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ABSTRACT

ON A CLASS OF TEMPORALLY
NON-HOMOGENEOUS MARKOV PROCESS AND THEIR
RELATIONSHIP TO INFINITE PARTICLE GASES

by
Dudley Paul Johnson

Submitted to the Department of Mathematics on
August 22,1966 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Consider the class of right continuous sample paths
x(t), tz0 with values 71 and assume that for each probability
measure f on E=it]l and for each e€¢E, there exist probability
measures Py and Pf]e for which

(1) Pf]e(°):P ('lx(o)fe)
(2) Pf(x(o)=e)=f(e)

(3) Pf[e(x(tfh)éAl(/‘tthPftlxt(x(h)éﬂ) [a.e. Pfle]:

wherecf?£ is the 9 -algebra generated by the events x(s),
sst, A 1§ a set of points in E, and f (A)=Pp(x(t)€A),

e (w) = =2 Pf]il(x(t)fl)tlo , usf(+1)

exists, then the functions J4 and 4~ will, under certain

technical conditions, uniquely determine the distribution
of the process x(t). Such a process is a temporally non-
homogeneous Markov process and will be called a ¥*=-process,

Suppose that x(t), tzo is a *-process, f its initial

distribution and f, its distribution at time t. Then it is
easily shown that Ft is the (formal) solution of

2§;ft’ B [ftj

2e
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where
B[] (+ 1)z -B[£] (~1)zudj(w)+ (1-u)2=(u), u=r(+1).

B 1s, in general, a non-linear operator. When B is linear
and bounded it is natural to think of fi as exp (tB)f,
However, when B is non-linear this cannot be done, although
a replacement for exp (tB) can be found,.

H, P, McKean, Jr, [5] has done this for J% (u)r*(u-1),
He defines a linear operator D mappling functions of one
variable into functions of two variables and then extends
D to functions of any finite number of variables in such a
manner that the solution f, of g% ft+ B[fy] can be expressed
as

ft(e)" gg(da)f(diz).uexp (tD)['Xe‘) (.31,32,.0.)

where E°° 1s the infinite product of E#*]1 with itself and

Xy is the indicator function of e. McKean then shows that
the operator D leads to a natural description of the *-process
as the motion of a tagged particle in an infinite particle
"gas" undergoing binary collisions; the motion of this tagged
particle can be calculated from the formula

RfEx(t1)=el,X(tg)’egs""x(tn)'enj
(tg-tl)D (tn"tn-l)D

e p

t.D
3
gf(dSl)f(dsg)"‘e 'Xele eo en
This paper extends the results of McKean to those
#-processes for which ¥ 2°t is positive on the open interval
ol{u¢l with at most algebraic roots at o and 1, and real
analytlic on the closed interval og¢ufl. The equation

is solved using a linear operator D mapping functions of one

variable into functions of infinitely many variables. D,

in turn, suggests by its form that the *-process can be des~-

eribed as the motion of a single tagged particle in an infin-
ite particle gas. However, unlike McKean's model, collisions
of arbitrarily high, but finite order are allowed.

Theses Supervisor: H,P,McKean, Jr,

Title: Professor of Mathematics
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1, INTRODUCTION

Consider the right continuous sample paths z(t), tye
on the space E=t1 and assume that for each probability
measure £ on E and eéE, there exlist probability measures Pf

and Pfle for which
(1) Pf,e(°)=Pf(-lx(o)'e)

(2) Pe(x(o)ze)=r(e)

(3) pf'e(x(mh)egluft):Pft'xt(x(h)éA) ['a.e.Per];

where V‘(t is the 9 - algebra generated by x(s), s¢t, A is a
set of points in E, and f (A)=P.(x(t)€A),
It
7t (e pppnxee)l o, weetrn)
then the functions J7 and J_ will, under certain technical
conditions, uniquely determine the distribution of the pro-
cess x(t). Such a process is a temporally non-homogeneous
Markov process and will be called a *-process.

Suppose that x(t), t}o is a #*-process, f its initial
distribution and f, its distribution at time t, Then it is

easily shown that f, 1s the (formal) solution of
?% ftzBEft]

B[£] (+1)z-B[g] (~1): u @ (Wi (1-w)?-(u), u-£(+1).

where

Se



B is, in general, a non-linear operator, When B is linear
and bounded it is natural to think of fi as exp (tB)f.
However, when B is non-linear this cannot be done, although
a replacement for exp (tB) can be found, as will now be

illustrated in the following example due to H, P, lcKean,

Ir, [3].

Let J+ (u)et(u-1). This gives
B(£] (#1)*t(2uB-3u+l), usf(+1);
or, to rewrite it in a more suggestive manner,

B[r](el)=f[f(el*)f(eg"*)-f(el)f(eg)] degdo

where fd e, denotes the sum over 62=!l and ('do denotes the
sum over the two possible outcomes of the binary collision

1,9102).

This equation is very similar to Boltzmann's equation for a
spatially homogeneous Maxwellian gas without exterior forces.
In fact, for such a gas, if f(V,t) is the distribution of
molecules with velocity d V at time t and if particles with
velocities V; and V, have velocities Elﬁ and 22* respectively

after a collision, Boltzmann's equation becomes
¥ <& <
5% £(¥q,t): gq avy S(,](‘)d-g-{f(ll »8) (¥, ,t)-f(y_l,t)f(}{z,tﬂ

where S(1) is the unit sphere,£ €S(1) a unit vector, and
Q is a function of the scattering angle alone.

To find a solution of g% ft=B{ftJdefine an operator D,
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mapping functions of one variable into functions of two
variables, by D[Q](el,ez)= Cg(elez)- Q(el). Letting &, @ &,
denote the outer product Ql(e]_""’ea)cg2(°a+1""’°a+b)
when Ql"(pl(el,...,ea) and Qz’@z(el,ooo,eb), we extend D
to a derivation acting on functions of any finite number of

variables by requiring
p[@,0@ @ ]-@ &0[@ [+v[a,]0Q ..
With this extension,

2" K
£( 'a_s-m fs)(e) d (a)de=£n+lfs(eo) ...fs(en)DnL&I deo"'den

for functions C? of one variable. Putting s:o0, and writing

ft as a formal Taylor series in t, we get

o0
(ft(e)ﬁﬁ(e)de=£ k8 ( f@..0 OF Dn[fp]':(fooexp (t0) L@]

n=o0 Ne
E gatl >

m .
where E is the infinite product of E-11 with itself, e
is the Infinite outer product of f=f, with 1ltself, and
et
exp (tD) is the formal power seriles Z : 1:_1; pn, Thus we
n

n=o
can formally write the solution of

a/é'tft=8£ft1 as exp (tD)*[fﬂl .

McKean goes on to show that the derivation D leads to
a natural description of the *-process as the motion of a

tagged partiecle in an infinite particle gas undergoing



binary collisions; the motion of thls tagged partlcle can be

calculated from the formula
Pf£X(t1):el’ X(t2)=82,¢o-,x(tn)‘0n‘]

t.D
: Sf(dsl)f(aig)...e B B Koge++e s

f{e being the indicator function of e.

This paper extends the results of McKean to those
#-processes for which ¥-32 is positive on the open interval
o¢u¢l and with at most algebraic roots at o and 1, real
analytic on the closed interval og¢u¢l. These conditions are
necessary anﬁuaufficient in order that ¥ J+ can be written
as a sum 3 )} _ Br{ (u) where

n*l

B (wils of () (B) wE(1-w™%, of (k)0
kzo

o0
are Bernstein polynomials and [ nPmax e X (k)¢p! LP
n:=1 $n,t N

for all positive integers p. The equation aﬁtft:B[fé] is
solved using a derivation, mapping functions of one vgriable
into functions of infinitely many variables, which is ex-
pressed in terms of the coefficients Ci(k). This derivations,
in turn, suggests that the #-process can be described as the
motion of a single tagged particle in an infinite particle
gas. However, unlike McKean's model, collisions of arbitrar-

ily high, but finite order are allowed., In fact, an n-fold

8.
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collision is allowed in the infinite particle gas whenever
the term Bg in the Bernstein representation of 1'33 is not
identically zero; consequently this representation is funda-
mental in the construction of the infinite particle gas. It
is also true, as I will show later, that the sample paths of
any finite class of particles in the infinite particle gas
are independent. Finally, I calculate the holding times for
8 ¥*=-process and give a brief discussion of the limiting be-
havior of a ¥#-process as t—>e0,

This paper is arranged as follows, The second section
gives a formal description of #*-processes, The third sections
gives a formal description of the integration of the non-linear
equation 2/2t ft-'B[rt] by which the distribution
ft(e)=Pf(x(t)=e) is governed., The fourth section applies the
formal results of the third section to a particular class of
%#-processes, The fifth section constructs the #*-process as
the limit of the motions of a single particle in an n-particle
gas as n-yoe, In the sixth section, holding times are calcu-
lated for the ¥*-process. Finally, in the seventh section the

limiting behavior of a #-process as t— ceis discussed,
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2, #-PROCESSES

Suppose we are given a sample space L s 8 state space
E*%1, and a time interval T=[o,+°e)., Then a temporally

homogeneous Markov process on L1 s, B, T consists of:

(1) for each t€T a function xi(w) mapping 2 into E,
(2) a o> algebra c/f,, on 4\ together with a family of
sub o-algebras c/ﬁ;, t€T such that [xth]eg/yt
for any teT, BCE,
(3) for each e¢E a probability measure P_ on L/Q:o
which satisfies:
(a) B (x(R):e)=1
(b) P_(x(t+h)eB| A, )= P (4, (x(n) €B) [a.e.Pe].

What we shall now do 1is to remove the temporal homogeneitye.
But, rather than letting the transition mechanism vary
arbitrarily with time as one would normally do, we will let
it vary via the distribution of the particle. Thus, the
transition probability functions Pe will be replaced by a
family of probability measures Pf’e where f is a probability
measure on E and e€E, The expression Pf[e(“q) is to be
thought of as the probability that, starting with x(o) dis-
tributed according to f, the event <\ will take place, con=
ditional on x(o):e. This is accomplished by replacing (3)
with
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(3') for each e¢E and probability measure f on
E, there exists a probability measure Py
on '/‘(,o such that:

(a') Palx(o)el=fle)
(6') Pplx(trn)en] A s Pe ) (x(n)eR) [acoup, |

where ft(B)=Pf(x(t)éB) is the distribution of
x(t) when the starting distribution is f and

Pplol ) Pplelx(o)ze).

Such a process will be called a *-process. It 1is temporally
homogeneous if and only if Pf,e is independent of £, as the
reader can easily check.

Defining Pf]%t;A)‘-'Pf’e(xtéA), we get a formula for the
probabilities of joint observations reminiscent of the case

of temporally homogeneous Markov processes:

THEOREM 2,1 If Xg is a #%=-process, then for tl““tn"’o ’

Pfle[x(tl)éAl, x(tz)éAz,...,x(tn)éAnI

'-‘fP (t-dE)rP (£o=ts3d3,) (P (tn=$n-154 })
b o) T ey Rages 1 ¥ 2 Tl reegrese f n~¥*n=192

Ay ] A, t1]32 A tn-1§n-1

PROOF This is immediate from 3b',

COROLLARY 2,2 If x. 1s a ‘%-process, then

Pfle(s+t;A)-= {Pf,e(t;d?,) Pfth(s;A) :
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(t3+1) be the

DEFINITION 2,3 Let p(t)=f(+1) and pe(t)=Pf]e
probability that x(t)=+1 and the probability that x(t)=+1
conditional on x(o):e respectively, given that x(o) has the
distribution f.

According to Theorem 2,1, the function p,(t) determines
the distribution of the process on cylinder sets.

DEFINITION 2,4 Letting u=f(+1l):plo), define

(1) B’G(u)r 92t Pf]e(t;'fl), "‘aa'c P (t) 1

20 t=o0
(2)  Z(u)-uds(u)*(1-u)?=(u)

DEFINITION 2,5 Let B be the operator (usually non-linear)

mapping distributions f into functions B[f} defined by
B[f] (41):-B[e] (-1)= ¥ [e(+1)].

THEOREM 2,6 If x; 1s a #-process and if pe(t) is differen-

tiable in t30, then

(1) 2 p(t): > [o(6)]

or, to put it in an equivalent form
2 r.(e):B[r] (o)
(2) a—a%— pe(t)- pe(t)7+[p(t)]f'[l-pe(t)17.}_p(t)] .

PROOF Taking the equation in Corollary 2.2 and differentiat-
ing both sides with respect to s and lecting s=o,we get (2).
(1) follows from (2) if we notice that p(t): (f(de)pe(t).

Equation (1) of Theorem 2,6, which is in general non-

linear, has a unique solution bounded by o and 1 if ?'satisfies



a Lipschitz condition and if 7' (o0)z0 and 7(1)¢o. Once the
solution of (1) is known, equation (2) becomes a linear
problem for pe(t)i

- p_(8):F(£)+G(t)p,(t) where F(t)s 7[p(t)]

and G(t)7 % [p(t)] - ¥ [p(s)] .
This equation, in turn, has a unique solution bounded by o and
1 if 2 and 7. are continuous and ¥ ?r 2 o. Having uniquely
determined the transition function Pfle, we can construct the
#-process by defining probabilities on the cylinder sets in

the manner suggested in Theorem 2.1:

P x(tl)éAl,x(tz)éAg, - ..,x(tn)éAn]

YP (6,34 %) (P (to-tq3d )...(P (tp=t,_713d%)
ks ohpe 1 5 i, Th31 R ke i, Ten-[Fnty 22 b

where 0<t1< see (tn< R Y
Finally, one can regard a *=-process as a temporally homo-
geneous Markov process on E x[o,lI by ad joining p(t) as a new

coordinate. The transition probabilities of this process are

Pt*(e,u;A,B)J Bf]e(t5A) if p(t)€B,f(+1)>u-plo)
o otherwise
and its generator is given by
(6F) (e,p()): 7, [r(t)] [?(+1,p(t))-m1,p(t)ﬂ+ 935 F(e,p(t)),
formally at least.

13,
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3. FORMAL SOLUTION OF 2t =B ft]

Since B will usually be non-linear, we linearize the
problem by constructing a linear operator D mapping functions
@ of one variable into functions D@ of infinitely many

variables such that

gB[f] (a) @ (%)= Yf” D@

where

wa'}é': (f(d}l)f(dizl...'{é' (31,F5000)0

The actual choice of D is very arbitrary since there are
many such operators, However, in section 4 we shall somewhat

restrict the possibilities by requiring that

2’;!: (u):{f}f‘”(Dxfl)(il,ooo),u:‘f(?“l)o
11y ®

This implies that

Pe(t)-‘{lgl}gw(etD'xfl)(e,...) ,pl0)-£(+1)
as will be shown in section 5.
Once D is defined on functions & of one variable, it
will be extended to a class of functions of infinitely many

variables in such a manner that if @ and‘yﬁ‘have no common

variables, a state of affairs which we indicate by writing

the product ¢ |~ as ( @}/-, then

14,
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DEC@@%J ~4@D ¢'+'¢"®DC€. When D is extended in this man-
ner, it will be called a derivation for B. This extension
will allow us to define DgcQ,DS(@,...; and, in the cases we
shall eventually consider, it will be shown that not only are
D ,02(0,+s. in the domain of D, but that e ’@: f'__ 2 D
converges for sufficiently small t, A calculatiggowgich is
the basic result of this section shows that if 2/2 t ft:B[fJ

and D is a derivation for B, then
o0
f OP r. (a9 @ (%) th pP@.
otP

Thus, letting t-o, f=f  and writing f, as a formal Taylor

series around t-o, we get

« D
{£,(aD@(3): [£7ePp .
Thus
4 tD\ 3 (=}
£y (e®) e
is the formal solution of 2 ftr-B [f -).
|at t
The complications which follow are due to the faect that
the derivation I will be using usually maps functions of one
variable into functions of infinitely many variables rather
than into functions of a finite number of variables. Thus,
in extending D to functions of more than one variable, I
need a large reserve of variables so as to ensure that
D(@ @ ﬁ" ):@@D sb?yf‘@D@ at each stage.

Decompose the set of pésitive integers It into a
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sequence of dis joint infinite sets Il,Ig,... and within each
set order its elements according to their natural order, de=-
noting the jth integer in Ii by the pair ij. The elements of
these sets will be used as indices of variables 13 having
values in E., Introduce the following definitions,

DEFINITION 3,1 If ¢ is a function whose variables have

indices in I" and JCI”, then ff “@ 1s to mean
dJd

v
gijéJf(d}ij)@ whenever the integral exists,

DEFINITION 3,2 J° denotes the complement of Iex”

DEFINITION 3,3 Let C1, 131 be the space of all functions &

which can be expressed as a countable sum ;C&,E” CL”<°°
g
where 4;( has a finite number of variables whose indices are

in I V...VI{ and ”CE” denotes the uniform norm,

DEFINITION 3.4 Let Cl be those functions in C! which have a
finlte number of variables.

DEFINITION 3,5 Suppose that we have a family of spaces

63, B e Cf&C™M and a family of linear operators D, mapping
CT into Crfﬂ for nym. Then the operators Dn will be called a

derivation if

(1) Dy(@ 8 F)=(by)@ P+ @Op_ 1
o)
(2) D.@- ¥ s .um)
nCP %J:l n@ 1]

where (cv)iJ denotes @ thought of as a function of the 1ij-th

variable alone, the other variables being held constant.



DEFINITION 3,6 A family Dn;n=1,2,... of derivations will be

called a derivation for the operator B if and only if
(1) for any ®@ECT with only one variable, any nym

and any distribution f,

(8] (D@ (37 ( £p_@

(2) D_@: o whenever (@ is a constant

(3) D,®@ depends upon the variables of a together with
new variables coming only from I_,,, end D @ does
not depend on n in the sense that D, @ and D, @ are
identical if the new variables which D, adds to @

o
are renamed; especially, f D, & is independent of
nt+l

n,m,

m 0
DEFINITION 3.7 For @ € Y, D" @ will mean D, D . 1...D, @,
The following theorem and its corollary provide a formal

solution of 2 ft'B[.f.‘J through the use of derivations.
0t

THEOREM 3,8 (formal) If D is a derivation for the operator B,

then Sft(;n)(d})&(})" SftaoDnCp

for all functions (f of one variable, at least formally.
PROOF by induction on n. The theorem certainly holds for n:=1
by the definition of a derivation. Suppose it also holds for
n and put D"qs ;]é", where ’{ﬁ;‘g has a finite number 7 (&) of
variables whose indices form a set J I U.eeVIy,p,; and

. IVl < o

17,
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Then
(e @y @)

-4 [P epem

dt

5 £ -

"-—d-%f t Q
oo

k f

S DI -

where f, Beea®L_ is the T &)-fold outer product

t

! Z: i (f:t(dfp) { ft@...@ft_(;l;

o N «l {7}
modulo interchanges of sums and differentiations; and hence,

treating J(\{ ft Piaa aft‘;ﬁ:‘ as a function
£4 p}

of the single variable with index p, we get upon using (1)

of the definition of a derivation
=
: Z ):.-(r D ( Liene DL ¢' .
g Tt mengl t t YA
e {{,\\{p} .

Because of the linearity of Dinsne1s One gets formally
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-0

COROLLARY 3,2 If D is a derivation for the operator B and if

the derivatives fén)(e) exist, then ft can be formally written

as ft(e)'—‘(f‘ ew}(e where %’ 1s defined as the formal Taylor

@0

series Z__ t? DP,
p-o p!



20,

4, SOLUTION OF f.2B| T
g 0]

In this section, we will apply the methods of the last
section to the problem of solving the equation _g2 ft=B[}J .
at
However, to do this we must put some restrictions on

7t

DEFINITION 4,1 Let H be the class of functions

Tt (w3 g; By (u)
=1

where

(1) B§ (u)z?{: c;/(k)(ﬂ)uk(l-u)n'k, CNtl(k)?,o
=0

t

o0
(2) Z::NPcng;LP, p>1, CN=max CNl(k), L<L2® fixed.
N=1 k<N, +1

A necessary condition for a function to be in H 1s that it
be real analytic as the following theorem demonstrates.

THEOREM 4,2 If F&H, themF has derivatives of all orders and

I (_c_l__)p F(u)lspl(zL)p
du

PROOF
f(%r Pm)’

du

[
:[ d )p el CN(k)(i)uk(l-u)N-kl

N:1 k=o



oD
i Ifi‘ (@ Z:: CN(k)(ﬁ)k...(k-q+1)uk-q
gq=0

'(N-k)...(N-k-prq+l)(-l)p-q(l-u)N‘k'P*qI

o0 N-
-’/ i (p) tp, CN(k"q)(kIEq)(k+q)cct(k+1)(N"k-Q).o.
q: 0 q Nzp-q k=0

¢ (N-k-p+1) (-1)P72 uk(l-u)N-p-kI

0, N-p R,
0 AR i TR ot T e
q:=o N k=zo

:p=q (N-p)i
p =0
& ¥ 2. oy
q:0 Nz:p-q

p
P (g)szp
g=-o

z pl(EL)p

Notice that the term wise differentiation is justified by
the convergence of the resulting sums,

COROLLARY 4.3 If ¥ 03 € H, then 2 is real analytic on

[9,1] and the solution f,(+1) of

2, 60 07 e 1]

21,



has derivatives of all orders,

LEMMA 4,4 If F, G¢H, them FGéH,
PROOF Let
(> ol
N. N-k
rew=)_ ) 6 (i) ()u¥(1-m)
N=1 k-ro
i N, k N-k
G(u)=/_. T dy(k) ()u (1-u)
N=1 ko
then
5. & N N-k
Flu)e(u)r 2~ 1. e (k) ()u(1-u)
N:21 kre
where
T e e Ny. N
exi) =™ L XL oy Gepday (p) () ().
NlTN2‘ N kl'i' k2: k
klﬁNl
Letting ey max eN(k) we have

ksn

¥
LT L oy ey e ) Eh )

N:=1 k<o NI+N2:N E14k2:k
le

k2$N2

22,



‘ /Ny +Ng ?N
P . (N (2
o Esu (Ny#N) oy L )y ‘kz)kkbke) kll(kg)
N

TN N N)C (k. )a. (ky)
N N, k sN, * e
e B e
szNz

¢ I oww, i (Rnd a2 %, ay,
Nl,N q:o 1

f’.: (RN E oy ) (L wg” qﬂsz)

D x
< 5 (g)(q+1)qu*1(p-q+1);LP q+l
g-o

$ 2 0y L(P)
q.

$ (4L)
LEMMA 4.5 If FEH, then exp (F)gH

PROOF Let

F(u)* L. ol 6y b ( )uku-u)
N2l k:so

254
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Then 5 o 4 g
exp (F(u)=l. Z_. (M)cy(gud(2-w)"
M o j:0
where
A
Cy(J)
. (M)-1 ! e
Z( »?TN P Z;kn J(ﬂ})...(kg) iy ey ) e oCy_(igy).
kl"\N
ki & B
'I'hus
Z: MpC
Mzo

‘A
[

M A
L. We iy

M:=0 j-o
= N
« L2 weeh) 1Z(n)l£___ L. gnliae
M:z0 j-o N++Ner++knj
» k s N7
knsN

"Cyy, (key ) --Cy ()

n

: Z_ 7 3 (N4 )Pk,*kn)l@})...(ﬁg)

Byws iy k1*‘1‘11 R

<N
n

cl- o L ) )T e oy

< Nlr-)N k1$N1 n:o n
Kn<Np
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x Z Z (ng)'lN woN_ (Nt 4N )pC S
i Lt e Wl s
Nl.u-,Nn nso n
- 1
L RT g ) S pl 3 i
nio Nl,--.,Nn 31'""’sn=p a1l v Nl 1...Nn
*Nowe B G i@
0
= J_ (0712 piIP(sye1)e. (s 41)
n:o slr...-rsn:p

o0
¢ I (n1) " tPgn(ent1) «. (2nep-1)
nrso

ob
< (20)Ppr) (1)t n+g-l)
0

o0
¢ pi(2L)P 2 (n1)~longp-1
n=p

£ p£(4L)p32.
LEMMA 4,6 (Hausdorff [1]) 1If a polynomial F is positive

(o) on the open interval (o,1), then it can be expressed as

N
Flu)s ] _ amX.N,m(u), 8,20

ms0o

where 'IN,m(u)“'(g)um(l-u)N-m, provided that N issufficiently
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large.
PROOF If F(o) or F(1) equals o, then we can write F(u) as
A M

ui(l-u)J F(u) where F(u) is positive (70) on the closed in-
terval [o,l]. We therefore need only prove the lemma for
F positive (?0) on [o,l}. Suppose that F(u)’%o‘* kuk is a
positive polynomial on the interval [a,l]. Then we wish to
write F in the form F(u)’%aoam-xn’m(u). An easy calcula-

tion shows that

A( Ill- (N-k)£ n m(m""l) ® e o(lﬂ"k*l)
S mif 9%
%n %? N'(m-k)' ko % N(N=1)oeqelN=k+]1)

or, am=FN(%) where

Fo(u)= }:_n( : Nu(Nu-1) e oo (Ny=k+1)
k-0 N (N'l)ooo(N-kfl)

But, as N increases ;3_:_1_ converges to u and hence FN(u)
converges to F(u) and thus for large N, [am—F(%)l(tfor m:o0,
ly0005N¢ Thus for N sufficiently large, &, 30 and the
theorem is proved.

LEMMA 4,7 If F is a complex valued function on the complex
numbers, real on the real numbers and analytic on the closed
disc [zl ¢ 1, then for any sufficiently large real constant
C, F(z)+C €H, /_

PROOF Let F be real on the real line and analytlc in the
closed disc €1. Then there exists a & ,o0 such that

o0
F(z)* NZO( NzN for [z]£ 1+8& where
o



l‘( N}: I_F_'EJ_Q)_J $ (1"8)-'N A, A a positive constant.,
N3

Now let

b ifg o -Q o ifX (o
nz{‘N N2 % aN-‘{ N N , G d—b i Z aN’ d?z
o

otherwise o otherwise

Then & s
F(z)+C=d+Z_ bN ZNFZ".. a (1-2 j
] Bl N=1
N-1
But N2 (%) z%¥(1-2)%K, Nz1
1=z ko

and hence, letting

N
By(z): 2 Cplk) () 2¥(1-2)""F
k:o

where Cl(o)=a1+d, C1(1):by+d and

ay for os k4N
Cy (k)= » N1
bN for k:N

o0

we get F(z)+ C:2 - By (z)

Thus we have represented F~C as a sum of Bernstein Polyno-
o0

mials when C2 e M > By We therefore need only show that
N=o

=N
condition (2) is satisfiede But C_=max C (k) [ }( {1e&) A

N Kin

&= P
Hence 2N Cyp

27«



s
< a2 §Po-N 1n(14})
Neo

which corresponds to

v 1+8)
Stpe t 1n(1+8)
-]

- Bs
[1n(1+m)] P**

£ pt P
for a suitable L,
We cz;n now give a sufficent conditions that F be contained
in H,
LEMMA 4,8 If F is analytic on the closed disc |Jz[¢ 1,
real on the reals and positive on [o,l], then F&H,
PROOF Since F is analytic on [zl £ 1, real on the reals

and positive on fo,l] s it can be written as

6™ (z-2,) (z-2%)... (z-2_) (z_z;'«)ec+e(z)

where z*is the con jugate of z, G is analytic on ]z]gl and

real on the realse.

For C sufficiently large, C +G(z) €H and hence exp (CtG(z))&-H

Since, according to Hausdorff's lemma,

(z-24) (2-27) o v (22 ) (2-2]) &H,

and since H is closed under products, the proof is complete.

28.



LEMMA 4,9 If F, G €H and G is a polynomial, o£G(u)$ 1 on

(0,1), then F(G(e)) €H,

PROOF Let S x
Fw) 2. 7 oy (k) () u(1-w) ¥
N=z1 k=o
M i
Gu): 2 d(p)up(l-u)M "
p=0
M M-
1-G(u): 7 _ e(a)u?(1-u) iy
q=0
Then
F(G(u))

ol
" N M . Kk
= . & ey 2 alp)uP(1-w)" pJ

Nro k=o pso

M ” N=k
: 18 e(q)uq(l-u)M ﬂ
=0

5 e MN
- c () "My Waew) I
N:z1 jro WM . ol

where
A

Cyp(3)

29,



N
-_-(%IM)"]- Z CN(k)(ﬁ)Z d(pl)..d(pk)e(ql)... e(qN_k).
k=o pl"""’pqul’"‘"qN-ksj
c¢p,agM

Using Stirling's formula we have

NM, -1

&
~em) ()R- dnFh I . 4yt

£ 27NN (éN)J(l- T

and thus
= A
2z () Pe
N=1

s 7 p W& Ny (-1 T
m0® Z_ Zeyte () (M a(py).. d(p,)

N= s g 4D +Q 4.t =‘
1 jzo ko Pitdp $Q bl J

og¢P,qg M

e(ql) ...e(qN_k)

hed p MM N N
¢ Zm)® T 7T oy(e) ()2 TuN 7= dlpy) alpy)
N=1 jso k<o PyFatPpa QA o=

og¢p,q ¢ M

30,



J_)NM-j

" elay)eelay ) () (- L

e MN N NM
41 41
$am®t e - T (D T I ety ), i)
N=1 m:o kso J=O p1+.+Pk+ql ...th_k=j

0¢p,aéM

* olay)e. olay.) ) Y (1- B

=

=0
N k N-k
oMyt T~ §P'1c Y G(“‘ﬂ 1-6(Be)
i NZ el k ™ f_ mz]

m:=0

(V)
+
oTrP?* 2 2 NP5
N=1

N
< 2TuP*2(ps2) 117" 2

N
<p! P

A
for suitable L.

THEOREM 4,10 F €H if and only if F is positive on the open

interval (o0,1), with at most algebraic roots at o and 1, and
real analytic on the closed interval [o,1].

PROOF If F€&€H, then F is certainly positive on the open in-
tervel (o,1) and, by Theorem 4.2, it is real analytic on the

closed interval [o0,1]}. Therefore assume that F 1s positive

31,
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and real analytic on the closed interval [;,]J; if F had
roots at o or 1 we could divide through by them. Then we
can find a domain D, symmetric about and containing the
interval [;,%] on which F is analytic. If there exists a
polynomial G mapping D conformally onto a disc containing
the unit disc; and if G is real on the reals with G(o):zo
and G(1):1; then F(G-l(w)) is analytic on the closed unit
disc; real on the reals and positive on [b,%]. Thus, by
Lerma 4.8, F(G'l(-)) £H and by Lemma 4.9 F(6™L(a()))

= P(e) €H, Therefore, to complete the proof we need only
show that G exists.

Let Gy(z) be the unique conformal mapping of D onto the
disc [z[ < 2 where Gl(o)zo and di(o);'o. Since D is symme-
tric about the interval [b,%l, [él(zﬁdJ*'also maps D, con-
formally onto }z}( 2 and hence [Gl(z*q]*= G,(z) and Gy 1s
real on the real axis, Since there exists a sequence of
polynomials converging uniformly to Gl on D, let G2 be a
polynomial for which Gy(eo)z0 and ;Gl(z)-Gg(z)f< g for z£D;
and define (G(z) as a fég(z)f Gz(z*)%] where
as} [6,(1) #6,(1)*] "L, Then, for £ sufficiently small,

G maps D into a region which contains a disc of radius

ala=f); rotice that for £ small, a is approximately equal to
[él(ll]-l. Furthermore, G is real on the reals, G(o): o and

G(1):=1, Wé need therefore only show that G is 1l-1 to complete

the proof, Let C be the arc in D which is the inverse image
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of the circle [z’:a(z-&) under the mapping G Then

1.
Glf 0,2 on C and for any w contained in the disec

!z[ < l+ﬂ§_;_§l:}_ wel have

aGl(z)-w: G(z)-w + h(z)

where [h(z)/ { &+ But fG(z)-w[?a)! h(z)] for §
sufficiently small, z &C. Thus, by Rouche's Theorem, G(z)
takes on the value w only once., Therefore G maps a domain

ch:_D, Dl

containing the interval [0,1], conformally onto a
disc containing the unit dise and thus the proof is complete.
Our present task 1s to construct a derivation D for B
when * 0+ € H and to show that e%l: i 8? PP 15 well de-
fined for small t. Divide the posigigep.’:ntegers into
infinite classes Ii’ i21,2,40¢as in the second section,

let the pair i1j represent the j'2 integer in I, under the

natural Ordering, and let AijQ: Q (--o,-eij,"')-@(--c,eij’"'

DEFINITION 4,11 For &X&CJ and nym, let

o0 m o0
P .’LZ-:J: jzsllc(eijf°n+1,l:---s°n+1,N) 8337

e
wherec(e'el,...,eNFCN (number of +1's in the set @15 v s0y) e

This sum clearly converges since, for @ having p variables,



& £
N=M1;1 j*1 C(eiJ,en*l,l’"" eml,N)AiJ@”

o0
L p”@l/ ZCN
N=M

converges to zerc as M—=¥ee, In order that the operators Dn

be a derivation, we must define the spaces C?. Toe do this,

Bie

define by induction C7 - ci and C] = (D ch-1

n=-1 1
m
of course, pre-supposes that DnCQ is defined for @& Cy, m¢n,

yU Cg. This,

This will be shown in this chapter. However, before doing
this, note that if C? is defined, then the family of opera-
tors D, are indeed a derivation for B. This is easily seen
by the following theorem together with a few simple
observations.

THEOREM 4,12 If Qéco"" has only one variable, then

gB[fJ (a}) CQ(S)-‘S 0. @ .

LLE A
N=1 i=1 j-=1 ! *ar1,11 % »®n+1,x’ 13‘?

.58 ) 4

ntl,N iDJOC?

og
Z. b 0l ( C(eiojo, © 41,1 ’en+l,N)A iojo@

34,
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where _j\k:is the set of all sequences [en+l,1’""°n+l,N]

containing exactly kjtl's

f?i kZL( )[eea] ¥ -] “Efetas, e fwd, | @

where de
iojo

c T ko™ Kort () [@ (-1 @(+1)]

N=1 k=o

N
+ 2 Z (ke [ € #1)- @(-1)] (1w

=0
N:1 k:o

ol

ul?:. B (u)[&"(—rl)-@( 1)]+ (l-u)]:_ BN (u)[cP (+1)- D (- 1)]'
#

3 [u 7% (u) + (l-u)a'-(u)]E@ (+1)- @(-l)]

* Yw[& - o-1)]

= B[f] (+1) &4 (+1)-B[£] (+1) @ (-1)

B[] (+1)A(+1)4B[t] (-1) @ (-1)

(B[ @h € (3).

Thus the proof is complete.



We will now show that D"@ (and hence CE) are defined
ed
and that etD&:'- l 4 D" @ converges for sufficlently
n*o n!
small t.

DEFINITION 4.1%3 Let ® € c}, have varisbles with indices

11; ABievin 1MéIl, ie., @=>@(eq ;0 2,...,elM) and define

1
by induction on p

oy (@ ;M) jzlcneh{ Ljieenggtl o 8

(@ Nl,co-, )

p ptrl

+1 Ni
: & ?';_l‘ C(eijlep+2,1’""ep+2,Np+1)A j_jQp(Q;N]_’ ’Np)'

LEMMA 4,14 If 42C€C ci has variables whose indices are

11,.00,1M then

provided that the sum converges.

PROOF by induetion on p. For p-l,

21 Q (@ ;M) ! io(eij/egl,...,ewm 13@7 D,@= D@,

N=1 j°71
Now assume that the theorem holds for p. Then

NZ N Q p+1(CQ ;Nl""’Np-i-l)
l""’ p+l

364



E i p‘*‘l ~Ni C( y
z - . B e =) "y @
1 1 s B § % ol
Nl,..,NIHl 11 j=1 P+

o
#1 N
R A T

" v ij[ep+2 1772°%02 X
Np+1 1 4%3 L ’ s

Qp( 17 4 ;ng..,Np)

)

e -y
£1 121 j=1 15! pF2, 1777 pe2, Ny oy

. A
iJ(DPDp-1° g ‘DzDI‘p )

"

[ O,
p+l( p.. 2 1)0

v/

1
o @ .

LEMMA 4,15 If ®E Ci has M variables, then

I Q( Q ;Nl,-,Np)”

,1 p*g’Np*

37

:)LA ijQP( Q ;Nl,u’Np)

p p-l 1 (1 ks B 0T TS e, S0
P L L8} 3. ) Ll P

P p-1
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where Tk(il,..-,ip) is the number of integers il,-..,ip equal
to k.
PROOF

nqup SN o)

d 2% C(eijle B e T 14,0, 3N1""’Np_1)"

2
P06 e (& ¥, BT W ) ewolZ= N, ol ll

® N 0
p "p-1 2ip:1 p i_l-l p=-1 1:1 2

<8 /(MMCN e p}:‘j i

N _ i vool i
1 1 2114 a1 feoat 1
» P p-1 1 P

£ o ad Tt R )
s oP ”&IIMCN cesCy P Zl 713 1 "an.l of Al S

p Ny 1p 1 1,4
LEMMA 4,16 v
p p-1 1
A =Z—- z 2 ...E"T(i -,1 ). l(il, .,i ) T (11,»_’1. )
Pi1d 42 4,°
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then Ap:1o3-5-...(2p-l)$ P10 R

PROOF by induction on p. The lemma is certainly true for

prl. Suppose that it also holds for p. Then

+1 p
e 2:;_7;;—7“ 1y smsl SRR S G SPYPE SRR
s R L A5 el

P

pEﬂ_ — ‘2’1' 7% 1 )' To(1 AT, &
S0y R R S s i S “diin "
P+l P L
p+1l 1
e oo o = il P )1...‘7‘:L (1 sail 31
£ 4= 1 #1314 2] P.1 p pe1tl 1 P

~

'[_1+r (11,_,1) £

P
P p+1"l(il’"’ip) b Ty (45ms 1 03

| )} .,1p)1

P 1
P (p+l)2:_.-- ZT\(i ,""i )1.0.-7\'(1 ,...,i );
11121 P 1 "p ‘3



psl

i p, 1"" 1
PEEY sadlE. W W T‘i (11,...,1p)7‘-p(11,._,1p).

z $_nl +1
N T P
™ - 1
cee T (15551 )
3 p+l /
IIRSTS, IO 508 | . (1. eyt V)T Ep)
P 1 P
1ol 1l M=l Tpel B
+

P 1
= v P w c'.ooo e
(p+1)A_+ 3271 fffi N N R A ST L
b

=(p+l)A +pA
(p )p pp
= (2p+l1)A

= p

£ 1*3¢5¢ ,.,°(2p-1)(2p+1)

and the lemma is proved.

THEOREM 4,17 If @ & C% has a finite number M of wvariables,

then DP@ 1s defined and ”Dp@” £ p!l (4L)pMF@” .

PROOF We have shown that

40,



P = ) Q_ (0 5N yuesN )
My M, P ?

provided that the sum converges., But, by lemma 4.14, 4,15

and 4.16 and the fact that )} NPC, £ piLP, it follows that
N

8
le-.-,Np ”Qp( Qa ;Nl,..,Np)l/

: | (s amndy)
< 2Pu ll@y ﬁ ——— Tp(il,..,ip)zLT.P | p

ip =]l il.‘l

' Tillysmsiy)
o490 ,1 )8 L

- (21)Pu IOl = .. '
CIRTRLUE 0 =y (L HPE 0 | S A CHPEINE

- t
.’Lp.l 11 1

41,
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< (2n)"u N QU 2Py,

« p1 (anPu ll@N

Thus Qp(@ 3N, 5m ,N ) converges and D P@® 15 well defined.
N_,«,N
1’ ] p

Furthermore,

”DP(PH
|~ q(@ el < Zl. Ila (@ 1,...,Np)”

l"” p

Pl @I

pi(4L) .
The proof 1s therefore complete.

1
We can now define 011) for all p since Cl = Ci’ and @é C?

and 0$ Qg€ pe. Dp is clearly defined on Ci and maps CI{ into

p+l

1 . Since we have already shown that

c

o
fB[f] (a3) @ (%)> [ ¢ p @
for functions @ of only one variable and since one can

!
easily see that for @,V & Ci

(1) e8P b, @)@ P¥ o8> P
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’ ‘?, ‘— E- (4)
p j.."l i’l j

(5) DpQ'—' o whenever & is a constant

(4) DP adds variables whose indices are in I it

ptl’
follows that the family of operators Dn are indeed a deri-

vation for Be.

COROLLARY 4,18 The proof of Theorem 3.8 becomes valid when

B and D are defined as in this sectlon.
PROOF For the proof of Theorem 3.8 to succeed, we need only
justifly the interchange of sums and termwise differentliation.
This is easily seen to be the case if

Z— (M‘*Nl*...*Np)Qp(& ;Nl’.",Np).{ Q0 ®

Using the bounds for ”Qp( Q;Nl""’Np)” given in Lemma 4,15,
and using Lemma 4,16 one can see that the sum clearly con-

verges.

o0
tD
Since e C():E_ tp Dp@ converges for t< %L,
pP:0 pl

we get the following theorem.

THEOREM 4,19 The solution £ (+1) of the equation _@_ fi:B[f ]
at

tD
is unique and is equal to Ifaoe T

.

+1

PROOF Corollary 4.3 and Theorem 3.8 state that the pth

derivative of ft(+1) at tzo exlsts and is equal to
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gfw p® 4L . Since, by Theorem 4.17,
+

Iffc’anp'xﬂ]s IoP=, I ¢ prtamy®s

it follows that the Taylor series for ft(-fl) converges for
g This implies that
4L

(+1) = o2 tb
ft+1 fe’)C_rl

tD
by the definition of e and also implies the uniqueness of

the solution.



5, AN INFINITE GAS

I shall now construct & model of an Infinite particle
gas with velocities % 1 in which the motion of a tagged
particle is a #-process with specific ¢ and in which the
sample paths of any two particles are independent. This
will be accomplished by constructing a gas of n like parti-
cles, each of which has velocities L1, and then letting
n-s= ., Each of the n particle gases will be a Markov jump
process in which one waits an exponential holding tlme and
then picks an index i according to the uniform distribution
1/n and lets the corresponding particle collide with one or
more of the remaining particles. The effect of a collision
between a single particle and a set of particles will be a
change of state only for the single particle.

To be more specific, suppose, as in the last section,
that 7 0% €H.X (6)=[x](t),-,x (£)] will be the Markov
jump process on the n-dimensional space z with holding time

distribution in the state [e ,-,s ] equal to

n-1 _
exp{mt ):_.nNz_. (n) C(ei\o pon )
N:1 1,0y sdy J1” N

(n)

where ZLﬁ denotes the sum taken over all sequences
Jgsdyrmsly

e
(jo,m,jN), 0x jks n; and where C(eiel,m,eN)==CN (number of

Se
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+1!'s in the set el,...,eN). Starting at the state [el,...,en__{ -
the probability that the first jump is to the state

[el’“’ei-l’ - , © 1,__.,en1 is given by

i i+
n-1 (n)
N 4 C(eile‘j mae. 4
N=1 PR 1 J
=l oy (n) .
C
NE’.l o AL (ek]ejl’""eJN)

kl jl’“‘ 2 JN

The generator of the n molecule gas will therefore be

Al e Rl )
Gntf(el,-,en)- Naln P ,.,jN eilejl,...,eJN A i(?
where A1@= @ (wey =07, - )= d?(---,ei,--- Y

We will now show that the generators Gn of the n molecule
gases converge to the derivation D of the last section 1n the
sense that if @ 1s any function on n dimensional space E"
with variables whose indices form a fixed set J and if f is a
distribution on E, then ch“ Gn@-) gcwaQ as n=» °°,
S8uch convergence will be called convergence mod Jc. It will
also be shown that as n-»e, the paths of any two particles
of the n-molecule gas become Independent and approximate the
#=process with specified 7t . The main burden is to show
that the operators Gfl converge to Dp@ mod Jc when @ has

variables with indices from J. First we will need several

lemmas and a definition.
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DEFINITION 5.1 Let

(n)

Q. Gh iy Rt 1 F g, A
1.8 - i’Jl""jN ei\ i1 IN i@
and
41,0 @ ; l’”’Npq.l)

=N (W)
- 1 .
N c(eﬂejl’m’ejm )4 iQp,n( @3Ny 55N )

i’jl""JN p*l

p+l

LEMMA 5.2
+1

=

p n-1

G’ Q: 2:._, R )

% N =1 N1 Psm
;A i

i

Q (Q;Nl,-,Np).
PROOF by induction on p. The lemma is certainly true for
p:1l by the definition of GnQ. Suppose that the lemma is

true for p.

Then
prl@
n
P
= G
Gn n @
n-1 =N )
= Z- =n p+l 7. C(ei]ej 2@ DAi ¢ @
p+l 133y 900y 1 p+l



n-1l =N (n)
¢ e PR C(ei eJ ,.,,,eJ )
N =1 i 4 1 N

. (@3N_,.,N
Iya wa Qpunt D pesly)
P
n-1 n-1 =N n)
- Z:., ...E-;n p*l Z— C(eiIeJ ,-a,ej )
N =1 N =l i fea 1

.AQ

(@ 3N ,.,N
ip,n ’1” )

P

n-1 n-1
= N: o.o:' Q. (Q;NIQW’N ).

- e pt+l,n ptl
5+ il Nl ) »

DEFINITION 5.3 C?Slﬁ'mod J if and only if for any probabil-
~ .{
ity measure f ffcoé?-’ L V .
5 L [r

1
LEMMA 5.4 If QE€C, has M variables whose indices form a

set J, then Qp(& ;Nl""’Np)E Qp(d?;Nl,...,Np)*Ep n(@;Nl,u,Np)

mod J]c_ where, for large n,

”Ep’n(Q ;Nl,._.,Np)y

ﬂ'{n-l) es e (n“’l""Nl' o O-Np)

-1 ”Qp(iﬁﬁle :Np)”

NateootN
n = p

48,
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- +1
+n 1M Il @ CN "'CN (Mtva,..f-Np)p

P B

PROOF From the definition of Q n(‘:t;Nl,...,I\Ip) and

P»s

Qp( d;Nl,...,Np) it follows that

*a P .a 4 Cle s )4 3
ipl pl’ ' ijp P
- C(e ' J ,-,ej )
p=-1 p-1,1 p-1, il
5 .+ Cle 9=s® )
L0 b 1" N Ailcp
4 -N (n)s
.DN esell 1E G(eile 3.4 3© )L\i
p' Jpl Jpr P



Cle ,.,ej

e
1p_1[ Ip-1,1 p-1,N

-

) bl st )
L Y-t i 3™ dawg

« 4
11@

(n)
where Z. means the sum over all indices i and j, each
(n)* (n)
index ranging from o to n; J2_ means 2 restricted

to th indices for which for (k,%)#({,3); and
f_(n()J-?t-ie-‘ n ; ) [ #JL@ s%X)$ &,

(n
means Z_ restricted to those indiees for which
ko(z"!m ? g
The first of the last two sums is equivalent mod J to

there exists some (k,v()?-((/,g?) with j

n(n"l) see (n+l-N1 -Nz"c . o"Np)

(d 3N, ,.,N
e Qp @3 1909 p)
nl P

and the second is bounded by

= 2
M M+ L N ] L N ] " L N ]
n ( Nl) (M+Nl+ +Np_1)(M N1+ +Np) cN

...CN1 el

P

" 1
ol @l uew o, .. R St
i i P Np Nl

thus proving the lemma,

LEMMA 5.5

pil ptl
2 e M NP - T L

Nl’-n,Np & ] P i

M/L

PROOF
+1
£ (M"N 1.0.1'Np)p

c
Np

PP
Nl,...,Np L Ny

50.
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R k
s Fkh {2 o .o N LW )
k:o Nl""Np-l p-1 i}
= -3
. Z Np"‘l-ch
N -1 P o)
p

+1
X E_(yl); P 7:. C vooslu (MYH_ v, .30 )k

L N N p-1
: 1 g -
ko k! Nl, g W p-1 7 4
Wl - R e Kk
i 8 -1
§ i 2 2T Bl e W
kl=0 kgzo kpzo kp.
p+l M/L p-1
<
S (prl)I L e Bp+1
q
where Bp < number of ways of picking pzkl 2eee 7 kq.

Noticing that B;: B; - B:-l and hence Bg\f 2P’ we have

§ dpsi)t BaLiE © J*

which is the desired result.

1
LEMMA 5.6 If @ €& c0 and has M variables whose indices form

a set J, then

P (.
lim G & >pP@ mod T .
n-yso
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PROOF As can be seen from the previous lemmas, we can find,

for any &vo, an integer N(§ such that

= Il ch( 5N, sX ) Il < ¢&/3.

N_yusN 3N
¥ % (&)

Since

P .
G (0" :- ...E— Q ( 3N “yN )
n N 1 N 1 p,n Cp, 1! 3 p

a
¥ p’@- 8 QP(CP-N

it follows that

GEQEDp@*Z‘ E (Q;Nl,-.Np)-'DchE

( a2 I
2 « Zp,n L&) mo

ey Ps

But
I Ep,n(d’)ﬂé i ”E

Nl,..,Np p’n(CP;Nl,-.-,Np)”

4 NZ_‘ n(n=1)-. (n+l-N1—...—Np) ” ( )lj
A | - o RSB |
1T N 4 oeetl ) Mokl &Ny p

n L P

I nTMYplf Oy +eeC. (N, 400 aoN )

- Np s N b .
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n(n"l) ss e (n tl=N_=4 O-Np)

N.,.,N < N(g) 1 53
l, 3 » N f.ooi'N
° q l
HQ (@;Nl,.,,Np) f
i .
¢ gz tn Ly O M (pe1)iian)®™.

Since there obviously exists an integer N, (&) for which

nyN.(&) implies that the first and third terms are each

leas than ¢/3, we have completed the proof of the Lemma.

THEOREM 5.7

If @€ Ci has M variables whose indices form

a set J, then

= tD
lim "N @T 6" P mod J° for t< 3L .

N~

PROOF

tG s -

o 2g:l_ & Po= ] Lolpil  Fox .

pso pt pso pi p=o P} PsB

But

=

Z e (@

pro pl p,n
o = +1

$ 2. & ) oPall+ o Holl M Z_ 8 (pr1)s(arn)®
pTe Pl pso p?}

(see proof of previous lemma), and since both sums converge,
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it follows that for any £yo, there exists an integer p(§)

such that
L lm aik e
p:p(§) p! P,

Thus since ” Ep n(a?)ﬂ ~> o0 as n-y e for each p, we can find
;|

andinteger N(§) such that
p(€&)
— 2 e @ll< €/, nyne).
pro pl P

Since €70 is arbitrary, the proof is complete.

Thus we have shown, for @ € C%, that

G tD :

e« P8 o @ wed I, for ¥ € 45,

Since D 1s a derivation,

p[@@Y]:2® vYr«Yev@-@e Dl‘yﬁ‘u 75'@131 @

1
when @,%GCO have disjoint sets of variables.

Similarly, applying D to D[CP@'S&'J we get

D2[@0'¢'].-D2D1[CP® Yo lee Dl"¢'j7¥ D, [#e D, Q]

; (chr)a(nlw-)f-cpananl *(Dz'(}-)@nlt?*?"dnznl@

since Dzﬂ and Dl“f' have disjoint variables, as do & and

Dle ~¢"’e1;c.

Thus we get the following lemma,



55.

LEMMA 5.8 If dz,‘g/‘“e ci have disjoint variables, then

c

v 1...Dl'p') mod Il

P = 2.4 P
p*[0 9 V] 2. (O D L Q)ODD

where the set of indices of variables of Dp...Dk.'l @ ena

Dk...Dl';b' are disjoint as is indicated by the notiation.

e P-Q
Noticing that D D dakP =D wsab. &% D mod I
5 P p-1 3 q+1& p=-aq=1 1@ c?

c
1

|
for @ € C,» we get the following "propagation of chaos"
theorem (see M.Kac [2] for the terminology and another

instance of this phenomenon) .

1
THEOREM 5.9 If 4 , /" & Co and the set of indices of variables

of @ are disjoint from ‘W’, then

{f‘;w [10¢:] I@‘Fo:wcd@f fllﬁ“"zﬂ ror

t< 3L,

PROOF

(c £ etD ch@‘é’,—f

I

[

P pPree
8 Wiesvg

=0
<
"
o

T
Hy
%
™Mb

e p(
2;0 () 1, £%°((® D

t
. & g
pl¢ aqro Il P

oo, 200D . .0 ) }

u

£ 2 [ TP )eff 0¥
pTo qzp pl @ e c
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) t £*p & £ D

) ( qso ql e

I I

'(gI; £ a tc? @(S + tD%).

If the initial distribution of the n-molecule gas is
symmetric in the n molecules, then it is also symmetric at
any later time. Especlally, if the molecules are initially
independent and identically distributed, then the joint dis-

tribution of the first M particles is given by
n n
p]x (6,) € EqpunsX (ty) ¢E, )

16 (to=t,)G (¢t -t )G
=§f(d}l)...f(dfn)e lane oy o SRRTT m 'm-1""n~

1 2 En

where Ekv(eg,..,eﬁ, E, E,~,E)s As n-yeo,1l) converges to

#,D (6 -t )D (t -t _)D
£ e 1 X M m m=1 ‘x
g e XEJ_ © B, 2 g

This limiting distribution can be used to define a combined

motion of M molecules for which:

(1) the paths of any fixed number of molecules
are independent.
(2) the distribution of a tagged molecule is

that of the #-process which corresponds

56,
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to +a’t¢
The essential elements of the proofs of (1) and (2) are
contained in the following lemma. We first need a few

definitions and remarks,
Let o <ty gtg be points in T- ':o, =©) and

let a_, a,, & Wosl B ¢ E. Let

2, bo’ 1!

1 1l if e,za
'x.a(.-.,ei,...)'-'- 1
0O otherwise

and
th . 3

A { &

Pf)a(t,b)-{i}cf (o Aghlearsf 2 a0 i)
where, by definition of D, the right hand expression is inde-
pendent of 1. Finally, note that any finite number of
variables on which ¢ does not depend has no effect on the

1imit a5 0> of 6 A &L

LEMMA 5.10 Suppose that the n coordinates of X (o) are

independent and identically distributed with distribution f.
Then

lim
n-yes

'P[xg(tl):al,xg(tg):ag,xg(tl)=b1,xg(t2):bzlx2(o)rao,xg(o):boJ

A A A A
el . (s.5m.1 P {tain.) P (4.30.) P (t,3b.)
§ op i it £ i Al s g WA ¢ g’ ¢
]ao 3 tl,al [ o ty|by 2
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PROOF
n n n n
2) P [x;_l(tl)-' aq,x7(tg)? az,xz(tl)zbl,xg(tz) *b, xl(o)sao,xz(o)-bc:l

e
L (f(d!a)._f(dfn)e Brs

S3¥=2in

-
-

3 2 3 n ‘b2G
0[‘7('511@7‘ b107( "30'“exsn](ao,bo,}s,m,}n)e »

1 2
i B
[ ag@ibzl(al,bl,}sgbouxn)

t.D .G
e S 1 1 2 o 4 - oL 2'n
39-; {l 2}c 6 E’?( a1® 7Lb1 a’ﬁ%@,g‘xinao, o’ )e

ofx 1 2
[ a29 ’?(-bj(al,bl, goves T 140(1)

n
3 g (84sbg5+)
FARE TS

t.G
. o R 1 2
E n[?(azﬁ ’Kbgl(al,bl,}s,_,'sn)

where «,3a,, 5tb,, X, = '53,..., Xn < F o
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But g
t.D
70 ].3<k 3
(5] .}k(ao,bo,"') e ftl(fk)

(:2)°

since it is independent of ao,bo and k, and

( £.D
o, LIESC & o
{ljB]cf e al(ao,bo,m)_ Pf]ao(tl’al)
and
t.D
g o] 1-— 2 —
I - (5. sa
{l’z}cf » x‘bl(ao’ o’ ) £log 1’ 1)

tG
(1.e. in evaluating 1im e , the a_ has no effect since
n- <o -

2
Xy does not depend on that variable). Thus 2) reduces to
i

P (tl;a (tl;bl)

tlag t15%1 e)n,

B | (a3 ( ) tan 1 2 4 3 )
fy, ity ORI T, 0K b, 22050 0y -k

“*ell)
and, using the s ame arguments on the above integral, we

complete the proof.
Lemma 5,10 shows that x?(tl) and x?(tz) become



independent of xg(tg) as n->« ., The same arguments can be
used to show that any finite number of particles have inde-

pendent paths. Similarly, we can show that

| B n | n
1im P/ x.(t.)2a_,~,x.(t )-a |x (o):a]
S5 Ll s o m| 1 0

/N N
(te;az)...Pft (tm;am)

Pf
11% m-li L~ |

and thus that the distribution of a tagged particle converges

~
to a¥#=-process. Finally, 'a':, e 3"1- since, letting u-f(+1),

A
31 (u)
b (t; 1)\
4 _525 L t=0
co tD
& _a_. f e x l("l’oo-)
2t c . t-zo
{1}
% ( DA L (11,000)

3 f =0
1 o E.lc(-oll92,1,...,92,H)[7(+1(+ 1)= 11“‘1)

od

- = S N ?l -
2 F g ) () T
N=1 k:o
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We end this section with the following theorem,

THEOREM 5,11 If ¥ 7% (&H, then the sample paths of the

¥#-process X; can be chosen so as to be right continuous.
PROOF It is sufficient to show that the temporally homo-
geneous Markov process X(t) defined in section 2 can be
chosen in such a manner that it has right continuous sample
paths. Thus, letting Uy (u) be the g£-—neighborhood around
the point u, we need only show that Pt(e,u;e,?%i (u))=1
uniformly in e,u as t—y o for any ¢y o(see Loeve, M:

Probability Theory, P. 637).

But
Pi(e,u;e,?/é(u))= Pfje(t;e) if ju-p(tg 4§ 0=plo)=f(+1),
o otherwise
Thus a simple calculation showing that fi(+1)->f(+1) and
Pffe(t;e)‘*l uniformly in uwf(f1l) as t- o completes the

proof.
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6, HOLDING TIMES OF A #-PROCESS

We shall now calculate the holding times
t - X 2
Ho(u)-Pf{+1( x(3):+1; 0 5 ) 4 rlkl)=n

for a #-process x, for which the corresponding+ )3 are

contained in H.

Let b(t,s,u)s - log Pstl(t;ﬂ)

and note that

1im b(h,s,u) = - £ (11
hdo hs ) a;['s i )I

uniformly in s,u., (see last section for the existence of
this limit.)

THEOREM 6.1

t
H:(u):-exp[ f 3;.[}.3("1)] dsy s usfi+1).
o

PROOF Let t=nh+e with og£ @6 < h. Then, because of the

right continulty of the paths,

Hz(u)

- %11112 Pflrlix(o)z-rl, x(h):+1,...,x(nh)=+1]

(h3 )P (h;+1)P (h3+l)..oP

(h;+1)
fh".’l fehl*l fnh]+l *

»
hl o £l41
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P n )
lim exp =) h(h,l{h,u).1
h)o L k:o0

lim exp[- %A b(h,kh,u) .
hio :0 h

. % 0 =
1lim exp!. j e r;m.fkh“lﬂ h+h0(1)]1‘
hfo k:

: exp[ S: 9: £f3(+1‘)] ds] o

Od e
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7. LIMITING BEHAVIOR AS t—=o

If ¥+ 7+ & H, then 77 has derivatives of all orders and

2. plt) :ﬂi_p(t)! « This implies that I‘t(-l'l) is either mono=-
2t i

tone increasing or decreasing in t for a given f and thus

i (+l)-'1J;.1m ft("'l) exists where f_ has the property that
5900

(f ) is constant as t varies. Thus

Pfj e[x(tl) é Al""x(tl1t2f"°*tn) e An_j

- (p. (b a3)( P (345 )...ng (t_;af.)
£ 1\ Te |
g |e" "1 g 6§, 2’702 brntbefy n’4fn
Ay 4o A,
- (f,,,, (a§;) f P (tz;dsg)...(Pf (t,3d% )
A A, To|¥1 A Tee| Fnal 5

as tl‘-> =< and the limiting behavior of such a process is
temporally homogeneous and stationary. Finally, if we
start with f(+1)su, then the holding times, which can be

quite non-Markovian for small t, approach exponential hold=-

ing times as t Y-, That tis,

t
Hy (u)

ratt

'
: ‘ (+ e |
exp. L oA (fe +1) d |
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¥
= ex c g (£ (s1l)d@ + to(1)7
P 53 - o0 J
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