
Machine Learning Approaches to Challenging
Problems: Interpretable Imbalanced Classification,

Interpretable Density Estimation, and Causal
Inference

by

Siong Thye Goh
Submitted to the Sloan School of Management

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sloan School of Management

April 26, 2018
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cynthia Rudin
Associate Professor

Thesis Supervisor
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Roy Welsch
Professor

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Patrick Jaillet

CoDirector, Operations Research Center



2



Machine Learning Approaches to Challenging Problems:

Interpretable Imbalanced Classification, Interpretable Density

Estimation, and Causal Inference

by

Siong Thye Goh

Submitted to the Sloan School of Management
on April 26, 2018, in partial fulfillment of the

requirements for the degree of
DOCTOR OF PHILOSOPHY IN OPERATIONS RESEARCH

Abstract

In this thesis, I address three challenging machine-learning problems.
The first problem that we address is the imbalanced data problem. We propose two

algorithms to handle highly imbalanced classification problems. The first algorithm
uses mixed integer programming to optimize a weighted balance between positive and
negative class accuracies. The second method uses an approximation in order to assist
with scalability. Specifically, it follows a characterize-then-discriminate approach.
The positive class is first characterized by boxes, and then each box boundary becomes
a separate discriminative classifier. This method is computationally advantageous
because it can be easily parallelized, and considers only the relevant regions of the
feature space.

The second problem is a density estimation problem for categorical data sets. We
present tree- and list- structured density estimation methods for binary/categorical
data. We present three generative models, where the first one allows the user to
specify the number of desired leaves in the tree within a Bayesian prior. The second
model allows the user to specify the desired number of branches within the prior. The
third model returns lists (rather than trees) and allows the user to specify the desired
number of rules and the length of rules within the prior.

Finally, we present a new machine learning approach to estimate personalized
treatment effects in the classical potential outcomes framework with binary outcomes.
Strictly, both treatment and control outcomes must be measured for each unit in
order to perform supervised learning. However, in practice, only one outcome can
be observed per unit. To overcome the problem that both treatment and control
outcomes for the same unit are required for supervised learning, we propose surrogate
loss functions that incorporate both treatment and control data. The new surrogates
yield tighter bounds than the sum of the losses for the treatment and control groups.
A specific choice of loss function, namely a type of hinge loss, yields a minimax
support vector machine formulation. The resulting optimization problem requires the
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solution to only a single convex optimization problem, incorporating both treatment
and control units, and it enables the kernel trick to be used to handle nonlinear (also
non-parametric) estimation.

Thesis Supervisor: Cynthia Rudin
Title: Associate Professor

Thesis Supervisor: Roy Welsch
Title: Professor
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Chapter 1

Introduction and Contribution

Depending on the information that we have access to, machine learning problems can

be divided into several classes. A common class of problems is known as supervised

learning problems, where the outcome is known for the training data set. Various

algorithms such as support vector machines (SVM), random forests, and deep learning

models are suitable methods for tackling supervised learning models. However, even

under this setting, there are some challenging circumstances such as large dataset

sizes and missing data. Furthermore, the model may be incomprehensible, which

is undesirable for decision makers. A more challenging setting is the circumstance

in which the labels are not even given to us. Popular examples of such problems

include clustering and density estimation. Another possible challenging scenario is

an experimental setting in which we may have a reading for the outcome for each

sample data point but do not have the most relevant reading for every single data

set, which is the case for all unsupervised problems. Inference is needed to recover

the desired information. This thesis addresses three such problems, each of a different

nature.

The first problem that we address is the interpretable imbalanced data problem.

For example, in an email repository, we might be interested in creating a system to

filter spam emails. However, there may be many more non-spam emails than spam

emails, so the data set is imbalanced. Typically, when a data set is imbalanced,

classical algorithms, which optimize for accuracy, tend to focus on the class which
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most data points come from and neglect the other classes. This results in many false

positives or false negatives. However, one problem with this is that the smaller class

might be the class of interest in which we wish to identify patterns. For instance, in

the example of spam emails, the class of spam emails may be too small for classical

algorithms to learn the features which are most indicative of a spam email. Typical

approaches to handling such problems include oversampling or undersampling coupled

with a traditional machine learning algorithm. However, it is preferable if a machine

learning algorithm can tell exactly why a data point belongs to a class — that is, we

want the rule of classification to be interpretable. A decision tree might serve the

purpose; however, most decision tree implementations split the feature space along

the feature axis greedily, and the objective function of the procedure is not clear. In

Chapter 2 of this thesis, we address this problem by using an optimization approach.

We define a mixed integer programming approach to place axis-parallel rectangles to

characterize the minority class. This is known as the exact boxes method. To make

the algorithm more efficient, we propose another algorithm, fast boxes, which is a

method that can be used to warm-start the algorithm. The minority classes are first

characterized using a clustering algorithm. Subsequently, for each cluster, we adjust

its boundary separately. Each cluster’s boundary only depends on the points around

the boxes. Our Simulation results show that the exact-boxes algorithm outperforms

many standard algorithms.

The second problem that we address is the density estimation problem for categor-

ical data sets. High-dimensional histograms reveal which configurations of a dataset

are more prominent or more interesting. However, as the dimensionality of the dataset

grows, the number of bins increases rapidly, making the histogram less interpretable.

It is harder to describe a histogram when the number of bins is huge. To overcome

this problem, we use tree and list structures to introduce hierarchical structure to

the histogram and also regularize the complexity of the trees to make the result that

we obtain more interpretable. Reducing the complexity of the trees also makes for

better generalization. We propose three different procedures. The first procedure

regularizes the number of leaves of a tree while the second procedure regularizes the
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number of branches of a tree. The last procedure restricts the tree structure to be a

list, hence improving the efficiency of the algorithm. For the list structure, the depth

and complexity of each rule is regularized. Users are allowed to choose the parame-

ters, and hence they are able to use their domain knowledge to control the complexity

of the tree structures. The regularization is implemented by using a Bayesian prior.

We apply our density estimation algorithm to the Cambridge Police crime data set

from 1997 to 2012 to understand the common types of modus operandi (M.O.) of

housebreakers.

The third problem that we try to mitigate is the fundamental problem of causal

inference. For example, in a clinical trial setting, patients are assigned to either

the treatment group or the control group. However, we are not able to observe the

alternative outcome which would occur if someone assigned to the treatment group

were to be assigned to the control group instead, and vice versa. In some special

circumstances, we might be able to observe the alternative outcome under a controlled

environment when the effect of the treatment has worn off. In a clinical trial, we

try to match similar patients during the design of the experiment. However, this

might not be tractable as experiments might be expensive to conduct; furthermore,

it is sometimes the case that we are given a dataset to analyze without being able

to participate in the design of the experiment. In such settings, the most popular

approach would be to perform matching. Another strategy is to apply regression

methods to the treatment and control groups to compute the treatment effect. In

theory, observing the treatment effect for any sample is impossible. We focus on

the causal inference problem where the effect takes binary values. We first define a

loss function which penalizes having the wrong predicted sign for the treatment effect.

However, this objective function is not computable due to the fundamental problem of

causal inference. We instead propose to use a surrogate function which is computable.

This approach of using a surrogate function is similar to SVM. We present functions

which can be converted to such a surrogate function. In particular, the hinge loss

function is one such function, and it enables us to introduce the kernel trick to our

framework. We then formulate this problem as a quadratic programming problem. By
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considering its dual problem, we are able to cast the optimization problem in a form

similar to that of support vector machines. We derive the generalization bounds and

apply our algorithm to study the effectiveness of a social program known as “Breaking

the Cycle”, which studies how introducing counseling helps in reducing drug abuse

and crime rates in Birmingham.

18



Chapter 2

Box Drawings for Learning with

Imbalanced Data

2.1 Introduction

Our interest is in deriving interpretable predictive classification models for use with

imbalanced data. Data classification problems having imbalanced (also called “unbal-

anced") class distributions appear in many domains, ranging from mechanical fail-

ure detection or fault detection, to fraud detection, to text and image classification,

to medical disease prediction or diagnosis. Imbalanced data cause typical machine

learning methods to produce trivial results, that is, classifiers that only predict the

majority class. One cannot optimize vanilla classification accuracy and use standard

classification methods when working with imbalanced data. This is explained nicely

by Chawla, Japkowicz, and Kolcz [18] who write: “The class imbalance problem is

pervasive and ubiquitous, causing trouble to a large segment of the data mining com-

munity.”

In order for the models we derive to be interpretable to human experts, our clas-

sifiers are formed as a union of axis parallel rectangles around the positive (minority

class) examples, and we call such classifiers box drawing classifiers. These are “dis-

junctions of conjunctions" where each conjunction is a box. An example of a box

drawing classifier we created is in Figure 2-1, exemplifying our goal to classify the
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Figure 2-1: Example of box drawing classifier.

positive examples correctly even if they are scattered within a sea of negative exam-

ples. Our classifiers are regularized in several ways, to prefer fewer boxes and larger

boxes. We take two polar approaches to creating box drawing classifiers, where the

first is an exact method, based on mixed integer programming (MIP). This method,

called Exact Boxes can be used for small to medium sized datasets, and provides a

gold standard to compare with. If we are able to make substantial approximations

and still obtain performance close to that of the gold standard, our approximations

would be justified. Our second method, Fast Boxes makes such an approximation.

Fast boxes takes the approach of characterize then discriminate, where we first

characterize the positive (minority) class alone, and then bring in the negative ex-

amples to form decision boundaries around each clusters of positives. This approach

has significant computational advantages, in that using just the minority class in the

first step requires a small fraction of the data, assuming a high imbalance ratio. Also

by creating decision boundaries locally in the second step, the number of examples

involved in each classifier is smaller; further, creating each classifier separately allows

computations to be made parallel, though since the computation for each decision

boundary is analytical, that may not be necessary for many datasets. The compu-

tation is analytical because there is a closed form solution for the placement of the

decision boundary. Thus, the discriminate step becomes many parallel local analyti-
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cal calculations. This is much simpler and more scalable than, for instance, a decision

tree that chooses splits greedily and fails to scale with dimension and large numbers

of observations.

We make several experimental observations, namely that: box drawing classifiers

become more useful as data imbalance increases; the approximate method performs

at the top level of its competitors, despite the fact that it is restricted to producing

interpretable results; and performance can be improved on the same datasets by using

the mixed integer programming method.

After related work just below, we describe the advantages of our approach in

Section 2. In Section 3, we introduce our two algorithms. Experimental results will

be presented in Section 4. Section 4 provides a vignette to show how box drawing

models can be interpretable. In Section 5, theoretical generalization bounds will be

presented for box drawing classifiers. Section 6 discusses possible approaches to make

the MIP formulation more scalable.

2.2 Related Works

Overviews of work on handling class imbalance problems include those of He and Gar-

cia [35], Chawla, Japkowiz and Kolcz [18] and Qi [68]. Many works discuss problems

caused by class imbalance [93, 65]. There are many avenues of research that are not

directly related to the goal of interpretable imbalanced classification, specifically ker-

nel and active learning methods [70, 96], and work on sampling [1, 17] that includes

undersampling, oversampling, and data generation, which can be used in conjunction

with methods like the ones introduced here. We use a cost-sensitive learning approach

in our methods, similar to Liu and Zhou [54] and McCarthy et al. [57]. We note that

many papers on imbalanced data do not experimentally compare their work with the

cost-sensitive versions of decision tree methods. We choose to compare with other

cost-sensitive versions of decision trees as our method is a cost-sensitive method.

There is some evidence that more complex approaches that layer different learning

methods seem to be helpful for learning [70, 96], though the results would not be
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interpretable in that case. This, however, is in contrast with other views (e.g., [39])

that for most common datasets, simple rules exist and we should explore them.

The works most similar to ours are that of the Patient Rule Induction Method

(PRIM) [29] and decision tree methods for imbalanced classification (e.g., [43]), as

they partition the input space like our work. Approaches that partition space tend to

recover simple decision rules that are easier for people to understand. Decision tree

methods are composed using greedy splitting criteria, unlike our methods. PRIM

is also a greedy method that iteratively peels off parts of the input space, though

unfortunately we found it to be extremely slow — as described by Sniadecki [88],

“PRIM is eloquently coined as a patient method due to the slow, stepwise mechanism

by which it processes the data.” Neither our Exact Boxes nor Fast Boxes methods

are greedy methods, though Fast Boxes makes a different type of approximation,

which is to characterize before discriminating. As discussed by Raskutti [70], one-

class learning can be useful for highly imbalanced datasets — our characterization

step is a one-class learning approach.

2.3 New Algorithms

We start with the mixed-integer programming formulation, which acts as our gold

standard for creating box drawing classifiers when solved to optimality.

2.3.1 Exact Boxes

For box drawing classifiers, a minority class (positive) example is correctly classified

only if it resides within at least one box. A majority class (negative) example is

correctly classified if it does not reside in any box. We are given training examples

{(x𝑖, 𝑦𝑖)}𝑚𝑖=1,x𝑖 ∈ ℛ𝑛, 𝑦𝑖 ∈ {−1,+1}. We introduce some notation in Table 2.1 that

we will use throughout this subsection. We use this notation from here on.

The Exact Boxes method solves the following, where the hypothesis space ℱ

is the set of box drawings (unions of axis parallel rectangles), where 𝑓 ∈ ℱ has
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Notation Definitions
𝐾 Number of parallel axes boxes
𝑚 Number of examples
𝑛 Number of features
𝑖 Index for examples
𝑗 Index for features
𝑥𝑖𝑗 𝑗-th feature of example 𝑖

𝑘 Index for box
𝑙𝑗𝑘 Lower boundary of feature 𝑗 for box 𝑘

𝑢𝑗𝑘 Upper boundary of feature 𝑗 for box 𝑘

𝑣 Margin for decision boundarỹ︀𝑙𝑖𝑗𝑘 ̃︀𝑙𝑖𝑗𝑘 = 1 if 𝑥𝑖𝑗 > 𝑙𝑗𝑘 + 𝑣 and 0 otherwisẽ︀𝑢𝑖𝑗𝑘 ̃︀𝑢𝑖𝑗𝑘 = 1 if 𝑥𝑖𝑗 < 𝑢𝑗𝑘 − 𝑣 and 0 otherwise
𝑤𝑖𝑘 𝑤𝑖𝑘 = 1 if example 𝑖 is in box 𝑘 and 0 otherwise
𝑧𝑖 𝑧𝑖 = 1 if it is classified correctly.
𝑆+ Index set of example of minority class
𝑆− Index set of example of majority class
𝑐𝑒 A regularizer to encourage expansion of box
𝑐𝐼 Weight for majority class, 𝑐𝐼 < 1

Table 2.1: Notation for Box Drawings with Mixed Integer Programming

𝑓 : ℛ𝑛 → {−1, 1}.

max
𝑓∈ℱ

∑︁
𝑖:𝑦𝑖=1

1[𝑓(x𝑖)=1] + 𝐶𝐼

∑︁
𝑖:𝑦𝑖=−1

1[𝑓(x𝑖)=−1] − 𝐶𝐸(#of boxes of 𝑓).

The objective is a weighted accuracy of positives and negatives, regularized by the

number of boxes. This way, the number of boxes is not fixed, and a smaller number of

clusters is preferred (analogous to nonparametric Bayesian models where the number

of clusters is not fixed). Our gold standard will be the minimizer of this objective.

We now derive the MIP that computes this minimizer.

If 𝑖 ∈ 𝑆+, the definitions of ̃︀𝑙𝑖𝑗𝑘, ̃︀𝑢𝑖𝑗𝑘, 𝑤𝑖𝑘, and 𝑧𝑖 give rise to the following con-

straints:

𝑙𝑗𝑘 + 𝑣 < 𝑥𝑖𝑗 iff ̃︀𝑙𝑖𝑗𝑘 = 1 (2.1)

𝑢𝑗𝑘 − 𝑣 > 𝑥𝑖𝑗 iff ̃︀𝑢𝑖𝑗𝑘 = 1, (2.2)

which say that 𝑥𝑖𝑗 need to be at least margin 𝑣 away from the lower (resp. upper)
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boundary of the box in order for ̃︀𝑙𝑖𝑗𝑘 = 1 (resp. ̃︀𝑢𝑖𝑗𝑘 = 1). Further, our definitions

give rise also to
𝑛∑︁

𝑗=1

̃︀𝑢𝑖𝑗𝑘 + ̃︀𝑙𝑖𝑗𝑘 > 2𝑛− 1 iff 𝑤𝑖𝑘 = 1, (2.3)

which says that for example 𝑖 to be in box 𝑘, all of the ̃︀𝑢𝑖𝑗𝑘 and ̃︀𝑙𝑖𝑗𝑘 are 1 for box 𝑘.

We also have, still for 𝑖 ∈ 𝑆+, that the example must be in one of the boxes in order

to be classified correctly, that is:

𝐾∑︁
𝑘=1

𝑤𝑖𝑘 > 0 iff 𝑧𝑖 = 1. (2.4)

Continuing this same type of reasoning for 𝑖 ∈ 𝑆−, the definitions of ̃︀𝑙𝑖𝑗𝑘 ,̃︀𝑢𝑖𝑗𝑘, 𝑤𝑖𝑘,

and 𝑧𝑖 give rise to the following constraints:

𝑙𝑗𝑘 − 𝑣 > 𝑥𝑖𝑗 iff ̃︀𝑙𝑖𝑗𝑘 = 1

𝑢𝑗𝑘 + 𝑣 < 𝑥𝑖𝑗 iff ̃︀𝑢𝑖𝑗𝑘 = 1
𝑛∑︁

𝑗=1

̃︀𝑢𝑖𝑗𝑘 + ̃︀𝑙𝑖𝑗𝑘 > 0 iff 𝑤𝑖𝑘 = 0

𝐾∑︁
𝑘=1

𝑤𝑖𝑘 > 0 iff 𝑧𝑖 = 0.

By setting 𝑀 to be a large positive constant and setting 𝜖 to be a small positive

number (to act as a strict inequality), we now have the following formulation:

max
𝑙,̃︀𝑙,𝑢,̃︀𝑢,𝑤,𝑧

⎡⎣−𝑐𝑒𝐾 +
∑︁
𝑖∈𝑆+

𝑧𝑖 + 𝑐𝐼
∑︁
𝑖∈𝑆−

𝑧𝑖

⎤⎦ subject to

𝑥𝑖𝑗 − 𝑙𝑗𝑘 − 𝑣 ≤ 𝑀̃︀𝑙𝑖𝑗𝑘,∀𝑖 ∈ 𝑆+,∀𝑗, 𝑘 (2.5)

𝑀(̃︀𝑙𝑖𝑗𝑘 − 1) + 𝜖 ≤ 𝑥𝑖𝑗 − 𝑙𝑗𝑘 − 𝑣,∀𝑖 ∈ 𝑆+,∀𝑗, 𝑘 (2.6)

𝑢𝑗𝑘 − 𝑣 − 𝑥𝑖𝑗 ≤ 𝑀̃︀𝑢𝑖𝑗𝑘,∀𝑖 ∈ 𝑆+,∀𝑗, 𝑘 (2.7)

𝑀(̃︀𝑢𝑖𝑗𝑘 − 1) + 𝜖 ≤ 𝑢𝑗𝑘 − 𝑥𝑖𝑗 − 𝑣,∀𝑖 ∈ 𝑆+,∀𝑗, 𝑘 (2.8)
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𝑛∑︁
𝑗=1

̃︀𝑙𝑖𝑗𝑘 + 𝑛∑︁
𝑗=1

̃︀𝑢𝑖𝑗𝑘 − 2𝑛+ 1 ≤ 𝑤𝑖𝑘,∀𝑖 ∈ 𝑆+,∀𝑗, 𝑘 (2.9)

2𝑛𝑤𝑖𝑘 ≤
𝑛∑︁

𝑗=1

̃︀𝑙𝑖𝑗𝑘 + 𝑛∑︁
𝑗=1

̃︀𝑢𝑖𝑗𝑘,∀𝑖 ∈ 𝑆+,∀𝑗, 𝑘 (2.10)

𝐾∑︁
𝑘=1

𝑤𝑖𝑘 ≤ 𝐾𝑧𝑖,∀𝑖 ∈ 𝑆+,∀𝑘 (2.11)

𝑧𝑖 ≤
𝐾∑︁
𝑘=1

𝑤𝑖𝑘,∀𝑖 ∈ 𝑆+,∀𝑘 (2.12)

𝑙𝑗𝑘 − 𝑣 − 𝑥𝑖𝑗 ≤ 𝑀̃︀𝑙𝑖𝑗𝑘, ∀𝑖 ∈ 𝑆−,∀𝑗, 𝑘 (2.13)

𝑀(̃︀𝑙𝑖𝑗𝑘 − 1) + 𝜖 ≤ 𝑙𝑗𝑘 − 𝑣 − 𝑥𝑖𝑗,∀𝑖 ∈ 𝑆−,∀𝑗, 𝑘 (2.14)

𝑥𝑖𝑗 − 𝑢𝑗𝑘 − 𝑣 ≤ 𝑀̃︀𝑢𝑖𝑗𝑘,∀𝑖 ∈ 𝑆−,∀𝑗, 𝑘 (2.15)

𝑀(̃︀𝑢𝑖𝑗𝑘 − 1) + 𝜖 ≤ 𝑥𝑖𝑗 − 𝑢𝑗𝑘 − 𝑣,∀𝑖 ∈ 𝑆−,∀𝑗, 𝑘 (2.16)

𝑛∑︁
𝑗=1

̃︀𝑙𝑖𝑗𝑘 + 𝑛∑︁
𝑗=1

̃︀𝑢𝑖𝑗𝑘 − 2𝑛+ 1 ≤ 2𝑛(1− 𝑤𝑖𝑘),

∀𝑖 ∈ 𝑆−,∀𝑗, 𝑘 (2.17)

1− 𝑤𝑖𝑘 ≤
𝑛∑︁

𝑗=1

̃︀𝑙𝑖𝑗𝑘 + 𝑛∑︁
𝑗=1

̃︀𝑢𝑖𝑗𝑘,∀𝑖 ∈ 𝑆−,∀𝑗, 𝑘 (2.18)

𝐾∑︁
𝑘=1

𝑤𝑖𝑘 ≤ 𝐾(1− 𝑧𝑖),∀𝑖 ∈ 𝑆−,∀𝑘 (2.19)

1− 𝑧𝑖 ≤
𝐾∑︁
𝑘=1

𝑤𝑖𝑘,∀𝑖 ∈ 𝑆−,∀𝑘 (2.20)

𝑙𝑗𝑘 ≤ 𝑢𝑗𝑘,∀𝑗, 𝑘. (2.21)

Here, (2.5) and (2.6) are derived from (2.1), (2.7) and (2.8) are derived from

(2.2), (2.9) and (2.10) are derived from (2.3), (2.11) and (2.12) are derived from

(2.4), equations (2.13)-(2.20) are derived analogously for 𝑆−. The last constraint

(2.21) is to make sure that the solution that we obtain is not degenerate, where the
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lower boundary is above the upper boundary. In practice, 𝑀 should be chosen as

a fixed large number and 𝜖 should be chosen as a fixed small number based on the

representation of numbers in the computing environment.

In total, there are 𝑂(𝑚𝑛𝐾) equations and 𝑂(𝑚𝑛𝐾) variables, though the full

matrix of variables corresponding to the mixed integer programming formulation is

sparse since most boxes operate only on a small subset of the data. This formulation

can be solved efficiently for small to medium sized datasets using MIP software,

producing a gold standard box drawing classifier for any specific number of boxes

(determined by the regularization constant). The fact that Exact Boxes produces the

best possible function in the class of box drawing classifiers permits us to evaluate

the quality of Fast Boxes, which operates in an approximate way on a much larger

scale.

2.3.2 Fast Boxes

Fast Boxes uses the approach of characterize then discriminate. In particular, we hy-

pothesize that the data distribution is such that the positive examples cluster together

relative to the negative examples. This implies that a reasonable classifier might first

cluster the positive examples and then afterwards discriminate positives from neg-

atives. The discrimination is done by drawing a high dimensional axis-parallel box

around each cluster and then adjusting each boundary locally for maximum discrim-

inatory power. If the cluster assumption about the class distributions is not correct,

then Fast Boxes could have problems, though it does not seem to for most real imbal-

anced datasets we have found, as we show in the experiments. Fast Boxes has three

main stages as follows.

1. Clustering stage: Cluster the minority class data into 𝐾 clusters, where 𝐾 is an

adjustable parameter. The decision boundaries are initially set as tight boxes

around each of the clusters of positive examples.

2. Dividing space stage: The input space of the data is partitioned to determine
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which positive and negative examples will influence the placement of each de-

cision boundary.

3. Boundary expansion stage: Each boundary is expanded by minimizing an ex-

ponential loss function. The solution for the decision boundary is analytical.

Details of each stage are provided below.

Clustering Stage

In the clustering stage, the minority class data are clustered into 𝐾 clusters. Since this

step involves only the minority class data, it can be performed efficiently, particularly

if the data are highly imbalanced. Cross-validation or other techniques can be used

to determine 𝐾. In our experiments, we used the basic 𝑘-means algorithm with

Euclidean distance. Other clustering techniques or other distance metrics can be

used.

After the minority class data are separated into small clusters, we construct the

smallest enclosing parallel axes rectangle for each cluster. The smallest enclosing

parallel axes rectangle can be computed by taking the minimum and maximum of

the minority class data in each cluster and for each feature. Let 𝑙𝑠,𝑗,𝑘 and 𝑢𝑠,𝑗,𝑘 denote

the lower boundary and upper boundary for the 𝑗-th dimension, for the 𝑘-th cluster.

Here the subscript 𝑠 is for “starting" boundary, and in the next part we will created

a “revised" boundary which will be given subscript 𝑟. The “final" boundary will be

given subscript 𝑓 .

Dividing Space Stage

Define the set 𝑋𝑙,𝑗,𝑘 as follows:

𝑋𝑙,𝑗,𝑘 := {𝑥 : 𝑥𝑗 ≤ 𝑙𝑠,𝑗,𝑘} ∪
{︂
𝑥 : 𝑙𝑠,𝑗,𝑘 ≤ 𝑥𝑗 ≤

𝑙𝑠,𝑗,𝑘 + 𝑢𝑠,𝑗,𝑘

2
,

𝑙𝑠,𝑝,𝑘 ≤ 𝑥𝑝 ≤ 𝑢𝑠,𝑝,𝑘, 𝑝 ̸= 𝑗

}︂
.
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These are the data points that will be used to adjust the lower boundary of the 𝑗-th

dimension of the 𝑘-th rectangle.

Similarly, we let

𝑋𝑢,𝑗,𝑘 := {𝑥 : 𝑥𝑗 ≥ 𝑢𝑠,𝑗,𝑘} ∪
{︂
𝑥 :

𝑙𝑠,𝑗,𝑘 + 𝑢𝑠,𝑗,𝑘

2
≤ 𝑥𝑗 ≤ 𝑢𝑠,𝑗,𝑘,

𝑙𝑠,𝑝,𝑘 ≤ 𝑥𝑝 ≤ 𝑢𝑠,𝑝,𝑘, 𝑝 ̸= 𝑗

}︂
.

These are the training examples that will be used to determine the upper boundary

of the 𝑗-th dimension of the 𝑘-th rectangle.

Figure 2-2 illustrates the domain for 𝑋𝑢,𝑗,𝑘 to the right of the blue dashed line.
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Figure 2-2: The examples used to determine the right vertical decision boundary are
on the right side of the blue dotted line.

Note that this method is very parallelizable after the clustering stage. The dividing

space stage computations can be done in parallel for each cluster, and for the boundary

expansion stage discussed below, each boundary of each box can be determined in

parallel.

Boundary Expansion Stage

In this stage we discriminate between positives and negatives by creating a 1-dimensional

classifier for each boundary of each box. We use a regularized exponential loss. Specif-

ically, for lower boundary 𝑗 of box 𝑘, We minimize the following with respect to 𝑙𝑟,𝑗,𝑘

where 𝑙𝑟,𝑗,𝑘 refers to the lower boundary of the 𝑗-th dimension of 𝑘-th revised box

28



being determined by the loss function:

∑︁
𝑥∈𝑆𝑘

+∩𝑋𝑙,𝑗,𝑘

exp[−(𝑥𝑗 − 𝑙𝑟,𝑗,𝑘)]

+ 𝑐
∑︁

𝑥∈𝑆𝑘
−∩𝑋𝑙,𝑗,𝑘

exp

[︃(︃
𝑥𝑗 − 𝑙𝑟,𝑗,𝑘

+
∑︁
𝑝 ̸=𝑗

(⌊𝑥𝑝 − 𝑢𝑠,𝑝,𝑘⌋+ + ⌊𝑙𝑠,𝑝,𝑘 − 𝑥𝑝⌋+)

)︃]︃
+ 𝛽𝑙𝑟,𝑗,𝑘.

where 𝑐 is the weight for the majority class, 𝑐 < 1, 𝑆𝑘
+ is the set of positive examples in

the 𝑘-th cluster, 𝑆𝑘
− is the set of examples not in the 𝑘-th cluster, 𝛽 is a regularization

parameter that tends to expand the box, and ⌊.⌋ denotes max(., 0). For simplicity,

we use the same parameter to control the expansion for all the clusters and all the

features. Note that the term
∑︀

𝑝 ̸=𝑗(⌊𝑥𝑝 − 𝑢𝑠,𝑝,𝑘⌋+ + ⌊𝑙𝑠,𝑝,𝑘 − 𝑥𝑝⌋+) is designed to give

less weight to the points that are not directly opposite the box edges (the points that

are diagonally away from the corners of the box). To explain these terms, recall that

the exponential loss in classification usually operates on the term 𝑦𝑖𝑓(𝑥𝑖), where the

value of 𝑓(𝑥𝑖) can be thought of as a distance to the decision boundary. In our case,

for the lower decision boundary we use the perpendicular distance to the decision

boundary |𝑥𝑗 − 𝑙𝑟,𝑗,𝑘|, and include the additional distance in every other dimension 𝑝

for the diagonal points. For the upper diagonal points we include the distance to the

upper boundary 𝑢𝑠,𝑝,𝑘, namely 𝑥𝑝−𝑢𝑠,𝑝,𝑘, and analogously for the points on the lower

diagonal we include distance 𝑙𝑠,𝑝,𝑘 − 𝑥𝑝. We perform an analogous calculation for the

upper boundary.

Note that we perform a standard normalization of all features to be between -1 and

1 before any computation begins, which also mitigates numerical issues when dealing

with the (steep) exponential loss. Another mechanism we use for avoiding numerical

problems is by multiplying each term in the objective by exp(1) and dividing each

term by the same factor. We will construct the derivation of the lower boundary as
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follows. We rewrite the objective to minimize:

𝑅𝑙,𝑗,𝑘
+ exp (−𝑙𝑠,𝑗,𝑘 + 1 + 𝑙𝑟,𝑗,𝑘)

+ 𝑐𝑅𝑙,𝑗,𝑘
− exp (𝑙𝑠,𝑗,𝑘 − 1− 𝑙𝑟,𝑗,𝑘) + 𝛽𝑙𝑟,𝑗,𝑘, (2.22)

where

𝑅𝑙,𝑗,𝑘
+ :=

∑︁
𝑥∈𝑆𝑘

+∩𝑋𝑙,𝑗,𝑘

exp [−(𝑥𝑗 − 𝑙𝑠,𝑗,𝑘 + 1)] , (2.23)

𝑅𝑙,𝑗,𝑘
− :=

∑︁
𝑥∈𝑆𝑘

−∩𝑋𝑙,𝑗,𝑘

exp

[︃
𝑥𝑗 − 𝑙𝑠,𝑗,𝑘 + 1

+
∑︁
𝑝 ̸=𝑗

(⌊𝑥𝑝 − 𝑢𝑠,𝑝,𝑘⌋+ + ⌊𝑙𝑠,𝑝,𝑘 − 𝑥𝑝⌋+)

]︃
. (2.24)

Because of the factors of 1 added and subtracted in the exponent, we ensure 𝑅𝑙,𝑗,𝑘
+ is at

least exp(−1) > 0.3, avoiding numerical problems. From there, we can solve for 𝑙𝑟,𝑗,𝑘

by taking the derivative of the objective and equating it to zero. Then we multiply

both sides of the resulting equation by exp (𝑙𝑠,𝑗,𝑘 − 1− 𝑙𝑟,𝑗,𝑘) and solve a quadratic

equation. The result is below.

Proposition 1 If 𝑅𝑙,𝑗,𝑘
− > 0, the solution to (2.22) is

𝑙𝑟,𝑗,𝑘 = 𝑙𝑠,𝑗,𝑘 − 1 + log

⎛⎝−𝛽 +
√︁

𝛽2 + 4𝑐𝑅𝑙,𝑗,𝑘
+ 𝑅𝑙,𝑗,𝑘

−

2𝑅𝑙,𝑗,𝑘
+

⎞⎠ . (2.25)

.

If 𝑅𝑙,𝑗,𝑘
− = 0 or close to zero, which can happen when there are no points outside

the smallest enclosing box in direction 𝑗, we set 𝑙𝑟,𝑗,𝑘 = 𝑙𝑗 where 𝑙𝑗 is the smallest value

of feature 𝑗. In that case, the boundary effectively disappears from the description of

the classifier, making it more interpretable.

The interpretation of the proposition is that the boundary has moved from its

starting position 𝑙𝑠,𝑗,𝑘 by amount 1− log

(︂
−𝛽+

√︁
𝛽2+4𝑐𝑅𝑙,𝑗,𝑘

+ 𝑅𝑙,𝑗,𝑘
−

2𝑅𝑙,𝑗,𝑘
+

)︂
.
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Similarly, we let 𝑢𝑟,𝑗,𝑘 be the revised upper boundary of the 𝑗th dimension for the

𝑘-th revised box and it can be computed as follows.

Proposition 2 If 𝑅𝑙,𝑗,𝑘
− > 0,

𝑢𝑟,𝑗,𝑘 = 𝑢𝑠,𝑗,𝑘 + 1 + log

⎛⎝𝛽 +
√︁
𝛽2 + 4𝑐𝑅𝑢,𝑗,𝑘

+ 𝑅𝑢,𝑗,𝑘
−

2𝑐𝑅𝑢,𝑗,𝑘
−

⎞⎠ (2.26)

where

𝑅𝑢,𝑗,𝑘
+ :=

∑︁
𝑥∈𝑆𝑘

+∩𝑋𝑢,𝑗,𝑘

exp [−(𝑢𝑠,𝑗,𝑘 − 𝑥𝑗 + 1)] , (2.27)

𝑅𝑢,𝑗,𝑘
− :=

∑︁
𝑥∈𝑆𝑘

−∩𝑋𝑢,𝑗,𝑘

exp

[︃
𝑢𝑠,𝑗,𝑘 − 𝑥𝑗 + 1

+
∑︁
𝑝 ̸=𝑗

(⌊𝑥𝑝 − 𝑢𝑠,𝑝,𝑘⌋+ + ⌊𝑙𝑠,𝑝,𝑘 − 𝑥𝑝⌋+)

]︃
. (2.28)

The proof and interpretation are similar to Proposition 1.

If 𝑅𝑢,𝑗,𝑘
− = 0 or close to zero, we set 𝑣 = 𝑢𝑗 where 𝑢𝑗 is the largest possible value

for feature 𝑗.

After we learn each of the decision boundaries, we perform a final adjustment

that accomplishes two tasks: (i) it ensures that the box always expands rather than

contracts, (ii) further expands the box to 𝜖 away from the nearest negative example.

This gives us final values 𝑙𝑓,𝑗,𝑘 and 𝑢𝑓,𝑗,𝑘, where subscript “𝑓" is for final. Written out,

this is:

𝑙𝑓,𝑗,𝑘 := sup {𝑥𝑗|𝑥 ∈ 𝑆−, 𝑥𝑗

< min(𝑙𝑟,𝑗,𝑘, 𝑙𝑠,𝑗,𝑘)}+ 𝜖,∀𝑗, 𝑘 (2.29)

𝑢𝑓,𝑗,𝑘 := inf {𝑥𝑗|𝑥 ∈ 𝑆−, 𝑥𝑗

> max(𝑢𝑟,𝑗,𝑘, 𝑢𝑠,𝑗,𝑘)} − 𝜖,∀𝑗, 𝑘 (2.30)

where 𝜖 is a small number. The boxes always expand for this algorithm, which
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implies that this algorithm is meant for applications where correct classification of

the minority class data is crucial in practice. This expansion step can be omitted if

desired, for instance if misclassifying the negative examples is too costly.

The algorithm is summarized as follows:

Overall Algorithm

Input: number of boxes 𝐾, tradeoffs 𝑐 and 𝛽, Data {xi, 𝑦𝑖}𝑖.

Output: Boundaries of boxes.

1. Normalize the features to be between -1 and 1.

2. Cluster the minority class data into 𝐾 clusters.

3. Construct the minimal enclosing box for each cluster, that is compute start-

ing boundaries 𝑙𝑠,𝑗,𝑘 and 𝑢𝑠,𝑗,𝑘, the 𝑗-th dimension lower boundary and upper

boundary respectively for the 𝑘’th cluster.

4. Construct data for local classifiers 𝑋𝑙,𝑗,𝑘 and 𝑋𝑢,𝑗,𝑘 based on equations (2.22)

and (2.22) respectively.

5. Compute 𝑅𝑙,𝑗,𝑘
+ , 𝑅𝑙,𝑗,𝑘

− , 𝑅𝑢,𝑗,𝑘
+ , 𝑅𝑢,𝑗,𝑘

− , according to equations (2.23), (2.24), (2.27),

and (2.28).

6. Compute 𝑙𝑟,𝑗,𝑘 based on equation (2.25) and 𝑢𝑟,𝑗,𝑘 based on equation (2.26)

respectively.

7. Perform expansion based on equations (2.29) and (2.30).

8. Un-normalize by rescaling the features back to get meaningful values.

Note that after the clustering step on the minority class data, all the other steps are

easily parallellizable.
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2.4 Prediction Quality

Now that we have two very different algorithms for creating box drawing classifiers,

we will compare their performances experimentally.

Evaluation Metric

We chose to use the area under the convex hull of the ROC curve (AUH) [67] as

our evaluation metric; it is frequently used for imbalanced classification problems

and considers the full ROC (Receiver Operator Characteristic) curve to evaluate

performance. To compute the AUH, we compute classifiers for various settings of the

tradeoff parameter 𝑐, which controls the relative importance of positive and negative

classes. Each setting of 𝑐 corresponds to a single point on the ROC curve, with a

count of true and false positives. We compute the AUH formed by the points on the

ROC curve, and normalize as usual by dividing it by the number of positive examples

times the number of negative examples. The best possible result is an AUH of 1.

Baseline Algorithms

For comparison, we consider logistic regression, an SVM with a radial basis ker-

nel, CART, C4.5, Random Forests, AdaBoost (with decision trees), C5.0, and the

Hellinger Distance Decision Tree (HDDT) [20]. Most of these algorithms were listed

among the top 10 algorithms in data mining [97]in 2014. We included only the su-

pervised learning models. Note that back in 2014, neural networks were not among

the top 10 algorithms in data mining. Among these algorithms, only CART, C4.5,

C5.0, and HDDT yield potentially interpretable models. HDDT uses the Hellinger

distance as the splitting criterion, which is robust and skew-insensitive.

In addition to the baselines above, we implemented the Patient Rule Induction

Method (PRIM) for “bump hunting" [29]. This method also partitions the input

variable space into box-shaped regions, but in a different way than our method. PRIM

searches iteratively for sub-regions where the target variable has a maximum and peels

them off one at a time, whereas our clustering step finds maxima simultaneously.
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The data sets we considered are listed in Table 2.2. Some data sets (castle, corner,

diamond, square, flooded, castle3D, corner3D, diamond3D, flooded3D, flooded3D) are

simulated data that are able to be visualized (made publicly available at [30]). The

breast and pima data sets were obtained from the UCI Machine Learning Reposi-

tory [9]. The data set fourclass was obtained from LIBSVM [15]. The remaining

imbalanced data sets were obtained from the KEEL (Knowledge Extraction based on

Evolutionary Learning) imbalanced data repository [4]. The Iris0 data set is an im-

balanced version of the standard iris data set, where two of the classes (iris-versicolor

and iris-virginica) have been combined to form the majority class.

Performance analysis

Here we compare the performance of Fast Boxes with the baseline algorithms. For

each algorithm (except C4.5) we set the imbalance weighting parameter to each value

[0.1, 0.2, 0.3, . . . , 1]. The other parameters were set in a data-dependent way; for

instance, for SVM with RBF kernel, the kernel width was chosen using the sigest

function in the R programming language. The data were separated into 10 folds,

where each fold was used in turn as the test set. We do not prune the decision trees

beyond their built-in pruning as previous research shows that unpruned decision trees

are more effective in their predictions on the minority class [66, 16], and because it

would introduce more complexity that would be difficult to control for. Within the

training set, for the Fast Boxes algorithm we used 3-fold cross-validation to select the

cluster number and expansion parameter.

Table 2.7 shows the performances in terms of AUH means and standard deviations.

The values that are bolded represent the algorithms whose results are not statistically

significantly different from the best algorithm using a matched pairs sign test with

significance level 𝛼 = 0.05. When there was more than one best-performing classifier,

the one with the smaller standard deviation was chosen as the best performer for that

data set. Fast Boxes was often (but not always) one of the best performers for each

dataset. This brings up several questions, such as: Under what conditions does Fast

Boxes perform well? How do its parameters effect the result? Does it tend to produce

34



Data number
of exam-
ples

feature
size

imbalance
ratio

pima 768 8 1.8657
castle 8716 2 22.2427
corner 10000 2 99

diamond 10000 2 24.9067
square 10000 2 11.2100
flooded 10000 2 31.1543
fourclass 862 2 1.8078
castle3D 545 3 7.2576
corner3D 1000 3 28.4118

diamond3D 1000 3 33.4828
square3D 1000 3 7
flooded3D 1000 3 26.7778

breast 569 30 1.6840
abalone19 4174 9 129.4375

yeast6 1484 8 41.4
yeast5 1484 8 32.7273

yeast1289 947 8 30.5667
yeast4 1484 8 28.0980
yeast28 482 8 23.1000

yeast1458 693 8 22.1000
abalone918 731 9 16.4048

pageblocks134 472 10 15.8571
ecoli4 336 7 15.8000

yeast17 459 7 14.3
shuttle04 1829 9 13.8699

glass2 214 9 11.5882
vehicle3 846 18 2.9906
vehicle1 846 18 2.8986
vehicle2 846 18 2.8807

haberman 306 3 2.7778
yeast1 1484 8 2.4592
glass0 214 9 2.0571
iris0 150 4 2

wisconsin 683 9 1.8577
ecoli01 220 7 1.8571
glass1 214 9 1.8158

breast tissue 106 9 3.8182

Table 2.2: Summary of datasets used for experiments

trivial results? Can Exact Boxes improve upon Fast Boxes’ results in cases where it

does not perform well? Are the results interpretable? These are questions we will
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address in the remainder of this section.

We start with a partial answer to the question of when Fast Boxes performs well

— it is when the classes are more imbalanced. Figure 2-3 shows a scatter plot of the

quality of Fast Boxes’ performance versus the imbalance ratio of the dataset. The

vertical axis represents our rank in performance among all of the algorithms we tested.

The horizontal axis is the number of negatives divided by the number of positives.

The performance of Fast Boxes changes from being among the worst performers when

the data are not imbalanced (and the cluster assumption is false), to being among

the best performers when the data are imbalanced.
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Figure 2-3: Ranking of Fast Boxes versus imbalance ratio of data

Below we provide some intuition about Fast Boxes’ clusters and the expansion

parameter before answering the questions posed just above.

Effect of Fast Boxes’ parameter settings

We expect that if our main modeling assumption holds, which is that the positive

examples naturally cluster, there should be a single best number of clusters. If we

choose the number of clusters too small, we might underfit, and if we allow too

many clusters, we could overfit. Figure 2-4 illustrates the cluster assumption on the

diamond3D dataset, where this effect of overfitting and underfitting can be seen.

The expansion parameter is also designed to assist with generalization. We would

like our boxes to be able to capture more of the positive cluster than is provided by
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Figure 2-4: The effect of the number of clusters on AUH for the data set diamond3D.
Fast Boxes was run once for each number of clusters. Training AUH is reported as
circles, and testing AUH as stars.

the tightest box around the training examples, particularly since true positives are

worth more than true negatives in our objective function. The exponential loss creates

a discriminative classifier, but with a push outwards. Naturally, as we increase the

expansion parameter, the training AUH will drop as more negative training examples

are included within the box. On the other hand, the test AUH tends to increase before

decreasing, as more positive examples are within the expanded box. This effect is

illustrated in Figure 2-5.
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Figure 2-5: The effect of the expansion parameter on AUH for the diamond3D data
set.

Considering the final expansion stage, Figure 2-6 illustrates why this stage is

necessary. We visualize the iris0 dataset with dimension 1 and dimension 4, where if

we had not expanded out to the nearest negative example, we would have missed a
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Figure 2-6: The red and yellow points are negative training points and testing point
respectively, the blue and green points are positive training points and testing points
respectively. If we had used the tightest decision boundary around the positive train-
ing examples, we would have missed part of the positive distribution.

part of the positive distribution within the test set.

Production of trivial rules

When the data are highly imbalanced, we have found that some of the baseline

algorithms for producing interpretable models often produce trivial models, that is,

models that always predict a single class. This is true even when the weighting factor

on the positive class is varied throughout its full range at a reasonably fine granularity.

This means that either it is not possible to obtain a meaningful model for the dataset

with that method, or it means one would need to work fairly hard in order to find

a weighting factor that did not produce a trivial model; that is, the range for which

nontrivial models are possible is very small. Table 2.3 considers three interpretable

methods we compare with, namely CART, C4.5, and C5.0. It shows the fraction of

time these algorithms produce trivial models. For CART, C5.0, and Fast Boxes, the

percentage was computed over 100 models computed over 10 splits and 10 options for

the imbalance parameter. C4.5 does not have a built in imbalance parameter, so the

percentage was computed over 10 splits.
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Data CART C4.5 C5.0 Fast Boxes
pima 0.00 0.00 0.00 0.07
castle 0.00 0.00 0.00 0.10
corner 0.00 0.60 0.70 0.00

diamond 0.00 0.00 0.00 0.00
square 0.00 0.00 0.00 0.00
flooded 0.00 0.70 0.80 0.00
fourclass 0.00 0.00 0.00 0.03
castle3D 0.00 0.00 0.00 0.10
corner3D 0.00 0.50 0.50 0.07

diamond3D 0.00 1.00 1.00 0.06
square3D 0.00 0.90 0.80 0.10
flooded3D 0.05 1.00 1.00 0.09

breast 0.00 0.00 0.00 0.37
abalone19 0.43 1.00 1.00 0.35

yeast6 0.00 0.00 0.00 0.02
yeast5 0.00 0.00 0.00 0.36

yeast1289 0.16 0.70 0.60 0.35
yeast4 0.00 0.20 0.20 0.30
yeast28 0.39 0.90 0.90 0.00

yeast1458 0.24 0.70 0.90 0.19
abalone918 0.00 0.10 0.10 0.40

pageblocks134 0.00 0.00 0.00 0.39
ecoli4 0.00 0.00 0.00 0.32

yeast17 0.03 0.20 0.30 0.21
shuttle04 0.00 0.00 0.00 0.00

glass2 0.09 0.40 0.70 0.28
vehicle3 0.00 0.00 0.00 0.01
vehicle1 0.00 0.00 0.00 0.02
vehicle2 0.00 0.00 0.00 0.27

haberman 0.00 0.40 0.70 0.13
yeast1 0.00 0.00 0.00 0.08
glass0 0.00 0.00 0.00 0.08
iris0 0.00 0.00 0.00 0.03

wisconsin 0.00 0.00 0.00 0.34
ecoli01 0.00 0.00 0.00 0.21
glass1 0.00 0.00 0.00 0.16

breast tissue 0.00 0.00 0.00 0.08

Table 2.3: Fraction of the time we get a trivial model. Bold indicates values over 0.5.

Comparison of Fast Boxes and Exact Boxes

Since we know that Fast Boxes is competitive with other baselines for handling im-

balanced data, we would like to know whether Exact Boxes has the potential to yield
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significant performance gains over Fast Boxes and other methods. We implemented

the MIP using GUROBI on a quad core Intel i7 860 2.8 GHz, 8GB cache, processor

with 4 cores with hyperthreading and 16GM of RAM. We first ran the Exact Boxes

algorithm for 30 minutes, and if the AUH performance was not competitive and the

optimality gap was above 1%, we ran it up to 90 minutes for each instance. We did

not generally allow the MIP to solve to provable optimality. This has the potential

to hinder performance, but as we were performing repeated experiments we needed

to be able to solve the method repeatedly.

Table 2.4 shows results from Exact Boxes for several of the smaller data sets, along

with the results from Fast Boxes for comparison. Bold font in this table summarizes

results from the other baseline algorithms as well: if the entry is in bold, it means

that the result is not statistically significantly different than the best out of all of

the algorithms. Thus, for 5 out of 8 datasets we tried, the MIP was among the top

performers. Further, the AUH value was substantially improved for some of the data

sets. Thus, restricting the algorithm to produce a box drawing classifier does not

generally seem to hinder performance.

Note that it is time-consuming to perform cross-validation on the MIP, so the

cluster number that we found using cross-validation for Fast Boxes was used for

Exact Boxes.

Interpretability demonstration

We provide a classifier we learned from the glass2 data set that predicts whether a

particular glass is a building window that is non-float processed. The other types of

glasses are building windows that are float processed, vehicle windows, containers,

tableware, and headlamps. The attributes include the refraction index as well as

various indices for metals. These metals include Sodium, Magnesium, Aluminum,

Silicon, Potassium, Calcium, Barium, and Iron.

One of the predictive models from Fast Boxes is as follows. To be a particular

glass of a building window that is non-float processed:

1) The refractive index should be above 1.5161.
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Data Best
Perfor-
mance

Fast
Boxes

Exact
Boxes

Exact
Boxes
ranking

vehicle2 0.9496
(0.015)

0.9191
(0.0242)

0.9496
(0.015)

1

haberman 0.6699
(0.0276)

0.5290
(0.0265)

0.6632
(0.0303)

2

yeast1 0.7641
(0.0133)

0.5903
(0.0286)

0.7392
(0.0172)

2

glass0 0.8312
(0.0345)

0.7937
(0.0212)

0.7977
(0.0421)

2

iris0 1
(0)

1
(0)

1
(0)

1

wisconsin 0.9741
(0.0075)

0.8054
(0.1393)

0.9726
(0.0079)

2

ecoli01 0.9840
(0.0105)

0.9433
(0.0300)

0.9839
(0.0109)

2

glass1 0.7922
(0.0377)

0.6654
(0.0356)

0.7922
(0.0337)

1

Table 2.4: Comparison of test data AUH of interpretable methods with Exact Boxes.
Bold font includes results from non-interpretable methods.

2) Magnesium index must be above 3.3301.

3) Aluminum should be below 1.7897.

4) Silicon should be below 73.0199.

5) Potassium should be below 0.6199.

6) Calcium should be between 8.3101 and 2.3741.

7) Barium should be below 2.6646.

8) Sodium and iron are not important factors.

We believe that this simple form of model would appeal to practitioners because

of the natural threshold structure of the box drawing classifiers.

2.5 Theoretical guarantee on performance

Statistical learning theory will allow us to provide a probabilistic guarantee on the

performance of our algorithms. We will construct a uniform generalization bound,
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which holds over all box drawing classifiers with 𝐾 boxes anchored at 𝑀𝑗 different

fixed values for each dimension, where 𝐾 is fixed. We might choose 𝑀𝑗 as the count

of numbers with at most a certain number of decimal places (say 2 decimal places)

in between the largest and smallest possible values for a particular feature. (Often in

practice only 2 decimal places are used.) The main step in our proof is to count the

number of possible box drawing classifiers. The set of all box drawing classifiers with

up to 𝐾 boxes, with 𝑙𝑗 and 𝑢𝑗 attaining the 𝑀𝑗 values, will be called 𝐹 .

Define the empirical risk to be the objective of Exact Boxes with no regularization,

𝑅𝑒𝑚𝑝(𝑓) =
∑︁
𝑖:𝑦𝑖=1

1[𝑓(x𝑖)=1] + 𝐶𝐼

∑︁
𝑖:𝑦𝑖=−1

1[𝑓(x𝑖)=−1],

and let the true risk 𝑅𝑡𝑟𝑢𝑒(𝑓) be the expectation of this taken over the distribution

that the data are drawn iid from.

Proposition 3 For all 𝛿 > 0 with probability at least 1− 𝛿,∀𝑓 ∈ 𝐹 ,

𝑅𝑡𝑟𝑢𝑒(𝑓) ≤ 𝑅𝑒𝑚𝑝(𝑓) +

√︃
𝐾
∑︀𝑛

𝑗=1 log(
𝑀𝑗(𝑀𝑗−1)

2
)− 𝑙𝑜𝑔𝐾! + log 1

𝛿

2𝑚
.

To outline the proof, there are
∏︀𝑛

𝑗=1

⎛⎝ 𝑀𝑗

2

⎞⎠ ways to construct a single box,

since for each dimension, we select 2 values, namely the lower boundary 𝑙𝑗 and upper

boundary 𝑢𝑗. To construct multiple boxes, there are at most
∏︀𝑛

𝑗=1

⎛⎝ 𝑀𝑗

2

⎞⎠𝐾

ways

if the order of construction of the boxes matter. Since the order does not matter,

we need to divide the term by 𝐾!. Note that this is an upper bound which is not

tight since some boxes can be a proper subset or equal to another box. Although

we are considering the set of all box drawing classifiers up to 𝐾 boxes, it suffices to

consider box drawing classifiers with exactly 𝐾 boxes. This can be seen by supposing

we constructed a classifier with 𝑙 < 𝐾 boxes, and noting the same classifier can

be constructed using 𝐾 boxes by duplicating some boxes. We apply Hoeffding’s

inequality and the union bound to complete the proof.
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2.6 Making the MIP more practical

From the experimental outcome, it is clear that Exact Boxes is indeed a competitive

solution. The main challenge lies in its computational complexity. There are several

ways one might make the MIP more practical: first, one could limit computation to

focus only a neighborhood of the positive data, and use the solution to this problem

to warm start the MIP on the full problem. In that case we would consider only

negative points that are close to the positive points in at least one dimension, which

can be identified in a single pass through the negative examples. Alternatively, one

can perform clustering first as in the Fast Boxes approach, and solve the MIP on each

cluster. For each cluster, we would scan through each feature of the data in a single

pass and keep only the data that are close to the mean of the cluster center to use in

the MIP.

2.7 Discussion and Conclusion

We have presented two new approaches to designing interpretable predictive models

for imbalanced data settings. Exact Boxes is formulated as a mixed integer program,

and acts as a gold standard interpretable modeling technique to compare with. It can

be used for small to moderately sized problems. Fast Boxes uses a characterize-then-

discriminate approach, and tends to work well when the minority class is naturally

clustered (for instance when the clusters represent different failure modes of mechan-

ical equipment). We illuminated the benefits and limitations of our approaches, and

hope that these types of models will be able to provide alternative explanations and

insights into imbalanced problems. In comparing Fast Boxes with gold standard in-

terpretable techniques like Exact Boxes, and with many other methods, we can now

judge the power of the class of interpretable models: it is interesting that such simple

approaches can achieve comparable performance with even the best state-of-the-art

techniques.
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Data Logistic SVM CART C4.5 Ada-

Boost

RF C5.0 HDDT Fast

Boxes

pima 0.8587

(0.0112)

0.8468

(0.0126)

0.7738

(0.0123)

0.6579

(0.0347)

0.6810

(0.0218)

0.6942

(0.0126)

0.6574

(0.0353)

0.6642

(0.0274)

0.7298

(0.0241)

castle 0.5

(0)

1

(0)

0.9941

(0.0068)

0.9947

(0.0060)

0.9949

(0.0046)

0.9922

(0.0079)

0.9941

(0.0060)

0.9949

(0.0062)

1

(0)

corner 0.9871

(0.0129)

0.9948

(0.0005)

0.9488

(0.2717)

0.5997

(0.1482)

0.6984

(0.0449)

0.6828

(0.0265)

0.5612

(0.1110)

0.6865

(0.0365)

0.9891

(0.0001)

diamond 0.5

(0)

0.9980

(0.0004)

0.9585

(0.0129)

0.9328

(0.0181)

0.9460

(0.0117)

0.9433

(0.0121)

0.9311

(0.0208)

0.9364

(0.0180)

0.9744

(0.0062)

square 0.5404

(0.0718)

0.9944

(0.0001)

0.9949

(0.0051)

0.9949

(0.0043)

0.9939

(0.0033)

0.9947

(0.0033)

0.9949

(0.0043)

0.9949

(0.0027)

0.9984

(0.0015)

flooded 0

(0)

0.9831

(0.0010)

0.9466

(0.0157)

0.5488

(0.1074)

0.7017

(0.0231)

0.7036

(0.0252)

0.5482

(0.1077)

0.6992

(0.0208)

09638

(0.0091)

fourclass 0.8122

(0.0195)

0.9957

(0.0176)

0.9688

(0.0176)

0.9916

(0.0296)

0.9670

(0.0265)

0.9920

(0.0053)

0.9670

(0.0130)

0.9698

(0.0116)

0.9546

(0.0174)

castle3D 0.5449

(0.0324)

1

(0)

0.9532

(0.0347)

0.9530

(0.0374)

0.9272

(0.0499)

0.9455

(0.0563)

0.9439

(0.0615)

0.9530

(0.0374)

1

(0)

corner3D 0.8448

(0.0316)

0.9225

(0.0463)

0.8481

(0.0504)

0.5596

(0.0729)

0.6245

(0.03927)

0.5657

(0.0309)

0.5622

(0.0778)

0.6413

(0.0457)

0.9736

(0.0091)

diamond3D0.5449

(0.0324)

0.7962

(0.0917)

0.7372

(0.0347)

0.5

(0.0374)

0.5492

(0.0499)

0.5957

(0.0309)

0.5622

(0.0778)

0.6883

(0.0542)

0.9516

(0.0119)

square3D 0.5

(0)

0.9626

(0.0156)

0.9106

(0.0306)

0.5387

(0.1224)

0.8703

(0.01451)

0.8790

(0.0234)

0.5811

(0.1712)

0.9034

(0.0322)

0.9578

(0.0090)

flooded3D 0.5

(0)

0.7912

(0.0781)

0.7724

(0.0902)

0.5

(0)

0.5471

(0.0329)

0.5489

(0.0440)

0.5

(0)

0.6422

(0.0749)

0.9233

(0.0307)

breast 0.9297

(0.0230)

0.9801

(0.0079)

0.9516

(0.0173)

0.9251

(0.0138)

0.9457

(0.0329)

0.9609

(0.0102)

0.9281

(0.0135)

0.9231

(0.0180)

0.8888

(0.0313)

abalone19 0.5188

(0.0182)

0.5

(0)

0.5382

(0.0261)

0.5

(0)

0.5

(0)

0.5

(0)

0.5

(0)

0.5116

(0.0164)

0.6882

(0.0583)

yeast6 0.8503

(0.0341)

0.8649

(0.0246)

0.7995

(0.0624)

0.7129

(0.0829)

0.7126

(0.0536)

0.7277

(0.0581)

0.7129

(0.0853)

0.7064

(0.0772)

0.8609

(0.0585)

yeast5 0.9499

(0.0479)

0.9229

(0.0339)

0.9197

(0.0575)

0.8280

(0.1159)

0.8305

(0.0859)

0.8061

(0.0616)

0.8241

(0.1157)

0.7931

(0.1126)

0.9767

(0.0092)

yeast1289 0.6319

(0.0433)

0.5618

(0.0332)

0.7076

(0.0665)

0.5088

(0.0322)

0.5152

(0.0288)

0.5067

(0.0141)

0.5156

(0.0342)

0.5531

(0.0436)

0.5932

(0.0557)

yeast4 0.8001

(0.0309)

0.7836

(0.0480)

0.7595

(0.0410)

0.6115

(0.0902)

0.6131

(0.0326)

0.5922

(0.0326)

0.6210

(0.07899)

0.6289

(0.0471)

0.8794

(0.0274)

yeast28 0.7907

(0.0525)

0.6596

(0.0565)

0.6402

(0.0893)

0.5100

(0.0316)

0.5

(0)

0.6489

(0.0472)

0.5248

(0.0784)

0.6126

(0.0606)

0.7366

(0.0467)

yeast1458 0.6164

(0.0510)

0.5420

(0.0322)

0.6032

(0.0281)

0.5

(0)

0.5023

(0.0088)

0.5095

(0.0154)

0.5

(0)

0.5340

(0.0467)

0.6090

(0.0431)

Continued on next page
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abalone918 0.8849

(0.0270)

0.6780

(0.0391)

0.7427

(0.0517)

0.5904

(0.0581)

0.6117

(0.0456)

0.5580

(0.03213)

0.5725

(0.0470)

0.6310

(0.0418)

0.7171

(0.0603)

pageblocks

134

0.9461

(0.0444)

0.7874

(0.1184)

0.9945

(0.0109)

0.9908

(0.0219)

0.9908

(0.0449)

0.9500

(0.0345)

0.9908

(0.0219)

0.9551

(0.0487)

0.9500

(0.0359)

ecoli4 0.8926

(0.0615)

0.9176

(0.0424)

0.8809

(0.0593)

0.7759

(0.07756)

0.7965

(0.0775)

0.8494

(0.0775)

0.8471

(0.0532)

0.8430

(0.0743)

0.9202

(0.0622)

yeast17 0.7534

(0.0611)

0.6905

(0.0386)

0.7481

(0.0713)

0.5841

(0.0698)

0.5382

(0.0225)

0.5529

(0.0359)

0.5721

(0.0699)

0.6070

(0.0509)

0.7033

(0.0547)

shuttle04 0.9965

(0.0045)

0.9828

(0.0105)

1

(0)

0.9994

(0.0008)

1

(0)

1

(0)

1

(0)

0.9994

(0.0008)

0.9967

(0.0042)

glass2 0.7609

(0.0726)

0.6128

(0.0941)

0.7112

(0.1090)

0.5541

(0.0640)

0.5324

(0.0417)

0.5479

(0.0597)

0.5200

(0.0415)

0.5892

(0.0573)

0.7334

(0.0904)

vehicle3 0.8397

(0.0079)

0.8524

(0.0169)

0.7733

(0.0255)

0.6515

(0.0401)

0.6591

(0.0212)

0.6484

(0.0232)

0.6621

(0.02117)

0.6823

(0.0300)

0.7003

(0.0267)

vehicle1 0.8587

(0.0112)

0.8468

(0.0126)

0.7738

(0.0123)

0.6579

(0.0347)

0.6810

(0.0218)

0.6942

(0.0126)

0.6574

(0.0353)

0.6719

(0.0265)

0.7298

(0.0241)

vehicle2 0.9632

(0.0134)

0.9837

(0.0072)

0.9437

(0.01880)

0.9351

(0.0133)

0.9677

(0.0097)

0.9775

(0.0106)

0.9365

(0.0129)

0.9248

(0.0243)

0.9191

(0.0242)

haberman 0.6589

(0.1713)

0.6898

(0.0427)

0.6699

(0.0276)

0.5733

(0.0748)

0.6004

(0.0323)

0.6130

(0.0318)

0.5420

(0.6780)

0.5604

(0.0231)

0.5290

(0.0265)

yeast1 0.7836

(0.0184)

0.7991

(0.0150)

0.7641

(0.0133)

0.6672

(0.0372)

0.6859

(0.0219)

0.6130

(0.0318)

0.5420

(0.0678)

0.6369

(0.0128)

0.5903

(0.0286)

glass0 0.7951

(0.0437)

0.8636

(0.0336)

0.8312

(0.0345)

0.7687

(0.0619)

0.7998

(0.0381)

0.8572

(0.0281)

0.7690

(0.0595)

0.7569

(0.0424)

0.7937

(0.0212)

iris0 1

(0)

0.998

(0.0063)

1

(0)

0.978

(0.0175)

1

(0)

1

(0)

0.972

(0.0169)

0.9880

(0.0193)

1

(0)

wisconsin 0.9746

(0.0093)

0.9735

(0.0073)

0.9741

(0.0075)

0.9455

(0.0124)

0.9611

(0.0122)

0.9672

(0.0072)

0.9416

(0.0121)

0.9249

(0.0203)

0.8054

(0.1393)

ecoli01 0.9728

(0.0140)

0.9850

(0.0091)

0.9840

(0.0105)

0.9806

(0.0107)

0.9828

(0.0063)

0.9855

(0.0097)

0.9806

(0.0107)

0.9806

(0.0107)

0.9433

(0.0300)

glass1 0.7247

(0.0363)

0.8057

(0.0340)

0.7598

(0.0490)

0.7050

(0.0358)

0.6997

(0.0478)

0.7833

(0.0274)

0.6822

(0.0320)

0.7189

(0.0586)

0.6654

(0.0356)

breast tis-

sue

0.9411

(0.0394)

0.9908

(0.0064)

0.9417

(0.0747)

0.9450

(0.0602)

0.9632

(0.0297)

0.9531

(0.0505)

0.9630

(0.0403)

0.9314

(0.0550)

0.9953

(0.0042)

Table 2.5: Comparison of test data AUH of Fast Boxes with other algorithms
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Chapter 3

Cascaded Bayesian Histograms For

Density Estimation

3.1 Introduction

A histogram is a piecewise constant density estimation model. There are good reasons

that the histogram is among the first techniques taught to any student dealing with

data [14]: (i) histograms are easy to display, (ii) they are accurate as long as there are

enough data in each bin. A downside of the conventional histogram is that all of these

properties fail in more than 2 or 3 dimensions, particularly for binary or categorical

data. One cannot easily display or write down a conventional histogram in more than

3 dimensions. For binary data this would require us to display a multidimensional

dimensional hypercube. In terms of accuracy, there may not be enough data in each

bin, so the estimates would cease to be accurate. In terms of interpretability, for a

> 4 dimensional histogram, enumerating a large set of bin values ceases to be an

interpretable representation of the data density, and can easily obscure important

properties of the data distribution. Considering marginals is often useless for binary

variables, since there are only two bins (0 and 1). The question is how to construct

a piecewise constant density estimation model (like a histogram) for categorical data

that has the properties mentioned above: (i) it can be displayed, (ii) it is an accurate

estimate of the underlying density.
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In this chapter we present three cascaded (tree- or list- structured) density estima-

tion models. These are similar to variable bin-width histograms, (e.g., see [91, 84]),

though our approaches use only a subset of the variables. A leaf (that is, a histogram

bin) is defined by conditions on a subset of variables (e.g. “the second component of 𝑥

is 0” and “the first component of 𝑥 is 1”), and the density is estimated to be constant

within each leaf.

Let us give an example to illustrate how each bin is modeled to be of constant

density. Let us say we are modeling the population of burglaries (housebreaks) in a

city, namely Cambridge, MA. We might want to create a density model to understand

how common or unusual the particular details of a crime might be (e.g., do we see

crimes like this every month, or is this relatively uncommon?). A leaf (histogram

bin) in our model might be the following: if premise is residence, owner present

is false, location of entry is window, then 𝑝(situation) is 0.20. This means that

the total density in the bin where these conditions hold is 0.20, that is, for 20% of

burglaries, the three conditions are met. Let us say we have an additional variable,

means of entry, with outcomes pried, forced, and unlocked, indicating how the

criminal entered the premise. Each of these outcomes would be equally probable in

the leaf, each with probability 0.20/3 = .067 since we assume the density in the leaf

to be uniform. We described just one bin above, whereas a full tree could be that of

Figure 3-1.

Bayesian priors control the shape of the tree in our methods. This helps with

both generalization and interpretability. For the first method, the prior parameter

controls the number of leaves. For the second method, the prior controls the desired

number of branches for nodes of the tree. For the third method, which creates lists

(one-sided trees), the prior controls the desired number of leaves and also the length

of the leaf descriptions. Domain knowledge might be required to know how complex

the tree structure to be, in the absent of such knowledge, we might assume uniform

prior over a finite domain.

This generative structure aims to fix the issues with conventional histograms:

(i) display: we need only write down the conditions we used in the tree- or list-
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Figure 3-1: A sparse tree to represent the density of housebreaks in Cambridge MA.
Probability of belonging to the leaf, the densities (𝑓) and volume (Vol) are specified
in the sparse tree.

shaped cascade to understand the model. It is transparent. (ii) accuracy: the prior

encourages the cascade to be smaller, which means the bins are larger, and generalize

better.

Density estimation is a classic topic in statistics and machine learning. Density

estimation is much harder than classification, regression, or clustering; even kernel

density estimation (KDE) methods do not provide high fidelity density estimates in

more than a few dimensions. However, even between 4 and ∼ 10 dimensions the

KDE models can be queried but not easily displayed. Another challenge is that since

there is no formal criterion for defining what is the correct presentation of a data set,

there is no clear evaluation function to determine which of your presentation methods

is best. One frequently-used metric is the log likelihood. Without using domain-

specific generative assumptions, the most useful techniques have been nonparametric,

mainly variants of KDE [3, 77, 63, 13, 56, 59, 73, 92, 87, 24, 64]. KDE is highly

tunable, not domain dependent, and can generalize well, but does not have the logical

structure of histograms and cannot be easily displayed. In other words, one can

query the model at specific points, but there is no easy way to display or convey

the global model. Alternative methods with the same drawback include mixtures of

Gaussians [51, 103, 61, 62, 19, 85], forest density estimation [53], RODEO [52] and

other nonparametric Bayesian methods [58] which have been proposed for general
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purpose density estimation. [44] provides a Bayesian treatment of latent directed

graph structure for non-iid data, but does not focus on sparsity. Pólya trees are

generated probabilistically for real valued features and could be used as priors [95].

[28] uses a projection pursuit method to perform density estimation. However, such

an approach is highly sensitive to the projection index used. Another task related to

density estimation is the level set estimation problem, where the question of interest

is whether, given a parameter 𝛾, the density at a leaf is higher than 𝛾. [94] addresses

the problem using a tree representation, like we do. In [38], a discretized kernel is used

to construct level set trees. The most similar paper to ours is on density estimation

trees (DET) [69]. DETs are constructed in a top-down greedy way. This gives them a

disadvantage in optimization, often leading to lower quality trees. They do not have

a generative interpretation, and their parameters do not have a physical meaning in

terms of the shape of the trees (unlike the methods defined in this work). Other top-

down greedy approaches include [100, 101, 99] where discrepancy is used, and [60]

where negative log-likelihood and MISE are used as splitting criteria. Distinctions

between our work and existing literature are that we place a Bayesian prior directly

on the shape of the trees that we desire. Also instead of greedy splitting, we aim to

globally maximize the posteriors of Bayesian models. This is the first method that we

know of that aims to globally optimize accuracy and sparsity of density trees.

3.2 Models

For all the three models, we will need the following notation. There are 𝑝 features.

We express the path to a leaf as the set of conditions on each feature along the path.

For instance, for a particular leaf (leaf 𝑡 in Figure 3-2), we might see conditions that

require the first feature 𝑥.1 ∈ {4, 5, 6} and the second feature 𝑥.2 ∈ {100, 101}. Thus

the leaf is defined by the set of all outcomes that obey these conditions, that is, the

leaf could be

𝑥 ∈ {𝑥.1 ∈ {4, 5, 6} , 𝑥.2 ∈ {100, 101} , 𝑥3., 𝑥.4, . . . , 𝑥.𝑝 are any allowed values} .
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This implies there is no restriction on 𝑥3., 𝑥.4, . . . , 𝑥.𝑝 for observations within the leaf.

Notationally, a condition on the 𝑗𝑡ℎ feature is denoted 𝑥.𝑗 ∈ 𝜎𝑗(𝑙) where 𝜎𝑗(𝑙) is the

set of allowed values for feature 𝑗 along the path to leaf 𝑙. If there are no conditions

on feature 𝑗 along the path to 𝑙, then 𝜎𝑗(𝑙) includes all possible outcomes for feature

𝑗. Thus, leaf 𝑙 includes outcomes 𝑥 obeying:

𝑥 ∈ {𝑥.1 ∈ 𝜎1(𝑙), 𝑥.2 ∈ 𝜎2(𝑙), . . . , 𝑥.𝑝 ∈ 𝜎𝑝(𝑙)} .

For categorical data, the volume of a leaf 𝑙 is defined to be 𝑣⃗𝑙 =
∏︀𝑝

𝑗=1 |𝜎𝑗(𝑙)|. We give

an example of this computation next.

Volume Computation Example

The data are categorical. Possible outcomes for 𝑥.1 are {1, 2, 3, 4, 5, 6, 7}. Possible out-

comes for 𝑥.2 are {100, 101, 102, 103}. Possible outcomes for 𝑥.3 are {10, 11, 12, 13, 14, 15}.

Possible outcomes for 𝑥.4 are {8, 9, 10}.

Consider the tree in Figure 3-2. We compute the volume for leaf 𝑙. Here, 𝜎1(𝑙) =

Figure 3-2: Example of computation of volume.

{4, 5} since 𝑙 requires both 𝑥.1 ∈ {4, 5, 6} and 𝑥.1 ∈ {4, 5}. 𝜎2(𝑙) = {100, 101} ,

𝜎3(𝑙) = {10, 15} , and 𝜎4(𝑙) = {8, 9, 10} because there is no restriction on 𝑥.4. So

𝑣⃗𝑙 =
∏︁
𝑗

|𝜎𝑗(𝑙)| = 2 · 2 · 2 · 3 = 24.

Our notation handles only categorical data for ease of exposition but can be ex-
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tended to handle ordinal and continuous data. For ordinal data, the definition is

the same as for categorical but 𝜎𝑗 can (optionally) include only continguous values

(e.g. {3, 4, 5} but not {3, 4, 6}). For continuous variables, 𝜎𝑗 is the “volume” of the

continuous variables, for example, for node condition 𝑥.𝑗 ∈ (0, 0.5), 𝜎𝑗 = 0.5− 0.

In the next three subsections, we present the leaf-based modeling approach, branch-

based modeling approach, and an approach to construct density rule lists.

3.2.1 Model I: Leaf-based Cascade Model

We define prior and likelihood for the tree-based model. To create the tree we will

optimize the posterior over possible trees.

Prior:

For this model, the main prior on tree 𝑇 is on the number of leaves 𝐾𝑇 . This prior is

Poisson (since its domain is the positive integers and it is chosen for computational

elegance purpose) with a particular scaling (which will make sense later on), where

the Poisson is centered at a user-defined parameter 𝜆. Notation 𝑁𝐾𝑇
is the number

of trees with 𝐾𝑇 leaves. The prior is:

𝑃 (Number of leaves in 𝑇 = 𝐾𝑇 |𝜆)

∝ 𝑁𝐾𝑇
· Poisson(𝐾𝑇 , 𝜆) = 𝑁𝐾𝑇

𝑒−𝜆𝜆
𝐾𝑇

𝐾𝑇 !
.

Thus 𝜆 allows the user to control the number of leaves in the tree. The number of

possible trees is finite, thus the distribution can be trivially normalized.

Among trees with 𝐾𝑇 leaves, tree 𝑇 is chosen uniformly, with probability 1/𝑁𝐾𝑇
.

This means the probability to choose a particular tree 𝑇 is Poisson:

𝑃 (𝑇 |𝜆) ∝ 𝑃 (𝑇 |𝐾𝑇 )𝑃 (𝐾𝑇 |𝜆) ∝ 1

𝑁𝐾𝑇

𝑁𝐾𝑇
𝑒−𝜆𝜆

𝐾𝑇

𝐾𝑇 !
= 𝑒−𝜆𝜆

𝐾𝑇

𝐾𝑇 !

∝ Poisson(𝐾𝑇 , 𝜆).

We place a uniform prior over the probabilities for a data point to land in each of
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the leaves. To do this, we start from a Dirichlet distribution with equal parameters

𝛼1 = . . . = 𝛼𝐾𝑇
= 𝛼 ∈ Z+ where hyperparameter 𝛼 > 1. We denote the vector

with 𝐾𝑇 equal entries [𝛼, . . . , 𝛼] as 𝛼𝐾𝑇
. We draw multinomial parameters 𝜃 =

[𝜃1, . . . , 𝜃𝐾𝑇
] from Dir(𝛼𝐾𝑇

).

Thus, the first part of our model is as follows, given hyperparameters 𝜆 and 𝛼:

Number of leaves in 𝑇 : 𝐾𝑇 ∝ scaled Poisson(𝜆), i.e., 𝑁𝐾𝑇
· Poisson(𝐾𝑇 , 𝜆), the tree

shape, 𝑇 ∝ Uniform over trees with 𝐾𝑇 leaves, and Prior distribution over leaves: 𝜃 ∝

Dir(𝛼𝐾𝑇
). As usual, the prior can be overwhelmed with a large amount of data.

Likelihood:

Let 𝑛𝑙 denote the number of points captured by the 𝑙-th leaf, and denote 𝑣⃗𝑙 to be

the volume of that leaf, defined above. The probability to land at any specific value

within leaf 𝑙 is 𝜃𝑙
𝑉⃗𝑙

. The likelihood for the full data set is thus

𝑃 (𝑋|𝜃, 𝑇 ) =
𝐾𝑇∏︁
𝑙=1

(︂
𝜃𝑙
𝑣⃗𝑙

)︂𝑛𝑙

.

Posterior:

The posterior can be written as follows, where we have substituted the distribu-

tions from the prior into the formula. Here, 𝐵(𝛼𝐾𝑇
) =

∏︀𝐾𝑇
𝑙=1 Γ(𝛼𝑙)

Γ(
∑︀𝐾𝑇

𝑙=1 𝛼𝑙)
= (Γ(𝛼))𝐾𝑇

Γ(𝐾𝑇𝛼)
is the

multinomial beta function which is also the normalizing constant for the Dirichlet
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distribution.

𝑃 (𝑇 |𝜆,𝛼, 𝑋)

∝
∫︁
𝜃:simplex

𝑃 (𝐾𝑇 |𝜆) · 𝑃 (𝑇 |𝐾𝑇 ) · 𝑃 (𝜃|𝛼𝐾𝑇
) · 𝑃 (𝑋|𝜃, 𝑇 )𝑑𝜃

∝
∫︁
𝜃:simplex

𝑃 (𝑇 |𝜆)

[︃
1

𝐵(𝛼𝐾𝑇
)

(︃
𝐾𝑇∏︁
𝑙=1

𝜃𝛼−1
𝑙

)︃]︃[︃
𝐾𝑇∏︁
𝑙=1

(︂
𝜃𝑙
𝑣⃗𝑙

)︂𝑛𝑙

]︃
𝑑𝜃

∝ 𝑃 (𝑇 |𝜆) 1

𝐵(𝛼𝐾𝑇
)

(︃
𝐾𝑇∏︁
𝑙=1

(︂
1

𝑣⃗𝑙

)︂𝑛𝑙

)︃∫︁
𝜃:simplex

𝐾𝑇∏︁
𝑙=1

𝜃𝑛𝑙+𝛼−1𝑑𝜃

∝ 𝑃 (𝑇 |𝜆)𝐵(𝑛1 + 𝛼, . . . , 𝑛𝐾𝑇
+ 𝛼)

𝐵(𝛼𝐾𝑇
)

𝐾𝑇∏︁
𝑙=1

1

𝑣⃗𝑛𝑙
𝑙

∝ 𝑃 (𝑇 |𝜆) Γ(𝐾𝑇𝛼)

Γ(𝑛+𝐾𝑇𝛼)

𝐾𝑇∏︁
𝑙=1

(𝑛𝑙 + 𝛼− 1)!

(𝛼− 1)!
𝑣⃗−𝑛𝑙
𝑙 ,

where 𝑃 (𝑇 |𝜆) is simply Poisson(𝐾𝑇 , 𝜆) as discussed earlier. For numerical stability,

we maximize the log-posterior which is equivalent to maximizing the posterior.

For the purposes of prediction, we are required to estimate the density that is

being assigned to leaf 𝑙. This is calibrated to the data, simply as:

𝑓 =
𝑛𝑙

𝑛𝑣⃗𝑙

where 𝑛 is the total number of training data points and 𝑛𝑙 is the number of training

data points that reside in leaf 𝑙. The formula implicitly states that the density in the

leaf is uniformly distributed over the features whose values are undetermined within

the leaf (features for which 𝜎𝑗 contains all outcomes for feature 𝑗).

3.2.2 Model II: Branch-based Cascade Model

In the previous model, a Dirichlet distribution is drawn only over the leaves. In this

model, a Dirichlet distribution is drawn at every internal node to determine branch-

ing. Similar to the previous model, we choose the tree that optimizes the posterior.
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Prior:

The prior is comprised of two pieces: the part that creates the tree structure, and the

part that determines how data propagates through it.

Tree Structure Prior: For tree 𝑇 , we let 𝐵𝑇 = {𝑏𝑖|𝑖 ∈ 𝐼} be a multiset, where

each element is the count of branches from a node of the tree. For instance, if in tree

𝑇 , the three nodes have 3 branches, 2 branches, and 2 branches respectively, then

𝐵𝑇 = {3, 2, 2}. We let 𝑁𝐵𝑇
denote the number of trees with the same multiset 𝐵𝑇 .

Note that 𝐵𝑇 is unordered, so {3, 2, 2} is the same multiset as {2, 3, 2} or {2, 2, 3}.

Let 𝐼 denote the set of internal nodes of tree 𝑇 and let 𝐿 denote the set of leaves.

We let 𝑣⃗𝑙 denote the volume at leaf 𝑙.

In the generative model, a Poisson distribution with parameter 𝜆 is used at each

internal node in a top down fashion to determine the number of branches. Iteratively,

for node 𝑖, the number of branches, 𝑏𝑖, obeys 𝑏𝑖 ∼ Poisson(𝜆). Hence, at any node

𝑖, with probability exp(−𝜆)𝜆
𝑏𝑖

𝑏𝑖!
, there are 𝑏𝑖 branches from node 𝑖. This implies that

with probability exp(−𝜆), the node is a leaf. In summary,

𝑃 (Multiset of branches = 𝐵|𝜆) ∝ 𝑁𝐵

[︃∏︁
𝑖∈𝐼

𝑒−𝜆𝜆
𝑏𝑖

𝑏𝑖!

]︃[︃∏︁
𝑙∈𝐿

𝑒−𝜆

]︃
.

Among trees with multiset 𝐵, tree 𝑇 is chosen uniformly, with probability 1
𝑁𝐵

.

This means the probability to choose a particular tree is:

𝑃 (𝑇 |𝜆) ∝ 𝑃 (𝑇 |𝐵𝑇 )𝑃 (𝐵𝑇 |𝜆) ∝
1

𝑁𝐵𝑇

𝑁𝐵𝑇

[︃∏︁
𝑖∈𝐼

𝑒−𝜆𝜆
𝑏𝑖

𝑏𝑖!

]︃[︃∏︁
𝑙∈𝐿

𝑒−𝜆

]︃

=

[︃∏︁
𝑖∈𝐼

𝑒−𝜆𝜆
𝑏𝑖

𝑏𝑖!

]︃[︃∏︁
𝑙∈𝐿

𝑒−𝜆

]︃
. (3.1)

Tree Propagation Prior: After the tree structure is determined, we need a gener-

ative process for how the data propagate through each internal node. We denote 𝜃𝑙

as the probability to land in leaf 𝑙. We denote ̃︀𝜃𝑖𝑗 as the probability to traverse to

node 𝑗 from internal node 𝑖. Notation 𝜃 is the vector of leaf probabilities (the 𝜃𝑙’s),̃︀𝜃 is the set of all ̃︀𝜃𝑖𝑗’s, and ̃︀𝜃𝑖 is the set of all internal node transition probabilities
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from node 𝑖 (the ̃︀𝜃𝑖𝑗’s).
We compute 𝑃 (̃︀𝜃𝑖|𝛼, 𝑇 ) for all internal nodes 𝑖 of tree 𝑇 . At each internal node,

we draw a sample from a Dirichlet distribution with parameter [𝛼, . . . , 𝛼] (of size

equal to the number of branches 𝑏𝑖 of 𝑖) to determine the proportion of data, ̃︀𝜃𝑖,𝑗,
that should go along the branch leading to each child node 𝑗 from the internal parent

node 𝑖. Thus, ̃︀𝜃𝑖 ∼ Dir(𝛼) for each internal node 𝑖, that is:

𝑃 (̃︀𝜃𝑖|𝛼, 𝑇 ) =
1

𝐵𝑏𝑖(𝛼)

∏︁
𝑗∈𝐶𝑖

̃︀𝜃𝛼−1
𝑖𝑗 ,

where 𝐵𝑘(𝛼) is the normalizing constant for the Dirichlet distribution with parameter

𝛼 and 𝑘 categories, and 𝐶𝑖 are the indices of the children of 𝑖. Thus,

𝑃 (̃︀𝜃|𝛼, 𝑇 ) =
∏︁
𝑖

𝑃 (̃︀𝜃𝑖|𝛼, 𝑇 ) =
∏︁
𝑖

1

𝐵𝑏𝑖(𝛼)

∏︁
𝑗∈𝐶𝑖

̃︀𝜃𝛼−1
𝑖𝑗 . (3.2)

Thus, the prior is 𝑃 (𝑇 |𝜆) · 𝑃 (̃︀𝜃|𝛼, 𝑇 ), where 𝑃 (𝑇 |𝜆) is in (3.1) and 𝑃 (̃︀𝜃|𝛼, 𝑇 ) is

in (3.2).

In summary, the prior of our model is as follows, given hyperparameters 𝜆 and 𝛼:

Multiset of branches, 𝐵𝑇 ∝ 𝑁𝐵𝑇

[︁∏︀
𝑖∈𝐼 𝑒

−𝜆 𝜆𝑏𝑖

𝑏𝑖!

]︁ [︀∏︀
𝑙∈𝐿 𝑒

−𝜆
]︀
, the tree shape, 𝑇 ∼

Uniform over trees with branches 𝐵𝑇 , and the prior distribution over each branch,̃︀𝜃𝑖 ∼ Dir(𝛼).

𝑒−𝜆(|𝐼|+|𝐿|)𝜆
∑︀

𝑖∈𝐼 𝑏𝑖

(︃∏︁
𝑖∈𝐼

1

𝑏𝑖!

𝐵𝑏𝑖(𝛼 + 𝑛𝑐1 , . . . , 𝛼 + 𝑛𝑐𝑏𝑖
)

𝐵𝑏𝑖(𝛼, . . . , 𝛼)

)︃∏︁
𝑙∈𝐿

(︂
1

𝑣⃗𝑛𝑙
𝑙

)︂
.

Possible Extension: We can include an upper layer of the hierarchical Bayesian

Model to control (regularize) the number of features 𝑑 that are used in the cascade

out of a total of 𝑝 dimensions. This would introduce an extra multiplicative factor

within the posterior of

⎛⎝ 𝑝

𝑑

⎞⎠ 𝛾𝑑(1− 𝛾)𝑝−𝑑, where 𝛾 is a parameter between 0 and 1,
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where a smaller value favors a simpler model.⎛⎝ 𝑝

𝑑

⎞⎠ 𝛾𝑑(1− 𝛾)𝑝−𝑑𝑒−𝜆(|𝐼|+|𝐿|)𝜆|𝐼|+|𝐿|−1

(︃∏︁
𝑖∈𝐼

1

𝑏𝑖!

𝐵𝑏𝑖(𝛼 + 𝑛𝑐1 , . . . , 𝛼 + 𝑛𝑐𝑏𝑖
)

𝐵𝑏𝑖(𝛼, . . . , 𝛼)

)︃∏︁
𝑙∈𝐿

(︂
1

𝑣⃗𝑛𝑙
𝑙

)︂
.

3.2.3 Model III: Leaf-based Density Rule List

Rather than producing a general tree, an alternative approach is to produce a rule

list. A rule list is a one-sided tree. Rule lists are easier to optimize than trees. Any

tree can be expressed as a rule list; however, some trees may be more complicated to

express as a rule list. By using lists, we implicitly hypothesize that more complicated

trees may not be necessary.

An example of a density rule list is as follows:

if 𝑥 obeys 𝑎1 then density(𝑥) = 𝑓1

else if 𝑥 obeys 𝑎2 then density(𝑥) = 𝑓2
...

else if 𝑥 obeys 𝑎𝑚 then density(𝑥) = 𝑓𝑚

else density(𝑥) = 𝑓0.

The antecedents 𝑎1,...,𝑎𝑚 are chosen from a large pre-mined collection of possible

antecedents, called 𝐴.

We define 𝐴 to be the set of all possible antecedents of size at most 𝐻, where

the user chooses 𝐻. The size of 𝐴 is: |𝐴| =
∑︀𝐻

𝑗=0𝐴𝑗, where 𝐴𝑗 is the number of

antecedents of size 𝑗,

𝐴𝑗 =
∑︁

⎡⎢⎢⎢⎣ 𝑡1, 𝑡2, . . . , 𝑡𝑗 ∈ {1, . . . , 𝑝}

s.t. 𝑡1 > 𝑡2 . . . > 𝑡𝑗

⎤⎥⎥⎥⎦

𝑗∏︁
𝑖=1

𝑞𝑡𝑖 ,

where feature 𝑖 consists of 𝑞𝑖 categories.
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Generative Process:

We now sketch the generative model for the tree from the observations 𝑥 and

antecedents 𝐴. Prior parameters 𝜆 and 𝜂 are used to indicate preferences over the

length of density list and the number of conjunctions in each sub-rule 𝑎𝑖.

Define 𝑎<𝑗 as the antecedents before 𝑗 in the rule list if there are any. For example

𝑎<3 = {𝑎1, 𝑎2}. Similarly, let 𝑐𝑗 be the cardinalities of the antecedents before 𝑗 in

the rule list. Let 𝑑 denote the rule list. The generative model is as follows, following

exposition of [50]:

1. Sample a decision list length 𝑚 ∼ 𝑃 (𝑚|𝐴, 𝜆).

2. For decision list rule 𝑗 = 1, . . . ,𝑚 :

Sample the cardinality of antecedent 𝑎𝑗 in 𝑑 as 𝑐𝑗 ∼ 𝑃 (𝑐𝑗|𝑐<𝑗, 𝐴, 𝜂).

Sample 𝑎𝑗 of cardinality 𝑐𝑗 from 𝑃 (𝑎𝑗|𝑎<𝑗, 𝑐𝑗, 𝐴).

3. For observation 𝑖 = 1, . . . , 𝑛: Find the antecedent 𝑎𝑗 in 𝑑 that is the first that

applies to 𝑥𝑖. If no antecedents in 𝑑 applies, set 𝑗 = 0.

4. Sample parameter 𝜃 ∼ Dirichlet (𝛼) for the probability to be in each of the

leaves, where 𝛼 is a user-chosen vector of size 𝑚+1, usually where all elements

are the same. 𝑓𝑖 = 𝜃𝑖
𝑣⃗𝑖

, where 𝑣⃗𝑖 is the volume.

Prior:

The distribution of 𝑚 is the Poisson distribution, truncated at the total number of

preselected antecedents:

𝑃 (𝑚|𝐴, 𝜆) = 𝜆𝑚/𝑚!∑︀|𝐴|
𝑗=0(𝜆

𝑗/𝑗!)
,𝑚 = 0, . . . , |𝐴|.

When |𝐴| is huge, we can approximate 𝑃 (𝑚|𝐴, 𝜆) ≈ 𝜆𝑚/𝑚!, since the denominator

of the expression above would be close to 1.

We let 𝑅𝑗(𝑐1, . . . , 𝑐𝑗, 𝐴) be the set of antecedent cardinalities that are available

after drawing antecedent 𝑗, and we let 𝑃 (𝑐𝑗|𝑐<𝑗, 𝐴, 𝜂) be a Poisson truncated to remove
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values for which no rules are available with that cardinality:

𝑃 (𝑐𝑗|𝑐<𝑗, 𝐴, 𝜂) =
(𝜂𝑐𝑗/𝑐𝑗!)∑︀

𝑘∈𝑅𝑗−1(𝑐<𝑗 ,𝐴)(𝜂
𝑘/𝑘!)

, 𝑐𝑗 ∈ 𝑅𝑗−1(𝑐<𝑗, 𝐴).

We use a uniform distribution over antecedents in 𝐴 of size 𝑐𝑗 excluding those in 𝑎𝑗,

𝑃 (𝑎𝑗|𝑎<𝑗, 𝑐𝑗, 𝐴) ∝ 1, 𝑎𝑗 ∈ {𝑎 ∈ 𝐴 ∖ 𝑎<𝑘 : |𝑎| = 𝑐𝑗} .

The cascaded prior for the antecedent lists is thus:

𝑃 (𝑑|𝐴, 𝜆, 𝜂) = 𝑃 (𝑚|𝐴, 𝜆) ·
𝑚∏︁
𝑗=1

𝑃 (𝑐𝑗|𝑐<𝑗, 𝐴, 𝜂) · 𝑃 (𝑎𝑗|𝑎<𝑗, 𝑐𝑗, 𝐴).

The prior distribution over the leaves 𝜃 = [𝜃1, . . . , 𝜃𝑚, 𝜃0] is drawn from Dir(𝛼𝑚+1):

𝑃 (𝜃|𝛼) = 1

𝐵𝑚+1(𝛼, · · · , 𝛼)

𝑚∏︁
𝑙=0

𝜃𝛼−1
𝑙 .

It is straightforward to sample an ordered antecedent list 𝑑 from the prior by following

the generative model that we just specified, generating rules from the top down.

Likelihood:

Similar to the first model, the probability to land at any specific value within leaf 𝑙

is 𝜃𝑙
𝑣⃗𝑙

. Hence, the likelihood for the full data set is thus

𝑃 (𝑋|𝜃, 𝑑) =
𝑚∏︁
𝑙=0

(︂
𝜃𝑙
𝑣⃗𝑙

)︂𝑛𝑙

.

Posterior:
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The posterior can be written as

𝑃 (𝑑|𝐴, 𝜆, 𝜂, 𝛼,𝑋)

∝
∫︁
𝜃∈simplex

𝑃 (𝑑|𝐴, 𝜆, 𝜂) · 𝑃 (𝜃|𝛼) · 𝑃 (𝑋|𝜃, 𝑑)𝑑𝜃

= 𝑃 (𝑑|𝐴, 𝜆, 𝜂)
∫︁
𝜃∈ simplex

1

𝐵𝑚+1(𝛼, · · · , 𝛼)

𝑚∏︁
𝑙=0

𝜃𝛼−1
𝑙

(︂
𝜃𝑙
𝑣⃗𝑙

)︂𝑛𝑙

𝑑𝜃

= 𝑃 (𝑑|𝐴, 𝜆, 𝜂)
∏︀𝑚

𝑙=0 Γ(𝑛𝑙 + 𝛼)𝑣⃗−𝑛𝑙
𝑙

Γ(
∑︀𝑚

𝑙=0(𝑛𝑙 + 𝛼))
,

where the last equality uses the standard Dirichlet-multinomial distribution deriva-

tion.

For these objective functions, there is an optimization algorithm that iteratively

maximizes the posterior, of which the details can be found in [31] and [50]. We use a

simulated annealing method to optimize the objective. Recently, some works [82, 5]

have achieved provable optimality on minimization of models over a set of pre-mined

rules. They have also noted that randomized methods, such as that of [98] or those

considered in the present work, tend to produce models that are close to these optimal

solutions. Thus, we have reason to believe that our MAP solutions for the rule list

optimization are approximately globally optimal over the space of rule lists.

3.3 Experiments

Our experimental setup is as follows. We considered five models: the leaf-based

cascaded histograms, the branch-based cascaded histograms, the leaf-based density

list, regular histograms and density estimation trees (DET) [69]. To our knowledge,

this essentially represents the full set of logical, high dimensional density estimation

methods. To ascertain uncertainty, we split the data in half 5 times randomly and

assessed test log-likelihood and sparsity of the trees for each method. A model with

fewer bins and higher test likelihood is a better model.

For the histogram, we treated each possible configuration as a separate bin. DET

was designed for continuous data, which meant that the computation of volume
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needed to be adapted – it is the number of configurations in the bin (rather than

the lengths of each bin multiplied together). The DET method has two parameters,

the minimum allowable support in a leaf, and the maximum allowable support. We

originally planned to use a minimum of 0 and a maximum of the size of the full

dataset, but the algorithm often produced trivial models when we did this, so we

needed to resort to heuristics. We then tried values {0, 3, 5} for the minimum values

and
{︀
10, 𝑛, ⌊𝑛

2
⌋
}︀

where 𝑛 is the number of training data points, and reported results

for the best of these. For the leaf-based cascade model, the mean of the Poisson prior

was chosen from the set {5, 8} using nested cross validation. For the branch-based

cascade model, the parameter to control the number of branches was chosen from the

set {2, 3}. 𝛾 was fixed to be 0.5, and 𝛼 was set to be 2 for the experiment. For the

leaf-based density list model, the parameters 𝜆, 𝜂 and 𝛼 were chosen to be 3, 1, and

1 respectively.

3.3.1 Illustration: Titanic Dataset

The Titanic dataset has an observation for each of the 2201 people aboard the Titanic,

and even on this simple dataset, we can see where other methods go wrong. There are

3 features: gender, whether someone is an adult, and the class of the passenger (first

class, second class, third class, or crew member). A cascade would help us understand

the set of people on board the Titanic.

Figure 3-3c shows the results, both in out-of-sample likelihood and sparsity, for

each model, for each of the 5 folds. The histogram method had high likelihood, but

also the most leaves (by design). The other methods performed similarly, arguably

the leaf-based density list method performed slightly better in the likelihood-sparsity

tradeoff. DET produced a trivial tree for one of the splits. In general, we will

see similar results on other datasets: the histogram produces too many bins, the

leaf-based density list model and leaf-based cascade performs well, and DET has

inconsistent performance (possibly due to its top-down greedy nature, or the fact

that DET approximately optimizes Hellinger distance rather than likelihood.) Figure

3-3a shows one of the density cascades generated by the leaf-based method. The
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(a) (b) (c)

Figure 3-3: (a) Tree representing titanic. (b) List representing titanic. Each arrow
represents an “else if” statement. This can be directly compared to the cascade in
Figure (b). Slight differences in estimates between the two models occurred because
we used different splits of data for the two figures. The estimates were robust to the
change in data. (c) the scatter plot for titanic.

reason for the split is clear: the distributions of the males and females were different,

mainly due to the fact that the crew was mostly male. There were fewer children

than adults, and the volume of crew members was very different than the volume of

1st, 2nd, and 3rd class passengers. Figure 3-3b shows one of the density lists generated

by our model. It shows that male crew and third class male adults have higher density

on the ship.

3.3.2 Crime Dataset

We were interested in an applied problem that resulted as part of a collaboration

with the Cambridge Police Department in Massachusetts. The motivation is to un-

derstand the common types of modus operandi (M.O.) characterizing housebreaks,

which is important in crime analysis. The data consist of all housebreaks occurring

in Cambridge between 1997 and 2012 inclusive. We used 6 categorical features.

1. Location of entry: “window,” “door,” “wall,” and “basement.”

2. Means of entry: “forceful” (cut, broke, cut screen, etc.), “open area,” “picked

lock,” “unlocked,” and “other.”

3. Whether the resident is inside.
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Figure 3-4: the scatter plot for the Cambridge Police Department dataset.

4. Whether the premise is judged to be ransacked by the reporting officer.

5. “Weekday” or “Weekend.”

6. Type of premise. The first category is “residence” (including apartment, res-

idence/unk., dormitory, single-family house, two-family house, garage (per-

sonal), porch, apartment hallway, residence unknown, apartment basement,

condominium). The second category is “non-medical, non-religious work place”

(commercial unknown, accounting firm, research, school). The third group con-

sists of halfway houses, nursing homes, medical buildings, and assisted living.

The fourth group consists of parking lots and parking garages, and the fifth

group consists of YWCAs, YMCAs, and social clubs. The last groups are “stor-

age,” “construction site,” “street,” and “church” respectively.

The experiments show that DET and our approaches are competitive for the crime

data set. The standard multi-dimensional histogram’s results were not reported since

they involve too many bins to fit on the figure 3-4.

These types of results can be useful for crime analysts to assess whether a partic-

ular modus operandi is unusual.

Figure 3-5 shows markers at crime locations on the Cambridge map. Each subfig-

ure displays crimes within a different time range. Each crime is colored according to

its leaf from the crime tree from Figure 3-8. These plots can be useful for crime series

identification: If crimes are close to each other geographically, temporally, and have
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a similar M.O., then those crimes may be part of a series. If we had used a regular

histogram, it would have required 1440 different markers (discrete states). Instead,

our crime tree groups the crimes into just 25 bins.

3.4 Empirical Performance Analysis

Each subsection below is designed to provide insight into how the models operate.

3.4.1 Sparse Tree Dataset

We generated a dataset that arises from a tree with 6 leaves, involving 3 features.

The data consists of 1000 data points, where 100 points are tied at value (1,2,1),

100 points are at (1,2,2), 100 points are at (2,1,1), 400 points are at (2,1,2), and 300

points are at (2,2,2).

We trained the models on half of the dataset and tested on the other half. Figure

3-6 shows the scatter plot of out-of-sample performance and sparsity. This is a case

where the DET failed badly to recover the true model. It produced a model that was

too sparse, with only 4 leaves. The leaf-based cascade method recovered the full tree.

3.4.2 Extreme Uniform Dataset

We generated a 1-dimensional data set that consists of 100 data points. The data are

simply all unique integers from 1 to 100. This is a case where the histogram badly

fails to generalize. Figure 3-7 shows the result.

The leaf-based and branch-based models both return the solution that consists

of a single root node, implying that the data are in fact uniformly distributed, or at

least that we do not have evidence to further split on the single node. The density

list output is close to uniform as well. DET is competitive as well, though it does not

return the trivial tree. The histogram totally fails, since the test data and training

data do not overlap at all.
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(a)

(b)

(c)

Figure 3-5: Timeshot picture of crime events. Events in the boxes might be related
to each other as they are close to each other geographically, temporally, and have a
similar M.O.
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Figure 3-6: Performance vs. sparsity on a simulated data set.

Figure 3-7: Performance vs. sparsity on uniform data set.
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3.5 Consistency

A consistent model has estimates that converge to the real densities as the size of

the training set grows. Consistency of conventional histograms is well studied [for

example 2, 25]. More generally, consistency for general rectangular partitions has

been studied by [102, 55]. Typical consistency proofs [e.g., 23, 69] require the leaf

diameters to become asymptotically smaller as the size of the data grows. In our case

if the ground truth density is a tree, we do not want our models to asymptotically

produce smaller and smaller bin sizes, we would rather they reproduce the ground

truth tree. This means we require a new type of consistency proof.

Definition 1: Trees have a single root and there are conditions on each branch. A

density value, 𝑓𝑙 is associated with each leaf 𝑙 of the tree.

Definition 2: Two trees, 𝑇1 and 𝑇2 are equivalent with respect to density 𝑓 if

they assign the same density values to every data point on the domain, that is

𝑓𝑇1(𝑥) = 𝑓𝑇2(𝑥), for all 𝑥. We denote the class of trees that are equivalent to 𝑇 as [𝑇 ]𝑓 .

Theorem 1: Let Θ be the set of all trees. Consider these conditions:

1. 𝑇𝑛 ∈ argmax𝑇 𝑂𝑏𝑗(𝑇 ), and the objective function can be decomposed into

Obj(𝑇 ) = ln 𝑞𝑛(𝑇 |𝑋)+ ln 𝑔𝑛(𝑇 |𝑋) where argmax𝑇 [ln 𝑞𝑛(𝑇 |𝑋) + ln 𝑔𝑛(𝑇 |𝑋)] ≡

argmax𝑇 ln 𝑔𝑛(𝑇 |𝑋) as 𝑛 → ∞.

2. ln 𝑔𝑛(𝑇 |𝑋) converges in probability, for any tree 𝑇 , to the empirical log-likelihood

that is obtained by the maximum likelihood principle, 𝑙̂𝑛(𝑇 |𝑋) = 1
𝑛

∑︀𝑛
𝑖=1 ln 𝑓𝑛(𝑥𝑖|𝑇 ).

3. sup𝑇∈Θ |𝑙̂𝑛(𝑇 |𝑋)− 𝑙(𝑇 )| 𝑃−→ 0 where 𝑙(𝑇 ) = E𝑥(ln(𝑓(𝑥|𝑇 ))).

4. 𝑇 *
MLE ∈ argmax𝑇 𝑙(𝑇 ) is unique up to equivalence among elements of [𝑇 *

MLE]𝑓 .

If these conditions hold, then the trees 𝑇𝑛 that we learned, 𝑇𝑛 ∈ argmax𝑇 Obj(𝑇 ),

obey 𝑇𝑛 ∈ [𝑇 *
MLE]𝑓 for 𝑛 > 𝑀 for some 𝑀 .
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The first condition and the second condition are true any time we use a Bayesian

model. They are also true any time we use regularized empirical likelihood where the

regularization term’s effect fades with the number of observations. 𝑞𝑛(𝑇 |𝑋) refers to

the part that does not vanish while 𝑔𝑛(𝑇 |𝑋) is the part that remains when the number

of data points is sufficiently large. Note that the third condition is automatically true

by the law of large numbers. The last condition is not automatically true, and requires

regularity conditions for identifiability.

The result states that our learned trees are equivalent to maximum likelihood

trees when there are enough data.

3.6 Conclusion

We have presented a Bayesian approach to density estimation using cascaded piece-

wise constant models. These estimators have nice properties: their prior encourages

them to be sparse, which permits interpretability. In many cases, the models can be

displayed easily on a piece of paper. They do not have the pitfalls of other nonpara-

metric density estimation methods like density estimation trees, which are top-down

greedy. They are consistent, without needing to asymptotically produce infinitesi-

mally small leaves. Practically, the approaches presented here have given us insight

into a real data set (the housebreak dataset from the Cambridge Police) that we could

not have obtained reliably in any other way that we know of.
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Figure 3-8: Tree representing the crime data set.
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Chapter 4

A Minimax Surrogate Loss Approach

to Conditional Difference Estimation

4.1 Introduction

Many data-driven decisions, such as whether to prescribe a particular pharmaceutical

drug or whether to launch a particular marketing campaign, are problems of causal

inference that require conditional difference estimation. Causal inference considers

the effects of interventions, which is the basis for policy-making. It is well-known that

standard machine learning methods are not designed to handle questions of causal

inference; they are designed only for prediction and not for estimation of conditional

differences or causal effects. A key reason that supervised machine learning does not

usually handle causal inference problems is that by the nature of these problems,

we do not observe counterfactuals (e.g., what would have happened if the same unit

had not received the treatment), which means we are missing half of each label of

a supervised learning problem. On the other hand, machine learning can handle

powerful nonlinear modeling problems, which traditional causal inference methods

cannot. Ideally, we would leverage the strengths of modern machine learning to

create powerful models for conditional differences that could, in the right settings, be

used for causal inference.

This work provides an approach to nonlinear treatment effect estimation using
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machine learning, where the outcomes are binary (yes/no), and the goal is to predict

whether treatment effects are positive, neutral, or negative. Given a new sample

of units that are not in the training set, our goal is to decide which units would

have a positive treatment effect, and which units would have a negative treatment

effect. In this setting, we assume we can personalize who receives the treatment.

Since the treatment is not globally launched across the population, it does not make

sense to investigate average treatment effects. Since the outcome is binary, we are

not interested in the estimated size of the treatment effect, but the simpler question

of whether we have correctly determined whether the treatment effect is positive or

negative for each individual. This is related to policy questions such as what fraction

of the population did we correctly assign to the treatment.

We present a single formulation that handles treatment group and control group

data simultaneously, and outputs a single function 𝑓 whose thresholds at −1 and

1 provide decision boundaries between positive, neutral, and negative treatment ef-

fects. We provide a formulation as a type of “minimax” support vector machine. This

handles either linear or non-linear treatment responses in a computationally efficient

manner (via the kernel trick). By changing the kernel we create nonparametric mod-

els, and if we use the natural linear kernel, we create linear decision boundaries like

regression models.

A large body of work in the causal inference community has focused on estimating

average treatment effects (ATE) through linear models [79, 80, 81, 37, 74, 83, 10, 11],

where the coefficient for the treatment variable provides an estimate for the ATE.

As discussed earlier, ATE estimation is not relevant for determining who should

receive a (personalized) treatment. Recently there has been a lot of work on subgroup

identification [40, 42, 72] and other types of nonlinear predictors of causal effects

[8, 45, 7, 90, 86]. Our work also focuses on personalized predictions of treatment

effects, but differs from those listed above in several ways:

1) Our methods construct a single model with a tighter bound on the surrogate loss

than a sum of treatment and control losses. This means that theoretically, our method

should create more accurate single models than if one created separate treatment and
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control models and subtracted them to obtain an estimate for the treatment effect.

This arises from our formulation as a single regularized minimax problem.

2) The algorithm does not rely on greedy splitting and pruning heuristics or other

non-convex optimization procedures, such as decision trees, random forests, matching,

neural networks, etc. Our formulation is a single convex quadratic optimization prob-

lem that has known fast solution methods. Model complexity depends on the choice

of kernel and regularization parameters, not on splitting or pruning parameters.

One work that seems similar to ours on the surface but is not, is that of Ratkovic

and Tingley [71], who use support vector machines (SVM’s) only to determine the

largest balanced subset of data, by classifying which units are likely to have high

density according to the treatment population distribution. From there, a traditional

method is used to estimate conditional differences. Conversely, in our work, we use

a traditional inverse propensity score model [89, 36] or other method to estimate

the ratio of densities, and propose a single support vector machine formulation to

estimate treatment effects.

Another work that is more relevant to ours is that of [41] who use a regularized

squared hinge loss over all observations to estimate a single model that predicts

outcomes for both treatment and control. The model includes two sets of covariates

to predict outcomes, one that does not depend on the treatment and the other that

does. For predicting conditional differences, the second set of covariates would not

be used. Usually hinge loss is chosen to be a convex proxy for a given 0-1 loss that

is hard to minimize, but it is not clear what the 0-1 loss is in their case, as it is not

discussed. The 0-1 loss implicit in their formulation seems to be the sum of 0-1 losses

for predictions of both treatment and control outcomes rather than a 0-1 loss for

treatment effects. In this work, we prove that the 0-1 loss for prediction of outcomes

is an upper bound on a relevant 0-1 loss for treatment effects, motivating the use of

their 0-1 loss, but showing that it is a loose upper bound. In our formulation we use

a tighter upper bound than the sum of 0-1 losses for prediction. The method of [41]

is similar to estimating treatment and control outcomes with two separate models,

because the estimated control outcomes can depend on one set of covariates (forming
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one model), whereas the treatment outcomes can depend on the other (treatment-

related) set of covariates (forming the second model). 1

Let us discuss the estimation of density ratios in order to perform inverse propen-

sity score weighting. We would use inverse propensity score weighting to correct for

the fact that the control and/or treatment data does not come directly from the

target population of interest. In general, if the (conditional) treatment effects are

estimated correctly, then it is irrelevant whether or not the density ratios are poorly

estimated. As an extreme case, if both the treatment and control losses are zero, the

density ratio estimate is completely irrelevant. Thus, if we focus directly on accurate

estimates of treatment effects, we may avoid problems faced by other methods that

use looser surrogate loss functions.

In cases where conditional treatment effects are not able to be perfectly estimated,

our method still can provide high quality treatment effect estimates without accurate

estimation of the density ratio. Our predictor function minimizes the larger of the

treatment loss and the control loss. If the target population is the treatment popu-

lation, then the control loss involves density ratio estimation but not the treatment

loss. Hence, if the treatment loss is always higher than the re-weighted control loss,

then regardless of whether the density ratio is poorly estimated, the method will still

produce the same answer. Its result is robust to poor density estimates when this

happens.

Because support vector machines with radial basis functions are nonparametric,

they are related to matching approaches. Historically, matching methods [76, 75, 22,

104, 46, 47] are different in that the matching is done prior to the modeling, with

some exceptions [78]; here we use a single modeling approach.

1In fact their method would be identical to the two-separate-models approach if their model is
chosen to be an indicator for control times a linear combination of variables plus an indicator for
treatment times a linear combination of variables.
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4.2 Problem Setting

We work in a standard potential outcomes setting, with observational data. Each ob-

servation possesses covariates and is assigned to either treatment or control groups,

and an outcome is observed for each individual. The potential outcomes for obser-

vation 𝑖 are denoted by 𝑌 𝑇
𝑖 or 𝑌 𝐶

𝑖 , where the superscript 𝑇 denotes membership in

the treatment group, and 𝐶 denotes the control group. We cannot observe instances

of 𝑌 𝑇
𝑖 − 𝑌 𝐶

𝑖 since 𝑌 𝑇
𝑖 and 𝑌 𝐶

𝑖 are not simultaneously observable. Hence, this is a

missing data problem where exactly half of the data are not observable. We define a

binary causal exposure variable 𝑊 , taking value 1 if the corresponding sample point

belongs to the treatment group and 0 for control points. The outcome variable 𝑌 𝑜𝑏𝑠
𝑖

is thus:

𝑌 𝑜𝑏𝑠
𝑖 = 𝑊𝑌 𝑇

𝑖 + (1−𝑊 )𝑌 𝐶
𝑖 .

We assume outcomes 𝑌 𝑇
𝑖 and 𝑌 𝐶

𝑖 depend on features (covariates) of the data. The

features follow distributions 𝜇𝑋|𝑇 and 𝜇𝑋|𝐶 for treatment and control, respectively.

Covariates are denoted by 𝑋. We often use upper case for random variables and lower

case for draws of random variables. In notation, 𝑌 𝑇 ∼ 𝜇𝑌 𝑇 |𝑥, and 𝑌 𝐶 ∼ 𝜇𝑌 𝐶 |𝑥. Since

we assume underlying treatment and control populations differ on the covariate space,

they are notated as 𝜇𝑋|𝑇 and 𝜇𝑋|𝐶 , where treatment observations follow 𝑋 ∼ 𝜇𝑋|𝑇 ,

and control observations follow 𝑋 ∼ 𝜇𝑋|𝐶 . By using the standard Radon-Nikodym

derivative, we can effectively transform one distribution to another. The method we

introduce can be trivially adapted to any target distribution, so for ease of notation

we chose the treatment distribution 𝜇𝑋|𝑇 to be our target population.

In this paper, we consider binary (yes/no) outcomes 𝑦𝑇 , 𝑦𝐶 ∈ {−1, 1}, e.g.,

whether or not someone had a heart attack. We let ℎ denote our predictor func-

tion of 𝑌 𝑇 − 𝑌 𝐶 , which is a function of the covariates.

If we were given a predictor function and the ground truth, we might measure the

quality of our predictor function using the following two conditional-difference loss
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functions. The first one is:

𝑙0−1(𝑥, 𝑦
𝑇 , 𝑦𝐶 , ℎ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1|ℎ(𝑥)|≥1, 𝑦𝑇 = 𝑦𝐶

1ℎ(𝑥)≤0, 𝑦𝑇 > 𝑦𝐶

1ℎ(𝑥)≥0, 𝑦𝑇 < 𝑦𝐶 .

.

This loss is 1 if there is no treatment effect and ℎ predicts either a positive or negative

treatment effect (top condition). The loss is 1 also when ℎ predicts a treatment effect

that is opposite from the true treatment effect. This loss function does not consider

the average or magnitude of the treatment effect, it counts the number of individuals

for whom the treatment effect was incorrectly predicted. This is a relevant loss when

we aim to correctly assign treatment to individual members of a population: e.g.,

optimally assigning advertisements to individuals visiting a website, or optimally

assigning a pharmaceutical drug to individuals who would benefit from it.

The second loss function that we consider is

𝑙𝜃(𝑥, 𝑦
𝑇 , 𝑦𝐶 , ℎ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1|ℎ(𝑥)|≥𝜃, 𝑦𝑇 = 𝑦𝐶

1ℎ(𝑥)≤−𝜃, 𝑦𝑇 > 𝑦𝐶

1ℎ(𝑥)≥𝜃, 𝑦𝑇 < 𝑦𝐶 .

The first loss function is an upper bound for the second loss function, for margin

𝜃 > 1. For the second loss function, 𝑙𝜃, the set of possible inputs 𝑥 for which ℎ(𝑥)

is within (−𝜃, 𝜃) can be interpreted as the region with no large predicted treatment

effect. Provided that the predictions of treatment effect are real-valued, ℎ(𝑥) can be

rescaled, and thus to minimize 𝑙𝜃 it suffices to consider 𝑙1 by letting 𝜃 = 1.

𝑙1(𝑥, 𝑦
𝑇 , 𝑦𝐶 , ℎ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1|ℎ(𝑥)|≥1, 𝑦𝑇 = 𝑦𝐶

1ℎ(𝑥)≤−1, 𝑦𝑇 > 𝑦𝐶 , (false negative)

1ℎ(𝑥)≥1, 𝑦𝑇 < 𝑦𝐶 , (false positive).

To see this, note that suppose we have ℎ1 ∈ argminℎ 𝑙1(.), then 𝜃ℎ1 ∈ argminℎ 𝑙𝜃(.).
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Hence, we will focus on 𝑙𝜃 where 𝜃 = 1 when we derive our algorithm.

Since 𝑦𝑇 and 𝑦𝐶 are not observed simultaneously, it is not possible to compute the

quantity above. This motivated us to use a surrogate function that separates 𝑦𝑇 and

𝑦𝐶 . Ideally, a surrogate function is an upper bound to the 0-1 loss, with a minimizer

that can be easily computed. We dedicate the next section to an upper bound of the

conditional-difference 0-1 loss function which in turn motivates the surrogate function

explored in Section 4.4.

4.3 A Surrogate Conditional-Difference Loss Func-

tion

The following theorem defines sufficient conditions under which a surrogate loss func-

tion is valid for 𝑙1.

Theorem 1 If a function 𝑙(.) satisfies 𝑙(𝑧) ≥ 1𝑧≥0 + 1𝑧≥1, then we have

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
𝑙1(𝑋, 𝑌 𝑇 , 𝑌 𝐶 , ℎ)

≤ max

(︂
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ),E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)

𝜇𝑋|𝐶(𝑋)/𝜇𝑋|𝑇 (𝑋)

)︂
.

The proof of the theorem is in the appendix. It involves finding a lower bound for

each loss term in the maximum function, symmetry arguments, and using properties

of indicator variables. It is broken down in 5 subsections in the proof to facilitate the

reader’s understanding.

We have a similar bound for the 𝑙0−1 loss function,

Theorem 2 If a function 𝑙(.) satisfies 𝑙(𝑧) ≥ 1𝑧≥0 + 1𝑧≥1, then we have

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
𝑙0−1(𝑋, 𝑌 𝑇 , 𝑌 𝐶 , ℎ)

≤ max

(︂
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ),E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)

𝜇𝑋|𝐶(𝑋)/𝜇𝑋|𝑇 (𝑋)

)︂
.

The proof of this theorem in [32] is similar to that of Theorem 1.
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The subscript of the expectation includes the generative model for the data. Here,

E𝑋∼𝜇𝑋 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
means that, first, 𝑋 follows distribution 𝜇𝑋 , then 𝑌 𝑇 is

drawn from distribution 𝜇𝑌 𝑇 |𝑋 , and 𝑌 𝐶 is drawn from distribution 𝜇𝑌 𝐶 |𝑋 .

The significance of this inequality is that the quantity on the right can be estimated

using empirical averages, without imputation for counterfactuals.

The right-hand sides of the theorems are our surrogate loss functions. Since the

max of the two terms is less than or equal to their sum, our surrogate losses are

strictly tighter than using the sum of treatment and control losses. That sum would

lead to separate modeling for treatment and control groups.

One corollary of the theorem is a remark on the importance of accurate density

ratio estimation. The following corollary shows that in some cases, it is not crucial

to obtain an accurate estimate of the density ratio.

Corollary 1 If for all functions ℎ,

𝑅(ℎ) :=max

(︂
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ),E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)

𝜇𝑋|(𝑋)/𝜇𝑋|𝑇 (𝑋)

)︂
= E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ), and also

𝑅̂(ℎ) :=max

(︂
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ),E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)

𝜇̂𝑋|𝐶(𝑋)/𝜇̂𝑋|𝑇 (𝑋)

)︂
= E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ),

then the minimizers minℎ𝑅(ℎ) and minℎ 𝑅̂(ℎ) do not depend on how close the esti-

mates 𝜇̂𝑋|𝐶(𝑋)/𝜇̂𝑋|𝑇 (𝑋) are to the true ratios 𝜇𝑋|𝐶(𝑋)/𝜇𝑋|𝑇 (𝑋).

The corollary implies that flaws in density ratio estimation have no effect in a

special case where the treatment loss is higher than the re-weighted control loss.

This is different from using the sum of losses for treatment and control groups, where

problems with density ratio estimation can affect the loss regardless of which achieves

the max. Thus, our method is sometimes robust to poor density estimation methods,

78



and where it is not, the same problem is present in traditional methods; our method

is no worse.

The sufficient condition to construct a surrogate upper bound for the 0-1 loss

function is used in both theorems. It is:

𝑙(𝑧) ≥ 1𝑧≥0 + 1𝑧≥1.

This condition is easy to satisfy, and we list some valid losses below.

1. 1𝑧≥0 + 1𝑧≥1, which is a type of 0-1 loss function. Clearly, this is trivially an

upper bound, and it is non-smooth and it is difficult to optimize directly.

2. ⌊1+ 𝑧⌋+, the hinge loss function. We will use this loss function to construct an

SVM-based algorithm.

3. (1 + 𝑧)2, the squared loss function.

4. 2 ln(1+𝑒𝑧)
ln(1+𝑒)

, a scaled logistic loss function.

5. 𝑒𝑧, the exponential loss, used by AdaBoost.

4.4 Conditional Difference SVM

In this section, we use the regularized hinge loss to formulate a quadratic programming

problem that is similar to classical SVM (except that it is for potential outcomes data

where we have only “half” of the label for each observation).

For this section, we assume that the ratio 𝜇𝐶(𝑥𝑖)/𝜇𝑇 (𝑥𝑖) is either known or has

been estimated previously (or is irrelevant according to the theorems above). We will

discuss this more later. These density ratios act as importance weights on the control

group terms for cost-sensitive learning. The formulation below is kernelized, meaning

that each 𝑥 is replaced with a transformation 𝜑(𝑥), such that ⟨𝜑(𝑝), 𝜑(𝑞)⟩ = 𝐾(𝑝, 𝑞)

can be evaluated efficiently as a kernel function. There are several standard conditions

for 𝑘 to be a valid kernel (an inner product of a Reproducing Kernel Hilbert space
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– RKHS). Trivially, if 𝜑 is chosen to be the identity, then the kernel is linear. The

model for ℎ(𝑥) is 𝑤0 + ⟨𝜑(𝑤), 𝜑(𝑥)⟩.

The optimization problem suggested by Theorem 1, with the hinge loss as an

upper bound on the 0-1 loss, is below. We added an RKHS norm regularization term

with regularization parameter 𝛾.

𝑅(𝑤,𝑤0, 𝛾)

= max
(︀

1
𝑛𝑇

∑︀
𝑖∈𝑇 ⌊1− (𝑤0 + ⟨𝜑(𝑤), 𝜑(𝑥𝑖)⟩)𝑦𝑇𝑖 ⌋+,

1
𝑛𝐶

∑︀
𝑖∈𝐶

⌊1+(𝑤0+⟨𝜑(𝑤),𝜑(𝑥𝑖)⟩)𝑦𝐶𝑖 ⌋+
𝜇𝑋|𝐶(𝑥𝑖)/𝜇𝑋|𝑇 (𝑥𝑖)

)︁
+𝛾⟨𝜑(𝑤), 𝜑(𝑤)⟩.

Rewriting the inner product as a kernel, this is equivalent to:

𝑅(𝑤,𝑤0, 𝛾)

= max
(︁

1
𝑛𝑇

∑︀
𝑖∈𝑇
⌊︀
1− (𝑤0 +𝐾(𝑤, 𝑥𝑖))𝑦

𝑇
𝑖

⌋︀
+
,

1
𝑛𝐶

∑︀
𝑖∈𝐶

⌊1+(𝑤0+𝐾(𝑤,𝑥𝑖))𝑦
𝐶
𝑖 ⌋+

𝜇𝑋|𝐶(𝑥𝑖)/𝜇𝑋|𝑇 (𝑥𝑖)

)︂
+ 𝛾𝐾(𝑤,𝑤).

This minimax problem can be reformulated as a constrained optimization problem as

follows:

Primal Problem:

min
𝑤,𝑤0,𝑧,𝑟,∀𝑖 𝑠𝑖,∀𝑖 𝑟𝑖

𝑧 + 𝛾𝐾(𝑤,𝑤) subject to

𝑧 ≥ 1

𝑛𝑇

∑︁
𝑖∈𝑇

𝑟𝑖

𝑧 ≥ 1

𝑛𝐶

∑︁
𝑖∈𝐶

𝑠𝑖
𝜇𝑋|𝐶(𝑥𝑖)/𝜇𝑋|𝑇 (𝑥𝑖)

𝑟𝑖 ≥ 1− (𝑤0 +𝐾(𝑤, 𝑥𝑖))𝑦
𝑇
𝑖 ,∀𝑖 ∈ 𝑇

𝑠𝑖 ≥ 1 + (𝑤0 +𝐾(𝑤, 𝑥𝑖))𝑦
𝐶
𝑖 , ∀𝑖 ∈ 𝐶

𝑟𝑖 ≥ 0,∀𝑖 ∈ 𝑇

𝑠𝑖 ≥ 0,∀𝑖 ∈ 𝐶.
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We let 𝐾* be the Gram matrix where 𝐾*(𝑖, 𝑗) = 𝐾(𝑥𝑖, 𝑥𝑗) where we order the

vectors such that 𝑥𝑇
1 , . . . , 𝑥

𝑇
𝑛𝑇
, 𝑥𝐶

1 , . . . , 𝑥
𝐶
𝑛𝐶

.

The corresponding dual optimization problem is as follows.

Dual Problem:

max
𝛼,𝛽,{𝜆𝑖}𝑖,{𝜂𝑖}𝑖

− 1

4𝛾

⎡⎣ 𝜆

𝜂

⎤⎦𝑇

𝑑𝑖𝑎𝑔(𝑦𝑇1 , . . . , 𝑦
𝑇
𝑛𝑇 ,−𝑦𝐶1 , . . . ,−𝑦𝐶𝑛𝐶 )𝐾

*

𝑑𝑖𝑎𝑔(𝑦𝑇1 , . . . , 𝑦
𝑇
𝑛𝑇 ,−𝑦𝐶1 , . . . ,−𝑦𝐶𝑛𝐶 )

⎡⎣ 𝜆

𝜂

⎤⎦+
∑︁
𝑖∈𝑇

𝜆𝑖 +
∑︁
𝑖∈𝐶

𝜂𝑖,

subject to

𝛼 + 𝛽 = 1

∀𝑖 ∈ 𝑇, 0 ≤ 𝜆𝑖 ≤ 1
𝑛𝑇 𝛼

∀𝑖 ∈ 𝐶, 0 ≤ 𝜂𝑖 ≤ 1
𝑛𝐶(𝜇𝑋|𝐶(𝑥𝑖)/𝜇𝑋|𝑇 (𝑥𝑖))

𝛽∑︁
𝑖∈𝑇

𝜆𝑖𝑦
𝑇
𝑖 =

∑︁
𝑖∈𝐶

𝜂𝑖𝑦
𝐶
𝑖

𝛼, 𝛽, 𝜆, 𝜂 ≥ 0

which is a quadratic programming problem that resembles the regular SVM problem.

Its computational scaling properties are essentially identical to standard SVM.

Recovering the Intercept 𝑤0

After solving for 𝜆 and 𝜂, we are able to theoretically recover an expression for

𝜑(𝑤) in the primal formulation that can be used to obtain values of 𝐾(𝑤, 𝑥) for any

given 𝑥. To make prediction possible, we need to evaluate ℎ(𝑥) for any 𝑥, thus we

need to recover 𝑤0, the intercept term. The complementary slackness conditions are
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as follows:

𝜆𝑖(𝑟𝑖 − 1 + (𝑤0 +𝐾(𝑤, 𝑥𝑇
𝑖 ))𝑦

𝑇
𝑖 ) = 0 ∀𝑖 ∈ 𝑇

𝜂𝑖(𝑠𝑖 − 1− (𝑤0 +𝐾(𝑤, 𝑥𝐶
𝑖 ))𝑦

𝐶
𝑖 ) = 0 ∀𝑖 ∈ 𝐶

𝑟𝑖

(︁ 𝛼

𝑛𝑇
− 𝜆𝑖

)︁
= 0 ∀𝑖 ∈ 𝑇

𝑠𝑖

(︂
𝛽

𝑛𝐶(𝜇𝑋|𝐶(𝑥𝑖)/𝜇𝑋|𝑇 (𝑥𝑖))
− 𝜂𝑖

)︂
= 0 ∀𝑖 ∈ 𝐶.

By solving the dual optimization problem, we know the value of {𝜆𝑖}𝑖, {𝜂𝑖}𝑖, 𝛼, 𝛽.

We can use these to analytically recover 𝑤0 from the primal problem using one of

the “support vectors.” Support vectors are data points that determine the separating

hyperplane in regular SVM. In our context, we are minimizing the maximum of two

hinge losses, and the maximum value will be attained by at least one of the control or

treatment group. The hyperplane is chosen such that it minimizes loss (and maximizes

the margin) in one of those groups, and since the larger of the two losses is being

minimized, the loss in the other group will be upper bounded as well. Similar to the

regular SVM, the points that fully determine the positions of the hyperplane (support

vectors — SV’s) are those with active constraints in the primal formulation. Figure 4-

1 shows the support vectors for the Causal SVM on the spiral dataset discussed below.

SV’s from both treatment and control points can be present simultaneously. As usual,

as long as the problem is not ill-conditioned (meaning at least one 𝜆𝑖 is between 0 and

𝛼/𝑛𝑇 , or at least one 𝜂𝑖 is between 0 and 𝛽/𝑛𝐶), we are able to recover the primal

solution from the dual solution as follows: for 𝑖 ∈ 𝑇 if 𝜆𝑖 <
𝛼
𝑛𝑇 , we can conclude that

𝑟𝑖 = 0 and similarly if 𝜆𝑖 > 0, we can conclude that −1 + (𝑤0 + 𝐾(𝑤, 𝑥𝑖))𝑦
𝑇
𝑖 = 0.

Using that 𝑦𝑖 is binary:

𝑤0 = 𝑦𝑇𝑖 −𝐾(𝑤, 𝑥𝑇
𝑖 ).

Similarly, for 𝑖 ∈ 𝐶 if 𝜂𝑖 < 𝛽
𝑛𝐶(𝜇𝑋|𝐶(𝑥𝑖)/𝜇𝑋|𝑇 (𝑥𝑖))

, we conclude that 𝑠𝑖 = 0, and if for the

same 𝑖 ∈ 𝐶, 𝜂𝑖 > 0, we have 𝑤0 = −𝑦𝐶𝑖 −𝐾(𝑤, 𝑥𝐶
𝑖 ). Also, using optimization methods

that use a primal dual approach, it is possible to obtain 𝑤0 numerically.

Let us switch gears to discuss learning theory bounds.
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Figure 4-1: Causal SVM with RBF kernel on spiral data. The circular points are
the support vectors, pink indicates predictions of positive treatment effect, and blue
indicates negative predictions.

4.5 Generalization Bound

The bound in this section provides a theoretical foundation for minimizing the max-

imum of treatment and control empirical errors.

Definition 1 Growth Function: [12] Let ℱ be a function class (also known as hy-

pothesis class). Given data points 𝑧1, . . . , 𝑧𝑚, we consider ℱ𝑧1,...,𝑧𝑚 = {𝑓(𝑧1), . . . , 𝑓(𝑧𝑚)},

the set of ways the data 𝑧1, . . . , 𝑧𝑚 are classified by functions from ℱ . The growth

function is the maximum number of ways into which 𝑚 points can be classified by the

function class. 𝑆ℱ(𝑚) = sup(𝑧1,...,𝑧𝑚) |ℱ𝑧1,...,𝑧𝑚|.

Let 𝑅𝑡𝑟𝑢𝑒(𝑓) = P(𝑥,𝑦)∼𝐷(𝑓(𝑋) ̸= 𝑌 ) = E(𝑋,𝑌 )∼𝐷[1𝑓(𝑋 )̸=𝑌 ] and 𝑅𝑒𝑚𝑝(𝑓) =

1
𝑚

∑︀𝑚
𝑖=1 1[𝑓(𝑥𝑖) ̸=𝑦𝑖]. Using the Hoeffding and union bounds, a classical result shows

that for any 𝛿 > 0, with probability at least 1− 𝛿 with respect to a random draw of

the data,

∀𝑓 ∈ ℱ , 𝑅𝑡𝑟𝑢𝑒(𝑓) ≤ 𝑅𝑒𝑚𝑝(𝑓) + 2

√︃
2
log𝑆ℱ(2𝑚) + log 4

𝛿

𝑚
.

We will derive an analogous bound for the causal inference estimation framework.

Since we deal with both treatment and control groups, we need to handle weighted

data points with Radon-Nikodym derivatives. More definitions follow.

Suppose 𝑀 = sup𝑥 𝑙(ℎ(𝑥)). We define a new loss function 𝑙𝑀(.) = 1
𝑀
𝑙(.).

𝑅𝑇 (ℎ) = E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋

𝑙𝑀(−ℎ(𝑋)𝑌 𝑇 ).
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The corresponding empirical estimator for the expectation above would be

𝑅̂𝑇 (ℎ) =
1

𝑛𝑇

∑︁
𝑖∈𝑇

𝑙𝑀(−ℎ(𝑥𝑖)𝑌
𝑇 ).

For the control group, we have

𝑅𝐶(ℎ) = E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇
𝑌 𝐶 |𝑋

𝑙𝑀(−ℎ(𝑋)𝑌 𝐶).

Using estimation of 𝜇𝑋|𝑇 and 𝜇𝑋|𝐶 , the corresponding empirical estimator would be:

𝑅̂𝐶(ℎ) =
1

𝑛𝐶

∑︁
𝑖∈𝐶

𝜇𝑋|𝑇 (𝑥𝑖)

𝜇𝑋|𝐶(𝑥𝑖)
𝑙𝑀(−ℎ(𝑥𝑖)𝑌

𝐶).

Theorem 3 Let ℱ be a function class, and suppose we have 𝑛 data points, let 𝑝 =

𝑃𝑑𝑖𝑚(ℱ), the standard pseudo-dimension of ℱ (see [32] for precise definition). Let

Δ𝑇 (𝛿) = 2

√︃
2
log𝑆ℱ(2𝑛𝑇 ) + log 4

𝛿

𝑛𝑇

and

Δ𝐶(𝛿) = 2
5
4

√︀
𝑑2(𝜇𝑇 ||𝜇𝐶)

3/8

√︃
𝑝 log 2𝑛𝐶𝑒

𝑝
+ log 4

𝛿

𝑛𝐶

.

Then ∀ℎ ∈ ℱ , with probability at least 1− 𝛿,

E𝑋∼𝜇𝑋 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
𝑙1(𝑋, 𝑌 𝑇 , 𝑌 𝐶)

≤ 𝑀

(︂
max(𝑅̂𝑇 (ℎ), 𝑅̂𝐶(ℎ)) + max

(︂
Δ𝑇

(︂
𝛿

2

)︂
,Δ𝐶

(︂
𝛿

2

)︂)︂)︂
.

In the theorem, 𝑑2(𝑃 ||𝑄) = 2𝐷𝐾𝐿(𝑃 ||𝑄) where 𝐷𝐾𝐿(𝑃 ||𝑄) is the usual KL divergence

between distributions 𝑃 and 𝑄.

Proof of the generalization bound is provided in the appendix. As usual, the

bound is algorithm independent.
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4.6 Experiments

We cannot observe both treatment and control outcomes for the same observation in

real data (this is not standard supervised learning), so ground truth treatment effects

must be obtained another way for the purpose of evaluation. In these experiments,

the goal is to test the most basic potential outcomes setting. We randomly assign

observations to either the treatment group or control group. We choose distributions

𝜇𝑇 and 𝜇𝐶 for generating the 𝑥𝑖’s, and choose distributions to generate both potential

outcomes 𝑦𝑇𝑖 and 𝑦𝐶𝑖 for each 𝑖, 𝑦𝑇𝑖 , 𝑦
𝐶
𝑖 ∈ {−1, 1}. We observe either 𝑦𝑇𝑖 or 𝑦𝐶𝑖 ,

depending on whether the observation is in the treatment or control group. The

treatment effect 𝑦𝑇𝑖 − 𝑦𝐶𝑖 is thus never observed for any 𝑖, and takes three possible

values: positive, neutral, or negative. We then split the data uniformly into a training

set and a test set. The training data were used to build a model that predicts

conditional treatment effect given a new test point 𝑥. We then predict treatment

effects for the test data and evaluate our predictions with respect to the ground truth

using the conditional difference loss as a performance measure.

For Causal SVM, we use linear, quadratic, cubic, and radial basis function (RBF)

kernels. We compare with matching-based algorithms, such as GenMatch [26] and

nearest neighbor matching, followed by ridge regression or kernel ridge regression on

the matched groups to create a predictive model. We also compare with algorithms

that fit two distinct classification or regression models and take the difference; this

includes the difference of ridge regression models, difference of kernel ridge regression

models, difference of logistic regression models, difference of SVM models using RBF

kernels, and difference of random forests. Note that the methods where two regression

are fitted for different groups are commonly used in meta-algorithms [27, 48]. Also, we

compare our algorithms with causal random forests [90]. For methods that involve

Genmatch, the pop.size parameter was chosen as 𝑛/2, and after matching, cross

validation was performed for tuning the regularization parameter for the regression

methods. For methods involving the difference of two models, cross validation for

parameter tuning was performed on the treatment and control data separately.
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As discussed earlier, the difference of two distinct classification or regression mod-

els is similar to our approach but uses a looser upper bound to the 0-1 loss function: a

sum of the terms for treatment and control (as obtained through the triangle inequal-

ity), rather than a maximum of the two terms. However, using a difference of two

models would mean using a strictly richer family of functions to learn the treatment

effect. Intuitively one might expect that difference of complex models (e.g. random

forests or SVM) would potentially overfit. The bounds are loose enough that it is un-

clear why the sign of the difference of SVM models would necessarily produce useful

models, as usually the sign of each single SVM model is used for predicting outcomes.

Our results for each dataset are reported in 2-column tables. The column heading

is the value of 𝜃 used in the loss, where 𝜃 is the fraction of data predicted to be

neutral. For example when 𝜃=0.1, the 10% of data with smallest absolute predicted

difference are assigned to be neutral. The first 15 rows of each table are the output

of our Causal SVM algorithm. For these methods, the number appended at the end

(e.g., 1e-8) indicates the parameter 𝛾 used. For the RBF kernel, the other number is

the inverse kernel width. These are followed by matching based methods, difference

of two supervised learning methods, and causal random forests. The two numbers

for the causal random forest methods are the 𝛼 and 𝜆 parameters in that algorithm.

The mean and the standard deviation (in braces) are reported in the table. The

superscript index indicates the rank of the algorithm for the top algorithms.

Noisy Spirals

We show the result of a simple but challenging experiment on a causal inference

version of the two spiral dataset from [49], which has two covariates. The goal is to

predict a positive treatment effect on one spiral and a negative treatment effect on

the other spiral. Half of the training points were randomly assigned to be treated

and the other half assigned to control. On one of the two spirals, the treatment

effect is positive (treated points had outcome “yes” and control points had outcome

“no”), whereas on the other spiral the treatment effect is negative (treated points had

outcome “no”, and control points had outcome “yes”). We introduce label noise: with

probability 20%, a data point that should have a positive treatment effect is assigned
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a negative treatment effect and vice versa. We fit models on the training data, and

predicted on out-of-sample test data. Ideally, all points from one spiral should have

“yes” predictions and the other should have all “no” predictions.

(a) Causal SVM linear
kernel

(b) Causal SVM
quadratic kernel

(c) Causal SVM cu-
bic kernel

(d) Causal SVM RBF
kernel

(e) Genmatch and ker-
nel ridge regression

(f) Nearest neighbor
and kernel ridge regres-
sion

(g) Difference of 2 ker-
nel ridge regression

(h) Difference of two
logistic regression

(i) Difference of 2 SVM
with RBF

(j) Difference of two
random forest model

Figure 4-2: Contour plots showing the predicted treatment effect for spiral data with
20% label noise. Support vectors are noted with gray dots for the SVM models.

As we can see from Table 4.1, the linear, quadratic, and cubic methods all perform

poorly, because spirals cannot be modeled accurately using linear models or low di-

mensional polynomials; this would have been clear before performing the experiment,

but provides useful baselines. The best performers are RBF SVM models and dif-

ference of 2 random forests. The matching methods GenMatch and nearest neighbor

seem to have consistently poor performance, as does causal random forests. In fact

the performance of these methods is as bad as results obtained from modeling the

spirals with linear models. Figure 4-2 shows models from several machine learning

methods.

More experimental results are in the supplementary materials.
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𝜃 0.01 0.1
linear Causal SVM 1e-8 57.91(1.94) 52.21(1.91)
linear Causal SVM 1e-6 57.91(1.94) 52.21(1.91)
linear Causal SVM 1e-4 57.91(1.94) 52.21(1.91)

quadratic Causal SVM 1e-8 58.77(0.95) 53.51(0.86)
quadratic Causal SVM 1e-6 58.77(0.95) 53.51(0.86)
quadratic Causal SVM 1e-4 58.81(1) 53.52(0.87)

cubic Causal SVM 1e-8 56.02(1.72) 50.51(1.28)
cubic Causal SVM 1e-6 56.02(1.72) 50.51(1.28)
cubic Causal SVM 1e-4 56.23(1.81) 50.42(1.25)

RBF Causal SVM 0.05, 1e-8 41.4(2.63) 36.53(2.46)
RBF Causal SVM 0.05, 1e-6 45.52(2.02) 40.65(1.75)
RBF Causal SVM 0.05, 1e-4 55.57(1.7) 50.28(1.17)
RBF Causal SVM 0.1, 1e-8 23.57(0.99)2 19.45(0.88)2

RBF Causal SVM 0.1, 1e-6 41.81(2.15) 37.03(2.13)
RBF Causal SVM 0.1, 1e-4 52.47(1.2) 47.16(1.24)

GenMatch, Ridge 57.44(1.11) 52.31(1.1)
Nearest, Ridge 56.94(1.57) 51.8(0.93)

Genmatch, kernel ridge 51.7(3.41) 46.9(3.28)
Nearest, kernel ridge 52.64(3.2) 47.27(2.96)

2 ridge 58.12(1.25) 52.52(1.09)
2 kernel ridge 53.04(3.03) 48.03(2.65)

2 logistic 58.26(0.98) 52.72(0.92)
2 SVM 19.91(0.85)1 17.17(1.17)1

2 RF 25.61(1.32)3 21.29(1.11)3

causal_rf 0.05 0 46.61(1.8) 41.5(1.6)
causal_rf 0.01 0 55.37(1.65) 50.14(1.86)

causal_rf 0.05 0.1 46.67(1.54) 41.64(1.79)
causal_rf 0.01 0.1 54.63(2.22) 49.43(2.05)

Table 4.1: Loss values 𝑙.01 and 𝑙.1 for spiral data with noise. The best three performers
in each column are indicated with superscripts 1, 2 and 3.

4.7 Breaking the Cycle of Drugs and Crime

Next, we apply our method to data from a social program in the United States,

known as Breaking the Cycle (BTC)[34], which studies the effect of intervention on

the reduction of crime and drug use. These data were chosen for their relevance to

treatment programs for the current opioid epidemic in the U.S. As far as we know,

these data have not been previously studied using machine learning techniques. We

focus on estimating the effect of the program on reducing non-drug-related crime

in Birmingham, Alabama, between years 1997 and 2001.The BTC strategy was to
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screen offenders shortly after arrest and require those found to use drugs to participate

in a drug intervention while under criminal justice supervision. The control group

consisted of similar defendants arrested in the year prior to the implementation of

BTC. BTC targeted all adult felony defendants and was not limited to those charged

with drug offenses. Defendants were ordered to report to BTC for drug screening

as a condition of pretrial release. Those who reported drug use, tested positive for

drugs, or were arrested on drug felony charges were placed in drug testing and, when

appropriate, referred to drug treatment or drug education classes.

We chose categorical features whose data seemed reliable, that had no missing

values, and that had a correlation with the outcome of non-drug-related crime of

at least 0.1. We did not use data recorded during the time period over which the

outcome was generated, as we intended to build a prediction model for the outcome

during that same time period. The features include: whether the defendant has a

driver’s license, whether the defendant has access to an automobile, whether an SSI

benefit is being received, whether the defendant lives with anyone with an alcohol

problem or takes nonprescription drugs, whether the defendant has problems getting

along with their father, whether they have suffered for depression within the past

30 days, whether they have had depression or anxiety for a long period of time, and

whether they have trouble understanding. In this dataset, some participants were

subsequently dropped from the study as they were later determined to be ineligible,

leaving us with 382 participants.

Our algorithm requires a choice of regularization parameter and kernel parameter.

In regular supervised learning, nested cross validation would be the natural method

to tune parameters. Typically for causal inference applications, since ground truth

is not known, parameters cannot be tuned. In the case of our method, the objective

function does not require the ground truth to be known, hence, we can perform nested

cross validation to select parameters using our objective function.

After running our algorithm, we wish to examine the results by determining which

subgroups benefit from the BTC program. Grouping together the observations with

neutral and negative estimated treatment effect, to distinguish them from the obser-
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vations for which the treatment was effective, we used interpretable modeling methods

to understand the result.

We generated association rules using the Apriori algorithm [33]. The rules indicate

that those with access to an automobile seem to benefit from the BTC program in

terms of reduction of non-drug related crime. (Having a license could be an indicator

of competence of several forms.) We list some of the rules in Table 4.2.

Antecedent Effective? Support Confidence Lift
have-automobile=1,
prob-getting-along-father=0,
serious-depression-30-days=0

Y 0.2173 1.0000 2.2209

have-license=1,
serious-depression-30-days=0,
serious-depression-life=0

Y 0.2539 0.9899 2.1983

have-license=1,
prob-getting-along-father=0,
serious-depression-30-days=0

Y 0.2539 0.9898 2.1983

have-automobile=1,
serious-depression-30-days=0,
serious-depression-life=0

Y 0.2173 0.9881 2.1945

have-license=0,
SSI-benefit=0,
prob-getting-along-father=0

N 0.4424 0.9037 1.6440

have-license=0,
prob-getting-along-father=0,
trouble-understanding-life=0

N 0.3953 0.8935 1.6253

have-license=0,
prob-getting-along-father=0,
serious-depression-life=1

N 0.1414 0.8852 1.6103

have-license=0,
live-w-anyone-alcohol=0,
prob-getting-along-father=0

N 0.4398 0.8660 1.5753

have-license=0,
SSI-benefit=0,
trouble-understanding-life=0

N 0.4031 0.8652 1.5738

Table 4.2: Association rules for the estimated (Causal SVM) treatment effect of the
BTC program on the reduction of non-drug related offenses.
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We then created a one-sided decision tree (decision list, or rule list) as an inter-

pretable approximation to the Causal SVM output. We used the CORELS algorithm

to produce this rule list [6], which also certified that this model is optimal according

to the objective of accuracy and sparsity on the training set. The rule list is below.

if (have_drivers_license) then (effective) (87%/13%)

else if (long_term_serious_depression) then (not_effective) (20%/80%)

else if (long_term_trouble_understanding) then (effective) (92%/8%)

else if (SSI_benefit) then (effective) (100%/0%)

else if (prob_getting_along_with_father) then (effective) (91%/9%)

else (not_effective) (3%/97%)

Let us explain the expressions such as (87%/13%) on the right of each rule: in

the first rule, 87% of observations captured by this rule have an estimated positive

treatment effect from Causal SVM. 13% is the percentage of units captured with a

negative or neutral estimated treatment effect.

4.8 Discussion

We presented a framework for estimating personalized treatment effects with theo-

retically appealing properties. Its surrogate loss bound is tighter than the sum of

losses for treatment and control groups. Since it uses global convex optimization, it is

easier to troubleshoot and tune than methods that involve greedy splitting, pruning,

and averaging (e.g., random forests). Its high-quality experimental results seem to

be robust to different datasets, unlike several other methods, meaning that it might

be more more trustworthy across domains. Our experiments indicate that it could be

useful to include the Causal SVM algorithm in experimental studies, in addition to

the algorithms based on separate treatment and control models. The principles used

to derive the Causal SVM framework are its surrogate loss definition and bounds,

which are of independent interest for other causal inference problems. The general-

ization bounds are algorithm-independent, and can be applied to any surrogate for

the minimax conditional difference loss introduced in this work.

Code: < https://github.com/shangtai/githubcausalsvm>.
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Appendix for Chapter 4

Proof of Theorem 1

Proof 1 (Of Theorem 1). We break down the proofs into five steps for readability.

1. Obtaining lower bounds for E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ) and

E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)
𝜇𝑋|𝐶(𝑋)/𝜇𝑋|𝑇 (𝑋).

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 )

= E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 )

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 )

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 )

= E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶 𝑙(−ℎ(𝑋))

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶 𝑙(ℎ(𝑋))

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 )

≥ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶1ℎ(𝑋)≤0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶1ℎ(𝑋)≥0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 ),

where for the second equation, the reasoning is if 𝑌 𝑇 > 𝑌 𝐶 then 𝑌 𝑇 = 1, and if

𝑌 𝑇 < 𝑌 𝐶 then 𝑌 𝑇 = −1. The last inequality makes use of the property that if

ℎ(𝑋) ≤ 0, then 𝑙(−ℎ(𝑋)) ≥ 1. Similarly, if ℎ(𝑋) ≥ 0, then 𝑙(ℎ(𝑋)) ≥ 1.

By similar reasoning, we have
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E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇
𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)

𝜇𝑋|𝐶(𝑋)/𝜇𝑋|𝑇 (𝑋)

= E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
𝑙(ℎ(𝑋)𝑌 𝐶)

= E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)

= E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶 𝑙(−ℎ(𝑋))

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶 𝑙(ℎ(𝑋))

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)

≥ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶1ℎ(𝑋)≤0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶1ℎ(𝑋)≥0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶).
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2. Finding a lower bound for max
(︁
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇𝑌 𝑇 |𝑋

𝑙(−ℎ(𝑋)𝑌 𝑇 ),

E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)
𝜇𝐶(𝑋)/𝜇𝑇 (𝑋)

)︁

We use the property that 𝑎 ≥ 𝑏 and 𝑐 ≥ 𝑑 imply max(𝑎, 𝑐) ≥ max(𝑏, 𝑑). Taking the

maximum of the previous two inequalities in the previous part of the proof, we have

max

(︂
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ),E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)

𝜇𝑋|𝐶(𝑋)/𝜇𝑋|𝑇 (𝑋)

)︂
≥ max

(︁
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇
𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶1ℎ(𝑋)≤0

+E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶1ℎ(𝑋)≥0

+E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 )

,E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶1ℎ(𝑋)≤0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶1ℎ(𝑋)≥0

+E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)
)︁

≥ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶1ℎ(𝑋)≤0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶1ℎ(𝑋)≥0

+max
(︁
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇
𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 ),

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)
)︁
,

where the second inequality is because the first two terms within the maximum are

exactly the same.

For the next part, we focus on

max
(︁
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇
𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 ),

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)
)︁
,

* that is the case where 𝑌 𝑇 = 𝑌 𝐶 .
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3. Lower bounds for E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 )

and E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶).

Since

𝑙(−ℎ(𝑋)𝑌 𝑇 ) ≥ 0

because it is an upper bound for an indicator function, we have the following implica-

tions

𝑌 𝑇 = 𝑌 𝐶 = −1 and ℎ(𝑋) ≥ 1 =⇒ 𝑙(−ℎ(𝑋)𝑌 𝑇 ) = (𝑙(ℎ(𝑋))) ≥ 21{ℎ(𝑥)≥1}

𝑌 𝑇 = 𝑌 𝐶 = 1 and ℎ(𝑋) ≤ −1 =⇒ 𝑙(−ℎ(𝑋)𝑌 𝑇 ) = (𝑙(−ℎ(𝑋))) ≥ 21{ℎ(𝑥)≤−1}.

We have

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 )

≥ 2P𝑋∼𝜇𝑋|,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = −1, ℎ(𝑋) ≥ 1)

+ 2P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = 1, ℎ(𝑋) ≤ −1).

We have a similar result for the control group,

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)

≥ 2P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = 1, ℎ(𝑋) ≥ 1)

+ 2P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = −1, ℎ(𝑋) ≤ −1).

4. Lower Bound for the maximum between

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 ) and

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)

By using the fact that if 𝑎 ≥ 𝑏 and 𝑐 ≥ 𝑑, then we have max(𝑎, 𝑐) ≥ max(𝑏, 𝑑) and

the result from the previous subsection, we have the first inequality below. The second
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inequality below is due to 2𝑚𝑎𝑥(𝑎, 𝑏) ≥ 𝑎+ 𝑏.

max(E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 ),

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶))

≥ 2max
(︁
P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇
𝑌 𝐶 |𝑋

(𝑌 𝑇 = 𝑌 𝐶 = −1, ℎ(𝑋) ≤ 1)

+ P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = 1, ℎ(𝑋) ≤ −1),

P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = 1, ℎ(𝑋) ≥ 1)

+ P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = −1, ℎ(𝑋) ≤ −1) )

≥ P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = −1, ℎ(𝑋) ≥ 1)

+ P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = 1, ℎ(𝑋) ≤ −1)

+ P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = 1, ℎ(𝑋) ≥ 1)

+ P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 = −1, ℎ(𝑋) ≤ −1)

= P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 , |ℎ(𝑋)| ≥ 1).
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5. Lower Bound for max(E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ),

E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)
𝜇𝐶(𝑋)/𝜇𝑇 (𝑋))

Combining the result from the seocnd step and fifth step, we have

max(E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋

𝑙(−ℎ(𝑋)𝑌 𝑇 ),E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇
𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)

𝜇𝑋|𝐶(𝑋)/𝜇𝑋|𝑇 (𝑋)

≥ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶1ℎ(𝑋)≤0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶1ℎ(𝑋)≥0

+max
(︁
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇
𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(−ℎ(𝑋)𝑌 𝑇 )

,E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶 𝑙(ℎ(𝑋)𝑌 𝐶)
)︁

≥ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶1ℎ(𝑋)≤0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶1ℎ(𝑋)≥0

+ P𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
(𝑌 𝑇 = 𝑌 𝐶 , |ℎ(𝑋)| ≥ 1)

= E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇>𝑌 𝐶1ℎ(𝑋)≤0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇<𝑌 𝐶1ℎ(𝑋)≥0

+ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋 :𝑌 𝑇=𝑌 𝐶1|ℎ(𝑋)|≥1

= E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
𝑙0−1(𝑋, 𝑌 𝑇 , 𝑌 𝐶 , ℎ)

≥ E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
𝑙1(𝑋, 𝑌 𝑇 , 𝑌 𝐶 , ℎ).

That is we have proven that the expectation of the loss function is upper bounded

by

max
(︁
E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇

𝑌 𝑇 |𝑋
𝑙(−ℎ(𝑋)𝑌 𝑇 ), E𝑋∼𝜇𝑋|𝐶 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋

𝑙(ℎ(𝑋)𝑌 𝐶)

𝜇𝑋|𝐶(𝑋)/𝜇𝑋|𝑇 (𝑋)

)︂
.

Remark: The proof of Theorem 2 is actually included where we stop just before

the final inequality.

97



(a) Observed treatment output. The red
data points indicate 𝑦𝑇 = 1 while the
green data points indicate 𝑦𝑇 = −1.

(b) Observed control output. The red
data points indicate 𝑦𝐶 = 1 while the
green data points indicate 𝑦𝐶 = −1.

(c) The ground truth treatment effect
(not observed). The green data points
indicate positive treatment effect and the
red data points indicate negative treat-
ment effect.

Figure 4-3: The ground truth and the observed outcome for the spiral data set
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Proof of Generalization Bound

From [12], we have ∀𝛿 > 0, with probability at least 1− 𝛿

∀ℎ ∈ ℱ , 𝑅𝑇 (ℎ) ≤ 𝑅̂𝑇 (ℎ) + Δ𝑇 (𝛿),

where

Δ𝑇 (𝛿) = 2

√︃
2
log𝑆ℱ(2𝑛𝑇 ) + log 4

𝛿

𝑛𝑇

.

Unlike conventional statistical learning bounds, recall that we are working with

two different distributions, 𝜇𝑇 and 𝜇𝐶 of which we have chosen 𝜇𝑇 to be our target dis-

tribution. The use of Radon-Nikodym derivatives to transform 𝜇𝐶 to 𝜇𝑇 corresponds

to importance weighting.

We will build our result on Theorem 3 in [21] which states the following:

Let 𝐹 be a hypothesis set such that 𝑃𝑑𝑖𝑚 ({𝐿ℎ(𝑥) : ℎ ∈ ℱ}) = 𝑝 < ∞. Let 𝑋

denote the input space and let 𝑌 be the label set. We let 𝐿 : 𝑌 ×𝑌 → [0, 1] be a loss

function. We let 𝑓 : 𝑋 → 𝑌 be the target labeling function. We let 𝐿ℎ(𝑥) denote

𝐿(ℎ(𝑥), 𝑓(𝑥)) in the absence of ambiguity about the target function 𝑓 .

For any hypothesis ℎ ∈ ℱ , we denote by 𝑅(ℎ) its loss and by 𝑅̂𝑤(ℎ) its weighted

empirical loss:

𝑅(ℎ) = E𝑥∼𝑃 [𝐿(ℎ(𝑥)), 𝑓(𝑥)]

𝑅̂𝑤(ℎ) =
1

𝑚

𝑚∑︁
𝑖=1

𝑤(𝑥𝑖)𝐿(ℎ(𝑥𝑖), 𝑓(𝑥𝑖))

Assume that 𝑑2(𝑃 ||𝑄) = 2𝐷𝐾𝐿(𝑃 ||𝑄) < +∞ and 𝑤(𝑥) ̸= 0 for all 𝑥. Then, for any

𝛿 > 0, with probability at least 1− 𝛿, the following holds:

∀ℎ ∈ ℱ , 𝑅(ℎ) ≤ 𝑅̂𝑤(ℎ) + 2
5
4

√︀
𝑑2(𝑃 ||𝑄)

3/8

√︃
𝑝 log 2𝑛𝑒

𝑝
+ log 4

𝛿

𝑛
. (4.1)

From Equation 4.1, we can conclude that
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∀ℎ ∈ ℱ , with probability at least 1− 𝛿,

we have

𝑅𝐶(ℎ) ≤ 𝑅̂𝐶(ℎ) + Δ𝐶(𝛿),

where

Δ𝐶(𝛿) = 2
5
4

√︀
𝑑2(𝜇𝑇 ||𝜇𝐶)

3/8

√︃
𝑝 log 2𝑛𝐶𝑒

𝑝
+ log 4

𝛿

𝑛𝐶

.

Hence, we can combine these two inequalities using union bound and obtain the

following:

∀ℎ ∈ ℱ , with probability at least 1− 𝛿,

max(𝑅𝑇 (ℎ), 𝑅𝐶(ℎ)) ≤ max

(︂
𝑅̂𝑇 (ℎ) + Δ𝑇

(︂
𝛿

2

)︂
, 𝑅̂𝐶(ℎ) + Δ𝐶

(︂
𝛿

2

)︂)︂
≤ max(𝑅̂𝑇 (ℎ), 𝑅̂𝐶(ℎ)) + max

(︂
Δ𝑇

(︂
𝛿

2

)︂
,Δ𝐶

(︂
𝛿

2

)︂)︂

We complete the proof by noticing that from definition of 𝑙𝑀 and linearity of

expectation that we have

E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
𝑙1(𝑋, 𝑌 𝑇 , 𝑌 𝐶 , ℎ)

= 𝑀E𝑋∼𝜇𝑋|𝑇 ,𝑌 𝑇∼𝜇
𝑌 𝑇 |𝑋 ,𝑌 𝐶∼𝜇

𝑌 𝐶 |𝑋
𝑙𝑀1 (𝑋, 𝑌 𝑇 , 𝑌 𝐶 , ℎ)

≤ 𝑀 max(𝑅𝑇 (ℎ), 𝑅𝐶(ℎ))

≤ max(𝑅̂𝑇 (ℎ), 𝑅̂𝐶(ℎ)) + max

(︂
Δ𝑇

(︂
𝛿

2

)︂
,Δ𝐶

(︂
𝛿

2

)︂)︂
.

Additional Experimental Results

Due to the page limit constraint in the main paper, here are results on some additional

data sets.

Spiral Dataset without noise: The first data set that we present is the spiral

data set as shown in Figure 4-3 without any noise. The support vectors are noted

in the figure for causal SVM. Causal SVM and 2 SVM perform comparably, and the
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determination of which one performs better depends on the kernel bandwidth – here

the 2 SVM is slightly better. Numerical results are in Table 4.3.

0.01 0.1
linear causal SVM 1e-8 47.33(1.82) 43.47(1.29)
linear causal SVM 1e-6 47.33(1.82) 43.47(1.29)
linear causal SVM 1e-4 47.34(1.81) 43.47(1.29)

quadratic causal SVM 1e-8 51(0.97) 46.13(0.81)
quadratic causal SVM 1e-6 51(0.97) 46.13(0.81)
quadratic causal SVM 1e-4 50.95(1.01) 46.16(0.79)

cubic causal SVM 1e-8 46.23(2.16) 42.3(0.82)
cubic causal SVM 1e-6 46.23(2.16) 42.3(0.82)
cubic causal SVM 1e-4 46.21(2.34) 42.31(0.82)

rbf causal SVM 0.05, 1e-8 25.27(2.9) 20.95(2.28)
rbf causal SVM 0.05, 1e-6 31.26(2.81) 26.98(2.98)
rbf causal SVM 0.05, 1e-4 47.69(2.42) 42.94(2.16)
rbf causal SVM 0.1, 1e-8 4.32(0.78)3 2.03(0.27)2

rbf causal SVM 0.1, 1e-6 26.39(2.63) 22.3(2.04)
rbf causal SVM 0.1, 1e-4 39.25(2.17) 34.65(1.76)

GenMatch, Ridge 48.34(2.94) 43.84(1.91)
Nearest, Ridge 49.33(1.66) 44.88(1.47)

Genmatch, kernel ridge 43.64(4.94) 38.69(4.24)
Nearest, kernel ridge 44.93(4.95) 40.44(5.02)

2 ridge 48.52(2.33) 44.27(1.63)
2 kernel ridge 43.11(3.52) 38.73(3.22)

2 logistic 48.74(2.32) 44.3(1.75)
2 SVM 0.05(0.05)1 0.01(0.03)1

2 RF 4.24(0.87)2 1.51(0.76)2

causal_rf 0.05 0 34.06(3.32) 29.72(2.89)
causal_rf 0.01 0 47.04(2.64) 42.14(2.36)

causal_rf 0.05 0.1 32.92(2.67) 28.85(2.6)
causal_rf 0.01 0.1 45.35(2.15) 41.37(2.56)

Table 4.3: Numerical output for the spiral data set. As we can see, our method is the
best method without using the difference of two supervised classifiers.

A Dataset Where the Treatment Effect Changes a Few Times

We construct a 2-dimensional data set as follows. The features are distributed

uniformly between 0 and 1. We denote 𝑥𝑖,𝑗 as 𝑖 is the index for the 𝑖-th data point

and 𝑗 is the index for the feature. If 𝑥𝑖,1 < 0.6, 𝑦𝑇𝑖 = 1 with probability 0.4 and

𝑦𝐶𝑖 = 1 with probability 0.6; If 𝑥𝑖,1 is between 0.6 and 0.8, 𝑦𝑇𝑖 = 1 with probability 0.3

and 𝑦𝐶𝑖 = 1 with probability 0.7; Otherwise, 𝑦𝑇𝑖 = 1 with probability 0.8 and 𝑦𝐶𝑖 = 1

with probability 0.2;
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Causal SVM outperforms other algorithms for this data set. Numerical results

are in Table 4.4.

0.01 0.1
linear causal SVM 1e-8 62.1(3.18) 55.3(3.3)
linear causal SVM 1e-6 62.1(3.18) 55.3(3.3)
linear causal SVM 1e-4 61.5(3.34) 54.6(3.06)

quadratic causal SVM 1e-8 61.2(4.54) 53.9(4.33)
quadratic causal SVM 1e-6 60.6(4.55) 53.5(4.33)
quadratic causal SVM 1e-4 61.7(5.06) 55(5.25)

cubic causal SVM 1e-8 59.6(3.78)1 53.2(4.02)2

cubic causal SVM 1e-6 61.8(6) 55.3(5.29)
cubic causal SVM 1e-4 61.5(5.74) 54.9(5.2)

rbf causal SVM 0.05, 1e-8 60.5(3.84) 53.7(3.59)
rbf causal SVM 0.05, 1e-6 60.1(4.65) 53.4(4.86)3

rbf causal SVM 0.05, 1e-4 60.7(3.56) 53.7(3.33)
rbf causal SVM 0.1, 1e-8 61.6(3.84) 54.8(3.88)
rbf causal SVM 0.1, 1e-6 60(4.22)2 53.1(4.09)1

rbf causal SVM 0.1, 1e-4 60.1(3.98)3 53.6(3.06)
GenMatch, Ridge 65.2(3.71) 58.4(3.31)

Nearest, Ridge 66.2(2.97) 59.5(2.59)
Genmatch, kernel ridge 65.6(6.19) 58.5(5.56)

Nearest, kernel ridge 65.2(3.52) 58.9(3.93)
2 ridge 63(3.5) 56.4(3.57)

2 kernel ridge 63.9(3.96) 57.4(3.81)
2 logistic 63.3(3.43) 57.3(2.83)

2 SVM 66(3.46) 59.5(3.24)
2 RF 64.5(1.51) 59(1.89)

causal_rf 0.05 0 67.3(6.5) 59.8(5.81)
causal_rf 0.01 0 64.7(23.28) 63.4(22.81)

causal_rf 0.05 0.1 68.4(6.02) 61.1(4.61)
causal_rf 0.01 0.1 70.4(4.9) 70.4(4.9)

Table 4.4: The output for a data set where the treatment effect changes a few times.
Our method seems to be more suited for this type of data set.

We can see from Table 4.4 that for this particular data set, our approaches out-

perform the other algorithms.

Imbalanced when it is more likely to belong to the control group

This is a simulated data set that consists of 1000 data points. Each data point

has 30 features. The first 20 features are independently generated from a normal

distribution with mean 0 and variance 1, while the remaining 10 features are uniformly

distributed between −1 and 1. The treatment effect is determined by the 2-norm of
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the feature. If the feature has norm that is bigger than 3, then 𝑦𝑇𝑖 takes value 1

with probability 0.8 ; Otherwise, 𝑦𝑇𝑖 takes value −1 with probability 0.2. 𝑦𝐶𝑖 always

take value 1 with probability 0.2. Each data point has a probability of 0.3 of being

assigned to the control group. Table 4.5 shows that causal SVM is comparable to

2-SVM, and matching-based methods have worse performance.

0.01 0.1
linear causal SVM 1e-8 57.8(2.92) 51.6(2.91)
linear causal SVM 1e-6 57.8(2.92) 51.6(2.91)
linear causal SVM 1e-4 57.82(2.98) 51.68(2.91)

quadratic causal SVM 1e-8 63.36(1.83) 57.02(1.61)
quadratic causal SVM 1e-6 63.4(1.81) 57.02(1.6)
quadratic causal SVM 1e-4 59.6(1.35) 53.3(1.46)

cubic causal SVM 1e-8 62.58(1.87) 56.1(1.81)
cubic causal SVM 1e-6 62.58(1.87) 56.12(1.83)
cubic causal SVM 1e-4 55.38(2.07) 49.58(1.9)

rbf causal SVM 0.05, 1e-8 55.02(1.6) 48.82(1.55)
rbf causal SVM 0.05, 1e-6 55.02(1.6) 48.82(1.55)
rbf causal SVM 0.05, 1e-4 55.02(1.6) 48.82(1.55)
rbf causal SVM 0.1, 1e-8 50.82(1.74) 44.2(1.62)
rbf causal SVM 0.1, 1e-6 50.82(1.74) 44.16(1.58)2

rbf causal SVM 0.1, 1e-4 50.82(1.74) 44.16(1.58)2

GenMatch, Ridge 52.84(2.56) 47.22(2.28)
Nearest, Ridge 50.88(2.23) 46.38(2.51)

Genmatch, kernel ridge 56.76(2.44) 50.76(2.2)
Nearest, kernel ridge 53.52(2.09) 47.96(1.82)

2 ridge 51.02(1.97) 46(2.19)
2 kernel ridge 53.44(1.94) 47.7(2.05)

2 logistic 57.4(1.8) 50.88(1.53)
2 SVM 50.4(2.1)1 43.78(2.07)1

2 RF 50.86(2.12) 45.84(1.97)
causal_rf 0.05 0 50.68(2.02)3 45.1(2.22)
causal_rf 0.01 0 50.82(2.15) 45.46(2.04)

causal_rf 0.05 0.1 50.66(2.16)2 45.16(2.04)
causal_rf 0.01 0.1 50.78(2.11) 45.66(2.5)

Table 4.5: The output for a data set that simulate a scenario where it is more likely
to be assigned to the control group. It is shown that our RBF-based methods beat
matching-based methods.

A dataset with treatment effect that changes a few times in high di-

mensions

This is a data set which consists of 1000 data points where each data point consists
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of 120 features. 60 of the features follows independent normal distribution with mena

0 and standard deviation 1 and 60 features follows uniform distribution between −1

and 1. The treatment effect is a function of the 2-norm of each data point. If the

norm is less than 3, 𝑦𝑇𝑖 takes value 1 with probability 0.4 while 𝑦𝐶𝑖 takes value 1 with

probability 0.6; If the norm is between 3 and 4, 𝑦𝑇𝑖 takes value 1 with probability

0.3 while 𝑦𝐶𝑖 takes value 1 with probability 0.7; Otherise, 𝑦𝑇𝑖 and 𝑦𝐶𝑖 independently

take value 1 with probability 0.2. It is equally likely for a data to be assigned to a

treatment group or a control group.

0.01 0.1
linear causal SVM 1e-8 69.52(2.34) 62.98(2.26)
linear causal SVM 1e-6 69.5(2.38) 62.98(2.26)
linear causal SVM 1e-4 69.48(2.2) 62.9(2.11)

quadratic causal SVM 1e-8 67.3(1.33) 60.56(1.32)
quadratic causal SVM 1e-6 67.2(1.38) 60.66(1.3)
quadratic causal SVM 1e-4 67.18(1.36) 60.66(1.3)

cubic causal SVM 1e-8 61.74(1.28) 55.1(1.44)
cubic causal SVM 1e-6 61.7(1.32) 55.08(1.51)2

cubic causal SVM 1e-4 61.7(1.32) 55.08(1.51)2

rbf causal SVM 0.05, 1e-8 61.12(1.35) 55.54(1.05)
rbf causal SVM 0.05, 1e-6 61.12(1.35) 55.54(1.05)
rbf causal SVM 0.05, 1e-4 61.12(1.35) 55.54(1.05)
rbf causal SVM 0.1, 1e-8 61.2(1.38) 55.82(1.07)
rbf causal SVM 0.1, 1e-6 61.2(1.38) 55.8(1.06)
rbf causal SVM 0.1, 1e-4 61.2(1.38) 55.8(1.06)

GenMatch, Ridge 61.74(1.59) 55.9(1.66)
Nearest, Ridge 61.6(1.87) 55.68(1.72)

Genmatch, kernel ridge 62.98(1.53) 56.62(1.43)
Nearest, kernel ridge 62.94(1.78) 56.12(1.67)

2 ridge 61.1(1.54)3 55.66(1.82)
2 kernel ridge 63.5(1.6) 56.76(1.39)

2 logistic 74.98(5.98) 70.18(9.18)
2 SVM 61.08(1.41)1 56.72(2.62)

2 RF 62.26(1.35) 56.18(1.16)
causal_rf 0.05 0 61.24(1.41) 55.7(1.4)
causal_rf 0.01 0 61.16(1.38) 55.06(1.38)1

causal_rf 0.05 0.1 61.3(1.62) 55.66(1.69)
causal_rf 0.01 0.1 61.1(1.36)2 55.52(1.57)

Table 4.6: The output table for a high dimensional data set where a data point is
equally likely to be assigned to the treatment group or control group.

For this data set, Table 4.6 shows that our method ,without using matching,
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is highly competitive compared to the approaches that using the difference of two

classification or regression methods as well as causal random forest approach.

Red Wine data set

We provided experiment with the Red Wine data set in the main paper. We also

perform similar experiment under different assignment mechanism settings for this

data set.

Setting 1: Equally likely to be assigned to be treatment or control group.

0.01 0.1
linear causal SVM 1e-8 39.64(1.03) 34.29(1.18)
linear causal SVM 1e-6 39.64(1.03) 34.34(1.25)
linear causal SVM 1e-4 39.62(1.07) 34.34(1.22)

quadratic causal SVM 1e-8 48.78(1.6) 43.71(1.53)
quadratic causal SVM 1e-6 48.74(1.59) 43.75(1.74)
quadratic causal SVM 1e-4 49.08(2.53) 43.65(2.57)

cubic causal SVM 1e-8 43.84(1.33) 38.96(1.12)
cubic causal SVM 1e-6 40.2(1.28) 35.39(1.16)
cubic causal SVM 1e-4 40.8(2.72) 35.59(2.51)

rbf causal SVM 0.05, 1e-8 45.66(1.56) 40.75(1.26)
rbf causal SVM 0.05, 1e-6 43.32(1.95) 38.02(1.86)
rbf causal SVM 0.05, 1e-4 38.18(1.3)2 32.81(1.49)2

rbf causal SVM 0.1, 1e-8 45.99(1.87) 40.81(1.65)
rbf causal SVM 0.1, 1e-6 44.51(1.45) 39.51(1.33)
rbf causal SVM 0.1, 1e-4 39.19(1.78) 33.85(1.44)

GenMatch, Ridge 39.42(1.02) 34.38(0.9)
Nearest, Ridge 39.39(1.22) 34.41(1.28)

Genmatch, kernel ridge 39.1(1.63) 34.31(1.59)
Nearest, kernel ridge 42.09(2.31) 37.03(2.25)

2 ridge 39.01(1.39) 33.88(0.97)
2 kernel ridge 39.02(1.93) 34.01(1.66)

2 logistic 39.08(1.12) 33.88(0.88)
2 SVM 42.85(1.75) 37.6(1.73)

2 RF 36.1(1.6)1 31.55(1.62)1

causal_rf 0.05 0 38.31(1.01)3 33.22(1.06)
causal_rf 0.01 0 40.61(3.44) 35.44(3.52)

causal_rf 0.05 0.1 38.55(0.86) 33.1(1.07)3

causal_rf 0.01 0.1 41.91(3.2) 36.81(3.19)

Table 4.7: Output table for the red wine data set where each data point is equally
likely to be assigned to the treatment or control group.

For this setting, from Table 4.7, the difference of two-random forest model seems

to perform better than other algorithms. Causal SVM with RBF kernels performs
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0.01 0.1
linear causal SVM 1e-8 40.39(1.42) 35.29(1.17)
linear causal SVM 1e-6 40.39(1.42) 35.29(1.17)
linear causal SVM 1e-4 40.4(1.35) 35.25(1.15)

quadratic causal SVM 1e-8 48.02(2.32) 42.9(2.43)
quadratic causal SVM 1e-6 47.92(2.09) 42.78(2.28)
quadratic causal SVM 1e-4 48.99(2.16) 43.64(1.9)

cubic causal SVM 1e-8 44.52(1.28) 39.41(1.35)
cubic causal SVM 1e-6 41.7(1.36) 36.54(1.42)
cubic causal SVM 1e-4 44.25(3.07) 38.61(2.65)

rbf causal SVM 0.05, 1e-8 45.19(2.02) 40.02(1.73)
rbf causal SVM 0.05, 1e-6 42.98(1.71) 38.19(1.64)
rbf causal SVM 0.05, 1e-4 39.39(1.44)2 34.49(1.48)2

rbf causal SVM 0.1, 1e-8 45.41(1.27) 40.24(1.54)
rbf causal SVM 0.1, 1e-6 44.78(1.65) 39.6(1.6)
rbf causal SVM 0.1, 1e-4 40.65(1.47) 35.36(1.35)

GenMatch, Ridge 40.11(1)3 34.96(0.98)
Nearest, Ridge 41.41(1.43) 36.12(1.52)

Genmatch, kernel ridge 41.3(1.33) 36.3(1.21)
Nearest, kernel ridge 43.15(1.4) 37.84(1.26)

2 ridge 40.32(1.04) 34.92(1.01)3

2 kernel ridge 40.49(1.64) 35.29(1.53)
2 logistic 40.34(0.84) 35.11(1)

2 SVM 43.02(2.21) 37.71(2.05)
2 RF 38.26(1.02)1 32.99(1.08)1

causal_rf 0.05 0 41.45(1.41) 36.19(1.38)
causal_rf 0.01 0 50.98(4.76) 44.55(3.53)

causal_rf 0.05 0.1 41.48(1.45) 36.18(1.62)
causal_rf 0.01 0.1 51.51(4.62) 45.19(3.81)

Table 4.8: Output table for the red wine data where the assignment mechanism is
based on Bernoulli

(︁
0.75

(︁
1−exp(−𝑥2

𝑐)
1+exp(−𝑥2

𝑐)

)︁)︁
similarly.

Setting 2: The assignment mechanism is based on Bernoulli
(︁
0.75

(︁
1−exp(−𝑥2

𝑐)
1+exp(−𝑥2

𝑐)

)︁)︁
In this setting, we let our assignment mechanism be depending on the reading of

citric acid. We let 𝑥𝑐 denotes the reading of the citric acid and we let the probability

that one is being assigned to the treatment group follows Bernoulli
(︁
0.75

(︁
1−exp(−𝑥2

𝑐)
1+exp(−𝑥2

𝑐)

)︁)︁
.

Table 4.8 shows that the 2-random forest method achieves the best performance, but

the performance for most methods is very similar.

Setting 3: The assignment mechanism is based on Bernoulli
(︁
0.5
(︁

1−exp(−𝑥2
𝑐)

1+exp(−𝑥2
𝑐)

)︁)︁
In this setting, we let our assignment mechanism be depending on the reading of
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0.01 0.1
linear causal SVM 1e-8 40.62(1.53) 35.5(1.42)
linear causal SVM 1e-6 40.62(1.53) 35.51(1.39)
linear causal SVM 1e-4 40.64(1.44) 35.56(1.32)

quadratic causal SVM 1e-8 49.99(0.99) 44.44(1.23)
quadratic causal SVM 1e-6 49.71(0.99) 44.36(1.12)
quadratic causal SVM 1e-4 50.21(1.93) 44.78(2.02)

cubic causal SVM 1e-8 44.69(1.92) 39.7(2)
cubic causal SVM 1e-6 42.46(1.39) 37.08(1.16)

rbf causal SVM 0.05, 1e-8 46.48(1.49) 41.38(1.32)
rbf causal SVM 0.05, 1e-6 44.12(1.64) 39.06(1.59)
rbf causal SVM 0.05, 1e-4 39.21(0.94)2 34.05(0.92)2

rbf causal SVM 0.1, 1e-8 46.42(1.22) 41.61(1.61)
rbf causal SVM 0.1, 1e-6 45.66(1.39) 40.59(1.37)
rbf causal SVM 0.1, 1e-4 39.86(0.84)3 34.74(0.86)3

GenMatch, Ridge 40.89(1.05) 35.41(0.61)
Nearest, Ridge 41.59(1.63) 36.21(1.56)

Genmatch, kernel ridge 41.96(1.59) 36.62(1.39)
Nearest, kernel ridge 43.18(1.47) 37.84(1.42)

2 ridge 40.48(0.82) 35.19(0.56)
2 kernel ridge 41.59(1.18) 36.12(1.33)

2 logistic 41.06(0.73) 35.48(0.67)
2 SVM 41.82(2.6) 36.55(2.75)

2 RF 38.26(1.11)1 33.4(1.18)1

causal_rf 0.05 0 41.3(2.1) 35.94(1.96)
causal_rf 0.01 0 50.89(4.61) 44.71(4.16)

causal_rf 0.05 0.1 41.4(2.52) 36.11(2.52)
causal_rf 0.01 0.1 48.75(5.93) 42.88(5.05)

Table 4.9: Output table for the red wine data where the assignment mechanism is
based on Bernoulli

(︁
0.5
(︁

1−exp(−𝑥2
𝑐)

1+exp(−𝑥2
𝑐)

)︁)︁

citric acid. We let 𝑥𝑐 denotes the reading of the citric acid and we let the probability

that one is being assigned to the treatment group follows Bernoulli
(︁
0.5
(︁

1−exp(−𝑥2
𝑐)

1+exp(−𝑥2
𝑐)

)︁)︁
.

From Table 4.9, the two-random forest method again outperform all algorithm,

however, our algorithm achieve similar result using a simpler model.

Summary of Experiments

Methods based on differences of two predictive models often use a richer class

of functions than methods using a single model. Our experiments tend to favor

the more complex model classes, such as difference of 2-SVM, despite the fact that

there is no real theoretical principle underlying the use of 2-SVM. There are some
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advantages to using a single model, beyond the tighter bound on the 0-1 loss, and

generalization bounds, in particular, better control over the complexity of the model,

a single global optimization problem to solve with a guarantee of optimality, which

is easier to troubleshoot and trust.
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Chapter 5

Conclusion

In this thesis, we have attempted to address three challenging problems from different

settings. In the first problem, the number of data points from each class is unbalanced,

and we seek to understand the data from the minority class. In the second problem,

we try to understand a complicated histogram, trying to describe a high dimensional

histogram in a high dimension using just the right amount of description. The last

problem that we consider is the fundamental problem of causal inference where we

try to find the treatment effect but we do not have access to the ground truth. In

each of these problems, the nature of information available to us differs. However,

a thesis doesn’t mark the end of its author’s research, and there are more things to

work on in these area.

In the first two topics of the research, we cover interpretable models using tech-

niques that use boxes to characterize interesting patterns. The attempt is to make

the patterns interpretable and the intuition is interpretable, following the intuition

that sparsity improves interpretability. We thus seek to use as few rules as possible

to parsimoniously describe a few patterns. Without focusing on a particular domain,

sparsity seems like a reasonable correlate of interpretability. However, with domain

knowledge, interpretability might come in different forms. For example, in the vision

research community, a transformation to convert a set of pixels into a common, easily

identifiable object is certainly more interpretable than the number of pixels in the set.

It is a challenging topic to even characterize the meaning of interpretability. What
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matters most is whether we can use such conclusions to help in decision making for

the benefit of society. While it is hard to come up with a measure that works across

all domains, we hope that the technique we have used can be adapted to a particular

domain — for example, rather than regularizing on the number of rules, convert that

to the number of interpretable entities relevant to that research area. Furthermore,

even if we obtain a tree, it might still require a domain expert and a machine learning

person to explain the conclusions of the final model in layman’s terms. Any attempts

to reduce the communication gap can be of great interest.

While models that are highly complex but accurate are necessary, I believe simple

models that are interpretable can help humans make more informed decisions as well.

Also, a part of this thesis is dedicated to the fundamental problem of causal

inference, which arises in many real-life problems in which the ground truth is not

known. As such, alternative models may serve as a reference for the ground truth.

The conventional way is to perform matching or perform regression separately to

get an estimate of causal inference. We provided a framework which is SVM-like

and which enables us to use the kernel trick. We hope that such a framework can

supplement existing methods. A possible generalization to this framework is to use

statistics to enable our model to conclude that we might not have sufficient data to

make a conclusion. Also, an extension from binary-valued outcomes to real-valued

outcomes would be interesting.
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