
Faster Dynamic Controllability Checking in
Temporal Networks with Integer Bounds∗

Nikhil Bhargava , Brian C. Williams
Massachusetts Institute of Technology

{nkb, williams}@mit.edu

Abstract
Simple Temporal Networks with Uncertainty
(STNUs) provide a useful formalism with which
to reason about events and the temporal constraints
that apply to them. STNUs are in particular notable
because they facilitate reasoning over stochastic,
or uncontrollable, actions and their corresponding
durations. To evaluate the feasibility of a set of
constraints associated with an STNU, one checks
the network’s dynamic controllability, which
determines whether an adaptive schedule can be
constructed on-the-fly. Our work provides a dy-
namic controllability checker that is able to quickly
refute the controllability of an STNU with integer
bounds, such as those found in planning problems.
Our work is faster than the existing best runtime
for networks with integer bounds and executes in
O
(
min(mn,m

√
n logN) + km+ k2n+ kn log n

)
.

Our approach pre-processes the STNU using an
existing O(n3) dynamic controllability checking
algorithm and provides tighter bounds on its
runtime. This makes our work easily adaptable to
other algorithms that rely on checking variants of
dynamic controllability.

1 Introduction
In temporal planning, an agent is presented with a series of
events and must decide precisely when to schedule them.
These events are often subject to constraints and the role of
the agent is to construct a schedule that respects those con-
straints. This scheduling problem becomes more difficult
when certain events are outside of their control. In such
a situation, the agent is concerned with knowing whether a
schedule can be constructed in real-time during execution, or
whether the temporal problem is dynamically controllable.

In this paper, we introduce an improved algorithm for
checking the dynamic controllability of Simple Temporal

∗This report is meant to amend an article by the same title that
originally appeared in IJCAI-2019 [Bhargava and Williams, 2019].
The presentation of Theorem 3.1 in the original paper was incorrect,
and this report amends the claims of the previous paper to correct
the record.

Networks with Uncertainty (STNUs) with integer bounds
for its constraints. Our algorithm is based largely on
two existing dynamic controllability algorithms: one that
runs in O(n3) time [Morris, 2014] and a faster one that
runs in O(mn + k2n + n log n) [Cairo et al., 2018],
where n represents the number of events in a temporal
network, m represents the number of temporal constraints,
and k represents the number of uncontrollable events in
the temporal network. Our algorithm applies some of the
ideas from the faster algorithm, namely the use of a po-
tential function to re-weight edges, to significantly speed
up the O(n3) algorithm, dropping the overall runtime to
O
(
min(mn,m

√
n logN) + km+ k2n+ kn log n

)
, where

N is the magnitude of the most negative edge weight in the
STNU’s graphical representation. While our algorithm for
checking controllability is incomplete, we provide a guaran-
tee that it is correct whenever the algorithm marks a network
as uncontrollable.

The requirement that all constraint bounds be integer is
not overly restrictive in practice, as STNU bounds are of-
ten derived from human-specified characterizations and re-
quirements on temporal events. When the integer constraint
is relaxed, our algorithm still matches the best-known run-
time of O(mn+ k2n+ n log n). However, because we base
our algorithm off of the O(n3) algorithm, which importantly
uses length-preserving rules, we believe it is straightforward
to transfer these same runtime improvements to other algo-
rithms that rely on dynamic controllability checking vari-
ants, such as checking dynamic controllability for chain-free
Partially Observable Simple Temporal Networks with Uncer-
tainty [Bit-Monnot et al., 2016] and checking the delay con-
trollability of STNUs [Bhargava et al., 2018], but this work is
outside the scope of this current paper.

2 Background
Simple Temporal Networks (STNs) provide a way to formally
model events, or timepoints, and the temporal constraints be-
tween them (e.g. event A must happen at least 20 minutes
after event B) [Dechter et al., 1991]. STNs, however, are
incapable of modeling events that cannot be scheduled ex-
plicitly. These types of events are quite commonplace and
effective agents must be capable of handling them in their
plans (e.g. it is impossible to schedule that the time spent
driving across town is exactly 22 minutes because it is highly

dependent on traffic). Simple Temporal Networks with Un-
certainty (STNUs) provide an explicit way to model this type
of uncertainty [Vidal and Fargier, 1999].
Definition 1. STNU [Vidal and Fargier, 1999]
An STNU is a 4-tuple 〈Xe, Xc, Rr, Rc〉 where:
• Xe is the set of executable timepoints
• Xc is the set of contingent timepoints
• Rr is the set of requirement constraints of the form lr ≤
xr − yr ≤ ur, where xr, yr ∈ Xb ∪Xe

• Rc is the set of contingent constraints of the form 0 ≤
lr ≤ cr − er ≤ ur, where cr ∈ Xc, er ∈ Xe

STNUs subdivide their timepoints into a set of executable
timepoints and contingent timepoints. Executable timepoints
are those that are explicitly scheduled by the agent, and
contingent timepoints represent stochastic events that are
scheduled by nature. The constraints of an STNU are sub-
divided into requirement constraints and contingent con-
straints. Requirement constraints are ordinary constraints
like those found in an STN. Contingent constraints impose
a relation between a starting executable timepoint and an
ending contingent timepoint describing when the contingent
timepoint is guaranteed to happen in relation to the starting
timepoint. When considering the runtime of algorithms over
STNUs, we let m represent the total number of constraints,
n the total number of timepoints, and k the total number of
contingent timepoints.

Because many of the timepoints are outside of the control
of the scheduler, it is often overly restrictive to construct a
static schedule to determine the feasibility of an STNU. In-
stead, we often consider its dynamic controllability [Vidal
and Fargier, 1999]. We say that an STNU is dynamically con-
trollable if it is possible for an agent to construct a schedule
during execution if they learn about the true value of contin-
gent timepoints as they happen.

When trying to determine STNU dynamic controllability,
we often prefer to work with their labeled distance graph rep-
resentation [Morris, 2006]. In the labeled distance graph,
each timepoint of the STNU corresponds to a node in the
graph. Each requirement constraint of the form u ≤ B−A ≤
v is split into two edges, A v−→ B and B −u−−→ A. Contin-
gent constraints of the form u ≤ C − A ≤ v (where C is
a contingent timepoint) produce four edges. As was the case
for requirement constraints, we produce edges A v−→ C and
C
−u−−→ A, but we also produce two labeled edges: the upper-

case edgeC C:−v−−−→ A and the lower-case edgeA c:u−−→ C. It is
clear by construction that there are O(m) edges in the graph,
O(n) nodes in the graph, and O(k) labeled edges.

These edges directly map to constraints that apply to the
STNU that produced them. Unlabeled edges represent uncon-
ditional constraints that always apply whereas labeled edges
represent conditional constraints that only apply if the label’s
corresponding contingent constraint takes on its longest or
shortest possible value, for upper-case and lower-case labels
respectively.

Just as constraints can be combined to create new con-
straints, so too can these edges be combined to produce new

edges. [Morris, 2006] introduced a sound and complete set
of edge reduction rules for use in an STNU’s labeled distance
graph:

• Upper case reduction: With edges A x−→ B
C:y−−→ D,

produce edge A
C:(x+y)−−−−−→ D.

• Lower case reduction: With edges A b:x−−→ B
y−→ C, if

y < 0, produce edge A
x+y−−−→ C.

• Cross case reduction: With edges A b:x−−→ B
C:y−−→ D, if

y < 0, B 6= C, produce A
C:x+y−−−−→ D.

• No-case reduction: With edges A x−→ B
y−→ C, produce

A
x+y−−−→ C.

• Label removal: With edge A B:x−−→ C, if x ≥ 0, produce
A

x−→ C.
To determine whether an STNU is dynamically control-

lable, it suffices to determine whether the STNU’s labeled
distance graph has a semi-reducible negative cycle [Morris,
2006]. A semi-reducible negative cycle is a cycle whose total
weight is negative and when after applying a series of reduc-
tions, we are left with a cycle without lower-case edges. The
current best-known runtime for finding a semi-reducible neg-
ative cycle with this particular set of edge reductions isO(n3)
[Morris, 2014].

In this paper we will use an augmented version of this rule-
set and introduce the unconditional reductions, which comes
in two flavors: unconditional-upper and unconditional-lower.
While these rules are used to prove correctness, we do not
use these rules directly in the execution of our algorithm. The
following lemmas demonstrate that the two rules are sound.
Lemma 2.1. Unconditional-Upper Reduction

If we start with edges A C:u−−→ D and D v−→ B, then we can
add edge A C:u+v−−−−→ B.
Lemma 2.2. Unconditional-Lower Reduction

If we start with edges A c:u−−→ D and D v−→ B, then we can
add edge A c:u+v−−−−→ B.

Proof. We can use the same proof strategy for both lemmas.
Let α be the label for the first edge in the sequence. The first
edge provides the conditional constraint that xD − xA ≤ u
that depends on the condition α (it holds either if C takes on
its maximal or minimal value depending on if α is an upper
or lower case label, respectively). The second edge provides
the unconditional constraint that xB − xD ≤ v. When we
combine the two, we get that xB − xA ≤ u + v when the
condition associated with α holds. This yields the output edge
as specified in both lemmas.

While the current state-of-the-art algorithm uses a different
set of rules for checking dynamic controllability [Cairo et al.,
2018], we show in this work that if we restrict our focus to
constraints with integer bounds, we can continue to use the
existing ruleset from [Morris, 2006] and improve on the best-
known runtime for refuting dynamic controllability under any
ruleset.

Input: A labeled distance graph G = 〈V,E〉 and
non-negative potential function ψ

Output: Whether the STNU derived from the distance
graph is free of semi-reducible negative cycles.

Initialization:
1 negNodes← the set of all vertices with incoming

negative edges under the potential function ψ;
SRNCFREE?:

2 for v ∈ negNodes do
3 cycleFree?←SRNCDIJKSTRA(G, v, ψ, [v],

negNodes);
4 if !cycleFree? then
5 return false;
6 return true;
Algorithm 1: Semi-Reducible Negative Cycle Algorithm

3 Algorithm
Our contribution in this work is in demonstrating how a small
set of modifications to the existingO(n3) algorithm for deter-
mining dynamic controllability [Morris, 2014] can lower the
asymptotic worst-case runtime if we’re interested primarily
in refuting dynamic controllability. This improvement is pri-
marily realized by modifying the underlying labeled distance
graph of our input STNU by finding a graph re-weighting
through the application of a potential function as used by
[Cairo et al., 2018].

We begin by introducing the core algorithms responsible
for checking for the presence of a semi-reducible negative
cycle and, by proxy, whether the STNU is dynamically con-
trollable. Algorithms 1 and 2 are virtually identical to the
ones presented in [Morris, 2014], and we rely quite heavily
on the analysis in that work proving their correctness.

Briefly, the algorithm for checking dynamic controllability
traverses the graph in reverse applying edge reductions as it
goes in order to maintain a semi-reducible path. In its traver-
sal, it uses a variant of Dijkstra’s algorithm to ensure that it
considers the shortest paths from its start node and has ad-
ditional checks (e.g. line 18 of Algorithm 2) to guarantee
that the path is semi-reducible. Dijkstra’s algorithm, how-
ever, does not work in general with negative edges but will
work properly if the only negative edge is the first one. The
goal of the algorithm is to show that every walk from a neg-
ative edge eventually becomes positive; if so, there can be no
semi-reducible negative cycles in the graph. If the dynamic
controllability check runs into a negative edge that is not the
first in its path during its walk, it recursively calls Dijkstra’s
algorithm again (line 14). If a sub-call returns, it adds all
of its walks (which have positive length) to the graph so that
callers can use them in their walks (line 10). If an infinite re-
cursion is detected (line 5), then we know that each recursive
call was made while it was in the midst of a semi-reducible
negative walk, and the union of all of those walks yields a
semi-reducible negative cycle. The negNodes list in Algo-
rithm 1 guarantees that all negative edges are considered.

This original variant of this algorithm runs in O(n3)
time, and this can be seen by analyzing the runtime of
SRNCFREE? (Algorithm 1) and the main algorithm it

calls into, SRNCDIJKSTRA (Algorithm 2). For each call
to SRNCDIJKSTRA and its terminal node, s, the algorithm
runs a version of Dijkstra’s algorithm over a subset of the
graph that is composed of non-negative labeled and unlabeled
edges, as well as positive edges that are derived through edge
production rules. If no new edges were produced, each sub-
call would take O(m + n log n) time but instead we must
argue that it takes O(m′ + n log n) time where m′ is the to-
tal number of edges in the graph after all edges are added
into the graph. We know that each call to SRNCDIJKSTRA
can add at most O(n) new edges to the graph (by adding an
edge from each node of the graph to s), so to bound the to-
tal number of new edges, we have to bound the number of
calls to SRNCDIJKSTRA. In the worst case, there are n total
calls to SRNCDIJKSTRA, meaning that the total runtime is
O
(
n(m+ n2 + n log n)

)
= O(n3) time.

The goal of our new set of algorithms is to minimize the
number of calls to SRNCDIJKSTRA thus decreasing the over-
all runtime. The way we intend to do so is by introducing a
potential function to re-weight the edge to decrease the total
number of nodes with incoming negative edges.

3.1 Correctness under a Potential Function
We argue that by being smart about our choice of poten-
tial function, we can adapt an existing dynamic controllabil-
ity checking algorithm and significantly improve its perfor-
mance when checking for uncontrollability. We present such
an adaptation below (Algorithms 1 & 2). The primary differ-
ence between the original controllability checking algorithm
and the one presented here is that our modified function takes
in a potential function ψ over the nodes that re-weights the
edges of the graph such that the new weight w̃ of an edge
going from u to v is given by w̃ = ψ(v) + w − ψ(u). The
algorithm is evaluated with respect to the edge weights un-
der the potential function and has a slight change (see line
18 of Algorithm 2) when checking whether lower- and cross-
case edge reductions apply. With this change, our algorithm
searches for a cycle that is negative under the potential func-
tion but semi-reducible when considering the original set of
weights. Because a cycle’s total weight is not affected by a
potential function, the result is an algorithm that is able to
find a semi-reducible negative cycle in our original graph.

To prove that our approach is appropriate when prioritiz-
ing correct evaluation of uncontrollability, we show that for
certain potential functions, when we pass in an STNU that is
controllable, our algorithm always correctly return true.

Though we know that applying a potential function pre-
serves the overall length of cycles in the graph, it is not clear
whether applying any potential function to an STNU’s labeled
distance graph guarantees that a semi-reducible negative cy-
cle remains semi-reducible.

In particular, we care to show that after applying our poten-
tial function, a controllable network remains controllable and
we do not erroneously reject controllable networks. While we
may not be able to prove this reuslt in general, we can prove
that this result holds for a specific subset of cases, namely for
potential functions that are non-negative for all vertices. If
we demonstrate this, then it is clear that if we find such a po-
tential function and apply it to an STNU, we have a guarantee

Input: Labeled distance graph G = 〈V,E〉, terminal node
s, non-negative potential function ψ, callStack,
and negative nodes negNodes

Output: Whether the current walk is cycle-free
Initialization:

1 Q← PriorityQueue();
2 for e ∈ s.incomingEdges() do
3 if e.weight(ψ) < 0 and !e.lowerCase() then
4 Q.add(〈e.from, e.label〉, e.weight(ψ));

SRNCDIJKSTRA:
5 if s ∈ callStack[1 : end] then
6 return false;
7 while Q.size() > 0 do
8 v, label, weight← Q.pop();
9 if weight ≥ 0 then

10 G.add(〈v, s, weight〉);
11 else
12 if v ∈ negNodes then
13 newStack ← [v].concat(callStack);
14 result← SRNCDIJKSTRA(G, v, ψ,

newStack, negNodes);
15 if !result then
16 return false;
17 for e ∈ v.incomingEdges() do
18 if e.weight(ψ) ≥ 0 and

!(e.isLowerCase() and
(e.label == label or
weight− ψ(s) + ψ(v) ≥ 0)) then

19 w ← e.weight(ψ) + weight;
20 Q.addOrDecKey(〈e.from, label〉, w)

21 negNodes.remove(s);
22 return true;

Algorithm 2: Function SRNCDIJKSTRA

that if the original STNU is dynamically controllable, our al-
gorithm returns true. Note that for any potential function, it
is trivial to create one that satisfies this condition; we simply
add a large constant uniformly to all potential values, which
leaves the induced edge weights entirely unaltered.

Theorem 3.1. Given a dynamically controllable STNU S and
a potential function ψ over S’s labeled distance graph such
that for each vertex v, ψ(v) ≥ 0, Algorithm 1 returns true.

Proof. To show that our algorithm will recognize S as dy-
namically controllable, we construct a new STNU S′ that we
use to analyze the algorithm’s behavior. S′ is identical to S
except that every vertex v is split into v and v′. For every ver-
tex v, a single requirement link is created ψ(v) ≤ v′ − v ≤
ψ(v). Because ψ ≥ 0, it is clear that S′ is also dynamically
controllable because any valid strategy for S would similarly
work for S′ if it were augmented by a guarantee that for all v,
v′ was executed ψ(v) units of time after v.

If we inspect the behavior of our algorithm on S and ψ, we
observe that it simulates the behavior of the original O(n3)
algorithm on S′ with one minor deviation. As the algorithm
walks the graph, every time it reaches some vertex v, it im-

mediately takes the (reverse) v′
−ψ(v)−−−−→ v edge. When that

Input: A labeled distance graph G = 〈V,E〉 and potential
function ψ

Output: Whether the STNU given by the labeled distance
graph is dynamically controllable.

Initialization:
1 loProj ← a projection of graph G that only contains

lower-case and unlabeled edges with all labels
removed;

2 N ← the minimum value such that all edge weights
satisfy w ≥ −N as well as N ≥ 2;

CHECKDC:
3 if (

√
|V | < logN) or G has non-integer constraints

then
4 φ← BELLMANFORDPOTENTIALS(loProj);
5 else
6 φ← GOLDBERGPOTENTIALS(loProj);
7 if φ == ∅ then
8 return false;
9 ψ ← −φ;

10 ψ.addToAll(−ψ.min);
11 return SRNCFREE?(G,ψ);

Algorithm 3: Full Dynamic Controllability Checking Al-
gorithm

path is popped from the queue at a later point, its only op-

tion is to take the v
ψ(v)−−−→ v′ edge in essence reversing its

previous decision. Rather than exploring each detour one at a
time, it groups them in three, as was described in the previous
theorem. The modified check at line 18 again guarantees that
lower-case edges are properly checked for elimination as their
values are temporarily shifted because of the potential func-
tion. Thus, we know that if our algorithm were to return false,
we would arrive at a contradiction because it would mean that
S′ is not dynamically controllable.

With this theorem, we have now shown that Algorithm 1
checks the dynamic controllability of an STNU and only re-
turns false given a potential function if the original STNU
is not controllable. However, we have neither shown how
to derive this potential function nor why including a poten-
tial function would improve overall running time. In the rest
of this section, we will explain these two points, ultimately
demonstrating our desired runtime.

3.2 Generating Potential Functions & Runtime
Complexity

In Algorithm 3, we introduce the full algorithm that we will
use to evaluate the dynamic controllability of an STNU. Our
algorithm starts by finding a potential function, making its
values entirely non-negative, and then checking dynamic con-
trollability with respect to that potential function. We will
start by briefly describing the algorithms for deriving a po-
tential function.

There are two functions that we use to derive our poten-
tial functions, BELLMANFORDPOTENTIALS (line 4, Algo-
rithm 3) and GOLDBERGPOTENTIALS (line 6, Algorithm 3).

Input: A graph stripped of all labels G = 〈V,E〉
Output: A potential function φ or ∅ if G has a negative

cycle
Initialization:

1 for v ∈ V do
2 φ(v)← 0;

BELLMANFORDPOTENTIALS:
3 for i ∈ [1..(|V | − 1)] do
4 for e ∈ E do
5 φ(e.start)←

max(φ(e.start), φ(e.end)− e.weight);
6 for e ∈ E do
7 if φ(e.start) + e.weight− φ(e.end) < 0 then
8 return ∅;
9 return φ;
Algorithm 4: Algorithm for finding potential function,
from [Cairo et al., 2018]

Input: A graph stripped of all labels G = 〈V,E〉 and
edge weights given by l

Output: A potential function φ or ∅ if G has a negative
cycle

Initialization:
1 for v ∈ V do
2 φ(v)← 0;
3 lp ← l;
4 G− ← G restricted to negative and zero-length edges;

GOLDBERGPOTENTIALS:
5 if min(l) < −1 then
6 l′ ← d l2e;
7 φ← GOLDBERGPOTENTIALS(G, l′);
8 if φ == ∅ then
9 return ∅;

10 for u, v ∈ V 2 do
11 lp(u, v)← l(u, v) + 2φ(u)− 2φ(v);
12 components← G−.stronglyConnectedComps();
13 for c ∈ components do
14 if c.hasNegativeEdge() then
15 return ∅;
16 G−.contract(c);
17 G−.addNode(s);
18 for v ∈ G−.nodes() do
19 G−.addEdgeWithWeight(s, v, 0);
20 for i ∈ [1...|V |] do
21 Li ← {v ∈ G−.nodes()|dist(s, v) = −i};
22 r ← maxr(r|Lr 6= ∅);
23 q ← argmaxq(|Lq|);
24 if r ≥

√
k then

25 φ.adjustChain(Lr);
26 else
27 φ.adjustLayer(Lq);
28 return φ;

Algorithm 5: Algorithm for finding potential function,
from [Goldberg, 1995]. For more details and analysis,
please see the original paper.

BELLMANFORDPOTENTIALS is elaborated in full in Algo-
rithm 4 and maps exactly to a combination of INITPOTEN-
TIAL and NEGATIVECYCLE from Algorithm 3 of [Cairo et
al., 2018]. It runs a variant of the Bellman-Ford algorithm
computing a potential function along the way. If after a cer-
tain number of iterations, it has not found a potential function
φ such that for all edges u w−→ v, φ(u) + w − φ(v) ≥ 0, then
it knows that the input must have a negative cycle.

GOLDBERGPOTENTIALS (Algorithm 5) is reproduced
from the pseudocode in [Goldberg, 1995]. The algorithm at-
tempts to construct a potential function φ that for each edge
u

w−→ v, φ(u) + w − φ(v) ≥ 0; if it is unable to do so, it de-
termines that there must be a negative cycle in the graph. The
algorithm builds its potential function using a scaling mech-
anism and at each level either finding a long chain of poten-
tial values it can adjust at once or a large layer of potential
values to adjust at once. Because it successively scales its ar-
guments, it requires that all edge weights be integer. Overall,
the algorithm runs in O(m

√
n logN) time.

By default, these algorithms do not produce the potential
function we want. Our proofs depended on having a poten-
tial function that satisfied ψ(v) + w − ψ(u) ≥ 0. If we
let ψ = −φ (line 9), then the two sub-calls would yield
−ψ(u) + w + ψ(v) ≥ 0, as we wanted. This potential func-
tion, however, may not be positive, but if our algorithm is
considering a potential function, line 10 of Algorithm 3 will
ensure that the potential function has no non-negative values.
What remains is to consider what happens when we fail to
find a potential function.

Both algorithms will fail to yield a potential function if and
only if the input loProj has a negative cycle, and when we
cannot find a potential function, Algorithm 3 returns false. If
we assumed that this response were incorrect, i.e. that the in-
put loProj had a negative cycle but the STNU were dynami-
cally controllable, we would quickly run into a contradiction.
If loProj had a negative cycle, then that means that there ex-
ists some combination of unlabeled and lower-case edges that
form a cycle with negative weight. However, if we considered
the case where all of our contingent constraints took on their
minimum possible value, we would enforce the constraints of
all lower-case edges since their conditions apply. In such an
instance, we would be unable to execute our STNU. To see
this, consider the constraints that we would derive by com-
bining the constraints associated with adjacent edges. Each
pair of adjacent edges are represented by constraints of the
form C − B ≤ u and B − A ≤ v and yield constraints of
the form C − A ≤ u + v. Because the edges form a cycle,
we would eventually reach a point where we would have two
constraints C −A ≤ w and A−C ≤ w′ that would combine
to form 0 ≤ w + w′. But because the edge production rules
are length-preserving, we know that w + w′ represents the
total weight of the cycle which is negative, meaning we have
a contradiction. Thus, our algorithm will correctly determine
an STNU’s dynamic controllability, and we can now provide
a thorough analysis of our algorithm’s runtime.

Theorem 3.2. Algorithm 3 runs in worst-case
O
(
min(mn,m

√
n logN) + km+ k2n+ kn log n

)
time

for STNUs with integer bounds.

Proof. First, we look at the runtimes of the lines used to de-
rive the potential functions (lines 4, 6). BELLMANFORDPO-
TENTIALS runs a variant of the Bellman-Ford algorithm to
search for a negative cycle and constructs a potential func-
tion if one does not exist. It iterates through each edge for as
many times as there are nodes in the graph, causing it to run
in O(mn) time. In contrast, GOLDBERGPOTENTIALS uses a
scaling algorithm to either find a potential function or deter-
mine that the graph has a negative cycle; this algorithm takes
O(m

√
n logN) time and requires that all edge weights be in-

tegers [Goldberg, 1995]. We know that if
√
n < logN , then,

in the limit, BELLMANFORDPOTENTIALS runs faster than
GOLDBERGPOTENTIALS. Because we selectively choose
which function to run based on exactly that inequality (line
3), we know that the set of operations through line 8 takes
O (min(mn,m

√
n logN)) time. If the search for a potential

function instead yields a negative cycle, then we terminate
immediately, satisfying the worst-case runtime.

We now consider what happens if we our initial checks
yield a valid potential function. The update at line 9 ensures
that the minimum value of ψ is 0 and involves at most O(n)
time to search for the minimum value and then update each
value of ψ. This does not change the re-weighted values of
any edges under ψ as the start and endpoints of each edge
change by the same amount.

What remains is to analyze the runtime of SRNCFREE?
(Algorithm 1). We begin by looking at SRNCDIJKSTRA (Al-
gorithm 2). By the original analysis, if we let c be the number
of times that SRNCDIJKSTRA is called, the overall runtime
of the algorithm is given by O (c(m+ cn+ n log n)). The
worst case is that all nodes have incoming negative edges and
so SRNCDIJKSTRA is called once for every node. However,
in our work we invoke the algorithm once for every node with
an incoming negative edge under the potential function ψ.
Our construction of ψ guarantees that when it is applied to all
lower-case and unlabeled edges, the new edges are all non-
negative. Thus, the only edges that can be negative under ψ
are upper-case edges. Because there is exactly one upper-case
edge per contingent link of STNU, SRNCDIJKSTRA is called
at most O(k) times and at most O(kn) edges are added to the
graph in total.

Thus, SRNCFREE? takes O (k(m+ kn+ n log n))
time, which means that our total runtime is
O
(
min(mn,m

√
n logN) + km+ k2n+ kn log n

)
.

If we do not have a guarantee that our temporal constraint
bounds are all integer, much of the same analysis can be
applied, but we instead always use BELLMANFORDPOTEN-
TIALS. This brings the total runtime to O(mn + k2n +
kn log n), which matches the best runtime for general dy-
namic controllability checking [Cairo et al., 2018]. Unlike
the other algorithm, however, our approach does not require
any updates to the potential function as our algorithm is able
to use the existing ruleset from [Morris, 2006] which guar-
antees that all transformations are length-preserving. This
approach means that other algorithms that are heavily based
off of the [Morris, 2014] algorithm, such as checking the dy-
namic controllability of chain-free POSTNUs [Bit-Monnot et

al., 2016] and checking the delay controllability of STNUs
[Bhargava et al., 2018], can likely similarly improve their
runtimes to the stated bounds with minimal changes to their
core algorithms.

4 Conclusion
In this paper, we introduce a modification to an ex-
isting O(n3) algorithm for determining dynamic con-
trollability and show how this slight change speeds up
the theoretical worst-case result if we are interested in
quickly eliminating temporal networks that are known
to be uncontrollable. Our final algorithm runs in
O
(
min(mn,m

√
n logN) + km+ k2n+ n log n

)
for tem-

poral networks with integer bounds, which is an improve-
ment on the best sound and complete dynamic controllability
checking algorithm. Even when relaxing the integer bound
requirement, our algorithm matches the best available run-
time for checking controllability but the simplicity of the
change means that this algorithm strategy is likely to apply to
many other variants of STNU dynamic controllability check-
ing.

We believe that this approach also extends quite naturally
and can be used to build a sound and complete dynamic con-
trollability checker with the same overall runtime. The ap-
proach from [Cairo et al., 2017] uses a potential function but
only uses Bellman-Ford to derive and update it. By using
Goldberg’s algorithm, it may be possible to improve on that
runtime for networks with integer bounds.

References
[Bhargava et al., 2018] Nikhil Bhargava, Christian Muise,

Tiago Vaquero, and Brian Williams. Delay controllabil-
ity: Multi-agent coordination under communication delay.
In DSpace@MIT, 2018.

[Bit-Monnot et al., 2016] Arthur Bit-Monnot, Malik Ghal-
lab, and Félix Ingrand. Which contingent events to ob-
serve for the dynamic controllability of a plan. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
16), 2016.

[Cairo et al., 2017] Massimo Cairo, Carlo Combi, Carlo
Comin, Luke Hunsberger, Roberto Posenato, Romeo
Rizzi, and Matteo Zavatteri. Incorporating decision nodes
into conditional simple temporal networks. In LIPIcs-
Leibniz International Proceedings in Informatics, vol-
ume 90. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017.

[Cairo et al., 2018] Massimo Cairo, Luke Hunsberger, and
Romeo Rizzi. Faster dynamic controllability checking for
simple temporal networks with uncertainty. In The 25th
International Symposium on Temporal Representation and
Reasoning (TIME), 2018.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea
Pearl. Temporal constraint networks. Artificial Intelli-
gence, 49(1-3):61–95, 1991.

[Goldberg, 1995] Andrew V Goldberg. Scaling algorithms
for the shortest paths problem. SIAM Journal on Comput-
ing, 24(3):494–504, 1995.

[Morris, 2006] Paul Morris. A structural characterization of
temporal dynamic controllability. In International Confer-
ence on Principles and Practice of Constraint Program-
ming, pages 375–389. Springer, 2006.

[Morris, 2014] Paul Morris. Dynamic controllability and dis-
patchability relationships. In International Conference on
AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 464–479.
Springer, 2014.

[Vidal and Fargier, 1999] Thierry Vidal and Helene Fargier.
Handling contingency in temporal constraint networks:
from consistency to controllabilities. Journal of Experi-
mental & Theoretical Artificial Intelligence, 11(1):23–45,
1999.

	Introduction
	Background
	Algorithm
	Correctness under a Potential Function
	Generating Potential Functions & Runtime Complexity

	Conclusion

