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Abstract

A study of axial wave propagation in axisymmetric rods is undertaken in order to
understand the jarring? dynamics of drillstrings

A transfer matrix solution to the equations of motion is used in determining the
transfer functions between a response location at the surface and input locations at
the jar and at the surface. The inputs and outputs considered are forces; however,
they could also be modeled as displacements, velocities or accelerations. The transfer
matrix formulation is capable of modeling changes in geometric/physical properties of
the pipe sections. A realistic value of distributed damping is included to account for
frictional and internal losses in the drillstring. Two models for the stuck length of the
drillstring are analyzed - a) distributed stiffness model and b) distributed damping
model. The transfer functions are calculated using a modified version of a program
(DSVIBL1) developed by H.Y.Lee (Ph.D '91 MIT). The effect on the transfer func-
tions, of localized regions with different levels of distributed stiffness and distributed
damping, is studied.

The behaviour of the system in the time domain is analyzed by calculating the im-
pulse response from the transfer functions for the distributed stiffness and distributed
damping models of the stuck region. The jarring event is modeled as a force iinpulse
at the jar location. A non-linear signal processing technique, cepstral analysis, is used
to identify the location of the stuck region, to compare and contrast the signatures
obtained in the two different models of the stuck region, and to establish criteria for
effective jarring.

Thesis Supervisor: J. Kim Vandiver
Title: Professor of Ocean Engineering

2A jar is an impact tool installed in the drillstring to free stuck pipe and the process of attempting
to break free is referred to as jarring.
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Chapter 1

Introduction

Oilfield professionals have long recognized that preventing stuck pipe is always less
expensive than unsticking pipe. Stuck pipe! affects as many as 25% of the wells at
an estimated annual cost of § 200 to § 500 million. Cutting this cost lies mainly in
preventing stuck pipe and promoting alert and rapid response to keep incipient stick-
ing from ballooning into severe sticking. Successful prevention lies in understanding
the mechanisms of pipe sticking. Since no prevention program is guaranteed so far,
research has continued into jars and jarring physics.

The main focus of research, in the area of jarring dynamics to date, has been
on the problem of optimizing jar location within the drillstring. In this thesis, we
address a different issue, namely that of using surface measurements to identify the
location of the stuck region, to infer the nature of downhole sticking and to develop
criteria for evaluation of jarring effectiveness. These are of primary importance in a
stuck pipe situation, where a decision has to be taken on the subsequent course of
action, in a short period of time. In the absence of any method of inference on the
nature of the sticking mechanism or evaluation of the efficacy of jarring, one could
end up jarring for days without any results.

The success of a jarring operation depends on the correct interpretation of surface

measurements. The acoustic signals reaching the surface as a result of tripping the

1Qilfield Review, October '91
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jar are modified by a number of factors such as the presence of a stuck region, change
in formation properties, geometry of the drillstring, boundary conditions, distortion
effects arising due to differing speeds of propagation of different modes and so forth.
Thus, the signal arriving at the surface contains information about the structure
through which it propagates and the structure with which it interacts. In this thesis,
we exploit this aspect to infer the type of sticking mechanism and to develop criteria
for evaluating the progress made during jarring. A one dimensional wave propagation
model is considered for drillstring axial vibration. The drillstring is modeled as a
piecewise uniform bar and the jarring action, as a force impulse delivered to the
drillstring in the axial direction, at the jar location.

The stuckpipe problem is described in the second chapter, which serves as the
motivation for undertaking this research. A brief review of the various causes of
sticking, types of jars commonly employed in the drilling industry and the criteria
used for jar placement is discussed. This chapter culminates with a recap of the work
done in the area of jarring and jarring dynamics.

The third chapter covers the background theory on axial vibration of drillstrings.
The solution technique used is the transfer matrix method, which relates the kine-
matic and dynamic variables at cne boundary of a system to those at the other. With
a knowledge of the transfer matrices for a mass—-spring—damper system and a uniform
bar, the transfer matrix for a complex drillstring is built up. The transfer matrix,
along with the appropriate boundary conditions? is then used in obtaining the forced
response of the system. This leads us to the transfer function, which is the response
at any station due to a unit harmonic exciiation at another or the same location.

The fourth chapter focuses on the modeling details relevant to the jarring prob-
lem. The jarring event is modeled as a force impulse delivered to the drillstring. The
impulse response is obtained from the transfer function by taking its inverse fourier
transform and is subsequently windowed to smooth it. The response to a realis-

tic jarring signal can be obtained by convolving it with the impulse response. The

’Inputs are included as boundary conditions in the transfer matrix formulation, in solving for
the system response.
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daimping is considered to be uniformly distributed in the drillstring. Two different
models for the stuck region are considered — a) The distributed stiffness model and b)
The distributed damping model. The dispersion relations for these two models, and
the effect of varying levels of distributed stiffness and distributed damping on group
and phase velocities are studied. The top side boundary condition is modeled by a
mass—spring ~damper subsystem. The boundary conditon at the bit is taken to be
free, since in most cases, the drillstring gets stuck while tripping out and under these
circumstances, the bit is off-bottom.

The fifth chapter uses the models and tools developed in the earlier chapters
to analyze realistic cases. Three examples are studied in detail. The first exam-
ple considers two semi-infinite regions separated by a barrier of finite length. The
stiffness and damping values are varied in the barrier and its effect on the reflected
and transmitted waveforms (when a unit area impulse is incident on the stuck re-
gion), is studied. Example 2 analyzes a typical stuck pipe condition. This is studied
for distributed damping as well as distributed stiffness models of the stuck region.
Transfer functions (obtained from surface force measurements) are then compared for
different levels of stiffness and damping, as a means of establishing an indicator for
jarring effectiveness. Example 3 considers a case, where an impulse is delivered to
the drillpipe at the surface. The motivation behind studying this case is that, jars
typically used in the drilling industry are uphit jars, and hence the signature of the
free drillstring usually, cannot be obtained. A homomorphic deconvolution technique
known as cepstral analysis is introduced, and used to identify the exact location of
the stuck region, to compare and contrast the signatures obtained in the two differ-
ent models used to represent the stuck region, and to establish criteria for effective
jarring.

Finally, the sixth chapter concludes the study and suggestions for future work are

summarized.
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Chapter 2

Background

This chapter provides the background needed to better understand the stuckpipe
problem and serves as a motivation for undertaking this study. It starts out with the
description of a typical drillstring followed by a discussion on the causes of sticking,
types of jars and criteria for jar placement. Finally, a review of the work done so far

in jarring and jarring dynamics is presented.

2.1 Schematic of a typical rig

A schematic diagram of a typical land based rig is shown in figure 2-1 cn page 17. A

brief glossary of the commonly used terminology is included below.

Drilling rig It performs three essential functions: raising or lowering the drill pipe;
rotating the drill bit; circulating drilling mud for lubrication, counterbalancing

formation pressure and carrying cuttings to the surface.
Formation It is the extended rock mass into which the hole has been drilled.

Drill pipe It is the medium through which torque is transmitted from the top drive
or the rotary table to the bottom hole assembly. Drill pipe is added continually

as the drilling progresses. Drill pipes range from 3-5” in diameter.

16
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Drill collars They are larger in diameter than drill pipes and constitute the bottom
hole assembly. Drill collars provide a substantial weight on bit necessary for

drilling operation. Drill collars range between 6-11" in diameter.

Bottom Hole Assembly (BHA) It extends from the drill pipe to the bit and is
mostly comprised of drill collars. The BHA also includes the jars and any other

downhole sensors that may be present in the drillstring.

drillstring The entire array of drill pipes and the BHA is collectively referred to as
the drillstring.

2.2 Causes of stuckpipe

Formation related : Unconsolidated formations such as loosely compacted sands
and gravel can collapse into the wellbore forming a bridge around the drill-
string. Mobile formations like salt and plastic shales flow into the wellbore

when restraining stresses are removed thereby jamming the drillstring.

Mechanical : Poor hole cleaning leads to the overloading of the annulus between
the drillstring and the borehole wall with cuttings, causing the drillstring to
get stuck. Keyseats, or grooves cut in the borehole wall by the rotating drill
pipe stick the larger diameter drill collars when tripping out. Occasionally, the

casing may collapse as a result of excessive formation pressure causing sticking

of the drillstring.

Differential sticking : Differential sticking occurs when the drillstring gets embed-
ded in a mudcake and is pinned to the borehole wall by the differential pressure
between the mud and formation. This type of sticking gets progressively worse

with time.

18



2.3 Techniques for freeing the drillstring

There are a number of techniques employed by the drilling industry to free stuckpipe.
They range from the use of gentler measures like using spotting fluids, hole condi-
tioning and changes in hydrostatic pressure to more brute force methods like jarring.
Spotting fluids essentially change the downhole conditions so as to weaken the bond
between the mudcake and the pipe. Hole conditioning involves increasing the mud
flow rate or changing mud physical properties. Reduction in hydrostatic pressure is
used mainly to free differentially stuck pipe. When the gentler methods of persuasion
fail to produce the desired results, jarring is resorted to.

Jars are impact tools run in the drillstring to free stuck pipe and the process
of attempting to free stuck pipe is called jarring. A jar is similar in appearance
to a drill collar and it consists of a sliding mandrel inside a sleeve which acceler-
ates upwards/downwards, once the tripping load is reached causing the drillstring
above/below it to accelerate as well. Once the mandrel has traversed the stroke
length of the jar, it collides with a shouldered sleeve also known as the anvil. This
impact creates a shock wave that traverses up and down the drillstring and to the

stuck region. The intention is to break the drillstring loose from the stuck region.

2.4 Types of jars

1. Mechanical jars

2. Hydraulic jars

Mechanical jars : Mechanical jars consist of a series of springs and lock & release
mechanisms. The jar trips when the axial force reaches a preset value. The
tripping load can be set either at the surface or downhole depending on the
jar design. A schematic of a typical mechanical jar is shown in figure 2-2 on

page 20
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Hydraulic jars : Hydraulic jars do not trip at a preselected threshold. The jarring
force delivered is determined by the magnitude of the overpull. The higher
the tensile or compressive load, the sooner the jar trips and greater is the
impact. Thus the hydraulic jar has the advantage of having a continuously
variable jarring force. Also the hydraulic jar has a larger inner diameter than a
comparable mechanical jar allowing for the smooth passage of a wireline cable.
However, a significant drawback of the hydraulic jar is that repeated jarring can
overheat the hydraulic fluid thereby lowering its viscosity. This may cause the

jar to trip sooner than the desired tension/compression can be reached.

2.5 Criteria for jar placement

Criteria for jar placement normally vary from one operator to the other and also
frequently depend on the particular geographic area of the drilling operation.

However, the general guidelines followed by the drilling industry are given below.

e It is recommended that all drilling jars be run under tension irrespective
of the jar type. The primary concern with running jars under compres-
sion is accidental downjarring while drilling leading to undesirable effects
including damaging the bit. This implies that jars must be placed above
the zero-stress point in the drillstring. Consequently, BHA design, mud
weight and weight on bit are the parameters to be taken into consideration

to ensure that jars operate in tension.

e Jars should be placed sufficiently high up in the drillstring so as to minimize
the possibility of getting stuck above the jar. The trip setting of the jar is
dependent on the maximum allowable overpull at the surface and the jar

position in the BHA.

e The jar position in the BHA should be optimized so that the available
impulse to free the drillstring is maximized at the same time maintaining

a high peak jarring force.

21



2.6 Review of earlier work

Although! many of the drilling operators rely on empirical evidence and experi-
ence for jar placement, the use of computer programs nontheless has expanded
in recent years. These programs analyse wave propagation along the drillstring
during jarring to model the jarring force for various jar positions, BHA configu-
rations and well trajectories. The aim is to determine the jar position thé.t is an
optimum compromise between the magnitude of the peak jarring force and the
duration of this force at the stuck ppoint. To achieve this, placement programs

optimize two variables:

e Velocity of the BHA above the jar

e Length of the BHA above the jar

Peak force is proportional to the velocity of the BHA above the jar, since a
higher terminal velocity of the hammer implies a greater peak force albeit of
extremely short duration. On the other hand, the longer the BHA above the
jar, the longer it takes to come to rest after impact and greater is the duration
of the peak force. Note however, that the magnitude of the peak force in this
case is proportionately reduced. Most of the jarring programs are aimed at
determinining the position in the BHA where a jar can be placed to achieve the

optimum combination of the peak force and its duration.

The first significant work involving jarring dynamics addressing the above prob-
lem was by Skeem et al [14]. Their analysis was based on one-dimensionel stress
wave propagation theory in an elastic rod. A systematic wave tracking approach
was employed to derive the timing, duration and qualitative value of peak jar-
ring force at a preknown stuck point. It was concluded that the optimum jar
position depends on the magnitude of the stuck force. Furthermore, since stick-

ing in most of the cases may not occur at a point but occurs along a length, the

1Qilfield Review October 91
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peak jarring force must not only exceed the sticking force, but also be main-
tained long enough to displace the stuck portion of the drillstring. They also
assumed that the stuck point is known which often is not. Other shortcomings
in Skeem’s model included the stuck point being modeled as a rigid boundary

and total neglect of the effects of damping.

The need for a better model prompted Kalsi, Wang & Chandra [6] to come
up with a model based on the finite element method. A non-linear transient
dynamic analysis was performed using a general purpose FEM code to track the
stress and displacement waves through the drillstring. The damping in the drill
collars and mud and the magnitude of the sticking force were assumed. Time
histories of displacent, velocity, acceleration and impact force were obtained
at different locations along the length of the drillstring. However, this FEM
analysis requires extensive computational facilities & long solution times and a
high level of engineering expertise to perform the analysis and to interpret the

results.

Practical analysis in the field required that jarring programs be as versatile as
possible and easy to interpret without any significant amount of post-processing.
This led to the development of two jarring analysis programs, one by Askew [2]
of Anadrill and another by Wang et al [17]. Askew’s Computerized Analysis &
Placement (CAP) program models the BHA and predicts forces at the stuck
point for a given jar location and trip setting. The program also suggests
optimal trip setting and BHA design for effective jarring. The jar placement
program by Wang & colleagues improved upon Skeem’s work by including the
effects of drill collar movements below the jar and the use of Heavy Weight Drill
Pipe (HWDP) in the BHAs.

Despite the recent advancements made in developing increasingly better pro-
grams for jar placement, the nature of the sticking mechanism is not well enough
understood to be modeled accurately and the peak force required to free the

drillstring is apriori unknown; hence optimization of jar location is an issue yet
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to be resolved completely.

24



Chapter 3

Axial Vibration of Drillstrings

The drillstring is essentially a very long shaft used to transmit energy from
the surface to the bit. Most of the drillstring except for a small portion above
the surface is concealed and hence one cannot rely on visual senses to infer
the dynamic behaviour of the drillstring. Consequently, the knowledge of the
behaviour of drillstrings under different operating conditions is significant, since

the dynamic stresses along the string dictate its life and that of the drill bit.

This is particularly so in the case of jarring where large dynamic stresses come
into play when the hammer impacts the anvil. Many downhole tools are now
mounted on the drillstring BHA close to the bit. For these tools to provide
a reliable and an economic service, they must endure the high stresses caused
by jarring. Furthermore, for any jarring operation to be effective, the highest
stress should be at the stuck region and not at arbitrary locations in the BHA,
which could result not only in ineffective jarring, but also damage special tools
or take away from the life of the drillstring and the bit. Thus there is no
exaggeration in stating that understanding the dynamics of drillstrings is of
primary importance in improving the efficiency of the drilling process and in

increasing the effectiveness of the jarring operations.
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3.1 One dimensional wave propagation model

of drillstring axial vibration

Typically, a drillstring or any shaft for that matter, can undergo vibration in
three principal modes: axial, torsional and lateral. Among these, axial vibration
is the most conspicuous at the surface and has been analyzed in great detail in

the literature starting with Dareing [4].

The phenomenon of jarring lends itself particularly well to being modeled as
an axial wave propagation problem since it involves an impact between two
long extended elastic members leading to the propagation of transient stress
and displacement waves in the drillstring. The drillstring can be considered
as a one-dimensional elastic medium with piece-wise constant properties. The
analytic formalism for axial wave propagation in drillstrings is well established

and the reader may refer to Hyun Lee’s thesis (8] for further details.

In the proposed model, the effects of lateral motions due to bending and whirling
are neglected and axial and torsional vibrations are assumed to be uncoupled.
Since the differential equations of motion and the boundary conditions for the
longitudinal and torsional motions are similar, the same general solution can be

used for both cases.

In the analytical model, the drillstring is modeled as a step-wise uniform bar and
the surface/topside boundary conditions are modeled with appropriate masses,

springs and damping elements.

The one-dimensional axial wave propagation in a uniform bar is governed by

the following partial differential equation

1 8% O%*u R 0u Ku

2otz 9z EAOt EA

(3.1)

where
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E.
Cc = \/—p— (3.2)

E: Young’s modulus of the bar (N/m?)

A: Cross-sectional area of the bar (m?)

R: Distributed damping constant per unit length (N — s/m?)
K : Distributed stiffness per unit length (N/m/m)

c: Speed of longitudinal wave propagation (m/s)

u: Longitudinal displacement at any given location

p: Volume density (K g/m?)

Note that all the assumptions mentioned earlier are implicit in the above equa-

tion. For the purpose of completeness, they are again listed below.

o The bar is homogeneous i.e. material properties are spatially invariant.
¢ Plane, parallel cross-sections remain plane and parallel.

Stress distribution is uniform over the cross-section.

Lateral inertia effects associated with contraction-expansions in the lateral

direction have been ignored.

Also, an additional term involving the distributed stiffness has been introduced
into the wave equation. Although the introduction of this term doesn’t partic-
ularly change the form of the solution to the wave equation, it manifests itself

in the “dispersion relationship” which will be discussed in a future section.

3.2 Solution Technique: The Green’s function

approach

The solution to the wave equation is obtained by calculating the displacement

response at any position (0< z < [) in the rod due to applied unit harmonic
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axial forces at the top or bottom boundary. The mobilities of the uniform
rod are calculated from these displacements which are then used to build the

transfer matrix for the bar.

The following governing equation with boundary conditions is solved for the

displacement response using the Green’s function approach.

0%u Ou 0%u
A— +R—+ Ku=FA_— 3.3
Gl TR T da? (3:3)
Ou
EA%(:B =1l)=e"t (3.5)
where
u : longitudinal displacement
z,t : axial coordinate, time coordinate
p, E : density, elastic modulus
R : damping constant per unit length
K : stiffness per unit length
l : length of the bar

The solution of equations (3.3) to (3.5) is:

cos kz

" EAksin kl

U =

(3.6)

where

k= (= - =) —i— (3.7)

Figure 3-1 on page 32 shows the free body diagram of a uniform bar. The dis-
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placements (up,ur) due to the forces at both the ends (Fg, Fi) can be obtained

by using the mobilities of the uniform bar as follows:
u M M F
R _ RR Mgy, R (3.8)
ur Mg, Mpp Fy,
The mobilities M’s are responses due to a unit harmonic force, and are defined

as:

Mpr : displacement at the right end due to a unit force at the right end
Mp;, : displacement at the right end due to a unit force at the left end
Mygr : displacement at the left end due to a unit force at the right end

My, : displacement at the left end due to a unit force at the left end

From the above solution, Mg, and M can be obtained

1

Mre = — g (3.9)
cos kl )

M = — 5 aken (3.10)

Since we are considering a uniform bar, Mgrr and My have equal magnitudes

but differ in signs, which is also true of My p and Mpgy:

Thus,

coskl _ 1
{ UR } | BEaksinm EAksinkl { Fp } (3.11)
1 cos kl ‘
uL EAksnkl  EAksinkl Fi
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3.3 The Transfer Matrix Method

The key modeling tool used throughout this thesis is the “Transfer Matrix”.
The transfer matrix is a linear transformation, which relates a state vector
at one cross-section of an elastic system to the state vector at the succeeding

cross-section namely,

= [T]zf’ (3.12)

This is a difference equation, where the matrix [T'] can be thought of as a
spatial state transition matrix cvaluated between L and R. The state vector
zf at a point R of an elastic system is a column vector, the components of
which are the displacements (or rotations) of the point R and the corresponding
internal forces (or moments). Thus the transfer matrix relates the kinematic
and dynamic variables at one boundary of a system (say, the left in the case of
a pipe system) to those at the other (the right of the pipe system). The transfer
matrix method is ideally suited to systems that have a chain-like topology i.e.
cables, rods, beams etc. The transfer matrix for a system can be found by
manipulation of the dynamic equations of motion of that system. Its formulation
assumes a harmonic time dependence (e*) in the equations of motion. The
transfer matrix is usually of even dimension and so is the state vector. A more

complete discussion on transfer matrices can be found in Matriz Methods in

Elastomechanics (7).

3.3.1 Coordinate System and Sign Convention

Signs are often a source of confusion when dealing with transfer matrices and it
is imperative to clearly define the sense of positive quantities. We make use of a
right -handed coordinate system, the z axis coinciding with the centroidal axis

of the elastic body. A cut across the body exposes the two faces, and the face
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whose outward normal points in the positive direction of the z axis is known as
the positive face, the other being the negative face. Displacements are positive
if they coincide with the positive direction of the coordinate system, and forces
are positive if, when acting on the positive (negative) face, their vectors are in

the positive (negative) directions.

3.3.2 Transfer Matrix for a Uniform Bar

The transfer matrix of a uniform pipe system of finite length hence relates the
state vector zg (right boundary) to the state vector z; (left boundary) as shown
in figure 3-1 on page 32. In our case and in the remainder of the thesis, the
pipe systems are modeled with 2x2 transfer matrices, which in turn means that
each state vector is 2x1. The quantities of interest, here are, the longitudinal
displacement of ths pipe and the internal force in the pipe. The transfer matrix

then obeys the following relation:

u T T u
R _ RR 1RL L (3.13)
Fr Ter Trp Fr
where
ur : displacement at the right boundary
u;, : displacement at the left boundary
Fp . force at the right boundary
Fr : force at the left boundary
Trr : displacement at the Right boundary due to a unit harmonic force

at the Left boundary

R,L : subscripts indicating the right and left boundaries

Since the mobility matrix for a uniform bar has already been determined in
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UNIFORM BAR
ELEMENT

Figure 3-1: Free body diagram of a uniform bar element

equation 3.11, it is a matter of simple algebra before one gets the transfer

matrix for a uniform rod.

Thus,

T T kl sin kl
m o= | R = | Bk (3.14)
TLR TLL —FEAksin kl cos kl
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c [—| K MASS-SPRING-DAMPER
ELEMENT

Figure 3-2: Free body diagram of a mass—spring-damper system

3.3.3 Transfer Matrix for a Mass—Spring—Damper System

The free body diagram of a mass-spring-damper system is shown in figure 3-
2 on page 33. The transfer matrix relates the displacement and force at the
lower end (ug, Fr) to those at the upper end (ur, F). The transfer matrix is
a function of frequency 'w’. They are so called because they 'transfer’ or map

the state vector at one position L (zF) to the state vector at position R (25).

For the case of a siinple mass-spring-damper system, the Transfer matrix can

readily be determined to be :
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T T
ur | _ | Trr Tre ur, (3.15)
Fr Ter Too Fy,

where
Trp T 1 vy
[T] = RR RL _ K+uuC'2 (316)

Tr Tic ~w'M 11— s

ur, Fr, : displacement, force at the upper (left) end

ug, Fr : displacement, force at the lower (right) end

M : mass

o : damping constant (Force/unit velocity)

K : spring constant ( Force/unit displacement)

3.4 Modeling the Drillstring as a Complex Pipe
System

In sections (3.3.2) and (3.3.3), we have seen the development of transfer matrices
for a uniform bar and for a mass-spring-damper system. Now we proceed to do
the same for a drillstring which can be modeled as a combination of uniform rods
and mass—spring-damper elements. The advantage of using the transfer matrix
formulation is that it is tailored for exploitation by digital computers and hence
is computationally far more efficient than Finite Element techniques. Thus, with
the knowledge of transfer matrices for common elastic elements, it is possible
to build up the transfer matrix for a complex linear one dimensional system

by linking the constituent elements in a chain-like manner with appropriate
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compatibility conditions imposed between adjacent elements. The various bar

elements could vary in :

Geometric properties : changes in cross-sectional area A and/or length [
Physical properties : changes in distributed stiffness K or distributed
damping R

It is in the utilization of the latter idea to investigate the problem of jarring,

which is the principal contribution of this research.

Consider the non-uniform pipe system in figure 3-3 on page 36 which is repre-
sentative of a typical drillstring. An analytical model can be easily constructed
with just a knowledge of the transfer matrices for homogeneous finite pipe sys-
tems. The complex non-uniform pipe system can be reduced to represent a
combination of a finite number of uniform pipe systems connected together.
The relationship between state vectors at two adjacent stations for the jt* sub-

system is given by :

2 = [T)zf (3.17)

The compatibility conditions yield the relationship between adjacent subsystems
as:

zfﬂ = [C;] [z;-'2 + terms due to forcing function] (3.18)

[C;] is known as the Compatibility matriz and it ensures that kinematic and dy-
namic boundary conditions are satisfied at the junction between two subsystems

with respect to displacements and internal forces.

3.4.1 Free Vibration Response

The boundary conditions to be satisfied at the interface are:
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TRANSFER MATRIX FOR A NON-UNIFORM FINITE PIPE SYSTEM

FREE VIBRATION CASE
1 2 3 j n-2 n-1 n
R
L u
R L
u —_— —_— )
J i u _ [T] u
L —-— — F )
F j F. j i
J
R L R
L u u u
u i g+l j*l L R
j— ' . —t - u u
Lw— ) Fe-. ] i+ —— - [C;I F
Fj R L R +1 )
F. F !
j j+l j+l
R
u
L j+l R
[§ — .
j ) 8 e | = BB
] = 16 ]
- i . .
L R F j+l j j F
F F j+1
J j+l )

Figure 3-3: Transfer matrix assembly for a complex pipe system: (Free vibration case)
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1. Continuity of displacements at the junction

uf’H = u? (3.19)

2. Force balance at the boundary

FlL,=F} (3.20)

The steps leading to the synthesis of a relationship between state vectors
of a complex pipe system is shown in figure 3-3. It is evident that it is
possible to progress through the structure by multiplying the transfer and
compatibility matrices according to equations 3.17 and 3.18, so that the
state vector at the far end, z%, is related to the state vector at the starting

end, zL, by an equation of the form:

25t = [Tal(Ca-s)[Taca) o [Ty [GTS)- [T ) [T 20 (3.21)

Since the compatibility matrix [C] is an identity matrix in our case,

we get,

28 = [To)[Ta-a - Tyl (T3] [Tl [ T) 2y (3.22)

The preceding matrix relationship contains 4 variables related by 2 equa-
tions. If any two variables are specified through boundary conditions, then
the two unknowns can be solved for in terms of these specified quantities.
One can hence obtain the natural frequencies and mode shapes as detailed

in Rama Rao’s thesis [12].

3.4.2 Forced Vibration Response

Consider the complex pipe system shown in figure 3-4 on page 39 with an

external harmonic forcing function imposed at the junction between the j¢* and
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the j + 1** subsystems. The external excitation could be either a displacement
or a force excitation. Depending on the kind of excitation, the kinematic and
the dynamic boundary conditions and hence the compatibility requirements at

the junction get modified to account for the forcing term.

1. Continuity of displacements at the junction (displacement excitation)

Ufp) = UT = Uee,j (3.23)

where

Ueze,j 1 the forced displacement excitation between the 7" and the j + 1th

subsystems

2. Force balance at the boundary

FR=Ff, £ Fezes (3.24)

where

Feze,j denotes the external forced excitation at the interface between the j th
and the j + 1** subsystems. The sign to be chosen depends on the manner
in which the external excitation is defined. Note that the sign convention

adopted must be consistent with that defined in section (3.3.1).

In the case of a force excitation as shown in figure 3-4 and recalling the sign

convention defined in section(3.3.1), one can write :

by = (G T2F - (6] [{0 Feoes}"] (3.25)

It can be seen that the compatibility requirement as defined by equation 3.18

can now be written as :

zf+1 = [C;] [[Tj]---[Tzl[CI][Tl]Zf'—{0 fezc,j}T] (3.26)
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TRANSFER MATRIX FOR A NON-UNIFORM FINITE PIPE SYSTEM

FORCED VIBRATION CASE
exc, j
INTERFACE
F
exc,j | .
1 2 3 j | j+1 n-2 n-1 n
R
L u
u R
e e i —_—— ]

F j Fj j
exc, j
e L
uR R L R u _ =
L . F. u u F _ Cj
u- ] j j+l j+! a
J e i ~—] L — - B )
L j - F o < i !t
F R — [e]
j E, L R I:CJ_
I:j+| j+l
exc, j R R
u —
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u — ! [j“ J Tj
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L<_ .’+‘ - _|+l
R
F F 0
J j+l - T’+l Cj]
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J

E
exc, j
L.
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Figure 3-4: Transfer matrix assembly for a complex pipe system: (Forced vibration

case)
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Stepping through the structure by multiplying the transfer and compatibility
matrices, as was done in the “Free Vibration Response” case,

one obtains,

B = [T][Cat)(Tact)olC [T TICITE — {0 Fraes}™]  (3:20)

= [Tn][cn—l](Tn—I]"'[TZ][CI][TI]Z{; - [Tn][C —1][Tn—1]"'[cj] { ° . } (328)

In all our analyses, the compatibility matrix [C] is an identity matrix, which
can be seen trivially.

Hence, we obtain,

2! = (T)[Taer] -T2 [Th) 20 — [T T, _11.--[TJ-+11{ ’ } (3.29)

)< - m{ ’ } (3.30)
Feze,j

Expaading, we get,

R m,, I L ry T 0
f S B P S O I (3.31)
Ff II,, IIp, FIL [ Ta fe-‘tc.j

The power of the transfer matrix approach lies in the fact that the unknown

quantity say, the force at the left end of element 1 need not be carried through
each station as in the algebraic set of equations. This makes it amenable for

manipulation by a computer.
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Once again, we have 4 variables and 2 equations. If any 2 variables are specified,
then all the components of the state vectors z2 and zf would be known. The
“Drillstring VIBration” program (DSVIB) written by H.Y.Lee (Ph.D’91) [8]
models the drillstring as a complex pipe system consisting of uniform bar and
mass-spring-damper elements where the top' (Left) boundary is fixed. Hence,
only one additional condition, either displacement/force at the bottom (Right)
boundary is required to solve for the remaining 2 unknowns namely, the force
at the top fixed boundary and the force/displacement at the bottom boundary

in terms of the excitation force.

Thus, equations 3.31 with u¥ = 0 reduce to
uf = H12 FlL - Fl2 fczc,j (332)

Fv? = HZZ FlL - F22 fczc.j (3.33)

which can be solved for FIL.

Once the force at the top fixed end is known, the state vector at any junction
within the complex pipe system can be determined by multiplying the transfer
matrices of individual subsystems between the junction and the top boundary.
If for example, the state vector at the bottom of subsystem n, z2 (refer figure 3-

4) is to be determined, we would have,

forn < j

B = [T)[Tu1)...[To)[T)) 0 (3.34)
F

forn > 3

1

“upper” is used synonymously with “Left” &
“lower” is used synonymously with “Right”
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R = [T[Tas]. [T F‘f TN T ATl L (339)

1 exc,j

Thus the response of the structure at any arbitrary point to a harmonic force
excitation can be determined by subdividing the structure so that the excita-
tion and response locations lie on boundaries between subsystems. A similar
approach is utilized to find the response to a displacement excitation. The

displacement response to an imposed harmonic force ezcitation is calculated at

the input location. This can be treated as a displacement excitation at the

input location and the state vector at any other desired station can be thought

of as the response to this displacement input.

3.5 The Transfer Function

The ratio of the fourier transform of a response to the fourier transform of a
source is called the system function H(w). System functions could be either
driving point functions or transfer functions depending on whether they relate
the response to the source at the same or different stations. The ratio of the
output to the input yields the transfer function between the state variable of
interest and the harmonic excitation. Since the transfer matrix is a function of
frequency, it follows that the transfer function is also frequency dependent. In
the preceding section, we saw how the response at any station due to a harmonic
excitation at a specified location could be obtained using the transfer matrix
formulation. Specifically, we considered cases where the input was either a force
or a displacement and the response was a state vector of displacement and force
at the desired location. It is a simple extension to calculate the transfer function
for velocity/acceleration input and/or velocity/acceleraiion response, once the

transfer function with a displacement input and/or a displacement output has
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been evaluated.

To illustrate, if the transfer function between a velocity response and an accel-

eration input is desired, we would first evaluate:

X(w)out t
Hxx w) = i L (336)
(«) X (w)inzmt
where
Hxx(w) : Transfer function between a displacement output and
a displacement input
X (w)output : Fourier transform of the displacement, at the response
location
X(w)input : Fourier transform of the displacement, at the input
location
Now, extending this further,
V(w)
Hys(w) = ——=
= )
. iwx(w)output
—w2 X (W )input
—H
_ —iHxx(w) (3.37)
w
where
Hy s(w) : Transfer function between a velocity output and an
acceleration input
V(w)output  : Fourier transform of the velocity, at the response loca-
tion
A(W)input : Fourier transform of the acceleration, at the input lo-
cation
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The essential feature of the transfer function is that a stimulus of harmonic
form at a given frequency produces a response that is of the same form and
the same frequency regardless of the choice of frequency. Thus, we can speak
of a harmonic response to an harmonic input. This basic property is a conse-

quence of Linearity and T ime invariance and we shall exploit this property of

Linear systems to understand the jarring dynamics of drillstrings.
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Chapter 4

Jarring Dynamics of Drill Strings

Most of the research work in jarring dynamics to date has laid focus on trying
to optimize jar placement in the drill string so that an optimum combination
of peak force and duration of this peak force is delivered to the “stuck region”,
when the jar is tripped. However, neither the magnitude of the sticking force
nor the location of the stuck point/region are known in advance which make
the task of jar optimization extremely difficult. The jar placement programs
currently in use by the drilling industry observe the following guidelines in their
approaches to seeking out the best possible location to run the jar in the drill

string :

e The magnitude of the sticking force has to be greater than the trip thresh-
old set for the jar, as otherwise the drill string would break free under the

overpull force applied at the surface and the need for jarring does not arise.

o The stuck region is assumed to be in the BHA and usually near the bit, as
it is the larger diameter drill collars which normally get stuck while pulling

out.

Though these guidelines serve as a useful tool in developing better BHA designs
and improved jar placement programs, they are nevertheless limited in their

scope just because of the assumptions they are based on. To illustrate, the
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sticking force could either be 10 times greater than the peak jarring force or
of the same order of magnitude as the peak force; in each case however, one
would obtain different results for the optimum jar location. Hence, one is led to
believe that unless the nature or type of sticking most likely to be encountered is
known apriori and its mechanism well understood in order to be able to predict
the magnitude of the jarring force needed to overcome it, the jar placement

programs will have to live with their limitations.

This thesis, therefore deviates from the commonly addressed problem of jar
placement optimization and focuses instead on real issues of relevance to the
drilling engineer on encountering stuck pipe. The aim is to extract useful in-
formation from surface force and acceleration measurements when the jar is
tripped. In the jar placement optimization problem, it was unnecessary to
track signals transmitted into the drill pipe and up to the surface because the
drill pipe is much longer compared to the BHA and consequently, by the time
the signal returns from the surface the primary jarring event! would be over.
The emphasis of this research however, is to interpret surface responses when

the jar is released to infer the nature of down-hole sticking.
Specifically, the following questions are raised:

o Is the location of the stuck region determinable from surface measure-

ments?

e Can anything be inferred about the nature of the stuck region by inspection
of surface responses ?... Does the stuck region behave as a conservative

medium or is it absorptive in nature ?

o Is the jarring proving to be effective ?... Are we making progress towards

freeing the drill string ?

All of the above mentioned points are of great importance to an on-site field

engineer who when faced with a stuck pipe situation has to decide on the future

' Drill string Dynamies During Jar Operation: Skeem et al JPT Nov’'79
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course of action under time constraints. One could easily end up jarring for days
without any significant improvement causing both loss of time and money if no
method of evaluation of jarring effectiveness is available at hand. An attempt
has been made in this thesis to shed light on the questions raised above and

thus pave the way for a whole new perspective in looking at the jarring problem.

4.1 Modeling the Jarring event

The essential features of a drilling jar are the hammer, the anvil and the detent
mechanism as was explained in chapter 2. In the event of stuck pipe, the hook
load at the surface is increased (for up-hitting jars) sufficiently to cause the jar
to trip. The amount of overpull? exerted must be below the allowable tensile
load that the drill string can withstand safely. Once triggered, the hammer,
all of a sudden goes from a pre-stressed state to a stress—free state and this
sets up a stress release wave which propagates towards the surface. However,
due to the cross-sectional discontinuity at the drill collar/drill pipe interface,
this compressive relief signal is predominantly reflected as a tensile signal back
towards the jar. As a result the hammer speed increases in a step-wise manner
as each stress wave reflection arrives from the drill collar/drill pipe interface.
Impact occurs when the distance between the released ends reaches the jar stroke
length. The impact force magnitude, which can be several times the tripping
threshold for the jar, depends on the velocities of the hammer and anvil at the
time of impact. After impact stress waves propagate from the jar both upwards
and downwards as the hammer and anvil are now in contact with each other.
These stress waves travel to the stuck region and attempt to dislodge the drill

string.

As a first step in the analysis of the jarring phenomenon, a suitable means to

model the jarring event needs to be formulated. The hammer and the anvil

2Qverpull = Hook load - String weight
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can be modeled as uniform bars of identical material and cross—sectional areas,
but dissimilar lengths. The jarring action can be considered as a longitudinal
collinear impact between the hammer which has a finite uniform velocity at
the time of impact and the anvil which is assumed to be “stationary”. Truly
speaking, the anvil end starts to move downward immediately after the release
of the jar for an interval of time during which the compressive wave travels down
and is reflected from the stuck region back to the anvil. A relief wave then starts
at the anvil since the anvil end is now a free boundary, and propagates towards
the stuck region. This cycle repeats itself with the anvil end oscillating up and
down until impact occurs. The effects of the motion of the anvil and the lower
drill collars was first accounted for, by Kalsi et al [6] in their FEM approach to
jarring analysis. They included the stuck location as one of the parameters in

the determination of jarring force time histories in the BHA.

Our objective is to determine the location and the nature of the stuck region.
Hence, it is not possible to take into account the anvil velocity at the time of
impact, since it is a function of the length of the drill collar section between
the stuck region & the anvil end, and also of the reflected stress wave from
the stuck region. The magnitude of the reflection coefficient strongly depends
on the type of sticking mechanism in play and therefore any assumption about
the boundary condition at the stuck region would be erroneous. It is due to
these constraints that the lower drill collars are assumed to be stationary at
the time of impact. After impact, upward and downward propagating stress
waves are created in the hammer, and the wave action occurring for ¢ > 0 is
governed by the interaction of these propagating waves with various boundaries
and discontinuities including the junction between the hammer and the anvil.
Since we have assumed that they are identical in cross—section, there is in effect
no discontinuity and the stress wave propagates across the interface to the anvil

and through the lower drill collars to the stuck location.

We therefore end up with two rectangular force pulses of equal magnitude and

duration propagating away from the site of impact. These force pulses are
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modeled as dirac—delta functions in the time domain. We shall see in a later

section how the finite duration of the pulse is accounted for in our analysis.

By definition, the dirac-delta function satisfies the relationship

§(t)=0, t>0 (4.1)

and

Lwanu=1 (4.2)

However, the impulse symbol §(t) does not represent a function in the sense in
which the word is used in analysis and the above integral is not a meaningful
quantity until some convention for its interpretation is declared. Here, it is used
to mean

: ® t—3 d

/YA | S L
where 77! [] {:Ti} is a rectangle function of height 7~! and base 7 and has unit
area; as T tends to zero, the magnitude of the pulse generated tends to co. The
value of the integral, in the limit goes to unity. Also note that the lower limit

of integration is 0 and not —oo. This is because we do not have an input for

t<0.

In the use of digital signal processing techniques, we work in a discrete domain
and hence one cannot achieve a true unit impulse. However, one can approach

the ideal case by making the duration of the impulse sufficiently small.

The advantage of modeling the jarring event as a unit force impulse lies in the

fact that, as the applied pulses are made shorter and shorter, the response

settles down to a definite form. The form of the response is then independent of

the input pulse shape, be it rectangular or triangular. This is because the high
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frequency components, which distinguish the different applied pulses, produce

negligible response.

4.1.1 Calculation of the Impulse Response

In chapter 3, we saw how a Transfer function between an output quantity of
interest and an input harmonic excitation could be calculated using the Transfer
matrix approach. The Transfer function H(w) gives the steady state response of
a system to a harmonic input. By calculating H(w), we completely define the
dynamic characteristics of the system over the frequency range of interest. In
this subsection and the next, we seek to determine the response of the system
to a unit “Impulsive input” of the form described in section (4.1). The response
to a unit impulse at ¢ = 0 is represented by the Impulse response function h(t).
For any physically realizable system, the effects never precede their causes and
hence the response to an impulse at ¢ = 0, must be zero for negative values of

t:

h(t)=0 t<0 (4.3)

Since complete information about either H(w) or h(t) fully defines the system
characteristics, one must be able to derive one from the other. The two are

related as follows:

Hw) = /O“h(t)e-iwdt (4.4)
ht) = 51; : H(w)e™ dw (4.5)

Equations 4.4 and 4.5 represent the Fourier Transform pair
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4.1.2 Numerical Implementation : The Discrete Fourier

Transform

Since the experimental measurements at the rig and our numerical simulations
are carried out using algorithms from digital signal processing, it is necessary

to understand how they are actually implemented.

A typical function to be measured z(t) (time history of force or acceleration at
the surface, say) is fed through an A/D converter which samples the function
at a series of regularly spaced times as shown in figure 4-1. If the sampling
interval is At, then the discrete value of z(t) at time ¢t = 1A is written as z; and

one obtains a discrete time series {z;}.

In practice, we only have a finite record length of the sample function to work

with. Hence, z(t) is assumed to be a periodic function with period T'.

We then have,

z(t) = cle? T - Z [an cos(nwot) + by, sin(nwot)) (4.6)
where
wo = %’T’ (4.7)
T
a, = /0 z(t) cos(nwot)dt (4.8)
T
b, = / z(t) sin(nwot )dt (4.9)
0
If we define
Cn =an, — jbn (4.10)
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Figure 4-1: Discrete sampling of a continuous time function

we get using equations 4.6, 4.8 and 4.9,

T .

Ca = [ alt)erimntay (4.11)
0

2(t) = 3 %"ef"wo‘ (4.12)

For a discrete time series, the integral in equation 4.11 is replaced by a summa-

tion and we obtain,
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N-1

C, = Zz;e‘jn%‘A‘At (4.13)
=0
N-1 ams
= Y zie "N IAL (4.14)
i=0
Denoting,
Cn
. = — 4.1
X At (4.15)
W = % (4.16)
we get,
P ]
Xo = ) zW™ n = 0.(N-1)
=0
(4.17)
N-1 X )
o= Y —W™ i = 0. (N-1)
n=0 N

Equations 4.17 represent the Discrete Fourier Transform pair and form
the bases of all calculations involving switching between time and frequency
domains. One must however be careful to avoid aliasing while using discrete
fourier transforms. Aliasing could occur in time/frequency domains depending

on whether one proceeds from frequency domain to time domain or vice-versa.

Aliasing can be avoided if,

e The sampling frequency (f,) is greater than twice the highest frequency
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component (fy) in the signal, i.e.

f 1

= e— 1
s At > th (4 8)

o The time series is low pass filtered before digitizing to remove all frequency

components greater than half the sampling frequency before beginning the

1

a7 hz is also referred to as the Nyquist frequency

analysis. The frequency
or the folding frequency.

The discrete fourier transforms are implemeuted using the Fast Fourier Transform
algorithm (FFT). A complete discussion on the FFT can be found in “Discrete

Time Signal Processing” by Oppenheim and Schafer [13].

4.1.3 Smoothing the Impulse Response

The Impulse response function is calculated by taking the Inverse Fourier
Transform of the Transfer function as was explained in subsection (4.1.1). Since
we are computing the response to a Dirac-Delta function by taking the transform
of a Frequency response function® which has information only up to a certain
limiting frequency, there is an overshoot associated with any sharp change or
discontinuity in the calculated impulse response. This is commonly referred
to as the Gibb’s phenomenon. The overshoot, amounting to 9 percent of the
amount of discontinuity, remains at 9 percent as higher frequency components
are included in the Transfer function, but the maximum is reached nearer to the
discontinuity. The same applies to the minimum that occurs on the negative

side.

To overcome this problem, several smoothing functions (Window functions)
have been proposed, but which is the optimum ? The answer to this largely

lies in the purpose of analysis and what we are trying to see in the calculated

3 Transfer function and Frequency response function are used interchangeably
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response. Although windowing the response is helpful for interpretation, there
are a number of accompanying effects that may be introduced which distort the

true picture. Some of these effects are listed below.

1. If there is a narrow feature of interest, then smoothing would give an
erroneous value for the magnitude and a large value for the width and
may also introduce a side-lobe structure. Thus, if the absolute strength
measurement of the signal (say, the peak jarring force as measured at the
surface) is of interest, then one must be cautious before proceeding to

smooth the response.

2. If there are closely spaced features in the measured response, then smooth-

ing would smear the features at the cost of resolution.

Thus, the decision to use a window and the type of window function to be used
to smooth a response is an engineering judgement, based on experience and

goes beyond the realms of mathematical analysis.

In our analysis, the principal use of a window is to reduce the high frequency
oscillations (low pass filtering) in the impulse response caused as a result of the
Gibb’s phenomenon. A Blackman window was used to smooth the impulse

response function. It is defined by the following equation :

wa(t) = 0.42-05cos (&) +0.08cos (%7); 0<n<M (4.19)

= 0 otherwise

Of all the commonly used windows, the Blackman window has the lowest peak
side-lobe amplitude with a reduction of -57 dB relative to the main lobe. The
price paid for this enormous reduction achieved in the side-lobe levels is an

increase in the width of the main lobe.
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4.2 Response to a Realistic Jarring Signal

In practice, imperfections in the physical system and inadequacies of the gov-
erning theory cause deviations of the generated pulse from the ideal rectangular

shape. In a realistic case, one would observe either of the following.

1. The corners of the pulse are rather rounded and the rise and fall of the pulse
is nearly not as sharp. This is generally a result of the contact surfaces of
the hammer and the anvil not being perfectly flat. It could also he due to

the finite response time of the measuring systein.

2. There are high frequency oscillations on the rise and fall of the pulse. This
is a consequence of lateral inertia and other higher order effects neglected

in the original development of the theory.

A complete review of the various theories on “Axial impact of rods” can be

found in Wave Motion in Elastic Solids by Karl F. Graff [5].

In subsection (4.1.1), we saw how the response of a system to a unit impulse
could be calculated. The impulse response function h(t) gives the response at
time ¢ to a unit impulse applied at time £ = 0. Any arbitrary input function
z(t) can be considered to be a continuous series of small impulses. For a linear
system, using the principle of superposition, one can obtain the total response
y(t) by adding together the separate responses to all the “impulses” which

constitute z(t).

Thus one obtains,

y(t) = /0°° o(r)h(t — )dr (4.20"

Equation 4.20 is also known as the convolution integral or the Duhamel’s super-
position integral and is a very important input-output relationship for a linear

system.
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4.2.1 Modeling a Realistic Jarring Signal

It was pointed out in section 4.2 that higher order stress effects and lateral
inertia effects cause a deviation of the pulse shape from that predicted by ele-
mentary theory. Aarrestad and Kyllingstad [1] have modeled the jarring cycle

as consisting of five phases, namely,

Loading phase : An overpull is applied at the surface so that the axial force
at the jar reaches the tripping threshold. This phase lasts a few seconds

for mechanical jars.

Acceleration phase : This is also known as the pre-impact phase and is the
time duration between the tripping of the jar and the time of impact of
the hammer with the anvil. The duration of this phase ranges from 50 ms

to 200 ms.

Impact phase : The jar hammer collides with the anvil during this phase

lasting 50 ms to 100 ms.

Post—-impact phase : It essentially consists of the ringing effects as a result
of the impact delivered to the BHA. This phase lasts until the drill string

has come to a complete rest again.

Resetting phase : The drill string is slacked off a little bit to have tie jar

reset and ready for a new jarring cycle.

In this thesis, we consider only the impact phase for modeling the realistic
jarring signal as it is during this phase that the BHA is exposed to high stresses
and the principal jarring event occurs. The impact phase is modeled by a

discrete cosine function of the following form :

0.5—05cos[22] 0<n<M

z,(t)

(4.21)
=0 otherwise
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where

M is the number of points chosen to represent the function and is a measure of
the width of the pulse.

For a given resolution in the time domain, (determined by the FFT length
and the frequency domain resolution) a high value of M yields a broad pulse,
whereas a low value of M describes a narrow pulse. Thus, a suitable value of M
can be chosen, depending on the duration of the impact phase to approximately
represent the true jarring signal. Note that in any event, the amplitude of the
signal represented is always unity. This can be scaled up or down based on the

amplitude of the actua! jarring force.

4.3 Modeling Damping in the Drillstring

The response of a drillstring to excitation is sensitive to damping. Kim Van-
diver and Hyun Lee [15] have noted that the damping in the drillstring can be

attributed to the following potential sources:

1. Internal hysteretic losses in the drillstring material.

1S

Radiation losses to the surrounding formation.

3. Viscous losses due to drillstring movement relative to the wall and to the

mud.
4. Damping mechanisms in the bit and in the rock.

5. Damping at the surface due to the draw works and the power swivel.

In the case of a stuck drillstring, only the hysteretic and radiation losses need
be considered since the damping at the surface is relatively small. However,
below a kilohertz, even sound radiation losses are negligible. For the purposes
of this study, the internal damping in the drillstring was modeled as a constant

uniformly distributed damping except in the stuck region, the models for which
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will be discussed in the next section. Strictly speaking, the internal damping
constant is a function of frequency, but since the frequency dependence is not
exactly known, and to keep the analysis simple, a frequency independent dis-
tributed damping constant was chosen. The value of the damping constant se-
lected was such that, a unit force impulse originating at the jar location would
sustain itself through about two roundtrips of a free drillstring before dying

away.

The damping in the drillstring during normal drilling operations would include
all of the factors enumerated earlier. The damping at the bit is intimately
connected with rock fracture mechanisms and is a topic under current research.
In this thesis, the damping constant while drilling was taken to be the same as
that when the drillstring was stuck, mainly for the purposes of simplicity and

easy comparison of results between stuck and free cases.

4.4 Modeling the Stuck Region

In chapter 2, the various causes of stuck pipe were reviewed briefly. These causes
have been known for a long time now; it has been the inability to model the
sticking mechanisms and incorporate them into the programs currently used for
jar placement optimization that have predominantly kept them from achieving

complete success. In this section, two models for the stuck region are analysed:

1. The Distributed Damping Model

2. The Distributed Stiffness Model

Both these models represent ideal cases. In the disiributed damping model,
the stuck region is thought of as a purely dissipative* region which serves to
absorb the energy input as a result of jarring. Consequently, very little energy

reaches the surface. The distributed stiffness model® on the other hand models

4 Differentially stuck pipes could be modeled as purely absorptive regions as a first approzimation
5 Keyhole seating could be modeled as a localized region of high stiffness
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the stuck region as a conservative medium. The energy may be either reflected
or transmitted but is ultimately conserved. We shall see how modeling the
stuck region as either of the extreme cases (distributed stiffness or distributed
damping) effects the response at the surface. In reality, the stuck region behaves
as some combination of distributed damping and distributed stiffness, but w=

shall confirie ourseves to the ideal cases in this thesis.

4.4.1 The Distributed Stiffness Model

In the distributed stiffness model, the stuck region is assumed to be constrained
by a set of springs uniformly distributed along its length. The spring constant
together with the stuck length serves as a measure of the force required to cause
a unit displacement of the BHA at the stuck region. Hence, one can consider
the springs to be an elastic foundation of a certain elastic modulus. A schematic

of the model is shown in figure 4-2 on page 61

4.4.2 The Distributed Damping Model

In the distributed damping model of the stuck region, the stuck region is as-
sumed to be a dissipative region and is modeled hy a set of dashpots uniformly
distributed along the length of the stuck region. The damping constant and
the length over which it is distributed serve as a measure of the force required
to impart a unit velocity to the BHA at the stuck region. A schematic of the

model is shown in figure 4-3 on page 62.

4.5 The Dispersion Relation

The dispersion relation for axial wave propagation in a rod with distributed

stiffness and distributed damping as given by equation 3.7 on page 28 is
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: %A
Distributed stiffness
model (N/m /m)
B 7.

BHA

Figure 4-2: Distributed stiffness model of the stuck region

o= (5 - £) -i(B) (4.22)
= <%

2]

The most obvious result of adding distributed stiffness or distributed damping
is that the major characteristic of the solution to the wave equation is some
type of pulse distortion. The dispersion relation gives us an insight into the
mechanism of pulse distortion. A harmonic wave of frequency w can propagate
only at a specific velocity c*®. Thus, if we consider a sharp pulse at a given
instant of time to be a Fourier superposition of harmonic waves; then as time
advances, each Fourier component of the original pulse propagates with its own
individual velocity. The various components become increasingly out of phase

relative to one another so that the original pulse shape becomes increasingly

8Note that c* is determined by equation 4.22, whereas c is defined by equation 3.2 on page 27
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Figure 4-3: Distributed damping model of the stuck region

distorted.

The preceding interpretation also is the basis for the fact that no distortion
occurs, if distributed stiffness and distributed damping are absent. While the
direct prediction of this lack of distortion is given by the D’Alembert’s solution
to the wave equation, the indirect prediction arises due to the fact that the
frequency, wave number and the wave velocity are related by w = k¢, where
c is a constant. Thus, each harmonic component propagates with the same
velocity, so that the phase relationships of an original Fourier superposition are

maintained for all time. This can be seen by setting K, R = 0 in equation 4.22.

In the following subsections we shall see the relevance of the dispersion relation

to our models of the stuck region.
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4.5.1 Dispersion Relation for the Stuck Region modeled
as Distributed Stiffness

In the distributed stiffness model, the damping constant in the stuck region was
chosen to be the same as in the rest of the drillstring. The order of magnitude
of the damping constant is much smaller than the order of magnitude of the
distributed stiffness. The value of the damping constant selected is consistent
with the discussion in section 4.3 on damping in drillstrings. In this case, the

dispersion relation can be approximated by

2
2 w' K
k.-(cz EA) (4.23)

!

Thus,

W K \?
k== - — 4.24
(& EA) (4.24)

The above roots are real if the quantity in parentheses is positive. We know
that the solution to the wave equation given by equation 3.1 is of the form
~ ei(wttkz)  Therefore, the two roots yield leftward or rightward propagating

waves depending on the sign selected.

If (‘f:— - é{—A) < 0, then the wave number given by equation 4.24 is imaginary.
Then the solution is of the form ~ e***eit where k° = —k?. This corresponds

to a spatially varying but non-propagating disturbance.

The special case when (‘:—: - ﬁ) = 0 (¢* = 0), represents a transition from
propagation to non-propagation. In this case, k = 0 and w. = ¢ E—’;—. The

solution to the wave equation is then of the form ~ e'<t. The frequency w. is

called the cut-off frequency of the propagating mode.
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Frequency Spectrum for the Stuck Region modeled as Distributed
Stiffness

A useful way to display the dispersion relation for easier interpretation is to
plot the frequency versus the wave-number. Such a plot is also known as the
frequency spectrum of the system. To plot the frequency spectrum, refer to
equation 4.24. The frequency is assumed to be real and positive. It was shown
earlier that k is imaginary for w < w, and real for w > w.. Since the spectrum
is symmetric with respect to the Re(k) = 0 and I'm(k) = 0 planes, it suffices
to present a two—dimensional plot containing the w, Re(k) > 0 and Im(k) > 0

axes.

The results are shown in figures 4-4 and 4-5 on pages 66 and 67 for a 6.25" drill
collar and a 4.64" drill pipe respectively. These represent the drill collar and
drill pipe diameters for a typical drillstring. The stiffness values selected range
from that of a very soft formation to that of a very hard formation. A small
value of distributed damping was included to model the internal damping in
the drillstring; but this does not affect the dispersion relation as can be seen in

the figures. The data used for plotting the frequency spectrum is given below.

E = 2.0417 x 10" N/m? : Young’s modulus for steel

p = 7.850 x 10% kg/m® : Density of steel

R = 110N —-s/m /m : Internal damping in drillstring

c = /B : Axial wave propagation speed in steel

p

= 5100 m/s
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Distributed Stiffness K Remark Symbol

N/m /m

1.0 x 10* < Rock stiffness -

1.0 x 107 ~ Rock stiffness -

1.0 x 108 > Rock stiffness ——

1.0 x 10° > Rock stiffness

Area Remark

case 1 | A; = 0.01579 m? Cross—sectional area of BHA  6.25" DC
case 2 | A, = 0.00349 m? | Cross—sectional area of drill pipe  4.64" DP

Discussion :

The frequency range selected was from 0.2 Hz to 819.2 Hz with a step size
of 0.2 Hz. The curves or branches in the real plane are hyperbolas, while
the imaginary branches are ellipses. The line K = 0 is the non-dispersive
result for axial wave propagation in a rod. This wave number has a non-zero
real part and a zero imaginary part over all frequencies. This implies that all
frequencies propagate and there is no attenuation in the wave motion. However,
as the distributed stiffness is increased, it can be noticed that only frequencies
above a cut-off frequency propagate, while those below it undergo attenuation.
Furthermore, for a given value of distributed stiffness, the cut-off frequencies
are inversely proportional to the area of cross—section. The values of the cut-off

frequencies for the two cases are given below.
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Figure 4-4: Wave number & versus frequency w for various levels of distributed

stiffness (6.25" DC)

a) -
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K =10x10N/m /m b) —- K =1.0x10"N/m /m
K=10x108N/m /m d): K =1.0x10°N/m /m

66




T T | T | l T |
| 1
NG : : >
. \\\ : . al‘
- : :
N : :
\; : 'a
Z‘\\ ~: 0
SN N M
~ .
N
N
Y
. \\‘
\\\ m
................................... DG vrerrr e O cre s .
e N N o
N .
) :
N .
[N :
.
N
Q AN RN
S .
N . DN
N : .
\\ . '
=)
\ <
\: S -
v\ ~ O
\ v )
4
e + 1! c E
l‘ =
3 =
:\\ o
\ >
N «
s ~ |
~_*-~.-—
n
. - ol
(=¥
en
© £
‘ o]
............. 4
I T L SRR AL RRRRRRIE ;
i ........... 1 _________
o

:

600 |- -

400+

zZy1ay ut Kouanbay

Figure 4-5: Wave number k versus frequency w for various levels of distributed

stiffness (4.64"” DP)
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Stiffness N/m /m | Cut-off frequency f. (Hz)
case 1 1.0 x 10* 1.43
A, = 0.01579 m? 1.0 x 107 45.21
1.0 x 108 142.96
1.0 x 10° 452.07
case 2 1.0 x 10* 3.04
A, = 0.00349 m? 1.0 x 107 96.16
1.0 x 108 304.07
1.0 x 10° 961.57

4.5.2 Dispersion Relation for the Stuck Region modeled
as Distributed Damping

In the distributed damping model, the distributed stiffness in the stuck region is
assumed to be zero, which is also the value assumed for the rest of the drillstring.
Physically, this means that there are no external spring-like constraints ( Force
o« displacement) on the drillstring. The stuck region is modeled as a viscous
damper (Force « velocity) of varying distributed damping constants per unit
length. Most of the energy inpnt into the stuck region is dissipated as heat. In

this case, the dispersion relation becomes

w? | Rw
Thus,
w? Rw :

The above roots are in general complex. But, when the damping is very small,

or more precisely, when Rw <« E A, the imaginary part in the parentheses can
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be neglected and the dispersion relation reduces to the simple form

k= i‘—;’- (4.27)

Since the solution to the wave equation is of the form e¥(“!*%=) the two roots

yield leftward and rightward propagating waves depending on the sign selected.

Frequency Spectrum for the Stuck Region modeled as Distributed
Damping

As in the stiffness case, the dispersion relation is plotted as shown in figures 4-6
and 4-7 for a 6.25" drill collar and a 4.64" drill pipe respectively. The damping
values chosen ranged from the internal damping constant in the drillstring to
very large damping values indicative of a highly dissipative region. The data

used for plotting the frequency spectrum is given below.

E = 2.0417 x 10'* N/m? : Young’s modulus for steel

p = 7.850 x 10% kg/m® : Density of steel
= 0.0N/m /m : Distributed stiffness in drillstring

c = % : axial wave propagation speed in steel
= 5100 m/s

Distributed Damping R Remark Symbol
N —s/m [m

1.1 x 102 ~ Internal damping -
1.1 x 10* > Internal damping -
1.1 x 10° > Internal damping | ——
1.1 x 108 > Internal damping
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Area Remark
case 1 [ A; = 0.01579 m? Cross—sectional area of BHA  6.25" DC
case 2 | A, = 0.00349 m? | Cross—sectional area of drill pipe  4.64" DP

Discussion :

The line R = 1.1 x 102 N — s/m /m can be taken as the non-dispersive result
since Rw < EA for the frequency range considered, which was fom 0.2 Hz to
819.2 Hz. The wave number corresponding to this damping constant can be
seen to have a non-zero real part which is a linear function of frequency and
a = zero imaginary part over the entire frequency range. This means that all

frequencies propagate and there is very little attenuation.

Case 1 :

When the damping is increased to R = 1.1 x 10° N — s/m /m, the real part
of the wave number increases in the low frequency regime but approaches the
non-dispersive result for higher frequencies. However, the imaginary part now
has a finite non-zero value which assumes a constant value over higher frequen-
cies. This implies that the attenuation is constant over a wide frequency range
corresponding to the higher frequencies. As the damping constant is further
increased to 1.1 x 10° N — s/m /m, both the real and imaginary parts of the
wave number increase significantly as can be seen from the figure. The imagi-
nary part is a monotonic increasing function in the frequency range considered
which shows that the high frequency waves attenuate much more than the low
frequency waves. The significance of the real part of the wave number will be

clear in the discussion on phase and group velocities in section (4.6).

70



Case 2 :

For a smaller cross—sectional area such as a drill pipe, the effects are similar to

those in case 1, but vastly exaggerated.

Note that the main feature of the distributed stiffness model” (DSM) is the pres-
ence of cut-off frequencies which is absent in the distributed damping model®
(DDM). Thus, if the excitation drops below the cut-off frequency, the wave num-
ber becomes imaginary and we obtain a spatially decaying, non-propagating
evanescent mode. This mode doesn’t represent a decay of energy which how-
ever was not the case with DDM where there was a dissipation of energy due
to damping. The evanescent waves would always be confined to a region near
the interface in a situation where we have an increase in distributed stiffness in

going from one region to the other.

4.6 Phase velocity versus Group velocity

In section 4.5 and the succeeding subsections, the relationship between fre-
quency and wave number for the DSM and the DDM of the stuck region was
discussed. In this section, we endeavour to understand the significance of the

frequency spectra for the two models.

4.6.1 Distributed Stiffness Model

It is possible to derive the phase velocity information from the frequency spec-
trum by the relation w = kc*. Thus, for a given point on the real branch of
the spectrum, the slope of the chord between the point and the origin is given

by % = c*, the phase velocity for that particular frequency. The phase velocity

" Distributed Stiffness Model : DSM
8 Distributed Damping Model : DDM
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Figure 4-6: Wave number & versus frequency w for various levels of distributed
damping (6.25" DC)

a) - R=11x10*N -s/m /m b)— R=11x10*°N —s/m /m

c)—— R=11x10°N—-s/m/m d): R=11x10N—s/m /m
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Figure 4-7: Wave number k versus frequency w for various levels of distributed
damping (4.64" DP)

a) - R=11x10N-s/m /m b)—- R=11x10'N —-s/m /m
¢c)—— R=11x10°N-s/m/m d): R=11x108N —s/m /m
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versus frequency for different values of distributed stiffness have been plotted in
figures 4-8 and 4-9 for a 6.25" drill collar and a 4.64" drill pipe respectively. It
can be noticed that for a stiffness of 1.0 x 10* N/m /m, the curves are almost
horizontal except at very low frequencies. These can therefore be considered to
represent the non-dispersive rod where almost all frequencies propagate with
the same velocity ¢ = 5100 m/s. As the stiffness value is increased, the curves
approach the classical result for higher frequencies corresponding to shorter
wavelengths and large values of the wave number indicating that the stiffness
effect is minimal. However, for small frequencies corresponding to small values
of the wave number and hence long wavelengths, the phase velocity increases
rapidly, approaching very large values as w — w,. Since there is a small amount
of distributed damping present, the phase velocity does not go to oo in our case.
Note that in the absence of damping, k — 0, as w — w,, the cut-off frequency.
The fact that £ = 0 indicates uniform vibration as the wavelength is infinitely
long. This uniform vibration may be interpreted as a disturbance traveling with
infinite phase speed through the medium. It must be noted though that the
group velocity is zero, which indicates that there is o energy propagation. The
values of the cut—off frequency w, increase with increasing values of distributed

stiffness for a given cross—sectional area.

The group velocity ¢, is defined as the velocity of propagation of the modula-
tion or the carrier impressed upon a train of waves having different frequency
components. It can be shown that the group velocity is then given by the

expression

. O
¢~ Bk

c (4.28)

A direct graphical interpretation of the group velocity can be made from the
frequency spectrum. Since the frequency spectrum is a plot of w versus k, the
local slope of the tangent at any point of the spectrum yields the group velocity

at that particular frequency. Plots of the group velocity versus frequency for
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various levels of distributed stiffness are shown in figures 4-8 and 4-9 for two dif-
ferent cross—sectional areas. The group velocities are plotted only for frequencies
above the cut-off frequency corresponding to a particular level of distributed

stiffness because there is no propagating wave below the cut-off frequency.

It can be observed that for a very low level of distributed stiffness, (K =
1.0 x 10* N/m /m) the phase and group velocities are approximately the same
since the dispersion relation is almost linear (k = wc). With increasing levels
of distributed stiffness, the cut-off frequencies become larger, and the devia-
tion from the linear relationship is conspicuous. However, the group velocities
approach the phase velocities for large values of frequency, each tending asymp-

totically to the axial speed of propagation of sound in steel (5100 m/s).

4.6.2 Distributed Damping Model

The DDM of the stuck region is essentially a rod on a viscous foundation. The
phase and group velocities as a function of frequency are plotted in figures 4-10
and 4-11 for typical BHA and drill pipe cross—sectional areas respectively. The
phase velocities were determined by taking the slopes of the chords between
points on the real branch of the spectrum and the origin. The group velocity
as a function of frequency was found by taking the local slope of the tangent to
the real part of the frequency spectrum. Thus, according to our definitions, we

have the following relations

w

Ow
cg = Re(k) (4.30)

Note that ¢, and ¢, are real whereas c* and c; defined earlier are in general

complex.

It has been assumed until now in our analyses that, the group velocity is actually

75



006

zuray ur Asuanbaiy

00S ooy

009 00¢

T T

-

006

Hw\E._ paads Qn._ohmu

zu1oy ut Aouanbaiy
0oov

-

e e R
-

000¢
000V
10009

0008
00001

0007
000V
0009
0008

00001

[s/w] paads aseug

(6.25" DQC)
A. Phase speed ¢* versus frequency w for various levels of distributed stiffness

Figure 4-8:

1.0 x 10°N/m /m
1.0 x 10°N/m /m

K
K

versus frequency w for various levels of distributed stiffness

1.0 x 10*N/m /m b) -
1.0 x 108 N/m /m d):

'Cg
o
W__ Il
@' R R
=}
=}
1) |
2 i
G_
B.&C

76



zy1oy ur Aouanbaiy

006 008 OA_K. O@@ om_um om_,:u Om_.vm O@N oﬁ_ﬁ oo
} - . 10002
FOPEA
T T DRSS Ly L_ 000V
I e 10009
~ . 10008
_ m _ mm\ﬂu paads QmobU _ _ _ 0000t
zuoy ur Aousnbaiy
006 008 om_v.\l oa_uw omm om_:u OA_um o.wN om_: oo
— . -1000C
- ......... - Ooo.v
n..uunan.u.,._.unu..r..u._u;»..:-.:..um..uz..:..,---------o--.....w-.......a-:.;w:-----n-/... . 0009
[ R S - . h— ~ N e
i EREN 0008

00001

Hm\E__ paads 0.93&,

(4.64" DP)
A. Phase speed c¢* versus frequency w for various levels of distributed stiffness

B. Group speed ¢

Figure 4-9:

versus frequency w for various levels of distributed stiffness

.
g

K
K

1.0 x 10°N/m /m b) —.

K
K

1.0 x 10°N/m /m
1.0 x 10°N/m /m

1.0 x 108N/m jm d):

77




the velocity at which a finite signal propagates through a medium, but this is
only an approximation. The signal is significantly distorted as it travels through
the medium as can be noticed by the large imaginary parts in the wave number
with increasing values of distributed damping. The signal velocity in this case
becomes hard to define on account of the change in shape. This is especially
true for an absorbing medium. Absorption is strongly frequency dependent and
is associated with strong dispersion. For very low values of damping it can be
seen that the phase and group velocities are each equal to the axial speed of
propagation of sound in the material. In the case of a wide-band pulse, the
problem of defining a group velocity is even more formidable. In such a case,

an approximate method known as the Saddle Point Method is employed.

In the case of a wide-band excitation with dispersion but no absorption, another
method called the Stationary Phase Methodis used. This method is based on the
principle that the Fourier representation of a pulse is comprised of waves of all
frequencies and wave lengths. Initially, the different components superimpose to
produce the pulse. At any subsequent time, the existing disturbance is obtained
by summing the contributions of the propagating harmonic components. Thus,
one can find positions and times at which a large number of components have
the same phase and reinforce each other, while other elements are practically
destroyed by interference. In the case of dispersion without absorption, the
saddle point method and the method of stationary phase agree. For a detailed

analysis, one can refer to [3] and [5].

4.7 Modeling the Boundaries

The boundary conditions are modeled based on information derived from Hyun
Lee’s thesis [8] and the paper by Clayer, Vandiver and Lee [15]. The bottom
boundary condition is considered for two cases; normal drilling operation and

when the drillstring is stuck at a point or along some length of the BHA. The
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topside boundary condition takes into account the dynamic properties of the

swivel, derrick and drawworks.

4.7.1 Modeling the Topside Boundary Condition

The surface boundary condition is modeled as a mass—-spring-damper element
as shown in figure 3-2. The values of the mass, spring and damper elements
were chosen based on the measurement of the drive point function between the
force and acceleration at the surface. The drive point function between force
and acceleration is independent of the composition of the drillstring below the
measurement point and depends on the dynamic properties of the system above
the measurement point as long as the excitation comes from below the response

location (the bit in this case).

4.7.2 Modeling the Bottom Boundary Condition

Normal Drilling Operation

The bottom boundary condition is modeled by an equivalent spring and damper
placed in parallel between the bit and a fixed bottom reference point. The
compliance of the rock is taken into account by the spring stiffness value; the

damper represents the energy loss mechanisms related to rock fracture.

Stuck Condition
The drillstring could get stuck under any of the following conditions.

1. Drillstring is stationary : This usually happens in the case of differential
sticking. In this case the drillstring can neither be rotated nor moved up
or down. This type of sticking can be avoided if early warning signs are

heeded and suitable action is taken.
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2. Tripping out : Encountering stuck pipe while tripping out is the most com-
mon occurence in the drilling industry. The reasons could be numerous;

from keyhole sticking to collapse of the surrounding formation.

In this thesis, we consider the case when sticking occurs while tripping out. The
bit at the time of sticking is modeled as a free boundary, as the bit is off-bottom

at such a time.

4.8 Modeling the source

“Modeling the source” refers to modeling the excitation at the bit at the time of
normal drilling operation. As described by Hyun Lee [8] and Kim Vandiver [15],
the action of the bit is modeled as a relative displacement source inserted be-
tween the bit and the flexible formation. As the formation impedance becomes
small (soft rock) compared to the impedance of the drillstring, the surface re-
sponse becomes small as most of the energy is utilized in crushing the rock. On
the other hand, if the formation impedance is large (hard rock) relative to the
impedance of the drillstring, most of the energy is input into the drillstring.
If one were to use a force input at the bit, then the resonances of the drill-
string would correspond to a free boundary condition at the bit. An absolute
displacement excitation of the the bit would yield resonances of the drillstring
corresponding to a fixed boundary condition at the bit. These represent the
extremes of the possible boundary condition at the bit. Thus the relative dis-

placement excitation represents an intermediate case between the two extremes.
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Chapter 5

Implementation and Results

In chapter 4, the tools and models needed for the analysis of jarring dynamics
of drillstrings were developed. In this chapter, we shall use these models to

analyze a few specific cases.

5.1 Reflection and Transmission of a Force Im-

pulse at a Barrier

In order to better understand the dynamics of drillstrings while jarring, and to
identify the location and type of sticking mechanism by way of interpretation
of signatures at a surface measurement location, it is necessary to analyze the
nature of the reflected and transmitted force pulse through a stuck region of
finite length. The stuck region is thought of as a barrier and the sticking mech-
anism within this barrier is modeled either as distributed stiffness or distributed
damping as was detailed in chapter 4. The length of the barrier is an indica-
tion of the stuck length and can be varied depending upon the type of sticking
mechanism considered. For example, keyhole sticking would be modeled as a
very high stiffness concentrated at a point or over an exceedingly small length,

whereas differential sticking would be modeled as distributed damping over a
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Figure 5-1: Reflection and Transmission of a Force Impulse at a barrier

finite length. It must be noted however, that these ideal models are just a first
step towards understanding the different sticking mechanisms and in a realistic
situation, the stuck region would behave as some combination of distributed

stifiness and distributed damping.

We now consider a case wherein we have two semi-infinite regions (Region |
and Region 1II) separated by a barrier (Region II) of length L as shown in
figure 5-1. The plane ¢ = 0 represents the boundary between region I and
region II. Similarly, the plane z = L represents the boundary between region Il

and region III. The parameters governing the the three regions are as follows :
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Ay, Ay, Az : Areas of cross-section of regions I, II and III
K, K,, K5 : Distributed stiffness in regions I, II and III
Ry, Ry, Ry : Distributed damping in regions I, IT and III

ky, kq, k3 :  Wave number in regions I, II and III

When an incident signal in region I arrives at the boundary between regions I
& 11, some of the energy is reflected and some of it is transmitted into region II.
The portion of the wave transmitted proceeds through region Il to interact with
the boundary between regions II & III where again, a portion of the energy is
reflected and some transmitted into region III. The reflected wave then proceeds

back to the interface between regions I & II and the whole process is repeated.

The incident displacement wave can be assumed to be of the form

u; = U;elwt—F2) (5.1)

The various transmitted and reflected waves now combine so that in the steady

state condition, the wave reflected into region I can be represented as

u, = U,elvtthe) (5.2)

The transmitted and and reflected waves in region II can be represented by

u, = U,ellwt—ke) (5.3)

up, = U-bej(“’t+k2:) (54)

The wave transmitted into region III is given by

Uy = (j’tej(ut—kg:l:) (5.5)
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;+  Complex displacement amplitude of the incident wave in region I

U,: Complex displacement amplitude of the reflected wave in region I

« ¢ Complex displacement amplitude of the transmitted wave in region II

» ¢ Complex displacement amplitude of the reflected wave in region II

¢ : Complex displacement amplitude of the transmitted wave in region III

Associated with each of these displacement waves, one can define force waves as

Ir
Ja
Jo
fi

where

:-lju o’?-ja ;’an’amn

]:"1. eJ(wt—kiz)
Fr el(wttkiz)
]f‘aej(w‘—kzl)
"’bei(wsz-f)

Fei(wt—ksz)

il

Continuity of displacement at z = 0 implies

which yields

EA, 2
EA, 2
EA 2 (5.6)
EAZ%“:

du
j=4-1 8
EA; 3

Complex force amplitude of the incident wave in region I
Complex force amplitude of the reflected wave in region I
Complex force amplitude of the transmitted wave in region II
Complex force amplitude of the reflected wave in region 11

Complex force amplitude of the transmitted wave in region I1I

Ui + Up = Uy + Up (5.7)
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ﬁi+U.r=Ua+Ub

Force balance at z = 0 implies

fitfi=fat b

Using equations 5.1, 5.2, 5.3, 5.4 and 5.6, one obtains,

o 1.7 Y-
U,-—-U,—(Alkl)(Ua Us)

Dividing equation 5.8 by 5.10, one obtains

_ ([ja+[]b) (Alkl)
U, — U,) \Azk,

Ui+ljr
U; - U,

Similarly,

Continuity of displacement at z = L implies

Ug + Up = Uy

which gives

U,e il 4 pyettal = [J ekl

Force balance at ¢ = L implies

fa+fb=ft

which gives
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(5.10)

(5.11)

(5.12)
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U,e k2l _ [, ekl = (iitz) U,e kst (5.15)

Dividing equation 5.13 by 5.15, we get

Uae‘j"’l’ + (756’*’L . Azkg (5 16)
U, e~ital — [eikal T\ Azks '

We can define Displacement Reflection and Transmission coefficients

(5.17)

oy

A

I
S

(5.18)

5
il
S

Define

rn o= A ky
re = Ak,
Ty = A3k3

Eliminating U, and U, from equations 5.11 and 5.16, and using the definition

given by equation 5.17 for the displacement reflection coeflicient R4, we get

(5.19)

Rd _ El— l)coskgL - j('l

r 2
T r
1+§1) cosk L + J(:f-+-:-:-) sinky L

bl

1

88



Using equations 5.13 & 5.15, and then eliminating U,, U, using equations 5.8
& 5.10, the displacement transmission coefficient T defined by equation 5.18

can be obtained as

. (1= Rg)coskyL — j2(1+ Ra)sinkyL

= 5.20
T4 (cosksL ~ jsink;yL) (5.20)
Substituting for R, from equation 5.19, we get
- 2{ %
F, = - (2) (5.21)

[2cosk;L+J(?—+ )smkgL](cosk;L ~jsinkyL)

Equations 5.19 and 5.21 represent the most general relations for the displace-
ment reflection and transmission coefficients. The values of the wave numbers
in both these expressions are governed by the dispersion relations for those par-
ticular regions. If region I and region III are the same, as would be the case
in a realistic situation when you are stuck along a certain length of the BHA,

equations 5.19 and 5.21 would reduce to

- ( Ef) sin ky L

- (5.22)
2cos kL + (fl + —1) sin ko L
Ty = - 2 (5.23)
2cos kL + 5 (% + fll) sin kzL] (coskyL — jsink, L)
One can now define Force Reflection and Transmission coefficients
- F.
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F,
T, = =t 5.25
f ) (5.25)

Using equations 5.6, 5.17, 5.18, 5.24 and 5.25, we can obtain the Force Reflection

and Transmission coefficients as

Ry = —-Ry, (5.26)

3
Il
5

3

(5.27)

The displacement and force waves in regions I & III can now be defined in terms

of the displacement Reflection and Transmission coefficients as

u = Uellwt-hz) (5.28)
u, = Ry Uelwtthz) (5.29)
u = Ty Utk (5.30)
fi = ﬁ’iej(ut-—lqz)
f. = éf R,ej(wt+k,a.-) — _éd Eej(wt+k|z) (5.31)

ft — Tf }:"‘.ej(ut-ks.r) — (E:.) Tdﬁ'iej(wt—kg:c)

The Reflection and Transmission coefficients are essentially frequency domain
representations of the reflected and transmitted waveforms infinitesimally close
to the interfuces, in regions I & III respectively. Thus, in the time domain, the
reflected and transmitted waveforms at z =0 — e and at z = L + € for a unit
impulse impinging on the boundary between regions [ & II can be determined

by taking the Inverse Fourier Transform of the expressions for the reflection and
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transmission coefficients. The ways to compute Discrete Fourier Transforms was

discussed in chapter 4.

A few examples to illustrate the theory developed will now be discussed.

5.1.1 Examples

The examples considered analyze the interaction of a force impulse with a stuck
region modeled as a) Distributed Stiffness and b) Distributed Damping. The
levels of distributed stiffness and distributed damping used in the models are
indicative of the magnitudes of forces per unit length required to impart a unit
displacement and a unit velocity respectively, to the stuck portion of the BHA.
Examples 5.1 and 5.2 discuss the fate of a force impulse as it propagates through
a stuck region (modeled as distributed stiffness and distributed damping respec-

tively) separating two semi-infinite half spaces.

5.1.2 Example 5.1 — Distributed Stiffness Model of the

Stuck Region

The following example represents a situation where the BHA is stuck along a
finite section of its length (region II) as shown in figure 5-2 on page 93. The
stuck region is modeled as a distributed stiffness, which is a parameter whose
value can be varied over a wide range. Regions I & III extend to infinity on
either side and are identical in all respects. Region II, which is of a finite length
differs from regions I & III in that it has a distributed stiffness. Figures 5-3,
5-4 and 5-5, 5-6 show the magnitude and phase of the Force Reflection and
Transmission coefficients as a function of frequency at t =0 —~e¢and z = L + ¢
respectively, for a unit amplitude force wave incident on the boundary between
regions I and II. One can think of the Force Reflection coefficient as a drive
point function between the force output and a unit harmonic force input in

region I, infinitesimally close to the interface separating the free and the stuck
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regions. Similarly, the Force Transmission coefficient can be considered as a
transfer function representing the force response in region III, infinitesimally
close to the boundary dividing regions II and III, due to a unit harmonic force

input in region I very close to the interface between regions I and II.

The following tables give the data used for the analysis.

E =2.0417 x 10" N/m? | Young’s modulus for steel

p = 7.850 x 103 kg/m® | Density of steel

R=110 N —s/m /m Internal damping in drillstring

¢ = 5100 m/s Axial wave propagation speed in steel
L=30m Length of the stuck region
A = 0.01579 m? Area of cross-section of BHA (6.25" DC)
Distributed Stiffness N/m /m
Region I | Region II | Symbol | Region III
case (a) 0.0 1.0 x 10* - 0.0
case (b) 0.0 1.0 x 107 —- 0.0
case (c) 0.0 1.0 x 108 —— 0.0
case (d) 0.0 1.0 x 10° - 0.0
Discussion :

The frequency range considered was from 0.2 Hz to 819.2 Hz with a step size
of 0.2 Hz. Figure 5-3 shows the magnitude of the force reflection coefficient!
for various levels of distributed stiffness in the stuck region. It can be seen that
the magnitude of the reflection coefficient is unity for all frequencies below the

cut-off frequency (explained in section 4.5.1) for a given value of distributed

1 Force Reflection coefficient and Reflection coefficient will be used interchangeably
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Figure 5-2: Reflection and Transmission of a Force Impulse at a barrier modeled as
a distributed stiffness
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stiffness. The reflected wave lags behind the incident wave in this frequency
range as can be seen from figure 5-4. The values of the cut—off frequencies cor-
responding to different levels of distributed stiffness are given in section (4.5.1)
for a 6.25 " drill collar. Below the cut-off frequency for a given level of dis-
tributed stiffness, there is no energy propagation into the stuck region; only an
evanescent wave field exists in the stuck region whose magnitude decays expo-
nentially with distance. For a given length of the stuck region, the effects of the
evanescent wave field can be noticed in region III only for small values of dis-
tributed stiffness. This is apparent from the plot of the magnitude of the force
transmission coeflicient? versus frequency shown in figure 5-5 for different stiff-
ness levels. It can be observed that the transmission coeflicient drops off very
steeply for frequencies below the cut-off frequency for large values of distributed
stiffness (1.0 x 10° N/m /m). This can be attributed to the large imaginary
part of the wave number (figure 4-4 on page 66) which is responsible for the
rapid decay of the evanescent force field. The zero frequency case (wavelength
— 00) presents an interesting result. The reflection coefficient is unity and the
phase of the drive point function is zero. At the same time, the magnitude of the
transmission coefficient is zero for all values of stiffness. Physically, this means
that if the BHA above the stuck region were to be set into uniform motion,
then the drill collars below the stuck region would be insensitive to this motion
and would continue to remain stationary. The kinetic energy of the BHA above
the stuck region in such a case would be converted to potential energy of the

stiffness elements constituting the stuck region.

Above the cut-off frequency, waves start to propagate in the stuck region and
beyond. It can be seen from figure 5-3 that for a given level of distributed
stiffness, the magnitude of the reflection coefficient decreases with increasing
frequency. This is because, the difference in wave number between the free and

stuck regions is maximum at the cut-off frequency and progressively decreases

2Force Transmission coefficient and Transmission coefficient will be used interchangeably
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Figure 5-3: Magnitude of Force Reflection coefficient R, for a stuck region of length
(L = 30 m) for various levels of distributed stiffness (6.25" DC)
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Figure 5-5: Magnitude of Force Transmission coefficient T; for a stuck region of
length (L = 30 m) for various levels of distributed stiffness (6.25" DC)
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Figure 5-6: Unwrapped phase of Force Transmission coefficient Tf for a stuck region
of length (L = 30 m) for various levels of distributed stiffness (6.25" DC)
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with increasing frequency. As a result, the phase speed in the stuck region
asymptotically approaches the phase speed in the free region of the BHA. Thus,
as the frequency increases, the difference in impedance® between the free and
the stuck regions becomes smaller resulting in a transmission of energy through
the stuck region. This manifests itself as a decrease in the magnitude of the
reflection coefficient with increasing frequency. It can als> be noticed for the
same reason that the magnitude of the reflection coeflicient, above the cut-off

frequencies decreases with decreasing values of distributed stiffness.

An interesting feature of figure 5-3 is the location of the zeros of the reflec-
tion coefficient. At the frequencies corresponding to the zeros, there is total
transmission of energy into the stuck region. The expression for the reflection

coeflicient is given as

- (fl ) sin k, L
B o= - . (5.32)
2cos koL + (fl + —1) sin kL

The zeros occur for the values of the wave number k, satisfying the relation

smky,L = 0 (5.33)

Note that k; is real for frequencies higher than the cut-off frequency. Since

damping is negligible, the zeros occur at frequencies given by

o= () () no= 1,2,3..  (539)

where

3 Characteristic impedance of a medium is defined as pc, where p is the density of the medium
and c is the phase speed of the acoustic wave in that medium
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L : Length of the stuck region

For very small values of distributed stiffness (1.0 x 10* N/m /m),

() <)

and equation 5.34 reduces to

fn 5 n = 1,2, 3.. (5.36)

Thus, the zeros of the magnitude of the reflection coefficient correspond to the
resonances of the stuck region behaving as a fixed-fixed or a free—free bar. For
a stiffness of 1.0 x 10* N/m /m, the zeros occur at integral multiples of 85 Hz

as can be seen in figure 5-3.

For large values of the distributed stiffness (say, 1.0 x 108 N/m /m),

('E'SZ) > (%)2 for small n
(3,57) ~ (-"L—")z for moderately large n (5.37)
(.59;) < (%)2 for large n

In such a case, the spacing between the zeros approaches 85 Hz for large values
of n (n = 10 for a stiffness of 1.0 x 108 N/m /m). For small values of n, the
distributed stiffness value plays an important role in determining the locations
of the zeros as well as the spacing between them. From the phase curve shown
in figure 5-4, it can be seen that transitions of m rads occur at the locations of

the zeros.

A more realistic situation is now considered, where a jar placed some distance

(100 m) above the stuck location delivers a unit impulse which is modeled as
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described in section (4.2.1)* This impulse travels down to the stuck region where
some of the energy is reflected and some of it is transmitted. The shapes of the
reflected and the transmitted pulses in the time domain depend on the nature
of the stuck region (governed by the value of the distributed stiffness), and
hence on the reflection and transmission coefficients, for a given stuck length.
Figure 5-7 shows the reflected wave form in the BHA, 50 m from the top of the
stuck region, for various levels of distributed stiffness. Also shown in the same
figure for comparison, is the input wave form, both at the jar location and at
a location infinitesimally close to the boundary between the free and the stuck
regions, just before it is incident on the interface. Similarly, figure 5-8 shows the
transmitted waveform 50 m from the bottom of the stuck region for different

levels of distributed stiffness, along with the input waveform.

5.1.3 Example 5.2 — Distributed Damping model of the

Stuck Region

The case considered here represents a similar situation as was analyzed in sec-
tion (5.1.2), except that the stuck region is now modeled as distributed damping.

This can be seen from figure 5-9 on page 105.

The data is the same as in example 5.1, but for the values of distributed damping

and stiffness. The details are presented in the following tables.

E =2.0417 x 10*! N/m? | Young’s modulus for steel

p = 7.850 x 10% kg/m® | Density of steel

K =0.0N/m /m Distributed stiffness in drillstring
¢=5100 m/s Axial wave propagation speed in steel
L=30m Length of the stuck region

A =0.01579 m? Area of cross-section of BHA (6.25" DC)

4The width of the impulse is ~ 6.1 mas.
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Distributed Damping N — s/m /m
Region I | Region II | Symbol | Region III
case (a) | 1.1 x 10% | 1.1 x 10° - 1.1 x 102
case (b) | 1.1 x 10% | 1.1 x 10* - 1.1 x 10%
case (c) | 1.1 x 10% | 1.1 x 105 | —— 1.1 x 10?
case (d) | 1.1 x 10% | 1.1 x 10¢ - 1.1 x 102
Discussion :

Figure 5-10 shows the magnitude of the reflection coefficient for various levels
of distributed damping in the stuck region. It is clear that the value of the
reflection coefficient is very small for small values of damping (R = 1.1x10% N —
s/m /m and R =1.1x10* N —s/m /m), which means that most of the energy
is transmitted into the stuck region. At the same time, the magnitude of the
transmission coefficient is almost unity and the phase is zero, as can be seen
from figures 5-12 and 5-13. This shows that there is negligible dispersion, and
consequently the shape of the incident pulse is preserved as it travels through

the stuck region.

The magnitude of the reflection coefficient increases with an increase in damp-
ing due to a greater impedance mismatch now existing between the free and the
stuck regions. Also, for high values of the damping constant (R = 1.1 x 108 N —
s/m /m), the magnitude of the transmission coefficient decreases much more
steeply with frequency than the reflection coefficient. This is because the high
frequency components get absorbed in the stuck region resulting in a dissipa-
tion of energy. Thus the stuck region in this case behaves as a lowpass filter.
From the phase curve shown in figure 5-13, it is apparent that with increasing
frequency, the various frequency components of the transmitted wave become
increasingly out of phase relative to one another causing a significant distortion

of the incident pulse shape as it propagates through the stuck region.
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Figure 5-7: A. - Time domain representation of the input pulse 100 m from
the interface (A-1) and at the interface (A-2) between the free & the stuck
regions. (6.25" DC)

B. Time domain representation of the reflected waveform 50 m above the inter-
face for a stuck region of length (L = 30 m), for various levels of distributed
stiffness. (6.25" DC)

a) - K=10x10*N/m /m b) - K =10x10"N/m /m

c)—— K=10x108N/m /m d)— K=10x10°N/m /m
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the interface (A-1) and at the interface (A-2) between the free & the stuck
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B. Time domain representation of the transmitted waveform 50 m below the bottom
of the stuck region for a stuck length (L = 30 m), for various levels of distributed
stiffness. (6.25" DC)
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Figure 5-9: Reflection and Transmission of a Force Impulse at a barrier modeled as
distributed damping
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(L = 30 m) for various levels of distributed damping (6.25" DC)
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For small values of distributed damping (1.1 x 10° N — s/m /m and 1.1 X
10* N — s/m /m), the imaginary part of the wave number in the stuck region

(k2) is very small and the zeros of the reflection coefficient occur when

sink,L = 0
fn = n = 1,2,3..

However, when the damping in the stuck region is substantial (1.1 x 10° N —
s/m /m and 1.1 x 108 N — s/m /m), the wave number k, is complex and
the reflection coefficient does not have any zeros. This is readily observed in

figure 5-10.

Figures 5-14 and 5-15 show the reflected and the transmitted wave forms 50 m
above the iop of the stuck region and at an equal distance from below the
bottom of the stuck region respectively, for a unit pulse input, 100 m from
the top of the stuck region. It can be noticed that, with increasing values of
damping, the reflected and the transmitted waveforms develop a distinct tail

caused by dispersion of the incident pulse.

The distinction between the reflected and the transmitted waveforms for the
DDM (Distributed Damping Model) and the DSM (Distributed Stiffness Model)
is quite conspicuous. The main feature of the DSM is the presence of cut-off
frequencies above which, wave propagation through the stuck region proceeds
unimpeded. For large values of stiffness, the cut-off frequencies are large and as
a result the transmitted waveform consists only of high frequency components.
On the other hand, for large values of damping in the DDM, high frequency
components in the the incident pulse are greatly attenuated as they pass through
the stuck region. The transmitted waveformin this case is thus chiefly comprised

of low frequency components.

110



0.07 0.08 0.09

0.06

0.05
time in seconds

Input & Reflected wave forms

0.03

0.02

0.01

Al

— |
Q () Q
@ %

100
-100 -
-150

I 1 ] I
g 2 8 R
(12} N N v

350

Figure 5-14: A. - Time domain representation of the input pulse 100 m from
the interface (A-1) and at the interface (A-2) between the free & the stuck
regions. (6.25" DC)

B. Time domain representation of the reflected waveform 50 m above the inter-

face for a stuck region of length (L = 80 m), for various levels of distributed
damping. (6.25" DC)

a) - R=11%x10®N -s/m /m b)— R=11x10°N —s/m /m

¢c)—— R=11%x10°N—-s/m/m d)= R=11x108N -s/m /m
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Figure 5-15: A. - Time domain representation of the input pulse 100 m {rom
the interface (A-1) and at the interface (A-2) between the free & the stuck
regions. (6.25" DC)
B. Time domain representation of the transmitted waveform 50 m above the in-
terface for a stuck region of length (L = 30 m), for various levels of distributed
damping. (6.25" DC)
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c)—— R=11x10°N-s/m/m d)em R=11x10°N —s/m /m
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5.2 Realistic case — Examples

Consider the following scenario which is a common occurence at any rig site.

Drilling operation has been proceeding smoothly for some hours,
when the driller realizes that he has drilled into a break (sudden
increase in penetration rate, usually indicative of a permeable
formation). Under such a situation, a routine flow check is per-
formed to check for gas leaks. Drilling is stopped to perform the
flow check. Before recommencing drilling, the driller picks up a
little to work the pipe and to his dismay, finds that the hook
load has shot way up. This is a typical indication of stuck pipe,
a problem which costs the oil industry millions of dollars each

year, and is currently gaining industry-wide attention.

We now have developed the background necessary to analyze a realistic case. In
the following sections, two specific examples are considered. In the first example
(Example 5.3), we consider a case wherein the drillstring gets stuck while trip-
ping out. This case is analyzed for distributed damping as well as distributed
stiffness models of the stuck region. Transfer functions (Force response as a
function of frequency at a surface location, due to a unit force impulse at the
jar location) are compared for various levels of distributed damping and dis-
tributed stiffness in the stuck region, as a means of establishing an indicator
for jarring effectiveness. Furthermore, a non-linear signal processing technique
known as cepstral analysis is introduced and used to identify the exact location
of the stuck region, to compare and contrast the signatures obtained in the two
different models used for representing the stuck region, and to establish criteria

for effective jarring.

The second example (Example 5.4) is the same as the earlier example except
that it differs from the former in the location of the input force impulse. The

input in this case is assumed to be at a surface location, as is the response (The
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input and response locations are however, separated by a finite distance). The
rationale behind analyzing this case is that it lends itself to field experimentation
and one can, in addition to locating and characterizing the stuck region (whether
the stuck region behaves as distributed stiffness or distributed damping), also
obtain the signatire of a free drillstring. This is not physically realizable with
a jar in the BHA as a source of force impulse, since most of the jars can be

tripped only when the drillstring is stuck.

5.3 Example 5.3

5.3.1 Drillstring description

The following example considers a situation where the drillstring is stuck along
a certain length of the BHA. Figure 5-16 on page 116 shows the analytical model
of the drillstring during normal drilling operation, and when it is stuck. The
drillstring considered is the same as the one used for the Shell-NL field tests

in 1984 [11]. The drillstring particulars are provided in the following table.
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Data for figure 5-16

Equivalent mass of surface equipment M., =9100.0 Kg

Equivalent spring constant of surface equipment | K., = 9 x 10° N/m

Damping constant of surface equipment R, =4x10* N — s/m
Damping constant in drillstring R=11x102N —s/m [/m
Total length of drill pipe Lpp = 1874.5 m

Total length of BHA (drill collars) Lgga =230.0 m

Total length of drillstring Lps =2104.5 m

Area of cross—section of Drill pipe (4.64 " DP) App = 0.00349 m?

Area of cross-section of BHA (6.25" DC) Apra = 0.01579 m?
Young’s modulus for steel E =2.0417 x 10" N/m?
Density of steel p = 7.850 x 103 kg/m3
Axial wave propagation speed in steel ¢ = 5100 m/s

Equivalent mass, M., : It is the total mass of the travelling block, power
swivel and other equipment between the measurement point and the con-

nection point of the cables to the travelling block.

Equivalent spring constant, K., : This is largely governed by the cable di-
ameter, lengths, and number of passes between the crown block and the

travelling block.

The damping constant of the surface equipment R, was chosen to provide a
good match in the amplitudes of the simulated and measured transfer func-
tions (Surface Acceleration to Surface Force, for a unit relative bit displace-
ment excitation). The values of the equivalent mass, the equivalent stiffness

and the damping constant for the drillstring under consideration are given in

(16 and [9].
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Figure 5-16: Analytical model of the drillstring under normal drilling operation and
in the stuck condition

116



5.3.2 Normal Drilling Operation

Excitation : During normal drilling operation, ithe chief source of exci-
tation is from the bit (position (C) in figure 5-16). This is

modeled as a unit relative bit displacement excitation.

Response : Force at a surface location 5 m below the surface mass—

spring-damper subsystem (position (B) in figure 5-16).

Bottom b.c.’ : Rock stiffness = 3.0 x 10° N/m
Rock damping = 7.5 x 10" N — s/m

Discussion :

Figure 5-17 shows the magnitude and unwrapped phase of the predicted transfer
function between the force at the surface (location B in figure 5-16) and a unit
relative bit displacement excitation between the bit and the bottom boundary
(location C in figure 5-16). The small, closely spaced peaks in the magnitude

of the transfer function represent the resonances of the drillpipe behaving as a

free—free bar. The spacing between the peaks correspond to . Also seen,

2Lpp
arve the resonances of the BHA which are spaced farther apart and are very
conspicuous. These peaks correspond to the resonances of the BHA behaving
as a fixed—free bar. This is because the bottom boundary has a displacement
excitation source. The transfer function then has peaks at the resonances of the
BHA as if it had a fixed boundary condition at the bit [8]. At the same time,
due to the large cross—sectional discontinuity at the BHA /drillpipe junction,

this interface behaves predominantly as a free boundary. The BHA resonances

occur at frequencies given by

fo = (2n - 1)5% n = 1,2 3..
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tem) and a unit relative bit displacement excitation between the bit and the bottom.
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Thus the resonances of the BHA occur at 16.83 Hz, 27.85 Hz, 38.75 Hz and

SO On.

The unwrapped phase of the transfer function is a measure of the propagation
delay between the input and the output locations. Though the damping in the
system is small, it is sufficient to smoothen out the phase transitions due to
poles (resonances of the system) resulting in a continuous phase curve. From
the plot of the unwrapped phase as a function of frequency, it is possible to
obtain the group delay at any frequency by taking the negative of the local
slope of the phase curve. The group delay is defined as

To(f) = —% (%) (5.38)

where

T ¢ Group delay
§ : Unwrapped phase angle [radians]

Thus, we see that a phase which continuously increases with frequency produces
a group delay which is proportional to the slope of the phase curve. In our case,
since the damping is very small, the phase curveis linear. The mean group delay
calculated from the phase curve, over a frequency band from 0.2-819.2 Hz was

found to be

= 0.4113 secs (5.39)

Tgl from phase curve

Since the separation between the source and response locations is known (2099.5 m),
one can estimate the group delay by assuming the group speed of longitudinal
waves in steel to be the same as the phase speed (5100 m/s), since damping is

small.
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r, = 285 — (04117 secs (5.40)

5100

The group delay calculated from the phase curve agrees with that calculated

with a knowledge of the source-receiver separation distance (assuming a group

speed of 5100 m/s).

5.3.3 Stuck condition — Input Force Impulse at Jar lo-

cation

Figure 5-16 on page 116 shows the mechanical model of the drillstring in the

stuck condition. Two cases are studied in particular.

1. Distributed damping model of the stuck region

2. Distributed stiffness model of the stuck region

The data relevant to the stuck case is presented in the following table. Other

drillstring particulars are the same as described in section (5.3.1)

Data for figure 5-16 & 5-27 - Stuck case

Jar location (Lyy : distance below DP/BHA interface) 50 m
Stuck region (Ljs : distance below DP/BHA interface) 150 m
Stuck region (Lys : distance below jar) 100 m
Stuck length (Ls) 30 m
BHA length between bottom of stuck region and bit (Lsg) | 50 m
BHA length between jar location and bit (L;p) 180 m
Total length of BHA (Lpna) 230 m
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5.3.4 Case 1) — Distributed stiffness model of the stuck

region

In this case, the stuck region is modeled as a distributed stiffness. One can
interpret this model as, the drillstring being restrained from moving axially.
This is achieved by a set of springs distributed in a continuous manner between
the BHA and the surrounding formation, along the entire length of the stuck
region. This can be seen in figure 4-2 on page 61. The degree of restraint is

governed by the value of the distributed stiffness.

Input : When the drillstring is stuck, there is no longer a relative
bit displacement excitation. The source of excitation then,
is from the jarring action. This is modeled as a unit force
impulse in the time domain, at the jar location (position (A)

in figure 5-16).

Response : Force at a surface location 5 m below the surface mass-

spring-damper subsystem (position (B) in figure 5-16).

Bottom b.c :  The drillstring is assumed to get stuck while tripping out.
Under such circumstances, the bit is off-bottom and the

boundary condition at the bottom is free.

Discussion :

Figure 5-18 shows the magnitude of the simulated transfer functions between
the force at the surface (position B in figure 5-16) and a unit harmonic force
excitation at the jar location (position A in figure 5-16) for different levels of
distributed stiffness in the stuck region. The transfer functions are calculated
over a frequency range from 0.2-819.2 Hz, with a step size of 0.2 H z, but results

are presented only upto 100 Hz for the sake of clarity. The values of distributed
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stiffness used are given in the following table.

Data for figure 5-18 (DSMS)

Distributed Stiffness N/m /m

Stuck region | Elsewhere in drillstring
case a) | 1.0 x 10° 0.0
case b) | 1.0 x 108 0.0
case c) | 1.0 x 107 0.0
case d) 0.0 0.0

Elastic stiffness of stuck length of BHA

Ksp = 244 = 1.0746 x 10° N/m

Case a) : Firmly stuck situation

This can be taken to represent the worst case scenario of the stuck pipe condi-
tion, since the force (per unit length of the stuck region) needed to cause a unit
displacement of the stuck portion of the BHA, is the maximum in this instance
owing to the high value of distributed stiffness. The distributed stiffness in the
stuck region is much larger than the elastic stiffness of the stuck length of the
BHA. This might be the condition a driller would start out with, when he first
encounters stuck pipe (if the sticking mechanism behaves as a stiffness or a con-
servative restraint on the BHA). Figure 5-18 a) shows the surface force response
as a function of frequency, due to a unit harmonic force input at the jar location.
The sharp dips (zeros) of the transfer function indicate that the response loca-
tion behaves as a node’ for the measured force at those frequencies. Hence, for
a finite harmonic force excitation at the jar location, the surface force response

is negligible at frequencies corresponding to the zeros of the transfer function.

7A small force implies a large displacement and vice-versa
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The first zero occurs at 5§ Hz. This corresponds to the natural frequency of the

mass-spring-damper subsystem at the top boundary, given by

fo — Keq — /9x106
M.q 9100.0

= 50H:z

Thus, when the excitation frequency at the jar location is 5 Hz, the mass-
spring-damper subsystem is forced at its resonant frequency. This causes large
amplitude oscillations of the mass and a zero in the transfer function at that
frequency (since the response locatior is at the surface). The position of this

zero strongly depends on the force measurement location and the characteristics

of the MSD?® subsystem.

The subsequent zeros of the transfer function are of greater relevance and occur
at frequencies 24.6, 49.8, 73.8 Hz.... These are nodal points due to standing
waves which form in the section of the BHA between the jar and the top of the
stuck region. The jar location and the top of the stuck region behave as fixed

boundaries in this case. These frequencies are given by

fo = 3= no= 1,2,3..
= psu0 n = 1,23.. (5.41)

= 25.5, 51.0, 76.5 Hz...

where

Ljs is the BHA length between the jar and the top of the stuck region.

Thus, in this case, the top of the stuck region behaves as a rigid boundary.

It should be noted that the stiffness due to external restraints over the stuck

8Mass-spring-Damper
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Figure 5-18: Magnitude of the simulated transfer function between the force measured
at the surface (5 m below the mass-spring-damper subsystem) and a unit harmonic
force excitation at the jar location, for different levels of distributed stiffness

a) K=10x10°N/m /m b) K =10x10®N/m /m

¢) K=10x10N/m /m d) K =00N/m/m
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length ((1.0 x 10° N/m /m) x 30 m) is greater than the elastic stiffness of the
stuck length of the BHA (~ 1.0 x 108 N/m) by a factor of 300.

The peaks of the transfer function occur at frequencies 8.76, 41.8, 59.18 Hz....
These correspond to the resonances of the section of the BRA between the top
of the stuck region and the BHA /drillpipe interface, behaving as a bar with

fized-free boundary conditions. These resonant frequencies are given by

fo = 42:5 n = 1,3,5..
. nb5100 .
= %1% n o= 1,3,5.. (5.42)

= 8.5, 25.5, 42.5 Hz...

where

L;s is the BHA length between the BHA /drillpipe interface and the top of the

stuck region.

Note that the resonances at 25.5 and 76.5 Hz are not excited because the jar
is located at a node for these frequencies. It can also be observed that, in the
absence of a resonance, the zero at 51.0 Hz becomes conspicuous. The small,
closely spaced peaks in the figure represent the resonances of the drillpipe.
These peaks have a frequency spacing given by Tigp where Lpp is the length

of the drillpipe.

With a knowledge of the locations of the poles and zeros of the transfer function,
one can determine the location of the stuck region from force measurements at

the surface.

Cases b) & c¢) : Transition from a stuck to a free drillstring

Figures 5-18 b) & c) show the force at a surface location due to a unit harmonic

force input at the jar location for distributed stiffness values of 1.0x 10 N/m /m
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and 1.0 x 107 N/m /m in the stuck region respectively. These represent stiffness
values over the stuck length that are greater than the elastic stiffness of the stuck
portion of the BHA by factors of 30 and 3 for the two cases. The position of the
first zero stays at 5 Hz, since it represents the resonance of the mass—spring—
damper subsystem and, as was pointed out earlier, its position depends on the

response location and the characteristics of the mass-spring-damper subsystem.

Figure 5-18 b) differs from figure 5-18 a) in the location of the poles and zeros
which have been slightly shifted to the left. The zeros now occur at frequencies
24.2, 48.17, 72.16 Hz.... These can be interpreted as nodal points due to
standing waves which form in an effective length of the BHA between the jar
and some point within the stuck region. At this point, the equivalent boundary
condition is fixed. These resonant frequencies, which have nodes at the jar

location are given by

fo = I no= 1,23..
JS
_  nbl00 _
=  2x106 n = 1,2,3.. (5.43)

= 24.1, 48.1, 72.16 H=...

where

LY/ is the effective length of the BHA between the jar and an effective point

within the stuck region, which behaves as if it were fixed.

The peaks of the transfer function occur at frequencies 8.20, 40.45, 57.60 Hz....
These correspond to the resonances of an effective section of the BHA between
the BHA /drillpipe interface and a point within the stuck region, behaving as a

bar with free—fized boundary conditions. These resonant frequencies are given

by
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fn = 42;27 n = 1,3,5..
= ns100 n = 1,3,5.. (5.44)

4X156

= 817, 24.5, 40.8 Hz...

where

L% is the effective BHA length between the BHA /drillpipe interface and a

point within the stuck region, which behaves as if it were fixed.

The difference between figures 5-18 b) and 5-18 c) is quite distinct due to the
closer spacing between the zeros of the transfer function. Also, the modal force
zeros which were obscuring the display of the resonances in cases a) and b) have

moved sufficiently to unveil the peaks.

Case d) : Free drillstring

The force response at the surface due to a unit hkarmonic force input at the jar
location is shown in figure 5-18 d) for a free drillstring. The zeros of the transfer
function occur at frequencies 7.03, 21.2, 35.40 Hz.... These correspond to
standing wave nodes of the BHA between the jar location and the bit, which has
a free boundary condition. There are no displacement nodes at the jar location

at these frequencies. These frequencies are given by

o= s n = 1,3,5..
— nb5100 _
= 4)(5180 n = 1,3,5.. (5.45)

= 7.08, 21.25, 35.41 Hz...

where
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L;p is the BHA length between the jar location and the bit.

The poles of the transfer function occur at 11.4, 23.4, 32.42 H:z.... These cor-
respond to the resonances of the BHA behaving as a bar with free—free boundary

conditions. These resonant frequencies are given by

fo = i n = 1,2,3..
= 5w n = 1,2,3.. (5.46)

= 11.08, 22.17, 33.26 H-=...

where

Lpy 4 is the length of the BHA.

Conclusions :

The sequence of transfer functions shown in figures 5-18 a) through 5-18 d)
simulates the progress made in freeing a stuck drillstring, in the event of the
sticking mechanism behaving as a conservative restraint preventing the stuck
length of the BHA from moving axially. In case =), we saw that the top of the
stuck region behaved as a rigid boundary and the length of the BHA below the
stuck region had no bearing on the zeros and poles of the transfer function.
This agrees with figure 5-5 on page 97, where the force transmission coefficient
is shown as a function of frequency, through a barrier modeled as a distributed
stiffness. It can be seen that the transmission coeflicient is unity only above
the cut-off frequency which for a distributed stiffness of 1.0 x 10° N/m /m is
452 Hz. Below the cut-off frequency, the transmission coefficient can be seen
to drop-off very steeply. Thus, for the frequency range over which the transfer

function is shown (0-100 H2z), there is no transmission into the stuck region.
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Case b) simulates a situation where, due to continuous jarring, the distributed
stiffness over the stuck length has reduced to 1.0 x 108 N/m /m. The corre-
sponding cut-off frequency is 143 Hz. The transmission coefficient in this case
though small (figure 5-5), is not insignificant for the frequency range 0-100 Hz.
This causes a slight shift to the left, of the poles and zeros of the transfer func-
tion which indicates that some energy is being transmitted into the stuck region

below 100 H z.

Case c) indicates further progress towards freeing the stuck drillstring, where the
stiffness in the stuck region is now 1.0 x 107 N/m /m. The corresponding cut-
off frequency is ~ 45 Hz. Thus, a significant amount of energy is transmitted
through the stuck region below 100 Hz and this causes additional zeros to

appear in the transfer function (in the frequency range 0 — 100 Hz.)

Finally in case d), the zeros correspond to nodes at the jar location, when the
bit has a free boundary condition, indicating that the jarring operation has

indeed been successful.

Impulse Response :

Figures 5-19 a) through 5-19 d) show the impulse responses (force at the surface
due to a unit force impulse at the jar location) for various levels of distributed
stiffness. The impulse responses are obtained by inverse fourier transforming
the transfer functions (0 — 819.2 Hz), followed by smoothening using a 3 ms
blackman window. The impulse responses correspond to the cases shown in
figure 5-18 in the same order, and simulate the force measurements at the

surface during jarring, in proceeding from a stuck to a free drillstring.

The first peak in all of the four cases corresponds to the direct arrival (0.3766 secs)
of the input force pulse. The subsequent peaks represent echoes/superposition
of echoes, a result of reflections at boundaries and consequent ringing effects.

The second peak in the free drillstring, (case d)) is the reflection off the bottom
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Figure 5-19: Force response at the surface (5 m below the mass-spring-damper sub-
system) due to a unit force impulse at the jar location, for different levels of distributed

stiffness
a) K=10x10°N/m /m b) K =1.0x10N/m /m

¢c) K=10x10'N/m /m d) K =0.0 N/m /m
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boundary; the bit being a free end causes the force signal to flip signs. In cases
a), b) and c) the seccnd arrival corresponds to the reflection from the stuck re-
gion (The force signal does not change signs in this case). The impulse response
dies out eventually due to internal damping in the drillstring. In the presence
of a stuck region, it is generally not possible to distinguish between signal ar-
rivals in plots of impulse responses, due to the complex nature of the reflected
and transmitted waveforms at the stuck region.® Hence assessment of jarring
effectiveness from impulse response calculations, is not the best approach in the
distributed stiffness model of the stuck region. To overcome this problem, a
different technique, the cepstral analysis is employed. This will be discussed in

section (5.3.6).

5.3.5 Case 2) — Distributed damping model of the stuck

region

The stuck region is modeled as a dissipative region by a series of viscous dashpots
continuously distributed between the BHA and the surrounding formation. This
is shown in figure 4-3 on page 62. The instantaneous power dissipated at any
point in the stuck region is given by the product of the instantaneous dashpot
force and the instantaneous velocity at that point. The power dissipated is

governed by the value of the distributed damping constant.

Input : A unit force impulse in the time domain, at the jar location

(position (A) in figure 5-16).

Response : Force at a surface location 5 m below the surface mass-

spring-damper subsystem (position (B) in figure 5-16).

Bottom b.c:  Free boundary condition at the bit.

®shown in figure 5-7 and figure 5-8. The reflected and transmitted waveforms no longer retain
the shape of a pulse, leading to a superposition of the various arrivals at the surface

131



Discussion :

The simulated surface response (position B in figure 5-16) for a unit harmonic
force excitation at the jar location (position A in figure 5-16) is shown in figure 5-
20 for various levels of distributed damping in the stuck region. The transfer
functions are presented only up to 100 Hz. The values used for distributed

damping are given in the following table.

Data for figure 5-18 (DDM??)

Distributed Damping N — s/m /m

Stuck region | Elsewhere in drillstring
case a) 1.1 x 108 1.1 x 102
case b) | 1.1 x 10° 1.1 x 102
case c¢) [ 1.1 x 10* 1.1 x 10?
case d) | 1.1 x 102 1.1 x 102

The worst case scenario in the event when the stuck region behaves as an ab-
sorptive medium is illustrated in figure 5-20 a). With effective jarring, one
would see a shift to the left, of the frequencies at which the poles and zeros
of the transfer function occur, as shown in figure 5-20 b). As the drillstring
approaches the free case, the spacing between the zeros decreases (figure 5-20 c)
) due to energy being transmitted through the stuck region and being reflected
off the free boundary at the bit. The completely free case is shown in figure 5-
20 d). The locations of the zeros and poles in cases a) and d) are the same as
was for the distributed stiffness model (DSM). However, it can be seen that the

peaks and valleys are not as sharp, due to damping.!?

1The zero at 5 Hz is not affected by damping in the stuck region since it represents the natural
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Figure 5-20: Magnitude of the simulated transfer function between the force measured
at the surface (5 m below the mass—spring-damper subsystem) and a unit harmonic
force excitation at the jar location, for different levels of distributed damping
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Conclusions :

The transfer functions in figures 5-20 a) through figure 5-20 d) simulate the force
response at the surface to jarring, for the cases when the stuck region is modeled
as distributed damping. In case a), it was noted that the poles and zeros of the
transfer function occur at the same frequencies for both the DSM and the DDM
for the frequency range over which the transfer functions are plotted. This is
consistent with figure 5-12 on page 108, where the force transmission coeflicient
through a barrier modeled as distributed damping is shown. It can be seen that
the transmission coefficient is extremely small and a monotonically decreasing
function of frequency. There is thus, negligible transmission of energy into
the stuck region. Differences between the two models would become apparent
for frequencies above the cut-off frequency (452 Hz), when there is near total
transmission through the stuck region in the DSM resulting in a decrease in the

frequency spacing between the zeros of the transfer function.

Cases b) & c) represent the transition from the stuck to the free case. The
transmission coefficient is significant in the range 0 — 100 Hz for a distributed
damping value of 1.1 x 10> N — s/m /m (case b)), and is close to unity when
the distributed dampingis 1.1 x 10* N — s/m /m (case c)), as can be seen from
figure 5-12. For cases b) & c), energy is transmitted through the stuck region
over the entire frequency band considered (0 — 100 Hz), resulting in a closer

spacing between the poles and zeros of the transfer function.!?

Case d) represents the free drillstring and was analyzed in section 5.3.4.

Impulse Response :

frequency of the mass-spring-damper subsystem atop the drillstring and is therefore, independent
of the stuck region.

12The frequencies at which the zeros occur can be interpreted as resonances of an effective length
of the BHA between the jar location and some point in the stuck region behaving as a fixed-fixed bar.
As energy transmitted through the stuck region increases, this effective BHA length also increases,
causing the zeros to be spaced closer to each other. A similar argument holds for the poles of the
transfer function.
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The force response at the surface due to a unit force impulse at the jar location
is shown in figures 5-21 a) through d) for various levels of distributed damping.
The first peak corresponds to the direct arrival. The subsequent arrivals corre-
spond to reflections from the stuck region in cases a) & b); the peak at 1.11 secs
is due to the ringing of the pulse in the drillpipe. The area under the reflected
force pulse from the stuck region in case b), as seen at the surface is very small;
at the same time no reflections from the bottom boundary are observed.!* With
a knowledge of the difference in momentum (as given by the difference in areas
under the input pulse and reflected pulse from the stuck region), a measure of

the power dissipated in the stuck region can be obtained.

Figure 5-21 ¢) shows that, with a decrease in damping, strong reflections from
the free end at the bit are also seen in addition to weak reflections from the
stuck region, indicating that most of the energy is transmitted through the stuck

region. Finally, in case d), the peaks represent reflections from the bit and the

BHA /drillpipe interface.

It should be noted that though it is possible to distinguish between the various
arrivals by looking at the impulse response in a DDM (for a relatively simple

drillstring), this is not true in the DSM of the stuck region.

5.3.6 Cepstral Analysis in Waveform Recovery

It was pointed out with reference to the distributed stiffness model that the
it is not easy to distinguish between arrivals from various boundaries, from
the impulse response function. The cepstral analysis is mainly used, when the
impulse response of a system becomes folded with the input such that separate

extraction of the source and path information becomes virtually impossible in

131f reflections had been observed, distinct resonances would have been observed in the surface
response corresponding to the section of the BHA between the stuck region and the bit, which is
not so.
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Figure 5-21: Force response at the surface (5 m below the mass—spring-damper sub-
system) due to a unit force impulse at the jar location, for different levels of distributed

damping
a) R=11x108N-s/m/m b) R=11x10°N —s/m /m
¢) R=11x10*N—-s/m/m d) R=1.1x10’N —s/m /m
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the time domain. In our case, the input is an impulse and the output is the
impulse response; hence the question of folding with the input does not arise.
However, we shall see that, identification of various arrivals becomes much easier
in the cepstral domain. This is because the peaks in the power cepstrum, in
spite of having the same time periodicity as the impulse response, die away much
more quickly. The main premise behind cepstral analysis is that the logarithm
of the Fourier transform of a signal containing an echo has an additive periodic
component due to the echo, and hence the inverse fourier transform of the iog
magnitude (of the fourier transform of the signal) exhibits a peak at the echo
delay. This function is called the real or the power cepstrum. In mathematical

terms,

oo

H(w) = /0 h(t)e 7t dt (5.47)

The power or real cepstrum is then defined as :

1 e .
C; = = / log | H(w) | &**dw (5.48)
27 J-oo
where
h(t) : Impulse response of the system
H(w) : Transfer function of the system
Cj, : Power or real cepstrum of the impulse response

A more rigorous discussion on cepstral analysis can be found in [13] and [10].

5.3.7 Cepstral Analysis: Application to Distributed Stiff-

ness and Distributed Damping Models of the stuck region
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damper subsystem) due to a unit force impulse at the jar location, for different levels
of distributed stiffness
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Distributed Stiffness Model (DSM) :

The impulse response at the surface due to a unit force impulse at the jar
location was shown in figures 5-19 a) through d) for various levels of distributed
stiffness. Figures 5-22 a) & b) and 5-23 c) & d) represent the power cepstrum
of the impulse response for the corresponding cases. The power cepstrum is
plotted from 0.02-0.15 secs and again from 0.7-0.9 secs for easy comparison
and interpretation of results, as it is during these time intervals that echoes of

primary interest are observed.

Case a) represents the firmly stuck case with a distributed stiffness value of
1.0 x 10° N/m /m in the stuck region. It can be seen that strong echoes
occur at times 0.0400 secs and 0.0597 secs. These represent time delays of

subsequent arrivals relative to the direct arrival'*. The peak at 0.0400 secs is

the delay corresponding to the reflection of the pulse!® (X)) from the stuck region,
whereas that at 0.0597 secs is the delay that corresponds to a pulse (Y) which
undergoes reflections at the BHA /drillpipe interface and at the stuck region
before making its way to the surface. The delays correspond to propagation
distances of 204 m and 305 m respectively. In addition, strong peaks also occur
at 0.0748 secs and 0.0958 secs.!® 0.0748 secs is the delay corresponding to the
reflection of the transmitted waveform (P) at the bottom free boundary; the
peak at 0.09576 secs represents the time delay corresponding to the case where
the pulse (Q) undergoes reflections at the BHA /drillpipe interface and at the
bit before reaching the surface. Assuming that these peaks are representative

of the wave group, the group velocity in the stuck region can be calculated as

2Ls N 2(Lys + Lsp)

0.07476 (5.49)
Cg 5100

1All time delays in the cepstral plots are with reference to the direct path arrival

!5The various pulses and waveforms will be identified by the bold face letters in parentheses next
to them, in the remainder of this chapter

18Above the cut-off frequency (452 Hz), there is propagation through the stuck region.
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60 N 300
¢, | 5100
cg ~ 3765 m/s (5.50)

= 0.0746

The peaks at 0.7352 secs and 0.7949 secs represent echoes which occur every
3750 m and 4053 m respectively. These correspond to propapagation distances
of 2 Lpp and 2(Lpp + L1s) and indicate the ringing of the pulse in the drillpipe
and in the length of the drillstring, which includes the drillpipe and the BHA
above the stuck region. The echo at 0.8304 secs corresponds to a propagation
distance equal to twice the length of the drillstring. Thus, the cepstrum pro-
duces peaks at time delays corresponding to signal arrivals which have a strong
periodicity. In the rest of the discussion, only the time interval 0.02-0.15 secs

will be analyzed.

The distributed stiffness in the stuck region in case b) is lower by a factor of
10 (1.0 x 10® N/m /m) than in case a) (as a result of jarring being effective to
some extent). The first two strong echoes correspond to X and Y. The echoes
corresponding to reflections from the stuck region are no longer as strong or
as sharp as was seen in case a). The subsequent peaks at 0.0719 secs and
0.0916 secs represent P and Q. The peaks are much sharper since a wider
band of frequencies now propagate through the stuck region owing to a lower
cut—off frequency. The group velocity in the stuck region is calculated to be

~ 4570 m/s.

In case c), the distributed stiffness is further reduced to 1.0 x 107 N/m /m.
Here, there is no echo corresponding to reflections from the stuck region. Most
of the energy is transmitted through the stuck region. The peaks at 0.0705 secs
and 0.0900 secs correspond to P and Q respectively. It can be observed that the
shape of the echoes due to reflection from the bottom boundary bears a resem-
blance to the transmitted waveform through a barrier modeled as a distributed

stiffness and shown in figure 5-8 on page 104.

The power cepstrum of the impulse response for a free drillstring is shown in case
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d). The peaks at 0.0705 secs and 0.0903 secs represent P and Q respectively.
The peaks are very sharp due to absence of any significant dispersive effects.
The group velocity (~ 5100 m/s) in this case, is the same throughout the
drillstring since damping is negligible.

Distributed Damping Model (DDM) :

Figures 5-24 a) & b) and 5-25 ¢) & d) show the power cepstrum of the impulse
response for various levels of distributed damping (shown for the same time

intervals as was plotted in figures 5-22 and 5-23).

Case a) represents the firmly stuck case with the stuck region modeled as a
distributed damping of value 1.1 x 106 N — s/m /m. It can be seen that strong
echoes occur at times 0.0393 secs and 0.0592 secs. These represent time delays

of subsequent arrivals relative to the direct arrival. The peak at 0.0393 secs

corresponds to the reflection of the pulse (X) from the stuck region, whereas
that at 0.0592 secs corresponds to the pulse (Y) that undergoes reflections
at the BHA /drillpipe interface and at the stuck region before making its way
to the surface. The delays correspond to propagation distances of 201 m and
301 m respectively. It should be noted that this differs from case a) of the DSM
in that there is no transmission through the stuck region and hence no echo

corresponding to reflection from the free boundary at the bit, is seen.

The distributed damping in case b) is lower (1.1 x 10° N/m /m) by a factor of
10 than that in case a). From figure 5-24 b), it can be noticed that there are no
strong echoes, though weak reflections from the stuck region can be seen. This
implies that most of the energy is being dissipated in the stuck region, which is

a sign of effective jarring operation.

Figure 5-25 c) represents a case where the damping is further reduced to 1.1 x
10° N/m /m. In this case, there are no echoes associated with reflections from
the stuck region. Echoes however occur at times 0.0705 secs and 0.0904 secs

corresponding to reflections from the free boundary at the bit. This indicates
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c) R=11x10*N-s/m /m

d) R=11x10*N—-s/m /m
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that some of the energy is dissipated and some of it transmitted through the
stuck region. The group velocity of the pulse through the stuck region can be

calculated as

2Ls 2(Lys+ Lsg)

= 0.0705 5.51
Cq 5100 ( )
60 300
— 4+ —— = 0.0705
T
cg ~ 5150 m/s (5.52)

Figure 5-25 d) shows the cepstrum of the impulse response for a free drillstring.
This differs from case c) in that the echoes are much stronger. The peaks at

0.0705 secs and 0.0903 secs represent reflections P and Q respectively.

Thus, we have seen how the cepstrum plots can be used as an analysis tool for
evaluating jarring effectiveness. It must however be borne in mind, that most
of the jars are uphit jars,!” and hence can be tripped only when the drillstring
is stuck. Therefore, in most of the situations, the signature of a free drillstring
due to the tripping of the jar cannot be obtained. This is the motivation behind
studying ezample 5.4 where a force impulse is delivered to the drillpipe at the

surface and the resulting response measured, also at a surface location.

5.4 Example 5.4 — Input impulse at surface

location

A jar downhole, is usually tripped only under stuck conditions, whereas an
impulse can be delivered to the drillpipe at the surface even when the drillstring
is free. One can thus have a baseline measurement of the impulse response at

the surface in the free case, which can then be used in the evaluation of jarring

7trip under a tensile overpull at the surface
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effectiveness. A flowchart indicating the sequence of steps is shown in figure 5-

26.

The drillstring considered is the same as the one used in example 5.3, and is
described in section (5.3.1) on page 114. The analytical model of the drillstring
is shown in figure 5-27 on page 148. Two cases are analyzed - the distributed
stiffness and the distributed damping models of the stuck region. The data
relevant to the stuck cases along with the nomenclature used is given in the

table that follows

Data for figure 5-27 — Stuck case

Stuck region (Lys : distance below DP/BHA interface) 150 m
Stuck length (Ls) 30 m

BHA length between bottom of stuck region and bit (Lgg) | 50 m
Total length of BHA (Lpra) 230 m

5.4.1 Case 1) — Distributed stiffness model of the stuck

region

Input : The input at the surface (position (A) in figure 5-27) is mod-
eled as a unit force impulse in the time domain.

Response : Force at a surface location 2 m below the surface mass—

spring—damper subsystem and 3 m above the input location

(position (B) in figure 5-27).

Bottom b.c:  The drillstring is assumed to be off-bottom when it gets
stuck; the bottom boundary is thercfore modeled as a free

boundary.

146



Cepstrum of response

@ surface due to
impulse @ surface

of free drillstring

Y

Stuck condition

Compare with @

Infer type of sticking

1. Stiffness
2. Damping

Jarring

|

Cepstrum of response
@ surface due to
impulse @ surface

Compare with @

|

Is Jarring effective ??

Figure 5-26: Flow chart for evaluation of jarring effectiveness
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Discussion :

Figure 5-28 shows the magnitude of the predicted transfer functions between
the force at the surface (position B in figure 5-27) and a unit harmonic force
excitation 3 m below (position A in figure 5-27) the response location. The
transfer functions are calculated over a frequency band 0.2-819.2 Hz, with a
step size of 0.2 Hz and are shown for various levels of distributed stiffness in
the stuck region. The values of the distributed stiffness used are the same as

the ones used in ezample 5.3 and are given in section (5.3.4).

The zeros of the transfer function indicate that the response location acts as
a node for the measured force at those frequencies. The first zero occurs at
~ 5.2 Hz. This corresponds to the natural frequency of the mass-spring—
damper subsystem at the top boundary. The position of this zero is dependent
on the response location and the mass-spring system used to model the surface
boundary condition. The next zero occurs at 638.8 Hz. This corresponds to a
frequency for which there is a node in the standing wave of strain distribution
formed between the input location and the mass-spring-damper subsystem.
At this frequency, the mass acts as an approximately fixed boundary. These

frequencies are given by

o= = n = 1,3,5..
= n5100 n = 13,5.. (5.53)

= 637.5, 1912.5, Hx...

where

Lspg is the length of the drillpipe section between the response location and the

mass-spring-damper subsystem.
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Figure 5-28: Magnitude of the simulated transfer function between the force measured
at the surface (2 m below the MSD subsystem) and a unit harmonic force excitation at
a surface location (5 m below the MSD subsystem), for different levels of distributed

stiffness
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150



It can be observed that there are no noticeable differences in the overall char-
acteristics of the transfer functions as one proceeds from a stuck pipe to a
free drillstring. This was not the case when the input was at the jar location.
Hence, one cannot evaluate jarring effectiveness from plots of transfer functions

directly.

5.4.2 Case 2) — Distributed damping model of the stuck

region

Input : A unit force impulse in the time domain (position (A) in
figure 5-27).

Response : Force at a surface location 2 m below the surface mass-

spring-damper subsystem (position (B) in figure 5-16).

Bottom b.c:  Free boundary condition at the bit.

Discussion :

The predicted response at the surface (position B in figure 5-27) due to a unit
harmonic force excitation (position A in figure 5-27) 3 m below the response
location is shown in figure 5-29 for various levels of distributed damping in the

stuck region. The values of distributed damping used are given in section (5.4.2).

The first zero of the transfer function occurs at 5 Hz, which corresponds to the
natural frequency of the MSD subsystem. The next zero occurs at 638.8 Hz

and corresponds to the node in strain at the response location.

It was pointed out with regard to the DSM that the transfer functions by

themselves donot provide any insight on the efficacy of the jarring operation.
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Figure 5-29: Magnitude of the simulated transfer function between the force measured
at the surface (2 m below the MSD subsystem) and a unit harmonic force excitation at
a surface location (5 m below the MSD subsystem), for different levels of distributed
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This is also true in the case of the DDM. In section (5.4.3), the use of the cepstra
of the impulse response functions to extract useful information about jarring

effectiveness will be demonstrated.

5.4.3 Cepstral Analysis: Application to Distributed Stiff-

ness and Distributed Damping Models of the stuck region

Distributed Stiffness Model (DSM) :

Figures 5-30 a) & b) and 5-31 c) & d) represent the power cepstrum of the
impulse response for progressively decreasing levels of distributed stiffness in

the stuck region.

Case a) represents the firmly stuck case (K = 1.0 x 10° N/m /m). Strong
echoes can be seen corresponding tu delay times'® 0.7334 secs and 0.7930 secs.
The peak at 0.7334 secs is the delay corresponding to the reflection of the
pulse!? (E) that travels downward from its point of origin, at the diillpipe/BHA
interface; the peak at 0.7930 secs is the delay that corresponds to a pulse (F),
that is reflected off the stuck region. These delays translate to propagation
distances of 3740 m and 4044 m respectively. In addition, echoes clustered
around 0.83 secs are also seen, which is the delay corresponding to the reflection
of the transmitted waveform (M) at the bottom free boundary.? The rest of

the peaks in figure 5-30 a) are caused by ringing effects.

If the jarring operation is producing results, then one would expect the dis-
tributed stiffness in the stuck region to decrease. This is simulated in figure 5-30
b), where the distributed stiffness is now K = 1.1 x 108 N/m /m. The first
two echoes (with delay times 0.7334 secs & 0.7930 secs) correspond to E and F

8]t must be borne in mind that all delays have the direct arrival contribution subtracted out.
19The boldface letters serve as an identification to keep track of the various pulses and waveforms
20Propagation through the stuck region occurs above the cut—off frequency (452 Hz)
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respectively. The subsequent echo with a delay time of 0.8236 secs corresponds
to M. It can be observed that the echo associated with reflection from the stuck
region (F) is not as sharp as was in case a) due to a drop in the reflection co-
efficient for frequencies above the cut-off frequency. On the other hand, the
delay time corresponding to the reflection of the transmitied waveform from
the bottom boundary exhibits a strong and a narrow peak since a wider band
of frequencies propagate through the stuck region as a result of a decrease in

cut-off frequency (143 Hz).

In case c), the distributed stiffness is a factor of 10 lower than that in case b).
In this case, the echo corresponding to the reflection from the stuck region is
very small which implies that most of the energy propagates through the stuck

region. A strong echo occurs at a delay time 0.8236 secs which corresponds to

M.

The power cepstrum of the impulse response of a free drillstring is shown in
figure 5-31 d). The peaks at 0.7334 secs and 0.8236 secs represent E + M
respectively. The peaks are extremely sharp due to the dispersive effects being

negligible.

Distributed Damping Model (DDM) :

Figures 5-32 a) & b) and 5-33 ¢) & d) show the power cepstrum of the impulse

response for various levels of distributed damping in the stuck region.

Case a) represents the firmly stuck case with the stuck region modeled as a
distributed damping of value 1.1 x 108 N — s/m /m. It can be seen that
strong echoes occur at times 0.7336 secs and 0.7918 secs. These represent
time delays associated with reflections from the drillpipe/BHA interface and
the stuck region respectively. The delays correspond to propagation distances
of 3741 m and 4038 m, which is consistent with the drillpipe geometry. In this
case, by virtue of very high damping, the stuck region behaves essentially as

a rigid boundary; there is thus no transmission through the stuck region and
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Figure 5-32: Power cepstrum of response at the surface (2 m below the MSD subsys-
tem) due to a unit force impulse at a surface location (5 m below the MSD subsystem),
for different levels of distributed damping

a) R=11x10°N —s/m /m

b) R=11x10°N —s/m /m
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Figure 5-33: Power cepstrum of response at the surface (2 m below the MSD subsys-
tem) due to a unit force impulse at a surface location (5 m below the MSD subsystem),
for different levels of distributed damping
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consequently, no echo corresponding to reflection from the free boundary at the

bit, is seen.

Figure 5-32 b) shows a case where the distributed damping in the stuck region
is reduced by a factor of 10 in comparison to case a). A strong echo from the
drillpipe/BHA interface (corresponding to a delay time of 0.7336 secs) followed
by a weak echo (corresponding to a delay time of 0.7927 secs) from the stuck
region are seen. At the same time, no echoes associated with reflection of the
transmitted waveform through the stuck region are seen. This goes to show that
most of the input energy is being dissipated in the stuck region which signifies

that the jarring operation is proving to be effective.

Case c) represents a case where the damping in the stuck region is even lower as a
result of partial freeing of the BHA. From figure 5-33 c), it can be seen that there
are no echoes associated with reflections from the stuck region. Echoes however
occur at times 0.7336 secs and 0.8235 secs which correspond to reflections from
the drillpipe/BHA interface and the free boundary at the bit. This indicates
that some of the input energy is dissipated and some of it transmitted through

the stuck region.

Finally, figure 5-33 d) shows the cepstrum of the impulse response of a free
drillstring. This differs from case c) in that the echoes corresponding to re-
flections from the free boundary are much stronger. The peaks at delay times
0.7336 secs and 0.8236 secs correspond to reflections from the drillpipe/BHA

interface and the bottom boundary respectively.

Thus, we have seen how the cepstrum of the impulse response measurements at
the surface can be effectively employed to answer the questions that were raised

at the outset of chapter 4 namely,

o Is the location of the stuck region determinable from surface measure-

ments?

o Can anything be inferred about the nature of the stuck region by inspection
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of surface responses ?... Does the stuck region behave as a conservative

medium or is it absorptive in nature ?

o Is the jarring proving to be effective ?... Are we making progress towards

freeing the drill string ?
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Chapter 6

Conclusions

In this thesis, a mathematical model developed by H.Y. Lee for drillstring axial
vibration was used to understand drillstring dynamics during jarring. This
model was modified to include the effects of distributed stiffness, which caused
an additional term to appear in the dispersion relation. The effect of this term
was to introduce cut-off frequencies below which, only an evanescent wave field
existed in the stuck region. The transfer matrix for the drillstring, modeled as
a piecewise continuous complex pipe system, was built up with a knowledge of
the transfer matrices for a mass-spring-damper system and a uniform bar. The
transfer function was then obtained between the force measured at a surface
location and a unit harmonic force at the input location. The impulse response
was obtained by taking the inverse fourier transform of the transfer function

and smoothed using a Blackman window.

The jarring action was modeled as a unit area impulse (in the time domain)
delivered to the BHA at the jar location. It must be pointed out that a realistic
jarring signal is not a true impulse, and the response in such a case is obtained
either by a convolution of the impulse response with the true jarring signal or by
forming the product of the transfer function and the fourier transform of the in-
put signal. The surface force response due to a unit harmonic force excitation at

the jar location was studied as a function of frequency, for progressively decreas-
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ing values of 1) distributed stiffness and 2) distributed damping in the stuck
region. This simulates a progress from a badly stuck case to a free drillstring.
In case 1), the sticking mechanism is modeled as a conservative restraint on the
BHA whereas in case 2), the stuck region is modeled as a dissipative medium.
It was seen that the transfer functions exhibit distinct changes (in the positions
of the poles and zeros), as one proceeds from a stuck to a free case. One could
thus identify the location of the stuck region and evaluate the progress made
during jarring by monitoring the positions of the poles and zeros. The poles
and zeros in the distributed stiffness model are much sharper than those in
the distributed damping model. The impulse responses are obtained from the
transfer functions. It was noticed that it is not possible to distinguish between
various signal arrivals from plots of the impulse responses, due to the nature
of the reflected and transmitted waveforms at the stuck region. To overcome
this problem, a different technique, known as cepstral analysis was employed.
The peaks in the power cepstrum, in spite of having the same periodicity as in
the impulse response, die away much more quickly and the arrivals from the
different interfaces can easily be distinguished. In addition, the cepstral peaks
produce distinctive signatures in the two different models of the stuck region as

one approaches the free drillstring case from a stuck pipe condition.

However, since jars are normally tripped only under stuck conditions, it may
not be feasible to obtain the baseline impulse response measurement and this
served as the motivation behind analyzing a case, where a force impulse is
delivered to the drillpipe at the surface and the resulting force response is also
measured at a surface location for different values of distributed stiffness and
distributed damping in the stuck region. The positions of the zeros of the
transfer functions in this case, are dependent solely on the system parameters
above the measurement location. The transfer function plots by themselves are
therefore, not very useful in inferring anything about jarring effectiveness. The
cepstra plots of the impulse responses are used to evaluate the efficacy of jarring

in this case.
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It has thus been demonstrated that it is possible to identify the stuck location
and infer the nature of downhole sticking from surface force measurements. The
power cepstrum plots of the impulse responses (due to a force impulse at the
surface) can then be used to evaluate the progress of the jarring operation, by
comparing them with the power cepstrum of the impulse response of a free

drillstring.

Thus, one needs to have access to real data in order to validate our models. A
first step in this direction would be to perform experiments designed at obtaining
the response of a free drillstring to a force impulse at the surface, when it is
off-bottom. Once the baseline impulse response measurement is in place, the
effectiveness of jarring can be judged by comparing the cepstra of the impulse

response (for an input force impulse at the surface) after every few jarring cycles.
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