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ABSTRACT

ON A CLASS OF TEMPORALLY
NON-HOMOGENEOUS MARKOV PROCESS AND THEIR
RELATIONSHIP TO INFINITE PARTICLE GASES

by

Dudley Paul Johnson

Submitted to the Department of Mathematics on
August 22,1966 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Consider the class of right continuous sample paths
x(t), tyo with values 1 and assume that for each probability
measure f on E=tl and for each e*E, there exist probability
measures Pf and P fe for which

(W Pflje (-):Pf (-0x(o)re)

(2) Pf(x(o):e):f(e)

(3) P fe(x (tfh) 6A ICt) f xt (x(h)EA) [.e. P ,l

where t is the O'-algebra generated by the events x(s),
sct, A is a set of points in E, and ft (A)vPf(x(t)6A).

if '2t (u) Pf (x(t):) t 0  , urf(+l)

exists, then the functions 1+ and Y.. will, under certain
technical conditions, uniquely determine the distribution
of the process x(t). Such a process is a temporally non-
homogeneous Markov process and will be called a *-process.

Suppose that x(t), tzo is a *-process, f its initial
distribution and f its distribution at time t. Then it is
easily shown that ? is the (formal) solution of

B [ft]



where

B is, in general, a non-linear operator. When B is linear
and bounded it is natural to think of ft as exp (tB)f.
However, when B is non-linear this cannot be done, although
a replacement for exp (tB) can be found.

H. P. McKean, Jr. [31 has done this for ?t(u)+(u-1).
He defines a linear operator D mapping functions of one
variable into functions of two variables and then extends
D to functions of any finite nUn ber of variables in such a
manner that the solution ft of Ye ftv B ft3 can be expressed
as

f t(e)r (f(d L)f(d12)***9 lt'CX. 1120***

where E is the infinite product of E' l with itself and
Xeg is the indicator function of e. McKean then shows that
the operator D leads to a natural description of the *-process
as the motion of a tagged particle in an infinite particle
"gas" undergoing binary collisions; the motion of this tagged
particle can be calculated from the formula

Pffx(tl):elx(t2 )*e2 $***.x(tn)&en

tlD (t 2 -tl)D (tnitn-i)D
f(dl)f(d12)O*e9 Xele _Xe2  en

This paper extends the results of McKean to those
*-processes for which + d' is positive on the open interval
ou<l with at most algebraic roots at o and 1, and real
analytic on the closed interval osu,<l. The equation

- f-B3Eft]

is solved using a linear operator D mapping functions of one
variable into functions of infinitely many variables. D,
in turn, suggests by its form that the *-process can be des-
cribed as the motion of a single tagged particle in an infin-
ite particle gas. However, unlike McKean's model, collisions
of arbitrarily high, but finite order are allowed.

Theses Supervisor: H.P.McKean, Jr.

Title: Professor of Mathematics
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1. INTRODUCTION

Consider the right continuous sample paths x(t), t,o

on the space Eatl and assume that for each probability

measure f on E and e6E, there exist probability measures Pf

and P f. for which

(1) Pfi(0)*Pf(* X(o)ve)

(2) Pf(x(o)ne)%f(e)

(3) PfJe(x(tth)EA &,ttt)Pf|t(x(h) A) a.Oe.PfJeJj

where ot is the 0*- algebra generated by x(s), set, A is a

set of points in E, and f t(A)=P f(x(t)4A).

if
I i (u) at P (x(t)rl , usf(l)

then the functions and .. will, under certain technical

conditions, uniquely determine the distribution of the pro-

cess x(t). Such a process is a temporally non-homogeneous

Markov process and will be called a *-process.

Suppose that x(t), t~o is a *-process, f its initial

distribution and ft its distribution at time t. Then it is

easily shown that ft is the (formal) solution of

ft B ft7

where

B[f] (ti): -B [f ( -1)Z u tf+ (u)* (1-u)Zr- (u), us-f (#- 1),.
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B is, in general, a non-linear operator. When B is linear

and bounded it is natural to think of ft as exp (tB)f.

However, when B is non-linear this cannot be done, although

a replacement for exp (tB) can be found, as will now be

illustrated in the following example due to H. P. McKean,

Jr. [33.

Let 2r (u)r-t(u-l). This gives

B[f) (+1)t(2u2 -3u4l), usf(+1);

or, to rewrite it in a more suggestive manner,

BfI(e)Lf(el*)f(e 2 *)"f(el)f(e 2 1 de2do

where fd e2 denotes the sum over 82:t 1 and do denotes the

sum over the two possible outcomes of the binary collision

(ele2)+ (e1 *,e2 *) 2 (8182,e2) or (e ,1a2 ).

This equation is very similar to Boltzmann's equation for a

spatially homogeneous Maxwellian gas without exterior forces.

In fact, for such a gas, if f(Vt) is the distribution of

molecules with velocity d V at time t and if particles with

velocities Vl and 12 have velocities and V2 * respectively

after a collision, Boltzmann's equation becomes

f(Yt)= - dV2 .(1,$2 st) -l(t11**E1

where S(1) is the unit sphere,-..6S(1) a unit vector, and

4 is a function of the scattering angle alone.

To find a solution of ? f :B[ft]define an operator D,



mapping functions of one variable into functions of two

variables, by D[IJ(ee )-1(0 e2 )m6?(e Letting 6V 6%e 49.

denote the outer product LTi(eie..,eaL 2 (a+l,*h*ea4b)

when $1 c1 1(,1,...,ea) and LT 2 2 (e1** .,eb), we extend D

to a derivation acting on functions of any finite number of

variables by requiring

DCT 1( & p1 2 1 0 2 ThD[41 10 20

With this extension,

f(( fs)(e) ( (e)de= K (e0 ) )***of (a)Dn L de...de
E E

for functions I of one variable. Putting s:o, and writing

f as a formal Taylor series in t, we get

no(f (e) 0,(e)det f O.. f Dn&Qf f Goexp (tD) C03

E E E

where E is the infinite product of El1 with itself, f 0

is the infinite outer product of f:f0 with itself, and

exp (tD) is the formal power series I tn In, Thus we
nuo HT

can formally write the solution of

d/g- tf = B if as exp (tD) * [f.

McKean goes on to show that the derivation D leads to

a natural description of the *-process as the motion of a

tagged particle in an infinite particle gas undergoing
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binary collisions; the motion of this tagged particle can be

calculated from the formula

Pf[X(t 1):e ,9 xd2). 2#***9s~n 'r*n]

f~dl~~d2)OOt D Ke (t 2 t 1)D 12 0e(tn-tn-1 )D Xe.

2 (e being the indicator function of e.

This paper extends the results of McKean to those

*-processes for which '-t- is positive on the open interval

o<u<l and with at most algebraic roots at o and 1, real

analytic on the closed interval o$u<l. These conditions are

necessary and sufficient in order that P can be written
cc

as a sum -t iLB (u) where
nnntl

n (u) o (k) (n) uk(l-u)n-k, 4 (k)4o

00
are Bernstein polynomials and E1 nWax 9 (k)$ p. i

n'l Tifnl n

for all positive integers p. The equation V/tft:BcfJ is

solved using a derivation, mapping functions of one variable

into functions of infinitely many variables, which is ex-

pressed in terms of the coefficients 0 (k). This derivations,n

in turn, suggests that the *-process can be described as the

motion of a single tagged particle in an infinite particle

gas. However, unlike McKean's model, collisions of arbitrar-

ily high, but finite order are allowed. In fact, an n-fold
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collision is allowed in the infinite particle gas whenever

the term BI in the Bernstein representation of - is notn

identically zero; consequently this representation is funda-

mental in the construction of the infinite particle gas. It

is also true, as I will show later, that the sample paths of

any finite class of particles in the infinite particle gas r

are independent. Finally, I calculate the holding times for

a *-process and give a brief discussion of the limiting be-

havior of a *-process as t-e ao.

This paper is arranged as follows. The second section

gives a formal description of *-processes. The third sections

gives a formal description of the integration of the non-linear

equation ?/t ft Bftj by which the distribution

f t(e)=Pf(x(t)=e) is governed. The fourth section applies the

formal results of the third section to a particular class of

*-processes. The fifth section constructs the *-process as

the limit of the motions of a single particle in an n-particle

gas as n-eo *. In the sixth section, holding times are cAlcu-

lated for the *-process. Finally, in the seventh section the

limiting behavior of a *-process as t-voeis discussed.
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2. *-PROCESSES

Suppose we are given a sample space L, a state space

E 1, and a time interval T (o,+o). Then a temporally

homogeneous Markov process on -CL , E, T consists of:

(1) for each t(T a function xt(w) mapping - 2 into E,

(2) a - algebra CA, on 11 together with a family of

sub e--algebras , teT such that [xtCBjeg/(t

for any teT, BCE,

(3) for each eCE a probability measure P0 on

which satisfies:

(a) B,(x(O):G):i

(b) Pe(x(t-th)C-Bl -+)Px (x(h) 6B) a...P .

What we shall now do is to remove the temporal homogeneity.

But, rather than letting the transition mechanism vary

arbitrarily with time as one would normally do, we will let

it vary via the distribution of the particle. Thus, the

transition probability functions P will be replaced by a

family of probability measures PfJq where f is a probability

measure on E and eEE. The expression Pfie(-A) is to be

thought of as the probability that, starting with x(o) dis-

tributed according to f, the event -A will take place, con-

ditional on x(o)re. This is accomplished by replacing (3)

with
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(3) .for each eEE and probability measure f on

E, there exists a probability measure Pf

on (.o such that:

P f(x(o)-- e) af (e)

P f(x (tfh) 6A1 Co. t P ftx(x(h)4A) [a.e.Pf

(a')

(b')

where ft(B): Pf (x(t)6B)

x(t) when the starting

P e *) Pf( x(o):e).

Such a process

homogeneous if

reader can eas

Defining

probabilities

of temporally

is the distribution of

distribution is f and

will be called a *-process. It is temp

and only if Pf/* is independent of f, a

ily check.

Pfjt;A):Pfje(xt(A), we get a formula for

of joint observations reminiscent of the

homogeneous Markov processes:

orally

s the

the

case

THEOREM 2.1 If xt is a *-process, then for t <..0itn@ *

P flx(tl)eA, x(t2) XA2 s****x(tn )6An

P e(t 1 d3 ) fP f (t2 tl;d32 *** Pf (tn',n.-;dl )
A 1 A 2 151 A n tn- n-1

PROOF This is immediate from 3b'.

COROLLARY 2,2 If x is a *-process, then

Pg (s+t;A").s (Pf(t;dj)Pg (s;A),
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DEFINITION 2.3 Let p(t)=f (+l) and p,(t)=P (t;-1) be the

probability that x(t)r-+l and the probability that x(t)=,'i

conditional on x(o)='e respectively, givea-that x(o) has the

distribution f.

According to Theorem 2.1, the function pe(t) determines

the distribution of the process on cylinder sets.

DEFINITION 2.4 Letting uvf(+l)=p(o), define

(1) 7(u)C '?/at Pg f,(t;+0 DI - , (e

(2) 7(u)-u ?(u)f(1-u) -(u)

DEFINITION 25 Let B be the operator (usually non-linear)

mapping distributions f into functions BEf] defined by

THEOREM 2.6 If x is a *-process and if p e(t) is differen-

tiable in to, then

(1) P(t)- -0[p(t)]

or, to put it in an equivalent form

#?.f (e):B ftJ (e)

(2) e [(t)+f(t)J -pe(t)] p(t).

PROOF Taking the equation in Corollary 2.2 and differentiat-

ing both sides with respect to a and leeting sao we get (2).

(1) follows from (2) if we notice that p(t): f(de)pe(t).

Equation (1) of Theorem 2.6, which is in general non-

linear, has a unique solution bounded by o and 1 if 7satisfies
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a Lipschitz condition and if f(oto and ?'(l()o. Once the

solution of (1) is known, equation (2) becomes a linear

problem for p (t):

j_ p*(t):F(t)+G(t)p,(t) where F(t): gP(t)
dt

and G(t): 1 -p(t)jJ- ' Lp(t).
This equation, in turn, has a unique solution bounded by o and

1 if and T are continuous and 0 ) o. Having uniquely

determined the transition function Pfje, we can construct the

*-process by defining probabilities on the cylinder sets in

the manner suggested in Theorem 2.1:

p[x(tl)6A 1,x(t2 )6A2 '* **X(t n )6An

fPfe 1t;dl ) ) P fll(t2-tl;d])00 ** "i-1} n-nl;d~n)
A1 2 fn 11

where o~tl(@(tn<.. *

Finally, one can regard a *-process as a temporally homo-

geneous Markov process on E X o,lJ by adjoining p(t) as a new

coordinate. The transition probabilities of this process are

P t*(e,u;A,B)-: ( fle(t;A) if p(t)EB,f(+l):urp(o)

o otherwise

and its generator is given by

(F l at(t la(+.,p(t))-F44,p(t) + F(e,p(t)),

formally at least.



3. FORMAL SOLUTION OF -t ft=B ftJ

Since B will usually be non-linear, we linearize the

problem by constructing a linear operator D mapping functions

(T of one variable into functions D of infinitely many

variables such that

B f] (d )(C3)5 f' Dq?

where

Sff(dI)f(dJ2 ** l **

The actual choice of D is very arbitrary since there are

many such operators. However, in section 4 we shall somewhat

restrict the possibilities by requiring that

(u)a ff(DX )(1,
f11)c

This implies that

p (t) f Co(etD (e'...) p(O)xf(*l)

as will be shown in section 5.

Once D is defined on functions c of one variable, it

will be extended to a class of functions of infinitely many

variables in such a manner that if 4 and have no common

variables, a state of affairs which we indicate by writing

the product 4f as CT , then
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D EC( I :&D04 -@D . When D is extended in this man-

ner, it will be called a derivation for B. This extension

will allow us to define D2 (,D%,...; and, in the cases we

shall eventually consider, it will be shown that not only are

in the domain of D, but that etDC an.n Dn
nao n

converges for sufficiently small t. A calculation which is

the basic result of this section shows that if 0/' t ftzB f.

and D is a derivation for B, then

Pf (d)(T) f CaD .

Thus, letting too, f:fo and writing ft as a formal Taylor

series around tro, we get

ff (d))((5)--f etD 0

Thus

f :(etD)* Cf0 0

is the formal solution of __ fr-B If t.
ICIt

The complications which follow are due to the fact that

the derivation I will be using usually maps functions of one

variable into functions of infinitely many variables rather

than into functions of a finite number of variables. Thus,

in extending D to functions of more than one variable, I

need a large reserve of variables so as to ensure that

D(V Q )= -0 D lJJG Dc4 at each stage.

Decompose the set of p6sitive integers I+ into a
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sequence of disjoint infinite sets I1,I2,... and within each

set order its elements according to their natural order, de-

noting the jth integer in Ii by the pair ij. The elements of

these sets will be used as indices of variables ej having

values in E. Introduce the following definitions.

DEFINITION 3.1 If 0 is a function whose variables have

indices in I+ and JCI , then f Vo is to mean

~f(d) ) whenever the integral exists.

DEFINITION 3.2 Jo denotes the complement of JCI*

DEFINITION 3.3 Let Ci, i7l be the space of all functions 4'

which can be expressed as a countable sum

where q has a finite number of variables whose indices are

in 11U..../ i and 1I denotes the uniform norm.

DEFINITION 3.4 Let Ci be those functions in Ci which have a

finite number of variables.

DEFINITION 3.5 Suppose that we have a family of spaces

C', CI C CTC and a family of linear operators Dn mapping

CT into Cn4l for n7,m. Then the operators Dn will be called a

derivation if

(1) Dn(# $)"(Dn4 )+4 DnA

(2) Dnf4 D nL )ij
ill jsl

where (6P) denotes iQ thought of as a function of the ij-th

variable alone, the other variables being held constant.
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DEFINITION 3,6 A family Dnnzl,2,... of derivations will be

called a derivation for the operator B if and only if

(1) for any cO with only one variable, any n , m

and any distribution f,

B Cf] (d 1) 0 (1J) fr Dn V

(2) D n: o whenever 0 is a constant

(3) DndV depends upon the variables of $ together with

new variables coming only from In#-l, and Dntp does

not depend on n in the sense that Dn V and Dm Q are

identical if the new variables which Dn adds to V
are renamed; especially, f Dn4T is independent of

'nfl

nA m.

DEFINITION 3.7 For 1 C , D;' k1 will mean DnomDnfm-l.*Dm*

The following theorem and its corollary provide a formal

solution of f .B through the use of derivations.

THEORE (formal) If D is a derivation for the operator B,

then f (n)(d)) f)) CPO DnO

for all functions $ of one variable, at least formally.

PROOF by induction on n. The theorem certainly holds for n:l

by the definition of a derivation. Suppose it also holds for

n and put Dn, . , wheve 1 has a f inite number 7 (") of

variables whose indices form a set J4.IlU...)Intmtl and
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Then

f (ni)(d

dt

dt

40

f t

dt .

- t 0
0... t

where ft 0 . P ft is the 7(9-fold outer product

modulo interchanges of sums and differentiations; and hence,

treating f t 0... fft as a function

of the single variable with index p, we get upon using (1)

of the definition of a derivation

(.t Dm#.niff( ft f* t *

Because of the linearity of Dmtn6,, one gets formally

f n) (d)) ()

Lft (df 7)
PC.ptJ

f ft f* t
J4 p)



.'' 0

P < t

CS'~~L
p

f t
pD

ft 0* ( $tDmin 1( p

D*+n tl p

D ( L t)mf n+1 < p

D min 4l(Dnp

m+n+l Dn

Dn+149

COROLLARY 3.9 If D is a derivation for the operator B and if

the derivatives f n) (e) exist, then f can be formally written

as ft(e): f etDX. where etD is defined as the formal Taylor

L LP DP.
p:o p!

series

.,Dm+n+1tO. p-p



4. SOLUTION OF 2 ftB 4

In this section, we will apply the methods of the last

section to the problem of solving the equation _a_f B .
at

However, to do this we must put some restrictions on

?'+ 0

DEFINITION 4,j Let H be the class of functions
eQ

it (u) B' (u)
N:l

where
t O k)N)(l.)Nk1 C

()BN (u): C N(k) (kuk-)-, CN. 1 o
k:o

Co

(2) N<CN.pILP, p>,1, CN:max CN(k), L<dP fixed.
N:l sNt

A necessary condition for a function to be in H is that it

be real analytic as the following theorem demonstrates.

THEOREM 4.2 If FCH, theiF has derivatives of all orders and

(d) PF(u p.'v(2L)P

PROOF

P_)F(u)

du N N(k)(k)uk(l-u)N-kj



(P)
q e-q

K N 
krq

*(N-k)...(N-k-pq+1) ( - (-U)N-k-p+q I

co N-p

( p) E q k
qNz p-q k: o

*(N-k-pi4) (_)p-q uk(l-U)N-p-kJ

) .-

qNe p-q

N'
N-p

CN X
k-o

NPCN

()p1L~

z pt(2L)

Notice that the term wise differentiation is justified by

the convergence of the resulting sums.

COROLLARY 4.3 If + C

[0,11 and the solution f t (*1)

H, then 7 is real analytie on

of

f
t

21.

qiot

p

q: o

p

q? o

p

q: o

CN(k; q)()(k+q)...(k+l)(N-k-q)...

(N-p)uk(1-U)N-p-k

(+ 1):>B ff (0-l)-? rf- 1)]
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has derivatives of all orders.

If F, G(Hp

Let

co

F( u) .
N:1

G (u) L
N-1

N

k- o

k- o

then

coo

F(u)G(u) 211.
N:1

then FGeI.

N-k

CN(k) (k )u k(1-u)

N -k

N k N-k

LN(k))( )u(i-u)

.- eN(k)N k(-U)N-k

where

eN(k) :(k
Nyt N2' N

Letting eN zmax
kL eN

- CN (k)dN (k2 N 1
k1 +k2:k 1 1 N2(2)-i

k2<N2

N2)
k2

we have

L pNNe.N:i

N ON(k)N--1 k -o

~21I
Nd

L ](N ()
k-- o k N -+N2 N13 2-

~ILCN
k k:k 1

k 2 ,S N 2k25N2

(k1)dN (k
2 k

LEMMA 4.4

PROOF

e

SN (k)

4e



E, 2

N 1 ,N 2

N 1 ,N 2

2,-
k <N
1,t 1k 2N

(N 4N 2 ) CN

k-(N N2) CN
k1 1 

1
k24N 2

1 2 Lq--o

1(kl)dN2(k 2 )

(k 1dN (k 2 )

q 1 2 NjdN2

)( N p mq
dN2q: o

)

4 ' :- (P) (q+ 1) L +1p-q+l) L *
q o q

p'L (p+1)1 ( )
qro

$ (4L) p+2

LEMMA 4.5

PROOF

If F C H, then exp

Let

C (k)(')uk(1.u)N-k.N k

23.

k+ k2 k2

(F) 6 H

k*o

(q 1 N

F (u)--
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Then

exp (F(u)) 2  7,
M o: o

M(m ^ (luM..j()MJUjlu

where
,A
0M (i)

00( m )

nm 1E )n
N ... +N nM ki...+.k

kjs N1

kn< Nn

...( )CN (k )..*CN (k

Thus

M M
MX0

(n +--L
NP-ItN nrM kl*...fk d

+k .:

kn Nn

*CN (ki).-- -Nn(k n)

N1,..., n k , Nl
in N

P(N ... N N
kj)

n.o

(n)
n-o

Z-
lh< N ).)

1(N+,..+Nn Ni' ' 0N
n

14
r2
J.:0

A(

co

M:o

co

M.- 0

3cooli (m)
J-0 nro

) - (N

N

N

*CN (k )...C n(k)

k 4N

kn Nn



(n)
n o

In s --" n's

(n1)

s!- sn

*N ... N CN 1''CNn

pLP(sy+)... (sn+1)

) LP2n(2nfl)... (2n+p-l)

O0
1 (2 L) P (n.1

n:0

j pL(2L)

cc

P7(n!
.nap

% p!(4L) e2

-1(n+p-)

) 12n2p-1

LEMMA 4,.6

(> o)

(Hausdorff C1i)

on the open interval

N
F (u): Fo

MCO

where 1 Nqz(u)S

If a polynomial F is -positive

(o,1), then it can be expressed as

a, ; N,m(U), as)o

()u(1-U)N-m, provided that N issufficiently

25.

CN

no

r(n!)
n% o N -. N N a

1 l...Nn

@0:ZiL
nro

r(n
nro

1Ni,.I N n(N2+...+N n)P N . ..

sn



large.

PROOF If F(o) or F(l) equals o, then we can write F(u) as

ui(l-u)j F(u) where F(u) is positive ()o) on the closed in-

terval fo,1). We therefore need only prove the lemma for

F positive (,o) on Lo,l). Suppose that F(u)- ( kuk is a

positive polynomial on the interval !Lo,1. Then we wish to

write F in the form F(u)' oaNm(u). An easy calcula-

tion shows that

am: o _(N-k) n m(m-l)...(m-k+l)
' N.'(m-k)*F k-o 14(JN-1)...(-k+1

or, am:FN(f) where

N~) Nu(N-1)...(Nk1)
k:o N (N-1).. (N-k+l)

Na-h
But, as N increases converges to u and hence FN(u)

9-h
converges to F(u) and thus for large N, a.-F(T) E. for m: o,

1,...,N. Thus for N sufficiently large, am ,o and the

theorem is proved.

LEMMA 4.7 If F is a complex valued function on the complex

numbers, real on the real numbers and analytic on the closed

disc (zj v 1, then for any sufficiently large real constant

C, F(z)+C G H.

PROOF Let F be r al on the real line and analytic in the

closed disc , . Then there exists a i'V o such that
o

F(z) _" Z ON for Iz/s 1+&where
Nr o
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A, A a positive constant.

Now let

b if N

o otherwise

~C N i0(N %**
aN:

ootherwise
, C-d-b 21 aN, d 7, o

Nzo

Then

But

F(s)+C z d+
N:- 1

bN z a (1-zN)
N N:. N

N-1 N k(N-k

N, r, () ) N4 1
1-z ka o

and hence, letting

BN(z):L CN(k) (k) zk(>-z)N-k
k o

where C 1(o )=a1 +d, C1 (l): b1 t d and

CN(k) aN for o, k<N

bN for k:N

F(z)+ C:,i. BN (z)
N: 1

we get

, N>l

Thus we have represented Fl--C as a sum of Bernstein Polyno-

mials when Co -b- E11 aN. We therefore need only show that

condition (2) is satisfied. But CM CN(k):hNI$ 1+)-N A.

Hence N CNN:0

J. IF(") (0)
N.1



28.

0o

A 1 NP eMN ln(14k)
N'o

which corresponds to

.. t ln(1+ 6)
~tpet dt

in (1+ tj )
p I LI

$ pl LP

for a suitable L.

We can now give a sufficent conditions that F be contained

in H.

LEMMA 4.8 If F is analytic on the closed disc jzl 1,

real on the reals and positive on roi,, then F4H.

PROOF Since F is analytic on 14 < 1, real on the reals

and positive on [o,1J, it can be written as

-C * C#G(z)
e (z-z9)(z-Z4)...(z-z n)(z-zn)e

where ztis theoonjugate of z, G is analytic on Izk<l and

real on the reals.

For C sufficiently large, C +G(z) 6H and hence exp (C+G(z))(-H.

Since, according to Hausdorff's lemma,

(Z-z )(z-z )...0(Z-zn) (Z-zn<) H.n n n

and since H is closed under products, the proof is complete.



a polynomial, o G(u) $ 1 on

(o,l), then F(G(*))CH.

Let
WO

F(u) - E.
N:1

N
z CN(k)
kuo

N uk(1-U)N-k

G(u)-- , d(p)u (1-u)M-
p=o

M qUM-q
1 -G (u) - L, eq(q)u-

qzo

Then

F(G(u))

CN(k)(k

cNM(j)

Ap.-o d(p)u (l-u) M-Pj

M

Z-
q:o

NM(j

N-k

PROOF

kN
E.
k co

jro

0o

N:O

N:l

where
A
CNM()

If F, G 6:H and G is.LEMMA 4,*9

e(q)uq(l-u) 
j

uj(1-u) MN-j



'-,, ~

?( )m kNo

o y p,q c M

Using Stirling's formula we bave

(M )l

-(2rMN)i( )i(1-

< 2 7rMN

( )i

(i )i(j-

(1N

4)MN

and thus

Nrl

oO

N:1

@0

N:1

(NM) CNM

NM
(NM) a

j.o

(NM) NM
J: 0

CN (k) N T)
k-o PP .4 pkq+.

d(pl)... d(pk
#q N-

N-k'
o y P,q% M

*e(q 1)...e(q N-k

NM
N M) jE)

Nz 1 jr o

N

kZo

N
CN (k) (k) 2MN d (pl) d(Pk)

pp..+-p.qiqN-k =
o .cp, q < M

Nk k d(pl)...d(Pk) e '''.. e N-k)*
pp+..fpk *,*t N-kj

c M J



31.

e (ql)...e (q N-k) (1)j( )NMi
NM

MN N N
ir21m N C - r k) d (pl)... d (Pk)

N -l mro kxo J:o p +pk .'"* N-k

o 4 p.#q WM

NNM. N

se (q ). e (qak) N

2 ITM N CN k)G (7 k G ( N-k
N=zz1 m:o k:r o

=T STM p.2FNp C N
N -1

2 21TMp+2 (p+2) L Lp4 2

for suitable L.

THEOREM 4.10 F C H if and only if F is positive on the open

interval (o,l), with at most algebraic roots at o and 1, and

real analytic on the closed interval Lo,1l.

PROOF If F (-H, then F is certainly positive on the open in-

terval (ol) and, by Theorem 4.2, it is real analytic on the

closed interval [o,1J. Therefore assume that F is positive



and real analytic on the closed interval Eo,iJ; if F had

roots at o or 1 we could divide through by them. Then we

can find a domain D, symmetric about and containing the

interval O,1] on which F is analytic. If there exis ts a

polynomial G mapping D conformally onto a disc containing

the unit disc; and if G is real on the reals with G(o):o

and G(l)rl; then F(G~ (w)) is analytic on the closed unit

disc; real on the reals and positive on (o,1 . Thus, by

Lemma 4.8, F(G-1 (*)) C-H and by Lemma 4.9 F(G~(G(e)))

= (.) C-H. Therefore, to complete the proof we need only

show that G exists.

Let G1 (z) be the unique conformal mapping of D onto the

disc jzl < 2 where G 1 (o)ao and ( (o) o. Since D is symme-

tric about the interval [o,lj , LGl(z*)J* a1.o maps D, con-

formally onto Iz < 2 and hence (G(z*)] G(z) and G, is

real on the real axis. Since there exists a sequence of

polynomials converging uniformly to G, on D, let G2 be a

polynomial for which G2(o)1o and IG1(z)-G2 (z)1  for z6D;

and define (G(z) as a fG2 (z) / 2(z*) where

aLG 2 (1) G2 ()1) . Then, for E sufficiently small,

G maps D into a region which contains a disc of radius

a(z.)V; notice that for E small, a is approximately equal to

[G(l 1) . Furthermore, G is real on the reals, G(o):o and

G(l)'l-. We need therefore only show that G is 1-1 to complete

the proof. Let C be the are in D which is the inverse image
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of the circle fz1:a(2-E) under the mapping Gl. Then

G , o on C and for any w contained in the disc

Jz < 14a(2-E)-1 we have
2

aG,(z)-w: G(z)-w 4 h(z)

where h(z)I E . But JG(z)-wJ7 E h(z) for E

sufficiently small, z ;C. Thus, by Rouche's Theorem, G(z)

takes on the value w only once. Therefore G maps a domain

DkCD, D1 containing the interval [oJ.3, conformally onto a

disc containing the unit disc and thus the proof is complete.

Our present task is to construct a derivation D for B

when ?6H and to show that etD: tP P is well de-
p:o 1T

fined for small t. Divide the positive integers into

infinite classes I, iPl,2,...as in the second section,

let the pair ij represent the jth integer in I under the

natural ordering, and let j ( -e , .,...).

DEFINITION 4.11 For ?EC( ' and npm, let
0

D n= C~. C(a en ppooe n+1N) Ad i
N'l iel j:nl

wherec(eel,..,eN):Ce (number of +1's in the set e

This sum clearly converges since, for $V having p variables,



** 00o
L 2. 1C(eiI e n+l,1Y enel,N j#N=M ial jvl

42 p l / CNN:M.

converges to zero as M-4oo. In order that the operators Dn

be a derivation, we must define the spaces Cla. To do this,

define by induction ClrC n This,

of course, pre-supposes that D nd is defined for 6QG CE, mjn.

This will be shown in this chapter. However, before doing

this, note that if C is defined, then the family of opera-

tors Dn are indeed a derivation for B. This is easily seen

by the following theorem together with a few simple

observations.

THEOREM 4.12 If CTCCf has only one variable, then
0

B rfl(dj) (()z f 0n D

PROOF

f COD n

N:1 J:1 J=1 l n+l,1 n~lN ij

C(e e ijl 'nlN i

i~jl 4lj*'els

N3100

N 00
r. f C(O e ,e

Nzl kro (o) n+1,1 n+,N ij



where -k is the set of all sequences

containing exactly k,+l's

'ln4l,Nl

Nrl

N
,(N kk If01 ~

where S=

Nal)

Nil

kwo

-g N-k ff(de,

ei)(1

N)Uk (1-U) N-k C+1 k 1-@+

)CN (k)A

1-U) N-kCN (k) (+ 1) - c( -) j(1-u)( k) Uk
kvo

-u B +(u)
N=1 N

.e

(1-u)F B N- () (+1)
N v.1

[u -(u) + (1-u)- (u))f (+1) - 1(-l)

-(u) Lz (tl) 1).)

B f] (+J) CT1)-Bff] (+ 1) ((-1)

B fJ (f 1)L(+1)4 BfJ ( -1) 6 ( -1)

B [f (ds) Z().

Thus the proof is complete.
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iOjO

(T (+1) - (v ( -1)3+ - S (-1)7



We will now show that D n (and heaance Cn ) are defined
00

and that etD: E_ tn Dn converges for sufficiently
nwo nI

small t.

DEFINITION 4.13 Let E C have variables with indices

11, 12,..., 1M 6 1 , ie.) iv(e 1 ,e12 9 os em) and define

by Induction on p

Qi($;N= liee2l.''''2N ljo

Q P41(Q ;NS,...,N pt)

C(ei e p+2,1,... N )12 QN (;N , ,N ).
im1 JVl IP , P 2 ,pl i p 1 p

LEMMA 4.14 If 6 C1 has variables whose indices are0

ll,...,lM then

D (V (Q ((;#Nl,...,N)
N N:1 P P
l" p

provided that the sum converges.

PROOF by induction on p. For p.-l,

l($T;N): C (e I/e 21,'-e'2N) ljjV D14=
N=1 N=1 J71

Now assume that the theorem holds for p. Then

N 1 .p+(. ;N,.N)
N ,...,N l
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p+01 Ni Cee 
N

,Ci(eJ j e p+2', 1 p 2,N0 L 
2 Q( p ;N , ,

N :3
p+1

i +1 N
f!l c ( e ij p+2, 1''"'qp+ 2, 1

- 4

%01

i j u-
1 ,-, , e1

C(eij ept2 ,1l'ep+ 2 ,N
ir1 J71 -0

(DD ... DP 4P)

p+-. p 21

D p+1 .

If C6 C has M variables, then
0

2p MCi- C p
p i p l

p-i

Yp. 1 :
2ZN

S *** 1

LEMMA 4.15

,( 4;N ,...,N )

#.p ( a, ;Nls,,N p)11



is the number off

I p+,1'*-p4
1 ,N,

integers

i p- ;N N

~2 C C
N N

,S 2 aMc N ... c N
p N 1

2 IfIIMC .. *C
N p N

C N(E Ni )
2 i :1 p

i ;

p

p-1

P1

1

P-1 2
p N )...(ZZ. N

p 1 P 1 2l 2

1

N .. N
ip i

1 )
NP
p

LEMMA 4.16

p
A :Z~

p

If

p-1 1

i P1 1 1 p
p-i 1

38.

where k l'*'' p
to k.

PROOF

Q ( ;

S,...,pip equal

1:
i l: :

S2 ;
izi

ICN pN i
Q (- (;N1,..,NP- ) I

-- ,-9,1 )71 ( i ,

) ,., ) ?- (i s-,.,o )!0P Plip*q 0 1p
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then z A rl*3.5e...(2p-l).
p

PROOF by induction on p. The lemma is certainly true

p1l. Suppose that it also holds for p.

for

Then

A =p++1

ppll
A p .p .4

p.1

i :l
p+1

p

p

p

i pl
p

i .,i )I
l'1 p+l.. 1

1

1
... ~--

i ;l
1

p ) +11 1 p+1

p 1

i al 1 :1
p 1

' ( ,P.., i ) i
p 1 p

... 7 + (i ,.,1
SP+1 p

[1+ip (il,-, p -rip+1

p 1
21 ... 2 El

l i el itl1
P 1

1'fr L1*-.

.". T' (i, .---, ip) .

p 1
(p+1) Z~.... .

i pli:1
p 1

p+1

p+1 z

p41

p+ l

'7o i l.9,.., ) :.. . ",pt 1 p+1 1

p p

Tp ( 
ip

. . ( ,.. i )
7 ( 1 , --- 1 ) I

p 1 p



p43.
4 22-

1 

p

i .. -1
i ,1 i tl.
p 1

. (* i, . 1 )
iP+1 P P P

.r (ptl)A +
p

V (p+1)
p

A + r.....
P i 1

p

1
2Z.
i~a 3.

Pi. (i ,..,iP 1 P

:(p+1)A +pA

9 (2ptl)A

...*(2p-1)(2p+1)

and the lemma is proved.

THEOREM 4.17 If 4 C1 has a finite number M of variables,

is defined and IjDPdil 7

PROOF We have shown that

40.

1
... *

ig: 1
p

p+1

i :l
P+1

7%. (i ,., )

... r(i ... ,1).

.. (i1 1 P

9 103.5.

then DP

P

-r-a .. i )

p! (4L)PMhI



V
Q (qN ;N N

N ,--, P

provided that the sum converges. But,

)

by lemma 4.14,

and 4.16 and the fact that rN CN$ p.LP, it follows that

N1,...

%< 2 I|VY M

i p

-r 2 PM Y'

C
N p

,N
p

00.0

p
1

i 1

S1

i .-1 i 1

.o

r .N
Nil.

. . N N)

i 1 i z1
p 1

.0 (i1,

- (2L) K

7 (1 ip

L( 1 1 , -,
,ip).t L

i -- 1 1 ,., P .
p 1

1R , p

41.

4.15

Q ( d

N1

p

i)

;NlP,-, )

' (i . ,91 )
.. 0? N

-< 2 M 1/



$ (2L) M i"2 pi

pI (4L)M l .

Thus Nz. NQ ;N11,,,,N) converges and D 4 is well defined.

Furthermore,

IIDP/I

Q p(W ;N ..., N p) 1<.1$ "* pp 1 P N,.,N
1

S p(4L) M

IQ (;Ns,..,N )

P

.

The proof is therefore complete.

We can now define C for all p since C 1  C and &: C
11 o1

if and only if $z D  p2*'D for some Cp-q

p-lpp p-

and o < q p. D is clearly defined on C and maps C into
p 1

p+l
Cl . Since we have already shown that

fB Ef (dj) C(()" f pD n(

for functions ce of only one variable and since one can
easily see that for (, C :

(1) D,( P (D p ) (D t)

N ,.,,N
1 p



(2) D p 
E ()ij

P izi j,1P l

(3) D c= o whenever 4f is a constant

(4) D adds variables whose indices are in IPt it

follows that the family of operators D are indeed a deri-

vation for B.

COROLLARY 4.18 The proof of Theorem 3.8 becomes valid when

B and D are defined as in this section.

PROOF For the proof of Theorem 3.8 to succeed, we need only

justify the interchange of sums and termwise differentiation.

This is easily seen to be the ease if

L (M+N 1+...+N )Q (O ;Ns,...,N )<oao.
N ,%,N P P p
1 p

Using the bounds for QI ( t;Ns...,N given in Lemma 4.15,

and using Lemma 4.16 one can see that the sum clearly con-

verges.

Since e ZtD . t D converges for t< L,
p:o p.

we get the following theorem.

THEOREM 4.19 The solution f (+1) of the equation _ ftB f
at

( o tD
is unique and is equal to f ce X+1
PROOF Corollary 4.3 and Theorem 3.8 state that the pth

derivative of f (+1) at tzo exists and is equal to
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f D '). . Since, by Theorem 4.17,
*1

f'D)(, 1 j$ IID 1 1l < p.(4L) ;

it follows that the Taylor series for f (fl) converges for

This implies that

( 0o tDf f) e .

by the definition of etD and also implies the uniqueness of

the solution.

t < _I .0
4L
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5. AN INFINITE GAS

I shall now construct a model of an infinite particle

gas with velocities t 1 in which the motion of a tagged

particle is a *-process with specific a and in which the

sample paths of any two particles are independent. This

will be accomplished by constructing a gas of n like parti-

cles, each of which has velocities tl, and then letting

n ->oo . Each of the n particle gases will be a Markov jump

process in which one waits an exponential holding time and

then picks an index i according to the uniform distribution

1/n and lets the corresponding particle collide with one or

more of the remaining particles. The effect of a collision

between a single particle and a set of particles will be a

change of state only for the single particle.

To be more specific, suppose, as in the last section,

that 7 d 6EH.X (t)= [x(t),...,x (t will be the Markov

jump process on the n-dimensional space En with holding time

distribution in the state Le11,~,enQ equal to

exp -t n- I (n) C(e ,. )
f a 1 i, jy N jl jN,

where 4r) denotes the sum taken over all sequences

j, je ,jN

(j kz n; and where C(ele,..-,eN) (number of



+1's in the set e1,..,eN). Starting at the state lel,...,en ,

the probability that the first jump is to the state

-e, e i+,...,el is given by

n-1l (n)
1 n- w -(
N=l .jji i JN

n-1 N (n)
T, n- C(ekl j .--- se
Nil kji,..,JN ii JN

The generator of the n molecule gas will therefore be

n-i -N C' e
G ~ ~ N 1 ( %PJ ,.. J )1'nZ~- ...,'e J)'A t4n 1 n Nil i, g,,, , N 1 IN

where (--, -el, -- ei,

We will now show that the generators Gn of the n molecule

gases converge to the derivation D of the last section in the

sense that if $T is any function on n dimensional space n

with variables whose indices form a fixed set J and if f is a

distribution on E, then ff G nP-+ o D as n -4 *a .

Such convergence will be called convergence mod J It will

also be shown that as n-+o, the paths of any two particles

of the n-molecule gas become independent and approximate the

*-process with specified ?'t . The main burden is to show

p p. -that the operators Gn converge to D $ mod J when 4) has

variables with indices from J. First we will need several

lemmas and a definition.



DEFINITION 5.1 Let

d ;N)- n'
(n)

i, j 1,s.., JN

and

kV ;Nip,...N p+1)

e ije i

LEMMA 5.2

n-1 n-1

N p1 N 1
p

Q (T;N
pn 1

PROOF by induction on p. The lemma is certainly true for

p:1 by the definition of G n

true for p.

Then

G
n

G
n n

n-i

NP

Suppose

-N ('7

np+l
n 1,9j,.., JN

that the lemma is

iN iPtl

G p
n

47.

C(e1 1e ,..,e A v
Ji JN

p fln(

= n
(111)

,... , e
JN A

,N ).p

,N ).
p

C (
i psn 1

1,. J-, d JN P+1

C (e



-N (n)
ni l s +

n-I n-i
* . (4?;N ,.N )

N =1 Nl p 1 p
p

n-i n-1 -N
2, 4.. - n P # .
N i:1 N1:J1 iiJ

(n)
C (e e ,..., t

+1 Ng
,..-, JN

( (F ;N N
ps pn p

n-i

N .1 p4,n 1 p-1
1

DEFINITION 5.3 ( F mod J if and only if for any probabil-

ity measure f, fr'-- f.
J Jj

LEMMA 5.4 If V6 C1 has M variables whose indices form a

set J, then Q%(oT ;N 1,..,N)Q (;N 1 ,.,sN )+E( ;N1 ,bN )

mod J, where, for large n,

Ip,n (; )

-l Q( N ;Ns, ,N )
Ni + +.N I

n p

48.

n-i

N =1
p+1

C(e 1s e .., p+ )

)

n-i
z F
N =1
p+1i



c .0 .c (MtN . .. +N )p#1
NP N 1 1 P

From the definition of p,n(I;N ,...,N )

Q (d;N,...,N p) it follows that

Qp,n ( I;N ;...;N P)

..n-N
(n)

C(e, e p
ipN,

,..,e
p-1 JlN1

-N (1))-
C(e e ,.. ,e

ipl JpN
p

... C(e , N.e ) 0
ill 31

-N -N (n)
**o..n C(e

ple ip epN pp

11 ffU

49.

P nOO

PROOF and

V -Np i
p

1

: N Pn:4 .. n

P

1

C( p-11 ep-1, 1 "'p-1, Np 1

,.., e -lv ) 4 l
Pp-, 1 p1

0 C(e i P-11'a jp-lv 1

11 li ll



0 C ei pm l 1 8 P-1,L1 ip-lN ip-1
*C(ej eill i1N

*

(n)
where n) means the sum over all indices i and j, each

(n)* (n)
index ranging from o to n; E means 21. restricted

to those indices for which jkW, .4 / for (k,.()H(,/); and
(n)**(n)
means Z. restricted to those indices for which

there exists some (k,o( with j -J .

The first of the last two sums is equivalent mod Ja to

n(n-1)...(n41-N1 -N2 -...-N )

N * *4N

c( C ;N,.,,,N )

and the second is bounded by

-lM (M +N ) .. (M +N + .. +N )(M tN + .. +N ) 2 C 06. C
1 1 P1 1 N P N1

n lM # 0 (M #N +...t0 N ) P41 N . .OC i1 p N N1

thus proving the lemma.

LEMMA 5.5

(M+Nptl ptil M/L
L (M+N +...*+N p) i C N ... 9CN <- (p+1)1(4L) P 1e M/

Nlp'''' p1

PROOF

NN 
(M-#N 9...N ) P C ** *C

p NP N1

50.

.



p
$ (Pk ) N

k-- o N...,PN P1 P-1

Np tl-kCN
N -l p p

p

%(p+1), LPf-k
k: o k!

(p+-) I L' k~. 0
kl= 0

N
15, pi p-i

k k

k 2= o k p: 0

* CN (M+Nt ...+N )k

-k

LP

k p

k

p+1 M/L p-i
$ (p+1)! L e Bp+

where B q number of ways of picking p , k ...
p kq

Noticing that B4 q B
P p-1

+ Bq1 and hence Bq-S 2 , we have
P

< (ptl)l (4L) p M/L

which is the desired result.

LEMMA 5.6 If 4V 6 C and has M variables whose indices form
0

a set J, then

lim G 4 -'DcP mod Jo.
n-Y,0

51.
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PROOF As can be seen from the previous lemmas, we can find,

for any E, o, an integer N( E) such that

E.- al ( O;N ,...,N ) 11 < 4/3.
N ,..,N ,N( ) P 1 p
1 p

Since
n-1 n-i

N 1l N el
1 p

and

N ,..,N
1 p

p ( N p.,N )

it follows that

G p D $QT E (q;N,.,N )--D P+E
N .. ,N pn P
1 p

Pn(CQ) mod J0

pE (d)p 
p N1.,..,ON P E ( ;N ,.N )P

n(n-l)... (n*l-N1-...- N )

Pj N14...+N )
n

* N ,..,N
n, 1Mp1 1  C ...C (M+N +...4N ) p+1

NN1 1 p

But

Qp~n P

IQ P(,T; N ,...,SN ) Y

1W
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5n -(n-1)..(n tl-N -...-N)
, N ) -i
p P...iN

& ;N,...,N) fi

SE/3 n 1 I t1fIM/L (p l)1(4L)t

Since there obviously exists an integer N( .) for which

n ) Nt(.) implies that the first and third terms are each

leas than f/3, we have completed the proof of the Lemma.

THEOREM 5.7 If CVC- C has M variables whose indices form

a set J, then

lim etGnT etDT mod J for t < *L
n-+

PROOF

tG E ($)

po p pop po pJ p0n

But

Ip,n

\&cc t p D d l+ n-M17 e M/L L tP(ptl)91 4L)P+l
pro 71 pro p!

(see proof of previous lemma), and since both sums converge,
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it follows that for any E-Io, there exists an integer y(E)

such that

p:p(()
tp ,n(0) 1 < /2.

Tp. ,

Thus since lIE ($)I -+ o as n-y co for each p, we can find

aninteger N(e) such that

p(')
pr: t
pro p.

UE
p,n

Since bo is arbitrary, the proof is complete.

Thus we have shown, f or $ C1, that

tGn & etD
mod I for t< fL.

Since D is a derivation,

DTJ &f *D 4f z g D1 f -o#OD 1

when C,%GC have disjoint sets of variables.

Simil&rly, applying D to D $ # we get

D E G .D 2D D2 LZ 4t D IV.* 2-D D

(D2 4) 0 (D 49P D2 D1 J (D 2 #J VD 1 4'2#J D2 D1

since D2 $ and D have disjoint variables, as do & and

D2D1 etc.

Thus we get the following lemma.

07) It f/2., n)PN (C ),

D [4 & t-' f



LEMMA 5.8 If ,, C1 have disjoint variables, then

D (k) (D D ...D k ) (DD . ) mod I1Dk0 -o(k p p.1 k4J k kk-i 'j

where the set of indices of variables of D *..D ti and
p k4J1

D k...D 1) are disjoint as is indicated by the notiation.

Noticing that D D p.. eDqn D p ...D1- D ( d ID

for E C , we get the following "propagation of chaost

theorem (see M.Kac r21 for the terminology and another

instance of this phenomenon).

THEOREM 5.9 If & , C and the set of indices of variables

of d are disjoint from , then

o tD 
tD

foo~~~ etLa r

S'r t D1-

af

:1-

p:o

p0w
t P
pl q-o

tp

() f*(D D ... D
Iq P P-l

p-o q:p p! f0D p f OD )

Iq1

55.

t( *L.

PROOF

e

DP CG T a r

q+1 iT ) )( -1 **D1-)
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Z'g)$ t f.... E. ?' D )qq
p-.o P*, qv q!0 a1

Il Il

( & 0 tD .0tD.O)

Ii Il

If the initial distribution of the n-molecule gas is

symmetric in the n molecules, then it is also symmetric at

any later time. Especially, if the molecules are initially

independent and identically distributed, then the joint dis-

tribution of the first M particles is given by

(1) P X (t E ,...,Xn(t.) . E

- f(d) )...f(dIn)etGn E 2  1 )Gn E2e m m-)Gn

k k
where Ek - (el,..,eM, E, E,..,E). As n mm..o,l) converges to

Sf'eD El (t2 t kE mm-1l Em

This limiting distribution can be used to define a combined

motion of M molecules for which:

(1) the paths of any fixed number of molecules

are independent.

(2) the distribution of a tagged molecule is

that of the *-process which corresponds
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to .

The essential elements of the proofs of (1) and (2) are

contained in the following lemma. We first need a few

definitions and remarks.

Let o (t 1CVt 2 be points in Tr o,cpo) and

let a , a1 , a2, b , b1, b2 ( E. Let

i1 if e a

0 otherwise

and

P fa(t;b) f( (b '
f')a)

there, by definition of D, the right hand expression is inde-

pendent of i. Finally, note that any finite number of

variables on which &I does not depend has no effect on the

limit as n -+.a of etGn .

LEMMA 5.10 Suppose that the n coordinates of X n (o) are

independent and identically distributed with distribution f.

Then

lim

*P K(t 1):al,X (t2):a2, x 1t):b PX2(t2 );b 21 1 o)-ao ,2 o)--b

A A A
P,(t1 ;a) Pftja(t2;2 P (tl bl) Pf (t ;b)

flao ftlal 2a 2 ~bo 0 1 tj (bi
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PROOF

2) P x'(t ). al,xl(t2

2 3

v 
n.

eb 2 x (o) a 2,x (o)bo

n I ,b ,p)3

0,b 0..)e

a2 .b21

n t

k -1 (1, 2)
t 1D k

J, x C
(a0 ,b 0,.)

k C) I

* a n[, a2 0

where a( a8 1 , (2 1 b1 , 1 3 s 3"' n t t
0

t.. f(d)f (da ntGn
,3 P-

2 1) 22)

2 b2

, a g
t 1D

a11 &
2

Lb

t2Gn

z5

(a b 13' 0(1)

b2

,,p.,I )et2G n

,a.bise -- ,n )

i

*

v ,bs ,3 , 73 )
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But
t 1D

ti ,23c e k (aob,.) 0 f t1 (Tk

since it is independent of a0 ,b0 and k, and

1,21C t 1D 2 b P (t;a

1,2 a bi , ,) f b 1;

tG
(i.e. in evaluating 1im . n, the a has

2
b does not depend on that variable).

no effect since

Thus 2) reduces to

a0 (tl;al)Pf~ (t Ob)f Iao 1; 19 fj bo 1

f(dV3)'' (d'f )e 2Gn 1 2(al ,b , P. '~5* i ti[R b2  5l3 4

* * o(l)

and, using the same arguments on the above integral, we

complete the proof.

Lemma 5.10 shows that x4(ti) and x1(t2 ) become

and
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independent of x (t2 ) as n'-a'o. The same arguments can be

used to show that any finite number of particles have inde-

pendent paths. Similarly, we can show that

Ixn(t ) na,,.*, nt)-a x (o):a

n I'

SP (ty~ P (t ;a )O*Pf (t vam
fno ; fti ay 1 t M-1 Iam.-1 P

and thus that the distribution of a tagged particle converges

to a*-process. Finally, '' = O+ since, letting u2f(+-l),
A
9 (u)

a t tzo

( o tD
f e 0+10000

lt c to
(13

.0

o T, " i e 2'l"'2N +( )-(t1
fl N:1

: - 0(k) kk)uk(-u)
N=1 k:o
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B: (u)
N'Wl

7r+ (u)

We end this section with the following theorem.

THEOREM 5.11 If + ?I. (.H, then the sample paths of the

*-process xt can be chosen so as to be right continuous.

PROOF It is sufficient to show that the temporally homo-

geneous Markov process X(t) defined in section 2 can be

chosen in such a manner that it has right continuous sample

paths. Thus, letting ~V, (u) be the t-.neighborhood around

the point u, we need only show that P (eu;eLjr (u))-41

uniformly in e,u as t--i o for any L) o(see Loeve, M:

Probability Theory, P. 637).

But

P (eu eV.jIr (u) P (t;e) if I u-p(t 4 E~vP( ):.f0-1).

o otherwise

Thus a simple calculation showing that ft(+l)-+ f(G-1) and

P f (t;e) 1 1 uniformly in tf (tl) as t- o completes the

proof.
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6. HOLDING TIMES OF A *-PROCESS

We shall now calculate the holding times

0 fGl1)zu

for a *-process x for which the corresponding + 2 are

contained in H.

Let b(t,s,u). - log P f +(tti)

and note that

lim b(h,s,u) - d'+ )
h~o h [f

uniformly in s,u. (see last section for the existence of

this limit.)

THEOREM 6.1

t r
H (u): exp fs(-1.) dI
0 L Xh ) ] I< T

PROOF Let txnh+g with o,< a < h. Then,

right continuity of the paths,

H (u)0

Jim P (ht)Pf .1 h;.l)?f (h-l'e''' f +1 '''l

, uf(+1).

because of the

At (u) :P ( x(S):- -,t, o,-s t)



n
Jim exp --

hlo L k: O

n
lim expj-
h4o

Jim
h4o

h(h, kh, U)

b(hkh.u) .h
o h

exp (- hi
k:- o

exp E +lL ~:~L~(+uds]

00*
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7. LIMITING BEHAVIOR AS t--*=

If 4 - 5 H, then 'r has derivatives of all orders and

p(t) 4p(t) . This implies that f (+1) is either mono-

tone increasing or decreasing in t for a given f and thus

fC (41):lim f (+1) exists where f., has the property that

fo ) is constant as t varies. Thus

Pf e X(tl) A ,-,x (tilt2t **Ottn) A n

(l;dll)P 2 ;d 2 ) +t d.tn d n n(;d)

Al #2 A n

- f f, (d j) P (t2;d 52)** 0 0(Pn;dIn)
A1 A2 foo 1  A n ?n-11 2 n

as t - - and the limiting behavior of such a process is

temporally homogeneous and stationary. Finally, if we

start with f(tl)zu, then the holding times, which can be

quite non-Markovian for small t, approach exponential hold-

ing times as t That tis,

H5 (u)

r sit
- expi I (f,(01) de

L S
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exp K; f 1 -to (1)7

> expL t E f, (fl)

as S --v a
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