comparable size to the mass of the isolated equipment. When
Figures 2.18 and 2.19 are compared, it is observed that for a given value of B, the
effect on the frequency and damping of the mount resonance at @, = 1 is greatest
when the base resonance occurs below mount resonance. However, the effect on the
passive sensitivity function near @ is greatest when the base resonance occurs above
mount resonance.

In Figure 2.20 the base resonance is at @, = 1 and the effect of this mode on the
amplitude of P is shown for different values of §,. Even in this case, for values of 8,
that are less than one, the effect on the passive sensitivity magnitude is small. As
By increases, the mount resonance splits into two distinct modes, and behaves like a

slightly mistuned proof mass damper.

2.5.2 Equipment Flexibility

In this section the magnitude of P for the classical model is compared to that for
situations in which the equipment itself exhibits flexibility (in addition to the free
body mobility of a rigid mass). In this case Yp is set to zero, and the isolator blocked
transfer mobility Y; is the same as for the classical model. The equipment input
mobility at terminal 2 is modelled as the sum of the free body mobility and the

mobility of a flexible mode:

Ye(s) = YE(s) + Yeo(s) (2.95)
where
_ 3¢§2
1,62(3) - 52 + 2Cewe3 + w2 (296)
Va(s) = ;1; (2.97)

The parameters (. and w, are the modal damping and frequency of the (uncoupled)
equipment resonance, and ¢., is the mass normalized equipment mode eigenvector at
input terminal 2. The term ¢Z, is the inverse of the equipment driving point modal
mass 7ez. With the assumed equipment mobility of Eq. 2.95 and the above assump-

tions for base and isolator mobility, the general expression of the passive sensitivity
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P of Eq. 2.74 reduces to

1 + };2
P(s) = Y, (2.98)
TR T

The perturbation to this equation is the term Y./ Ye. In terms of the dimensionless
frequency 3 = jw/w,, this term is expressed as

Y. 527"‘/’32

Ve ®)=3 + 2(oe3 + @

(2.99)

where @, = w, /w,. For light damping (,, this function reaches a maximum at @, with
gain

Yoo ,_
Vs (3)

Be2 = max

_ m¢§2

2¢

This dimensionless parameter, a function of equipment modal damping and the ratio

(2.100)

of equipment rigid body mass m to equipment modal mass 7., at the interface
location, governs the degree to which equipment modal flexibility affects the passive
sensitivity P of the classical isolation model.

At this point an important observation can be made by comparing the passive
sensitivity and perturbation functions of of Eqs. 2.98 and 2.99 with those for the
flexible base in Egs. 2.86 and 2.93: these two sets of functions are identical if the

following substitutions are made:

$o — ez (2.101)
G — (e (2.102)
wp — we (2.103)
Ye — Yz (2.104)

where Y = Yz = 1 /ms. The dimensionless parameters B, and f in Eqgs. 2.100
and 2.94 are also identical using these substitutions. Therefore, the effect of equip-
ment resonances on the passive sensitivity P is identical to that illustrated in Fig-

ures 2.18, 2.19, and 2.20, with the substitution of Be, for 8. This is a new result
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which complements the work by Sykes [77] on the effect of resonances in the base
structure.

It is worth noting that the passive sensitivity P for equipment resonances holds for
all four cases listed in Table 2.1 — in particular for the ratio of isolated to unisolated
velocity at both equipment terminals 2 and 3. The effect of equipment flexibility on
P depends only on the equipment input mobility at the interface terminal 2, and does
not depend on whether terminals 2 and 3 remain in phase for frequencies above the
equipment resonance @.. Thus, the equipment mode may be of either the global or

appendage type [70].

2.6 State Space Methods

In the previous sections the transmissibility and isolator passive sensitivity of me-
chanical isolation systems were derived in the frequency domain, primarily to develop
insight for low order problems. State space methods provide an alternate means
to describe the isolator system dynamics, and are attractive for high order systems
and for situations in which the isolator is attached to base structures that are also
modelled in state space form. The analysis in this section is restricted to that of
the classical passive isolator of Section 2.4, mounted to bases of different mobility.
Isolators mounted to rigid bases are modelled first, and then the state models are

modified to permit base flexibility.

Isolation on a Rigid Base: When the base is rigid, the problem of finding the
mount passive sensitivity reduces to that of finding the mount transmissibility since
the two functions are identical. For the passive isolation problem, a state model is

formed by selecting a suitable state vector and by correctly modelling the way in

which the disturbance drives the system dynamics. The simplest example of state
space transmissibility is for force isolation on a rigid base. From Section 2.3, the force

transmissibility of Eqs. 2.48 and 2.82 is

_ _Ii'l_ _ 2Cow,,3+w§
- Ft T 824 20w, + w?

Tp(s) (2.105)
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where F} is-the blocked-(disturbance)force that-acts-on-the-isolated-mass,-and-F}-is
the reaction force on the base, as shown in Figure 2.7. The state space model of this

simple second order system is realized in phase-variable (or observability) canonical

form as
7 0 1 0
" - ISR
Up I _"“’.:»2 "2Cowo N2 1
Fr=lw 2w || (2.106)
i 7
or
n = An+ Lu
y=0Cn (2.107)

where the state vector [2 72| is equal to the physical state vector [z, ]7.
Note that the disturbance F¥ enters the system as a single force on the mass, while
the output Fy is the sum of the force both in the spring and the damper. The

transmissibility is expressed as
Tr(s) = C(sI - A)'L (2.108)

The velocity isolation problem from a vibrating, rigid base illustrated in Fig-
ure 2.10 has the identical transmissibility function to Eq. 2.105, but the state space
must be constructed differently: the force on the isolated mass is due to the force in
both the spring and the damper, which in turn are functions of both the base distur-
bance velocity v} and position :1:{3 = v{-). /8. The differential equation for the second

order mechanical system is recovered from the transmissibility of Eq. 2.105 using the

fact that Ty = T,, and that T}, = vz/'ufg = :1:2/.'1:{;:
823y + 2(ow,sTy + Wizy = w3w£ + ZCOwOv}; (2.109)

This differential equation can be represented by a two-state model (used widely in
the literature for active suspension of road vehicles [36]) in which the state vector is

chosen as 17 = |2y — zf v,y]7, representing the spring deflection and mass velocity:
n B ) rep g pring
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v =10 1 ] 27 %B (2.110)
| v

The transmissibility is calculated again by Eq. 2.108 with the appropriate substi-
tutions for the system matrices. One disadvantage of this state representation is
that the mass position z, cannot be calculated directly; for this reason an alternate
three-state model is proposed in which both mass position and velocity are states.
Given the prescribed disturbance vé, an additional right hand side forcing term a:{;
is required, but in order to preserve observability in the system equations the pure
integration must be approximated by a stable integrator. A disturbance state z is

introduced that approximates the base motion z:

, 1
i= - +w,”{’ W, << w, (2.111)
z ~ zh w>> w, (£.112)

In practice, w, can be set much! wer than w, (say 0.001w,) so that in the vicinity of
passive mount resonance, z very nearly equals m{;. Had the prescribed disturbance
been a base acceleration, then a two-state stable integrator would be constructed.

Using Eq. 2.111, the state dynamics of Eq. 2.110 become

& 0 1 0 - 0
By | = | —w? —2w, w2 || @ |+ | 2w, |vE
: 0 0w, 2 1
i .
T2
y=101 0] (2.113)
Z

The transmissibility is calculated using Eq. 2.108.

Velocity Isolation on a Flexible Base: To derive expressions for the mount pas-

sive sensitivity, the velocity transmissibility for both hardmounted and softmounted
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equipment will first be expressed in state space form, and the ratio of these trans-
mis. ibilities provides the mount passive sensitivity according to Eq. 2.62. When the
base exhibits dynamics, the base displacement and velocity are no longer treated
as exogenous inputs, but are instead modelled as states (or outputs that are linear
combinations of states) of a dynamic system.

Consider the general model for velocity isolation illustrated in Figure 2.8. It is
assumed that the structural input mobility Yp at terminal 1 is known, as well as
the hardmounted disturbance velocity 'ug") at the equipment input terminal (which is
coincident with terminal 1 for the hardmount case). In order to simplify the analysis,
it is assumed that the hardmount velocity 'vg“) is due to a fictitious external force f,

that acts at the base output terminal 1. A general n'® order state space model of the

(uncoupled) base structure is expressed as

m = Asms + Bous
Ty = Cp'rlb
i = Cumly (2.114)

The system outputs are position and velocity of terminal |; in most cases a feedthrough
term can be avoided in the output equation by appending a high frequency second-
order rolloff to any true displacement feedthrough terms, without loss of accuracy at
low frequency ranges of interest. For the uncoupled beam the input u, represents the
external force f, applied to terminal 1.

When the beam is coupled to a softmount isolator, the input u, at the interface
point 1 is the sum of the fictitious external disturbance force f. and the internal

reaction force f;
Uup = fe + f1 (2.115)

where f; is determined by the spring and damping forces

fl = k(mz - :!)1) + C(:i!z —_ d)l)
= kzy — ¢ty — kCpmp — cCymp (2.116)

When this expression for f; is substituted into Eq. 2.115 and Eq. 2.114 the state
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dynamics of the base become
m = (Ab — BykCy, — BbCC,,)'nb + Bykzs + Byczy + By fe (2.117)

The differential equation for the isolator is then modified by substituting the output
equation of Eq. 2.106 into Eq. 2.109

s’y = —wlzy — 2,wosTa + (wap + 2(w,Cy )M (2.118)

The last two equations can now be assembled in state space form for the softmounted
isolator. To remain consistent with previous derivations, the substitutions k& = mw?

and ¢ = 2(,mw, are made in the assembled matrices Aq, By, Cy:

Ty 0 1 0 Ty 0
T, | = —w? 20w, (w20, + 2(w,C,) z, |+ 0 | fe
b Bymw?  By2(owom Ay ul By
da=1]0 1 0 ] b (2.119)
where
fib = Ab - Bbmwap - Bb2{ow.,m0',, (2.120)

From here it is straightforward to calculate the transfer function from disturbance to
output
G(s) = Cu(s] — A,)™'B, (2.121)

as well as the softmount velocity autospectrum at terminal 2
By’ (5) = |G(s)|" @1.1.(s) (2.122)

where ®y,¢,(s) is the autospectrum of the disturbance force. Output variance can be
calculated in state space form using Lyapunov methods or in the frequency domain
by integrating the autospectrum ®3,4(s) over all frequencies.

In order to calculate mount passive sensitivity, the autospectrum for the hard-
mounted equipment is required. In this situation there are no dynamiics in the isola-

tor, but the equipment mass loads the interface terminal 1 of the base by the inertial
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reaction force

f 1 = —mi
= —mC’,,'r}b
= —mC,Any — mC,Bu
= —mC,Am — mCyBf; — mC,Bf. (2.123)
or

__mG4A  mCB
1+ mG,,Bm 14+mC,B

leading to the hardmount state equations for the base

fi= fe (2.124)

) r BC,
o= |1 - g | Amt B[ 1

mC,B

1+mC,B fe

y=|1 o]m (2.125)

The hardmount output autospectrum is calculated using Eqgs. 2.121 and 2.122. Fi-
nally, the magnitude of the passive sensitivity function at each frequency is expressed

as

SM 1/2
22 s)} (2.126)

Pl = | i
| ( )I ‘ng(-‘J)
This equation produces the same passive sensitivity magnitude as Eq. 2.86, using

base mobility Yp calculated from Eq. 2.114:

AVd

{ o\ Faly A 4 _A\—lD (9_1017)
ITB(3) = Uy(S1=—21) Dp (4. 14T

Example 1: Base Modelled as Resonant Mode: Let the base be modelled by
a single mode as in Eq. 2.91, only here let the output of the state model be both

position and velocity at terminal 1:

T.]l 0 1 T 0
= + u
|| | e 20w | | ] A

w0 (2.128)
g [0 1]
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When this state space model for the base is substituted into the coupled isolator /base
state equations of Eq. 2.119, the assembled state space matrices A,, B,, and C, for

this example become

(& [ o 1 0 0 11 2 |
T ~w? —2(ow, w? 2(,w, Ty
7 0 0 0 1 M
|| Emed) luimdl) (- — wimdl) (2w — 2oome?) | | i
B O b
0
+ fe
0
¢ |
T2
Ty
[y]=[10 00] (2.129)
™
| 7|

Similarly, the hardmount state and output equations become

-1 [ o 1 0
™ T
[ . = _ 0)? _ 2wab s } + g fe
Tl T mE T img LT 1 +mé}
- [1][7] 0
I ]

It can be observed in the state equations for the hardmounted and softmounted
isolator that as the dimensionless ratio m@? goes to zero, the original uncoupled
isolator and beam equations are recovered. The output position and velocity of the
base, driven by external disturbance f., become exogenous disturbance inputs to the

uncoupled isolator states [ z; @, ]7.

Example 2: Base Modelled as a Bernoulli-Euler Beam: Let the base to
which the isolator is mounted be modelled as a Bernoulli-Euler beam that includes

translational and rotational rigid body modes. Figure 2.21 illustrates the beam free
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Figure 2.21: Base structure modelled as free-free Bernoulli-Euler beam. The
isolator interface is at the beam tip { = 0.

1

body diagram, in which isolator interface terminal 1 of Figure 2.8 is assumed te be
at spanwise coordinate £ = 0. The beam transverse deflection at £ = 0 is interface
motion z;, and as before the force u acting on the base is the sum of external distur-
bance and internal reaction forces u = f. + f;. The cellocated beam transfer function
from force u to position z; is first expressed in modal form:

zi(s) A, Zk: $:(0)¢:(0) (2.131)

u(s) 2 8% + 2Cw;s + w?

i=1
The residue A, of the rigid body mode is determined from the contributions of the

translational and rotational modes to be

A = 6,(0)4,(0) = -:—L (2.132)

where uL equals the beam mass M;, and ¢,(0) is defined as the rigid body mode

shape evaluated at £ = 0. The mass normalized eigenvectors are defined by

40 = 70 (2133)

L
/0 $i(£)¢;(€) = &y (2.134)
where the free-free modeshapes ;(¢) are from Blevins [13], normalized such that

1i(0) = 2. The residue A; of each flexible mode is
4
= :0)4(0) = = 2.135
A= 0K = (2.135)

Therefore the driving point modal mass 7i; for each mode (including the rigid body

mode) are the same and equal to
L
#:i(0)¢:(0) 4
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For the following simulations, two dimensionless ratios are chosen to scale the beam
mass and first natural frequency with respect to the mass m and (rigid base) resonance

of the passive mount:

m
oL =01 (2.137)
Yo =05 or 2.0 (2.138)
wy

The base structure state matrices become

0 I [ 0
Ay = By = (2.139)
07 -2¢Q o7
r _
C & 0 0
Co=| 7| = D = (2.140)
‘C’v 0 & _0
where
Q2 =diag[0 w?owd o w,g] (2.141)
_2C;Q:diag[0 —2wy 2wy -+ —-2Ckwk] (2.142)
e = [¢r(0) $1(0) ¢2(0) ... ¢k(0)] (2.143)

The effect of truncating the number of modes to k creates a nonzero D, matrix, but
this can be avoided by including a high | quency mode that has as its residue the
residual displacement feedthrough term, or by including sufficienily many modes in
the plant model (20 were used in the current simulation) so that the feedthrough
term becomes negligible. The state matrices Ay, B, and C, can be substituted into
the coupled isolator/base state equations of Eq. 2.119 and Eq. 2.125. Using Eqs. 2.121
and 2.122, the autospectrum of the mass output velocity v, can be calculated for both
the hardmount and softmount cases, as shown in Figure 2.22. Damping on all flexible
modes is assumm.ed to be 1%, and the first beam resonance is assumed to occur at 2w,.
The functicns are plotted versus frequency normalized by the isolator resonance w,.
In the simulation, the disturbance force autospectrum is modelled as a white noise

signal with constant power spectral density &y, s, = 1N?/Hz. The coupling parameter
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Bs is the same for each mode, and is expressed as

_mé _ 2m
26 Gpl

Given (; = 0.01 and m/pL = 0.1, this results in B, = 20. This level of modal

B i=0,1,2,...k (2.144)

coupling is rather high, but it helps to illustrate the effect of base flexibility. Also
shown in Figure 2.22 is an approximation to the softmount autospectrum, calculated

by applying the rigid base passive sensitivity of Eq. 2,105 to the hardmount data:
853 (s) = [PH(s)I” 235 (s) (2.145)

The actual mount passive sensitivity P — calculated by either Eq. 2.64 or Eq. 2.126 -
is compared in Figure 2.23 to the passive sensitivity for an isolator mounted to a rigid
base. It can be seen in both figures that the effect of the base {lexibility is to shift the
mount mode higher (since at w, the beam mobility is due primarily to its rigid body
mode) which is consistent with the prior example in Figure 2.13. When isolated, each
resonant mode shifts to a higher frequency, and except for the lowest beam mode at
@ = 2, the damping in each mode is essentially unchanged. These observations are
also consistent with the effects observed for the single mode example in Figure 2.18,
which differs from the current simulation in that no rigid body mode is included. It
is also evident in Figure 2.22 that the rigid base passive sensitivity, when applied to
the original hardmount data, overestimates the isolator performance (underestimates
the remaining energy) at high frequencies, and overestimates the energy remaining in
the mode near @ = 2.

It should be noted here that while the passive sensitivity functions plotted in
Figure 2.23 have been derived for the velocity isolation problem, the functions apply
equally well to the force isolation problem, as is shown in Section 2.3.3. Additionally,
the passive sensitivity functions in Figure 2.23 apply to the situation in which the base
is rigid but the equipment exhibits modal flexibility, using the substitutions derived
in Section 2.3.3.

Based on this example, it is worth asking whether an approximation for the isolator

passive sensitivity can be determined based on our knowledge of the average base
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Figure 2.22: Velocity autospectra of equipment mounted to a B-E beam. Pa-
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Figure 2.23: Passive sensitivity P(3) for base modelled as B-E beam, vs rigid
base sensitivity P,(3). Parameters: m/M, = 0.1, wyfw, = 2,
By = 20.
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mobility, one that will be more accurate than the rigid base approximation but less
complicated than including the full n** order expression for the base mobility. The
next section explores using two different types of averaged base mobility models -
namely, the dereverberated mobility and the average magnitude models - to improve
the softmount passive sensitivity prediction beyond that provided by the rigid base

model.

2.7 Average Mobility Models for Isolator Passive
Sensitivity

In this section it is shown how frequency averaged models of the base input mobility

can be used in the expression for mount passive sensitivity tc account for the perfor-

mance reduction caused by base flexibility. Specifically, we wish to find an average
base mobility Y5 to be used in computing a modified passive sensitivity function P

based on Eq. 2.86

Ys
1 4+ B
P(s) = Yo (2.146)
R A (]
Ys | Ya

that is both more accurate than that based on the hardmount approximation (Y5 = 0)
and much simpler than the passive sensitivity based on the full order expression for
Ys. The modified effectiveness P can then be used with a model of the hardmount
autospectrum (obtained by simulation or measurement) to make an estimate of the

resulting softmount autospectrum at input terminal 2 of the isolated equipment:
s <2
§3}'(a) = [P(s)| 23" (s) (2.147)

The motivation for this is that in practice, although the local equipment and isolator
mobilities Yz and Y; are well characterized, the base structure to which the isolator is
attached may not be. The base structure uncertainty lies primarily with the individual
modal parameters — that is, individual modal damping, frequency and residue are not

known - yet it may be possible to model the average properties of the structure. For
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example, stiffness or mass may be approximated over certain frequency ranges, or
reasonable bounds may be placed on the magnitude of eigenvectors, damping, or
lowest natural frequency. In addition, the average RMS disturbance motion of the

base structure may be estimated or bounded as a function of frequency.

Use of averaged structural models is prevalent in the literature. Statistical En-
ergy Analysis [44], or SEA, employs models of average structure input impedance to
investigate power dissipation and power flow between dynamic systems. Models are
based on estimates of modal density, damping and eigenvector magnitude over fre-
quency intervals (typically octave or third octave bands); prediction accuracy of these
methods increases as the modal density increases relative to the chosen frequency in-
tervals. For modally dense structures, Skudrzyk [65) characterized the magnitude of
structural input mobility with respect to the mean-value response. MacMartin [45]
showed experimentally how a dereverberated mobility model of a structure could be
used to actively match the impedance of an actuator to maximize energy dissipation
when the structural mobility is highly uncertain. In a similar experiment, Lurie et.
al. [42] used feedback to match the impedance of an active piezoelectric strut to the
backbone of the collocated structural impedance in order to rmaximize energy dissipa-
tion in a truss structure. However, the use of averaged base mobility models has not
yet been applied to the passive isolation problem. In the remainder of this section,

the Bernoulli-Euler beam example introduced in Section 2.5 is used as an illustration.

Average Autospectrum: Consider the hardmount velocity autospectrum ®ZM
for the beam example in Figure 2.22. In Figure 2.24 this function is compared to
a histogram representing the linear average of this positive and real valued function
in each of 12 logarithmically spaced frequency intervals. The number of frequency
bins was chosen such that over the range of flexible modes, most bins contained at
least one resonant peak. In each frequency bin, the linear area under each curve
(representing velocity variance) is identical to that of the exact model, A similar
average can be performed for the softmount autospectrum ®3M of Figure 2.22, and

based on Eq. 2.126, an averaged mount passive sensitivity in each frequency interval
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1 can be defined as

égmw.-)]”z (2.148)

|Pa(Aw;)| = [‘I)ng(Aw;)
The symbol P, is used to represent the histogram based on the ratio of these individual
frequency averages. In effect, this averaged function represents a type of “truth” test
for the isolator, in that the purpose of the isolator is to reduce energy transmission
from the vibrating base to the sensitive equipment. The averaged mount passive
sensitivity P, is plotted in Figure 2.25 versus the full crder passive sensitivity P and
the rigid base passive sensitivity P,. The discrepancy between P, and P, is large

above mount resonance w, (at @ = 1) due to the presence of significant mobility in

the basc structure.

Passive Sensitivity Based on Dereverberated Base Mobility: A dereverber-
ated, or log-magnitude frequency average, model of the base input mobility provides
a convenient low order model Y for substitution into the modified passive sensitivity
function 7 in Eq. 2.146. The term dereverberated is drawn from the literature in wave
modelling of flexible structures [45], [49] in which the local response of a structure
due to an applied force is modelled as the sum of the direct response from outgoing
waves, and the reverberant response due to waves that have reflected off boundaries
and returned to the input terminal. The dereverberated response includes only the
direct field response, which corresponds to a structure that is infinite in extent, or
to one in which the boundary conditions are perfectly absorbing. The connection
between the wave interpretation and the steady state modal response comes from the
fact that ignoring the reverberant field is equivalent to the log-magnitude average of
the structural input mobility, which in turn is the same as assuming that all structural
modes are critically damped [65]. The dereverberated mobility is therefore a smooth
function that follows the backbone of the log magnitude curve.

The dereverberated mobility Y for the free-free beam of Example 2 is plotted in
Figure 2.26 versus the exact input mobility. The function Y3 is obtained by critically
damping all flexible modes in the base model, and can be well approximated over the

range 0.1 to 50 Hz by a 5th order polynomial of real poles and zeros (not shown).
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Figure 2.26: Dereverberated mobility Y£(5) and exact mobility Y5(3) at tip of
free-free B-E beam.

Observe that Y# follows the “backbone” of the exact mobility, and correctly models
the rigid body response. The high frequency asymptote rolls off at s~/2, with phase
—45°.

Figure 2.27 is a plot of the modified passive sensitivity function P that is obtained
when the dereverberated mobility model Y§(s) is substituted for Y5 in Eq. 2.146. In
this simulation the first (uncoupled) beam resonance w; is assumed to occur at 2w,.
The modified passive sensitivity P can be considered to be an improvement over the
rigid base passive sensitivity P, for two reasons: the shift in natural frequency of the
mount is captured, and the function magnitude is closer to the averaged sensitivity P,
at high frequencies. However the discrepancy between the modified passive sensitivity

P and the averaged passive sensitivity P+ is as much as 9 dB at 50w,.

The discrepancy is even more pronounced in Figure 2.28, in which the first beam
natural frequency is set at 0.5w,. In simulations it was observed that including beam
modes with natural frequencies in the range of 0.5w, to 2w, in the dereverberated

model greatly improves the accuracy of the modified passive sensitivity in the vicin-
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ity of w,. However, in all cases the high frequency magnitude remains in error. This
discrepancy arises because the increase in passive sensitivity magnitude at high fre-
quency depends on the magnitude of the base mobility. The dereverberated mobility,
based on the log magnitude frequency average, will always underestimate the average
linear magnitude, which may be considerably larger than the logarithmic mean when

the base is lightly damped.

Passive Sensitivity Based on Linear Magnitude Average of Base Mobility:
In light of the previous results, a base mobility model will now be constructed that is
based on a linear magnitude average. The input mobility of the beam is again plotted
in Figure 2.29, along with a histogram representing an average of the magnitude in
each of 12 logarithmically spaced frequency bands. A 7*! order function was chosen
to approximate the histogram for each of these bands; this function is defined as
the average magnitude function Yj5. In comparison with Figure 2.26, the average
magnitude is greater than the dereverberated mobility magnitude, and has asymptotic
phase less than -45 degrees, indicating a log magnitude rolloff steeper than s~1/2, This
is due to the fact that as frequency goes to infinity, the beam mobility exhibits a high
degree of modal overlap, and the linear and logarithmic averages of the mobility
magnitude converge. Figure 2.30 is a plot of the modified passive sensitivity function
P obtained by substituting the average magnitude model Y3 for ¥; in Eq. 2.146. The
plot clearly shows that the agreement between the averaged autospectra histogram
P, and the modified passive sensitivity P is clearly superior to that obtained for
the modified passive sensitivity based on the dereverberated mobility. For the case
wy = 0.5w, shown in Figure 2.31, the results are also good. Of course, the details of
the mount passive sensitivity are lost using the averaged method, particularly near
w,. By simulation is was determined that retaining base modes in the vicinity of 0.5w,
to 2w, ~ while retaining the averaged magnitude approximation at high frequency -
greatly improves the estimate of the mount passive sensitivity function near w,.

It is obvious by inspection of Figure 2.29 that if the average modal damping in

the base structure were to decrease, then the average magnitude function Y would
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Figure 2.29: Linearly averaged magnitude Y3(5) and exact mobility at tip of
free-free Bernoulli-Euler beam.

necessarily be greater; the dereverberated mobility, on the other hand, would be
unchanged. Therefore, the damping of the base structure influences the mount passive
sensitivity, in addition to any effect caused by the backbone mobility of the structure.
In fact, the individual contributions to the modified passive sensitivity P of both the
backbone and the damping can be identified in Figures 2.27 and 2.30, respectively.

From these examples, it is evident that for moderate or strong modal coupling,
the average magnitude response of the base must be considered when evaluating
the performance of a passive isolator. However, for low levels of modal coupling -
roughly By < 1 - the rigid-base effectiveness P, is nearly correct in predicting mount

performance.
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2.8 Summary

In this section the concepts of mount transmissibility and passive sensitivity are stud-
ied for the general force and isolation problems using four-pole mobility methods. The
analysis leads to the important simplification that the single function of mount passive
sensitivity P can be used to describe nearly all the performance functions of interest
for both force and velocity isolation; this conclusion is not affected by the presence
of base or equipment flexibility. The effect of flexibility on the passive sensitivity
function P is investigated for several simple order models and the impact on mount
performance is characterized in terms of simple dimensionless parameters. Flexibility
in the base structure and isolated equipment is found to have identical parametric
effects on mount passive sensitivity. State models are introduced and used to simulate
a velocity isolation problem on a modally rich base structure. Finally, it is shown
by example how a low order function that approximates the average linear magni-
tude of the base input mobility can be used in a modified passive sensitivity function
to provide an improved estimate of the energy transmitted by the passive isolation

mount.
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Chapter 3

Plant Transfer Functions for

Active Isolation

3.1 Objectives

The term active isolation refers to a feedback control architecture in which sensors
and actuators that are local to the isnlation mount are connected by feedback for the
purpose of actively modifying the mount passive sensitivity P or transmissibility 7.
Local sensors include acceleration of the isolated equipment, interface gap or force,
and acceleration of the base structure at the isolator interface. In the introduction,
four configurations of local actuation are shown in Figure 1.5 for an isolation mount; ir
each case the force is applied at points that are collocated with the interface terminals
of either the equipment or base structure.

Ideally the mount performance and stability are independent of the base to which
it is mounted. In Chapter 2 it is shown that when base or equipment flexibility
becomes large (in a dimensionless sense) the passive sensitivity P of the mount is
increased, making the mount less effective. Since the performance of the active mouvnt
depends upon the compensation of local sensor/actuator transfer functions, the effect
of flexibility on these transfer functions must be considered. When the perturbations
to the lnop gain due to base flexibility are sufficiently small, the performance and

stability of the actire mount will be similar to that for a rigid base mounting. This
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chapter investigates the practical limits of ignoring base flexibility in the active mount
compensator design.

To study this problem, general models for active isolation are investigated in the
frequency domain using the four-pole mobility analysis for simple lumped param-
eter models of base flexibility. The analysis is restricted to the parallel actuator
configuration of Figure 1.5(a), and to a special case of series isolation illustrated in
Figure 1.5(b). Similarities are shown for the effects of base and equipment flexibil-
ity on the plant transfer functions, and a parametric multiplicative error model is
constructed to account for unmodelled base or equipment modal flexibility. Derever-
berated mobility models of the base are shown to improve models of transfer functions
in the presence of flexibility. Finally, the results of the analysis are summarized by a

discussion of the effects of flexibility on the closed loop mount stability.

Relevant Literature: Several studies and many experimental demonstrations are
reported in the literature for broadband active isolation design in which rigid body
models are assumed for the base and isolated equipment. Su et al. [75] study the
closed loop transmissibility achievable with feedback of absolute and relative posi-
tion, velocity and acceleration of local mount variables, and the effect of actuator
dynamics on mount performance. Sinha and Kao [68] present a direct design ap-
proach using equipment acceleration and gap as feedback to obtain a specified closed
loop transmissibility. A modern control synthesis for active vehicle suspension is
investigated by Thompson [79].

Some recent studies have considered flexibility of the base structure during con-
troller design for an active mount. Spanos et al. [71] employ classical control tech-
niques for force feedback for equipment mounted to a flexible structure. Watters et
al. [82] study feedback sensor selection for the active isolation of machinery distur-
bances from a modally rich base structure. A thcrough review of active isolation
research and development prior to 1968 is provided by Ruzicka [60].

This chapter does not include closed loop simulations or provide a tutorial on

closed loop design for active mounts. It is assumed that well-known classical or
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modern control methods can be used to design compensators based on the nominal
model (assumed rigid base and equipment modelled as a mass); typically these models
are low-order and do not involve lightly damped modes. What the chapter does
discuss, however, is how base or equipment flexibility might impact such control
designs, and what the implications are for the choice of feedback sensor and local
mount hardware design. The dimensionless analysis presented applies to isolation
mounts that are either soft or stiff, and is relevant to control designs that are either

broadband or narrowband.

3.2 Parallel Actuator Model

The general parallel active isolation problem is illustrated in Figure 3.1. A passive
isolator I is placed between equipment E and base B to attenuate transmission of
disturbances across the interface. The mount is made active by the control force f,
applied between terminals 1 and 2 (in parallel with isolator I) in order to modify the
passive sensitivity P.

The transfer functions between f, and local response variables are independent
of the disturbance source, and are therefore relevant to either the force or velocity
isolation problems introduced in Chapter 2. When f, = 0, Figure 3.1 is identical to
the passive isolator models in Figure 2.8 and Figure 2.9. In the following analysis the
four-pole mobility method is used to derive system transfer functions from the input
force f, to the local output variables listed in Table 3.1.

The relationship between force F; and velocity v; at the interface to the base

f

structure from Eq. 2.53, (with base disturbance vy set to zero), is expressed in matrix

form as

0=[YB 1] fl (3.1)

" In Flgure .3."1, the elements between terminals 1 and 2 - a passive isolator in parallel
with a pure force actuator — are the same as the actuator model illustrated in Fig-

ure 2.4. Using Eq. 2.33, the forces and velocities across the interface are expressed
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Table 3.1: Transfer functions for parallel actuator model.

sensor transfer function symbol
a
equipment (output) acceleration —fi Gy
equipment (interface) acceleration % G,
F.
interface force (2) —f—g Gs
F,
interface force (1) = Ga
fa
T2 — I
gap Gs
fa
. a
base acceleration ?— Ge

equipment E
F, V2
2 [ ]
l
control
isolator I fa f
orce
|
1 | R ' U1
[ ] —
base structure B

Figure 3.1: The general parallel actuator model. An actuator applies a com-
manded force in parallel to a passive isolator.
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as

1 1 1
T, 7 1= o
Fl ] _ ( )21 },]1.2 [ F2 ] + (Tu)2l fa (32)
V1 ye Lp) -Y?
le (Tll)12 1
The equipment four-pole model is taken from Eq. 2.40
1
F Y
Pl=] " | (3.3)
V2 1
(Tu)23

Substitution of Eq. 3.3 and Eq. 3.2 into Eq. 3.1 yields

1
Y: +Y, (——- - 1)
2758\ (T)n

e T (] )f“
( ) (T )23 7 (Tv)21Y2{3 (Tu)zsylfz

(3.4)

which upon multiplication of numerator and denominator by (7}).3 and application

of Eq. 2.45 leads to

N, e

1
“TDeT T VA (e 1)]1 (85)

fa
1
+Ys| o+ —F
(T2 Yz ' ° ((Tu)mYE Ylfz)

As expected, the denominator D(s) is the same as that derived for the general passive
isolation model in Eq. 2.46. The transfer functions between commanded force f, and
output variables are found easily by the substitution of Eq. 3.5 into Eq. 3.3 and by
the substitution of Eq. 3.3 into Eq. 3.2:

(a) equipment acceleration a; = svs:

. 1
% _ *(To)ea [Y” +;:8)((T )1 )] (3.6)

(b) equipment acceleration a; = svy:
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2_%m+“ﬁﬁm"QJ (3.7)

(c) interface force Fj:

22 ' 3.8
2 ) (38)
(d) interface force Fi:
i 1 1 1
Y2 -+ — |+ —- (1 —r
ﬂ,‘4&+m)Wmm(<mJ 9)
fa D(s) '
(e) gap z2 — z1 = (va — v1)/s:
YB YB 1 - (Tu)12 - (Tu)21
& 1+—+-—) - Y, (1+
-z ( Yo YS) ° (T)12(T)a (3.10)
fo sD(s) '
(f) base acceleration a; = sv;:
a,
f— = —3Yp(s)G4(s) (3.11)

Egs. 3.6 to 3.11 represent the general form of the local actuator-sensor transfer func-
tions for the parallel actuator model, for any equipment, isolator or base mobilities
that can be described in four-pole form. Table 3.1 lists the symbols used to represent
each transfer function. In the following, each transfer function is investigated for the
classical parallel actuator model and for cases in which the base or equipment exhibit

flexibility.

3.2.1 Classical Parallel Actuator Model

In Figure 3.2, equipment mass m is passively mounted to a rigid base by a viscously
damped spring. A relative control force f, is applied between terminals 1 and 2.
Disturbances may enter the system either as a force disturbance on the mass m or
as a velocity disturbance at the base. This model, referred to here as the classical
parallel actuator model, is based on the following assumptions (of which the first four

are identical to those for the classical passive isolation model in Section 2.4):
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m Ivz

L

=0
F, B

[//////l |

Figure 3.2: Classical parallel actuator model.

(i) base structure B is rigid
(ii) equipment E modelled as a rigid mass m
(iii) passive isolator I is massless

(iv) passive isolator I modelled as a viscously damped spring. The spring
and viscous damping constants are frequency independent.

(v) ideal relative force f, is applied between terminals 1 and 2.

The assumptions greatly simplify the plant transfer functions of Egs. 3.6 to 3.11.
Firstly, the assumption of a rigid base implies zero base mobility, or Y3 = 0. Based
on the second assumption, the equipment input mobility becomes Yz = 1 /ms and
the equipment velocity transmissibility becomes (Ty)23 = 1. Additionally, terminals
2 and 3 on the equipment condense to the same point. The assumption of a massless
isolator leads to YI{, = 0o and (T, )12 = (T,)a1 = 1; the physical interpretation is that
force F = F;. According to the fourth assumption, the blocked transfer mobility
of an isolator modelled as a massless viscously damped spring is given by Eq. 2.78,
and is denoted for simplicity as ¥;. With these simplifications, the transfer functions

become

Gi(s) = = (3.12)



G4(s)=1 EY, (3.13)
Ye
ly,
Gs(s) = —¢~ (3.14)
1+ Yo
Gs(s) =0 (3.15)

where G, = Gy, and G3 = G4. Eqs. 3.12 through 3.14 can be expressed in parametric
form by substituting Yz = 1/ms and Y; = s/(cs + k). In terms of normalized

frequency 3 = s/w,, the three nonzero functions become

1 -2

s\ — _ m
Gi6) = 524 208+1 (3.16)

3'2

G4(3) = FETTETE] (3.17)

1

mw?

GS(E) = m (318)

These three transfer functions, derived for a rigid base, are compared in the following
pages to examples in which the base is modelled as flexible. For example, the transfer
functions in Egs. 3.16 and 3.18 are plotted as dashed lines in Figures 3.3 and 3.4. The
parametric models assumed for base flexibility - that of a mass, damper, spring, and
single resonant mode - parallel the analysis for the passive isolator in Section 2.5.

The first three models of base flexibility are referred to below as broadband flexibility.

3.2.2 Effects of Base Flexibility

When the base structure B is not rigid, only the first assumption for the classical
parallel isolator is relaxed; otherwise the remaining assumptions hold. Therefore,
G, = G, (equipment is a rigid mass m) and G3 = G4 (isolator is massless). With Yp

retained, the transfer functions of Egs. 3.6 to 3.11 become



Y,
CGa(s) = —p - (3.20)
1+ Yo + Ys
Y;
(13
Gs(s) = —y—v, (3.21)
et Ve
sY, (YB>
_sy; (22
Y,
Ge(s) = —p——9~ (3.22)
Yt

When compared to the rigid base transfer functions of Eqs. 3.12 to 3.14, it is evident
in the above equations that Yp/Yg is a perturbation term. Table 2.2 lists expressions
for this term when the base mobility Yp is modelled as a mass, spring, or damper.
Recovery of the rigid base transfer functions in Eqs. 3.12 to 3.14 is expccted as the
perturbation term goes to zero. Because the perturbation term appears as a factor
in the numerator of Gg in Eq. 3.22, G¢ — 0 as Yp/Yg — 0, which is consistent with
a base that is rigid.

In all cases in which the equipment E can be modelled as a rigid mass m, the
equipment mobility is expressed as Yg = 1/ms and Egs. 3.19 and 3.20 only differ by
a factor of m, or G4 = m@,. In order to reduce the number of plots in the following
sections, only one plot is used to illustrate both G; and G4/m. Later, modal flexibility

is permitted in the equipment and this simplification is no longer valid.

Base Modelled by Broadband Flexibiiity

Base Modelled as a Mass: The output mobility of the base B is modelled as
Ys = 1/Ms from Table 2.2. Using the definitions of modal parameters w, and (,
from Eq. 2.80, and substituting the expressions for Y; and Y from above, the transfer

functions in Eqgs. 3.19 to 3.22 are expressed in terms of dimensionless frequency 3 =

8w, = Jw/we:

o 3 /m
O e (e (4 ) 2
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2+ 7)
mw? M
52 my . m
s +2C°(1+M)3+(1+M)

Go(3) = 5 /m (%)

T my . m
E; +2Co(l+M)s+(l+M)

Gs(3) = (3.24)

(3.25)

where G4 = mG,. Transfer functions for G;,Gs and G are plotted in Figures 3.3
to 3.5 for different values of the dimensionless parameter m/M. When the base is
infinitely massive, or m/M = 0, the rigid base (classical parallel actuator) model is
recovered, and is represented by a dashed line. However, the base acceleration transfer
function G equals zero for m/M = 0. The trends exhibited in Figures 3.3 to 3.5
with respect to increasing m/M - increased mount natural frequency and damping -

are the same as those for the passive isolator model illustrated in Figure 2.13.

Base Modelled as a Massless Damper: In this case Y5 = 1/C and the mount

transfer functions (in terms of normalized frequency) become

o 3% /m
G = (1 + 2£omc“,’°) &+ (240 + m;) 5+1 (320
1 mw,
2
_ w? (1 + C )
Gs(3) = (1 N 2<°mcu;:l) P (240 N m0¢'00> 541 (3.27)
Ge(3) = ~oim (%) (3.28)

mw,

) (e )

Eqgs. 3.26 to 3.28 are plotted in Figures 3.6 to 3.8 for different values of the dimen-
sionless parameter mw,/C. The viscous damping coeflicient for the isolation mount
is ¢ = 2(,mw,. As the base damping C decreases relative to mount damping c, the

mount resonance for the coupled system becomes more heavily damped.
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parameter m/ M

G, magnitude (m/s?/ N)
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T
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normalized frequency

—
o

Figure 3.3: Equipment acceleration G1(3) = as/f., and scaled interface force
G4(3) = Fy/ fa = mG,(5). Base modelled as mass M.

parameter m/ M
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magnitude (m / N)
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-100
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10" 10° 10'
normalized frequency

Figure 3.4: Gap G5(3) = (z2 — 1)/ fa. Base modelled as mass M.
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parameter m/M

magnitude (m/s2/ N)
o

Gg
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_200 A " PR . i

10" 10° 10'
normalized frequency

Figure 3.5: Base acceleration Gg(3) = a;/f,. Base modelled as mass M.

parameter mw, / C

G, magnitude (mvs2/ N)
o-

phase (degrees)
S
o

o

-

[=]
-
o
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o

normalized frequency

Figure 3.6: Equipment acceleration G1(3) = a3/ fa, and scaled interface force
G4(3) = F1/ fa = mGy(3). Base modelled as massless damper C.
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Figure 3.7: Gap G5(3) = (z2 — 1)/ f.. Base modelled as massless damper C.
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a.l/fa.

Base acceleration Gg(3) =
damper C.
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Base Modelled as a Massless Spring: From Table 2.2 the mobility of the base
modelled as a massless undamped spring is Yp = s/K and the system transfer func-

tions of Eqs. 3.19 to 3.22 become

Gi(8) = 52/"; (3.29)
=3 -2 —
(2@,?) 3%+ (1 + 7{—> 34+ 2(3+1
1 ( k _2)
> 1+ —3
Guls) = (3.30)
(240;5) 5%+ (1 + 'f?) 82+ 205 +1
k
-+ ()
Ge(3) = (3.31)

or £\ o3 kY -
(ZCOK)S + (l—l—K)s +2(,3+1

The dimensionless parameter k/K governs the degree of interaction of base spring
flexibility with the local mount transfer functions, as illustrated in Figures 3.9, 3.10
and 3.11. The transfer function for equipment acceleration az in Figure 3.9 shows
a decrease in mount natural frequency, and a decrease in mount damping ratio, for
increasing values of the parameter £/K. An important observation is that the base
spring mobility adds a high frequency real pole to the denominators of Eqs. 3.29
to 3.31. The real pole leads to additional phase loss (beyond 180 degrees) for both G,
and Gg. The gap transfer function G5 also loses phase due to the real pole, but due
to an undamped complex zero pair at @ = K/k, remains bounded in phase between 0
and —180 degrees, as is expected for a collocated transfer function. In fact, because
the force is applied as a pair in the interface, only gap is a collocated output variable;
transfer functions to the acceleration of the equipment or base exhibit collocated

characteristics only when the flexibility of equipment or base structure is small.

Base Modelled as a Single Resonant Mode

Transfer Functions for Equipment Acceleration and Force: Consider first

the general expression for the acceleration transfer function G, in Eq. 3.19 for the
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Figure 3.9:

10° 10
normalized frequency

Equipment acceleration G;(3) = a3/ fa, and scaled interface force
Ga = F1/fa = mG,. Base modelled as massless spring K.
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Figure 3.10: Gap G5(3) = (z2 — z1)/f.. Base modelled as massless spring K.
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Figure 3.11: Base acceleration Gg(5) = a1/f,. Base modelled as massless
spring K.

parallel active isolator mounted to a flexible base:

SYI

YI Y
1+ —+ 4+ -8
+YE+YE(3)

Gi(s) = (3.32)

which also describes the transfer function for interface force Fy since G4 = mG,.

Substitution of the expressions for Y; = s/(cs + k) and Yg = 1/ms leads to

32

Gl(s) =

v (3.33)
*m+tces+k+ (k+ cs)—B(s)
Y

Using the definitions k = mw?, ¢ = 2(,w,m, and 3 = 3/w,, the equipment acceleration
g ) )

o)

in terms of normalized frequency becomes
1
— 52
Gi1(3) = Tt (3.34)

Y,
8 4205+ 1+ (1 + 2¢,3) ?5(5)
E

where the perturbation term in the denominator is from Eq. 2.93

Yy md;

3) = 3.35
YE(S) 8% + 20,3 + &} (3:35)
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The degree of coupling of the base mode into the plant tra-.sfer function G, depends
upon (among other factors) the dimensionless frequency ratio @, == wp/w,, the ratio
of base mode frequency to rigid base mount resonance. The two simplest cases to

consider are low frequency (@, < 1) and high frequency (73 > 1).

Pole-Zero Spacing Below w,: For the low frequency case, 3 < 1 and @, < 1,

and Eq. 3.34 is approximated by
Gi(5) = —m— (3%,07) < 1

1
—3 (52 + 2083 + w,f)
- m
52 (1 + m¢}) + 263 + &f

(3.36)

For small base mode damping (;, the base mode creates a complex zero pair in the

transfer function at the frequency

Z; = &)b (337)

and the poles p; are at the roots of the undamped characteristic equation
#(1+mg}) +af =0 (3.38)

5= kja, (1+ m¢§)_;— (3.39)

For values of m@f = m/m, (the ratio of equipment mass to modal mass) small

compared to one, to first order in m¢? the plant poles p; are at the frequency

2
pi = W <1 - %’2‘1) mép < 1 (3.40)
leading to a pole-zero spacing of
2

2 —pi = mTquLDb (341)

or alternately, relative pole-zero spacing

z —pi _ méy

= 3.42
o 5 (3.42)
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The pole frequency p; lies below the zero frequency z;. For a base mode with large
modal mass, m¢? < 1 and the relative pole-zero spacing in Eq. 3.42 is small. The
transfer function for G, in Eq. 3.36 then looks like the function 52 /m perturbed by a
closely spaced, lightly damped pole-zero pair. This result agrees with the results of
Garcia et al. [24], who investigated the coupling of base flexibility into the transfer

function G, for the frequency range below mount resonance w,.

Pole-Zero Spacing Above w,: Now consider the case in which the base mode @,

lies above resonance, where @ > 1 and 3% >> 1 and Eq. 3.34 is approximated by

lgz

Gy(3) = - Ys (%, @) > 1

5 4 (1 +2(,3) =
Y&

1 (8% + 26,@5 + @)
- ___om Y 2 (3.43)
3“4+ 3 (2{5&){, + Com¢b) + (wb + m¢b)

Once again, the base mode creates a complex zero pair at z; = @, but now to first

order in m¢? the pole is at the frequency

2
m
Pi = Wy (1 + —‘_%Q) mép < 1 (3.44)
205
Here the pole lies above the zero frequency z;. An important result of Eq. 3.44 is that
for a given base modal mass, the relative pole-zero spacing decreases above mount

resonance w, by the factor &

z—pi __md;
= — 3.45
Wy 2@: ( )

The effect of the relative pole-zero spacing on the transfer functions can be seen in
the frequency domain in the following figures. The transfer function G; is plotted in
Figure 3.12 for @, = 0.3 and in Figure 3.13 for @, = 3. The function is plotted for

values of the dimensionless parameter (3, between 0 and 50, where from Eq. 2.94

_ mdp
b= 5 (3.46)

Since the base damping ( is fixed at 1%, the range 0 < 8, < 50 corresponds to a

" range of m¢? between 0 and 1, where m¢? = 1 corresponds to the case in which the
g b ) b
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isolated mass m equals the modal mass, m, = 1/¢Z, of the base resonance. In both
Figure 3.12 and Figure 3.13 the effect of the flexible base mode is to contribute a
pole-zero pair to the rigid base transfer function (plotted as a dashed line, but hidden
by the curve for B, = 0.1) as well as to shift the mount resonance at @ = 1. In
Figure 3.12 the perturbation in magnitude and phase is nearly zero for 8, = 0.1; at
higher values of 8, the pole-zero separation increases and the magnitude and phase
perturbations also increase. The mount resonance at @ = 1 shifts upward in frequency
and becomes more heavily damped, which is consistent with Figure 3.3 since above

@ the base input mobility appears to be that of a mass with magnitude 1/¢7.

Figure 3.13 indicates that the pole zero separation for base modes above mount
resonance w, is much less sensitive to the parameter 3, as discussed above. In this
case, magnitude and phase perturbations are barely noticeable for 8y = 1. For a
given B, the pole-zero separation continues to decrease by the factor 1/w}? as the
base resonance &, is moved to higher frequency, until the mode is characterized by
a virtual pole-zero cancellation and is effectively decoupled from the plant transfer
function. It is worth noting that the while the zero contributed by the base mode
remains lightly damped, the pole becomes more heavily damped (as indicated by the
additional term in the denominator of Eq. 3.43). Since below base mode resonance
@y the base output mobility approximates that of a spring with magnitude &2 $Z, high
values of f, force the mount resonance at @ = 1 to decrease in frequency and become
more lightly damped. The spring-like effect of Y below @, also contributes to a loss

in phase (below 0°), which is consistent with the results shown in Figure 3.9.

Pole-Zero Spacing for Base Modes Near w,: Figure 3.14 illustrates the effect
that a base resonance at @, = 1 has on G;. As in Figure 3.12, the magnitude and
phase perturbations are very small for B, <« 1. The base mode introduces a zero
at @ = 1 but the modal separation no longer follows a first order perturbation. To
investigate this, an approximation for the imaginary part of the system poles of the
characteristic equation of G, is determined. The perturbation term Yg/Yg of Eq. 3.35
is substituted into Eq. 3.34 and the (undamped) fourth-order characteristic equation
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Figure 3.12: Equipment acceleration G;(3) = aa/f., and scaled interface
force G4(3) = Fi/fa = mGy(3). Base resonant mode: @, =
0.3,¢, = 0.01,
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Figure 3.13: Equipment acceleration G;(3) = a3/f,, and scaled interface
force G4(3) = Fi/fa = mGy1(3). Base resonant mode: @ =
3,6 = 0.01.
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Figure 3.14: Equipment acceleration G,(3) = a3/fs, and scaled interface
force G4(3) = Fi/fa = mG,(3). Base resonant mode: @, =
1,{ = 0.01.
of G, becomes:
3 +35 (1+af +me}) +af=0 (3.47)

Since the uncoupled plant poles are at 3 = 15 and 3 = j@, the perturbed roots of

Eq. 3.47 are expressed as
s51=3(1+¢) (3.48)
3y = jan(l + ) (3.49)
Roots 3, and 3, are substituted into the characteristic equation in Eq. 3.47 separately,

and after expansion, terms up to second order in € and «y are retained. Solving for €

and :

©F — 1+ mef £ /(1 — @) + meF(3 + @})
5— @} — me}
_ Zoh+ Lt mef (1 - @) + maf(1 + 3f) (351)
T —1+50f - mgy '

Table 3.2 lists approximate values for £ and 7 based on Egs. 3.50 and 3.51 for three

€= (3.50)

frequency ranges, along with an estimate of the error of the approximation. It can
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Table 3.2: Approximations for pole perturbations.

parameter W =1 o K 1 wy > 1
] ni | m# | me
2 2 2w}
_met | _mép mey
7 2 2 22
Bounds for | m¢7 < 0.1 | m¢Z <0.1 | m¢? < 0.1
2% error wp < 0.6 wp > 2

be seen that the pole perturbation for @, = 1 is quadratic, and that the first order
expressions for the coupled system poles in Egs. 3.40 and 3.44 are approximately

recovered for @y < 0.6 and @, > 2.

Transfer Function for Gap: The gap transfer function Gy is now investigated.

Consider the general expression for G5 on a flexible base in Eq. 3.21

1 _é)
BYI(HYE

Gs(s) = RO (3.52)
Ye Ye
Substituting for Y7 = s/(cs + k) and Yg = 1/ms
Y;
1+ 52(s)
Gs(s) = = (3.53)
Ys
ms?+cs+k+ (k + cs) ?—(s)
E

In terms of modal parameters k = mw? and ¢ = 2(,w,m, and normalized frequency

3 = 8/w,, the gap transfer function becomes

1 Yp,_
mw? (1 * }_’;(8))

Y,
5 4205 + 1+ (1+20,8) 5~ (3)
E

Gs(3) = (3.54)

'8



where the perturbation term Yg/Yg is given by Eq. 3.35. Naturally, the poles of Gj
are the same as those of G, in Eqgs. 3.40 and 3.44

2
= @y (1 — Tg—") (mep, @f) < 1 (3.55)
. m¢§ 2 -2
pi =@ |1+ 2%E mey K 1, @ > 1 (3.56)
b

but due to the presence of the term Yp/Yg in the numerator, the zeros are different.

For any value of @, and small (;, the zeros of G5 are approximately the roots of

$*(1+mgl) + @ = 0 (3.57)
or to first order in mgZ,
2
2 = l.Db(l - T%’Sb) m¢: <1 (358)

which together with Eqs. 3.55 and 3.56 leads to a relative pole-zero spacing of

2{ — Pi
Wy
z—pi _ _mé;
@ 2

=0 wp < 1 (3.59)

o > 1 (3.60)

Thus for the gap transfer function Gs, the pole-zero spacing is a constant above
mount resonance, unlike the behavior for the acceleration transfer function G, in
which the pole-zero spacing decreases to zero above mount resonance by the ratio
1/@¢. The first order analysis indicates pole-zero cancellation for base modes @, < 1,
however, as shown in Table 3.2, the first order approximation of pole perturbation
is in error abeve 2% for @, >= 0.6. It is expected that the cancellation will not be
exact for frequencies near mount resonance @ = 1, as is shown in the following plots.
Table 3.3 summarizes the relative pole-zero spacing for the acceleration (or force) and
gap transfer functions.

Figures 3.15 and 3.16 illustrate the effects of base resonances on Gy for different
values of the parameter ;. The base resonance is most strongly coupled above mount
resonance w, at @ = 1, and nearly decoupled below @ = 1. Again, this behavior is

opposite to the trend observed for the acceleration and force transfer functions G,

119



Table 3.3: Relative pole-zero spacing (2z; — p;)/@, for parallel actuator model
due to resonant mode in base structure.

transfer function symbol frequency range
wp K 1 wp > 1
2 2
equipment acceleration G, méy - T_%Q
2 2wy
2 2
interface force G, % - T_izb
2 wa
2
gap Gs 0 - %ﬁ

in Figures 3.12 and 3.13. Shifts in mount resonance and additional damping in base
resonance for @y = 3 at high levels of 8, are consistent with the plots for G,.
Figures 3.18 and 3.17 illustrate the base acceleration transfer function Gg for the
two cases of @, cousidered. Unlike the transfer functions for equipment acceleration,
interface force or gap, the base flexibility does not perturb a nominal transfer function,
but rather is responsible for making the measurement nonzero in the first place.
Examination of Eq. 3.22 indicates that the perturbation term Yp/Yg is a factor
in the numerator of G¢. Thus, the base acceleration transfer function is roughly
proportional to the base output mobility Yg, which for a general structure may be a
highly complex function of frequency. This phenomenon is illustrated below with an

example from the literature.

Comparison of Results to Watters et al. (1989): The parallel actuator model
of Figure 3.1 was considered in a previous study by Watters et al. [82] for a diesel
engine mounted on a modally rich base structure. Figure 3.19, from this reference,
is a comparison of the transfer function from commanded force f, (current in the
actuator) to measured force F; and measured base acceleration a;, which correspond

to transfer functions G4 and Gg respectively. The mount resonance for this example
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Figure 3.19: Interface force F), and base acceleration a; due to commanded
force fu, from Watters et al. (1989).

is at approximately 30 Hz. Figure 3.19 shows that there is no coupling of base modes
with the force output above 30 Hz, and little below 30 Hz - thus the dimensionless

parameter f, = mg}/(2(,) and the perturbation Yp/Yg for the base modes must

be small. Even for low values of the base mode perturbation, however, the base
acceleration shows a high degree of modal coupling. From Eq. 3.22, for small Yp/Yg

the function G is approximated by

Ge(s) = —sYp(s) 3«1 (3.61)
3
@mz—%&m #>1 (3.62)

o

If the base mobility Y5 exhibits many lightly damped flexible modes, then the result-

ing transfer function will be like that shown in Figure 3.19, even for small Yy /Yg or

small Ss.

Transfer Function Insights of Pole-Zero Spacing: Figure 3.20 illustrates the
effect that a change in base mode damping (s, for a constant By = 1, has on the
transfer function for G in Figure 3.12. Since f, is constant, as damping is increased
from zero to 10% the mass ratio m¢? takes on the ratios 0, 0.002, 0.02, 0.1, and 0.2

respectively. The magnitude perturbation induced by the base resonance — defined
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as the ratio of the perturbed to nominal (dashed) transfer function at the frequency
of base resonance - remains nearly constant for a given value of 3, regardless of the
(finite) value of damping. The perturbation is approximately 4.35 dB, or a factor
of 1.65, for (4 < 1%. Similarly for the phase: the maximum phase excursion re-
mains nearly constant at approximately —64 degrees (—1.12 radians). The pole-zero

separation widens according to Eq. 3.41.

5-plane Insights of Relative Pole-Zero Spacing: An 3-plane investigation of

the relative pole-zero spacing is approached by expressing 8, = 1

méy
— =1 3.63
2% (3.63)
and multiplying each side by the factor (y@:
2
%d’—btbb = (pp (3.64)

The left hand side of Eq. 3.64 is just the first order approximation for pole-zero

spacing below mount resonance from Eq. 3.41, and the right hand side is the distance

of the plant pole from the j& axis, as shown in Figure 3.21. Therefore, maintaining
P equal to 1 is equivalent to maintaining the pole-zero frequency separation equal to

the distance from the j& axis.

3.2.3 Effects of Equipment Flexibility

In order to study the effect of equipment flexibility, the base mobility is first assumed
rigid (Yp = 0). Assumptions (i) and (iii) through (v) of the classical parallel actuator
are retained; only assumption (ii) is relaxed to permit an equipment mobility that
is different from a rigid mass. The assumed equipment model is the same as that
assumed for the passive isolation investigation of Section 2.5.2.

Consider first the acceleration transfer function Gy of Eq. 3.6, which relates the ac-
celeration a3 at equipment output terminal 3 to the input force f,. Using assumptions

(i), (iil) and (iv) of the classical parallel actuator, the transfer function becomes
3(Ty)23Y7
Yy
Ye

Gi(s) = (3.65)

1 +
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Figure 3.20: Effect of base mode damping (, (at constant 3, = 1) on pole-zero
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Figure 3.21: For B, = 1, the pole-zero separation in G1(3) for 3 << 1 equals
the horizontal distance of the pole from the jw axis.
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The expression for (T,)23 in Eq. 2.45 - representing the velocity transmissibility be-
tween termirals 2 and 3 of the equipment - is substituted into Eq. 3.65, and numerator
and denominator are multiplied through by Yz

sYlY,
o= {8

(3.66)

where Y is the equipment input mobility at terminal 2, and Y, is the equipment
transter mobility (from input force F} at terminal 2 to velocity vs at equipment output
terminal 3). These functions are modelled as the mobility of a single equipment rig.d

body mode plus the mobility of a single resonator:
Yo =Yg + Yo (3.67)

Y =Yg + Yo (3.68)

where the rigid body mode is from Eq. 2.97

- 1
Yg = — 3.63
B= (3.63)
and the resonant mode expressions are based on Eq. 2.96
32
Ye — e2 3.70
2 82 + 2(.wes + w? (3.70)
Vg = ——babes (3.71)

82 + 2(cwes + w?
where w, and (. are the base mode frequency and damping, and ¢., and @.s are mass
normalized eigenvectors of the equipment mode at the input and output terminals
2 and 3, respectively. No further restrictions are placed on the eigenvectors at this
time; ¢.2 and ¢.3 are allowed to differ in magnitude and sign. The expressions for Yg

and Yz{, are substituted into Eq. 3.66 to yield

sYr (?E + Yea)

Grle) = Y; + Y + Yo (8.72)
sY; (1 + };:1:)
- (3.73)
Ye ' Yg



The perturbation term in the denominator, Y;;/Yg, is the same as that in Eq. 2.99
introduced for the passive isolation problem. For small damping (., from Eq. 2.100

this perturbatica term has maximum gain (from Eq. 2.100)

_ m¢32
Bez = 2, (3.74)

at w = we. Similarly, the perturbation term in the numerator is Yeg/f’g, with maxi-
mum gain

_ m¢e2¢33
Pes = —5— . (3.75)

at w = w,. Because B.; is expressed in terms of the square of ¢.;, the parameter .,
will always be positive. If however the eigenvectors ¢.; and ¢.3 at terminals 2 and
3 are out of phase, then 8.3 will be negative. The relative magnitudes of these two
dimensionless parameters will depend on the particular mode shape.

Expressions for the six transfer functions in Table 3.2 in the presence of equipment
modal flexibility are derived in a similar manner, and are tabulated in Table 3.4
next to those derived previously for base resonances. The structure of the equations
indicates that the perturbation terms Yp/Yg and Y,/ Y& affect the denominators of
both columns in the same manner: as the perturbation terms go to zero, the rigid base

transfer functions are recovered. The perturbation terms are compared in Table 3.5.

Transfer Functions for Force and Gap: By comparing the transfer functions
G4 and G5 in both columns of Table 3.4, it is obvious that the parametric effect of

equipment and base flexibility are the same, with the substitutions
Y5 — Yg (3.76)
Yo 2 Y3 (3.77)

where Yg = Yg = 1/ms. Therefore the plots of the effect of base flexibility on the
force and gap transfer funciions in Figures 3.13 to 3.16 also describe the effect of base

flexibility with B,z substituted for 8y, and with the substitutions

¢c2 - ¢b
Ce - Cb
De — @p (3.78)
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Table 3.4: Comparison of parametric transfer functions for cases in which either
the base or equipment exhibit modal flexibility.

transfer function base flexibility equipment flexibility
Yes
Gy(s) = = sy i (1 F ?;>
B2 14ty 2B Ly ohy 12
YE YE YE YE
Ye
Ga(s) = 2 Vi i (1 ! ?E>
Sk 14y 2 1ol 22
Ye  Ye Ye  Yg
Y ':
_h YE Ve
YE YE YE YE
1 Y, 1 e
(o) | )
Gs(s) = Ty — Iy 8 Ye 38 Ye
° fa 1+ _}_,,I_ + X.B_ 1+ -=Y—I— + )_/32
YE YE YE YE
Y)
a .s:YB?}'!i
_a E
Gs(S)—fa 1+£+¥§. 0
Ye Y&

Transfer Function for Equipment Acceleration a;: Only the plots for equip-
ment velocities G; and G, are different (in a dimensionless sense) from the cases
considered for base flexibility. Because of flexibility between equipment terminals 2
and 3, the transfer function G, does not equal G,. Transfer function G, of column
2 in Table 3.4 is plotted in Figures 3.22 and 3.23 for equipment resonance @, at 0.3
and 3, respectively. Each plot is parameterized in terms of the dimensionless quantity
Bez. 1t is worthwhile to compare these plots to the case involving base flexibility in

Figures 3.12 and 3.13, which are parameterized by (. In contrast to base modes,
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Table 3.5: Dimensionless perturbation terms for base and equipment flexibility.

base flexibility equipment flexibility
interface terminal 2 | output terminal 3
. Yp Ye Yes
erturbation term — = =
P ' Y Ve Vi
. . m¢§ m¢§2 m¢e2¢c3
maximum gain —_— —e LRI
; 2, 2. 2.
symbol for max gain B Be2 Bea

equipment modes are strongly coupled above mount resonance @ = 1, and nearly
pole-zero canceled below @ = 1. The effect on mount damping due to equipment

modes is opposite to that caused by base modes.

Transfer Function for Equipment Acceleration a3: The most interesting out-
put variable when equipment flexibility is present is the acceleration a3 at the equip-
ment output terminal 3, as illustrated in Figures 3.24 and 3.25 for equipment reso-
nance &, at 0.3 and 3, respectively. The function is plotted for negative .3 corre-
sponding to the case in which eigenvectors ¢., and @.3 are of opposite sign. Here the
equipment mode is strongly coupled both below and above mount resonance. Note
that when ¢e2 = @es the transfer function reverts to G, illustrated in Figures 3.22
and 3.23. A surprising result is that for ¢., > @3 the pole and zero at @, = 0.3 flip
and the phase excursion is positive; this result is predicted by the relative pole zero
spacing for G; in Table 3.6.

Figure 3.25 is plotted for B.3 < 0 and for @, = 3, and the pole-zero pair has flipped
relative to the same case for GG, in Figure 3.23. However, the 180 degree loss in phase
is recovered for all values of 8.3 greater than —50, which for {. = 0.01 corresponds
to a ratio of 1 between equipment rigid body mass and equipment modal mass. The

case B3 = —50 is the familiar one: two equal masses connected by a parallel spring
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Figure 3.22: Equipment acceleration G»(3) = ay/f, due to equipment reso-
nance. Parameters: B., = m¢?,/(2(.), @. = 0.3, (. = 0.01.
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Table 3.6: First order approximation (in m¢Z,) for relative pole-zero spacing for
actuator model due to resonant mode in equipment.

frequency range

transfer function symbol we < 1 we > 1

2 2
equipment output acceleration G (s) Ti’g (1 — &3) _% (éﬂ)

2 ¢e2 2 ¢c2

. . . mez,
equipment interface acceleration | Ga(s) 0 - —5"—
. me? me?
terface f G —e2 el

interface force 4(3) 5 27

2

m

gap Gs(s) 0 - —%3

and damper; in which case the resonant modal mass equals the rigid body mass and
the transfer function assumes the noncollocated form of the curve parameterized by
B.s = —50. For B.a > —50, however, the rigid body mobility overcomes the flexible
mode mobility at a sufficiently high frequency above @., resulting in a plant zero and
a recovery of 180 degrees of phase. Finally, the acceleration transfer function behavior
for the case @, = 1 is illustrated in Figure 3.26.

Table 3.6 summarizes the relative pole-zero spacing due to equipment modes for
each transfer function. Table 3.6 can be compared to Table 3.3 which lists the pole-

zero spacing due to a mode in the base structure.

3.3 Series Actuator Model

For the parallel actuator model illustrated in Figure 3.2 the interface spring constant k
is determined by the sum of the passive isolator stiffness plus any internal impedance
of the physical force actuator. In some situations the internal actuator impedance

is too high to provide any passive isolation for the equipment (for example, a stiff
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Figure 3.25: Equipment acceleration G,(5) = a3/f, due to equipment reso-
nance. Parameters: (.3 = mde2des/(2(.), we = 3, ( = 0.01,
Bea = 50 represents a massive equipment mode.
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Figure 3.26: Equipment acceleration G1(3) = a3/f. due to equipment reso-
nance. Parameters: Be3 = me2des/(2(.), @we =1, (. = 0.01.

piezoelectric actuator) and series actuation becomes necessary. Figure 3.27 illustrates
a simple representation of series actuation for a vibrating base. A series isolator
(typically a low impedance element such as a viscously damped spring) lowers the
effective interface spring constant in order to provide the required passive isolation
corner frequency. A lower mount resonance provides decoupling of disturbances from
the output (reducing demands on the active control) and leads to modal decoupling
from loop transfer functions when base or equipment flexibility are present. These
advantages come at a cost, however: increased complexity and isolator mass, and

reduced actuator control authority at high frequency.

Series isolation may be used for either the force or velocity isolation problems.
Figure 3.28 illustrates two possible series isolation configurations for the velocity iso-
«ation (vibrating base) problem; in each case the performance variable is the velocity
vy at the equipment interface. In Figure 3.28(a), a series isolator is placed between
the actuator and the base structure (the vibration source). The actuator is modelled

as a pure force applied in parallel with a viscously damped spring which represents
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Figure 3.27: Series actuation model for velocity isolation problem. A soft iscla-
tor S is installed in series with the actuator A.

the internal impedance of the actuator (refer to Figure 2.4), and is considered here

to be much stiffer than the series spring k.

The series isolator in Figure 3.28(a) is itself comprised of two elements: a soft
viscously damped spring that provides the desired mount passive resonance, and a
reaction mass which both preserves high frequency actuator authority over v, and de-
couples any base dynamics from the loop transfer function v;/f,. As such, the mount
can be used to regulate v, whether the disturbances originate from the base structure
(’u{;) or impact the equipment mass directly (vibration receiver). Figure 3.28(a) can
also be interpreted as an active mirror positioning device, in which the receiver is a

mirror and the error signal is an external measurement of v,.

The configuration of Figure 3.28(a) has been proposed for a payload pointing
system [84] in which a stiff gimbal is attached to flexible base. This configuration is
also used to model active vehicle suspension for road vehicles [79], in which the mass
mgy and spring k, represent the tire mass and stiffness, and the mass m, and spring
ki represent the “sprung mass” (quarter-car mass) and the body spring stiffness.
A force actuator in parallel with the body spring k, is used to modify the passive
transmissibility to improve handling and rider comfort. The parameter values for a

conventional automobile front suspension from reference [79] are m, = 28 kg, k, =
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Figure 3.28: Two examples of active isolators in series with softmount. Con-
figuration (a) permits actuation authority over v, even to high
frequency but couples strongly with equipment (receiver) flexibil-
ity. Configuration (b) rejects only disturbances originating in the
source but couples weakly with both base (source) and equipment
(receiver) flexibility.

0.16 N/pum, and m;/m; ~ 10 and k, /k; ~ 0.13.

In Figure 3.28(b) the series isolator is a soft spring installed between the active
stage and the equipment. If the only disturbance to the mount were due to v{,, then
the mass velocity v, could be regulated by feedback of velocity v, (or acceleration
a;) to the force actuator. The sensor-actuator pair remains collocated, but cannot
reject disturbances at v, that originate from sources other than the base. Because of
the location of the soft spring, Figure 3.28(b) is superior to Figure 3.28(a) in terms
of decoupling unmodelled equipment flexibility from the loop transfer function, as is
described below.

In this section only the velocity actuation problem are studied for the series iso-
lation model, although the analysis can easily be extended to the force isolation
problem. Secondly, only variations of the configuration in Figure 3.28(a) is studied in
detail, since this configuration is the one used for active isolation and active mirror

positioning in the experimental chapters of this thesis.
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3.3.1 General Model for Series Actuator

A general model for the configuration of Figure 3.28(a) is illustrated in Figure 3.29
in which the series isolator is modelled as a general mobility element S between the
actuator and the base structure. For this model the transfer function Gg; from control
force f, to equipment acceleration a3 = sv; can be derived using four-pole mobility
methods. For simplicity the actuator stage is assumed massless. From Eq. 3.2 the

four-pole model of the actuator stage is simply

F 1 0

Yi 1

F

Il

+

0 }
fa (3.79)
-Y;

v V2

where Y7 = s/(c13 + k). The four-pole equipment model is given by Eq. 3.3, and the

base structure four-pole model at output terminal 0 is adapted from Eq. 2.42

vl = [ Yy 1 ] Fo (3.80)

Vo

The passive series element S is modelled as a general four-pole system based on

Eq. 2.17 (to permit later substitution of different models for S into the final result)

1 1
F T, vi F
0 _ ( )10 o1 1 (3.81 )
Vo yob1 _l_” Uy
(Tv)Ol

By assembling the four-pole matrices for each element in the system, the mount

transmissibility 7,3 and plant transfer function Gg; can be determined for the general

case:
V3 (Tu)m(Tu)zs
T, = = 3.82
Toa(s) v{; 1+XL+£T"_)°1YL61+}/(T) [_1__+_1_(1+_&>] (3.82)
Ye Ye BRI V(T ' Y Ye

f
01

3(Ty)23Y1 [1 + YB(T}‘:)OI}

Goi(s) = =
rsi\8) = . = i
fa I (T)DaYd [ 1 1 ( Yl)]
I+ —4+—"F—+Ys(TV)a |5+ = |1 +
* Ye + Ye B(Tu)or Ye(Tu)io  YY
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Figure 3.29: General model for series isolator on vibrating flexible base structure.

These two functions are investigated first for the situation in which the base is rigid,

and then for a base modelled as a single resonant mode.

3.3.2 Rigid Base Models

A rigid base implies zero base mobility (Yz = 0). In order to simplify the follow-
ing analysis, the equipment E is modelled as a rigid mass m,, although the effect of
equipment flexibility can easily be treated by returning to Eqs. 3.82 and 3.83 and
applying the analysis of Section 2.5.2 and 3.2.3. With this assumption for the equip-
ment, Yg = 1/mys and (T,)23 = . The series isolator S will first be modelled as
a rigid element (in order to characterize the mount transmissibility 7,3 and transfer
function Gg, before the series isolator S is applied) and then by two flexible elements

that are illustrated in Figure 3.30.
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Figure 3.30: Series isolator models: (a) general representation, (b) massless
viscously damped spring, and (c) softmounted reaction mass.

Series Isolator Modelled as Rigid, Massless Element: A rigid, massless ele-
ment S implies that (T})10 = (Ty)o1 = 1 (velocity and force constant across the ele-
ment) and that Y, = 0 and Yg, = 0o. Substitution of these expressions into Eqs. 3.82
and 3.83 leads to the following simple expressions for the mount transmissibility and

acceleration transfer function:

1
Tals) = — (3.84)
14y
Y,
Csi(s) = — v (3.85)
1+ ?;

These functions are identical to those derived for the classical passive isolator and
the parallel actuator model in Eqgs. 2.79 and 3.12, as is expected since Figure 3.29
reverts to the parallel actuator general model in Figure 3.1 when the series element
is both massless and rigid. The transmissibility of Eq. 3.84 is plotted as the solid line
in Figure 3.31 in terms of normalized frequency @ = w/w,, where w, is the frequency
at which the equipment resonate on the stiff actuator. In this example, the resonance
at w, is assumed to be lightly damped ({, = 0.02). Further, it is assumed that the
mount resonance at @ = 1 is too high to provide a desired level of passive isolation

in the frequency range below @ = 1, requiring the addition of a series isolator.
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The acceleration transfer function Ggs;, of Eq. 3.85 is plotted in Figure 3.32 and
is identical to G, plotted as the dashed line in Figure 3.3 for the classical parallel
isolator, with the exception that the damping at resonance @ = 1 ir the current

example is assumed to be much lower than in Figure 3.3.

Series Isolator Modelled as Viscously Damped Spring: Let the series isolator
in Figure 3.29 be the massless viscously damped spring illustrated in Figure 3.30(b).
Using Eq. 2.21 the four-pole mobility of the isolator S becomes

Il

" 1 0 Fy 0
+ fa (3.86)

m Ys 1 V2 - YS

where the blocked mobility of the series spring is Ys = s/(cas+k2). From Eq. 3.86 the
velocity transmissibilities (7, )o; and (7)10 are equal to unity, and Yo’; = oo. Given

these assumptions, the functions in Eqgs. 3.82 and 3.83 bccome

1

T = — @4 (3.87)
sYr
Gsi1(s) - (Y’;'EY-":) (3.88)

The effect of the series spring, therefore, is to create an effective mount isolator
mobility of Y; + Ys. When the actuator spring mobility Y; is much stiffer than the
series isolator Yg, then Y5 > Y; and the mount corner frequency wy; and damping (;,
are set primarily by the resonance of the mass m on the series isolator. Given this

assumption, two new modal parameters are introduced:

Wiz 2 (= 2 (3.89)

ms 2w2m1

In Figure 3.31 the transmissibility T3 of Eq. 3.87 is plotted versus the rigid element
transmissibility, in which it is assumed that @, = wa/w, = 0.04 and {; = 0.1. These
values are selected because they are representative of experimental parameters en-

countered in Chapter 5. Since Ys > Y, the transmissibility is essentially identical
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to the curve parameterized by {, = 0.1 in Figure 2.11 for the classic parallel actuator
model, with the mount resonance shifted from @ = 1 to @ = 0.04.

The transfer function Gy, is plotted in Figure 3.32 versus the rigid series element
transfer function. At low frequencies the plot resembles that for the classic parallel
actuator model in Figure 3.3, but at high frequencies G, in Figure 3.32 exhibits an
increase in gain due to the presence of damping in the series isolator. By comparing
Egs. 3.88 and 3.12, it can be seen that while the series isolator modifies the denomi-
nator of Eq. 3.88, the numerator remains unchanged, lezding to a real pole-zero pair

that increases actuator gain in the frequency range between @ = 0.04 and @ = 1.

Series Isolator Modelled as Softmounted Reaction Mass: In Figure 3.30(c)
a reaction mass my is added to the viscously damped spring, resulting in an isolator
S with internal dynamics. The four-pole expression for this combined system is found

by assembling the models in Eqs. 2.18 and 2.21 in series

Fy 1 mas F,
Yo 28+ k2 (Tv)o e

where the velocity transmissibility from terminal 0 to terminal 1 is

k
(T)or = —22 12 (3.91)

T mas? + o8 + ko

Eq. 3.91 can be recognized as transmissibility function with corner frequency w =
\/ k2/ma. Above this corner frequency, velocity disturbances between terminal 0 and
terminal 1 are attenuated. Likewise, force disturbances applied to the mass m, (due
to the force actuation f,, for example) are also attenuated before being transmit-
ted to the base structure. Using the four-pole parameters given by Eq. 3.90, the

transmissibility T\,3 and acceleration transfer function Gg; become

] T"
1+ Ys ‘Y;(Tu)m
Y,
Csi(s) = — > " (3.93)
14 Ys + ?E:(Tu)m



The transmissibility T,3 of Eq. 3.92 is plotted in Figure 3.31 for the same set of
parameters used for the viscous spring series isolator, with the additional parameter
ma/my = 1. Due to the addition of mass m, the passive mount resonance now occurs
at @ = @,/v2 = 0.028, and the former hardmount resonance at @ = | increases
to @ = v/2. For frequencies below & = 1, the transmissibility resembles that of the

classic passive actuator model with corner frequency at @ = 0.028.

The transfer function Gs, plotted in Figure 3.32, however, is much different from
the previous two models of series isolators. Above mount resonance at @ = 0.028,
the transfer function magnitude is recovered to one-half of the value below mount
resonance, since the actuator reacts against the inertia of mass m, at all frequencies
instead of reacting against the soft series spring. The phase loss at passive mount

resonance is also recovered in this frequency range.

3.3.3 Effect of Base Flexibility

The acceleration transfer function Gs, = as/f, is investigated for the case that
Yp # 0. The pole-zero spacing in Gs;, due to a base resonant mode is determined
for a base mobility modelled as in Eq. 2.91, for the two frequency ranges @ < @, and

Wy € @ K 1 illustrated in Figure 3.32.

Series Isolator Modelled as Rigid, Massless Element: When Yjp is retained
Eq. 3.85 becomes
sYr

Gsl(s) = ———YI———Y;— (394)

1 —_ —_—
Tyt

Eq. 3.94 is identical to Eq. 3.19 derived for parallel isolator model. Therefore the
relative pole-zero spacing for @ < 1 is given by Eq. 3.42

zZ—p  mdE .
= 3.95
Wy 2 ( )
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Series Isolator Modelled as a Viscously Damped Spring: With Yp retained,

Eq. 3.88 becomes
sY;
Gsi(s) = YI+Ys Vg

1 =2
+ Ya +YE

For frequencies well below series spring resonance (w0 < @) the series mount appears

(3.96)

rigid and the pole-zero spacing for base modes occurring in this frequency range is
the same as Eq. 3.95. Above resonance @,, Ys/Yg > 1 and Y5/Yg > Y;/Yg, and
Eq. 3.96 is approximated by

sY,
Gsi(s) = ﬁ. (3.97)
+ —

Yz | Yg

By substituting the expression Yg/Yg of Eq. 3.35 into Eq. 3.97, and by repeating the

analysis of Eqgs. 3.43 to 3.44, the relative pole-zero spacing is determined to be

o m 2
P __ ™ (3.98)

Wy 2(035/(32 )2

which is identical to the relative pole-zero spacing for the parallel actuator model
above mount resonance w,, only here the base mode coupling is attenuated by @?
above series mount corner frequency w; instead of above softmount corner frequency

Wo.

Series Isolator Modelled as a Softmounted Reaction Mass: The relative
pole-zero spacing for the frequency range @ < @; can be found by considering the
general form for Gs; in Eq. 3.83. In this frequency range (T\,)o = 1 and Ys/Yr <
Y:/Ye < 1, and Gg, is approximately

Y,
as Y1 (1 * Y—B)
Gsi(s) = — = 5 (3.99)
L% (5 + 57)
Using Yur = 1/smg and Yg = 1/sm,,
Y,
Goi(s) = (L + smiYa) (3.100)

1 4 s(my + my)Yp

143



rigid element
A
"

nitude (m/s2 / N)

10 =TT -
5 -
«
£ series spring
o;'-’ - /
-4 =
10 i 1
10° 10" 10°
200 T T ey -

_ - -

phase (degrees)
>
[=]

10 10
normalized frequency

Figure 3.33: Equipment acceleration Gs,(5) = aa/ f, on flexible base. Parame-
ters: By = 100, wp/w, = 0.04, {, = 0.02, {, = 0.1, mz/m, =1

Substitution of Yp from Eq. 2.91 leads to

sY; [32(1 + m2¢,2,) + 2(pwps + wf]

G — 3.101
51(9) 821 + (m1 + m2)d}] + 2¢wes + wi ( )
For small (s, zeros and poles of Gg; are at
2y\ —1/2
5 = @ (1 - 1"—3#) (3.102)
2\ —1/2
pi = @y (1 - (—"1‘——+2—"“M’—) (3.103)

where @y = wp/w,. Egs. 3.102 and 3.103 indicate that both th: zero and pole are
shifted, but the relative pole zero spacing, to first order in m,$?, remains the same
as that for the previous two models studied for series isolators:

2
Zi —Pi _ mi g,
wy 2

(3.104)

Therefore, the presence of the additional reaction mass does not increase the pole-zero

spacing (or the degree of modal coupling) in the frequency region below @s,.

144



Consider now the frequency range above @, but below the actuator resonance at

@ = 1. In this frequency range, Y;/Yg < 1 and Eq. 3.83 becomes

Y;
sYr (1 + Y,E(Tu)m)
Gai(s) = — M (3.105)
1+ =2(T, ot (— + —
+ g (Lo + Ya(Lo (- + )
The second term in the denominator can be simplified to
Ys 32m1 scy + kz
5 (1) = :
YE scy + kz 3°My + 28 + kz
Y;
N T oM 5> wp (3.106)

= smy Yy
Substitution of Eq. 3.106 into Eq. 3.105 and rearranging terms leads to the following

expression for Gg;:

YE Yy
Gsi(s) = ¥ ( ) g
Yo+ Yu [1 + —?A%(Tu)m]
YE
= ¥ (=) (3.10)

Eq. 3.107 indicates that there is perfect pole-zero cancellation in the frequency region
between @, and @ = 1. There is no restriction that m,¢? or ma@d? be small compared
to one, only that the base mode frequency @, be well above @, and well below @ = 1.
Effecis of a mismatch between the masses of m; and m, are illustrated in the mul-
tiplicative error analysis of Section 3.5. Table 3.7 summarizes the relative pole-zero
separation for each of the series isolator configurations.

Transfer functions for the three series isolator configurations are compared in
Figure 3.33 for an assumed base mode occurring at @, = 0.1 with damping (¢, = 1%
and parameter f, = 100 — a strongly coupled mode that corresponds to a base modal
mass only one-half of the equipment mass. The mode is strongly coupled into Gg,
when S is rigid, but is significantly decoupled from the transfer function when S is a
viscous spring. There is almost no coupling of the base mode when the series isolator

is modelled as the softmounted reaction mass.
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Table 3.7: First order coupling (in m1¢%) of base resonance at @, = 0.1 into
acceleration transfer function Gs,(3) = a1/ f, for series isolator with

wy = 0.04.
series isolator frequency range
configuration wp K Wo Wy € wp < 1
2 2
rigid, massless element ml2¢b Cn—;-@’—
. . md; midp
viscously damped spring - _——
2 2(@0z)?
2
. m
softmount reaction mass —12?9 0

The two series isolators studied decouple base modes from the loop transfer func-
tion, due to the presence of a soft spring between the actuator and the base structure.
Modal resonances in the equipment, however, will be strongly coupled into the loop
transfer functions unless the series configuration of Figure 3.28 is used, in which the

soft spring is located between the actuator and isolated equipment.

Reactionless Actuator: The softmounted reaction mass isolator can be designed
so that it is completely reactionless at all frequencies, not just above softmount reso-
nance. A single-axis reactionless isolator is illustrated in Figure 3.34. A command f,
moves both equipment and reaction masses the same distance but in opposite direc-
tions, leading to equal and opposite reaction forces applied to the the base structure,
The actuator transfer function is independent of the dynamics of the base, and the
soft series isolator provides passive vibration isolation of base motion. The benefits
of reactionless actuation have been shown for gimballed systems [38], and have been

manufactured as actuators for optical systems [48].
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Figure 3.34: Reactionless actuator model.
3.4 Multiplicative Error Models

The objective of this section is to develop parametric models for the multiplicative
error introduced to a nominal plant model by the presence of a resonance in the
base or isolated equipment. In the last section the degree to which these modes are
coupled (or uncoupled) into the local isolator transfer functions is explained in terms
of relative pole-zero spacing; here the degree of coupling is quantified in terms of a
multiplicative error and perturbations in gain and phase due to the base or equipment
mode.

The nominal plant G, is defined as a transfer function measured for the classic
parallel actuator model of Section 3.2.1, in which the base is assumed rigid and the
equipment is modelled as a rigid mass. The actual plant G, includes the effects of
base or equipment flexibility. As illustrated in Figure 3.35, the actual plant G, is
related to the nominal plant by

Ga(3) = Go(s)L(s) (3.108)
= Go(8)[1 + e(s)] (3.109)
= Go(3) + Go(3)e(s) (3.110)

where e(s) is termed the multiplicative error. The Nyquist plane interpretation of
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Figure 3.35: Unstructured uncertainty modelled as multiplicative error e(s).

Eq. 3.110 is illustrated in Figure 3.36 for the plant transfer function evaluated at
the frequency s = jw;. If the complex perturbation e(jw;) is known, then the vector
Go(jwi)e(jw;) and thus the position of G4(jw;) are known. If, however, only the
magnitude |e(jw;)| is known, then the actual plant G4(jw;) can only be assumed to
lie somewhere within the circle of radius 7 = |G,(jwi)e(jw;)| that is centered on the
point Go(jw;).

In a control design e(s) might be treated as unstructured uncertainty (only the
magnitude is known, not the phase). In the following analysis the true structure
of e(s) is investigated since analytical expressions are available for the nominal and
actual plants. It is assumed that some knowledge of the base dynamics is available
to create an estimate of the magnitude of the perturbation: specifically, it is assumed
that estimates (or bounds) are available of the mode frequency, damping and modal
mass as seen from the isolator attach pnint. With this information, estimates for the
dimensionless parameters 8, = (m¢?)/(2{) or Bea = (me?,)/(2(.) can be made for
each mode of the base or equipment, based on experimental data or an analytical

model.

3.4.1 Parallel Actuator Model

Consider the acceleration transfer function G, for the case of base flexibility. From

Table 3.4, the actual transfer function G,; - which includes the effect of the single
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Figure 3.36: |lllustration of multiplicative error e(s) in the Nyquist plane. The
error radius is |Go(s)e(s)| at each frequency, s = jw.

base mode - is given by

SYI
m (3.1]1)
Ye Y&

Ga(s) =

The nominal transfer function G,;, defined as that measured on a rigid base, is simply

Gor(s) = (3.112)

An expression for the multiplicative error can be calculated using Eq. 3.110:

Y, Ys Y;
Vi(tt gt g2) - o (14 )

Ga1(3) — Gar(s) =

Y] Y; YB)
(1+YE) (1+YE+YE
Ys
Y,
= Gol(s) —‘—WE—YB (3113)
%t



Therefore the multiplicative error itself is

Y)
e(s) = —y (3.114)
Yt

The multiplicative error for each transfer function of the active parallel isolator tab-
ulated in Table 3.4 can be calculated in this manner, and the results are listed in
Table 3.8. A surprising result of Table 3.8 is that only three functions - represented
as ey, ey, and ey respectively — describe the multiplicative error for the eight transfer
functions. A further simplification is that the function ey reduces to variations of ey
for most cases of interest. Therefore, the multiplicative error can be characterized by
studying the behavior of the functions e; and ej;. The asymptotic behavior of these
functions — well above and below mount resonance w, - is investigated first in order
to provide insight.

The multiplicative error e(s) reaches a maximum at the roots of its characteristic
equation, which is the same as that for the transfer functions determined for base
and equipment flexibility, listed in Table 3.4. Therefore the roots of e(s) are at the
poles p; from Eq. 3.55 and Eq. 3.56. Using the definition of 8, in Eq. 2.94, the pole

locations are written as

2
Pi = Whp (1 — 7%%) = (:)b(l — (ﬁb) (m¢§,dl,,2) <1 (3115)
pi= Wy (1 + 72%55) = (1 + C—ﬁ") mé; <1, @ >1  (3.116)
b

The subscript (-), is used for the parameter f, for the remainder of this section for
clarity, although the derivation applies equally well to equipment modes described by
the parameter B.;. The maximum value of e; and ej; are determined by evaluating
the functions in Table 3.8 at @ = p;, and are listed in Table 3.9 for frequency ranges
well above and below mount resonance w,. In the derivation, the approximations
Yi/Yg € 1 for w € w, and Y;/Yg > 1 for w > w, are used to simplify the
expressions for ey and ery in Table 3.8. The only assumption placed on the magnitude
of By is that ;8 = m¢@? < 1, which is not overly restrictive. For damping of 1%, a

strongly coupled mode of £, = 10 easily meets this restriction. The peak magnitude
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Table 3.8: Form of the multiplicative error for active parallel isolator.

function base flexibility equipment flexibility
a
G, = -f—:- e el
G: = 2 er en
Ja
I
Gy = f—: er er
Ty — T
Gs = zfa ! el el
Y 2
Yg 7
er o Y N Y5 or o Y Y
Ye Ye YE YE
Yp (ZL) Yo (ﬁ)
Ye \Yg Yg \VYg
" RO R O
YE YE Y’E ?E
Yo [.zyi +1- Y°2]
. Yr \YE Yeal
II1 YI }/32
Eaas

of the multiplicative error is purely imaginary in this analysis, which is correct to first

order in m¢3.

Gain Perturbation:

The multiplicative error e(s) is used to calculate the magni-

tude perturbation to G, from Eq. 3.108

Ga(s)l = |Go(s)IIL(s)]
= |Go(s)|IL + e(s)|
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Table 3.9: Maximum value of multiplicative error for par-
allel actuator model, evaluated at pole fre-
quency w = p;.

error frequency range
type wp K 1 wp > 1

. B

€1 -iB p=ry

Wy

en ~1Bwy iB

The function L reaches a maximum at the frequency & = p; for which the multiplica-
tive error e(s) reaches a maximum. Since e(jp;) is purely imaginary, the maximum

magnitude perturbation is simply

|L(8)lmaz = |L(5p:)] = (1 + |e(sp:)[*)"/? (3.118)

The maximum values of the magnitude perturbations are listed in Table 3.10. The
entry for e for @, < 1 agrees with the results of Garcia et al. [24], although the authors
assumed that the result was valid only for f, < 1. However, only the assumption
(B < 1 is required to derive the simple expressions in Table 3.10, which is far less

restrictive.

Phase Perturbation: The maximum phase perturbation to the nominal transfer
functions due to base or equipment modes occurs not at the pole frequency p;, but
rather at a frequency wy halfway between the transfer function pole and zero caused
by the base or equipment resonance (refer to Figure 3.12 or Figure 3.13). Zeros for
the acceleration and gap transfer functions are given by Eq. 3.37 and Eq. 3.57. The
maximum phase perturbation due to each multiplicative error type is determined by
evaluating the function L(s) =1 + e(s) at the frequency @, = wy, and the results are
listed in Table 3.11 for the frequency ranges well above and below resonance. Again,

the analysis only requires that (8, < 1. The result for e; below resonance correctly
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Table 3.10: Maximum value for gain perturbation for par-
allel actuator model, evaluated at pole fre-
quency w = p;.

error frequency range
type wp K 1 wy > 1
82 1/2
er (146" (1 + —~)
Wy
- 1/2
e (1+a26?) (1+p%)"*

Table 3.11: Asymptotic values for phase perturbation (in
radians) for parallel actuator model.

error frequency range
- - ]
type wp K 1 wp > 1
ex atan —:4ﬁ- atan —@—
ey a7
- 46
er a.tan(—wfﬂ) atan(4 - ﬁ”)

predicts that the phase loss for 8, = 2 is —90°, and that the phase loss for 8 — oo is
—180°. When f, < 1, the phase perturbation is approximately (- atan(8,)), which
agrees with the results of Garcia et al. [24].

Multiplicative Error Near w,: The value of the maximum multiplicative error
for base or equipment resonances near w, is more difficult to determine analytically

since the function characteristic equation is fourth order. However, for small values
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of the parameter B, the functions e; and ey are approximately

Vs
eis) ~ Y,’”}[ (3.119)
14 =L
+ Vs
(3’.{) Yp
en(s) ~ ﬁ-—}—,’;@ (3.120)
1+ o
E
which when evaluated at @y, = 1 lead to
. 1 'i' 2 o ’
er(jw,) =~ ( 2% < )ﬁ (3.121)
eu(jwo) ~ ;z (3.122)

Eqgs. 3.121 and 3.122 predict that the degree of moda' coupling (in terms of magnitude
and phase perturbations) will become stronger near the resonance s = jw,. This effect
can be seen in Figure 3.37 and Figure 3.38, which are plots of the inverse (maximum)
magnitude of the multiplicative error e; and ey as a function of base mode frequency
@y, based on the full order function from Table 3.8. A mount damping ratio of {, = 0.1
is assumed, and for small By, the coupling is increased by roughly a factor of 4, with
smaller increases for large values of . For base modes well above and below @ = 1,
the curves assume asymptotic values predicted by Table 3.9. The form of 1/|e| is

shown since this establishes a stability boundary commonly used for control design.

Multiplicative Error for Equipment Output Acceleration az: The behavior
of the multiplicative error type er governs the perturbations to the acceleration
transfer function G,; when the output terminal 3 of the equipment is not collocated
with the isolator interface terminal 2. When the transfer mobility Y.3 is equal to
Y.., then ey = e;;. However, when Y.3 = —Y.,, corresponding to a mode shape at
terminals 2 and 3 that are mutually 180 degree out of phase, then ey becomes

—Yor (-_}-,-I- 1 2)

Yg

emr =
i Y.
14 =&+ 22
Ye Ye

(3.123)
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which for frequencies well above and below mount resonance becomes

enr X 2ep (Ez,d)b <K 1) (3.124)

em = —en (8%, @ > 1) (3.125)

Eq. 3.124 predicts that below w, the equipment resonance will be coupled twice as
strongly into the acceleration output az compared to the acceleration a; (with the
same phase perturbation). Eq. 3.125 predicts that above w, the equipment mode
remains coupled in the output as, but with a phase perturbation that is still negative.

These predictions are observed in Figures 3.22 to 3.26.

3.4.2 Series Isolation Model

The pole-zero separation for the case in which the series isolator is a softmounted
reaction mass is shown in Section 3.3 to be zero for the frequency range above soft-
mount frequency w,. Thus, it is expected that the multiplicative error will also be
zero in this frequency range. This can be shown by considering the transfer function
G, from Eq. 3.93 (evaluated on a rigid base) and the transfer function G, in Eq. 3.105
evaluated on a base with a single flexible mode. Substitution of these functions into

Eq. 3.110 leads to the following complicated expression for the multiplicative error:

Ys (Y Y: Y, Y,
’p [_I_ + (T - 2B _'_]
e(s) = Yo Vg Vg Y Yu (3.126)
Lt gt o+ L2 [14 52+ o] |
YE YE v /01 YE v /01 YM YM

This function can be simplified by using Eq. 3.106 and that for frequencies below
@w =1, Y /Yg < 1 and Y;/Yy < L. After substitution and some algebra the
multiplicative error is simplified to

Yn Yu
(T |0 —1
8(8) — YM (YE )

W< w <1 (3.127)

Eq. 3.127 indicates that for a reaction mass m, that is equal to the isolated equip-

ment mass m,, or Ypr = Yg, the multiplicative error will be zero above the softmount
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frequency @,. However, even for mismatches between m; and m,, the resulting mul-
tiplicative error is highly attenuated by the low-pass filter (7))o factor in the numer-

ator.

3.5 Use of Dereverberated Mobility

Based on simulations in previous sections, it is observed that base or equipment
flexibility affect the isolator transfer functions in two ways: 1) in a broadband sense,
based on the general mass, spring, or damping qualities of the base, and 2) ove * narrow
frequency ranges due to the resonant behavior of individual modes of the base. In this
section a procedure is proposed using dereverberated mobility that incorporates both
of these effects, and provides a means to approximately capture the modal coupling
when the base or equipment mobility is represented by the response of several modes.

Consider a general representation for the base mode input mobility, in which the
response is due to an infinite sum of modes

Ya(s) = i 3 (3.128)

2
= 8%+ 2(piwnis + Wi

In a narrow frequency range near the r*" mode, the beam mobility is approximated
by the modal response of the r*" mode plus residual terms representing the truncated
modes at low and high frequency

~ 3¢, 8
~ Rys | s+ 20rwirs +wi Ry

Yp(s) (3.129)

The dereverberated mobility of the base structure is introduced in Section 2.7, and
is used here to approximate the residual terms due to the truncated modes
s

82 4 2(rwers + Wi,
~Y5+Y, (3.130)

YB(S) IS Yg +

The term Y; in Eq. 3.130 can be recognized as simply the single-mode base mobility
introduced in Eq. 2.91 for the single mode analysis. Because the dereverberated

mobility Y} represents the average, or broadband response of the base input mobility,
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it is assumed that this term can be modelled and incorporated into the nominal plant
transfer function. For example, consider the acceleration transfer function G; = G,
from column 1 of Table 3.4. When the term YJ is substituted for Yp, the new nominal

plant G,, becomes

~ sY;
Gol(S) = —"TII—-W (3131)
Lt o=+ 7
Ye Y

In the vicinity of the r** base mode, the base mobility includes both terms in Eq. 3.130

and the actual transfer function becomes

~ Y,
Gai(s) = L (3.132)
SR S
Ye Yg VY&
Using Eqgs. 3.113 to 3.114, the new multiplicative error is
Y,
B(s) = — B (3.133)
1 + _Y_I_ + _1./2
Ye  Yg

Since well above or below mount resonance w, the term Y/ Yg is small compared to
either 1 or Y1/ Y, then a reasonable approximation is that é(s) ~ e(s) from Eq. 3.114,
which allows the multiplicative error results from Section 3.4 to be used. In summary,
when the base is characterized by a multiple mode response, then the multiplicative
error analysis of Section 3.6 best describes perturbations in magnitude and phase to

the (new) nominal transfer function function G, of Eq. 3.131
Gar = Gor [1 + €(3)] (3.134)

Examples are shown below which illustrate these effects.

Dereverberated Models for Base Flexibility: Figure 3.39 is a plot of the ac-
celeration transfer function G, in which the equipment is assumed to be a rigid mass
m and the base structure is modelled as the free-free Bernoulli-Euler beam model in-
troduced in Section 2.7. The first beam resonance is assumed to occur at w = 0.5w,,
where w, is the passive mount resonance. The beam mass is 10 times the equip-
ment mass, or m/M, = 0.1. Damping in all beam modes are assumed to be 1%,

corresponding to a dimensionless coupling parameter 8, = 20 for each mode.
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The exact transfer function G, is plotted versus the rigid base model G,, and
versus (; which incorporates the dereverberated base model from Figure 2.26. The
degree of modal coupling for the exact transfer function G, in Figure 3.39 is typical
of that for error type ey — strong coupling below w,, and coupling attenuated by
(w/w,)? above mount resonance. The function G., is better than G, at capturing the
reduction in gain at low frequencies and in capturing the backbone shape throughout
the mount resonance region. It also appears that the resonant mode near @ = 0.4 is
a perturbation about the backbone curve G, instead of about G,1. Because of the

modal decoupling above mount resonance, G,; and G,, overlay for w > w,.

Dereverberated Models for Equipment Flexibility: A very different behavior
is shown for the acceleration transfer function G, plotted in Figure 3.40, in which the
base is assumed rigid but the equipment mobility is instead modelled as that of the
free-free Bernoulli-Euler beam described above. The modal coupling is that of error
type err: decoupling below mount resonance, and strong coupling above. In this case,
the function G,; best captures the backbone trend at high frequencies. Clearly, the
magnitude perturbations are about this backbone and not about the simpler model
Go1. The new nominal plant G.1 also approximates the average phase.

In summary, the dereverberated mobility model of the base or equipment can
be used to incorporate averaged, broedband knowledge of the flexible components
into the nominal transfer function. The dereverberated model provides information
about gradual changes in the plant transfer function gain, and captures the shift in
frequency and damping of the mount resonance w,. The multiplicative error for the
transfer function magnitude best describes perturbations about the nominal transfer

function G, which incorporates the dereverberated information.

3.6 Effects of Flexibility on Loop Stability

This section discusses the stability risks encountered when a compensator is designed

for an active isolation mount that ignores the presence of base or equipment dynamics.
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Acceleration transfer function G,(3) = aa/ fa for isolator on a B-E
beam. Parameters: m/M, = 0.1, w, /w, = 0.5, B = 20.
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ment modelled as B-E beam. Parameters: m/M, = 0.1, w; /w, =
2, By = 20.
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This situation may arise if the mount is designed and tested on a rigid test stand
before installation on a flexible base, or if the isolated equipment is not well modelled
during the control design. The discussion is restricted to the single-input single-output
(SISO) case.

Table 3.4 summarizes the actuator-sensor transfer functions used for control design
for the parallel actuator model of Figure 3.i. The compensator design is assumed
to be based on the nominal plant G, - that is, base or equipment flexibility are not
present in the transfer functions - and that the compensator will be implemented on
the actual plant G, which includes the additional flexibility. The additional flexibility
falls into two categories: broadband flexibility of the base, with effects that are like
that of a mass, spring, or damper; and modal flexibility of the base or equipment,

which impacts the transfer functions over a more narrow frequency range.

3.6.1 Broadband Flexibility

Figures 3.3 to 3.11 illustrate the changes to mount transfer functions due to base
flexibility -- modelled as a mass, spring, or damper - in terms of the dimensionless
parameters listed in Table 2.2. The general effect is to shift the frequency and damping
of the mount mode at w,, leading to changes in the transfer function gain and phase
at low and high frequency. It is concluded that effects on the transfer functions are
negligible for Yp/Yg < 0.1 from Table 2.2 (for example, m/M < 0.1). Because the
mount mode is moderately damped, it is not very sensitive to the perturbation. The
base acceleration, however, shows strong sensitivity to changes in the base mobility

Figures 3.3 to 3.8 show that increases in transfer function gain due to mass or
damper base flexibilities are accompanied by stabilizing changes in phase - that is,
away from +180. Compensators designed for the single-mode nominal plant model
will be a low order lag-lead filter for acceleration or force feedback, or lead-lag for gap
feedback [68]. Therefore, it is concluded that mass and damper flexibility pose little
stability risk (except for base acceleration feedback), and primarily act to change the
loop bandwidth.

Base mobility modelled as that of a spring K has a destabilizing effect on the loop
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transfer functions. For equipment acceleration or force feedback, spring flexibility
contributes to a loss in phase at high frequency; below resonance, to an increase in
gain while the phase remains near 180 degrees. Spring flexibility also contributes to
a significant increase in the magnitude of the gap transfer function at high frequency,
even for small values of k/K. Therefore, spring flexibility of the base leads to a
reduction in gain or phase margin.

Many structures at high frequency appear to have input mobilities like that of
a damper, a result predicted by Statistical Energy Analysis when modal density is
great [44]. In this case the base flexibility will not have a destabilizing effect on
active isolation using force, equipment acceleration or gap feedback. It is shown in
the previous section how a dereverberated mobility model of the base can be used to
incorporate the effects of broadband base flexibility into the nominal transfer function.
If this step is taken, only mcdal flexibility of the equipment or base remains as a threat

to loop stability when these modes are ignored in the compensator design.

3.6.2 Modal Flexibility

In Section 3.4 the multiplicative error e(s) is derived for a single mode in the base
or equipment. Assume that the nominal plant G, is used as the plant model for a
regulator design which generates the compensator is K. When K is applied to the
actual plant as shown in Figure 3.41, closed loop stability is guaranteed for (19, 74]

s)| = |K(s)Go(s)| !
IC(s) = T+ K($)Co(s)] ~ |e(s)]

(3.135)

The stability bound of Eq. 3.135 is conservative since it does not contain any i .for-
mation about the location of G, within the error circle in Figure 3.36. Whether the
mode is destabilizing depends on the magnitude of e(s), its direction in the complex
plane, and the proximity to loop crossover frequency where gain and phase margins
are low.

In Sections 3.2.2 and 3.2.3, the perturbations to the transfer function G, through
Gg are parameterized in terms of the dimensionless parameter 8, and Bz, which are

always nonnegative, and in terms of (.3, which may be either positive or negative.
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Figure 3.41: Regulator closed loop block diagram.

From inspection of these transfer functions, it is evident that for all cases in which
the dimensionless term is nonnegative the effect of the resonant mode is stabilizing:
the phase perturbation is away from +180 degrees and remains essentially bounded
within a 180 degree envelope. The magnitude plots all retain the alternating pole-
zero pattern characteristic of a collocated transfer function (the acceleration and force
transfer functions, which are not true collocated outputs do show a slight trespass
outside the 180 envelope in Figure 3.13, due to spring-like effects of base mode). Base
acceleration, however, shows a destabilizing effect of the base mode: a 180 degree loss

in phase at the frequency of the base mode, indicating a poor choice for feedback.

Nyquist Plots Assuming No Other Lags in Plant: Figure 3.42 illustrates the
Nyquist plot of either the force or acceleration transfer functions when there are no
sensor dynamics or other lags in the system. The large (major) loop corresponds to
the mount mode w, for the nominal transfer function G, on a rigid base. The full
loop transfer function G, K, of course, will also include at len1t one additional real
pole to roll off the loop gain, in which case the Nyquist plot 1!l approach the origin
from -90 degrees at high frequencies.

In Figure 3.42, mode A represents a base resonance with w, < w, and 8 > 0, and
it creates a minor loop that is inside G,K and away from the critical point. The
multiplicative error bound, shown by a dashed line, is overly conservative. If the base
mode is above resonance, then it is strongly attenuated and appears as a smaller loop
as shown at mode B, also within the outer Nyquist loop. Base modes that occur near
or at w, simply lead to larger loops within the nominal loop for G,K and do not
approach the critical point. Therefore, it is concluded that for perfect sensors, base

resonances are not destabilizing: minimum phase compensators designed to stabilize
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G, will also stabilize G,.

Equipment modes, however, are coupled differently into the force and equipment
acceleration transfer functions. The effect of equipment modes on the force transfer
function G4 is the same as that for modes A and B in Figure 3.42: high coupling

below mount resonance, and decoupling above mount resonance. In all cases, 8.3 > 0

for G,.

The acceleration transfer function, however, exhibits strong coupling of equipment
modes above mount resonance. For equipment modes with 8., > 0, the mode creates
an internal minor loop like that of Mode B in Figure 3.42, and does not pose a stability
risk. The equipment mode may have a coupling parameter B.3 < 0 if the acceleration
is measured at output terminal 3 and the the mode eigenvectors at terminals 2 and
3 are of different signs. Mode C shown in Figure 3.42 illustrates an equipment mode
with B.a < 0, and in this case the minor loop is outside of the loop for G, K. If the
compensator or other elements contribute additional phase loss to the loop, then the
minor loop will approach the critical point and the multiplicative error bound will
not be conservative. Also, the equipment mode could create a minor loop outside of

the major loop at mode A if @3 > @e2, as discussed in Section 3.3.2.

The gap transfer function G5 always exhibits minor loops that are interior to
the major Nyquist loop, for both base and equipment modes. Positive gap feedback
is used to destiffen the mount passive spring; the feedback is typically rolled off at
low frequencies to preserve the static stiffness of the mount. This rolloff adds phase
lead to the plant which could possibly destabilize modes (of type A) that are lightly
coupled in this frequency range. Because gap feedback is used to actively soften the
passive spring over some frequency range, the feedback must be positive to allow the
vibrating base or equipment to achieve its full free velocity v{;. The loop gain must
be approximately (1 — €), where ¢ < 1, in order to significantly soften the passive
spring. The gain perturbations due to unmodelled flexible modes can destabilize this

compensation scheme.
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Nyquist Loops Assuming Lags in Plant: The presence of additional phase
lags — due to sensor dynamics, actuator dynamics, or pure time delays - will shift
the Nyquist plot as shown in Figure 3.43. In this case, even stabilizing modes can
lead to instabilities, as was shown by Spanos [70]. Mode D shown in Figure 3.43 is
typical of an equipment mode with 8., > 0, which no longer creates a minor loop
interior to the major loop, but instead draws near to the critical point. This behavior
would also occur for strongly coupled base modes (strong enough to counteract the
decoupling effect of mount resonance). In these cases the multiplicative error is again

nonconservative.

Importance of the size of 3: When the coupling parameter 3 (representing either
Bby Bez2, or Pes) is small, the effects on the transfer function magnitude and phase are

also small. For instance, 8 = 1 corresponds to a magnitude perturbation of

1L(s)] = (1+8%)"/*
=2 (3.136)

which is a perturbation of 3 dB. Similarly, the phase perturbation is

LL(s) = —atan(B)
= —45° (3.137)

For 3 = 0.35, these values fall to 0.5 dB and 20 degrees, respectively. Thus, for values
of B small compared to one, multiplicative error due to base or equipment modes will
be small compared to phase margins typically included in control designs.

For the force transfer function G4, all modes (base and equipment) are decoupled
above mount resonance by (w,/ws)?. Assuming that loop crossover occurs at 5 times
the frequency of mount resonance, then each base or equipment mode is decoupled
by a factor of 25. For this reason a soft passive isolation corner frequency helps to
condition the plant, by diminishing the importance of poorly known base or equipment
modes from the loop transfer function. Since the force output decouples both base
and equipment modes above mount resonance w,, this sensor appears to be the most

attractive choice for feedback.
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Series Isolator Modelled as Softmounted Reaction Mass: It was shown in
Section 3.4 that a softmounted reaction mass used as a series isolator for a stiff
actuator stage can perfectly decouple base dynamics from the loop transfer function
Gs1 = az/fa, as shown in Figure 3.33. Since at frequencies at or below mount
resonance w, the transfer function G, resembles that for the parallel actuator model,
it is expected that base or equipment resonances (with 8 > 0) would affect the loop
in the same stable manner. Because base modes are decoupled from the loop at
high frequencies they do not interact unstably near crossover. Thus, minimum phase
compensators designed for the nominal plant will be robust with respect to base modes
occurring at resonance or near high frequency crossover. Modes on the equipment

side, however, will remain strongly coupled and could provide a stability risk unless

modelled.

3.7 Summary

In Chapter 3, the effects of equipment and base structure modal flexibility on the plant
transfer functions used for active isolation are investigated. Models for both parallel
and series force actuation are studied. It is shown that the effect of flexibility can be
captured by a dimensionless coupling parameter 3, based on the modal damping and
simple impedance ratios. The flexibility perturbation is modelled as a multiplicative
error to the nominal (rigid base, rigid equipment) transfer functions, and it is shown
that only three functions are needed to describe the multiplicative error for the entire
set of transfer functions and modal flexibilities. Dereverberated mobility models of
the base or equipment are shown to account for broadband changes in the transfer
function magnitude, phase and mount resonance w,, and lead to the correct backbone
model for the modal perturbations.

An important conclusion is that above the mount resonance w,, base modes are
strongly decoupled from the force and equipment acceleration outputs, but strongly
coupled to the gap and base acceleration outputs. Secondly, equipment modes are

strongly coupled to the equipment acceleration and gap outputs above mount res-
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Figure 3.42: Nyquist plot for G1 K or G4 K, showing the effects of modal flexi-
bility. Multiplicative error bound plotted as dashed line.
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Figure 3.43: Nyquist plot for G; K or G4 K which includes additional lags in the
plant. Mode D that was formerly stabilizing now approaches the
critical point.
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onance w, yet are again decoupled from the force output. Thus, when using force
feedback or equipment acceleration feedback (in the absence of equipment modes), it
is practical to ignore base flexible modes in the control design and to base the compen-
sator on the rigid base model. Finally, a softmounted reaction mass series isolator is
shown to completely decouple base resonances from the loop transfer function above

the softmount resonant mode.
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Chapter 4

Interferometer Testbed

4.1 Objectives

This chapter describes the SERC Interferometer Testbed used for demonstration of
active isolation and pathlength control in this thesis. The testbed design and perfor-
mance metric are introduced in relation to scientific requirements for an interferometer
spacecraft, and it is shown how the laboratory testbed incorporates a relevant sub-
set of the technical issues involved with a full spacecraft mission. Measurements of
the performance metric of the nominal truss configuration are shown, and the input

mobility of the component test stand is presented and shown to be effectively rigid.

4.2 Testbed Description

The MIT SERC Interferometer Testbed is designed to be relevant to a class of space-
based optical astronomy missions, as well as to provide a versatile laboratory for
experimental structural control research. After a number of candidate missions that
would benefit from CST were evaluated, it was determined that a broad class of
large-baseline interferometers pose the most stringent pathlength and pointing sta-
bility constraints, as well as generate significant interest in the scientific commu-
nity. A model of a proposed space-based optical interferometer with nanometer-level

pathlength stability requirements was selected as a mission focus for an experimental
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testbed structure [20]. The laboratory testbed is intended to capture the essential con-

figuration, physics, and performance metric of an actual observatory spacecraft [10].

4.2.1 Science Motivation

The next generation of NASA’s orbiting stellar observatories identified in the Bah-
call Report [6] will require high angular resolution to meet their scientific objectives:
extrasolar planet detection, resolution of close binaries, imaging the cores of active
galactic nuclei, and direct measurement of the parallax of extra-galactic objects. By
spatially separating smaller but discrete apertures, interferometric telescopes provide
the angular resolution of a comparable filled aperture telescope of the same diameter,
while avoiding the problems associated with fabricating and launching large-diameter
filled aperture telescopes. Optical and ultraviolet space-based interterometers, in the
2 to 10 meter baseline range, are under consideration for high resolution astrometry
and planetary detection (OSI, POINTS, etc.) [66]. Space-based measurement of ul-
traviolet light (A = 100 to 300 nm) is particularly desirable since these wavelengths
are blocked by the earth’s atmosphere.

Figure 4.1 is used to illustrate both the testbed configuration as well as the prin-
ciple of operation of an actual interferometer. A planar wavefront of light from a star
is shown striking siderostats (three are shown) that reflect the light into the optical
train of the interferometer. The light is steered to an intensity detector where light
from any two of the siderostats is combined (interfered) to generate an intensity fringe
pattern from which scientific measurements are extracted. A clear interference pat-
tern is formed only when the optical paths traveled in each leg of the interferometer
are the same to within fractions of a wavelength of light; alignment to within A/20 is
a typical design target for alignment. To accomplish this, an adjustable length seg-
ment called an optical delay line (or ODL, not shown) is introduced in each leg. On
the Mark III Interferometer on Mt. Wilson in California, the ODL consists of three
stages: a movable trolley for large motion, a voice-coil actuator for coarse adjustment,
and a piezoelectric actuator for fine motion control [64].

Successful measurcment of the stellar fringe pattern requires the performance of
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three technical functions within the instrument, of which only the first is retained
in the laboratory testbed. First, an ODL must reject disturbances which introduce
differential pathlength error (DPL) in each pair of optical paths between points on the
common wavefront and the detector. The requirement is that DPL disturbances must
be maintained below A/20, which for light in the center of the visible spectrum (500
nm) is 25 nm; an on-board laser metrology system measures the internal DPL error
for feedback to the ODL. Secondly, coarse and fine steering mirrors must maintain
parallel wavefronts at the detector plane, which places a requirement on wavefront tilt
jitter of 0.5 arcsec. Third, the pathlength difference in each leg of the interferometer
must be slowly varied in order to locate, capture and track the central fringe of the
interference pattern, and to scan the range around the central fringe in order to
record the fringe intensity. It is expected that a combination of disturbance rejection,
vibration isolation and optical pathlength control technologies will be required to
produce the quiet vibration environment in the presence of on-board disturbances

due to attitude control hardware, machinery disturbances or thermal distortions [11].

4.2.2 The Laboratory Testbed

The laboratory testbed design and performance metric capture the problem of control
of differential pathlengths between widely separated siderostats and a common beam
combining location. External pathlength error, beam tilt, and low-frequency optical
delay line control are not incorporated into the problem. Also, no science light or
reference star is used in the testbed; only pathlength error that is internal to the truss
is measured by a set of on-board lasers.

The testbed configuration is illustrated in Figure 4.1. Six triangular truss beams
form a tetrahedron measuring 3.5 meters on a side. A laser mounted to the structure
at the vertex point E is used to measure the pathlength changes between point E and
each mock siderostat located at points A, B, and C. Three positions for the siderostats
were chosen to create different baselines, as well as to simulate stiff mounting locations
(point C at the vertex) and progressively more flexible locations at the midpoints of

the truss legs (points B and A). At each mock siderostat location is an articulated
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Table 4.1: Testbed parameters.

Description Value Description  Value
testbed mass 36 kg (bare truss) diagonal struts

68 kg (testbed) number 72
baseline 3.5 meter mass 50.15 g
cat’s eye mass 516 g (3) stiffness 7.77 N/pm
fundamental mode 34.5 Hz (bare truss) | length 32.33 cm

24.9 Hz (testbed) nodes

longerons and battens number 229

number 641 mass 3445 g
mass 39.5 ¢ stiffness 265 N/pm
stiffness 11.2 N/pm diameter 3.02 cm
length 21.97 cm

mirror assembly containing a common endpoint retro-reflector, or cat’s eye optics.
The structural control problem is to minimize structural deformations due to vibration
in the three pathlengths defined by points A, B, and C and the fourth vertex point
E.

Table 4.1 summarizes important testbed parameters. The statically determinate
truss lattice is constructed from aluminum tubes of 3/8 inch outer diameter and 0.058
inch wall thickness, bolted tightly to 229 aluminum nodes. The struts are designed
to have local bending resonances near 230 Hz, well above the fundamental structural
modes beginning at 24.9 Hz. The 68 kg testbed is suspended in the laboratory
from soft springs, resulting in suspension modes from 0.3 Hz (pendulum) to 2.5 Hz
(bounce). The structural dynamic response of the truss is characterized by a high
modal density due to the near symmetry of the six truss legs; roughly three dozen
structural modes occur below 100 Hz, with modal damping ratios in the range of
0.4% to 0.8%. Appendix A lists the modes predicted by a finite element model of the
testbed (7].
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Figure 4.2: Photograph of original hardmounted cat's eye optics at plate C. A
rigid fixture orients the cat’s eye assembly at 60 degree angle to the
base plate. A triax of Sunstrand QA1400 accelerometers is mounted
to the back of the rigid fixture.

Figure 4.2 is a photograph of the original configuration of the articulated mirror
and optics mounting plate at point C. The base plate is 1/8 wch aluminum that is
connected by short mounting brackets to the nodes of the truss. Angled at 60 degrees
to the base plate is a smaller mounting plate which positions the articulated mirror
s0 that its field of view contains the line of sight to each of the three other cat’s
eye optics. The cat’s eye is mounted to an aluminum annular ring, which in turn is
connected to the small mounting plate by three stiff 1.8 cm piezoelectric multilayer
actuators. A triax mounting of Sunstrand QA1400 accelerometers 1s bolted to the
back of the small mounting plate. Similar configurations exist at plates A and I3,
except that at plate A a less expensive retro-reflector was initially used in place of
the glass cat’s eye for many early experiments. The bare truss mass is 36 kg, and
each siderostat plate and mirror assembly has a mass of 4.8 kg. The fourth vertex

optics assemnbly has a mass of 13.5 kg.
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A disturbance source is located at the top vertex of the truss, at point D in
Figure 4.1. Three axes of piezoelectric multilayer actuators and 494 gram reaction
masses generate a disturbance force input to the truss structure. The actuators are
driven by a white noise signal that is passed through a 4" order Bessel filter with
70 Hz corner frequency; this signal is the invariant disturbance input to the truss
for the performance metric defined below, and is referred to below as the standard

disturbance source.

Passive Damping Hardware: Two hardware components have been developed
for passive damping implementation on the testbed [4]. The first is a constrained
layer viscoelastic treatment for the testbed longerons: struts are wrapped with 30
mils of 3M 110 viscoelastic layer, which is constrained by 35 mil thickness aluminum
tubing. Up to 50 of these struts (labeled J-struts) can be substituted for the original
truss longerons in order to add a small amount of “broadband” damping to most of
the structural modes. Each strut has a loss factor of n = 0.07. Also available are five
Honeywell D-struts, derived from the viscous dampers used in the HST reaction wheel
isolation assembly. The D-strut loss factor is high (7 = 1.5) and can be placed to add
a large amount of “target” damping in selected structural modes [4]. In Chapter 6,
five D-struts are used with three active pathlength control loops in a layered control

design.

Support Equipment: The internal pathlengths are measured in realtime to 10
nm resolution using a 1 milliwatt dual-frequency laser interferometer manufactured
by Hewlett Packard. The measurement beams terminate at a fiber optic feed to a
receiver mounted to the truss; the outputs are then digitally fed into the VME bus
of the realtime computer for measurement and feedback. The realtime computer
consists of a 68030 microprocessor and CSPI vector processor with 16 A/D channels
and 8 D/A channels. Other amplifier and sensor equipment that directly pertain to

the isolation experiments is described in Chapter 5.
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4.3 Performance Metric

The standard testbed performance metric is used as a common measure of nerfor-
mance improvement due to any passive or active modification to the testbed. In
Figure 4.1, let the 3 absolute pathlengths (APL) between the siderostat plates and
the fourth vertex at point E be denoted by the letters A, B and C. The three differen-
tial pathlengths (DPL) are defined as the difference between the absolute pathlength
measurements, or A - B, B - C and C - A, respectively.

The testbed performance metric to be minimized is DPL error between the fre-
quencies of 10 and 500 Hz. For example, the variance in DPL A - B that contributes

to the metric is calculated by

, 500

o4 = | ¢ 45(f)df (4.1)

where ®45(f) is the measured autospectrum of DPL A - B in units of nm?/Hz. The
upper limit of integration is chosen to overbound the frequency range of significant
structural response to the disturbance source, while the lower limit falls midway be-
tween the suspension mcdes and the first structural dynamic mode. This definition
is consistent with that for an actual interferometer mission, in which dynamic DPL
errors must be rejected for all frequencies above the sampling frequency of the detec-
tor, which typically is on the order of several Hz, well above the frequency crossover
of the spacecraft rigid body controller. The goal is to reduce the performance metric
to 50 nm RMS or less in each of the three differential pathlength measurements (the
scientific requirement of 25 nm RMS is relaxed due to the 10 nm resolution limit of

the laser metrology).

4.3.1 Measured Open Loop Disturbances

The performance metric results (both APL and DPL) for the original hardmount
configuration of the truss are listed in the first row of Table B.1 in Appendix B.
The term original hardmount refers to the initial configuration in which the cat’s

eye optics are mounted to the plates via the stiff piezoelectric actuators; a second
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Figure 4.3: Testbed performance metric (RMS 10 - 500 Hz) for original hard-
mount configuration. Data are shown for RMS motion in the abso-
lute pathlength (APL) and differential pathlength (DPL) measure-
ments.

design is later used to further stiffen these mounts to reduce local dynamics. A
Tektronix Fourier analyzer was used to measure the output of the realtime computer
running at 4100 Hz with the standard disturbance source running on the truss. The
pathlength measurements are in the range of 368 nm to 676 nm RMS, and are plotted

for comparison in Figure 4.3.

Figure 4.4 illustrates the measured autospectrum of APL B for the original hard-
mount configuration. The data represents 30 averages of time blocks of 4096 points,
leading to 1600 spectral lines linearly spaced between 0 and 500 Hz. At least one
spectral line occurs in the half power bandwidth of each of the lower modes (niore
points would have been desirable, but the measurement of a single spectrum for the
metric was found to be fast and convenient, given the number of tests conducted).
The energy content of the spectrum remains correct despite the frequency spacing.
Overplotted on the autospectrum is the average autospectrum in each of 17 third-
octave bands (commonly used in acoustic measurement [55]) along with the RMS
level of the disturbance energy in each frequency band. The majority of the energy
is concentrated below 200 Hz, and is highest at frequencies near 100 Hz. A distinct
clump of modes between 20 and 40 Hz corresponds to first bending modes of each of

the six truss beams.
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Figure 4.4: Absolute pathlength B, original hardmount configuration. Measured
autospectrum (dotted) potted vs 1/3 octave band average autospec-
trum (solid) with RMS in each band.

The output zpectrum reflects the spectrum of the disturbance input force: a white
noise spectrum drives the piezoelectric actuators up to a corner frequency of 70 Hz,
generating a reaction force input to the truss which increases proportionally to w?.
The force-to-displacement transfer function of a lightly damped general structure is
proportional to 1/w?, resulting in an APL disturbance spectrum that is roughly flat
up to 100 Hz. At high frequencies, the voltage input to the piezoelectric actuators
rolls cff at a log slope of -4, leading to a rolloff in the output spectrum of -8, given

the autospectrum units of nm?/Hz.

4.4 Proposed Isolation and Pathlength Control

The subset of the testbed CST design addressed in this thesis is vibration isolation
and direct pathlength control of each of the optical legs. Initial accelerometer tests
indicated that most of the motion in the DPL error was due to motion at the three

siderostat plates, and that the motion of point E in Figure 4.1 was small due to the
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stiffness and inertia of the fourth vertex hardware. The cat’s eye optics at plates
A, B, and C were targeted for passive and active isolation from the vibrating truss
structure; isolation of the disturbance source at point D was not addressed in the
experiment. Since the testbed performance metric was originally planned Lo include
laser pathlength measurement between the three siderostat plates, isolation in three
translational axes at each mirror location was required, in order to “lock down” points
A, B, and C in inertial space.

The active mount design for the cat’s eye optics was required to function either as
an isolator (using local error sensors for feedback) or as an active mirror positioner
(using the absolute laser measurements for feedback). It is expected that pathlength
control will improve the performance metric (a relative measurement) more than
active isolation (using local feedback), since some motion does occur at the fourth
vertex cat’s eye, which is not isolated from structural vibrations. However, the stan-
dard testbed metric represents only one measure of performance. The attractiveness
of the active isolation configuration is to validate the design approach in which the ac-
tive mount is first tested and controlled on a rigid base, and is then mounted directly

to an uncertain flexible base structure using the same compensator.

4.5 Rigid Block for Component Tests

Open and closed loop tests of the isolation mount were conducted on a test block
that was designed to appear rigid to the test article. The anticipated mass of the
test article was 1 kg with a softmount corner frequency of 20 Hz, leading to an
isolator spring stiffness of k = mw? = 0.025N/um. Figure 4.5 illustrates the test
block, which measures 26 inches wide and is constructed of concrete with embedded
steel. An optics jig plate was anchored by aluminum bolts into the wet concrete and
the entire block was isolated from the floor by four inflatable rubber isolators. The
vertical bounce mode of the block was measured at 5.4 Hz with a modal damping
of 4%; the isolators had been expected to provide higher damping according to the

manufacturers specification sheets. Two rocking modes of the test stand occur at 4.4
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Figure 4.5: Concrete test block used for component tests. Mass = 230 kg;
above 100 Hz the test block exhibits 153 N/um spring stiffness in z
direction due to flexibility in the aluminum mounting plate.

and 8.3 Hz, respectively, with 5% measured damping. The frequency difference in
iche rocking modes is due to asymmetries in the inflation pressure in each of the four

mounts; the frequency difference would not occur if only 3 mounts had been used.

The input mobility of the test block in the z direction was me:,ured by a shaker
connected by a flexible stinger to a collocated accelerometer and load cell attached
to the aluminum mounting plate. The plot shows dashed lines which represent three
simple mobility models of the base. Above 5.5 Hz the testbed input mobility looks like
that of a 230 kg mass, while below 5.5 Hz it appears to be a spring with stiffness k; =
0.265N /um, corresponding to the stiffness of the pneumatic isolators. An unexpected
result of the measurement is that the base input mobility is that of a stiff spring
above 100 Hz: the measured stiffness of k; = 1563N/um corresponds to the stiffness
of the 1 dozen steel anchors used to hold in the plate. Thus, the plate is not clamped
by the cement around its edges as had been originally thought. The first resonance

of the plate occurs at 1 kHz.
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Figure 4.6: Input mobility of test block used for component tests. Solid line
shows transfer function measured at center along z direction. Block
mobility is much smaller than mobility for test articles, and is con-
sidered rigid for the proposed component tests.

The measured base mobility supports the assumption that the test block is a rigid
test stand. The block suspension modes occur well below the 25 Hz corner frequency
of the test article, and no other modal dynamics of the base appear below 1 kHz.
The ratio of test mass to block mass is m/M = 0.004, and the ratio of softmount
spring stiffness to base stiffness is k/k; = 0.094 and k/k, = 0.0002. In Chapters %
and 3, the passive isolator sensitivity P and loop transfer functions were shown to be
insensitive to base inipedance ratios of these magnitudes; the case k/k; = 0.09 only
becomes important well above the 25 Hz mount resonance, at which point the base
input mobility is dominated instead by the large mass and stiff anchor stiffness kj.
Based on these results the ‘est block will be treated as rigid for the proposed isolator

component tests.
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4.6 Summary

In this chapter, the SERC Interferometer Testbed is motivated by the scientific and
vibration performance requirements of proposed orbiting stellar interferometer tele-
scopes. The laboratory testbed captures a subset of the engineering problem, that of
maintaining constant differential pathlengths between widely separated apertures on
a flexible truss structure. It is proposed that passive and active isolation of the cat’s
eye optics at the three siderostat plates can provide a moderate amount of improve-
ment to the performance metric, although the primary objective is to demonstrate
active isolation both on a rigid base and a flexible base. A greater performance im-
provement is expected for active pathlength control using the same actuators in the
active mount with absolute pathlength measurements as the feedback variable. Fi-
nally, the dynamic response of the test block is measured and shown to be effectively

rigid for the testing of the passive and active isolators.
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Chapter 5

Open Loop Tests of the Active
Mounts

5.1 Objectives

The objective of this chapter is to present the design of an active mount developed for
isolation and pathlength control and to demonstrate its experimental performance.
The passive isolation performance and open loop transfer functions are presented for
both rigid base and flexible testbed mountings. Functional requirements for the active
mount are derived based on the testbed performance metric data, and are used to
motivate the design of the hardware. Open loop transfer functions measured on the
testbed data clearly indicate the advantages of using a soft isolation stage for modal
decoupling, both for SISO (single-input, single-output) and MIMO (multiple-input,
multiple-output) plant models. An experimental verification of the modified passive
sensitivity model P is shown using an averaged model of the testbed input mobility
based on the measured mobiity. The testbed performance metric, as well as local
acceleration measurements at the isolation mounts, are shown to improve when the
softmount actuators are installed on the truss. Models based on these open loop

measurements are used in Chapter 6 for model based compensator designs.
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5.2 Active Mount Hardware

5.2.1 Functional Requirements

Three identical active mounts were constructed for each of the three cat’s eye retro-
teflectors at points A, B and C in the testbed experiment, illustrated in Figure 4.1,
Functional requirements for the mounts are listed in Table 5.1. The primary function
of the mount is to provide articulation of the cat’s eye along three translational axes
defined by the lines of sight to each of the other three cat’s eyes: for instance, one
mount must move point B in the three directions formed by the lines of sight from
B to points A, C and E. Rotations of the cat’s eye oplics are unobservable by the
laser metrology system. Each cat’s eye retro-reflector has a mass of 520 grams and
an outer diameter of 7.5 cm.

The stroke magnitude and bandwidth requirements listed in Table 5.1 were based
on measurements taken in the presence of the standard testbed disturbance source,
Variations in absolute pathlength (defined in Chapter 4) were measured to be below
500 nm RMS in the 10-500 Hz range. Accelerations on the rigid mounting plates for
each cat’s eye, as recorded by triaxial mounts of Sunstrand QA 1400 accelerometers,
produced estimates of local linear displacements that were below 325 nm RMS at
each mirror, in any direction. To overbound these disturbances a stroke requirement
of £3um was imposed.

Each mount was required to stiffly mount the cat’s eye to the siderostat plates for
the nominal testbed configuration; a second softmount design was required to provide
sufficiently small static deflection to maintain optical alignment of the laser beams,
which have 5 mm beam width. A local sensor suite was needed for local feedback for
active isolation, in addition to the laser measurement for direct pathlength control.
Also, each mount was required to orient the optics so that the other 3 cat’s eyes were
within the 120° cone angle of the optics.

The reactuation requirement was added after preliminary tests showed that inter-
action between the three hardmount isolators was strong enough to prohibit robust,

decoupled control loop design. A softmount or reaction stage was needed to isolate the
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Table 5.1: Active mount functional requirements.

stroke e > 3um 1n three translational axes

e fine motion control to 10 nm

e bandwidth 10 to 500 Hz

stiffness o static stiffness to maintain optical alignment

e local structural resonances > 500 Hz

local sensor | @ measure 3 axis linear motion of point M
e bandwidth 10 to 500 Hz
e noise < 50 nm RMS over 10-500 Hz

field of view | ® 3 other cat’s eyes within 120° cone angle

reactuation | e isolate piston and rotational actuation

e decouple base modes near loop crossover

base structure from reaction forces generated by actuation of the mirror. Examples

of this interaction are shown below in Sections 5.4 and 5.5.

5.2.2 Hardware Description

Piezoelectric multilayer ceramics were selected as actuators for the active mount for
several reasons: the piezoelectrics provide high stiffness and fine motion control, were
readily available, and had been used in previous SERC laboratory experiments. A
number of configurations were considered, and the final design described below rep-
resents the best choice based on the criteria of stiffness, fewest actuators for 3 axis
control, and geometric simplicity for design, machining and assembly. Three proto-
type actuators were built (the “old hardmount” design illustrated in Figure 4.2) and
were used as cat’s eye mounts for initial performance metric tests. These early tests
indicated that the local mount design was insufficiently stiff - local shear modes of
the actuator occurred below 200 Hz - and that coupling between the 3 hardmount

actuators was strong enough to require a softmounted reaction stage to permit inde-
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Table 5.2: Mass of each isolator assembly.

component mass (kg)

hardmount softmount

active stage 1.0580 1.050
reaction mass n.a. 1.050
collar assy. 1.135 0.640

total 2.185 2.740

pendent control design for the three active mouats. The second and final actuator
design incorporates changes for reactuation and increased stiffening, and is presented
below along with a discussion of the important trades considered in the design.

The softmount and hardmount actuators are illustrated in the scale drawings in
Figures 5.2 and 5.1, and are shown in three photographs (Figures 5.5 to 5.7). T'he
mount is comprised of three primary components, as illustrated in Figure 5.2. The
first is a stiff outer collar which orients the entire assembly and acts as a stiff interface
to the siderostat plate; this mount is considered to be part of the unisolated base
structure (the vibration source) and is represented by the dark shading. The second
component is the reaction stage (lighter shade) which is softly suspended from the
collar by damped blade flexures. The active stage (unshaded) is the third component,
and is comprised of the cat’s eye, accelerometers, and piezoelectric actuators with wire
flexures.

The active mount can be used either with or without the reaction stage and
flexures, by replacing the first collar with one that provides a rigid mounting for the
active stage, as illustrated in Figure 5.1. A flexure locking mechanism was dismissed in
favor of the replaceable collar, based on tests which indicated that a prototype flexure
lock was not completely effective in enforcing a hardmount boundary condition. A list
of the isolator component masses in Table 5.2 shows that the hardmount configuration
is lighter than the softmount configuration by 555 grams. The total testbed mass is
68 kg with the new hardmounts installed.
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Figure 5.1: Scale drawing of the active hardmount isolator. Area in white is
the active stage, dark shade represeats ground. Accelerometer triax
measures the linear motion of point M. Wire flexures permit stic-
tionless rotation about point A when the actuators are operated in
differential mode, but are otherwise stiff.

Hardmount Actuation Design: Three piezoelectric multilayer actuators provide
articulation of the active stage in five axes (three translation, two rotation), only three
of which are independent. The actuators are model no. NLA-10x10x18 from Piezo
Electric Products Inc., have a stroke of 13.5 um at 150 volts, capacitance of 6500
nF, and axial stiffness of 350 N/um. The piezoelectric stacks are bonded between
wire flexures and steel spacers by Hysol EA 9394 structural adhesive, which was
determined in a destructive test to be stronger than the actuators themselves. Two
nylon bolts hold the actuator in 20 N of tension during epoxy cure and in case of

breakage. The actuators are biased at 75 volts in order to provide +6.75um of stroke.

When the actuators are operated in common mode, the cat’s eye is moved in the
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Figure 5.2: Scale drawing of the active softmount isolator. Active stage (white)
is mounted to reaction stage (medium shade) which enables high
frequency dynamic decoupling from base (dark shade) due to soft
damped blade flexures.

z (piston) direction; when operated differentially, the active stage rotates about the
hinge point A defined by the bending axis OP of the soft wire flexures, as shown in
Figure 5.1. Because of the lever arm AM, the cat’s eye magic point M (the point
measured by the external laser) is articulated laterally by +:4.2um. Rotations of the
cat’s eye about point M are unobservable in the linear laser pathlength measurement

due to the symmetry of the cat’s eye optics.

An illustration of the hardmount displacement mechanism is provided in Fig-
ure 5.3(a) and Figure 5.4(a), in which the reaction mass is considered for the present

to be a rigid base. The actuation command is modelled as a force f applied across
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Figure 5.3: Vertical actuation model of the actuator. At low frequency (a) lower
spring is rigid and point M moves full commanded stroke 6§ = f/kl1.
At high frequency (b) lower spring is soft and point M moves 6/2.
A hardmounted active stage is also represented by (a).

active stage

(a) (b)

Figure 5.4: Transverse actuation model of the actuator. Piezoelectric actuators
produce torque which pivots active stage about point A. At low
frequency (a) reaction stage spring is rigid; at high frequency (b)
both active stage and reaction mass pivot about their respective
centers of gravity (points G and C). High frequency stroke is reduced
by ; - IMG|/|M A| compared to low frequency.
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Figure 5.5: Rear view of active stage. Cat's eye retro-reflector is held in place
by three plastic-tipped set screws. Three piezoelectric actuators are
arranged symmetrically around the cat's eyes, and are bonded to
wire flexures which interface to the reaction mass.
the lumped axial piezoelectric stiffness k1, producing (unconstrained) static deflection
6 = f/kl. Similarly, 8 = 7/x] describes the commanded rotation.

‘The wire flexures were designed to be soft enough in bending such that 95% of
active stage rotation occurs within the flexures. The lowest structural resonance of the
active stage is a lateral shear mode, in which the combined assembly of wire flexures,
actuators and spacers act as a shear spring, permitting vibration of the cat’s eye mass
in the & and y directions. The height of the actuator/flexure assembly was chosen to
set the shear modes at 550 Hz, above the testbed disturbance bandwidth. Vertical
bounce and rotational modes about the active stage center of gravity (point () were

calculated to occur above | kHz, governed by the flexibility in the wire flexures.

Softmount Reactuation Design: The reaction stage mass and inertia were se-
lected to be identical to that of the active stage. As demonstrated in Figure 3.33 for

the series isolator in Chapter 3, the frequency at which high base modal decoupling
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Figure 5.6: Front view of softmount actuator. The large outer ring is rigidly
bolted to the vibrating base structure by two struts and a rear brace.
Smaller circular plate is active stage which contains cat's eye op-
tics. Three Kistler PiezoBeam accelerometers measure three axis
translation of cat's eye magic point M.

occurs is v2w,, for equal active stage and reaction stage masses. For lighter reaction
masses, the decoupling begins at a higher frequency, and also results in lower actuator

stroke at high frequency.

In Figure 5.2 the reaction mass is suspended from the collar by three damped
blade flexures which were designed to provide a suspension mode in the z direction
of 256 Hz. Each flexure is comprised of a lateral component and a smaller vertical
component; the latter provides stress relaxation in the flexure and prevents nonlinear
“snap through” buckling observed when the vertical flexure is omitted. The lateral
flexure is 2.5 cm wide and 1 c¢m in length, and is constructed of 3 layers of steel
shim (4 mil thickness) and 3M ISD 112 viscoelastic material (13 mil thickness). A
detailed analysis using an assumed modes energy method was used to select the

flexure geometry, number of layers, and type of viscoelastic necessary to provide both
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Figure 5.7: Rear view of sottmount actuator Inner reaction miass is suspended
from outer support ring by three damped blade flexures  Bolts in
reaction mass show attachment location of active stage to opposite
side

high stltness and hagh Toss tacton Phe side Heaures are one hall of the lengtho ol the
lateral Hexures and are comprised of two layers of 7l steel sho, and one layer of
ISD 112

Fable 538 hsts the predicted and measured natutal trequency and denpiug of the
bonnce and rotational modes of the combined active/reaction ass (2 10 kg ) on the
solt Hexures A hagher mount damping ratio was desired, but was linnted by the
required Hexure stiffuess and by o constramt on tlexure width - he mount natural
frequency of 20 He was selected 1o provide less thian @ i of static detlection of the

cat’s eye optics when mstalled 1o vanions contigurations on the testhed

The actuation mechamsm mvolving the reaction mass s lustiated o Fgune 5 8
and l“lgurt: 54 Well below soltmount lesoliahoe, the active slage articulates as 11 the

reaction mass was rgidly connected to the collar (ground ) Well above soltinount
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Table 5.3: Predicted and measured softmount frequency and damping, measured
on rigid test stand.

predicted measured

mirror C mirror B
vertical | vertical rotational | vertical rotational
33.1 38.6
5.7 5.3

frequency (Hz) 25 28.1 33.1
damping (%) 8 10.0 5.7

resonance, the lower flexure spring k2 or k2 can be ignored and only the inertia of the
reaction mass need be considered. The vertical actuation mode is straightforward:
the actuator stroke is equally divided between positive vertical displacement of the
cat’s eye (point M) and the negative vertical displacement of the reaction mass.
Rotational actuation of point M occurs by a commanded angular deflection by the
piezoelectric, which is divided between rotation of the active and reaction stages about
their respective c.g. locations (points G and C). Point A remains as the hinge point.
The bending axis of the soft blade flexure was designed to coincide with the reaction
mass c.g. point C, to prevent any lateral reaction forces from being transmitted to the
base structure. The models in Figures 5.3 and 5.4 indicate that well above softmount

resonance, no reaction forces due to actuation are transmitted to the base structure.

The penalty for using the reaction mass, however, is an increase in weight and a
loss of actuator stroke at high frequency. For vertical displacement, 50% of the high
frequency stroke is retained, while for transverse actuation the figure is only 10%, due
to the proximity of the c.g. points G and output point M. In the testbed closed loop
experiments, the actuators are articulated along lines of sight that form angles of less
than 40 degrees with the mount z direction, thus the isolators maintain a significant

amount of high frequency stroke, as is shown below in Section 5.4.

Sensor Selection: A triax of Kistler PiezoBeam accelerometers measure the three-

axis linear acceleration of the cat’s eye magic point M. The accelerometers provide
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1 volt/g sensitivity over a 3 Hz to 3kHz frequency range. load cells located in the
load path of the actuators were an alternate choice, but were not selected since five
sensors would have been needed to measure all base disturbances (two rotation and
three translation) capable of disturbing point M in translation. Load cells with a res-
olution of 0.5 volt/N are commercially availabie and provide displacement resolution
comparable to the Kistler PiezoBeam accelerometers given the active stage mass of
1 kg.

The Kistler PiezoBeam accelerometers were selected based on sensitivity, size, and
availability. The acceleration noise spectrum was originally expected to provide less
than 20 nm RMS equivalent displacement noise between 10 and 500 Hz. A comparison
between the measured noise spectra of Kistler PiezoBeam and Sunstrand QA 1400
accelerometers is provided in Appendix C. It was discovered during closed loop tests,
however, that due to an error in measurement scale factor the noise content over the
10 to 500 Hz ranges is closer to 200 nm RMS, which does not meet the functional
requirements listed in Table 5.1. Sunstrand QA 1400 accelerometers were considered
as a retrofit, but the 400 g combined mass of the Sunstrand accelerometers proved
too great to preserve a c.g. location of the active stage mass below the magic point
M, required for minimum phase lateral articulation of the active stage. The Kistler
PiezoBeam accelerometers were retained and used for acceleration feedback control
designs in Chapter 6. The results indicate the expected performance that would be
obtained for noiseless sensors. Appendix C also lists the noise spectrum of a new
lightweight accelerometer introduced shortly before the time of this writing, The
sensor exhibits a lower noise spectrum and higher sensitivity than the PiezoBeam

accelerometers used in the following experiments.

5.2.3 Passive Isolation Description

Although the soft blade flexures were designed to attenuate actuator reaction forces
from being transmitted to the base structure, a side benefit of the flexures is passive
isolation of the cat’s eye from base disturbances. Figure 5.8 illustrates the mechanism

of passive isolation for the softmount actuator design. Because the reaction mass

194



combined

m,J
active and reaction ~
stages \
SR

ANANANAN

vibrating
rigid base / k2/2 k2/2
20
base disturbances reflected Oc-
to point C* coincident with C o

Figure 5.8: Model to illustrate five-axis passive isolation of the mount. Base
disturbance represented as rotational and two translational distur-
bances, referenced to point C* coincident with C.
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Figure 5.9: Comparison of passive sensitivity P,(s) for rotational and lateral de-
grees of freedom. Actual mount perfermance will depend on output
direction and the directional content of base disturbance.
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Table 5.4: Comparison of hardmount and softmount local displacement spec-
trum nieasured along the laser lines of sight, in the presence of the
standard disturbance source. Isolation performance degrades as the
angle between the local z axis and the line of sight increases.

mirror | angle between l.o.s. | nm RMS 10-500 Hz dB
and mirror z axis | hardmount softmount | improvement

A 40° 195 145 2.6

B 35° 220 103 6.5

C 20° 302 109 8.0

were also recorded. An electronic circuit was used to perform the necessary 1 x 3
matrix multiplication to transform the three triax measurements to the acceleration

along each laser line of sight to the fourth vertex.

5.3.1 Local Acceleration Results

Acceleration and absolute pathlength measurements for mirror B are used to illustrate
the performance improvement due to passive isolation. The improvement due to
passive isolation is represented by the change in local acceleration between the new
hardmount and the softmount configurations (the old hardmount data only serve
as a reference to the nomninal configuration). Figure 5.10 is a comparison of these
autospectra (converted to displacement) measured in the presence of the standard
disturbance. The softmount attenuates vibration in frequencies above 50 Hz, and
amplifies disturbances below. Above 50 Hz, the effect of the mount is a simpls
downward shift of the autospectrum, without addition of passive damping to the
truss modes. The mount modes near 25-40 Hz are coupled to the base modes.

The improvement in broadband displacement at mirror B is 6.5 dB. Results for
the other mirrors are listed in Table 5.4. The mirror performance is correlated with
the degree of alignment between the individual mirror lines of sight and the mirror

piston {z) direction, in which the isolation effectiveness is highest.
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Figure 5.10: Improvement in local acceleration along laser B line of sight due to
passive isolation at mirror B.

Figure 5.11 is a plot of the mirror B averaged passive sensitivity P,, calculated
from Figure 5.10 by taking the ratio of the averaged autospectrum in each third octave
frequency band over the performance metric bandwidth. Regions of amplification and
attenuation are clearly visible. Below 20 Hz this function is not well defined, since in
this range there is little vibration energy in the truss, and the sensor noise is high.
High frequency attenuation is somewhat degraded for two reasons: first, the line of
sight direction for laser B is 35 degrees off-axis from the mount piston (z) direction,
and the mount is not as effective in attenuating transverse disturbances. Secondly,
the flexibility of the base leads to some increase in the transmitted vibration at high
frequencies, as described in Chapter 2. The effect is shown experimentally for mirror
C below, since an experimental measurement of the truss input mobility at mirror C

was available.
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Figure 5.11: Computed average passive sensitivity P,(s) along laser B line of
sight at mirror B for each third octave band.

5.3.2 Comparison to Theory

The effect of base flexibility on passive isolation at mirror C is shown for the piston (2)
direction. The acceleration autospectra for both the new hardmount and softmount
configurations were measured at mirror C, converted to displacement and averaged
into third octave bands. Using Eq. 2.148, the ratio of the autospectra defines the
averaged passive sensitivity P, and is plotted as a histogram in Figure 5.12. The
rigid base sensitivity P,, based on the rigid base data in Table 5.3, is overplotted as
a dotted line. The isolated mass is 2.1 kg. The data indicates a downward shift in
natural frequency and an increase in P, above 200 Hz not predicted by the rigid base

model P,.

These effects can be modelled using the modified sensitivity analysis introduced in

Chapter 2. An averaged magnitude model of the base mobility Y5 is used to calculate

199



the modified passive sensitivity P repeated from Eq. 2.146

Ys
1 —_
Pls)= — Y
()= —5—"+ (5.2)
"ty T
E E

The frequency-averaged magnitude base mobility model Vg is based on the measured
mobility of the testbed at the isolator interface, shown in Figure 5.13. The data were
measured by exciting the hardmount collar using an external shaker with a flexible
stinger and collocated accelerometer and load cell. The data show a dense modal
response above 25 Hz, which up to 300 Hz follows a general +1 log magnitude slope,
representing the effective spring mobility of the base plate. A three mode model plus
inertia term is used to approximate the linear magnitude of the base mobility over
this frequency range, and is plotted as a solid line in Figure 5,13,

The averaged mobility Y3 is substituted for Y3 in Eq. 5.2 and the resulting ex-
pression for P is overplotted in Figure 5.12 as a solid line. The modified sensitivity
function P captures the downward shift in mount natural frequency, as well as the
magnitude perturbations in the averaged sensitivity function near 40 Hz and 100 Hz.
The model correctly predicts the large increase in sensitivity P, at high frequency,

which is as much as 10 dB compared to P,.

5.3.3 Performance Metric Improvement

Figures 5.14 illustrates the performance metric improvement due to the replacement
of the original hardmounts by the new hardmount isolators at each mirror location.
The change also includes the replacement of the corner cube at mirror A by a cat’s
eye retro-reflector. The improvement in absolute and differential pathlengths is due
almost entirely to a decrease in modal energy in the frequency range above 100 Hz.
The stiffer design resulted in local mount dynamics that were outside the frequency
range of significant disturbance energy. In addition, a strong resonance at 240 Hz
(not shown) due to motion of the original retro-reflector at mirror A completely

disappeared, leading to a significant reduction in RMS level in pathlength A.
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Figure 5.12: Measured passive sensitivity P,(s) (histogram) at mirror C com-

pared to rigid base sensitivity P;(s) (dotted) and modified sensi-
tivity P(s) (solid) which accounts for base flexibility.
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Figure 5.13: Input mobility of testbed in piston (z) direction at mirror C location.

The linear average magnitude mobility )75(3) is based on a 3 mode
model plus rigid body inertia.
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Figure 5.14: Testbed performance metric (RMS 10 - 500 Hz) showing improve-
ment due to new hardmount design. Absolute pathlength B exhibits
a small increase due to the new hardmounts.

APL DPL
70 v v T : v
0 O new hardmount 700
goo} E2 softmount 600
500 500
- 400 1 400
E g
[= c
300f £ 300
200} | 200f
100 100
0 C 0 A-B B-C C-A

Figure 5.15: Testbed performance metric (RMS 10 - 500 Hz) showing the im-
provement due to passive isolation. The improvement is not very
dramatic since the isolation only affects one end of the relative
pathlength measurements between each mirror and the unisolated
fourth vertex.

The performance metric improvement due to the passive isolation of the soft-
mounts is illustrated in Figure 5.15. Absolute pathlength C demonstrates the largest
improvement, since this mounting location is stiffest and the laser line of sight is most
closely aligned with the mount piston direction at mirror C. In all, the improvement in
the absolute pathlength measurements is small compared to the local acceleration re-
sults, since the isolation affects only one end of the relative pathlength measurement.

This point is highlighted by Figure 5.16, in which the hardmount laser pathlength B
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Figure 5.16: Only the component of APL B (dotted) which is due to motion
at B (solid) can be improved by isolation at B. Fourth vertex cat's
eye vibrates more than had originally been predicted.

is compared with local motion at mirror B along the line of sight, as measured by
the accelerometers. The data show that a significant amount of energy in APL B is
due to motion at the fourth vertex. Modes in APL B that lack significant motion at
mirror B - notably at 46 and 100-120 Hz — are not well attenuated by the passive

isolation, as illustrated in Figure 5.17.

5.4 Active Isolator Transfer Functions

The hardmount and softmounc isolators were tested on the rigid test block and at
their respective mounting locations on the testbed, as listed in Table 5.5. Transfer
functions were recorded using a Tektronix 2630 Fourier analyzer using broadband
random excitation in four frequency ranges up to 10 kHz. The excitation signal
was input to an amplifier that provided a gain of 20 as well as a bias voltage of
75 volts to each of the three actuators in the mount. Electronic circuits were used

to transform both the input voltage and triax acceleration measurements such that
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Figure 5.17: Effect of passive isolation on absolute laser pathlength B. Attenu-
ation is much less than for local acceleration at mirror B.

transfer functions could be measured for the (z,y, z) coordinate system in Figure 5.2,

or for the directions of the individual laser lines of sight.

The data presented below illustrate the directionality of the mounts and the de-
gree to which the reaction stage decouples the base dynamics. The hardmount and
softmount actuators were tested on the rigid block in order to determine the compo-
nent structural dynamics, as well as to create an open loop transfer function model for
line of sight actuation on the block and on the truss. Mirror C was the first actuator
built, and was most extensively tested: an external shaker was used in a modal test
to determine component mode shapes, and the mount transfer function from actua-
tor voltage to output acceleration was measured for both hardmount and softmount
configurations. Mirrors A and B were buiit as a set, and when tested were found to
be dynamically nearly identical to one another and to mirror C, except that mirrors

A and B are somewhat stiffer and less damped at the 30 Hz softmount resonances.
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Table 5.5: Test matrix of active isolation mounts., HM = hardmount, SM =
softmount. Solid bullet () indicates test was performed.

Test Mirror A Mirror B Mirror C
configuration HM SM HM SM HM SM
Rigid Block (Accel) 0 . o . ° )
Testbed (Accel) o o ° o . .
Testbed (Laser) o o o o o o

5.4.1 Rigid Block Mounting

Mirror C Accelerometer Tests

Figure 5.18 is a comparison of the piston (z) and transverse (z) transfer functions for
mirror C hardmount, as defined in Figure 5.1. The input voltages to the individual
piezoelectric actuators for independent actuation of point M in z,y and z were de-
termined by calibration of the mount at 15 Hz. When actuated along one of these
axes, there is some motion in the other axes (not shown here) due to imperfect decou-
pling. The z transfer function in Figure 5.18 exhibits a slope of 40 dB/decade up to
a resonance at 1.2 kHz, which corresponds to the axial bounce of the active stage on
the wire flexures. The transfer function in z exhibits a 600 Hz shear mode (actually
two closely spaced modes), unobservable in z, due to flexibility in the piezoelectric
actuators and wire flexures. A real pole at 3 kHz due to the RC time constant of the
piezoelectrics (C = 6500 nF) and the output impedance of the amplifiers (R = 8(2)

leads to a gradual loss in phase at high frequency.

The modes in Figure 5.18 for the hardmounted active stage shift to higher frequen-
cies when the 1 kg reaction stage is installed between the active stage and the rigid
test block, as shown in Figure 5.19. The reaction stage introduces damped softmount
resonances in piston and rotation at 27 and 40 Hz, respectively. The phase indicates
that the modes are stabilizing. Above 100 Hz, the transfer functions show a decrease

in gain, which is more pronounced for the z direction due to the proximity of points
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Figure 5.18: Mirror C hardmount transfer functions in two axes, measured on
rigid block. Vertical actuator/flexure assembly leads to 600 Hz
shear mode.

M and G in Figure 5.4. An unexpected lightly damped pair of modes occurred 440
Hz, which is due to lateral spring flexibility of the vertical blade flexures. Viscoelastic
material had been added to the flexures, but unfortunately did not damp these modes.
These modes were expected to create some stability problems given their proximity
to the anticipated 300 Hz crossover frequency, but another mechanical redesign was
dismissed in favor of active compensation of these modes, in order to complete testing

within the available time.

5.4.2 Testbed Mounting

Mirror C Accelerometer Tests (z)

When the hardmount mirror C is mounted to the testbed at point C in Figure 4.1, the
new transfer function in z exhibits base modal coupling as illustrated in Figure 5.20.
The magnitude and phase perturbations — closely spaced pole-zero pairs with poles

below the zeros in frequency — are characteristic of base mode interaction below mount
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Figure 5.19: Mirror C softmount transfer functions measured on rigid block. Ac-
tive stage modes increase in frequency; blade flexures add 3 modes
at low frequency and also contribute two lightly damped, closely
spaced pole-zero pairs at 550 Hz due to a transverse resonance in
te blade flexures.

resonance w, studied in Chapter 3. Here, the hardmount resonance w, is at 1.2 kHz.
Above 250 Hz, the 1/4 inch aluminum base plate to which the mount is attached acts
as a soft spring which decouples truss modes from the loop (and leads to a reduction
in gain of about 6 dB). Modes in this base plate appear above 1 kHz and “wash
out” the strong active stage modes. The observation that the phase remains bounded
between 0 and -180 degrees in this frequency range is predicted by Figure 3.14 in
Chapter 3. Thus, while the base modes strongly modify the gain and phase of the

transfer function, they are not destabilizing.

The perturbations for mirror C for the strongly coupled modes near 200 Hz are
6 dB in magnitude and 75 degrees in phase, consistent with a coupling parameter
of By ~ 1.7, from Table 3.10. Given an expected controller bandwidth of 300 Hz,
the modes in the the 100 - 300 Hz frequency range lead to a significant loss in phase

margin, when compared to the measured rigid base transfer function plotted as a
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Figure 5.20: Comparison of mirror C hardmount: testbed vs rigid block. Base
modes appear strongly coupled 100-300 Hz, and couple with active
stage resonances above 1 kHz,

dotted line.

When the softmount isolator transfer function for mirror C is compared for both
testbed and rigid block mountings in Figure 5.21, it is evident that the reaction stage
strongly decouples any base modes above 40 Hz. The softmount amplifies the coupling
of base modes near mount resonance, which had otherwise been nearly unobservable
in the hardmount transfer function. A major advantage of the reaction stage is that
at high frequency, the plant transfer function is identical to that measured on the
rigid block, which is highly advantageous for control designs based on the rigid block

component data.

Mirror B Accelerometer Tests (Line of Sight)

Transfer functions for mirror B are presented for the direction defined by the laser
line of sight from point B to point E in Figure 4.1. The line of sight forms an angle of

35 degrees with the isolator z direction in Figure 5.1; therefore, it is expected that the
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Figure 5.21: Reaction stage of softmount decouples base modes from transfer
function above 40 Hz in z direction. Transfer functions overlay
perfectly above 40 Hz up to 5 kHz.

transverse hlade flexure and active stage shear modes will be observable/controllable

in tue line of sight transfer function, denoted as Hpp.

Figure 5.22 compares the transfer function Hgp on the rigid block and the testbed.
Both softmount modes (33 and 38 Hz) are visible, as are the transverse blade flexure
and wire Jexure shear modes at 550 and 1200 Hz, respectively. A testbed mode at 24
Hz is strongly observable at the mirror B mounting location and corresponds to the
first beam bending mode in the testbed truss leg. Since the mode frequency occurs
below the 33 Hz softmount resonance for mirror B, the coupling in magnitude and
phase is strong as predicted in Chapter 3. High frequency base modes are decoupled

by the reaction stage.

Some interesting effects occur at high frequency: modes above 1 kHz are un-
changed from the rigid block test because these modes (corresponding to resonances
of the active stage) are isolated from the base by the reaction mass (an exception is

one of the two shear modes at 1200 Hz which appears to have shifted slightly, believed
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Figure 5.22: Mirror B line of sight transfer function on rigid block and testbed.
Blade flexure and shear resonances appear in measurement; flex-
ure modes at 550 Hz are damped via coupling with the testbed
flexibility.

due to mechanical handling and mounting on the truss). The blade flexure modes at
550 Hz, however, have become well damped and shifted to 800 Hz and 900 Hz. These
blade flexure modes are affected because the flexures are connected to the base, which
is modally dense near 550 Hz and has an input mobility somewhat between that of a
mass or damper, as illustrated in Figure 5.13. In Figures 3.3 and 3.6 it is shown that
this type of base mobility would increase the frequency and damp mount interface

modes in the acceleration transfer function.

Figure 5.23 illustrates the advantages of a softmount at mirror B when compared
to a hardmount, when each are mounted to the flexible testbed. Base modal coupling
is strong for the hardmount throughout the frequency range (and particularly near
anticipated crossover), while the softmount decouples these modes and recovers the

loss in phase.
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Figure 5.23: Comparison of mirror B line of sight acceleration on testbed: hard-
mount vs softmount. Reaction stage decouples base resonances
and leads to 7 recovery in phase near anticipated crossover fre-
quency of 300 Hz.

Mirror B Laser Tests

The hardmount/sof*mount actuation of mirror B was repeated, with the output in-
stead measured by the absolute laser pathlength B. The comparison plotted in Fig-
ure 5.24 clearly shows the decoupling due to the reaction stage. Due to the laser
sampling rate of 4500 Hz, data were only recorded to 2 kHz. Figure 5.25 compares
the softmount laser and acceleration transfer functions (converted to displacement),
showing close agreement. It is concluded that motion at the fourth vertex point E
contributes little to the base modes which are coupled into the transfer function be-
low 80 Hz. Above this frequency, point E is undisturbed by reaction forces generated
by the isolator due to the decoupling effect of the series softmount. Based on this
agreement, it is considered possible to design compensators for laser feedback based

only on acceleration transfer functions measured on the rigid test block.
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Figure 5.24: Comparison of laser transfer function for mirror B, both hardmount
and softmount, showing improvement due to reaction stage. Grad-
ual phase loss is due to 4500 Hz sample rate.
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Figure 5.25: Comparison of laser and accelerometer measurements of mirror B
actuation on truss, showing excellent agreement. Laser exhibits
phase loss due to 4500 Hz sample rate,
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5.5 MIMO Isolator Transfer Functions

5.5.1 MIMO Acceleration Data

Figure 5.26 is a plot of the 3 X 3 transfer function matrix of the three hardmount iso-
lators mounted to the truss structure. The input voltage V to each mount directs the
mirror along the laser line of sight, and the outputs u are the accelerations measured

in the direction of each mirror line of sight. The transfer function matrix equation is

ug Hps Hap Hpc Va
up | = | Hpa Has Hpc VB (5.3)
uc Hcp Hep Hee Ve

The data show that the diagonal transfer functions contain a large feedthrough term
that is perturbed by resonant modes of the structure. The off-diagonal transfer func-
tions exhibit the modal coupling between the actuation point and the other acceler-
ations along the lines of sight, but without the feedthrough term. The off-diagonal
transfer functions are of comparable magnitude to the diagonal transfer functions at -

strongly coupled modes, up to 300 Hz.

The level of coupling for the hardmounts, particularly near the anticipated cressover
frequency of 300 Hz, would make independent SISO compensation of each of the iso-
lators difficult. For this reason, the reaction stage was added to the isolator, and the
new transfer function matrix is plotted in Figure 5.27. The coupling near crossover
is now low, but strong coupling near the mount resonances at 30-60 Hz remains. The
remaining low frequency coupling is judged not to be detrimeni:a.l to stability, since
it occurs in a region of high phase margin in each of the loops, as will be seen in
Chapter 6. The MIMO transfer function matrix for the laser outputs is presented in
Appendix D, and exhibits slightly higher levels of coupling for both the hardmount

and softmount configurations.
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Figure 5.26: Hardmount acceleration transfer function matrix for 3 mirrors actu-
ated along lines of sight. Modal coupling leads to large off-diagonal
transfer functions and to large perturbations in the diagonal func-
tions.

5.5.2 Diagonal Dominance of Transfer Functions

The Direct Nyquist Array technique [81] is used to investigate multivariable closed
loop stability in Chapter 6. The technique requires that the return matrix [ +Go K]
be diagonally dominant, where K is the compensator matrix and Goy, is the open
loop plant transfer function matrix. If K is diagonal, then the only off-diagonal
coupling introduced in the return matrix is due to Gor,. Prior the the design of the
compensator K, the anticipated coupling off-diagonal coupling in the return matrix
can be investigating by considering the diagonal dominance of the plant Goy, given
by the plant transfer function matrix H in Eq. 5.3. From Reference [81] an m x m

matrix H(s) = {hi;j(s)} is diagonally dominant on the Nyquist contour D if for all s
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Figure 5.27: Softmount acceleration transfer function matrix for 3 mirrors actu-
ated along lines of sight. The improvement due to the softmount
is twofold: coupling is decreased in the off-diagonal functions, and
modal perturbations in the diagonal functions is attenuated above
50 Hz.

on D and for all ¢ either

|his(8)] > dir(s) = i |hij(s)]  (row dominance) (5.4)
J=1,#i
or
|hii(8)| > dic(8) = Y |hji(s)]  (column dominance) (5.5)
J=1,#

which implies that the magnitude of the diagonal element must be greater than the
sum of the magnitudes of the off-diagonal row or column elements. Defining the

dominance ratio d;(s) as

di(s) = max{dif(-’) d-’r(")} (5.6)
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then only three plots are required to describe the diagonal dominance of the 3 x 3
transfer function H from Eq. 5.3. A dominance ratio d;(s) less than one for each
diagonal transfer function implies diagonal dominance of the matrix. The dominance
ratio d;(s) is plotted in Figures 5.28 and 5.29 for the hardmount and softmount MIMO
acceleration transfer functions. The high frequency decoupling of the softmount is
clearly evident, leading to dominance ratios that are well below one, indicating a
strong diagonal dominance of the transfer function matrix. At low frequencies, the
softmount dominance ratio remains above one, and is increased slightly by the soft-
mount in comparison to the hardmount data. Thus the MIMO plant is strongly
diagonally dominant at frequencies near crossover, but not in the 30 to 60 Hz range.

The implications of this fact will be investigated in Chapter 6.

5.6 Summary

In this chapter the design and open loop performance of the active mounts is pre-
sented. The mount design permits both hard and soft mounting of the cat’s eye optics
to the testbed, and for both configurations allows three-axis linear articulation of the
optics up to £6xm in stroke. The softmount reaction stage is shown to both provide
passive isolation performance (up to 9 dB of displacement RMS at each mirror) as
well as to condition each of the open loop transfer functions, by decoupling base mode
dynamics from the plant model. The importance of this decoupling is illustrated for
the 3 x 3 transfer function matrix for the three isolators mounted on the truss, for
both acceleration as well as laser output. Thus, the softmount design both improves
passive performance and improves robustness to the presence of unmodelled base
modal flexibility. The active softmount transfer functions presented in this chapter

are used as the basis actuator control designs in Chapter 6.
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Figure 5.28: Diagonal dominance ratios for hardmount isolators (acceleration
output) on the testbed. Dominance ratios near one imply a high
level of coupling.
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Figure 5.29: Diagonal dominance ratios for softmount isolator (acceleration out-
put) on testbed, showing improvement due to reaction mass. Fre-
quency range near 30-70 Hz is not diagonally dominant.
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Chapter 6

Closed Loop Design and

Implementation

6.1 Objectives

This chapter presents the compensator design and closed loop results of active isola-
tion and active pathlength control for the three active mounts. The design approach
is motivated by the desire to implement low order, high gain compensators that are
based only on plant transfer functions measured on a rigid test stand, and are insen-
sitive to the presence of unmodelled modal flexibility in the base structure to which
the isolators are mounted. The disturbance is modelled as a filtered white noise signal
added to the output of the plant, and LQG (Linear Quadratic Gaussian) methods are
used to design compensators based on the full order model. The compensator order is
reduced using balancing methods, permitting laboratory implementation of discrete
compensators at sample rates up to 6700 Hz. Active mount stability and performance
are demonstrated for a rigid test block mounting, and are again demonstrated when
the isolator is mounted to the SERC Interferometer Testbed. Simultaneous, inde-
pendent implementation of two actuators, using acceleration feedback, and of three
mounts, using laser feedback, demonstrate significant performance improvement on

the testbed, with only minimal interaction between the three mirrors.
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6.2 Discussion of Design Approach

The purpose of active control for vibration isolation is to modify the open loop trans-
missibility Toy, of the mount. Figure 6.1 illustrates one model which describes how
the open loop disturbance and control affect the output acceleration 3, correspond-
ing to the motion of sensitive equipment on a vibrating base. Base (free) acceleration
3}{; is attenuated by the passive mount transmissibility oy, and appears at the plant
output as open loop disturbance d = §9%. When the feedback loop is closed around
the loop transfer function Gor, = G, K, the closed loop output acceleration becomes
i$° = (=) (Tor) i
1 + Gor
= (SorTo)iih

= (Tor) ¥} (6.1)

where Scy, is the closed loop sensitivity function. Thus, the closed loop mount trans-
missibility Ty, is the product of the open loop transmissibility and the closed loop
sensitivity function. The preceding model can be recast, as illustrated in Figure 6.2, in
terms of the mount passive sensitivity function P introduced in Chapter 2, in which
the exogenous input is assumed to be the unisolated acceleration ﬁg“) measured at
the plant output. The mount sensitivity P attenuates this input producing :isolated
acceleration ﬁg) (assumed to be the same signal as d in Figure 6.1) which is then
regulated by active control:
i€" = (g ) ()"
1+ Gor/"
= (ScuP) s

= (Por) 4 (6.2)

where Pcy, is termed the closed loop mount sensitivity, which reflects both active and
passive compensation.

The philosophy followed in the design and laboratory implementation of compen-
sators is based on the desire to avoid direct modelling and compensation of poorly

known, lightly coupled modes of the testbed structure. Accordingly, compensators
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Figure 6.1: Block diagram for output feedback for active isolation. The base
disturbance 3’]{3, filtered by the passive mount transmissibility Tor,

produces the open loop acceleration d = ﬁgi) at the output.

were designed and implemented first for the active mounts on a rigid test block,
a step which built confidence in the models of open and closed loop performance.
The mounts, in most cases with the same compensators, were re-implemented on the
testbed structure. Table 6.1 lists the tests conducted for each mount. Mirror B was
tested most extensively, in order to demonstrate performance at the maximum sample
rate (6700 Hz) as well as at sample rates allowing simultaneous implementation with
mirror C on the testbed. Mirror A was controlled only for laser feedback experiments

on the truss.

Because the accelerometer sensors were determined late in the design process to
have excessive sensor noise, accelerometer designs and experiments were conducted
assuming that these sensors are noiseless. Open and closed loop autospectra were cal-
culated from transfer function data, which averages out the sensor noise (but results
in poor transfer function coherence in frequency ranges where sensor noise is high).
The “noise free” experiments illustrate the effects of structural flexibility central to
this thesis, and are representative of performance for low noise sensors (measured
autospectra from two lower noise models are presented in Appendix C). Laser path-
length feedback was used in a final set of experiments to significantly improve the

performance metric.
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Figure 6.2: Block diagram for active isolation, where the output disturbance d =
ﬁg') is the same in the previous figure, but is instead represented as
the output of the mount passive sensitivity P driven by the unisolated

acceleration ).

Table 6.1: Test matrix for closed loop tests. *Same compensators implemented
as on rigid block. 2Redesign avoids compensation of 550 Hz modes.

Closed Loop Test Actuator
Mounting Sample Rate B C A
Rigid Block (accel) 6700 Hz . 0 o
3100 Hz ® o o
Testbed (accel) 6700 Hz! . o o
3100 Hz! ) o 0
6700 Hz (Redesign)? o ° c
3100 Hz (Redesign)? . o 0
Testbed (laser) 4000 Hz ) ) .
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Figure 6.3: Analog constant gain circuits were used for each mount to transform
the input command into three voltages to the actuators, and to
determine line of sight acceleration from the three sensor outputs.

The Linear Quadratic Gaussian (LQG) method was used to design compensators
for this thesis. The method was selected because the LQG design minimizes a
quadratic cost function of the defined performance variables, a minimization which
correctly captures the Interferometer Testbed performance metric: rejection of dis-
turbance energy for all frequencies between 10 and 500 Hz. The LQG method facili-
tates the design of stab :, model based compensators in state space form, and easily
accommodates frequency-weighted loopshaping in the compensator design process.
However, since the disturbance filter and sensor noise are used as design tools, it
must be stated that the LQG method is used here as a design tool, rather than as
a formal minimization of a cost function. The minimization occurs iteratively, as
different compensators are evaluated on the design plant and disturbance model, as

described below.

Discrete implementation of the compensators was chosen for flexibility. However,
it was necessary to implement some elements of the compensators in analog, in order
to off-load the burden of the realtime computer for high gain, high dynamic range,
and high frequency compensator dynamics. Additionally, two analog constant 7ain
circuits were built to decouple the actuator input command (to the three piezoelectric
actuators) and outpul motion (from the three accelerometers) along the laser line of
sight, reducing the number of I/O channels required for the realtime computer. Thus,

each actuator is a single-input, single-output plant, as illustrated in Figure 6.3.

The next two sections present the modelling, design choices, and control design

for a typical high gain compensator for mirror B. Experimental results for individual
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mount control on the test block are compared to the model and to a testbed mounting
of the actuator. Simultaneous, independent actuator control using accelerometer or

laser feedback is shown in Sections 6.5 and 6.6.

6.3 Loop Transfer Function Modelling

6.3.1 State Space Model of Isolator Plant

Identification software developed by Balmes (7|, [8] was used to create state space
models of the softmount transfer functions presented in Chapter 5. The software
uses frequency domain data, and iteratively updates both frequencies and complex
mode shapes. It was necessary to convert plant transfer functions from acceleration
to displacement for the identification step, in order to reduce the dynamic range of
the plant. The softmount transfer function for mirrors B and C, along their respes-
tive lines of sight, are plotted in Figures 6.4 and 6.5 versus the identified state space
models. State orders are 24 and 20, respectively. The plants represent the isolator
hardware, the voltage amplifiers (gain of 20), and input and output analog transfor-
mation matrices. The only dynamics added by the amplifier is a real pole at 3 kHz,
contributing to some phase loss at high frequency. The low frequency mount modes
have identified da-aping between 5 and 10 percent, while high frequency modes are
lightly damped, between 0.7 and 2.3 percent.

The output of the identification procedure is a state space model of the form

3'31 = Alcc -+ Blu
N = 0121 (63)

where v, is output displacement and u is voltage input to the transformation circuit.
Two modifications were made to this model. A constant term was added to the plant
at high frequency to approximately overbound modes above 5 kHz. The term was
implemented as a second order high pass filter (with 8 kHz corner) in parallel with
the original plant. Secondly, the output of this augmented plant was placed in series

with a second order differentiator (with rolloff at 100 kHz) such that for frequencies
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below 5 kHz, the plant output is that of acceleration. This step adds a feedthrough

term to the modified isolator model:

:i:z = Azmz + Bz‘u.
ya = Cazy + Dau (64)

where y, is acceleration of the cat’s eye optics point M (in Figure 5.2) along the line
of sight. The modifications add four states to the model. After each augmentation,
the new state model was tri-diagonalized in order to preserve numerical conditioning,

given the large frequency separation of the modes in the model.

6.3.2 Models of Loop Components

Components of the loop transfer function for the active mount are illustrated in
Figure 6.6. The loop is loosely grouped into Plant, Realtime Computer and Analog
Circust, corresponding to the physical arrangement in the laboratory. To be precise
for the discussion of the control design, several transfer functions are defined based
on the elements in Figure 6.6. The actuator plant Gy, for which the identification
was performed and defined by the state model in Eq. 6.4, includes the input/output

transformation circuits, amplifier and the isolator mount:
G = T,HoH,T; (65)

The hardware plant Gy, includes G, as well as the time delay and zero order hold
of the realtime computer, and represents the “given” plant for which compensation
must be designed:

Gh = HsHiGpy (6.6)

The analog circuit plant includes all filters and gains added for anti-aliasing, smooth-
ing, and notching:

Ga = klkaHsHeH;;HzHl (6.7)

The complete loop gain is the product of the hardware plant, analog circuit plant and

compensator K

Gu = GhG.K (6.8)
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Based on these definitions, two models are now defined for use in design and
performance evaluation of the compensators. The design model Gp is simply the full
order system based on state space models of each element in the loop gain (except

the compensator K)

GD = GhGa = H5H4G,"Ga (6.9)

The evaluation model Gg uses the measured actuator plant transfer function in place
of G, and substitutes the exact expressions for the zero order hold and time delay
(described below)

Gg = (HsHa)ezact(Gm )merdGa (6.10)

Time Delay and ZOH: The time delay through the realtime computer was mea-
sured to be 1.6Ts, where Ts = 1/Fs is the sample period of the realtime computer.
Of this, Ts/2 is due to the zero order hold on the plant output, and 7 = (1.1)Ts
is due to a pure time delay within the realtime computer. These two elements are

modelled in the evaluation model Gg by their exact functions [23]

Hy =¢e" (delay) (6.11)

Hs = Tis [l: j"'Ts] (ZOH) (6.12)

and in the design model Gp as first order systems using the Pade approximation

_1—as7/2
H, = T+ ar/2 (delay) (6.13)
1
Hy = m (ZOH) (6.14)

For mirror C, a second order Pade approximation for the time delay was used to

improve phase of the model near the 1.2 kHz and 2.1 kHz modes.

Analog Filter Elements: The analog circuit elements consist of three low pass
filters, one high pass filter, two gains and one second order notch filter. The analog
circuit elements were modelled using simple first and second order state models for
each component; Figure 6.7 is a plot of the analog circuit model G,. The first order

high pass filler H; has a corner frequency of 5 Hz, and attenuates DC and low
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frequency drift of the accelerometers, which respond to subtle temperature variations
induced by air currents. Line filter Hj is an anti-alias filter with corner frequency of
165 Hz, placed at the input to the realtime computer A/D. Line filters Hg and Hy
are smoothing filters at 31 and 34 Hz, respectively, placed at the input to the x20
amplifier and at the input to the piezoelectric actuators. These filters attenuate high
frequency noise on the line introduced by the D/A of the realtime computer or by
other electrical noise sources in the room. These filters were essential to improving
the signal to noise ratio at the plant output. The choices of corner frequencies and
gains of these elements was based on an iterative design of the LQG compensator,
described in Section 6.4. The actual locations of the filters and gains in the loop were

chosen to best improve the signal to noise ratio at the sensor output.

Design and Evaluation Models: The full order design model Gp is plotted in
Figure 6.8 in comparison to the evaluation model G, showing excellent agreement.
The mismatch below 10 Hz is due to extremely poor coherence in the transfer function
because of low accelerometer signal and high sensor noise, but is also due to the
damped modes of the test block that occur between 4.4 and 8.3 Hz. Zoomed transfer
functions in this frequency range show reasonably close agreement between the two
models. Table 6.2 summarizes the two models and their uses for control design and

evaluation.

6.3.3 Disturbance Modelling

The disturbance model is based on open loop autospectra of the acceleration at the
individual mirror locations. An 8 order filter driven by white noise, as illustrated
in Figure 6.9 for displacement and Figure 6.10 for acceleration, approximates the

measured autospectrum. The model is expressed in state space as

zf = Agzy+ Lg§
yr = Crag (6.15)
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Figure 6.7: Analog circuit elements G, remove burden of large dynamic range,
high gain and high frequency notch from realtime computer. Trans-
fer function G, implemented using RC and op-amp circuits.
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Figure 6.8: Comparison of full order design model Gp and the evaluation model
Gg, which is based on the experimenta' measurement of the isolator
plant mode! and exact functions of ZOH and time delay.
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Table 6.2: Definitions and uses of the design and evaluation modeis.

Model Description Use

to design compensator K and to
evaluate reduced order compen-
sator performance.

Design 46 state model of all elements

Model Gp | in Figure 6.2

exact function of ZOH and time
) delay, and measured actuator to evaluate compensator K on the
Evaluation . . .
plant model G,. Anelog cir- | experimental plant before imple-
Model Gg ) . .
cuit model G, same as design | mentation; to asses model error.
model.

where it is assumed that E [£(¢)¢(7)] = 6(t — 7), and that the output matrix Cy can
be chosen for output of displacement y; = d or acceleration y; = d. Neither the
acceleration nor the displacement model exhibits a feedthrough term. The distur-
bance transfer function Gy is shown in the block diagram of Figure 6.6, where the
disturbance d is modelled as a process noise that enters at the plant output. The
model autospectra from Eq. 6.15, plotted in Figures 6.9 and 6.10, are scaled to match
the disturbance energy in the data in the frequency range of 10 to 500 Hz.

Weighted Disturbance Filter: Overplotted in Figure 6.10 is a weighted filter
model used for loopshaping of the model based compensator in the LQG design.
The weighted model is used below as a design parameter for increasing the com-
pensator gain in chosen frequency ranges. Because the testbed performance metric
requires displacement minimization, the weighted function (chosen iteratively in the
LQG design) emphasizes acceleration at lower frequencies. The 8% order weighted

disturbance filter dynamics are

Ty = Awlw + wa
Yw = Ul (6.16)
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Figure 6.9: 8% order model of disturbance at mirror B line of sight compared
to accelerometer data, converted to displacement. Sensor noise is
strong below 20 Hz.

6.4 Compensator Design

Compensators were designed based on the full 46°* order design model model Gp.
Originally, only the hardware plant model G was included in the design plant model.
The resulting compensators were characterized by high gain (60 dB), large dynamic
range (necessary to force the acceleration transfer function, which increases with a
slope of s?, to roll off at s7'), and notching of strongly coupled plant modes at 2.1
kHz. These compensators could not be implemented in the realtime computer, given
limits on sample rate and dynamic range. Accordingly, the gain, high frequency notch
and low pass filters (a total of three first order models) typical of the compensators
were built in analog using op-amp circuits and simple RC networks. The LQG design
method was used to select the “natural” dynamics of these analog filters, which could
be placed anywhere in the circuit, for purposes of anti-aliasing, output smoothing of
the D/A control output signal, and signal amplification.

The 6% order analog circuit plant G, was included in an augmented design plant
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Figure 6.10: Model vs data of the acceleration spectrum at mirror B, plotted

with the weighted disturbance spectrum used for loopshaping in
the LQG design.
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Figure 6.11: Compensator is comprised of analog and discrete elements. LQG
methods are used to design discrete K based on new plant G,G}.
Analog plant G, is sixth order.
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model Gp, and a set of compensators K were redesigned based on the new plant,
as illustrated in Figure 6.11. These new compensators were characterized by low
gain and low dynamic range, and could be easily reduced (in terms of model order
and high frequency dynamics) because the 2.1 kHz notch was implemented in analog.
Through a process of iteration, the analog circuit was finalized (and remained constent
throughout the set of acceleration feedback experiments). The compensators K wers
designed for loop stability and loop shapirg to increase gain in frequency bands of
high disturbance energy. The compensator design and evaluation models presented
below are shown for the continuous time compensator; for laboratory implementation
these compensators are discretized using the Tustin transformation with prewarping,
which induces small differences in gain and phase, which only affect the closed loop

performance slightly.

6.4.1 LQG Design

The control penalty used in the LQG problem statement requires a penalty on out-
put variables and input control. In this thesis, the output acceleration is frequency
weighted in the estimator design step through the use of the weighted disturbance
filter model (A, By, Cy). Similarly, a frequency weighted function of the control u
is provided by the filter

Tw = AuZy + Buu
Uy = CuZy + Dyu (6.17)

The weighted input u,, is penalized in the regulator cost function. Figure 6.12 il-
lustrates the control weight used for mirror B control designs, in order to force a
decrease in the compensator gain at low frequencies, which was necessary to prevent
amplifications of DC bias voltages in the circuit.

An augmented plant model is assembled which includes states x, of to the design
plant model, the weighted disturbance states z,,, and states z, representing weighted

control. The augmented state vector is & = [z, z, z,]T with state dynamics
z = Az + Bu+ L¢
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§ =C&+ Du+ N§ (6.18)

where ¢ is assumed to be a white noise process with covariance = = 1, 6 is sensor
noise with covariance ©, and the plant output 7 is a two-element vector of plant

acceleration and weighted control

u (6.19)

[ Cu
The design plant feedthrough term is zero, a convenient modelling assumption but

one which is not required. The regulator cost function is expressed as

J= / [yTy + puﬁu.,,] dt (6.20)
0
where
T =&7C]C. (6.21)
and
ulu, = #7CTC,& + 3T CT Dyu + ur DT D,u (6.22)

Using these expressions the regulator cost function becomes
J = /0 " [67Q8 + 57 Su + uT Ru| dt (6.23)
where the state, control and cross-penalty matrices are defined by
Q = CIC.+pCLC,
R = pDID,
S = pCTD, (6.24)
Standard functions in the Matlab Robust Control Toolbox (Mathworks, Inc., 1988)

are used to determine the Kalman filter gain H, compensator dynamics A., and

output gain G for the model based compensator, expressed in state space form as

= A2 — He

8
|

uw=-G& (6.25)



where the error e = r — j is the difference between the output and the regulator

command r = 0, and the compensator dynamics are
A.=A-HC,- BG (6.26)
The model based compensatoer transfer function is

K(s)= % =G(sI - A.)'H (6.27)

Acceleration, instead of plant displacement, was chosen for the cost penalty be-
cause initial compensators K designed using a displacement penalty were themselves
unstable. While implementable, it was decided to pursue a design procedure that did
not lead to unstable compensators. Unstable compensator designs did not occur when

acceleration (the actual plant output) was penalized in the regulator cost function.

Design Parameters: The design parameters used in the compensator design pro-
cess fall into two broad categories: adjustment of sensor noise covariance © and
frequency shaping of the disturbance spectrum in the estimator design; and secondly,
adjustment of control penalty p and frequency weighting of control in the regulator
design. The design procedure was to iterate on values of p and © until reasonable
compensators were designed, then the ratio ©/p was fixed. The designs then pro-
gressed by iteratively adjusting the control penalty p and by adjusting the weighting
of the disturbance spectrum. In the final step, control penalty was added to limit
compensator gain at low frequency.

The design and predicted performance of one high gain compensator for mirror
B is documented below. Later, the measured performance of this control design is

documented for the rigid test block and for the testbed.

6.4.2 Compensator Reduction and Evaluation

Compensator: The full and reduced order compensators (design CB7F') for mirror
B at 6700 Hz are compared in Figure 6.13. The reduction was performed in two

steps: first, a balanced realization of the compensator identified the matrix Hankel
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Figure 6.12: Control weight used to limit low frequency gain of the compensator.

singular values, and states with small singular values were reduced out of the model.
Secondly, states with pole frequencies above 1 kHz were reduced from the model. A
compensator order of 14 states was required in order to preserve the zero locations
of the 550 Hz compensator notches. The reduction procedure leads to a small loss
in gain and phase accuracy near crossover (330 Hz), as well as to a nonminimum
phase compensator zero. The latter was not a performance or stability constraint,
and did not occur for the majority of compensator designs. The total compensator
K@,, which includes the 6** order analog filters, is plotted in Figure 6.14. Note the
notch at 2.1 kHz provided by the analog filter compensator G,.

Loop Gain: The loop gain in Figure 6.15 is obtained by applying the full and
reduced order compensators to the design model Gp. Compensator notches gain
stabilize the modes at 550 Hz, just above the 330 Hz crossover frequency, while plant
modes at 1 kHz and 2.1 kHz are phase stabilized by the full order model. For the
reduced order model, the 2.1 kHz mode is gain stabilized, and small losses in gain
and phase margin are evident. The analog notch was placed just below the 2.1 kHz
mode, using the phase lead of the notch to retain phase siabilization of this mode,
should the gain of this lightly damped mode ever approach 0 dB. The fidelity of the
design model is illustrated in Figure 6.16, which compares the loop gain using the

reduced order compensator for both the design model Gp and the evaluation model

GE.

237



40—+ S N —

CompensatorK ~ —— full order
- - - reduced order

n
[=]

magnitude (dB)

o

-20

200

(=]

-200

phase (degrees)

-400

frequency (Hz)

Figure 6.13: Full and reduced order compensators K for CB7F. Reduction from
46 states to 14 states induces small gain and phase errors near
crossover, and results in nonminimum phase compensator zero at

550 Hz.
Model of Closed Loop Sensitivity: Figure 6.17 compares the predicted closed
loop sensitivity using the design model Gp with the full and reduced order coinpen-
sators. The reduction in gain and phase margin near crossover leads to an increase in
closed loop sensitivity S(s) in this frequency range. Note that for both compensators,
the effects of the 1.2 kHz and 2.1 kHz modes are stabilizing, since these modes are
phase stabilized. Figure 6.18 illustrates a model of the open and closed loop autospec-
tra of acccleration (converted to displacement) at the mount, predicting a 13.4 dB
improvement. The disturbance model is based on the state model (Ay, By, Cy) from

Eq. 6.15.

6.4.3 Compensator Implementation

The continuous time compensator K shown above was converted to discrete time
using the Tustin transform, with prewarping set at 550 Hz in order to correctly

match the zeros and poles of the lightly damped compensator dynamics in this range.
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Loop transfer function for mirror B (CB7F, 6700 Hz). Full and
reduced order compensator applied to design model.
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Figure 6.16: Loop transfer function for mirror B (CB7F, 6700 Hz). Reduced
order compensator applied to Gp and Gg. 550 Hz modes are
gain stabilized; 1.2 kHz modes are phase stabilized. Both gain and
phase stabilization for 2.1 kHz mode.
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Figure 6.17: Closed loop sensitivity, full and reduced order compensators evalu-
ated with design model Gp.
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Figure 6.18: Disturbance model, open loop and closed loop (reduced compen-
sator CB7F and design model). OL and CL disturbance models
agree to measured data to within 1 dB in RMS 10-500 Hz. Com-
pensator provides 13.4 dB reduction over 10 - 500 Hz.

Compensator transfer functions, measured through the input and output channels
of the realtime coraputer, were checked against the model. The overall loop gain
(including the compensator) was measured in the lab and compared to the design

and evaluation models, as a final check before the feedback loop was closed.

6.5 Results of Acceleration Feedback

6.5.1 Rigid Block Mounting

LQG methods were used to design compensators for mirror B for the test block, at
sample rates of 6700 Hz and 3100 Hz. The faster sample rate was found to be the
maximum at which the realtime computer would operate for a compensator of 14

states (the anticipated compensator order number), while the lower sample rate was
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required to handle two compensators of this order, with the additional input/output
operations of the D/A converter.

Figures 6.19 and 6.20 compare the measured closed loop sensitivity functions with
the prediction based on applying the reduced order compensator K to the design
model Gp, for both 6700 Hz and 3100 Hz sample rates. The close agreement verifies
the fidelity of the analytical design model Gp. The increase in the measured sensitiv-
ity below 10 Hz is due to interaction with the damped modes of the test block. The
experimental sensitivity functions were obtained by injecting an artificial white noise
disturbance at the sensor output, and by measuring the transfer function between
this signal and the closed loop output.

The performance of the analytical model was calculated by applying the predicted

closed loop sensitivity S(s) to the measured disturbance autospectrum at mirror B:
89%(s) = |(s)89%(s) (6.28)

The open and closed loop autospectra were converted to displacement and the RMS
performance improvement was tabulated over the frequency range of 10 to 500 Hz.
A family of compensators, for different levels of control authority, is plotted in Fig-
ure 6.21. At lower values of p no reduced order compensators resulted in stable plants
when applied to the design model Gp. The instability always occurred at 500 Hz (the
closed loop sensitivity function became very large) due to a loss in gain and phase

margin incurred during the compensator reduction step.

6.5.2 Flexible Testbed Mounting

The families of compensators, for 6700 and 3100 Hz sample rates, were re-implemented
on the isolator when it was mounted to the flexible testbed at point B in Figure 4.1.
The 6700 Hz compensators were stable for the truss mounting, but a reduction in
gain and phase margin at 600 Hz led to a less stable design and to an increase in the
closed loop sensitivity magnitude in this frequency range. Figure 6.22 compares S(s)
when mounted to the testbed, versus the design model prediction. The testbed data

was measured by injecting an artificial white noise disturbance at the plant output.
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Figure 6.19:

Closed loop sensitivity measured on rigid block for CB7F. Data
closely agree with prediction based on design model Gp. Increase
in S(s) below 10 Hz due to damped resonance in test block.
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Figure 6.20: Compensator CB8E designed for mirror B on the rigid block at a
sample 1ate of 3100 Hz. Compensator remains 14** order.
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Figure 6.21: Performance summary for mirror B results on test block, versus
prediction based on design model. Reduction in dB (RMS, 10 to
500 Hz) obtained by applying S(s) (measured and modelled) to
measured disturbance autospectrum on testbed at mirror B.

The same sensitivity function was measured when the standard disturbance source
for the testbed was used.

The increase in sensitivity near 600 Hz is due to the frequency and damping shift
of the lightly damped 550 Hz modes, as shown in the open loop transfer function
in Figure 5.22 in Chapter 5. Figure 6.23 compares the new evaluation plant model
GEg (based on testbed actuator measurement G,,) with the design model Gp, clearly
showing the change in modal damping and frequency of the 550 Hz modes. These
modes correspond to transverse blade flexure modes that couple with the base flex-
ibility. Although the plant modes have changed, the lightly damped compensator
modes remain at 550 Hz. Observe that below 10 Hz, the model and data agree more
closely than they did for the rigid block tests, since the damped 8 Hz modes of the
test block are absent, and the testbed exhibits no flexibility below 24 Hz (except for
suspension modes near 2 Hz).

Figure 6.24 compares the performance of compensators for mirror B on the testbed,
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Figure 6.22: Closed loop sensitivity for testbed vs design model (with compen-
sator CB7F). Flexible modes affect gain near 30 - 60 Hz; shift in
550 Hz modes leads to increase in sensitivity.

rigid block and for the design model Gp. The agreement is quite good despite the
shift in 550 Hz modes. The testbed results are slightly inferior to the rigid block tests,

due primarily to a reduction in plant gain beiween 20 and 40 Hz that is a result of

base flexibility.

Performance of 3100 Hz Compensators: The family of 3100 Hz compensators
was also implemented for the testbed mounting, but with less success. Figure 6.25
plots the dB performance improvement of these compensators for the design model,
rigid block and testbed mountings. High gain compensators were unstable on the
truss, because the compensator modes themselves at 550 Hz drove the closed loop
plant unstable. Less phase margin was available in these designs due to the lower

sampling rate and due to constraints imposed by the necessity to reduce the model

order of the compensator.
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Figure 6.23: Design model G vs evaluation model Gg (using actuator transfer
function Gy, measured on testbed). Modes at 550 Hz are shifted
and damped, due to coupling with base flexibility. Mode at 1.2
kHz has also shifted, probably due to handling.

Updated Design Model Gp: The design model Gp was updated as shown in
Figure 6.26, by modifying the frequency and damping of the 550 Hz modes. Com-
pensators for 6700 and 3100 Hz were redesigned using the new plant model, and
compensation of the shifted modes was avoided by reducing all modes above 500 Hz
from the reduced order compensators. A successful 3100 Hz closed loop sensitivity is
illustrated in Figure 6.27, and the performance of a new family of 3100 Hz compen-
sators is plotted in Figure 6.28. Much higher gains and dB reduction are obtained,
since compensation of the lightly damped modes was no longer required. Also, com-
pensator order was reduced significantly, to between 8 and 12 states. The reduction
step was much easier since effort was no longer required to maintain the correct fre-
quency of the zeros of the compensator at crossover, because notching of these modes

was not retained in the new reduced order compensator design.
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Figure 6.24: Family of compensators implemented for mirror B on testbed at

dB reduction

6700 Hz. Testbed data show only small performance loss compared
to rigid block, mostly due to gain loss in 25-40 Hz range.
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Figure 6.25: Family of compensators implemented for mirror B on testbed at

3100 Hz. Testbed implementation unstable for low p due to shift
in plant modes. Compensator modes at 550 Hz caused instability.
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Figure 6.26: Updated design model Gp vs evaluation model based on testbed
actuator transfer function G,,. Model update based on measured
data.
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Figure 6.27: 5(s) on testbed vs model for mirror B at 3100 Hz, designed without
compensation of plant modes at 550 Hz (now at 800 and 900 Hz).
This compensator would not be stable on the test block.
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Figure 6.28: Family of compensators at 3100 Hz based on the updated design
model. Dynamic compensation of the shifted 550 Hz modes is
not included, resulting in compensators that are stable (and lower
order) at much lower values of p.

6.5.3 Multiple Isolator Experiments

The 3100 Hz compensator designs for mirrors B and C, redesigned based on the
updated design model, were implemented individually and then simultaneously on
the testbed. Note that these compensators did not contain dynamic compensation
of the uncertain modes near crossover. Figure 6.29 compares the individual and

simultaneous controller implementations, indicating nearly independent control loops.

The MIMO plant is defined using the notation of Eqgs. 6.5 to 6.8
Gor = (HsHs)GmGa K (6.29)

where G, is the 2 x 2 transfer function matrix from Figure 5.2T

H H
G = B Hpc (6.30)
Hcp Hee
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and K is a diagonal compensator matrix

Kg 0
0 K¢

K = (6.31)

Elements Hj, Hy, and G, correspond to ZOH, time delay and analog elements that
are identical for each loop.

The MIMO Nyquist theorem states that the closed loop system will be stable if
and only if the clockwise origin encirclements of det[I +GoL], as s travels once around

the Nyquist contour D, equal the number of open loop poles in Goy,
N, = —p, negative = counter-clockwise (6.32)

In this application, p, = 0 so N = 0 implies closed loop stability.

For diagonal dominance of the matrix [I + Gor] [81] (matrix diagonal dominance
is defined in Section 5.2.2), the origin encirclements of det[] + GoL], as s travels
once around the Nyquist contour D, equal the sum of the origin encirclements of
the diagonal elements of the return matrix [I + Gor]. Therefore, if the individual
diagonal transfer functions are Nyquist stable, then diagonal dominance of [I + GoL)
guarantees MIMO loop stability. The MIMO Nyquist stability theorem is applied
below to the experimental data for the 2 x 2 plant for mirrors B and C mounted to
the truss.

Figure 6.30 compares the individual SISO transfer functions for mirrors B and C
for the highest gain compensators implemented stably, measured on the testbed. Each
SISO plant is Nyquist stable in the model and experiment. The diagonal dominance
of the return matrix [I 4+ Gog] for the 2 x 2 plant is plotted in Figure 6.31, which
indicates that the transfer function matrix is diagonally dominant at all frequencies,
thus guaranteeing MIMO stability of the system. However, the diagonal dominance

is weak near the 30 Hz modes.

Nyquist Plots: The implication of the diagonal dominance is illustrated in Fig-
ures 6.32, 6.33, and 6.34, which are plots of det[] + Goy] for successively zoomed

axes with respect to the origin. In Figure 6.32, the Nyquist plot follows a clockwise
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Figure 6.29: Comparison of independent and simultaneous performance of mir-
rors B and C mounted to truss. Coupling appears to be small.

rotation, with the large loop corresponding to frequencies immediately near the 40
Hz modes. A magnification ol the origin in Figure 6.34 shows that no encirclements
of the origin occur, but that stability bounds are very low (the next highest gain
compensator was unstable). The three figures are overplotted with a dashed curve
corresponding to det[] + Goyr] in which the off-diagonal terms in Go, have been set
to zero. The difference between the solid and dashed curves indicates the effect of
the base coupling, which is small and does not perturb the curve in the direction of
the origin, as shown in Figure 6.33. Even though diagonal dominance is weak in the

20 - 40 Hz region, the perturbations are not destabilizing.

6.6 Pathlength Control Experiments

6.6.1 Changes to Model and Compensator

Compensators were designed for absolute pathlength feedback for the three actuators

based on the design models Gp developed for acceleration feedback. However, some
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Figure 6.30: Comparison of loop gains (measured on the testbed) for mirrors B
and C for moderate level of control authority, illustrating gain and
phase margins.
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Figure 6.31: Diagonal dominance of the 2 x 2 return matrix [I + Goy] for the
two isolators. Decoupling is high near 330 Hz crossover.
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Figure 6.32: Plot of det[] + GoL| based on the experimental transfer functions,
both with and without off diagonal terms in the plant Gp. Com-
pensator K is diagonal. Overlay is nearly identical.
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Figure 6.33: Blow- up of det [I 4+ GoL] in the region near origin, showing slight
differences for modes that correspond to resonances in the 20 - 60
Hz region. The perturbation is generally away from the origin.
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Figure 6.34: Further blow-up of det[I+GoL] in the region near origin. No origin
encirclements occur, implying MIMO Nyquist stability. However,
margins are extremely low.

modifications were necessary because the laser transfer functions have a slope of
roughly s, unlike the accelerometers. Accordingly, the analog circuit was reduced to
only a notch at 2.1 kHz and a. single real pole at 40 Hz. The laser output gain was
set inside the realtime computer. Sensor noise was measured to be on the order of 7

nm RMS, which is near the discretization limit of 10 nm.

It is shown in Section 5.4.2 that the testbed measurements of acceleration and laser
output closely agree once the s? term is accounted for. Thus, the design and evaluation
models based on the acceleration models were used for compensator design (with s?
removed). The updated design model, which includes the shifted 550 Hz modes,
was used to design reduced order compensators (of order 4 or 6) that provided high
performance on the truss. A documentation of a high gain compensator for mirror B

is provided in Appendix E.
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Figure 6.35: Performance improvement (due to laser feedback) for family of
compensators implemented both individually (dashed) and simul-
taneously (solid) for three actuators mounted to the truss. Perfor-
mance improvement is plotted for absolute pathlength.

6.6.2 Testbed Results Using Multipie Actuators

Performance for each mirror, at different values of control penalty p, is plotted in
Figure 6.35 for independent and simultaneous implementation of the three actuators.
The dB performance improvement is based on the measured RMS improvement in
the 10 - 500 Hz absolute pathlength metric. The data indicate that the pathlength
controllers are essentially decoupled on the truss. Note that the mirror A (SISO)
control was not implementable for the two highest gain compensators, due to satu-
ration problems in the control loop. However, when the loops for mirrors B and C
were closed, the saturation problem for mirror A did not occur, permitting the im-
plementation of high gain compensators for mirror A. The cause of this phenomenon
was not identified. No compensators at lower values of control penalty p) were stable
either for the design model or on the testbed. At high control gain, the performance
in each loop was slightly better for simultanecous loop closure compared to individual

control.
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Figure 6.36: Performance metric improvement (nm RMS, 10 - 500 Hz) due to
simultaneous pathlength control with three actuators. No D-struts
or J-struts in truss.

6.6.3 Performance Metric Improvement

Figure 6.36 illustrates the performance metric improvement due to simultaneous path-
length control with the three actuators on the testbed. Improvement is highest in the
absolute metric, since the absolute pathlengths were used as the regulated variables.
The axes of the plot are consistent with the “original hardmount” metric summary
presented in Chapter 4. No D-struts or J-struts were installed in the truss to pro-
vide damping for these measurements, In Appendix F, a layered design is presented
in which 5 D-struts are added to the truss and the same pathlength controllers are

re-implemented, providing approximately 20 percent greater reduction in the metric.

6.7 Combined Improvements to the Performance

Metric

Figures 6.37 and 6.38 document the combined improvements to the testbed perfor-
mance metric due to the experimental work in this thesis. Mechanical redesign of
the original hardmounts removed local dynamics from the laser pathlength measure-
ments; in particular, the cantilevered mode at 240 Hz of the original retro-reflector

at mirror A was removed. The addition of the softmount passive isolation at each
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Figure 6.37: Summary of improvements to the absolute pathlength performance
metric, 10 - 500 Hz. Replacernent of optics at mirror A led to large
improvement in that pathlength. Five D-struts were added to the
truss and the same 3 pathlength control loops were again closed.

mirror provided only minor improvement to the metric, since the fourth vertex cat’s
eye was not passively isolated, and because the softmount was designed primarily to
limit actuator reaction forces from entering the truss structure. The advantages of the
decoupling design are evident in the performance metric improvement obtained using
simultaneous, independent pathlength control with three actuators - using compen-
sators that were a total of 7** or 9** order (analog plus discrete), and which were
designed with only limited knowledge of the base structure dynamics. Further im-
provement was obtained by the addition of 5 D-struts to the testbed. Figure 6.39
presents the differential pathlength metric summary in a manner which highlights the
performance gain due to the D-struts. The combination of passive isolation, passive
damping and pathlength feedback reduced the performance metric to close to the

stated design goal of 50 nm RMS in each of the differential pathlengths.
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Figure 6.38: Summary of improvement to differential pathlength performance
metric, 10-500 Hz. Mechanical redesign stiffened so that they did
not occur within the disturbance bandwidth.
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Figure 6.39: Differential pathlength improvement, emphasizing contribution of
D-struts. Metric shown at step IV is open loop truss with 5 D-
struts, before three laser loops were closed.
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6.8 Summary

This chapter presents the control designs and closed loop results for active isolation
both on a rigid test block and then for a flexible testbed mounting. An important
result is that the closed loop actuator could be re-implemented on the testbed with
little or no change to the compensator design. The results show that base modes are
decoupled from the loop transfer function at high frequency, and thus do not pose a
stability risk near crossover. Base modes that remain coupled at low frequency are
not destabilizing due to the collocated nature of the isolator plant. In general, the
agreement between model, rigid block stability, and testbed stability is good, which
validates the control design approach taken. However, lightly damped modes in the
softmount interface of the active mount, occurring near crossover frequency, were
found to be a performance limit. Compensator dynamics, added to stabilize these
modes for the rigid block, were destabilizing at high control gains on the testbed
because base flexibility caused a shift in frequency and damping of these modes.
Compensators with these dynamics removed were stable on the testbed. Pathlength
control was implemented using absolute pathlength measurement as feedback, and
provided a significant improvement in the testbed performance metric. A combined
disturbance rejection design using 5 D-struts and 3 pathlength control loops reduced
the performance metric to near the stated design goal of 50 nm RMS in each differ-

ential pathlength.
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Chapter 7

Conclusions and

Recommendations

7.1 Summary

This thesis investigates the problem of active vibration isolation and pathlength con-
trol of mirrors mounted to uncertain, flexible structures. An active mount incorpo-
rating passive isolation, a reaction stage and local acceleration feedback was designed
so that it could be easily controlled on a flexible structure using a compensator that
ignores the presence of unmodelled flexibility in the base structure. The closed loop
stability was first validated on a rigid test block, and then ir:plemented when mounted
to a flexible structure. The experimental closed loop resi:!is of this thesis demonstrate
the power of mechanical design for control, rather than conu.ol of difficult mechanical
systems.

A general model for passive and active isolation was developed in order to study
the effect of mechanical flexibility on passive and active isolation. It was shown that
for passive isolation the mount passive sensitivity function P is the best function to
describe the mount performance for flexible structures, since it directly relates the
isolated variables of mount velocities and forces to their unisolated values, for both
the force (input) and velocity (output) isolation problems. The effect of structural

flexibility on the passive sensitivity function was characterized in terms of a dimen-
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sionless perturbation parameter which is a function of modal damping, modal mass
and isolated mass. Perturbations to the mount actuator/sensor transfer functions due
to mechanical flexibility were also characterized in terms of the dimensionless param-
eter 3, and the analysis revealed that the degree of coupling depends on the choice
of output sensor as well as on the frequency of mount resonance. For values of the
coupling parameter much less than one, it was shown that the perturbation effect on
transfer functions was negligible. For base flexible modes with strong interaction, the
perturbation to the transfer function was found to be stabilizing due to collocation,
although near loop crossover, stability risks exist. Configurations for parallel actua-
tion and series actuation were studied, and the results apply to both the force and
velocity isolation problems. Dereverberated and average linear magnitude models of
the base structure and equipment were shown to improve models for passive isolation

performance and to improve models of the loop transfer functions for control design.

Based on these insights, a design approach for an active isolation mount was
proposed, in which the compensator design is based on the plant model derived from
a rigid base. The closed loop mount performance is verified first on a rigid test
stand, and then installed on a flexible structure with the same compensator. The
performance metric of the SERC Interferometer Testbed was used to determine the
functional requirements for an active mount for isolation of three optical elements
from the vibrating structure, as well as for articulation of these optics for direct
pathlength control. Tests and analysis indicated that due to base modal flexibility, .
strong coupling between the three independent isolators was too great to permit
decentralized control design for each mirror. To limit interaction, each mount was
modified to include a softmounted reaction stage that decouples actuator reaction

forces from the structure at frequencies near loop crossover.

Compensators were designed and implemented for an isolator mounted to a rigid
base, and were implemented stably (with little or no change to the compensator) when
the isolator was attached to the flexible testbed, thus validating the proposed control
design approach. The closed loop results demonstrated that considerable attenuation

could be achieved in the local acceleration and pathlength errors in the truss, using

262



simple compensators developed for the rigid base model. The combined layers of
passive isolation, simultaneous (independent) pathlength control of three laser legs,
and viscous damping in the truss using five D-struts, were used to reduce the open
loop performance metric from 500 nm RMS in a 10 to 500 Hz bandwidth to less than

60 nm RMS in each laser pathlength measurement.

7.2 Conclusions and Contributions

1. This thesis has demonstrated the power of mechanical design for control, as op-
posed to control design for difficult mechanical systems. The mechanical design of an
active isolation/articulation stage for a mirror, incorporating mount damping, passive
isolation and mechanical reactuation, permitted the design of low order, high gain
compensators that were robust to the presence of unmodelled fleribility in the base
structure to which the isolator was mounted. The work complements and extends
recent research on active force isolation for flexible structures by Watters et al. [82],
Spanos et al. [T1], and Swanson et al. [76] by explicitly characterizing the interaction
between local mechanical design and base structure modal parameters. Furthermore,
it was demonstrated experimentally and analytically how the decoupling naturally
present in isolation control architectures, enhanced by mechanical design, allows a
design approach in which a compensator is designed based only on the rigid base
transfer functions, and then re-implemented stably when the isolator is mounted to
a flexible base. It is concluded that a mechanical mount design which includes pas-
sive isolation, mount damping and possibly reactuation, provides not only passive
performance improvement, but also conditions the local mount transfer functions to
robustly accept low order, high gain control by decoupling uncertain base or equip-

ment flexibility.

2. This research extends the work by Sykes [77] and Ruzicka [59] on the effect on
passive isolator performance due to modal flexibility, by quantifying the perturbations

in terms of a dimensionless parameter that is a function of modal damping, modal
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mass and isolated mass. A further advance of the current work is that modal flexibility
in the isolated equipment is shown to impact the isolator performance in a parametric
form identical to that for base flexibility, thereby permitting the effect of both types
of flexibility to be characterized by the same dimensionless parameter. The mount
passive sensitivity function, a modified transmissibility function which accounts for
base or equipment flexibility, is identified as a useful function for CST isolation design.
The passive sensitivity function predicts the changes in all mount and structural
variables due to the addition of passive isolation at either (force) input or (velocity)

output locations.

3. A new method was proposed and validated, by simulation and experiment, in
which averaged mobility models of the base structure are used to better estimate the
improvement due to the addition of passive isolation, when structural flexibility is
present in the base or equipment. A low order, frequency-averaged model of the
linear magnitude of the base input mobility is substituted into a modified passive
sensitivity function to predict the average vibration energy transmitted across the
mount. The method is both more accurate than the rigid base estimate of isolator
performance, and easier to use than the exact method based on full order models of
the base structure, which may not be accurate — or even available - at early stages
in a CST design. The proposed method is motivated by recent results obtained
using dereverberated (log magnitude) averages of structural mobility in the wave
and impedance matching literature [45], [43], and by concepts based on averaged
structural response in Statistical Energy Analysis [44]. This result can be used to
provide reasonable a priori estimates of structural response due to passive isolation,
based only on a model of the isolator and on a coarse estimate of base input mobility

at the isolator interface.

4. The effects of base and equipment flexibility on the local mount transfer func-
tions for active isolation have been quantified parametrically in terms of the dimen-

sionless parameter § that is a function of isolated mass, mount resonance, and base
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modal mass and damping. The analysis both extends, and captures within a common
framework, recent reseacch on flexible coupling (studied for particular applications by
Garcia et al [24], Watters et al. [82] and Spanos et al. [T1]), and clarifies the individual
decoupling effects of output sensor selection and local mount mechanical design. The
general analysis framework revealed the similarities between the base and equipment,
flexible coupling, permitting effects of both to be represented by a common set of
transfer functions and by the common dimensionless coupling parameter 8. It was
shown that for the dimensionless coupling parameter § much less than one, the rigid
base transfer functions for active isolation were recovered. Decoupling from base
flexibility was improved by increased damping in the isolator, damping in the base
structure, soft passive isolation, and by reactionless actuation design. The analysis
also demornstrated that strong modal coupling will always be present in an acceler-
ation output signal when the sensor is mounted to the side of the interface which
exhibts structural flexibility. Furthermore, transfer functions to interface force ex-
hibit decoupling of both base and equipment modal flexibility at frequencies above
mount resonance, where loop crossover is anticipated. This dimensionless parameter
B provides a new means to quantify the degree cf decoupling that can be expected
from mechanical design of the mount, sensor selection, or modifications to the modal

parameters of the base or equipment structures.

5. A parametric multiplicative error model that accounts for unmodelled flexibility
was developed for active isolator control design, based on the dimensionless coupling
parameter 3. For the SISO case, the model predicts the gain and phase perturbations
due to the base and equipment flexibility. This generalizes and extends the result of
Garcia et al. [24] to the general isolation problem for different feedback sensors and
for frequency ranges both above and below mount resonance. Another new, related
result of this thesis is the use of low order, dereverberated mobility models of the base
or equipment to improve the magnitude and phase of the rigid base transfer functions
used for control design. The dereverberated mobility is easy to obtain at an early stage

in the CST design process, and its use captures the true transfer function backbozc
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which is perturbed by the base or equipment flexibility. It is concluded that the
backbone transfer function models incorporating the dereverberated mobility, along
with the multiplicative error based on the dimensionless coupling parameter, permit
the design of active isolation compensators based on rigid base transfer functions,

which will then be stable when the isolator is mounted to flexible structures.

6. This thesis has demonstrated multiple, independent isolation and pathlength
control of mirrors mounted to a common flexible structure. Because of the mount
mechanical design for base modal decoupling, the structural interactions between
three isolators mounted on the testbed were low enough near crossover frequency
to permit decentralized control design for each isolator. Although the mounts were
only reactuated at high frequency, and high coupling remained at low frequencies
near the softmount resonances, implementation was possible due to the large phase
margin in each loop in this frequency range. The importance of this result is that
simultaneous, decentralized control designs are possible for both output and input
isolation (for which reactuation is not possible, but only soft isolation mounting) and
that at frequencies well below crossover, any remaining flexible interaction will not

necessarily be destabilizing.

7.3 Recommendations for Future Work

1. The active isolation and pathlength control experiments in this thesis lend them-
selves to MIMO implementation for cases in which more than one output direction
of the isolated equipment must be controlled. The MIMO application of the passive
isolator performance has recently been investigated by Swanson [76]. The coupling
analysis and multiplicative error model introduced in this thesis could be extended
using matrix algebra to MIMO problems, which will highlight the directionality of
the base input mobility and the directionality of the active stage. An open area of
research is whether a decoupled control design can be implemented stably for two

or more output directions for a single isolator mount, since the base input mobility
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will introduce off-diagonal coupling unless some reactuation is introduced. Signifi-
cant off-diagonal coupling may remain due to coupling within the mount itself. This
topic has application to the design of multi-axis force isolation mounts for vibrating
equipment, where typically three or more axes of vibration are important. Secondly,
the isolation of proposed flight experiments such as SITE [11] will require multi-axis

isolation of base disturbances from a massive sensitive payload.

2. A variation of the series isolator configuration used in this thesis could be used
to isolate vibrating equipment from quiet base structurer [12]. For this application
he piezoelectric actuator must exhibit sufficient stroke to cancel the free disturbance
velocity of the vibrating equipment. Feedback sensors of interface force or of accel-
eration of the reaction stage m, could be used for active control. However, in this
case the reaction mass m, does not need to be large, and may only be the mass of
an accelerometer mounted between the stiff piezoelectric actuator and the soft series
spring. Base modes would be weakly coupled into the loop transfer function above
the resonance provided by the soft series spring with the equipment mass. Equipment
modes would also be weakly coupled, governed by the ratio of accelerometer mass m,

to the individual modal masses of the equipment resonances.

3. Given the demonstrated decoupling of base modes from the loop transfer func-
tions used in this thesis for control design, emphasis in the future should shift to me-
chanical designs in which damping is added to the modes in the isolated equipment
and in the isolator hardware itself. The presence of these modes was a performance
constraint encountered during the experimental work of this thesis. Damping of these
modes will permit simpler compensators for the mount to be implemented, and will

reduce the demands for well identified models of the isolator plant transfer functions.

267



268



References

[1] Allen, T. S., Havenhill, D. D., and Kral, K. D., “FEAMIS: A Magnetically Sus-
pended Isolation System for Space-Based Materials Processing,” Annual AAS
Guidance and Control Conference, Keystone CO (1986).

[2] Anderson, E. H., Trubert, M., Fanson, J. L., and Davis, P., “Testing and Appli-
cation of a Viscous Passive Damper for Use in Precision: Truss Structures,” 32rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materi-
als Conference, Apr. 1991.

(3] Anderson, E. H., and How, J. P., “Implementation Issues in the Control of
a Flexible Mirror Testbed,” SPIE Conference on Active and Adaptive Optical
Systems, San Diego CA, July 1991.

[4] Anderson, E. H., Blackwood, G. H., and How, J. P., “Passive Damping in
the MIT SERC Controlled Structures Testbed,” International Symposium on
Active Materials and Adaptive Structures, Alexandria VA, November 1991.

(6] Anderson, E. H., “Robust Actuator and Damper Placement for Structural Con-
trol,” PhD Thesis, MIT, February 1994.

[6] Bahcall, J. N., editor. The Decade of Discovery in Astronomy and Astrophysics.
National Research Council, National Academy Press, 1991.

[7) Balmes, E., “Experimental/Analytical Predictive Models of Damped Structural
Dynamics,” PhD Thesis, Massachusetts Institute of Technology, May 1993.

[8] Balmes, E., “Experimental and Analytic Structural Dynamic Analysis Tool-
box,” MATLAB™ Toolboz, The MathWorks, Inc., 21 Eliot St., South Natick,
MA, 1993.

[9] Billing-Ross, J. A., and Wilson, J. F., “Pointing System Design for Low-
Disturbance Performance,” AIAA Paper 88-4106.

[10] Blackwood, G. H., Jacques, R., and Miller, D., “The MIT Multipoint Alignment
Testbed: Technology Development for Optical Interferometry,” SPIE Confer-
ence on Active and Adaptive Optical Systems, San Diego CA (1991).

269



[11]

(12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

(2]

[23]

Blackwood, G., Hyde, T., Miller, D., Crawley, E., Shao, M., and Laskin, R.,
“Stellar Interferometer Tracking Experiment (SITE): A Proposed Technology
Demonstration Experiment.” 44th Congress of the International Astronautical
Federation, Oct 1993, Graz, Austria.

Blackwood, G. H., and von Flotow, A. H., “Active Control for Vibration Iso-
lation Despite Resonant Structural Dynamics: A Trade Study of Sensors, Ac-
tuators and Configurations,” Recent Advances in Active Control of Sound and
Vibration, Virginia Polytechnic Institute, Blacksburg VA, April 1993.

Blevins, R. D., Formulas for Natural Frequency and Mode Shape, Robert E.
Krieger Publishing Co., Inc., Malabar FL, 1979, pp. 101-113.

Collins, S. A. and von Flotow, A. H., “Active Vibration Isolation for Space-

craft,” 42nd Congress of the International Astronautical Federation, Montreal,
CA (1991).

Collins, S. A., von Flotow, A. H., and Paduano, J. D., “An Analog Adaptive
Vibration Cancellation System for Stirling Cryocoolers,” 1998 Space Cryogenics
Workshop, San Jose, CA, July 20-21, 1993.

Crandall, S. H., “Impedance and Mobility Analysis of Lumped Parameter Sys-
tems,” Colloquium on Mechanical Impedance Methods for Mechanical Vibra-
tions, ASME Annual Meeting, Dec. 1958, pp. 19-42.

Crede, C. E., “Theory of Vibration lsolation,” chapter 30 of Shock and Vibration
Handbook, Harris, C. M., ed. New York: McGraw-Hill Book Co., 1961.

Das, A. et al.,, “ASTREX - A Unique Test Bed for CSI Research,” Proceedings
of the 21st Conference on Decision and Control, Dec. 1990, pp. 2018-2023.

Doyle, J. C., Stein, G. S., “Multivariable Feedback Design: Concepts for a
Classical/Modern Synthesis,” IEEE Transactions on Automatic Control, Vol.
AC-26, No. 1, Feb. 1981, pp. 4-16.

Eyerman, C. E., Shea, J. F., “A Systems Engineering Approach to Disturbance
Minimization for Spacecraft Using Controlled Structures Technology,” Techni-

cal Report 2-90, MIT SERC, June 1990.
Fanson, J. L., Chu, C-C., Smith, R. S., and Anderson, E. H., “Active Member

Control of a Precision Structure with an H,, Performance Objective,” ATAA
Dynamics Specialists Conference, Long Beach CA, Apr. 1990.

Fenn, R. C., Downer, J. R. Gondhalekar, V., and Johnson, B, G., “An Active
Magnetic Suspension for Space-Based Microgravity Vibration Isolation,” ASME
Winter Annual Meeting, Dallas TX, pp. 49-56 (1990).

Franklin, G. F., Powell, J. D., Digital Control of Dynamic Systems. Reading,

270



MA: Addison Wesley Publishing Company, 1980, pp. 82-84.

[24] Garcia, J. G., Sievers, L. A., and von Flotow, A. H., “High Bandwidth Posi-
tion Control of Small Payloads Mounted on a Flexible Structure,” Journal of
Gutdance, Control and Dynamics, Vol. 15, no. 4, Jul-Aug 1992, pp. 928-934.

[25] Germann, L., and Gupta, A. A., “The Six-DOF, Magnetic Suspended Fine
Steering Mirror,” Proceedings of the Annual Rocky Mountain Guidance and
Control Conference, Keystone CO, Feb. 1990, pp. 155-167.

[26] Grodsinsky, C. M., and Brown, G. V., “Low Frequency Vibration Isolation
Technology for Microgravity Space Experiments,” ASME Conference on Me-
chanical Vibration and Noise, Montreal, pp. 295-302 (1989).

[27) Guillemin, Introductory Circuit Theory. New York: John Wiley & Sons, Inc.,
1953.

[28] Gupta, A., and Germann, M., “Precision Pointing and Inertial Line-of-Sight
Stabilization Using Fine-Steering Mirror, and Strap-Down Inertial Sensors,”
AAS Paper 89-036.

[29] Hain, H. L. and Miller, R., “Isolation Mounts for the HEAO-B Xray Telescope,”
The Shock and Vibration Bulletin, Vol. 48, Part 2, 1978, pp. 97-113.

(30] Hamilton, B. J., Andrus, J. H., and Carter, D. R., “Pointing Mount with Active
Vibration Isolation for Large Payloads,” Advances in the Astronautical Sciences,

Vol. 63, 299-318 (1987).

[31] Harris, C. M., ed., Shock and Vibration Handbook, Harris, C. M., ed. New York:
McGraw-Hill Book Co., 1961.

[32] Heusmann, H., “Spacelab Instrument Pointing Subsystem (IPS) On-Orbit Op-
erations,” SPIE Shuttle Pointing of ElectroOptical Ezperiments, Vol. 265, Los
Angeles, CA (1981).

[33] Hixson, E. L., “Mechanical Impedance,” Chapter 10 of Shock and Vibration
Handbook, Harris, C. M., ed. New York: McGraw-Hill Book Co., 1961.

[34] Jones, D. I., Owens, A. R., and Owen, R. G., “A Microgravity Facility for
In-Orbit Experiments,” ASME Winter Annual Meeting, Dallas TX, 1990, pp.
67-73.

[35] Kaplow, C. F. and Velman, J. R., “Application of an Active Local Vibration
Isolation Concept to a Flexible Space Telescope,” Journal of Guidance and
Control, Vol. 3, no. 3, 1980, pp. 227-233.

[36] Karnopp, D. C., ”Active and Passive Isolation of Random Vibration,” Isola-
tion of Mechanical Vibration, Impact and Noise, ASME Design Engineering

271



Technical Conference, Cincinnati, Sept. 1973, pp. 64-86.

[37] Kekler, C. R., “ASPS Performance with Large Payloads Onboard the Shuttle
Orbiter,” Journal of Guidance, Control and Dynamics, Vol. 5, no. 1, 32-36
(1980).

[38] Laskin, R. A., Kopf, E. H., Sirlin, S. W., Spanos, J. T., and Wiktor, P. J.,
“Reactionless Gimbal Actuation for Precision Pointing of Large Payloads,”
AAS/AIAA Astrodynamics Specialist Conference, Kalispell MT, Aug. 1987,

[39] Laskin, R. A., and Sirlin, S. W., “Future Payload Isolation and Pointing System
Technology,” Journal of Guidance and Control, Vol. 9, no. 4, 1986, pp. 469-477.

[40] Laskin, R. A., and San Martin, M., “Control/Structure System Design of
a Spaceborne Optical Interferometer,” AAS/AIAA Astrodynamics Specialist
Conference, Stowe VT, Aug. 1989.

[41] Lazarus, K. B., and Crawley, E. F., “Multivariable High-Authority Control
of Plate-Like Active Structures,” 39rd ATAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics and Materials Conference, Apr. 1992.

[42] Lurie, B. J., Sirlin, S. W., O'Brien, J. F., and Fanson, J. L., “The Dial-a-Strut
Controller for Structural Damping,” ADPA/AIAA/ASME/SPIE Conference on
Active Materials and Adaptive Structures, Alexandria VA, Nov. 1991.

[43] Lurie, B. J., Fanson, J. L., and Laskin, R. A., “Active Suspension for Vibra-
tion Isolation,” 82nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, Baltimore MD, Apr. 1991, pp. 2256-2260.

(44] Lyon, R. H., Machinery Noise and Diagnostics: Theory and Applications, The
MIT Press, Cambridge MA, 1975.

[45] MacMartin, D. G., Miller, D. W., and Hall, S. R., “Structural Control Using
Active Broadband Impedance Matching,” Recent Advances in Active Control
of Sound and Vibration, Apr. 1991, pp. 604-617.

(46] MacMartin, D. G., “A Stochastic Approach to Broadband Control of Paramet-
rically Uncertain Structures,” PhD) Thesis, Massachusetts Institute of Technol-
ogy, May 1992.

[47) Marston, R. M., OP-AMP Circuits Manual. Oxford: Heinemann Publishing
Ltd., 1989.

[48] Marth, H., and Donat, M., “Latest Experience in the Design of a Piezoelectric
Driven Fine Steering Mirror,” SPIE Active and Adaptive Optics Conference,
San Diego CA, July 1991, pp. 248-261.

[49] Miller, D. W., Hall, S. R., and von Flotow, A, H., “Optimal Control of Power

272



Flow at Structural Junctions,” Journal of Sound and Vibration, Vol. 140, No.
3, 1990, pp. 475-497.

[50] Miller, D. W., de Luis, J., and Crawley, E. F., “Dynamics and Control of
Multipayload Platforms: the Middeck Active Control Experiment (MACE),”
41st Congress of the International Astronautical Federation, Oct. 1990.

[51] Molloy, C. T., “Four-Pole Parameters in Vibration Analysis,” Colloguium on
Mechanical Impedance Methods for Mechanical Vibrations, ASME Annual Meet-
ing, Dec. 1958, pp. 43-68.

[62] Moore, B. C., “Principal Component Analysis of Linear Systems: Controlla-
bility, Observability, and Model Reduction,” IEEE Transactions on Automatic
Control, Vol. AC-26, Feb. 1981, pp. 17-32.

[63] Newsom, J. R., Layman, W. E., Waites, H. B., and Hayduk, R. J., “The NASA
Controls-Structures Interaction Technology Program,” 41st Congress of the In-
ternational Astronautical Foundation, Oct. 1990.

[54] Peterson, L. D., “Optimal Projection Control of an Experimental Truss Struc-

ture,” Journal of Guidance, Control and Dynamics, Vol. 14, no. 2, Mar-Apr.
1991, pp. 241-250.

[65] Peterson, A. P., and Gross, E. E., Handbook of Noise Measurement. General
Radio Company: Concord, MA pp 74-75.

[56] Phillips, D., and Collins, E. G. Jr., “Four Experimental Demonstrations of
Active Vibration Control for Flexible Structures,” AIAA Guidance, Navigation
and Control Conference, Portland OR, Aug. 1990, pp. 1625-1633.

[67) Quadrelli, B. M., and von Flotow, A. H., “Modelling, Dynamics Analysis and
Control of a Multi-Body Space Platform,” MS Thesis, Massachusetts Institute
of Technology, February 1992, pp. 59 to 64.

(58] Rodden, J. J., Dougherty, H. J., Reschke, L. F., Hasha, M. D., and Davis, L.
P., “Line-of-Sight Performance Improvement with Reaction-Wheel Isolation,”
Advances in the Astronautical Sciences, Vol. 61, 1986, pp. 71-84.

[69) Ruzicka, J. E., and Cavanaugh, R. D., “Vibration Isolation of Non-Rigid Bod-
ies,” Colloquium on Mechanical Impedance Methods for Mechanical Vibrations,
ASME Annual Meeting, Dec. 1958, pp. 109-124.

[60] Ruzicka, J. E., “Active Vibration and Shock Isolation,” SAE Paper No. 680747,
(1968).

[61] Ruzicka, J. E., and Derby, T. F., Influence of Damping in Vibration Isola-
tion. Washington, D.C.: The Shock and Vibration Information Center, Naval
Research Laboratory, 1971, p. 39.

273



[62] Scribner, K. B., Sievers, L. A., and von Flotow, A. H., “Active Narrowband
Vibration Isolation of Machinery Noise from Resonant Substructures,” ASME
Winter Annual Meeting, Dallas TX, 1990.

[63] Sevaston, G. E., Socha, M. M., and Eisenman, A., “The Circumstellar Imaging
Telescope Image Motion Compensation System: Ultra-Precise Control on the
Space Station Platform,” Advances in the Astronautical Sciences, Vol. 68, 291-

310 (1989).

[64] Shao, M., Colavita, M. M., Hines, B. E., Staelin, D. H., Hutter, D. J., et al,,
“The Mark ITI Stellar Interferometer,” J. Astron. Astrophys. 193, 357-371, 1988,

(65] Skudrzyk, E., “The Mean-value Method of Predicting the Dynamic Response
of Complex Vibrator,” The Journal of the Acoustical Society of America, Vol.
67, No. 4, Apr. 1980, pp. 1105-1135.

[66] Shao, M., Colavita, M. M., “Long Baseline Optical and Infrared Stellar Inter-
ferometry,” Annu. Rev. Astron. Astrophys., 30:457-498, 1992.

[67) Sievers, L. A., and von Flotow, A. H., “Comparison and Extensions of Methods

for Cancellation of Periodic Noise,” IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, Vol. 39, no. 8, Oct. 1992.

[68] Sinha, A. and Wang, Y.-P., “Digital Control Algorithms for Microgravity Isola-
tion Systems,” ASME Conference on Mechanical Vibration and Noise, Miami
FL, pp. 247-256 (1991).

[69] Sirlin, S. W., and Laskin, R. A., “Payload Isolation and Precision Pointing for
the 1990’s,” Advances in the Astronautical Sciences, Vol. 57, 1985, pp. 39-60.

[70] Spanos, John T., “Control-Structure Interaction in Precision Pointing Servo
Loops,” Journal of Guidance, Control and Dynamics, Vol. 12, no. 2, Mar-Apr.
1989.

(71] Spanos, J., Rahman, Z., and von Flotow, A., “Active Vibration Isolation on

an Experimental Flexible Structure,” Smart Materials and Intelligent Systems,
SPIE 1917-60, Albuquerque, 1993.

[72] Spanos, J., Rahman, Z., Chu, C., and O’Brien, J., “Control Structure Interac-
tion in Long Baseline Space Interferometers,” 12th IFAC Symposium on Auto-
matic Control in Aerospace, Ottobrunn, Germany, Sep. 1992.

(73] Stampleman, D. S., and von Flotow, A. H., “Microgravity Isolation Mounts
Based Upon Piezoelectric Film,” ASME Winter Annual Meeting, Dallas TX,
pp. 57-65 (1990).

(74] Stein, G., and Athans, M., “The LQG/LTR Procedure for Multivariable Feed-
back Control Design,” IEEE Transactions on Automatic Control, Vol. AC-32,

274



no. 2, Feb. 1987, pp. 105-114.

[75] Su, H., Rakheja, S., Sankar, T. S., “Vibration Isolation Characteristics of an
Active Electromagnetic Force Generator and the Influence of Generator Dy-
namics,” Journal of Vibration and Acoustics, Vol. 112, Jan. 1990, pp. 8-15.

[76] Swanson, D. A., Miller, L. R., and Norris, M. A., “Multi-dimensional Mount
Effectiveness for Vibration Isolation,” 38rd AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics and Materials Conference, Apr. 1992, pp. 1764-
1773.

[77] Sykes, A. O., “The Evaluation of Mounts Isolating Nonrigid Machines from
Nonrigid Foundations,” ASME Shock and Vibration Instrumentation, 1958, pp.
1-39.

[78] Tanaka, N., and Kikushima, Y., “Rigid Support Active Vibration Isolation,”
Journal of Sound and Vibration, Vol. 125, No 3., 1988, pp. 539-553.

[79] Thompson, A. G., “Optimal and Suboptimal Linear Active Suspensions for
Road Vehicles,”, Vehicle System Dynamics, Vol. 5, 1976, pp. 187-203.

[80] The EVIS Vibration Isolation System, 1993 Newport Catalog. The Newport
Corporation: 18235 Mt. Baldy Circle, PO Box 8020, Fountain Valley, CA 92728-
8020.

[81] Van De Vegte, John, Feedback Control Systems. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1990, pp. 377-382.

[82] Watters, B. G., Coleman, R. B., Duckworth, G. L., and Berkman, E. F., “A
Perspective on Active Machinery Isolation,” Proceedings of the 27th Conference
on Decision and Control, Austin TX., 1989.

[83] Wie, B., and Byun, K-W, “New Generalized Structural Filtering Concept for
Active Vibration Control Synthesis,” Journal of Guidance, Vol. 12, no. 2,
March-April 1989, pp. 147-154.

[84] Wong, E., Rathbun, D., and Smith, K., “A Pointing System Design Concept
for Space Station Attached Payloads,” AIAA Guidance, Navigation and Control
Conference, Boston, Aug. 1989, pp. 759-769.

275



276



Appendix A

Finite Element Model Frequencies

Table A.1 lists the truss modal frequencies below 100 Hz as predicted by a finite
element model [7]. The frequencies were found to agree with those measured in a
modal test to within 2% up to 150 Hz. The model uses one beam element per strut
with axial strut stiffness based on component tests. Plate elements were used to

model the siderostat plates and fourth vertex assembly.

Table A.1: Frequencies of finite element model (inter5) below 100 Hz.

mode no. | freq. (Hz) | mode no. | freq. (Hz)
1 0.30 18 57.51
2 0.30 19 60.03
3 0.42 20 63.34
4 1.95 21 63.86
5 2.31 22 65.72
6 2.46 23 68.69
7 24.89 24 72.09
8 26.32 25 74.27
9 28.06 26 76.79
10 29.68 27 80.29
11 33.96 28 86.72
12 36.23 29 89.57
13 36.36 30 90.76
14 38.00 31 94,94
15 43.87 32 97.43
16 54.02 33 98.48
17 56.02 34 99.75
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Appendix B

Testbed Performance Metric

Summary

Table B.1 lists the measured absolute and differential performance metric measure-
ments made for a series of open and closed loop truss configurations in this thesis.
The laser measurements were recorded at a sample rate of 4100 Hz and read from the

screen of the Tektronix Fourier analyzer for the frequency range of 10 to 500 Hz.

Table B.1: Interferometer performance metric summary.

Pathlength Error (nm RMS) 10 - 500 Hz
Truss State Absolute Differential

A B C A-B B-C C-A
1. Original Hardmount 465 368 518 516 378 676
2. New Hardmount 312 394 487 282 286 391
3. Softmount (SM) 201 272 278 | 241 260 214
4, SM Prior to CL Laser Tests 283 271 248 210 228 190
5. SM with D-Struts 235 215 201 161 165 164
6. SM with 3 CL Lasers (no D) | 73 72 52 80 66 7
7. SM with 3 CL lasers (+ D) 59 67 42 60 61 55
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Appendix C

Accelerometer Noise Autospectra

Two accelerometers of each type were mounted back to back and were suspended on
a 1 meter cable inside a plastic bag to reduce air currents. Signals were scaled by
individual sensor calibration, and their sum was recorded an averaged autospectrum.
One-half of the averaged autospectrum is plotted below. Data for a new, low mass

(3 g), 500 Hz bandwidth Kistler accelerometer are also shown.
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Figure C.1: Measured noise autospectra for three accelerometer models.
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Appendix D

Transfer Functions to Laser

Outputs .

D.1 Transfer Function Data

Figure D.1 is a plot of the 3 x 3 transfer function matrix of the three hardmount
isolators mounted to the truss structure. The input voltage V to each mount directed
the mirror along the individual laser lines of sight, and the outputs u are the laser
outputs. The transfer function matrix equation is given by Eq. 5.3. The softmount

laser transfer functions are plotted in Figure D.2.

D.2 Diagonal Dominance of Transfer Function Ma-
trix

Figures D.3 and D.4 are plots of the hardmount and softmount diagonal dominance
ratio d;(s) defined by Eq. 5.6 in Chapter 5. The apparent jump in coupling above
500 Hz is due to noise in the data caused by a change in frequency windowing during

the data collection.
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Figure D.1: Hardmount laser transfer function matrix for 3 mirrors actuated
along lines of sight. Coupling with base flexible modes is strong
both within the diagona transfer functions, as well as in the off-
diagonal functions.
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Figure D.2: Softmount laser transfer function matrix for 3 mirrors actuated
along lines of sight. Decoupling is improved above 100 Hz in each
of the diagonal functions, and off-diagonal coupling is attenuated.
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Figure D.3: Diagonal dominance ratios of the hardware plant transfer function
matrix G, for hardmount isolators (laser output) on the testbed.

frequency (Hz)

Figure D.4: Diagonal dominance ratios for softmount isolator (laser output) on
testbed, showing improvement due to reaction mass. Frequency
range near 30 Hz is not diagonally dominant.
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Appendix E

Documentation of Pathlength
Control Design

Documentation for laser feedback design for mirror B is presented below. The pre-

sentation and terminology follow Section 6.5 (acceleration feedback).

" "MIRROR B 4100 Hz Laser

o
1
1

!

1

- - - Design Model
—— Testbed Evaluation Model

dB (micron/ volt)
8

A
o
T

[=]

N
o
S

H
o
o

phase (degrees)

[=2]
o
[=]

10' 10° 10
frequency (Hz)

Figure E.1: Mirror B design model Gp (based on acceleration curve fit) com-
pared to evaluation model Gg based on testbed measurement. Close
agreement between laser and accelerometer output is shown in Sec-
tion 5.4.2,
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Compensator K (LB1D) designed for real time computer imple-
mentation. Comparison of full order and reduced order (4 state)
compensator.
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Figure E.3: Total compensator G, K, which includes 3 analog states (1 real pole

at 40 Hz, and 2.1 kHz notch).

288



™7 v v AN e S e | v v LA S S as e

20

Loop Gain: Design Model ]

— gvaluation model
- - - design model

magnitude (dB)
(=]
==

@
[V
©
()]
Q
T
[}
7]
©
K =
Q.
_600 i " M | " A Aok 1 e " " a a2l
10' 10° 10°
frequency (Hz)

Figure E.4: Loop gain for pathlength control. Design model Gp is compared
to the evaluation model Gg. Note that 1.2 kHz model is phase
stabilized. Design model is based on rigid block accelerometer tests.
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Figure E.5: Open and closed loop measurement of absolute
for compensator LB1D.
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Figure E.6: Closed loop sensitivity for mirror B, absolute pathlength feedback.
Comparison of measured and prediction based on design model Gp.
Base flexibility reduces performance below 60 Hz, but does not affect
high frequency crossover margins. Large sensitivity in 10 Hz region
is due to extremely low disturbance level in this range.

290



Appendix F

Combination of D-Struts and

Pathlength Control

The maximum performance metric improvement was achieved using both passive
damping and 3 laser feedback controllers. Five D-struts were placed in the truss in
order to maximize performance metric improvement in the differential pathlengths
for frequencies below 80 Hz. The placernent was based on the finite element model
and a model of the uncertainty in the structural dynamics [5]. The laser pathlength
controllers described in Section 6.6 and Appendix E, designed originally for the un-
damped truss, were re-implemented on the testbed without change. The damping
reduced the dB performance improvement of the active control by up to 10 percent.
Figure F.1 illustrates the performance improvement due solely to the D-struts, and
Figure F.2 documents the further improvement obtained by simultaneously closing
the three independent pathlength controllers. Performance in the laser loops was 0
- 1 dB lower with the D-struts in the truss, since the D-struts limit the dynamic

response of the truss at the structural modes.
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Figure F.1: Differential pathlength improvement due to the addition of 5 D-
struts to the structure, placed for maximum energy dissipation in 20
- 80 Hz frequency range.
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Figure F.2: Furtherimprovementin DPL A - B obtained by simultaneous control
of the three absolute pathlengths. Other pathlengths show similar
improvement.
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