
Writing and Connecting IoT and Mobile
Applications in MIT App Inventor

by

Kathryn Elizabeth Hendrickson

B.S., Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 24, 2018

Certified by. .
Harold Abelson

Class of 1922 Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Writing and Connecting IoT and Mobile Applications in MIT

App Inventor

by

Kathryn Elizabeth Hendrickson

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As the “Internet of Things” (IoT) grows and becomes more prevalent in society, it is
important that everyone is able to understand and take advantage of IoT technology.
I present the IoT Embedded Companion, a system integrated with MIT App Inventor
that allows users to design and program IoT applications alongside a mobile app. This
system uses the same block-based programming language as MIT App Inventor and
includes live development features that allow users to see changes to their application
in real-time while it runs on the mobile device and IoT device. The resulting projects
consist of a mobile application and autonomous IoT program that together create the
IoT application. Both the mobile app and the IoT program share global variables
that either system can read and write, allowing the components to act together as a
single application. In addition to writing the IoT Embedded Companion, I designed a
curriculum for a workshop to teach and test the IoT Embedded Companion targeting
middle-school aged students and held two iterations of the workshop. My findings
indicate that students as young as middle school level are able to understand the
concepts of IoT and that learning about it expands their knowledge of computing
capabilities.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

3

4

Acknowledgments

First, I want to thank my advisor, Hal Abelson, for providing me this opportunity

to work on and create a system that will be used to educate and empower millions

around the world.

I want to thank the entire MIT App Inventor team for their knowledge and sup-

port, especially Evan Patton for his guidance throughout this last year and a half and

for devoting so much time and patience to my questions and bug-hunting.

I want to thank Katherine Prutz for helping me out with testing and getting my

thesis ready for use this last semester; Samantha Briasco-Stewart for sticking by me

during the MEng and helping me with my thesis during crunch times; and Graeme

Campbell for supporting me and feeding me when I didn’t have time to eat.

Finally, I want to thank my family who has always believed in me and cheered

me on and who I would not be here without.

5

6

Contents

1 Introduction 15

1.1 Alex’s Smart Light IoT Application 16

1.2 MIT App Inventor . 18

2 Related Work 21

2.1 Arduino . 21

2.2 Snap4Arduino . 22

2.3 BlocklyDuino . 23

2.4 Raspberry Pi . 23

2.5 BlockyTalky . 24

2.6 BBC micro:bit . 24

2.7 GraspIO . 25

2.8 Node-RED . 26

2.9 MIT App Inventor + IoT . 26

2.10 Summary . 27

3 System Design and Implementation 29

3.1 Introduction to the MIT App Inventor System 29

3.2 Overview of the IoT Embedded Companion 30

3.3 The IoT Embedded Companion & Interpreter 32

3.3.1 Previous Work . 34

3.3.2 IoT Bytecode . 35

3.3.3 Program Structure & Memory 36

7

3.3.4 Interpreter . 37

3.3.5 Devices . 39

3.3.6 BluetoothLE Communication 39

3.3.7 IoT Embedded Companion Program 40

3.4 App Inventor Modifications . 41

3.4.1 App Inventor Companion App 41

3.4.2 App Inventor Website . 42

3.4.3 IoT Blockly Generator . 43

4 Workshop Methodology 47

4.1 Workshop Lesson Plan . 48

4.2 Data Collected . 48

5 Results and Discussion 53

5.1 Students’ Understanding of IoT . 54

5.1.1 Pre-Questionnaire Responses 54

5.1.2 Post-Questionnaire Responses 55

5.2 Students’ Perception of Computing and Capabilities 56

5.3 Creating an IoT Application in App Inventor with the Embedded Com-

panion . 58

5.3.1 Students’ Responses On Project Completion 59

5.3.2 Students’ Responses On Difficulty 60

5.3.3 Students’ Project Files . 61

5.4 Discussion . 65

6 Conclusion 67

7 Future Work 69

A Healthy Plant Tutorial 71

B Template Handout 89

8

C Sensors and Components Handout 95

D Pre-Questionnaire 99

E Post-Questionnaire 101

F Opcodes 103

G Device Example: GroveButton 107

9

10

List of Figures

1-1 The designer view of MIT App Inventor. New components are found

in the Palette (left) dragged onto the Viewer (center left). The compo-

nents currently in the app are listed under Components (center right)

and their properties can be edited in the Properties section (right). . 19

1-2 The blocks editor view of MIT App Inventor. Blocks appear based on

what components are in the app in Blocks (left). 20

3-1 MIT App Inventor IoT Embedded Companion: IoT Sketch Designer . 32

3-2 MIT App Inventor IoT Embedded Companion: IoT Blocks Editor . . 33

3-3 MIT App Inventor IoT Embedded Companion: Screen Designer . . . 34

3-4 IoT Connection Protocol . 41

3-5 How a change is propagated from Alex to the IoT Embedded Companion 43

3-6 IoT Blockly Generator Example . 44

11

12

List of Tables

3.1 IoT Bytecode Program Header Structure 36

3.2 Example IoT Bytecode Program with Explanations 37

4.1 Workshop Part 1 Introducing App Inventor Lesson Plan 49

4.2 Workshop Part 2 Building an Independent IoT Project 50

5.1 Category Breakdown of Questionnaire Responses 57

5.2 Workshop Project Results . 62

5.3 Additional Project Results . 62

5.4 Additional Sketch Components Used 63

5.5 Additional Projects - IoT Sketch Blocks Editor Results 63

13

14

Chapter 1

Introduction

The “Internet of Things” (IoT) is a system of small lightweight devices typically

connected through Wifi or Bluetooth and is one of the largest growing computing

platforms in the world [9]. IoT connects the physical and digital worlds: people can

gather information about the physical world through sensors or manipulate it by

turning on motors or lighting up LEDs. Even though the field of robotics involves

both the physical and digital world, robots are usually independent machines that act

alone to perform a single task while IoT devices are interconnected and synchronize

to perform a variety of small tasks. Everyone should be able to learn about and

take advantage of new technologies such as IoT instead of just consuming them. In

order to empower everyone, including young people and beginners, my thesis aims to

create a single, online system for creating IoT applications in a visual programming

language.

In my thesis, I present a system to create autonomous IoT applications that fits

within MIT App Inventor, an online platform for making mobile applications in a

visual block language [15], and a workshop to explore how effectively we can teach

IoT technology and empower students to create their own IoT applications in order

to affect or learn about the physical world. This system, which is called the IoT

Embedded Companion, is generic and extendable enough to work with many different

IoT platforms, though in my thesis I focus on testing the Embedded Companion on

the Arduino 101.

15

The following chapters contain each step of my thesis in detail. The rest of this

chapter introduces some background. Chapter 2 outlines related work on existing

IoT application platforms and what one must do currently to implement a fully func-

tioning autonomous IoT application with a mobile app. Chapter 3 introduces the

design and implementation of the IoT Embedded Companion including background

on MIT App Inventor itself. Chapter 4 discusses a methodology to run a workshop

surrounding IoT and MIT App Inventor to help teach middle school level students

about IoT and how they can use IoT technology in their own lives. Chapter 5 presents

the results of a workshop implemented with the aforementioned curriculum as well

as an analysis and discussion of those results. Chapter 6 contains a brief conclusion

about the effectiveness and implications of the IoT Embedded Companion and teach-

ing methodology. Lastly, Chapter 7 introduces possible future work to continue to

improve and extend the IoT Embedded Companion and teaching materials.

1.1 Alex’s Smart Light IoT Application

Let’s meet Alex. Alex is a seventh grader who wants to have a smart light in her

bedroom. She wants to be able to turn the light on or off automatically based on

light levels in her room, in response to a physical button press, or remotely from any

location. For example, if she sees her light on through her window as she’s leaving

the house, she wants to be able to turn the light off from her smartphone. Looking

online, Alex finds a lot of mass-market IoT devices that claim to be smart lights,

such as Philips Hue, which integrate with Alexa or Google Home. Even though Alex

would have to rule out this option based on price alone, regardless she doesn’t know

how to customize the Philips Hue to do everything she wants [17].

Since Alex just learned how to write computer programs in Scratch, a visual block

programming language [19], she decides to use this new knowledge to make her own

smart light. Now attempting to find a do-it-yourself route, Alex looks up a variety

of ways to make a smart light and, in the process, learns about Arduino, a type

of inexpensive microcontroller that you can attach a light sensor, a button, and a

16

light bulb to [2]. She continues researching how to use an Arduino and discovers

that you can program one only in C++, a programming language that she doesn’t

know. Eventually she finds some visual languages similar to Scratch which allow

her to program the Arduino using blocks. It takes awhile, but she figures out how

to compile one of these languages, Snap4Arduino, so that she can always have her

program running on the Arduino, even when it’s not connected to the computer [20].

Now her Arduino program turns the light on if the light sensor senses that it is too

dark out and turns the light off when it is too light out. This works out until Alex

realizes that she wants to be able to control the light from outside if she forgets to

turn the light off before leaving the house.

Alex would like to control her light from anywhere in her room, not just from one

specific location, so she decides that the best way to make sure that she can control

the light from anywhere is by making a mobile application (app) which can turn

the light on or off. Looking online for an easy way to create a mobile application,

Alex finds MIT App Inventor and spends some time creating her mobile app and

realizes that the app needs to communicate with her Arduino. She knows that her

Arduino has Bluetooth capabilities, so she looks around until she finds App Inventor’s

Bluetooth components. Alex wants her mobile app to send her Arduino a Bluetooth

message when she presses the button on her phone, but figuring out how to correctly

establish and carry out this communication takes a really long time. She has to

have App Inventor and Snap4Arduino open to modify her projects, have her Arduino

connected to her computer, and have her phone ready to test. Whenever she makes a

change in one system she has to remember to make a matching change in the other,

and juggling the two systems becomes increasingly difficult as her project becomes

more complex.

Alex’s experience in creating an IoT application, her smart light, is not a unique

one. Currently, ready-to-use IoT devices are expensive and making them out of

relatively cheap components requires either learning new skills (e.g. C++) or juggling

multiple systems (Snap4Arduino and MIT App Inventor). Therefore, in order to allow

anyone to own and control IoT devices, App Inventor is incorporating IoT devices as

17

another platform on which users can easily develop applications.

App Inventor has recently created a Bluetooth Low Energy (BLE) component that

allows mobile applications to connect to and interface with various BLE devices [12].

The greatest limitation of the current approach is that the IoT device is controlled

by the app on the mobile device thus the IoT device must be within Bluetooth range

in order for it to work. This means that Alex’s smart light would not be able to turn

itself on when it gets dark out if Alex’s phone was not connected to her Arduino.

1.2 MIT App Inventor

MIT App Inventor is an online platform that anyone can use to create mobile applica-

tions through a visual drag-and-drop interface. This provides a high level abstraction

that allows users to express what they want their app to look and act like without

prior knowledge of traditional text-based programming languages and design aspects.

This abstraction provides a lower barrier to making mobile applications, allowing

anyone to take advantage of the technology provided to them by their mobile devices.

By providing an accessible platform, App Inventor empowers and encourages people

to think about how they can solve problems through the development of their own

applications. Currently, MIT App Inventor has 6.8 million users from over 190 coun-

tries where over 1.1 million unique users are active monthly. People all over the world

use App Inventor to solve real-world problems and have created over 24 million apps

[15].

The development interface on App Inventor is split into two parts: the designer

and the blocks editor. The designer shows the user the layout of the app, the compo-

nents that it consists of, and the options available to customize component properties

(Figure 1.2).

The blocks editor (Figure 1.2) provides a drag-and-drop interface to connect

puzzle-like blocks that represent actions to create programs. This block language

is built on Google Blockly [4] and is similar to Scratch [19]. The blocks replace tra-

ditional text-based programming languages and are colored to highlight the different

18

Figure 1-1: The designer view of MIT App Inventor. New components are found in
the Palette (left) dragged onto the Viewer (center left). The components currently
in the app are listed under Components (center right) and their properties can be
edited in the Properties section (right).

types of logic or actions that they represent. This allows users to visually see their

program laid out and organized in a manner that makes it easier to understand what

their app is doing.

MIT App Inventor also provides a mobile application, the App Inventor Compan-

ion (or just Companion), that allows users to test their applications as they create

them. The real-time feedback of the app allows users to see the exact consequence

of the component they just added to the designer, the property they just changed,

or the blocks that they just added. This feedback helps the user understand what is

happening in their mobile app and allows the user to iterate over many versions of

their app as they test and change it to reflect exactly what they desire. This creates

a very interactive development experience which is extremely useful as a beginner.

19

Figure 1-2: The blocks editor view of MIT App Inventor. Blocks appear based on
what components are in the app in Blocks (left).

20

Chapter 2

Related Work

2.1 Arduino

Arduino is a platform that provides both physical hardware (Arduino boards) and

software (the Arduino libraries, IDE, and web editor) for creating custom IoT pro-

grams [2]. Arduino provides abstractions for the physical and electrical components

in the Arduino programming language, which exposes easy-to-use functions, such as

digitalRead or digitalWrite, and associated constants such as HIGH or LOW con-

stants. Advantages of using Arduino include both these abstractions and the ability

to program many different types of Arduino devices using the same interface. How-

ever, knowledge of Arduino only allows users to program Arduino devices (e.g. it is

no help programming a Raspberry Pi) and users also need to know how to write

traditional, text-based programs.

If Alex created her Arduino program in the online Arduino web editor [1], she

would first have to install the Arduino Plugin onto her computer in order to actually

upload the Arduino sketch to her board. Then she would open a new sketch which

would have empty methods for setup() and loop(). Alex would have to figure out

how to describe what is connected to her Arduino in code as well as translate ideas

such as “turn on the light if it is dark.” Then she would press upload and the program

would be downloaded onto her board, unless of course, there was a compilation error

which she would have to fix first. When everything appears to work fine, she would

21

put the Arduino running the program onto her desk and walk away. Later, she might

realize that she wants the light to turn on when her room is darker so she would have

to get her computer out, plug her Arduino back in, and repeat the process.

2.2 Snap4Arduino

Snap4Arduino extends the Arduino platform to use a visual programming language

similar to App Inventor’s blocks, but includes more advanced programming paradigms

such as first class procedures and continuations [20]. The visual programming lan-

guage that Snap4Arduino uses is called Snap! which is an “extended reimplementa-

tion” of Scratch [20]. These advanced features imply that Snap4Arduino targets an

audience with more technical background knowledge in programming than App In-

ventor. Snap4Arduino aims to provide a dynamic programming environment so that

once users load the required firmware onto their Arduino they can create interactive

programs that use both the Arduino (or multiple Arduinos) and the computer at the

same time. The two platforms are intertwined and the goal is to create a live dy-

namic environment, not an isolated Arduino program. However, Snap4Arduino also

provides a compiler which turns specific ‘translatable projects’ into Arduino sketches

that users can then manually load onto their devices [21].

If Alex were to create her smart light with Snap4Arduino, she would first have to

download the Arduino IDE, connect her Arduino to her computer, and upload the

required firmware onto her device. Then she would open up Snap4Arduino to see

familiar-looking programming blocks. She would build her program in blocks and

hit run to test it on her connected Arduino. When satisfied, she would export her

program as an Arduino sketch which she would then have to open in the Arduino IDE

and upload to her device. Everytime she might want to make a change, she would

have to fix it in Snap4Arduino, redownload it into an Arduino sketch, and upload it

to her plugged in Arduino.

22

2.3 BlocklyDuino

BlocklyDuino is a platform, similar to Snap4Arduino, that uses a visual block lan-

guage, Blockly, to program Arduino devices [10]. BlocklyDuino focuses solely on

Arduino development and therefore can always create an Arduino sketch for a block

program, unlike Snap4Arduino which requires the user to switch into a different mode

in order to generate the Arduino code. Instead of having to download an Arduino

sketch and using the Arduino IDE to upload it to the user’s Arduino, BlocklyDuino

provides a ‘mini webserver’ that does all of that for you. Even though this makes

adjusting the permanent code on the Arduino easier, BlocklyDuino does not have live

development so the user must remember to click the ‘upload’ button and wait for the

code to be transferred to their Arduino before testing.

In addition to providing a platform with which users can visually program Ar-

duinos, BlocklyDuino provides abstractions for a set of Arduino Grove devices and

sensors. These abstractions remove the need for the user to understand what set up is

needed for a given device and what they need to know about it. Also, BlocklyDuino

allows users to create their own blocks which they can then incorporate into their

programs. This gives users more flexibility in the scope of potential programs that

they can create.

2.4 Raspberry Pi

A Raspberry Pi is a small, inexpensive, full-fledged computer made by the Raspberry

Pi Foundation [18]. Since the Raspberry Pi is small and inexpensive and a computer

that can do everything a microcontroller can do, the Raspberry Pi makes a good

IoT platform. Since it is a computer, there are many languages and programs with

which you can use to create an IoT application and you have a vast array of hardware

components that are compatible with it. However, sometimes having extra options

is not the best for a beginner and can be overwhelming. In order to use a Raspberry

Pi, Alex will have to make sure she has the right set of cables and devices to just

23

connect to and run her Raspberry Pi (e.g. monitor, keyboard, mouse, SD card) and

then she has to set it up with the set of software she needs to run her smart light

program (e.g. an operating system, the language she decides to program in, libraries

that will connect to her light, light sensor, and button). All of this needs to happen

before Alex even starts creating her smart light. This creates a high barrier for Alex,

a hurdle she is unlikely to clear if she is just trying to make her small smart light

project.

2.5 BlockyTalky

BlockyTalky is a programming environment that uses a block language to create IoT

programs for a Raspberry Pi [5]. The blocks in BlockyTalky are designed to follow

a beginner’s way of thinking about how the Raspberry Pi is working. BlockyTalky

requires all the same setup as a Raspberry Pi, but if Alex uses BlockyTalky she

knows exactly what she will need to install and what hardware to buy that will work

with BlockyTalky. BlockyTalky is meant to be installed, developed, and run on the

Raspberry Pi so after it is set up no more code transfer is necessary. The user can

simply open BlockyTalky and create programs.

2.6 BBC micro:bit

The BBC micro:bit is the closest existing platform to the desired design of App

Inventor’s IoT system. The micro:bit is a hardware device like an Arduino that

has BLE capabilities, built in devices, such as an accelerometer, and pins that users

can connect to additional components [14]. Users can use the Javascript Blocks

Editor (PXT) to program their micro:bit using a visual block language similar to

App Inventor’s and then load that code onto their micro:bit to run. The micro:bit

also includes a mobile app that allows users to write and send code to their micro:bit

over a BluetoothLE connection. This allows users to easily change the code on their

micro:bit without having to deal with compilation or physically loading code onto

24

their device. This overall design is very similar to what the App Inventor system

aims to provide for users: the ability to program an autonomous IoT device from the

computer or a mobile device and the ability to connect and interact with it through

a mobile app. A disadvantage to using the micro:bit is that it is limited to a single

platform and is not transferable to other platforms such as Arduino or Raspberry Pi.

2.7 GraspIO

GraspIO (Graphical Smart Program for Inputs and Outputs) provides hardware and

software for developing electronics projects [8]. GraspIO makes “Cloudio” which is a

hardware shield for a Raspberry Pi that comes with additional sensors that, like the

micro:bit, provides the basics for sensing and output but also provides ports to add

additional components. GraspIO also creates a mobile app “GraspIO Studio” that

provides a drag-and-drop programming interface for users to use to create programs

which communicates through the cloud to the GraspIO shield. The programming

blocks are mostly color- and picture-based instead of text-based and provide high

level abstractions with which to program for easy and quick development.

Since Cloudio is built on the cloud, the innate capabilities are greater than Ar-

duino, which assumes an ‘offline’ presence. One of the features of Cloudio is that it

is connected to IFTTT (If This Then That) which is a platform that connects many

different programs and systems on the internet and in IoT [11]. Because Cloudio

is connected to IFTTT, Cloudio can respond to communication from anything that

works with IFTTT such as Gmail or Alexa. This greatly expands the reach of this

IoT platform without that much added effort by the user. However, since GraspIO

Studio is only an app to program Cloudio that can also display sensor output, it does

not really have a way to integrate it with a personal, customizable mobile application.

GraspIO is trying to be an IoT device that can be used in conjunction with a bunch of

already existing IoT applications where the hardware is the most customizable part.

25

2.8 Node-RED

Node-RED is a platform that allows users to connect various hardware and software

components into a single system [16]. The platform is built on Node.js and is intended

to be used on hardware such as a Raspberry Pi, though it is not restricted to any

such device and can run on other devices such as an Arduino. The main concept in

Node-RED is called a flow which are used together to create networks that describe a

program. A flow is a series of components (nodes) that are connected by wires which

define data paths. Node-RED requires users to think of their programs in terms of

data flows, an abstraction which may not be ideal for beginners as you need to know

exactly what you want to do before you start which is not great for experimentation.

However, Node-RED also provides excellent APIs which allow users to access online

data sources such as Twitter or Weather Underground easily. These APIs allow a

user to create a far-reaching IoT application similar to what one would be able to

create with GraspIO but with more customization.

2.9 MIT App Inventor + IoT

MIT App Inventor recently introduced IoT into the repertoire of things that a user can

add to their project. In order to use it, a user must use an Arduino 101 or micro:bit

as their IoT device platform and they must download and use specific component

extensions specific to the Arduino 101 or micro:bit. Among the IoT extensions is a

BluetoothLE component that allows their mobile app to connect to and communicate

with their IoT device. After the setup with the BLE component is complete, the user

can create an IoT application with the same process with which they would use to

create a normal App Inventor app by creating the layout in the designer and the logic

in the blocks editor [12].

In order to interact with the IoT device, there are non-visible components for

each of the supported sensors and devices that you add to the app. Once they are

added, they can be used just like other components in the logic blocks. For example,

26

if Alex presses a button on the app, it could send a BLE message to the IoT device

that says turn the LED on. However, because the IoT components are part of the

mobile app logic, it is not possible to run anything on the IoT device autonomously.

Every interaction is through BLE through the phone so the IoT device becomes just

an extension of the phone while the mobile app is running. If Alex wanted to use

App Inventor’s IoT, she would have to have her phone connected in order to press

the physical button that turns her light on and off. In order to make a full-fledged

IoT project Alex wants to be able to autonomously run programs on the IoT device.

2.10 Summary

Alex could use any of these systems to create a part of her smart light project. In all

but App Inventor’s current IoT, Alex can make a standalone app that lets her control

the light through a physical button and have it automatically turn on and off based

on the amount of light in her room. In order to add the ability to turn her smart

light on or off remotely, Alex wants to make a custom mobile application.

If she were using GraspIO, the mobile application that Alex used to write her

original program is the only option for her to use to control her smart light remotely.

If she were using micro:bit, Arduino, or Raspberry Pi, Alex could create a mobile

application in MIT App Inventor and connect it to her device. To connect to the

micro:bit, Alex would need to simply use the new IoT features in App Inventor. To

connect to her Arduino or Raspberry Pi, she would need to orchestrate communication

through App Inventor’s Web component that can send HTTP requests or Bluetooth.

Using multiple platforms requires Alex to do extra work in figuring out how to

orchestrate the communication back and forth between her devices. This causes hassle

because Alex must update both systems if she makes any changes that has to do with

both of the systems and problems can arise if the systems get out of sync. Making

changes and making sure they are in sync add up to make a slow development cycle

and makes it hard to see the impact of changes as they are made.

27

28

Chapter 3

System Design and Implementation

3.1 Introduction to the MIT App Inventor System

As discussed in Section 1.2, MIT App Inventor is an online platform for making

mobile applications that includes a mobile app called the App Inventor Companion

(or Companion), a platform for live test development. If Alex wants to use the

Companion for live development, she would download the Companion app onto her

smartphone, use the connect feature online and on her phone to start communication,

and then see her app appear on her phone along with any changes she that she might

make in real time. The Companion app contains all of App Inventor’s components

and logic to emulate Alex’s project on the mobile device.

The App Inventor website communicates with the Companion by making requests

to an HTTP server running within the Companion. When Alex makes a change in her

project, the updated state is sent from her browser to the Companion. If, for example,

she changed the font of the title to bold, a message would be sent over that indicated

this and the Companion would find the title component the change is associated with

and set the font to bold. The same process would happen if Alex added a play sound

action when she presses a button on her app. The logic in the blocks would be turned

into code that is sent over as a change to the button component.

All of Alex’s app is made up of components. These components are defined by

what they add to the app, whether they are visible (such as text for the title) or

29

non-visible (such as sound). Each component has properties that Alex can change

in the designer such as bold font or the source of the sound as well as associated

logic in the blocks editor, such as what should be done if the button is pressed or

what actions combine to play a sound. This grouping of properties and logic into a

component is an abstraction provided by App Inventor to aid Alex in the creation of

her app. Instead of worrying about needing to check if the button is pressed, she just

has to provide logic that App Inventor will run whenever the button is pressed.

Since Alex’s app revolves around the components that she adds so does the logic.

Every piece of Alex’s block code is executed as a part of a component handler. The

blocks that Alex pieced together are turned into code for the Companion app (and

later the actual apk of her app) by a custom App Inventor generator. This generator

essentially compiles the blocks into code that is sent over to the Companion when

Alex makes changes.

Having the Companion app means that Alex can test her app in real time while

developing it. This is important because it means that it is not necessary for her to

redownload and install the app on her phone every time she makes a change. She only

needs to install the Companion once and wait a short moment during the development

process before she can see the changes she made and decide if she likes them or wants

to make more changes.

3.2 Overview of the IoT Embedded Companion

When creating the mobile app in MIT App Inventor, Alex uses the live development

feature in order to add features iteratively and she felt so productive using it that

she would like to be able to use live development when creating the IoT program.

My thesis introduces a prototype of the IoT Embedded Companion (or Embedded

Companion) which serves a similar purpose as the Companion app, but for an IoT

platform instead of a mobile device. If Alex is using the Embedded Companion

then she can make changes to her IoT application and see the changes she makes

in real time on her IoT device. The Embedded Companion also provides a similar

30

abstraction of components, so that Alex can focus on describing what she wants her

IoT application to do instead of trying to figure out how to know when something has

happened. For example, the button handler block for an Android button (in Figure

3-3) and for an Arduino Grove Button (in Figure 3-2) carry out the same action.

When Alex opens a new project in App Inventor, she will have the ability to

connect an IoT device to her app. This adds an IoT device screen to her project, to

which she can add the variety of sensors and electrical components that she needs to

create her smart light (Figure 3-1). Then, in the blocks view, she can program her

IoT device to turn on when the light sensor has sensed that the room is too dark or

to correspond to a variable that was set by the mobile application (Figure 3-2). If she

switches to the mobile app blocks view, Alex can add logic so that when she presses

the on button in the app, it will send a signal to the IoT device to change the same

variable she used earlier in the IoT blocks view to have the value ‘on’ (Figure 3-3).

Once Alex is ready to test her new app, all she has to do is upload the MIT App

Inventor IoT Embedded Companion code to her target device, connect the Companion

app to her project, and connect her phone to her IoT device via BluetoothLE. Then,

when Alex changes the LED to always blink, for example, the LED on her IoT

device will start blinking without any further work from Alex. If Alex wanted LEDs

on many different IoT devices to blink, all she has to do is make sure that the

Embedded Companion is on the device and connect to it through her phone and the

LED will start blinking! Her original device is also still blinking because by connecting

the Embedded Companion to the app (whether via the Companion app or the final

downloaded apk), the program is permanently stored onto the IoT device and will

run until Alex makes changes to it or powers the device down.

For my thesis, I designed the IoT Embedded Companion and implemented a

proof-of-concept version that works for Arduino devices. However, the Embedded

Companion itself is general enough to use on any IoT device that can run a C pro-

gram. The IoT Embedded Companion was modeled after the Companion app that is

currently provided by App Inventor so it contains an interpreter for the code that Alex

wants to run on the IoT device so the website can just communicate these changes by

31

Figure 3-1: MIT App Inventor IoT Embedded Companion: IoT Sketch Designer

sending over new code to interpret. In order to integrate the Embedded Companion

into App Inventor I created a specification for an IoT bytecode, added a generator

to the website that turns blocks into IoT bytecode, and modified App Inventor to

communicate new changes to the Embedded Companion.

3.3 The IoT Embedded Companion & Interpreter

The App Inventor IoT Embedded Companion is the software that runs on every

App Inventor connected IoT device. The Embedded Companion has (1) a bytecode

interpreter that runs user code on the device autonomously, (2) definitions for how

to interface with available devices, and (3) an interface that communicates with the

32

Figure 3-2: MIT App Inventor IoT Embedded Companion: IoT Blocks Editor

Companion app. Since only the user programs can change and they are not part of

the Embedded Companion, users can update their program dynamically (through the

Companion app), which makes experimentation with their IoT device easy.

The main components of the Embedded Companion are device information, Blue-

tooth communication, and interpreter code. Bluetooth communication sets up the

system through which the IoT device can talk to either the Companion app or Alex’s

final app. Device information includes the declaration, definition, and implementa-

tion of device components (an example can be found in Appendix G). The devices

Alex would need for her smart light would be a light sensor, button, and light (most

likely an LED). In the blocks editor, Alex would create a device event handler to

turn the LEDs on or off when she presses the button. The website would notice the

33

Figure 3-3: MIT App Inventor IoT Embedded Companion: Screen Designer

change in Alex’s IoT program and package a message to send to the phone, which

would forward it on to the IoT device to change Alex’s program content. On the

IoT controller, the interpreter would run the new device handlers and main program

autonomously.

3.3.1 Previous Work

Evan Patton, a software engineer at MIT App Inventor, set up the initial architecture

for the IoT Embedded Companion and how it should fit in with the rest of App

Inventor. This skeleton consisted of an organization of the Embedded Companion

and method headers for essential methods. Specifically, the Embedded Companion

was split into five parts: documentation, examples, include files for the library, source

34

code for the project, and tests. The project code itself was divided into the following

four categories: device, interpreter, platform, and util.

The device code consists of declaration, definition, and implementation code for

devices that Alex can connect to her hardware device, such as an accelerometer,

buttons, LEDs, etc. Each of these device definitions is specific to a hardware platform

and device (Section 3.3.5). The interpreter code consists of data structures and

functions that make up the core of the interpreter including the layout of program

bytecode and the definition of opcodes. The platform code contains information on

each target IoT platform such as the amount of available memory and the size of an

integer. The util code provides various platform-independent utility code that does

not belong in the previous categories.

3.3.2 IoT Bytecode

The IoT bytecode that runs on the Embedded Companion was originally based on

the Java bytecode to opcode (operation code) mapping for the instruction set that

runs on the JVM (Java Virtual Machine) [6]. However, over time we condensed this

bytecode to be smaller and more focused on the instructions that are essential to

running an IoT program based on the blocks provided by App Inventor. A list of

opcodes and descriptions can be found in Appendix F.

In total, there are only 31 opcodes in the Embedded Companion. Each opcode

is represented by a single byte and any additional static information that is needed

is represented by an extra byte in the program. Dynamic information is available on

the stack. An example of an opcode with both static and dynamic information is

store_global which takes an extra byte to represent which global variable to store

into and a dynamic value on the stack as the value to store to that global variable.

The reason we need to keep the number of opcodes to a minimum is that the

mapping between bytecode and opcode definition is stored in memory. Some IoT

devices have very little memory, e.g. the Arduino Uno has only 2KB of SRAM, and

since we want the Embedded Companion to work on as many devices as possible we

want to limit the amount of memory it uses as much as possible.

35

Field Size Purpose
n_user_procs uint8_t The number of user-defined procedures

specifies the length of the proc_table.
n_strings uint8_t The number of strings specifies the length

of the strlen_table.
n_persistent_globals uint8_t The number of global variables specifies the

length of the global_table.
n_devices uint8_t The number of devices specifies the length

of the device_table.
sz_bytecode uint16_t The number of bytes in the program, start-

ing at the first byte of initialize (byte 0)
and ending after all the code for initialize,
forever, user-defined procedures, and event
handlers.

forever_address uint16_t The index of the byte (address) that the
forever code starts at.

Table 3.1: IoT Bytecode Program Header Structure

3.3.3 Program Structure & Memory

Alex’s program is completely represented by bytes, but is more than just opcodes.

At the beginning of the program, there is information about the program in what is

called the program header. The program header tells the interpreter how long the

program is, how many procedures there are and what address they start at, how

many global variables and devices there are, and finally where the setup code and the

forever loop code begin (Table 3.1). The forever loop contains the code that will be

continuously run on the IoT device. All of this information is found in bytes in the

program header, which is included in the program when transferred over from Alex’s

project (Table 3.2).

In addition to the program header and the program itself (the various instructions

that make up the setup, forever, and procedure sections), the program structure holds

other data types that are essential to the execution of the program. These include

tables for strings, global variables, and device information as well as space for the heap

and the stack. The program structure has a fixed size that memory is allocated for,

and each piece expands as necessary (e.g. if there are no global variables the global

variable table is of size 0). After the program header, the instructions themselves,

36

Byte Field Description
0x01 n_user_procs 1 user-defined procedure
0x00 n_strings 0 strings
0x03 n_persistent_globals 3 global variables
0x03 n_devices 3 devices (LED, Button, & LightSensor)
0x91

sz_bytecode There are 0x91 = 145 bytes in the program.0x00
0x89

forever_address The forever loop code starts at address 0x89.0x00
0x2c

proc_table
The procedure blink starts at address 0x2c and

0x00 has no arguments (the top 3 bits are 0).
0x04 start Byte 0 of the program (the beginning of the ini-

tialize code).
...

Table 3.2: Example IoT Bytecode Program with Explanations

and tables, there is a lot of memory left over in the program structure. The top of this

memory (right after the tables) is where the heap starts. The heap is where objects

are instantiated and where their data resides. The only thing that the Embedded

Companion uses the heap for at the moment is to store the properties of each device

(device information can be found in Section 3.3.5).

At the very bottom of the piece of memory allocated for the program structure,

growing upwards (toward the bottom of the heap), is where the stack is located. The

stack is used for every dynamic value used in operations whether the operation is

subtracting two numbers (both of which are located on the stack) or branching to a

new location. The beginning of any program execution starts with an empty stack.

Every procedure call has its own stack and in order to keep track of the information

about each procedure call’s stack, the stack frame includes the location of the previous

stack frame in the stack, the location of the current stack pointer, the current program

counter, and the values of any local variables.

3.3.4 Interpreter

The heart of the interpreter is a function called interpreter_run that takes a starting

frame and runs the function based on the given frame. The starting frame specifies

37

the location of the first instruction as well as the current status of the stack. The

function picks out the opcode found at the first instruction, looks it up in the opcode

table, and runs it. The opcode definitions increment the program counter and the

stack pointer as necessary, so after an opcode is done running all interpreter_run

needs to do next is repeat the process and pick out the opcode of the new instruction

pointed to by the program counter.

In this sense, all program execution starts in an opcode (even device_setter).

However, in order to maintain consistency and keep the definitions of opcodes simple

and easy-to-understand, the interpreter provides abstractions for working with the

stack. The interpreter provides methods for pushing and popping a variety of values

to and from the stack such as bytes, longs, floats, or even a custom type called a

value_t which can be either a 22-bit integer or 32-bit float. The interpreter also

provides methods for setting up new stack frames or returning to the last one.

Lastly, the other primary job that the interpreter performs is run each device’s

duty cycle. A duty cycle is a function that is run every time step that checks a device’s

properties and triggers event handlers as necessary. When she wrote her program,

Alex pieced together blocks that described what her IoT controller should do if, for

example, the physical button was pressed. Since the interpreter is always running,

there is no way for the button device to tell the code to stop and run something

else because the button was pressed. Instead, what happens is the interpreter will

check the status of each device every so often and if something triggered one of

Alex’s event handlers, it will then dispatch the event that happened and tell the

interpreter to run Alex’s handler code. This checking is done by a device’s duty cycle.

The method interpreter_duty_cycle iterates through each of the devices, runs the

duty cycle, and calls interpreter_dispatch_event if one of the events was triggered

with all the requisite information to run the corresponding event handler. Once every

device’s duty cycle has been run, the interpreter gathers all of the dispatched events

and runs each respective handler. Also included in the interpreter_duty_cycle

is the code that Alex included in the forever loop of the IoT controller. (Note

that the initiliaze code is only run once and therefore is not included in the

38

interpreter_duty_cycle.)

3.3.5 Devices

Every device definition in the Embedded Companion defines a set of properties, known

as the device data, that corresponds to the information that Alex can see on the

website. These properties include physical properties like what pin the device is

connected to as well as current sensor readings and the address of an event handler.

Every created device of a certain type (e.g. button or LED) has its own device data;

this is the data that is stored in the heap for every device. The rest of the device

definition in the Embedded Companion is static and shared for every device of that

type. This would include the property getters and setters and the device’s duty cycle

(Appendix G). Each of these functions act upon a device’s specific data, which is why

the same functions can be used for any of the devices.

A device is declared, constructed, and added to the device table through the

opcode device_create. The opcode takes two extra bytes which indicate the type of

device and the number it should be in the device table. First, an entry is made and

added to the correct index of the device table. Next, through the device’s allocator,

the device data is allocated on the heap and connected to the device entry. Finally,

the device’s constructor is called and the device becomes ready for use.

Alex can interact with her device by getting or setting properties such as the pin

or the amount of light on a light sensor or by calling methods on the device such as

print on the console. Included in the definition of the device are custom additions to

setters. For example, the setter method for the Grove Button, as well as setting a

property such as the pin, has a custom addition that also calls the Arduino method

pinMode to set the pin of the button with the argument INPUT.

3.3.6 BluetoothLE Communication

In order for the IoT device to receive a program from the Companion app or from the

final project’s apk, the Embedded Companion needs to setup Bluetooth Low Energy

39

communication. Bluetooth Low Energy (BLE) is similar to classic Bluetooth but the

way you use it has significantly lower power consumption [3]. There are two principal

actors in BLE communication: the central and the peripheral. A BLE peripheral

broadcasts information for the BLE central to read and the BLE central reads this

information but can also choose to write information back to the BLE peripheral. In

the Embedded Companion, the IoT device is the BLE peripheral and the mobile app

is the BLE central.

There are only two different types of messages that go between the Embedded

Companion and the mobile app: update_code and update_variable. When the

Embedded Companion receives an update_code message from the Android Compan-

ion, it stops the interpreter execution, sets up the new code, and starts interpreting the

new code. Since these BLE messages are small, there may need to be many of these

messages, the last of which is explicitly marked as the final message, before the entire

new program has been communicated. The second message type, update_variable,

does not interrupt the execution of a program, but rather just changes the value of a

global variable before resuming normal execution. This message type is also used in

the other direction; the Embedded Companion uses the update_variable message to

tell the mobile app that it has changed the value of a shared global variable. In this

case, the Embedded Companion acts as a traditional BLE peripheral by updating the

update_variable message which notifies the BLE central, the mobile app, that the

Embedded Companion has updated the variable.

3.3.7 IoT Embedded Companion Program

In order to run the Embedded Companion on an IoT controller, there needs to be

a specific program that orchestrates everything. This will be slightly different for

each IoT controller, but each will do the same thing. For example, the Embedded

Companion needs to be formatted as an Arduino sketch in order to run on an Arduino.

This “main program” will initiate communication with the mobile device, update the

program code and variables when it receives messages to do so, run the interpreter,

and send back new variable values when appropriate.

40

Figure 3-4: IoT Connection Protocol

3.4 App Inventor Modifications

3.4.1 App Inventor Companion App

In order to orchestrate all the necessary actions between the mobile app and the

Embedded Companion, I added a class called IotManager. This class defines all the

actions for what to do when an IoT device connects to the mobile app, when there is

a new code update, and when variables are changed or need to be changed. Whenever

the Companion needs to communicate with the Embedded Companion, it will do so

through the IotManager.

When the Companion connects to an IoT device through BluetoothLE, the de-

vice notifies the IotManager that there is now a connected IoT device (Figure 3-4).

The IotManager then sets up the global variable mapping between the IoT variable

numbers and the Companion app’s variable names as well as the BLE notification

handler for when the Embedded Companion writes the update variable message. This

handler receives and decodes the update variable message to figure out which global

variable the Embedded Companion wants to update using the variable mapping and

constructs a piece of code that will trigger the update and runs it (since code is

interpreted on the Companion app).

41

If Alex changes the IoT component setup or the blocks, then the website will send

an HTTP request to the Companion (Section 3.4.2 for more information). When

the Companion receives this request, it tells the IotManager about the new code

that constructs a update_code message. Because BLE messages are slow, instead of

sending the entire new program, the update_code message only contains the pieces of

code that are different from what is currently running on the Embedded Companion.

When a variable is updated on the Companion, the IotManager figures out if the

variable is a shared variable with the Embedded Companion and, if it is, constructs

a BLE message to tell the Embedded Companion to update its value.

3.4.2 App Inventor Website

When Alex opens the App Inventor website in order to create an IoT application,

she sees the option to add a “Sketch” to her project. This sketch is similar to an

app screen except that instead of a screen on the designer section it shows an IoT

platform, such as an Arduino, and IoT components, such as LEDs and light sensors

(Figure 3-1). The designer has the same familiar drag-and-drop interface for the

components as the designer for the app screen has. Each component has a list of

properties that Alex can change in the designer. There are very few properties for

each component, but they all have at least one: the pin number which describes where

on the IoT microcontroller the device is connected. The blocks editor displays blocks

that correspond to logic necessary for an IoT project as well as any components that

Alex adds to her project (Figure 3-2). The setup and forever blocks that describe all

of the program logic, outside of event handlers, are found under the microcontroller

component. These two methods are analagous to the Arduino functions setup() and

loop() as mentioned in Section 2.1.

When Alex makes a change on either the designer or the blocks editor, the website

catches the change and triggers an update code function (Figure 3-5). This function

combines the sketch JSON, which is a description of the current components of the

sketch designer, and all the IoT blocks to generate new IoT bytecode. This bytecode is

sent to the Companion (if connected), which forwards the update on to the Embedded

42

Figure 3-5: How a change is propagated from Alex to the IoT Embedded Companion

Companion.

3.4.3 IoT Blockly Generator

The App Inventor IoT generator compiles blocks to the Embedded Companion’s

bytecode. It first records information about the total program, such as how many

variables or devices there are, and uses this information to set up state that it uses

to compile each stack of blocks. This state contains the mapping of variable names,

device names, and procedure names to indices, which is what the Embedded Com-

panion interpreter uses for references. Figure 3-6 has on the left a stack of blocks

from Alex’s smart light program from Figure 3-2 and on the right the bytecode that

was generated from her blocks.

Once each name has been given an index, the generator uses the sketch JSON

to create bytecode that creates each device. This entails adding a create_device

instruction along with any property setters that correspond to properties set by Alex

in the designer. All of the event handler addresses are reserved space at this time

even though the addresses are unknown. This device setup code is followed by Alex’s

initialize block code, if she has any. Global variable declarations are added to the

initialize block code as well. Each stack of blocks is then individually compiled. After

all of the blocks have been compiled, the program bytecode is constructed. The

43

This is a procedure_callnoreturn
block: it calls the user-defined procedure
determineIfLightIsOn which has no
arguments and is procedure 0.
Bytecode: 0x1B (invoke_static), 0x00
(procedure 0)

This is a lexical_variable_get block: it
looks up the value of the global variable
masterLight (global 2) and pushes it onto
the stack.
Bytecode: 0x0A (load_global), 0x02
(global 2)

This is a component_set_get block: it sets
the Intensity property (property 1) of a
device called GroveLED (device 0) to the
top most value of the stack.
Bytecode: 0x04 (iconst_1), 0x1E
(device_setter), 0x00 (device 0)

Figure 3-6: IoT Blockly Generator Example

44

program header is created from the state and the program body is constructed from

all the individual pieces of bytecode from each of the blocks. Once every procedure

and event handler are in place and have an address, the compiler goes back and edits

any place where an address is necessary, such as when setting the device to have a

specific handler.

45

46

Chapter 4

Workshop Methodology

In order to test and evaluate the usability of the IoT Embedded Companion, I de-

signed and ran a workshop based around the Embedded Companion. The workshop’s

goal was to introduce the concept of IoT to young people and give them a chance to

make their own IoT project in order to learn about the usability of the Embedded

Companion and what kind of impact IoT has on them. I applied this methodology

in a workshop that I ran with fourteen students between the ages of 9 and 13 that

were in grades 4 to 8. The workshop was hosted on April 7, 2018 between 1pm and

5pm for a total of 4 hours. The workshop was scheduled as a one-time event for

students interested in learning more about IoT and how to harness related technol-

ogy. I worked with Theresa Richards, the FIRST Robotics program coordinator at

Carnegie Mellon University (CMU) in Pittsburgh, to organize this event. The FIRST

Robotics program at CMU supports many FIRST LEGO League (FLL) teams in the

Pittsburgh area [7]. FIRST LEGO League is a program for students in grades 4-8

that focuses on teaching and applying STEM (science, technology, engineering, and

math) concepts through developing a solution to a real-world problem, such as recy-

cling, and designing and building a robot using LEGO MINDSTORMS [22]. Theresa

Richards reached out through the FLL teams to find students who might want to at-

tend the workshop. Because of this, some of the students had experience with STEM

and programming, though not all. It is important to note LEGO MINDSTORMS

blocks only consist of pictures and therefore even though the concepts are the same

47

(e.g. a while loop or using variables), the way they are expressed are different and

not easily related to one another [13].

4.1 Workshop Lesson Plan

The four hour-long workshop was split into two parts in order to allow a break in the

middle and give the students a chance to absorb the information that they learned in

the first part to help them with the second part.

The goal of the first part was to introduce the workshop and the students to IoT

and MIT App Inventor and teach them how to make a project with the Embedded

Companion (Table 4.1). The beginning of part 1 was the most important conceptual

part of the workshop because it was the part that focused on what IoT was and where

it appears in our lives. This part was meant to be a short introduction of the basic

concepts of IoT and then a discussion to start the students thinking about what they

interact with that uses IoT technology and what they can do with IoT technology

themselves.

Part 2 introduced the independent project and related materials provided to assist

the students in completing it. The students were given a template in the form of

an MIT App Inventor project (AIA) file and a handout that corresponded to the

project explaining the main components (Appendix B). The students were also given

a handout that listed and explained how to use all of the sensors and components

available to them for their project (Appendix C). The remainder of the workshop was

devoted to students working on their independent projects.

4.2 Data Collected

Data was collected during the workshop through written questionnaires, project files,

and observation. Students filled out a pre- and post-questionnaire during the work-

shop. Both of the questionnaires are structured around the students’ conceptual

understanding of IoT and what they understand about the capabilities of computers

48

Time Activity

5 min Class introductions: name, any programming (Scratch, Python, etc) or
Arduino or Lego MINDSTORM experience

5 min Have students fill out the Pre-Questionnaire (Appendix D)

15 min

What is App Inventor?

∙ A website that lets you create mobile applications easily

What is the “Internet of Things” (“IoT”)?

∙ A system of connected small devices through the Internet (usually
wifi or bluetooth)

∙ Ask students what devices they think of that fall under IoT

∙ Popular examples: “smart” outlets, light switches, watches, TVs

∙ Give a do-it-yourself example: You have a device with a motion
sensor that plays a song every time someone passes by. You can
change this song or turn it on/off from your smartphone.

10 min

How to use IoT with App Inventor

∙ We can use inexpensive Arduinos as our IoT device and connect to
it different sensors and components

∙ In App Inventor, you program what happens on the Arduino

– When people interact with the components (press buttons)

– When sensor data changes (it becomes darker in the room)

– What it does in its free time (every minute it flashes a light)

∙ Also in App Inventor, you program the mobile application

– What it looks like

– How people can interact with the app (buttons, pictures)

– How people can change the Arduino (change it to flash every
second instead of minute)

10 min

Introduce the Autonomous Healthy Plant project

∙ Show the finished and working Autonomous Healthy Plant project

∙ Talk about what sensors are used and why in the project

1 hr Have students go through the Healthy Plant Tutorial (Appendix A)

Table 4.1: Workshop Part 1 Introducing App Inventor Lesson Plan

49

Time Activity

5 min

Introduce the Project

∙ Tell the students that the goal of the project is to let them explore
the capabilities of IoT by trying different sensors and components
and using them to make a project of their choice

∙ Tell the students that they will get a template application that
they can alter to create their project

15 min

Give the students the AIA for the Project Template App and Template
Info Handout (Appendix B)

∙ Explain the functionality of each of the sensors and devices

∙ Explain any interactions that may happen between the mobile ap-
plication and the Arduino

∙ Explain how they can change the blocks to it do something else

1 hr 10 min
Give out the Sensors and Components Handout (Appendix C) and let
students start creating their projects.
Make sure the students download and email their project AIA files to
helik@mit.edu.

7 min Have students briefly explain what their project does to the class
7 min Have students fill out the Post-Questionnaire (Appendix E)

1 min Thank the class for coming and tell them they can now go off and make
their own IoT projects!

Table 4.2: Workshop Part 2 Building an Independent IoT Project

50

and how they relate that capability to themselves. The post-questionnaire also in-

cludes questions about how the students’ projects went and how hard it was to use

App Inventor and the Embedded Companion.

The pre-questionnaire was given at the beginning of the workshop before the

introduction and discussion of IoT. The first and last questions tried to probe at the

students’ understanding of the capabilities of computers and what they think they can

create with them. The second question tried to gauge what familiarity the students

had with IoT and whether they could acknowledge it as such before introduced to

the definition of the term.

The post-questionnaire was given at the end of the workshop and asked all the

same questions as the pre-questionnaire with a few additional questions about the

project the students worked on during the workshop. The goal of the post-questionnaire

was twofold: (1) to gauge how much the students learned over the course of the work-

shop and how it changed their perception of computing capabilities and what they

can do with them and (2) to gather information on the students’ experience while

working on their project with App Inventor and the Embedded Companion.

The students’ MIT App Inventor project files were also collected at the end of

the workshop. These files can be opened in the version of App Inventor that I have

implemented for the IoT Embedded Companion. The file can be opened to view the

designer and blocks editor of the app screen and the IoT sketch. There also exists

a tool made by the App Inventor team to query aspects of the collection of AIAs 1.

Additionally, any noteworthy interactions with students were collected.

1AIA Tools https://github.com/mit-cml/aiatools

51

https://github.com/mit-cml/aiatools

52

Chapter 5

Results and Discussion

The workshop consisted of fourteen students in grades 4-8. All had their own com-

puters to work with (all but 4 were personal laptops, the rest were provided by the

FLL teams Theresa Richards manages), but a couple were not able to connect to the

internet so four students worked in pairs, totaling the number of projects to 12. The

data collected during the workshop sought to answer the following research questions:

(1) to what extent can students understand the functionality of IoT and its applica-

tions, (2) how has learning about IoT changed the students’ perception of computers

and what they themselves are capable of making with them, and (3) how well can

students create projects with IoT in App Inventor using the Embedded Companion.

To address the first question, I analyzed students’ pre- and post-questionnaire

responses using the pre-questionnaire responses as a baseline understanding of IoT

technology and comparing the post-questionnaire responses against this baseline. The

second question uses the students’ responses to the first and third questions from the

pre- and post-questionnaires. The final question uses the second section of the post-

questionnaire, project files, and the amount and type of help students asked for while

working on their projects.

It is important to note that because of the internet in the space provided for the

event, I was not able to run a local server to App Inventor and students were not

able to use the Companion app for their projects. Unfortunately, this meant that a

lot of time was spent trying to load and connect to the remote App Inventor server

53

and students were not able to use live development. Therefore, the results from this

workshop are insufficient to address the entire IoT Embedded Companion system.

The results, discussion, and conclusion provided in the rest of this work focus on the

students’ conceptual understanding of IoT and how well students are able to use the

Embedded Companion on the App Inventor website to create projects.

5.1 Students’ Understanding of IoT

In part 1 of the workshop, the definition of IoT along with some popular and do-it-

yourself examples were introduced to the students and a discussion with the students

followed. Before this, the students completed a pre-questionnaire that asked the

question “What do you think the “Internet of Things” (or “IoT”) is?”. At the end

of the workshop, about three and a half hours later, the students completed a post-

questionnaire with the same question.

5.1.1 Pre-Questionnaire Responses

The responses to the pre-questionnaire fell into three categories: guesses at what IoT

was, a vague idea of the main concepts of IoT, and a display of understanding of

IoT. It is important to note that a couple students arrived late and therefore were

answering the pre-questionnaire during the introduction of IoT.

Out of the fourteen responses, seven of the responses fell into the guesses category.

On the two extreme ends, one student didn’t try to guess but simply put “?????” and

another student attempted to use the name “Internet of Things” to create an answer

“I think the “IoT” is the internet that you can search tons of things.” Two of the

responses were similar and said “I think it is a program that creates apps.”

Three of the responses fell into the vague idea category. Each student had a unique

answer that hit on one of the main concepts of IoT:

∙ “Small devices that are programmed to do things (Alexa)”

∙ “A way to allow different softwares to talk and communicate with each other”

54

∙ “A way to physical[ly] involve computer programming”

The IoT concepts that these answers mentioned are small devices, communication,

and the physical nature of IoT applications.

The remaining four responses fell into the category of a display of understanding

IoT. An example response is “A network of “smart-devices” working together and syn-

chronizing with each other.” Every response involved networking or communication,

but only one answer provided examples that used IoT technology: “The means by

which you connect your toaster to your smartphone: a computer network composed

of home appliances, sensors, and controllers.” Only this last answer expressed an

understanding of how IoT is used and where it appears in daily life.

5.1.2 Post-Questionnaire Responses

The post-questionnaire responses can also be divided into the same three categories.

Overall, the number of guesses decreased to four, the number of vague ideas decreased

to one, and the number of answers that displayed understanding of IoT increased to

nine.

Three of the responses that fell under the guesses category said that IoT is an

“app builder.” These responses are very similar to some of the ones in the pre-

questionnaire. It is unclear if the students who responded like this were the same as

the students in the pre-questionnaire because the questionnaires did not ask for name

and the pre- and post-questionnaires were not connected by student. Without this

information, it is hard to distinguish the case where the students answered the same

on both questionnaires because they did not learn anything about IoT and the case

where some students’ understanding of IoT became focused on creating applications

because they made IoT applications in the workshop. In either case, the introduction

and discussion of IoT did not have the desired effect on the students. It seems that

since the bulk of the time of the workshop was spent creating applications, this is

what the students took away from the workshop.

The one response that fell under the vague concepts category displayed less un-

55

derstanding of IoT than the responses in the same category in the pre-questionnaire:

“I learned about the arduino and how to make music.” However, the student is able

to understand that they created an IoT project even if they cannot provide an expla-

nation of what IoT is exactly.

The nine responses that fell under the understanding category all mentioned the

connection or networking of the devices of IoT. Two of the responses included exam-

ples, both of which included “Alexa” indicating that they were heavily influenced by

the examples mentioned in the discussion of IoT in part 1 of the workshop. Three of

the responses included a mention of IoT applications using data, sensors, or interact-

ing with the physical world. This displayed some understanding on how IoT devices

can be used to do things that conventional personal computers cannot. One response

in particular displayed understanding about IoT without simply repeating what was

discussed in the beginning of the workshop: “Smart devices working together to create

a good experience.” This student took the discussion about IoT and how many IoT

devices communicate to create some desired functionality and synthesized a colloquial

way of thinking about it.

5.2 Students’ Perception of Computing and Capa-

bilities

The other two questions on the pre-questionnaire will be used in order to address

the second question about how students’ perception of computing and capabilities,

both of computers and of themselves, have changed after learning about IoT. The

two questions are as follows:

∙ “What types of things do you think computer programs can do? List everything

you can think of.”

∙ “What do you think YOU can create with computer programs?”

Since these questions were both open-ended, each response consisted of multiple an-

swers. I sorted these answers into the following categories: robots, apps and games,

56

Category Pre-Questionnaire Post-Questionnaire
Question 1 Question 3 Question 1 Question 3

Robots 6 3 6 2
Apps & Games 8 10 4 8
Problem Solving 5 2 2 1
Data & Computation 5 3 3 0
Controlling Devices 5 2 10 9

Table 5.1: Category Breakdown of Questionnaire Responses

problem solving, data and computation, and controlling physical devices. These re-

sults are summarized in Table 5.1 where ‘Question 1’ refers to what students thought

computers can do and ‘Question 3’ is what the students thought they could create.

Not all of the students’ responses fell into these categories and are therefore omitted

from this table. In particular, one student answered “Give[n] the time and resources

anything I want” to question 3 in both the pre- and post-questionnaire which is not

reflected in this table.

For question 1 of the pre-questionnaire, each category had roughly the same num-

ber of responses. However, in the post-questionnaire, responses to the same question

were more unevenly split between categories—“Controlling Devices”, for example, had

twice as many responses, when comparing the pre- and post-questionnaires, while

“Problem Solving” and “Data & Computation” had half as many responses each. The

increase in responses in the “Controlling Devices” category implies that many stu-

dents were influenced by the workshop and thus responded with IoT-related answers.

Similarly, this influence also likely accounts for the reduction in responses in other

categories.

I am skeptical to interpret the lack of responses in other categories as meaning

that students no longer believe that computers can function in the same ways that

they listed before. However, the fact that students did not include many responses

in all of the categories possibly indicates that they were not thinking about all the

capabilities of a computer at once. The increase in responses about controlling devices

shows that students learned that computers have that capability, but the lack of other

responses demonstrates that students have not yet integrated this understanding into

57

their conception of computing. Based on these responses, learning about IoT did not

strictly increase the students? knowledge and perception of computing.

A similar shifting in the number of responses in each category occurs in question

3 as well. The number of responses increases by 7 in the controlling devices category

and there are 7 less responses in all of the other categories combined. However, the

mean and standard deviation in the pre-questionnaire are 4 and 3.4, respectively. This

standard deviation is even higher than that of question 1 in the post-questionnaire.

This is because 50% of the students’ responses fell into the apps and games category.

In the results from the post-questionnaire, the mean was still 4 and the standard

deviation was 4.2, even higher than in the pre-questionnaire. The cause of this is

now instead of one main answer (apps & games), there are two (apps & games and

controlling devices). In the post-questionnaire, 45% of the responses fell into the

controlling devices category and 40% into the apps and games category. For question

3 as compared to question 1, it seems that the students’ belief that they can make

apps and games did not diminish, but their belief that they can make programs that

control devices increased greatly. However, the other categories received less responses

than in the pre-questionnaire which again shows the influence of the workshop on the

students’ beliefs of their computing capabilities.

5.3 Creating an IoT Application in App Inventor

with the Embedded Companion

As noted before, the internet in the space provided for the event was slow and re-

stricted such that time was lost trying to connect to the remote App Inventor server

and students were not able to use the Companion. This created a non-ideal scenario

in which the students were not able to fully test the Embedded Companion system.

However, students still learned how to use the App Inventor workshop to create an

IoT project and started to create their own projects even though they were unable

to finish or test them.

58

5.3.1 Students’ Responses On Project Completion

The second half of the post-questionnaire pertained to the IoT projects that the

students spent time creating. The first question asked “Did you finish the app you

wanted to make?” to which all but 2 responses were “No.” The next question asked

the student to explain the answer further if it was a no: “If no, why not? Did you

run out of time? Could you not figure out how to do something? Do you think you’re

unable to create it in App Inventor?” Out of the 14 responses, there were 6 indicating

that they ran out of time.

The reasons for running out of time varied from “I ran out of time since my com-

puter didn’t load” to “It also took too long to figure out some things that did not line

up with the tutorial.” These types of responses unfortunately do not correspond di-

rectly to the functionality of the Embedded Companion in App Inventor itself. Both

responses explain why the student ran out of time to complete their independent

project and neither of the reasons are directly related to the functionality of App In-

ventor. The first response corresponds to the unfavorable conditions in the workshop

of slow internet and computers which meant that trying to connect to the server took

up a lot of time. This problem was unavoidable in the situation and should be taken

into account when analyzing the students’ projects and responses.

The second response also was not directly because of App Inventor, but instead

about the teaching materials that I used during the workshop. Unfortunately, some

of the tutorial pictures got out of sync with the current system and therefore did

not match directly. These small differences between the system the students were

using and the tutorial caused a lot of confusion. The students asked many questions

around these discrepancies and once they received answers, they were able to move

on to the rest of the tutorial or project. However, this did cause a problem during

the workshop and a few students echoed this sentiment with responses about being

“confused” or “starting to get frustrated” and that they “didn’t [finish] because [they]

didn’t know how to program it.” This emphasizes the importance of correct teaching

materials and tutorials because small differences make a difference and can hinder

59

the students’ learning.

5.3.2 Students’ Responses On Difficulty

The last question on the post-questionnaire was “How hard was it to build your

project?” The responses fell into a few categories as described in the students’ re-

sponses: “not really,” “medium” or “from 1-10, about a 5,” “hard”, and “very hard.”

Out of the 14 responses, 2 fell under the “not really” category, 4 under “medium,” 7

under “hard,” and 1 under “very hard.” These responses indicated that about half

the students were okay with the content and pace of the workshop, but the other half

were not. The question itself did not ask for clarification about why they thought it

was as hard as they indicated, so it is difficult to know exactly what the problems

were.

However, some of the responses had an explanation which provides insight into

why the students thought building the project was hard. Four students mentioned

that “the basics” were hard to figure out. One of these students responded that “it was

fairly difficult learning the basic parts of the software.” These responses indicated that

part of the difficulty in creating a project was with using the basics of App Inventor

for the first time, which is unsurprising since the students only had 2 hours to learn

how to use with App Inventor before starting their project. Some students were able

to get past this hurdle and said “it was not very hard once me and my partner figured

out the basics.” For others, it was the source of difficulty for their project “medium -

we didn’t get past the tutorial.”

All of the other responses either had no explanation or the provided explanation

expanded only on the level of hardness such as “harder than I expected” or “not to[o]

hard but it was a bit challenging.” None of the responses indicated that the concepts

of IoT or the specific tools for IoT were difficult to understand or use.

60

5.3.3 Students’ Project Files

Unfortunately, not all of the data from the students’ project files were saved as a

result of the workshop. Here I will analyze the screen components, screen blocks,

and the IoT sketch components since it was the IoT sketch blocks that were lost.

Additional data was gathered later from a different group of students whose IoT

sketch blocks will be analyzed. This group consisted of four students who were all

familiar with App Inventor, but had never used the IoT Embedded Companion before.

Each student spent approximately 90 minutes working on making the Healthy Plant

Tutorial (Appendix A) and adding some personal adjustments. These projects are

the ones analyzed here.

The following 3 tables summarize the results of analyzing the students’ projects.

Table 5.2 shows the analysis of the projects created in the workshop. Since all of

the projects were collected at the end of the workshop, some of the projects were

abandoned (due to connectivity issues) and thus appear as a 0 in most of the categories

analyzed. Table 5.3 shows the analysis of the projects created after the workshop

during further data collection. Because of the limited time the students had for these

projects, some of the students only focused on creating the IoT sketch instead of the

mobile app screen and therefore had 0 additional screen components, but the greatest

number of additional sketch component types used.

In all of the projects analyzed, almost no students added any additional component

types to their mobile app designer screen. An “additional component type” is a

component type that was not used during the tutorial. Among all projects, only 1

student used any additional components on the mobile app designer screen and this

students used 3 different types of components. However, 7 students added additional

component types to the sketch designer with a maximum of 5 different types to a

single project. This difference indicates that students were more focused on adding

to the IoT part of their project. Without additional information the reason cannot

be determined, but three possibilities are as follows. Students added to the IoT part

of the project because (1) students were more comfortable adding to the IoT sketch,

61

Average Range Standard Deviation
Screens 2 1 - 4 0.6546536707
Screen Components 18 1 - 29 6.761234038
Additional Screen Components 1 0 - 8 2.555506259
Additional Screen Component Types 0 0 - 3 0.8017837257
Screen Global Variables 1 0 - 3 1.059456927
Sketches 1 0 - 4 1.180193689
Sketch Components 7 0 - 13 4.250450156
Additional Sketch Components 1 0 - 5 1.533636468
Additional Sketch Component Types 0 0 - 5 1.293626448

Table 5.2: Workshop Project Results

Average Range Standard Deviation
Screens 1 1 - 1 0
Screen Components 15 1 - 22 8.584142357
Additional Screen Components 0 0 - 1 0.433012701
Additional Screen Component Types 0 0 - 0 0
Sketches 1 1 - 2 0.4330127019
Sketch Components 8 6 - 12 2.165063509
Additional Sketch Components 2 0 - 5 1.802775638
Additional Sketch Component Types 1 0 - 3 1.089724736

Table 5.3: Additional Project Results

(2) students are only thinking about the IoT part of the application, or (3) students

added to the IoT sketch first and did not have time to add to the screen. In order

to determine which of these is the case, another study should be run using these as

research questions. The results would help improve teaching materials and curriculum

surrounding IoT.

Table 5.4 shows the types of additional sketch components that students used in

projects. These additional components are ones that are included after the ones used

in the tutorial. For example if the tutorial uses 1 GroveLED and the student used

3 GroveLEDs in their project, 2 additional GroveLED components have been used.

The students in the workshop started with the Template App (Appendix B) while

the students in the second data collection group did only the Healthy Plant Tutorial

(Appendix A) so the distribution of additional types of sketch components used is

different. Across both sets of projects, students added some new components (e.g.

the GroveMoisture component for the workshop projects and the GroveBuzzer for

62

Type of Component Number Used in Workshop Number Used in Additional
Data Collection

GroveMoisutre 1 0
GroveBuzzer 1 3
GroveLED 4 0
GroveRGBLCD 3 1
GroveHumidity 2 0
GroveButton 2 4
Console 1 2
BluetoothLE 1 0
Components Used in Tuto-
rial

7 1

New Components 8 9

Table 5.4: Additional Sketch Components Used

Project 1 Project 2 Project 3 Project 4
Shared Global Variables 4 4 4 0
Mobile App Shared Global Get-Actions 11 11 11 0
Mobile App Shared Global Set-Actions 0 0 0
IoT Device Shared Global Get-Actions 1 1 0 0
IoT Device Shared Global Get-Actions 4 4 4 0
Sketch Events 4 7 4 0
Initialize Block Height 0 0 0 0
Forever Block Height 0 0 0 0
Sketch Component Get-Actions 0 0 0 0
Sketch Component Set-Actions 2 8 1 2

Table 5.5: Additional Projects - IoT Sketch Blocks Editor Results

the additional projects). Interestingly, the students in the workshop added about an

equal number of components from and not from the tutorial while the students in the

additional data collection group only added 1 additional component from the ones

used in the tutorial. This difference may be a result of the length of time each student

spent working with the IoT Embedded Companion or the types of components used

in the tutorial.

The projects from the second data collection group saved properly and therefore

further analysis can be made on the IoT sketch blocks in the students’ projects (Table

5.5). The first part of this table shows the analysis on shared global variables. The

mobile app and the IoT device communicate through shared global variables when

63

they are connected. Without any connections, the variables work like normal, but

when they are connected the result of a mobile app or IoT device write to a shared

global variable is sent to the other and updated accordingly. Therefore to analyze the

amount of mobile app and IoT device communication, we need to analyze the shared

global variables.

The number of shared global variables is the amount of state that the two applica-

tions share at any given time. Each project had 4 shared variables with an outlier of 0.

The number of IoT device shared global get-actions describe how much information

the IoT device receives from the mobile app. The 2 projects that each have 1 get-

action perform the get after a set-action and therefore this information is not actually

received from the mobile app. The number of IoT device shared global set-actions

describe how much information the IoT device sends to the mobile app. Similarly, the

number of mobile app shared global get-actions describe how much information the

mobile app receives from the IoT device and vice versa for the set-actions. None of

the projects had any extra global variables or get- or set-actions than needed for the

tutorial. Because most of the time spent was doing the tutorial and there were only 4

projects analyzed, the results are inconclusive as to why no additional communication

was added.

The number of sketch events in an IoT project describes how much an IoT device

reacts to sensory input. The number of component get-actions describes how much

the IoT device reads data without it triggering an event and the number of component

set-actions describes how much the IoT device changes the devices that are attached

to it. The Healthy Plant Tutorial, on which these projects were based, included 4

sketch events and 2 component set-actions. Only project 2 had any additions built on

top of the tutorial. This was most likely due to time constraints, but it means that

there is not enough data to draw any conclusions about the behavior of students when

using the IoT Embedded Companion while making projects. From this one project

though, we can gather some preliminary ideas to test later with more research.

The additions that were made to project 2 were an increase in the number of

sketch event and the number of component set-actions. Interestingly, this does not

64

include any additional blocks to the Initialize or Forever block so everything that the

IoT device does is reactionary. One of the benefits of the IoT Embedded Companion

is that projects can have logic that is purely a result of the IoT device being on instead

of as a result of some input. Again, because of the lack of data, the reason for this

needs to be explored further.

5.4 Discussion

As the differences between the pre- and post-questionnaires showed, the workshop

was generally effective in teaching students the basic concepts of IoT and empowering

students with the ability to use IoT technology. Even though only a small fraction of

the workshop was devoted to discussing IoT, the students were able to leave knowing

what IoT was and with some ideas on how they could use IoT technology in a project

to affect the physical world.

The workshop projects and post-questionnaire responses on them, along with the

four additional projects collected at a later time, indicate that the learning experience

surrounding the IoT Embedded Companion could be improved. The students in

the workshop found following the tutorial without guidance very difficult and would

frequently ask questions about how to proceed. Since not all students using the IoT

Embedded Companion would have a teacher, it is important that tutorial be improved

to help ease this confusion. In addition to making the tutorial easier to understand,

it would be ideal to make the tutorial more interactive so that students learn what

to do instead of following the instructions without considering what they are doing.

None of the students had enough time to use the live experimentation feature

of the IoT Embedded Companion and so we do not have any information about its

effectiveness. The ability to use live development is important in debugging and

experimentation and further study needs to be done to determine whether this makes

the IoT Embedded Companion easier to understand and use. Since students were not

able to use it because they did not finish the tutorial or their project, it is important

that the live development feature is introduced earlier in the learning process in future

65

studies.

66

Chapter 6

Conclusion

In this thesis, I presented a system that gives Alex the ability to create her smart light

IoT application. App Inventor provides Alex with a single, online platform to create

IoT applications equipped with a synchronized mobile app and IoT device. To create

this system, I built the IoT Embedded Companion and modified and enhanced MIT

App Inventor to take advantage of the new capabilities. I then designed a workshop

to teach students about IoT technology and test their use of the IoT Embedded

Companion. Afterwards I ran the workshop with 14 middle-school aged students and

analyzed the results of the workshop.

Based on the data collected during the workshop, I found that students were able

to understand the key concepts of IoT and that this knowledge influenced the way

the students thought about the capabilities of computing. I also found that teaching

the IoT Embedded Companion to students without prior knowledge of MIT App

Inventor in the short amount of time described with the current teaching materials

is difficult. However, once students figured out the basics of how to use MIT App

Inventor and the IoT Embedded Companion, they were able to construct their desired

IoT applications.

Given these results, Alex would probably have to take a bit of time to learn

how to use the IoT Embedded Companion, but once she did she would only have

to worry about what she wants her project to do, not how to keep separate systems

synchronized—and she would have only had to learn one system!

67

68

Chapter 7

Future Work

In order to complete and improve the IoT Embedded Companion as a full-fledged

system ready to be added to MIT App Inventor, there are two main focuses for

future work. The first is a better tutorial system. As the results from the workshop

showed, the tutorials need to be improved to help students learn how to use the

Embedded Companion effectively so that they are able to utilize it fully in their own

projects. Further research into what types of tutorials work best to help students

learn and what the best way to teach students about the full capabilities of IoT is

necessary.

The second focus for future work is improving the system itself. Because this work

only provides the basic implementation of the IoT Embedded Companion, not all of

the App Inventor basic logic blocks were translated for the Embedded Companion.

Further improvements to the system would be the addition of basic logic blocks such as

text, lists, local variables, and delay. Other improvements would focus on optimizing

the IoT bytecode generator, enhancing the sketch editor to be interactive like the

screen designer, and extending the number of sensors and devices available.

Lastly, the most important improvement is to generalize the IoT Embedded Com-

panion so that it is available to be used on multiple platforms. The core code of the

Embedded Companion is already accessible to all platforms that run C programs, but

the device and BLE code need to be generalized to work with any platform.

69

70

Appendix A

Healthy Plant Tutorial

The rest of this appendix includes the PDF of the Healthy Plant Tutorial given to

students at the workshop.

71

This tutorial will help you get started with building an App that connects and
respond to the physical world - often termed the Internet of Things or "IoT".

In this project we're going to learn how to build an app that connects to a
microcontroller called Arduino 101 via Bluetooth and runs on the Arduino even
when the app is not connected via Bluetooth. You can use this equipment to
monitor various conditions (i.e., light, humidity, temperature, moisture) that can
help you track the overall health of a plant. We will also learn how to graph this
data and how to autonomously respond to the data by turning on an LED when
the plant needs to be watered.

We are also using a Seeed Grove shield for this tutorial.

App Inventor + IoT:
Building an Autonomous
Healthy Plant App

60
min

72

Let's start by connecting all the sensors we're going to use to our Arduino. For this
project, we are also using a Seeed Grove shield attached to the top of our Arduino.
While the Grove board isn't necessary for IoT projects, it makes things much easier.
We will also need the following components for this tutorial:

● A moisture sensor
● A light sensor
● A humidity sensor (also works as a temperature sensor)
● An RGB LCD Display
● An LED

We're going to attach 3 sensors (Light, Humidity, and Moisture) and an
RGB LCD Display.

● Attach the Light Sensor to the A1 slot on the Grove board
● Attach the Moisture Sensor to the A2 slot on the Grove board
● Attach the Humidity Sensor to the D4 slot on the Grove board
● Attach the RGB LCD Display to any of the I2C slots
● Attach the LED to the D5 slot on the Grove board

Setting up the Arduino

moisture
sensor

humidity
sensor

light
sensor

RGB LCD
display

red
LED

73

Open the AIA project for the Healthy Plant Tutorial in App Inventor. It is currently just an
app that looks for and connects to BluetoothLE devices.

Building the App in App Inventor

Now we want to add all the sensors and displays from the Grove kit that we already wired
to the Arduino. To do this, first add a sketch with the “Add Sketch…” button as shown
below. The dropdown button next to the project title will switch to “Sketch1” and a picture
of an Arduino will appear.

74

From the “User Interface” list, drag the GroveRGBLCD onto the viewer.

From the “Sensors” list, drag the following sensors into the viewer: GroveMoisture,
GroveLightSensor, GroveHumidity

75

First, let's set the pin for the Light Sensor
● Click on GroveLightSensor1 in the Components pane.
● In the Properties pane, under Pin, enter only the number that corresponds to the

analog pin the light sensor is plugged into on the Grove board (in this case A1).
○ Note: You only need to set the number (1) not the letter (A)

● Now, let's do the same thing for the rest of the sensors
○ Click on GroveMoisture1, set its pin to 2
○ Click on GroveHumidity1, set its pin to 4
○ Click on GroveLED1, set its pin to 7

■ Note: The LED’s intensity can be set to 1-100. Intensity will only affect
the brightness of the LED if it is plugged into a pin supporting pulse
width modulation (PWM). For the Arduino 101, the PWM pins are 3, 5,
6, and 9. For all other pins the LED will either turn on or off with no
change in intensity.

● For the GroveRGBLCD1 you don’t have to set the pin; App Inventor will take care
of it. In the properties for the LCD, you can set the background color to whatever
you wish!

Next, we need to let App Inventor know which pins on the Grove board the different
sensors and the LCD screen are connected to.

Now we are ready to program the Arduino!

76

Switch to the Blocks Editor view for Sketch1
Blocks can be added to either the Sketch or Screen Blocks editor - you can switch
between these with the dropdown boxed in red below.

The blocks for any program you want to run autonomously on the Arduino must
go in the sketch blocks editor. Any program for just the app will go in the screen
blocks editor.

Since this project is autonomous, we’ll handle each sensor’s data in the Blocks
Editor for our sketch, “Sketch1.”

Now we need to store the data of each sensor.
● From Variables drawer drag four initialize global name to blocks and name

them light, moisture, temperature, and humidity.
○ set each one to a value of 0

We’re also going to want to turn the LED on and off sometimes, so we can make
procedures to do this. Procedures make it easy to reuse blocks and they are a
good way to keep blocks neat.

● From Procedures drawer drag two purple to procedure do blocks and name
them TurnOnLED and TurnOffLED.

○ For TurnOnLED, we want to set the LED’s intensity to 1. From the
GroveLED1 drawer drag set GroveLED1.Intensity to block. Set this
value to 1.

○ For TurnOffLED, repeat the same step as the previous procedure but
set the value to 0 instead of 1.

77

● From GroveLightSensor1 drag
when GroveLightSensor1.IntensityChanged

● from Variables add
set global light to

○ hover over the orange
"intensity" in the
.LightSensorDataReceived
block to see the get intensity block.

○ Drag the get intensity block from this window
and snap to set global light to

● From GroveHumidity1 drag when
GroveHumidity1 .HumidityChanged

○ from Variables add set global
humidity

○ hover over the orange “humidity”
to see get humidity

Next, we want to update the global variables we made when we receive data
from the sensors.

○ drag the get humidity block and snap to set global humidity to

Now, we’ll repeat this for humidity, temperature, and moisture.

● From GroveHumidity1 drag when
GroveHumidity1
.TemperatureChanged

○ from Variables add set global
temperature

○ hover over the orange
“temperature” to see get
temperature

○ drag the get temperature block and snap to set global temperature to

78

Repeat this one more time for the moisture sensor.

● From GroveMoisture1 drag when
GroveMoisture1
.MoistureChanged

○ from Variables add set global
moisture

○ hover over the orange
“moisture” to see get
moisture

○ drag the get moisture block and snap to set global moisture to

For the moisture sensor, soil is considered “too dry” is the moisture is below 300.
Let’s turn the LED on whenever the soil is dry, so that we are reminded to water
our plants. So,

if moisture is less than 300, then turn the LED on, else turn the LED off.

● From Control drawer, drag if then
and snap below set global
moisture to

○ click the gear icon on the if
then block and drag else into
the if block

Your block should now look like this:

79

Desired function: if moisture is less than 300, then turn the LED on, else turn the LED off.

● From Math drawer, drag a blue compare equals block and change the compare
from equals to less than

● From Variables add get global moisture and snap to first position in blue compare
block

● Set second position in compare block to 300

● Snap this to the if inside our GroveMoisture1.MoistureChanged block
● From Procedures drawer drag purple call TurnOnLED and snap to then
● From Procedures drawer drag purple call TurnOffLED and snap to else

Now we’re finished with our blocks for the sketch, so the last step is to build the
blocks for our app screen.

80

To check if we have received data, check if any of the global variable have a value
other than the initial value we set, 0. We can do this by linking together or blocks from
the Logic drawer.

● From Logic drawer, drag three or blocks and link them together as shown below

● From Math drawer, drag four compare equals blocks and change them to not
equal to 0

● Snap compare not equal into the four available spaces in our linked or blocks

● From Variable drawer, drag four get blocks and change the dropdown to be each
of the four global variables: global humidity, global light, global moisture, and
global temperature. Snap each of these into the available spots in our linked or
block

● From Procedure drawer, create a to procedure result block named
“checkIfAppIsReceivingData” and snap linked or block into procedure’s result

Switch to the Blocks Editor view for Screen1
Start by making global variable for moisture, light, temperature, and humidity.
These mimic the same global variables that we made for our sketch. AppInventor
takes care of keeping these variables up-to-date with the global variables from the
sketch which are set by the Arduino.

○ Note: these variables should only be set in the Screen Blocks editor
(except for initialization) because only the Arduino’s sketch should set
these.

● From Variables drawer drag four initialize global name to blocks and name
them light, moisture, temperature, and humidity.

○ set each one to a value of 0

81

Once we're done, the
final procedure
should look like this:

Let's make a new procedure to display the current readings in the LabelData. Let's
rename it updateDataLabel

● From the LabelData Drawer add set LabelData.Text to
○ From the Text Drawer connect a join block.

You'll notice that the join only has two
slots at first and we have 8 items! This is
an easy fix. In the Join block you'll see
a blue gear, click on it and a new
window appears.

Then drag the string block on the left
side under the string blocks inside the
join. This will add a new slot. Do this 6
times in total.

○ Add the following blocks to the join (for some of them it might be easier
to copy and paste than to type them yourself):

■ from the Text Drawer add a text block and type in "Humidity: "
■ from the Variables Drawer add a block get global humidity
■ from the Text Drawer add a text block and type in

"% Temperature: "
■ from the Variables Drawer add a block get global temperature
■ from the Text Drawer add a text block and type in "ºC\nLight: "
■ from the Variables Drawer add a block get global light
■ from the Text Drawer add a text block and type in "\nMoisture: "
■ from the Variables Drawer add a block get global moisture

82

Now, let’s update LabelStatus and LabelData to reflect current data when we are
receiving data.

● From ButtonRefresh drawer, drag when Button.Click do to viewer.
● From Variables drawer, drag initialize local variable to and name the local

variable “appIsReceivingData”
● From Procedures drawer, snap call checkIfAppIsReceivingData into to so

that our local variable is true when we have data from the Arduino

Next, we’ll use this local variable to decide what to set our labels to. First, make an
if then else block from the Control drawer like we did with the moisture sensor on
page 9.

● From LabelStatus bucket, drag set LabelStatus.Text to into else spot and
set it to “Not receiving data.”

● From LabelStatus bucket, drag set LabelStatus.Text to into then spot and
set it to “Receiving data from Arduino”

● From Procedures drawer, drag call updateDataLabel and snap underneath
set LabelStatus.Text to in the then section

83

Switch to the Designer view

Now let's make it look nicer by adding some colorful bars to graph some of our data.

We need to create the area for the bar graphs.
● Drag a HorizontalArrangement from the Palette and place it below ListBLE

○ Set its properties as follows:
■ AlignVertical: Bottom: 3
■ Height: 200px
■ Width: Fill parent

○ Add 3 VerticalArrangements inside the HorizontalArrangement and
rename them LightBar, TemperatureBar, MoistureBar

○ Set each VerticalArrangement's height to 0px and width to Fill Parent
■ Now set LightBar BackgroundColor to Yellow, TemperatureBar

BackgroundColor to Red, and MoistureBar BackgroundColor to
Blue

84

Let's create a legend so we know what each bar represents.
● Drag a HorizontalArrangement from the Palette and place it below

HorizonalArrangement2
○ Leave its Height at Automatic and set its Width to Fill parent
○ From the User Interface Palette, drag 3 Image components onto the

Horizontal Arrangement, and rename them "ImageLight",
"ImageTemperature", and "ImageMoisture"

■ Set each Image's properties to:
● Height to 30px and Width to Fill Parent

Now we want to add the images for the legend.
● Download the following 3 pictures to your computer:

○ Sunlight, Thermometer, and WaterDrop
● Under the Properties pane for ImageLight, click on

Picture.
○ In the pop-up window click on "Upload File…"
○ Find the Sunlight image on your computer and

upload it
○ Repeat this process for ImageTemperature

and ImageMoisture

85

Let's set up a space so that our plant can "talk" to us based on its status.
● Drag a HorizontalArrangement from the Palette and place it below

HorizontalArragement3
○ Set its AlignVertical to Center: 2, Height to 130px,

and Width to Fill parent
○ Download the PottedPlant picture to your computer and then Upload it to

the project
■ Drag an Image component onto HorizontalArrangement4, and set

its picture to the Potted Plant picture.
■ Rename the Image "ImagePlant"
■ Set its Height to 70px and Width to 70px

○ Drag a Label to the right of ImagePlant, rename it "LabelPlantSpeak"
and change its text to "I need light and water to grow!"

NOTE: If HorizontalArrangement4 is off the screen, try hiding HorizontalArragement2
temporarily by clicking the Visible button in HorizontalArragement2's Properties pane.

86

Switch to the Blocks Editor view for Screen1
To update the graph as we get data, we're going to add a procedure to update the
height of LightBar, TemperatureBar, and MoistureBar. By setting the height of each
of the vertical arrangements, we can create bars reflecting the sensor values by their
change in size.

● Create a procedure named “updateBarChart”
● Snap set blocks for each vertical arrangement

Now, use the Math drawer and global variables to set the height as shown below.

Finally, add a call to this procedure after the call to updateDataLabel

Now try out your app using the MIT AI2 companion - when the sensor data
changes, the bar graphs should also go up and down.

87

A few other things you could do to enhance your app!

● You could change the color of the LCD display if the soil is too dry or too wet
instead of turning on/off an LED.

● Or, change the colors of the graph bars when the conditions change.

This is just one example of how App Inventor + IoT can work together to help us
understand, and change, our everyday lives. If you come up with more, be sure to
share them with us! You can reach us by emailing appinventor@mit.edu . Enjoy!

88

Appendix B

Template Handout

The rest of this appendix includes the PDF of the template handout given to students

at the workshop.

89

Template Handout

Starting Setup

Below pictures what Arduino components are in template project. The components are a button,
light sensor, blue LED, red LED, buzzer, and touch sensor. You can find what each of these
components are for further down in this handout. Before you connect any physical components
to your Arduino, think about which ones you actually want to use for your project. Remember
take this template and make it your own!

The mobile app screen has a place to interact with the blink blue LED, the button, and the
buzzer.

90

Counting Button Presses

When the button is pressed, the Arduino adds 1 to a tally of how many times the button has been
pressed. The mobile app also displays this count.

Arduino : When you click the button, it adds 1 to the total number of button presses.

Mobile App : When you get a new number of button presses, update the display.

91

Blinking an LED

An LED connected to the Arduino blinks at an interval given by the variable “delay.” This
variable can be adjusted on the mobile app by moving a slider.

Arduino : The blocks in the Arduino sketch uses a variable called “delay” to set the interval of
the blink. To blink the LED, there are procedures to turn on and off the blue LED.

Mobile App : The slider on the mobile app allows you to change how fast the LED blinks. The
“delay” variable is shared between the mobile app and the Arduino.

Sensing Darkness

A light sensor measures the lightness of the area and if it goes below the threshold (which starts
at 30), the red LED turns on and if it goes above the threshold, the red LED turns off.

Arduino :

92

Playing Music

When you touch the touch sensor, a sound plays on the buzzer. The mobile app lets you change
what tone should be played next.

Arduino : When you touch the touch sensor, the buzzer plays the tone set by the shared variable
“tone.” The “PlayNote” procedure creates what is called a square wave to change the frequency
(or tone) of the sound that is played.

Mobile App : After you enter a number into the buzzer tone textbox, set the shared variable
“tone” to that value.

93

94

Appendix C

Sensors and Components Handout

The rest of this appendix includes the PDF of the sensors and components handout

given to students at the workshop.

95

Sensors and Components

Here is a list of the sensors and components that you can use for your project! You can find a
picture of the sensor or component and some examples of what blocks to use with it.

Button

Use this block to trigger actions
when the button is clicked:

Buzzer

Use this block to turn on the buzzer:

Use this block to turn off the buzzer:

Use this block to determine if the buzzer is on or off.
The value will be 1 if it is on and 0 if it is off:

Humidity Sensor

Use this block to get the current
temperature anywhere:

Use this block to get the current
humidity anywhere:

Use this block to trigger actions when the temperature
changes. You can use the “temperature” variable to get
the current temperature:

Use this block to trigger actions when the humidity
changes. You can use the “humidity” variable to get the
current humidity:

96

LEDs

Use these blocks to turn on
the LED:

Use these blocks to turn off
the LED:

Use this block to determine if the LED is on or off.
The value will be 1 if it is on and 0 if it is off:

Light Sensor

Use this block to trigger actions when
the light changes. You can use the
“intensity” variable to get the current
brightness of the light:

Use this block to get the current brightness of the light anywhere:

Moisture Sensor

Use this block to trigger actions
when the moisture changes. You
can use the “moisture” variable to
get the current moisture level:

Use this block to get the current

moisture level anywhere:

97

RGB LCD Display

Use this block to set the color of the LCD display:

Use this block to get the current color of the LCD display:

Touch Sensor

Use this block to trigger actions when you
either start or stop touching the touch
sensor. The “then” section of the if block is
run if you just started touching the sensor
and the “else” section runs if you just
stopped touching the sensor:

Use this block to determine if the touch sensor is being
touched or not. A value of 1 means that it is and 0 means
that it is not:

98

Appendix D

Pre-Questionnaire

The rest of this appendix includes the PDF of the pre-questionnaire given to students

at the workshop.

99

PreQuestionnaire

What types of things do you think computer programs can do? List everything you can think of.

What do you think the “Internet of Things” (or “IoT”) is?

What do you think YOU can create with computer programs?

100

Appendix E

Post-Questionnaire

The rest of this appendix includes the PDF of the post-questionnaire given to students

at the workshop.

101

PostQuestionnaire

What types of things do you think computer programs can do? List everything you can think of.

What do you think the “Internet of Things” (or “IoT”) is?

What do you think YOU can create with computer programs?

Did you finish the app you wanted to make?

If no, why not? Did you run out of time? Could you not figure out how to do something? Do you
think you unable to create it in App Inventor?

How hard was it to build your project?

If you wanted to use IoT to solve a problem you see in the world, what would it be?

102

Appendix F

Opcodes

Mnemonic Opcode Extra

Bytes

Stack

Usage

Description

nop 0x00 0 0 No operation should be performed

and the PC moved to the next op-

eration.

aconst_null 0x01 0 0 Push a null pointer onto the stack.

iconst_m1 0x02 0 0 Push the value -1 onto the stack.

iconst_0 0x03 0 0 Push the value 0 onto the stack.

iconst_1 0x04 0 0 Push the value 1 onto the stack.

bipush 0x05 1 0 Push the byte immediately follow-

ing the instruction onto the stack.

sipush 0x06 2 0 Push the short immediately fol-

lowing the instruction (the next

two bytes) onto the stack (as one

long).

dup 0x07 0 1 Duplicate the value at the top of

the stack.

swap 0x08 0 2 Swap the two top values on the

stack.

103

Mnemonic Opcode Extra

Bytes

Stack

Usage

Description

load_local 0x09 1 0 Load the value from the local vari-

able at the index given by the ex-

tra byte and put it onto the stack.

load_global 0x0A 1 0 Load the value from the global

variable at the index given by the

extra byte and put it onto the

stack.

store_local 0x0B 1 1 Store the top value on the stack

to the local variable at the index

given by the extra byte.

store_global 0x0C 1 1 Store the top value on the stack

to the global variable at the index

given by the extra byte

pop 0x0D 0 1 Pop the topmost value from the

stack.

fadd 0x0E 0 2 Add the top two values on the

stack and put the result onto the

stack.

fsub 0x0F 0 2 Subtract the top two values on the

stack and put the result onto the

stack.

fmul 0x10 0 2 Multiply the top two values on the

stack and put the result onto the

stack.

fdiv 0x11 0 2 Divide the top two values on the

stack and put the result onto the

stack.

104

Mnemonic Opcode Extra

Bytes

Stack

Usage

Description

fneg 0x12 0 1 Negate the top value on the stack

and put the result onto the stack.

iand 0x13 0 2 Logical AND the top two values

on the stack and put the result

onto the stack.

ior 0x14 0 2 Logical OR the top two values on

the stack and put the result onto

the stack.

ixor 0x15 0 2 Logical XOR the top two values

on the stack and put the result

onto the stack.

ifeq 0x16 1 1 Jump if the top value on the stack

is equal to 0. Jump the number

of bytes given by the byte imme-

diately following the instruction.

freturn 0x17 0 1 Return from the current proce-

dure and put the top value on the

stack onto the caller’s stack.

return 0x18 0 0 Return from the current proce-

dure with no return value.

getstatic 0x19 1 0 Get static field of the object given

by the extra byte.

invoke_virtual 0x1A 1 1 Invoke a device method. The de-

vice to use is given by the topmost

value on the stack and the method

number is the extra byte in the

program.

105

Mnemonic Opcode Extra

Bytes

Stack

Usage

Description

invoke_static 0x1B 1 𝑛 Invoke the static method given by

the extra byte. Static methods

can be user-defined procedures or

native methods (such as sqrt).

The number of values on the stack

used is the same as the number of

arguments of the method invoked.

device_create 0x1C 2 0 Setup a device by allocating space

on the heap and calling its con-

structor. The first extra byte is

the device number in the program

and the second is the index of the

type of device it is supposed to be.

device_getter 0x1D 1 1 Get a device property. The extra

byte is the device number in the

program. The topmost value on

the stack indicates which property

to get and the result is put onto

the stack.

device_setter 0x1E 1 2 Set a device property. The ex-

tra byte is the device number in

the program. The topmost value

on the stack indicates which prop-

erty to set and the second topmost

value is the value to which to set

it.

106

Appendix G

Device Example: GroveButton

1 #include <s td i n t . h>

2 #include <appinventor / dev i ce / dev i c e . h>

3 #include <appinventor / i n t e r p r e t e r / i n t e r p r e t e r . h>

4

5 #ifde f MOCK

6 #include <appinventor / dev i ce /mock_arduino . h>

7 #else

8 #include "Arduino . h"

9 #endif

10

11 struct Button_data ;

12 void Button_property_getter (struct Button_data *) ;

13 void Button_property_setter (struct Button_data *) ;

14 void Button_duty_cycle (struct Button_data *) ;

15

16 struct Button_data {

17 struct {

18 int8_t pin ;

19 int8_t s t a tu s ;

107

20 } p r op e r t i e s ;

21 struct {

22 uint16_t pr e s s ;

23 } events ;

24 } ;

25

26 Device Button = {

27 DEFAULT_ALLOCATOR,

28 DEFAULT_CONSTRUCTOR,

29 DEFAULT_DESTRUCTOR,

30 (getter_t) &Button_property_getter ,

31 (s e t t e r_t) &Button_property_setter ,

32 (duty_cycle_t) Button_duty_cycle ,

33 s izeof (struct Button_data) ,

34 /* n_proper t ies */ 2 ,

35 /* n_events */ 1 ,

36 /* n_methods */ 0

37 } ;

38

39

40 void Button_property_getter (struct Button_data *data) {

41 int8_t property_index ;

42 interpreter_pop_byte(&property_index) ;

43 i f (property_index == 0) {

44 interpreter_push_byte (data−>prop e r t i e s . pin) ;

45 } else i f (property_index == 1) {

46 interpreter_push_byte (data−>prop e r t i e s . s t a tu s) ;

47 }

48 }

49

108

50 void Button_property_setter (struct Button_data *data) {

51 int8_t property_index ;

52 interpreter_pop_byte(&property_index) ;

53 i f (property_index == 0) {

54 interpreter_pop_byte(&data−>prop e r t i e s . pin) ;

55 pinMode (data−>prop e r t i e s . pin , INPUT) ;

56 } else i f (property_index == 2) {

57 int32_t va l ;

58 interpreter_pop_long(&va l) ;

59 data−>events . p r e s s = (uint16_t) va l ;

60 }

61 }

62

63

64 void Button_duty_cycle (struct Button_data *button) {

65 i f (d i g i t a lRead (button−>prop e r t i e s . pin) == HIGH) {

66 i f (button−>prop e r t i e s . s t a tu s == LOW) {

67 button−>prop e r t i e s . s t a tu s = HIGH;

68 interprete r_di spatch_event (button−>events . press ,

VALUE_FROM_INTEGER(HIGH)) ;

69 }

70 } else {

71 button−>prop e r t i e s . s t a tu s = LOW;

72 }

73 }

109

110

Bibliography

[1] Getting Started with the Arduino Web Editor - Arduino Project
Hub. https://create.arduino.cc/projecthub/Arduino_Genuino/
getting-started-with-arduino-web-editor-on-various-platforms-4b3e4a.

[2] Arduino - Home. https://www.arduino.cc/, 2018.

[3] Arduino - CurieBLE. https://www.arduino.cc/en/Reference/CurieBLE.

[4] Blockly | Google Developers. https://developers.google.com/blockly/.

[5] BlockyTalky - LPC. http://www.playfulcomputation.group/blockytalky.
html.

[6] Chapter 6. The Java Virtual Machine Instruction Set. https://docs.oracle.
com/javase/specs/jvms/se7/html/jvms-6.html.

[7] FIRST LEGO League Teams. http://www.frc.ri.cmu.edu/girlsofsteel/
our-team/first-lego-league-teams/.

[8] GraspIO Cloudio. https://www.grasp.io/.

[9] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of Things (IoT): A vision, architectural elements, and fu-
ture directions. Future Generation Computer Systems, 29(7):1645 – 1660, 2013.
Including Special sections: Cyber-enabled Distributed Computing for Ubiquitous
Cloud and Network Services & Cloud Computing and Scientific Applications -ĂŤ
Big Data, Scalable Analytics, and Beyond.

[10] Home · BlocklyDuino/BlocklyDuino Wiki. https://github.com/
BlocklyDuino/BlocklyDuino/wiki.

[11] IFTTT helps your apps and devices work together. https://ifttt.com/.

[12] Tiffany Le, Hal Abelson, and Andrew McKinney. Controlling Bluetooth Low
Energy Devices with MIT App Inventor. http://ai2.appinventor.mit.edu/
reference/other/IoT.html, May 2016.

[13] Learn to program - Mindstorms LEGO.com. https://www.lego.com/en-us/
mindstorms/learn-to-program.

111

https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-arduino-web-editor-on-various-platforms-4b3e4a
https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-arduino-web-editor-on-various-platforms-4b3e4a
https://www.arduino.cc/
https://www.arduino.cc/en/Reference/CurieBLE
https://developers.google.com/blockly/
http://www.playfulcomputation.group/blockytalky.html
http://www.playfulcomputation.group/blockytalky.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
http://www.frc.ri.cmu.edu/girlsofsteel/our-team/first-lego-league-teams/
http://www.frc.ri.cmu.edu/girlsofsteel/our-team/first-lego-league-teams/
https://www.grasp.io/
https://github.com/BlocklyDuino/BlocklyDuino/wiki
https://github.com/BlocklyDuino/BlocklyDuino/wiki
https://ifttt.com/
http://ai2.appinventor.mit.edu/reference/other/IoT.html
http://ai2.appinventor.mit.edu/reference/other/IoT.html
https://www.lego.com/en-us/mindstorms/learn-to-program
https://www.lego.com/en-us/mindstorms/learn-to-program

[14] Micro:bit Educational Foundation | micro:bit. http://microbit.org/.

[15] MIT App Inventor. http://appinventor.mit.edu/explore/, May 2018.

[16] Node-RED. https://nodered.org/.

[17] Wireless and smart lighting by Philips | Meet Hue. https://www2.meethue.
com/en-us.

[18] Raspberry Pi Foundation - About Us. https://www.raspberrypi.org/about/.

[19] Mitchel Resnick, Brian Silverman, Yasmin Kafai, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric
Rosenbaum, and et al. Scratch. Communications of the ACM, 52(11):60, Jan
2009.

[20] Snap4Arduino. http://snap4arduino.rocks/.

[21] Snap4Arduino Arduino Sketch Generation. http://blog.s4a.cat/2015/06/
09/Snap4Arduino-Arduino-sketch-generation.html.

[22] What is FIRST LEGO League? | FIRST. https://www.firstinspires.org/
robotics/fll/what-is-first-lego-league.

112

http://microbit.org/
http://appinventor.mit.edu/explore/
https://nodered.org/
https://www2.meethue.com/en-us
https://www2.meethue.com/en-us
https://www.raspberrypi.org/about/
http://snap4arduino.rocks/
http://blog.s4a.cat/2015/06/09/Snap4Arduino-Arduino-sketch-generation.html
http://blog.s4a.cat/2015/06/09/Snap4Arduino-Arduino-sketch-generation.html
https://www.firstinspires.org/robotics/fll/what-is-first-lego-league
https://www.firstinspires.org/robotics/fll/what-is-first-lego-league

	Introduction
	Alex's Smart Light IoT Application
	MIT App Inventor

	Related Work
	Arduino
	Snap4Arduino
	BlocklyDuino
	Raspberry Pi
	BlockyTalky
	BBC micro:bit
	GraspIO
	Node-RED
	MIT App Inventor + IoT
	Summary

	System Design and Implementation
	Introduction to the MIT App Inventor System
	Overview of the IoT Embedded Companion
	The IoT Embedded Companion & Interpreter
	Previous Work
	IoT Bytecode
	Program Structure & Memory
	Interpreter
	Devices
	BluetoothLE Communication
	IoT Embedded Companion Program

	App Inventor Modifications
	App Inventor Companion App
	App Inventor Website
	IoT Blockly Generator

	Workshop Methodology
	Workshop Lesson Plan
	Data Collected

	Results and Discussion
	Students' Understanding of IoT
	Pre-Questionnaire Responses
	Post-Questionnaire Responses

	Students' Perception of Computing and Capabilities
	Creating an IoT Application in App Inventor with the Embedded Companion
	Students' Responses On Project Completion
	Students' Responses On Difficulty
	Students' Project Files

	Discussion

	Conclusion
	Future Work
	Healthy Plant Tutorial
	Template Handout
	Sensors and Components Handout
	Pre-Questionnaire
	Post-Questionnaire
	Opcodes
	Device Example: GroveButton

