NON-HOMOGENEOUS MARKOV PROCESSES AND THEIR

RELATIONSHIP TO INFINITE PARTICLE GASES

by

> Dudley Paul Johnson A•B., Yale University (1962)

Submitted in Partial Fulfillment
Of The Requirements For The
Degree of Doctor of
Philosophy
At The
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY
September 1966

Signature redacted

Signature redacted

Signature redacted

 Graduate Students

$$
\begin{aligned}
& \text { पु }
\end{aligned}
$$

> VUlatevinu olisy e. A. (SDe I)

IO rojpod Io oerseat

อก1 む
 Y potolk oais

- Bolitsmentsill 20 friombracqal

sosivaeque eLeent

ABSTRACT

ON A CLASS OF TEMPORALLY
NON-HOMOGENEOUS MARKOV PROCESS AND THEIR RELATIONSHIP TO INFINITE PARTICLE GASES
by

Dudley Paul Johnson

Submitted to the Department of Mathematics on August 22, 1966 in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Consider the class of right continuous sample paths $x(t), t \geqslant 0$ with values ± 1 and assume that for each probability measure f on $E= \pm 1$ and for each $e \in \mathbb{E}$, there exist probability measures P_{f} and $P_{f / e}$ for which
(1) $P_{f \mid e}(\cdot)=P_{f}(\cdot \mid x(0)=e)$
(2) $P_{f}(x(0)=e)=f(e)$
(3) $P_{f \mid e}\left(x(t+h) \in A \mid \mathcal{M}_{t}\right)=P_{f_{t} \mid x_{t}}(x(h) \in A) \quad\left[\right.$ a.e. $\left.P_{f \mid e}\right]$,
where \mathcal{M}_{t} is the σ-algebra generated by the events $x(s)$, sst, A is a set of points in E, and $f_{t}(A)=P_{f}(x(t) \in A)$. If

$$
\gamma_{ \pm}(u)=\frac{\partial}{\partial t} P_{f}| \pm 1(x(t)=1)|_{t=0} \quad, u=f(+1)
$$

exists, then the functions γ_{+}and γ_{-}will, under certain technical conditions, uniquely determine the distribution of the process $x(t)$. Such a process is a temporally nonhomogeneous Markov process and will be called a \%-process.

Suppose that $x(t), t \geqslant 0$ is a $\%$-process, f its initial distribution and f_{t} its distribution at time t. Then it is easily shown that f_{t} is the (formal) solution of

$$
\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]
$$

where

$$
B[f](+1)=-B[f](-I)=u \gamma_{+}(u)+(1-u) \gamma(u), \quad u=f(+I)
$$

B is, in general, a non-linear operator. When B is linear and bounded it is natural to think of f_{t} as $\exp (t B) f^{\prime}$. However, when B is non-linear this cannot be done, although a replacement for $\exp (t B)$ can be found.
H. P. McKean, Jr. [3] has done this for $\gamma_{ \pm}(u)= \pm(u-1)$. He defines a linear operator D mapping functions of one variable into functions of two variables and then extends D to functions of any finite number of variables in such a manner that the solution f_{t} of $\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]$ can be expressed as

$$
f_{t}(e)=\int_{E} f\left(d \xi_{1}\right) f\left(d \xi_{2}\right) \ldots \exp (t D)\left[\chi_{e}\right]\left(\xi_{1}, \xi_{2}, \ldots\right)
$$

where E^{∞} is the infinite product of $E= \pm 1$ with itself and X_{e} is the indicator function of e. McKean then shows that the operator D leads to a natural description of the $\%$-process as the motion of a tagged particle in an infinite particle "gas" undergoing binary collisions; the motion of this tagged particle can be calculated from the formula

$$
\begin{aligned}
& P_{f}\left[x\left(t_{1}\right)=e_{1}, x\left(t_{2}\right)=e_{2}, \ldots, x\left(t_{n}\right)=\theta_{n}\right] \\
= & \int f\left(d \xi_{1}\right) f\left(d \xi_{2}\right) \ldots \theta^{t_{1} D} X_{\theta_{1}}{ }^{\left(t_{2}-t_{1}\right) D} X_{e_{2}} \ldots \theta^{\left(t_{n}-t_{n-1}\right) D} X_{e_{n}} .
\end{aligned}
$$

This paper extends the results of McKean to those \%-processes for which $\mp \gamma \pm$ is positive on the open interval $0<u<l$ with at most algebraic roots at O and l, and real analytic on the closed interval $0 \leqslant u \leqslant l$. The equation

$$
\frac{\partial}{\partial t} f_{t} * B\left[f_{t}\right]
$$

is solved using a linear operator D mapping functions of one variable into functions of infinitely many variables. D, in turn, suggests by its form that the $\%$-process can be described as the motion of a single tagged particle in an infinite particle gas. However, unlike McKean's model, collisions of arbitrarily high, but finite order are allowed.

Theses Supervisor: H.P.McKean, Jr.
Title: Professor of Mathematics

TABLE OF CONTENTS

Page

1. Introduction 5
2. $\%$-Process 10
3. Formal solution of $\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]$ 14
4. Solution of $\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]$ 20
5. An Infinite Gas 45
6. Holding Times of a $\%$-Process 62
7. Limiting Behavior as $t \rightarrow \infty$. 64
8. Bibliography 66

1. INTRODUCTION

Consider the right continuous sample paths $x(t), t \geqslant 0$ on the space $E= \pm 1$ and assume that for each probability measure f on E and $e \in E$, there exist probability measures P_{f} and $P_{f / e}$ for which
(1) $\quad P_{f \mid e}(\cdot)=P_{f}(\cdot \mid x(0)=e)$
(2) $P_{f}(x(0)=e)=f(e)$
(3) $P_{f \mid e}\left(x(t+h) \in A \mid \mathcal{M}_{t}\right) \approx P_{f_{t} \mid x_{t}}(x(h) \in A) \quad\left[a \cdot \theta \cdot P_{f} \mid e\right]$;
where \mathcal{M}_{t} is the σ-algebra generated by $x(s), s \leqslant t$, A is a set of points in E, and $f_{t}(A)=P_{f}(x(t) \in A)$.

If

$$
\gamma \pm(u)=\left.\left.\frac{\partial}{\partial t} P_{f}\right|_{I}(x(t)=I)\right|_{t=0} \quad, \quad u=f(t I)
$$

then the functions γ_{+}and γ_{-}will, under certain technical conditions, uniquely determine the distribution of the process $x(t)$. Such a process is a temporally non-homogeneous Markov process and will be called a $\%$-process.

Suppose that $x(t), t \geqslant 0$ is a \%-process, f its initial distribution and f_{t} its distribution at time t. Then it is easily shown that f_{t} is the (formal) solution of

$$
\frac{\partial}{\partial t} \quad f_{t}=B\left[f_{t}\right]
$$

where

$$
B[f](+1)=-B[f](-1)=u \gamma+(u)+(1-u) \gamma-(u), u=f(+1)
$$

B is, in general, a non-linear operator. When B is linear and bounded it is natural to think of f_{t} as $\exp (t B) f_{\text {. }}$ However, when B is non-linear this cannot be done, although a replacement for $\exp (t B)$ can be found, as will now be illustrated in the following example due to H. P. McKean, Jr. [3].

Let $\gamma_{ \pm}(u)= \pm(u-1)$. This gives

$$
B[f](\pm 1)= \pm\left(2 u^{2}-3 u+1\right), \quad u=f(+1) ;
$$

or, to rewrite it in a more suggestive manner,

$$
B[f]\left(e_{1}\right)=\int\left[f\left(e_{1}^{*}\right) f\left(e_{2}^{*}\right)-f\left(e_{1}\right) f\left(e_{2}\right)\right] d e_{2} d o
$$

where $\int d e_{2}$ denotes the s um over $e_{2}= \pm I$ and \int do denotes the sum over the two possible outcomes of the binary collision

$$
\left(\theta_{1}, \theta_{2}\right) \rightarrow\left(\theta_{1}{ }^{*}, \theta_{2}^{*}\right)=\left(e_{1} \theta_{2}, \theta_{2}\right) \text { or }\left(\theta_{1}, \theta_{1} \theta_{2}\right)
$$

This equation is very similar to Boltzmann's equation for a spatially homogeneous Maxwellian gas without exterior forces. In fact, for such a gas, if $f(\underline{V}, t)$ is the distribution of molecules with velocity $d \underline{V}$ at time t and if particles with velocities \underline{V}_{1} and \underline{V}_{2} have velocities $\underline{V}_{1}{ }^{*}$ and $\underline{V}_{2}{ }^{*}$ respectively after a collision, Boltzmann's equation becomes $\frac{\partial}{\partial t} f\left(\underline{V}_{1}, t\right)=\int Q d \underline{V}_{2} \int_{S(1)} d e\left[f\left(\underline{V}_{1}{ }^{*}, t\right) f\left(\underline{V}_{2}{ }^{*}, t\right)-f\left(\underline{V}_{1}, t\right) f\left(\underline{V}_{2}, t\right)\right]$ where $S(1)$ is the unit sphere, $\ell \in S(I)$ a unit vector, and Q is a function of the scattering angle alone.

To find a solution of $\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]$ define an operator D,
mapping functions of one variable into functions of two variables, by $D[Q]\left(e_{1}, e_{2}\right)=Q\left(e_{1} e_{2}\right)-Q\left(e_{1}\right)$. Letting $Q_{1} \otimes Q_{2}$ denote the outer product $Q_{1}\left(e_{1}, \ldots, \theta_{a}\right) Q_{2}\left(e_{a+1}, \ldots, \theta_{a+b}\right)$ when $Q_{1}=Q_{1}\left(e_{1}, \ldots, e_{a}\right)$ and $Q_{2}=Q_{2}\left(e_{1}, \ldots, e_{b}\right)$, we extend D to a derivation acting on functions of any finite number of variables by requiring

$$
D\left[Q_{1} \otimes Q_{2}\right]=Q_{1} \otimes D\left[Q_{2}\right]+D\left[Q_{1}\right] \otimes Q_{2}
$$

With this extension,
$\int_{E}\left(\frac{\partial^{n}}{\partial s^{n} f_{S}}\right)(e) Q(e) d e=\int_{E} n+1 f_{S}\left(e_{0}\right) \ldots f_{S}\left(e_{n}\right) D^{n}[Q] d \theta_{0} \ldots d e_{n}$
for functions Q of one variable. Putting $s=0$, and writing f_{t} as a formal Taylor series in t, we get
$\int_{E} f_{t}(e) Q(e) d \theta=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \int_{E^{n+1}} f \otimes \ldots \otimes f^{n}[Q]=\int_{E^{\infty}}^{\infty} \exp (t D)[Q]$
where E^{∞} is the infinite product of $E= \pm 1$ with itself, f^{∞} is the infinite outer product of $f=f_{0}$ with itself, and $\exp (t D)$ is the formal power series $\sum_{n=0}^{\infty} \frac{t^{n}}{n!} D^{n}$. Thus we can formally write the solution of

$$
\partial / \partial t f_{t}=B\left[f_{t}\right] \text { as } \exp (t D)^{*}\left[f^{\infty}\right] .
$$

McKean goes on to show that the derivation D leads to a natural description of the *-process as the motion of a tagged particle in an infinite particle gas undergoing
binary collisions; the motion of this tagged particle can be calculated from the formula

$$
\begin{gathered}
P_{f}\left[x\left(t_{1}\right)=e_{1}, x\left(t_{2}\right)=\theta_{2}, \ldots, x\left(t_{n}\right)=e_{n}\right] \\
=\int f\left(d \xi_{1}\right) f\left(d \xi_{2}\right) \ldots e^{t_{1} D} X_{e_{1}} e^{\left(t_{2}-t_{1}\right) D} \chi_{e_{2} \ldots e^{\left(t_{n}-t_{n-1}\right) D} \chi_{e_{n}},}
\end{gathered}
$$

χ_{e} being the indicator function of e.
This paper extends the results of McKean to those \%-processes for which $\mp \gamma_{ \pm}$is positive on the open interval $0<u<l$ and with at most algebraic roots at o and l, real analytic on the closed interval $0 \leqslant u \leqslant l$. These conditions are necessary and sufficient in order that $\mp \gamma_{ \pm}$can be written as a sum $\mp \sum_{n=1}^{\infty} B_{n}^{ \pm}(u)$ where

$$
B_{n}^{ \pm}(u)=\sum_{k=0}^{n} c_{n}^{ \pm}(k)\binom{n}{k} u^{k}(1-u)^{n-k}, c_{n}^{ \pm}(k) \geqslant 0
$$

are Bernstein polynomials and

$$
\sum_{n=1}^{\infty} n^{p} \max _{k \leqslant n, \pm} c_{n}^{ \pm}(k) \leqslant p!\mathbb{I}^{p}
$$

for all positive integers p. The equation $\partial / \partial t f_{t} \approx B\left[f_{t}\right]$ is solved using a derivation, mapping functions of one variable into functions of infinitely many variables, which is expressed in terms of the coefficients $C \frac{\dagger}{n}(k)$. This derivations, in turn, suggests that the \%-process can be described as the motion of a single tagged particle in an infinite particle gas. However, unlike McKean's model, collisions of arbitrarily high, but finite order are allowed. In fact, an n-fold
collision is allowed in the infinite particle gas whenever the term $B \frac{ \pm}{n}$ in the Bernstein representation of $\mp \gamma_{ \pm}$is not identically zero; consequently this representation is fundamental in the construction of the infinite particle gas. It is also true, as I will show later, that the sample paths of any finite class of particles in the infinite particle gas, are independent. Finally, I calculate the holding times for a \%-process and give a brief discussion of the limiting behavior of a $*$-process as $t \rightarrow \infty$.

This paper is arranged as follows. The second section gives a formal description of \%-processes. The third sections gives a formal description of the integration of the non-linear equation $\partial / \partial t f_{t}=B\left[f_{t}\right]$ by which the distribution $f_{t}(e)=P_{f}(x(t)=e)$ is governed. The fourth section applies the formal results of the third section to a particular class of \%-processes. The fifth section constructs the $\%$-process as the limit of the motions of a single particle in an n-particle gas as $n \rightarrow \infty$. In the sixth section, holding times are calculated for the $\%$-process. Finally, in the seventh section the limiting behavior of a $\%$-process as $t \rightarrow \infty$ is discussed.

2. $\%-$ PROCESSES

Suppose we are given a sample space Ω, a state space $E= \pm 1$, and a time interval $T=[0,+\infty)$. Then a temporally homogeneous Markov process on Ω, E, T consists of:
(1) for each $t \in T$ a function $x_{t}(w)$ mapping Ω into E,
(2) a $\sigma_{\text {- algebra }} \mathcal{M}_{\infty}$ on Ω together with a family of sub σ-algebras $\mathcal{M}_{t}, t \in T$ such that $\left[x_{t} \in B\right] \in \mathcal{M}_{t}$ for any $t \in T, B \subset E$,
(3) for each $e \in E$ a probability measure P_{e} on μ_{∞} which satisfies:
(a) $B_{e}(x(0)=e)=1$
(b) $P_{e}\left(x(t+h) \in B \mid \mathcal{M}_{t}\right)=P_{x(t)}(x(h) \in B) \quad\left[a \cdot e \cdot P_{e}\right]$.

What we shall now do is to remove the temporal homogeneity. But, rather than letting the transition mechanism vary arbitrarily with time as one would normally do, we will let it vary via the distribution of the particle. Thus, the transition probability functions P_{e} will be replaced by a family of probability measures P_{f} / e where f is a probability measure on E and $e \in E$. The expression $P_{f} / e^{(\Lambda)}$ is to be thought of as the probability that, starting with $\mathrm{x}(\mathrm{o})$ distributed according to f, the event $-\Lambda$ will take place, conditional on $x(o)=e$. This is accomplished by replacing (3) with
(3^{\prime}) for each $e \in E$ and probability measure f on E, there exists a probability measure P_{f} on M_{∞} such that:
$\left(a^{\prime}\right) P_{f}(x(0)=e)=f(e)$
(b') $P_{f}\left(x(t+h) \in A / \mathcal{M}_{t}\right)=P_{f_{t}} \mid x_{t}(x(h) \in A) \quad\left[a \cdot \theta \cdot P_{f}\right]$
where $f_{t}(B)=P_{f}(x(t) \in B)$ is the distribution of $x(t)$ when the starting distribution is f and

$$
P_{f} \mid e(\cdot): P_{f}(\cdot \mid x(0)=e)
$$

Such a process will be called a $\%$-process. It is temporally homogeneous if and only if $P_{f \mid e}$ is independent of f, as the reader can easily check.

Defining $P_{f \mid e}(t ; A)=P_{f} \mid e^{\left(x_{t} \in A\right)}$, we get a formula for the probabilities of joint observations reminiscent of the case of temporally homogeneous Markov processes:

THEOREM 2.1 If x_{t} is $a *-p r o c e s s$, then for $t_{1}<\ldots \delta t_{n}<\infty$,

$$
\begin{gathered}
P_{f} \mid e_{-}\left[x\left(t_{1}\right) \epsilon_{A_{1}}, x\left(t_{2}\right) \in A_{2}, \ldots, x\left(t_{n}\right) \in A_{n}\right] \\
\left.=\int_{A_{1}} P_{f} \mid e^{\left(t_{1}\right.} ; d \xi_{1}\right) \int_{A_{2}} P_{f_{t_{1} \mid \xi 1}}\left(t_{2}-t_{1} ; d \xi_{2}\right) \ldots \int_{A_{n}} P_{f_{t_{n-1}}}\left(t_{n-1}-t_{n-1} ; d \xi_{n}\right)
\end{gathered}
$$

PROOF This is immediate from $3 b^{\prime}$.

COROLLARY 2.2 If x_{t} is $a *$-process, then

$$
P_{f}\left|e^{(s+t ; A)}=\int P_{f}\right| e^{(t ; d \xi) P_{f} t \mid \xi}(s ; A) .
$$

DEFINITION 2.3 Let $p(t)=f_{t}(+1)$ and $p_{e}(t)=P_{f)}(t ;+1)$ be the probability that $x(t)=+1$ and the probability that $x(t)=+1$ conditional on $x(0)=e$ respectively, given that $x(0)$ has the distribution f.

According to Theorem 2.1, the function $p_{e}(t)$ determines the distribution of the process on cylinder sets. DEFINITION 2.4 Letting $u=f(+1)=p(0)$, define
(1) $\gamma_{e}(u)=\partial /\left.\partial t P_{f \mid e}(t ;+1)\right|_{t=0}=\left.\frac{\partial}{\partial t} P_{e}(t)\right|_{t=0}$
(2) $\gamma(u)=u \gamma_{+}(u)+(1-u) \gamma_{-}(u)$

DEFINITION 2.5 Let B be the operator (usually non-linear) mapping distributions f into functions $B[f]$ defined by

$$
B[f](+1)=-B[f](-1)=\gamma[f(+1)]
$$

THEOREM 2.6 If x_{t} is a $\%$-process and if $p_{e}(t)$ is differentiable in $t \geqslant 0$, then
(1) $\frac{\partial}{\partial t} p(t)=\gamma[p(t)]$
or, to put it in an equivalent form $\frac{\partial}{\partial t} f_{t}(e)=B\left[f_{t}\right](e)$
(2) $\frac{\partial}{\partial t} p_{e}(t)=p_{e}(t) \gamma+[p(t)]+\left[1-p_{e}(t)\right] \gamma-[p(t)]$.

PROOF Taking the equation in Corollary 2.2 and differentiating both sides with respect to s and leeting $s=0$, we get (2). (1) follows from (2) if we notice that $p(t)=\int f(d e) p_{e}(t)$.

Equation (1) of Theorem 2.6, which is in general nonlinear, has a unique solution bounded by o and I if γ satisfies
a Lipschitz condition and if $\gamma(0) \geqslant 0$ and $\gamma(1) \leqslant 0$. Once the solution of (1) is known, equation (2) becomes a linear problem for $p_{e}(t)$:

$$
\begin{aligned}
& \frac{d}{d t} p_{\theta}(t)=F(t)+G(t) p_{e}(t) \text { where } F(t)=\gamma[p(t)] \\
& \text { and } G(t)=\gamma_{+}[p(t)]-\gamma_{-}[p(t)] .
\end{aligned}
$$

This equation, in turn, has a unique solution bounded by \circ and I if γ_{+}and γ_{-}are continuous and $\mp \gamma_{ \pm} \geqslant 0$. Having uniquely determined the transition function $P_{f} \mid e$, we can construct the *-process by defining probabilities on the cylinder sets in the manner suggested in Theorem 2.1:
$p\left[x\left(t_{1}\right) \in A_{1}, x\left(t_{2}\right) \in A_{2}, \ldots, x\left(t_{n}\right) \in A_{n}\right]$
$\left.=\int_{A_{1}} P_{f} \mid e^{\left(t_{1}\right.} ; d \xi_{1}\right)\left.\quad \int_{A_{2}} P_{f_{t_{1}} \mid \xi 1}\left(t_{2}-t_{1} ; d \xi_{2}\right) \ldots \int_{A_{n}} P_{f_{t_{n-1}} \mid \xi}\right|_{n-1} ^{\left(t_{n}-t_{n-1} ; d \xi_{n}\right)}$
where $0<t_{1}<\ldots<t_{n}<\infty$.
Finally, one can regard a \%-process as a temporally homogeneous Markov process on $E \times[0,1]$ by adjoining $p(t)$ as a new coordinate. The transition probabilities of this process are $P_{t}^{*}(e, u ; A, B)=\left\{\begin{array}{l}P_{f} \mid e^{(t ; A)} \text { if } p(t) \in B, f(+1)=u: p(0) \\ 0 \text { otherwise }\end{array}\right.$
and its generator is given by (GF) $(e, p(t))=\gamma_{e}[p(t)][F(+1, p(t))-F(t 1, p(t))]+\frac{\partial}{\partial t} F(e, p(t))$, formally at least.

3. FORMAL SOLUTION OF $\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]$

Since B will usually be non-linear, we linearize the problem by constructing a linear operator D mapping functions Q of one variable into functions $D Q$ of infinitely many variables such that

$$
\int B[f](d \xi) Q(\xi)=\int f^{\infty} D \varphi
$$

where

$$
\int f^{\infty} \psi=\int f\left(d \xi_{1}\right) f\left(d \xi_{2}\right) \ldots \psi\left(\xi_{1}, \xi_{2}, \ldots\right)
$$

The actual choice of D is very arbitrary since there are many such operators. However, in section 4 we shall somewhat restrict the possibilities by requiring that

$$
\gamma_{ \pm}(u)=\int_{\{11\}^{c}} f^{\infty}\left(D X_{+1}\right)(\pm 1, \ldots), u=f(+1) .
$$

This implies that

$$
p_{e}(t)=\int_{\{11\}^{f^{c}}} f^{\infty}\left(e^{t D} \chi_{+1}\right)(e, \ldots) \quad, p(0)=f(+1)
$$

as will be shown in section 5 .
Once D is defined on functions Q of one variable, it will be extended to a class of functions of infinitely many variables in such a manner that if Q and ψ have no common variables, a state of affairs which we indicate by writing the product $Q \psi$ as $Q \otimes \psi$, then
$D[Q \otimes \psi]=Q \otimes D \psi+\psi \otimes D Q$. When D is extended in this mannet, it will be called a derivation for B. This extension will allow us to define $D^{2} Q, D^{3} Q, \ldots$; and, in the cases we shall eventually consider, it will be shown that not only are $D Q, D^{2} Q, \ldots$ in the domain of D, but that $e^{t D} Q=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} D^{n} Q$ converges for sufficiently small t. A calculation which is the basic result of this section shows that if $\partial / \partial t f_{t}=B\left[f_{t}\right]$ and D is a derivation for B, then

$$
\int \frac{\partial p}{\partial t^{p}} f_{t}(d \xi) \varphi(\xi)=\int f_{t}^{\infty} D^{p} \varphi .
$$

Thus, letting $t=0, f=f_{0}$ and writing f_{t} as a formal Taylor series around $t=0$, we get

$$
\int f_{t}(d \xi) Q(\xi)=\int f^{\infty} e^{t D} \phi .
$$

Thus

$$
f_{t}=\left(e^{t D}\right)^{*}\left[f^{\infty}\right]
$$

is the formal solution of $\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]$.
The complications which follow are due to the fact that the derivation I will be using usually maps functions of one variable into functions of infinitely many variables rather than into functions of a finite number of variables. Thus, in extending D to functions of more than one variable, I need a large reserve of variables so as to ensure that $D(Q \otimes \psi)=Q \otimes D \psi+\psi \otimes D Q$ at each stage.

Decompose the set of positive integers I^{+}into a
sequence of dis joint infinite sets I_{1}, I_{2}, \ldots and within each set order its elements according to their natural order, denoting the $j^{\text {th }}$ integer in I_{i} by the pair ij. The elements of these sets will be used as indices of variables $e_{i j}$ having values in E. Introduce the following definitions. DEFINITION 3.1 If Q is a function whose variables have indices in I^{+}and $J C I^{+}$, then $\int_{J} f^{\infty} Q$ is to mean $\left.\int_{i j \in J^{f}} \prod_{d} \xi_{i j}\right) Q$ whenever the integral exists.

DEFINITION $3.2 \mathrm{~J}^{\mathrm{C}}$ denotes the complement of JCI
DEFINITION 3.3 Let C^{i}, i $\geqslant 1$ be the space of all functions Q which can be expressed as a countable sum $\sum_{\alpha} Q_{\alpha}, \sum_{\alpha}\left\|Q_{\alpha}\right\|<\infty$ where Q_{α} has a finite number of variables whose indices are in $I_{1} \cup . . . U I_{i}$ and $\|Q\|$ denotes the uniform norm. DEFINITION 3.4 Let C_{o}^{1} be those functions in C^{i} which have a finite number of variables.

DEFINITION 3.5 Suppose that we have a family of spaces $C_{1}^{m}, C_{o}^{m} \subseteq \mathrm{Cm}_{1} \subseteq \mathrm{C}^{m}$ and a family of linear operators D_{n} mapping C_{1}^{m} into C_{1}^{n+1} for $n \geqslant m$. Then the operators D_{n} will be called a derivation if
(1) $D_{n}(Q \otimes \psi)=\left(D_{n} Q\right) \otimes \psi+\varphi \otimes_{D_{n}} \psi$
(2) $D_{n} Q=\sum_{i=1}^{m} \sum_{j=1}^{\infty} D_{n}(Q)_{i j}$
where $(Q)_{i j}$ denotes Q thought of as a function of the ij-th variable alone, the other variables being held constant.

DEFINITION 3.6 A family $D_{n}, n=1,2, \ldots$ of derivations will be called a derivation for the operator B if and only if
(1) for any $Q \in C_{I}^{m}$ with only one variable, any $n \geqslant m$ and any distribution f,

$$
\int B[f](d \xi) Q(\xi)=\int f^{\infty} D_{n} Q
$$

(2) $D_{n} Q=0$ whenever Q is a constant
(3) $D_{n} Q$ depends upon the variables of Q together with new variables coming only from I_{n+1}, and $D_{n} \varphi$ does not depend on n in the sense that $D_{n} Q$ and $D_{m} Q$ are identical if the new variables which D_{n} adds to φ are renamed; especially, $\int_{I_{n+1}} f_{n} Q$ is independent of $\mathrm{n} \geqslant \mathrm{m}$ 。
DEFINITION 3.7 For $Q \in C_{1}^{m}$, $B^{n} Q$ will mean $D_{n+m} D_{n+m} \ldots D_{m} Q$. The following theorem and its corollary provide a formal solution of $\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]$ through the use of derivations. THEOREM 3.8 (formal) If D is a derivation for the operator B, then

$$
\int f_{t}^{(n)}(d \xi) Q(\xi)=\int f_{t}^{\infty} D^{n} \varphi
$$

for all functions Q of one variable, at least formally. PROOF by induction on n. The theorem certainly holds for $n=l$ by the definition of a derivation. Suppose it also holds for n and put $D^{n} Q=\sum_{\alpha} \psi_{\alpha}$, where ψ_{α} has a finite number $T(\alpha)$ of variables whose indices form a set $J_{\alpha} \subset I_{1} \cup \ldots \cup I_{n+m+1}$ and $\sum_{\alpha}\left\|\psi_{\alpha}\right\|<\infty$

Then

$$
\begin{aligned}
& \int f_{t}^{(n+1)}(d \xi) Q(\xi) \\
& =\frac{d}{d t} \int f_{t}^{(n)}(d \xi) Q(\xi) \\
& =\frac{d}{d t} \int f_{t}^{\infty} D^{n} Q \\
& =\frac{d}{d t} \sum_{\alpha} \int f_{t}^{\infty} \psi_{\alpha} \\
& =\frac{d}{d t} \sum_{\alpha} \int_{J_{\alpha}} f_{t} \otimes \ldots \otimes f_{t} \psi_{\alpha}
\end{aligned}
$$

where $f_{t} \otimes \ldots \otimes f_{t}$ is the $\tau(\alpha)$-fold outer product

$$
=\sum_{\alpha} \sum_{p \in J_{\alpha}} \int_{f_{t}}\left(d \xi_{p}\right) \quad \int_{J_{\alpha} \mid\{p\}} f_{t} \otimes \ldots \otimes f_{t} \psi_{\alpha}
$$

modulo interchanges of sums and differentiations; and hence, treating

$$
\int_{\alpha} \backslash\{p\} f_{t} \otimes \ldots \otimes_{t} \psi_{\alpha} \text { as a function }
$$

of the single variable with index p, we get upon using (1)
of the definition of a derivation

$$
=\sum_{\alpha} \sum_{p \in J_{\alpha}} \int_{t}^{\infty} f_{m+n+1}\left\{\int_{J_{\alpha}} \mid\{p\}_{t} \otimes \ldots \otimes f_{t} \psi_{\alpha}\right\} .
$$

Because of the linearity of D_{m+n+1}, one gets formally

$$
\begin{aligned}
& \sum_{\alpha} \sum_{p \in J} \int_{f_{t}} \int_{J_{\alpha}} \backslash\{p\}_{t}^{f} \otimes \cdots \otimes f_{t} D_{m+n+1}\left(\psi_{\alpha}\right)_{p} \\
& =\int f_{t} \sum_{\alpha}^{\infty} \sum_{p \in J} D_{m+n+1}\left(\psi_{\alpha}\right)_{p} \\
& =\int f_{t}^{\infty} \sum_{p} \sum_{\alpha} D_{m+n+1}(\psi \alpha)_{p} \\
& =\int f_{t}^{\infty} \sum_{p} D_{m+n+1}\left(\sum_{\alpha} \psi_{\alpha}\right)_{p} \\
& : \int f_{t}^{\infty} \sum_{p} D_{m+n+1}\left(D^{n} \varphi\right)_{p} \\
& =\int f_{t}^{\infty} D_{m+n+1} D^{n} \varphi \\
& =\int f_{t}^{\infty} D^{n+1} \varphi
\end{aligned}
$$

COROLLARY 3.9 If D is a derivation for the operator B and if the derivatives $f_{t}^{(n)}(e)$ exist, then f_{t} can be formally written as $f_{t}(e)=\int f^{\infty} e^{t D} X_{e}$ where $e^{t D}$ is defined as the formal Taylor series

$$
\sum_{p=0}^{\infty} \frac{t^{p}}{p!} D^{p} .
$$

4. SOLUTION OF $\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]$

In this section, we will apply the methods of the last section to the problem of solving the equation $\frac{\partial}{\partial t} f_{t}=B\left[f_{t}\right]$. However, to do this we must put some restrictions on

$$
\gamma_{ \pm}
$$

DEFINIIION 4.1 Let H be the class of functions

$$
\gamma_{ \pm}(u)=\mp \sum_{N=1}^{\infty} B_{N}^{ \pm}(u)
$$

where
(I) $B_{N}^{ \pm}(u)=\sum_{k=0}^{N} C_{N}^{ \pm 1}(k)\binom{N}{k} u^{k}(l-u)^{N-k}, C_{N}^{ \pm 1}(k) \geqslant 0$
(2) $\sum_{N=1}^{\infty} \mathbb{N}^{2} C_{N} \leqslant p!L^{p}, p \geqslant 1, C_{N}=\max _{k \leqslant N, \pm 1}^{ \pm} 1(k), L<\infty$ fixed.

A necessary condition for a function to be in H is that it be real analytic as the following theorem demonstrates.

THEOREM 4.2 If $F \in H$, then F has derivatives of all orders and

$$
\left|\left(\frac{d}{d u}\right)^{p} F(u)\right| \leqslant p!(2 L)^{p}
$$

PROOF
$\left|\left(\frac{d}{d u}\right)^{p_{F}(u)}\right|$
$=\left|\left(\frac{d}{d u}\right)^{p} \sum_{N=1}^{\infty} \sum_{k=0}^{N} C_{N}(k)\binom{N}{k} u^{k}(I-u)^{N-k}\right|$
$=\left\lvert\, \sum_{q=0}^{p}\binom{p}{q} \sum_{N=p-q}^{\infty} \sum_{k=q}^{N-p_{+} q} C_{N}(k)\binom{N}{k} k \ldots(k-q+1) u^{k-q}\right.$

$$
\cdot(N-k) \ldots(N-k-p+q+l)(-1)^{p-q}(1-u)^{N-k-p+q} \mid
$$

$=\left\lvert\, \sum_{q=0}^{p}\left(\begin{array}{l}p \\ q\end{array} \sum_{N=p-q}^{\infty} \sum_{k=0}^{N-p} C_{N}(k+q)\binom{N}{k+q}(k+q) \ldots(k+l)(N-k-q) \ldots\right.\right.$

$$
\cdot(N-k-p+1)(-1)^{p-q} u^{k}(1-u)^{N-p-k} \mid
$$

$\leqslant \sum_{q=0}^{p}\binom{p}{q} \sum_{N=p-q}^{\infty} \frac{N:}{(N-p)!} C_{N} \sum_{k=0}^{N-p}\binom{N-p}{k} u^{k}(I-u)^{N-p-k}$
$\leqslant \sum_{q=0}^{p}\binom{p}{q} \sum_{N=p-q}^{\infty} N^{p} C_{N}$
$\leqslant \sum_{q=0}^{p}\binom{p}{q} p!L^{p}$

$$
=p!(2 L)^{p}
$$

Notice that the term wise differentiation is justified by the convergence of the resulting sums.

COROLLARY 4.3 If $\mp \partial_{ \pm} \in H$, then γ is real analytic on $[0,1]$ and the solution $f_{t}(+1)$ of

$$
\left.\frac{\partial}{\partial t} f_{t}(+1)=B\left[f_{t}\right](+1)=\partial\left[f_{t}\right](+1)\right]
$$

has derivatives of all orders.
LEMMA 4.4 If $F, G \in H$, then $F G \in H$.

PROOF Let

$$
\begin{aligned}
& F(u)=\sum_{N=1}^{\infty} \sum_{k=0}^{N} C_{N}(k)\binom{N}{k} u^{k}(1-u)^{N-k} \\
& G(u)=\sum_{N=1}^{\infty} \sum_{k=0}^{N} d_{N}(k)\binom{N}{k} u^{k}(1-u)^{N-k}
\end{aligned}
$$

then

$$
F(u) G(u)=\sum_{N=1}^{\infty} \sum_{k=0}^{N} e_{N}(k)\binom{N}{k} u^{k}(1-u)^{N-k}
$$

where

$$
e_{N}(k)=\binom{N}{k}-1 \sum_{N_{1}+N_{2}=\mathbb{N}} \sum_{\substack{k_{1}+k_{2} \\ k_{1} \leqslant N_{1} \\ k_{2} \leqslant N_{2}}} C_{N_{1}}\left(k_{1}\right) d_{N_{2}}\left(k_{2}\right)\left({ }_{N_{1}}^{N}\right)\binom{N_{2}}{k_{2}^{2}}
$$

Letting $e_{N}=\max _{k \leqslant n} e_{N}(k)$ we have
$\sum_{N=1}^{\infty} N^{p} \theta_{N}$
$\leq \sum_{N=1}^{\infty} \sum_{k=0}^{N} N_{N} e_{N}(k)$
$=\sum_{N=1}^{\infty} \sum_{k=0}^{N} N^{N} p_{(}^{N} N_{k}-1 \sum_{N_{1}+N_{2}} \sum_{\substack{k_{1}+k_{2} \\ k_{1}^{1} \leqslant N_{1} \\ k_{2} \leqslant N_{2}}} C_{N_{1}}\left(k_{1}\right) d_{N_{2}}\left(k_{2}\right)\left(N_{1}^{N}\right)\left(N_{1} N_{2}^{2}\right)$

$$
\begin{aligned}
& =\sum_{N_{1}, N_{2}} \sum_{2} \sum_{k_{1} \leqslant N_{2} \leqslant N_{2}^{1}}^{k_{1}^{1}}\left(N_{1}+N_{2}\right)^{p} C_{N_{1}}\left(k_{1}\right) d_{N_{2}}\left(k_{2}\right)\binom{N_{1}+N_{2}}{k_{1}+k_{2}}^{-1}\binom{N_{1}}{k_{1}}\binom{N_{2}}{k_{2}} \\
& \leqslant \sum_{N_{1}, N_{2}} \sum_{\substack{k_{1} \leqslant N_{1} \\
k_{2} \leqslant N_{2}}}\left(N_{1}+N_{2}\right)^{p} C_{N_{1}}\left(k_{1}\right) d_{N_{2}}\left(k_{2}\right) \\
& \leqslant \sum_{N_{1}, N_{2}} N_{1} N_{2} \sum_{q=0}^{p}\left(\frac{p}{q}\right) N_{1}^{q} N_{2}^{p-q} C_{N_{1}} d_{N_{2}} \\
& \leqslant \sum_{q=0}^{p}\left({ }_{q}^{p}\right)\left(\sum \sum_{1}^{q+1} C_{N_{1}}\right)\left(\sum N_{2}^{p-q+1}{ }_{d_{N_{2}}}\right) \\
& \leqslant \sum_{q=0}^{p}(\underset{q}{p})(q+1): L^{q+1}(p-q+1): L^{p-q+1} \\
& \leqslant L^{p+2}(p+1)!\sum_{q=0}^{p}\left(\frac{p}{q}\right) \\
& \leqslant(4 \mathrm{~L})^{\mathrm{p}+2}{ }_{\mathrm{p}} \text {. }
\end{aligned}
$$

LEMMA 4.5 If $F \in H$, then $\exp (F) \in H$

$$
F(u)=\sum_{N=1}^{\infty} \sum_{k=0}^{N} C_{N}(k)\binom{N}{k} u^{k}(1-u)^{N-k}
$$

Then

$$
\exp (F(u))=\sum_{M=0}^{\infty} \sum_{j=0}^{M}\left(\frac{M}{j}\right) \hat{C}_{M}(j) u^{j}(1-u)^{M-j}
$$

where
$\hat{\mathrm{C}}_{\mathrm{M}}(\mathrm{j})$

Thus
$\sum_{M=0}^{\infty} M^{p} \hat{C}_{M}$
$\leqslant \sum_{M=0}^{\infty} \sum_{j=0}^{M} M^{p^{p}} \hat{C}_{M}(j)$
$=\sum_{M=0}^{\infty} \sum_{j=0}^{M} M^{p}\left(M_{j}^{M}\right)^{-1} \sum_{n=0}^{\infty}(n!)^{-1} \sum_{N_{1}+\ldots+N_{n}}=\sum_{\substack{k_{1}^{+\ldots}+\ldots k_{n}^{n} \\ k_{1} \leq j \\ k_{n} \leqslant N_{1}}}\left(\mathbb{N}_{n}\right.$

$$
\cdot{ }^{C_{N_{1}}}\left(k_{1}\right) \cdots C_{N_{n}}\left(k_{n}\right)
$$

$$
K_{n} \leqslant N_{n}
$$

$$
\cdot{ }^{C_{N_{1}}}\left(k_{1}\right) \cdots C_{N_{n}}\left(k_{n}\right)
$$

$\leqslant \sum_{N_{1}, \cdots, N_{n}} \sum_{\substack{k_{1} \leqslant N_{1} \\ k_{n} \leqslant N_{n}}} \sum_{n=0}^{\infty}(n!)^{-1}\left(N_{1}+\ldots+N_{n}\right)^{p} C_{N_{1}} \ldots c_{N_{n}}$

$$
=\sum_{n=0}^{\infty}(n!)^{-1} L^{p} 2 n(2 n+1) \ldots(2 n+p-1)
$$

$$
\leqslant(2 L)^{p} p: \sum_{n=0}^{\infty}(n!)^{-1}(n+p-1)
$$

$$
\leqslant p!(2 L)^{p} \sum_{n=0}^{\infty}(n!)^{-1} 2^{n} 2^{p-1}
$$

$$
\leqslant p!(4 L)^{p} e^{2} .
$$

LEMMA 4.6 (Hausdorff [1]) If a polynomial F is positive (>0) on the open interval (0,1), then it can be expressed as

$$
F(u)=\sum_{m=0}^{N} a_{m} X_{N, m}(u), a_{m} \geqslant 0
$$

where $X_{N, m}(u)=\binom{N}{m} u^{m}(1-u)^{N-m}$, provided that N is sufficiently

$$
\begin{aligned}
& \leqslant \sum_{N_{I^{\prime}+\ldots,} N_{n}} \sum_{n=0}^{\infty}(n!)^{-I_{n}} N_{I^{\prime}} . N_{n}\left(N_{I^{+\ldots+N_{n}}}\right)^{p} C_{N_{1}} \ldots C_{N_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot{ }^{N_{1}} \ldots N_{n} C_{N_{1}} \cdots C_{N_{n}} \\
& =\sum_{n=0}^{\infty}(n!)^{-1} \sum_{s_{1}+\ldots+s_{n}=p} p!L^{p}\left(s_{1}+1\right) \ldots\left(s_{n}+1\right)
\end{aligned}
$$

large.
PROOF If $F(0)$ or $F(I)$ equals o, then we can write $F(u)$ as $u i(1-u)^{j} \hat{F}(u)$ where $\hat{F}(u)$ is positive (>0) on the closed interval $[0,1]$. We therefore need only prove the lemma for F positive (>0) on $[0,1]$. Suppose that $F(u): \sum_{k=0}^{n} \alpha_{k^{u}}^{k}$ is a positive polynomial on the interval $[0,1]$. Then we wish to write F in the form $F(u)=\sum_{m=0}^{N} a_{m} X_{N, m}(u)$. An easy calculation shows that
$a_{m}=\frac{n}{k=} \alpha_{k} \quad \frac{m!(N-k)!}{N!(m-k)!}=\sum_{k=0}^{n} \alpha_{k} \quad \frac{m(m-1) \ldots(m-k+1)}{N(N-1) \ldots(N-k+1)}$
or, $a_{m}=F_{N}\left(\frac{m}{N}\right)$ where

$$
F_{N}(u)=\sum_{k=0}^{n} \alpha_{k} \frac{N u(N u-1) \ldots(N u-k+1)}{N(N-1) \ldots(N-k+1)}
$$

But, as N increases $\frac{N u-h}{N-h}$ converges to u and hence $F_{N}(u)$ converges to $F(u)$ and thus for large $N,\left|a_{m}-F\left(\frac{m}{\mathbb{N}}\right)\right|<\varepsilon$ for $m=0$, l,..., N. Thus for N sufficiently large, $a_{m} \geqslant 0$ and the theorem is proved.

LEMMA 4.7 If F is a complex valued function on the complex numbers, real on the real numbers and analytic on the closed disc $|z| r l$, then for any sufficiently large real constant C, $F(z)+C \in H$.
PROOF Let F be real on the real line and analytic in the closed disc $\mid=1$. Then there exists a $\delta>0$ such that $F(z)=\sum_{N=0}^{\infty} \alpha_{N} z^{N}$ for $|z| \leqslant I+\delta$ where
$\left|\alpha_{N}\right|=\frac{\left|F^{(N)}(0)\right|}{N!} \leqslant(I+\delta)^{-N}$ A, A a positive constant.

Now let
$b_{n}=\left\{\begin{array}{l}\alpha_{N} \text { if } \alpha_{N \geqslant}, 0 \\ 0 \text { otherwise }\end{array}, \quad a_{N}=\left\{\begin{array}{l}-\alpha_{N} \text { if } \alpha_{N}<0 \\ 0 \text { otherwise }\end{array} \quad, \quad C=d-b_{0}+\sum_{N=0}^{\infty} a_{N}, d \geqslant 0\right.\right.$

Then

$$
F(z)+C=d+\sum_{N=1}^{\infty} b_{N} z^{N}+\sum_{N=1}^{\infty} a_{N}\left(1-z^{N}\right) .
$$

But $\quad 1-z=\frac{N}{N} \sum_{k=0}^{N-1}\binom{\mathbb{N}}{k} z^{k}(1-z)^{N-k}, N \geqslant I$
and hence, letting

$$
B_{N}(z)=\sum_{k=0}^{N} C_{N}(k)\binom{N}{k} z^{k}(I-z)^{N-k}
$$

where $C_{1}(0)=a_{1}+d, C_{1}(1)=b_{1}+d$ and

$$
C_{N}(k)=\left\{\begin{array}{l}
a_{N} \text { for } 0 \leqslant k<N \\
b_{N} \text { for } k: N
\end{array}, N>l\right.
$$

we get

$$
F(z)+C=\sum_{N=1}^{\infty} B_{N}(z)
$$

Thus we have represented $F+C$ as a sum of Bernstein Polynomials when $c \geqslant-b_{0}+\sum_{N=0}^{\infty} a_{N}$. We therefore need only show that condition (2) is satisfied. But $C_{N}=\max _{K \leqslant n} C_{N}(k)=\left|\alpha_{N}\right| \leqslant(I+\delta)^{-N} A$.

Hence

$$
\sum_{N=0}^{\infty} N^{p} C_{N}
$$

$$
\leqslant A \sum_{N=0}^{\infty} N^{p} e^{-N} \ln (1+8)
$$

which corresponds to

$$
\begin{gathered}
\int_{0}^{\infty} t^{p} e^{-t \ln (1+\delta)} d t \\
=\frac{p!}{[\ln (1+\delta)]}
\end{gathered}
$$

$=$

$$
\leqslant \mathrm{p} \cdot \mathrm{~L}^{\mathrm{p}}
$$

for a suitable L.
We can now give a sufficent conditions that F be contained in H .

LEMMA 4.8 If F is analytic on the closed disc $|z| \leqslant 1$, real on the reals and positive on $[0,1]$, then $F \in H$. PROOF Since F is analytic on $|z| \leqslant 1$, real on the reals and positive on $[0, I]$, it can be written as

$$
e^{-C}\left(z-z_{1}\right)\left(z-z_{1}^{*}\right) \ldots\left(z-z_{n}\right)\left(z-z_{n}^{*}\right) e^{C \not+G(z)}
$$

where z^{*} is the conjugate of z, G is analytic on $|z| \leqslant 1$ and real on the reals.
For C sufficiently large, $C+G(z) \in H$ and hence $\exp (C+G(z)) \in H$. Since, according to Hausdorff's lemma,

$$
\left(z-z_{1}\right)\left(z-z_{1}^{*}\right) \ldots\left(z-z_{n}\right)\left(z-z_{n}^{*}\right) \leqslant H .
$$

and since H is closed under products, the proof is complete.

LEMMA 4.9 If $F, G \in H$ and G is a polynomial, $0 \leqslant G(u) \leqslant I$ on $(0,1)$, then $F(G(\cdot)) \in H$.

PROOF Let

$$
\begin{aligned}
& F(u)=\sum_{N=1}^{\infty} \sum_{k=0}^{N} C_{N}(k)\binom{N}{k} u^{k}(1-u)^{N-k} \\
& G(u)=\sum_{p=0}^{M} d(p) u^{p}(I-u)^{M-p} \\
& I-G(u)=\sum_{q=0}^{M} e(q) u^{q}(1-u)^{M-q}
\end{aligned}
$$

Then
$F(G(u))$
$=\sum_{N=0}^{\infty} \sum_{k=0}^{N} C_{N}(k)\left(\begin{array}{l}N \\ k\end{array}\right]\left[\sum_{p=0}^{M} d(p) u^{p}(1-u)^{M-p}\right] k$

$$
\left[\sum_{q=0}^{M} e(q) u^{q}(1-u)^{M-q}\right]^{N-k}
$$

$=\sum_{N=1}^{\infty} \sum_{j=0}^{N M} \hat{C}_{N M}(j)\binom{N M}{j} u^{j}(1-u)^{M N-j}$
where
$\hat{C}_{\text {WM }}(j)$

$$
\begin{gathered}
=\left(\begin{array}{c}
N M
\end{array}\right)^{-1} \sum_{k=0}^{N} C_{N}(k)\binom{N}{k} \sum_{p_{1}+\ldots+p_{k}+q_{1}+\ldots+q_{N-k}} d\left(p_{1}\right) \ldots d\left(p_{k}\right) e\left(q_{1}\right) \ldots e\left(q_{N-k}\right) \cdot \\
0 \leqslant p, q \leqslant M
\end{gathered}
$$

Using Stirling's formula we have

$$
\begin{gathered}
\binom{N M}{j}^{-1} \\
\sim(2 \pi M N)^{\frac{1}{2}}\left(\frac{j}{\operatorname{mN}}\right)^{\frac{1}{2}}\left(1-\frac{j}{1 N N}\right)^{\frac{1}{2}}\left(\frac{j}{M N}\right)^{j}\left(1-\frac{j}{M N}\right)^{M N-j}
\end{gathered}
$$

$$
\leqslant 2 \pi M N\left({ }_{M N T}^{j}\right)^{j}\left(1-\frac{j_{1 N}}{M_{N}}\right)^{M N-j}
$$

and thus

$$
\sum_{N=1}^{\infty}(N M)^{p} \hat{C}_{N M}
$$

$$
\leqslant \sum_{N=1}^{\infty}(N M)^{p} \sum_{j=0}^{N M} \hat{c}_{N M}(j)
$$

$$
\begin{gathered}
=\sum_{N=1}^{\infty}(N M)^{p} \sum_{j=0}^{N M} \sum_{k=0}^{N} c_{N}(k)\binom{N}{k}\binom{N M}{j}^{-1} \sum_{p_{1}^{*}++p_{k}+q_{1} \ldots+q_{N-k}} d\left(p_{1}\right) \ldots d\left(p_{k}\right) \\
0 \leqslant P, q \leqslant M
\end{gathered}
$$

$$
\text { - } e\left(q_{1}\right) \ldots e\left(q_{N-k}\right)
$$

$\leqslant \sum_{N=1}^{\infty}(N M)^{p} \sum_{j=0}^{N M} \sum_{k=0}^{N} C_{N}(k)\binom{N}{k} 2 \pi M N \sum_{p_{1}+\ldots+p_{k^{+}} q_{I^{k}}+q_{N-k}} d\left(p_{N-k}=j p_{k}\right)$

$$
0 \leqslant p, q \leqslant M
$$

$$
\begin{aligned}
& \text { - } e\left(q_{l}\right) \cdots e\left(q_{N-k}\right)\left(\frac{j}{N M}\right)^{j}\left(I-\frac{j}{N M}\right)^{N M-j} \\
& \leqslant 2 \pi_{M}^{p+1} \sum_{N=1}^{\infty} N^{p+1} C_{N} \sum_{m=0}^{M N} \sum_{k=0}^{N}\left(N_{k}^{N}\right) \sum_{j=0}^{N M} \sum_{p_{1}+\ldots+p_{k}+q_{1}+\ldots+q_{N-k}=j} d\left(p_{p_{1}}\right) \cdots d\left(p_{k}\right) \\
& 0 \leqslant p, q \leqslant M \\
& \text { - } e\left(q_{1}\right) \ldots e\left(q_{N-k}\right)\left(\frac{m}{N M}\right)^{j}\left(1-\frac{m}{N M}\right)^{N M-j} \\
& =2 \Pi_{M}{ }^{p+1} \sum_{N=1}^{\infty} N^{p+1} C_{N} \sum_{m=0}^{M N} \sum_{k=0}^{N}\binom{N}{k}\left[G\left(\frac{m}{N M}\right)\right]^{k}\left[1-G\left(\frac{m}{N M}\right)\right]^{N-k} \\
& =2 \pi M^{p+2} \sum_{N=1}^{\infty} \mathbb{N}^{p+2} C_{N} \\
& \leqslant 2 \pi M^{p+2}(p+2): L^{p+2}
\end{aligned}
$$

$$
\leqslant \mathrm{p}!\hat{\mathrm{L}}^{\mathrm{p}}
$$

for suitable \hat{L}.
THEOREM 4.10 $F \in H$ if and only if F is positive on the open interval $(0,1)$, with at most algebraic roots at \circ and 1 , and real analytic on the closed interval [0, 1] .

PROOF If $F \in H$, then F is certainly positive on the open interval $(0,1)$ and, by Theorem 4.2, it is real analytic on the closed interval $[0, I]$. Therefore assume that F is positive
and real analytic on the closed interval $[0,1]$; if F had roots at o or 1 we could divide through by them. Then we can find a domain D, symmetric about and containing the interval $[0,1]$ on which F is analytic. If there exists a polynomial G mapping D conformally onto a disc containing the unit disc; and if G is real on the reals with $G(0)=0$ and $G(I)=I$; then $F\left(G^{-1}(w)\right)$ is analytic on the closed unit disc; real on the reals and positive on $[0,1]$. Thus, by Lemma $4.8, F\left(G^{-1}(\cdot)\right) \in H$ and by Lemma $4.9 \mathrm{~F}^{-1}\left(\mathrm{G}^{-1}(\mathrm{G}(\cdot))\right)$ $=F(\cdot) \in H^{\prime} \quad$ Therefore, to complete the proof we need only show that G exists.

Let $G_{1}(z)$ be the unique conformal mapping of D onto the disc $|z|<2$ where $G_{1}(0): 0$ and $G_{1}^{\prime}(0)>0$. Since D is symmetric about the interval $[0,1],\left[G_{1}\left(z^{*}\right)\right]^{*}$ also maps D, conformally onto $|z|<2$ and hence $\left[G_{1}\left(z^{*}\right)\right]^{*}=G_{1}(z)$ and G_{1} is real on the real axis. Since there exists a sequence of polynomials converging uniformly to G_{1} on D, let G_{2} be a polynomial for which $G_{2}(0)=0$ and $/ G_{1}(z)-G_{2}(z) / r \varepsilon$ for $z \in D$; and define $\left\langle G(z)\right.$ as a $\left[G_{2}(z)+G_{2}\left(z^{*}\right)^{*}\right]$ where $a=\frac{1}{2}\left[G_{2}(1)+G_{2}(1)^{*}\right]^{-1}$. Then, for ε sufficiently small, G maps D into a region which contains a disc of radius $a(2-\varepsilon)$; notice that for ε small, a is approximately equal to $\left[G_{1}(1)\right]^{-1}$. Furthermore, G is real on the reals, $G(0)=0$ and $G(I)=1$. We need therefore only show that G is $1-1$ to complete the proof. Let C be the arc in D which is the inverse image
of the circle $|z|=a(2-\varepsilon)$ under the mapping G_{1}. Then $G_{I} \neq 0, \infty$ on C and for any w contained in the disc

$$
\begin{aligned}
& |z|<\frac{1+a(2-\varepsilon)-1}{2} \text { we have } \\
& a G_{I}(z)-w=G(z)-w+h(z)
\end{aligned}
$$

where $|h(z)|<\varepsilon$. But $|G(z)-w|>\varepsilon>|h(z)|$ for ε sufficiently small, $z \in C$. Thus, by Rouche's Theorem, $G(z)$ takes on the value w only once. Therefore G maps a domain $D^{l} \subset D, D^{l}$ containing the interval $[0,1]$, conformally onto a disc containing the unit disc and thus the proof is complete.

Our present task is to construct a derivation D for B when $\mp \gamma_{\underline{ \pm}} \in H$ and to show that $e^{t D}=\sum_{p=0}^{\infty} \frac{t^{p}}{p!} D^{p}$ is well defined for small t. Divide the positive integers into infinite classes $I_{i}, i=I, 2, \ldots$ as in the second section, let the pair ij represent the $j^{\text {th }}$ integer in I_{i} under the natural ordering, and let $\Delta_{i j} Q=Q\left(\ldots,-e_{i j}, \ldots\right)-Q\left(\ldots, \theta_{i j}, \ldots\right)$. DEFINITION 4.11 For $Q \in C_{0}^{m}$ and $n \geqslant m$, let

$$
D_{n} Q=\sum_{N=1}^{\infty} \sum_{i=1}^{m} \sum_{j=1}^{\infty} C\left(e_{i j} \mid e_{\left.n+1,1, \ldots, e_{n+1, N}\right)} \Delta_{i j} Q\right.
$$

wherec $\left(e \mid e_{1}, \ldots, e_{N}\right)=C_{N}^{e}$ (number of +1 's in the set $\left.e_{1}, \ldots, \theta_{N}\right)$. This sum clearly converges since, for Q having p variables,
$\sum_{N=M}^{\infty} \sum_{i=1}^{m} \sum_{j=1}^{\infty}\left\|C\left(e_{i j} \mid e_{n+1,1}, \ldots, e_{n+1, N}\right) \Delta_{i j} Q\right\|$ $\leqslant 2 p\|\otimes\| \sum_{N=M}^{\infty} C_{N}$
converges to zero as $\mathbb{M} \rightarrow \infty$. In order that the operators D_{n} be a derivation, we must define the spaces C_{1}^{m}. To do this, define by induction $C_{1}^{1}=C_{o}^{1}$ and $C_{1}^{n}=\left(D_{n-1} C_{1}^{n-1}\right) \cup C_{o}^{n}$. This, of course, presupposes that $D_{n} Q$ is defined for $Q \in C_{1}^{m}, m \leqslant n$. This will be shown in this chapter. However, before doing this, note that if C_{I}^{m} is defined, then the family of operators D_{n} are indeed a derivation for B. This is easily seen by the following theorem together with a few simple observations.
THEOREM 4.12 If $Q \in C_{o}^{\infty}$ has only one variable, then

$$
\int B[f](d \xi) Q(\xi)=\int f^{\infty} D_{n} Q .
$$

PROOF

$$
\begin{aligned}
& \int f^{\infty} D_{n} \varphi \\
= & \int f^{\infty} \sum_{N=1}^{\infty} \sum_{i=1}^{m} \sum_{j=1}^{\infty} C\left(e_{i j} \mid e_{n+1,1}, \ldots, e_{n+1, N}\right) \Delta_{i j} \varphi \\
= & \sum_{N=1}^{\infty}\left(f^{\infty} C\left(\left.e_{i_{0} j o}\right|_{n+1, I}, \ldots, e_{n+1, N}\right) \Delta i_{i_{0} j_{0}} \varphi\right. \\
= & \sum_{N=1}^{\infty} \sum_{k=0}^{N} \int_{\Lambda_{k}} f^{\infty} C\left(e_{i_{0} j_{0}} \mid e_{n+1,1}, \ldots, e_{n+1, N}\right) \Delta_{i_{0} j_{0}} \varphi
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \Lambda_{k} \text { is the set of all sequences }\left[e_{n+1, I}, \ldots, \theta_{n+1, N}\right] \\
& \text { containing exactly } k,+1 \text { 's } \\
& : \sum_{N=1}^{\infty} \sum_{k=0}^{N}\left(\frac{N}{k}\right)[f(+1)] k[f(-1)]^{N-k} \int f\left(d e_{i_{0} j_{0}}\right) c_{N}^{\delta}(k) \Delta_{i_{0} j_{0}} Q
\end{aligned}
$$

where $\quad \delta=e_{i_{o} j_{o}}$

$$
\begin{aligned}
& =\sum_{N=1}^{\infty} \sum_{k=0}^{N}(\underset{k}{N}) u^{k}(1-u)^{N-k_{C}}{ }_{N}^{+1}(k)[Q(-1)-Q(+1)] u \\
& +\sum_{N=1}^{\infty} \sum_{k=0}^{N}\binom{N}{k} u^{k}(1-u)^{N-k_{C}}{ }_{N}^{-1}(k)[Q(+1)-Q(-1)](1-u) \\
& =-u \sum_{N=1}^{\infty} B_{N}^{+}(u)[Q(+1)-Q(-1)]+(1-u) \sum_{N=1}^{\infty} B_{N}{ }^{-}(u)[Q(+1)-Q(-1)] \\
& =\left[u{ }_{N}+(u)+(1-u) \gamma-(u)\right][Q(+1)-Q(-1)] \\
& =\gamma(u)[Q(+1)-Q(-1)] \\
& =B[f](+1) Q(+1)-B[f](+1) Q(-1) \\
& =B[f](+1) Q(+1)+B[f](-1) Q(-1) \\
& =\int B[f](d \xi) Q(\xi) .
\end{aligned}
$$

Thus the proof is complete.

We will now show that $D^{n} Q$ (and hence C_{1}^{n}) are defined and that $e^{t D} Q=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} D^{n} Q$ converges for sufficiently small t.
DEFINITION 4.13 Let $Q \in C_{o}^{1}$ have variables with indices $11,12, \ldots, 1 M \in I_{I}$, ie., $Q=Q\left(e_{11}, e_{12}, \ldots, e_{1 M}\right)$ and define by induction on p

$$
Q_{1}(Q ; N)=\sum_{j=1}^{M} C\left(e_{1 j} \mid e_{2 I}, \ldots, e_{2 N}\right) \Delta_{I j} Q
$$

$Q_{p+1}\left(Q ; N_{1}, \ldots, N_{p+1}\right)$
$=\sum_{i=1}^{p+1} \sum_{j=1}^{N} c\left(e_{i j} \mid e_{p+2,1}, \ldots, e_{p+2}, N_{p+1}\right) \Delta_{i j} Q_{p}\left(Q ; N_{1},, N_{p}\right)$.
LEMMA 4.14 If $Q \in C_{0}^{1}$ has variables whose indices are 11,....,1M then

$$
D^{p} Q=\sum_{N_{1}, \ldots, N_{p}=1}^{\infty} Q_{p}\left(Q ; N_{1}, \ldots, N_{p}\right)
$$

provided that the sum converges.
PROOF by induction on p . For $\mathrm{p}=1$,

$$
\sum_{N=1}^{\infty} Q_{1}(Q ; N)=\sum_{N=1}^{\infty} \sum_{j=1}^{M} C\left(e_{1 j} / e_{\left.21, \cdots, e_{2 N}\right)} \Delta_{1 j} Q=D_{1} Q=D \varphi .\right.
$$

Now assume that the theorem holds for p . Then
$\sum_{\mathbb{N}_{1}, \ldots, \mathbb{N}_{p+1}} Q_{p+1}\left(Q_{\left.; \mathbb{N}_{1}, \ldots, N_{p+1}\right)}\right.$
$=\sum_{N_{1}, \ldots, N_{p+1}} \sum_{i=1}^{p+1} \sum_{j=1}^{N_{i}} C\left(e_{i j} \Theta_{p+2,1}, \ldots, \theta_{p+2, N_{p+1}}\right) \Delta_{i j} Q_{p}\left(\varphi ; N_{1}, \ldots, N_{p}\right)$
$=\sum_{N_{p+1}=1}^{\infty} \sum_{i=1}^{p+1} \sum_{j=1}^{N} i d\left(e_{i j} \mid e_{p+2,1}, \cdots, \theta_{p+2, N_{p+1}}\right)$

- $\Delta_{i j} \sum_{\mathbb{N}_{1}, \ldots, N_{p}: I}^{\infty} Q_{p}\left(\alpha_{\left.; N_{1}, \cdots, N_{p}\right)}\right.$
$=\sum_{N_{p+1}=1}^{\infty} \sum_{i=1}^{p+1} \sum_{j=1}^{N} C\left(e_{i j} \mid e_{p+2,1}, \ldots, e_{p+2, N_{p+1}}\right)$
- $\Delta_{i j}\left(D_{p} D_{p-1} \cdots D_{2} D_{1} \phi\right)$
$=D_{p+1}\left(D_{p} \cdots D_{2} D_{1}\right) Q$
$=D^{p+1} Q$
LEMMA 4.15 If $Q \in C_{o}^{1}$ has M variables, then
$\left\|Q_{p}\left(Q ; N_{1}, \cdots, N_{p}\right)\right\|$

where $T_{k}\left(i_{1}, \ldots, i_{p}\right)$ is the number of integers i_{1}, \ldots, i_{p} equal to k .

PROOF
$\left\|Q_{p}\left(Q ; N_{1}, \ldots, N_{p}\right)\right\|$
$=\left\|\sum_{i=1}^{p} \sum_{j=1}^{N_{i}} C\left(e_{i j} \mid e_{p+1, I}, \ldots, e_{p+1, N_{p}}\right) \Delta_{i j} Q_{p-1}\left(Q_{\left.; N_{1}, \ldots, N_{p-1}\right)}\right)\right\|$
$\leqslant 2 \sum_{i=1}^{p} C_{N_{p}} N_{i}\left\|Q_{p-1}\left(\varphi ; N_{1}, \ldots, N_{p-1}\right)\right\|$
$\leqslant 2^{p-1} C_{N_{p}} C_{N_{p-1}} \ldots C_{N_{2}}\left(\sum_{i_{p}=1}^{p} N_{i_{p}}\right)\left(\sum_{i_{p-1}=1}^{p-1} N_{i_{p-1}}\right) \ldots\left(\sum_{i_{2}=1}^{2} N_{i_{2}}\right)\left\|_{Q_{1}}\right\|$
$\leqslant 2^{p}\|Q\|_{M C_{N_{p}}} \ldots C_{N_{1}} \sum_{i_{p}=1}^{p} \sum_{i_{p-1}=1}^{p-1} \ldots \sum_{i_{1}=1}^{1} N_{i_{p}} \ldots N_{i_{1}}$
$=2^{p}\|Q\|_{M C}{ }_{N_{p}} \ldots C_{N_{1}} \sum_{i_{p}=1}^{p} \ldots \sum_{i_{1}=1}^{I} N_{p} \tau_{p}^{\left(i_{1}, \ldots, i_{p_{1}}\right) \tau_{1}\left(i_{1},, i_{p}\right)}$.
LEMMA 4.16 If

$$
A_{p}=\sum_{i_{p}=1}^{p} \sum_{i_{p-1}=1}^{p-1} \ldots \sum_{i_{1}=1}^{1} \tau_{p}\left(i_{1}, \ldots, i_{p}\right)!\tau_{p-1}\left(i_{1}, \ldots, i_{p}\right)!\tau_{1}\left(i_{1}, \ldots, i_{p}\right)!
$$

then

$$
A_{p}=1 \cdot 3 \cdot 5 \cdot \ldots(2 p-1) \leqslant 2^{p_{p}}:
$$

PROOF by induction on p. The lemma is certainly true for $p=1$. Suppose that it also holds for p. Then

$$
=\sum_{i_{p+1}=1}^{p+1} \sum_{i_{p}=1}^{p} \ldots \sum_{i_{I}=1}^{1}\left[I+\tau_{i_{p+1}}\left(i_{1}, \ldots, i_{p}\right)\right] \tau_{p}\left(i_{I}, \ldots, i_{p}\right)!
$$

$$
\ldots \tau_{I}\left(i_{I}, \cdots, i_{p}\right)!
$$

$$
=(p+1) \sum_{i_{p}=1}^{p} \ldots \sum_{i_{1}=1}^{1} \tau_{p}\left(i_{1}, \ldots, i_{p}\right)!\ldots \tau_{I}\left(i_{1}, \ldots, i_{p}\right)!
$$

$$
\begin{aligned}
& A_{p+1}=\sum_{i_{p+1}=1}^{p+1} \sum_{i_{p}=1}^{p} \ldots \sum_{i_{1}=1}^{1} \tau_{p+1}\left(i_{1}, \ldots, i_{p+1}\right)!\ldots T_{1}\left(i_{1}, \ldots, i_{p+1}\right)! \\
& =\sum_{i_{p+1}=1}^{p+1} \sum_{i_{p}=1}^{p} \ldots \sum_{i_{1} i 1}^{1} T_{p}\left(i_{1}, \ldots, i_{p+1}\right)!\ldots I_{I}\left(i_{1}, \ldots, i_{p+1}\right)! \\
& =\sum_{i_{p+1}=1}^{p+1} \sum_{i_{p}=1}^{p} \cdots \sum_{i_{1}=1}^{1} T_{p}\left(i_{1}, \ldots, i_{p}\right)!\ldots T_{i_{p+1}+1}\left(i_{1}, \ldots, i_{p}\right)! \\
& \cdot\left[1+T_{i_{p}}\left(i_{I}, \ldots, i_{p}\right)\right]: \tau_{i_{p+1}-1}\left(i_{I}, \ldots, i_{p}\right)!\ldots \tau_{I}\left(i_{I}, \ldots, i_{p}\right)!
\end{aligned}
$$

$$
=(p+I) A_{p}+\sum_{i_{p}=1}^{p} \ldots \sum_{i_{I}=1}^{I} P_{p}\left(i_{I}, \ldots, i_{p}\right)!\ldots \tau_{I}\left(i_{I}, \ldots, i_{p}\right)!
$$

$$
=(p+I) A_{p}+p A_{p}
$$

$$
=(2 p+1) A_{p}
$$

$$
=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 p-1)(2 p+1)
$$

and the lemma is proved.
THEOREM 4. 17 If $Q \in C_{o}^{1}$ has a finite number M of variables, then $D^{p} Q$ is defined and $\left\|D^{p} Q\right\| \leqslant p!(4 L)^{p_{M}}\|Q\|$.

PROOF We have shown that

$$
\begin{aligned}
& +\sum_{1_{p+1}=1}^{p+1} \sum_{i_{p}=1}^{p} \ldots \sum_{i_{1}=1}^{I} T_{i_{p+1}}\left(i_{1}, \ldots, i_{p}\right) T_{p}\left(i_{1}, \ldots, i_{p}\right)! \\
& \ldots \sim_{1}\left(i_{1}, \ldots, i_{p}\right)! \\
& =(p+I) A_{p}+\sum_{i_{p} 21}^{p} \ldots \sum_{i_{I}=1}^{1}\left(\sum_{i_{p+1}=1}^{p+1} \Pi_{i_{p+1}}\left(i_{I}, \ldots, i_{p}\right)\right) \tau_{p}\left(i_{1}, \ldots i_{p}\right)! \\
& \ldots \tau_{I}\left(i_{1}, \ldots, i_{p}\right)!
\end{aligned}
$$

$$
D^{p} Q=\sum_{N_{1}, \ldots, N_{p}} Q_{p}\left(\varphi ; N_{1}, \ldots, N_{p}\right)
$$

provided that the sum converges. But, by lemma 4.14, 4.15 and 4.16 and the fact that $\sum \mathbb{N}^{p} C_{N} \leqslant p!L^{p}$, it follows that

$$
\left.\sum_{\mathbb{N}_{1}, \ldots, N_{p}} \|_{Q_{p}\left(Q ; \mathbb{N}_{1}, \ldots, N_{p}\right)}\right) /
$$

$\leqslant 2^{p}\|Q\| M \sum_{\mathrm{H}_{1}, \cdots, N_{p}} C_{N_{p}} \cdots{ }^{C}{ }_{N_{1}}$

- $\sum_{i_{p}=1}^{p} \ldots \sum_{i_{1}=1}^{1} N_{p} \tau_{p}\left(i_{1}, \ldots, i_{p}\right) N_{1} \Gamma_{1}\left(i_{1}, \ldots, i_{p}\right)$
$=2^{p} M\|a\| \sum_{i_{p}=1}^{p} \ldots \sum_{i_{1}=1}^{1}$
- $\left(\sum_{N=1}^{\infty} \tau_{N}\left(i_{1}, \ldots, i_{p}\right), \ldots\left(\sum_{N=1}^{\infty} \tau_{1}\left(i_{1}, \ldots, i_{p_{C_{N}}}\right)\right.\right.$
$\leqslant 2^{p_{M}}\|Q\| \sum_{i_{p}=1}^{p} \sum_{i_{1}=1}^{1} \tau_{p}\left(i_{1}, \ldots, i_{p}\right)!L \tau_{p}\left(i_{1}, \ldots, i_{p}\right)$

$$
\ldots \tau_{1}\left(i_{1},,, i_{p}\right)!\tau^{\tau_{1}\left(i_{1}, \ldots, i_{p}\right)}
$$

$=(2 L)^{p_{M}}\|Q\| \sum_{i_{p}=1}^{p} \ldots \sum_{i_{1}}^{1} \tau_{p}\left(i_{1}, \ldots, i_{p}\right)!\ldots \tau_{1}\left(i_{1}, \ldots, i_{p}\right)!$
$\leqslant(2 L)^{\mathrm{p}} \mathrm{M}\|Q\| \|_{2}^{\mathrm{p}}{ }_{\mathrm{p}}$!
$=\mathrm{p}!(4 \mathrm{~L})^{\mathrm{p}}\|\mathrm{M}\|$.
Thus $\sum_{N_{1}, \ldots, N_{p}} Q_{p}\left(Q ; N_{1}, \ldots, N_{p}\right)$ converges and $D^{p} Q$ is well defined. Furthermore,
$\| D_{D} Q$
$=\| \sum_{\mathbb{N}_{1}, n, \mathbb{N}_{p}} Q_{p}\left(Q_{\left.; N_{1}, \ldots, N_{p}\right) \|} \sum_{\mathbb{N}_{1}, \ldots, \mathbb{N}_{p}}\left\|Q_{p}\left(Q_{; N_{1}}, \ldots, \mathbb{N}_{p}\right)\right\|\right.$

$$
\leqslant \mathrm{p}!(4 \mathrm{~L})^{p_{M}}\|Q\|
$$

The proof is therefore complete.
We can now define C_{1}^{p} for all p since $C_{1}^{1}=C_{o}^{1}$ and $Q \in C_{1}^{p}$ if and only if $Q=D_{p-1} D_{p-2} \cdots D_{p-q} \psi$ for some $\psi \in c_{0}^{p-q}$ and $0 \leqslant q \leqslant p$. D_{p} is clearly defined on C_{1}^{p} and maps C_{1}^{p} into $\mathrm{C}_{1}^{\mathrm{p}+1}$. Since we have already shown that

$$
\int B[f](d \xi) Q(\xi)=\int f^{\infty} D_{n} Q
$$

for functions Q of only one variable and since one can easily see that for $Q, \psi \in C_{1}^{p}$:
(1) $D_{p}(\varphi \otimes \psi)=\left(D_{p} Q\right) \otimes \psi+Q \otimes\left(D_{p} \psi\right)$
(2) $D_{p} Q=\sum_{i=1}^{m} \sum_{j=1}^{\infty} D_{p}(Q)_{i j}$
(3) $D_{p} Q=0$ whenever Q is a constant
(4) D_{p} adds variables whose indices are in I_{p+1}, it follows that the family of operators D_{n} are indeed a dervation for B.

GOROLLARY 4.18 The proof of Theorem 3.8 becomes valid when B and D are defined as in this section. PROOF For the proof of Theorem 3.8 to succeed, we need only justify the interchange of sums and termwise differentiation. This is easily seen to be the case if

$$
\sum_{N_{1}, \ldots, N_{p}}\left(M+N_{1}+\ldots+N_{p}\right) Q_{p}\left(Q ; N_{1}, \ldots, N_{p}\right)<\infty .
$$

Using the bounds for $\left\|_{Q_{p}}\left(Q ; N_{1}, \ldots, N_{p}\right)\right\|$ given in Lemma 4.15, and using Lemma 4.16 one can see that the sum clearly converges.

$$
\text { Since } e^{t D} Q=\sum_{p=0}^{\infty} \frac{t^{p}}{p!} D^{p} Q \text { converges for } t<\frac{1}{4} L,
$$

we get the following theorem.
THEOREM 4.19 The solution $f_{t}(+1)$ of the equation $\frac{\partial}{\partial t} f_{t}: B\left[f_{t}\right]$ is unique and is equal to $\int f^{\infty} e^{t D} x_{+1}$.
PROOF Corollary 4.3 and Theorem 3.8 state that the $p^{\text {th }}$ derivative of $f_{t}(+1)$ at $t=0$ exists and is equal to

$$
\begin{aligned}
& \int f^{\infty} D^{p} x_{+1} \text {. Since, by Theorem 4.17, } \\
& \qquad\left|\int f^{\infty} D^{p} x_{+1}\right| \leqslant\left\|D^{p} x_{+1}\right\| \leqslant p!(4 L)^{p} ;
\end{aligned}
$$

it follows that the Taylor series for $f_{t}(+1)$ converges for $t<\frac{1}{4 L}$. This implies that

$$
f_{t}(+1)=\int f^{\infty} e^{t D} x_{+1}
$$

by the definition of $e^{t D}$ and also implies the uniqueness of the solution.

5. AN INFINITE GAS

I shall now construct a model of an infinite particle gas with velocities \pm I in which the motion of a tagged particle is a $\%$-process with specific $\mathcal{F} \pm$ and in which the sample paths of any two particles are independent. This will be accomplished by constructing a gas of n like particles, each of which has velocities ± 1, and then letting $n \rightarrow \infty$. Each of the n particle gases will be a Markov jump process in which one waits an exponential holding time and then picks an index i according to the uniform distribution $1 / n$ and lets the corresponding particle collide with one or more of the remaining particles. The effect of a collision between a single particle and a set of particles will be a change of state only for the single particle.

To be more specific, suppose, as in the last section, that $\mp \gamma_{ \pm} \in H \cdot \mathbb{X}_{n}(t)=\left[x_{1}^{n}(t), \ldots, x_{n}^{n}(t)\right]$ will be the Markov jump process on the n-dimensional space E^{n} with holding time distribution in the state $\left[\theta_{1}, \ldots, \theta_{n}\right]$ equal to

$$
\exp \left\{-t \sum_{N=1}^{n-1} n^{-N} \sum_{i, j_{1}, \cdots, j_{N}} C\left(e_{i} \mid e_{j 1}, \ldots, j_{N}\right)\right\}
$$

where $\sum_{j_{0}, j_{1}, \ldots, j_{N}}(n)$ denotes the sum taken over all sequences $\left(j_{0}, \ldots, j_{N}\right), 0 \leqslant j_{k} \leqslant n$; and where $C\left(e \mid e_{1}, \ldots, e_{N}\right)=C_{N}^{e}$ (number of
+1 's in the set $e_{1}, \ldots, \theta_{N}$). Starting at the state $\left[\theta_{1}, \ldots, \theta_{n}\right]$, the probability that the first jump is to the state

$$
\begin{aligned}
{\left[\theta_{1}, \ldots, e_{i-1},-e_{i}, e_{i+1}, \ldots, \theta_{n}\right] } & \text { is given by } \\
& \sum_{N=1}^{n-1} n^{-N} \sum_{j_{1}, \ldots, j_{N} \neq i}(n){\left(e_{i} \mid e_{j_{1}}, \ldots, e_{j_{N}}\right)} \begin{aligned}
\sum_{N=1}^{n-1} n^{-N} \sum_{k, j_{1}, \ldots, j_{N}} C\left(e_{k} \mid e_{j_{1}}, \ldots, e_{j_{N}}\right)
\end{aligned}
\end{aligned}
$$

The generator of the n molecule gas will therefore be

$$
\left.G_{n} \varphi\left(e_{1}, \ldots, \theta_{n}\right)=\sum_{N=1}^{n-1} n^{-N} \sum_{i, j_{1}, \ldots, j_{N}}^{(m)} C\left(e_{i}\right) e_{j_{1}}, \ldots, e_{j_{N}}\right) \Delta{ }_{i} \varphi
$$

where $\Delta_{i} Q=Q\left(\ldots,-\theta_{1}, \ldots\right)-Q\left(\ldots, e_{i}, \ldots\right)$.

We will now show that the generators G_{n} of the n molecule gases converge to the derivation D of the last section in the sense that if Q is any function on n dimensional space \mathbb{E}^{n} with variables whose indices form a fixed set J and if f is a distribution on E, then $\quad \int_{J^{c}} f^{\infty} G_{n} Q \rightarrow \int_{J C} f^{\infty} D Q$ as $n \rightarrow \infty$. Such convergence will be called convergence mod J^{c}. It will also be shown that as $n \rightarrow \infty$, the paths of any two particles of the n-molecule gas become independent and approximate the \%-process with specified $\gamma_{ \pm}$. The main burden is to show that the operators G_{n}^{p} converge to $D^{p} \dot{Q} \bmod J^{c}$ when Q has variables with indices from J. First we will need several lemmas and a definition.

DEFINITION 5.1 Let

$$
Q_{1, n}\left(Q_{; N}\right)=n^{-N} \sum_{i, j_{1}, \ldots, j_{N}}{ }_{C\left(e_{i} \mid e_{j_{1}}, \ldots, e_{j N}\right)} \Delta_{i} \varnothing
$$

and
$Q_{p+1, n}\left(\varphi ; N_{1}, \ldots, N_{p+1}\right)$
$=n^{-N_{p}+1} \sum_{i, j_{1}, \ldots, j_{N_{p+1}}}^{(n)} C\left(e_{1} \mid e_{j_{1}}, \ldots, e_{j N_{p+1}}\right) \Delta_{i} Q_{p, n}\left(Q ; N_{1}, \ldots, N_{p}\right)$.

LEMMA 5.2

$$
G_{n}^{p} Q=\sum_{N_{p}=1}^{n-1} \ldots \sum_{N_{1}=1}^{n-1} Q_{p, n}\left(\varphi ; N_{1}, \ldots, N_{p}\right) .
$$

PROOF by induction on p. The lemma is certainly true for $p=I$ by the definition of $G_{n} Q$. Suppose that the lemma is true for p.

Then

$$
\begin{aligned}
& { }_{\mathrm{G}}^{\mathrm{p}}{ }_{\mathrm{p}} \mathrm{l} \varphi \\
& =G{ }_{n}{ }^{p}{ }_{n} Q \\
& =\sum_{N_{p+1}}^{n-1} n^{-N} n_{p+1}^{\sum_{i, j_{1}}^{(n)}, \ldots, j_{N_{p+1}}} C\left(\theta_{i} \mid e_{j_{1}}, \ldots, \theta_{j_{N}}\right) \Delta_{i+1}{ }^{G_{n}^{p}} \varphi
\end{aligned}
$$

$=\sum_{N_{p+1}}^{n-1}=1 n^{-N} n_{p+1} \sum_{i, j_{1}, \ldots, j_{N_{p+1}}}^{(n)} C\left(e_{i} \mid e_{j_{1}}, \ldots, e_{j_{N}}\right)$

- $\Delta \sum_{i} \sum_{N_{p}=1}^{n-1} \ldots \sum_{N_{1}=1}^{n-1} Q_{p, n}\left(\varphi_{\left.; N_{1}, \ldots, N_{p}\right)}\right.$
$=\sum_{N_{p+1}=1}^{n-1} \cdots \sum_{N_{1}=1}^{n-1} n^{-N} p+1 \sum_{i, j_{1}, \ldots, j_{N_{p+1}}} C\left(e_{i} \mid e_{j_{1}}, \ldots, \theta_{j_{N_{p+1}}}\right)$
- $\Delta_{i p_{p, n}}\left(Q ; N_{1}, \ldots, N_{p}\right)$
$=\sum_{N_{p+1}}^{n-1}=1 \quad \cdots \sum_{N_{1}-1}^{n-1} Q_{p+1, n}\left(\varphi_{;} N_{1}, \ldots, N_{p+1}\right)$.
DEFINITION $5.3 \quad Q \equiv \psi \bmod J$ if and only if for any probability measure $f, \int_{J} e^{\infty} Q: \int_{J} f^{\infty} \psi$.
LEMMA 5.4 If $Q \in C_{0}^{1}$ has M variables whose indices form a set J, then $Q_{p}\left(Q ; N_{1}, \ldots, N_{p}\right) \equiv Q_{p}\left(Q ; N_{1}, \ldots, N_{p}\right)+E_{p, n}\left(Q ; N_{1}, \ldots, N_{p}\right)$ $\bmod J_{l}^{\mathrm{c}}$ where, for large n ,

$$
\left\|E_{p, n}\left(\varphi ; N_{1}, \ldots, N_{p}\right)\right\|
$$

$\leqslant\left|\frac{n(n-1) \ldots\left(n+1-N_{1} \ldots-N_{p}\right)}{n^{N_{1}+\ldots+N_{p}}}-1\right|\left\|Q_{p}\left(Q ; N_{1},, N_{p}\right)\right\|$

$$
+n^{-1} M\|Q\| \quad C_{N_{p}} \ldots C_{N_{1}}\left(M+N_{1}+\ldots+N_{p}\right)^{p+1}
$$

PROOF From the definition of $Q_{p, n}\left(Q_{i} ; N_{1}, \ldots, N_{p}\right)$ and

$$
Q_{p}\left(Q_{0} N_{1}, \ldots, N_{p}\right) \text { it follows that }
$$

$$
Q_{p, n}\left(Q ; N_{1} ; \ldots ; N_{p}\right)
$$

$$
=n^{-N_{p}} \ldots n^{-N_{l}} \sum^{(n)} c\left(\left.e_{i_{p}}\right|^{e} j_{p l}, \ldots, e_{j_{p N}}\right) \Delta i_{p}
$$

$$
{ }^{C}\left(\left.e_{i_{p-1}}\right|^{\theta_{j-1,1}}, \theta_{j_{p-1, N_{p-1}}}\right)
$$

$$
\cdot \Delta_{I_{p-1}} \cdots C\left(\left.\stackrel{e}{i}_{1_{1}}\right|_{j_{I I}}, \cdots, \theta_{j_{I N_{1}}}\right) \Delta_{i_{1}} Q
$$

$$
=n^{-N_{p}} \ldots n^{-N_{1}} \sum^{(n) *} C\left(e_{i_{p}} \mid e_{j_{p l}}, \ldots, e_{j_{p N}}\right) \Delta_{i_{p}}
$$

$$
\begin{aligned}
& \times_{n}{ }^{-N} p_{\ldots} \ldots n^{-N} 1 \sum^{(n) \% *} C\left(e_{i_{p}} \mid \theta_{j_{p I}}, \ldots, \theta_{j_{p N}}\right) \Delta i_{p}
\end{aligned}
$$

- $C\left(e_{i_{p-1}} \mid e_{j_{p-1,1}}, \ldots, e_{j_{p-1, N}}\right) \Delta_{i_{p-1}} \ldots C\left(e_{i} \mid e_{j_{11}}, \ldots, e_{j_{1 N}}\right)$.$\Delta 1_{1} Q$
where $\sum^{(n)}$ means the sum over all indices i and j, each index ranging from o to n; $\sum^{(n) *}$ means $\sum^{(n)}$ restricted to those indices for which $j_{(n)} \neq{ }_{(n)} \neq \beta$ for $(k, \alpha) \neq(\ell, \beta)$; and $\sum^{(n) \% *}$ means $\Sigma^{(n)}$ restricted to those indices for which there exists some $(k, \alpha) \neq(\ell, \beta)$ with $j_{k \alpha}=j_{\mathcal{~}}$. The first of the last two sums is equivalent mod J^{c} to

$$
\frac{n(n-1) \ldots\left(n+1-N_{1}-N_{2}-\ldots-N_{p}\right)}{N_{1}+\ldots+N_{p}} Q_{p}\left(\alpha ; N_{1}, \ldots, N_{p}\right)
$$

and the second is bounded by

$$
\begin{aligned}
& n^{-1} M\left(M+N_{1}\right) \ldots\left(M+N_{1}+\ldots+N_{p-1}\right)\left(M+N_{1}+\ldots+N_{p}\right)^{2} C_{N_{p}} \ldots C_{N_{1}}\|Q\| \\
& \leqslant n^{-1}\|Q\|\left(M+N_{1}+\ldots+N_{p}\right)^{p+1}{ }_{C_{N_{p}}} \ldots C_{N_{1}}
\end{aligned}
$$

thus proving the lemma.

LEMMA 5.5

$$
\sum_{N_{1}, \ldots, N_{p}}\left(M+N_{1}+\ldots+N_{p}\right)^{p+1} C_{N_{p}} \cdots C_{N_{1}} \leqslant(p+1):(4 L)^{p+1} e^{M / L} .
$$

PROOF

$$
\sum_{\mathbb{N}_{1}, \ldots, N_{p}}\left(\mathbb{M}+\mathbb{N}_{1}+\ldots+N_{p}\right)^{p+1}{ }_{C_{N_{p}}} \cdots{ }^{C_{N_{1}}}
$$

$\left.\leqslant \sum_{k=0}^{p}\left({ }_{k}^{p}\right\}\right)\left\{\sum_{N_{1}, \cdots, N_{p-1}}{ }_{C_{N}} \cdots_{p-1} C_{N_{1}}\left(M+N_{1} \quad \cdots N_{p-1}\right)^{k}\right\}$

$$
\cdot\left\{\sum_{\mathbb{N}_{\mathrm{p}}=1}^{\infty} \mathbb{N}_{\mathrm{p}}^{\mathrm{p}+1-\mathrm{k}_{\mathrm{C}_{\mathrm{N}}}}{ }_{\mathrm{p}}\right\}
$$

$\leqslant \sum_{k=0}^{p+1} \frac{(p+1)!}{k!} L^{p+1-k} \sum_{N_{1}, n, N_{p-1}}{ }^{C_{N}}{ }_{p-1} \ldots{ }_{N_{1}}\left(M+N_{1}+\ldots+N_{p-1}\right)^{k}$
$\leqslant(p+1)!L^{p+1} \sum_{k_{1}=0}^{p+1} \sum_{k_{2}=0}^{k_{1}}=\cdots \frac{k_{p}-1}{k_{k_{p}}=0} \frac{L^{-k_{p}}}{k_{p}!} M^{\frac{k_{p}}{k_{p}}}$
$\leqslant(p+1): L^{p+1} e^{m / L}{ }_{B_{p+1}^{p-1}}$
where B_{p}^{q} : number of ways of picking $p \geqslant k_{1} \geqslant \ldots \geqslant k_{q}$.
Noticing that $B_{p}^{q}: B_{p-1}^{q}+B_{p}^{q-1}$ and hence $B_{p}^{q} \leqslant 2^{p+q}$, we have
$\leqslant(p+1)!(4 \mathrm{~L})^{\mathrm{p}+1} e^{\mathrm{M} / \mathrm{L}}$
which is the desired result.
LEMMA 5.6 If $Q \in C_{0}^{1}$ and has M variables whose indices form
a set J, then

$$
\lim _{n \rightarrow \infty} G_{n}^{p} \varphi=D^{p} \varphi \bmod J^{c} .
$$

PROOF As can be seen from the previous lemmas, we can find, for any $\varepsilon>0$, an integer $\mathbb{N}(\varepsilon)$ such that

$$
\sum_{N_{I}, \ldots, N_{p} \geqslant N(\varepsilon)} \| Q_{p}\left(Q_{\left.; N_{I}, \ldots, N_{p}\right)} \|<\varepsilon / 3 .\right.
$$

Since

$$
G_{n}^{p} Q=\sum_{N_{1}=1}^{n-1} \ldots \sum_{N_{p}=1}^{n-1} Q_{p, n}\left(\varphi ; N_{1}, \ldots, N_{p}\right)
$$

and

$$
D^{p} Q=\sum_{N_{1}, \ldots, N_{p}} Q_{p}\left(\varphi ; N_{1}, \ldots, N_{p}\right)
$$

it follows that

$$
{ }_{G}^{p} Q \equiv D^{p} Q+\sum_{N}, \cdots, N_{p} E_{p, n}\left(\varphi ; N_{1}, \ldots, N_{p}\right) \approx D^{p} Q+E_{p, n}(\varphi) \bmod J^{c} .
$$

$$
\begin{aligned}
& \text { But } \\
& \left\|E_{p, m}(\alpha)\right\| \leqslant \sum_{N_{1}, \ldots, N_{p}}\left\|_{E_{p, n}}\left(\varphi_{;} ; N_{1}, \ldots, N_{p}\right)\right\| \\
& \leqslant \sum_{N_{1}, \ldots, N_{p}}\left|\frac{n(n-1) \ldots\left(n+1-N_{1}-\ldots-N_{p}\right)}{n}-1\right|\left\|Q_{p}\left(Q_{1}+\ldots+N_{1}, \ldots, N_{p}\right)\right\| \\
& +\sum_{N_{1}, \ldots, N_{p}} n^{-1}{ }_{M}\|Q\| C_{N_{p}} \cdots C_{N_{1}}\left(M+N_{1}+\ldots+N_{p}\right)^{p+1}
\end{aligned}
$$

$\leqslant \sum_{N_{1}, \ldots, N_{p}} \leqslant N(\varepsilon)\left|\frac{n(n-1) \ldots\left(n+1-N_{1} \ldots \ldots-N_{p}\right)}{n^{N_{1}+\ldots+N_{p}}}-1\right|$
$\cdot\left\|\left\|_{p}\left(Q ; N_{1}, \ldots, N_{p}\right)\right\|\right.$
$+\varepsilon / 3+n^{-1} M\|Q\| e^{M / L}(p+1)!(4 L)^{p+1}$.
Since there obviously exists an integer $N_{*}(\varepsilon)$ for which $n>N_{\text {永 }}(\varepsilon)$ implies that the first and third terms are each leas than $\varepsilon / 3$, we have completed the proof of the Lemma. THEOREM 5.7 If $Q \in C_{0}^{1}$ has M variables whose indices form a set J, then

$$
\lim _{n \rightarrow \infty} e^{t G_{n}} Q \equiv e^{t D} \varnothing \bmod J^{c} \text { for } t<\frac{1}{4} L
$$

PROOF

$e^{t G} n \phi=\sum_{p=0}^{\infty} \frac{t^{p}}{p!} G_{n}^{p} \phi \equiv \sum_{p=0}^{\infty} \frac{t^{p}}{p!} D^{p} \omega+\sum_{p=0}^{\infty} \frac{t^{p}}{p!} E{ }_{p, n}(\phi) \cdot$

But
$\sum_{p=0}^{\infty} \frac{t^{p}}{p!}\left\|E_{p, n}(Q)\right\|$
$\leqslant \sum_{p=0}^{\infty} \frac{t^{p}}{p!}\left\|D^{p} \phi\right\|+n^{-1} M\|Q\| e^{M / L} \sum_{p=0}^{\infty} \frac{t^{p}}{p!}(p+1)!(4 L)^{p+1}$
(see proof of previous lemma), and since both sums converge,
it follows that for any $\varepsilon>0$, there exists an integer $p(\varepsilon)$ such that

$$
\sum_{p=p}^{\infty}(\varepsilon) \frac{t^{p}}{p!}\left\|E_{p, n}(\alpha)\right\|<\varepsilon / 2
$$

Thus since $\left\|E_{p, n}(Q)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for each p, we can find an integer $N(\xi)$ such that

$$
\sum_{p: 0}^{p(\varepsilon)} \frac{t^{p}}{p!}\left\|E_{p, n}(0)\right\|<\varepsilon / 2, n>N(\varepsilon) .
$$

Since $\varepsilon>0$ is arbitrary, the proof is complete. Thus we have shown, for $Q \in C_{0}^{1}$, that

$$
\begin{aligned}
& e^{t G_{n}} Q \rightarrow e^{t D} Q \bmod I_{I}^{c} \text { for } t<\frac{1}{4} L \\
& \text { Since } D \text { is a derivation, }
\end{aligned}
$$

$D[Q \otimes \psi]: \phi \otimes \quad \bar{\psi}+\psi \otimes D Q=\varphi \otimes D_{1} \psi+\psi D_{1} \varphi$ when $Q, \nVdash \in C_{0}^{1}$ have disjoint sets of variables. Similarly, applying D to $D[Q \otimes \psi]$ we get $D^{2}[\varphi \otimes \psi]: D_{2} D_{1}[Q \otimes \psi]: D_{2}\left[Q \otimes D_{1} \psi\right]+D_{2}\left[\psi-D_{1} Q\right]$
$=\left(D_{2} \phi\right) \otimes\left(D_{1} \psi\right)+\varphi \otimes D_{2} D_{1} \psi+\left(D_{2} \psi-\right) \otimes D_{1} \varphi+\psi \otimes_{D_{2} D_{1} \varphi} \varphi$
since $D_{2} Q$ and $D_{1} \psi$ have disjoint variables, as do Q and
$D_{2} D_{1} \psi_{\text {etc. }}$
Thus we get the following lemma.

LEMMA 5.8 If $Q, \psi \in C_{0}^{1}$ have dis joint variables, then $D^{p}[Q \otimes \psi]=\sum_{k=0}^{p}\binom{p}{k}\left(D_{p} D_{p-1} \cdots D_{k+1} Q\right) \otimes\left(D_{k} D_{k-1} \cdots D_{1}(v) \bmod I_{1}^{c}\right.$
where the set of indices of variables of $D_{p} \ldots D_{k+1} Q$ and $D_{k} \ldots D_{1} \psi$ are disjoint as is indicated by the notiation. Noticing that $D_{p} D_{p-1} \ldots D_{q+1} Q \equiv D_{p-q-1} \cdots D_{I} Q \equiv D^{p-q} Q \bmod I_{I}^{c}$ for $Q \in C_{0}^{1}$, we get the following "propagation of chaos" theorem (see M.Kac [2] for the terminology and another instance of this phenomenon).
THEOREM 5.9 If $Q, \psi \in C_{o}^{1}$ and the set of indices of variables of Q are disjoint from ψ, then

$$
\int_{I_{1}^{c}}^{f^{\infty} e^{t D}}[Q \otimes \psi]=\left[\int_{I_{1}^{c}}^{\infty} f^{t D} Q\right] \otimes\left[\int_{I_{1}^{c}}^{f^{\infty}} e^{t D} \psi\right] \text { for }
$$

$t<\frac{7}{4} L$ 。
PROOF

$$
\int_{I_{i}} f^{\infty} e^{t D}[Q Q \psi]
$$

$=\int_{I_{I}^{c}} f^{\infty} \sum_{p=0}^{\infty} \frac{t^{p}}{p!} D^{p}[\otimes \otimes \psi]$
$=\sum_{p=0}^{\infty} \frac{t^{p}}{p!} \sum_{q=0}^{p}\binom{p}{q} \int_{I_{1}^{c}} f^{\infty}\left\{\left(D_{p}^{D} D_{p-1} \cdots D_{q+1} Q\right) \otimes\left(D_{q} D_{q-1} \ldots D_{1} \psi\right)\right\}$
$\left.=\sum_{p=0}^{\infty} \sum_{q=0}^{p} \frac{t^{p}}{p!} \frac{t^{q}}{q!}\left(\int_{I_{1}^{c}} f^{\infty} D^{p-q} \otimes\right) \otimes\left(\int_{I_{I}^{c}} f^{\infty} D^{q} \psi\right)\right)$
$=\left(\sum_{p=0}^{\infty} \frac{t^{p}}{p!} \int_{I_{1}^{c}} f^{\infty} D^{p} \theta\right) \otimes\left(\sum_{q=0}^{\infty} \frac{t^{q}}{q!} \int_{I_{1}^{c}} f^{\infty} D^{q} \psi\right)$
$=\left(\int_{I_{I}} f^{\infty} e^{t D} Q\right) \otimes\left(\int_{I_{I}^{c}} f^{\infty} e^{t D} \psi\right)$.
If the initial distribution of the $n \rightarrow m o l e c u l e ~ g a s ~ i s ~$ symmetric in the n molecules, then it is also symmetric at any later time. Especially, if the molecules are initially independent and identically distributed, then the joint distribution of the first M particles is given by
(1) $P\left[X^{n}\left(t_{1}\right) \in E_{1}, \ldots, X^{n}\left(t_{m}\right) \in E_{m}\right]$
$=\int f\left(d \xi_{1}\right) \ldots f\left(d \xi_{n}\right) e^{t_{1} G^{G}} X_{E_{1}} e^{\left(t_{2}-t_{1}\right) G^{n}} \chi_{E_{2}} \ldots e^{\left(t_{m}-t_{m-1}\right) G_{n}} X_{E_{m}}$ where $E_{k}=\left(e_{I}^{k}, \ldots, e_{M}^{k}, E, E, \ldots, E\right)$. As $\left.n \rightarrow \infty, I\right)$ converges to

$$
\int f^{\infty} e^{t_{1} D} \chi_{E_{I}} e^{\left(t_{2}-t_{1}\right) D} \chi_{E_{2}} \ldots e^{\left(t_{m}^{\left.-t_{m-1}\right) D}\right.} \chi_{E_{m}}
$$

This limiting distribution can be used to define a combined motion of molecules for which:
(1) the paths of any fixed number of molecules are independent.
(2) the distribution of a tagged molecule is that of the $\%$-process which corresponds

$$
\text { to } \mp \gamma_{ \pm}
$$

The essential elements of the proofs of (1) and (2) are contained in the following lemma. We first need a few definitions and remarks.

Let $0<t_{1}<t_{2}$ be points in $T=[0, \infty)$ and
let $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2} \in E$. Let

$$
\chi \frac{i}{a}\left(\ldots, \theta_{i}, \ldots\right)= \begin{cases}1 & \text { if } e_{i}=a \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\left.\hat{P}_{f \mid a}(t ; b)=\int_{\{i\}^{c}} f^{\infty}\left(e^{t D} X_{b}^{i}\right)(\ldots,\}_{i}=a, \ldots\right)
$$

where, by definition of D, the right hand expression is independent of i. Finally, note that any finite number of variables on which Q does not depend has no effect on the limit as $n \rightarrow \infty$ of $e^{t G} n \varphi$.

LEMMA 5.10 Suppose that the n coordinates of $X^{n}(o)$ are independent and identically distributed with distribution f. Then
lm
$n \rightarrow \infty$

- $P\left[x_{1}^{n}\left(t_{1}\right)=a_{1}, x_{1}^{n}\left(t_{2}\right)=a_{2}, x_{2}^{n}\left(t_{1}\right)=b_{1}, x_{2}^{n}\left(t_{2}\right)=b_{2} / x_{1}^{n}(0)=a_{0}, x_{2}^{n}(0)=b_{0}\right]$
$=\hat{P}_{f \mid a_{0}}\left(t_{1} ; a_{1}\right) \hat{P}_{f_{t_{1} \mid} \mid a_{1}}\left(t_{2} ; a_{2}\right) \hat{P}_{f \mid b_{0}}\left(t_{1} ; b_{1}\right){\stackrel{\hat{P}}{f_{t_{1} \mid}}}\left(t_{1} ; b_{2}\right)$.

PROOF

$$
\begin{aligned}
& \text { 2) } P\left[x_{1}^{n}\left(t_{1}\right)=a_{1}, x_{1}^{n}\left(t_{2}\right)=a_{2}, x_{2}^{n}\left(t_{1}\right)=b_{1}, x_{2}^{n}\left(t_{2}\right)=b_{2} \mid x_{1}^{n}(0)=a_{0}, x_{2}^{n}(0)=b_{0}\right] \\
& =\sum_{\xi_{3} \ldots, \xi_{n}} \int f\left(d \xi_{3}\right) \ldots f\left(d \xi_{n}\right) e^{t_{1} \mathcal{G}_{n}} \\
& \cdot\left[x_{a_{1}}^{1} \otimes x_{b_{1}}^{2} \otimes x_{\xi_{3}}^{3} \otimes \ldots \otimes x_{z_{n}}^{n}\right]\left(a_{0}, b_{0}, \xi_{3}, \ldots, \xi_{n}\right) e^{t_{2} q_{n}} \\
& \cdot\left[x_{a_{2}}^{1} \otimes x_{b_{2}}^{2}\right]\left(a_{1}, b_{1}, \xi_{3}, \ldots, \xi_{n}\right) \\
& =\sum_{\left.\xi_{3}, \ldots\right\}_{n} n_{\{1,2\}}} \int_{f^{\infty}} c^{c_{1} D}\left[x_{a_{1}}^{1} \otimes x_{b_{1}}^{2} \otimes x_{5_{3}}^{3} \otimes x_{3_{n}}^{n}\left(a_{0}, b b_{0}, . .\right) e^{t_{2} G_{n}}\right. \\
& \cdot\left[x{ }_{a}^{1} \otimes \chi_{b_{2}}^{2}\right]_{\left(a_{1}, b_{1}, \xi_{3}, \ldots, \xi_{n}\right)+o(1)} \\
& =\int \prod_{k=1}^{n}\left\{\int_{\{1,2\}} e^{f^{\infty}} e^{t_{1} D} x_{\alpha_{k}}^{k}\left(a_{0}, b_{0}, \cdots\right)\right\} \\
& \text { - } e^{t_{2} G} n\left[x_{a_{2}}^{1} \otimes x_{b_{2}}^{2}\right]\left(a_{1}, b_{1}, \zeta_{3}, \ldots, \zeta_{n}\right) \\
& \text { where } \alpha_{1}=a_{1}, \alpha_{2}=b_{1}, \alpha_{3}=3_{3}, \ldots, \alpha_{n}=\xi_{n} \text { 。 }
\end{aligned}
$$

But

$$
\int_{\{1,2\}} e^{e^{\infty}} e^{t_{1} D} x_{\xi_{k}}^{k}\left(a_{0}, b_{0}, \ldots\right)=f_{t_{1}}\left(\xi_{k}\right)
$$

since it is independent of a_{0}, b_{0} and k, and

$$
\{1,2\}^{e^{\infty}} e^{t_{1} D} X_{a_{1}}^{1}\left(a_{0}, b_{0}, \ldots\right)=P_{f} \mid a_{0}\left(t_{1} ; a_{1}\right)
$$

and

$$
\int_{\{1,2\}^{e^{f^{\infty}}} e^{t_{1} D} x_{b_{1}}^{2}\left(a_{0}, b_{0}, \ldots\right)=P_{f} \mid b_{0}\left(t_{1} ; a_{1}\right)}
$$

(i.e. in evaluating $\lim _{n \rightarrow \infty} e^{t G} n$, the a_{0} has no effect since $X_{b_{1}}^{2}$ does not depend on that variable). Thus 2) reduces to

$$
\begin{aligned}
& P_{f \mid a_{0}}\left(t_{1} ; a_{1}\right) P_{f \mid b_{0}}\left(t_{1} ; b_{1}\right) \\
& \cdot \int f_{t_{1}}\left(d \xi_{3}\right) \ldots f_{t_{1}}\left(d \xi_{n}\right) e^{t_{2} G_{n}}\left[\chi_{a_{2}}^{1} \otimes x \frac{b_{2}}{2} .\left(a_{1}, b_{1}, \zeta_{3}, \ldots \xi_{1}\right)\right. \\
& \cdot+o(1)
\end{aligned}
$$

and, using the same arguments on the above integral, we complete the proof.

Lemma 5.10 shows that $x_{1}^{n}\left(t_{1}\right)$ and $x_{1}^{n}\left(t_{2}\right)$ become
independent of $x_{2}^{n}\left(t_{2}\right)$ as $n \hookrightarrow \infty$. The same arguments can be used to show that any finite number of particles have independent paths. Similarly, we can show that

$$
\lim _{n \rightarrow \infty} P\left[x_{1}^{n}\left(t_{1}\right)=a_{1}, \cdots, x_{1}^{n}\left(t_{m}\right)=a_{m} \mid x_{1}^{n}(0)=a_{0}\right]
$$

$$
=\hat{P}_{f \mid a_{0}}\left(t_{1} ; a_{1}\right) \hat{P}_{f_{t_{1} \mid a_{1}}}\left(t_{2} ; a_{2}\right) \ldots \hat{p}_{f_{t_{m-1}} \mid a_{m-1}}\left(t_{m} ; a_{m}\right)
$$

and thus that the distribution of a tagged particle converges to $a \%$-process. Finally, $\hat{\gamma}_{ \pm}=\gamma_{ \pm}$since, letting $u=f(+1)$,

$$
\begin{aligned}
& \hat{\partial}_{ \pm}(u) \\
& =\left.\left.\frac{\partial}{\partial t} \hat{P}_{f}\right|_{t 1}(t ; I)\right|_{t=0} \\
& =\left.\frac{\partial}{\partial t} \int_{\{1\}^{c}} f^{\infty} e^{t D} x_{+1}(\rightrightarrows 1, \ldots)\right|_{t=0} \\
& =\int_{\{1\}^{c^{f^{\infty}} D X_{+1}}(\pm 1, \ldots)} \\
& =\int_{\{I\}^{c^{f^{\infty}}}} \sum_{N=1}^{\infty} C\left(\pm 1 \mid e_{2}, 1, \ldots, e_{2, N}\right)\left[x_{+1}(\mp 1)-x_{+1}(\pm 1)\right. \\
& =\mp \sum_{N=1}^{\infty} \sum_{k=0}^{N} C_{N}^{ \pm 1}(k)\binom{N}{k} u^{k}(1-u)^{N-k}
\end{aligned}
$$

$$
\begin{aligned}
& =\mp \sum_{N=1}^{\infty} B \frac{ \pm}{N}(u) \\
& =\mp \gamma_{ \pm}(u)
\end{aligned}
$$

We end this section with the following theorem. THEOREM 5.11 If $\mp \gamma_{ \pm} \in H$, then the sample paths of the *-process x_{t} can be chosen so as to be right continuous. PROOF It is sufficient to show that the temporally homogeneous Markov process $X(t)$ defined in section 2 can be chosen in such a manner that it has right continuous sample paths. Thus, letting $V_{\varepsilon}(u)$ be the ε-neighborhood around the point u, we need only show that $P_{t}^{*}\left(e, u ; e, v_{\varepsilon}(u)\right) \rightarrow 1$ uniformly in e, u as $t \rightarrow 0$ for any $\varepsilon>0$ (see Loeve, M: Probability Theory, P. 637).

But

$$
P_{t}^{*}\left(e, u ; \theta, v_{\varepsilon}(u)\right)=\left\{\begin{array}{l}
P_{f} \mid e^{(t ; e)} \text { if }|u-p(t)|<\varepsilon, \theta=p(0)=f(+1) . \\
0 \text { otherwise }
\end{array}\right.
$$

Thus a simple calculation showing that $f_{t}(+1) \rightarrow f(t l)$ and $P_{f \mid e}(t ; e) \rightarrow I$ uniformly in $u f(t 1)$ as $t \rightarrow 0$ completes the proof.

We shall now calculate the holding times
$H_{0}^{t}(u)=P_{f \mid+1}(x(\zeta)=+1, \quad 0 \leqslant \zeta \leqslant t) \quad, \quad f(+1)=u$
for a $\%$-process x_{t} for which the corresponding $\mp \gamma_{ \pm}$are contained in H .

$$
\text { Let } b(t, s, u)=-\log P_{f_{s} /+1}(t ;+1)
$$

and note that

$$
\lim _{h \downarrow 0} \frac{b(h, s, u)}{h}=-\gamma_{+}\left[f_{s}(+1)\right]
$$

uniformly in s, u. (see last section for the existence of this limit.)

THEOREM 6.1

$$
H_{0}^{t}(u)=\exp \left[\int_{0}^{t} \gamma_{+}\left[f_{s}(+1)\right] d s\right] \quad, u=f(+1)
$$

PROOF Let $t=n h+\theta$ with $0 \leqslant \theta<h$. Then, because of the right continuity of the paths,

$$
H_{0}^{t}(u)
$$

$=\lim _{h \downarrow 0} P_{f \mid+1}[x(0)=+1, x(h)=+1, \ldots, x(n h)=+1]$
$=\lim _{h \downarrow 0} P_{f_{\mid+1}}(h ;+1) P_{f_{h} \mid+1}(h ;+1) P_{f_{2 h} \mid+1}(h ;+1) \ldots P_{f_{n h} \mid+1}(h ;+1)$
$=\lim _{h \downarrow 0} \exp \left[-\sum_{k=0}^{n} h(h, k h, u)\right]$
$=\lim _{h \downarrow 0} \exp \left[-\sum_{k: 0}^{n} \frac{b(h, k h, u)}{h} \cdot h\right]$
$=\lim _{h \downarrow 0} \exp \left[\sum_{k=0}^{n}\left[\gamma_{+}\left[f_{k h}(+1)\right] h+h o(1)\right]\right]$
$=\exp \left[\int_{0}^{t} \gamma_{+}\left[f_{s}(+1)\right] d_{s}\right]$.

7. LIMITING BEHAVIOR AS $t \rightarrow \infty$

If $\ddagger \gamma_{ \pm} \epsilon H$, then γ has derivatives of all orders and $\left.\frac{\partial}{\partial t} p(t)=\hat{\gamma} p(t)\right]$. This implies that $f_{t}(+1)$ is either monotone increasing or decreasing in t for a given f and thus $f_{\infty}(+1)=\lim _{t \rightarrow \infty} f_{t}(+1)$ exists where f_{∞} has the property that ($\left.f_{\infty}\right)_{t}$ is constant as t varies. Thus

$$
\begin{aligned}
& P_{f \mid e}\left[x\left(t_{1}\right) \in A_{1}, \ldots, x\left(t_{1}+t_{2}+\ldots+t_{n}\right) \in A_{n}\right] \\
& =\int_{A_{1}} P_{f \mid \theta}\left(t_{1} ; d \xi_{1}\right) \int_{A_{2}} P_{f_{t_{1} \mid \xi_{1}}}\left(t_{2} ; d \xi_{2}\right) \cdots \int_{A_{n}} P_{f_{t_{1}+_{n}+}+t_{n-1 \mid}}\left(t_{n-1} ; d \xi_{n}\right) \\
& \longrightarrow \int_{A_{1}} f_{\infty}\left(d \xi_{1}\right) \int_{A_{2}} P_{f_{\infty} \mid \xi 1}\left(t_{2} ; d \xi_{2}\right) \ldots \int_{A_{n}} P_{f_{\infty}} \mid \xi_{n-1}\left(t_{n} ; d \xi_{n}\right) \\
& \text { as } t_{1} \rightarrow \infty \text { and the limiting behavior of such a process is } \\
& \text { temporally homogeneous and stationary. Finally, if we } \\
& \text { start with } f(t I)=u \text {, then the holding times, which can be } \\
& \text { quite non-Markovian for small t, approach exponential hold- } \\
& \text { ing times as } t \rightarrow \infty \text {. That is, } \\
& H_{s}^{t}(u) \\
& =\exp \left[\int_{s}^{s+t} \partial_{t}\left(f_{\theta}(+1) d \theta\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\exp \left[\int_{S}^{s+t} \gamma_{t}\left(f_{\infty}(+1) d \Theta+t o(1)\right]\right. \\
& >\exp \left[t \gamma_{+}\left[f_{\infty}(t 1)\right]\right.
\end{aligned}
$$

$$
\text { as } s \rightarrow \infty
$$

BIBLIOGRAPHY

(1) Hausdorff, F.: Momentproblem für ein endliches Interval, Math. Ztschr. 16, 220-248 (1923)
(2) Kac, M.: Probability and Related Topics in Physical S'iences. Interscience 1959
(3) McKean, H. P. Jr., : To appear.

BIOGRAPHY

The author was borm on September 22, 1940 in Burbank, Califormia. He received a B.A. in mathematics from Yale University in 1962. While at M.I.T. he was a research assistant (1962-1965) and an NSF Trainee (1965-1966).

