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Abstract

Adder MAC is a simple noiseless multiple-access channel (MAC), where if users send
messages 𝑋1, . . . , 𝑋ℎ ∈ {0, 1}𝑛, then the receiver receives 𝑌 = 𝑋1 + · · · + 𝑋ℎ with
addition over Z. Communication over the noiseless adder MAC has been studied for
more than fifty years. There are two models of particular interest: uniquely decodable
code tuples, and 𝐵ℎ-codes. In spite of the similarities between these two models, lower
bounds and upper bounds of the optimal sum rate of uniquely decodable code tuple
asymptotically match as number of users goes to infinity, while there is a gap of factor
two between lower bounds and upper bounds of the optimal rate of 𝐵ℎ-codes.

The best currently known 𝐵ℎ-codes for ℎ ≥ 3 are constructed using random
coding. In this thesis, we study variants of the random coding method and related
problems, in hope of achieving 𝐵ℎ-codes with better rate. Our contribution include
the following.

1. We determine the rate achieved by changing the underlying distribution used
in random coding.

2. We determine the rate of a list-decoding version of 𝐵ℎ-codes achieved by the
random coding method.

3. We study several related problems about Rényi entropy.

Thesis Supervisor: Yury Polyanskiy
Title: Associate Professor
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Chapter 1

Introduction

1.1 Overview

Adder MAC is a simple noiseless multiple-access channel (MAC), where if users send

messages 𝑋1, . . . , 𝑋ℎ ∈ {0, 1}𝑛, then the receiver receives 𝑌 = 𝑋1 + · · · + 𝑋ℎ with

addition over Z.

Communication over the noiseless adder MAC has been studied for more than

fifty years. In the most well-studied version, each user 𝑖 (1 ≤ 𝑖 ≤ ℎ) has their own

codebook 𝒞𝑖 ⊆ {0, 1}𝑛, and 𝑋𝑖 is picked from 𝒞𝑖. We insist our protocol to be zero-

error, i.e., we can uniquely determine 𝑋1, . . . , 𝑋𝑘 given 𝑌 . More formally, if we have

𝑢1, . . . , 𝑢ℎ, 𝑣1, . . . , 𝑣ℎ with 𝑢𝑖, 𝑣𝑖 ∈ 𝒞𝑖 (1 ≤ 𝑖 ≤ ℎ) and

𝑢1 + · · · + 𝑢ℎ = 𝑣1 + · · · + 𝑣ℎ,

then we must have 𝑢𝑖 = 𝑣𝑖 for all 1 ≤ 𝑖 ≤ ℎ. A code tuple (𝒞1, . . . , 𝒞ℎ) satisfying the

above property is called uniquely decodable. The quantity we would like to optimize

is the sum rate, defined as

𝑅(𝒞1, . . . , 𝒞ℎ) =
∑︁
1≤𝑖≤ℎ

log |𝒞𝑖|
𝑛

9



where the logarithm is taken over base 2. Let

𝑅ℎ = lim sup
𝑛→∞

sup
𝒞1,...,𝒞ℎ⊆{0,1}𝑛

uniquely decodable

𝑅(𝒞1, . . . , 𝒞ℎ).

By standard information theory (e.g., [20] Chapter 29), we have

𝑅ℎ ≤ 𝐻(𝐵(ℎ,
1

2
)) = (1 + 𝑜(1))

log ℎ

2

where 𝐵(ℎ, 1
2
) is the binomial distribution and 𝐻 is Shannon entropy. On the other

hand, Cantor and Mills [6] and Lindström [14] constructed code tuples whose sum

rate grow as (1 + 𝑜(1)) log ℎ
2

as ℎ → ∞. Therefore lower bound and upper bound

match.

There is another version of communication over the noiseless adder MAC, where

all the users share a single codebook 𝒞 ⊆ {0, 1}𝑛. In this case, we cannot expect

to be able to uniquely determine 𝑋1, . . . , 𝑋ℎ given 𝑌 , because permuting 𝑋𝑖’s does

not change 𝑌 . Instead, we require that we can uniquely determine the multiset

{𝑋1, . . . , 𝑋ℎ} given 𝑌 . Formally, if we have 𝑢1, . . . , 𝑢ℎ, 𝑣1, . . . , 𝑣ℎ ∈ 𝒞 and

𝑢1 + · · · + 𝑢ℎ = 𝑣1 + · · · + 𝑣ℎ,

then the multisets {𝑢1, . . . , 𝑢ℎ} and {𝑣1, . . . , 𝑣ℎ} are equal. Codes 𝒞 satisfying this

property are called 𝐵ℎ-codes.

In this setting the quantity we would like to optimize is the rate

𝑅(𝒞) =
log |𝒞|
𝑛

.

We define

𝑅*
ℎ = lim sup

𝑛→∞
sup

𝒞⊆{0,1}𝑛
𝐵ℎ-code

𝑅(𝒞).

10



Again, standard information theory gives

𝑅*
ℎ ≤ 1

ℎ
𝐻(𝐵(ℎ,

1

2
)) = (1 + 𝑜(1))

log ℎ

2ℎ
.

The best known lower bound so far is 𝑅*
2 ≥ 1

2
given by Lindström [15] and

𝑅*
ℎ ≥

log

(︂
22ℎ

(2ℎ
ℎ )

)︂
2ℎ− 1

= (1 + 𝑜(1))
log ℎ

4ℎ

for ℎ ≥ 3 given by Poltyrev [19]. Therefore there is a gap of factor 2 between the

lower bound and the upper bound.

Poltyrev’s construction is based on random coding. In this work, we study variants

of the random coding method and related problems, in hope of achieving 𝐵ℎ-codes

with better rate. Our contribution includes the following.

1. We determine the rate achieved by changing the underlying distribution used

in random coding.

2. We determine the rate of a list-decoding version of 𝐵ℎ-codes achieved by the

random coding method.

3. We study several related problems about Rényi entropy.

1.2 Related work

In this section we review previous works on uniquely decodable code tuples and 𝐵ℎ-

codes.

In both settings, the case ℎ = 2 is studied most. A uniquely decodable code tuple

with ℎ = 2 is called uniquely decodable code pair (UDCP) in literature. Lindström

[15] prove that 1
2

log 6 ≤ 𝑅2 ≤ 3
2
. Since then, a lot of constructions of UDCPs have

been given, improving the lower bound on 𝑅2, including 1.30366 by Coebergh van

den Braak and van Tilborg [8], 1.30369 by Ahlswede and Balakirsky [1], 1.30565 by

Coebergh van den Braak [7], 1.30999 by Urbanke and Li [21], 1.31782 by Mattas and

11



Östergård [17]. These constructions are all explicit constructions, and usually have

small 𝑛. There has been no upper bound of 𝑅2 better than the entropy bound 3
2
.

For UDCPs, people have also considered the following question: when 𝛼 = log |𝒞1|
𝑛

is close to one, how large can 𝛽 = log |𝒞2|
𝑛

be? Kasami et al. [11] gave a construction

where 𝛼 ≥ 1− 𝜖 and 𝛽 ≥ 0.25. This is recently improved by Wiman [22] to 𝛼 ≥ 1− 𝜖

and 𝛽 ≥ 0.2563. Urbanke and Li [21] proved that when 𝛼 ≥ 1−𝜖, we have 𝛽 ≤ 0.4921.

It is improved by Ordentlich and Shayevitz [18] to 𝛽 ≤ 0.4798 when 𝛼 ≥ 1 − 𝜖 and

by Austrin et al. [3] to 𝛽 ≤ 0.4228 when 𝛼 ≥ 1 − 𝜖.

Let us discuss 𝑅ℎ for ℎ ≥ 3. The special case where all |𝒞𝑖| = 2 is studied under the

name detecting matrix. Cantor and Mills [6] and Lindström [14] constructed codes

with sum rate increases as (1+𝑜(1)) log ℎ
2

as ℎ → ∞. For the general case, Khachatrian

and Martirossian [12] gave a combinatorial construction for all ℎ. Kiviluoto and

Östergård [13] gave better explicit constructions for 3 ≤ ℎ ≤ 5. For 𝑘 ≥ 3, it has

been proven by Bross and Blake [5] that 𝑅ℎ is strictly smaller than 𝐻(𝐵(ℎ, 1
2
)).

Now let us turn to 𝑅*
2. A 𝐵2-code is also called a Sidon code, in analogy with

Sidon sequences in number theory. Lindström [15] gave a construction of a 𝐵2 code of

rate 1
2

that actually works with addition over Z/2Z. There has been several nontrivial

upper bounds for 𝑅*
2. Lindström proved in [15] that 𝑅*

2 ≤ 2
3
, and in [16] that 𝑅*

2 ≤ 0.6.

Cohen et al. [9] improved this to 𝑅*
2 ≤ 0.5753.

The number theoretic analogy of 𝐵ℎ-codes are called 𝐵ℎ-sequences. Any con-

struction of 𝐵𝑘-sequences can be directly translated into 𝐵𝑘-codes with the same

rate. Bose and Chowla [4], using finite fields, constructed 𝐵ℎ-sequences (and thus

𝐵ℎ-codes) with rate 1
ℎ
. This rate is optimal in number theoretic setting, but known

to be suboptimal in coding theoretic setting, at least for ℎ ≥ 3. D’yachkov and Rykov

[10] proved using random coding that 𝑅*
ℎ ≥

log

(︃
22ℎ

(2ℎ
ℎ )

)︃
2ℎ

. This is improved by Poltyrev

[19] to 𝑅*
ℎ ≥

log

(︃
22ℎ

(2ℎ
ℎ )

)︃
2ℎ−1

. As ℎ goes to ∞, the above rates increase as (1 + 𝑜(1)) log ℎ
4ℎ

.

There has been no general upper bound for 𝑅*
ℎ with ℎ ≥ 3 except for the trivial fact

that 𝑅*
ℎ ≤ 𝑅ℎ.

D’yachkov-Rykov [10] also studied what they called plans, a weaker version of

12



𝐵ℎ-codes, which are sets 𝒞 ⊆ {0, 1}𝑛 satisfying the property that for two distinct

subsets {𝑢1, . . . , 𝑢ℎ} and {𝑣1, . . . , 𝑣ℎ} of 𝒞, we have

𝑢1 + · · · + 𝑢ℎ = 𝑣1 + · · · + 𝑣ℎ.

The currently known lower bound and upper bound of the optimal rate of plans are

the same as those of 𝐵ℎ-codes.

13
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Chapter 2

Preliminaries

2.1 Definitions

In this chapter we give necessary definitions and study existing constructions of 𝐵ℎ-

codes.

Definition 2.1. Let 𝐴 be an abelian group and 𝒞 ⊆ 𝐴 be a subset. We say 𝒞 is

a 𝐵ℎ-set (or 𝒞 satisfies the 𝐵ℎ-property) if for any 𝑎 ∈ 𝐴, there exists at most one

multiset {𝑢1, . . . , 𝑢ℎ} with 𝑢1, . . . , 𝑢ℎ ∈ 𝒞 such that 𝑎 = 𝑢1 + · · ·+𝑢ℎ. In other words,

if 𝑢1, . . . , 𝑢ℎ, 𝑣1, . . . , 𝑣ℎ ∈ 𝒞 satisfies 𝑢1 + · · · + 𝑢ℎ = 𝑣1 + · · · + 𝑣ℎ, then the multisets

{𝑢1, . . . , 𝑢ℎ} and {𝑣1, . . . , 𝑣ℎ} are equal.

Definition 2.2. A 𝐵ℎ-code is a 𝐵ℎ-set 𝒞 ⊆ {0, 1}𝑛 ⊆ Z𝑛. The rate of a 𝐵ℎ-code is

defined as log |𝒞|
𝑛

.

Remark 2.3. We are most interested in the asymptotic growth of rate of 𝐵ℎ-codes

as 𝑛 goes to ∞. Therefore, when we say “there exist 𝐵ℎ-codes of rate 𝑓 ” we actually

mean “there exist a family of 𝐵ℎ-codes 𝒞1, 𝒞2, · · · with 𝒞𝑖 ⊆ {0, 1}𝑛𝑖 such that 𝑛𝑖 → ∞

and log log |𝒞𝑖|
𝑛𝑖

→ 𝑓 as 𝑖 → ∞.”

15



2.2 Constructions from number theory

The only known explicit constructions of 𝐵ℎ-codes achieve rate 1
ℎ
, and all come form

number theory.

Theorem 2.4 (Bose-Chowla [4]). Let 𝑞 be a prime power and ℎ be a positive integer.

Then there exists a 𝐵ℎ-set 𝒞 ⊆ Z/(𝑞ℎ − 1)Z of size 𝑞.

Proof. Let 𝛼 ∈ F𝑞ℎ be a generator of F𝑞ℎ over F𝑞. By elementary number theory,

deg𝛼 = ℎ and 𝛼 is a generator of F×
𝑞ℎ

≃ Z/(𝑞ℎ−1)Z. Let elements of F𝑞 be 𝑥1, . . . , 𝑥𝑞.

Let 𝑑𝑖 ∈ Z/(𝑞ℎ − 1)Z be the unique solution to 𝛼𝑑𝑖 = 𝛼 + 𝑥𝑖. We claim that 𝒞 =

{𝑑1, . . . , 𝑑𝑞} is a 𝐵ℎ-set.

Suppose that we have 𝑢1, . . . , 𝑢ℎ, 𝑣1, . . . , 𝑢ℎ with 1 ≤ 𝑢𝑖, 𝑣𝑖 ≤ 𝑞 (1 ≤ 𝑖 ≤ ℎ)

satisfying

𝑑𝑢1 + · · · + 𝑑𝑢ℎ
= 𝑑𝑣1 + · · · + 𝑑𝑣ℎ .

Then we have

𝛼𝑑𝑢1+···+𝑑𝑢ℎ = 𝛼𝑑𝑣1+···+𝑑𝑣ℎ .

By definition of 𝑑𝑖, this means

(𝛼 + 𝑥𝑢1) · · · (𝛼 + 𝑥𝑢ℎ
) = (𝛼 + 𝑥𝑣1) · · · (𝛼 + 𝑥𝑣ℎ).

Consider the polynomial

𝑓(𝑥) = (𝑥 + 𝑥𝑢1) · · · (𝑥 + 𝑥𝑢ℎ
) − (𝑥 + 𝑥𝑣1) · · · (𝑥 + 𝑥𝑣ℎ).

Because deg 𝑓 ≤ ℎ − 1 and 𝑓(𝛼) = 0, we must have 𝑓 = 0. So the multisets

{𝑢1, . . . , 𝑢ℎ} and {𝑣1, . . . , 𝑣ℎ} are equal.

Corollary 2.5. There exist 𝐵ℎ-codes of rate 1
ℎ
.

Proof. Let elements of Z/(𝑞ℎ − 1)Z be 0, 1, . . . , 𝑞ℎ − 2. Consider the map 𝑓 : Z/(𝑞ℎ −

1)Z → {0, 1}⌈log2(𝑞ℎ−2)⌉ which maps an integer to its binary representation. It is easy

to see that 𝑓 preserves the 𝐵ℎ-property: for any 𝐵ℎ-set 𝒞 ⊆ Z/(𝑞ℎ − 1)Z, its image

16



𝑓(𝒞) is also a 𝐵ℎ-set. Therefore we get a 𝐵ℎ-set of rate log 𝑞
⌈log(𝑞ℎ−2)⌉ = (1 + 𝑜(1)) 1

ℎ
. As

𝑞 → ∞ we get the desired code family.

We present another (folklore) construction of 𝐵ℎ-codes which has nice geometric

meaning. This construction is similar to the construction in Lindström [15] for ℎ = 2.

Theorem 2.6. Let F𝑞 be a finite field with charF𝑞 > ℎ. Then there exists a 𝐵ℎ-set

𝒞 ⊆ Fℎ
𝑞 of size 𝑞.

Proof. Let 𝒞 = {(𝑥1, 𝑥2, · · · , 𝑥ℎ) : 𝑥 ∈ F𝑞}. We claim that 𝒞 is a 𝐵ℎ-set. Suppose we

have 𝑢1, . . . , 𝑢ℎ, 𝑣1, . . . , 𝑣ℎ ∈ F𝑞 such that for 𝑖 = 1, 2, . . . , ℎ we have

𝑢𝑖
1 + · · · + 𝑢𝑖

ℎ = 𝑣𝑖1 + · · · + 𝑣𝑖ℎ.

By Newton’s identities for symmetric polynomials, we see that

𝑒𝑖(𝑢1, . . . , 𝑢ℎ) = 𝑒𝑖(𝑣1, . . . , 𝑣ℎ)

for 0 ≤ 𝑖 ≤ ℎ, where 𝑒𝑖 is the 𝑖-th elementary symmetric polynomial. So we have

(𝑥 + 𝑢1) · · · (𝑥 + 𝑢ℎ) =
∑︁

0≤𝑖≤𝑛

𝑒𝑖(𝑢1, . . . , 𝑢ℎ)𝑥𝑛−𝑖

=
∑︁

0≤𝑖≤𝑛

𝑒𝑖(𝑣1, . . . , 𝑣ℎ)𝑥𝑛−𝑖

= (𝑥 + 𝑣1) · · · (𝑥 + 𝑣ℎ).

Therefore the multisets {𝑢1, . . . , 𝑢ℎ} and {𝑣1, . . . , 𝑣ℎ} are equal.

This construction also implies that there exist 𝐵ℎ-codes of rate 1
ℎ
.

2.3 Random coding for 𝐵ℎ-code

For ℎ ≥ 3, the best currently known 𝐵ℎ-codes are all inexplicit and constructed by

random coding. We review the construction and formulate the proof in a way so that

it can be easily generalized to more complicated constructions.

17



2.3.1 D’yachkov-Rykov

Theorem 2.7 (D’yachkov-Rykov [10]). There exist 𝐵ℎ-codes of rate
log

(︃
22ℎ

(2ℎ
ℎ )

)︃
2ℎ

.

Fix vector length 𝑛 and number of vectors 𝑡. Let 𝑣1, . . . , 𝑣𝑡 ∈ {0, 1}𝑛 be iid

uniformly randomly chosen. Let 𝒞 = {𝑣1, . . . , 𝑣𝑡}.

Let us consider the probability that 𝒞 is a 𝐵ℎ-code. Suppose 𝒞 is not a 𝐵ℎ-code.

Then there exist 𝑖1, . . . , 𝑖ℎ, 𝑗1, . . . , 𝑗ℎ such that

𝑣𝑖1 + · · · + 𝑣𝑖ℎ = 𝑣𝑗1 + · · · 𝑣𝑗ℎ

and the multisets {𝑖1, . . . , 𝑖ℎ} and {𝑗1, . . . , 𝑗ℎ} are not equal.

One immediate idea is to bound the expected number of such violations of 𝐵ℎ-

property. If the expectation is smaller than one, then we know that there exist desired

𝐵ℎ-codes. However, this idea does not work, because the expectation could be large.

For example, if 𝑣1 = 𝑣2, then we have Θ(𝑡ℎ−1) violations of the form

𝑣1 + 𝑣𝑖2 + · · · + 𝑣𝑖ℎ = 𝑣2 + 𝑣𝑖2 + · · · + 𝑣𝑖ℎ .

Therefore, instead of looking at the expected number of violations, we bound the

expected number of “minimal” violations, i.e., 𝑖1, . . . , 𝑖𝑘, 𝑗1, . . . , 𝑗𝑘 (1 ≤ 𝑘 ≤ ℎ) such

that

𝑣𝑖1 + · · · + 𝑣𝑖𝑘 = 𝑣𝑗1 + · · · 𝑣𝑗𝑘

and the multisets {𝑖1, . . . , 𝑖𝑘} and {𝑗1, . . . , 𝑗𝑘} are disjoint.

Furthermore, minimal violations with the same 𝑘 can have different forms. For

example, the probability that 𝑣1 + 𝑣1 = 𝑣2 + 𝑣3 is different from the probability that

𝑣1 + 𝑣2 = 𝑣3 + 𝑣4. To address this, we make the following definition.

Definition 2.8. A configuration 𝐶 of shape (𝑘, 2) is a 𝑘×2 matrix of random variables

(𝐶𝑖,𝑗)1≤𝑖≤𝑘,1≤𝑗≤2 taking values in {0, 1} with the property that

1. For each 𝑖, 𝑗, P(𝐶𝑖,𝑗 = 0) = P(𝐶𝑖,𝑗 = 1) = 1
2
.

18



2. Some (or no) variables are identified, i.e., P(𝐶𝑖,𝑗 = 𝐶𝑖′,𝑗′) = 1 for some 𝑖, 𝑗, 𝑖′, 𝑗′.

We treat identified variables as the same variable. Variables that are not iden-

tified are mutually independent.

3. No variable appears in two columns, i.e., if P(𝐶𝑖,𝑗 = 𝐶𝑖′,𝑗′) = 1, then 𝑗 = 𝑗′.

Two configurations of the same shape are equivalent if they have the same law after

repeatedly (1) swapping columns and (2) swapping entries in the same column. Let

Conf(𝑘, 2) denote the set of equivalence classes of configurations of shape (𝑘, 2). Let

Conf(≤ ℎ, 2) =
⋃︀

1≤𝑘≤ℎ Conf(𝑘, 2).

Define 𝑑(𝐶) to be the number of distinct variables in 𝐶. Define 𝑝(𝐶) to be the

probability that

𝐶1,1 + · · · + 𝐶𝑘,1 = 𝐶1,2 + · · · + 𝐶𝑘,2.

Remark 2.9. Due to the equivalence condition, we can also define a configuration of

type (𝑘, 2) as two disjoint size-𝑘 multisets of random variables. Similarly, in Definition

4.2, we can define a configuration of type (𝑘, 𝑙) as a size-𝑙 set of size-𝑘 multisets of

random variables satisfying certain properties. We choose to describe a configuration

as a matrix because this is easier to present.

Example 2.10. There is one configuration of shape (1, 2): 𝐶 =
(︁
𝑎 𝑏

)︁
. (We use

different lowercase letters to denote distinct variables.) We have 𝑑(𝐶) = 2 and 𝑝(𝐶) =

1
2
.

There are three non-equivalent configurations of shape (2, 2). They are

1. 𝐶1 =

⎛⎝𝑎 𝑏

𝑎 𝑏

⎞⎠. 𝑑(𝐶1) = 2 and 𝑝(𝐶1) = 1
2
.

2. 𝐶2 =

⎛⎝𝑎 𝑏

𝑎 𝑐

⎞⎠. 𝑑(𝐶2) = 3 and 𝑝(𝐶2) = 1
4
.

3. 𝐶3 =

⎛⎝𝑎 𝑏

𝑐 𝑑

⎞⎠. 𝑑(𝐶3) = 4 and 𝑝(𝐶3) = 3
8
.
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It is not hard to see that there are
(︀
𝑝𝑘+1
2

)︀
non-equivalent configurations of shape

(𝑘, 2), where 𝑝𝑘 is the number of partitions of 𝑘.

Now let us discuss the relationship between minimal violations and configurations.

For each minimal violation 𝑖1, . . . , 𝑖𝑘, 𝑗1, . . . , 𝑗𝑘, we can associate it with a configura-

tion of shape (𝑘, 2), by identifying 𝐶𝑎,1 and 𝐶𝑏,1 for 𝑖𝑎 = 𝑖𝑏, and identifying 𝐶𝑎,2 = 𝐶𝑏,2

for 𝑗𝑎 = 𝑗𝑏. Simple calculation shows that for each configuration 𝐶, there are Θ(𝑡𝑑(𝐶))

minimal violations associated with it, and for each such minimal violation, the prob-

ability that it occurs is 𝑝(𝐶)𝑛.

Therefore the expected number of minimal violations is at most

𝑐 ·
∑︁

𝐶∈Conf(≤ℎ,2)

𝑡𝑑(𝐶)𝑝(𝐶)𝑛

where 𝑐 is a constant only depending on ℎ. So when

𝑡 = 𝑐′
(︂

max
𝐶∈Conf(≤ℎ,2)

𝑝(𝐶)1/𝑑(𝐶)

)︂−𝑛

for some small enough constant 𝑐′, the expected number of minimal violations is

less than one. So the only problem remains is to determine the maximum value of

𝑝(𝐶)1/𝑑(𝐶) for 𝐶 ∈ Conf(≤ ℎ, 2).

It turns out that the maximum value is achieved at the configuration whose all

variables are distinct, i.e., 𝑑(𝐶) = 2ℎ. Let 𝐶max(ℎ, 2) denote this configuration.

We need the following lemmas.

Lemma 2.11. Let 𝑋 =
∑︀

1≤𝑖≤𝑑 𝑐𝑖𝑋𝑖 where 𝑐𝑖 ∈ Z≥1, 𝑋1, . . . , 𝑋𝑑 are iid uniform

random variables taking values in {0, 1}. Then

∑︁
𝑎≥0

P(𝑋 = 𝑎)2 ≤ 𝑝(𝐶max(𝑑, 2)).

Proof. Let 𝑌 =
∑︀

1≤𝑖≤𝑑 𝑐𝑖𝑌𝑖 where 𝑌1, . . . , 𝑌𝑑 are an independent copy of 𝑋1, . . . , 𝑋𝑑.

Then
∑︀

𝑎≥0 P(𝑋 = 𝑎)2 = P(𝑋 = 𝑌 ).

Let us consider the characteristic function. Because 𝑋 − 𝑌 only takes integer
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values, we have

P(𝑋 = 𝑌 ) =
1

2𝜋

∫︁ 𝜋

−𝜋

𝜑𝑋−𝑌 (𝑡)𝑑𝑡

=
1

2𝜋

∫︁ 𝜋

−𝜋

∏︁
1≤𝑖≤𝑑

𝜑𝑐𝑖(𝑋𝑖−𝑌𝑖)(𝑡)𝑑𝑡

=
1

2𝜋

∫︁ 𝜋

−𝜋

∏︁
1≤𝑖≤𝑑

𝜑𝑋𝑖−𝑌𝑖
(𝑐𝑖𝑡)𝑑𝑡.

Note that

𝜑𝑋𝑖−𝑌𝑖
(𝑡) = 𝜑𝑋𝑖

(𝑡)𝜑𝑌𝑖
(𝑡) = |𝜑𝑋1(𝑡)|2 ∈ R≥0.

So we can apply AM-GM and get

P(𝑋 = 𝑌 ) ≤ 1

2𝜋𝑑

∑︁
1≤𝑖≤𝑑

∫︁ 𝜋

−𝜋

𝜑𝑋𝑖−𝑌𝑖
(𝑐𝑖𝑡)

𝑑𝑑𝑡

=
1

2𝜋𝑑

∑︁
1≤𝑖≤𝑑

∫︁ 𝜋

−𝜋

𝜑𝑋𝑖−𝑌𝑖
(𝑡)𝑑𝑑𝑡

=
1

2𝜋

∫︁ 𝜋

−𝜋

𝜑𝑋1−𝑌1(𝑡)
𝑑𝑑𝑡

=
1

2𝜋

∫︁ 𝜋

−𝜋

𝜑𝑋1+···+𝑋𝑑−𝑌1−···−𝑌𝑑
(𝑡)𝑑𝑡

= P(𝑋1 + · · · + 𝑋𝑑 = 𝑌1 + · · · + 𝑌𝑑)

= 𝑝(𝐶max(𝑑, 2)).

Lemma 2.12. The value 𝑝(𝐶max(𝑑, 2))1/(2𝑑) is monotone increasing in 𝑑.

Proof. Let 𝑋1, . . . , 𝑋𝑑, 𝑌1, . . . , 𝑌𝑑 be iid uniform random variables taking values in

{0, 1}. Then

𝑝(𝐶max(𝑑, 2)) = P(𝑋1 + · · · + 𝑋𝑑 = 𝑌1 + · · · + 𝑌𝑑)

=
1

2𝜋

∫︁ 𝜋

−𝜋

𝜑𝑋1−𝑌1(𝑡)
𝑑𝑑𝑡.
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So the lemma follows from generalized mean inequality.

Using the lemmas we can prove the following proposition.

Proposition 2.13. Over all configurations in 𝐶 ∈ Conf(≤ ℎ, 2), the configuration

𝐶max(ℎ, 2) gives the maximum 𝑝(𝐶)1/𝑑(𝐶).

Proof. Let 𝐶 ∈ Conf(𝑘, 2) where 1 ≤ 𝑘 ≤ ℎ. For 𝑎 ∈ {0, 1 . . . , 𝑘}, let 𝑝𝑖(𝑎) (𝑖 = 1, 2)

denote the probability that 𝐶1,𝑖 + · · · + 𝐶𝑘,𝑖 = 𝑎. By Cauchy-Schwarz inequality, we

have

𝑝(𝐶) =
∑︁

0≤𝑎≤𝑘

𝑝1(𝑎)𝑝2(𝑎) ≤
√︃

(
∑︁

0≤𝑎≤𝑘

𝑝1(𝑎)2)(
∑︁

0≤𝑎≤𝑘

𝑝2(𝑎)2).

Let 𝑑𝑖 (𝑖 = 1, 2) denote the number of distinct variables in column 𝑖. By Lemma

2.11 and Lemma 2.12,

∑︁
0≤𝑎≤𝑘

𝑝𝑖(𝑎)2 ≤ 𝑝(𝐶max(𝑑𝑖, 2)) ≤ 𝑝(𝐶max(ℎ, 2))𝑑𝑖/ℎ.

So we have

𝑝(𝐶) ≤
√︃

(
∑︁

0≤𝑎≤𝑘

𝑝1(𝑎)2)(
∑︁

0≤𝑎≤𝑘

𝑝2(𝑎)2)

≤
√︁

𝑝(𝐶max(ℎ, 2))𝑑1/ℎ𝑝(𝐶max(ℎ, 2))𝑑2/ℎ

= 𝑝(𝐶max(ℎ, 2))𝑑(𝐶)/(2ℎ).

In other words,

𝑝(𝐶)1/𝑑(𝐶) ≤ 𝑝(𝐶max(ℎ, 2))1/(2ℎ).

Now we can prove the theorem.
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Proof of Theorem 2.7. By Proposition 2.13, we have

𝑡 = 𝑐′𝑝(𝐶max(ℎ, 2))−𝑛/𝑑(𝐶max(ℎ,2))

and the rate of code 𝒞 is

log 𝑡

𝑛
= (1 + 𝑜(1))

− log 𝑝(𝐶max(ℎ, 2))

𝑑(𝐶max(ℎ, 2))
= (1 + 𝑜(1))

log

(︂
22ℎ

(2ℎ
ℎ )

)︂
2ℎ

.

As 𝑛 → ∞ we get the desired code family.

2.3.2 Poltyrev

With slight modification to the proof of D’yachkov-Rykov, we can achieve Poltyrev’s

rate.

Theorem 2.14 (Poltyrev [19]). There exist 𝐵ℎ-codes of rate
log

(︃
22ℎ

(2ℎ
ℎ )

)︃
2ℎ−1

.

We need a lemma of basic math.

Lemma 2.15. If 𝑥1/𝑛 ≤ 𝑦1/𝑚 where 0 ≤ 𝑥, 𝑦 ≤ 1 and 2 ≤ 𝑛 ≤ 𝑚, then 𝑥1/(𝑛−1) ≤

𝑦1/(𝑚−1).

Proof. We have

𝑥1/(𝑛−1) ≤ 𝑦𝑛/(𝑚(𝑛−1)) ≤ 𝑦1/(𝑚−1).

Proof of Theorem 2.14. We perform the same random construction as in D’yachkov-

Rykov to get 𝒞 = {𝑣1, . . . , 𝑣𝑡} ⊆ {0, 1}𝑛. The multiset 𝒞 may contain several minimal

violations. For each minimal violation appearing in 𝒞, we arbitrarily pick and remove

one vector in this minimal violation. In this way we get a set 𝒞 ′ containing no minimal

violations.

If

𝑡 = 𝑐′( max
𝐶∈Conf(≤ℎ,2)

𝑝(𝐶)1/(𝑑(𝐶)−1))−𝑛
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for some small enough constant 𝑐′, the expected number of minimal violations in 𝒞 is

at most 𝑡
2

and the size of 𝒞 ′ is at least 𝑡
2
. By Lemma 2.15 and Proposition 2.13, the

configuration 𝐶max(ℎ, 2) achieves the maximum 𝑝(𝐶)1/(𝑑(𝐶)−1) over all 𝐶 ∈ Conf(≤

ℎ, 2).

So rate of the code 𝒞 ′ is at least

log(𝑡/2)

𝑛
= (1 + 𝑜(1))

− log 𝑝(𝐶max(ℎ, 2))

𝑑(𝐶max(ℎ, 2)) − 1
= (1 + 𝑜(1))

log

(︂
22ℎ

(2ℎ
ℎ )

)︂
2ℎ− 1

.

As 𝑛 → ∞ we get the desired code family.
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Chapter 3

Changing distribution

In this section we discuss whether we can change the probability distribution in

random constructions of D’yachkov-Rykov and Poltyrev to achieve 𝐵ℎ-codes of higher

rate.

3.1 Rate of random coding with a general distribu-

tion

In the original random construction, 𝒞 = {𝑣1, . . . , 𝑣𝑡} where each 𝑣𝑖 is iid uniformly

randomly chosen from {0, 1}𝑛. The strategy we consider is to divide each length-

𝑛 vector 𝑣𝑖 into blocks 𝑣𝑖,1, 𝑣𝑖,2, · · · , 𝑣𝑖,𝑛/𝑛0 of length 𝑛0, where 𝑛0 is some constant.

The 𝑣𝑖,𝑗’s are iid randomly chosen from a fixed distribution 𝒜 over {0, 1}𝑛0 . If 𝒜

is the uniform distribution, then this construction reduces to the original random

construction.

Definition 3.1. Let 𝑋 be a discrete random variable. The collision entropy is defined

as

𝐻2(𝑋) = − log
∑︁
𝑎

P(𝑋 = 𝑎)2.

Definition 3.2. Let 𝑋 be a random variable. The 𝑛-fold sum 𝑋(ℎ) is a random

variable such that 𝑋(ℎ) = 𝑋1 + · · · + 𝑋ℎ where 𝑋𝑖’s are independent copies of 𝑋.
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Theorem 3.3. Fix a constant 𝑛0 and a probability distribution 𝒜 over {0, 1}𝑛0. Let

𝑋 be a random variable with distribution 𝒜. Then there exist 𝐵ℎ-codes of rate at least
𝐻2(𝑋(ℎ))
𝑛0(2ℎ−1)

.

Similar to the proof of D’yachkov-Rykov, we need to define configurations to

characterize the minimal violations.

Definition 3.4. A configuration 𝐶 of shape (𝑘, 2) over distribution 𝒜 is a 𝑘× 2 ma-

trix of random variables (𝐶𝑖,𝑗)1≤𝑖≤𝑘,1≤𝑗≤2 taking values in {0, 1}𝑛0 with the following

properties.

1. For each 𝑖, 𝑗, 𝐶𝑖,𝑗 is distributed according to 𝒜.

2. Some (or no) variables are identified.

3. No variable appears in two columns.

Two configurations of the same shape (and over the same distribution) are equivalent

if they have the same law after (1) swapping columns and (2) swapping entries in the

same column. Let Conf𝒜(𝑘, 2) denote the set of equivalence classes of configurations

of shape (𝑘, 2) over 𝒜. Let Conf𝒜(≤ ℎ, 2) =
⋃︀

1≤𝑘≤ℎ Conf𝒜(𝑘, 2).

Similar to the uniform distribution case, there is a unique configuration of shape

(ℎ, 2) over 𝒜 whose all variables are distinct. Let 𝐶𝒜,max(ℎ, 2) denote this configura-

tion.

We prove the following lemmas in analogy with Lemma 2.11 and Lemma 2.12.

Lemma 3.5. Let 𝑋 =
∑︀

1≤𝑑≤𝑐𝑖
𝑋𝑖 where 𝑐𝑖 ∈ Z≥1, 𝑋1, . . . , 𝑋𝑑 are iid and each

𝑋𝑖 ∼ 𝒜. Then

∑︁
𝑎

P(𝑋 = 𝑎)2 ≤ 𝑝(𝐶𝒜,max(𝑑, 2)).

Proof. Let 𝑌 =
∑︀

1≤𝑖≤𝑑 𝑐𝑖𝑌𝑖 where 𝑌1, . . . , 𝑌𝑑 are an independent copy of 𝑋1, . . . , 𝑋𝑑.
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Then
∑︀

𝑎 P(𝑋 = 𝑎)2 = P(𝑋 = 𝑌 ). Considering the characteristic function, we have

P(𝑋 = 𝑌 ) = (2𝜋)−𝑛0

∫︁
[−𝜋,𝜋]𝑛0

𝜑𝑋−𝑌 (𝑡)𝑑𝐴(𝑡)

= (2𝜋)−𝑛0

∫︁
[−𝜋,𝜋]𝑛0

∏︁
1≤𝑖≤𝑑

𝜑𝑐𝑖(𝑋𝑖−𝑌𝑖)(𝑡)𝑑𝐴(𝑡)

= (2𝜋)−𝑛0

∫︁
[−𝜋,𝜋]𝑛0

∏︁
1≤𝑖≤𝑑

𝜑𝑋𝑖−𝑌𝑖
(𝑐𝑖𝑡)𝑑𝐴(𝑡).

Note that

𝜑𝑋𝑖−𝑌𝑖
(𝑡) = 𝜑𝑋𝑖

(𝑡)𝜑𝑌𝑖
(𝑡) = |𝜑𝑋1(𝑡)|2 ∈ R≥0.

So we can apply AM-GM and get

P(𝑋 = 𝑌 ) ≤ 𝑑−1(2𝜋)−𝑛0

∑︁
1≤𝑖≤𝑑

∫︁
[−𝜋,𝜋]𝑛0

𝜑𝑋𝑖−𝑌𝑖
(𝑐𝑖𝑡)

𝑑𝑑𝐴(𝑡)

= 𝑑−1(2𝜋)−𝑛0

∑︁
1≤𝑖≤𝑑

∫︁
[−𝜋,𝜋]𝑛0

𝜑𝑋𝑖−𝑌𝑖
(𝑡)𝑑𝑑𝐴(𝑡)

= (2𝜋)−𝑛0

∫︁
[−𝜋,𝜋]𝑛0

𝜑𝑋𝑖−𝑌𝑖
(𝑡)𝑑𝑑𝐴(𝑡)

= (2𝜋)−𝑛0

∫︁
[−𝜋,𝜋]𝑛0

𝜑𝑋1+···+𝑋𝑑−𝑌1−···−𝑌𝑑
(𝑡)𝑑𝐴(𝑡)

= P(𝑋1 + · · · + 𝑋𝑑 = 𝑌1 + · · · + 𝑌𝑑)

= 𝑝(𝐶𝒜,max(𝑑, 2)).

Lemma 3.6. The value 𝑝(𝐶𝒜,max(𝑑, 2))1/(2𝑑) is monotone increasing in 𝑑.

Proof. Let 𝑋1, . . . , 𝑋𝑑, 𝑌1, . . . , 𝑌𝑑 be iid random variables, each with distribution 𝒜.

Then

𝑝(𝐶𝒜,max(𝑑, 2)) = P(𝑋1 + · · · + 𝑋𝑑 = 𝑌1 + · · · + 𝑌𝑑)

= (2𝜋)−𝑛0

∫︁
[−𝜋,𝜋]𝑛0

𝜑𝑋𝑖−𝑌𝑖
(𝑡)𝑑𝑑𝐴(𝑡).

So the lemma follows from generalized mean inequality.
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We have the following proposition in analogy with Proposition 2.13.

Proposition 3.7. Over all 𝐶 ∈ Conf𝒜(≤ ℎ, 2), the configuration 𝐶𝒜,max(ℎ, 2) gives

the maximum 𝑝(𝐶)1/𝑑(𝐶).

Proof. Let 𝐶 ∈ Conf𝒜(𝑘, 2) where 1 ≤ 𝑘 ≤ ℎ. For 𝑎 ∈ {0, 1 . . . , 𝑘}𝑛0 , let 𝑝𝑖(𝑎)

(𝑖 = 1, 2) denote the probability that 𝐶1,𝑖 + · · · + 𝐶𝑘,𝑖 = 𝑎. By Cauchy-Schwarz

inequality, we have

𝑝(𝐶) =
∑︁
𝑎

𝑝1(𝑎)𝑝2(𝑎) ≤
√︃

(
∑︁
𝑎

𝑝1(𝑎)2)(
∑︁
𝑎

𝑝2(𝑎)2).

Let 𝑑𝑖 (𝑖 = 1, 2) denote the number of distinct variables in column 𝑖. By Lemma

3.5 and Lemma 3.6,

∑︁
𝑎

𝑝𝑖(𝑎)2 ≤ 𝑝(𝐶𝒜,max(𝑑𝑖, 2)) ≤ 𝑝(𝐶𝒜,max(ℎ, 2))𝑑𝑖/ℎ.

So we have

𝑝(𝐶) ≤
√︃

(
∑︁
𝑎

𝑝1(𝑎)2)(
∑︁
𝑎

𝑝2(𝑎)2)

≤
√︁
𝑝(𝐶𝒜,max(ℎ, 2))𝑑1/ℎ𝑝(𝐶𝒜,max(ℎ, 2))𝑑2/ℎ

= 𝑝(𝐶𝒜,max(ℎ, 2))𝑑(𝐶)/(2ℎ).

In other words,

𝑝(𝐶)1/𝑑(𝐶) ≤ 𝑝(𝐶𝒜,max(ℎ, 2))1/(2ℎ).

Now we prove the theorem.

Proof of Theorem 3.3. Similar to proof of Theorem 2.7, we consider the minimal vi-
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olations, 𝑖1, . . . , 𝑖𝑘, 𝑗1, . . . , 𝑗𝑘 (1 ≤ 𝑘 ≤ ℎ) such that

𝑣𝑖1 + · · · + 𝑣𝑖𝑘 = 𝑣𝑗1 + · · · + 𝑣𝑗𝑘

and the multisets {𝑖1, . . . , 𝑖𝑘}, {𝑗1, . . . , 𝑗𝑘} are disjoint. For each minimal violation we

can associate it with a configuration of shape (𝑘, 2) over 𝒜. For each configuration

𝐶 ∈ Conf𝒜(≤ ℎ, 2), there are Θ(𝑡𝑑(𝐶)) minimal violations associated with it, and for

each such minimal violation, the probability that it occurs is 𝑝(𝐶)𝑛.

Therefore the expected number of minimal violations is at most

𝑐 ·
∑︁

𝐶∈Conf𝒜(≤ℎ,2)

𝑡𝑑(𝐶)𝑝(𝐶)𝑛/𝑛0

where 𝑐 is a constant only depending on ℎ. So when

𝑡 = 𝑐′( max
𝐶∈Conf𝒜(≤ℎ,2)

𝑝(𝐶)1/(𝑑(𝐶)−1))−𝑛/𝑛0

for some small enough constant 𝑐′, the expected number of minimal violations is at

most 𝑡
2
. So if we remove one vector for each minimal violation, we would get a 𝐵ℎ-code

𝒞 ′ of size at least 𝑡
2
.

By Proposition 3.7 and Lemma 2.15, we have

𝑡 = 𝑐′𝑝(𝐶𝒜,max(ℎ, 2))−𝑛/(𝑛0(𝑑(𝐶𝒜,max(ℎ,2))−1))

and the rate of code 𝒞 ′ is

log(𝑡/2)

𝑛
= (1 + 𝑜(1))

− log 𝑝(𝐶𝒜,max(ℎ, 2))

𝑛0(𝑑(𝐶𝒜,max(ℎ, 2)) − 1)
= (1 + 𝑜(1))

𝐻2(𝑋
(ℎ))

𝑛0(2ℎ− 1)

where 𝑋(ℎ) = 𝑋1 + · · · + 𝑋ℎ and 𝑋𝑖’s are iid random variables with distribution 𝒜.

As 𝑛 → ∞ we get the desired code family.
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3.2 A conjecture on collision entropy

In light of Theorem 3.3, if we can find distribution 𝒜 with

𝐻2(𝑋
(ℎ))

𝑛0

> log

(︃
22ℎ(︀
2ℎ
ℎ

)︀)︃ ,

then we achieve 𝐵ℎ-codes with higher rate. We were not able to find such a distribu-

tion and consequently propose the following conjecture.

Conjecture 3.8. For any distribution 𝒜 over {0, 1}𝑛0 , we have

𝐻2(𝑋
(ℎ))

𝑛0

≤ log

(︃
22ℎ(︀
2ℎ
ℎ

)︀)︃ .

Some partial results on this conjecture is discussed in Chapter 5.
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Chapter 4

Random coding for 𝐵ℎ[𝑔]-code

In this chapter we study the performance of random coding on list-decoding versions

of 𝐵ℎ-codes. The primary version we consider is the 𝐵ℎ[𝑔]-code.

4.1 Rate of random coding

Definition 4.1. A 𝐵ℎ[𝑔]-code is a set 𝒞 ⊆ {0, 1}𝑛 satisfying the property that for

any 𝑎 ∈ {0, 1, . . . , ℎ}𝑛, there exists at most 𝑔 multisets {𝑢1, . . . , 𝑢ℎ} such that 𝑎 =

𝑢1 + · · · + 𝑢ℎ. Note that a 𝐵ℎ[1]-code is exactly the same as a 𝐵ℎ-code. The rate of

a 𝐵ℎ[𝑔]-code is defined as log |𝒞|
𝑛

.

We would like to apply random coding. Therefore it is important to keep track of

the minimal violations. The following definition should not come as a surprise.

Definition 4.2. A configuration 𝐶 of shape (𝑘, 𝑙) is a 𝑘×𝑙 matrix of random variables

(𝐶𝑖,𝑗)1≤𝑖≤𝑘,1≤𝑗≤𝑙 taking values in {0, 1} with the property that

1. For each 𝑖, 𝑗, P(𝐶𝑖,𝑗 = 0) = P(𝐶𝑖,𝑗 = 1) = 1
2
.

2. Some (or no) variables are identified, i.e., P(𝐶𝑖,𝑗 = 𝐶𝑖′,𝑗′) = 1 for some 𝑖, 𝑗, 𝑖′, 𝑗′.

We treat identified variables as the same variable. Variables that are not iden-

tified are mutually independent.

3. No variable appears in all columns.
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4. For two different columns, the multiset of variables in this column are different.

Two configurations of the same shape are equivalent if they have the same law

after repeatedly (1) swapping columns and (2) swapping entries in the same column.

Let Conf(𝑘, 𝑙) denote the set of equivalence classes of configurations of shape (𝑘, 𝑙).

Let Conf(≤ ℎ, 𝑙) =
⋃︀

1≤𝑘≤ℎ Conf(𝑘, 𝑙).

Define 𝑑(𝐶) to be the number of distinct variables in 𝐶. Define 𝑝(𝐶) to be the

probability that 𝐶1,𝑗 + · · · + 𝐶𝑘,𝑗 are equal for 1 ≤ 𝑗 ≤ 𝑙.

Example 4.3. There are seven non-equivalent configurations of shape (2, 3). They

are

1. 𝐶1 =

⎛⎝𝑎 𝑏 𝑐

𝑎 𝑏 𝑐

⎞⎠. 𝑑(𝐶1) = 3 and 𝑝(𝐶1) = 1
4
.

2. 𝐶2 =

⎛⎝𝑎 𝑏 𝑐

𝑎 𝑏 𝑑

⎞⎠. 𝑑(𝐶2) = 4 and 𝑝(𝐶2) = 1
8
.

3. 𝐶3 =

⎛⎝𝑎 𝑏 𝑑

𝑎 𝑐 𝑒

⎞⎠. 𝑑(𝐶3) = 5 and 𝑝(𝐶3) = 1
16

.

4. 𝐶4 =

⎛⎝𝑎 𝑐 𝑒

𝑏 𝑑 𝑓

⎞⎠. 𝑑(𝐶4) = 6 and 𝑝(𝐶4) = 5
32

.

5. 𝐶5 =

⎛⎝𝑎 𝑎 𝑏

𝑏 𝑐 𝑐

⎞⎠. 𝑑(𝐶5) = 3 and 𝑝(𝐶5) = 1
4
.

6. 𝐶6 =

⎛⎝𝑎 𝑎 𝑏

𝑏 𝑐 𝑑

⎞⎠. 𝑑(𝐶6) = 4 and 𝑝(𝐶6) = 1
4
.

7. 𝐶7 =

⎛⎝𝑎 𝑎 𝑑

𝑏 𝑐 𝑒

⎞⎠. 𝑑(𝐶7) = 5 and 𝑝(𝐶7) = 3
16

.

Matrix

⎛⎝𝑎 𝑎 𝑎

𝑏 𝑐 𝑑

⎞⎠ is not a valid configuration because it violates property 3. Matrix⎛⎝𝑎 𝑎 𝑐

𝑏 𝑏 𝑑

⎞⎠ is not a valid configuration because it violates property 4.

32



Theorem 4.4. There exist 𝐵ℎ[𝑔]-codes of rate at least

min
𝐶∈Conf(≤ℎ,𝑔+1)

− log 𝑝(𝐶)

𝑑(𝐶) − 1
.

Proof. A violation of the 𝐵ℎ[𝑔]-property is a matrix (𝑥𝑖,𝑗)1≤𝑖≤ℎ,1≤𝑗≤𝑔+1 where 1 ≤

𝑥𝑖,𝑗 ≤ 𝑡, no two columns have the same multisets of variables, and the column sums

𝑣𝑥1,𝑗
+ · · · + 𝑣𝑥ℎ,𝑗

are equal for all 𝑗. A violation can be non-minimal in the sense that there are numbers

appearing in all columns. Therefore the minimal violations we consider are matrices

(𝑥𝑖,𝑗)1≤𝑖≤𝑘,1≤𝑗≤𝑔+1 where 1 ≤ 𝑘 ≤ ℎ, 1 ≤ 𝑥𝑖,𝑗 ≤ 𝑡, no two columns have the same

multisets of variables and the column sums

𝑣𝑥1,𝑗
+ · · · + 𝑣𝑥𝑘,𝑗

are equal for all 𝑗.

For each minimal violation, we can associate to it a configuration of shape (𝑘, 𝑔+1).

For each configuration 𝐶 ∈ Conf(≤ ℎ, 𝑔 + 1), the number of minimal violations

associated to it is Θ(𝑡𝑑(𝐶)), and each such minimal violation appears with probability

𝑝(𝐶)𝑛. So the expected number of minimal violations is at most

𝑐 ·
∑︁

𝐶∈Conf(≤ℎ,𝑔+1)

𝑡𝑑(𝐶)𝑝(𝐶)𝑛

where 𝑐 is some constant depending only on ℎ and 𝑔. So when

𝑡 = 𝑐′
(︂

max
𝐶∈Conf(≤ℎ,𝑔+1)

𝑝(𝐶)1/(𝑑(𝐶)−1)

)︂−𝑛

for some small enough constant 𝑐′, the expected number of violations is no more than
𝑡
2
. Then we can remove one vector for each minimal violation, and get a 𝐵ℎ[𝑔]-code

𝒞 ′ of size at least 𝑡
2
.
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The rate of code 𝒞 ′ is

log(𝑡/2)

𝑛
= (1 + 𝑜(1)) min

𝐶∈Conf(≤ℎ,𝑔+1)

− log 𝑝(𝐶)

𝑑(𝐶) − 1
.

As 𝑛 → ∞ we get the desired code family.

4.2 Suboptimality of the all-distinct configuration

Let 𝐶max(ℎ, 𝑔+1) denote the configuration where all variables are distinct. In analogy

with Proposition 2.13 and Proposition 3.7, one may guess that the maximum value

of 𝑝(𝐶)1/(𝑑(𝐶)−1) is achieved at 𝐶max(ℎ, 𝑔+ 1). Unfortunately, this turns out to be not

true.

Proposition 4.5. There exist 𝑔 and ℎ such that the configuration 𝐶max(ℎ, 𝑔+1) does

not give the maximum 𝑝(𝐶)1/(𝑑(𝐶)−1) over all 𝐶 ∈ Conf(≤ ℎ, 𝑔 + 1).

Proof. Let 𝐶 be the following configuration.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1 𝑐2 𝑐3 · · · 𝑐𝑔+1

𝑎2 𝑏2 𝑏2 · · · 𝑏2

𝑎3 𝑏3 𝑏3 · · · 𝑏3
...

...
...

...
...

𝑎ℎ 𝑏ℎ 𝑏ℎ · · · 𝑏ℎ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where different variables denote distinct random variables. Clearly 𝑑(𝐶) = 2ℎ−1+𝑔.

Column sums are all equal if and only if

𝑎1 + · · · + 𝑎ℎ = 𝑐2 + 𝑏2 + · · · + 𝑏ℎ

and

𝑐2 = 𝑐3 = · · · = 𝑐𝑔+1.
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So

𝑝(𝐶) = P(𝑎1 + · · · + 𝑎ℎ = 𝑐2 + 𝑏2 + · · · + 𝑏ℎ)P(𝑐2 = 𝑐3 = · · · = 𝑐𝑔+1)

= 2−2ℎ

(︂
2ℎ

ℎ

)︂
2−(𝑔−1)

=

(︂
2ℎ

ℎ

)︂
2−(2ℎ+𝑔−1).

So

𝑝(𝐶)1/(𝑑(𝐶)−1) = (2−(2ℎ+𝑔−1)

(︂
2ℎ

ℎ

)︂
)1/(2ℎ−1+𝑔−1).

Take 𝑔 = 2 and ℎ = 100. Numerical computations shows that

𝑝(𝐶)1/(𝑑(𝐶)−1) ≈ 0.982312

and

𝑝(𝐶max(ℎ, 𝑔 + 1))1/(𝑑(𝐶max(ℎ,𝑔+1))−1) ≈ 0.981414.

Remark 4.6. By Lemma 2.15, the proposition implies that there exist 𝑔 and ℎ such

that the configuration 𝐶max(ℎ, 𝑔 + 1) does not give the maximum 𝑝(𝐶)1/𝑑(𝐶) over all

𝐶 ∈ Conf(≤ ℎ, 𝑔 + 1).

Numerical computation suggests that for fixed 𝑔 ≥ 2, the all-distinct configuration

𝐶max(ℎ, 𝑔 + 1) is suboptimal for all ℎ large enough.

4.3 Separable configurations

Proposition 4.5 shows that the rate of random coding construction for 𝐵ℎ[𝑔]-codes is

much more complicated than that for 𝐵ℎ-codes. On the other hand, for configurations

with nice properties, analogies of Proposition 2.13 and Proposition 3.7 may hold.
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Definition 4.7. We say a configuration is separable if no variable appears in two or

more columns. Let SConf(𝑘, 𝑙) denote the set of separable configurations of shape

(𝑘, 𝑙). Let SConf(≤ ℎ, 𝑙) =
⋃︀

1≤𝑘≤ℎ SConf(𝑘, 𝑙).

Proposition 4.8. Fix ℎ to be an even number. Over all separable configurations

𝐶 ∈ SConf(≤ ℎ, 𝑔+1), the configuration 𝐶max(ℎ, 𝑔+1) gives the maximum 𝑝(𝐶)1/𝑑(𝐶).

We first prove some lemmas. The proofs of them are more difficult than the

previous ones.

Lemma 4.9. Let 𝑋 =
∑︀

1≤𝑖≤𝑑 𝑐𝑖𝑋𝑖 where 𝑐𝑖 ∈ Z≥1, 𝑋1, . . . , 𝑋𝑑 are iid uniform

random variables taking values in {0, 1}. Then

∑︁
𝑎≥0

P(𝑋 = 𝑎)𝑔+1 ≤ 𝑝(𝐶max(𝑑, 𝑔 + 1)).

Before proving this lemma, let us have some discussions about symmetric decreas-

ing rearrangement and majorization.

Definition 4.10. Let (𝑝𝑎)𝑎≥0 be a sequence of non-negative numbers with only

finitely-many nonzero entries. Let (𝑇 (𝑝)𝑎)𝑎≥0 be the sorted version of 𝑝 in decreasing

order.

For two sequences 𝑝 and 𝑞, if we have

∑︁
0≤𝑖≤𝑛

𝑇 (𝑝)𝑖 ≤
∑︁

0≤𝑖≤𝑛

𝑇 (𝑞)𝑖,

for all 𝑛, we say 𝑝 is majorized by 𝑞, written as 𝑝 ⪯ 𝑞.

Let (𝑆(𝑝)𝑎)𝑎≥0 be as follows:

· · · 𝑇 (𝑝)4 𝑇 (𝑝)2 𝑇 (𝑝)0 𝑇 (𝑝)1 𝑇 (𝑝)3 𝑇 (𝑝)5 · · ·

(with zeros on the left removed). We say 𝑆(𝑝) is the symmetric decreasing rearrange-

ment of 𝑝.

For a nonzero integer 𝑐, define the sequence 𝐶𝑐(𝑝) = (𝑝𝑎 + 𝑝𝑎−𝑐)𝑎≥0, where 𝑝𝑖 = 0

for 𝑖 < 0.
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Lemma 4.11. Let (𝑝𝑎)𝑎≥0 be a sequence of non-negative numbers with only finitely-

many nonzero entries. Let 𝑐 be a nonzero integer. Then 𝐶𝑐(𝑝) ⪯ 𝐶1(𝑆(𝑝)).

Proof. Let 𝑞 = 𝑇 (𝑝). Simple calculation shows that

∑︁
0≤𝑖≤𝑛

𝑇 (𝐶1(𝑆(𝑝)))𝑖 =
∑︁

0≤𝑖≤𝑛−1

𝑞𝑖 +
∑︁

0≤𝑖≤𝑛+1

𝑞𝑖.

We know that
∑︀

0≤𝑖≤𝑛 𝑇 (𝐶𝑐(𝑝))𝑖 is sum of 2𝑛 + 2 terms of 𝑞, where each 𝑞𝑖 appears

at most twice. So if

∑︁
0≤𝑖≤𝑛

𝑇 (𝐶1(𝑆(𝑝)))𝑖 <
∑︁

0≤𝑖≤𝑛

𝑇 (𝐶𝑐(𝑞))𝑖,

then ∑︁
0≤𝑖≤𝑛

𝑇 (𝐶𝑐(𝑝))𝑖 = 2
∑︁

0≤𝑖≤𝑛

𝑞𝑖

and 𝑞𝑛 > 𝑞𝑛+1.

Consider the largest (𝑛 + 1) terms of 𝐶𝑐(𝑝). Each 𝑝𝑖 appearing in these terms

appears twice. Let 𝑎 be the largest number such that 𝑝𝑎 appears in the largest (𝑛+1)

terms of 𝐶𝑐(𝑝). Then 𝑝𝑎−𝑐 and 𝑝𝑎+𝑐 must both appear. Because 𝑐 ̸= 0, this contradicts

the maximality of 𝑎.

Lemma 4.12. If 𝑝 ⪯ 𝑞, then 𝐶1(𝑆(𝑝)) ⪯ 𝐶1(𝑆(𝑞)).

Proof. WLOG assume that 𝑝 and 𝑞 are sorted in decreasing order. Then for all 𝑛 ≥ 1,

we have

∑︁
0≤𝑖≤𝑛

𝑇 (𝐶1(𝑆(𝑝)))𝑖 =
∑︁

0≤𝑖≤𝑛−1

𝑝𝑖 +
∑︁

0≤𝑖≤𝑛+1

𝑝𝑖

≤
∑︁

0≤𝑖≤𝑛−1

𝑞𝑖 +
∑︁

0≤𝑖≤𝑛+1

𝑞𝑖

=
∑︁

0≤𝑖≤𝑛

𝑇 (𝐶1(𝑆(𝑞)))𝑖.
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Proof of Lemma 4.9. Let 𝑌 = 𝑌1 + · · · + 𝑌𝑑 where 𝑌𝑖’s are independent copies of

𝑋𝑖’s. Let 𝑝(𝑌 ) denote the sequence (𝑝(𝑌 )𝑎)𝑎≥0 where 𝑝(𝑌 )𝑎 = P(𝑌 = 𝑎). Similarly

define 𝑝(𝑋). The sequences 𝑝(𝑋) and 𝑝(𝑌 ) each contain at most 2𝑑 nonzero numbers.

The function 𝑓((𝑝𝑎)𝑎≥0) =
∑︀

𝑎 𝑝
𝑔+1
𝑎 is Schur-convex. So we only need to prove that

𝑝(𝑋) ⪯ 𝑝(𝑌 ). We prove this by induction on 𝑑.

Base case: When 𝑑 = 0, 𝑝(𝑋) = 𝑝(𝑌 ).

Induction step: Suppose the result for 𝑑− 1 variables is true. Let

𝑋 ′ =
∑︁

1≤𝑖≤𝑑−1

𝑐𝑖𝑋𝑖

and

𝑌 ′ =
∑︁

1≤𝑖≤𝑑−1

𝑌𝑖.

By induction hypothesis, 𝑝(𝑋 ′) ⪯ 𝑝(𝑌 ′). By Lemma 4.11 and Lemma 4.12, we have

𝑝(𝑋) =
1

2
𝐶𝑐(𝑝(𝑋 ′)) ⪯ 1

2
𝐶1(𝑆(𝑝(𝑋 ′)))

⪯ 1

2
𝐶1(𝑆(𝑝(𝑌 ′))) =

1

2
𝐶1(𝑝(𝑌 ′)) = 𝑝(𝑌 ).

Lemma 4.13. Fix 𝑔 ∈ Z≥1. Suppose 𝑑 ≤ ℎ and ℎ is even. Then we have

𝑝(𝐶max(𝑑, 𝑔 + 1))1/(𝑑(𝑔+1)) ≤ 𝑝(𝐶max(ℎ, 𝑔 + 1))1/(ℎ(𝑔+1)).

Proof.

𝑝(𝐶max(𝑑, 𝑔 + 1))1/(𝑑(𝑔+1)) =
1

2
(
∑︁
0≤𝑖≤𝑑

(︂
𝑑

𝑖

)︂𝑔+1

)1/(𝑑(𝑔+1)).

The sum
∑︀

0≤𝑖≤𝑑

(︀
𝑑
𝑖

)︀𝑔+1
is the constant coefficient of

(1 + 𝑧1)
𝑑 · · · (1 + 𝑧𝑔)

𝑑(1 + (𝑧1 · · · 𝑧𝑔)−1)𝑑.
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So by Cauchy’s integral formula, we have

∑︁
0≤𝑖≤𝑑

(︂
𝑑

𝑖

)︂𝑔+1

= (2𝜋𝑖)−𝑔

∮︁
· · ·
∮︁

(1 + 𝑧1)
𝑑 · · · (1 + 𝑧𝑔)

𝑑

· (1 + (𝑧1 · · · 𝑧𝑔)−1)𝑑(𝑧−1
1 𝑑𝑧1 · · · 𝑧−1

𝑔 𝑑𝑧𝑔)

where the integrals are taken along the unit circles in the complex plane. Perform

substitution 𝑧𝑗 = exp(2𝑖𝑡𝑗). We get

∑︁
0≤𝑖≤𝑑

(︂
𝑑

𝑖

)︂𝑔+1

= 2(𝑔+1)𝑑𝜋−𝑔

·
∫︁

· · ·
∫︁

(cos 𝑡1 · · · cos 𝑡𝑔 cos(𝑡1 + · · · + 𝑡𝑔))
𝑑𝑑𝑡1 · · · 𝑑𝑡𝑔

where the integrals are taken over [−𝜋
2
, 𝜋
2
]. Therefore

𝑝(𝐶max(𝑑, 𝑔 + 1))1/(𝑑(𝑔+1))

= (𝜋−𝑔 ·
∫︁

· · ·
∫︁

(cos 𝑡1 · · · cos 𝑡𝑔 cos(𝑡1 + · · · + 𝑡𝑔))
𝑑𝑑𝑡1 · · · 𝑑𝑡𝑔)1/(𝑑(𝑔+1))

≤ (𝜋−𝑔 ·
∫︁

· · ·
∫︁

| cos 𝑡1 · · · cos 𝑡𝑔 cos(𝑡1 + · · · + 𝑡𝑔)|𝑑𝑑𝑡1 · · · 𝑑𝑡𝑔)1/(𝑑(𝑔+1))

≤ (𝜋−𝑔 ·
∫︁

· · ·
∫︁

| cos 𝑡1 · · · cos 𝑡𝑔 cos(𝑡1 + · · · + 𝑡𝑔)|ℎ𝑑𝑡1 · · · 𝑑𝑡𝑔)1/(ℎ(𝑔+1))

= (𝜋−𝑔 ·
∫︁

· · ·
∫︁

(cos 𝑡1 · · · cos 𝑡𝑔 cos(𝑡1 + · · · + 𝑡𝑔))
ℎ𝑑𝑡1 · · · 𝑑𝑡𝑔)1/(ℎ(𝑔+1))

= 𝑝(𝐶max(ℎ, 𝑔 + 1))1/(ℎ(𝑔+1)).

(Third step is generalized mean inequality. Fourth step uses that ℎ is even.)

Remark 4.14. Numerical computation suggests that for fixed 𝑔, the value 𝑝(𝐶max(𝑑, 𝑔+

1))1/(𝑑(𝑔+1)) is monotone increasing in 𝑑. If this is indeed true, we can remove the hy-

pothesis that ℎ is even in Proposition 4.8.

Proof of Proposition 4.8. Let 𝐶 ∈ SConf(𝑘, 2) where 1 ≤ 𝑘 ≤ ℎ. For 𝑎 ∈ {0, 1, . . . , 𝑘},

let 𝑝𝑖(𝑎) (1 ≤ 𝑖 ≤ 𝑔+ 1) denote the probability that 𝐶1,𝑖 + · · ·+𝐶𝑘,𝑖 = 𝑎. By Hölder’s
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inequality, we have

𝑝(𝐶) =
∑︁

0≤𝑎≤𝑘

𝑝1(𝑎)𝑝2(𝑎) · · · 𝑝𝑔+1(𝑎)

≤
∏︁

1≤𝑖≤𝑔+1

(
∑︁

0≤𝑎≤𝑘

𝑝𝑖(𝑎)𝑔+1)1/(𝑔+1).

Let 𝑑𝑖 (1 ≤ 𝑖 ≤ 𝑔 + 1) denote the number of distinct variables in column 𝑖. By

Lemma 4.9 and Lemma 4.13,

∑︁
0≤𝑎≤𝑘

𝑝𝑖(𝑎)𝑔+1 ≤ 𝑝(𝐶max(𝑑𝑖, 𝑔 + 1)) ≤ 𝑝(𝐶max(ℎ, 𝑔 + 1))𝑑𝑖/ℎ.

So we have

𝑝(𝐶) ≤
∏︁

1≤𝑖≤𝑔+1

(
∑︁

0≤𝑎≤𝑘

𝑝𝑖(𝑎)𝑔+1)1/(𝑔+1)

≤
∏︁

1≤𝑖≤𝑔+1

𝑝(𝐶max(ℎ, 𝑔 + 1))𝑑𝑖/(ℎ(𝑔+1))

= 𝑝(𝐶max(ℎ, 𝑔 + 1))𝑑(𝐶)/(ℎ(𝑔+1)).

In other words,

𝑝(𝐶)1/𝑑(𝐶) ≤ 𝑝(𝐶max(ℎ, 𝑔 + 1))1/(ℎ(𝑔+1)).

4.4 Another kind of list-decoding

There is another natural list-decoding version of 𝐵ℎ-codes, which is more closely

related to the number of distinct elements in configurations.

Definition 4.15. A 𝐵#
ℎ [𝑑]-code is a set 𝒞 ⊆ {0, 1}𝑛 satisfying the property that for

any 𝑎 ∈ {0, 1, . . . , ℎ}𝑛, there exists a subset 𝑆 ⊆ 𝒞 of size at most 𝑑 such that if

𝑢1 + · · · + 𝑢ℎ = 𝑎, 𝑢𝑖 ∈ 𝒞 for 1 ≤ 𝑖 ≤ ℎ, then 𝑢𝑖 ∈ 𝑆 for 1 ≤ 𝑖 ≤ ℎ.
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Note that this definition is only meaningful when 𝑑 ≥ ℎ. Let us apply random

coding to this problem. Considering the minimal violations, we have the following

definition.

Definition 4.16. Define Conf#(≤ ℎ)[𝑑] as the set of configurations 𝐶 of shape (𝑘, 𝑙)

where 1 ≤ 𝑘 ≤ ℎ, 𝑙 ≥ 2, 𝑑(𝐶) ≥ 𝑑 + 1 − ℎ + 𝑘, and such that removing any column

from 𝐶 will make the number of distinct variables less than or equal to 𝑑− ℎ + 𝑘.

Proposition 4.17. The set Conf#(≤ ℎ)[𝑑] is finite.

Proof. Let 𝐶 ∈ Conf#(≤ ℎ)[𝑑]. Because every column has at most ℎ distinct vari-

ables, the last condition implies that 𝑑(𝐶) ≤ 𝑑+𝑘. Now we fix 𝑑(𝐶). For each column,

there are a finite number of possible choices. Because 𝐶 is a valid configuration, no

two columns are the same. Therefore the number of columns is bounded by a finite

number. So the number of possible 𝐶’s is finite.

Theorem 4.18. There exist 𝐵#
ℎ [𝑑]-codes of rate at least

min
𝐶∈Conf#(≤ℎ)[𝑑]

− log 𝑝(𝐶)

𝑑(𝐶) − 1
.

Proof. A violation of the 𝐵#
ℎ [𝑑]-property is a matrix (𝑥𝑖,𝑗)1≤𝑖≤ℎ,1≤𝑗≤𝑙 with 𝑙 ≥ 2 such

that the column sums 𝑥1,𝑗 + · · · + 𝑥ℎ,𝑗 are equal for 1 ≤ 𝑗 ≤ 𝑙, and the set {𝑥𝑖,𝑗, 1 ≤

𝑖 ≤ ℎ, 1 ≤ 𝑗 ≤ 𝑙} has cardinality at least 𝑑 + 1. A violation can be non-minimal in

the sense that (1) some variables appear in all columns, or (2) we can remove some

columns so that the number of distinct 𝑥𝑖,𝑗’s is still larger than 𝑑. Also, note that

removing one occurrence in each column for a variable that appears in all columns

will decrease the number of distinct entries by at most one. So the restriction on the

number of distinct entries is weaker for minimal violations with fewer rows.

Therefore a minimal violation is a matrix (𝑥𝑖,𝑗)1≤𝑖≤𝑘,1≤𝑗≤𝑙 with 1 ≤ 𝑘 ≤ ℎ, 𝑙 ≥ 2

such that the column sums 𝑥1,𝑗 + · · · + 𝑥𝑘,𝑗 are equal for 1 ≤ 𝑗 ≤ 𝑙, the set of 𝑥𝑖,𝑗’s

has cardinality at least 𝑑+ 1−ℎ+ 𝑘, and removing any column will make the matrix

have at most 𝑑− ℎ + 𝑘 distinct entries.
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For each minimal violation, we can associate to it a configuration in Conf#(≤ ℎ)[𝑑].

For each such configuration 𝐶, there are Θ(𝑡𝑑(𝐶)) minimal violations associated to it,

and each such minimal violation appears with probability 𝑝(𝐶)𝑛. So the expected

number of minimal violations is at most

𝑐 ·
∑︁

𝐶∈Conf#(≤ℎ)[𝑑]

𝑡𝑑(𝐶)𝑝(𝐶)𝑛

where 𝑐 is some constant depending only on ℎ and 𝑑. So whn

𝑡 = 𝑐′
(︂

max
𝐶∈Conf#(≤ℎ)[𝑑]

𝑝(𝐶)1/(𝑑(𝐶)−1)

)︂−𝑛

for some small enough constant 𝑐′, the expected number of violations is no more than
𝑡
2
. Then we can remove one vector for each minimal violation, and get a 𝐵#

ℎ [𝑑]-code

𝒞 ′ of size at least 𝑡
2
. The rate of code 𝒞 ′ is

log(𝑡/2)

𝑛
= (1 + 𝑜(1)) min

𝐶∈Conf#(≤ℎ)[𝑑]

− log 𝑝(𝐶)

𝑑(𝐶) − 1
.

As 𝑛 → ∞ we get the desired code family.
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Chapter 5

Some problems about Rényi entropy

In this chapter we study several problems about maximizing Rényi entropy that arises

in the study of communication over adder MAC.

We first define Rényi entropy, a natural generalization of Shannon entropy.

Definition 5.1. Let 𝑋 be a discrete random variable. The Rényi entropy of order 𝛼

(𝛼 ≥ 0, 𝛼 ̸= 1) is defined as

𝐻𝛼(𝑋) =
1

1 − 𝛼
log
∑︁
𝑎

P(𝑋 = 𝑎)𝛼.

The Rényi entropy of order 1 is

𝐻1(𝑋) = lim
𝛼→1

𝐻𝛼(𝑋) = −
∑︁
𝑎

P(𝑋 = 𝑎) logP(𝑋 = 𝑎) = 𝐻(𝑋)

where 𝐻(𝑋) is Shannon entropy. The Rényi entropy of order ∞ (also called min-

entropy) is

𝐻∞(𝑋) = lim
𝛼→∞

𝐻𝛼(𝑋) = − log max
𝑎

P(𝑋 = 𝑎).

Remark 5.2. The Rényi entropy of order 2 is collision entropy (Definition 3.1).

In this chapter, the kind of problems we study is the following. Fix a set 𝐴 inside

some ambient abelian group and fix a non-negative real number 𝛼. We would like
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to determine the maximum 𝐻𝛼(𝑋 + 𝑋) where 𝑋 is a random variable taking value

in 𝐴 (where 𝑋 + 𝑋 is understood as sum of two independent copies of 𝑋). We are

also interested in the maximum 𝐻𝛼(𝑋 +𝑌 ) where 𝑋 and 𝑌 are independent random

variables taking value in 𝐴, and 𝑋 and 𝑌 need not have the same distribution.

5.1 Addition in {0, 1}𝑛

The setting most related to adder MAC is 𝐴 = {0, 1}𝑛 ⊆ Z𝑛. Ajjanagadde and

Polyanskiy [2] made the following conjecture arising from studying noisy communi-

cation over adder MAC with finite block length.

Conjecture 5.3 (Ajjanagadde-Polyanskiy [2]). For 0 ≤ 𝛼 ≤ 1, the Rényi entropy

𝐻𝛼(𝑋 + 𝑌 ) is maximized at the uniform distribution.

In their conjecture, the distribution of 𝑋 and 𝑌 can be different. We consider the

same-distribution version and thus it makes sense to generalize Conjecture 3.8 to the

following.

Conjecture 5.4. For 0 ≤ 𝛼 ≤ 2 and ℎ ≥ 2, the Rényi entropy 𝐻𝛼(𝑋(ℎ)) is maximized

at the uniform distribution. In particular, for 0 ≤ 𝛼 ≤ 2, the Rényi entropy 𝐻𝛼(𝑋 +

𝑋) is maximized at the uniform distribution.

Remark 5.5. The general conjecture is true for 𝛼 = 0 trivially and for 𝛼 = 1 by

subadditivity of Shannon entropy. The case 𝛼 = 2 is Conjecture 3.8.

We discuss some partial results for the case ℎ = 2.

Proposition 5.6. For 𝛼 > 2, there exists 𝑛 such that the uniform distribution over

{0, 1}𝑛 does not maximize 𝐻𝛼(𝑋 + 𝑋).

Proof. For 𝑥 ∈ {0, 1}𝑛, denote P(𝑋 = 𝑥) as 𝑝𝑥. For 𝑧 ∈ {0, 1, 2}𝑛, define 𝑐𝑧 =∑︀
𝑥+𝑦=𝑧 𝑝𝑥𝑝𝑦. Define 𝑓(𝑝) =

∑︀
𝑧 𝑐

𝛼
𝑧 . Then 𝐻𝛼(𝑋 + 𝑋) = 1

1−𝛼
log 𝑓(𝑝). Let 𝑝∘ denote

the uniform distribution over {0, 1}𝑛. We claim that the uniform distribution does

not minimize 𝑓(𝑝).
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It is easy to see that for 𝑧 = {0, 1, 2}𝑛, we have

𝑐𝑧|𝑝∘ = 2−2𝑛2#1(𝑧)

where 𝑐𝑧|𝑝∘ denote 𝑐𝑧 for the uniform distribution, and #1(𝑧) denote the number of

𝑖’s (1 ≤ 𝑖 ≤ 𝑛) with 𝑧𝑖 = 1.

Let us compute the first derivatives. For 𝑥 ∈ {0, 1}𝑛 and 𝑧 = 𝑥 + 𝑦 ∈ {0, 1, 2}𝑛

with 𝑦 ∈ {0, 1}𝑛, we have

𝜕𝑐𝛼𝑧
𝜕𝑝𝑥

= 2𝛼𝑐𝛼−1
𝑧 𝑝𝑦.

So

𝜕𝑓(𝑝)

𝜕𝑝𝑥
=
∑︁
𝑦

2𝛼𝑐𝛼−1
𝑥+𝑦𝑝𝑦.

By symmetry of 𝑓 , the first derivatives 𝜕𝑓(𝑝)
𝜕𝑝𝑥

|𝑝∘ are the same for all 𝑥 ∈ {0, 1}𝑛. So

we need to check second derivatives.

It is easily computed that

𝜕2𝑐𝛼𝑧
𝜕𝑝𝑥𝜕𝑝𝑦

= 4𝛼(𝛼− 1)𝑐𝛼−2
𝑧 𝑝𝑧−𝑦𝑝𝑧−𝑥

for 𝑧 ̸= 𝑥 + 𝑦 with 𝑧 − 𝑥, 𝑧 − 𝑦 ∈ {0, 1}𝑛 and

𝜕2𝑐𝛼𝑧
𝜕𝑝𝑥𝜕𝑝𝑦

= 4𝛼(𝛼− 1)𝑐𝛼−2
𝑧 𝑝𝑧−𝑦𝑝𝑧−𝑥 + 2𝛼𝑐𝛼−1

𝑧

for 𝑧 = 𝑥 + 𝑦.

Define 𝑑(𝑥, 𝑦) to be Hamming distance between 𝑥 and 𝑦. For fixed 𝑥 and 𝑦, there

are 2𝑛−𝑑(𝑥,𝑦) different 𝑧’s such that 𝑧− 𝑥, 𝑧− 𝑦 ∈ {0, 1}𝑛. (For 𝑖 such that 𝑥𝑖 ̸= 𝑦𝑖, we

must have 𝑧𝑖 = 1; for 𝑖 such that 𝑥𝑖 = 𝑦𝑖, we have 𝑧𝑖 = 𝑖 or 𝑖 + 1.) Among these 𝑧’s,
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(︀
𝑛−𝑑(𝑥,𝑦)

𝑤

)︀
of them have #1(𝑧) = 𝑑(𝑥, 𝑦) + 𝑤. Therefore

𝜕2𝑓(𝑝)

𝜕𝑝𝑥𝜕𝑝𝑦
|𝑝∘ = 4𝛼(𝛼− 1)

∑︁
0≤𝑤≤𝑛−𝑑(𝑥,𝑦)

(︂
𝑛− 𝑑(𝑥, 𝑦)

𝑤

)︂
(2𝑑(𝑥,𝑦)+𝑤2−2𝑛)𝛼−22−2𝑛

+ 2𝛼(2𝑑(𝑥,𝑦)2−2𝑛)𝛼−1

= 4𝛼(𝛼− 1)(4 + 2𝛼)𝑛−𝑑(𝑥,𝑦)2𝛼𝑑(𝑥,𝑦)−2𝛼𝑛 + 2𝛼(2𝑑(𝑥,𝑦)2−2𝑛)𝛼−1.

Let 𝐴 be an 2𝑛 × 2𝑛 matrix indexed by {0, 1}𝑛 with

𝐴𝑥,𝑦 =
𝜕2𝑓(𝑝)

𝜕𝑝𝑥𝜕𝑝𝑦
|𝑝∘ .

We claim that there exists a length-2𝑛 vector 𝑣 with
∑︀

𝑥 𝑣𝑥 = 0 and 𝑣𝑡𝐴𝑣 < 0. Let 𝑣

be such that 𝑣𝑥 = (−1)#1(𝑥). Then we have

𝑣𝑡𝐴𝑣 =
∑︁

𝑥,𝑦∈{0,1}𝑛
(−1)𝑑(𝑥,𝑦)𝐴𝑥,𝑦

= 2𝑛
∑︁

0≤𝑑≤𝑛

(︂
𝑛

𝑑

)︂
(−1)𝑑(4𝛼(𝛼− 1)(4 + 2𝛼)𝑛−𝑑2𝛼𝑑−2𝛼𝑛 + 2𝛼(2𝑑2−2𝑛)𝛼−1)

= 21+2𝑛−2𝛼𝑛((2 − 2𝛼)𝑛 + 2𝑛+1(𝛼− 1))𝛼.

If 𝛼 > 2 and 𝑛 is a large enough odd number, the above value is negative. So

𝑓(𝑝∘ + 𝜖𝑣) < 𝑓(𝑝∘) for 𝜖 > 0 small enough.

Proposition 5.7. For 0 ≤ 𝛼 ≤ 2, the uniform distribution over {0, 1}𝑛 is a local

maximum of 𝐻𝛼(𝑋 + 𝑋).

Proof. The cases 𝛼 = 0 and 𝛼 = 1 follow from Remark 5.5. Now assume 𝛼 ̸= 0, 1.

Follow notations 𝑝𝑥, 𝑐𝑧, 𝑝
∘, 𝑓, 𝐴 in proof of Proposition 5.6.

We prove that 𝑝∘ is a local maximum of 𝑓(𝑝) for 0 < 𝛼 < 1 and a local minimum

of 𝑓(𝑝) for 1 < 𝛼 < 2. By proof of Proposition 5.6, the first derivatives 𝜕𝑓(𝑝)
𝜕𝑝𝑥

|𝑝∘ are

the same for all 𝑥 ∈ {0, 1}𝑛, and

𝜕2𝑓(𝑝)

𝜕𝑝𝑥𝜕𝑝𝑦
|𝑝∘ = 4𝛼(𝛼− 1)(4 + 2𝛼)𝑛−𝑑(𝑥,𝑦)2𝛼𝑑(𝑥,𝑦)−2𝛼𝑛 + 2𝛼(2𝑑(𝑥,𝑦)2−2𝑛)𝛼−1.
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Note that 1 is an eigenvector of 𝐴. Let 1
⊥ denote the vector space of vectors 𝑣

orthogonal to 1, i.e., 𝑣𝑡1 = 0. Clearly 𝐴 acts on 1
⊥.

We prove that matrix 𝐴 is positive definite (resp. negative definite) on 1
⊥ for

1 < 𝛼 < 2 (resp. 0 < 𝛼 < 1). Let 𝑣 ∈ 1
⊥ be an eigenvector of 𝐴 with eigenvalue

𝜆. Note that 𝐴𝑥,𝑦 only depends on 𝑑(𝑥, 𝑦), so 𝐴 possesses a lot of symmetry. Let

𝑔𝑖 : {0, 1}𝑛 → {0, 1}𝑛 (1 ≤ 𝑖 ≤ 𝑛) be the map that flips the 𝑖-th coordinate. Then

𝑔−1
𝑖 𝐴𝑔𝑖 = 𝐴. Therefore 𝑔𝑖𝑣 is also an eigenvector of 𝐴 with eigenvalue 𝜆.

We repeatedly perform the following: Choose a coordinate 𝑖 such that 𝑣 ̸= 𝑔𝑖𝑣

and 𝑣 + 𝑔𝑖𝑣 ̸= 0, and replace 𝑣 with 𝑣 + 𝑔𝑖𝑣. This process ends in at most 𝑛 turns,

and when it ends, the vector 𝑣 satisfies the property that for each coordinate 𝑖, either

𝑣 = 𝑔𝑖𝑣 or 𝑣 = −𝑔𝑖𝑣.

Suppose there are 𝑚-coordinates 𝑖 with 𝑣 = −𝑔𝑖𝑣. Because 𝑣 ∈ 1
⊥, 𝑚 ̸= 0. WLOG

assume that for 𝑖 = 1, . . . ,𝑚, 𝑣 = −𝑔𝑖𝑣. By multiplying by a nonzero constant, we

can assume that

𝑣𝑥 = (−1)𝑥1+···+𝑥𝑚 .

Then we can compute

𝑣𝑡𝐴𝑣 =
∑︁

𝑥,𝑦∈{0,1}𝑛
(−1)𝑑(𝑥,𝑦)𝐴𝑥,𝑦

= 22𝑛−𝑚
∑︁

0≤𝑑≤𝑚

(︂
𝑚

𝑑

)︂
(−1)𝑑(4𝛼(𝛼− 1)(4 + 2𝛼)𝑛−𝑑2𝛼𝑑−2𝛼𝑛 + 2𝛼(2𝑑2−2𝑛)𝛼−1)

= 21−𝑚+4𝑛−2𝛼𝑛𝛼((1 − 2𝛼−1)𝑚 + (1 + 2𝛼−2)𝑛−𝑚(2𝛼− 2)).

So it remains to study the function

𝑔𝛼(𝑛,𝑚) = (1 − 2𝛼−1)𝑚 + (1 + 2𝛼−2)𝑛−𝑚(2𝛼− 2).
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When 1 < 𝛼 < 2, we have

𝑔𝛼(𝑛,𝑚) ≥ 𝑔𝛼(𝑚,𝑚) = (1 − 2𝛼−1)𝑚 + 2𝛼− 2

≥ 2𝛼− 2 − |1 − 2𝛼−1| = 2𝛼− 1 − 2𝛼−1 =: ℎ(𝛼).

When 0 < 𝛼 < 1, we have

𝑔𝛼(𝑛,𝑚) ≤ 𝑔𝛼(𝑚,𝑚) = (1 − 2𝛼−1)𝑚 + 2𝛼− 2

≤ 2𝛼− 2 + |1 − 2𝛼−1| = 2𝛼− 1 − 2𝛼−1 = ℎ(𝛼).

It remains to show that ℎ(𝛼) < 0 for 0 < 𝛼 < 1 and ℎ(𝛼) > 0 for 1 < 𝛼 < 2. This

follows from ℎ(1) = 0 and

ℎ′(𝛼) = 2 − 2𝛼−1 log𝑒 2 > 0

on the interval [0, 2].

5.2 Addition in a Sidon set

In Section 5.1, the additive structure of {0, 1}𝑛 can be thought of as a source of

complexity of the problem. Therefore it is natural to consider addition over a set

with minimal additive structure, such as Sidon sets (𝐵2-sets in Definition 2.1) in

some ambient abelian group. Ganesh Ajjanagadde, in private communication, made

the following conjecture.

Conjecture 5.8. If 𝐴 is a Sidon set, then the 𝐻(𝑋 + 𝑌 ) achieves its maximum at

uniform distribution.

We consider the same-distribution version with Rényi entropy, and prove the fol-

lowing results.
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Proposition 5.9. Let 𝛼* be the unique root of the equation

2𝛼𝛼− 4𝛼 + 2 = 0

in range [1.1, 2] (with approximate value 𝛼* ≈ 1.29856). For 0 ≤ 𝛼 ≤ 𝛼*, if 𝐴 is

a Sidon set, then the Rényi entropy 𝐻𝛼(𝑋 + 𝑋) achieves its maximum at uniform

distribution.

Proof. The case 𝛼 = 0 is obvious. We first prove the case 𝛼 = 1. For 𝑥 ∈ 𝐴, we

denote 𝑃 (𝑋 = 𝑥) as 𝑝𝑥. We have

−𝐻(𝑋 + 𝑋) =
∑︁
𝑥

𝑝2𝑥 log(𝑝2𝑥) +
∑︁
𝑥<𝑦

2𝑝𝑥𝑝𝑦 log(2𝑝𝑥𝑝𝑦)

where < is an arbitrary total order on {0, 1}𝑛. Let 𝑓(𝑝) = −𝐻(𝑋 + 𝑋). Our goal is

to minimize 𝑓(𝑝). Let us compute the first derivative.

𝜕𝑓(𝑝)

𝜕𝑝𝑥
= 2𝑝𝑥 log 𝑒 + 2𝑝𝑥 log(𝑝2𝑥) +

∑︁
𝑦 ̸=𝑥

(2𝑝𝑦 log 𝑒 + 2𝑝𝑦 log(2𝑝𝑥𝑝𝑦))

= 2 log 𝑒− 2𝑝𝑥 +
∑︁
𝑦∈𝐴

2𝑝𝑦 log(2𝑝𝑥𝑝𝑦)

= 2 log 𝑒− 2𝑝𝑥 + 2 + 2 log 𝑝𝑥 + 2
∑︁
𝑦∈𝐴

𝑝𝑦 log(𝑝𝑦)

= 2 log 𝑒− 2𝑝𝑥 + 2 + 2 log 𝑝𝑥 − 2𝐻(𝑋).

The function −2𝑝𝑥 + 2 log 𝑝𝑥 is monotone increasing in 𝑝𝑥 ∈ [0, 1]. Therefore if there

exists 𝑥, 𝑦 ∈ 𝐴 such that 𝑝𝑥 < 𝑝𝑦, then we can make the transform 𝑝𝑥 ↦→ 𝑝𝑥 + 𝜖,

𝑝𝑦 ↦→ 𝑝𝑦 − 𝜖 for some small 𝜖 > 0 so that 𝑓(𝑝) decreases. So a local minimum point

of 𝑓(𝑝) must be the uniform distribution.

Now we consider the case 𝛼 ̸= 1. Let

𝑓(𝑝) =
∑︁
𝑥

𝑝2𝛼𝑥 +
∑︁
𝑥<𝑦

(2𝑝𝑥𝑝𝑦)
𝛼.

Then 𝐻𝛼(𝑝) = 1
1−𝛼

𝑓(𝑝). We would like to maximize 𝑓(𝑝) when 0 < 𝛼 < 1 and
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minimize 𝑓(𝑝) when 1 < 𝛼 < 𝛼*. Let us compute the first derivative.

𝜕𝑓(𝑝)

𝜕𝑝𝑥
= 2𝛼𝑝2𝛼−1

𝑥 +
∑︁
𝑦 ̸=𝑥

𝛼2𝛼𝑝𝛼𝑦𝑝
𝛼−1
𝑥

= 𝛼𝑝𝛼−1
𝑥 (2𝑝𝛼𝑥 +

∑︁
𝑦 ̸=𝑥

2𝛼𝑝𝛼𝑦 )

= 𝛼𝑝𝛼−1
𝑥 ((2 − 2𝛼)𝑝𝛼𝑥 +

∑︁
𝑦∈𝐴

2𝛼𝑝𝛼𝑦 ).

Let 𝐵 =
∑︀

𝑦∈𝐴 2𝛼𝑝𝛼𝑦 . Then clearly 𝐵 ≥ 2𝛼𝑝𝛼𝑥 . If we view 𝐵 as a constant, then

𝜕

𝜕𝑝𝑥
(𝛼𝑝𝛼−1

𝑥 ((2 − 2𝛼)𝑝𝛼𝑥 + 𝐵))

= 𝛼𝑝𝛼−2
𝑥 (𝐵(𝛼− 1) − (2𝛼 − 2)(2𝛼− 1)𝑝𝛼𝑥).

Using 𝐵 ≥ 2𝛼𝑝𝛼𝑥 , we see that

𝛼𝑝𝛼−1
𝑥 ((2 − 2𝛼)𝑝𝛼𝑥 + 𝐵)

is monotone increasing in 𝑝𝑥 when 1 < 𝛼 < 𝛼*, and is monotone decreasing in 𝑝𝑥

when 0 < 𝛼 < 1. Therefore if there are 𝑝𝑥 < 𝑝𝑦, we can make transform 𝑝𝑥 ↦→ 𝑝𝑥 + 𝜖,

𝑝𝑦 ↦→ 𝑝𝑦 − 𝜖 for some small 𝜖 > 0 so that 𝑓(𝑝) decreases (when 1 < 𝛼 < 𝛼*) or

increases (when 0 < 𝛼 < 1). So a local maximum point of 𝐻𝛼(𝑋 + 𝑋) must be the

uniform distribution.

Proposition 5.10. Let 𝛼* be the unique root of the equation

2𝛼 − 4𝛼 + 2 = 0

in range [3, 4] (with approximate value 𝛼* ≈ 3.65986). For 𝛼 > 𝛼*, for some Sidon

set 𝐴, the Rényi entropy 𝐻𝛼(𝑋 + 𝑋) does not achieve its maximum at uniform dis-

tribution.

Proof. Let 𝐴 = {0, 1} be a Sidon set with two elements. Let 𝑝 = P(𝑋 = 1). Then
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1 − 𝑝 = P(𝑋 = 0). Let

𝑓(𝑝) = 𝑝2𝛼 + (2𝑝(1 − 𝑝))𝛼 + (1 − 𝑝)2𝛼.

Then 𝐻𝛼(𝑋 + 𝑋) = 1
1−𝛼

log 𝑓(𝑝). For 𝛼 > 𝛼*, maximizing 𝐻𝛼(𝑋 + 𝑋) is equivalent

to minimizing 𝑓(𝑝).

Simple calculation shows that 𝑓 ′(1
2
) = 0 and

𝑓 ′′(
1

2
) = −23−2𝛼(2𝛼 − 4𝛼 + 2)𝛼.

When 𝛼 > 𝛼*, we have 𝑓 ′′(1
2
) < 0, and thus 𝑝 = 1

2
is not a local minimum of 𝑓 .
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