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Abstract

Oil extraction on many reservoirs requires the use of rod pump systems to pump
the fluid to the surface. A longstanding challenging issue in the operation of rod-
pump system is the ability to determine the downhole pump conditions based on the
knowledge of a finite set of measurables at the top. A novel acoustic-based diagnostic
method is put forward as an enabler for determining the downhole conditions. It
consists of reconstructing the pressure signal generated by the pump from an acoustic
measurement made at the top. Knowing that the operating pump radiates pressure
waves in the fluid, the pump operation can thus be monitored. The physical basis
of this acoustic method is demonstrated using results from a model of the rod-pump
system complemented by field data measured from representative operating oil wells.
The rod pump model has shown to be in good accord with available data. The
unique feature differentiating the model formulation from the state of art is that each
of the model attributes is linked to the physical process that set the pump operation.
The wave equations in the rod string and in the tubing are solved using a custom
numerical scheme, and the coupling between the rod and the fluid surrounding it is
taken into account. The field measurements and the model results are in accord as
they prove the hypothesis that a surface measured pressure can be used to determine
the downhole condition of the well. Likewise both the field measurements and the
model results provide the physical basis for formulating the scaling rule for generic
rod pump system which is used in turn to design a scaled down experimental setup.
Specifically, the effect of gas on the pump acoustic signature has been characterized
and this general scaling allow one to compare different wells to one another and to
obtain a universal scaling parameter to measure the amount of gas in wells pumps.
The anticipated technological impact on oil production infrastructure is an acoustic
diagnostic framework for assessing a broad class of wells operation, from vertical to
horizontal oil wells.

Thesis Supervisor: Choon S. Tan
Title: Senior Research Engineer, MIT
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Chapter 1

Introduction

1.1 Technical Background

Many oil reservoirs do not generate a pressure high enough to naturally lift the fluid

to the earth surface. This is why oil extraction often requires the use of artificial lift

systems to pump the fluid to the surface.

There are many different ways to pump the oil to the surface, but rod-pumps are

used in about 80% of the wells worldwide and represent a large portion of the oil

volume pumped. This statistic shows that they are well suited for low flow rate wells,

and as such have to be among the most cost effective methods to extract oil.

Extending the pump performance to meet the needs of a specific engineering

mission is an important aspect of artificial lift engineering. As such there is a need

to assess and define the engineering attributes/requirements of generic low flow rate

artificial lift system for an effective transport of the oil mixture to the surface for

a representative oil production site; the proposed research framework for addressing

this need includes computations, modeling and experiments on generic fluid-pumping

system representative of a fractured producing well.
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1.1.1 Rod Pump System Design

A rod pump is used to lift the fluid to the surface when the well pressure is too low.

The fluid is lifted to the surface using a positive displacement pump that pushes the

fluid upward. That pump is actuated by a long rod (commonly steel) connected to

a walking beam at the surface. The walking beam and the gearbox assembly convert

a vertical linear motion into a rotational motion. A motor (usually electric) powers

the complete system. This work focuses on the dynamics of the rod and downhole

assembly. We describe below an ideal pump stroke with only liquid in the plunger.

A representative pump system is shown in Figure 1-1.

WolkIng BOwn

Wellhead Plshed ur M r

Flowlino

Tubing
- Rod String

Plunger

Barrel

Figure 1-1: A Representative Rod pump system showing the key surface and under-
ground component: plunger, barrel, rodstring, tubing, casing, wellhead, polished rod,
walking beam, gear reducer, prime mover.[11]

The downhole pump consists of 4 key components:

" the plunger, acts as a piston

" the barrel, acts as the piston cylinder

* the standing valve, shuts close the barrel on the downstroke, opens it up on the

upstroke as seen in Fig 1-2
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* the traveling valve, shuts close the plunger on the upstroke, opens it up on the

downstroke as seen in Fig 1-3

The fluid accumulates at the bottom of the casing, it is sucked in the pump barrel,

it is then pushed upwards in the tubing flowing between the rod and the tubing.

On the upstroke, Fig 1-2, the standing valve is open and the traveling valve is

closed. Pulled by the rod the plunger pushes the content of the tubing upward and

sucks the well content in the barrel. The long column of liquid in the tubing applies

a large pressure on the traveling valve and the plunger.

On the downstroke, Fig 1-3, the rod pushes the plunger downwards, closing the

standing valve and opening the traveling valve, allowing the content of the barrel to

move above the plunger. The long column of liquid in the tubing now rests on the

standing valve, applying a large pressure on it.

The pumped fluid composition varies greatly and depends on the well location

but it is usually a mixture of water, oil, various gases, sand, and corrosive chemicals.

Because the fluid can be corrosive and carries abrasive particles it is important to

keep the pump design simple in order to improve the system reliability, as it usually

runs 24/7 for several years.
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Figure 1-2: Ideal upstroke phase Figure 1-3: Ideal downstroke phase

1.1.2 Rod Pump Characteristics

A rod pump is evaluated based on the following characteristic metrics:

" its mass flow rate

" its efficiency (or power required to operate the system) at each mass flow rate

" the cost of the hardware

" the reliability of the system

The mass flow is usually limited by the amount of fluid the well can provide. If

the pump is too fast, the pumped flow becomes larger than the flow provided by the

reservoir and once there is no more liquid gas will be pumped. On the downstroke

the pump will not be slowed down by viscous incompressible fluid normally in the

plunger and will slam into the fluid-gas interface. This increases the stress in the

system and can cause premature failure of the rod string or the pump. The system

efficiency is linked to the amount of energy used to extract the oil. Consequently this

directly affects the cost of each barrel extracted and is of upmost importance. The
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cost of the system increases with the amount of material used (the well depth) and

the corrosivity of the fluid being pumped (expensive materials may have to be used).

The reliability of the system is highly dependent on the fluid pumped, the well

deviation survey (3D profile of the well) and the pumping conditions. Some wells

contain highly corrosive and abrasive fluids that will quickly corrode the hardware

and the system will deteriorate over time. A non vertical deviated well creates added

friction along the rod string or at the pump plunger which limits the hardware lifespan.

Some wells can provide a large amount of gas and this may lead to non ideal pumping

conditions such as fluid pound, gas interference or gas lock (those terms will be

explained in the following chapters). Those conditions reduce the system lifespan.

Monitoring those conditions by placing sensors directly at the pump is not realistic

since the environment is harsh and that would drive the price of the system in an

unreasonable way. Currently, rod stress and displacement measurements are done at

the surface. Since the rod is elastic, surface and downhole stress/displacement are

not the same when plotted against time. Calculations are therefore implemented to

evaluate what is happening at the pump knowing the surface measurements.

1.2 Motivation

The goal for the industry is to develop a system that can analyze the pump opera-

tion based on the most simple measurements possible made at the top of the well.

Such a system would allow remote operation of the well at a minimal cost. While a

conventional rod pump system works well for vertical well, there is a drive towards

horizontal and deviated wells that is showing the limits of the current technology.

The movements of the rod pump downhole are difficult to infer in deviated wells.

It is especially difficult to infer pump movement using traditional diagnostic and

control methods that are based on stress wave analysis of the sucker rod. Quantitative

information on pump movement is needed for an effective control of artificial lift

system operation. The solid friction between the rod and tubing is difficult to evaluate

and is often simply ignored in deviated wells. Furthermore, the well 3D deviation
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survey is rarely known, and or any measurements are prone to noise and uncertainties,

thus quantifying those forces (between the rod and the tubing) is not an option.

Thus there is a need for an effective way to infer the downhole pump conditions

based on the measurements at the top of the well. The downhole conditions pertains

to the operation of the pump and its health as well as the fluid composition.

To say this in another way, there is a need for a transfer function that can ef-

fectively provide downhole conditions given a finite set of measurables at the top of

the well. The transfer function would have a functional dependence on the design

attributes of the rod pump system in deviated wells.

1.3 Literature Review

1.3.1 Artificial Lift and Optimization

A good summary of artificial lift technology is given in Brown[17], Neely[18] and Lea

[19]. Several teams [20] have attempted to improve some aspects of the rod pump

system by changing its motor speed during a stroke.

1.3.2 Rod Model

Rod acoustic has been studied since the 1960's beginning with the seminal work of

Sam Gibbs [1]. Dr. Gibbs suggested using the acoustic technique to diagnose pump

position using surface position and stress measurements in the rod. Practical system

design and pump diagnostic method using the pump chart have been thoroughly

discussed by J. Svinos [12]. The theoretical aspects of acoustics are not new and have

been expounded upon extensively and in depth in several key books by U. Ingard

[7], A.Pierce [4] and J.Lighthill [3]. The applied mathematics necessary to develop a

numerical solution of the acoustic system are well known and several well established

Galerkin methods were used. The basic fluid mechanics principles necessary to model

the various loss processes in internal flow systems have been detailled in the book on

Internal Flow [5] and damping models for dynamics systems are given for example by

24



Kausel[6].

1.3.3 Fluid Acoustic Model

Extensive work has been done on the propagation of pressure pulses in pipes. Specif-

ically the oil industry uses pressure pulses in the mud column to transfer data while

drilling from the drill bit to the surface. This mud pulse telemetry system uses pres-

sure pulses at low frequency traveling through two phase flow and has been studied

[13]. Substantial resources devoted to developing the rod model were also instrumen-

tal in developing the fluid acoustic model largely due to the analogous features in the

systems. High frequency acoustic models were initially used in an attempt to model

the rod-pump acoustic. Models such as the one developed by Huang[14] were used to

understand the effect of cross-sectional changes on pressure pulses: a similar approach

has been used by Gerges[15] and Elnemr[16] for muffler acoustic. This approach was

initially undertaken; however the rod pump system generates pressure waves that

are of low frequencies (less than 10Hz) and as such the techniques tailored to high

frequency waves (kHz) are not directly applicable here. The two acoustic boundary

types encountered in formulating rod-pump system model are of the nonreflecting

and moving boundary type. Alpert[21] and Appelo[24] have addressed and clarified

the issue on nonreflecting wave boundary. Corbett [22] and Gaffour [23] modeled the

theoretical acoustic effect of a one-dimensional moving acoustic boundary and their

work was instrumental in applying this method to model the moving boundary above

the plunger in the rod-pump system. The acoustic modeling of the centralizers and

couplers was based on the fundamental research in acoustics done by Rienstra[25].

1.4 Research Innovation

The key innovation in this research is in determining the acoustic pressure waves

propagating in the fluid and how they are coupled with the stress waves propagating

in the lifting rod. An advanced numerical scheme capable of solving the complex

coupled non-linear differential equations was developed.
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Using the lifting rod as a wave guide has been the industry standard method for the

last 30 years. It is a proven method that field engineers know how to analyse and

use. However this method has shown its limitations in deviated wells where the lifting

rod rubs in the tubing. This alters the measured signal in a way that is not easily

modeled thus rendering the results meaningless.

On the other hand, fluid pressure waves are not directly affected by the hole shape

or rod-tubing friction. The pressure sensor used to record those waves is also orders

of magnitude cheaper and easier to install.

1.5 Research Objective

The overall goal of this research is to define the mutual effect of downhole condi-

tions and well design on the pump system operation ( defined in terms of mass flow,

efficiency and reliability). Specifically the focus will be on assessing the acoustic char-

acteristic generated by the downhole pump and on field implementable strategy of in-

ferring downhole conditions based on surface acoustic signal. The availability of such

a field-implementable strategy allows one to: (1) enhance the effectiveness/efficiency

of oil extraction, (2) monitor the health of the system hence increasing the dura-

bility/life. Therefore the pump operating characteristics must be inferred from an

adequate physical model with a set of finite measurables from sensors at the top of

the well used as inputs. A computational supplemented with existing data from oil

wells will be undertaken to quantitatively delineate the required attributes of the

field-implementable strategy as alluded to above. An anticipated outcome of the re-

search program is enabling the durable operability of non-vertical and deviated wells,

which hitherto is confined to vertical wells only. To achieve the goal we set out, we

must first address the following research questions:

" What are the parameters characterizing the pump operation, hence the scaling

of the system?

* Can the pressure signal at the top of the well be used to infer pump movement
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and operating conditions?

" How is the pressure signal affected by the rod string and the rod guides?

" How is the pressure signal affected by the presence of gas in the liquid being

pumped?

" How does the well angle affects the rod pump system operation?

Since every oil well is different, it is necessary to define metrics that allow the

comparison between wells. Towards this end, scaling a well has been accomplished

through two approaches: an analytical model and a more advanced numerical model.

1.6 Research Challenges and Risks

The following are the anticipated challenges and risks in the thesis research.

" The effect of multiphase flow on acoustic damping at low frequencies is unknown

" Potential low signal to noise ratio with relatively high noise level at the surface

" Research results on propagation and transmission of low frequency acoustics in

multiphase flow are either non-existent or extrapolated from results for frequen-

cies orders of magnitude higher.

Mitigation of the risks and challenges are offered by the data from Sandia Lab-

oratory acquired in the early 1990's. Several vertical wells were instrumented,

with measurements acquired on pressure, position and stress at various depth

along the rod string. The wells had various depth, various gas content and

actuator with short and long driving amplitude. The Sandia data shows that

acoustic pressure signal at the surface is measurable even when the fluid being

pump consists of liquid and gas (ie. a multi-phase fluid media). Figure 1-4 show

the measured pressure when the fluid being pumped is a single phase liquid only

while Figure 1-5 corresponds to a multi-phase situation. . To summarize, even
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in a multiphase flow environment a distinct pressure pattern is measurable at

the top of the well.

Pressure at surface,well 1, single phase
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Figure 1-4: Surface pressure in a single phase well
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Figure 1-5: Surface pressure in a multiphase phase well with moving average overlaid
over raw data to elucidate the pressure variation of interest

1.7 Research Contributions

The contributions consist of the following:

* Formulation of a physically consistent set of equations governing the operation

of rod-pump system; each parameter that appears in the equation set can be

linked and traced to a physical effect thus eliminating the need of empirical

28



factors for matching data from operating system in oil fields. This in turn

enables the development of a physically consistent model that allows a direct

assessment of the influence of the key design parameters on the functionality of

system. Thus dynamic similarity of physical effects can be established for ex-

perimental assessments of rod pump system operation on a scaled down system

implementable in research laboratory environment.

* A universal scaling parameter for rod-pump system operation and design; this

constitutes a first-of-a-kind parameter that enable scaling the rod-pump system

for oil wells of all types.

" Definition of downhole conditions based on acoustic measurables at the top of

the well from horizontal to vertical type.

1.8 Organization of the Thesis

This thesis is organized as follows:

Chapter 2

Chapter two describes the scaling of the system and the resulting key parameters to

understand the operation of the pumping system.

Chapter 3

Chapter three provides a detailed analysis of all the forces and the associated loss

mechanism occurring in the rod-pump system followed by the equations governing its

operation.

Chapter 4

Chapter four provides a detailed analysis of the acoustic dynamics occuring in the

fluid, and how those effects affect the dynamics of the rod pump system.

Chapter 5

Chapter five describes the design of an experimental system using the appropriate

scaling in order to preserve the system dynamics.

Chapter 6

29



Chapter six presents the experimental results from the field trip in Oklahoma and an

analysis of selected wells.

Chapter 7

Chapter seven presents a summary of the findings as well as recommendation for

future work that builds upon the present work.
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Chapter 2

Technical Approach

2.1 Introduction

Various complex phenomena can affect the operation of a sucker rod pump system.

Since it is impractical and technically difficult to place sensors at the bottom of a real

well, an attractive alternative is to instrument the surface of the well.

Thus a model is needed to connect the measurements made at the surface to con-

ditions at the bottom of the real wells. To enable this, a model for the dynamics of

the rod pump system has been formulated and developed. There are two versions of

the model. The first encompasses the physical complexities and nonlinear behavior

of the system; oil well data and experimental measurements are to be used to as-

sess this version of the model. The second version is a simplification of the model

whereby closed form solution can be sought for assessing the numerical schemes used

to determine the solution of the model governing equations.

The two versions of the model that were developed are both considered to be one

dimensional (1D). However the key non-one-dimensional effects are reflected in the

physical parameters characterizing the model. A ID model can provide the required

system scaling that reflects several significant rod-pump system operating character-

istics.
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2.2 Analytical Framework

The rod pump system characterization depends on the dynamic movement of the

pump at the bottom of the well. That pump is connected to a walking beam (a

rocking beam connected to the main driving motor) at the top of the well with a

rod. The walking beam is actuated by a motor and in the context here, it is simply

modeled as an actuator system. The movement of the rod is complicated as the

movement generated at the top creates axial waves that propagate in the rod before

interacting with the pump. The pump then generates pressure waves in the fluid.

Thus, fluid, pump and rod characterization constitute a holistic system and must be

modeled as a whole.

We will call the longitudinal displacement function of the rod, it depends on the

position x and the time t. It indicates the relative position of a fixed point along the

rod compared to the resting position. With c as the strain, we have E = 2. If 2 isax a9x

positive then the material is under tensile load and if a is negative the material is

under compressive stress.

While the system will be analysed in details in the following chapters, we will

introduced here the simplified equations driving the system and the key scaling pa-

rameters that can be extracted from them. Using the driving frequency period T,

driving amplitude Ato, and the system length 1, we can non dimensionalise the time

and position coordinates as follows.

t = Tt* (2.1)

x = lx* (2.2)

=Atop (2.3)
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2.2.1 Governing Equation for Rod

The rod movement can be modeled using the wave equation with c the sound velocity

in the rod (about 5800m/s for steel) and g the acceleration due to gravity.

2 = 92 + g (2.4)

Upon rearranging and using ( to denote dimensionless variables in the wave

equation, we obtain:

2 cT a 
2k* + gT 2

(9t*2 1 agx* 2  Atop

The system is initially at rest with no velocities, with a rod stretch due to its own

weight. The top boundary is imposed by the pumpjack actuator, while the bottom

boundary is the pump, detailed below.

2.2.2 Governing Equation for Pump

We next proceed to elaborate on the boundary condition at the bottom of the rod.

The pump has a mass mpump and an area Apiunger. The rod above the pump has a

young modulus E and a cross sectional area Arod. Newton second law is applied at

the pump, we obtain the boundary equation at the bottom of the well. The pump

acceleration is equal to the sum of the rod stretch force, the pressure force balance

across the plunger, friction forces and the pump weight.

9 2 (,t) EArod + Apiunger (Ppiunger+ - Ppiunger-) + Ffric + mpumpg (2.6)(mPt2 OX

The pressure above Plunger+ and below Ppunger the pump plunger must be evalu-

ated as well as the term Ffric which contains all the friction and viscous forces applied

to the pump. As a first approach, since the pressure above the pump is the hydro-

static pressure while the pressure below the pump is the casing pressure, we have
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Pplunger+ >> Pplunger-. We assume the fluid of density p to be compressible and no

pressure waves are reflected at the surface, such that Pplunger+ =tpfgl + ff f(l,t).

The pressure above the plunger is equal to the sum of the hydrostatic pressure and

the radiative pressure, this last term indicates the pressure created by radiating pres-

sure waves in the tubing. We also ignore the viscous friction forces at the pump

since they are negligible compare to the radiation losses. This simplified boundary

conditions does not take into account multiple wave reflections, and is only used in

the simplified analytical model, not in the computational model. The pump weight is

also minuscule compare to the fluid weight so it can be ignored. Upon rearranging the

terms and using ()* to denotes dimensionless variables, and defining the rod stiffness

k = EArod and the fluid resistive impedance at the pump ZR = Aplungerpcf we obtain:

mpump a2k* __* ______ ZR (lt 27MPUP (1 t)c * (y, t) + mf luidg +ZR W 11t)(27
kT 2 at* 2  ax* kAtop kT at*

2.3 Scaling the System: Buckingham- Pi Coeffi-

cients

We have obtain two equations corresponding to the wave propagation and pump

boundary condition. We next proceed to use this set of equations in conjunction

with Buckingham-Pi Theorem to formulate a set of one-dimensional characterizing

parameters.

According to the Buckingham Pi Theorem, we have 12 different quantities ( , x,

t, 1, Atop, T, c, g, k, mpump, mfluid, ZR) and 3 fundamental units (mass, length and

time) so we should have 9 dimensionless numbers.

The first 4 come from our unit of measurement:

J1 =~ (2.8)
Atop

4 (2.9)
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13 = - (2.10)
T

14(.

From the wave equation of the rod-pump system, the following non-dimensional

parameters can be extracted. A number that is key for scaling the wave propagation

is the ratio of the system characteristic wavelength over its length. It is interesting to

note that if we consider the rod as an ideal spring with all the mass suspended at the

end we find the same non dimensional frequency Tf ) = T(EAod A ) = 115-MI Prodl

For a typical deep 3000m well with a steel rod string and a 10s driving period we find

115 20 >> 1 which would lead us to infer that the rod is not an acoustic system

but an elastic one. However the valve opening and closing time, which is critical in

determining the motion dynamics, takes a fraction of a second. We now find 115 ~ 1

showing the need for an acoustic model.

cT (2.12)
p 1

The gravity term also provides us a number, however it is of limited use.

S gT 2  (2.13)
Atop

17 given below is an important number and is the ratio of the rod stretch due to

the fluid mass by the driving amplitude.

7= nfluidg 
(2.14)

k Atop

The last two numbers come from the boundary condition: H8 scales the reactance

of the pump divided by the rod ideal mechanical impedance.

f8 = mpump (2.15)
kT

2

The last number scales the resistive part of the downhole impedance divided by
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the rod ideal mechanical impedance.

ZR
ig = (2.16)

kT

2.4 Summary

Equations and boundary conditions that govern the operation of a rod pump system

have been formulated, the non-dimensional equivalence of these equations has also

been derived to yield a set of key non-dimensional parameters. The attributes of

those numbers has been delineated and they will be leveraged upon in the following

chapters on various technical aspects of the rod-pump system.
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Chapter 3

Rod and Pump System Modeling

3.1 Introduction

In this chapter the system dynamics and physics of the flow inside the well will be

discussed and analyzed. Various assumptions on the flow are made and justified. The

goal is to have an understanding of the flow inside the well in order to evaluate the

various dampings created by the viscous flow. As detailed in Appendix A, the wave

equations 3.1 in the rod is key in establishing the link between the movement imposed

at the surface and the actual pump movement. The rod longitudinal displacement

depends on the propagation of stress waves which travel at a velocity c. Those waves

are damped proportionally to the rod velocity and quadratically to the rod relative

velocity compare to the fluid. Those damping respectively depend on the constants

A and A.

( t) = C (X, t) + A-(x, t) + A(-(x t) - Vf(x, t)) 2 + g (3.1)at2 aX2at at

However in order to solve the resulting governing equation, the various system

damping parameters and the appropriate boundary conditions imposed both at the

top and bottom of the rod have to be evaluated. The governing equations of the flow

will be detailed and the various damping coefficients will be calculated.
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3.2 System Frequencies

The system dynamics consist of physical events that are each associated with a dif-

ferent time scale. The system responds at frequencies that are different from that of

the imposed one during its transient regime, so that every stroke constitutes a new

transient regime (ball valve non-linearity). As such we have to determine the various

time scales that exist. These system time scales are delineated below.

3.2.1 Imposed Motion Frequency

The rod pump is power by an actuator at the top of the well. The actuator imposes a

displacement to the top of the rod (called the polished rod). While the displacement

is not perfectly sinusoidal the movement can be quantified in terms of a Fourier series.

Since the movement of the polished rod is often close to a sinusoidal one, the first

component dominates. We will call the imposed period T, with T usually between

6 and 10 seconds. The frequency f is thus given as f=1/T. This quantity was non-

dimentionalized in the previous chapter to yield the familiar reduced frequency.

3.2.2 Rod Natural Frequency

The rod stretch is proportional to the stress in the elastic regime. This is always the

case in a properly designed system as the rod life is drastically shortened if plastic

deformations occurs. Because of that linear relationship between stress and strain,

the rod acts as a spring with a distributed mass. In addition the rod of mass m is

also lifting the fluid mass M on the upstroke. Thus the system can be described on

a lumped parameter basis as a mass-spring system.

Using the lumped parameter model and Hamiltonian mechanics we can evaluate

the natural period T (and frequency f,) of the system knowing the rod stiffness

k = EA,, which is a function of the rod length 1, Young Modulus E and cross-

sectional area Amod. m is the rod mass and M the lifted fluid and pump mass. As

expected since the rod (acting as a spring) mass is distributed it has a lower (1/3)
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contribution than the fluid mass [6].

T = 27r = 27 M+m/3 (3.2)
k E Arod/1

The rod mass contributes to only a third of the lifted mass as its mass is distributed

along its length. The difference in weight lifted on the upstroke and on the downstroke

creates two distinct natural frequencies. T, is estimated to be between 1 and 5 seconds

for a representative well.

3.2.3 Longitudinal Modal Frequency

Sound waves travel in the rod at a velocity c that depends on the rod material. Since

the rod length is known, we can calculate the associated wave period as:

1 _

T =1(3.3)C E/p

Since c in steel is about 6000m/s and the well length 1 is usually between 600 and

3000m we find that Tw is between 0.1 and 0.5 seconds or a corresponding frequency fW
between 2Hz and 10Hz. This period is an order of magnitude smaller than the imposed

frequency so that the longitudinal waves constitute the high frequency perturbations.

The same type of waves exists in the fluid, except the sound velocity in water is

about 1500m/s so the associated longitudinal frequencies are four times lower.

3.3 Tubing Flow

The displacement pump at the bottom of the well string creates a positive (i.e towards

the surface) flow on both upstroke and downstroke ( see Figure 1-2 and 1-3). The

velocity profile of the flow in the tubing will be evaluated in this section. The flow is

assumed to be steady state and incompressible. This will allow us to elucidate how

the average damping values for the rod wave equation are estimated. Those values

are used in the computational model in which many of the assumptions are removed.
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3.3.1 Flow Assumption

Several key assumptions are made in order to evaluate the pressure above the pump

at the bottom of the tubing (above the piston in Figure 3-4 ). We will elaborate

on the approximations that can be made to facilitate the estimation of the system

parameters. The fluid is assumed to be homogenous, viscous and a liquid. The fluid

is not modeled as an emulsion, and the presence of gas can be taken into account

in the computational model by changing the fluid compressibility, i.e. there is no

multiphase flow involving liquid and gas. This is justified by looking at the solubility

of methane, which usually is more than 90% of the gas we find, in brine of various

salt content as a function of pressure [26].

The flow will be assumed to be fully developed, axisymmetric and quasi steady in

order to compute the damping coefficients, i.e. they are independent of the position

along the rod.

Geometry and General Assumptions

The fluid flows in a coaxial shaped gap formed by the tubing on the outside and the

rod on the inside. While in reality the rod is not always centered, we will assume

we have a symmetric geometry. The weighted averaged rod radius is used in tapered

wells. The effect of various obstacles such as centralizers or couplers on the flow

profile is not taken into account as their length represent at most less than 1% of the

well length. However the drag component they create is modeled.

Quasi Steady Flow

We will show that, as a first assumption, we can assume that any change in velocity

at the pump is instantly propagated along the tubing. This means that we can

analytically calculate the pressure drop along the rod string. We will show that this

pressure drop is applied at the pump and is proportional to the pump velocity, thus

acting as a damping term. An incompressible flow has an infinite sound velocity

and is by definition quasi steady. Therefore the quasi steady assumption is not as
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restrictive as the incompressible flow one.

Re = pfVfD (3.4)

The Reynolds number in the tubing is between 0 and 10 000 ( for water pumped

at a velocity between Om/s and lm/s with a hydraulic diameter D of 1cm). Thus the

flow is laminar at low Reynolds and can transition to a turbulent flow with increasing

Reynolds number. The flow will be assumed to be laminar. As such the fluid flow

occurring in a rod pump system can be reasonably approximated as a Couette flow,

a Poiseuille flow, or a superposition of both. The Couette and Poiseuille flow profiles

are illustrated in Figure 3-1.

Couette Flow Poiseuille Flow

Linear Velocity Profile Parabolic Velocity Profile

Figure 3-1: Couette Flow driven by the wall and Poiseuille Flow driven by a pressure
difference

Comparing the time scale t necessary for a Couette flow and for a Poiseuille flow

to reach steady state with the driving period we can establish if the flow is quasi

steady or not. If that time t* is significantly smaller than the period of the pump T,

then we can consider the flow of the fluid to be quasi steady, i.e. the fluid velocity

profile immediately adjusts to the new boundary condition as it changes over time.

We define the non dimensional fluid time scale t*s using the kinematic viscosity v of

water and the hydraulic radius R.

t* = t (3.5)qsw

Using the results from Muzychka [9] shown in 3-2, we can infer that the non
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Figure 3-2: Non-dimensional velocity u* vs non-dimensional time t* for a circular

tube [91

dimensional time t* for the Poiseuille flow to reach 90% of the steady state velocity

is 0.1 for a circular tube.

For the Couette flow we find a smaller time t*S = 0.05. Using the maximum value

of t (worst case scenario as the Poiseuille flow takes more time to reach a steady

state), we find: 1 = 0.1 << 1

Thus the flow encountered in the operation of the rod pump system can be taken

to be quasi steady.

Fully Developed Flow

In the vicinity of the pump the flow is not fully developed. However after a few diam-

eters away from the pump, the fluid flow in the tubing is an axisymmetric Poiseuille

flow as illustrated in Figure 3-3; the flow profile only depends on the radial coordinate.
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Rod

Figure 3-3: Flow reaching its fully developed velocity profile

3.3.2 Velocity profile and Pressure Drop

We will now determine the relation between the flow and the pressure drop in response

to overcoming the viscous force along the tubing.

Pumping occurs both on the upstroke and on the downstroke. On the upstroke

the plunger pushes upwards the fluid in the tubing. It is also important to take into

account the pumping that occurs on the downstroke which is typically about 10% of

the volume pumped on the upstroke. As the plunger falls down, the rod is pushed

into the barrel cavity thus displacing a fluid volume equal to the rod volume. This

creates a pumping action as the rod pushes fluid out of the barrel cavity as illustrated

in Figure 3-4.

We begin by estimating the mean fluid velocity profile in the coaxial shaped rod

and tubing assembly. The Navier-Stokes equation governing the flow can be written

in cylindrical coordinates (r is radial, x is axial) as:

P(I a (ravA ( r - i
yr Or Or /

I aP pfg

8ix p

where we have assumed an axisymmetric steady flow. We can decompose P into three

components. A hydrostatic pressure such that pfg = aD"x*, a pressure term Pi, set
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Figure 3-4: Volume swept out by the pump on the up and downstroke

by the viscous Poiseuille flow, and a dynamic pressure term p = -Op". Assuming

the flow to be quasi-steady, the dynamic pressure then depends on the acceleration

of the whole fluid system. Pi,, is the pressure lost in the complete tubing due to the

fluid being viscous.

At the tubing wall of radius Rpipe the velocity is zero V(Rpipe) = 0, and the fluid

velocity is equal to the rod velocity (no slip) at Rrod. The rod velocity Vrod is assumed

to be the geometric average of its velocity at the top and bottom such that Vrod = ,od.

Upon integrating equation 3.6, using the boundary conditions as stated above we

obtain the main velocity profile V(r,t) as:

V(rt) = zP~is(t) (r2 - Ripe) + (Ripe - P + Vrod
op in Rrod 1n ( )

Rpipe Rpipe
(3.7)

V is the fluid velocity, APiS, is the difference in pressure between the top and the

bottom of the well without the hydrostatic pressure and p is the fluid viscosity.

Figure 3-5 indicates the flow profile according to equation 3.6 in the tubing during

the upstroke phase.

The mass flow rate in the pipe is calculated knowing the pump plunger velocity

(, t) and the plunger area.
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Fluid

Rod
Pipe

Upstroke Flow

Figure 3-5: A sketch to illustrate the radial variation in fluid flow velocity profile with
the rod in the middle. The flow is symmetric around the axis created by the rod.
The fluid velocity is 0 on the tubing wall is is equal to the rod velocity at the rod wall

rh(t) = PfAplunger (l, t) = 2rPf j rV (r)dr (3.8)
Rr

Using the velocity profile and the mass flow equation, we can solve for APi,:

R 2 - R + C2 /2 C2
APuiSC = /11 P r -01t) + pi C2 &,t) (3.9)

C1 2C1

Where the geometric coefficients C1 and C2 have a functional dependence on the rod

and pipe radii.

APvic is proportional to the pump velocity, and can be interpreted as a damping

force at the pump. The pressure necessary to pump the fluid also scales with the rod

velocity since the rod itself can act as a pump by applying shear stress to the fluid.

This depends on the plunger size. A plunger smaller than the tubing will induce a

small mass flow and the rod will have a pumping effect. A larger plunger will induce

a larger mass flow with a higher average velocity. The pressure difference is also

proportional to the well length 1 and the fluid viscosity p.
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When the fully coupled model is implemented there is no need to calculate analyt-

ically the mass flow or the pressure drop APoi, as the fluid is taken to be compressible

and those values depend on the position along the rod. However for the range of re-

duced frequency encountered here the quasi-steady modeling can be used to estimate

the average damping on the system dynamics.

3.4 Pump Flow: the rod bottom boundary condi-

tion

The forces acting on the plungers drive the dynamics of the system and dominate

any other effect. It is therefore important to model the pump in details. The pres-

sure Pplunger+ above and Pplunger_ below the plunger must be evaluated throughout

the cycle. The pump ideal working condition is described, with no gas or potential

mechanical issues.

3.4.1 Pressure above the plunger

The pressure above the plunger Pplunger+ is decomposed into several components:

" Hydrostatic Pressure

" Dynamic Pressure

" Viscous Pressure

The hydrostatic pressure is equal to the pressure at the surface Ptubing (imposed

by the operator) and the vertical hydrostatic component of the fluid column pfglfluid.

The dynamic pressure Pdynamic is equal to the pressure necessary to accelerate the

fluid. If we assume the fluid is incompressible, then it is its mass times the accelera-

tion. If not, the fluid is compressible and we have to compute the waves propagating

in the tubing, as has been implemented in the computational model (See Appendix

D). The pressure Pi,, was as calculated above and depends on the pump velocity.
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This is the pressure the pump must overcome to move a viscous fluid in the tubing.

This pressure is automatically computed in the computational model.

3.4.2 Pressure at the pump inlet in the well

The intake of the pump is located at its lowest point (see Figure 1-2 )and pumps fluid

located between the tubing and the casing. This fluid is provided by the reservoir,

and reservoir modeling is beyond the scope of this research. An accurate reservoir

model will output the fluid volume flow in the well and the fluid casing level can be

computed. The casing is pressurized by the operator, and there is a fluid column

1fluid-casing in the casing. Thus we have:

Pintake casing + Pf9fluid-casingt) (3.10)

3.4.3 Pressure in the barrel below the plunger

The pressure in the barrel is the pressure below the plunger, Ppiunger. This pressure

is key in understanding the functionality of the ball valves and varies throughout the

stroke. We detail below how this pressure changes on the upstroke and the downstroke

in the ideal case with no gas.

Upstroke

On the upstroke the standing valve is opened and the traveling valve is closed. Fluid

is sucked in the barrel and a pressure drop occurs across the standing valve. The

pressure drop across the valve is equal to the product of the fluid density, a valve

constant K, (dependent on the valve geometry) and the fluid velocity squared. The

fluid velocity can be determined from the law of conservation of mass in the pump

and the various cross sectional areas in the plunger and the ball valve.
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plJYunger-(t) = Pintake - Pvaive

-casing + pf 9f luid - PK Ale t) (3.11)
Avalve

Downstroke

On the downstroke the standing valve is closed and the traveling valve is opened.

Fluid is pushed out of the barrel in the tubing above the pump, a pressure drop

occurs across the traveling valve so the pressure below the plunger is higher than

above.

p down t=P 1  -- P
plunger- = PIpunger+ + Pvalve

plunger + pK, (Alunger (lj t) 2 (3.12)

Avalve

Compression and Expansion events with valves closed

At the beginning of the upstroke and the end of the downstroke, both traveling and

standing valves create a sealed (if we ignore fluid leakage) barrel volume. The barrel

can contain either pure fluid, or a mixture of fluid and gas. If the well is empty or

if it produces a lot of gas the barrel will ingest gas. We describe in the following the

various situations corresponding to pure liquid phase or to a liquid and gas mixture

in the barrel.

Pure liquid phase in the barrel

In this scenario the pump only sucks in liquid: this is the case if there is enough

fluid in the casing above the pump. When both valves are closed (cf valve section),

the plunger is either compressing or expanding the content in the barrel cavity. The

pressure in the barrel depends on its relative change of volume and the fluid com-

pressibility index 3. The relative change of volume itself depends on the volume of

the barrel cavity when the last ball valve closed Vbarrei(tciose) and the current barrel
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volume Vbarrel(t) at the time t. We can then compute the instantaneous pressure

Ppiunger_(t) at the time t from:

Ppiunger (t) = piunger- (tciose) - 1 Vbarrei(t) - Vbarrel(tcIose) (3.13)
0 Vbarrel (tciose)

Liquid and gas mixture in the barrel

If the liquid level in the casing is too low, a mixture of liquid and gas will be sucked

into the pump barrel. In that case the fluid in the barrel is taken to be incompressible

and only the gas is compressible. This was verified by using real gas table properties

at 3000m depth and the gas was found to be orders of magnitude more compressible

than the liquid.

We calculate the Fourier number Fo to determine if the compression/ expansion

will be isothermal or isentropic. at is the thermal diffusivity of the barrel metal, t is

the compression time (typically 1-2 seconds) and L is the barrel thickness. At Fourier

number higher than 1 the thermal diffusion is significant and there is a thermal equi-

librium between the inside and outside of the pump barrel. For low Fourier number

the content of the barrel is considered to be thermally insulated from the outside.

We find FO < 1 so the gas is assumed to be compressed isentropically and PV" =constant.

Numerically the barrel volume is computed at every time step and the correspond-

ing barrel pressure is evaluated. Depending upon the barrel pressure the valves open

or closed state is then evaluated.

3.4.4 Viscous Fluid Shear and Flow Leakage at the Plunger

Viscous Fluid Shear

The barrel and the plunger are designed so that a thin gap exists between the two

components in relative motion for lubrication purposes, with the plunger moving

relative to the barrel. Fluid is allowed to flow in a small gap between the plunger and

barrel. This helps to lubricate the pump and to improve its reliability over time. The

pressure above the plunger is equal to the hydrostatic pressure in the tubing, while

the pressure below the plunger in the barrel changes during the stroke.
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The flow in the gap can usefully be viewed as a superposition of two familiar

characteristic flows: one a Couette flow driven by the shear force of the wall acting

on a viscous liquid, and the other a Poiseuille flow driven by a pressure difference

between two ends of a fluid.

Since the gap e is small in front of the plunger radius e << Rpiunger, we can analyze

the flow in the gap in a cartesian geometry and neglect the radius of curvature.

Using the thin film theory we find, with APsmp the difference of pressure across

the pump, e the gap between the plunger and the barrel wall, Lpiunger the plunger

length and Vpiunger = (l, t) the plunger velocity, that:

Fisc= 7Rpiunger eZAPpump - 27rRplungerLplungerY Vplung" (3.14)
e

This is the force applied on the plunger. The fluid velocity profile around the plunger

is illustrated in Figure 3-6, the flow in the gap on the upstroke is illustrated on the

left while the downstroke flow is illustrated on the right.

The expression of the ratio of the force induced by the Poiseuille flow, 7rRpiungereAPpump,

to that induced by the Couette flow, 2 7rRpiungerLpiungerP VPunger can be rearranged soe

that it is a product of a local Reynolds number epfVlunger , a geometric parameter

ep and a non-dimensionalised pressure coefficient AP i.e.
2LPf VIunger

Fviscpoiseuilie A P (2Lping (ePfVpIunger (3.15)Fvisec~oette (PfV2Sne \Line \ P

During the upstroke the " Poiseuille force" dominates (FyiscPoiseiule >> 1) and
Fisccouette

during the downstroke they are both of similar magnitudes ( Fvicrousetle
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Couette+Poiseuille Flow Couette - Poiseuille Flow

Figure 3-6: Representative velocity profiles in the gap between plunger and barrel.

Flow Leakage at the Plunger

The leakage flow is significant on the upstroke when the pressure difference APump

across the plunger is maximum. During the downstroke the barrel pressure increases

thus reducing the pressure differential across the plunger and reducing the leakage

flow. We will elucidate how the this flow is critical in allowing the fluid to exit the

gas lock operating mode.

3.5 Wave Equation and Damping Evaluation

3.5.1 Wave Equation

The wave equation describing the dynamics of the rod system is:

92 ,t) = C2 (x, t) +A (X, t) + A((x, t)V(x, t))2 + g (3.16)at2  ajX2 att

The wave equation we are solving contains three key parameters:

" the damping A at the rod-fluid interface

" the sound velocity c in the rod

* the non-linear fluid-structure coupling A that depends on the local relative

velocity between the fluid and the rod 2(x, t) - Vf(x, t)
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The subject on rod-fluid coupling will be further elaborated in the following chap-

ter where we will show that the couplers/centralizers along the rod cause a pressure

drop. This pressure drop applies a force at every coupler that can be assumed to be

continuous since the spacing between couplers is small compare to the wavelengths

of the waves propagating along the rod. We will show that this force scales with

the local relative rod-fluid velocity squared (2 - V) 2 where both and Vf have a

functional dependence on (x,t). This creates a non-linear damping.

3.5.2 Rod Damping

Upstroke AUP and downstroke Adown viscous distributed damping

The viscous rod damping coefficient A varies temporally and spatially along the rod.

However as a first approach it is useful to assume it to be time invariant and uniform

along the rod string during each up/downstroke phase. We will next detail the cal-

culation for the upstroke phase AUP.

The upstroke distributed damping AUP is created by a superposition of several sources

of damping. First the bulk flow creates a shear force on the rod, then the rod oscillates

at its natural frequency while moving, creating an additional damping.

The rod does not have a uniform velocity. As such the velocity profile in the

vicinity of the rod surface will deviate by 6v(x, r, t) from the bulk velocity profile V.

v(x, r, t) = V(r, t) + 6v(x, r, t) (3.17)

This 6v can be estimated using the solution to Stokes second problem. To do so we

need to known how the rod is oscillating at its natural frequency with an amplitude

An.

To calculate the amplitude of the rod oscillations, we evaluate the maximum

response of a mass spring system to a constant velocity displacement. The motion of

the polished rod at the surface is assumed to be of constant velocity during a stroke,

with different velocity on the upstroke and downstroke.

The system is initially at rest. (l, t) is the pump position, (0, t) is the polished
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rod position (top of the spring) as seen in Figure 3-7. The response of that system

is illustrated in Figure 3-8 and is elaborated below. Cdamp is the viscous damping

coefficient such that the force applied to the mass, at the end of the rod string, is
Cdam(p't) and is linked to AUP by geometric coefficients set by the geometry property

of system(cf Appendix). We assume Cdamp << 1 to obtain an upper value of the

amplitude A,. This assumption can be verified once we evaluate AUP by comparing it

to Cdamp-

Vel ci t'y \

Damper c Spriin, k

Mass MA m/ 8 (U. 1)

Figure 3-7: One degree of freedom Oscillator

We know that for a system initially at rest the mass (i.e. the pump in our case)

position will be the convolution of the forcing function (O, t) and the impulse re-

sponse function for absolute displacement by virtue of absolute ground displacement

h (l,t)IC(o,t). In our case the ground reference is the polished rod (name of the rod at

the top) and its position over time is (O, t) = Vt and I(l, t) is the pump position.

the polished rod is here assumed to have a constant velocity. This is usually a valid

approximation since the pump only starts moving once the rod has stretched enough

and has an almost constant velocity.

((, t) = ((, t) * hC(j,t~j (o,t) (3.18)

We obtain the pump position as a function of the imposed velocity V, natural

pulsation w, rod mass m, lifted mass M, and system damping cdamp:
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V cdamp
(l, t) = Vt - -- exp 2(m/3+M) sin(w t) (3.19)

The pump response is shown in Figure 3-8. The pump and the polished rod do

not start simultaneously as the rod initially stretches building up a load equal to the

fluid weight. The pump initially jerks upwards at a velocity higher than the top of

the rod and then oscillates at the fundamental resonance frequency.

A=Iditu&-

Polbed rad /

Pump dispincenient
Load UP

Time

Figure 3-8: One degree of freedom oscillator response to a constant velocity input

We find the solution to Stokes second problem, assuming we have a planar semi

infinite geometry (no outer tubing wall), where each rod section has a phase difference

in position # with the top of the rod (i.e. every section of rod oscillates at the

same frequency and amplitude but they are out of phase since compression waves are

traveling along the rod) as:

(r-Rrod)
v(x, r, t) = Ancos(wnt - (r - Rrod)/S + 4(X))e- 45 (3.20)

This velocity profile is illustrated in Figure 3-9 and the thickness of the oscillating

boundary 6 is expressed below, with v the kinematic viscosity.

6 = (3.21)
w n

We have now calculated the two velocity components of v(x, r, t) = V(r, t) + 6v(x, r, t).

The next step is to evaluated the fluid shear force applied on the rod.
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Figure 3-9: A sketch illustrating a representative velocity profile across a pipe cross
section; delta is the region within which oscillatory velocity component due to wave
motion along the rod is finite

The shear forces applied on the rod can be decomposed into two components:

" A shear force that depends on the bulk motion of the flow V(r)

" A local shear force that depends on the local rod vibrational frequency and

amplitude

Knowing the previously calculated velocity profile, we can compute the viscous

shear forces on the rod and this yields the damping coefficient AUP. The exact same

strategy for the solution as for the upstroke is used for the downstroke to evaluate

Adown

3.5.3 Rod Boundaries

To solve the wave equation, we need to understand how the rod is attached at the

surface and at the bottom, mathematically this means formulating the boundaries

conditions of the system.

The top boundary condition is set by the rod imposed movement and is of Dirichlet

type. The top of the rod (the polished rod) is attached to the horsehead which is
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itself connected to a motor through various linkages and gears. The compliance of the

top driving unit will be neglected as a well designed structure should be stiff compare

to the rod.

Since the polished rod is attached via cables to the horsehead, no compressive

load can be transmitted. This is usually a non issues since the rod assembly and the

pump are heavy enough to maintain the system under tensile load at the top at all

time.

The attributes of the bottom boundary dictate the adequacy of the model. Many

off designs conditions are created by phenomena occurring at the bottom of the well

such as the presence of gas due to the lack of fluid to pump. A full force balance is

done on the pump and the pump can be modeled as a piston moving in a pipe.

The forces acting on the pump are delineated below:

" the pump weight

" the rod tension/compression

" the pressure above/below the pump

" the shear force applied on the side of the pump by the leaking ( by design )
lubricating fluid

3.6 Analytical Solution

We can simplify the rod-pump system further to obtain a relatively simple solution

that would allow one to grasp the essence of the problem and the key non dimensional

controlling parameters. The rod can be modeled as a transmission line terminated by

a complex impedance, the downhole pump. There is no non-linear rod-fluid coupling

here. This approach is possible as long as all the system parameters are constant

throughout a stroke (i.e upstroke and downstroke parameters are identical). The

fluid is taken to be incompressible and viscous.

The analytical solution provides insights into the key functionalities of the system

but it can not be used to provide quantitative results. The solution cannot be used
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in situations where non-linear effects such as those associated with the operation

of the opening and closing of one way valves used in the pump. This is why the

analytical model was mainly used as a benchmark to assess the accuracy of the

numerical implementation of the model, as detailed in Appendix B.

The plunger area is assumed to be equal to the tubing area. The lifted mass is the

sum of the fluid mass, one third of the rod mass and the pump mass. The lifted mass

is taken to be identical for both the up and downstroke; the upstroke pump damping

coefficient AU, is used for both the up and the downstroke.

The analytical solution of the wave equation A.2 for a single pulsation W (w = 27f)

assumes the form given in equation 3.22.

(X, t) = Atopf (x)eiwt (3.22)

The funtion f(x) is determined from the two imposed boundary conditions, the

imposed motion at the top and the dynamic response set by the force balance at the

bottom.

From the wave equation A.2 we obtain:

f (x) = Acos(kx) + Bsin(kx) (3.23)

To find the constants A and B we use the boundary equations presented in the

following.

At the top:

((, t) = Atopeicit (3.24)

We obtain f(O)=1.

At the bottom the pump is assumed to have a fixed mass m ump and a fixed

damping coefficient ZR.
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&xc +9 09 (1,1 t) (3.25)
fill2 (1, t) = -EArod 9 - (1, t) + ZROts ix (9t

The complex impedance of the system is given as:

Z = ZR + iwm (3.26)

The rod has its own impedance, and for no damping, it can be approximated as:

EAkwave
Zrod pcArod (3.27)

With Z as the pump impedance, and with w = g, we have:

j Z cotan(k avel) _ I
f (x) = cos(kwave X) Zod sin(kwave ) (3.28)

j Z + cotan(kwave)i

The solution is, after normalizing the result by the driving amplitude Atop:

okx) t) - Z dcotan(k wavel) - 1
' cos(k"Zve - Zrod tsin(kx) cos(wt) (3.29)

Atop Z + cotan(kwave 1)

Z is the pump impedance that depends on the damping and the lifted mass, Zod

is the rod impedance that depends on its radius and material properties, k is the

wave number. The wave number k has a real part kwave that corresponds to the wave

propagation characteristic and an imaginary part kwave that is the source of the wave

amplitude attenuation (damping or absorption) along the rod. We find kwave from a

dispersion relation obtained by substituting the solution into the wave equation.

An example result is shown in Figure 3-10, and the pump amplitude is visible

based on the imposed sinusoidal imposed motion at the top on the polished rod.
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Figure 3-10: Pump amplitude as calculated using the analytical model for a 1000m
well lifting 5 metric tons of fluid

3.7 Computational Model

There are many situations where it is useful to seek a numerical solution to the

equations governing the rod pump system operation as they do not always have an

analytical solution. A numerical solution can almost always be obtained effectively

for the problem formulated here.

To numerically solve a PDE, a time and a space grid are created. As it is to

be expected, the solution accuracy depends on the grid resolution. The scheme is

detailed in Appendix D. Since the range of frequencies typically encountered is both

small and low (0.1Hz to 5Hz) compare to the numerical model time steps (khz),

dispersion is not critical and a scheme preserving amplitude was selected.

3.8 Parametric Study

The following parametric study was done on Sandia well 1 and since the analysis has

been implemented based on non-dimensional basis the results should be applicable to

any well.

59



3.8.1 Rod stiffness effect

We start by looking at the effect of the rod stiffness. This was done by changing

the young modulus of the rod which has many effects. In the wave equation, 115 =

= T is modified. The stiffer the rod the higher the natural frequency would be,

and this is why we observe more high frequency noise at higher stiffnesses on both the

surface and the pump cards. But more importantly we see many more oscillations on

the surface card at higher rod stiffnesses. The higher the system natural frequency

is, the more oscillations will be visible in a given timeframe such as upstroke or

downstroke.

Increasing the rod stiffness also alters 117 = "idg, H. = "u and 119 =ZR

As we increase k, the rod stretch due to the fluid weight decreases (stiffer spring to

pick up a given mass) and 117 drops, thus the pump amplitude also increases and

converges towards Atp, the polished rod amplitude. The pump impedance, with the

reactance taken into account in 118 and the resistance in H9 decreases with a stiffer

rod. Thus there is less damping with vibrations of larger amplitude. This effect is

exacerbated by the higher reduced frequency in the rod as more waves now travel up

and down the rod simultaneously. The consequence is a relatively more noisy pump

card.

On the surface card we also observe that the initial slope of stress vs position

increases with the rod stiffness, this is expected since that slope is the rod stiffness.

In a quasi-steady system, the rod behaves like a spring and the rod stretch under

load is equal to the load over the rod stiffness. As expected, since most wells are

acoustically compact in the rod, we find that the stretch varies as 1/rod stiffness.
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Figure 3-11: Rod stiffness effect on the surface card.
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Figure 3-12: Rod stiffness effect on the Pump card
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Rod normalized maximum stretch vs % of Young Modulus
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Figure 3-13: Normalized stretch vs Young Modulus %

3.8.2 Driving frequency effect

Changing the pumpjack motor gearing will change the main driving frequency, which

will alter 115,118 and 1g.

We observe two key effects in the surface card:

" the number of visible oscillations during a stroke increases as the driving period

increases. Simply put the system has more time to oscillate at its natural

frequency during the upstroke/downstroke.

* the amplitudes of stress oscillations varies greatly. At very large driving periods,

11 and 11 converge towards 0 and the system becomes quasi-steady. In contrast,

at low driving periods the system is highly dynamic and the effects created by

the pump start to dominate the movement.
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Figure 3-14: Driving frequency effect on the surface card, as a function of the driving
frequency of the system natural frequency

3.8.3 Driving amplitude effect

The results from rod damping analysis show that, at lower amplitude, the system

velocities are lower thus the dynamic responses of the system, especially the maximum

stress reached on the surface card, are lower. In addition, the smaller the amplitude;

the larger the rod stretch is relative to that amplitude, this effect is captured in the

number 117 = "fluid. This means that as long as the rod stress is within the safe

limits, the amplitude should be as high as possible.
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Figure 3-15: Driving Amplitude effect on the surface card

3.9 Summary

The attributes of a rod-pump system model are formulated in this chapter. The key

time scales characterizing the pump operations have been identified and quantified.

These various time scales are useful in the interpretation of the measured pump charts.

The fluid velocity profiles have been determined; the determined fluid velocity profiles

enable one to evaluate the damping created by the fluid-structure interaction along

the rod. With the damping quantified, the equations governing the rod dynamics

can next be solved using a temporal and spatial discretization scheme. A closed-form

analytical solution was obtained with further simplifying assumptions; this analytical

solution enables one to get at the essence of the pump dynamics and the characterizing

non-dimensional parameters useful for establishing the scaling.
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Chapter 4

System Acoustic Model and

Scaling

4.1 Introduction

In this chapter, the assumption that the fluid is incompressible will be relaxed. This

means that we will obtain a coupled system that consist of two compressible mediums:

the rod string and the column of fluid.

The fluid column will be mathematically modeled using the equations previously

developed, and will be coupled to the rod string at the bottom boundary to the pump.

4.2 Acoustic Wave Equation

4.2.1 Simplifying Assumptions

Previous research work [12] has shown that the flow can not be assumed to be incom-

pressible for wells with reduced frequency cT/h~1 (most existing wells fall into this

category). This is especially true if we wish to use the pressure signal to diagnose

issues associated with high frequencies such as valve opening or closing. We will make

several assumptions in order to simplify the model. They are of minor impact and

can be relaxed when needed to. The fluid is assumed to be isothermal and the phys-
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ical properties of the fluid are assumed to be independent of pressure. The physical

properties do not depend on the depth or the position along the rod. The fluid is

assumed to be homogenous and single phase, i.e. the presence of gas affects the bulk

properties of the fluid only.

These simplifying assumptions lead to the need of only three quantities to define

the fluid physical properties:

Density p

Viscosity P

Isothermal Compressibility /

From these we can determine the fluid sound velocity cf.

The acoustic pressure can be estimated by the fluid impedance times the pump

velocity, which gives us an acoustic pressure in the order of a couple atmospheres.

Since that pressure is orders of magnitudes lower than the hydrostatic pressure found

in a well except very close to the surface, it's effect on the tubing radial stretch is

negligible. In addition the hoop stress analysis was done on the tubing and the radial

stretch was found to be of no importance for the systems that have been assessed and

examined.

4.2.2 Fluid wave equation

Below is the full fluid pressure wave equation that is solved in parallel with the rod

wave equation. The various terms and boundary conditions necessary to solve it are

detailed in the following sections.

0 2p 2 &2p &P 4v Op3  9(vf1uid(x, t) - Vrod(X, t)) 2

-= Cf + Ap- + - + A p
at2  Cf 0 2  at 3 t&x2 Ox

(4.1)
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As with the rod wave equation, we start with the standard pressure wave equation

2 P = .2 with cf the sound velocity in the fluid. The following three terms are

damping terms, each corresponding to a different physical phenomenon.

" The first damping term with the damping coefficient Ap corresponds to the

viscous losses between the fluid and the tubing/rod interfaces. This damping

affects the amplitude of the pressure waves.

" The second damping term with the damping coefficient 4 is due to the fluid3

inherent viscosity. This term becomes critical for frequencies in the kHz range

in water (sonar applications). It also scales with the fluid viscosity so the term

can also be important at low frequencies if the waves are propagating in heavy

crude oil. In our application we assume the fluid is water so this term becomes

negligible. This term acts as a low pass filter.

" The last damping term with the damping coefficient Ap is created by the in-

teraction between the fluid and the moving obstacles such as centralisers and

couplers along the rod. It is a non linear term that depends on the relative

velocity between the fluid and the rod. The term Ap primarily scales with the

area ratio before and after an obstacle on the flow path, the number of obstacles

and the distance between the obstacles.

4.2.3 Top Boundary

A one way adjustable backpressure check valve is placed at the top of the tubing. If

the fluid has a higher pressure than a set pressure, the valve opens and the well can

flow. If the pressure is lower than the set pressure then the valve acts as a solid wall.

When the valve is open it is assumed that there is no reflection coming from the end

of that pipe.

In mathematical terms we obtain a Neumann boundary condition if P(O,t) (where

we have used P(x,t) to denote the fluid pressure at the position x and time t) is

below the set pressure, with 0 velocity. If P(0,t) is above the set pressure then we
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have a non-reflecting Sommerfeld radiative boundary. Numerically this is done by

discretizing the first order wave equation, the advection equation, in the negative x

direction (from the bottom to the surface) below:

OP OP
P- cf =0 (4.2)at 09x

By enforcing equation 4.2 at the boundary, waves can only leave the computational

domain and are not reflected.

The current valve model is approximate as a real check valve progressively opens

between its set cracking pressure and the full flow pressure at which the valve is fully

open.

Physically a pressure sensor can be placed at the top of the well to measure surface

pressure, and one could conceive a system where additional sensors are used (as long

as they are separated by a couple wavelengths to provide useful different information).

One useful application for this would be placing a sensor at a critical depth that is

calculated so that the gas in the pumped liquid is dissolved, since it can come out of

solution close to the well surface.

4.2.4 Bottom Boundary

The rod dynamics are primarily coupled to the fluid dynamics via the pump (the rod

last segment). The pump creates acoustic waves at the bottom of the well: these

waves then travel in the tubing before being reflected at the surface causing a fluid-

structure coupling.

Waves in the fluid can alter the pump position which then causes stress waves

in the rod. We consider the following three cases. The first two are approximations

that are easy to implement and allow an analytical solution while the third case is a

situation where one needs to use a numerical solution.

Incompressible Flow

1<< 
(4.3)

cf T
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To begin with it is useful to consider the fluid as incompressible, i.e. acoustic wave-

lengths are much longer than the well length. Numerically we applied a force equal

to a mass times the plunger acceleration. The dynamic pressure is thus equal to:

Pdynamic = pl(l, t) (4.4)

Infinite propagation

1>> 
(4.5)

cfT

The opposite approach is to consider the fluid as compressible but the well as infinitely

long, i.e there are acoustic waves generated by the pump but they are not reflected at

the surface. Physically this occur when the well is long. The waves generated at the

pump are attenuated and have a negligible amplitude by the time they have travelled

from the bottom to the top,and are reflected back to the bottom of the well.

The pump radiates pressure waves in the fluid, the pressure is by definition equal to

the fluid impedance per unit area ZR/Aplunger = pcf times the plunger velocity and

area. The dynamic pressure (defined in the previous chapter as the pressure at the

pump minus the hydrostatic pressure) is thus equal to:

Pdynamic = pcf (l, t) (4.6)

Fully coupled model

The fluid compressibility is taken into account to describe the acoustic waves in the

system. Typically short wells have a large coupling between the fluid pressure waves

and the rod dynamics as the pressure waves are not damped as much as in longer

wells. Increasing the pump plungers size also increase rod-fluid coupling because of

the increased pressure force applied as the force increases linearly with the area. In

order to numerically solve that fluid structure interaction, we match the acceleration

and velocity of the last fluid section, in front of the pump, with the pump. This is

done in an Lagrangian approach in order to follow the pump plunger.
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" The rod position is evaluated at time step i+I using forces at the time i

" The new rod acceleration at time step i+1 is evaluated

" the pressure field at time step i is interpolated onto the rod position at time

step i+I

" the interpolated pressure field at time step i is used to compute the pressure

field at i+I except at the last point, the pump

" the pressure field at the last point at i+1 is evaluated using Euler equation

below

Euler equation links the spatial pressure gradient in the fluid to its density and

its material derivative.

p _( __ + VF ) - dynam ic
at Ox

This boundary condition holds for any well and links the pressure force on the

piston to the fluid velocity.

4.3 Propagation of Pressure Waves

Just like the stress waves in the rod, we have longitudinal compressive waves in the

fluid. Since we are interested in frequencies <100Hz, we are looking at wavelengths of

15m or more for a representative well. We can assume the waves to be one-dimensional

since the pipe diameter Rp (about 10cm) is several order of magnitudes smaller than

the wave lengths. Both the effect of pipe curvature and pipe elasticity have been

assessed and are presented in Appendix C. Pipe curvature effect is negligible in our

frequency range while pipe elasticity can alter the acoustic velocity by about 5% for a

steel pipe. Considering the range of reduced frequencies encountered, there are both

acoustic as well as hydrostatic effects that modulate the surface pressure.
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4.3.1 Distributed Fluid-Structure Coupling

The rod string is not of uniform diameter. At every rod joint (about every 9m) there

is a coupler (female-female threaded joint) which has a larger diameter than the rod.

In addition to the rod couplers, centralizers are usually used in deviated section of the

well with 2-4 centralizers per rod. This means that an average well can have several

hundreds of obstacles on the flow path. We assume here couplers and centralizers

have the same cross sectional area.

On the upstroke the fluid and the rod both move upwards at a similar velocity. On the

downstroke they move in opposite direction with a large relative velocity difference

thus creating a significant pressure drop at each obstacle. This was modeled as a

sudden contraction and sudden expansion. We find that the pressure drop APcoupie,

across a coupler depends on the coupler area Acoupier, the tubing area Atubing, the

rod area Arod. Those parameters are lumped into the coefficient C3. The local fluid

relative velocity Vrei(X, t) = Vfluid(X, t) - Vrod(X, t) is key in evaluating the coupling

and is the source of the non linear damping.

A Pcoupier (X, t) = C3 PfVrei(x, t) 2  (4.8)

The couplers are, at maximum, one rod length apart (about 9m) which is smaller

than the wavelengths of interest; we can take the pressure drop to be continuous and

average it over the length of the rod 1. We obtain a pressure drop per unit length

that depends on the total number of couplers ncoupIers.

aPcoupler _ 
t couplers APcoupier(X, t) (4.9)

Ox 1

Numerically this damping is more challenging to compute and requires to sig-

nificantly higher code spatial and temporal resolution hence larger computational

resources. We find this term to be important only in deviated wells that use a large

number of centralizers.
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4.3.2 Viscous Pressure damping

Since the fluid viscosity is not equal to zero, we can expect that the pressure waves

will be partially attenuated as energy is dissipated into heat. This dissipation is

taken into account by adding a term in the wave equation. For a fluid like water

we can expect the damping to be weak at low frequencies; nevertheless this effect

is incorporated into the model to add implementational flexibility and to allow the

simulation of fluid with high oil percentage. Using Stokes wave equation we find that

including the viscous effects adds a term in the wave equation that depends on the

fluid kinematic viscosity: i3

4.3.3 Pressure damping Ap

This damping constant affects the amplitude of the signal. The amount of gas in the

tubing is expected to be the key parameter for this damping, and while it is theo-

retically complicated to model the damping, it is straightforward to experimentally

determine this constant. Since the signal analysis done here is focused on the pressure

signal phase this damping is not an important parameter for the model and as such

it was not assessed further.

4.4 Parametric Study

The following study was done on a 724m well running at 6.3 strokes per minute. This

well has been fully instrumented specifically for this PhD research and is located in

South Oklahoma.

4.4.1 Damping parameter

The linear damping parameters, which depends on the flow characteristics in the

tubing, removes the high frequency content in the signal and decrease the amplitude

of the signal as visualized in Figure 4-1. Experimentally it was noted that wells

producing gas have a higher linear damping.
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Figure 4-1: Effect of the linear damping on the computed surface signal. The signal
amplitude is sensitive to that damping.

4.4.2 Rod tappering

The rod tapering effect can be critical in some wells where the change of rod cross-

section is significant. Specifically, we study the effect of the polished rod in Figure

4-2. This is the first rod at the surface of the well and it is of much larger diameter

than the rest of the rod string. In addition the change of cross section is very close

(compare to a wavelength in the fluid) to the surface which increases its effect on the

surface pressure.

On the downstroke the polished rod is pushed down and displaces fluid close to

the surface which creates a positive pressure, this is visible as a large positive pressure

oscillation. Similarly on the downstroke the rod is pulled out of the well and creates

a negative pressure.
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Rod Tappering Effect on Surface Pressure
-Without Polished Ro
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Figure 4-2: Effect of the polished rod on the computed surface signal. The polished
rod is a sucker rod of much larger diameter (about 2X) than the typical rod and is
attached right at the well surface.

4.4.3 Fluid Sound Velocity

Similarly to the study of waves in the rod, changing the sound velocities affect many

non dimensional parameters related to the waves damping. As expected we also

see a phase difference between the signal created by the additional time needed to

propagate the signal.
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2.5 X105 Fluid Sound Velocity Effect on Surface Pressure
-Fud sound velocity 150n/
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Figure 4-3: As the sound velocity drops the dynamic effects are damped out.

4.4.4 Surface boundary

We examine here three types of boundaries:

" Neumann boundary: this boundary reflects every waves and creates a lot of

high frequency noise

" A Sommerfeld boundary that creates no reflection (semi-infinite pipe)

* A Robin mixed boundary, that act as a Sommerfeld boundary above a set

pressure and as a Neumann boundary below it

It was found that the Sommerfeld boundary yield a result similar to the one

obtained using the mixed boundary while being more computationally robust and

was thus used for every simulation. More work should be dedicated to simulating

the surface fluid boundary in details, for instance a boundary that varies with the

pressure could be used to better simulate the operation of a backpressure valve.
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X105 Surface Boundary effect on Surface Pressure
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Figure 4-4: Effect of the surface boundary condition of the surface pressure. the non
reflective boundary gives a smoother signal since there is no reflected wave. On the
other hand the Neumann boundary (constant velocity) reflects every acoustic waves.
The mixed boundary acts like a sommerfeld boundary above a set pressure and a
Neumann below it.

4.5 Summary

In the context of oil wells, looking at the acoustic pressure field in the fluid system

is a novel approach to infer and diagnose the operating characteristics of the pump.

Digital pressure sensors can be placed at the top of the well and/or at various position

along the rod string to infer useful pump condition. Specifically, the pressure at the

surface can be evaluated and used as a diagnostic tool to complement or replace the

strain measurement in the steel rod. This is an important point and it was decided

to further explore the potential of using the pressure as a diagnostic tool by first

gathering and interrogating field data followed by designing an experimental setup to

assess the influence of various parameters on the pressure field of the system.
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Chapter 5

Design of a Laboratory Scale

Acoustic Pump system

While ideally experiments and real time measurements would be done on a real oil

well, several limiting factor severely restrict that option. First it is expensive to place

instruments downhole. The environment is harsh with high temperatures (1000C

and upward), high pressure, corrosive and abrasive liquid, vibrations, etc. Connecting

those sensors with several miles of cable is also highly challenging as it requires a large

number of connectors. Thus such approach is rarely attempted, most measurements

are taken at the top of the well; these measurements are then used, in conjunction

with empirical models, to infer and to explain/rationalize events occurring at the

bottom.

The scaling approach has been successfully used in various fields such as aerospace

and ocean engineering to design and implement scaled-down test rigs for quantifying

the operations of vehicles and components. This is done through establishing a set

of key non-dimensional parameters that characterize the pertinent physical processes

underpinning the operation of the engineering devices. Such an approach is taken to

first establishing the set of non-dimensional parameters characterizing the operation of

rod-pump system followed by proposing the design of a scaled-down laboratory system

in which a selected set of non-dimensional parameters are maintained. The details

on the design of such a scaled-down laboratory rod-pump system for experimental
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assessment of its operation is presented in this Chapter.

5.1 Methodology

As motivated in the beginning of this chapter, the goal was to design an experimental

bench top model that would be able to replicate the dynamic acoustic effects created

by the system. The experiment was designed and scaled but was not built. We will

focus on scaling the acoustic aspects of a real well, and not its rod dynamics. This is

a novel approach and the experiment is designed in stages of increasing complexity

in order to ever improving the similitudes of the operating characteristics of a repre-

sentative well.

This experiment would also allow one to evaluate the effect of various components

in the well on the pressure signal propagation, helping us to reconstruct the source

signal created by the pump. The effect of non ideal conditions such as gas interference

and fluid pound could also be assessed.

5.2 Scaling the System

The scaling of the acoustic system was done in the same manner as the scaling of the

rod system. We started using the simplified pressure wave equation in which the key

terms are retained.

1 2 p 2 &2p (9Vfiuid(x, t) - Vrod(X, t))2

= cf - + ApO (5.1)at2 a X2 ax

5.2.1 Reduced frequency and non linear damping

We will scale the wave equation by normalizing the position x using the well length 1,

the time t using the driving period T. The pressure is non dimensionalized by PfrO2

and we assume the rod velocity is uniform along its length so Vrod is not a function

of x. (Vfluid(X, t) - Vrod) becomes v* 1 with v* 1 = (Vf uid(X, t) - Vrod)/Vrod. Doing so
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we obtain the following equation in terms of non-dimensinal time and position:

= Cf T)
2 82

+
SApT 2)

(5.2)

From the wave equation for the fluid, the following non-dimensional parameters can

be extracted:

Eli. Cf T (5.3)

ApT 2  ApT
Pf 1 Pf Cf

(5.4)

Since the experimental well is shorter than a real well, we have to decrease the period

T and/or the sound velocity c in our experiment. The non linear damping coefficient

which depends on the geometry of the obstacles on the rod string. Numerically since

we will use a plastic pipe cf ~ 250m/s we actually find that Ap has to change by

20%.

5.2.2 Reynolds number

We also wish to scale the fluid flow regime in order to retain the loss generation

characteristic of a turbulent flow.

11f2 = pf V D
(

5.3 Experimental considerations

For practical considerations, it was decided to use water as a working fluid. While

gas may be added later on, water will still be the main solvent. The well number 1

from Sandia's laboratory experiment [8] will be used as a reference.
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5.3.1 Pipe length and material

The pipe length and material are chosen in order to keep 1H, constant. The well

length has to be shorter as it is impractical to use thousand of meters of pipe. 30m

was chosen as most tubing is in increments of that length.

The pipe will be made of PVC and not steel in order to reduce the fluid sound velocity

in it (cf Appendix C) by a factor of 6. However this will introduce extra damping

from the plastic deformation, this damping will be measured experimentally and is

not applicable in a real well. Upon setting the experimental well length and sound

velocity, we now obtain the actuating frequency we should use. The pipe diameter

will be about 10mm (based on availability), this is a compromise as a smaller pipe

is less practical to use but the flow rate is lower and the system needs less power to

pump the fluid.

5.3.2 Actuator and Pump Design

The actuator has to be able to move the pump in a sinusoidal motion, at a given

amplitude and with a given maximum velocity. It is sized in order to provided the

necessary power. As we have seen in the previous chapters, we have decoupled the

pressure into two types of pressure, static and dynamic. The static pressure is manu-

ally adjusted by tuning the backpressure valve and the dynamic pressure is computed

using the model. The pressure at the pump surface is the sum of both pressures. We

can immediately deduce the power necessary to actuate the pump knowing the pump

velocity, pressure and cross sectional area. The system is designed to use less than

100W of power.

The rod string is not simulated here, instead we directly actuate the pump and

suspend it between springs in order to recreate the rod system dynamics and recre-

ate the "chopped sinusoidal" waveform of the plunger. A hydraulic cylinder placed

between 2 springs with a calculated stiffness in order to match the scaled system

resonating frequency will be used as a pump. It will be driven by an electric motor (a

drill). A backpressure valve placed at the end of the tubing allows the user to scale

80



the rod stretch, i.e. the larger the system pressure, the more the spring will compress

before the piston starts moving. External check valves simulate the pump ball valves.

Since the pump is acoustically compact (the acoustic wavelengths are much longer

than the pump) we can place those valves outside the pump.

Figure 5-1: Scaled down pump CAD design with the hydraulic cylinder in yellow
suspended between two springs

5.3.3 Rod String

A rod string can be added in the tubing. It will not be used to actuate the pump

and is only here to recreate the non linear acoustic damping. That rod string will be

actuated in order to fine tune the relative velocity between it and the fluid. The cou-

plers/centralizers number and size are key variables to scale Ap. In the scaled-down

experimental set up, the rod string will be a thin steel tube with teflon centralizers

along its length to minimize solid friction.

5.3.4 System Overview

The experiment will be designed with a decoupled pump and rod. The main actuator

will be placed behind the pump for precise direct-drive control. The rod movements
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will be controlled by a different motor in order to assess the damping effect of the

rod on the acoustic signal. The system layout is described in Figure 5-2.

1P ssure sensor

Motor Pump Coiled
Position tubing Pressure sensor
sensor

Figure 5-2: System experimental layout

Table 5.1: Scaling Summary

Length Rod Diam Tubing Diam Plunger Max Vel
Reference well 900m 19mm 57mm 1.3m/s
Scaled Experiment 30m 3.8mm 12mm 1.1m/s

5.3.5 Experimental Planning

The experiment should be constructed and implemented in phases with ascending

level of complexity as illustrated in Figure 5-3. This will allow one to identify each

individual contribution and to establish the traceability of each parameter on the

strength of the acoustic signal.

The first step is to get the basic system operational and calibrate all the sensors and

the pump actuator. The precise speed of sound in the plastic tube will be measured,

along with the pump acoustic characteristic.

The second step will simulate an ideal well with top check valve boundary condition

for the fluid, and the effect of the rod string on the pump acoustic signal.

The final step will assess the effect of gas in the fluid, and how it modifies the acoustic

signal as it propagates in the fluid gas medium. If deemed necessary this step will

also include a new pump design that will be a miniature 3D printed rod pump that

could be actuated by a precise linear electric motor (voice coil) in order to replicate

data gathered in the field.
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Figure 5-3: Experiment planning

5.4 Summary

The experiment would have allowed us to determine what are the limits of this tech-

nology (using the surface pressure measurement to infer downhole condition). The

extent to which gas in liquid attenuates the propagating pressure wave, the sensitivity

of the acoustic signal to the pump movement could both be studied with that setup.

We would have also been able to formulate a transfer function that quantifies the

acoustic filtering created by the movement of centralizers and couplers in the tubing.
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Chapter 6

Field Data and Results

6.1 Introduction

Two sets of data were used, the first one was data acquired in the early 1990's by

Sandia National Laboratory. They instrumented several wells and their data serves

as a start to assess the model, specifically the stress analysis of the rod. However

Sandia acoustic data was found to be incomplete in most of their instrumented wells

so it was decided to acquire a new set of data specifically to assess the results from the

acoustic analysis of the fluid-rod system. Surface stress and pressure were measured

on a dozen wells of various types at various locations in Oklahoma.

6.2 An assessment of the Model using Sandia Na-

tional Laboratory data

Six wells were instrumented by the Sandia team. Out of those wells, only 2 wells

were used. Well 1 data is complete and well 3 data is almost complete with only

the surface pressure sensor information missing. The other wells were not used either

because they have a fiberglass rod string which is beyond the scope of this research

or because the available data is incomplete or of poor quality to the extent that it is

not useful to interrogate further.
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Table 6.1: Sandia's Wells 1 and 3 dimensions

Well Sandia 1 Sandia 3
Pump depth 830m 2814m
Plunger size 38. 1mm 57.1mm
Period 5.45s 15.4s
Stroke length 218cm 777cm
Centralizers/couplers 190 375
Motor power 15kW 75kW

6.2.1 Pump card analysis

By convention, the results are displayed as a load vs displacement. The top surface

chart has higher loads as it includes the rod weight in addition to the fluid weight,

and is displayed above the pump chart. The oscillations on the top chart are due

to the mass spring system behavior of the rod. The frequency of those oscillations

is different on the upstoke and the downstroke as the mass of fluid lifted is lower on

the downstroke. The pump chart oscillations reflects the presence of fluid acoustic

waves as an incompressible fluid would lead to a perfectly rectangular pump chart.

A typical user would be mostly interested in the maximum and minimum loads on

the surface card, and in the shape and amplitude of the pump card. The surface

loads allow one to evaluate fatigue and system sizing while the pump card is used to

diagnose various pump issues.

Well 1

The stress match between the model and the measured data is excellent on the short

well, Sandia 1. This is a relatively simple well with no tapering and no gas. We can

estimate the measurements error in stress at about 5% for a typical load cell. The

error in position is however much larger especially at the pump because we have a

high temperature environment and the accelerometer sensor is integrated for a long

period of time, thus the drift can be significant. Figure 6-2 details key variables from

the model, the plunger displacement and velocity, the rod stretch (rod string length
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Figure 6-1: Pump chart for Sandia's well 1
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Figure 6-2: Well 1 analysis. The plunger oscillations during up and downstroke are
visible as well as the associated rod strech

86



normalized by resting length) and the position of the traveling valve (-1 is closed

and 0 is open). The plunger oscillates during both upstroke and downstroke at the

system natural frequencies as calculated previously. Since the lifted load is larger on

the upstroke the frequency is lower.

Well 3

x104 Stress card -Bottom card
4.5 -Top card

-.----- Sandia Bottom Card
4 -Sandia Top Card
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1.5 -.....
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Figure 6-3: Pump chart for Sandia's well 3

For Sandia well 3, presented in Figure 6-3, the stress calculation are within 10% of

the measured data. As explained previously the pump amplitude was different stroke

to stroke because of integration drift. Measurements from a set of two strokes are

shown in figure 6-3: one corresponding to the longest stroke (about 275 inches at the

pump) and the other to the shortest stroke (about 255 inches). The model calculated

stroke is between those two extreme measurements.

6.2.2 Pressure analysis

Well 1

Looking at the pressure right above the pump, in Figure 6-4, we see a good agreement

between what is measured and what is computed.
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Figure 6-4: Pressure above the pump, well 1

6.3 Field Data Acquisition and Results from Wells

in Oklahoma

In order to understand in details the acoustic pressure propagation it was decided to

gather additional experimental data. To understand the role of gas fraction on the

system acoustic response wells with various gas content and wells with gas lock were

instrumented. Those measurements allowed the modeling of gas lock and reservoir

coupling.

Table 6.2: Oklahoma Well 49-3 and 52-1 dimensions

Well 49-3 52-1
Pump depth 3263m 722m
Plunger size 31.8mm 38.1mm
Period 10.65s 9.54s
Stroke length 280cm 168cm
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6.3.1 Data acquisition system

The surface card was gathered by a contractor using the Echometer instrumentation

system. The surface pressure data was gathered by either a 200psi or a 667psi sensor

with a bandwidth of 900Hz at a sampling frequency of 500Hz. A labview interface

connects the sensor to a 12bit DAQ 6000 series from National instruments.

6.3.2 Gas lock

Several key off design conditions were observed during the field measurements. One

of the key condition is called gas lock and it is analysed in this section.

Gas lock criteria

If the barrel contains too much gas, the barrel pressure will not be high enough at

the end of the downstroke phase to open the traveling valve, this effect is visualized

in Figure 6-5. This effectively locks the pump and prevents any pumping. If we

define the compression ratio CR as the minimum barrel volume (at the bottom of

the stroke) divided by the maximum barrel volume (at the top of the stroke). We

can establish a criteria for when gas lock will occur. The compression in the barrel is

assumed isentropic thus the heat capacity ratio -y links changes of volume and pressure

according to the thermodynamic relation PV = constant. In this case the value for

natural gas is used. The pressure above the plunger is the sum of the hydrostatic

pressure in the tubing and the surface back pressure which is set by the operator.

The pressure at the barrel inlet is the sum of the casing pressure and the hydrostatic

pressure created by the fluid level in the casing. We are in gas lock when:

Ptubing + pfg 1 > Pcasing + PfY 1 casing (6.1)
CRY

Most often the tubing pressure is much smaller than the downhole hydrostatic

pressure, and we usually get into gas lock when the casing fluid level is low thus we

obtain the following simplified equation:
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pfg1 > Pcasing (6.2)
CR

Gas
phas(

Fluid
phase

Figure 6-5: Schematic of a gas lock situation in the pump, liquid is in blue and gas
in green. In this example there is about 75% gas on the upstroke in this case the
compression ratio is about 4 which is not enough to open the traveling valve

To prevent gas lock one could increase the casing pressure but usually the range of

adjustment is limited. Instead by changing the pump spacing (pump resting position)

the compression ratio (usually in the 100-300 range) can be increased by a factor of

2 or 3. Since the CR is raised to the power-y this almost eliminates the likelihood of

a gas lock happening.

Gas lock analysis

One of the wells, NMU49-3, was found to go into frequent gas lock cycles, about

every 3 minutes. This well was used as a case study for gas lock and the design and

operating characteristics of Well NMU49-3 are given in Table 6.2. Four time interval

are visible in figure 6-6:

e 60-100s: increasing liquid fraction in the plunger, pump is leaving gas lock phase
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6-6: Recorded pressure at the surface

300 350

of well NMU49-3

" 100-130s: barrel full of liquid, efficient pumping

" 130-140s: decreasing liquid fraction in the plunger, pump going into gas lock

* 140-250s: pump is in gas lock, pressure is slowly dropping due to plunger leakage

The leakage model developed using the fluid equations in Chapter 3 explains

how the plunger can exit gas lock. As fluid leaks across the plunger, the barrel is

progressively filled with fluid. This increases the compression ratio CR since only the

gas is compressible, and using equation 6.2, the well will exit the gas lock phase and

start pumping.

During the gas lock phase the mean pressure also decreases with time. This is

also explained by the leaking flow across the plunger. Understanding pump leakage

allows the modeling of low frequency mean pressure changes ( frequencies below the

driving frequency).

6.3.3 Gas fraction and tubing stretch analysis

To prevent gas lock, the pump barrel needs to have a minimum amount of fluid in

it. On the other hand a full pump with no gas often means that the system is not
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pumping fast enough and the well can provide more fluid. An ideal system pumps

the exact amount of fluid provided by the oil reservoir. A practical way to do this is

to keep the pump operating with a small gas fraction (0-20%, thus there is a need to

monitor the pump gas fraction).

We will use the well ECU52-1 as a case study to understand the effect of gas

fraction on the acoustic surface pressure signal. Our measurements also show the

well tubing string was un-anchored.

ECU52-1 pump chart

-Measured Surface card
ECU52-1 Stress cards - - Echometer Software computed car

7000- -Modeled Bottom card
-Modeled Top card

6000 -

5000 -

4000

f

3000 -

2000 -

1000 -

0 10 20 30 40 50 60 70
Position in in

Figure 6-7: ECU52-1 surface and pump cards

The cards in Figure 6-7 are in general agreements in that the modeled and the

measured surface card oscillations have the same frequency and same mean values.

The pump amplitude and mean stress levels are also matched. The key difference

is observed at the beginning and at the end of the stroke. The modeled load build

up/ decay is much faster than the measured one so that the simulated pump card

looks like a rectangle instead of the measured parallelogram. This happens because

the tubing is either un-anchored or the anchor failed and detached, thus the whole

tubing string stretches at each load change applied to the plunger. This is a well

92



known phenomena in the oil well service field that is not modeled in this work [12].

ECU52-1 acoustic signal

We observe a strong correlation and a good match between the measured and the

modeled acoustic signals in Figure 6-8. The high frequency noise is due to a rusty

backpressure valve and was easily audible at the well site. The downstroke section of

the signal matches well the measured signal (5 to 9s). However the upstroke simulation

does not matches as well (0-5s). This is expected since the surface chart in Figure 6-7

also matched well for the downstroke compare to the upstroke. Without taking the

damping effect of tubing stretching into account, the shock load on the pump on the

upstroke is much higher creating a stronger dynamic effect. On the downstroke the

10% gas fraction already creates a damping effects thus tubing stretch has a smaller

effect.

x105 ECU 52-1 Surface Pressure, 10% gas fraction

- Modeled Pressure

3 - Measured Pressure

2.5 -

(n 2n2-

. 1.5-
C',

0

0.5-

0-

-0.5

0 2 4 6 8 10 12
Time in seconds

Figure 6-8: Well ECU 52-1 modeled and measured pressure signal with 10% gas in
the pump

While doing a numerical parametric analysis on the gas fraction, it was noticed

that the acoustic signal corresponding to the downstroke phase greatly varied. This

computed phase variation with gas fraction is shown in Figure 6-9. This was confirmed

experimentally by plotting each stroke of Well 52-1 surface signal.. The surface stress
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analysis that was measured simultaneously also indicates that each stroke had a

different pump gas content with a gas fraction ranging from 0 to almost 60 %.

2.4 x106 Surface Pressure vs Time: Well 52-1
-Stroke 1

2.35- -Stroke 2
-Stroke 3

2.3-Stroke 
4

2.3 -- Stroke 5

cL 2.25 -

.9

S2.15
a.

*o2.1 -

02.05 -

2 -

1.95 -

0 2 4 6 8 10
Time in seconds

Figure 6-9: Evolution of the measured surface acoustic signal, each stroke of the
recorded signal was superposed

Using the model the following plot in Figure 6-10 was generated, showing the

strong similarities with the recorded signal and showing the physical fidelity of the

model.
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2e6 Gas fraction effect on the modeled surface pressure, well 52-1
-10% gas fractio

1e6 - 0% gas fraction
30% gas fractio
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Figure 6-10: Effect of gas fraction in the pump on the surface acoustic signal, each
stroke of the generated signal was superposed

Generalised gas fraction analysis

In order to quantify the phase difference created by the varying gas fraction content

of the pump, it was necessary to understand the source of that time delay before

carrying out any non-dimensional analysis. The following analysis is quasi-steady

and does not take into account dynamic effects, therefore its accuracy increases if the

system driving frequency is significantly lower than the resonating frequency.

Increasing the gas fraction in the pump delays the pressure build up in the barrel

during the downstroke phase as seen in Figure 6-11. This means that the traveling

valve will open at a later time. When the valve opens the pump immediately starts

pumping thus creating a pressure pulse. The downstroke phase delay was plotted in

Figure 6-12 for three different wells.

The volumetric gas fraction is defined as volume of gas in the pump over the pump

volume, which can be re-written as the length of the gas phase AZx over the pump

amplitude Apump such that gasfraction = Ax . Since the traveling valve opens

during the middle part of the downstroke the pump motion can be assumed to be

linear. Atop is the amplitude of the rod motion at the top of the rod string, the well

surface (polished rod), and is imposed by the unit kinematic.
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Figure 6-11: Barrel pressure with and without gas during the downstroke

Downstroke time delay vs gas fraction
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Figure 6-12: Time delay vs gas fraction for 3 wells, each well is associated with a
different slope
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The surface amplitude is larger than the pump movement as the rod has to stretch

and unstretch at every cycle. The pump amplitude is approximated to be the polished

rod amplitude minus the rod stretch due to the fluid weight F.

Fo
Apump = Ftp 0  (6.3)

When the pump ingest low pressure gas during an over pumping condition, Ax is

also approximately equal to the displacement between the top of the pump stroke and

the position at which the valve opens. This is justified by the high compression ratio

(typically 80 to 400) thus the gas volume is negligible after compression compare to

the fluid volume inside the pump. This extra compression that has to be done before

opening the traveling valve is associated with a time delay At. The pump average

velocity when moving is 2At 0 P with T is the system period. We obtain the gas fractionT

based on At in equation 6.4.

gasfraction = T I F- (64)
T 1- FkAtop

In Figures 6-13 and 6-14 we compare the time delay computed with 3 different

methods, the model, the formula, and the experimental measurements.
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Figure 6-13: Time delay vs gas fraction computed using three different methods on
well 14-1. The general formula in equation 6.4 is compared to the recorded signal and
the signal generated by the model

Figure 6-14: Time delay vs gas fraction computed using three different methods on
well 52-1. The general formula in equation 6.4 is compared to the recorded signal and
the signal generated by the model
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We infer from Equation 6.4 that the physically rational parameter to scale the

downstroke time delay is (1 - ). Armed with this scaling parameter, the data

in Figure 6-12 can be recast in terms of the normalized time delay against the gas

fraction percentage to yield a near universal curve. This is shown in Figure 6-15.

In addition the corresponding results from the rod-pump system model are shown

alongside with the data and the agreement shows the physical consistency between

both the field data and the model developed here. As expected the slope is 1.

Normalized Downstroke time delay vs jas fraction
0.45

0 .4 - - - - - - - - - - - - - - - - - - - -

0.s5

0.3
E 0.25 -

V

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Volumetric gas fraction In %

Figure 6-15: Normalized time delay vs gas fraction for 3 wells
and using the model

+Well 14-1

-+Well 40-17

+Well 52-1

*,Modeled 52-1

-Simple relation

0.45

using the measurements

Using the formula in equation 6.4 allows a user to instantly estimate within a

error margin of about +/-5% the amount of gas in the pump of any oil well using a

simple surface acoustic measurement.

6.4 Well-reservoir coupling

Well reservoir coupling was briefly assessed. It was assumed that the reservoir provide

a constant flow to the well. This is a simplistic assumption and more advanced models

like a diffusion model or a numeric reservoir model could be used instead. The well

in this example is constantly pumping. In an ideal world, a well would automatically
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detect that there is no more fluid to pump and would slow down or shut off for a

specific length of time. That time would depend on both the well and the reservoir

properties. The diagram of the flow are shown in Figure 6-16.

casing

Casing fluid level

Flow from EL
the reservoir

Figure 6-16: Flow diagram at the bottom of the well

In Figure 6-17, a low flowing well is being pumped faster than it can replenish,

thus the level in the casing drops at every stroke until the well is empty. At the same

time the gas fraction in the pump increases.

Casing Fluid Level vs time

-
5 -

0
z

01
0 2 4 6 8 10 12 14 16 18 20

Time in seconds

Figure 6-17: Example of casing fluid level in a low flowing well
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6.5 Current limitations

Backpressure valve

The next key improvement to the model will be a more realistic surface boundary

condition than the current ideal valve model. Since simple direct acting ball-spring

backpressure valves are used in the field, there can be more than 100% pressure dif-

ference between a fully open valve and a valve that is barely cracked open. This is

illustrated in the Figure 6-18. Direct acting valves are used on the field due to their

low cost and robustness compare to pilot acting valves.

100

0

Figure 6-18: Valve pressure

Full flow pressure,-"*'

Direct-acting relief valve

Pilot-acting relef valve

Cracking
pressure

Pressure -% 100

vs flow, from http://www.hydraulicspneumatics.com/

Leakage effect

While the leakage is calculated and its effect on the gas fraction is taken into account,

the effect it has on the pressure drop in the tubing is not yet evaluated. In reality

the tube is pressurized and leaking fluid will cause a drop in the mean pressure.

Solid friction at the pump

Many measured surface pressure signal contain more high frequencies than the mod-

eled signal. It is hypothesised that this is due to the non smooth movement of the
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pump occurring when solid frictions affects the plunger movement. In theory solid

friction will increase acceleration spikes at the pump thus creating an additional high

frequency acoustic signal.

Other model limitations

Valve leakage, un-anchored tubing and rod tapering effects are not yet taken into

account to model the pump acoustic signal.

6.6 Summary

A strong signal was measured on most instrumented wells, confirming the calculation

that any gas existing in the well will be dissolved in the brine water pumped. De-

pending on the gas and brine concentration, the gas can come out of solution once a

specific pressure is reached. Since most wells use a backpressure valve to pressurize

the well the gas is not an issue.

The model provide great results for the rod stress analysis and highly encouraging

results for the surface pressure analysis. While not all existing effects are currently

modeled, the most important downhole conditions can currently be captured. The

next steps should be to develop the proper signal processing method to extract the

useful information for the pressure signal.
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Chapter 7

Summary and Conclusion

7.1 Summary

This thesis assesses the characteristics of a rod pump system and the dynamic effects

that occur in the system. Fluid and mechanical models are used to evaluate both the

pump/surface cards and the pressure in the tubing. The pressure at the tubing surface

is analyzed to understand the effect of various pump off-design conditions. Simula-

tions done using a numerical approach were compared to existing measurements as

well as new ones done in the field. A scaled down experiment was designed and could

be built in future work to recreate any pump condition. It was found that gener-

ally modeled pump and surface cards are in good agreement with measured cards.

Acoustic pressure signal amplitude is difficult to model as the pressure signal is highly

sensitive to plunger acceleration, however the signal phase matches well the measured

signal. A parametric assessment shows that the mechanical system is weakly coupled

to the acoustic system, i.e. the pressure waves in the tubing do not affect the system

except at the pump. At the pump boundary, assuming the well is either compact

(fluid is a lumped mass) or purely acoustic (infinitely long well with no reflected

waves) is sufficient to give a good estimate of the well cards. However the acoustic

system is strongly coupled to the mechanical system, the downhole pump is not the

only source of pressure waves, rod tapering is also key and rod centralizers/couplers

can also be important in certain cases.
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In terms of the research questions posed in Chapter 1, we have to a large extent

addressed the followings:

" Defined the attributes of a rod pump system both mechanically in the rod string

but also acoustically in the tubing

" Determined the key non dimensional scaling parameters

" Determined the influence of the mechanical system on the tubing pressure and

the resulting pressure waves

" Quantified the effect of various off-design pump condition on the acoustic tubing

pressure

As of to-date the main sources of damping on a rod pump have been assessed and

a model for loss estimation formulated. The system movement and stress is evaluated

for various cases, ranging from shallow to deep wells and compared with the provided

experimental data. A simplified analytical model was initially used to understand

the system and was later replaced by a more advanced fully non linear computational

model. The analytical model was then used as a baseline to assess the accuracy of

the computational model. A universal scaling parameter was defined and used to

compare the effect of gas interference on the pressure signal for any well. Several off

design effects such as gas interference or gas lock have been modeled and reservoir

coupling was briefly analyzed; however there are many more existing effects such as

tubing stretch or fiberglass rods that are not part of this work.

7.2 Conclusion

The model formulated in this thesis is based on the physical processes and dynamics

in the rod pump system. This not only yields a model in accord with the field data

but also enables one to rationalize why the field data look the way it is in terms

of the physical processes setting the rod pump system operation; in addition, the

model provides the physical basis for formulating the scaling rule for the rod pump
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system. Thus these are not the only original contributions of the thesis work thus

far but they also provide enablers to begin designing and planning a scaled-down

experimental set up implementable in laboratory environment. The hypothesis that

a finite set of measurables at the top of the well can be used to define the downhole

conditions has been proven true for at least some downhole conditions. Specifically,

a simple pressure measurement at the top can be used to infer gas interference using

the universal scaling established in this work. The implication of this hypothesis/idea

is that it provides a powerful basis to develop a diagnostic tool for a broad class of

generic artificial lifts for vertical as well as non-vertical wells.
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7.3 Recommendation for Future Work

The future research tasks will consist of two threads:

* The implementation of the experiment to :

- Understand the relation between pump velocity and its acoustic signature

- Evaluate the damping effect of gas bubbles on the pressure waves

- Evaluate the non-damping effect of rod centralizers and couplers

- Experimentally decouple the various acoustic effects

" Further refinements to the rod-pump system model to include

- A fully coupled distributed damping that varies with rod position and time

- A diagnostic code that uses the pressure signal to evaluate the pump ve-

locity

- Effect of multiphase Fluid

Several key theoretical elements still have to be evaluated and understood better.

The various damping terms need to be refined, especially the damping created by the

flow across the pump.

The flow acoustic characteristics during the downstroke phase have to be evaluated.

In that situation the flow is going upwards while the rod string is going downwards,

this create a new acoustic damping term.

The effect of gas (bubbles or layers) is still not known, this may be studied both

experimentally and theoretically.
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Appendix A

The Wave Equation

The movement of the pump downhole is described by the wave equation A.6 and

subjected to two boundary conditions at the top and at the bottom of the well. We

assume the rod has a radially uniform stress distribution, a constant area cross section,

and is homogenous. When the rod is tapered the equation is solved by section. K is

the polar radius of gyration of the steel rod (function of the rod geometry) and v is

the Poisson's ratio of the rod. We also assume the rod stays within the elastic limits

of the material such that Poisson's Law (see equation A.1) holds (i.e. the stress in

the rod is proportional to the rod strain); this can be verified after calculation by

comparing the maximum stress in the rod and the elastic limit of the material. It is

also assumed that all the forces occurring at the surface of the rod are proportional

to the rod velocity and the wetted area.

E- = E (A.1)
dx

The force balance on a small section of rod yields to the wave equation A-I that

describes the dynamic of the rod pump system.

pdw2  Edx R 2  2(A)8kx~R - r(A.2)T~od pxw~ 4
rod at d7 o "7,At +od~~d

In accordance with the Love theory we incorporate the lateral inertia effect A"27Roddx2

which is a dispersive term. It takes into account v,the Poisson's ratio of the rod, and
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T(x) = EArod (X)

=tjc-- AArod (X) R

W = pdx7rR 2g
rox

x+dx

T(x + dx) =~od( + dx)

Figure A-1: Force Balance on an infinitesimal rod element of length dx

K the polar radius of gyration of the rod. The origin of that term can be found by

using Hamiltonian mechanics to do an energy balance on the rod [2]. c is the sound

velocity of compressive waves in a long rod given by c = .

I a2 a2g + vK )2 _4 2A" Oa g--- -+ ~ + -+ - (A.3)
c2 0t2  ax 2  C c x2 at2  RodpC2 at C2

This equations contains a dissipative term with a dissipative coefficient A' and a

dispersive term with a dispersive coefficient (vK) 2.

To determine the conditions for which the effects associated with wave dispersion

can be neglected, we resort to the dispersion relation from the exact theory, the Love

theory and the wave equation theory shown in Figure A-2. The ordinate in Figure

A-2 is the velocity E given in equation A.4 and the abscissa is the normalized wave

number ;j' given in equation A.4. In equation A.4 co is the phase velocity in the

absence of dissipation and dispersion, and K = Rd for a cylindrical rod. In general

c has a functional dependence on the wave number y.
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C
C = -

CO (A.4)

1-0 --- - - - - - - - -
Wave equation

0-8 - Love theory

0-6 -N

Exact theory
0-4-

0-2-

0-0 ' I I I I
0 1 2 3 4 5

Figure A-2: Dispersion curve for Love's rod theory, wherein radial-inertia effects are
included

From the results shown in figure A-2, dispersion effects can be neglected if 1 < 0.3

so that c ~ co, i.e. the phase velocity is essentially independent of the frequency.

For example, with a steel rod of radius 2.54cm (1 inch)we find the frequency

corresponding to ' = 0.3 is f = 92kHz where we have used 7 = 27rfc

The frequency to be encountered in the rod-pump system is well below the thresh-

old value of 92kHz; thus the approximation that the phase velocity c is essentially

independent of the frequency is good so that we can neglect the dispersive term.

The sound velocity is also a function of the stress in the material, or its elongation
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(both are linked with the Poisson's law). One can show that the sound velocity in

the rod is:

c c - - (A.5)
Lo

Where L is the length of the rod under tension, Lo is the length of the rod at rest,

and co is the sound velocity in the rod at rest. Since the rod only stretches by a few

% to stay within the elastic domain of steel (avoiding irreversible damage), we can

assume L 1.

The sound velocity in the rod is thus a weak function of the stress and that depen-

dence will not be taken into account in the following formulation and analyses. For

a long rod where the diameter is smaller than the wavelengths that travel in it, the

sound velocity c is c = co = . The frequency being examined are in the order

of 1Hz which leads to a corresponding wavelength of about 6000m which is several

orders of magnitudes larger than the rod diameter, thus confirming the validity of the

formula. We also use A =2.

Equation A.3 reduces to:

2 = C a + A a- + g (A.6)at2 a9X2 at
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Appendix B

Models comparison

B.1 Accuracy check

A few study cases have been setup in order to compare both results and check every

aspects of the models:

" a system with no distributed damping and a fixed end: A=O,Z=0

" a system with no distributed damping and a mass attached at the end: A=O,Z=jwm

" a system with no distributed damping and damping at the end: A=O,Z=R

" a semi infinite rod with distributed damping: A # 0

The first case compare the wave propagation in both models and eliminate the

question of implementing a complex bottom boundary condition. The second and

third cases respectively verify the implementation of an admittance and a resistance

at the bottom. The last studied case verifies the propagation of a wave in a rod with

distributed damping. Analytically we obtain:

(x, t) = Aoek"IXcos(wt - k'x) (B.1)

Numerically this was done by simulating a rod much longer than the critical damp-

ing length 1 - I 2 and implementing a basic non reflective boundary.

1+ +
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Any reflected wave will be damped out and will not influence the rod oscillation in

the studied section.

The results for two key cases are shown bellow. An infinite rod is studied first

to show that the core of the numerical model is valid, then the results with the full

boundary to show that the boundary condition can be accurately modeled.

0.5- Infinite Ro d Model Comparison0.5 -r/ -Transient numerical solution
-. AnalytiaJ steady state solution

0.4 - -Driving amplitude

0.3-' ~ /I--Aayia taysaeslto

0.2 -
0.1 -

0-

-0.2-

-0.3

-0.4
-0.4

0 1 2 3 4 5 6 7 8 9 10
Period Number

Figure B-1: Infinite rod simulation

As expected the numerical model transient solution converges to the analytical

model steady state solution.

Model Comparlson,Lm2000,Lambdam-1,m=15000Kg,R=10000

0.8
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0.4
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-Trfansitnmeiclsouto
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.0.2-

-0.4 -
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Figure B-2: Fixed mass and damping linear simulation
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In every case, it can be seen that both models give what will we consider to be

identical results with less than 0.1% difference in both amplitude and phase. It was

also observed than increasing the numerical grid size increases the accuracy of the

numerical model.
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Appendix C

Pressure Propagation

Considerations

C.1 Curvature effect

The effect of a curved pipe on its acoustic characteristics has been studied previously

[10]. The authors studied the influence of the ratio of the pipe radius divided by its

radius of curvature on the acoustic properties. It was found that if Rpipe << 1
ceurvature

the curvature has no effect on the sound propagation.

In an oil well, that ratio is in the order of 10' so we can neglect the curvature effect

on the pressure waves.

This is one of the main reason the acoustic method is of great interest to study

deviated well, the well orientation has no effect on the pressure waves.

C.2 Pipe stiffness effect and wave equation

When a pressure wave is propagating in a pipe, it locally deforms the pipe. Experi-

mentally it has been observed that the speed of sound in the pipe is greatly reduce

when the pipe is flexible. We will show in this section how to evaluate the speed of

sound in the fluid as a function of the pipe properties.
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A is the pipe area, Vf the fluid velocity and pf its density. A mass balance between

x and x+dx in a pipe section gives us:

a ayM (x, ( t)pf(x, t)A(x t)) + a (pf (x, t)A(x, t)) = 0

We also know the relation between the change of density and pressure using the

(C.1)

fluid compressibility 3:
OpI ap
at= XsPf a

(C.2)

And we introduce the pipe distensibility Ds, which is isentropic:

1 (BA
Ds = I ra)

A OP
(C.3)

The new first order mass balance which also takes into account the fluid com-

pressibility and the wall distensibility is now:

avf(xt) ap(x, t)
ax at

(C.4)

We obtain the wave equation using the following linearized Euler equation:

aVf(x, t)
pf

Oap(x, t)
ax

(C.5)

The pressure wave equation is:

1 a2p(x, t)
pf (Xs + Ds) ax2

The sound velocity is now a function of Ds with c =

velocity in the fluid only.

CO
Vp-fD-S

(C.6)

co being the sound

Using a hoop stress balance we find Ds as a function of the pipe inner radius Rp,
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and its thickness h. This is expression is only valid if h << Rp.

R
DS = REE h
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Appendix D

Numerical Scheme

D. 1 Discretization

The wave equation studied here contains a dissipative term, and only a very small

range of frequencies travel across the rod. Thus it is important to find a numerical

scheme that preserve the damping characteristics, while the dispersive accuracy is not

of great importance. There are various existing scheme that can be used, and they

model dispersive and dissipative effects with different levels of accuracy. A scheme

that has little numerical damping was used and is described in the next section

0(ri_ 1, tn+) n+) n+1)

( , j
tn) ~((i+1t tn)

Vxzi, tu_ 1)
Figure D-1: Numerical Scheme

The wave equation is discretized using a second order central difference method.
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If we denote i the position on the x axis with xi = i/x and n the position on the

time axis with t, = nAt. s is the CFL factor with s = c-, c being the sound speed

in the material. We can discretize the first derivatives in space using a second order

method.

- - +1 ~ - (D. 1)
ax A x

Using the same method we obtain the second order derivative:

1x 2  AX 2  -

We use the exact same methods for the time derivative.

The wave equation becomes::

2(1 - s2) +sn + S2 JU -+ s2F4'p - (1 + Ad-) fl-- - gdt2  (D.3)

1-Adt)
2

This is written with matrices in Matlab to increase the algorithm speed.

D.2 Boudary Conditions

By applying Newton Second Law to the pump's plunger we have:

mPUMP at2' - EAroda - g + Fvise - AP(Apipe - Arod) (D.4)

The viscous force Fvisc is the damping force created by the thin lubricating fluid. The

pressure forces depends on the upstroke or downstroke motion (position and direction

of travel) and on the velocity as detailed previously.

At the top of the rod the displacement (j is imposed for every time step i.

At the bottom of the rod, Newton Second Law is applied and discretized. Several

force coefficient depends on the phase of the movement, i.e. upstroke or downstroke.

The equation is here written for the upstroke.

118



.+_ EArodAt2

X1 X- -mpumZ- (D.5)

-At2 * + ( )Frns - APApunger)

The key difficulty here lies in the pressure difference across the plunger AP. While

the pressure below is known, the pressure above the plunger includes the dynamic

pressure term mentioned earlier. The only way to evaluate that term is to solve the

full wave equation in the fluid and couple it with the rod wave equation at the bottom

boundary, the plunger. This will be detailed in the following Chapter.

D.3 Rod Tapering

Most wells are build with a rod string that tapers as depth increases. Two or three

rod diameters are common. At every area change there is a discontinuity in the rod

impedance.

We know that displacement and force are preserved at a change of section. We note

k the position at which the section changes we obtain, Ak the rod area before k, Ak+1

the rod area after k, E the rod young modulus indexed in the same way. The stress

is equal to the spacial derivative of the elongation and the + or - denote the left or

the right spatial derivative.

Ek A k = Ek+1Ak+ 10

The system is solved numerically using matrices with as many section changes as

necessary.
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