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ABSTRACT

Life is ubiquitous in the environment and an important mediator of Earth’s carbon cycle,
but quantifying the contribution of microbial biomass and its metabolic fluxes is difficult,
especially in spatially and temporally-remote environments. Microbes leave behind an of-
ten scarce, unidentifiable, or nonspecific record on geologic timescales. This thesis devel-
ops and employs novel geochemical and genetic approaches to illuminate diagnostic signals
of microbial metabolisms. Field studies, laboratory cultures, and computational models
explain how methanogens produce unique nonequilibrium methane clumped isotopologue
(13CH3D ) signals that do not correspond to growth temperature. Instead, A3CH3D val-
ues may be driven by enzymatic reactions common to all methanogens, the C-H bond
inherited from substrate precursors including acetate and methanol, isotope exchange, or
environmental processes such as methane oxidation. The phylogenetic relationship between
substrate-specific methyl-corrinoid proteins provides insight into the evolutionary history
of methylotrophic methanogenesis. The distribution of corrinoid proteins in methanogens
and related bacteria suggests that these substrate-specific proteins evolved via a complex
history of horizontal gene transfer (HGT), gene duplication, and loss. Furthermore, this
work identifies a previously unrecognized HGT involving chitinases (ChiC/D) distributed
between fungi and bacteria (~650 Ma). This HGT is used to tether fossil-calibrated ages
from within fungi to bacterial lineages. Molecular clock analyses show that multiple clades
of bacteria likely acquired chitinase homologs via HGT during the late Neoproterozoic into
the early Paleozoic. These results also show that, following these HGT events, recipient ter-
restrial bacterial clades diversified ~400-500 Ma, consistent with established timescales of
arthropod and plant terrestrialization. Divergence time estimates for bacterial lineages are
broadly consistent with the dispersal of chitinase genes throughout the microbial world in
direct response to the evolution and expansion of detrital-chitin producing groups including
arthropods. These chitinases may aid in dating microbial lineages over geologic time and
provide insight into an ecological shift from marine to terrestrial systems in the Proterozoic
and Phanerozoic eons. Taken together, this thesis may be used to improve assessments of mi-
crobial activity in remote environments, and to enhance our understanding of the evolution
of Earth’s carbon cycle.
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1.1 Motivation

Today, the Earth’s surface, ocean, and deep sediments are occupied by life and its metabolic
products (Nealson and Conrad, 1999). Plants, bacteria, fungi, archaea, and arthropods
dominate the Earth’s biomass (Bar-On et al., 2018). The evolution of these carbon-bearing
organisms has thus dramatically affected the distribution of organic molecules and fluxes in
Earth’s biogeochemical cycles (Schirrmeister et al., 2013; Hinrichs, 2002; Shih, 2015; Lyu
et al., 2018; Kenrick et al., 2012; Falkowski et al., 2008). Quantifying the contribution of
microbes in the modern environment, both in terms of their organic biomass as well as their
metabolic activities, remains a significant challenge (Bar-On et al., 2018). This challenge
becomes even greater when we consider how life has evolved and shaped its environment
on geologic timescales (Knoll, 2017; Knoll and Nowak, 2017). Understanding this interplay
between life and Earth requires a way to estimate the impact these processes have today and
to date when these processes arose. Developing proxies and analytical tools to understand
the signals associated with some of the simplest biopolymers from the biomass, enzymatic
activity, and metabolic byproducts of key taxonomic groups may enable us to better date
when these processes became environmentally relevant and how they have impacted Earth’s
biogeochemistry.

In the absence of direct biological or physical evidence, we rely on proxies of microbial
processes in geographically or temporally extreme environments as diagnostic markers of
the unique role microbes play in the Earth system (Peckmann and Thiel, 2004; Hinrichs,
2002; Braakman et al., 2017; Bontognali et al., 2012; Donoghue and Benton, 2007). Figure
1-1 illustrates some of what we know about the evolution of Earth’s carbon cycle from such
proxies. New technologies have afforded us the ability to make increasingly precise measure-
ments of stable isotopes of carbon and hydrogen, which provide clues of formation processes;
however, the specific microbial mechanisms that generate observed isotopic signatures are
often difficult to interpret (Wang et al., 2015; Eiler et al., 2014; Stolper et al., 2013, 2014,
Douglas et al., 2017; Young et al., 2017). Despite progress in understanding the molecular
record of extant bacterial genomes in the modern environment, the timing of the evolution
of major clades of microbial life remains challenging to resolve (Dos Reis et al., 2015) due to
complex gene histories and a lack of clear morphological traits (Shih, 2015). In the absence
of physical (geochemical or fossil) records of microbial evolution, we rely on genetic clues to
interpret and time the evolutionary history of microbial lineages (Schirrmeister et al., 2015;
Parfrey et al., 2011). This thesis aims to unscramble the sometimes obscure geochemical
and phylogenetic environmental imprints of microbial metabolisms and to understand the

mechanisms that may drive these signals.
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1.2 Microbial Methanogenesis

Methane is a key species in the global carbon cycle (Alperin and Blair, 1992), a potent
greenhouse gas (Wecht et al., 2014), a source of energy (Whiticar, 1990), and a potential
biosignature (Webster et al., 2014). Over the last four billion years, Earth has shifted from a
dominantly abiogenic methane world to a dominantly microbial methane world (Figure 1-1)
(Whiticar, 1990; Whalen, 2005). This shift has coincided with major events in the evolution
of both life and Earth (Rothman et al., 2014). Historically, building a methane budget to
understand the major sources and sinks of methane has proven challenging (Wang et al.,
2015). This is driven, in part, by a temporal and spatial disconnect between our sampling
abilities and environmentally-significant reservoirs of methane, as many are too remote in
space or time to sample directly (Orcutt et al., 2013; Wolfe and Fournier, 2018). In addition,
the organisms that interact with carbon cycle intermediates may be hard to identify (Ijiri
et al., 2018) or be part of cryptic metabolic processes (Holmkvist et al., 2011).

The greatest source of methane today is produced by methanogenic microbes in anoxic
environments such as swamps, sediments, rice paddies, and ruminant tracts via methanogen-
esis (Klapp et al., 2010). Microbial methanogenesis also forms the majority of gas trapped in
the largest reservoir of methane on Earth: oceanic gas hydrates (Thauer et al., 2008; Kven-
volden, 1993). Anaerobic archaea are the only organisms capable of producing methane as
a catabolic end product, via three pathways specific to certain classes of substrates. Hy-
drogenotrophic methanogenesis (1) is the reduction of COy with Hy as an electron donor
(Bapteste et al., 2005). Acetoclastic methanogenesis (2) use of acetate as a terminal electron
acceptor. Methylotrophic methanogenesis (3) uses methyl compounds (methanol, methyl
amines, dimethylsulfide, or methylthiols) as substrates (Penger et al., 2012; Bapteste et al.,
2005). The distribution of methanogens that carry out these three metabolisms is an active
area of research, and putative methanogens with the ability to use a diverse set of substrates
are still being discovered (Orcutt et al., 2011, 2013; Vanwonterghem et al., 2016; Thauer
et al., 2008).

As one of the earliest metabolic pathways to evolve (Bapteste et al., 2005), micro-
bial methanogenesis has played an important role in the biogeochemical cycling of carbon
not only in the modern environment, but also since the evolution of the methanogenic
metabolism (Rothman et al., 2014) over 3.5 billion years ago (Ga) (Ueno et al., 2006).
Methanogenesis has remained one of the most highly conserved metabolic strategies, and,
interestingly, the pathway has never been transferred to another group of microbes (Fournier
et al., 2009). Nonetheless, this metabolism has continued to evolve in ways that increase
its metabolic capabilities and impact major biogeochemical cycles (Evans et al., 2015). For
example, it is hypothesized that acetoclastic methanogens acquired the ability to use the sub-

strate acetate from a group of cellulytic bacteria, Clostridia (Fournier et al., 2009; Rothman
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et al., 2014). The sometimes geographically remote environments that harbor methanogen-
esis and other globally-relevant metabolisms are also often some of the most interesting and
informative pieces to Earth's biogeochemical puzzle. Thus, novel geochemical and phylo-

genic approaches are needed to illuminate these hard to reach places.

Genes and geochemistry are used to diagnose microbial metabolisms through time.
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Figure 1-1: Genes and geochemistry are used to diagnose microbial metabolisms through time.
This timeline highlights some of the key biologic innovations that have affected the carbon cycle
discussed in this thesis. The timeline is populated by events that are informed by both geochemical
and phylogenetic tools. The middle bar illustrates 4.5 billion years of Earth history. This bar is
delineated by zircons (Wilde et al., 2001), the origin of life (Knoll, 2017), and microbial methano-
genesis corresponding to 3.5 Ga molecular clock estimates (Wolfe and Fournier, 2018), 3.46 Ga fluid
inclusions (Ueno et al., 2006), and 2.7 Ga isotopically depleted kerogen (Hinrichs, 2002). Some
present-day sources sampled and described in this thesis are illustrated in the upper right box. The
lower bar zooms into part of the Proterozoic and Phanerozoic Eons, and highlights the evolution of
key marine and terrestrial eukaryotic, bacterial, and archaeal organisms that have interacted with the
carbon cycle. This includes the emergence of organisms that produce one of Earth’s most abundant
biopolymers: chitin (Lozano-Fernandez et al., 2016; Berbee et al., 2017; Wolfe et al., 2016; Daley
et al., 2018; Floudas et al., 2012; Sharpe et al., 2015). Substrate-specific acetoclastic methanogenesis
is defined by ~2.4 Ma phylogenetic estimates (Rothman et al., 2014). Substrate-specific pathways of
methylotrophic methanogenesis are hypothesized to have evolved in the Proterozoic or Phanerozoic.
Because this pathway has never been dated, it appears with a question mark.
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1.3 Geobiological Approaches to Studying Biogeochemistry

Defining and quantifying the role of microbial metabolism in Earth’s carbon biogeochem-
istry is important not only for attributing the distribution of elements on Earth over the last
4.5 billion years and how Earth-life processes have evolved, but also for predicting how these
systems may be affected by future changes (Whalen, 2005; McCalley et al., 2014). More-
over, understanding the carbon cycle both in the past and today relies on an understanding
of Earth’s geochemical signals as well as life’s biological signals (Knoll, 2017; Schirrmeis-
ter et al., 2015). Taking a geologic perspective to studying biology introduces significant
challenges, but it also enables the application of a wide set of interdisciplinary tools to

understand those environments that cannot sampled directly (Knoll, 2014).

1.3.1 Geochemical Approaches to Studying Microbial Biogeochemistry
Fossils and Biomarkers

Diagnostic fossils are one of the most informative pieces of evidence we have to identify
what lived in the past. For instance, the fossil record of fungi provides evidence of some
of the oldest animal life (Berbee et al., 2017). More specifically, crown Ascomycetes are
used to inform the minimum age of one of the major splits in fungal evolution (Berbee and
Taylor, 2010). Fossil evidence is also used to provide a minimum age estimate for the oldest
crown Arthropods, which likely originated in the Cambrian (Lozano-Fernandez et al., 2016;
Wolfe et al., 2016; Daley et al., 2018). When fossils do not exist for taxa of interest (e.g.,
we are looking too far back in time or the organisms lack clear morphologies Shih, 2015),
biomarkers, a form of chemical fossil, can provide additional metabolic information (e.g.,
Peters et al., 2005; Zhuang et al., 2016; Inagaki et al., 2015; Brocks and Pearson, 2005).

Carbon and Hydrogen Stable Isotopes of Methane

Carbon (13C/12C) and hydrogen (D/H) isotope ratios are widely used to identify the source
of environmental methane (thermogenic, microbial, or abiogenic) both today and over ge-
ologic time (e.g., Blair and Carter, 1992; Whiticar, 1999; Conrad et al., 2009; Blaser and
Conrad, 2016; Hinrichs, 2002; Ueno et al., 2006). This is based on the observation that
the enzymatic reactions carried out by microbes, for example, preferentially incorporate the
"lighter" isotopes, resulting in isotopically depleted isotope values (Hayes, 2001). The nota-
tion for describing carbon and hydrogen stable isotopes is delta (&), and is reported in units

of permil (%o):

130/12C)sample

6130 — (
(13C/ IQC)PDB

-1 (1.1)
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5D = (PD/Msample _ (1.2)
(D/H)smow

where, PDB and SMOW are Pee Dee Belemnite and Standard Mean Ocean Water,
respectively.

The isotopic composition of methane is mediated by both kinetic and equilibrium iso-
tope effects during formation processes (Valentine et al., 2004; Whiticar, 1990). Microbial
enzymatic reactions are typically associated with a general range of fractionation factors and
more depleted environmental isotopic compositions (Summons et al., 1998; Whiticar, 1999;
Valentine et al., 2004; Londry et al., 2008; Conrad et al., 2009). However, microbes can also
produce highly variable and often overlapping carbon and hydrogen isotope signals, affected
by the source of carbon and hydrogen as well as isotope fractionation during formation
(Valentine et al., 2004; Penger et al., 2012; Alperin and Blair, 1992; Sugimoto and Wada,
1993; Krzycki and Kenealy, 1987; Waldron et al., 1999; Yoshioka et al., 2008; Kawagucci
et al., 2014). Thus, carbon and hydrogen isotope values alone cannot always unambiguously

determine the methane source.

Methane "Clumped" Isotopologues

It was proposed that clumped isotopologues of methane may avoid some of the challenges
inherent to identifying methane sources based on conventional carbon and hydrogen stable
isotopes, because clumped isotopologue formation is mediated by equilibrium processes de-
pendent on methane formation terﬁperature (Stolper et al., 2013, 2014, 2015; Eiler et al.,
2014; Wang et al., 2015). ’Clumped isotopologue’ refers to the multiply substituted iso-
topologues of methane; those molecules that have more than one rare isotopic constituent
clumped together in a single molecule (e.g., 13CH3D ). The following reaction shows equi-

librium among four methane isotopologues, including *CH3D :

13CH, + 2CH3D «— 3CH3D + '2CH, (1.3)

The equilibrium constant (K1) can be written as:

_ ['3CH3D][*2CHy4]
T~ [*2CH;D][3CH,

(1.4)

The value of K7 primarily depends on temperature, and it approaches unity at high
temperatures (1.0002 at 1,000°C), but is about 1.0057 at 25°C as estimated by molec-
ular simulations (Ma et al., 2008; Stolper et al., 2015; Wang et al., 2015; Liu and Liu,
2016). Thus, the precise measurements of four isotopologues’ abundance (12CH,, BCH,,
12CH3D, and '3CH3D ) were thought to provide an estimate of the temperature at which

the methane gas was formed or thermally equilibrated. Initial studies using high-resolution
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mass-spectrometry demonstrated that this new isotopologue thermometer provides a range
of temperatures that are consistent with formation temperatures for methane samples from
geologic environments, such as natural gas reservoirs (Stolper et al., 2014). Later studies,
however, showed that methane sampled from surface environments (e.g., ruminants, lakes,
and swamps) is characterized by clear non-equilibrium signals that yield apparent clumped
isotopologue temperatures much higher than environmental methane generation tempera-
tures (Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016; Young et al., 2017).

The abundance of the clumped isotopologue *CH3D is reported as ACH3zD , which
represents the deviation (excess) of the abundance of 13CH3D from a stochastic distribution
(i.e., one in which all carbon and hydrogen isotopes are randomly distributed amongst the
isotopologues >CHy, 3CHy, 2CH3D, and '3CH3D ) (Ono et al., 2014):

['*CH;D]["*CH,]
[13CH,4]['2CH3D]

Methane isotopologues may thus provide additional information about the formation of

ABCH3D = (1.5)

the C—H bond, rather than just the origin of carbon or hydrogen, thereby providing infor-
mation about the mechanism of methane molecule formation. Measurements of the clumped
isotopologue of methane, 3CH3D and *CH,Ds, have been used to better understand the
source of methane in a variety of environments (Gruen et al., 2014; Ono et al., 2014; Wang
et al., 2015; Stolper et al., 2015, 2014; Eiler et al., 2014; Lopes et al., 2016; Whitehill et al.,
2017; Young et al., 2016; Wang et al., 2018). However, life operates outside of equilibrium.
Microbes can produce nonequilibrium clumped methane signals in laboratory studies and in
the environment (Wang et al., 2015; Stolper et al., 2015). Stable isotopes of carbon and hy-
drogen are some of our best tools for making biogeochemical inferences, but the mechanisms

that drive these nonequilibrium clumped isotope signals remain poorly understood.

1.3.2 Molecular Approaches to Studying Microbial Biogeochemistry
Molecular Clock Dating

Genetic sequence information can complement the geochemical information gleaned from the
geologic past. Figure 1-2 illustrates some phylogenetics nomenclature that will be discussed
in this thesis. Molecular clocks, phylogenetic trees temporally calibrated with fossil evidence,
have been used to time the evolution of different plants and animals (Peterson et al., 2004;
Donoghue and Benton, 2007). A phylogenetic tree provides relative divergence distances,
and a molecular clock estimates the rate of evolution. Absolute timing of the molecular
clock can be calibrated using independently known dates of characteristic fossils, similar to
how index fossils are used to date stratigraphic columns in geologic settings (Hedges and
Kumar, 2003; Donoghue and Benton, 2007; O’Reilly et al., 2015). However, microbial life

does not leave behind fossils with which to date divergences. Consequently, new molecular
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clock techniques have been developed that use extant gene and protein sequences to estimate
divergence times of microbial lineages (Donoghue and Benton, 2007; Knoll, 2017: Parfrey
et al., 2011; Schirrmeister et al., 2015).

most recent common
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— A

branch length (D) = rate x time ___L__ B
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Figure 1-2: Molecular evolution nomenclature. The time axis is implicit because evolutionary
changes happen between ancestor and descendants, but this is not always a real axis in that it isn’t
necessarily calibrated by the fossil record. The grey lines represent the branches of a tree, across
which evolutionary changes occur, and the length corresponds to rate x time. Each juncture is a
node. The crown group taxa are labeled relative to the are the stem group taxa, including extinct
members. E, in green, is the outgroup of all of those taxa which we use to polarize characters.

Horizontal Gene Transfer

Horizontal gene transfer (HGT), coupled with new molecular approaches, has been proposed
as one way to integrate the timing of events in microbial evolution with stronger confidence
and higher precision (Wolfe and Fournier, 2018; Magnabosco et al., 2018; Dos Reis, 2018;
Fournier et al., 2015). HGT has played an important role in the evolutionary history of
many metabolic pathways, including methanogenesis (Fournier et al., 2009). While vertical
inheritance passes genetic information from parent to offspring, HGT passes information
between lineages, across any evolutionary distance. The importance of HGT in microbial
evolution has become increasingly appreciated (Gogarten, 1995; Gogarten and Townsend,
2005; McInerney et al., 2008). HGT events are detected by comparing phylogenies inferred
from highly conserved protein sequences (which are likely to reflect a species tree) to those
of individual genes. Topological conflicts (differences in the structure of trees) between gene

and species trees are candidate HGT events (Soucy et al., 2015) (Figure 1-3).
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Figure 1-3: Topological conflicts between species and gene trees are used to infer HGT. Modified
from (Dos Reis, 2018).

A variety of computational tools exist to detect and evaluate these events (Fournier
et al., 2009, 2015; Andam et al., 2010; Zhu et al., 2014). HGT events can also be used to
improve divergence time estimates, because they can be used as a "temporal scaffold" to
tether other fossil or geochemical calibrations (Gold et al., 2017; Magnabosco et al., 2018;
Wolfe and Fournier, 2018; Dos Reis, 2018). Figure 1-4 illustrates the pipelines used to build

gene and species trees and apply molecular clock models.

1.4 Thesis Overview

The chapters that follow seek to illuminate signals of microbial metabolism in modern and
ancient ecosystems. In Chapter 2 (and Appendices A, B, C), I use lab-based cultures,
field sampling, and modeling to investigate possible mechanisms governing kinetic clumped
isotopologue signals in microbial methane. I show that these kinetic isotope signals may
not necessarily be specific to the substrate used, but do distinguish microbial methane.
In Chapter 3, I explore methanogenic substrate utilization in the environment and through
time by assessing the phylogenetic history of key genes in the methylotrophic methanogenetic
pathway. Further, I present opportunities for exploring this poorly-understood pathway in
future environments and experiments. Following up on some of the challenges presented by
Chapter 3, in Chapter 4 I report a novel HGT present in many microbial lineages and explain
how we can leverage this event to understand the emergence of several bacterial lincages.
This also has implications for our understanding of the emergence and distribution of major

groups of organisms fungi, arthropods, and bacteria) in the Proterozoic and Phanerozoic
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Figure 1-4: Pipeline for phylogenetic and molecular clock methods.

Eons.

In summary, this work uses both isotopic information from the modern environment and
molecular evidence from genetic sequence databases to inform a better understanding of
the signals of and evolutionary events involving carbon metabolism during the Proterozoic
and Phanerozoic Eons. Clumped isotopologues add dimensionality to conventional carbon
and hydrogen measurements in explaining the origin of methane produced by microbes in
laboratory and natural systems. Substrate-specific methanogens may have diversified, in
part, due to their interactions with bacterial neighbors in ancient marine sediments. The
distribution and formation of some of the simplest biomolecules (e.g., methane and chitin),
informed by novel and complementary geochemical and phylogenetic tools, may provide
important insight into how Earth’s carbon cycle evolved over geologic timescales. Moreover,
the methods developed in this work are broadly applicable to further understanding the

coevolution of Earth and life with respect to other biogeochemical cycles of interest.
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CHAPTER 2

EXPERIMENTAL INVESTIGATION ON THE CONTROLS OF
CLUMPED ISOTOPOLOGUE AND HYDROGEN ISOTOPE
RATIOS IN MICROBIAL METHANE

This chapter was originally published as Gruen, D.S., Wang, D.T., Kénneke, M., Topguoglu, B., Stewart,
L., Goldhammer, T., Holden, J.F., Hinrichs, K.U., Ono, S. (2018). Experimental investigation on the controls
of clumped isotopologue and hydrogen isotope ratios in microbial methane. Geochimica et Cosmochimica
Acta 237: 339aA$56.

D.S.G,MK,, K.U.H,, L.C.S., B.T., J.F.H. designed and/or conducted the culturing experiments, D.S.G.
and D.T.W. performed isotopic analyses, D.S.G. collected and analyzed the data; D.S.G. and S.O. performed
modeling and wrote the manuscript with input from all authors.
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2.1 Abstract

The abundance of methane isotopologues with two rare isotopes (e.g., 3CH3D ) has been
proposed as a tool to estimate the temperature at which methane is formed or thermally
equilibrated. It has been shown, however, that microbial methane from surface environ-
ments and from laboratory cultures is characterized by low 3CH3D abundance, corre-
sponding to anomalously high apparent '>CH3D equilibrium temperatures. We carried
out a series of batch culture experiments to investigate the origin of the non-equilibrium
signals in microbial methane by exploring a range of metabolic pathways, growth tem-
peratures, and hydrogen isotope compositions of the media. We found that thermophilic
methanogens (Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus,
and Methanocaldococcus bathoardescens) grown on Hy + COg at temperatures between 60
and 80°C produced methane with A'3CH3D values (defined as the deviation from stochastic
abundance) of 0.5-2.5%o, corresponding to apparent 3CH3D equilibrium temperatures of
200-600°C. Mesophilic methanogens (Methanosarcina barkeri and Methanosarcina mazei)
grown on Hy + COs, acetate, or methanol produced methane with consistently low ACH3D
values, down to -5.2%0. Closed system effects can explain part of the non-equilibrium signals
for methane from thermophilic methanogens. Experiments with M. barkeri using D-spiked
water or D-labeled acetate (CD3COQ ™) indicate that 1.6-1.9 out of four H atoms in methane
originate from water, but A'3CH3D values of product methane only weakly correlate with
the D/H ratio of medium water. Our experimental results demonstrate that low A3CHzD
values are not specific to the metabolic pathways of methanogenesis, suggesting that they
could be produced during enzymatic reactions common in the three methanogenic path-
ways, such as the reduction of methyl-coenzyme M. Nonetheless C—H bonds inherited from

precursor methyl groups may also carry part of non-equilibrium signals.

2.2 Introduction

Methane is significant to the global carbon cycle (e.g., Alperin and Blair, 1992), a potent
greenhouse gas (e.g., Wecht et al., 2014), a source of energy (e.g., Whiticar, 1990), and
a potential biosignature both for the deep biosphere (e.g., Inagaki et al., 2015) and plan-
etary missions (e.g., Webster et al., 2015). The greatest natural source of methane to the
atmosphere is produced by microbes in anoxic environments such as swamps, sediments,
rice paddies, and ruminant tracts (Klapp et al., 2010). Microbial methanogenesis also con-
tributes the majority of methane to oceanic gas hydrates, the largest reservoir of methane
on Earth (Kvenvolden, 1993; Thauer et al., 2008).

Three major pathways are known for microbial methanogenesis (Thauer, 1998):
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Hydrogenotrophic methanogenesis COy +4Hy —— CHy4 + 2H20 (2.1)
Acetoclastic methanogenesis CH,COOH — CHy4 + COq (2.2)
Methylotrophic methanogenesis 4CH30H — 3CH4 + CO2 + H2 O (2.3)

Hydrogenotrophic methanogenesis (2.1) is the reduction of CO2 with Hy as an electron
donor, which is employed by at least six of the seven known orders of methanogens (Bapteste
et al., 2005). Although not as common, methanogens capable of hydrogenotrophic methano-
genesis can use formate as both a source of carbon and as an electron donor (Bapteste et al.,
2005). Acetoclastic methanogenesis (2.2), the disproportionation of acetate to CH4 and COa,
is restricted to the genera Methanosarcina and Methanosaeta within the order Methanosarci-
nales. Hydrogenotrophic and acetoclastic methanogenesis are the two most common forms of
microbial methanogenesis today (Conrad, 2005). Methylotrophic methanogenesis (2.3), used
by Methanosarcinales and Methanomassiliicoccales, uses methyl compounds (e.g., methanol,
methyl amines, dimethylsulfide, or methylthiols) as substrates (Bapteste et al., 2005; Penger
et al., 2012). Nonetheless, all methanogenic archaea possess the enzyme methyl-coenzyme
M reductase (MCR) which catalyzes the final step of methanogenesis (e.g., Ermler et al.,
1997; Grabarse et al., 2000; Scheller et al., 2013; Wagner et al., 2016).

Carbon (13C/12C) and hydrogen (D/H) isotope ratios have been widely used to identify
the origin of methane in the environment (Blair and Carter, 1992; Whiticar, 1999; Conrad
et al., 2009; McCalley et al., 2014; Blaser and Conrad, 2016). However, it is often challeng-
ing to accurately determine the methane source since the isotopic composition of methane
depends upon carbon and hydrogen sources as well as isotope fractionation during forma-
tion processes (Waldron et al., 1999; Valentine et al., 2004; Yoshioka et al., 2008; Kawagucci
et al., 2014).

Previous culture experiments using D-labeled water (Daniels et al., 1980) or D-spiked
water (Kawagucci et al., 2014) indicate that hydrogen in hydrogenotrophic methane is pri-
marily derived from the hydrogen in water with only minor contribution from hydrogen
in hydrogen gas (Hz). The contribution from Hy can be explained by the production of
metabolic water (Sugimoto and Wada, 1995) since the production of one mole of methane
yields two moles of water (COz + 4Hy —— CHy4 + 2H50), and the high specific rate of
methanogenesis results in rapid turnover of intracellular water. The residence time of intra-
cellular water is estimated to be as short as a few seconds (much lower than the doubling
time of cells) during exponential growth (Kawagucci et al., 2014). The 6D value of intra-
cellular water can also be influenced by exchange between Hs and H3O™, which can be
catalyzed by hydrogenase enzymes (Burke, 1993; Valentine et al., 2004). Alternatively, the
direct transfer of hydrogen in Hy into CH4 can be mediated by the enzyme methylenetetrahy-
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dromethanopterin dehydrogenase (Schworer et al., 1993; Schleucher et al., 1994; Klein et al.,
1995b,a; Klein and Thauer, 1995; Hartmann et al., 1996). In contrast, experiments with
acetoclastic methanogens indicate that up to three out of four hydrogen atoms in methane
are derived from the methyl group of acetate, as implied in the stoichiometry of Reaction
(2.2) (Pine and Barker, 1956).

In addition to the ratios of *3C/2C and D/H of methane, measurements of the doubly
isotope substituted isotopologue, *CH3D and/or 2CH3Ds, have recently been applied as
tools to constrain the source of methane in a variety of environments (Stolper et al., 2013,
2014; Wang et al., 2015; Douglas et al., 2016; Wang et al., 2016; Young et al., 2016; Douglas
et al., 2016; Whitehill et al., 2017; Young et al., 2017). The following reaction shows the

equilibrium among four methane isotopologues, including 3CH3D :
13CH, + 2CH3D +— 3CH3D + '2CH,4 (2.4)

Here, its equilibrium constant (Kr) can be written as:

_ ['3CH3D][*2CH4]

Kr =
T~ [2CH;D]|[CH,]

(2.5)

The value of Kp primarily depends on temperature, and it approaches unity at high
temperatures (1.0002 at 1,000°C), but is about 1.0057 at 25°C as estimated by molec-
ular simulations (Ma et al., 2008; Stolper et al., 2015; Wang et al., 2015; Liu and Liu,
2016). Thus, the precise measurements of four isotopologues’ abundance (12CH4, 13CH,,
12CH3D, and '3CH3D ) were thought to provide an estimate of the temperature at which
the methane gas was formed or thermally equilibrated. Initial studies using high-resolution
mass-spectrometry demonstrated that this new isotopologue thermometer provides a range
of temperatures that are consistent with formation temperatures for methane samples from
geologic environments, such as natural gas reservoirs (Stolper et al., 2014). Later stud-
ies, however, showed that methane sampled from surface environments (e.g., ruminants,
lakes, and swamps) is characterized by clear non-equilibrium signals that yield apparent
clumped isotopologue temperatures higher than environmental methane generation temper-
atures (Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016; Young et al., 2017).

These studies also showed that the degree of methane isotopologue disequilibrium is
correlated with D/H-isotope disequilibrium between HoO and CHy (i.e., CH3D + H20 +—
CH4 + HDO). To explain this observed relationship, Wang et al. (2015) and Stolper et al.
(2015) both presented a mathematical model that considered metabolic reversibility, which
is defined as the ratio of backward to forward fluxes through an enzymatically-mediated
reaction sequence. These models were based on earlier models for sulfur isotope effects
of sulfate reducers (Rees, 1973; Farquhar et al., 2007; Sim et al., 2011). By choosing the

appropriate fractionation factors, these models can describe isotopologue compositions of
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microbial methane between kinetic and equilibrium end-members, corresponding to unidi-
rectional and reversible reactions, respectively. Accordingly, both studies attributed the
origin of kinetic clumped isotope signals intrinsic to one or more enzymatic reactions in the
methanogenic pathways. The application of transition state theory (Bigeleisen, 1949) can
explain '3CH3D abundance between equilibrium and stochastic (A13CH3D >0%o0), but anti-
clumped '3CH3D abundance (A3CH3D <0%o) requires the mixing of methane reservoirs
with an often unreasonably large range of bulk §D and §'3C values or a physical mechanism,
including quantum mechanical tunneling (Wang et al., 2015; Whitehill et al., 2017; Young
et al., 2017) (A130H3D is a measure of excess 13CH3D as defined later in Equation 2.8). For
the doubly deuterated isotopologue CHyDs, purely statistical combinational-effects can also
produce large apparent depletions in CHyDo (R6ckmann et al., 2016; Yeung, 2016; Young
et al., 2017).

Recent work cultivating methanogens produced isotopologue compositions consistently
out of isotopic equilibrium (Douglas et al., 2016; Young et al., 2017). These results were in
agreement with previous culture studies (Stolper et al., 2015; Wang et al., 2015), but high-
lighted the need for further assessment of the mechanisms that control microbial *CH3zD
compositions. In particular, the source of H in CHy for acetoclastic and methylotrophic
methanogenesis remained uncertain (Douglas et al., 2016, 2017). The goal of this work is
to better characterize the kinetic '*CH3zD effects that lead to these generally low AB3CH3D
values, specifically during microbial methanogenesis, using a comprehensive set of metabolic
pathways and temperatures. We investigated this with a series of batch culture experiments
to test the effect of 1) species (Methanothermococcus thermolithotrophicus, Methanocaldococ-
cus jannaschii, Methanocaldococcus bathoardescens, Methanosarcina barkeri, and Methanosarcina
mazet), 2) temperature (from 30 to 85°C), and 3) substrate (Hy + COg, acetate, and
methanol). We also investigated the effect of closed-system processes as well as D/H ra-
tios of medium water to test if apparent high-temperature signals are produced by mixing
of two or more pools of methane (or its precursors), as mixing has been shown to produce
a bias in the clumped isotopologue temperature estimate (Stolper et al., 2015; Wang et al.,
2015; Douglas et al., 2016).

2.3 Methods

2.3.1 Laboratory Culture Experiments

Table 2-1 summarizes all culture experiments conducted in this study as well as results from
our earlier experiments presented in Wang et al. (2015). Descriptions of specific experimental

conditions are provided below.
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Table 2-1: Summary of experiments.

Experiment Substrates

(Method) Organism(s) Purpose Variables Used Presented in
Methanocaldococcus jannaschii, Effect of
Temperature  Methanocaldococcus bathoardescens, —" Growth H, + CO Figures 2-1, 2-9
Series* Methanothermococcus growth Temperature 4 2 Tables 2-2, 2-3
; i temperature
thermolithotrophicus
. - Closed system  Incubation Figures 2-1, 2-2, 2-9
Time Series Methanocaldococcus bathoardescens otopeelieots.  Time Hsz + COq Tables 2-2, 2-3
Substrate Methanosarcina barkeri, Substrate L . Hz +.COy, F]gures e
Series Vethanaiareing s Pathway Substrate acetate, 2-5, 2-9
’ effects methanol Tables 2-2, 2-3
H; + COs, Figures 2-1, 2-3, 2-5,
%e;t;mtcd Methanosarcina barkeri :ﬂizgﬂn dD Water acetate, 2-6, 2-8, 2-9
h methanol Tables 2-2, 2-3
Deuterated . Hydrogen CD3COOD Famutes ol W4, el
Acetate Methanosarcina barkeri Spike acetate 2-9
Bopee P Tables 2-2, 2-3

*a part of data was reported in Wang et al. (2015)

Temperature Series Experiments

Pure cultures of methanogens were grown in duplicate in batch cultures at a range of temper-
atures (30-85°C). Three different hydrogenotrophic methanogens were selected based on their
growth kinetics and optimum growth temperatures: Methanothermococcus thermolithotroph-
icus, Methanocaldococcus jannaschii, and Methanocaldococcus bathoardescens. Cultures of M.
thermolithotrophicus and M. jannaschii were purchased from the German Collection of Mi-
croorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). M. bathoardescens was
originally isolated from vent fluid at Axial Volcano, Juan de Fuca Ridge, and maintained in
culture at the University of Massachusetts, Amherst (Stewart et al., 2015).

Culture medium was prepared following the recipe for DSMZ medium 282 according
to Stewart et al. (2015). The headspace was filled with H:CO2 (in a ratio of 80:20 by
volume) at 2 bar absolute pressure. For each experiment, 5 mL of inoculum from a culture
in the exponential growth phase was added to a sample vial containing 50 mL media. M.
thermolithotrophicus was grown at 30, 40, 50, and 60°C, M. jannaschii was grown at 70 and
80°C, and M. bathoardescens was grown at 85°C. All cultures were incubated in 140 mL
rubber-stoppered glass serum vials in forced-air convection ovens. Cell concentrations were
monitored by cell counts with a Petroff-Hauser counting chamber and phase-contrast light
microscope to determine the growth kinetics as a function of temperature (Stewart et al.,
2015). Experiments for isotope measurement were stopped at a time when stationary phase
was reached (5 to 64 hours, as measured in prior studies and replicated in our laboratory
Huber et al., 1982; Jones et al., 1983; Ver Eecke et al., 2013). Most CO2 (>95%) was
converted to CHy as indicated by gas chromatography (GC) measurements of carbon dioxide

and methane in the headspace gas.
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Time Series Experiments

M. bathoardescens was grown under an Hy:CO2 (80:20) atmosphere in replicate batch cul-
tures at 80°C to study the effects of growth phase and closed system on *CH3zD and to
estimate instantaneous clumped isotopologue fractionation factors. Culture medium was
prepared as above. Methane was sampled and analyzed by GC from batch cultures at time
points corresponding to fractional conversion of 6, 10, 68, and 77% of the initial carbon
dioxide to methane (Table 2-1). The fractional conversion was calculated by dividing the
volume of methane produced at the conclusion of the experiment by the volume of methane

expected.

Substrate Series Experiments

To determine the effect of different metabolic pathways, established batch culture incuba-
tions of Methanosarcina barkeri were grown on three different substrates: Hy + COg2, (re-
ferred to as hydrogenotrophic cultures hereafter), methanol (methylotrophic cultures), and
acetate (acetoclastic cultures). Cultures of M. barker:i (strain DSM-800) were purchased
from the DSMZ (Braunschweig, Germany). The growth medium was prepared according
to the recipe for DSMZ medium 120 (Balch et al., 1979). For hydrogenotrophic cultures,
the headspace was filled with 1.5 absolute bar of H9:COs (80:20) gas mix. For acetoclas-
tic and methylotrophic cultures, the headspace was filled with 1.5 absolute bar of N2:COg2
(70:30) gas mix and the medium was amended with 30 mM of Na-acetate or 250 mM of
methanol, respectively. Cultures were incubated in duplicate near room temperature. Two
sets of experiments were carried out. The first set of experiments (Set 1) was intended to
provide preliminary data, and thus temperature was not strictly controlled over the course
of the experiment (cultures exposed to ambient temperatures between 21 and 38°C), and
the medium contained yeast extract. Nonetheless, all bottles in this series were subjected
to identical environmental conditions. A second set of cultures (Set 2) was prepared and
incubated under close monitoring at constant temperature (38°C). Yeast extract (YE) and
casitone were omitted from medium unless otherwise noted. At the end of the experiment,

cultures were killed with 1M NaOH to prevent any additional methanogen activity.

D-label and D-spike Experiments

To constrain the source of hydrogen in the hydrogenotrophic, methylotrophic, and aceto-
clastic pathways, a subset of M. barkeri cultures was also spiked with either 15 or 30 uL of
D20 per one liter of media. Additionally, acetoclastic cultures were prepared containing 10,
50, or 100% (molar fraction) deuterated acetic acid (CD3COOD, 99% purity, Sigma-Aldrich,
St. Louis, MO).
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Table 2-2: Results for methanogen culture experiments.

Incuba-

Methanogen Substrate*! T (°C) éDu2o 13 + %o 6Dcps £ %o 13 + %o tion Methane
§°Ccha 6 °Crap o

(hrs) (mL)
Temperature Series Experiments (TS)
M. jannaschii*? H; + CO, 80 -49.0 -18.79 0.03 -415.46 0.05 2.29 0.23 5.25*% NA
M. bathoardescens*® Hz + CO, 85 -49.0 -12.58 0.07 -417.80 0.07 1.03 0.45 8*s NA
M. thermolithotrophicus**  Ha + CO» 40 -49.0 -16.47 0.04 -427.76  0.04 1.38 0.34 28*5 NA
M. thermolithotrophicus Hy + CO2 30 -49.0 -17.05 0.08 -421.44 0.12 1.56 0.28 64*° NA
M. thermolithotrophicus Ha + CO2 60 -49.0 -17.15 0.06 -409.77 0.05 0.66 0.28 6*® NA
M. thermolithotrophicus**  Hg + CO, 60 -49.0 -17.05  0.05 -409.84 0.05 0.54 0.28 6*® NA
Time Series Experiments (CS)
M. bathoardescens H; + COy (6%) 80 -49.6 -17.82 0.07 -350.30  0.21 2.13 0.29 2.75 NA
M. bathoardescens Hy + CO2 (10%) 80 -49.6 -18.25 0.10 -347.63 0.10 2.30 0.55 3.25 NA
M. bathoardescens Hy + CO, (68%) 80 -49.6 -3.91 0.04 -396.41 0.04 2.35 0.21 3.5 NA
M. bathoardescens Hy + COy (T7T%) 80 -49.6 -3.74 0.03 -402.25 0.03 2.45 0.29 4 NA
Methanosarcina Substrate, Spike, and Temperature Experiments - set 1**
M. barkeri** Hy + CO2 21-38  -51.2 -59.90 0.05 -418.40 0.05 -1.34 0.22 3366 NA
M. barkeri** Hy + CO9 21-38  -51.2 -59.30 0.07 -422.67 0.07 -1.08 0.63 336*0 NA
M. barkeri Hy + COy 21-38  100**  -59.15  0.06 -340.47  0.05 -1.32 0.23 336°6 NA
M. barkeri Ha + COq 21-38 260" -60.93 0.1 -201.10  0.11 -2.35 0.56 336°° NA
M. barkeri methanol 21-38  -51.2 -116.30  0.11 -372.46 0.11 -5.16 0.48 336°¢ NA
M. barker: acetate 21-38 -51.2 -66.83 0.08 -317.08 0.09 -2.87 0.42 3366 NA
M. barkeri acetate 21-38  -51.2 -66.78 0.34 -313.61 0.55 -2.97 1.49 336°° NA
Methanosarcina Substrate, Spike, and Temperature Experiments - set 2
M. barkeri Hs + CO, 38 85.4 -62.02 0.05 -373.86  0.05 -3.06 0.28 730 22
M. barkeri Ha + COy 38 322.1 -58.08 0.05 -239.13  0.05 -2.91 0.23 730 39
M. barkeri H; + COy 38 -50.5 -57.40 0.05 -452.14 0.05 -3.82 0.32 730 30
M. barkeri*? Hs + COo 21 -49.4 -70.52 0.05 -425.43 0.05 -1.85 0.23 730 15
M. barkeri methanol 38 -39.1 -117.01  0.05 -370.16  0.05 -4.92 0.40 72 22
M. barker: methanol 38 196.7 -116.32  0.06 -333.09 0.06 -4.82 0.27 72 33
M. barkeri methanol 38 334.7 -118.10  0.05 -273.19  0.06 -4.17 0.36 72 96
M. barker: acetate 38 105.1 -73.74 0.07 -300.93 0.07 -2.75 0.47 730 11
M. barkeri acetate 38 359.7 -67.68 0.05 -259.54 0.05 -2.43 0.22 730 9
M. barkeri acetate (+ YE) 38 -35 -72.86 0.10 -343.12  0.10 -3.10 0.45 730 12
M. mazei Hs + CO2 38 -51.1 -56.07 0.05 -460.03  0.05 -3.46 0.22 730 23
M. mazei acetate 38 -34.1 -60.40 0.05 -314.90 0.05 -1.70 0.20 730 11
M. mazei methanol 38 -23 -120.82  0.04 -363.34 0.04 -4.47 0.20 72 86

*1 Qubstrate (%) refers to the percent of substrate consumed or reaction completion.

*2 The culture was grown at 21°C and excluded from Figure 2-3, 2-4 and analysis.
*3 §Dyz2o values represent estimates. These were measured for Set 2.

*4 From Wang et al. (2015)

*5 Values represent an estimate based on previous culture data using this this culture strain
14
grown at similar temperatures.

*0 Values represent estimated incubation time.

*7 Volume of methane in culture headspace (STP) at the end of the incubation time. NA (not analyzed) is recorded for all
cultures that were not sacrificed (injected with NaOH) prior to isotope measurements.
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2.3.2 Sample preparation and Isotopologue Measurements

At the completion of an experiment, 1 M NaOH was injected in each culture bottle (at a ratio
of 1 mL per 10 mL of medium) to sacrifice the culture and to draw down CO5 pressures in
the headspace. Methane samples from culture experiments were measured within one year of
the completion of culture experiments. Repeated measurements of NaOH-treated samples
did not show measureable changes in isotope or isotopologue ratios during storage. The
headspace was sampled by flushing with helium via two needles. Methane gas was purified
from culture gas mixtures (mostly methane, hydrogen, and nitrogen) using an automated
preparative gas chromatography system as previously described (Wang et al., 2015). For
most analyses, approximately 10 mL STP of methane was used.

The abundance of isotopologues in methane samples was measured by a tunable infrared
laser direct absorption spectrometer (TILDAS) that measures absorption in the infrared
region of the electromagnetic spectrum corresponding to bending vibrations of C-H and
C-D bonds (Ono et al., 2014; Wang et al., 2015). A typical measurement consists of eight
to ten cycles of alternating measurements of reference and sample methane. Measured
isotopologue ratios were averaged and 95% confidence intervals were calculated according
to Student’s ¢-distribution as previously described (Wang et al., 2015).

The hydrogen isotope composition of culture medium water (6Dgoo), except for that
of Methanosarcina Set 2 experiments, was measured using a cavity ring-down spectrome-
ter (CRDS, Picarro Inc., Santa Clara, California, USA) at the University of Massachusetts,
Ambherst. The 6Dyao values of the Methanosarcina Set 2 cultures were measured at the Uni-
versity of Bremen also by CRDS (Picarro L2130-i Analyzer, Picarro Inc., Santa Clara, CA,
USA). The hydrogen isotope composition of Hy was not measured. Bulk 6'3C of methanol
and acetate were measured via LC-IRMS at the University of Bremen (Heuer et al., 2006).
COy in the N:CO9 and H2:CO, gas mixes, bicarbonate solution, and culture media were
measured via isotope ratio infrared spectrometry (IRIS) at the University of Bremen. The
D/H ratio of sodium acetate (CH3COONa) was measured by high temperature conversion
elemental analyzer interfaced with isotope ratio mass-spectrometer (IRMS) at University of

Chicago. Typical uncertainties were 0.2 to 0.4%o and 2 to 5%o for §13C and 6D, respectively.

2.3.3 Isotope Notation and Calibration

In this work, stable isotopic ratios of carbon and hydrogen are reported in conventional §

notation, defined as:

. (13C/IQC)sam le
5130_ (13C/12C)PDI; —1 (26)

_ (D/H)sample _
D= (D/H)smow ! 27)
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where, PDB and SMOW are Pee Dee Belemnite and Standard Mean Ocean Water,
respectively. The factor of 1000, which commonly appears in definitions of é values in the
geochemical literature, has been omitted from Equations 2.6 and 2.7, as it is implied by the
permil (%o) symbol, in accordance with IUPAC recommendations (Coplen, 2011). Values
for §'3C and 6D of methane analyzed via TILDAS at MIT have been calibrated against PDB
and SMOW via measurements of natural gas standards NGS-1 and NGS-3 (Wang et al.,
2015). Reference values for §'3C and 6D were taken to be -29.0%0 and -138%¢ for NGS-1,
and -72.8%0 and -176%o for NGS-3, respectively (Hut, 1987).

Because the TILDAS measures ratios of methane isotopologues, bulk §'3C and 6D values
reported in this paper are necessarily derived quantities. For samples of methane containing
a mix of isotopologues at or sufficiently close to their naturally-occurring abundances, includ-
ing all samples analyzed via TILDAS in this study, ratios of isotopologues are interchangeable
with ratios of isotopes (i.e., }3C/!2C and D/H) when calculating § values, with no difference
within achievable uncertainties of isotope ratio measurements: 3C/12C =~ [**CH,4]/[!2CH,4]
and D/H =~ }[*?CH;3D|/['?CHy4]. Note that the symmetry factor of 1 cancels out when 6D
values are calculated via Equation 2.7.

The abundance of the clumped isotopologue 3CH3D is reported as A>CH3D , which
represents the deviation (excess) of the abundance of 3CH3D from a stochastic distribution
(i.e., one in which all carbon and hydrogen isotopes are randomly distributed amongst the
isotopologues 2CHy, '3CHy, '2CH3D, and 3CH3D ) (Ono et al., 2014).

13 H-D 12 13 13 12
ABCH;D = [13C 3 1]2[ CHil | o 1n—-ﬁq@ ~In HCH“ —In HCH“D (2.8)
['°CHy4)['*CH3D] CHy CHy CHy4
We used the following equation to derive apparent A3CH3D temperatures:
3 2
1000 1000
AIBCH3D(T) = —0.1101 (%Q) + 1.0415 (%) — 0.5223 (—OT—) (2.9)

where T is in Kelvin. Density function theory (B3LYP) with 6-31G(d) basis set was used
to estimate harmonic vibrational frequencies, and isotope fractionation factors were calcu-
lated following conventional theory by Urey (1947). A sample of methane with stochastically-
distributed abundances of isotopologues has a A¥CH3D value of zero, corresponding to an
apparent equilibrium temperature of infinity for Reaction 2.4. Negative A3CH3D values
represent "anti-clumped" signals, where the abundance of 3CH3D is more depleted than
that expected for stochastic isotopologue distribution.

Measurements made via TILDAS give the abundances of methane isotopologues relative
to a reference gas against which the samples are measured (here, a commercially-sourced

cylinder of methane termed "AL1" was used as the reference gas). To express A3CH;3D val-
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ues of samples relative to the stochastic distribution requires determination of the ACH3D
value of the reference gas AL1. This was determined by heating AL1 in a flame-sealed glass
tube in the presence of a platinum catalyst between 150 and 400°C for several days to
months (Ono et al., 2014; Wang et al., 2015).

The fractionation factor («) quantifies the difference in the relative abundance of isotopes
between the substrate and the instantaneous product of a reaction. For the reduction of

carbon dioxide to methane, the fractionation factor is defined as:

513CCH4 +1

ety S 2.10
5130002 +1 ( )

13
QCH,/CO, =

Two modes of D/H fractionation characterize each hydrogen addition step during the

biosynthesis of methane. For example, for addition of H (or D) onto a methyl group:

CH3;—Ri+D—-Ry; — CH3D+R; — Ry Qap (2.11)

CHD-R;+H—-Ry; — CH3D +R; — Ry 20, (2.12)

Reaction 2.11 is accompanied by a primary D/H isotope effect (characterized by the
fractionation factor 2c,), where a D is substituted for H in the bond formed (or broken).
Reaction 2.12 is accompanied by a secondary D/H isotope effect (with fractionation factor
2a,), where the substitution of D for H occurs on the site adjacent to the C—H bond being
formed (or broken) and the C—D bond are carried from reactant to product. Primary D/H
isotope effects are typically much larger compared to secondary isotope effects. For the
reduction of methyl-coenzyme M to methane above, the secondary isotope effect is 0.84 and
the primary isotope effect of the backward reaction is 0.41 (Scheller et al., 2013).

According to the rule of geometric mean (Bigeleisen, 1955), the fractionation factor for
the clumped isotopologue *CH3D is usually close, but not necessarily equal, to the product

13 02q). A significant departure

of carbon and hydrogen fractionation factors (13~2a ~
from this rule has been observed for some in vitro enzyme assay experiments for doubly
deuterated substrates, and attributed to quantum mechanical tunneling (e.g., Srinivasan
and Fisher, 1985; Amin et al., 1988; Huskey, 2006). We represent the departure from this
relationship by the v factor, which is a metric of the kinetic clumped isotope effect (Wang
et al., 2015). There are two ways by which a '3C-containing methyl group can acquire an H
(or D) to form 3CH;3D (analogous to Reactions 2.5 and 2.6). Thus, there are two ~ factors
corresponding to primary (yp) and secondary D/H isotope effects (ys):

13—2ap = ’yp13a2ap, and (2.13)
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Table 2-3: Isotopic compositions of substrates and medium water.

Material §13C%o0 dDn20%o0  6Dcn3z%o

Hjy - CO5 gas mix*! -34.4
N3 — CO, gas mix*! -35.8

CH3COONa! -40.2 -123
CH3;OH! -49.5

Bremen DI Water*? -51.2

UMass DI Water*3 -49.6

*1. These materials were used for Set 2 of substrate
and D-spike experiments.
*2: Bremen DI water (pre-inoculation) was used
in Set 2 of substrate and D-spike experiments.
*3: UMass DI water (pre-inoculation) was used
in the temperature and time-series experiments.

13=20, = vs130?a; (2.14)

For bond forming reactions, product methane could become anti-clumped (A3CH3D

<0) when the value of v is less than unity.

2.3.4 FTIR Analysis of Methane Isotopologues

A Fourier transform infrared (FTIR) spectrometer (iS5, Thermo Scientific, Waltham, Mas-
sachusetts, USA) was used to quantify the mixing ratios of deuterated isotopologues of
methane (CHD3, CH2D2 and CH3D) and non-deuterated methane (CHy), produced in ace-
toclastic cultures spiked with CD3COOD. The FTIR spectrometer has a 0.8 cm™! spectral
resolution, and is equipped with a gas cell that has a path length of 10 ¢m, volume of 70
mL, and windows of KBr. The cell was evacuated and filled with argon three times prior
to injection of the sample or standard. For each measurement, 100 uL to 1 mL standard
temperature and pressure (STP) of the standard or sample (culture headspace, subsampled
with a gas-tight syringe, Vici Valco, Houston, Texas, USA) was injected into the cell through
a small inlet valve. Reference spectra were taken on samples of ordinary CH, (containing D
at natural abundance) and on pure (>98% purity) deuterated isotopologues (CH3D, CH3Do,
and CD3H) purchased from Cambridge Isotope Laboratories (Cambridge, MA). The mixing
ratio of methane isotopologues was determined by a least squares fit in the region of the

absorption spectrum between 3200 and 2800 cm ™!,
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Figure 2-1: Clumped methane, ACHS3D, plotted against environmental temperatures.
The dashed line represents the equilibrium A'*CH3D values calibrated experimentally using heated
methane calibrations between 400 and 150°C (Ono et al., 2014; Wang et al., 2015) and extrapolated
for lower temperatures. Colored triangles, circles, and squares represent laboratory cultures from
this study. Right-facing triangles refer to Hy + CO, cultures, circles to acetate cultures and squares
to methanol cultures. A subset of samples was previously published in Wang et al. (2015) as noted in
Table 2-2. For comparison to this work, previously reported Hy + CO; and methanol cultures from
Stolper et al. (2014) (Ref-1), Young et al. (2017) (Ref-2) and Douglas et al. (2016) (Ref-3) are plotted
with grey symbols which correspond to the substrate used. Also plotted are environmental methane
samples reported in Wang et al. (2015) (Grey symbols). Bovine rumen samples are published in
Lopes et al. (2016). In situ temperatures for hydrate samples are calculated using depths and
geothermal gradients listed in IODP reports (Riedel et al., 2006). All previously published culture
data are reported according to their original measurement notation (A™CH;3D or A18).
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Figure 2-2: Isotope systematics of §13C, éD, A'CH3D over the course of a batch
culture experiment. Hydrogenotrophic methanogens (Methanocaldococcus bathoardescens) grown
at 80°C. Reacted fraction refers to the fraction of carbon dioxide converted to methane. The filled
circles represent methane measured from culture experiments. The dashed lines show the results of
a closed system model discussed in Section 2.5.1. §13C, 6D and A™CH3D of methane are shown in
A, B, and C, respectively. Results for two « values are shown in C. See text for other fractionation
factors. The 6'3C value of initial CO, was fitted to 10.9%o.

2.4 Results

Table 2-1 (Section 2.3) summarizes the tables and figures in which results for each set of
methanogen culture experiments are displayed, Table 2-2 summarizes all data used in the
figures that follow, and Table 2-3 summarizes the isotope composition of substrates and

medium water.

2.4.1 Non-equilibrium A CH3D signals of methane from microbial cul-

tures

Microbial methane produced from pure culture experiments yielded non-equilibrium signals
with corresponding apparent clumped isotope temperatures much higher than the tempera-
tures at which the cultures were incubated (Figure 2-1). Overall, thermophilic methanogens
(grown at >40°C) produced A CH3D values that are lower than those expected for equilib-
rium distribution (0.5 to 2.5%¢), whereas mesophilic methanogens produced lower (mostly
anti-clumped) signals (-5.2 to 1.6%0), consistent with limited measurements reported in
Douglas et al. (2016) and Young et al. (2017).

Thermophilic methanogens (M. jannaschii, M. bathoardescens, and M. thermolithotroph-
icus) grown on Hy + CO2 between 30 and 80°C produced methane with ACH;3D values
ranging from 2.5 to 0.5%o, corresponding to apparent clumped isotopologue temperatures
of 195 to 603°C, respectively. Methane produced by Methanosarcina (M. barkeri and M.
mazei) grown on Hy + COs, acetate, and methanol was characterized by ABCH3D values

ranging from -5.2 to -1.1%o, which are lower than those of methane produced by thermophilic
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Figure 2-3: The 6D and A¥CH3D values of methane produced by M. barkeri in
deuterium-spiked medium. Cultures were grown at 38°C, and isotopic compositions of methane
are compared against 6D values of media water in D-spiked experiments. Includes Set 2 data.

methanogens (Figure 2-1).

As described in the methods, Set 1 cultures were exposed to ambient temperatures
between 21 and 38°C and the media contained yeast extract. Set 2 cultures were prepared
and incubated under close monitoring at constant temperature (38°C). Yeast extract (YE)
and casitone were omitted from media unless otherwise noted (Table 2-2), and at the end
of the experiment, cultures were killed with 1M NaOH. There are some notable differences
in the ACH;D values between Set 1 and Set 2 experiments for cultures with M. barkeri
and M. mazei. Table 2-2 shows that Set 1 exhibits slightly higher A3CH;3D values for each
substrate, most extreme for cultures grown on Hy + CO» (as much as a 3%o difference). M.
barkeri cultures in Set 2 grown on Hy + COg at lower temperatures (21 vs. 38°C) but in the
same conditions without any isotope spike exhibit higher ACH;3D values (by 2.0%0).

Because methanogens grown on different substrates and at different temperatures exhibit
different growth rates, methane was generated more quickly or slowly for some bottles. For
the Time Series experiments (TS), the culture headspace reached <1% COg in as little as
5 hours for 80°C cultures and as long as 3 days for 30°C cultures. Cultures in the Time
Series experiments (CS) were stopped at intervals between 2.75 and 4 hours, spanning 6-77%
reaction completion (Table 2-2). Methanogens from the Substrate, Spike, and Temperature
experiments (1 & 2) took much longer to generate methane. Set 2 cultures required long as

two months of incubation in order to produce enough methane to be sampled and analyzed.
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Figure 2-4: Relative isotopologue abundances of methane produced by M. barkeri
in batch cultures spiked with CD3COO~ (10, 50, 100%). Isotopologue composition was
determined by FTIR. and relative abundances of methane-d,, isotopologues were calibrated against
high-purity synthetic standards. CD4 was not detected in any of the experiments.

2.4.2 Effect of a closed system on 613C, 6Dcuq and ABCH3;D systematics

In order to test the potential bias in A3CH3D values due to closed system isotope effects,
methane was sampled from batch cultures in time series experiments (Table 2-2; Figure 2-2).
The 613C value of methane increased from -18.0 to -3.8%¢ over the course of experiments
(Figure 2-2A). This increase is consistent with closed system isotope effects. In contrast, 6D
values of methane decreased (-350.3 to -402.3%¢) over the course of the experiment (Figure
2-2B). Our results show A'3CH3D values remain relatively constant over the course of the

experiment between 2.1 and 2.5%0 (Figure 2-2C).

2.4.3 D-spiked H,O experiments

As the 6D of water is increased by spiking the media water, the D of product methane
also increased (Figure 2-3). This illustrates the uptake of hydrogen from water to form
methane, consistent with previous pure culture (Yoshioka et al., 2008; Kawagucci et al.,
2014; Okumura et al., 2016) and incubation experiments (Schoell, 1980; Sugimoto and Wada,
1995). Linear regression of the data for hydrogenotrophic, acetoclastic, and methylotrophic

cultures yielded the following relationships, respectively:
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5DCH4 =
0Dch, =

(0.571 + 0.011)6Dp,0 — (423.0 + 2.1),
(0.212 + 0.004)6Dy,0 — (331.5 + 0.8), and

§Dcu, = (0.269 % 0.005)6Dg,0 — (369.7 + 1.2).

where intercepts are in %o. The linear fit and standard error for the slope and intercept
was calculated following (York et al., 2004) by taking into account standard errors of 0.2%c
and 5%¢ for Dcps and dDp2o (assuming errors are not correlated). Hydrogenotrophic
cultures yielded a higher slope (0.571) compared to methylotrophic (0.269) and acetoclastic

(0.211) cultures.

The values of ACH3D are weakly dependent on pathways: -2.9 to -3.8%o, -4.2 to -
4.9%0, and -2.4 to -3.1%¢ for hydrogenotrophic, methylotrophic, and acetoclastic cultures,
respectively. For each pathway, lower A CH3zD values tend to be associated with lower

D20 values (Figures 2-3 and 2-4).

intercept was calculated as described above. Hydrogenotrophic cultures yielded a higher

The linear fit and standard error for the slope and
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Figure 2-5: The hydrogen isotope composition of microbial methane vs. the deuterium
composition of media water in spiked culture experiments. M. barkeri grown on three
different substrates. In comparison to Figure 2-3A, the axes in this figure are plotted as 6D + 1 to

take into account the non-linearity in 4D.
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slope (0.0020 + 0.0010) compared to methylotrophic (0.0019 + 0.0014) and acetoclastic
(0.0016 % 0.0012) cultures.

2.4.4 D-labeled acetate experiment

In order to track the transfer of D (or H) from the methyl group of acetate to methane, M.
barkeri was cultured with medium spiked with CD3COO~. As the amount of CD3COO™ in
an acetoclastic methanogen culture increased, not only the relative abundance of CHD3 but
also that of CHyD2 and CH3D increased at the expense of CHy (Figure 2-4). Cultures incu-
bated with 100% CD3COO~ produced methane comprised of a majority of triply deuterated
isotopologues (68% CHD3) but also contained CHyDa, (13%) and CH3D (5%).

2.5 Discussion

2.5.1 Closed system isotope effect does not explain non-equilibrium A*CH3D

Methanogens in the temperature series experiment were incubated until nearly all the sub-
strate (CO2) had been converted to product (CHy). As a result, the 6!3C value of the
product methane would have increased with reaction progress, eventually reaching the §13C
value of the starting CO2. In addition to changes in & values due to closed system ef-
fects, it has been shown that the apparent D/H fractionation factor between methane and
water changes with growth phase (Valentine et al., 2004; Kawagucci et al., 2014). This
could be due to changes in the §D value of intracellular water via D/H exchange with Ha
(Burke, 1993) or the contribution from metabolic water (Kawagucci et al., 2014). Values of
ABCH3D do track non-linearly with §'3C and D upon the mixing of two or more pools
of methane (Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016), such that mix-
ing of two methane reservoirs would result in non-equilibrium A!3CH3D values even when
A3CH;3D values of the source reservoirs carry equilibrium signals. We sought to isolate any
experimental effects introduced in the closed system and therefore tested if changing the
13C/12C and/or D/H ratios of bulk methane over the course of the reaction may also affect
the A3CH;3D value of the end product.

The production of four methane isotopologues from two isotopologues of CO2 can be

written as:
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200, — ’CHy, k (2.18)
13C0, — 13CHy, Bk (2.19)
2c0, — CH3D, 2aRyk (2.20)
30, — BCH;3D, yBalaRyk (2.21)

where, k is the pseudo-first order rate constant for >COg to >CHy, 3a and 2« are the
carbon and hydrogen isotope fractionation factors, respectively, and Ry is the D/H ratio
of source hydrogen (intracellular water, Ry = Rgsyow (6Du,0 + 1)). For the application
of equation 2.20 and 2.21, we assume that the source for H of CHy4 is intracellular water.
The value of 6D of intercellular water can be different from that of media due to exchange
with Ha or production of metabolic water inside the cytoplasm (Burke, 1993; Kawagucci
et al., 2014). In addition, the direct transfer of H in Ho to CHy was suggested (Kawagucci
et al., 2014). Since the detailed mechanism of the effect of §D-Hy is beyond the scope of this
study, the above model includes the effect as the change of the 2a value during the course
of the culture. Changing Ry would produce results identical to changing ?a. Equations
2.18 to 2.21 were integrated numerically with three fitting parameters (13, 2, and ), and
the results are shown in Figure 2-2. We used 6'3C and 6D data to fit 3 and 2a, and the
A13CH;3D data was used to fit v value for the derived 3a and 2« values.

The best fit to the experimental data was obtained when 2o was 0.97 and ?a changed
linearly from 0.69 to 0.57 from 0 to 25% reaction and remained a constant value of 0.57
afterwards (Figure 2-2A and B) (6Dy2o of -49.6%0 SMOW, and §'3Ccoz of 10.9%0). As
0Dn20 does not change significantly during the course of the experiment, the change in
0Dch4 cannot be explained by the closed system effect. The increasing fractionation factor
at a later stage indicates dDcpy is moving away from the value expected for equilibrium
with water. Previous studies also observed similar changes in apparent D/H fractionation
factors during early exponential growth phases (Valentine et al., 2004; Kawagucci et al.,
2014; Okumura et al., 2016). Values of 4D of methane produced during the early growth
phase can be a function of éDyg as well as dDpoo (Kawagucci et al., 2014). For those
Ba and 2o values, the best fit for v was 1.0020 and 1.0032 for the early and late growth
phases, respectively (Figure 2-2). The value of v of higher than unity indicates that the
rate of 13CH3D production is faster than the rate expected from the product of the two
fractionation factors (13a, 2a).

These derived v values of 1.0020 and 1.0032 translate to closed-system corrected A3CH3D
values of 2.0 and 3.2%o respectively (corresponding to 243 and 135°C, for apparent equi-
librium temperatures). These values are similar to the uncorrected values of 2.1 to 2.5%o,

demonstrating that the effect of a closed system can only partially explain the non-equilibrium
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A3CH;D signals of microbial methane. The numerical model above shows that the A'*CHzD
value of accumulated methane decreases by up to 1.2%0 over the course of reaction given
constant 7 values, due to the effect of mixing of methane formed during early and late

exponential growth phases (Figure 2-2C).

2.5.2 Origin of H in methane from three methanogenesis pathways

The results of the D-spiked series experiments can be used to estimate the origin of C-
H bonds in methane during three pathways of methanogenesis and associated deuterium
isotope effects (2a, and 2a;). Assuming methane is formed via mixing of hydrogen atoms
both from H,0 and the methyl group of acetate or methanol, the éD value of product

methane can be written as:

6Dcn, + 1 = 20, f(6Du20 + 1) + %a,(1 — f)(6Dcns + 1) (2.22)

where, 2a, is the kinetic fractionation factor from HoO to CH4 (primary D-isotope effect),

1.6 “ s — .
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Fraction of H from water (1)

Figure 2-6: The fractionation factor (a) as a function of the fraction of hydrogen derived
from water (f) in acetoclastic methanogenesis in D20 spiked water experiments. Grey
shading indicates the range of f values that satisfy 7, and 9, < 1 and 0.25 < f < 1. The dashed
vertical line and open circles correspond to the solution when «y, = 0.85.
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Figure 2-7: Three methanogenic pathways for Methanosarcina. The solid arrows rep-
resent the predominant direction of the reaction, and the dashed arrows represent the backward
reaction, which is thought to be minor. Two solid arrows are used to indicate that the reactions
are thought to be reversible, according to the literature, not specifically evaluated in this study.
In the hydrogenotrophic pathway (blue), CO> is reduced by a series of four two-electron processes,
each adding one H atom. C; compounds are carried with cofactors (MF, methanofuran, HySPT,
tetrahydrosarcinaopterin, CoM, coenzyme M). For the acetoclastic pathway, acetate is first activated
by acetyl co-A (via acetyl phosphate), acetyl co-A is split to methyl (CHz ) and a carbonyl moiety
(CO), and the latter is oxidized to CO,. The methylotrophic pathway is overall a disproportionation
reaction in which one methyl group is oxidized to CO via a reversed methanogenic pathway, and
three additional methyl groups are reduced to methane.

and 2a, is the kinetic isotope fractionation factor from CHg (methyl-H) to CH4 (secondary
D-isotope effect) (Sessions and Hayes, 2005). The value of f is the fraction of H from H,0.
The canonical value of f is 0.25, but this can be higher when scrambling of C-H bonds
occurs between C—H and intercellular HoO.

Our experimental results yield the following relationships for CO2 + Hp, acetate and

methanol cultures, respectively (Figure 2-5):

§Dci, + 1 = (0.571 +0.011)(6Dp,0 + 1) + (0.006 + 0.012), (2.23)
6D, + 1 = (0.212 £ 0.004)(6Dr,0 + 1) + (0.457 + 0.005), and (2.24)
§Dcn, + 1 = (0.269 % 0.005)(6Dy,0 + 1) + (0.361 £ 0.006). (2.25)

For hydrogenotrophic methanogenesis, a small (can be zero within standard error) inter-
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cept suggests all four hydrogen atoms are derived from water (i.e., f=1), and an «a, value of
0.571 is obtained, which is within the range of previous experiments 0.55 and 0.86 (Valentine
et al., 2004; Yoshioka et al., 2008; Kawagucci et al., 2014; Okumura et al., 2016).

The acetate culture (Equation 2.24) yields:

2a,f = 0.211, and (2.26)
2a5(1 — £)(6Dgh, + 1) = 0.457. (2.27)

The methyl-H of acetate is measured as -123%o (i.e., dDcnsz+1 = 0.877, Table 2-3). The
two fractionation factors, a; and s, are calculated for a given value of f in Figure 2-6. The
equations (26 and 27) cannot provide a unique answer, as there are two equations with three
unknowns (ap, as and f). The likely range of values can be constrained, however, because
isotope fractionation factors are expected to be normal (i.e., @, <1 and o, <1), and the
value of f is between % and 1. This yields a range of possible values: 0.449 < 2a,, < 0.844
and 0.695 < 2a, < 1.0, and 0.25 < f < 0.48 (Figure 2-6). The secondary isotope effect
for the formation of methane from methyl-coenzyme M (the last step of methanogenesis,
utilized by all known methanogens Figure 2-7) is reported to be 0.84 (Scheller et al., 2013).
For example, this value for 2a,, would yield f=0.39 and 2ap:O.545. The analysis indicates
that the value of f significantly deviates from the canonical value of 0.25, which is expected
from the reaction stoichiometry. Therefore, this analysis suggests that among the four
hydrogen atoms in methane, up to 1.9 hydrogen atoms (=0.48 x 4) are derived from water,
whereas only one is required from reaction stoichiometry. Since §Dcpns of methanol was not
measured, we cannot carry out the same analysis for methanol experiments. The slightly
higher slope for methanol cultures (0.269) compared to acetate cultures (0.212), however,
suggests a similar or greater contribution of hydrogen atoms from water if we assume the
same 2ap value for the acetate culture.

Previous incubation studies with D-spiked water showed slopes between dDcps and
0Du20 of 0.4 for sewage sludge (Schoell, 1980) and 0.48 to 0.61 for paddy soil (Sugimoto
and Wada, 1995). These are higher than the value obtained by our experiments, indicating
a higher contribution of water-H to methane in these incubation studies. Since previous
experiments were enriched cultures (not pure cultures), results from previous experiments
reflect a mixed contribution from hydrogenotrophic and acetoclastic methanogenesis. A
previous incubation study of lake and estuary sediments using triply deuterated acetate
(CD3COO ™) showed rapid exchange of the methyl-H of acetate by methanogenic acetate
metabolism (De Graaf et al., 1996). Such an exchange would contribute to the greater slope
for the incubation study using natural populations, compared to pure culture experiments

for this study.
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Figure 2-8: Proposed mechanism of D-isotope exchange by acetate metabolism by M.
barkeri. The numbers in italics are relative fluxes estimated from A) D-spiked medium, and B)
CD3COO  experiments, respectively. Reactions with two solid lines indicate that the reaction is
thought to be reversible, whereas reactions with solid and dashed lines represent that the reaction
proceeds predominantly the direction of the solid arrow. As in Figure 2-7, the solid arrows represent
the predominant direction of the reaction, and the dashed arrows represent the backward reaction.
Red lines indicate the reactions required for the acetoclastic pathway. Blue lines indicate side
reactions.

2.5.3 Pathway of D-isotope exchange during acetoclastic methanogenesis

Figure 2-7 illustrates the three pathways of methanogenesis examined in this study. The
solid arrows represent the predominant direction of reaction, and dashed arrows represent
the backward reaction, which is thought to be minor. The two solid arrows are used where
the reactions are thought to be reversible. This reversibility was inferred from our results
as well as based on previous studies (e.g., Thauer, 1998; Ferry, 2010). Hydrogenotrophic
methanogenesis proceeds with a series of two electron reactions, which each adding one H,
while the C; group is carried by cofactors: methanofuran (MF), tetrahydrosarcinapterin

(H4SPT), and coenzyme M (CoM). Acetoclastic methanogenesis is a disproportionation
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reaction where acetate is activated to acetyl-coA (via acetyl phosphate) and split between a
methyl and a carbonyl (CO) moiety, where the latter is oxidized to COg. The methyl group
is transferred to CH3—H4SPT (methyl-tetrahydrosarcinaopterin), and then to CHz—-CoM
(methyl-coenzyme M), and finally reduced to methane. Methylotrophic methanogenesis
is also a disproportionation reaction where the oxidation of one methyl group is coupled
with the reduction of three methyl groups. The last step (the reduction of methyl-CoM) is
common to all three pathways, and most (if not all) reactions are thought to be reversible
(Thauer et al., 2008).

Our analysis of the D-spiked water experiments, together with the D-labeled acetate
experiment, suggests that up to 1.9 out of four hydrogen atoms in methane are derived from
water-H. In addition to one hydrogen atom that is added at the last step of methanogenesis
(the reduction of methyl-CoM, Figure 2-7 and 2-8), nearly another one of three hydrogen
atoms in the methyl group of acetate could be exchanged with water. Since hydrogen isotope
exchange between HoO and CHy is sluggish (Reeves et al., 2012), the exchange probably oc-
curs at the CHz — H4SPT (methyl-tetrahydrosarcinaopterin) intermediate via H-abstraction
to form CHg = H4SPT (the exchange can also occur at the methyl-CoM moiety, Scheller
et al., 2013). This part of the pathway is not required for the acetoclastic metabolism but
can occur as a side reaction. A similar D/H exchange mechanism was suggested to explain
the observed scrambling of CD3COO™ during the incubation of methanogenic sediments
(De Graaf et al., 1996). Because up to 0.9 out of three methyl-H atoms are exchanged, the
flux of this side reaction is estimated to be at most 0.3 H (=0.9/3) per uptake of one acetate
(Figure 2-8A).

When deuterium-labeled acetate (CD3COO ™) was used as a substrate, the major product
(68%) was the isotopologue CD3H. However, the isotopologues CD3Ha, CDH3 and CHy4 were
also formed (Figure 2-4). Among the four isotopologues, the fraction of CH, isotopologues
was disproportionally high. This is because CH4 and non-deuterated acetate are carried over
from the inoculum. If all CHy isotopologues are from the inoculum, the proportion of CDzH
isotopologues is 79% (=68/(5+13+68)) over CD3H, CH2D3s and CH3D isotopologues. This
is the maximum fraction since a small quantity (most likely <5%) could be produced from
CD3COO™. Following the model of D/H exchange at the CH3—H4SPT step as described
above, this means that less than 100% yield of CD3H is explained by the loss of CD3 —
H4SPT to CDy = H4SPT of 0.2 per one CD3COO~. The reaction from CD3—-H4SPT to
CD3 = H4SPT and from CD3—CoM to CDsH would accompany deuterium isotope effects
of 2ap 2042 and 2a,3, respectively. Thus, the corresponding flux for CH3COO™ can be
higher by the ratio of the two isotope effects (*as/?ay), which could be as high as ~2 based
on in vitro study of a similar reaction (~0.84/0.41) (Scheller et al., 2013). Note that the
medium water (and thus intercellular water) contain very little deuterium such that there
is practically no back flux from CDy; = H4SPT to CD3 — H4SPT (Figure 2-8B). Thus, H/D
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scrambling at the CHs-moiety can be explained by the reverse flux of 0.2 to 0.3 based on
the estimate from the D-spiked medium (0 to 0.3) and CD3COO~ experiments (0.2 to 0.4)
(Figure 2-8).

2.5.4 Origin of "*CH signals in methane from acetoclastic methanogenesis

Measured A3CH3D values are -1.7 to -3.1, -1.1 to -3.8, -4.2 to -5.2%0 for Methanosarcina
cultures grown on acetate, Hy + CO2, and methanol, respectively, and are weakly correlated
with 6Dpn2o of the medium (Figure 2-3B). The linear fit and standard error (95% confidence
interval) was calculated following York et al. (2004). The slope (ACH3D /6D) for acetate
is 0.0016 £ 0.0012, hydrogen is 0.0020 £+ 0.0010 and methanol is 0.0019 £+ 0.0014. While
this is a small sample size, these are statistically not zero. These anti-clumped ACH3D
values can originate from 1) mixing of two or more pools of methane or its precursor with
different 6'3C and 6D values, 2) transfer of the methyl-group of acetate and methanol with
pre-existing anti-clumped signals (for acetate and methanol culturcs), and/or 3) intrinsic
kinetic isotope effects associated with enzymatic reactions common to three pathways, such
as the reduction of methyl-CoM (Figure 2-7). .

It has been well known that mixing is non-linear in the clumped isotope system such
that mixing of two pools of methane yields a ACH3D value that is not between the
two A3CH3D values of original two reservoirs (Eiler and Schauble, 2004; Affek and Eiler,
2006; Affek et al., 2007; Defliese and Lohmann, 2015; Réckmann et al., 2016). When two
pools of methane (A and B) are mixed, the ACH3D value of the mixture (6miz) can be

approximated as:

Apiz =~ (1— f)Aa+ fAg + f(1 — f)(6'3C4 — 613C4)(6D4 — 6Dp) (2.28)

where f is the mixing ratio of pool B (Wang et al., 2015). The first and second terms
show linear mixing between two A'3CH3D values (AA and AB), whereas the third term
produces a curvature following a quadratic function to f. This bias becomes the largest
when the two pools of methane are mixed at a 1:1 ratio (i.e., f=0.5), and proportional to
the product of the difference of ¢ values between the two pools of methane. Mixing of a
13C- and D-enriched pool with a '3C- and D-depleted pool would produce a positive (low
temperature) bias, whereas diagonal mixing (e.g., mixing between a '*C-enriched and a D-
depleted pool with a !3C-depleted and a D-enriched pool) would produce a negative (high
temperature) bias in A®CH3D . By extension, the mixing effect for doubly-deuterated
clumped methane ('2CH;D3) will always produce a positive (low temperature) bias (Young
et al., 2016). Equation 2.28 can be used to model reaction branching (i.e., producing two
products) or reversible reactions (where miz is the source and A and B are forward and

backward reactions).
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A fully quantitative model for the isotope systematics for the acetoclastic pathway in
Figure 2-8 is the scope of future study, but Equation 2.28 can be used to test the magnitude of
any A'3CH3D bias due to mixing. For example, mixing of two reservoirs (or fluxes) in equal
portions (f=0.5) with §!3C and D differing by 40%o and -300%o, respectively, can produce
a non-linear bias of -3%o (0.5(1-0.5) x 0.04 x (-0.3)). These magnitudes of kinetic '3C- or
D-isotope effects are possible. Therefore, an anti-clumped A3CH3D value of -3%o can be
produced entirely by mixing. For the acetoclastic cultures in these experiments, however,
the value of A3CH3D was not sensitive to the §D value of the medium, which changed
from -35 to 360%o¢ (Figure 2-3B), indicating that the mixing (between C—H bonds with
water-derived H and methyl-derived H) is unlikely to be the major source of anti-clumped
signals observed.

Calculations from the D-spiked cultures grown on acetate reported in this study showed
that approximately up to two out of four hydrogen atoms in CH4 are derived from water,
while only one is required from stoichiometry. On average, the methyl group of acetate
contributes 2 to 3 hydrogen atoms to one methane molecule, presumably also carrying its
original 3C-D signal. Although the degree of *C—~D clumping of the methyl group of
acetic acid (or methanol) cannot be measured by our current instrumentation, we expect its
13C-D clumping signal is not much different from that of CH4. This is because most indus-
trial acetate (the likely source of sodium acetate used in this study) is produced from the
high temperature (150 to 200°C) catalytic reaction of methanol and carbon monoxide (e.g.,
Eby and Singleton, 1983). Industrial methanol, in turn, is produced from carbon monoxide,
carbon dioxide, and hydrogen at high temperature (typically 200 to 300°C) (Cheng, 1994).
Based on theoretical calculations from modeled vibrational frequencies, Wang et al. (2015)
reported that the equilibrium '*C-D clumping of simple carbon compounds have a rela-
tively narrow range of clumped isotope effects from +5.9 to +6.2%0 at 25°C for the molecules
studied (methane, methanol, formaldehyde, formic acid, methanethiol, acetic acid). This
indicates that the *C—D clumped isotope effect is not sensitive to detailed bonding envi-
ronments (also see Piasecki et al., 2016, for n-alkane). This is reasonable considering that
the 13C~D clumped isotope effect largely originates from a zero point energy shift (AZPE)
associated with the C—H stretching vibration frequency at around 3000 cm~!; bending vi-
bration is much lower in energy (1350 cm™!) and the AZPE is relatively small (Whitehill
et al., 2017). Therefore, we estimate that the acetate or methanol may thus carry a A3CH3D
signal of 1.6 to 3.1%o assuming the near-equilibrium reaction between 150 and 300°C. If we
assume that acetate was produced at the lower end of this temperature range (150°C) and
methanol was produced at the higher end (300°C), this would correspond to equilibrium
values of 3.1%o for acetate vs. 1.6%o for methanol. It is possible that this discrepancy could
explain part, but not all of the difference between the A¥CH3D values of the acetoclastic

and methylotrophic cultures. Nonetheless, experiments with various sources of acetic acid,
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Figure 2-9: The values of A®*CH3D (or A;g) of methane plotted against D/H fraction-
ation factor between methane and water (€,cthane/water) for methanogen cultures grown
on different substrate. All culture data previously published with corresponding éDnao values
is included for reference (grey symbols). Ref-1 refers to Stolper et al. (2015) and Ref-2 refers to
Douglas et al. (2016). Black dots represent isotopic equilibrium (Wang et al., 2015).

natural and/or synthetic, will be needed to constrain the degree of non-equilibrium signals
in *C-D bonds of acetic acids.

Another possibility is that the observed anti-clumped signal originates during the ad-
dition of the last hydrogen atom of methane. By applying Equation 2.28, the ABCH3D
value of methane (ACHy4) is expected to carry % signal from methyl precursor (CHz-CoM,
§CH3), and 1 from the last H added:

3 1
Ach, = Z(ln Vs + AcH;) + Zln’yp (2.29)

where 7 and 7, are kinetic clumped isotope effects for the secondary and primary D-
addition (Equations 2.13 and 2.14). Here, the non-linearity bias in Equation 2.28 does

not apply, because 13C isotope effects for secondary and primary processes will be nearly
identical (i.e., 613C4 — 613Cp ~ 0).
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What are the values of vs and yp? Applying transition state theory, Whitehill et al.
(2017) presented a detailed analysis of the kinetic clumped effect for the gas phase oxidation
of methane by the OH radical. We use their framework to make an approximate inference
for this study. According to Whitehill et al. (2017), clumped isotope effects can be explained
by the difference of zero-point energy shifts (AZPE) between '3CH/'2CH and '*CD/!*CD.
For methane, the AZPE for 3CHy vs. 2CHy is 29.8 cm™! and that for BCH;D vs. 12CH3D
is 31.9 cm~!. The difference between the two, AAZPE of 2.1 cm™!, is the origin of clumped
effect (Whitehill et al., 2017). Transition state for the last step of methanogenesis involves a
methyl radical intermediate with trigonal planar geometry (Scheller et al., 2013; Wongnate
et al., 2016). We estimated the AAZPE of the methyl radical of 2.1cm~? using unrestricted
MP2 with basis set aug-cc-pVQZ basis set. AAZPE for reactant (CH3—S—CoM, approxi-
mated by methylthiol, Wang et al. (2015) and transition state (approximated by the methyl
radical) suggests that there is little kinetic clumped effect for the secondary reaction such
that vg is expected to be close to unity. Whitehill et al. (2017) also showed that the imagi-
nary frequency and tunneling terms do not produce clumped effects (within transition state
theory), although the Wigner tunneling correction used in the study is highly approximated.

For the primary reaction, the C-D bond becomes loose at a transition state, contributing
a smaller AAZPE between 0 and 2.1 cm™! (it is 0.5cm™! for CH3—~D—OH transition state,
Whitehill et al. (2017). For the bond forming reaction, 130D is slightly preferred but not
as much as equilibrium (yp<1.006). However, the anti-clumped effect (yp<1) is unlikely
because it requires the AAZPE to have the opposite sign (i.e., smaller AZPE for 3CD/!2CD
than '*CH/!2CH) at the transition state. Thus, based on this transition state model, vp
could take any value between 1.000 and 1.006.

For example, if In(ys) and ACHj3 are 0.0 and 1.6 %o, respectively, the value of In(vyp)
of -13 %o is required to explain the observed A3CH3D value in the acetate culture of ~
-3%0 (Equation 2.29. The magnitude of this kinetic anti-clumped effect has been implicated
by Wang et al. (2015) as well as Stolper et al. (2015) to explain the observed values for
natural samples. Low A'CH3D values for methanol cultures (-4.2 to -4.9 %o) suggest that
the methyl group of methanol may carry lower A¥CH3D values.

Another possibility is that the anti-clumping effect for methanol cultures is related to
the faster growth rate of methylotrophic compared to acetoclastic and hydrogenotrophic cul-
tures. Cultures were incubated until they had produced enough methane for our analyses
(>5mL, STP) which was reached over the course of different incubation times as noted in
Table 2. Although exact experiment durations and methane concentrations were not mea-
sured for all experimental setups, we report estimated growth times and volume of methane
produced for Set 2 cultures (Table 2-2). Despite some measurement uncertainty, it appears
methanol cultures generated methane more quickly. The effect of varying growth rate is

speculative for these experiments, but quantifying the effect of growth rate is something
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that should be investigated further in future work.

A series of studies suggest the potential importance of quantum mechanical tunneling in
some H transfer reactions, in particular, during the oxidation of alcohol by dehydrogenase
(Cha et al., 1989; Klinman and Kohen, 2013). Experimental evidence that supports tunnel-
ing includes the observed mass-independent fractionation among H/D/T, departure from
the rule of geometric mean for multiply-deuterated (clumped) substrates, rate enhancement
at low temperatures (Klinman and Kohen, 2013; Srinivasan and Fisher, 1985; Amin et al.,
1988; Huskey, 2006), and the anti-clumped CH3D, abundance (Young et al., 2017). The
large anti-clumped effect may be due to the tunneling effect, which is only approximated
in the above transition state model. The test for this hypothesis would include in vitro en-
zyme assay experiments similar to Scheller et al. (2013), or high-level quantum mechanical
modeling with accurate geometry and potential energy surface at the key transition state
(e.g., Chen et al., 2012; Klinman and Kohen, 2013; Wongnate et al., 2016).

2.5.5 Non-equilibrium vs equilibrium A™CH3;D signals of methane in

the environment

This study corroborates previous studies (Stolper et al., 2015; Wang et al., 2015; Dou-
glas et al., 2016; Wang et al., 2016; Young et al., 2016, 2017) and demonstrates that non-
equilibrium (i.e., kinetic) clumped methane isotopologue signals are common for methane
produced by microbial methanogenesis in laboratory cultures (Figure 2-1, Figure 2-9).

Our results are consistent with kinetic signals in methane sampled from freshwater en-
vironments (e.g., swamps and lakes), where acetoclastic methanogenesis, as opposed to
hydrogenotropic methanogenesis, is thought to be the dominant source of methane (e.g.,
Conrad, 2005; Ferry, 2010). Nonetheless, our results demonstrate that low ABCH;3D val-
ues are consistently out of equilibrium in batch culture and in environmental samples, but
that this is not necessarily dependent on the metabolic pathway (hydrogenotrophic, meth-
lyotrophic, or acetoclastic). Thus, 13CH3D isotopologue compositions cannot be used alone
to resolve which methanogenic pathway is dominant in the environment.

Although dominantly microbial in origin, methane in marine environments (e.g., pore
water and hydrate) tends to carry equilibrium or near-equilibrium *CH3D abundances
(Stolper et al., 2015; Wang et al., 2015). This is also corroborated by §DCH4 values that
are relatively constant at -180 + 10%o (e.g., Whiticar, 1999; Okumura et al., 2016), which
is close to the expected value for methane in equilibrium with seawater (with 6D ~ 0 %o)
(Horibe and Craig, 1995). It was suggested that "slow" methanogenesis under small ther-
modynamic drive (low environmental Hs concentration) would produce near-equilibrium
clumped isotopologue signals (Wang et al., 2015; Stolper et al., 2015). Oxidative cycles of
methane also modify clumped isotopologue signals of environmental methane. The aerobic

oxidation of methane by Methylococcus, for example, is characterized by kinetic clumped
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isotope effects (y ~ 1), and residual methane can exhibit strong non-equilibrium signals
(Wang et al., 2016). In contrast, anaerobic oxidation of methane (AOM), thought to be the
reverse process of methanogenesis (Hallam et al., 2004; Scheller et al., 2013; Wang et al.,
2014), has been shown to operate with significant back-flux (Holler et al., 2012) and pro-
duce near-equilibrium carbon isotope fractionation (e.g., Yoshinaga et al., 2014). Methane
cycling involving AOM and methanogenesis likely promotes near-equilibrium isotopologue
distributions, in particular, in marine environments, and may contribute to near-equilibrium
6D as well as A3CH;3D signals. Conversely, bulk 6D and A'3CH3D values of methane may
primarily reflect kinetic versus equilibrium signals and the rate of methanogenesis more so

than metabolic pathways.

2.6 Conclusions

This study reports the A®CH3D systematics of microbial methane produced by pure cul-
tures of methanogens. Our results show that the A®CH3D signals are not directly pathway
dependent, as cultures of M. barkeri and M. mazei grown on acetate, methanol, and Hy +
CO; all yield methane that is depleted in *CH3D , which seems to be characteristic of
microbial methanogenesis in near-surface environments (lakes, swamps and ruminants). For
mesophilic methanogens, the lowest A'®CH;3D values were produced for methane from cul-
tures grown on methanol. Methanol cultures grew faster (incubation time of 3 days) than
those grown on acetate or Hy +CO3 (incubation time of 30 days). Thus, the A¥CH3D values
of methane may be related to the rate at which methane is produced rather than to the sub-
strate used. Mesophilic methanogens (M. barkeri) produced anti-clumped A'3CH3D values
(<0), while thermophilic and hyperthermophillic (Methanothermococcus and Methanocaldo-
coccus) methanogens produced less kinetic signals.

Experiments with deuterated water or acetate aid in determining the source of hydrogen
atoms in methane. The deuterated water experiments confirm that the four hydrogen atoms
that form methane in hydrogenotrophic methanogenesis are derived from water. For the ace-
toclastic culture, 1.6 to 1.9 H atoms are derived from water, whereas only one is required by
stoichiometry, suggesting some reversibility and isotope exchange at the methyl precursor.
The deuterium spiked experiments also demonstrate that the observed non-equilibrium sig-
nals cannot be explained by the mixing of two pools of C-H bonds (e.g., from methyl group
of acetate and one C—H bond formed during acetoclastic methanogenesis). The production
of low A'CH3D values independent of the methanogenic pathway, suggests, although not
exclusively, that the most of the kinetic signal is produced during the enzymatic reactions

common in the three methanogenic pathways, such as the reduction of methyl-coenzyme M.
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CHAPTER 3

EVOLUTION OF METHYLOTROPHIC METHANOGENESIS
AND POSSIBLE IMPLICATIONS FOR BIOGEOCHEMICAL
CYCLES IN PROTEROZOIC AND PHANEROZOIC OCEANS
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3.1 Abstract

Recent work employing molecular clock dating techniques has shown that one major group
of methanogens acquired the ability to use acetate as a methanogenic substrate via horizon-
tal gene transfer (HGT), which likely precipitated major changes to the carbon cycle during
the end of the Permian. It is hypothesized that another major pathway of methanogene-
sis, methylotrophic methanogenesis also evolved via HGT, relatively recently. We explore
the emergence of methylotrophic methanogenesis by studying the phylogenetic history of
substrate-specific methyltransferase enzymes and corrinoid proteins. The relationship be-
tween methyl-corrinoid sequences illustrates substrate specificity with patterns of gene du-
plication and loss. While the exact evolutionary history of these substrate-specific methy-
lotrophic genes is unknown, the phylogenetic patterns presented here are consistent with
the hypothesis involving HGT from bacteria to archaea. Moreover, the relationship between
taxa that possess methyl-corrinoid genes suggests strong ties to the marine environment.
Methylotrophic methanogens may be unique in their substrate links to the evolution of
marine eukaryotic algae, purple sulfur bacteria, carbon and sulfur cycles, and the chemical
inventory of the ocean. This work forms a more dynamic view of the contributions of micro-
bial methane production by the major pathways of methanogenesis over the last four billion
years and may yield further insight into the role of methylotrophic metabolisms in marine

systems.

3.2 Introduction

3.2.1 Microbial Methanogenesis

The origin of methane reflects a dynamic biogeochemical history (Hinrichs, 2002). While the
earliest sources of methane production on Earth were abiotic (thermogenic and abiogenic),
over time, microbial methane has come to dominate the global inventory (Whiticar, 1990).
This shift coincided with major events in the evolution of both life and Earth (Figure 3-
1) (Rothman et al., 2014). The greatest source of methane today is the microbes that
live in anoxic environments such as swamps, sediments, rice paddies, and ruminant tracts
via methanogenesis (Klapp et al., 2010). As one of the earliest metabolic pathways to
evolve (Bapteste et al., 2005), microbial methanogenesis has played an important role in
the biogeochemical cycling of carbon, not only in the modern environment, but also since
the evolution of methanogenic metabolism (Rothman et al., 2014) over 3.46 billion years
ago (Ga) (Ueno et al., 2006; Wolfe and Fournier, 2018). Although often thought of as an
ancient metabolism, methanogenesis nonetheless utilizes a diverse set of relatively young sub-
pathways and substrates, which have continually evolved in response to changing planetary
conditions (Rothman et al., 2014).
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The emergence, evolution, and proliferation of microbes have each fundamentally re-
shaped, and been shaped by, Earth’s chemical inventory. Recent work dating the evolution
of one specific pathway, acetolactic methanogenesis, suggests that a horizontal gene trans-
fer (HGT) event expanded the metabolic capability of methanogens to utilize acetate as a
substrate; this was associated with a pronounced increase in methane production during
the end Permian (Rothman et al., 2014). Developing a better quantitative and qualitative
understanding of the role of microbes in methane cycling is critical for defining the distri-
bution of carbon on Earth over the last 4 billion years, and for predicting how this system
may be affected by future changes. However, not all methanogenic pathways are well un-
derstood in the context of their evolutionary history or their environmental links. The goal
of this chapter is to use molecular evidence from genetic sequence databases to inform a
better understanding of the possible biogeochemical links of, and evolutionary events in-
volving, methylotrophic methanogens during the Proterozoic and Phanerozoic eons. This is
expected to compliment other lines of evidence, such as the geochemical record, and inform
future work to understand the biological impact on the evolution of the carbon cycle.

Microbial methanogenesis is an anaerobic metabolism restricted to Euryarchaeota (Bapteste
et al., 2005; Laso-Pérez et al., 2016; Spang et al., 2017). Methanogens produce methane as
a catabolic end product of three substrate-specific pathways that feed methyl groups to a
conserved terminal pathway (Figure 3-2) (Thauer, 1998). Methylotrophic methanogenesis,
the metabolic pathway employed by Methanosarcinales and Methanomassiliicoccales, uses
methyl compounds (methanol, methyl amines, dimethylsulfide (DMS), or methylthiols) as
substrates (Bapteste et al., 2005; Penger et al., 2012) (Figures 3-3 and 3-4). Methanobac-
teriales (including the two gut microbes Methanobrevibacter smithii and Methanosphaera
stadtmanae) and Methanomassiliicoccus can also use methanol in the presence of hydrogen
(Dridi et al., 2012; Fricke et al., 2006).

Multiple lines of evidence indicate that microbial methane was formed early in the Ar-
chaean (Battistuzzi et al., 2004; Rothman et al., 2014; Ueno et al., 2006; Wolfe and Fournier,
2018). Geochemical evidence suggests that putatively microbial methane was produced at
least 3.46 Ga (Ueno et al., 2006), and molecular clock evidence suggests that methanogens
diverged at least 3.51 Ga (Wolfe and Fournier, 2018). It is striking that over the last 3.5
billion years of Earth history, methanogenesis has remained one of the most highly con-
served metabolic strategies, and that this pathway has never been horizontally transferred
to another group of microbes (Fournier et al., 2009). Nonetheless, methanogens have con-
tinued to evolve in ways that diversify their metabolic capabilities and impact their role in
major biogeochemical cycles. Until only very recently, it was thought that all methanogens
belonged to the phylum Euryarchaeota. Compelling but still incomplete genomic evidence
suggests that an uncultured Archaeaon, Bathyarchaeota, (Evans et al., 2015) possess ho-

mologs of the genes necessary for methanogenesis, and that this group may be placed outside
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of known archaeal clades. Thus, the evolution of microbial methanogenesis may even pre-
date Euryarchaeota, and be an ancestral archaeal metabolism. This also suggests that a vast
diversity of microbes may remain uncultured, particularly from remote environments; thus,
the molecular record may hold vital clues to illuminating the evolution of this metabolism
(Sogin et al., 2006).

3.2.2 Horizontal Gene Transfer and Molecular Clock Dating

Horizontal gene transfer (HGT) has played an important role in the evolutionary history of
many metabolic pathways, including methanogenesis (Fournier et al., 2009). While vertical
inheritance passes genetic information from parent to offspring, HGT passes information be-
tween lineages, even if they are very distantly related. The importance of HGT in microbial
evolution has become increasingly appreciated (Gogarten, 1995; Gogarten and Townsend,
2005; McInerney et al., 2008). For example, Haloarchaea acquired genes from a combination
of bacterial donors which facilitated a novel pathway for carbon assimilation (the methylas-
partate cycle) and access to a new metabolic niche (Khomyakova et al., 2011; Soucy et al.,
2015). HGT has also been shown to be an significant mechanism driving antibiotic resistance
in bacteria (Gyles and Boerlin, 2014). HGT events are detected by comparing phylogenies
inferred from highly conserved protein sequences (and thus more likely reflecting the species
tree) to those of individual genes. Topological conflicts between gene and species trees are
candidate HGT events (Soucy et al., 2015). A variety of computational tools exist to detect
and evaluate these events (Dos Reis et al., 2015; Fournier et al., 2015; Ravenhall et al., 2015;
Zhu et al., 2014).

Molecular clock techniques can be used to date the evolution of plants and animals by
calibrating phylogenetic trees with fossil evidence (Peterson et al., 2004). The underlying
principle of such analyses is that not all genes within an organism evolve with the same
rates or under the same evolutionary mechanisms. A phylogenetic tree is used to provide
relative divergence distances, and a molecular clock estimates the rate of evolution in the
tree. Absolute timing of the molecular clock can be calibrated using independently known
dates of characteristic fossils, similar to how index fossils are used to date stratigraphic
columns in geologic settings (Donoghue and Benton, 2007; Hedges and Kumar, 2003; O’Reilly
et al., 2015). Therefore, hypotheses regarding evolutionary relationships and the timing of
evolutionary events can be tested using the most parsimonious explanations. However, most
microbial life does not leave behind fossils with which to date divergences. Consequently, new
molecular clock techniques have been developed to use extant gene and protein sequences
to estimate divergence times of microbial lineages (Donoghue and Benton, 2007; Dos Reis
et al., 2015; Drummond et al., 2006; Knoll, 2017; Parfrey et al., 2011; Schirrmeister et al.,
2015). HGT, coupled with new molecular tools, has been proposed as one way to integrate

the timing of events in microbial evolution with stronger confidence and higher precision
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(Dos Reis, 2018; Knoll, 2017; Magnabosco et al., 2018; Wolfe and Fournier, 2018).

The methanogenic pathway presents a useful metabolism for detecting horizontal gene
transfer events, because this pathway is one of the oldest, most highly conserved, and uni-
fied metabolic systems. There is no known HGT of a methanogenic pathway to a non-
methanogenic lineage (Gribaldo and Brochier-Armanet, 2006) except in the case of the
recently described Verstraetearchaeota (Spang et al., 2017). This may be because methano-
genesis requires many phylogenetically distinct genes and complex cofactors and carrier
proteins which safeguard against HGT. Moreover, all methanogens appear to have inherited
one core pathway from a distant common ancestor (Fournier et al., 2009). This provides a
characteristic signal of methanogenic metabolism in the genetic record and easy detection for
HGT to and between methanogens. It is hypothesized that both acetoclastic methanogens
and methylotrophic methanogens bear signatures of HGT, but with very different scenarios.

The methylotrophic pathway involves the transfer of a methyl group from the substrate
(e.g., methanol, methylamines, methylthiols, or dimethylsulfide) via two methyltransferase
enzymes and a corrinoid protein to coenzyme M, and then follows the pathway common to all
methanogens (Figures 3-3 and 3-4) (Ferry, 2010; Sauer and Thauer, 1998). Each substrate for
this pathway has a unique, corresponding corrinoid protein and methyltransferase enzyme
(Fournier et al., 2009). The only other organisms with the methyltransferase gene are
Bacteria which are not capable of methanogenesis. Interestingly, this pathway requires
the noncanonical amino acid pyrrolysine (Pyl), which is used by no other proteins (Fournier
et al., 2009). Pyl is rare in extant life, and is utilized only by a subset of methanogens for the
synthesis of methanogenesis enzymes from methylamines. Methanogens likely acquired this
protein via HGT (Fournier et al., 2009) of a novel aminoacyl-tRNA synthetase (Fournier
et al., 2009). The donor lineage was likely ancient but remains unknown. It is further
hypothesized that there may be an evolutionary relationship between Pyl and the proteins
used in the methyl-corrinoid pathway of methanogenesis (Borrel et al., 2014; Ferguson et al.,
2009), but this is an avenue which requires further investigation.

Methanosarcinales, Methanomasiliicoccales, and Verstraetearchaeota are the only orders
that use the methyl-corrioid pathway (Figure 3-5) Vanwonterghem et al. (2016); Spang
et al. (2017). Because these orders of methanogens are not closely related but share this
very specific cellular machinery, it is hypothesized that the corrinoid proteins and methyl-
transferases were distributed between these lineages via HGT (Deppenmeier et al., 2002).
Moreover, these proteins are present in multiple copies and in many cases are related to
one another. Thus, we hypothesize that there was a complex evolutionary history of gene
duplication that must be unraveled to understand how and when these pathways evolved.
An extensive assessment of the phylogeny of methylamine methyltransferase protein families
has never been performed, but would allow for the testing of evolutionary hypotheses, and

may present strategies for future dating of these events.
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3.2.3 Microbial Links in Earth’s Biogeochemical Cycles

It has been hypothesized that the chemical inventory of the early Earth influenced the re-
quirements for microbial methanogenesis. This hypothesis is of particular interest in explain-
ing metal specificity, because methanogenesis has been cited as one of the most metal-rich
enzymatic pathways in microbial biochemistry (Zerkle et al., 2005). It is well established
that nickel is required for methyl-coenzyme M (CoM) reductase, which is utilized by all
pathways of methanogenesis (Scheller et al., 2010; Thauer, 1998). But methanogenic path-
ways also require many other metals as cofactors, including Fe, Ni, Co, Mo, W and Zn.
Studies have shown that when Fe, Ni, and Co are limited, methanogenesis is reduced (Glass
and Orphan, 2012; Lessner, 2009; Sauer and Thauer, 1998; Scheller et al., 2010). Anaerobic
marine ecosystems likely selected for the use of elements that were more readily available
(David and Alm, 2011; Dupont et al., 2010, 2006; Glass and Orphan, 2012). It has been
suggested that the Archaean ocean was Cu- and Zn-poor, and thus Cu- and Zn-dependent
metabolisms evolved later (Dupont et al., 2010). This hypothesis would explain the lack of
Cu-dependent anoxic methanogenesis enzymes (Glass and Orphan, 2012). As Cu became
more bioavailable in an oxygenated world, aerobic methanotrophs may have been forced
to depend on previously scarce and unused metals (David and Alm, 2011; Dupont et al.,
2010, 2006; Glass and Orphan, 2012). Zn is hypothesized to have become available later
in Earth’s history as well, which corresponds to the characteristic presence of Zn-binding
proteins in later-evolving Eukaryotic metabolisms (Dupont et al., 2010). Modern genomes
may be imprinted by, and retain signals of, such biogeochemical events (David and Alm,
2011). For example, it has been shown that the bioinorganic chemistry of ancient oceans has
shaped the evolution of cyanobacterial requirements (Saito et al., 2003). Thus, it stands to
reason that the presence of necessary metals or key substrates in these marine environments
may have also enabled the diversification of Archaea and influenced the resulting metabolic
pathways.

Microbes have played an important role in the evolution of the Earth’s carbon and sulfur
cycles, and the genetic record of extant organisms can expose traces of such biogeochemical
inputs (David and Alm, 2011). The evolution and proliferation of methanogenic metabolisms
has obvious consequences for the carbon cycle, as methane is one of its key intermediates. For
instance, HGT was implicated in the assembly of the methanogenic pathway from Bacteria
to acetoclastic Methanosarcina; this resulted in an increase in methane production during
the Permian (Fournier et al., 2009; Rothman et al., 2014). Additionally, methylotrophic
methanogenesis links the carbon and sulfur cycles to the three domains of life in the marine
ecosystem through the metabolism of the substrate dimethylsulfide (DMS) (Curson et al.,
2011) (Figure 3-6).

Although flux estimates are debated, some estimates indicate that DMS is responsible
for 50-60% of the reduced sulfur flux to the atmosphere, 95% of which is derived from
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the oceans (Stefels et al., 2007). The major source of DMS in the ocean is the bacte-
rial degradation of dimethylsulfoniopropionate (DMSP) to DMS (and to a much lesser ex-
tent, algal degradation) (Alcolombri et al., 2015; Li et al., 2014; Todd et al., 2007; Yoch,
2002). Additionally, a small portion of DMS is produced by the bacterial metabolism of
methanethiol, and bacteria can also reduce dimethyl sulfoxide (DMSO) to DMS. Bacteria
can utilize both DMS and DMSP as a carbon or energy source (Green and Hatton, 2014).
Although its exact purpose is unclear, DMSP is produced by photosynthetic Green Algae
(e.g., Chlorophytes), Dinophyceae (Dinoflagellates), Prymnesiophyceae (Prymnesiophytes,
including Coccolithophores), Chrysophyceae (Golden Algae) Bacillariophyceae (diatoms),
and a few Angiosperms that live by the sea, likely for osmoregulatory purposes (Curson
et al., 2011; Kettle et al., 1999; Kettles et al., 2014; Panos and Jones, 2013). In full, this
production results in estimated ocean DMSP concentrations of 50-400 mM, which can ac-
count for a significant portion of the total organic sulfur cellular material (Stefels et al.,
2007) and thus supplies much of carbon and sulfur that Bacteria require (Vila-Costa et al.,
2014). However, the algal enzyme responsible for DMSP degradation to DMS (DMS lyase)
was only recently identified (Alcolombri et al., 2015), and the genes responsible for DMSP
synthesis in algae remain poorly understood (Kettles et al., 2014).

Almost all Bacteria capable of catabolizing DMSP to DMS have been identified from
the phylum Proteobacteria. These taxa include mostly marine Gammaproteobacteria and
the abundant Alphaproteobacteria (Roseobacters), and to a lesser extent Beta-, Delta-, and
Epsilonproteobacteria (Curson et al., 2011). Purple Nonsulfur Bacteria (e.g., Rhodospirillum
rubrum and Rhodocyclus tenuis) have also been experimentally shown to produce DMS
during photosynthesis (Agalidis et al., 1997; Munk et al., 2011). The major genes associated
with DMS and DMSP metabolism, as well as their source organisms and evolution dates,
are summarized in Tables 3-2 and 3-3, respectively.

Phytoplanktonic degradation or use of DMSP and production of DMS provides an im-
portant link in the sulfur and carbon cycles, impacting many levels of the microbial food web
(Vila-Costa et al., 2006). DMS is often implicated in the well-known, albeit controversial,
"CLAW" hypothesis. This hypothesis posits that DMS from oceanic phytoplankton leads
to the formation of aerosol particles that act as cloud condensation nuclei in the marine
boundary layer, driving a subsequent increase in cloud formation, albedo, and temperature
change (Charlson et al., 1987). Contention over this hypothesis stems from a lack of ob-
servable evidence and indication that the system is more complex than previously described
(Ayers and Cainey, 2007; Quinn and Bates, 2011). Nonetheless, it has been suggested that
the microbial role in this process may actually be much greater than that described by the
CLAW authors (Green and Hatton, 2014).

While DMSP production and degradation is a topic of active research, less attention

has been paid to DMS consumers. A large portion of the DMS produced in the ocean (as
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much as 50%) does not make it into the atmosphere (Vila-Costa et al., 2006). This is partly
due to metabolic utilization. Although DMS metabolism and its ecological distribution are
not entirely constrained, methylotrophic methanogens have been shown to grow on DMS in
both marine and freshwater systems (Lomans et al., 2002). Methylotrophic methanogenesis
may play a more dominant role in the SRZ of marine sediments. It has been shown that
decreasing total organic carbon and the depth of the sulfate reduction zone in marine sedi-
ments may lead to relatively more methylotrophic microbial activity. It is hypothesized that
this increased activity is because DMS is a noncompetitive substrate in this environment
(Summons et al., 1998; Zhuang et al., 2016). Figure 3-6 illustrates a simplified schematic
of a possible pathway for DMS production and use. Evolutionary ages of DMS-consuming
methanogens may correspond with the emergence of DMSP production by Algae and DMSP
to DMS breakdown by Bacterioplankton. Dating other corrinoid pathway proteins may also
be relevant to this timing. It is hypothesized that DMSP became abundant in the envi-
ronment relatively recently, so the capacity to produce and catabolize this molecule must
also have evolved relatively recently (Curson et al., 2011). Because algal DMSP producers
appeared in the Proterozoic, it is possible that methanogens acquired the ability to utilize
DMS as a substrate later than this if they diversified in the marine system, although precise
dates are unknown. Preliminary data indicate that extant Purple Nonsulfur Bacteria di-
verged around 600-1000 Ma, and that they diverged from other Alphaproteobacteria around
850-1200 million years ago (Fournier, Pers. Com.). Even at these low levels of precision,
however, these results are consistent with the hypothesis that DMS cycling evolved in the

Neoproterozoic.

3.2.4 Summary and Objectives

The goal of this chapter is to investigate the phylogenetic history of genes associated with the
methyl-corrinoid pathway of methanogenesis. Can a genomic approach can reveal the evo-
lution substrate-specificity and links to the environment? It is hypothesized that evolution
of the methyl-corrinoid pathway may be connected to the marine system and tied to ocean
chemistry due to metabolic dependence on substrate availability and even metal specificity.
Therefore, we seek to investigate the phylogenetic history of methyl-corrinoid proteins to
assess whether the capability to use specific methyl compounds was acquired via HGT; in
what group of methanogens this pathway originally evolved; whether the evolution of this
pathway is linked to chemical inventory constraints (e.g., methylthiols, methanol, methy-
lamines, DMS or trace metals); or whether corrinoid-pathway methanogens coevolved with
other taxa implicated in DMSP-DMS metabolism (e.g., Green Algae or Purple Nonsulfur

Bacteria).
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3.3 Methods

3.3.1 Identification of Genes of Interest and Test for Homology

Methyltransferase and corrinoid proteins were identified by conducting a literature review
of the methylotrophic pathway, and by querying databases including NCBI and MetaCyc.
These proteins are listed in Table 3-4. The identities of sequences of interest were further
assessed using NCBI BLASTp. Additionally, to test whether this set of putatively substrate-
specific proteins was homologous, proteins were aligned in pairs with NCBI’'s BLAST2.
Sequences that produced significant hits, defined as having an E-value <10, were considered
homologous. Homologous protein families were then aligned to each other for subsequent

analyses.

3.3.2 Taxon Sampling

We queried The National Center for Biotechnology Information (NCBI) nonredundant (nr)
database using the protein Basic Local Alignment Search Tool (BLASTp) for homologs re-
lated to the mtaC methyltransferase corrinoid protein (Q46EH4). We assessed the similarity
of homologs (E-value <10°) and downloaded the complete sequences of all top archaeal hits
from NCBI (~700 taxa). Substrate specificity was determined based on annotation and
sequence identification. We further used BLASTp to identify significantly similar bacterial

sequences for all major substrate groups on the tree.

3.3.3 Sequences and Alignments

Sequences were aligned using MUSCLE (Edgar, 2004).

3.3.4 Phylogenetic Analyses and Model Selection

Single gene trees were inferred using RaxML v1.8.9 using the PROTGAMMALGEF substi-
tution model (Stamatakis, 2006) and 100 bootstrap replicates. The best-fit model for the

amino-acid substitution was assessed using ProtTest (Darriba et al., 2017).

3.4 Results and Discussion

3.4.1 Single Gene Trees and Homologous Proteins

Single gene trees were built for methyltransferase and corrinoid proteins. Figures D-1-D-
12 illustrate these gene trees with midpoint rooting. The red is indicative of putatively

methanogenic methyl-corrinoid sequences. Methyltransferases and corrinoid proteins were
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compared to each other using BLAST2, and produced significant hits for all sequence combi-
nations, supporting the hypothesis that they are homologous. One corrinoid protein, mtaC,
was selected for construction of a more extensive gene tree, serving as a representative

homolog of the other substrate-specific corrinoid proteins.

3.4.2 Homologous Corrinoid Proteins

The mtaC gene tree (Figure 3-7, Taxa on Table 3-4) depicts the top archaeal BLAST
hits as well as the top bacterial hits for all major substrate groups. Major groups of
substrate-specific sequences clearly group together, falling into the following categories based
on annotation: methionine, dimethylsulfide, trimethylamine, dimethylamine, methylamine,

methylthiol, methanol, or unidentified substrate.

3.4.3 Rooting the Methyl Corrinoid Tree

Bacteria were included 1) to identify HGT to and from bacteria involving the evolution of
the corrinoid proteins in methanogens and 2) to help root the tree, identifying divergent
outgroups to all the methanogenic corrinoid proteins. The mtaC tree contains every signif-
icant taxon hit within archaea. Taxa were put into groups identified by both their function
and clustering in an unrooted tree. Visual inspection of the tree suggests that the most
distantantly-related group is likely the methionine cluster. Bacterial and archaeal sequences
with a representative of each group were used to perform a BLAST search; each bacterial
hit that was more closely related to the query sequence than to any other archaeal sequence
already in the tree was added to the dataset. All selected taxa were then realigned to form
the final mtaC tree (Figure 3-7). Adding bacteria enabled the identification of (1) possible
bacterial clades that might be nested within an extant archaeal corrinoid protein group (due
to HGT), and (2) likely bacterial outgroups of any more deeply-diverging homologs. Ad-
ditionally, adding bacteria seems to support the rooting and placement of the methionine
cluster as one of the more deeply-branching clades, supporting the observation based on the

grouping and distribution of bacterial taxa in the unrooted tree.

3.4.4 Corrinoid Protein Tree Topology and Substrate Specificity

The protein mtaC is a corrinoid protein harboring subunit of the methyltransferase protein,
typically referred to as a methanol-specific methyl corrinoid protein (Dong et al., 2017,
Kroninger et al., 2017; Sauer and Thauer, 1998; Tallant and Krzycki, 1997). Here we refer to
it simply as mtaC. Annotation and sequence assessment with NCBI reveal regions of distinct
substrate specificity on the mtaC single gene tree (Figure 3-7). Some regions of the tree
lack substrate designations because their review was beyond the scope of this work, due to

incorrect annotations in the source database. While there are some informative regions of the
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tree, there are may be regions of this tree with missing, misannotated, or still undetermined
substrate specificity, which will be discussed later in this chapter. Each substrate-specific
region of the tree appears to contain some areas consistent with published species-level
relationships, suggesting that this tree preserves some patterns of vertical inheritance with

many areas of suspected HGT. This should be investigated in future work.

Methionine, Dimethylsulfide, and Methylthiol

Methylated thiol substrates such as dimethylsulfide (DMS) and methylmercaptopropionate
(MMPA) have been identified as being precursors to microbial methane (Tallant et al.,
2001). Methionine itself is not considered to be a substrate for archaeal methanogenesis.
However, these methylated thiols can be produced from the degradation of compounds such
as methionine. Thus, there may be a relationship between these more recently identified
substrates and the methionine-annotated protein, which may also explain this region of the
tree. The DMS-specific pathway of methanogencsis requires two proteins: mtsA and mtsB.
It has been shown that these proteins are homologous to the cobalmin binding domains
of methionine synthase (Tallant et al., 2001). It may be that these genes are most closely
related to DMS substrate utilization, or they may be nonspecific. This also makes sense
given that at least one of the two methionine-annotated sequences are grouped relatively
closely to other DMS-identified sequences. The other group is on a considerably long branch,
indicating its placement is possibly biased by long-branch attraction (Philippe et al., 2005).
Regions on the tree that are annotated as methionine-specific, or proposed to be associ-
ated with this substrate, contain a few notable members. This group consists of methanogens,
including Methanomassillicococcales, and Methanoculleus. It also includes other nonmethanogenic
archaea such as and Bathyarchaeota (a proposed butane oxidizer) Nitrososphaera (an am-
monia oxidizer), Nitrosopumilus (a Thaumarchaeote common in seawater), Lokiarchaeum,
and Candidatus 'Syntrophoarchaeum’. Interestingly, the latter genus has been proposed to
contain genes similar to methyl-coenzyme M and butyl-coenzyme M, which suggests that
this thermophilic Archaeon can activate butane via alkyl-coenzyme M formation (Laso-
Pérez et al., 2016). The finding that Candidatus 'Syntrophoarchaeum’ is closely related to
Methanomassillicococcales is consistent with its phylogenetic placement based on the highly
conserved McrA gene in the literature (Laso-Pérez et al., 2016). Moreover, like Lokiarchaea
isolated from deep marine sediments (Spang et al., 2015), Syntrophoarchaeum is present in
Guaymas Basin marine sediment. This further supports the hypothesis that marine sedi-
ments may be rich in methyl-cycling metabolisms. This is also consistent with the notion
that oceanic sediments are ripe for metabolic exploration, and some of these methyl-related
enzymes are promising for future work detecting and exploring these metabolic pathways or
informing future culturing work. These environments may be more significant and metabol-

ically diverse than previously thought.
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Finally, if the tree is rooted with taxa from one of the largest bacterial groups on the tree
(e.g., Chloroflexi _bacterium RBG_16_54 18|hypotheticallOG0O33135.1), methionine-annotated
regions are the most deeply rooted, grouping most closely to the larger bacterial clades that
include members such as Desulfosporosinus, Ignavibacteria, Deltaproteobacteria, and Fir-
micutes (e.g., Clostridum). This placement is consistent with the idea that methanogens
acquired some of their genes via HGT from bacteria. Firmicutes, in particular, are impli-
cated in the HGT to acetoclastic methanogens (Fournier and Gogarten, 2008).

Although no sequences in the mtaC gene tree were specifically annotated as "dimethyl-
sulfide" (DMS), when the NCBI protein database was cross-referenced for "dimethylsulfide
corrinoid", representative sequences were found in the tree, as illustrated in Figure 3-7.
The sequences found by this cross-referencing all form a clade, and many have alterna-
tive identical sequence names that are annotated as dimethylsulfide in the NCBI database.
This clade includes methanogens such as Methanosarcina, Methanolobus, Methanococcoides,
Methanohalobos, Methanohalophilus, and Methanosalsum, and is sister to another smaller
clade of sequences that encode enzymes that might be DMS-specific as well.

Although manually assessing and reannotating the thousands of genomes in this study
is beyond the scope of this work, some of these closely related taxa (e.g., >SDG04186.1)
were assessed by BLAST analysis and by reviewing the literature associated with the protein
entries. Despite what may be annotated, the closely related proteins were determined to
indeed be part of the corrinoid protein. Moreover, many of the highest hits (most closely
related sequences with highest percent identity and lowest E-Values) were actually annotated
as "dimethylsulfide," "methyltransferase," or "methionine synthase" (e.g., >AKB35381.1).
This result highlights the importance of manually reviewing sequences of interest and the
possibility of future work with these data. Moreover, it suggests that the closely-related
taxa are indeed also DMS-specific corrinoids, building a case for identifiable and discrete
substrate specificity and highlights numerous duplications and transfer events. Furthermore,
many of the papers that describe methyltransferase pathway function, distribution, and
phylogenetic characteristics never mention the dimethylsulfide pathway, thus future work
would be particularly interesting in this area.

BLAST results for taxa within the closely related unidentified substrate region had
highest sequence similarity to methyl corrinoid proteins. Some were not specific to DMS-for
example, >WP _012194551.1 was annotated either with no additional substrate informa-
tion or as dimethylamine-specific. This annotation is reasonable, however, as the region
encoding this protein is mtbC, consistent with dimethylamine. Other closely related taxa
include nonmethanogenic Archaea such as Hadesarchaea, of the South-African Gold Mine
subsurface (Baker et al., 2016). Based on gene composition analyses, Hadesarchaea are
thought to be involved in CO and Hg oxidation, possibly coupled to nitrite reduction to

ammonia. It is interesting that Hadesarchaea are present on this mtaC gene tree. They
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lack the often diagnostic mcrA gene and are thought not to be capable of methanogenesis
(Baker et al., 2016), but appear to be closely related to Ca. 'Bathyarchaeota’ and contain
many methanogen genes (Laso-Pérez et al., 2016). Also of note, the hyperthermophilic iron-
oxidizing Archaeon Ferroglobus sits nested within many of Firmicutes and other bacterial
taxa. Ferroglobus, isolated from a subsurface marine hydrothermal system near Italy (Hafen-
bradl et al., 1996), was the first Archaeon that was shown to anaerobically oxidize aromatic
compounds (Tor and Lovley, 2001). Its position within Bacteria may be indicative of HGT,
or a gap that remains in our sampling of marine and subsurface sediment environments.

The DMS-specific region of sequences is closely related to bacteria including firmicutes
(Clostridia, Sporomusa, Pelosinus, Syntrophobotulus, Anaerovibrio, Desulfosporosinus, Pro-
teiniborus), Treponema, and Deltaproteobacteria. It is notable that Sporomusa and Pelos-
1nus, of the Firmicute class Negativicutes, are thought to have acquired membrane charac-
teristics via HGT. This further supports the hypothesis that HGT is rampant in bacterial
lineages (Gupta, 2011). Another member in the DMS-specific region of the tree is Tre-
ponema primitia, a acetogenic spirochaete that both lives in close association with and
contains similar genetic information as methanogens (Graber and Breznak, 2004).

Methylthiol is not a specific substrate of methyltrophic methanogenesis. However, the
methylthiol methylcoenzyme M methyltransferase has been shown to mediate coenzyme M
methylation for cultures (M. barkeri) grown on DMS and MMPA substrates in culture. It
was also shown that methanogens possessing the methylthiol methyltransferase may grow
on 3-methylmercapto-1-propanol. However, it is noted in these studies that methanogens
also required acetate in order for the methylthiol methylcoenzyme M methyltransferase to
convert DMS or MMPA to methane (Tallant et al., 2001; Tallant and Krzycki, 1997). An-
other difference between the methylthiol: CoMmethyltransferase and the proteins mediating
CoM-methylation with other methylotrophic substrates is that CoM methylation with either
methanol, TMA, or MMA requires three polypeptides rather than the two-subunit protein
for methylated thiols (Tallant and Krzycki, 1997).

Based on the sequence annotations for the methylthiol region of the mtaC gene tree, it ap-
pears that nearly all methylthiol sequences belong to methanogenic archaea: Methanosarcina,
Methanomethylophilus, Methanomassillicoccus. A BLAST search of the NCBI database for
Methanosarcina barkeri WP _048107235.1 methylthiol methyltransferase reveals that the
most closely related sequences are also all methylthiol-specific methyltransferase proteins,
and that the most closely related sequences are annotated as "methanol" similar to the
observed pattern in the mtaC gene tree (Figure 3-7). The methylthiol region of the gene
tree comparatively smaller. Methanogens may be capable of restricted (requiring the use of
acetate) or more flexible (growth solely on methyl thiol substrates) metabolisms using this
enzyme, but this pathway does not appear to be as taxonomically-diverse. The environmen-

tal implications of these observations would be interesting to explore further, by assessing
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the presence, distribution, and use of these genes.

Monomethylamine, Dimethylamine, Trimethylamine

The monomethylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA) regions
on the mtaC tree are relatively closely related and are often overlapping. This makes sense
given that there is significant overlap in the proteins that facilitate conversion of methy-
lamines to methanol, as well as the organisms that are able to grown on these substrates.
As shown in Figure 3-2, which depicts the super pathway of methanogenesis, the MMA,
DMA, and TMA pathways are unique in the corrinoid and MT1 proteins used (Table 3-1),
but feed an intermediate to the same MT2. These pathways also differ in the early steps in
the intermediate products that are released, ammonium for MMA, methylamine for DMA,
and dimethylamine for TMA. This means that organisms capable of using all substrates
would also be capable of using the products released by the early steps of the pathway (as
in the case of DMA release) if they possess the proteins for multiple methylated substrates.
These genes are indeed located in close proximity to one another. In Methanosarcina barkert,
the gene encoding the corrinoid protein, mtmC, is located directly upstream of the gene en-
coding MT1, mtmB. The gene encoding MT2 (mtbA), which is not specific to methylamine
is located upstream of mtmC (Burke et al., 1998). Analogous proteins are present for DMA
and TMA (Ferguson et al., 2000; Ferguson and Krzycki, 1997).

The MMA region of the tree includes the methanogenic Archaea Methanosarcina, Methanolobus,
Methanococcoides, Methanohalophilus, Methanomethylovorans, and Methanosalsum. Ap-
parent outgroups include Bacteria which possess putatively DMA-specific proteins includ-
ing: Desulfosporosinus, Eubacterium, Peptococcacaea, Desulfotomaculum, and Pseudobac-
teroides. The DMA region of the tree includes the methanogenic Archaea Methanosarcina,
Methanomassililicocoous, Methanococcoides, Methanohalophilus, Metholobus, Methanosal-
sum, and Methanohalobium. Apparent outgroups include Archaea with unidentified sub-
strates and TMA-specific substrates. Using BLAST to search the NCBI database for some
example taxa (e.g., WP _048107480.1) reveals many sequences annotated only as corri-
noid protein, with just a few that are annotated as DMA. It is likely that sequences lack-
ing substrate annotations in this region of the tree actually possess DMA or at methy-
lamine proteins. The TMA-specific sequences include Methanosarcina, Methanococcoides,
Methanophilus, Methanomethylovorans, Methanolobus, and Thermoplasmatales. The appar-
ent outgroup to the TMA region (and the three methylamine regions) include archaeal taxa
including unidentified Euryarchaeotes, Hadesarchaea, and Bathyarchaeota.

The overall topology of the three methylamine-specific regions of the tree illustrates well-
resolved substrate specificity, positioned within other bacterial taxa. This suggests these
genes share an evolutionary history, possibly transferred from the phylogenetically-distant

bacteria. The bacterial outgroup to the methylamine-specific sequences include Sporomusa,
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Pelosinus, Clostridium, Syntrophobotulus, Anaerovibrio, and Treponema, taxa which may

be assessed further for evolutionary links to methylotrophic methanogens.

Methanol

The methanol-specific region of the mtaC gene tree includes Archaea including Methanosarcina,
Methanolobus, Methanococcoides, Methanohalophilus, Methanomethylovoras, Methanosal-
sum, Methanoplasma, Hadesarchaea, Methanomassililicoccus, Methanobrivibacter, and Methanosphaera.
It is notable that Methanobrevibacter (e.g., M. smithii), Methanoplasma (e.g., Methanoplasma
termitum) Methanosphaera (e.g., M. stadtmanae) are present only in this substrate-specific
region of the tree. In some ways, this serves as a positive control for validating the sequence
hits on this gene tree in general. This is because Methanobrevibacter and Methanosphaera
use a methanogenic pathway unique from all other methylotrophic methanogens in that they
require the presence of hydrogen to use the substrate methanol. Methanoplasma termitum
has also been shown to employ hydrogen-dependent methyltrophic methanogenesis (Lang
et al., 2015). In general, Methanobrevibacter have some of the most limited metabolisms of
all methanogenic Archaea. They are even unable to reduce carbon dioxide to methane (Fricke
et al., 2006). Thus, it would be predicted that they would only possess methanol-specific
sequences. A few Bacteria are also present in the methanol region including Thermincola,
Desulfosporosinus, Methanocella, and Desulfbulbus. This may be indicative of a transfer to

or from these Archaea, and should be evaluated in future work.

3.4.5 Taxon Sampling: Opportunities and Limitations

Taxon sampling is critical to gene and species tree construction, providing both insight
and its own biases. The taxa included in the mtaC gene tree presented here yield some
important findings, but also introduce areas for future work and improvement. Table 3-4
lists the taxa on the mtaC gene tree, in alphabetical order and with associated protein IDs
and taxonomy. Of the all organisms present (852) most are archaea (756) and a smaller
fraction are bacteria (96). Methanogenic archaea make up most of these archaeal species
(>700), belonging to genera such as Methanosarcina (351), Methanomassiliicoccus (35),
Methanomethylophilus (11), Methanococcoides (39), Methanolobus (49), and a few less well-
represented groups. It is apparent from both the gene tree and taxa list that there are
multiple copies of methyltransferases present in many methanogens. This indicates that
methanogens are capable of employing multiple methylotrophic pathways using multiple
substrates.

The distribution and topologies of many taxa on this tree are consistent with the litera-
ture. For instance, it is to be expected from previous work that Methanosarcinales have the
substrate-specific proteins for all substrates, while Methanosphaera only have the proteins

for methanol-specific methylotrophic methanogenesis. However, other taxa on this tree,
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e.g., Ca. Bathyarchaeota, which appear to have the genetic information for multiple sub-
strates, have conflicting reports of substrate utilization in the literature. Some studies report
that Ca. Bathyarchaeota possess the genes capable of methyltrophic methanogenesis from
methanol, methylamines, and methyl sulfides (Castelle and Banfield, 2018), while others
report that they lack these genes (Vanwonterghem et al., 2016). It is clear from this analysis
that Bathyarchaeota do have the genetic capability for methylotrophic methanogenesis, but
it remains to be seen what they do in culture. Other taxa, such as Ca. 'Korarchaeum
cryptofilum’ (WP _012309677.1), which is an archaeon grouped within the largest group of
bacteria on the mtaC tree, may provide clues for understanding the evolution of archaea at
large (Elkins et al., 2008).

Methylotrophic methanogenesis is arguably the least well-understood methanogenic path-
way, perhaps because the phylogenetic distribution of genes that encode this pathway are
complex, were found later, or because the organisms that are capable of this pathway are
often found in some of the most remote environments (and thus, it is likely that additional
taxa remain to be sampled or cultured). Many studies also note the need and value of
studying methyl-corrinoid proteins such as mtaC in particular in the future (Kolb and Sta-
cheter, 2013; Sousa et al., 2018). Therefore, it is an exciting time to further understand the
phylogenetic distribution of methylotrophic genes both in methanogenic lineages as well as
some of their nearest (phylogenetic and geographic) neighbors.

See this text in Appendix F.

3.4.6 Interrogating Microbial Carbon Metabolism in Marine Sediments
with Methyl-Corrinoids

Methylotrophic methanogens are common in marine sediments, and the number of new pu-
tatively methanogenic taxa that possess the genes for this metabolism is rapidly growing
(Lyu et al., 2018). As is noted throughout this discussion, many of the organisms that carry
out methylotrophic methanogenesis or harbor a methyl corrinoid protein are associated with
the marine environment. Methane cycling is a poorly understood but important metabolic
process in marine sedimentary environments (Ijiri et al., 2018; Marlow et al., 2016; Orcutt
et al., 2011; Valentine, 2011). The largest reservoir of methane on Earth is found in ma-
rine sediments (Orcutt et al., 2011). Moreover, methylotrophic methanogenesis is likely a
key metabolism for better understanding carbon and sulfur cycling dynamics in the ma-
rine environment (Summons et al., 1998). Although there are many areas of uncertainty
in understanding the carbon cycle in marine sediments, methanol and methyl compounds
are increasingly noted as important substrates for microbes in deep-subsurface environ-
ments, particularly because in sulfate-rich environments, sulfate reducers cannot outcompete
methylotrophic methanogens for certain substrates (Yanagawa et al., 2016). Nonetheless,

how sulfate-reducing bacteria employ methyltransferases is not entirely clear (Sousa et al.,
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2018). Interestingly, Desulfotomaculum is one bacterium that appears on this tree. It has
been shown that this organism lives in deep, subsurface sediments, and possesses the ma-
chinery to utilize two different methanol-degradation pathways (Sousa et al., 2018).

Many bacteria and archaea on this tree have connections to oligotrophic or subsurface
marine systems. For instance, Candidatus ’Aminicenantes’ (OGD11856.1) which appears
in the largest bacterial clade, is a newly described bacterial lineage distributed throughout
marine environments such as hydrothermal vents and coral-associated microbiomes (Farag
et al., 2014). Nitrosopumilus maritimus (ABX13163.1), an Archaeon that is present in
the methionine region of the tree has been suggested to play an important role in carbon
and nitrogen cycling in marine environments (Kénneke et al., 2005; Walker et al., 2010;
Bayer et al., 2016). The ammonia-oxidizing Archaeon Candidatus *Nitrosopelagicus brevis’
(WP _048105639.1) also present on the methionine region of the tree, was also isolated from
the oligotrophic ocean (Santoro et al., 2015). Methanotorris igneus (WP _013798831.1),
a methanogen isolated from a black smoker, was shown not to have enhanced growth in
the presence of methylated substrates, but clearly possesses these sequences (Takai et al.,
2004). Because this particular taxon sits near the Bacteria as an unidentified substrate, it is
possible that the capabilities of this methanogen should be further assessed. Staphylother-
mus marinus (WP _011838717.1) was isolated from a hydrothermal vent on the East Pacific
Rise (Anderson et al., 2009). Thermosediminibacter oceani (WP _013275879.1) was isolated
from deep sea sediments of Peru Margin (Lee et al., 2005). Parasporobacterium paucivo-
rans (WP _073994062.1) is a Bacterium which groups with the dimethylamine region of the
tree. It was isolated from a freshwater environment, but actually appears to produce DMS
and methanethiol (Lomans et al., 2001) suggesting a possible microbial source for these
compounds in the environment. The production of compounds such as methanethiols in the
environments from which these microbes have been isolated has only been recently measured,
in large part, due to improved methods for studying, measuring, and culturing these systems
(Reeves et al., 2012, 2014; McNichol et al., 2016). It has been shown that methanethiols can
form in hydrothermal vent environments either abiotically or from the thermal degradation
of organic matter which may contribute to the metabolic strategies employed by microbes in
these systems (Reeves et al., 2014). The origin of these substrates must be further assessed
in terms of the genes that act upon them to better understand the microbial metabolic dy-
namics of marine sedimentary environments. Nonetheless, methyl-corrinoids proteins may

provide an useful starting point.

3.4.7 Outlook: Evaluating DMS Metabolism and the Timing of Methyl
Specificity in Methanogenic and Bacterial Lineages

The metabolism of methylated thiols such as DMS may have even greater importance in

marine sediments than previously realized. Further analysis of DMS metabolism genes of

75



interest (Table 3-2) and producers of DMS in the environment (e.g., Table 3-3) should be
assessed to disentangle possible relationships between the evolutionary histories of DMS-
producing organisms. In particular, timing the emergence of the producers of methylated
thiols and other methyl substrates as well as the consumers will be an exciting next step to
understand how metabolisms have evolved and affected the biogeochemistry over the last
two eons. Nonetheless, this will require a more extensive assessment of methylotrophic gene
histories.

The mtaC tree topology presented here shows clear substrate specificity, but not all re-
gions are well supported. Future work may consider applying alignment techniques such
as a profile alignment or concatenation of methyltransferase MT1, MT2, and corrinoid pro-
teins together. This may aid in increasing tree support and more clearly defining the root
of methanogenic methyl corrinoid proteins in the mtaC tree which would greatly improve
inferences surrounding methanogen evolution.

Another exciting approach for future work is the possibility of dating substrate speci-
ficity in methylotrophic lineages by tethering the temporal information provided by bac-
terial lineages such as Firmicutes (as discussed above) or members of Actinobacteria, Al-
phaproteobacterial, Betaproteobacteria, Gammaproteobacterial, and Ascomycota which are
hypothesized to also harbor methyl corrinoid genes (Kolb and Stacheter, 2013).

3.5 Conclusions

In summary, we present the findings of our work to further illuminate the phylogenetic
history of methyl corrinoind proteins, environmentally significant enzymes in the biogeo-
chemical cycling of carbon. The phylogenetic history of methyl-corrinoid genes is more
complex than first hypothesized; there is not a clear pattern between bacterial and archaeal
lineages and it appears that there may have been multiple transfers or duplications. Bac-
teria seem to be implicated in these events, but polarizing these transfers and dating the
timing of substrate specificity was not possible with this dataset. Many of the taxa involved
in this analysis are related to the marine environment, but it is not yet possible to conclude
any environmental link between gene history or substrate specificity. Nonetheless, there is a
clear pattern of substrate specificity within archaeal taxa, which may still hold promise for
disentangling a phylogenetic history of methanogens.

The methyl corrinoid pathway of methanogenesis may provide novel insights into the
metabolic capabilities of recently described taxa, and may also reveal important links in
the biogeochemical cycling of elements such as carbon, nitrogen, and sulfur in the marine
system. It seems plausible that many of these sequences were distributed via HGT from
bacteria, perhaps even in the marine environment. Emerging methods in molecular evolution

will be useful, particularly for interrogating the substrate specificity of the methylotrophic
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pathway. Combined with exploration into environments such as ocean sediments or the
deep subsurface , molecular evolution analyses do hold promise for better understanding the
biogeochemistry and methane dynamics of the Earth’s most globally-significant reservoirs

of methane.
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Figure 3-1: Timeline of events in the evolution of the carbon cycle highlighting events relevant
to methanogenesis, shifting from a dominantly abiogenic methane world to a dominantly microbial
methane world. The 4.5 Ga time period is set by zircons (Wilde et al., 2001), which suggest that the
Earth had liquid water at 4.4 Ga. The origin and diversification of life remains an open question, but
is taken to be sometime before our earliest evidence before the earliest "core" pathway of microbial
methanogenesis. The first methanogenic pathway illustrated here is defined by fluid inclusions (Ueno
et al., 2006), isotopically depleted kerogen (Hinrichs, 2002), and molecular clock estimates (Wolfe
and Fournier, 2018). The methylotrophic pathway of methanogenesis is labeled with an unknown
time. The acetoclastic pathway of methanogenesis occurs around 250 Ma based on phylogenetic
estimates (Rothman et al., 2014).
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Figure 3-2: Methanognesis Pathways. The underlying pathways were generated by MetaCyc, but were modified for readability.
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Figure 3-3: Pathway of Methylotrophic Methanogenesis (from DMS). Modified from the path-
way diagram generated by MetaCyc (Caspi et al., 2014) and including enzyme information from
Methanosarcina barkeri in the methyl-corrinoid pathway, specifically for utilization of the substrate
DMS.
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Figure 3-4: Simplified Methyl-Corrinoid Pathway. The corrinoid proteins are in gold, and the MT1
and MT2 labels indicate the methyltransferase (1 and 2) steps. The corrinoid protein and MT1 are
considered to be substrate specific, while MT2 is not.
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taxa on the species tree and the genes associated with each pathway modified from Vanwonterghem
et al. (2016). The genes associated with methylotrophic methanogenesis are highlighted.
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Figure 3-6: Relationship between major mediators of DMSP production and degradation in the ma-
rine environment. This diagram includes only the major producers and consumers of each molecule
for simplification (Agalidis et al., 1997; Munk et al., 2011). Values of DMSP and DMS represent
estimates.
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Figure 3-7: Gene tree of methyl-corrinoid (mtaC) homologs, colored according to NCBI substrate
annotation and manual review of sequences. This tree was built with RAxML and rooted within
bacteria by manual assessment of taxa as described in methods.
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Table 3-1: Methyltransferase pathway genes of interest. Information derived from MetaCyc and
literature (Borrel et al., 2014; Curson et al., 2011; Galagan et al., 2002; Vanwonterghem et al., 2016).

Gene Protein Name Substrate Function
mtbB1 Dimethylamine methyltransferase dimethylamine MT1
mtbA Methylcobamide:CoM methyltransferase MtbA dimethylamine MT2
mtbC Dimethylamine corrinoid protein dimethylamine corrinoid
mtsA Methylated-thiol-coenzyme M methyltransferase dimethylsulfide MT1
mtpA or cmtA  Methylcobalamin:CoM methyltransferase isozyme A dimethylsulfide MT2
mtsB Methylated-thiol-corrinoid protein dimethylsulfide corrinoid
mtsA Methylated-thiol-coenzyme M methyltransferase methanethiol MT1
mtpA or cmtA  Methylcobalamin:CoM methyltransferase isozyme A  methanethiol MT2
MtsB Methylated-thiol-corrinoid protein methanethiol corrinoid
mtaB Methanol-corrinoid protein co-methyltransferase methanol MT1
mtaA Methylcobamide:CoM methyltransferase MtaA methanol MT2
mtaC Methanol—corrinoid protein methanol corrinoid
mtmB1 Monomethylamine methyltransferase methylamine MT1
mtbA Methylcobamide:CoM methyltransferase methylamine MT?2
mtmCl1 Monomethylamine corrinoid protein 1 methylamine corrinoid
mtsA Methylated-thiol-coenzyme M methyltransferase methylthiopropionate MT1
mtpA or cmtA Methylcobalamin:CoM methyltransferase isozyme A methylthiopropionate MT?2
MtsB Methylated-thiol-corrinoid protein methylthiopropionate corrinoid
MtgB tetramethylammonium methyltransferase teramethylammonium MT1
MtgA methylcobamide:CoM methyltransferase teramethylammonium MT?2
MtqC teramethylammonium corrinoid
mttB Trimethylamine methyltransferase trimethylamine MT1
mtbA methylcobamide:CoM methyltransferase trimethylamine MT2
mttC Trimethylamine corrinoid protein trimethylamine corrinoid

85



98

Table 3-2: DMS Genes of Interest.

Pathway Gene  Enzymatic Activity Organism

DMSP to DMS dddP  dimethylsulfoniopropionate lyase Mainl}-/ in roseobacters, .but also in ’Candidatus ‘Puniceispirillum marinum str. IMCCI322’ (in the SAR116 clade),
Oceanimonas doudoroffii (a gammaproteobacterium) and some ascomycete fungi

DMSP to DMS dddD  DMSP cleavage to DMS Sporac?ic occurrence in alphaproteobacteria, betaproteobacteria and, more frequently, gammaproteobacteria; often
found in bacteria that grow well on DMSP as the sole carbon source

DMSP to DMS dddL  DMSP lysis In marine alphaproteobacteria, mainly roseobacters

DMSP to DMS dddQ DMSP lysis Exclusively in roseobacters

DMSP to DMS dddW  DMSP lysis Exclusively in roseobacters, but only in two strains

DMSP to DMS dddY  DMSP lysis Sporadic occurrence in betaproteobacteria, gammaproteobacteria, deltaproteobacteria and epsilonproteobacteria

DMSP to DMS Almal dimethylsulfoniopropionate lyase Emiliania huxleyi (bloom forming algae)

DMSP to DMS dmdA DMSP demthylation SARI11 bacteria and roseobacters




Table 3-3: DMSP sources, relevant organisms, and proposed evolutionary dates.

Taxa Clade Date..appox..if. known. Reference

Hymenomonas carterae Coccolithophore (Vairavamurthy et al., 1985)
Gymnodinium nelsoni Dinoflagellate expansion Jurassic (Dacey and Wakeham, 1986)
Platymonas subcordiformis Prasinophytes (Dickson and Kirst, 1986)
Phaeocystis sp. (Stefels and Boekel, 1993)
Melosira numuloides (Diatoms) 100 Ma (Keller, 1989)

Chrysameoba sp. (chyrosphyte) (Yoch, 2002)

Ochromonas sp. (chyrosphyte) (Yoch, 2002)

Prorocentum sp. strain 1IB2bl (dinoflagellate) expansion Jurassic (Yoch, 2002)

Emiliania huxleyi BT6 (coccolithophore) Haptophyte (Yoch, 2002)

Dinoflagellates
Dinoflagellates

Diatoms et al (Stramenopiles)
Haptophytes

expansion Jurassic
>250 Ma
=750 Ma
=575 Ma

(Parfrey et al., 2011)
(Parfrey et al., 2011)
(Parfrey et al., 2011)
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Table 3-4: Taxa listed in Figure 3-7.

Taxon Name Protein Description Protein ID Taxonomy
Acetothermia_bacterium_64_ 32 Cobalamin KUK27705.1 Bacteria
Acidobacteria_bacterium 13 1 20CM_2 68 14 hypothetical OLD65654.1 Bacteria
Acidobacteria_bacterium_ 13 1 20CM_2 68 7 hypothetical OLE67755.1 Bacteria
Acidobacteria_bacterium 13 1 40CM_2 68 _5 hypothetical OLD63858.1 Bacteria
Actinobacteria_bacterium RBG 19FT_COMBO_70_19 hypothetical OFW77058.1 Bacteria
Anaerolineae_bacterium _SM23_ 63 hypothetical KPK90936.1 Bacteria
Anaerovibrio_lipolyticus DSM 3074 cobalamin-binding WP _039205959.1 | Bacteria
Anaerovibrio _lipolyticus cobalamin-binding WP _027397382.1 | Bacteria
Anaerovibrio_sp RMS50 cobalamin-binding WP _027407411.1 | Bacteria
Arc_1 group archaeon ADurbl113_Bin01801 Trimethylamine KYC55042.1 Archaea
Arc_1 group_archaeon ADurb1213_Bin02801 Methylated-thiol-coenzyme KYC55383.1 Archaea
Arc_I_group_archaeon_ADurb1213 _Bin02801 Trimethylamine KYC58006.1 Archaea
Arc_1_group archaeon BMIXfssc0709_Meth_ Bin006 Methylated-thiol-coenzyme KYC45501.1 Archaea
Arc_ I group_archaeon_BMIXfssc0709_Meth_ Bin006 Trimethylamine KY(C44725.1 Archaea
Arc_1 group archaeon_Ullsi0528_Bin055 Methanol-corrinoid KYC48099.1 Archaea
Arc_1 group archaeon_Ullsi0528_ Bin055 Trimethylamine KYC50875.1 Archaea
Arc_1 group archaeon Ullsi0528_Bin089 Trimethylamine KYC51555.1 Archaea
Archaeoglobus _ fulgidus_ DSM _ 8774 cobalamin-binding WP _010877520.1 | Archaea
Archaeoglobus_ fulgidus_ DSM_ 8774 corrinoid AAB91218.1 Archaea
Archaeoglobus_fulgidus cobalamin-binding WP_048064581.1 | Archaea
archaeon Heimdall_LC_3 Trimethylamine OLS22613.1 Archaea
candidate_division_Zixibacteria_bacterium_SM23_81 methyltransferase KPL19208.1 Archaea
candidate _divison MSBL1_archaeon_SCGC-AAA259D18 hypothetical KXA90803.1 Archaea
candidate divison MSBL1_archaeon_SCGC-AAA259D18 hypothetical KXA91218.1 Archaea
candidate divison MSBL1_archaeon_SCGC-AAA259E17 methyltransferase_ KXA92702.1 Archaea
candidate _divison MSBL1_archaeon_SCGC-AAA259E19 hypothetical KXA94216.1 Archaea
candidate _divison  MSBL1_archaeon_SCGC-AAA259E19 hypothetical KXA94469.1 Archaea
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Table 3-4 — continued from previous page

TaxonName ProteinDescription ProteinID Taxonomy
candidate _divison MSBL1 archaeon SCGC-AAA259E19 hypothetical KXA95296.1 Archaea
candidate _divison_MSBL1_archaeon SCGC-AAA259M10 hypothetical KXA99102.1 Archaea
candidate _divison_MSBL1_archaeon SCGC-AAA259005 hypothetical KXB00676.1 Archaea
candidate _divison MSBL1 archaeon SCGC-AAA261F19 cobalamin-binding KXB03897.1 Archaea
candidate divison MSBL1 archaeon SCGC-AAA382A03 hypothetical KXB04090.1 Archaea
candidate divison MSBL1 archaeon SCGC-AAA382A20 cobalamin-binding KXB06230.1 Archaea
candidate divison_MSBL1 archaeon SCGC-AAA382A20 hypothetical KXB06477.1 Archaea
candidate _divison_MSBL1 _archaeon SCGC-AAA382A20 hypothetical KXB07048.1 Archaea
candidate divison _MSBL1_archaeon SCGC-AAA382A20 hypothetical KXB07590.1 Archaea
candidate divison  MSBL1 archaeon SCGC-AAA382C18 methanol _corrinoid KXB06533.1 Archaea
Candidatus__ Altiarchaeales _archaeon  WOR_SM1_79 hypothetical ODS36526.1 Bacteria
Candidatus_ Aminicenantes_ bacterium_RBG_13_62_12 dimethylamine 0GD12780.1 Bacteria
Candidatus _Aminicenantes_bacterium RBG 16 63 16 dimethylamine 0GD22292.1 Bacteria
Candidatus_ Aminicenantes_ bacterium_RBG_16_66_30 dimethylamine OGD11856.1 Bacteria
Candidatus _Aminicenantes_bacterium RBG 19FT COMBO_58 17 | dimethylamine OGD37535.1 Bacteria
Candidatus _Aminicenantes bacterium RBG 19FT COMBO_59_29 | dimethylamine 0GD26035.1 Bacteria
Candidatus Bathyarchaeota archaeon B23 Trimethylamine KYH39426.1 Archaea
Candidatus_Bathyarchaeota_archaeon_B24 corrinoid KYH37114.1 Archaea
Candidatus Bathyarchaeota archaeon B26-1 corrinoid KYH42497.1 Archaea
Candidatus_Bathyarchaeota _archaeon B26-2 corrinoid KYH40176.1 Archaea
Candidatus_Bathyarchaeota archaeon_B63 putative KYH40379.1 Archaea
Candidatus Bathyarchaeota archaeon BAl Dimethylamine KPV61612.1 Archaea
Candidatus Bathyarchaeota archaeon_BAl Dimethylamine KPV64356.1 Archaea
Candidatus_Bathyarchaeota archaeon BAl Dimethylamine KPV64367.1 Archaea
Candidatus_Bathyarchaeota archaeon_BAl Dimethylamine KPV64966.1 Archaea
Candidatus Bathyarchaeota archaecon RBG_13 38 9 hypothetical 0GD53017.1 Archaea
Candidatus Bathyarchaeota_archaeon_ RBG_13_38 9 hypothetical OGD53045.1 Archaea
Candidatus Bathyarchaeota archaecon RBG_13_ 38 9 hypothetical 0GD54883.1 Archaea
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Table 3-4 — continued from previous page

TaxonName ProteinDescription ProteinID Taxonomy
Candidatus_ Bathyarchaeota archaeon RBG 13 38 9 hypothetical 0GD54910.1 Archaea
Candidatus_ Bathyarchaeota archaeon RBG_13 38 9 hypothetical 0GD54960.1 Archaea
Candidatus_ Bathyarchaeota archaeon_ RBG 13 52 12 hypothetical OGD60770.1 Archaea
Candidatus_ Bathyarchaeota archaeon RBG_16_48 13 hypothetical 0GD46258.1 Archaea
Candidatus_ Bathyarchaeota archaecon RBG_16_48 13 hypothetical 0OGD46569.1 Archaea
Candidatus_Bathyarchaeota archaeon RBG_16 57 9 hypothetical 0GDA45974.1 Archaea
Candidatus_ Korarchaeum _cryptofilum_ OPF8 corrinoid WP _012309677.1 | Archaea

Candidatus_ Methanomassiliicoccus_intestinalis_ Issoire-Mx1
Candidatus_Methanomassiliicoccus _intestinalis _Issoire-Mx1
Candidatus_Methanomassiliicoccus_intestinalis_Issoire-Mx1
Candidatus_Methanomassiliicoccus _intestinalis_ Issoire-Mx1
Candidatus_Methanomassiliicoccus _intestinalis_Issoire-Mx1
Candidatus_Methanomassiliicoccus _intestinalis _Issoire-Mx1
Candidatus_Methanomassiliicoccus_ intestinalis_ Issoire-Mx1
Candidatus_ Methanomassiliicoccus _intestinalis _Issoire-Mx1
Candidatus_Methanomassiliicoccus _intestinalis_ Issoire-Mx1
Candidatus_ Methanomassiliicoccus _intestinalis

Candidatus _Methanomassiliicoccus_ intestinalis
Candidatus_Methanomethylophilus_alvus_Mx1201
Candidatus_Methanomethylophilus_alvus_ Mx1201
Candidatus_Methanomethylophilus _alvus _Mx1201
Candidatus_ Methanomethylophilus_ alvus_Mx1201
Candidatus_ Methanomethylophilus _alvus_Mx1201
Candidatus_ Methanomethylophilus_ alvus_Mx1201
Candidatus_ Methanomethylophilus_sp_1R26
Candidatus_Methanomethylophilus _sp_ 1R26

Candidatus_ Methanomethylophilus_sp_ 1R26
Candidatus_Methanomethylophilus_sp_1R26

cobalamin-binding
dimethylamine
Methanol

Methanol

methanol
methionine
trimethylamine
trimethylamine
trimethylamine
methanol—corrinoid

methanol-corrinoid

5-methyltetrahydrofolate-homocysteine

dimethylamine
hypothetical
methionine
methylthiol-coenzyme
trimethylamine
dimethylamine
dimethylamine
methanol-corrinoid

methionine

WP _020448778.1 | Archaea
WP _020448787.1 | Archaea
AGN25680.1 Archaea
AGY50164.1 Archaea
WP _020448235.1 | Archaea
WP _(048134245.1 | Archaea
WP _020448772.1 | Archaea
WP _020448782.1 | Archaea
WP _020449409.1 | Archaea
WP _048133854.1 | Archaea
WP _048134198.1 | Archaea
WP_015504410.1 | Archaea
WP_015505018.1 | Archaea
WP_015505015.1 | Archaea
WP _015504315.1 | Archaea
WP_015505223.1 | Archaea
WP_015504327.1 | Archaea
WP_058746969.1 | Archaea
WP _058747236.1 | Archaea
WP _058747807.1 | Archaea
WP _058748236.1 | Archaea
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TaxonName ProteinDescription ProteinID Taxonomy
Candidatus_Methanomethylophilus_sp 1R26 methylthiol-CoM WP _058747653.1 | Archaea
Candidatus_Methanoplasma_termitum dimethylamine WP _048111918.1 | Archaea
Candidatus_ Methanoplasma_termitum methanol-corrinoid WP 048111798.1 | Archaea
Candidatus_ Methanoplasma_ termitum methionine WP _052399287.1 | Archaea
Candidatus_ Methanoplasma_ termitum putative Al756770.1 Archaea
Candidatus_ Nitrosoarchaeum koreensis MY1 methionine WP 007551119.1 | Archaea
Candidatus_ Nitrosoarchaeum _limnia_BG20 B12 EPA05056.1 Archaea
Candidatus_ Nitrosoarchaeum limnia_SFB1 methionine EGG42114.1 Archaea
Candidatus_ Nitrosopelagicus_ brevis methionine WP _048105639.1 | Archaea
Candidatus_Nitrosopumilus _adriaticus methionine WP _048115673.1 | Archaea
Candidatus_Nitrosopumilus _koreensis AR1 MULTISPECIES _ WP _014963694.1 | Archaea
Candidatus_Nitrosopumilus _piranensis methionine AJM92058.1 Archaea
Candidatus_Nitrosopumilus _salaria_BD31 methionine WP _008301613.1 | Archaea
Candidatus_Nitrosopumilus _sp AR2 MULTISPECIES _ WP _014965586.1 | Archaea
Candidatus Nitrososphaera evergladensis SR1 methionine AIF85021.1 Archaea
Candidatus_ Nitrososphaera_gargensis_Ga9_2 putative AFU57439.1 Archaea
Candidatus_Nitrosotalea devanaterra Methionine CUR52375.1 Archaea
Candidatus_ Nitrosotenuis_ cloacae methionine WP _048187301.1 | Archaea
Candidatus_ Syntrophoarchaeum_butanivorans corrinoid 0OFV65992.1 Archaea
Candidatus_ Syntrophoarchaeum butanivorans corrinoid OFV66410.1 Archaea
Candidatus_Syntrophoarchaeum caldarius corrinoid OFV67276.1 Archaea
Candidatus_Thorarchaeota archaeon SMTZ-45 hypothetical KXH70679.1 Archaea
Candidatus_ Thorarchaeota archaeon_SMTZ-45 hypothetical KXH72076.1 Archaea
Candidatus _Thorarchaeota archaeon_SMTZ1-45 hypothetical KXH70073.1 Archaea,
Candidatus _Thorarchaeota archaeon SMTZ1-45 hypothetical KXH70541.1 Archaea
Candidatus_ Thorarchaeota archaeon SMTZ1-45 hypothetical KXH74033.1 Archaea
Candidatus_Thorarchaeota_archaeon SMTZ1-83 hypothetical KXH70129.1 Archaea
Candidatus _Thorarchaeota archaecon SMTZ1-83 hypothetical KXH74024.1 Archaea
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TaxonName ProteinDescription ProteinID Taxonomy
Candidatus_ Thorarchaeota_archaeon _SMTZ1-83 hypothetical KXH77722.1 Archaea
Cenarchaeum symbiosum A methionine ABKT77567.1 Archaea
Chloroflexibacterium _GWC2 73 18 methyltransferase OGN88425.1 Bacteria
Chloroflexi_bacterium RBG 13 50 21 hypothetical OGN97568.1 Bacteria
Chloroflexi_bacterium_RBG_16_47 49 hypothetical 0GO012010.1 Bacteria
Chloroflexi _bacterium_RBG_16_52_11 methyltransferase 0G025865.1 Bacteria
Chloroflexi bacterium RBG 16 54 11 hypothetical 0G027286.1 Bacteria
Chloroflexi bacterium_RBG_16_54_ 18 hypothetical 0GO033135.1 Bacteria

Clostridium_botulinum _CDC_ 1436
Clostridium__botulinum

Clostridium_ carboxidivorans_ P7
Clostridium _cellulovorans _743B
Clostridium _ljungdahlii
Clostridium__purinilyticum

Clostridium _scatologenes

Clostridium _senegalense

Clostridium_sp KNHs214

Clostridium _straminisolvens  JCM 21531

Clostridium__tyrobutyricum

cobalamin-binding
cobalamin-binding
cobalamin-binding
cobalamin-binding
cobalamin-binding
cobalamin-binding
MULTISPECIES
cobalamin-binding
cobalamin-binding
cobalamin-binding

hypothetical

WP _012720395.1 | Bacteria
WP _075860993.1 | Bacteria
WP _007060633.1 | Bacteria
WP _010076138.1 | Bacteria
WP _063554956.1 | Bacteria
WP _050356052.1 | Bacteria
WP _029160050.1 | Bacteria
WP _010292018.1 | Bacteria
WP _035294784.1 | Bacteria
WP_038286537.1 | Bacteria
WP_017751388.1 | Bacteria

Deltaproteobacteria_bacterium_CG2_30_ 43 _15 cobalamin-binding OIP31517.1 Bacteria
Deltaproteobacteria bacterium RBG_16_48_10 hypothetical 0GP92226.1 Bacteria
Deltaproteobacteria_bacterium RBG_19FT_COMBO_46_12 hypothetical OGP98518.1 Bacteria
Desulfitibacter_sp BRH_c19 methyltransferase KUO050702.1 Bacteria
Desulfitibacter _sp_ BRH_c19 methyltransferase KUO050706.1 Bacteria
Desulfitobacterium _ chlororespirans_ DSM _ 11544 trimethylamine SHN85887.1 Bacteria
Desulfitobacterium _ chlororespirans dimethylamine WP _072774686.1 | Bacteria
Desulfitobacterium _hafniense dimethylamine WP _015945169.1 | Bacteria
Desulfitobacterium__hafniense methyltransferase WP _035213634.1 | Bacteria
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TaxonName ProteinDescription ProteinID Taxonomy
Desulfitobacterium_hafniense methyltransferase WP _058491970.1 | Bacteria
Desulfobulbaceae_bacterium_BRH _c16a methanol-5-hydroxybenzimidazolylcobamide KJR96643.1 Bacteria
Desulfobulbus_japonicus methanol-5-hydroxybenzimidazolylcobamide WP _028582363.1 | Bacteria
Desulfosporosinus__hippei DSM 8344 trimethylamine SDI134077.1 Bacteria
Desulfosporosinus _lacus_ DSM 15449 dimethylamine WP_073033384.1 | Bacteria
Desulfosporosinus_meridiei  DSM 13257 corrinoid WP _014903195.1 | Bacteria
Desulfosporosinus_ meridiei DSM 13257 corrinoid WP _014904786.1 | Bacteria
Desulfosporosinus _meridiei DSM 13257 dimethylamine WP _014903796.1 | Bacteria
Desulfosporosinus_orientis DSM 765 cobalamin-binding WP _014184027.1 | Bacteria
Desulfosporosinus_orientis_ DSM 765 corrinoid WP _014186397.1 | Bacteria
Desulfosporosinus _orientis_ DSM 765 corrinoid WP _014186640.1 | Bacteria
Desulfosporosinus _orientis DSM _ 765 corrinoid WP _014187249.1 | Bacteria
Desulfosporosinus_sp_BG dimethylamine WP _068966346.1 | Bacteria
Desulfosporosinus _sp_BICA1-9 methanol-5-hydroxybenzimidazolylcobamide KJS47453.1 Bacteria
Desulfosporosinus_sp_BICA1-9 methanol-5-hydroxybenzimidazolylcobamide KJS89063.1 Bacteria
Desulfosporosinus_sp_BICA1-9 methyltransferase KJS47628.1 Bacteria
Desulfosporosinus_sp HMP52 dimethylamine WP _034599966.1 | Bacteria
Desulfosporosinus_sp HMP52 methyltransferase WP_034601983.1 | Bacteria
Desulfosporosinus_sp 12 methyltransferase WP _045572706.1 | Bacteria
Desulfosporosinus_sp_OL cobalamin-binding WP _075364787.1 | Bacteria
Desulfosporosinus_sp OL Dimethylamine OLN32034.1 Bacteria
Desulfosporosinus_sp OT cobalamin-binding WP _040411893.1 | Bacteria
Desulfosporosinus_sp_OT dimethylamine EGW39498.1 Bacteria
Desulfosporosinus _youngiae DSM 17734 corrinoid WP _007784993.1 | Bacteria
Desulfosporosinus_youngiae DSM_ 17734 corrinoid WP _007785983.1 | Bacteria
Desulfosporosinus _youngiae DSM 17734 corrinoid WP_007786830.1 | Bacteria
Desulfotomaculum _acetoxidans_ DSM_ 771 dimethylamine WP _012813440.1 | Bacteria

5-methyltetrahydrofolate-homocysteine SEA30191.1 Bacteria

Eubacterium _aggregans
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TaxonName ProteinDescription ProteinID Taxonomy
Eubacterium _callanderi 5-methyltetrahydrofolate-homocysteine SFP58394.1 Bacteria
Eubacterium_limosum dimethylamine WP _038352117.1 | Bacteria
Euryarchaeota archaeon 55 53 dimethylamine WP _042686903.1 | Archaea
Euryarchaeota_archaeon_55 53 Trimethylamine KUKO04061.1 Archaea
Euryarchaeota archaeon RBG 13 57 23 hypothetical 0GS43022.1 Archaea
Euryarchaeota_archaecon  RBG_13_57_23 hypothetical 0GS44410.1 Archaea
Euryarchaeota_archaeon  RBG 13 57_23 hypothetical 0GS44593.1 Archaea
Euryarchaeota_archaeon  RBG_13 61_15 hypothetical 0GS52213.1 Archaea
Euryarchaeota archaeon RBG 13 61 15 hypothetical 0GS52581.1 Archaea
Euryarchaeota_archaeon  RBG_16_62_10 hypothetical 0GS41508.1 Archaea
Euryarchaeota archaecon RBG_16_62_10 hypothetical 0GS541863.1 Archaea
Euryarchaeota_archaeon_ RBG_16_67_27 hypothetical 0GS47549.1 Archaea
Euryarchaeota _archaeon_ RBG_19FT_COMBO_56_21 hypothetical 0GS56899.1 Archaea
Euryarchaeota_archacon_ RBG 19FT_COMBO_56_21 hypothetical 0GS56929.1 Archaea
Euryarchaeota archaeon  RBG 19FT_COMBO_69 17 hypothetical 0GS59937.1 Archaea
Euryarchaeota_archaeon  RBG_19FT_ COMBO_69_17 hypothetical 0GS61399.1 Archaea
Ferroglobus_ placidus_ DSM _ 10642 cobalamin-binding WP _012966230.1 | Archaea
Hadesarchaea _archaeon_DG-33 cobalamin-binding KU039631.1 Archaea
Hadesarchaea archaecon YNP 45 hypothetical KUO039615.1 Archaea
Hadesarchaea archaeon YNP_ 45 hypothetical KUO040501.1 Archaea
Hadesarchaea archaeon YNP 45 hypothetical KU040862.1 Archaea
Hadesarchaea archaeon YNP 45 hypothetical KUO41281.1 Archaea
Hadesarchaea_ archaeon_ YNP_ 45 hypothetical KUO42471.1 Archaea
Hadesarchaea archaeon YNP_ N21 hypothetical KUO042253.1 Archaea
Hadesarchaea_archaeon YNP N21 hypothetical KU042254.1 Archaea
Hadesarchaea _archaeon_ YNP_N21 hypothetical KU042453.1 Archaea
Hadesarchaea_archaeon_YNP _N21 hypothetical KU042842.1 Archaea
Hadesarchaea _archaeon YNP_N21 hypothetical KUO43215.1 Archaea
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haloarchaecon  HTSR1 hypothetical WP _070365541.1 | Archaea
haloarchaeon HTSR1 hypothetical WP _070365577.1 | Archaea
Ignavibacteria_bacterium _RIFCSPLOWO2 12 FULL 56 21 methyltransferase 0GU69916.1 Bacteria
Ignisphaera_aggregans DSM_ 17230 cobalamin ADM27217.1 Archaea
Lokiarchaeum sp GCl14 75 Dimethylamine KKK43738.1 Archaea
Lokiarchaeum _sp GC14 75 Dimethylamine KKK43983.1 Archaea
Lokiarchaeum sp GC14_75 Dimethylamine KKK44303.1 Archaea
Lokiarchaeum _sp GCl14_75 Dimethylamine KKK44366.1 Archaea
Lokiarchaeum_sp GC14_75 putative KKK45155.1 Archaea
Lokiarchaeum sp GC14_75 Trimethylamine KKK41955.1 Archaea
Lokiarchaeum_sp GC14_75 Trimethylamine KKK42684.1 Archaea
Marine Group_1I_thaumarchaeote SCGC_AAAT799-D11 methionine WP 048089629.1 | Archaea
Marine_Group_I_thaumarchaeote  SCGC_AAAT99-E16 Methionine KER05431.1 Archaea
Marine Group 1 thaumarchaeote SCGC_ AAA799-P11 methionine WP _048070658.1 | Archaea
Marine_Group_ I thaumarchaeote_ SCGC_RSA3 MULTISPECIES _ WP _048079445.1 | Archaea
Methanobacterium _congolense Methanol-corrinoid SCG85713.1 Archaea
Methanobacterium _lacus cobalamin-binding WP _013644620.1 | Archaea
Methanobacterium paludis cobalamin-binding WP_013825604.1 | Archaea
Methanobacterium _sp A39 cobalamin-binding WP _069585577.1 | Archaea
Methanobacterium MULTISPECIES _ WP _(048081959.1 | Archaea
Methanobrevibacter _arboriphilus cobalamin-binding WP_042704212.1 | Archaea
Methanobrevibacter smithii_ CAG_ 186 cobalamin-binding WP_004036708.1 | Archaea
Methanobrevibacter _smithii cobalamin-binding WP 019262346.1 | Archaea
Methanobrevibacter__smithii cobalamin-binding WP _019264392.1 | Archaea
Methanobrevibacter _sp A54 MULTISPECIES _ WP _011953942.1 | Archaea
Methanobrevibacter _wolinii cobalamin-binding WP _042707833.1 | Archaea
Methanocella_arvoryzae  MRES0 methanol-cobalamin WP_012035439.1 | Archaea
Methanococcoides _burtonii DSM _ 6242 dimethylamine ABE52282.1 Archaea
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Methanococcoides_burtonii_ DSM _ 6242 dimethylamine WP _011499430.1 | Archaea
Methanococcoides burtonii_ DSM_ 6242 dimethylamine WP _011500284.1 | Archaea
Methanococcoides_ burtonii_ DSM 6242 dimethylamine WP _011500301.1 | Archaea
Methanococcoides_burtonii_ DSM_ 6242 methanol-5-hydroxybenzimidazolylcobamide WP _011498920.1 | Archaea
Methanococcoides _burtonii_ DSM 6242 methanol-5-hydroxybenzimidazolylcobamide WP _011498922.1 | Archaea
Methanococcoides_burtonii_ DSM_ 6242 monomethylamine WP _011498946.1 | Archaea
Methanococcoides burtonii_ DSM 6242 monomethylamine WP _011498951.1 | Archaea
Methanococcoides__burtonii dimethylamine WP _048063580.1 | Archaea
Methanococcoides methylutens MM1 corrinoid WP _048205741.1 | Archaea
Methanococcoides_methylutens MM1 Dimethylamine AKB84490.1 Archaea
Methanococcoides_methylutens_ MM1 Dimethylamine AKB85909.1 Archaea
Methanococcoides _methylutens MM1 dimethylamine WP _048205942.1 | Archaea
Methanococcoides _methylutens MM1 hypothetical WP _048204904.1 | Archaea
Methanococcoides _methylutens  MM1 methanol-5-hydroxybenzimidazolylcobamide WP __048205138.1 | Archaea
Methanococcoides_methylutens_ MM1 methanol-5-hydroxybenzimidazolylcobamide WP _048205140.1 | Archaea
Methanococcoides _methylutens  MM1 methanol-5-hydroxybenzimidazolylcobamide WP _048205142.1 | Archaea
Methanococcoides_ methylutens_ MM1 methyltransferase WP _048206113.1 | Archaea
Methanococcoides _methylutens MM1 monomethylamine WP _048205165.1 | Archaea
Methanococcoides methylutens MM1 monomethylamine WP_048205175.1 | Archaea
Methanococcoides methylutens dimethylamine WP _048193756.1 | Archaea
Methanococcoides _methylutens dimethylamine WP _048195446.1 | Archaea
Methanococcoides_methylutens dimethylamine WP _048195452.1 | Archaea
Methanococcoides methylutens dimethylamine WP_048204688.1 | Archaea
Methanococcoides__methylutens dimethylamine WP_048205939.1 | Archaea
Methanococcoides_ methylutens hypothetical WP _048194676.1 | Archaea
Methanococcoides _methylutens methanol-5-hydroxybenzimidazolylcobamide WP _048193144.1 | Archaea
Methanococcoides _methylutens methanol-5-hydroxybenzimidazolylcobamide WP_048193146.1 | Archaea

B WP _048195756.1 | Archaea

Methanococcoides_methylutens

methyltransferase
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Methanococcoides_ methylutens monomethylamine WP _048192926.1 | Archaea
Methanococcoides _methylutens monomethylamine WP _048194174.1 | Archaea
Methanococcoides _vulcani dimethylamine SES64320.1 Archaea
Methanococcoides _ vulcani dimethylamine SES80737.1 Archaea
Methanococcoides _ vulcani methanol SES92369.1 Archaea
Methanococcoides _vulcani methanol SET01972.1 Archaea
Methanococcoides vulcani methanol SET02010.1 Archaea
Methanococcoides _vulcani monomethylamine SET12072.1 Archaea
Methanococcoides vulcani trimethylamine SES64274.1 Archaea
Methanococcoides _vulcani trimethylamine SES92425.1 Archaea

Methanococcus_ aeolicus_ Nankai-3
Methanococcus_maripaludis_ C5
Methanococcus_maripaludis_ C6
Methanococcus _maripaludis_ C7
Methanococcus__maripaludis_S2
Methanococcus_maripaludis_ X1
Methanococcus__maripaludis
Methanococcus_voltae A3
Methanococcus _voltae PS
Methanococcus_ voltae
Methanoculleus_sp_ CAG_ 1088
Methanoculleus_sp CAG_ 1088
Methanoculleus_sp_ CAG_ 1088
Methanoculleus sp  CAG_ 1088
Methanoculleus_sp CAG_ 1088
Methanoculleus_sp_ CAG_ 1088
Methanoculleus sp  CAG_ 1088
methanogenic__archaeon ISO4-H5

cobalamin-binding
cobalamin-binding
cobalamin-binding
cobalamin-binding
Coenzyme
cobalamin-binding
cobalamin-binding
cobalamin-binding
putative

putative
dimethylamine
methanol
methionine
methyltransferase
methyltransferase
methyltransferase

trimethylamine

dimethylamine

WP _011973314.1 | Archaea
WP _011868603.1 | Archaea
WP _012194551.1 | Archaea
WP_011976482.1 | Archaea
CAF30707.1 Archaea
WP _011170773.1 | Archaea
WP _048064099.1 | Archaea
WP _013180957.1 | Archaea
AAQH5470.1 Archaea
CAE02688.1 Archaea
WP 015505011.1 | Archaea
WP _015504829.1 | Archaea

CDF30150.1 Archaea
CDF30136.1 Archaea
CDF30939.1 Archaea
CDF31086.1 Archaea
CDF30944.1 Archaea

WP _066074949.1 | Archaea
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methanogenic _archaeon ISO4-H5 dimethylamine WP _066077279.1 | Archaea
methanogenic _archaeon 1SO4-H5 dimethylamine WP_066077287.1 | Archaea
methanogenic _archaeon 1SO4-HS5 hypothetical WP _066073323.1 | Archaea
methanogenic__archaeon 1S0O4-H5 hypothetical WP _066077282.1 | Archaea
methanogenic_archaeon IS0O4-H5 methanol-corrinoid WP _066075119.1 | Archaea
methanogenic _archaeon_ ISO4-H5 methanol AMH94673.1 Archaea
methanogenic_archaeon 1SO4-H5 methionine WP _066075223.1 | Archaea
methanogenic__archaeon_I1SO4-H5 methylthiol-CoM WP _066075225.1 | Archaea
methanogenic_archaeon ISO4-H5 methyltransferase AMH95045.1 Archaea
methanogenic_archaeon _mixed_culture _ISO4-G1 dimethylamine AMK13783.1 Archaea
methanogenic _archaeon mixed culture ISO4-G1 dimethylamine AMK14261.1 Archaea
methanogenic _archaeon mixed culture 1SO4-G1 methanol AMK14086.1 Archaea
methanogenic _archaeon_mixed _culture_ISO4-G1 monmethylamine AMK14262.1 Archaea
methanogenic__archaeon_mixed _culture 1S04-G1 trimethylamine AMK14256.1 Archaea
Methanogenium_ cariaci cobalamin-binding WP _062396147.1 | Archaea
Methanohalobium _evestigatum__Z-7303 cobalamin WP_013194479.1°| Archaea
Methanohalobium _evestigatum Z-7303 dimethylamine WP _013194859.1 | Archaea
Methanohalobium _evestigatum _Z-7303 dimethylamine WP_013195341.1 | Archaea
Methanohalobium _evestigatum_ Z-7303 dimethylamine WP _013195345.1 | Archaea
Methanohalobium _evestigatum_ Z-7303 methanol-5-hydroxybenzimidazolylcobamide WP _013194407.1 | Archaea
Methanohalobium evestigatum_ Z-7303 methyltransferase WP_013195113.1 | Archaea
Methanohalobium _evestigatum_ Z-7303 monomethylamine WP _013194522.1 | Archaea
Methanohalobium _evestigatum _ Z-7303 monomethylamine WP _013194774.1 | Archaea
Methanohalophilus _halophilus dimethylamine SDV99323.1 Archaea
Methanohalophilus_halophilus dimethylamine SDW40207.1 Archaea
Methanohalophilus _halophilus dimethylamine SDW64475.1 Archaea
Methanohalophilus _halophilus methanol SDW30294.1 Archaea

methanol SDW30382.1 Archaea

Methanohalophilus _halophilus
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Methanohalophilus_halophilus monomethylamine SDW96043.1 Archaea
Methanohalophilus _halophilus trimethylamine SDW64644.1 Archaea
Methanohalophilus_ mahii_ DSM_ 5219 cobalamin WP 013037197.1 | Archaea
Methanohalophilus mahii_DSM 5219 dimethylamine ADE37171.1 Archaea
Methanohalophilus_mahii_ DSM_ 5219 dimethylamine WP _013036969.1 | Archaea
Methanohalophilus_mahii  DSM_ 5219 dimethylamine WP _013038117.1 | Archaea
Methanohalophilus_mahii DSM_ 5219 methanol-5-hydroxybenzimidazolylcobamide WP _013037438.1 | Archaea
Methanohalophilus mahii  DSM 5219 methanol-5-hydroxybenzimidazolylcobamide WP _013037440.1 | Archaea
Methanohalophilus_mahii DSM_ 5219 methyltransferase WP _013037920.1 | Archaea
Methanohalophilus_mahii_ DSM_ 5219 monomethylamine WP _013037586.1 | Archaea
Methanohalophilus_ mahii dimethylamine WP _048902185.1 | Archaea
Methanohalophilus_ portucalensis  FDF-1 corrinoid ABQ44361.1 Archaea
Methanohalophilus_sp 2-GBenrich methanol-5-hydroxybenzimidazolylcobamide 0OBZ35203.1 Archaea
Methanohalophilus_sp 2-GBenrich methanol 0DV49342.1 Archaea
Methanohalophilus_sp 2-GBenrich trimethylamine KX543947.1 Archaea
Methanohalophilus_sp DALl dimethylamine 0OBZ34966.1 Archaea
Methanohalophilus_sp DAL1 dimethylamine 0OBZ35608.1 Archaea
Methanohalophilus_sp DAL1 methanol-5-hydroxybenzimidazolylcobamide 0OBZ35201.1 Archaea
Methanohalophilus_sp T328-1 methanol KXS39624.1 Archaea
Methanohalophilus_sp T328-1 methanol KXS541359.1 Archaea
Methanolacinia_ paynteri cobalamin-binding WP _052418638.1 | Archaea
Methanolacinia_ petrolearia_ DSM 11571 cobalamin-binding WP _013330474.1 | Archaea
Methanolobus__profundi dimethylamine SFMT70936.1 Archaea
Methanolobus_ profundi dimethylamine SFMT71364.1 Archaea
Methanolobus__profundi methanol SFM28187.1 Archaea
Methanolobus__ profundi methanol SFM28225.1 Archaea
Methanolobus_ profundi methanol SFM60632.1 Archaea
Methanolobus profundi methylmalonyl-CoA SFM31281.1 Archaea
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Methanolobus _profundi monomethylamine SFM70883.1 Archaea
Methanolobus_ profundi monomethylamine SFM71262.1 Archaea
Methanolobus_profundi trimethylamine SFM71036.1 Archaea
Methanolobus_ psychrophilus_ R15 dimethylamine WP _015053602.1 | Archaea
Methanolobus_ psychrophilus_ R15 dimethylamine WP _015053607.1 | Archaea
Methanolobus_psychrophilus_ R15 dimethylamine WP _015053623.1 | Archaea
Methanolobus_ psychrophilus_ R15 methanol-5-hydroxybenzimidazolylcobamide WP _015052840.1 | Archaea
Methanolobus_ psychrophilus_ R15 methanol-5-hydroxybenzimidazolylcobamide WP _015054929.1 | Archaea
Methanolobus_ psychrophilus_ R15 methanol AFV25234.1 Archaea
Methanolobus_psychrophilus_ R15 monomethylamine WP_015053599.1 | Archaea
Methanolobus psychrophilus_ R15 monomethylamine WP _015053634.1 | Archaea
Methanolobus_ psychrophilus methanol-5-hydroxybenzimidazolylcobamide WP _048147693.1 | Archaea
Methanolobus_sp T82-4 Dimethylamine KXS40258.1 Archaea
Methanolobus_sp T82-4 methanol KX542386.1 Archaea
Methanolobus_sp_T82-4 methanol KXS42388.1 Archaea
Methanolobus_sp_T82-4 methanol KX544159.1 Archaea
Methanolobus_sp_T82-4 methyltransferase KXS542690.1 Archaea
Methanolobus_sp_T82-4 monomethylamine KXS40255.1 Archaea
Methanolobus_sp_ T82-4 monomethylamine KXS540347.1 Archaea
Methanolobus_sp_T82-4 putative KXS41029.1 Archaea
Methanolobus_sp_ T82-4 trimethylamine KXS41813.1 Archaea
Methanolobus _tindarius_ DSM_ 2278 methyltransferase WP _023844869.1 | Archaea
Methanolobus _tindarius_ DSM_ 2278 methyltransferase WP _023845219.1 | Archaea
Methanolobus_ tindarius_ DSM_ 2278 methyltransferase WP _023845231.1 | Archaea
Methanolobus _tindarius_ DSM_ 2278 methyltransferase WP _023845237.1 | Archaea
Methanolobus _tindarius_ DSM 2278 methyltransferase WP _(023845247.1 | Archaea
Methanolobus_ tindarius_DSM_ 2278 methyltransferase WP _023845251.1 | Archaea
Methanolobus _tindarius_ DSM 2278 methyltransferase WP_023845253.1 | Archaea
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Methanolobus_tindarius_ DSM_ 2278 methyltransferase WP _023846065.1 | Archaea
Methanolobus_tindarius_ DSM_ 2278 methyltransferase WP _023846488.1 | Archaea
Methanolobus_tindarius DSM 2278 methyltransferase WP 023846490.1 | Archaea
Methanolobus_tindarius  DSM_ 2278 putative ETA67038.1 Archaea
Methanolobus_ vulcani B12 SDG36752.1 Archaea
Methanolobus_ vulcani dimethylamine SDG39443.1 Archaea
Methanolobus__vulcani methanol SDF30409.1 Archaea
Methanolobus_ vulcani methanol SDG14619.1 Archaea
Methanolobus_ vulcani methanol SDG14676.1 Archaea
Methanolobus_ vulcani methylmalonyl-CoA SDG04186.1 Archaea
Methanolobus _vulcani monomethylamine SDF92866.1 Archaea
Methanolobus_ vulcani monomethylamine SDG08857.1 Archaea
Methanolobus _vulcani monomethylamine SDG39511.1 Archaea
Methanolobus _ vulcani trimethylamine SDF80410.1 Archaea
Methanolobus_ vulcani trimethylamine SDG39347.1 Archaea
Methanomassiliicoccales_archaeon RumEn_ M1 dimethylamine KQM11577.1 Archaea
Methanomassiliicoccales _archaecon  RumEn M1 hypothetical KQM11572.1 Archaea
Methanomassiliicoccales_archacon  RumEn M1 methanol-corrinoid KQM12197.1 Archaea
Methanomassiliicoccales _archaecon RumEn_ M1 methanol-corrinoid KQM12673.1 Archaea
Methanomassiliicoccales _archaeon  RumEn M1 methanol-corrinoid KQM12747.1 Archaea
Methanomassiliicoccales archaeon  RumEn M1 methionine KQM11929.1 Archaea
Methanomassiliicoccales_archaeon  RumEn M1 methionine KQM11939.1 Archaea
Methanomassiliicoccales _archaecon  RumEn M1 methylthiol-CoM KQM12402.1 Archaea
Methanomassiliicoccales__archaeon_ RumEn_ M2 hypothetical KQM10800.1 Archaea
Methanomassiliicoccus luminyensis dimethylamine WP _026068678.1 | Archaea
Methanomassiliicoccus _ luminyensis dimethylamine WP _026068679.1 | Archaea
Methanomassiliicoccus _luminyensis dimethylamine WP _026069100.1 | Archaea

dimethylamine WP _026069102.1 | Archaea

Methanomassiliicoccus _ luminyensis
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Methanomassiliicoccus_luminyensis dimethylamine WP _049796371.1 | Archaea
Methanomassiliicoccus__luminyensis hypothetical WP _019176359.1 | Archaea
Methanomassiliicoccus_ luminyensis hypothetical WP _019176763.1 | Archaea
Methanomassiliicoccus_ luminyensis hypothetical WP_019176991.1 | Archaea
Methanomassiliicoccus__luminyensis hypothetical WP _019177442.1 | Archaea
Methanomassiliicoccus_luminyensis hypothetical WP _019177725.1 | Archaea
Methanomassiliicoccus_ luminyensis hypothetical WP _019177907.1 | Archaea
Methanomassiliicoccus__luminyensis hypothetical WP _019178518.1 | Archaea
Methanomassiliicoccus _luminyensis hypothetical WP _019178649.1 | Archaea
Methanomassiliicoccus _luminyensis methanol-corrinoid WP _026069014.1 | Archaea
Methanomassiliicoccus _luminyensis methylthiol-CoM WP _026068850.1 | Archaea
Methanomethylovorans _hollandica  DSM_ 15978 cobalamin-binding WP _015323796.1 | Archaea
Methanomethylovorans_hollandica_DSM _ 15978 cobalamin-binding WP _015324657.1 | Archaea
Methanomethylovorans _hollandica_ DSM__ 15978 cobalamin-binding WP _015324938.1 | Archaea
Methanomethylovorans _hollandica_ DSM 15978 methyltransferase WP _015323483.1 | Archaea
Methanomethylovorans _hollandica  DSM _ 15978 methyltransferase WP_015323497.1 | Archaea
Methanomethylovorans _hollandica_ DSM _ 15978 methyltransferase WP _015323501.1 | Archaea
Methanomethylovorans _hollandica  DSM 15978 methyltransferase WP_015324190.1 | Archaea
Methanomethylovorans _hollandica  DSM_ 15978 methyltransferase WP _015324960.1 | Archaea
Methanomethylovorans _hollandica  DSM 15978 methyltransferase WP _015324961.1 | Archaea
Methanomicrobiales archaeon 53 19 5-methyltetrahydrofolate-homocysteinemethyltrans | KUL00639.1 Archaea
Methanoplanus_limicola_ DSM_ 2279 cobalamin-binding WP _004077249.1 | Archaea
Methanoplanus _limicola_ DSM_ 2279 cobalamin-binding WP _004077272.1 | Archaea
Methanoregula boonei_6A8 cobalamin-binding WP_012106586.1 | Archaea
Methanosalsum _zhilinae DSM_ 4017 dimethylamine WP _013897774.1 | Archaea
Methanosalsum _zhilinae DSM_ 4017 dimethylamine WP _013897910.1 | Archaea
Methanosalsum_zhilinae DSM_ 4017 methanol-5-hydroxybenzimidazolylcobamide WP_013899222.1 | Archaea

methanol-5-hydroxybenzimidazolylcobamide WP _013899224.1 | Archaea

Methanosalsum _zhilinae_ DSM _ 4017
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Methanosalsum zhilinae DSM 4017 methyltransferase AEH61362.1 Archaea
Methanosalsum _ zhilinae  DSM 4017 methyltransferase WP_013897673.1 | Archaea
Methanosalsum _zhilinae DSM_ 4017 methyltransferase WP_013899066.1 | Archaea
Methanosalsum_zhilinae DSM 4017 monomethylamine WP _013897935.1 | Archaea
Methanosalsum_ zhilinae DSM 4017 monomethylamine WP _013898801.1 | Archaea
Methanosarcina_acetivorans C2A corrinoid AAMO07706.1 Archaea
Methanosarcina_acetivorans C2A corrinoid WP _011024052.1 | Archaea
Methanosarcina_acetivorans_ C2A dimethylamine AAMO04367.1 Archaea
Methanosarcina_acetivorans_ C2A dimethylamine WP_011020576.1 | Archaea
Methanosarcina_acetivorans C2A dimethylamine WP _011020578.1 | Archaea
Methanosarcina acetivorans C2A dimethylamine WP 011020969.1 | Archaea
Methanosarcina_acetivorans C2A dimethylamine WP _011022395.1 | Archaea
Methanosarcina_acetivorans C2A hypothetical AAMO04298.1 Archaea
Methanosarcina_acetivorans _C2A methanol-5-hydroxybenzimidazolylcobamide WP _011020507.1 | Archaea
Methanosarcina_ acetivorans_ C2A methanol-5-hydroxybenzimidazolylcobamide WP 011021627.1 | Archaea
Methanosarcina_acetivorans C2A methanol-5-hydroxybenzimidazolylcobamide WP _011024270.1 | Archaea
Methanosarcina_acetivorans C2A methyltransferase WP _011024263.1 | Archaea
Methanosarcina_acetivorans_C2A methyltransferase WP_011024431.1 | Archaea
Methanosarcina_ acetivorans C2A monomethylamine WP _011020203.1 | Archaea
Methanosarcina_acetivorans C2A monomethylamine WP_011022912.1 | Archaea
Methanosarcina_acetivorans corrinoid WP_048066589.1 | Archaea
Methanosarcina _acetivorans dimethylamine WP _048065003.1 | Archaea
Methanosarcina_acetivorans methyltransferase WP _048064984.1 | Archaea
Methanosarcina _barkeri 227 Dimethylamine AKB53925.1 Archaea
Methanosarcina_barkeri 227 methylthiol-CoM WP _048117949.1 | Archaea
Methanosarcina_barkeri 227 Monomethylamine AKB58746.1 Archaea
Methanosarcina_ barkeri 3 corrinoid WP _048107480.1 | Archaea
Methanosarcina _barkeri 3 Dimethylamine AKB82528.1 Archaea
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Methanosarcina_barkeri 3 dimethylamine WP _048106279.1 | Archaea
Methanosarcina barkeri 3 dimethylamine WP _048106458.1 | Archaea
Methanosarcina_barkeri 3 dimethylamine WP _048108036.1 | Archaea
Methanosarcina barkeri 3 methanol-5-hydroxybenzimidazolylcobamide WP _048108215.1 | Archaea
Methanosarcina_barkeri 3 methanol-5-hydroxybenzimidazolylcobamide WP _048109505.1 | Archaea
Methanosarcina_barkeri 3 Methanol AKB82957.1 Archaea
Methanosarcina_barkeri 3 methylthiol-CoM WP _048107235.1 | Archaea
Methanosarcina_barkeri 3 monomethylamine WP _048106316.1 | Archaea
Methanosarcina_ barkeri_3 monomethylamine WP _048108466.1 | Archaea
Methanosarcina_barkeri 3 monomethylamine WP _048108472.1 | Archaea
Methanosarcina_ barkeri_ CM1 corrinoid WP _048176401.1 | Archaea
Methanosarcina_barkeri_ CM1 Dimethylamine AKB53460.1 Archaea
Methanosarcina_barkeri_ CM1 dimethylamine WP _048177707.1 | Archaea
Methanosarcina_ barkeri_ CM1 methyltransferase AKJ39555.1 Archaea
Methanosarcina_barkeri str Fusaro methanol-5-hydroxybenzimidazolylcobamide WP_011306079.1 | Archaea
Methanosarcina_ barkeri_str _Wiesmoor corrinoid WP 011307117.1 | Archaea
Methanosarcina_ barkeri_str _ Wiesmoor dimethylamine AAZ70456.1 Archaea
Methanosarcina_ barkeri__str Wiesmoor dimethylamine WP _011306503.1 | Archaea
Methanosarcina_barkeri_str  Wiesmoor dimethylamine WP _011308511.1 | Archaea
Methanosarcina_barkeri_str _ Wiesmoor dimethylamine WP _048136559.1 | Archaea
Methanosarcina_barkeri _str Wiesmoor methanol-5-hydroxybenzimidazolylcobamide WP 011305768.1 | Archaea
Methanosarcina_barkeri_str_ Wiesmoor methanol AAZ72501.1 Archaea
Methanosarcina_ barkeri_str_ Wiesmoor Methanol AKB52912.1 Archaea
Methanosarcina_barkeri _str  Wiesmoor methylthiol-coenzyme WP_011308491.1 | Archaea
Methanosarcina_barkeristr  Wiesmoor monomethylamine WP _011305868.1 | Archaea
Methanosarcina_barkeri_str _Wiesmoor monomethylamine WP_011305870.1 | Archaea
Methanosarcina_barkeri_str_ Wiesmoor monomethylamine WP_011308537.1 | Archaea
Methanosarcina__barkeri dimethylamine WP _048102697.1 | Archaea
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Methanosarcina _barkeri dimethylamine WP_048108033.1 | Archaea
Methanosarcina_ barkeri methanol-5-hydroxybenzimidazolylcobamide WP _048103078.1 | Archaea
Methanosarcina_barkeri methanol-5-hydroxybenzimidazolylcobamide WP 048108608.1 | Archaea
Methanosarcina_ barkeri monomethylamine WP _048123347.1 | Archaea
Methanosarcina_ barkeri monomethylamine WP _048177688.1 | Archaea
Methanosarcina_ barkeri RecName Q9PIL5.1 Archaea
Methanosarcina_flavescens corrinoid WP _054297895.1 | Archaea
Methanosarcina_flavescens dimethylamine WP _054297638.1 | Archaea
Methanosarcina_flavescens dimethylamine WP _054298262.1 | Archaea
Methanosarcina_flavescens methanol-5-hydroxybenzimidazolylcobamide WP _054297871.1 | Archaea
Methanosarcina_ flavescens methanol-5-hydroxybenzimidazolylcobamide WP _054299618.1 | Archaea
Methanosarcina__flavescens methanol-5-hydroxybenzimidazolylcobamide WP _054299961.1 | Archaea
Methanosarcina_ flavescens monomethylamine WP _054298912.1 | Archaea
Methanosarcina_horonobensis_ HB-1  JCM 15518 Dimethylamine AKB78616.1 Archaea
Methanosarcina_horonobensis HB-1  JCM 15518 Dimethylamine AKB80173.1 Archaea
Methanosarcina_ horonobensis HB-1  JCM 15518 dimethylamine WP_048138814.1 | Archaea
Methanosarcina_horonobensis HB-1  JCM 15518 dimethylamine WP _048142237.1 | Archaea
Methanosarcina_horonobensis_ HB-1 _ JCM 15518 hypothetical WP_052730663.1 | Archaea
Methanosarcina_horonobensis_ HB-1  JCM 15518 methanol-5-hydroxybenzimidazolylcobamide WP _048136827.1 | Archaea
Methanosarcina_horonobensis HB-1  JCM 15518 methanol-5-hydroxybenzimidazolylcobamide WP 048138492.1 | Archaea
Methanosarcina__horonobensis_ HB-1 _JCM 15518 methanol-5-hydroxybenzimidazolylcobamide WP _048142319.1 | Archaea
Methanosarcina_horonobensis  HB-1 JCM_ 15518 methyltransferase WP _048136830.1 | Archaea
Methanosarcina_horonobensis_ HB-1 _JCM 15518 methyltransferase WP _048141746.1 | Archaea
Methanosarcina__horonobensis_ HB-1  JCM 15518 Monomethylamine AKB78301.1 Archaea
Methanosarcina_horonobensis HB-1 ~ JCM 15518 monomethylamine WP _048142712.1 | Archaea
Methanosarcina_horonobensis dimethylamine WP 048142243.1 | Archaea
Methanosarcina__horonobensis dimethylamine WP _048143406.1 | Archaea
Methanosarcina_horonobensis monomethylamine WP _048143342.1 | Archaea
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Methanosarcina_ lacustris_ Z-7289 corrinoid WP _048127909.1 | Archaea
Methanosarcina_ lacustris_ Z-7289 Dimethylamine AKBT73547.1 Archaea
Methanosarcina_ lacustris_ Z-7289 dimethylamine WP _048124402.1 | Archaea
Methanosarcina_ lacustris_ Z-7289 dimethylamine WP _048127482.1 | Archaea
Methanosarcina_lacustris_Z-7289 dimethylamine WP _048127492.1 | Archaea
Methanosarcina_ lacustris_ Z-7289 dimethylamine WP _048129223.1 | Archaea
Methanosarcina_ lacustris__Z-7289 methanol-5-hydroxybenzimidazolylcobamide WP 048124347.1 | Archaea
Methanosarcina_lacustris__Z-7289 methanol-5-hydroxybenzimidazolylcobamide WP_048125662.1 | Archaea
Methanosarcina_lacustris_Z-7289 methanol-5-hydroxybenzimidazolylcobamide WP _048128320.1 | Archaea
Methanosarcina_lacustris_ Z-7289 methylthiol-CoM WP _048124885.1 | Archaea
Methanosarcina_lacustris_Z-7289 methyltransferase WP _048127715.1 | Archaea
Methanosarcina_ lacustris_ Z-7289 methyltransferase WP _048127724.1 | Archaea
Methanosarcina_lacustris_ Z-7289 methyltransferase WP _048128332.1 | Archaea
Methanosarcina_ lacustris_ Z-7289 monomethylamine WP _048128728.1 | Archaea
Methanosarcina_lacustris__Z-7289 monomethylamine WP _048128733.1 | Archaea
Methanosarcina_lacustris dimethylamine WP _048124399.1 | Archaea
Methanosarcina_mazei_ C16 monomethylamine WP _048042243.1 | Archaea
Methanosarcina_mazei_ C16 RecName P58981.1 Archaea
Methanosarcina_mazei_Gol dimethylamine AAM31748.1 Archaea
Methanosarcina_mazei_ Gol dimethylamine AAM32657.1 Archaea
Methanosarcina mazei Gol Methanol AAM29870.1 Archaea
Methanosarcina_mazei_Gol Methanol AAM31344.1 Archaea
Methanosarcina_mazei_Gol Monomethylamine AAM31134.1 Archaea
Methanosarcina_mazei Gol trimethylamine AAM30751.1 Archaea
Methanosarcina_mazei  LYC Dimethylamine AKB41894.1 Archaea
Methanosarcina_mazei_ LYC Methanol AKB39227.1 Archaea
Methanosarcina_mazeiLYC monomethylamine WP_011035223.1 | Archaea
Methanosarcina_mazei  LYC MULTISPECIES _ WP _048041112.1 | Archaea
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Methanosarcina_mazei S-6
Methanosarcina_mazei _SarPi
Methanosarcina_mazei SarPi
Methanosarcina_mazei _Tuc01
Methanosarcina _mazei Tuc01
Methanosarcina_mazei _Tuc01
Methanosarcina_mazei Tuc01
Methanosarcina_ mazei Tuc01
Methanosarcina_mazei Tuc01
Methanosarcina_mazei
Methanosarcina_mazei
Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_mazei
Methanosarcina_mazei
Methanosarcina_ mazei
Methanosarcina_mazei
Methanosarcina _mazei
Methanosarcina__mazei
Methanosarcina_ mazei
Methanosarcina__mazei
Methanosarcina_mazei
Methanosarcina_mazei
Methanosarcina__mazei
Methanosarcina__mazei
Methanosarcina__mazei

Methanosarcina mazei

Corrinoid
methylthiol-CoM
monomethylamine
Dimethylamine
Dimethylamine
Methanol
Monomethylamine
Trimethylamine
Trimethylamine
corrinoid
corrinoid
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine
dimethylamine

dimethylamine

dimethylamine

AKB63440.1 Archaea
WP _048043670.1 | Archaea
WP_048043122.1 | Archaea

AGF97112.1 Archaea
AGF97446.1 Archaea
AGF96500.1 Archaea
AGF98689.1 Archaea
AGF97114.1 Archaea
AGF97445.1 Archaea

WP (048036675.1 | Archaea
WP _048046902.1 | Archaea
KKH»6279.1 Archaea
WP _011033632.1 | Archaea
WP _048036696.1 | Archaea
WP _048037232.1 | Archaea
WP 048039209.1 | Archaea
WP _048039218.1 | Archaea
WP _048039288.1 | Archaea
WP 048040699.1 | Archaea
WP _048041223.1 | Archaea
WP _048041924.1 | Archaea
WP 048042651.1 | Archaea
WP _048043719.1 | Archaea
WP _(048045614.1 | Archaea
WP _(048047172.1 | Archaea
WP _(048048845.1 | Archaea
WP _048049098.1 | Archaea
WP_048049720.1 | Archaea
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Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_mazei
Methanosarcina_mazei
Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_mazei
Methanosarcina_ mazei
Methanosarcina__mazei
Methanosarcina_ mazei
Methanosarcina_ mazei
Methanosarcina_mazei
Methanosarcina__mazei
Methanosarcina__mazei
Methanosarcina_ mazei
Methanosarcina_mazei
Methanosarcina_ mazei
Methanosarcina_mazei
Methanosarcina_ mazei
Methanosarcina _mazei
Methanosarcina_ mazei
Methanosarcina_ mazei

Methanosarcina_ mazei

dimethylamine
dimethylamine
dimethylamine
methanol-5-hydroxybenzimidazolylcobamide
methanol-5-hydroxybenzimidazolylcobamide
methanol
methylthiol-coenzyme
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
monomethylamine
MULTISPECIES _
MULTISPECIES _

WP _048049733.1 | Archaea
WP _048049918.1 | Archaea
WP _048049923.1 | Archaea
WP _048038194.1 | Archaea
WP _048046707.1 | Archaea
WP_015410915.1 | Archaea
WP _011034352.1 | Archaea

KKG05940.1 Archaea
KKG08075.1 Archaea
KKG35840.1 Archaea
KKG71955.1 Archaea
KKG84684.1 Archaea
KKG90767.1 Archaea
KKH22756.1 Archaea
KKH»8501.1 Archaea
KKH30479.1 Archaea

WP _048041204.1 | Archaea
WP_048041216.1 | Archaea
WP_048043677.1 | Archaea
WP _048045046.1 | Archaea
WP _048045194.1 | Archaea
WP _048046887.1 | Archaea
WP _048047888.1 | Archaea
WP _048047962.1 | Archaea
WP _048049148.1 | Archaea
WP _048049248.1 | Archaea
WP_011033022.1 | Archaea
WP_011033979.1 | Archaea
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Methanosarcina_mazei MULTISPECIES _ WP _015411537.1 | Archaea
Methanosarcina _mazei MULTISPECIES WP _015411985.1 | Archaea
Methanosarcina_mazei MULTISPECIES _ WP _015412949.1 | Archaea
Methanosarcina _mazei MULTISPECIES _ WP _048036790.1 | Archaea
Methanosarcina_ mazei MULTISPECIES _ WP_048036796.1 | Archaea
Methanosarcina_mazei MULTISPECIES WP _048037606.1 | Archaea
Methanosarcina_ mazei MULTISPECIES _ WP _048039968.1 | Archaea
Methanosarcina__mazei MULTISPECIES _ WP _048046403.1 | Archaea
Methanosarcina_siciliae_ C2J Corrinoid AKB38646.1 Archaea
Methanosarcina_siciliae  C2J corrinoid WP _052727389.1 | Archaea
Methanosarcina._siciliae  C2J Dimethylamine AKB27170.1 Archaea
Methanosarcina_ siciliae  C2J Dimethylamine AKB36153.1 Archaea
Methanosarcina_siciliae _ C2J dimethylamine WP _048169686.1 | Archaea
Methanosarcina_siciliae _ C2J dimethylamine WP _048172322.1 | Archaea
Methanosarcina_siciliae  C2J methanol-5-hydroxybenzimidazolylcobamide WP _048169586.1 | Archaea
Methanosarcina _siciliae_ C2J methanol-5-hydroxybenzimidazolylcobamide WP 048174076.1 | Archaea
Methanosarcina_siciliae_ C2J methanol-5-hydroxybenzimidazolylcobamide WP _048181634.1 | Archaea
Methanosarcina_siciliae  C2J methyltransferase WP _048180102.1 | Archaea
Methanosarcina_siciliae  C2J methyltransferase WP _048185089.1 | Archaea
Methanosarcina_siciliae  C2J methyltransferase WP _(048185291.1 | Archaea
Methanosarcina_siciliae_ C2J monomethylamine WP _048169156.1 | Archaea
Methanosarcina_siciliae C2J monomethylamine WP _048171675.1 | Archaea
Methanosarcina_ siciliae_ C2J monomethylamine WP _048178969.1 | Archaea
Methanosarcina_siciliae_ HI350 Corrinoid AKB34282.1 Archaea
Methanosarcina_siciliae_ HI350 corrinoid WP _052721721.1 | Archaea
Methanosarcina_siciliae_ HI350 dimethylamine WP _048171401.1 | Archaea
Methanosarcina_siciliae_ HI350 methanol-5-hydroxybenzimidazolylcobamide WP _048171031.1 | Archaea

methyltransferase WP _048170227.1 | Archaea

Methanosarcina _siciliae HI350
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Methanosarcina_siciliae_ HI350 methyltransferase WP _048174070.1 | Archaea
Methanosarcina_siciliae_ HI350 methyltransferase WP _048174258.1 | Archaea
Methanosarcina _siciliae_ HI350 monomethylamine WP _048169165.1 | Archaea
Methanosarcina _siciliae corrinoid WP _048175113.1 | Archaea
Methanosarcina_siciliae corrinoid WP _048186226.1 | Archaea
Methanosarcina_siciliae dimethylamine WP _048169681.1 | Archaea
Methanosarcina_soligelidi methanol-5-hydroxybenzimidazolylcobamide WP_048051775.1 | Archaea
Methanosarcina_sp_1_H_A_2_2 corrinoid WP _048161040.1 | Archaea
Methanosarcina_sp 1 H A 2 2 dimethylamine WP _048162583.1 | Archaea
Methanosarcina_sp_1_H_A_2_ 2 dimethylamine WP_048162859.1 | Archaea
Methanosarcina sp 1 H A 2 2 dimethylamine WP_048162860.1 | Archaea
Methanosarcina_sp 1 H A 2 2 methanol-5-hydroxybenzimidazolylcobamide WP _048161310.1 | Archaea
Methanosarcina_sp 1 H_A_2 2 methylthiol-CoM WP_048161506.1 | Archaea
Methanosarcina_sp_ 1 _H_A 2 2 methyltransferase WP_048161132.1 | Archaea
Methanosarcina_sp 1 H A 2 2 methyltransferase WP_048161137.1 | Archaea
Methanosarcina_sp_ 1 H A 2 2 methyltransferase WP _048161314.1 | Archaea
Methanosarcina_sp_1 H A 2 2 methyltransferase WP_048162492.1 | Archaea
Methanosarcina_sp_1_H_A 2 2 methyltransferase WP_048162494.1 | Archaea
Methanosarcina sp 1 H A 2 2 monomethylamine WP _048160756.1 | Archaea
Methanosarcina_sp 1 H A 2 2 MULTISPECIES _ WP_048137022.1 | Archaea
Methanosarcina sp 1 H T_1A 1 corrinoid WP _048135972.1 | Archaea
Methanosarcina_sp_1_H_T 1A 1 dimethylamine WP _048135050.1 | Archaea
Methanosarcina_sp 1 _H_T_1A_1 dimethylamine WP _048135208.1 | Archaea
Methanosarcina_sp 1 H T 1A _1 methylthiol-CoM WP_048132558.1 | Archaea
Methanosarcina_sp 1 H T 1A 1 methyltransferase WP _048131792.1 | Archaea
Methanosarcina_sp 1 _H T_1A_1 methyltransferase WP _048131802.1 | Archaea
Methanosarcina_sp_1_H_T_1A_1 methyltransferase WP_048133540.1 | Archaea
Methanosarcina_sp_1_H_T_ 1A 1 methyltransferase WP _048136429.1 | Archaea
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Methanosarcina_sp_ 1 H T 1A 1 methyltransferase WP _048136495.1 | Archaea
Methanosarcina_sp 1 H T 1A 1 monomethylamine WP _048133385.1 | Archaea
Methanosarcina_sp 1 H T 1A 1 MULTISPECIES _ WP _048132529.1 | Archaea
Methanosarcina_sp 1 H T 1A 1 MULTISPECIES _ WP_048132713.1 | Archaea
Methanosarcina_ sp 1 H T 1A 1 MULTISPECIES _ WP _048133189.1 | Archaea
Methanosarcina_sp_1 H T 1A 1 MULTISPECIES _ WP _048133545.1 | Archaea
Methanosarcina_sp_1_H T 1A 1 MULTISPECIES _ WP _048134375.1 | Archaea
Methanosarcina_sp 1 H T 1A 1 MULTISPECIES WP 048134381.1 | Archaea
Methanosarcina_sp 1 H T 1A 1 MULTISPECIES _ WP _048134867.1 | Archaea
Methanosarcina_sp 2 H A 1B 4 corrinoid WP _048169974.1 | Archaea
Methanosarcina_sp_2 H A 1B 4 dimethylamine WP _048171312.1 | Archaea
Methanosarcina_sp 2 H A 1B 4 dimethylamine WP_048171528.1 | Archaea
Methanosarcina_sp 2 H A 1B 4 dimethylamine WP_048172600.1 | Archaea
Methanosarcina_sp 2 H A 1B 4 methanol-5-hydroxybenzimidazolylcobamide WP _048169521.1 | Archaea
Methanosarcina_sp 2 H A 1B 4 methylthiol-CoM WP _048169094.1 | Archaea
Methanosarcina_sp 2 H A 1B 4 methyltransferase WP_048171866.1 | Archaea
Methanosarcina_sp_2_H_A_1B 4 methyltransferase WP_048173052.1 | Archaea
Methanosarcina_ sp 2 H A 1B 4 methyltransferase WP _048173060.1 | Archaea
Methanosarcina_sp 2 H A 1B 4 monomethylamine WP _048169770.1 | Archaea
Methanosarcina_sp 2 H T 1A 15 dimethylamine WP _048144146.1 | Archaea
Methanosarcina_sp 2 H T 1A 15 hypothetical KKG28724.1 Archaea
Methanosarcina_sp 2 H T 1A 15 monomethylamine KKG14709.1 Archaea
Methanosarcina_sp 2 H T 1A 15 MULTISPECIES _ WP _048138760.1 | Archaea
Methanosarcina_sp 2 H T 1A 15 MULTISPECIES _ WP _048142974.1 | Archaea
Methanosarcina_sp 2 H T 1A 3 monomethylamine KKG19060.1 Archaea
Methanosarcina_sp 2 H T 1A 3 monomethylamine WP _048141722.1 | Archaea
Methanosarcina_sp_2 H_ T 1A _6 MULTISPECIES _ WP _048137445.1 | Archaea

methanol-5-hydroxybenzimidazolylcobamide KKG15808.1 Archaea

Methanosarcina_sp 2 H T 1A 8
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Methanosarcina_sp 2 _H_T_1A_8 monomethylamine KKG20171.1 Archaea
Methanosarcina_sp 2 H T 1A 8 MULTISPECIES _ WP _048137826.1 | Archaea
Methanosarcina_sp 2 _H_T_1A_8 MULTISPECIES _ WP_048137836.1 | Archaea
Methanosarcina_sp 2 H T 1A 8 MULTISPECIES _ WP _048137869.1 | Archaea
Methanosarcina_sp 2 _H T_ 1A 8 MULTISPECIES _ WP_048140300.1 | Archaea
Methanosarcina_sp 2 H T 1A 8 MULTISPECIES WP _048140304.1 | Archaea
Methanosarcina_sp 2 H T 1A 8 MULTISPECIES _ WP_048140795.1 | Archaea
Methanosarcina_sp 2 H T 1A 8 MULTISPECIES _ WP _048142837.1 | Archaea
Methanosarcina_sp 2 H T 1A 8 MULTISPECIES _ WP _048142961.1 | Archaea
Methanosarcina_sp 2 H T 1A 8 MULTISPECIES _ WP _048144042.1 | Archaea
Methanosarcina_sp 795 dimethylamine WP _048166440.1 | Archaea
Methanosarcina_sp 795 dimethylamine WP _048167188.1 | Archaea
Methanosarcina_sp_ 795 dimethylamine WP_048167193.1 | Archaea
Methanosarcina_sp 795 dimethylamine WP _048167810.1 | Archaea
Methanosarcina_sp_ 795 methanol-5-hydroxybenzimidazolylcobamide WP_048166109.1 | Archaea
Methanosarcina_sp_ 795 methanol-5-hydroxybenzimidazolylcobamide WP_048167521.1 | Archaea
Methanosarcina_sp__795 methanol-5-hydroxybenzimidazolylcobamide WP _048167874.1 | Archaea
Methanosarcina_sp 795 monomethylamine WP _048167688.1 | Archaea
Methanosarcina_sp Al4 MULTISPECIES _ WP _048117364.1 | Archaea
Methanosarcina_sp_Al4 MULTISPECIES _ WP 048117958.1 | Archaea
Methanosarcina_sp Al4 MULTISPECIES _ WP_048119022.1 | Archaea
Methanosarcina_sp_ Al4 MULTISPECIES _ WP _048120097.1 | Archaea
Methanosarcina_sp Al4 MULTISPECIES _ WP_048120103.1 | Archaea
Methanosarcina_sp_Al4 MULTISPECIES _ WP _048120367.1 | Archaea
Methanosarcina_sp Al4 MULTISPECIES _ WP_048120781.1 | Archaea
Methanosarcina_sp_Al4 MULTISPECIES _ WP _048122309.1 | Archaea
Methanosarcina_sp_A14 MULTISPECIES _ WP _048123111.1 | Archaea
Methanosarcina_sp Al4 MULTISPECIES _ WP _048154921.1 | Archaea
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Methanosarcina_sp A14 MULTISPECIES _ WP _048155349.1 | Archaea
Methanosarcina_sp A14 MULTISPECIES WP _048156643.1 | Archaea
Methanosarcina_sp_Antl dimethylamine OEU42523.1 Archaea
Methanosarcina_sp _Antl dimethylamine OEU42560.1 Archaea
Methanosarcina sp_Antl dimethylamine OEU42563.1 Archaea
Methanosarcina_sp_ Antl methanol-5-hydroxybenzimidazolylcobamide OEU41050.1 Archaea
Methanosarcina_sp Antl methanol-5-hydroxybenzimidazolylcobamide OEU43385.1 Archaea
Methanosarcina_sp_Antl methanol-5-hydroxybenzimidazolylcobamide OEU43455.1 Archaea
Methanosarcina_sp Antl methylthiol-CoM OEU43011.1 Archaea
Methanosarcina_sp _Kolksee Dimethylamine AKB42746.1 Archaea
Methanosarcina_sp_Kolksee dimethylamine WP _048154426.1 | Archaea
Methanosarcina_sp Kolksee methylthiol-CoM WP _048155339.1 | Archaea
Methanosarcina_sp Kolksee monomethylamine WP _048155792.1 | Archaea
Methanosarcina_sp Kolksee monomethylamine WP _048158455.1 | Archaea
Methanosarcina_sp Kolksee MULTISPECIES _ WP_048116961.1 | Archaea
Methanosarcina_sp Kolksee MULTISPECIES _ WP _048117314.1 | Archaea
Methanosarcina_sp Kolksee MULTISPECIES _ WP_048117652.1 | Archaea
Methanosarcina_sp Kolksee MULTISPECIES _ WP _048119769.1 | Archaea
Methanosarcina_sp Kolksee MULTISPECIES _ WP _048120666.1 | Archaea
Methanosarcina_sp MTP4 corrinoid WP_052718253.1 | Archaea
Methanosarcina_sp MTP4 Dimethylamine AKB26017.1 Archaea
Methanosarcina_sp MTP4 dimethylamine WP _048179020.1 | Archaea
Methanosarcina_sp MTP4 dimethylamine WP _048180568.1 | Archaea
Methanosarcina_sp MTP4 dimethylamine WP 048180583.1 | Archaea
Methanosarcina_sp MTP4 dimethylamine WP _048181470.1 | Archaea
Methanosarcina_sp MTP4 dimethylamine WP _048181479.1 | Archaea
Methanosarcina_sp MTP4 dimethylamine WP 048183147.1 | Archaea

hypothetical WP _048177758.1 | Archaea

Methanosarcina_sp_MTP4
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Methanosarcina_sp_ MTP4
Methanosarcina_sp MTP4
Methanosarcina_sp_MTP4
Methanosarcina_sp MTP4
Methanosarcina_sp_MTP4
Methanosarcina_sp MTP4
Methanosarcina_sp_MTP4
Methanosarcina_sp MTP4
Methanosarcina_sp MTP4
Methanosarcina_sp_MTP4
Methanosarcina_sp MTP4
Methanosarcina_sp_MTP4
Methanosarcina_sp_MTP4
Methanosarcina_sp_MTP4
Methanosarcina_sp_ WHI1
Methanosarcina_sp WHI1
Methanosarcina_sp_WH1
Methanosarcina_sp_ WH1
Methanosarcina_sp WHI1
Methanosarcina_sp_WHI1
Methanosarcina_sp WHI1
Methanosarcina_sp_ WH1
Methanosarcina_sp WHI1
Methanosarcina_sp_WHI1
Methanosarcina_sp_ WH1
Methanosarcina_sp WHI1
Methanosarcina_sp WHI1
Methanosarcina _sp WH1

hypothetical

hypothetical

hypothetical

hypothetical

hypothetical
methanol-5-hydroxybenzimidazolylcobamide
methanol-5-hydroxybenzimidazolylcobamide
methanol-5-hydroxybenzimidazolylcobamide
methyltransferase

methyltransferase

methyltransferase

methyltransferase

monomethylamine

monomethylamine

corrinoid

Dimethylamine

Dimethylamine

Methanol

monomethylamine

MULTISPECIES _

MULTISPECIES _

MULTISPECIES _

MULTISPECIES

MULTISPECIES

MULTISPECIES _

MULTISPECIES _

MULTISPECIES _

MULTISPECIES _

WP _048177762.1
WP _048179054.1
WP _048179060.1
WP _048179071.1
WP _048181820.1
WP _048177317.1
WP _048178272.1
WP_048181508.1
WP _048177073.1
WP_048177324.1
WP _048180685.1
WP _048180700.1
WP _048178606.1
WP _048181993.1
WP_048129936.1
AKBI17212.1

AKB21497.1

AKB17957.1

WP _048130009.1
WP _048125500.1
WP _048125544.1
WP _048125873.1
WP_048125881.1
WP 048126966.1
WP _048127793.1
WP _048129297.1
WP 048129310.1
WP 048129422.1

Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea
Archaea

Archaea
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Methanosarcina_sp WH1 MULTISPECIES _ WP _048130008.1 | Archaea
Methanosarcina_sp_WH1 MULTISPECIES _ WP _052722545.1 | Archaea
Methanosarcina_sp WWMG596 corrinoid WP _048159063.1 | Archaea
Methanosarcina_sp  WWM596 Dimethylamine AKBI18166.1 Archaea
Methanosarcina_ thermophila  CHTI-55 Dimethylamine AKB13820.1 Archaea
Methanosarcina_ thermophila_ CHTI-55 dimethylamine WP _048167811.1 | Archaea
Methanosarcina_ thermophila CHTI-55 Methanol AKB11842.1 Archaea
Methanosarcina_thermophila_TM-1 Dimethylamine AKB13118.1 Archaea
Methanosarcina_ vacuolata Z-761 dimethylamine WP _048119496.1 | Archaea
Methanosarcina_ vacuolata_Z-761 methylthiol-CoM WP_048120317.1 | Archaea
Methanosarcina_ vacuolata _Z-761 monomethylamine WP _048120646.1 | Archaea
Methanosarcina_ vacuolata_Z-761 monomethylamine WP _048124322.1 | Archaea
Methanosarcina MULTISPECIES _ WP _048117644.1 | Archaea
Methanosarcina MULTISPECIES _ WP _048125538.1 | Archaea
Methanosarcina MULTISPECIES WP _048126775.1 | Archaea
Methanosarcina MULTISPECIES _ WP _048140391.1 | Archaea
Methanosarcinales_archeaon 56 1174 cobalamin-binding WP_042685521.1 | Archaea
Methanosarcinales _archeaon 56 1174 dimethylamine WP _042686889.1 | Archaea
Methanosarcinales _archeaon 56 1174 hypothetical WP _042686089.1 | Archaea
Methanosarcinales _archeaon 56 1174 Methyltransferase KUKO04366.1 Archaea
Methanosphaera_sp A6 MULTISPECIES _ WP _011405801.1 | Archaea
Methanosphaera_sp A6 MULTISPECIES _ WP _011405805.1 | Archaea
Methanosphaera_sp WGKG6 cobalamin-binding WP _069592772.1 | Archaea
Methanosphaera sp  WGK6 cobalamin-binding WP 069592774.1 | Archaea
Methanosphaera_sp WGK6 cobalamin-binding WP _069593532.1 | Archaea
Methanosphaera stadtmanae DSM _ 3091 cobalamin-binding WP _011405803.1 | Archaea
Methanosphaera_stadtmanae_ DSM _ 3091 corrinoid CAE48302.1 Archaea

cobalamin-binding WP _012617957.1 | Archaea

Methanosphaerula_ palustris  E1-9¢

Continued on next page
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Table 3-4 — continued from previous page

TaxonName ProteinDescription ProteinID Taxonomy
Methanothermococcus__thermolithotrophicus cobalamin-binding WP _018153949.1 | Archaea
Methanotorris_igneus_ Kol 5 cobalamin-binding WP _013798831.1 | Archaea
Methermicoccus _shengliensis dimethylamine WP _042686907.1 | Archaea
Methermicoccus_shengliensis hypothetical WP _042684257.1 | Archaea
miscellaneous__ Crenarchaeota_ group _archaeon_ SMTZ-80 hypothetical KON28092.1 Archaea
miscellaneous _ Crenarchaeota group_archaeon SMTZ-80 hypothetical KON28826.1 Archaea
miscellaneous _ Crenarchaeota group_archaeon SMTZ-80 methyltransferase KON26718.1 Archaea
miscellaneous_ Crenarchaeota_group archaeon SMTZ1-55 hypothetical KON26252.1 Archaea
miscellaneous_ Crenarchaeota_group archaeon SMTZ1-55 hypothetical KON27240.1 Archaea
miscellaneous  Crenarchaeota_group archaeon SMTZ1-55 hypothetical KON28056.1 Archaea
miscellaneous  Crenarchaeota group archaeon SMTZ1-55 hypothetical KON30388.1 Archaea
miscellaneous_ Crenarchaeota_ group_archaeon_ SMTZ1-55 hypothetical KON30703.1 Archaea
miscellaneous Crenarchaeota_group-15_archaeon DG-45 hypothetical KON29503.1 Archaea
miscellaneous_ Crenarchaeota_ group-15_archaeon DG-45 hypothetical KON30756.1 Archaea
Nitriliruptor _alkaliphilus 5-methyltetrahydrofolate-homocysteine WP _052665966.1 | Bacteria
Nitrosopumilus_ maritimus_ SCM1 Methionine ABX13163.1 Bacteria
Nitrosopumilus_sp BACL13_ MAG-121220-bin23 methionine KR0O29036.1 Bacteria
Nitrosopumilus_sp_ Nsub methionine WP _067958663.1 | Bacteria
Nitrososphaera_ viennensis_ EN76 putative AIC16863.1 Bacteria
Parasporobacterium _paucivorans_ DSM 15970 dimethylamine WP _073994062.1 | Bacteria
Pelosinus_sp UFO1 cobalamin-binding WP _038671865.1 | Bacteria
Peptococcaceae bacterium _CEB3 dimethylamine WP _047828021.1 | Bacteria
Peptococcaceae bacterium_SCADC1_2_3 dimethylamine KFD41411.1 Bacteria
Proteiniborus_sp_DW1 cobalamin-binding WP _074349034.1 | Bacteria
Pseudobacteroides cellulosolvens ATCC_35603 __DSM _ 2933 dimethylamine WP _050753528.1 | Bacteria
Pseudobacteroides_ cellulosolvens dimethylamine WP _036939029.1 | Bacteria
Sporomusa_acidovorans methyltransferase SDF24799.1 Bacteria
Sporomusa_sp_ An4 MULTISPECIES _ WP _021166618.1 | Bacteria

Continued on next page
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Table 3-4 — continued from previous page

TaxonName ProteinDescription ProteinID Taxonomy
Staphylothermus_hellenicus_ DSM 12710 corrinoid WP _013142718.1 | Archaea
Staphylothermus marinus_F1 corrinoid WP _011838717.1 | Archaea
Syntrophaceticus_ schinkii methyltransferase WP _044663967.1 | Archaea
Syntrophaceticus _schinkii methyltransferase WP _044664928.1 | Archaea
Syntrophaceticus _schinkii methyltransferase WP 044665061.1 | Archaea

Syntrophobotulus_glycolicus DSM 8271
Thaumarchaeota_archaeon CSP1-1
Thaumarchaeota archaeon MY2
Thaumarchaeota_archaecon MY3
Thaumarchaeota _archaeon N4
Thaumarchaeota_archaecon RBG_ 16 49 8
Thaumarchaeota _archaeon SCGC __AB-539-E09
Thaumarchaeota archaeon  SCGC AB-539-E09
Thermacetogenium_phaeum DSM 12270
Thermacetogenium phaeum DSM 12270
Thermacetogenium__phaeum
Thermacetogenium _phaeum
Thermincola_ferriacetica
Thermincola_potens JR
Thermocladium sp ECH B
Thermofilum _ carboxyditrophus 1505
Thermofilum _pendens_Hrk 5
Thermofilum_pendens Hrk 5
Thermofilum_sp 1807-2

Thermofilum sp 1807-2

Thermofilum_sp 1807-2

Thermofilum _sp 1910b

Thermofilum _sp_1910b

cobalamin-binding
methionine
methionine
Methionine
methionine
hypothetical
putative

putative

corrinoid

corrinoid

corrinoid
Trimethylamine
methanol-5-hydroxybenzimidazolylcobamide
methanol-cobalamin
hypothetical
methyltransferase
corrinoid

corrinoid
hypothetical
methyltransferase
methyltransferase
corrinoid

hypothetical

WP 013625686.1 | Bacteria

KRT61287.1 Archaea
WP _042687476.1 | Archaea
ALI36678.1 Archaea
WP _048196937.1 | Archaea
OHES53163.1 Archaea
EMR73267.1 Archaea
EMR74324.1 Archaea

WP _015049741.1 | Bacteria
WP_015051791.1 | Bacteria
WP _015051800.1 | Bacteria
KUK36621.1 Bacteria
WP _052218277.1 | Bacteria
WP _013119873.1 | Bacteria
KUO092439.1 Archaea
WP 052886742.1 | Archaea
WP_011752875.1 | Archaea
WP _011753130.1 | Archaea
WP _052884902.1 | Archaea
AKG39330.1 Archaea
WP _052883866.1 | Archaea
WP _020963330.1 | Archaea
WP _020963087.1 | Archaea

Continued on next page
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Table 3-4 — continued from previous page

TaxonName ProteinDescription ProteinID Taxonomy
Thermogladius_ cellulolyticus_ 1633 corrinoid WP _014737366.1 | Archaea
Thermoplasmatales archaeon BRNA1 cobalamin-binding WP_015492601.1 | Archaea
Thermoplasmatales _archaeon  BRNA1 dimethylamine WP _015491826.1 | Archaea
Thermoplasmatales archaecon  BRNA1 dimethylamine WP _015492610.1 | Archaea
Thermoplasmatales _archaecon  BRNA1 trimethylamine WP_015492607.1 | Archaea
Thermoplasmatales _archaeon DG-70-1 methyltransferase KYK32642.1 Archaea
Thermoplasmatales _archaeon DG-70 methyltransferase KYK38702.1 Archaea
Thermosediminibacter _oceaniDSM_ 16646 corrinoid WP _013275879.1 | Bacteria
Treponema_azotonutricium ZAS-9 cobalamin-binding WP _015710346.1 | Bacteria
Treponema primitia_ZAS-2 cobalamin-binding WP _015709282.1 | Bacteria
uncultured _archaeon conserved CBH38070.1 Archaea
uncultured marine_thaumarchaeote_ KM3_42_E08 methionine AIF10042.1 Archaea
uncultured marine thaumarchaeote KM3_70_E10 methionine AIF15565.1 Archaea




CHAPTER 4

CHITINASES: A STANDARD CANDLE FOR DATING
MICROBIAL LINEAGES
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4.1 Abstract

Establishing the divergence times of groups of organisms is a major goal of evolutionary
biology. This is especially challenging for microbial lineages, due to the near-absence of
preserved physical evidence (diagnostic body fossils or geochemical biomarkers). Horizon-
tal gene transfer (HGT), can serve as a temporal scaffold between microbial groups and
other fossil-calibrated clades, potentially improving divergence time estimates for microbial
lineages. Specifically, HGT to or from organisms with fossil-calibrated age estimates can
propagate these constraints to additional groups that lack fossils. While HGT is common
between lineages, only a small subset of HGT events are potentially informative for dating
microbial groups. Constrained by published fossil-calibrated studies of fungal evolution,
molecular clock analyses show that multiple clades of bacteria likely acquired chitinase ho-
mologs via HGT during the very late Neoproterozoic into the early Paleozoic. These results
also show that, following these HGT events, recipient terrestrial bacterial clades likely diver-
sified ~400-500 Ma, consistent with established timescales of arthropod and plant terrestri-
alization. We conclude that these age estimates are broadly consistent with the dispersal of
chitinase genes throughout the microbial world being in direct response to the evolution and
ecological expansion of detrital-chitin producing groups. The convergence of these multiple
lines of evidence demonstrates the utility of HGT-based dating methods in microbial evolu-
tion. The pattern of inheritance of chitinase genes in multiple terrestrial bacterial lineages
via HGT processes suggests chitinases can serve as a "standard candle" for dating microbial
lineages.

4.2 Background

Dating when new metabolisms evolved and when major clades of Bacteria arose, particularly
on the order of hundreds of millions of years, remain key challenges in biology (Dos Reis
et al., 2015). Despite progress in understanding the molecular record of extant bacterial
genomes, the timing of the evolution of major clades of Bacteria is especially challenging
to resolve due to complex gene histories and a lack of clear phenotypic traits that can be
correlated with a diagnostic fossil record. In the near-absence of physical (geochemical or
fossil) records of microbial evolution, it is difficult to determine and date the evolutionary
history of bacterial lineages.

Leveraging the information contained horizontal gene transfer (HGT) events can sig-
nificantly improve estimates of the timing of events within microbial evolution (Wolfe and
Fournier, 2018; Davin et al., 2017; Gold et al., 2017; Soucy et al., 2015; Dos Reis, 2018,
Magnabosco et al., 2018). Vertical inheritance passes genetic information from parent to

offspring, but HGT passes genetic information between organismal lineages, across all de-
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grees of evolutionary distance. This can be particularly useful for molecular clock dating, as
HGTs establish cross-cutting relationships between lineages and serve as a "temporal scaf-
fold" upon which fossil calibrations or other date information from even distantly related
taxa may be placed (Dos Reis, 2018). While HGT is a major process in microbial evolution
(Soucy et al., 2015; Andam et al., 2010), HGT events between microbes and eukaryotes
with a fossil record are less frequent (Husnik and McCutcheon, 2018). Furthermore, the
donor-recipient relationships are often difficult to infer for many HGT histories, due to mul-
tiple HGT events and gene losses, or lack of a strong phylogenetic signal (Fournier et al.,
2009). The function of a gene is not necessarily relevant to its utility in propagating time
constraints (e.g., Wolfe and Fournier, 2018); however, in some cases, this gene function may
be additionally informative, and provide a source of independent validation of age estimates.
This is the case, for example, if the protein encoded by the transferred gene is specific for
a substrate that can, itself, be temporally constrained. Given all of these criteria, a very
small number of HGT events may be especially valuable for dating microbial lineages; these
"index transfers" (Wolfe and Fournier, 2018) can be even more valuable if multiple HGT
recipients are present, closely correlating the ages of the recipients in time, a "standard
candle" (a term used in astronomy to describe an object with known luminosity used to

infer the cosmic distances to other objects of interest) (Colgate, 1979).

4.2.1 Environmental Distribution of Chitin

Chitin is one of the most abundant structural polysaccharides in nature (Bai et al., 2016;
Talamantes et al., 2016), and chitin degradation by chitinases is a critical process in the bio-
geochemical cycling of carbon and nitrogen in terrestrial and aquatic ecosystems (Bai et al.,
2016). Biogenic sources of environmental chitin include fungi (Funkhouser and Aronson,
2007), arthropods (Merzendorfer and Zimoch, 2003), marine invertebrates (Yoshioka et al.,
2017), bacteria (Chang and Stergiopoulos, 2015), and corals (Bo et al., 2012). However,
chitin is produced mainly by arthropods and fungi, and is thought to be present in higher
abundance today in the terrestrial, rather than marine, system (Talamantes et al., 2016) fol-
lowing the terrestrialization of arthropods, sometime after the Cambrian (Schwentner et al.,
2017). In modern aquatic systems, Arthropods are the dominant chitin-producing organ-
isms. The annual global chitin sourced from Arthropods is estimated to be 2.8 x 107 Mg yr!
for freshwater ecosystems to 1.3 x 109 Mg yr! for marine ecosystems (Cauchie, 2002). The
majority of chitin in terrestrial ecosystems is produced by fungi (Smrz and Catska, 2010)
largely due to their greater contribution of biomass to the soil environment (Holtkamp et al.,
2008). While global estimates for the contribution of arthropod biomass, and thus chitin, to
the environment over time are lacking, they nonetheless make up the largest pool of animal
biomass today (Bar-On et al., 2018).
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4.2.2 Chitin Production and the Evolution of Fungi

The evolution of chitin producers, fungi and marine and terrestrial arthropods, is anchored
to the fossil record through diagnostic morphological characters (James et al., 2006; Berbee
and Taylor, 2010; Berbee et al., 2017; Strullu-Derrien et al., 2018; Taylor and Berbee, 2006).
Cryptomycota form the most deeply branching fungal clade, and contain the most deeply
branching chitinous Fungi (e.g., , Rozella) (Berbee et al., 2017; Strullu-Derrien et al., 2018).
Fossil-calibrated molecular clock studies generally agree that early Fungi diverged around
1125-900 Ma (Parfrey et al., 2011; Sharpe et al., 2015). Fossil and molecular clock evidence
also indicates that divergence of Ascomycota and Basidiomycota within the major fungal
group Dikarya occurred around 830-518 Ma (Berbee et al., 2017; Strullu-Derrien et al.,
2018). Fossil-calibrated molecular clock studies generally agree that early Fungi diverged
around 1125-900 Ma (Parfrey et al., 2011; Sharpe et al., 2015). Fossil and molecular clock
evidence also indicates that divergence of Ascomycota and Basidiomycota within the major
fungal group Dikarya occurred around 830-518 Ma (Berbee et al., 2017) with a fossil minima
around 405 Ma (Berbee and Taylor, 2010; Floudas et al., 2012; Wolfe et al., 2016). Secondary
calibrations from molecular clock studies suggest that crown Ascomycota diversified 715-408
Ma (Prieto and Wedin, 2013) and crown Basidiomycota diversified 655-400 Ma (Floudas
et al., 2012). Therefore, studies of fungal evolution can provide strong secondary calibrations
for dating chitinase gene trees.

Based on fossil and molecular clock dating methods, marine crown-group euarthropods
appeared around 521-514 Ma, shortly after the start of the Cambrian, and radiated into the
lower and middle Cambrian (Daley et al., 2018; Wolfe et al., 2016). Molecular clock and
fossil evidence suggests that terrestrialization of major arthropod groups occurred from the
Cambrian into the Silurian (Lozano-Fernandez et al., 2016). The oldest terrestrial myriapod
body fossil (the oldest undisputedly terrestrial animal) is the 426 Ma millipede Pneumod-
esmus newmani, from the Silurian of Scotland (Wilson and Anderson, 2004). However, the
radiation of terrestrial arthropods (including insects) likely continued into the Devonian
(Oakley et al., 2013; Schwentner et al., 2017; Glenner et al., 2006).

4.2.3 The Evolution of Chitinase Gene Families

Chitinases are proteins that catalyze the breakdown of glycosidic linkages in polymers of
chitin (Funkhouser and Aronson, 2007). Chitinases are a type of glycoside hydrolase (GH)
specific to chitin (Talamantes et al., 2016; Berlemont and Martiny, 2015). There are two
main families of chitinases: glycoside hydrolase family 18 (GH18) and glycoside hydrolase
19 (GH19) (Funkhouser and Aronson, 2007). GH18 chitinases are distributed across the
three domains of life (Chang and Stergiopoulos, 2015; Funkhouser and Aronson, 2007),

whereas GH19 chitinases are restricted mostly to plants and are rarely associated with
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bacteria (Chang and Stergiopoulos, 2015). In one well-studied bacterial model organism,
Streptomyces, there were ten genes associated with the GH18 family of chtinases (homologs
chiA-E, and H- L) and two genes associated with GH19 (chiF, G) (Ubhayasekera and Karls-
son, 2012). It has been suggested that some of these genes may have evolved under selective
pressures related to the host environment or to the presence and proximity to other organ-
isms, which may have even precipitated HGT events (Ubhayasekera and Karlsson, 2012;
Ihrmark et al., 2010; Mamarabadi et al., 2008). Myxobacterial chitinases have been hy-
pothesized to have evolved via HGT (Sharma and Subramanian, 2017), and other bacterial
lineages within Actinobacteria are hypothesized to have co-opted a fungal chitinase for self-
defense (Ubhayasekera and Karlsson, 2012). Because of the specific associations between
substrate and gene, it stands to reason that there may be an evolutionary link between the
major producers of environmental chitin (fungi, bacteria, and arthropods) and the genes
that break it down. It has been shown that some bacterial chitin degradation systems are
even adapted to the environments (aquatic vs. terrestrial) and most abundant chitin pro-
ducers (exoskeletons of crustaceans vs. fungal cell walls) that they encounter (Bai et al.,
2016). Nonetheless, it remains to be tested whether chitinase genes also reflect widespread
environmental adaptations over geological time.

It has been shown that chitinases may retain a molecular record of evolutionary events
hundreds of millions of years ago (Emerling et al., 2018). Moreover, while some of the
phylogenetic distribution of these genes may indicate a pattern of vertical inheritance, other
chitinase genes may have evolved via horizontal gene transfer (Ubhayasekera and Karlsson,
2012). For these reasons, and the criteria described above, chitinase genes are an attractive
potential source of temporal information for microbial evolution. Therefore, we sought to
test the hypothesis that specific bacterial chitinases evolved via HGT, and if so, if these HGT
events could be leveraged to propagate known fossil calibrations between donor and recipient
lineages. Bacterial chitinases are especially useful because they metabolize chitin, a specific
biopolymer only produced in abundance by arthropods and fungi, two groups with fossil
records and thus likely age estimates much more precise than those of most microbial groups.
Previous work has also suggested that some chitinases are distributed between the domains
of life via HGT, for example, postulating that some chitinase genes were transferred from
plants to Actinobacteria and then to arthropods (Lacombe-Harvey et al., 2018). However,
the evolutionary history of the many disparate chitinase gene families in microbes has not

been fully investigated.

4.2.4 Bayesian Molecular Dating

Fossil-calibrated molecular clock models are applied to estimate divergence times of organ-
isms (e.g. (Schirrmeister et al., 2015; Donoghue and Yang, 2016)). Many molecular clock

model parameters have only been recently developed, and few have been applied to microbes
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with divergence time estimates that span geologic time or have undergone rampant hori-
zontal gene transfer events (e.g. (Dos Reis, 2018; Louca et al., 2018)). For a more detailed
review of these parameters and challenges see, for example, (Hillis et al., 2005; Drummond
et al., 2006; Donoghue and Benton, 2007; Edwards, 2009; Heled and Drummond, 2015;
O’Reilly et al., 2015; Donoghue and Yang, 2016; Bromham et al., 2018; Knoll, 2017). The
issues inherent to assessing microbial evolution present a challenge for this work, but also an
oppoftunity to explicitly test these model parameters and assumptions in order to determine

those that are valid for this specific set of evolutionary conditions.
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Figure 4-1: Bayesian Molecular Dating Parameters. Modified from (Bromham et al., 2018). The
upper panel (A) illustrates the components of these analyses and the lower panel (B) depicts a
flowchart of how the posterior is obtained next to Bayes’s theorem.
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Molecular clock dating is based on a Bayesian framework, reviewed in greater detail by
others (Dos Reis et al., 2015; Bromham et al., 2018; Nascimento et al., 2017). There are a
few major components used to determine posterior probabilities or date distributions such
as data selection, calibrations, the molecular clock model, the tree process prior, and the
rate distribution model. Figure 4-1 illustrates these concepts. These parameters will be
tested in subsequent sections of this chapter, but are first defined here. The sequence data
assessed in this work are the chitinase genes present in bacterial and eukaryotic lineages. Tree
process priors include birth-death and uniform. Rate distribution models include lognormal
autocorrelated and uncorrelated gamma.

Tree priors tested include the uniform prior and the birth-death process. The uniform
prior considers every possible topology to be equal and favors divergences that are evenly
spaced across the tree from the root to tip (Huelsenbeck et al., 2002; Lepage et al., 2007).
The birth-death model is defined by speciation ("birth") and extinction ("death"). In con-
trast to the uniform prior, this tree process ascribes more weight to tree topologies with
certain branching patterns (Rannala and Yang, 1996). The birth-death process generally
biases the model such that deeper branches are longer and the more shallow branches are
shorter, because it is assumed the "older" lineages more often end in extinction (Bromham
et al., 2018). Biases such as this can have large effects on the posterior age estimates and
inappropriate model selection can result in less precise dates.

All models in this study assume a relaxed molecular clock model for a prior on the branch
rate. However, two relaxed clock models for the branch rates are assessed: autocorrelated
and uncorrelated. Uncorrelated clocks make no assumption that branches next to each other
on the the tree should share similar rates. In other words, the rate on each branch of the
tree is independent. Conversely, autocorrelated clocks assume that more closely related
branches on the tree should also have more similar rates (Thorne et al., 1998; Drummond
et al., 2006; Lepage et al., 2007; Ho and Duchéne, 2014). The assumption that neighboring
branches should share more similar rates makes sense when we consider that the evolution of
genetic information between related lineages is often affected by many of the same processes
that affect the rates of evolution (e.g. environment, population) (Bromham et al., 2018).
Biological events such as horizontal gene transfer may invalidate model assumptions, but
the mechanisms of rate variation and quatifying the relative importance of various biological
events is still debated (dos Reis et al., 2016). Choosing between these models is a matter
of ongoing debate in the field, and is often dependent on the data set (Lepage et al., 2007;
Lartillot et al., 2009; Bromham et al., 2018). Thus, we detail the effects of model selection

in our analyses.
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4.2.5 Summary of Hypotheses and Objectives

The primary objective of this work is to test whether fossil-calibrated age estimates within
fungi can be propagated to bacterial lineages through the use of HGT events between these
lineages under different model assumptions. Secondarily, we seek to understand possible
ecological implications of the evolution of chitinases in fungi and bacteria. If bacterial
chitinase genes were acquired in response to environmental chitin availability, then arthropod
evolutionary history provides a prediction for the timing of these events within bacterial
lineages. We hypothesize that terrestrial bacterial chitinases diversified from the Cambrian
into the Devonian following the distribution of environmental chitin. We independently
date chitinase evolution in microbial lineages by first testing and then applying molecular
clock models to chitinase gene trees, constrained by fungal date calibrations tethered via
HGT. We show that certain model parameters seem to outperform others. Moreover, our
posterior date distributions for bacterial lineages support the utility of HGT-propagated
fossil calibrations in accurately estimating the ages of microbial lineages as an avenue for

future work.

4.3 Methods

4.3.1 Taxon Sampling

We queried The National Center for Biotechnology Information (NCBI) nonredundant (nr)
database using the protein Basic Local Alignment Search Tool (BLASTp) for sequences
homologous to the Myxococcus fulvus ChiD protein (WP _046715376.1). Complete protein
sequences of the top 5000 hits from NCBI were downloaded (E-value < 10-5). Sequences
were subsampled to include one taxon per annotated species. We further used BLASTp
to more exhaustively identify potential homologs within Fungi, repeating this method for
specific searches within Ascomycota, Basidiomycota, and more deeply-rooting Fungi (e.g.,

Blastocladiomycota, Chytridiomycota, Zoopagomycota, and Mucorales).

4.3.2 Sequences and Alignments

Sequences were aligned using MUSCLE (Edgar, 2004). Poorly aligning regions were iden-
tified via manual inspection and removed using Jalview (Waterhouse et al., 2009). Se-
quences were manually edited to correct obvious misalignments (Fonsecaea multimorphosa
and Phialophora americana (sites 2390-2470), and removed the misaligned C-terminal re-
gion from Phelbia centrifuga, and the misaligned C-terminal regions from Rhizopus, Mucor,
Synchephalastrum, Absidia, and Lictheimia (sites 2393 onward).

A profile alignment of bacterial and fungal sequences was made (Edgar, 2004). This

revealed a highly conserved alignment region shared across bacterial and fungal sequences
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(sites 1844-2470) and another well-aligned N-terminal region conserved across Bacteria, but
absent or poorly aligned in Fungi. In order to maximize the sequence information used
for phylogenetic reconstruction and molecular clocks without introducing misalignments
between bacterial and fungal sequences, a composite alignment was generated. This involved
concatenating the conserved region for both Fungi and Bacteria with the N-terminal region
aligned for just Bacteria. From this alignment, a single gene tree could be generated for
determining the relationship between Fungi and Bacteria, but also maximally resolving splits

within the bacterial tree.

4.3.3 Phylogenetic Analyses
Gene Tree

The gene tree were inferred using RaxML v1.8.9 using the PROTGAMMALGF substitution
model (Stamatakis, 2006) as fit by PROTTEST (Darriba et al., 2017), and 100 bootstrap
replicates. The resulting tree showed relationships between fungal taxa congruent with
published phylogenies (Taylor and Berbee, 2006; Berbee et al., 2017; Strullu-Derrien et al.,
2018; Berbee and Taylor, 2010; James et al., 2006). We rooted the gene tree on the branch
leading to Rozella, which is considered to be either sister to the most deeply-rooting fungal
clades, or a member of Chytridomycota, one of the most deeply-rooting Fungi (Berbee et al.,
2017). This resulting rooting placed bacterial chitinases as a clade diverging within crown
Fungi, polarizing the origin of the bacterial homologs as originating via an HGT from a

fungal donor.

Divergence Time Estimation

Divergence times were estimated using PhyloBayes v3.3 under the CAT20 set of substitution
models (Lartillot et al., 2009). Divergence time estimates were generated under several sets
of model priors. Specific model parameters are described in Tables 4-1 and 4-2. After
chain convergence (effective size >50, variable discrepancies <0.30), trees and posterior
probability support values were generated from completed chains after the initial 20% of

sampled generations were discarded as burn-in.

Date Constraints

Secondary calibrations were applied to the divergence times of major fungal groups within
the gene tree. For all analyses, we applied a root prior and one internal date constraint to
the split of Ascomycota and Basidiomycota consistent with reported molecular clock and
fossil evidence within Fungi (James et al., 2006; Taylor and Berbee, 2006; Berbee et al.,
2017; Strullu-Derrien et al., 2018; Parfrey et al., 2011; Sharpe et al., 2015; Floudas et al.,
2012; Prieto and Wedin, 2013; Wolfe et al., 2016; Berbee and Taylor, 2010). In order to
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avoid false precision, uniform priors were used in both cases, 1145-739 Ma for the fungal
root (Sharpe et al., 2015) and 830-518 Ma for the Ascomycota-Basidiomycota split (Floudas
et al., 2012). We also tested the addition of secondary calibrations on the nodes leading to
the Ascomycota (715-408 Ma) and Basidiomycota (655-400 Ma) clades (Prieto and Wedin,
2013; Floudas et al., 2012). Finally we tested the application of a fossil minima to the split
on Ascomycota and Basidiomycota (830-405 Ma) (Berbee and Taylor, 2010; Floudas et al.,
2012; Wolfe et al., 2016). All calibration structures are listed in Table 4-2.

4.4 Results

4.4.1 Phylogeny of ChiD and ChiC homologs

Figure 4-2 illustrates the relationship between taxa in this study (Table E-1) as a maximum-
likelihood gene tree generated with RAxML. The tree is rooted with the most deeply-
branching fungal taxon, Rozella (Cryptomycota). The group of deeply-rooting Fungi in-
clude members of Cryptomycota, Blastocladiomycota, Chytridiomycota, Blastocladiomy-
cota, Chytridiomycota, Mucormycotina, and Zoopagomycota (in order of branching from
the root). Bootstrap supports are low for many bipartitions within this deeply-rooting
group. Support for the bipartitions placing bacterial sequences within Fungi are higher (74,
71). Support for the monophyly Ascomycota and Basidiomycota is high (100). Support is
also high for the monophyly of bacterial sequences (99). While the deeper branches in the
fungal tree have weak bootstrap support, the relatively short branches relating these groups
and the lack of any calibrations sensitive to their specific crown-group topology suggest
the observed phylogenetic uncertainty has little impact on divergence times for more distal
clades within the tree.

Within Bacteria are the generally well-supported and often monophyletic Bacterial clades
including Betaproteobacteria, Deinococcus, Actinobacteria, Bacteroidets, Firmicutes, and
Deltaproteobacteria. Gammaproteobacteria are polyphyletic, including Vibrionales, Xan-
thomonadales, and one Gammaproteobacteria Taxon in Actinobacteria (Cellvibrio, WP _049631752.1,
a cellulolytic bacterium in the order Pseudomonadales (Mergaert et al., 2003), suggest-
ing multiple independent acquisitions of ChiD Actinobacteria (bootstrap support 99), Bac-
teroidetes (bootstrap support 42), Firmicutes (bootstrap support 79), and Deltaproteobac-
teria (bootstrap support 88) are also monophyletic. Deltaproteobacteria sit on a reticulating

branch within Firmicutes.

4.4.2 Divergence Time Estimates of Bacterial Chitinases

Divergence time estimates were tested under several models, evaluating the impact of, taxon

sampling (inclusion or exclusion of bacterial sequences) effective priors (inclusion or exclu-
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sion of sequence data, tree priors (uniform vs. birth-death), and relaxed clock models
(autocorrelated lognormal vs. uncorrelated gamma rate distributions). Our preferred model
is uncorrelated gamma distribution under a uniform prior with calibrations on the root
(1145-738), Dikarya (830-518) and crown Ascomycota (715-408) and crown Basidiomycota
(655-400).

Few published age estimates exist for the bacterial clades present in our tree. For ex-
ample, based on the chitinase HGT from a time-calibrated Fungi tree, the effective prior
for crown-group Vibrionales is ~300 Ma, with an uncertainty spanning from ~200-400 Ma.
The only other published divergence time estimate for Vibrionales (the last common ances-
tor of Vibrio and Photobacterium) was an uncalibrated RelTime clock on 16S and other
protein datasets (Marin et al., 2017). The result for this clade was 124 Ma. Based on the
chitinase HGT from a time-calibrated Fungi tree with a uniform prior and uncorrelated
gamma clock model, the posterior age estimate for crown-group Vibrionales is ~188 Ma
with an uncertainty spanning ~278-113 Ma. This indicates that our dataset propagating
fungal fossil calibrations via a relatively short chitinase gene (instead of 16S sequence data)
may nevertheless provide reasonable age ranges for bacterial taxa.

The chronogram depicted in Figure 4-3 shows that bacterial chitinases have a common
ancestor ~780 Ma (Node 3, Table 4-3) and were acquired from fungi prior to the evolu-
tion of marine arthropods in the Cambrian. Subsequent HGT events between bacterial
groups distributed this gene, with the major bacterial clades in the tree acquiring chitinase
~505-188 Ma. This age range is consistent with the ecological and taxonomic dispersal of
bacterial chitinases being correlated with the evolution and diversification of crown group
euarthropods around 521-514 (Wolfe et al., 2016; Daley et al., 2018). Interestingly, four
major clades of terrestrial Bacteria in the tree, Gammaproteobacteria (Xanthamonadales),
Betaproteobacteria, Actinobacteria, Firmicutes, all diversify ~408-365 Ma, temporally con-
sistent with the terrestrialization of marine arthropod groups most conservatively estimated
to have occurred 541 - 359 Ma (Lozano-Fernandez et al., 2016; Schwentner et al., 2017; Oak-
ley et al., 2013) (Figure 4-2). This timing is also consistent with the early terrestrialization
of land plants (middle Cambrian - Early Ordovician) and vascular plants (Late Ordovi-
cian - Silurian) (Morris et al., 2018), and alternatively, may represent the establishment of

plant-degrading Fungi in soils around 300 Ma (Floudas et al., 2012).

4.4.3 Testing Molecular Clock Models

Molecular clock model as listed in Table 4-1 were tested to assess model parameters sensi-
tivities. The results for Model 6 (selected for further analysis) are presented in Table 4-3.
The results of all model outputs are listed in Table E-2. An analysis of these models is
presented in Table 4-4 and further elaborated upon in the following sections. Table 4-4

illustrates the models excluding secondary calibrations on Ascomycota and Basidiomycota
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crown groups that recover the expected age ranges for these nodes in the literature. For this
analysis, Calibrations 1 and 3 were used, as these do not impose dates on crown Ascomy-
cota or Basidiomycota clades, enabling comparison between estimated and expected model
output for these clades. Table 4-4 shows that the 95% CI ages fall within expected ranges
for the uniform prior and uncorrelated gamma relaxed clock model for Ascomycota under
Calibrations 1 and 3. The model ages also fall within expected ranges the uniform prior
and uncorrelated gamma clock model for Basidiomycota Calibration 1; uniform prior and
lognormal autocorrelated clock model for Ascomycota, Calibration 3; and birth-death prior
and uniform gamma distributed model for Basidiomycota, Calibration 3. Mean ages for the
birth-death prior and uncorrelated gamma model and for the uniform prior with lognormal
model] fall outside of expected age ranges under Calibrations 1 and 3 for Ascomycota and

under Calibration 1 for Basidiomycota.

4.4.4 Impact of the Tree Process Prior and Rate Distribution Model

The effects of the tree process prior (birth-death vs. uniform) and the rate distribution
model (lognormal correlated vs. uncorrelated gamma) were evaluated (Table 4-4, Table E-
2). Prior and posterior age estimates for the chitinase tree using a uniform vs. birth-death
prior and lognormal vs. gamma distribution result in different date distributions across
nodes, in both bacterial and fungal groups. Across the Bacterial nodes, the uniform prior
with lognormal autocorrelated clock model corresponded to the oldest date estimates across
nodes, followed by the uniform prior and uncorrelated gamma model, birth-death prior and
lognormal autocorrelated model, and finally the youngest birth-death prior and uncorrelated
gamma relaxed clock model (Figure 4-4). The birth-death prior resulted in the youngest
age estimates as compared to the uniform prior (Figure 4-4). The same pattern holds for
the Ascomycota and Basidiomycota within the Fungal nodes. However, a slightly different
result is observed for the deeply-rooting Fungal nodes (root, Fungi, and Dikarya). For these
Fungal nodes, the opposite pattern is seen with the oldest date distributions resulting from
the birth-death prior and uncorrelated gamma clock model, followed by the birth-death prior
and lognormal autocorrelated model, the uniform prior and uncorrelated gamma model, and
finally the youngest uniform prior and lognormal autocorrelated clock model (Figure 4-4).
This empirical internal control on predicting fungal age estimates for nodes that have had
their calibrations removed suggests that the uniform tree process and uncorrelated gamma
rate distribution provide the most accurate age estimates for this gene family.

This model selection is also theoretically justifiable. A birth-death prior is a tree process
prior that assumes a tree generated by speciation and extinction events across a lineage
(Heled and Drummond, 2015). This assumption is violated for trees that include HGT
events, especially if several such events are present. Birth-death priors are therefore not

appropriate for gene trees that show histories of extensive HGT, since the underlying as-
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sumption, that nodes are distributed across a continuity of lineage speciation and extinc-
tion, is invalid. This is especially true for HGTs between prokaryotes and eukaryotes, which
likely have very different patterns of speciation and extinction occurring over very different
timescales, and also very different sampling densities. The chitinase tree is an especially
good test of these hypotheses, as in this dataset we infer multiple HGTs between Bacteria
after a primary HGT from Fungi. There are many nodes that are clearly not the conse-
quence of birth-death processes. In fact, the ecological dispersal of genes via HGT should
be expected to locally increase node densities in the tree entirely independent of any under-
lying assumptions of speciation or extinction. In the absence of a different model sensitive
to nodes mapping to be transfer vs. speciation, it is important to avoid assumptions made
in the birth-death model. In addition, for many of the bacterial nodes, the uniform tree
process prior results in broader prior ages than the birth-death prior. Therefore, the viola-
tion of the assumptions of a birth-death process in the bacterial chitinase tree may result in
overly narrow priors that are too informative. Additionally, autocorrelated rate distribution
models generally underperform for large evolutionary distances (Drummond et al., 2006),
and inspection of the gene tree does not readily reveal any lineage-specific branch length
effects that suggest rate biases that would be poorly accounted for under an uncorrelated

model.

4.4.5 Impact of Taxon Sampling and Fungal Divergence Times

The impact of taxon sampling was evaluated (Tables E-1, E-2). Within Fungi, the chitinase
gene appears to follow a history of vertical descent, and therefore better modeled under
a birth-death tree process prior. Therefore, one test of the appropriateness of a birth-
death process prior is if the presence of bacterial sequences within the tree impacts the
effective prior ages within Fungi. Ascomycota and Basidiomycota groups each have prior
ages ~100 Ma younger under the birth-death model when Bacteria are removed. Under the
uniform model, Ascomycota is the same age whether or not Bacteria are included, while
Basidiomycota is also ~100 Ma younger. In general, the birth-death model gives much
younger prior ages (Figure 4-5), ~150 Ma for Bacteria and Basidiomycota, whether or not
Bacteria are in the tree, and ~150 Ma for Ascomycota in the presence of Bacteria, and
~250 Ma in the absence of Bacteria. Ascomycota and Basidiomycota crown group age
priors are very sensitive to the tree process prior. Therefore, we chose to use additional
secondary calibrations within Dikarya to aid in guiding the prior on the Ascomycota and

Basidiomycota nodes.

4.4.6 Impact of Calibrations

In general, the date distributions across all nodes do not appear to be very sensitive to

the calibrations applied under the uniform distribution and uncorrelated gamma relaxed
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clock model. Because the calibrations are all roughly in the same range, it appears that all
calibration models lead to similar date distributions (Figure 4-5). However, Calibration 2
(calibrations on the root, spit of AB, and A and B crown lineages, not including the fossil
minima) lead to slightly more precise peaks (Figure 4-5). There are two potential problems
with using single gene alignments to generate a posterior age estimate for an HGT: a single
gene has limited rate information from aligned sites for an informative molecular clock, and,
if HGT increases the rate of evolution along reticulate branches due to genes evolving faster
once in a recipient genome, then posteriors will bias towards under-estimating the ages of
these groups. Therefore, we wanted to assess whether younger posterior dates generated
by the birth-death prior as compared to the uniform prior were due to the long branch
separating Bacteria from Fungi in the tree. It is possible that this long branch may either
be representative of a longer time interval (and thus younger crown ages) or of a faster
evolutionary rate (and thus older crown ages). The maximum likelihood tree (Figure E-
1) illustrates that when rooted, the Ascomycota and Basidiomycota actually have slightly
longer distances to the root, suggesting that the relative rates of evolution in this gene tree
are not accelerated in the bacterial group. Consequently, the limited sequence information
contained in this dataset may be used to calculate posterior age estimates that are unlikely
to be biased by HGT-induced rate effects. Including additional internal constraints on the
fungal clades push the priors under the uniform and birth-death models closer together for
Bacterial nodes. These additional secondary calibrations are thus important for constraining
the tree process prior, and this type of approach may be important for using single gene

HGTs to improve age estimates in general.

4.4.7 Informativeness of Sequence Data

We assessed the informative of the sequence data by running Phylobayes under the prior
(effective prior, including calibrations (Fig. E-2). Posterior age distributions for bacterial
chitinase nodes substantially differed from prior age distributions, showing that sequence

data is meaningfully informing age estimates via the relaxed molecular clock (Figure 4-6).

4.5 Discussion

4.5.1 Fungal Origin and Distribution of Bacterial Chitinases

The gene tree topology for ChiC/D and its inferred rooting within Fungi show that bacte-
rial chitinase was acquired via HGT from a fungal donor lineage. By including secondary
age calibrations on nodes within Fungi, molecular clock estimates show that this gene was
acquired by Bacteria by 605 Ma (range of 655-566 Ma), slightly predating estimates for

the evolution of crown arthropods (marine euarthropods) (Daley et al., 2018). The earliest
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Fungi were also marine, and likely colonized land by moving from marine to terrestrial envi-
ronments (Lozano-Fernandez et al., 2016; Berbee et al., 2017). This supports the hypothesis
that some bacterial chitinases evolved from a marine fungal ancestor.

The HGT between fungi and bacteria also seems plausible from environmental and
mechanistic perspectives. Not only do bacteria and fungi occupy similar environments,
but closely-related fungal relatives also include both phagotrophic Mucormycotina and
pathogenic Entomophthorales (James et al., 2006), suggesting plausible scenarios for this
transfer. This is also consistent with evidence that other bacterial chitinases within the
GH18 family (e.g., ChiJ) also evolved via HGT from Fungi (Ubhayasekera and Karlsson,
2012) although this particular HGT event would have been more recent than the HGTs
discussed here. Following the initial transfer into a bacterial lineage, bacterial groups look
to have all acquired chitinases from one another via subsequent HGT events, although the
donors of these HGTs can’t be directly inferred from the tree topology, except in the case

of Firmicutes to Deltaproteobacteria.

4.5.2 Importance of Chitinase Evolution for Dating Microbial Metabolisms

Nearly all bacterial groups lack fossil evidence that could potentially constrain crown-group
clades. There are some fossil constraints within Cyanobacteria (Schirrmeister et al., 2015)
and other bacterial lineages contain proxy eukaryote fossil calibrations, such as mitochondrial
lineages within Alphaproteobacteria (Magnabosco et al., 2018). Nonetheless, taxa within
major lineages such as Firmicutes, which are distant relatives to these better-calibrated
groups, are difficult to date, and because they are so distant, calibrations for other regions
of the tree, even if they exist, are essentially not informative.

Substrate-specific genes, such as chitinases, are generally valuable for placing older-
bound ages on microbial lineages, in the narrow case if these genes are vertically inherited
within a group, and in the broader case if their origin is deeper, with subsequent HGT. In
addition to the divergence time estimates shown for bacterial lineages in Figure 4-3, the
HGTs themselves can provide useful temporal constraints for subsequent analyses (Wolfe
and Fournier, 2018). Our results suggest that there was likely a transfer of chitinase genes
between Bacilli (Firmictues) and Myxococcales (Deltaproteobacteria) (Figure 4-2). Because
these clades are very distant on the species tree (Raymann et al., 2015) being able to link
them via the HGT of this chitinase gene means that we can apply relative constraints
between groups. Divergence time age estimates from this study can also be useful for future
investigations. While a single gene, such as ChiD, contains little sequence data for informing
posterior age distributions, fossil calibrated effective priors can be used as constraints for
other molecular clock studies that use far larger sequence datasets that recover species tree
relationships, but cannot be directly fossil calibrated.

In general, it appears that numerous clades of bacteria acquired chitinase genes dur-
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ing the early Paleozoic, suggesting that their dispersal throughout the microbial world was
in direct response to the evolutionary and ecological expansion of detrital-chitin produc-
ing arthropod groups, upon which the bacteria may have made their habitats and/or food
sources. The timing of bacterial chitinase divergence also coincides with the expansion of
terrestrial organisms including both land plants and arthropods. The temporal and envi-
ronmental constraints on chitin as a substrate support our results. For example, a molecular
clock under an autocorrelated log-normal rate distribution produces mean posterior age es-
timates for inheritance of chitinases within terrestrial bacterial clades ~550-500 Ma, before
the terrestrialization of either arthropods or plants. Mean age estimates from uncorrelated
models are both substantially younger and more congruent with the terrestrialization fossil
record, as well as distributed over a much narrower time interval, suggestive of a causal
relationship (~450-150 Ma) (Figure ??). While this is a reasonable inference, this does in-
dependently support the hypothesis, as well as validate the HGT dating method used here.
Moreover, because the priors under a uniform tree process are not subject to violations
exposed in the birth-death model, we do not see evidence of HGT-associated heterotachy
within the bacterial recipient groups, and there is limited site information in the gene for
estimating rates for a posterior. Posterior dates used as secondary constraints on future

species may be able to be increase precision (Yang and Rannala, 2005; Rannala and Yang,
1996).

4.5.3 Ecological Implications of Chitinase Evolution

In general, our results show that numerous clades of bacteria acquired chitinase genes during
the early Paleozoic, suggesting that their dispersal throughout the microbial world was in
direct response to the evolutionary and ecological expansion of detrital-chitin producing
arthropod groups. The temporal and environmental constraints on chitin as a substrate are
consistent with these results. The timing of chitinase genes holds ecological implications
for the origin of environmental chitin production. It is uncertain how the primary origin
of environmentally-relevant amounts of chitin has evolved through time; did this originate
from fungal cell walls or detrital chitin from the molted exoskeletons of arthropods? The
genetic record may aid in distinguishing these sources. Robust across our model parameters
and assumptions, bacterial chitinase (ChiD) appears to have evolved from fungi, likely in
response to the availability of chitin as a major structural component of fungal cell walls
in the Proterozoic, prior to early arthropod evolution. Subsequent HGT and inheritance
of chitinase within terrestrial bacterial clades appears to be a much more recent series
of evolutionary events within the early Paleozoic, consistent with evidence for plant and
arthropod terrestrialization during this time (Lozano-Fernandez et al., 2016; Kenrick et al.,
2012). The taxonomic distribution of ChiD within marine microbial groups appears to

be too sparse to infer the timing of their acquisition, or to polarize the deep HGT events
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between microbial lineages, which, presumably, progressed from marine to terrestrial clades.
The long reticulating branch leading from Fungi to the bacterial ChiD sequences suggests
that the direct fungal donor clade is not represented in the current tree; this may be due to
unsampled extant fungal diversity, or patterns of extinction among ancient marine fungal

groups.

4.6 Conclusion

Bacterial chitinases appear to have diversified from acquisition, roughly 600 Ma, into the
last 200 Ma of Earth history. This is consistent with the hypothesis that bacterial chitinases
evolved in response to the seeding of marine and terrestrial environments with globally-
significant amounts of chitin, first from Fungi, then later from marine and then terrestrial
arthropods. There is later evidence of at least one major HGT event within bacterial lin-
eages, from Firmicutes to Deltaproteobacteria. Although we only assessed one chitinase gene
tree in this study, future work evaluating the phylogenetic distribution of other chitinase
genes will be critical for quantifying chitinase evolution in marine and terrestrial environ-
ments to further test the hypothesis that the phylogenetic distribution of chitinase genes
mirrors the evolution and terrestrialization of environmental chitin sources.

Further, we show the importance of prior choice, highlighting that this dataset, which
includes at least one deeply-rooted HGT, violates the birth-death prior. Moreover, we argue
for the use of a uniform prior, uncorrelated gamma multipliers model, and three internal
secondary calibrations propagating fossil calibrations from within Fungi to Bacteria.

Finally, we suggest that our dataset does not demonstrate HGT-associated heterotachy.
Thus, our fungal priors and perhaps even posterior bacterial date distributions, may be more
broadly applicable for future molecular clock studies assessing the divergence times of these

major clades of Bacteria.
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Table 4-1: Phylobayes model parameters tested in this study. For each model, a & indicates the
presence or absence of a condition. All models were also tested under the prior (-prior) and sequence
data was used to generate posterior probability distributions for all models. BD refers to birth-death.
LN stands for lognormal autocorrelated. UGAM stands for uncorrelated gamma multipliers. The
AB split refers to the split between Ascomycota and Basidiomycota and fossil refers to the fossil
minimum referenced in the Calibration Table 4-2.
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Table 4-2: Calibrations used in molecular clock models. All calibrations listed in Ma. Models
indicates which models (from Table 4-1.) the calibrations were applied to.

Node Taxon 1 Taxon 2 Calibration  Reference

Root RozeAll205  Paenibal68  1145-738 Sharpe et al. (2015)

AB Split SerpLac210  TricVir244 830-518 Floudas et al. (2012)

Ascomycota Crown RoseNec204 MetaBrul36 715-408 Prieto and Wedin (2013)

Basidiomycota Crown HessVes103  AgarBisp08  655-400 Floudas et al. (2012)

Fossil minima on AB Split  SerpLac210  TricVir244  830-405 Floudas et al. (2012); Berbee and Taylor (2010); Wolfe et al. (2016)
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Table 4-3: Posterior divergence time estimates calculated under model assumptions described in
Table 4-1 (Model 6). Divergence date ranges are given in Ma.

Node Node ID Cal Mean Age 95% CI

Root 1 1145-738 787 (738-837)
Deep Fungi 3 780 (729-833)
Dikarya (AB Split) 5 830-518 766 (720-828)
Ascomycota 6 715-408 550 (480-618)
Basidiomycota 70  655-400 613 (566-655)
Bacteria 147 605 (537-672)
Gammaproteobacteria 148 505 (393-605)
Vibrionales (A) 165 188 (113-278)
Betaproteobacteria (T) 155 330 (223-442)
Bacteroidetes (A) 174 440 (359-525)
Firmicutes (T) 181 408 (323-498)
Deltaproteobacteria (T) 186 275 (174-389)
Actinobacteria (T) 215 365 (290-435)
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Table 4-4: Meta-analysis of posterior date distributions for model parameters. The calibration
refers to the node, model number (in parentheses), calibration age (in Ma). The node refers to
either Ascomycota (A) or Basidiomycota (B). The prior refers to the tree process prior, either
uniform or birth-death. The clock refers to the relaxed clock model, either lognormal autocorrelated
(LN) or uncorrelated gamma (ugam). The model refers to the model number as delineated in Table
4-1. The posterior mean age estimates and 95% confidence intervals (CI) are in Ma as calculated
in the output of each Phylobayes model. The expected age ranges (Ma) are listed based on literate
values as noted in Table 4-2. The Outside Expected (Outside Exp) column lists the percent of the
95% CI outside of the expected range.

Calibration Node Prior Clock Model Mean Age 95% CI Expected Outside Exp
AB-Split (Cal 1) Ascomycota uniform LN 1 651 728-580 715-408 8.8
830-518 uniform ugam 5 559 630-481 715-408 0.0
BD LN 13 494  592-391 715-408 8.5

BD ugam 9 366 457-267 715-408 74.2

Basidiomycota uniform LN 1 674 749-602 655-400 63.9

uniform ugam 5 628 698-559 655-400 30.9

BD LN 13 550 650-443 655-400 0.0

BD ugamn 9 456 572-349 655-400 22.9

AB-Split (Cal 3) Ascomycota uniform LN 3 656 731-590  715-408 11.3
830-405 uniform  ugam 7 560 637-484 715-408 0.0
BD LN 15 510 616-397 715-408 5.0

BD ugam 11 366 447-276 715-408 77.2

Basidiomycota uniform LN 3 677 754-607 655-400 67.3

uniform ugam 7 626 687-554 655-400 24.1

BD LN 15 560 674-430 655-400 7.8

BD ugam 11 462 570-369 655-400 15.4
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE DIRECTIONS
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In summary, the work presented in this thesis involved geochemical and phylogenetic
approaches to better understand the evolution and distribution of microbes in the envi-
ronment. Chapter 2 (and Appendices A, B, and C) focuses on the geochemical aspects of
understanding the signals of microbial methanogenesis. I discussed the possible mechanisms
that contribute to the kinetic isotope effects observed for the clumped methane isotopo-
logue, '3CH3D . Values of A3CH3D for pure cultures of methanogens exhibit nonequi-
librium isotope effects, unique to enzymatic microbial processes, rather than equilibrium
effects exhibited by many thermogenic sources. I discussed how this might be mediated by
enzymatic reactions common to all methanogens, rather than specific to each of the three
methanogeneic pathways. This will be an extremely fruitful area of research in the future,
as much is left to be tested in this isotope system.

Chapter 2 represents most of the published data that exist describing A®CH3D for
microbial cultures. However, a number of other labs are beginning to culture and measure
methane from microbes, so it will be an exciting time to compare results and have more data
with which we can understand kinetic isotope effects for > CH3D . Looking forward, it will
be particularly important to assess other growth conditions, substrates, strains, and isotopo-
logues. Labeling experiments will be incredibly useful for this. Additionally, as mentioned
in Chapter 2, methanogens grow at different rates on different substrates. Thus, quantifying
and attributing the effects for different processes (e.g. growth rates vs. pathways) will be
important. Moreover, it is also of course critical to consider the environmental relevance of
these experiments. Appendices B and C touch on possible environmental significance and
contributing factors.

Putatively microbial cultures from marine sediments, like methane hydrates sampled in
Appendix B, do not show the same "anti-clumped" nonequilibrium isotope values as pure
cultures. It is uncertain whether this is due to factors such as methane source processes (e.g.
extremely slow growth rates of methanogens in low temperature environments), methane
sink processes (e.g. AOM shifting signals in the opposite direction, towards equilibrium
as shown in Appendix C), or most likely, some combination of processes and factors not
yet described. Co-culturing experiments and experiments representative of environmental
conditions will be useful.

Innovative analytical techniques and new technologies have enabled extremely precise
measurements of isotopologues in increasingly smaller sample volumes. As this trend con-
tinues, more environments and processes will be sampled. Additionally, while the 3CH3D
equilibrium curve is calibrated at high temperatures by heating processes, lower tempera-
ture calibrations are more difficult to make due to the impossibly slow equilibrium exchange
reactions at low temperatures. Future work in lower-temperature systems will improve cal-

ibrations in this region of the curve (<100°C).
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Chapter 3 discusses the possible implications for methylotrophic metabolisms in ma-
rine systems and how substrate-specificity may have evolved via HGT. This chapter also
highlights a number of hypotheses and future directions to be tested. We readily hypoth-
esize about what marker genes can do, but culturing work will be needed to confirm these
hypotheses. It will be important to continue to sample and culture microbes from diverse
marine and subsurface environments. Phylogenetically, it will be important to further assess
taxon sampling and database annotations, ensuring that results are interpreted correctly.
A challenging, but important, next step will be trying to date the emergence of substrate
specificity in methylotrophic lineages. This may be aided by ongoing methods developed in
Chapter 4.

Chapter 4 describes the discovery of a novel HGT between fungi, bacteria, and within
other bacterial lineages. I discuss how the HGT between Fungi and Bacteria may be lever-
aged to apply fossil calibrations from within fungal lineages to bacterial lineages. As I
discuss in this chapter, assumptions about the prior and model selection are incredibly im-
portant. This is especially true given that many molecular clock parameters are developed
and tested in more recently diverging taxa of different scale, but as we begin the exciting
work of applying this to deep microbial divergences.

Results from Chapter 4 suggest that bacterial chitinases originated in fungi and di-
versified in response to the availability of chitin-producing organisms in the environment.
Furthermore, these results suggest that the diversification of terrestrial bacterial chitinases
is consistent with that of terrestrial chitin producers (e.g. Arthropods) and a period of pos-
sible marine extinction and ecological shifts. While these conclusions are certainly plausible,
it will be important to evaluate other chitinases to confirm that this is broadly applicable
and assess whether posterior date distributions may be used as secondary calibrations in
future work.

As work continues in molecular evolution, we will get increasingly good at interweaving
information across the geological and biological sciences to make use of the strongest pieces
of evidence. We will also increase the number of tested primary and secondary calibrations
to apply to an increasing number of model parameters. I also expect that our databases
will not only grow larger, but that we will get better at annotation and curation, such
that we can make use of the growing number of sequenced genes and genomes. I look
forward to improved usability and interoperability between phylogenetics software and file
formats which will increase research output in the field. Finally, I am excited to see how
the field of geobiology continues to build upon emerging molecular evolution methods, as
early microbial evolution remains an exciting frontier in biology. Geochemical, biological,
and computational tools together will help to illuminate some of the most temporally and

geographically remote environments.
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APPENDIX A

NONEQUILIBRIUM CLUMPED ISOTOPE SIGNALS IN
MICROBIAL METHANE

Wang DT, Gruen DS, Lollar BS, Hinrichs K-U, Stewart LC, Holden JF, Hristov AN, Pohlman JW,
Morrill PL, Konneke M, Delwiche KB, Reeves EP, Sutcliffe CN, Ritter DJ, Seewald JS, Mclntosh JC,
Hemond HF, Kubo MD, Cardace D, Hoehler TM, Ono S (2015). Nonequilibrium clumped isotope signals
in microbial methane. Science 348:428-431.

D.T.W. and S.O. developed the methods, analyzed data, and performed modeling. D.T.W. and D.8.G.
performed isotopic analyses. D.S.G., L.C.S., J.F.H., M.K., K.U.H., and S.O. designed and/or conducted
microbiological experiments. D.T.W., D.S.G., B.S.L., P.L.M., K.B.D., AN.H., C.N.S.,, M.D.K., D.J.R.,
J.C.M., D.C., and S.O. designed and/or executed the field sampling campaigns. D.T.W. and S.O. wrote the
manuscript with input from all authors.
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Methane is a key component in the global carbon cycle with a wide range of
anthropogenic and natural sources. Although isotopic compositions of methane
have traditionally aided source identification, the abundance of its multiply-
substituted "clumped" isotopologues, e.g., 3CH3D , has recently emerged as
a proxy for determining methane-formation temperatures; however, the impact
of biological processes on methane’s clumped isotopologue signature is poorly
constrained. We show that methanogenesis proceeding at relatively high rates
in cattle, surface environments, and laboratory cultures exerts kinetic control on
13CH3D abundances and results in anomalously elevated formation temperature
estimates. We demonstrate quantitatively that Hy availability accounts for this
effect. Clumped methane thermometry can therefore provide constraints on the
generation of methane in diverse settings, including continental serpentinization
sites and ancient, deep groundwaters.

Carbon (13C/12C) and hydrogen (D/H) isotope ratios of methane are widely applied for
distinguishing microbial from thermogenic methane in the environment (Baldassare et al.,
2014; Flores et al., 2008; Pohlman et al., 2009; Sherwood Lollar et al., 2008; Sherwood Lollar
et al., 2002; Welhan and Lupton, 1987; Whiticar, 1990) as well as for apportioning pathways
of microbial methane production (Burke Jr et al., 1988; McCalley et al., 2014; Whiticar et al.,
1986). This bulk isotope approach, however, is largely based on empirical observations, and
different origins of methane often yield overlapping characteristic isotope signals (Pohlman
et al., 2009; Whiticar, 1990; Etiope and Sherwood Lollar, 2013; Schoell, 1988; Whiticar,
1999). Beyond conventional bulk isotope ratios, it has become possible to precisely measure
the abundance of multiply-substituted "clumped" isotopologues (e.g., *CH3D ) (Ono et al.,
2014; Stolper et al., 2014). In particular, abundance of clumped isotopes promises to yield
information about the temperature at which Cyg bonds were formed or last equilibrated (Ono
et al., 2014, ; Fig. S1). Indeed, formation temperatures of both thermogenic and microbial
methane in natural gas reservoirs can be estimated on the basis of clumped isotopologues
(Stolper et al., 2014). The mechanisms by which isotopologues attain distributions consistent
with thermodynamic equilibrium, however, remain unclear because bulk methane isotopes
(613C and 6D) often reflect kinetic isotope fractionations (Whiticar, 1999; Valentine et al.,
2004), and H-isotope exchange between methane and water is sluggish (Reeves et al., 2012).

To test if clumped methane thermometry can be widely applied for methane sources be-
yond natural gas reservoirs, we examined methane samples from diverse systems, including
lakes, wetlands, cow rumen, laboratory cultures of methanogenic microbes, and geological
settings that may support abiogenic methane production as well as thermogenic and mi-
crobial sources, including continental serpentinization sites and deep fracture fluids. We
measured the relative abundances of four methane isotopologues (?CHy, 3CHy, 2CH3D

and *CH3D ) using a recently-developed tunable laser spectroscopy technique (Ono et al.,
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2014, and see Supplemental Materials).

Our measurements for dominantly-thermogenic gases from the Marcellus and Utica
Shales (Baldassare et al., 2014; Burruss and Laughrey, 2010) yielded ACH;3D -based tem-
peratures of 147%300 and 160f—§gOC, respectively. The clumped-isotope temperature for
the Marcellus Shale sample is comparable to, although slightly lower than, estimates by
Stolper et al. (2014) of 179-207°C (Fig. A-1). In addition, microbial methane in pore waters
and gas hydrates from northern Cascadia margin sediments (Pohlman et al., 2009), and
from wells producing from coal seams in the Powder River Basin (Flores et al., 2008; Bates
et al., 2011) yielded A'3CH3D temperatures of 12-42°C and 35-52°C, respectively. These
are consistent with their expected low formation temperatures. Furthermore, thermogenic
methane sampled from a hydrothermal vent in the Guaymas Basin, Gulf of California (Wel-
han and Lupton, 1987), yielded A3CH3D temperature of 326t1—97?OC, within error of the
measured vent temperature (299°C Reeves et al., 2014). Therefore, our data provide in-
dependent support of the hypothesis that '"*CH3D abundance reflects the temperature at
which methane is generated in these sedimentary basins (Stolper et al., 2014).

In contrast, we found that methane sampled from lakes, a swamp, and the rumen of
a cow carry 3CHj3D signals that correspond to anomalously high ACH3D temperatures
(139-775°C, Fig. A-1A), i.e., well above the environmental temperatures (<40°C). Such
signals are clearly not controlled by equilibrium. Notably, a positive correlation between
A'CH3D and the extent of D/H fractionation between methane and environmental water
[€methane fwater (23); Fig. A-2| suggests a strong link between isotopologue (i.e., 13CH3D )
and isotope (D/H) disequilibria. In contrast, the above mentioned methane samples from
sedimentary basins appear to have attained hydrogen-isotope equilibrium with associated
waters at or near the temperatures indicated by the A3 CH3D data (Fig. A-2).

To confirm these observations from the natural environment, we demonstrated that
strong disequilibrium >CH3D signals are also produced by cultures of methanogenic ar-
chaea in the laboratory (Fig. A-3). Thermophilic methanogens cultured at 40 to 85°C
produced methane with A¥3CH;3D values from +0.5 to +2.3%q (corresponding to A*®*CHsD
temperatures of 216-620°C), and mesophilic methanogens cultured at ambient temperature
produced methane with conspicuously "anti-clumped" signatures (i.e., values of A3CH3D
< 0%o, for which no apparent temperature can be expressed) as low as 41.51.3%. (Fig. A-3).
Methane from cultures is also characterized by large kinetic D/H fractionation with respect
to water (Valentine et al., 2004; Balabane et al., 1987). Because laboratory cultures are
grown under optimal conditions (high-Ho and high-COs), these anti-clumped A®*CH3D and
low €ethane/water Values are primarily expressions of kinetic isotope effects. Consequently,
the distribution of samples with ACHsD and €,,0i5une Jwater values in Fig. A-2 can be
explained by microbial methanogenesis operating on a spectrum between fully kinetic (low

A'CH;3D and 1oW €metpane/water) and equilibrium (high A¥CHsD and high €,cthane /water)
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end-members.

We constructed a mathematical framework to describe the controls on the correlation
of ABCH3D and €,ethane Jwater Signals from hydrogenotrophic methanogenesis. The model
largely follows those developed for microbial sulfate reduction (Rees, 1973; Wing and Halevy,
2014) and predicts the isotopologue compositions of product methane as a result of a series of
enzymatic reactions [Fig. S4; available online|. Using isotope fractionation factors estimated
from theory, experiments and observations as input parameters [Table S3; available online|,
our model reproduces the observed correlation between A3CH3D and €,,cthane Jwater Of natu-
ral samples (Fig. A-2). The isotopologue compositions of product methane reflect the degree
of metabolic reversibility. Fully reversible reactions yield equilibrium end-members (Holler
et al., 2011), while irreversible reactions result in kinetic (disequilibrium) end-member sig-
nals. In this model, the reversibility is linked to available free energy (Wing and Halevy,
2014; Holler et al., 2011), in this case expressed as H2 concentration ([Hz|). The model
can explain the relationship among [Ha|, €methane/water (Burke, 1993) and ABCH3D via
Michaelis-Menten kinetics, and predicts the observed patterns in diverse settings ranging
from marine sediments (low [Ha], high A3CH3D and €,,chane Jwater) to bovine rumen (high
[Hz], low ACH3D and €,,chane Jwater) (Fig. A-4). We note that mixing of methane sources
with different 613C and 6D values or oxidation of methane could also alter the relationships
over the primary signal of microbial methanogenesis [See supplement online|. Likewise, in-
heritance of clumping signals from precursor organic substrates (e.g., via acetoclastic or
methylotrophic methanogenesis), cannot be entirely ruled out and await experimental vali-
dation.

We showed above that the combination of A®CH3D and €,,cthane Jwater Values provides
mechanistic constraints on whether methane was formed under kinetic vs. near-equilibrium
conditions. Next, we used this framework to place constraints on the origins of methane at
two sites of present-day serpentinization in Phanerozoic ophiolites (The Cedars and Coast
Range Ophiolite Microbial Observatory, CROMO Morrill et al., 2013; Cardace et al., 2013)
in northern California, and in deep (> 2 km below surface) fracture fluids with billion year-
residence times in the Kidd Creek mine, Canada (Sherwood Lollar et al., 2002; Holland
et al., 2013).

Methane-rich gases in groundwater springs associated with serpentinization at The Cedars
yielded anti-clumped ACH3D signals (A1.S3%0) with 1ow €,,0thane Jwater Values (Figs. A-1A
and A-2). The data plot along the microbial (kinetic) trend defined in Fig. A-2, supporting
a previous hypothesis that methane at The Cedars is being produced by active microbial
methanogenesis (Morrill et al., 2013). The exceptionally high Ho concentration (up to 50%
by volume in bubbles) and low Eh (ca. aLS600 mV) at The Cedars indicate the massive
excess of electron donor. This, along with severe inorganic carbon limitation (due to high

pH (>11) and precipitation of carbonate minerals Morrill et al., 2013), drives the forma-
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tion of methane carrying strong kinetic imprints, consistent with the observed anti-clumped
ABCH3D signals (Fig. A-4).

Despite the similarity in geologic setting, methane associated with serpentinization at
CROMO (Cardace et al., 2013) revealed very different A'3CH3D values, which correspond
to low apparent temperatures (42-76°C) and plot close to the equilibrium line (Fig. A-2).
While the conventional §'3C and 6D values of methane from CROMO are nearly identical
to those of the Utica Shale sample (Fig. A-1B), methane at CROMO carries much higher
A'CH;D values (Fig. A-1A). The origin of methane at the CROMO site remains unre-
solved (Cardace et al., 2013), but the comparably high A3CH3D values at CROMO suggest
methane here could be sourced from a mixture of thermogenic and microbial methane. Al-
ternatively, lower Hy availability at CROMO, compared to The Cedars (table S4; available
online), may support microbial methanogenesis under near-equilibrium conditions (Fig. A-
4). Regardless, the different isotopologue signatures in methane from CROMO vs. The
Cedars demonstrate that distinct processes contribute to methane formation in these two
serpentinization systems.

Deep, ancient fracture fluids in the Kidd Creek mine in the Canadian Shield (Holland
et al., 2013) contain copious quantities of both dissolved methane and hydrogen (Sherwood
Lollar et al., 2002). The Kidd Creek methane occupies a distinct region in the A¥CH3D vs.
€methane/water diagram (Fig. A-2), due to strong D/H disequilibria between methane and
water (Sherwood Lollar et al., 2008) and low ACH3D temperature signals of 56-90 °C that
are consistent with other temperature estimates for these groundwaters (Sherwood Lollar
et al., 2008). Although the specific mechanisms by which the proposed abiotic hydrocarbons
at Kidd Creek are generated remain under investigation (Sherwood Lollar et al., 2002;
Sherwood Lollar et al., 2014), the distinct isotopologue signals provide further support for
the hypothesis that methane here is neither microbial nor thermogenic.

Our results demonstrate that measurements of 3CH3D provide information beyond
the simple formation temperature of methane. Combination of methane/water hydrogen-
isotope fractionation and *CH3D abundance enables the differentiation of methane that
has been formed at extremely low rates in the subsurface (Pohlman et al., 2009; Bates
et al., 2011; Holler et al., 2011) from methane formed in cattle and surface environments in
which methanogenesis proceeds at comparatively high rates (Johnson and Johnson, 1995;
Varadharajan and Hemond, 2012).

Supplementary methods, text, figures, tables and references associated with this article

can be found online here.
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Figure A-1: Isotopologue compositions of methane samples. (A) ACH;3D plotted against 6D.
The A¥CH3D temperature scale corresponds to calibration in fig. S1. Error bars are 95% confidence
intervals (table S1; available online). Data from (Stolper et al., 2014) were scaled to their correspond-
ing A'™CH3D values. The shaded area represents the temperature range within which microbial life
has been demonstrated to date (Takai et al., 2008). The hatched line represents ACH;3D = 0%
(T — oc); data plotting below this line cannot yield corresponding apparent temperatures. (B)
313C plotted against 4D, showing characteristic fields for different methane sources from (Whiticar,

1999).
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Figure A-2: Extent of clumped- and hydrogen-isotopic disequilibria in methane. Symbols and
vertical error bars are the same as those in Fig. A-1. Horizontal error bars represent uncertainties
on estimates of €,cthane/water [table S4]. The solid green curve represents isotopic equilibrium,
with the €pethane/water calibration given by (Horibe and Craig, 1995). Green shading represents
ranges of €methane/water Calibrations from published reports (fig. S3). Gray shading represents
model predictions from this study, for microbial methane formed between 0 and 40 °C. Metabolic
reversibility (®) increases from bottom (® = 0, fully-kinetic) to top (# — 1, equilibrium) within
this field (see Supplement).
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Figure A-3: A'CH3D values of methane produced by hydrogenotrophic methanogens in batch
cultures reflect kinetic effects. Data and error bars are from table S2. The green line represents
clumped isotopologue equilibrium (i.e., samples for which ACH;3D temperature is equal to growth
temperature; fig. S1).

158



[ [ )
6 . - IS
~ b 2 W
L = ] s
- ‘% . 50 g
4 - N 1100 ©
e W NS o
- - v Z . o
- "z ; 5 — 200 "QD_
<3 2 |- \ \ %
S ) \ : + J =
o i 3 400 3
S 0 e =)
q \\\ “ \

IOg [H,] (M)

Figure A-4: Relationships between ACH;D and H; concentration for microbial methane. Sym-
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imum values. Dashed lines represent model predictions for microbial methane produced at 20 °C,
calculated using KM’s of 0.3, 3.0, and 30 uM Hp. Data for samples of non-dominantly-microbial
methane from Guaymas Basin and Kidd Creek are plotted for comparison.
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APPENDIX B

METHANE CLUMPED ISOTOPOLOGUE (**CH3D )
MEASUREMENTS FOR DETERMINING THE MIXING OF
MICROBIAL AND THERMOGENIC METHANE IN OCEANIC
GAS HYDRATES
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Motivation and Outlook

Methane hydrates make up one of the largest reservoirs of methane on Earth (Kvenvolden,
1993). Most methane hydrates are considered to be microbial (Kvenvolden, 1993), archives of
deep biosphere microbial methane (Inagaki et al., 2006; Valentine et al., 2004). Methanogens
are the only organisms capable of producing methane as a catabolic end product (Valentine,
2011). In anoxic ocean sediments, organic matter is decomposed and microbes reduce the
resulting COy via methanogens to form methane (Thauer et al., 2008). This methane is
trapped by the water that crystallizes to ice, forming sedimentary hydrate outcrops within
the gas hydrate stability zone (Pohlman et al., 2009). Because this biosphere is difficult to
sample and study, very little is known about how, where, or when microbes generate this
methane. Moreover, these systems can be quite dynamic, with mixing of multiple methane
sources (Milkov et al., 2005) and environmental restructuring (Sultan et al., 2014). Complex
architectures of hydrate-bearing sediments can form, dissolve, and evolve over geologically-
relevant timescales (Sassen et al., 2001; Suess et al., 1999). It is likely that these systems do
preserve microbial methane, but rather than being stagnant archives, they are more dynamic
and complex than was once thought. Conventional carbon and hydrogen stable isotopes are
often used to determine the source of methane as a proxy in remote environments (Heuer
et al., 2009). However, these measurements produce often overlapping signals, confounded
by formation processes and source values (Chp. 2 Gruen et al., 2018). Novel measurements
of methane isotopologues may aid in determining the formation process (e.g., microbial
vs. thermogenic) for methane in these environments, particularly due to differences in how
these molecules form and mix (Chp. 2, App. A; Gruen et al., 2018; Stolper et al., 2013,
2014, 2015; Wang et al., 2015). It is possible that these measurements will indicate that
some environments may have a greater contribution from microbial sources than was once
thought. The data in this appendix represent data that was sampled and measured but not

incorporated into the main thesis chapters.
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Figure B-4: Three sample sites highlighted. Cascadia Margin is putatively microbial, Bush Hill is
putatively thermogenic, and Pechori Mound is putatively microbial.
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Table B-1:

Sample descriptions and associated references.

413C-CH,4 .
eoB i i
Geol Site ‘Tool Region Gas type ci1/C2 [%:V-PDB]| Literature
Black Sea
Pape et al.
15260 Batumi Seep Gravity Corer Eastern Black Sea hydrate-bound gas 4,178 -53.8 (2011); Reitz
et al. (2011)
Pape et al.
11907 Batumi Seep Gas Bubble Sampler  Eastern Black Sea vent gas 5,383 -53.2 (2011); Reitz
et al. (2011)
11921-1 Batumi Seep Gas Bubble Sampler  Eastern Black Sea vent gas 4.631 -51.5
Reitz et al.
11971 Colkheti Seep Gravity Corer Eastern Black Sea hydrate-bound gas 32 -49.5 (2011); Kérber
et al. (2014)
Reitz et al.
11902-1 Colkheti Seep Gas Bubble Sampler Eastern Black Sea vent gas 190 -48.1 (2011): Kiirber
ot al. (2014)
Reitz et al.
11938 Iberia Mound Gravity Corer Eastern Black Sea hydrate-bound gas 2,090 -53.1 (2011); Kirber
et al. (2014)
15268-1 Ordu ridge patch  Gravity corer Eastern Black Sea hydrate-bound gas 3,131 -70.8
15503-1 Ordu ridge patch  Gravity corer Eastern Black Sea hydrate-bound gas -70.4
15505 Ordu ridge patch  Gravity corer Eastern Black Sea hydrate-bound gas =726
15507 Ordu ridge patch  Gravity corer Eastern Black Sea hydrate-bound gas =713
Reitz et al.
15227-3 Pechori Mound MeBo Eastern Black Sea hydrate-bound gas 3 -48.8 (2011); Kérber
et al. (2014)
15244-2 Poti Seep Gravity corer Eastern Black Sea hydrate-bonnd gas 4,153 -50.3
11913 Vodyanitskii MV Gravity corer Northern Black Sea hydrate-bound gas 2018 59.2 ?;é'[';;;“ etal.
Hegoland MV Gravity Corer Northern Black Sea hydrate-bound gas 3.054 -63.6
Hegoland MV Gas Bubble Sampler  Northern Black Sea vent gas 2,257 -62.8
Ketch Flare Gravity Corer Northern Black Sea fydratistiound gas 2408 669 :‘2‘1’:;‘2“}' ecal
Continental margin W of Africa
Sultan et al.
16001-1 Pockmark A Gravity Corer Gulf of Guinea, S of Nigeria  hydrate-bound gas 6,556 -51.1 (2014); Wei et al.
(2015)
Sultan et al.
16022-1 Pockmark _ A Gravity Corer Gulf of Guinea, S of Nigeria  hydrate-bound gas 8,443 =51 (2014); Wei et al.
(2015)
Sultan et al.
16005-2 Pockmark_C1 Gravity Corer Gulf of Guinea, S of Nigeria  hydrate-bound gas 4,060 -53 (2014): Wei et al.
(2015)
Sultan et al.
16016-1 Pockmark _C1 Gravity Corer Gulf of Guinea, S of Nigeria hydrate-bound gas 6,467 -51.3 (2014); Wei et al.
(2015)
; P . o § Sahling et al.
13114-3 Hydrate Hole Gravity Corer Northern Congo Fan hydrate-bound gas 1.988 -70.6 (2008)
13115-1 Baboon Hole Gravity Corer Northern Congo Fan hydrate-bound gas 1.638 -69.3 (s;(ﬁ:i;g st Al
13118-1 Worm Hole Gravity Corer Northern Congo Fan hydrate-bound gas 1419 -70.7 f;tlhi:;g et al.
13120-4 Deep Hole Gravity Corer Northern Congo Fan hydrate-bound gas 1.629 -T0.8 ?;l]IﬂI::;g eval;
13121-1 Regab pockmark  Gravity Corer Northern Congo Fan hydrate-bound gas 1,599 -68.4 ?;;ig;g ek:al:
SW of Japan
16716-2 MV10 Gravity Corer Kumano Basin. S of Japan hydrate-bound gas 65 Pape et al. (2014)
16736-2 MV4 Gravity Corer Kumano Basin, § of Japan hydrate-bound gas 59 Pape et al. (2014)
16746 MV Gravity Corer Kumano Basin. § of Japan hydrate-bound gas 1,199 Pape et al. (2014)
16772 MV2 Gravity Corer Kumano Basin, S of Japan hydrate-bound gas 173 Pape et al. (2014)
8 of Pakistan
Fischer et al.
12303 Nascent Ridge Gravity Corer Makran Accretionary Prism hydrate-bound gas 6,463 -66.4 (2013): Romer
et al. (2012)
Fischer et al.
12316-3 Flare 2 Gravity Corer Makran Accretionary Prism hydrate-bound gas 3,632 -67.5 (2013): Romer
et al. (2012)
Fischer et al.
12316-4 Flare 2 Gravity Corer Makran Accretionary Prism hydrate-hbound gas 6,173 -GR.B (2013); Romer
et al. (2012)
North Atlantic
16ROT-2 Area 1 Gas Bubble Sampler W of Spitsbergen vent gas 6,363 436 ?;Dl'l':'}“ vl
16823-2 Area 2 Gas Bubble Sampler W of Spitshergen vent gas 7,497 -55.8 ’E’;‘(';l';“}“ L
16823-5 Area 2 Gas Bubble Sampler W of Spitshergen vent gas 7418 559 :’;‘I‘ll;';g eual,
16833-2 Area 3 Gas Bubble Sampler W of Spitshergen vent gas 7.748 -538 ?;(?lhal;g ekl
16833-3 Arvea 3 Gas Bubble Sampler W of Spitshergen vent gas 8,385 =574 ?;(]]ll]:;g el
168482 Area d Gas Bubble Sampler W of Spitshergen vent gas 9,028 -56.1 ?2“(]]':’4';“ ecal.
Moshy
t\{la\z:knn Moshy Gravity Corer SW Barents Sea hydrate-bound gas 1,215 n.det. Pape et al. (2011)
Moshy
;{;'ka‘ Mosby Gravity Corer SW Barents Sea hydrate-bound gas 1.637 -63 Pape et al. (2011)
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Table B-2: Methane hydrate data. 6*3C is in reference to PDB, 6D is in reference to SMOW. & ke
(B) indicates that this was measured in Bremen.

g";‘;‘c‘r’::{i;:’ s sd. D S AYCHGD  s.d. TeC) cCc1/c2  6¥C (B) E:’;:’r)
Baboon Hole -73.73 0.001 -203.20 0.001 5.00 0.20 53 1.638 -69.3 -
Batumi Seep -53.717 0.001 -232.50 0.001 4.97 0.34 57 4,178 -H3.8 -
Batumi Seep -54.30 0.001 -235.25 0.001 4.86 0.31 61 5,383 -H3.2 -
Batumi Seep -53.93 0.001 -234.58 0.001 4.93 0.16 58 4.631 -51.5 -
Bullseye Vent -(68.43 0.001 -163.99 0.001 7.21 0.45 -20 - - -
Bush Hill, Gulf of Mexico  -45.38 0.001 -174.90 0.001 3.67 0.42 106 - - -
Cascadia Margin, Oregon  -67.85 0.001 -170.86 0.001 5.57 0.44 25 - - -
Colkheti Seep -50.03 0.001 -218.26 0.001 4.64 0.25 70 32 -49.5 -
Colkheti Seep -49.92 0.001 -217.74 0.001 4.37 0.62 82 190 -48.1 -
Flare 2 -72.68 0.001 -216.00 0.001 4.62 0.36 71 3,632 -67.5 -
Flare 2 -72.90 0.001 -212.03 0.001 5.11 0.41 51 6,173 -68.8 -
Hegoland MV -64.51 0.001 -240.30 0.001 3.27 0.28 143 3.054 -63.6 -
Hegoland MV -63.62 0.001 -238.75 0.001 3.09 0.31 156 2,257 -62.8 -
Hydrate Hole -74.03 0.001 -199.33 0.001 5.30 0.40 44 1,988 -70.6 -
Iberia Mound -50.08 0.001 -239.92 0.001 4.50 0.41 76 2,090 -53.1 -
Kerch Flare -72.44 0.001 -281.62 0.001 4.69 0.12 68 2,498 -66.9 -
Nascent Ridge -72.14 0.001 -208.72 0.001 4.61 0.39 71 6,463 -66.4 -
Ordu Patch 2 -73.88 0.001 -247.91 0.001 5.48 0.26 38 3,131 -70.8 -
Ordu Patch 3 -74.05 0.001 -244.27 0.001 4.91 0.20 59 2,816 -70.4 -
Ordu Patch 5 -73.19 0.001 -240.81 0.001 5.29 0.19 45 2,335 -72.6 -
Ordu Patch 7 -73.29 0.001 -247.96 0.001 5.20 0.24 48 3,258 -71.3 -
Pechori Mound 1 cc -49.79 " 0.001 -237.27 0.001 4.76 0.42 65 5 -48.8 -1
Pechori Mound 1/23 cmn -49.27 0.001 -233.92 0.001 5.06 0.97 53 not det not det 0
Pechori Mound 5ce -49.74 0.001 -239.15 0.001 4.83 0.35 62 not det not det -5
Pechori Mound 7ee -52.60 0.001 -238.49 0.001 3.52 0.34 127 not det not det -7
Pechori Mound 9cc -50.28 0.001 -237.15 0.001 4.21 0.33 90 not det not det -9
Pechori Mound, Black Sea  -48.61 0.001 -192.13 0.001 5.13 0.23 40 not. det not det -
Pock A, S of Nigeria -50.24 0.001 -161.32 0.001 4.24 0.39 T 8,443 -51 -
Pock C, S of Nigeria -52.62 0.001 -160.57 0.001 4.71 0.19 56 6,467 -51.3 -
Pockmark A -53.37 0.001 -193.58 0.001 4.90 0.18 59 8,443 -51 -
Pockmark C -54.87 0.001 -193.66 0.001 5.37 0.51 42 6,467 -51.3 -
Poti Seep -55.90 0.001 -235.06 0.001 4.83 0.38 62 4,153 -50.3 -
Vodyanitskii MV -63.09 0.001 -235.06 0.001 2,74 0.12 184 2,018 -59.2 -
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APPENDIX C

THE EFFECT OF THE ANAEROBIC OXIDATION OF
METHANE ON CLUMPED METHANE ISOTOPOLOGUE
(13CH3D) SYSTEMATICS
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Motivation and Outlook

Clumped isotopolgues (e.g., 1*CH3D ) of microbial methane from pure cultures of methanogens
and quickly-generated microbial methane in environments such as swamps correspond to
reportedly high methane equilibrium temperatures largely driven by kinetic processes (Dou-
glas et al., 2017; Gruen et al., 2018, 2014; Stolper et al., 2013, 2014, 2015; Wang et al.,
2015; Young et al., 2017). However, this is inconsistent with measurements of putatively
microbial methane from environments such as methane hydrates (Wang et al., 2015, Chp.
2). It is hypothesized that this may be due to isotope exchange reactions, extremely slow
microbial methanogenesis, or oxidation processes happening in the environment. However,
isotope exchange with water is likely sluggish in these environments (Reeves et al., 2012).
Methanogensis occurring on geological timescales is difficult to measure. Moreover, the
aerobic oxidation of methane by microbes actually pushes the clumped isotopologue signal
even lower, farther from stochastic distribution in what is referred to as "anti-clumped"
(Wang et al., 2016). So what is producing the near-equilibrium signals observed in oceanic
sediments? One hypothesis is that other oxidation processes occurring here, such as the
anaerobic oxidation of methane (AOM) may be acting on this methane reservoir. It is re-
ported that most of the putatively microbial methane from Hydrate Ridge, Cascadia Margin,
is actually removed by AOM (Boetius and Suess, 2004).

The goal of this work was to carry out culture experiments using incubations of sedi-
ments with active AOM metabolism (Holler et al., 2009; Yoshinaga et al., 2014; Wegener
et al., 2016) to test the effect of AOM on the clumped isotope systematics of reservoirs of
methane (Table C-1). The data in this appendix represent data that was sampled and mea-
sured but not incorporated into the main thesis chapters. It was found that in these AOM
cultures, 613C and 6D increased over the course of the methane consumption experiment,
demonstrating kinetic isotope fractionation (Figures C-1 and C-2). The value of A¥CH3zD
also increased, but in the direction of equilibrium values for the growth temperature (Figure
C-3). Plotting the associated *CH3D -based temperature illustrates this point, as over time
apparent methane temperatures approach reasonable culture temperature (Figure C-4). In
summary, AOM represents one explanation for the discrepancy between clumped isotopo-
logue values observed in pure methanogen cultures compared with environmental samples.
It is possible that AOM acts in the opposite direction from the aerobic oxidation of methane.

This will be an exciting target of future work.
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Table C-1: Methane isotope composition over the course of the methane consumption experiment.

CHy4
consumed a3c éD ASCH3D T(°C)
(%)
0.00 -36.74 £ 0.16 %o -145.77 £ 0.14 %o 1.69 =+ 0.64 %o 286 +132/-80 °C
0.52 -37.12 £ 0.10 %o -144.86 = 0.07 %o 1.85 =+ 0.33 %o 263 +51/-41 °C
0.00 -36.82 =+ 0.08 %o -145.70 =+ 0.09 %o 1.93 =+ 0.50 %o 253 +78/-56 °C
8.12 -35.44 £ 0.06 %o -133.19 £+ 0.21 %o 2.25 =+ 0.29 %o 215 +34/-29 °C
12.57 -34.23 £+ 0.05 %o -121.25 £+ 0.35 %o 252 £+ 0.44 %o 188 +46/-37 °C
21.48 -33.05 =+ 0.06 %¢ -109.06 =+ 0.06 %o 3.28 £+ 0.10 %e 130 +7/-6 °C
0.00 -36.68 =+ 0.06 %o -145.52 =+ 0.05 %o 1.47 £ 0.10 %e 323 +19/-18 °C
31.17 -31.16 =+ 0.08 %o -89.91 =+ 0.06 %o 417 £ 0.10 %o 80 +5/-5°C
34.31 -30.68 =+ 0.05 %o -86.44 £ 0.01 %o 4.70 £ 0.10 %o 57 +4/-4 °C
35.62 -29.05 £ 0.05 %e -70.63 =+ 0.06 %o 5.45 =+ 0.10 %o 29 +3/-3°C
0.00 -36.31 £ 0.05 %e -144.65 =+ 0.07 %o 1.52 =+ 0.31 %o 314 +63/-49 °C
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APPENDIX D

EVOLUTION OF THE METHYL-CORRINOID PATHWAY OF
METHANOGENESIS AND POSSIBLE IMPLICATIONS FOR
BIOGEOCHEMICAL CYCLING IN PROTEROZOIC AND
PHANEROZOIC OCEANS
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Figure D-2: Gene tree of mtaA. Red indicates putatively methanogenic
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Figure D-3: Gene tree of mtaB. Red indicates putatively methanogenic taxa.
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Figure D-5: Gene tree of mtbB. Red indicates putatively methanogenic taxa.
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Figure D-6: Gene tree of mtbB1. Red indicates putatively methanogenic taxa.
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Figure D-7: Gene tree of mtbC. Red indicates putatively methanogenic taxa.
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Figure D-8: Gene tree of mtmB1. Red indicates putatively methanogenic taxa.
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Figure D-9: Gene tree of mtsA. Red indicates putatively methanogenic taxa.
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Figure D-10: Gene tree of mtsB. Red indicates putatively methanogenic taxa.
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Figure D-11: Gene tree of mttb. Red indicates putatively methanogenic taxa.
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Figure D-12: Gene tree of mttC. Red indicates putatively methanogenic taxa.

192



APPENDIX E
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Figure E-1: Expanded RAxML gene tree with tip labels and bootstrap support values.
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Figure E-2: Prior date distributions across nodes under the four calibration setups.
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Table E-1: Taxa in this study. Environment refers to the environment that these substrates
operate inl or where the organism was sampled from according to NCBI. Aquatic represents marine
environments. Terrestrial refers to land which includes shallow freshwater ponds/swamp type sample

locations.

Taxon Name | Protein ID Clade Taxonomy Environment
Actinobacteria_bacterium_13_ 2 20CM_2 71 6|OLB77094.1 bacteria | Actinobacteria T
Actinokineospora__inagensis| WP _026423506.1 bacteria | Actinobacteria T
Actinomadura_macra|WP _067464737.1 bacteria | Actinobacteria T
Actinophytocola_ xinjiangensis| WP _075132815.1 bacteria | Actinobacteria T
Actinosporangium_sp NRRL_B_3428|WP 052581227.1 bacteria | Actinobacteria T
Actinosynnema_sp ALI 1 44|WP_076987693.1 bacteria | Actinobacteria T
Amycolatopsis_kentuckyensis| WP _086844859.1 bacteria | Actinobacteria T
Asanoa__ishikariensis| WP _090795177.1 bacteria | Actinobacteria T
Catelliglobosispora_koreensis| WP _026207975.1 bacteria { Actinobacteria T
Cellulosimicrobium _cellulans| WP _087471431.1 bacteria | Actinobacteria T
Glycomyces _sambucus|WP _091045549.1 bacteria | Actinobacteria T
Herbidospora__daliensis| WP 062439410.1 bacteria | Actinobacteria T
Kibdelosporangium sp MJ126 NF4|WP_042195239.1 bacteria | Actinobacteria T
Kitasatospora_ albolonga|WP 084750020.1 bacteria | Actinobacteria T
Kribbella_sp ALI 6 A|WP_077015618.1 bacteria | Actinobacteria T
Lechevalieria_ fradiae| WP _090044473.1 bacteria | Actinobacteria T
Micromonospora_sp CB01531|WP _073839717.1 bacteria | Actinobacteria T
Microtetraspora_ glauca| WP _030497465.1 bacteria | Actinobacteria T
Mycobacterium __tuberculosis| CNE32205.1 bacteria | Actinobacteria T
Nonomuraea jiangxiensis| WP _090946548.1 bacteria | Actinobacteria T
Planobispora rosea| WP _ 068921834.1 bacteria | Actinobacteria T
Planomonospora_ sphaerica] WP _068895167.1 bacteria | Actinobacteria T
Saccharothrix_sp_NRRL_B_16348/WP _053716888.1 bacteria | Actinobacteria T
Sinosporangium _album|WP _093169663.1 bacteria | Actinobacteria T
Streptoalloteichus__hindustanus|WP _073483646.1 bacteria | Actinobacteria T
Streptomyces_scabrisporus| WP_020551069.1 bacteria | Actinobacteria T
Streptosporangium _subroseum|WP _089208112.1 bacteria | Actinobacteria T
Thermoactinospora_ rubra|WP _084964699.1 bacteria | Actinobacteria T
Aquimarina_spongiae|SHI61232.1 bacteria | Bacteroidetes A
Chitinophaga _rupis|WP_089906523.1 bacteria | Bacteroidetes T
Fulvivirga_imtechensis| WP _083867410.1 bacteria | Bacteroidetes A
Microscilla_marina_ ATCC _23134|EAY30869.1 bacteria | Bacteroidetes A
Niastella_ yeongjuensis| WP _081197334.1 bacteria | Bacteroidetes T
Persicobacter _sp_ JZB09|WP _060687981.1 bacteria | Bacteroidetes A
Reichenbachiella_ faecimaris| WP _084370698.1 bacteria | Bacteroidetes A
Andreprevotia_ chitinilytica| WP _084187288.1 bacteria | Betaproteobacteria T
Chitiniphilus_ shinanonensis| WP _018748575.1 bacteria | Betaproteobacteria A
Chromobacterium__amazonense| WP _071108352.1 bacteria | Betaproteobacteria A
Chromobacterium_haemolyticum|{WP _081574973.1 bacteria | Betaproteobacteria T
Chromobacterium_ sphagnilWP _071113284.1 bacteria | Betaproteobacteria T

Continued on next page
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Table E-1 — continued from previous page

Taxon Name | Protein ID Clade Taxonomy Environment
Chromobacterium_ violaceum|WP _043615248.1 bacteria | Betaproteobacteria T
Mitsuaria_sp_7|WP_082938754.1 bacteria | Betaproteobacteria T
Pelomonas_puraquae| WP _ 088484787.1 bacteria | Betaproteobacteria T
Pseudogulbenkiania_ferrooxidans|WP_031296507.1 bacteria | Betaproteobacteria T
Roseateles_depolymerans| WP _083526021.1 bacteria | Betaproteobacteria T
Roseateles_terrae| WP 088453654.1 bacteria | Betaproteobacteria T
Deinococcus _hopiensis_ KR_ 140|WP _084045460.1 bacteria | Deinococcus T
Deinococcus_maricopensis_ DSM_21211{WP_ 013558263.1 bacteria | Deinococcus T
Cohnella_sp CIP_111063|WP _094044771.1 bacteria | Deltaproteobacteria T
Corallococcus _coralloides DSM_ 2259|WP _014399530.1 bacteria | Deltaproteobacteria T
Cystobacter ferrugineus| WP _084736787.1 bacteria | Deltaproteobacteria T
Melittangium_boletus_ DSM_14713|WP _095979189.1 bacteria | Deltaproteobacteria T
Myzxococcus_fulvus|WP_046715376.1 bacteria | Deltaproteobacteria T
Stigmatella_aurantiaca_ DW4_3_1|WP_013376730.1 bacteria | Deltaproteobacteria T
Anaerocolumna_ xylanovorans_ DSM_ 12503| WP _073590321.1 bacteria | Firmicutes T
Bacillus_anthracis_str  H9401|WP _014654726.1 bacteria | Firmicutes T
Bacillus_cereus_ 03BB108|WP _001994684.1 bacteria | Firmicutes T
Bacillus_sp FJAT _27238|WP_016742699.1 bacteria | Firmicutes NR
Bacillus_toyonensis| PAW47140.1 bacteria | Firmicutes T
Bacillus_ wiedmanniif WP _098079181.1 bacteria | Firmicutes T
Brevibacillus_ brevis| WP _ 087349255.1 bacteria | Firmicutes T
Brevibacillus_formosus|WP _047074631.1 bacteria | Firmicutes T
Brevibacillus_sp Leafl82|WP _056491684.1 bacteria | Firmicutes T
Clostridium _botulinum B_str_Osaka05|WP _073860743.1 bacteria | Firmicutes T
Clostridium _cavendishii_ DSM _ 21758|SH169443.1 bacteria | Firmicutes T
Clostridium _sp ND2|WP _084764479.1 bacteria | Firmicutes NR
Kurthia_gibsonii|AF172779.1 bacteria | Firmicutes T
Paenibacillus _assamensis| WP _051217339.1 bacteria | Firmicutes T
Paenibacillus_ehimensis| WP _025852116.1 bacteria | Firmicutes T
Paenibacillus_elgii| WP _063184838.1 bacteria { Firmicutes T
Paenibacillus__swuensis| WP _068603214.1 bacteria | Firmicutes T
Paenibacillus_taiwanensis| WP _051287538.1 bacteria | Firmicutes T
Paenibacillus_tianmuensis| WP _090673949.1 bacteria | Firmicutes T
Paenibacillus_tyrfisl WP _ 036687954.1 bacteria | Firmicutes T
Paenibacillus| WP _081717951.1 bacteria | Firmicutes T
Paludifilum _halophilum|WP _094265818.1 bacteria | Firmicutes T
Streptococcus _pneumoniae| CKG26627.1 bacteria | Firmicutes T
Thermoactinomyces _daqus|WP _081944003.1 bacteria | Firmicutes T
Thermoactinomyces _vulgaris| WP _022737757.1 bacteria | Firmicutes T
Hahella_chejuensis KCTC_ 2396/ WP _011394837.1 bacteria | Gammaproteobacteria | A
Aliivibrio _fischeri| WP _065597214.1 bacteria | Gammaproteobacteria | A
Aliivibrio _wodanis| WP _061013584.1 bacteria | Gammaproteobacteria | A
Cellvibrio _sp_ pealriver| WP _049631752.1 bacteria | Gammaproteobacteria | A
Lysobacter _antibioticus| WP _079248132.1 bacteria | Gammaproteobacteria | T

Continued on next page
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Table E-1 — continued from previous page

Taxon Name | Protein ID Clade Taxonomy Environment
Lysobacter _ capsici]ALN87908.1 bacteria | Gammaproteobacteria | T
Lysobacter _enzymogenes| WP _082644261.1 bacteria | Gammaproteobacteria | T
Lysobacter _gummosus|ALN93704.1 bacteria | Gammaproteobacteria | T
Microbulbifer sp HZ11|WP _081847999.1 bacteria | Gammaproteobacteria | A
Photobacterium jeanii|l WP 068327670.1 bacteria | Gammaproteobacteria | A
Pseudoxanthomonas _sp CF125|SDQ75949.1 bacteria | Gammaproteobacteria | T
Vibrio cholerae]WP 095481188.1 bacteria | Gammaproteobacteria | A
Vibrio _coralliilyticus| WP _038509898.1 bacteria | Gammaproteobacteria | A
Vibrio _metoecus| KQA22300.1 bacteria | Gammaproteobacteria | T
Vibrio _nigripulchritudo|WP _022594672.1 bacteria | Gammaproteobacteria | A
Vibrio parahaemolyticus| WP _031855765.1 bacteria | Gammaproteobacteria | A
Xanthomonas_sp AK|BAA36460.1 bacteria | Gammaproteobacteria | T
Aschersonia_aleyrodis_ RCEF _2490|KZZ88173.1 fungi Ascomycota
Beauveria_bassiana_ARSEF 2860|XP_008603412.1 fungi Ascomycota
Claviceps_purpurea_20_1|CCE29524.1 fungi Ascomycota
Colletotrichum__gloeosporioides_ Cg_ 14|EQB55915.1 fungi Ascomycota
Colletotrichum _higginsianum IMI 349063|XP _018160050.1 fungi Ascomycota
Coniochaeta _ligniaria  NRRL 30616/0I1W32936.1 fungi Ascomycota
Cordyceps_ brongniartii_ RCEF _3172|0AA33915.1 fungi Ascomycota
Cordyceps__militaris| ATY67196.1 fungi Ascomycota
Diaporthe ampelina|KKY33732.1 fungi Ascomycota
Diaporthe_helianthi|POS73161.1 fungi Ascomycota
Drechmeria__coniospora|KYK61674.1 fungi Ascomycota
Escovopsis_ weberi|K0521945.1 fungi Ascomycota
Fonsecaea_multimorphosa_CBS_102226|/XP _016628205.1 fungi Ascomycota
fungal sp_No_14919|GAW12378.1 fungi Ascomycota
Fusarium _avenaceum|KIL91362.1 fungi Ascomycota
Fusarium_fujikuroi IMI 58289|XP 023429066.1 fungi Ascomycota
Fusarium _graminearum_ PH_1|XP_011324582.1 fungi Ascomycota
Fusarium _langsethiae| KPA45507.1 fungi Ascomycota
Fusarium _mangiferae|CVK87365.1 fungi Ascomycota
Fusarium_nygamai|PNP84899.1 fungi Ascomycota
Fusarium _oxysporum_FOSC 3 a|EWZ02462.1 fungi Ascomycota
Fusarium__poae|OBS21759.1 fungi Ascomycota
Fusarium_proliferatum|CVK87747.1 fungi Ascomycota
Fusarium _ pseudograminearum _ CS3096|XP _009254403.1 fungi Ascomycota
Fusarium_sp FIESC 5 CS3069|CEG04533.1 fungi Ascomycota
Fusarium _ verticillioides  7600{XP__(018749091.1 fungi Ascomycota
Gaeumannomyces_ tritici R3 _111a_1|XP_009219406.1 fungi Ascomycota
Hypocrella_siamensis|ALI93553.1 fungi Ascomycota
Hypoxylon_sp CI 4A|OTB05187.1 fungi Ascomycota
Isaria_ fumosorosea_ ARSEF _2679|XP_018702722.1 fungi Ascomycota
Magnaporthe _oryzae 70 15|XP 003714897.1 fungi Ascomycota
Metarhizium _acridum CQMa_102|XP_007815036.1 fungi Ascomycota
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Table E-1 — continued from previous page

Taxon Name | Protein ID Clade Taxonomy Environment
Metarhizium _album_ARSEF_1941|KHN93916.1 fungi Ascomycota
Metarhizium _anisopliae_ BRIP 53293/ KJK76262.1 fungi Ascomycota
Metarhizium _brunneum ARSEF_3297|XP_014539677.1 fungi Ascomycota
Metarhizium _guizhouense ARSEF _977|KID83374.1 fungi Ascomycota
Metarhizium majus ARSEF_297|XP_014573577.1 fungi Ascomycota
Metarhizium_rileyi RCEF 4871|0AA44119.1 fungi Ascomycota
Metarhizium _robertsii_ ARSEF _23|XP_ 007823947.1 fungi Ascomycota
Nectria_haematococca_mpVI_77_13_4|XP_003050159.1 fungi Ascomycota
Neonectria_ ditissima|KPM38261.1 fungi Ascomycota
Neurospora_crassa_ OR74A|XP _011395327.1 fungi Ascomycota
Neurospora_tetrasperma_ FGSC_ 2508|XP _009853080.1 fungi Ascomycota
Ophiostoma_piceae UAMH 11346/ EPE05896.1 fungi Ascomycota
Phaeoacremonium_minimum _UCRPAT7|XP _007917527.1 fungi Ascomycota
Phialophora_americana| KIW68338.1 fungi Ascomycota
Pochonia_ chlamydosporia_170|XP_018136544.1 fungi Ascomycota
Podospora_anserina_S_mat_{XP_001904165.1 fungi Ascomycota
Purpureocillium_lilacinum|XP_018179211.1 fungi Ascomycota
Rosellinia_ necatrix| GAP83950.1 fungi Ascomycota
Sordaria_macrospora_k _hell|]XP _003348594.1 fungi Ascomycota
Sporothrix_insectorum RCEF _264/OAA58430.1 fungi Ascomycota
Stachybotrys chartarum IBT _40293|KFA46477.1 fungi Ascomycota
Stachybotrys chlorohalonata IBT _40285|KFA60985.1 fungi Ascomycota
Thielavia_terrestris NRRL_8126|XP _003654697.1 fungi Ascomycota
Torrubiella_hemipterigena|CEJ94273.1 fungi Ascomycota
Trichoderma_ atroviride IMI_206040|XP__013945238.1 fungi Ascomycota
Trichoderma_gamsii|XP _018659094.1 fungi Ascomycota
Trichoderma_guizhouense| OPB46374.1 fungi Ascomycota
Trichoderma_harzianum|PNP57499.1 fungi Ascomycota
Trichoderma _parareesei]OTA01922.1 fungi Ascomycota
Trichoderma_reesei| CAZ16624.1 fungi Ascomycota
Trichoderma_virens_ Gv29_8|XP_013952675.1 fungi Ascomycota
Ustilaginoidea virens|KDB16030.1 fungi Ascomycota
Valsa_mali|KUI66287.1 fungi Ascomycota
Agaricus_bisporus_var_burnettii_JB137_S8|XP_007327593.1 | fungi Basidiomycota
Amanita_thiersii Skay4041|PFH50181.1 fungi Basidiomycota
Armillaria_gallica|PBK99462.1 fungi Basidiomycota
Armillaria_ ostoyae|SJL03806.1 fungi Basidiomycota
Armillaria_solidipes|PBK72370.1 fungi Basidiomycota
Auricularia_subglabra_ TFB_10046 _SS5|XP _007352083.1 fungi Basidiomycota
Calocera_cornea_ HHB12733|KZT52238.1 fungi Basidiomycota
Calocera_ viscosa_ TUFC12733|KZP01089.1 fungi Basidiomycota
Coniophora _puteana RWD_64_ 598 _SS2|XP_007770490.1 fungi Basidiomycota
Cryptococcus_ depauperatus_ CBS_7841|ODN91132.1 fungi Basidiomycota
Cryptococcus_gattii_ E566|KIY34695.1 fungi Basidiomycota
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Table E-1 — continued from previous page

Taxon Name | Protein ID Clade Taxonomy Environment
Cryptococcus_neoformans_ var_grubii| OWZ72202.1 fungi Basidiomycota
Cylindrobasidium _torrendii_ FP15055_ss_ 10{KIY62608.1 fungi Basidiomycota
Daedalea quercina L 15889|KZT71956.1 fungi Basidiomycota
Dichomitus _squalens LYAD 421 SS1|XP_007362933.1 fungi Basidiomycota
Exidia_glandulosa_ HHB12029|KZV81950.1 fungi Basidiomycota
Fibroporia_radiculosa|XP_012181105.1 fungi Basidiomycota
Fibularhizoctonia_sp_ CBS_ 109695/KZP14692.1 fungi Basidiomycota
Fomitiporia mediterranea MF3_22|XP_007261858.1 fungi Basidiomycota
Fomitopsis_pinicola  FP 58527 SS1|EPT05438.1 fungi Basidiomycota
Galerina_ marginata_ CBS_ 339_ 88| KDR80726.1 fungi Basidiomycota
Ganoderma,_sinense_ 7270214 _1|PIL36523.1 fungi Basidiomycota
Gelatoporia_subvermispora_ B|[EMD33176.1 fungi Basidiomycota
Gloeophyllum_ trabeum_ATCC_11539|XP_ 007865094.1 fungi Basidiomycota
Grifola_frondosa|OBZ73901.1 fungi Basidiomycota
Gymnopus_luxurians_ FD 317 M1|KIK68276.1 fungi Basidiomycota
Heterobasidion _irregulare TC_32 1|XP_009549140.1 fungi Basidiomycota
Hydnomerulius_pinastri_ MD_312|KI1J57853.1 fungi Basidiomycota
Hypholoma_sublateritium FD 334 SS 4/KJA28076.1 fungi Basidiomycota
Jaapia_argillacea_ MUCL_33604|KDQ61715.1 fungi Basidiomycota,
Kockovaella_imperatae|XP_021871935.1 fungi Basidiomycota
Kwoniella_dejecticola_ CBS_10117|XP_018260439.1 fungi Basidiomycota
Kwoniella_heveanensis  CBS_569|OCF46041.1 fungi Basidiomycota
Kwoniella_mangroviensis_ CBS_ 8886|XP_019003580.1 fungi Basidiomycota
Kwoniella_pini_ CBS_10737/XP_019009183.1 fungi Basidiomycota
Laetiporus_sulphureus 93 53|KZT09935.1 fungi Basidiomycota
Lentinula_edodes| GAW00447.1 fungi Basidiomycota
Leucoagaricus_sp_ SymC_ cos|KXN83991.1 fungi Basidiomycota
Melanopsichium _pennsylvanicum_ 4|CDI53624.1 fungi Basidiomycota
Moesziomyces__antarcticus|XP _014657252.1 fungi Basidiomycota
Moniliophthora roreri MCA 2997|XP_007844272.1 fungi Basidiomycota
Naematelia_encephala|ORY26060.1 fungi Basidiomycota
Neolentinus_lepideus HHB14362 ss 1/KZT18638.1 fungi Basidiomycota
Obba_ rivulosa| OCH85900.1 fungi Basidiomycota
Paxillus_involutus ATCC_200175|K1J20918.1 fungi Basidiomycota
Peniophora_sp CONT|KZV61339.1 fungi Basidiomycota
Phanerochaete _carnosa_ HHB 10118 sp|XP _007400730.1 fungi Basidiomycota
Phellinus_noxius|PAV18116.1 fungi Basidiomycota
Phlebia_centrifuga|OKY58257.1 fungi Basidiomycota
Phlebiopsis_gigantea 11061 1 CR5_6/KIP08831.1 fungi Basidiomycota
Piloderma_croceum F 1598/ KIM83828.1 fungi Basidiomycota
Pisolithus _microcarpus 441|/KIK23049.1 fungi Basidiomycota
Pisolithus _tinctorius_Marx 270|KI010841.1 fungi Basidiomycota
Plicaturopsis_crispa_ FD 325 _SS_3|KII93375.1 fungi Basidiomycota
Postia_placenta_Mad 698 R{XP 002475036.1 fungi Basidiomycota
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Taxon Name | Protein ID Clade Taxonomy Environment
Pseudozyma_hubeiensis_SY62|XP_012187014.1 fungi Basidiomycota
Punctularia_strigosozonata_ HHB_11173_SS5|XP_007386461.1 | fungi Basidiomycota
Pycnoporus_coccineus_ BRFM310/0SD02937.1 fungi Basidiomycota
Rhizopogon _vinicolor_ AM_ OR11_026{OAX37953.1 fungi Basidiomycota
Sanghuangporus_ baumii|OCB91529.1 fungi Basidiomycota
Schizopora_paradoxa|KLO18244.1 fungi Basidiomycota
Scleroderma_ citrinum_Foug_ A|KIM58986.1 fungi Basidiomycota
Serpula_lacrymans_var_lacrymans_S7_9|XP_007320926.1 fungi Basidiomycota
Sistotremastrum_ niveocremeum_ HHB9708|KZS88861.1 fungi Basidiomycota
Sistotremastrum _suecicum HHB10207_ss_3|KZT36940.1 fungi Basidiomycota
Sporisorium_reilianum_f sp_reilianum{SJX62990.1 fungi Basidiomycota
Stereum_hirsutum FP_91666_ SS1|XP_007304512.1 fungi Basidiomycota
Suillus_luteus_ UH_Slu_Lm8_ n1|KIK48287.1 fungi Basidiomycota
Termitomyces _sp J132|KNZ74502.1 fungi Basidiomycota
Trametes _cinnabarina| CDO78089.1 fungi Basidiomycota
Trametes pubescens|0JT02884.1 fungi Basidiomycota
Trametes versicolor FP_101664_SS1|XP_008038395.1 fungi Basidiomycota
Tremella_mesenterica  DSM_1558|XP _007003148.1 fungi Basidiomycota
Tsuchiyaea wingfieldii CBS_7118|XP_019032869.1 fungi Basidiomycota
Ustilago_bromivora|SAM82108.1 fungi Basidiomycota
Wolfiporia_cocos_ MD _104_SS10|PCH44331.1 fungi Basidiomycota
Basidiobolus _meristosporus_ CBS _931_73|ORX91522.1 fungi Basidiomycota
Hesseltinella_vesiculosa|ORX58941.1 fungi Basidiomycota
Allomyces _macrogynus_ATCC_ 38327|KNE60875.1 fungi Blastocladiomycota
Catenaria_anguillulae_ PL171|/ORZ38929.1 fungi Blastocladiomycota
Gonapodya_prolifera JEL478/KXS16685.1 fungi Chytridiomycota
Rhizoclosmatium _globosum|ORY41636.1 fungi Chytridiomycota
Spizellomyces _punctatus_ DAOM_BR117|XP_016608094.1 fungi Chytridiomycota
Rozella_allomycis_ CSF55|EPZ32890.1 fungi Cryptomycota
Absidia_repens|ORZ23163.1 fungi Mucoromycota
Bifiguratus_adelaidae|0ZJ02284.1 fungi Mucoromycota
Lichtheimia_ corymbifera  JMRC _FSU_9682|CDH53810.1 fungi Mucoromycota
Mucor _ambiguus|GAN00716.1 fungi Mucoromycota
Phycomyces blakesleeanus_ NRRL_1555_ _ |XP_018290979.1 fungi Mucoromycota
Rhizopus_microsporus_ ATCC_52813|XP _023471300.1 fungi Mucoromycota
Syncephalastrum_racemosum|ORY99444.1 fungi Mucoromycota
Coemansia_reversa_ NRRL 1564|PIA17930.1 fungi Zoopagomycota
Conidiobolus__coronatus_ NRRL_ 28638/ KXN70579.1 fungi Zoopagomycota
Linderina_pennispora] ORX67140.1 fungi Zoopagomycota
Pandora_ neoaphidis| APU66165.1 fungi Zoopagomycota

202




Table E-2: Extended table of all results and parameters tested. Prior and posterior divergence time
estimates calculated under all model assumptions described in Table 4-1. Divergence date ranges
are given in Ma.
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APPENDIX F

PHYLOGENETIC INVESTIGATIONS OF ACETOCLASTIC
METHANOGENESIS
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Acetoclastic methanogenesis is reported to account for two thirds of global microbial
methane production (Ferry, 2010). This methane is produced by microbes in both fresh
and marine aquatic systems. Because acetoclastic methanogenesis constitutes such a large
fraction of the methane budget, the evolution of this pathway is an important event in the
establishment of the modern carbon cycle. Phylogenetic analysis has shown that the two
enzymes utilized by Methanosarcina to generate acetyl-CoA from acetate, acetate kinase
(AckA) and phosphoacetyltransferase (Pta), were likely acquired from cellulolytic bacteria
of the class Clostridia in a single HGT event (Figure 3-6) which had important implications
for the carbon cycle during the end Permian (Rothman et al., 2014).

However, this event was dated using only the species tree of methanogens with highly
conserved sequences, but without reconciling dates of events within the donor lineage. One
approach to improving these dates is to evaluate HGT donor lineages in order to indepen-
dently time this event with higher precision and to confirm that the transfer was related to
the Permian-Triassic extinction. Also, this permits date calibrations from within Clostridia
to be used, such as the origin of the cellulosome (Desvaux, 2005), a highly complex struc-
ture and one of the most efficient plant-degradation systems that must have arisen after
lignocellulose appeared in the environment (Dassa et al., 2015). Fossil and molecular clock
studies using a number of underlying assumptions indicate that vascular plants diverged in
the Silurian, around 440 Ma (Heckman, 2001; Magallon et al., 2013; Sanderson et al., 2004).
Nonetheless, independent age estimates for evolutionary events within the donor lineage
Clostridia should more tightly constrain when methanogens acquired the ability to utilize
acetate. Colonization of land plants and the evolution of lignin must predate the evolution
of the cellulosome, providing a secondary time constraint.

Firmicutes also make up many of the bacterial taxa on the gene tree described in Chap-
ter 3 of this thesis. More specifically, Clostridia, (Clostridium botulinum WP _075860993.1,
Clostridium carbozidivorans WP _007060633.1, Clostridium cellulovorans WP _(010076138.1,
Clostridium ljungdahlis WP _063554956.1, Clostridium purinilyticum WP _050356052.1, Clostrid-
ium scatologenes WP _029160050.1, Clostridium senegalense WP _010292018.1, Clostridium
sp KNHs214 WP 035294784.1, Clostridium straminisolvens JCM 21531 WP 038286537.1,
Clostridium tyrobutyricum WP _017751388.1) are present. This representation is interesting
from the perspective of understanding the evolutionary history of methanogenic pathways,
as another pathway of methanogenesis, the acetoclastic pathway, has been implicated in
the HGT from cellulolytic Clostridia to acetoclastic methanogens (Fournier and Gogarten,
2008). Figure F-1 illustrates the hypothesized relationship between cellulolytic Clostridia
and aceotoclastic methanogens. There may be considerable overlap between the Firmicutes
in both acetoclastic and methylotrophic methanogenesis.

While acetoclastic methanogenesis is more widely distributed in sampled environments

cultured microbes, the role of methylotrophic methanogenesis is becoming increasingly ap-
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preciated, particularly in marine environments. Figure F-2 depicts a gene tree generated
from AckA and Pta proteins of methanogens and their closest relatives. This tree expands
upon previous work and is consistent with the hypothesis that acetoclastic methanogen-
esis evolved via HGT (Rothman et al.,, 2014). This tree also illustrates overlap between
donor lineages of AckA and Pta proteins and those of mtaC proteins. In the environment,
methanol is produced by the degradation of plant cell walls (Sousa et al., 2018). Thus,
it stands to reason that there may be overlap between organisms that can degrade plant
components and those that use methanol; they both occupy similar environments and over-
lapping substrates. Indeed, cellulolytic Bacteria such as Pseudobacteroides cellulosolvens
have both a methyltransferase protein (WP_036939029.1) (Dassa et al., 2015) and AckA
Pta genes. Thus, timing the origin of cellulolytic Clostridia may serve the dual role of aiding

in understanding the origin of two environmentally-important methanogenic pathways.
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Clostridia

Methanosarcina

lignin

Figure F-1: The relationship between donor and recipient lineages of acetoclastic methanogens.
Acetoclastic methanogenesis is present only in archaea and evolved in Methanosarcina from a clade
of cellulolytic bacteria. The donor lineage of acetoclastic methanogenesis possessed a cellulosome.
The cellulosome is a plant cell wall degrading apparatus in anaerobic bacteria. The cellulosome is
a complex structure (thereby containing a lot of information), moreover, because it takes so much
maintenance energy to preserve a structure as big as this, we assume that it must have evolved after
lignocellulose appeared in the environment. The evolution of this structure itself is a fundamental
biological process that is critical to the cycling of carbon between microbes, herbivores, and plants. If
the HGT to Methanosarcina is from within a clade of cellulolytic bacteria (green), it can be inferred
that the donor lineage is younger than the origin of cellulose, and therefore the recipient lineage is
also younger than the origin of cellulose. This is useful, because fossils and molecular clock studies
indicate that the source of lignocellulose, vascular plants diverged in the Silurian, around 440 Ma.
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Figure F-2: Concatenated AckA Pta gene tree of methanogens and their closest relatives.
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