
February 1991 LIDS-P-2018

Analysis of a Greedy Heuristic for
Finding Small Dominating Sets in Graphs

Abhay K. Parekh

Laboratory For Information and Decision Systems, M.I.T., Cambridge, MA 02139, USA

Abstract
We analyze a simple greedy algorithm for finding small dominating sets in undi-

rected graphs of N nodes and M edges. We show that dg < N + 1 - v2M + 1, where

dg is the cardinality of the dominating set returned by the algorithm.

Keywords: approximate algorithms, analysis of algorithms.

Introduction
Let G(V, E) be an undirected graph with N nodes and M edges. A dominating

set of G is a set of nodes such that every node not in the set is adjacent to at least

one node in the set. A dominating set of smallest cardinality is known as a minimum

dominating set. The problem of finding a minimum dominating set is combinatorially

hard (its decision version is NP-complete [2]), so as a practical matter, one has to settle

for approximate, but fast algorithms. In this note, we analyze the performance of a

simple, greedy algorithm of this type. Let dg be the size of the dominating set returned

by the greedy algorithm, and let do be the cardinality of a minimum dominating set.

We show that an upper bound on do due to Vizing [5], applies to dg as well:

dg < N + 1- V/2M +1.

Previous Work

The greedy algorithm considered here is an analog of one that has been analyzed

by Chvatal [1] and others [3], [4] for finding small set covers. The focus there has

been on comparing the cardinality of the set cover returned by the algorithm to that

of the smallest set cover, in the worst case. Since any dominating set problem can be

formulated as a set covering problem, the results for the set covering algorithm can be

PAGE 1

This work was supported by a Vinton Hayes Fellowship.

A. K. PAREKH

specialized to our problem. A result almost directly obtained from the work of Chvatal

[1] is that

do - i +

where 6 is the maximum degree of a node in the graph. The result of this paper describes

the performance of the algorithm in terms of the dimensions of the graph, and should

be viewed as complementary to the above result.

Greedy: The Approximation Algorithm

Let V = {1,...,N}, and define D = i. Greedy add a new node to D in each

iteration, until D forms a dominating set. A node, j, is said to be "covered" if j E D

or if any neighbor of j is in D. A node that is not covered is said to be uncovered.

(Since D = q at the beginning of the algorithm, it follows that all the nodes are

initially uncovered.) In each iteration, put into D the least indexed node that covers the

maximum number of uncovered nodes. Stop when all the nodes are covered. (Selecting

the least numbered element is just a way of breaking ties.) An example of Greedy at

work is provided in Figure 1.

Worst Case Performance in terms of N and M

Here we show that an upper bound on do due to Vizing [5] is met by d, as well:

Theorem 1. For an undirected graph, G, with N nodes and M edges:

dg < N + 1 - /2M +1. (1)

Proof: First convert G into a directed graph by replacing every edge (i,j) by 2 directed

edges (ij) and (j,i), and by adding self-loops (i,i) at every node i. Interpret a directed

edge (ij) to mean that the uncovered node j would be covered if i were included in the

dominating set. Define the outdegree of a node as the number of edges emanating from

it. We can interpret Greedy on the constructed directed graph as follows: Include the

least indexed node with the greatest outdegree in the dominating set; delete all edges

coming into the neighborhood of that node; and if there are any edges left, include

another node in the dominating set, else stop. To see that this is identical to Greedy,

interpret a directed edge (ij) to mean that if i were included in the dominating set, the

previously uncovered node, j, would be covered by i (see figure 2).

PAGE 2

................-- -

Finding Small Dominating Sets

Suppose Greedy picks node vi in the i th iteration. Let S(i) be the set of previously

uncovered nodes which were covered by vi, and let JS(i)[= mi. Finally, define Ei to

be the number of edges left at the end of the i th iteration coming from uncovered nodes

i.e. E4 does not include edges from covered nodes. Set Eo = 2M + N. Our strategy in

the proof is to lower bound E4 - Ei-1 in order to estimate the the maximum number

of iterations dg until there are no edges left, i.e. Ed, = 0.

First we show that at most m2 edges from previously uncovered nodes are deleted

in the it h iteration. Consider some j E S(i). The outdegree of j can be at most mi

just before the i th iteration. Now notice that no edges into an uncovered node can

be deleted before the node is covered. Since j is uncovered before the ith iteration,

for each edge coming into j from a uncovered node, there is also an edge going out of

j to that uncovered node. Thus there can be at most mi edges coming into j from

uncovered nodes, and the total number of edges running from previously uncovered

nodes to members in S(i) is at most m2. There may also be edges from previously

covered nodes to members of S(i), but we need not consider them, since we are counting

(in Es) only edges from uncovered nodes.

Next, we estimate the number of edges from S(i) to uncovered nodes which are

not in S(i). These edges are not deleted by Greedy, but they are not counted in the

definition of Es either. It is clear that the outdegree of every node in S(i) must be

< mi - 1, since the self loops of all such nodes will have been deleted in the i th step.

Thus the number of outgoing edges from S(i), after iteration i is < mi(mi -1). However,

in the first iteration, we can tighten this bound slightly. We know that vl E S(1), and

so all edges entering and leaving vl will be deleted after the first iteration. Further, the

other nodes in S(1) can have outdegree of at most m 2 at the end of the first iteration.

Thus, the number of edges (at the end of the first iteration) from S(1) to uncovered

nodes not in S(1) is at most (mnl - 1)m2. Finally, note that no edges remain at the end

of the last, i.e. dsh iteration, and so for this iteration the bound can be set to 0.

By definition of Ei, we conclude that:

Ei > Eil - mi2 _ m4(mi- 1)

E1 > Eo - ml - (ml - 1)m2.

Edg = 0 by definition of dg. Thus,

E > ds 2 d,-1

0 = Edg > - m + (ml -+)m2 + E mi(mi - 1) + Eo.
i=l i=2

PAGE 3

A. K. PAREKH

Solving for Eo:
do d ,-1

Eo < Em + (ml- l)m2 + E m4(mi - 1). (2)
i=l i=2

Now notice that ~dil mi = N, and that mi > 1. Eo can be upper bounded by

maximizing the RHS of (2) with respect to the mi's subject to the constraints just

mentioned. We claim that this maximum occurs when

ml = N - dg + 1, m2 = m3 = ... md, = 1.

This is easily seen to be true by contradiction. Suppose the maximum is achieved so

that the highest order mi which is greater than 1 is not ml, but say mj, j > 1. Now

reduce mj to 1 and add mj - 1 to ml (we can do this because none of the constraints

are violated), and the difference in the RHS is seen to be positive. This contradicts the

assumption.

Substituting the maximum values in the RHS of (2) we have:

Eo = 2M + N < (N - dg + 1)2 + dg -1 + (N - dg),

dg < N + 1 - v/2M+ 1.

Done

The bound of Theorem 1 is met exactly for graphs of the type shown in Figure 3.
Acknowledgment

I am grateful to Professor Robert Gallager for his help in the performing and writing
of this work.
References

[1] V. Chvatal, A Greedy Heuristic for the Set Covering problem, Mathematics of
Operations Research, 4, (1979) 233-235.

[2] M. R. Garey, D. S. Johnson, Computers and Intractability - A Guide to the Theory

of NP-Completeness, (W. H. Freeman, San Francisco CA, 1979.)
[33 D. S. Hochbaum, Approximation Algorithms for the Set Covering and Vertex Cov-

ering Problems, SIAM Journal on Computing, 11, (1982) 555-556.
[4] D. S. Johnson, Approximate Algorithms for Combinatorial Problems, Journal of

Computer System Science, 9, (1974) 256-278.

[5] V. G. Vizing, A Bound on the External Stability Number of a Graph, Doklady A.
N., 164, pp. 729-731.

PAGE 4

Finding Small Dominating Sets

3 5

7 1

Figure 1. Greedy will return the set {1, 2, 3} (note that {2, 3} is a minimum cardi-
nality dominating set).

PAGE 5

A. K. PAREKH

7 1

(b)

Figure 2. (a) The graph of Figure 1 converted to a directed graph. (b) The graph
at the end of the first iteration of Greedy. Note that El = 2.

PAGE 6

Finding Small Dominating Sets

9

13

13 6T

12

Figure 3. Greedy will return the set {1, 2, ..., 7}. Since N = 13, M = 24, we have
7 = dg < 14 - f/9 = 7. Notice that do = 6, for example, {2, 3,..., 7}

PAGE 7

