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Abstract 
 

Objects and their parts can be visually recognized and localized from purely spatial information in static 
images and also from purely temporal information as in the perception of biological motion. Cortical regions 
have been identified, which appear to specialize in visual recognition based on either static or dynamic 
cues, but the mechanisms by which spatial and temporal information is integrated is only poorly 
understood. Here we show that visual recognition of objects and actions can be achieved by efficiently 
combining spatial and motion cues in configurations where each source on its own is insufficient for 
recognition. This analysis is obtained by the identification of minimal spatiotemporal configurations: these 
are short videos in which objects and their parts, along with an action being performed, can be reliably 
recognized, but any reduction in either space or time makes them unrecognizable. State-of-the-art 
computational models for recognition from dynamic images based on deep 2D and 3D convolutional 
networks cannot replicate human recognition in these configurations. Action recognition in minimal 
spatiotemporal configurations is invariably accompanied by full human interpretation of the internal 
components of the image and their inter-relations. We hypothesize that this gap is due to mechanisms for 
full spatiotemporal interpretation process, which in human vision is an integral part of recognizing dynamic 
event, but is not sufficiently represented in current DNNs. 
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Abstract: 13 

Objects and their parts can be visually recognized and localized from purely spatial information in static 14 

images and also from purely temporal information as in the perception of biological motion. Cortical 15 

regions have been identified, which appear to specialize in visual recognition based on either static or 16 

dynamic cues, but the mechanisms by which spatial and temporal information is integrated is only poorly 17 

understood. Here we show that visual recognition of objects and actions can be achieved by efficiently 18 

combining spatial and motion cues in configurations where each source on its own is insufficient for 19 

recognition. This analysis is obtained by the identification of minimal spatiotemporal configurations: these 20 

are short videos in which objects and their parts, along with an action being performed, can be reliably 21 

recognized, but any reduction in either space or time makes them unrecognizable. State-of-the-art 22 

computational models for recognition from dynamic images based on deep 2D and 3D convolutional 23 

networks cannot replicate human recognition in these configurations. Action recognition in minimal 24 
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spatiotemporal configurations is invariably accompanied by full human interpretation of the internal 25 

components of the image and their inter-relations. We hypothesize that this gap is due to mechanisms for 26 

full spatiotemporal interpretation process, which in human vision is an integral part of recognizing dynamic 27 

event, but is not sufficiently represented in current DNNs. 28 

Introduction  29 

Previous behavioral work has shown that visual recognition can be achieved on the basis of spatial 30 

information alone1,2, and on the basis of motion information alone, as in biological motion3. At the 31 

neurophysiological level, neurons have been identified that respond selectively to objects and event based 32 

on purely spatial information, or motion information alone4-7. But several behavioral studies have also 33 

provided strong support suggesting that a combination of spatial and temporal information can aid 34 

recognition. A series of elegant experiments showing moving object image through a slit8-11 suggest that 35 

both shape and motion cues may cooperate to help recognition, but whether or how they may be integrated 36 

remain unclear. Studies on perceptual organization from visual dynamics (e.g., dynamic grouping and 37 

segmentation from motion12; spatiotemporal continuation and completion13) also combine motion and shape 38 

information (e.g., spatial proximity or spatial orientation with common motion direction), but the role of 39 

motion is typically limited in this case to figure-ground segmentation. A recent study has shown limitations 40 

on the integration of spatial and temporal information in recognition by demonstrating how presenting 41 

different parts of an object asynchronously leads to a severe disruption in recognition14 and that visually 42 

selective neurophysiological signals are sensitive to this temporal information15. 43 

One of the domains in which temporal information is particularly relevant is action recognition. 44 

Several computational models have been developed to recognize actions from videos, combining spatial 45 

with temporal information. For example, in recent computer vision challenges, the goal is to classify a video 46 

clip (e.g., a 10 sec. length video) into one of several possible types of human activities (e.g., Playing Guitar, 47 

Riding a Horse, etc.; UCF101 dataset by Soomro et al16; Kinetics dataset by Kay et al17). Modern models for 48 

action recognition from spatiotemporal input are based on deep network features, and in terms of combining 49 

spatial and temporal information they are partitioned into the following three groups: (i) Feed-forward 50 

networks with 3D convolutional filters, where the temporal features are processed together with the spatial 51 

ones via 3D convolutions in the space-time manifold18-21, but it remains unclear if and how shape and 52 

motion cues are actually combined; (ii) Two-stream networks based on late integration of two network 53 

‘modules’  where one module is trained on spatial features (fine-tuned from pre-trained static recognition 54 

network on ImageNet), and a second module is trained on optical flow from consecutive frames22-24. Here, 55 

the integration of temporal and spatial features takes place at a subsequent, higher stage, whereas in human 56 

vision motion has also a low-level role such as in figure-ground segmentation. (iii) Models combining deep 57 



3 

convolutional networks with Long Short-Term Memory25 units based on recurrent connections26. The input 58 

is a sequence of frames, each of which is passed through a convolutional network followed by a layer of 59 

LSTM units with recurrent connections. Here too, the integration of temporal and spatial features takes 60 

place at late stages, and it is unclear how motion and spatial information are specifically integrated through 61 

the recurrent connections. 62 

Despite progress in action classification, it remains unclear whether current models make an adequate 63 

and human-like use of spatio-temporal information. In order to evaluate the use of spatio-temporal 64 

integration by computational models, it is crucial to construct test stimuli that ‘stress test’ the combination 65 

of spatial and dynamic features. A difficulty with current efforts is that in many action recognition data sets 66 

(e.g. UCF101) high performance can be achieved by considering purely spatial information23,24, and 67 

therefore those stimuli are not ideally set up to rigorously test spatiotemporal integration. As elaborated 68 

below, an important aspect of using spatio-temporal information in human vision is the ability to “fully 69 

interpret” an image, in contrast with current computational architectures which merely assign action labels. 70 

Human recognition can not only label actions, but can also provide a full interpretation by identifying and 71 

localizing object parts, as well as inferring their spatiotemporal relations. Existing schemes for 72 

spatiotemporal interpretation use direct extensions of static semantic segmentation techniques27-29, which do 73 

not provide the full human-like spatiotemporal interpretation. 74 

Here we sought to develop a set of stimuli that can directly test the synergistic interactions of dynamic 75 

and spatial information, to identify spatiotemporal features that are critical for visual recognition and to 76 

evaluate current computational architectures on these novel stimuli. We tested minimal spatiotemporal 77 

configurations, which are composed of a set of sequential frames (i.e., a video clip), in which humans can 78 

recognize an object and an action, but where further small reductions in either the spatial dimension (i.e., 79 

reduction by cropping or down sampling of one or more frames) or in the time dimension (i.e., removal of 80 

one or more frames from the video) would turn the configuration unrecognizable, and therefore also 81 

uninterpretable for humans. This work follows recent studies on minimal configurations in static images 82 

(termed Minimal Recognizable Configurations, or MIRCs2,30,31, extending the concept of minimal 83 

configurations to the spatiotemporal domain). In static images, it was shown that at the level of minimal 84 

configurations, small image changes can cause a sharp drop in human recognition2, and that recognizable 85 

minimal object images are also interpretable, i.e., humans can identify not only the object category but also 86 

the internal object parts and their inter-relations30. These properties provided a mechanism to study 87 

computational models for human interpretation, and also to study the link between object recognition and 88 

object interpretation in the human visual system30,31. In particular, the sharp drop in recognition between 89 

minimal images, and their similar, but unrecognizable sub-minimal images (i.e., the slightly reduced 90 

images) was used to identify critical recognition features, which appear in the minimal, but not the 91 
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corresponding sub-minimal images. The goal in this study is then to similarly investigate critical 92 

spatiotemporal features for recognition and interpretation, as well as integration of spatial and motion cues, 93 

comparing minimal configurations with both its spatial and temporal sub-minimal versions. 94 

We show that recognition can be achieved by efficiently combining spatial and motion cues, in 95 

configurations where each source on its own is insufficient for recognition. Recognition and spatiotemporal 96 

interpretation go together in these minimal configurations: once humans can recognize the object or action, 97 

they can also provide a detailed spatiotemporal interpretation for them. These results pose a new challenge 98 

for current spatiotemporal recognition models, since our tests show that existing models cannot replicate 99 

human behavior on minimal spatiotemporal configurations. Finally, the results suggest how computational 100 

models may be extended to better capture human performance. 101 

Results  102 

We first describe psychophysical experiments to find minimal spatiotemporal configurations in short 103 

video clips taken from computer vision datasets, and report how human behavior changes when varying 104 

critical dynamic parameters such as the frame rate in these configurations. We then describe human 105 

spatiotemporal interpretation of minimal configurations, including the identified components within the 106 

minimal configurations. Finally, we test existing computational models for recognition from spatiotemporal 107 

input on our set of minimal configurations, and we compare the models’ results with human recognition. 108 

A search for minimal spatiotemporal configurations  109 

The search for each minimal spatiotemporal configuration started from a short video clip, taken 110 

from the UCF101 dataset16, in which humans could recognize a human-object interaction. We used 111 

examples from the UCF101 dataset because they contain a single agent, performing a single action, and it is 112 

a common benchmark for evaluating video classification algorithms in the computer vision literature. The 113 

search included 18 different video snippets, from various human-object interaction categories (e.g., ‘a 114 

person rowing’, ‘a person playing violin’, ‘a person mopping’, etc., see Table S1 in the supplementary file 115 

for a full list). The original video snippets were reduced to a manually selected 50x50 pixel square region, 116 

cropped from 2 to 5 sequential non-consecutive frames, and taken at the same positions on each frame (see 117 

below for frame region selection). These regions served as the starting configurations in the search for 118 

minimal spatio-temporal configurations described below. In the default condition, frames were presented 119 

dynamically in a loop at a fixed frame rate of 2Hz (Methods). An example of a starting configuration and a 120 

minimal spatiotemporal configuration is shown in Figure 1 and the path to create it is illustrated in Figure 2. 121 

Frames and frame regions for the starting configurations were selected such that the agent, the 122 

object, and the agent-object interaction were recognizable from each frame. The selected frames were 123 
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presented at a temporal interval of ∆𝑡 (mean ∆𝑡 = 200𝑚𝑠𝑒𝑐 ± 100𝑚𝑠𝑒𝑐, which encompasses the range of 124 

time interval to complete a natural body movement in the video clips that we considered, e.g., to lift a hand, 125 

etc.). An illustration of the starting configuration is shown in Fig. 1A. Because of the dynamic nature of the 126 

stimuli used in this study, it is difficult to appreciate the effects from static renderings. Therefore, we 127 

accompany the static figures with supplementary pps slide show files (e.g. Supplementary Slide Show 1 for 128 

Fig. 1A). The starting configuration was then gradually reduced in small steps of 20% in size and resolution 129 

(same procedure as in a previous study2). At each step, we created reduced versions of the current 130 

configuration, namely five spatially reduced versions decreasing size and resolution, as well as temporally 131 

reduced versions where a single frame was removed from the spatiotemporal configurations (Methods). 132 

Each reduced version was then sent to Amazon’s Mechanical Turk (MTurk), where 30 human subjects were 133 

asked to freely describe the object and action. MTurk workers who tested on a particular spatiotemporal 134 

configuration were not tested on additional configurations from the same action type (thus we needed 135 

approximately 4000 different MTurk users to complete all the behavioral tasks in this study). The success 136 

rates in recognizing the object and the action were recorded for each example. We defined a spatiotemporal 137 

configuration as recognizable if more than 50% of the subjects described both the object and the action 138 

correctly.  139 

The search continued recursively for the recognizable reduced versions, until it reached a 140 

spatiotemporal configuration that was recognizable, but all of its reduced versions (in either space or time) 141 

were unrecognizable, and we refer to such a configuration as a ‘minimal spatiotemporal configuration’. An 142 

example of a minimal spatiotemporal configuration is shown in Fig. 1B, and the reduced sub-minimal 143 

versions are shown in Fig. 1C-I. Most of the subjects (69%) were able to recognize the action (‘mopping’) 144 

in the spatiotemporal configuration in Fig. 1B, consisting of two frames shown every 500 ms (2 Hz, the 145 

default frame rate used for all minimal configurations). Showing each frame separately led to recognition 146 

rates of 3% and 6%, respectively (Fig. 1C-D, we refer to these as temporal sub-minimal configurations). As 147 

shown in Fig. 1C-D (and Fig. S1), in the cases tested the spatial content of the minimal and (temporal) sub-148 

minimal configurations is very similar (namely only minor spatial content is added to frame#1 by frame#2). 149 

Yet a large difference in human recognition is recorded due to the motion signal. Image crop also led to a 150 

large drop in recognition (16-37%, Fig. 1E-H, we refer to these as spatial sub-minimal configurations). 151 

Keeping the number of pixels but blurring the image (reducing sampling distance by 20%) also led to a 152 

large drop in recognition (to 3%, Fig. 1I). As shown in Fig. 1E-H, in the tested cases the motion content of 153 

the minimal and (spatial) sub-minimal is very similar (namely, the pixels that are cropped out do not cut off 154 

significant image motion). This implies that the motion signal alone is not a sufficient condition for human 155 

recognition of minimal spatio-temporal configurations. 156 
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 From the set of original video snippets, we searched for 20 minimal spatiotemporal configurations 157 

similar to the one shown in Fig. 1. Four additional examples of minimal spatiotemporal configurations and 158 

their sub-minimal versions are shown in Fig. S1. A prominent characteristic of minimal spatiotemporal 159 

configurations was a clear and consistent gap in human recognition of the minimal configurations, 160 

compared to their sub-minimal versions. The mean recognition rate was 0.710.11 (meanSD) for the 20 161 

minimal spatiotemporal configurations (such as the one in Fig. 1B), 0.290.15 for the spatial sub-minimal 162 

configurations (such as the ones in Fig. 1E-I), and 0.160.14 for the temporal sub-minimal configurations 163 

(such as the ones in Fig. 1C-D). The difference in recognition rates between the minimal and sub-minimal 164 

configurations were statistically highly significant: 𝑃 < 3.08 × 10−12 and 𝑃 < 5.16 × 10−08, n=20, one-165 

tailed paired t test, for the spatial and temporal sub-minimal configurations, respectively. The minimal 166 

spatiotemporal configurations included 2 frames of n x n pixels, where 𝑛 = 207.1  on average. Although 167 

highly reduced in size, the recognition rate for the minimal spatiotemporal configurations was high, and not 168 

far from the recognition rate of the original UCF101 video clips (mean recognition was 0.946.7 for the 169 

original UCF101 video clips, an average of 175 frames, each with 320x240 colored RGB pixels versus the 2 170 

grayscale frames of average size 20x20 pixels). Recognition rates for the minimal spatiotemporal 171 

configurations was also close to the recognition rates for the level above it in the search tree (the ‘super 172 

minimal configuration’: mean recognition was 0.810.74).  173 

In the temporally reduced single frames shown in Fig. 1C-D, there is an entire frame of spatial 174 

information missing. We asked whether the drop in recognition could be ascribed to the missing spatial 175 

information, without the need to combine information temporally. To evaluate this possibility, we 176 

introduced a condition where the two frames were presented side-by-side. The side-by-side simultaneous 177 

presentation of the two frames from the minimal configuration without the dynamics was not sufficient to 178 

improve recognition (mean performance 0.270.17), and the gap between the side-by-side recognition rate 179 

and the maximal single frame recognition rate (mean 0.210.14) was not statistically significant (𝑃 > 0.05, 180 

n=20, one-tailed paired t test).  181 

Given that removing either spatial information or temporal information led to a large drop in 182 

recognition performance, we asked whether it is possible to compensate for lack of spatial information by 183 

adding more temporal information or, conversely, to compensate for the lack of temporal information by 184 

adding more spatial information. A temporal sub-minimal configuration (e.g., a single frame) became 185 

recognizable when more spatial information (i.e., more pixels) was added (Fig. 2). Similarly, a spatial sub-186 

minimal configuration (e.g., two dynamic frames of smaller size) became recognizable when more temporal 187 

information (i.e., more frames) was added (Fig. S2). This trade-off between spatial and temporal 188 

information was consistent for all the tested minimal configuration examples. In the example in Figure 2, 189 
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204 pixels were added (20x20 pixels versus 14x14 pixels), which was the maximum amount of pixels that 190 

needed to be added to make temporal sub-minimal images recognizable across all the examples. Spatial sub-191 

minimal images required one additional frame to pass the recognition threshold. (within this range, maximal 192 

recognition of the sub-minimal with additional pixels, i.e., the case where improvement was highest, was 193 

0.660.09, and of sub-minimal images with additional frame 0.590.10. These are significant improvements 194 

of the average recognition of the spatial sub-minimal, and temporal sub-minimal, as reported above. 𝑃 <195 

3.04 × 10−3, and 𝑃 < 8.38 × 10−4, n=6, one-tailed paired t test, respectively). 196 

The frame rate impacts recognition of minimal spatiotemporal configurations 197 

Linking two or more frames for recognition, requires temporal integration of dynamic information.  198 

We conjectured that the degree of temporal integration would be dependent on temporal spacing between 199 

the frames. The results presented thus far were based on a fixed frame rate (2 Hz) and a fixed frame duration 200 

(500 milliseconds), based on pilot experiments. Next, we investigated the dependence of recognition on the 201 

presentation rate. The dependence of recognition on frame rate could be used to infer the role of motion 202 

frequency as a component of natural dynamic recognition. We conducted further psychophysics 203 

experiments by creating modified versions of the minimal spatiotemporal configurations in which we varied 204 

the frame rate from 0.5 Hz to 8 Hz (Figure S4). Examples for such modified configurations are shown in Fig. 205 

S4B (dynamic version shown in Supplementary Slide Show S4). There was a significant difference in 206 

human recognition of the modified configurations for different frame rates (𝑃 ≤ 0.003, n=5, one-way 207 

ANOVA). Recognition rates dropped when the frame rate was reduced from the default of 2 Hz and there 208 

was a lesser drop for higher frame rates (Figure S4A). We interpret these results to imply that too slow a 209 

presentation impairs temporal integration and essentially recapitulates the temporally sub-minimal condition 210 

where the two frames are presented separately or side-by-side.  211 

There was a slight but noticeable dependence of the optimum frame rate on the specific action type 212 

of image tested. Some spatiotemporal configurations were highly recognizable for one of the tested frame 213 

rates but recognition dropped drastically as frame rate changed towards either higher or lower rates (e.g., 214 

Fig. S4B). In some cases, there was a phenomenon of ‘dramatic pairs’ showing large recognition drop 215 

between two spatiotemporal configurations with identical frames but different frame rates. As examples, for 216 

‘playing a flute’ recognition rate was 0.65 when shown in frame rate of 4Hz but only 0.37 when shown in 217 

8Hz. For ‘Biking’ recognition rate was 0.71 when shown in frame rate of 2Hz, but only 0.37 when shown in 218 

1Hz. Still, we note that further investigation is required to quantify the dependence on the action in frame-219 

rate require, which is left for further research.  220 

 221 
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Action recognition in minimal images is accompanied by full image interpretation 222 

We conjectured that when humans correctly recognize the action in the minimal spatiotemporal 223 

configuration, they can not only label the action, but they can also provide a detailed localization of the 224 

parts that are involved in the action, as well as the spatial and spatiotemporal properties and inter-relations 225 

between parts in the image sequence (a similar case of identifying parts and relations was shown in static 226 

minimal images30). We refer to this detailed understanding of the image as ‘spatiotemporal interpretation’. 227 

To test this conjecture, we ran a new series of experiments where subjects were instructed to describe 228 

internal components of the images. MTurk subjects were presented with the minimal spatiotemporal 229 

configurations, along with a probe pointing to one of its internal components. The probe could be either an 230 

arrow pointing to a frame region, or a contour separating two regions of the frame (Fig. S3). 231 

We evaluated image interpretation in 5 minimal spatiotemporal configurations and tested with MTurk 232 

users. We defined a component as 'recognized' if it was correctly labeled by more than 50% of the subjects. 233 

Average recognition for the 31 components that we evaluated was 0.770.17 (see examples in Fig. 3). To 234 

assess whether the dynamic spatiotemporal configurations were necessary for interpretation, we repeated the 235 

experiment using the sub-minimal spatial and temporal versions, using the same procedure of inserting a 236 

probe in the images. We computed the gap in recognition rate for each component when it appeared in the 237 

minimal configuration versus when it appeared in its sub-minimal version. There was a significant decrease 238 

in component recognition for the spatial sub-minimal versions (difference in component recognition rates = 239 

0.410.22, 𝑃 ≤ 6.8 × 10−9, n=31, one-tailed paired t test), as well as a significant decrease in component 240 

recognition for the temporal sub-minimal versions (difference in component recognition rates = 0.290.20, 241 

𝑃 ≤ 5.2 × 10−9, n=31, one-tailed paired t test). An example of image interpretation for the “mopping” 242 

action is shown in Fig. 3A (upper panel). Subjects could identify the action (mopping), the presence of a 243 

person, and also the internal parts of the person figure, such as the legs, the internal parts of the object of 244 

action, namely the mop stick and the mop head. In contrast, none of these internal parts could be reliably 245 

identified in the reduced temporal and spatial sub-minimal versions, when one frame was removed (Fig. 3A, 246 

lower panel), or when the frames were slightly cropped.  247 

Interpretation of image components was not necessarily all-or-none. In some cases of partial 248 

interpretation, subjects could recognize the human body, or body parts, but could not recognize the action 249 

object and hence the activity type. In the example of ‘Playing a Violin’ in Fig. 3B, humans could recognize 250 

few body parts (e.g., the arm and the head) from the sub-minimal configurations (lower panel), while in the 251 

minimal configuration (upper panel) they could identify a richer set of body parts, as well as the objects of 252 

action (i.e., the violin, the bow). The gap in recognition for object components was higher than that obtained 253 

for all components reported above: the mean recognition rate for 10 object parts was 0.610.08 for the 254 
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minimal spatiotemporal configuration, 0.210.11 for the spatial sub-minimal configuration (𝑃 ≤255 

5.5 × 10−5, n=10, one-tailed paired t test), and 0.110.06 for the temporal sub-minimal configuration (𝑃 ≤256 

6.3 × 10−8, n=10, one-tailed paired t test).  257 

Existing computational architectures for action recognition fail to explain human behavior 258 

To further understand the mechanisms of spatiotemporal integration in recognition, we tested 259 

current models of spatiotemporal recognition on our set of minimal spatiotemporal configurations, and 260 

compared their recognition performance to human recognition. Our working hypothesis was that minimal 261 

dynamic configurations require integrating spatial and dynamic features, which are not used by current 262 

models. The tested models included the C3D model by Tran et al19,20, the two-stream network model by 263 

Simonyan & Zisserman22, and the RNN-based model by Donahue et al26, which have recently achieved a 264 

winning record on popular benchmarks for action classification in videos (e.g., the UCF-101 challenge), and 265 

which come from three different approaches to spatiotemporal recognition (namely, the 3D Convolutional 266 

Networks, the Two-Stream Networks, and RNN networks, respectively, as mentioned in the Introduction).  267 

Our computational experiments included three types of tests with increasing amount of specific 268 

training, to compare human visual spatiotemporal recognition with existing models. In the first tests, models 269 

were pre-trained on the UCF-101 dataset for video classification. We tested such pre-trained models on our 270 

set of minimal spatiotemporal configurations, to explore their capability to generalize from real-world video 271 

clips to minimal configurations. Our test set included 20 minimal spatiotemporal configurations, from 9 272 

different human action categories: Biking, Rowing, Playing violin, Playing flute, Playing Tennis, Playing 273 

Piano, Mopping, Cutting, and Typing. The accuracy for all the models was low: top-1 average accuracy was 274 

0/20 for a C3D deep convolutional network based on ResNet-1821, and 1/20 for a C3D deep convolutional 275 

network based on ResNet-10121 (see Methods for implementation details). Although humans were only 276 

given one chance for labeling the video sequences, several studies in the computer vision literature report 277 

top-5 accuracy (a label is considered to be correct if any of the top 5 labels is correct). The average top-5 278 

accuracy was 0.10 for C3D based on ResNet-18, and 0.20 for the C3D based on ResNet-101 (algorithms 279 

based on the two-stream network, and the RNN-based model did not provide better results, see Methods). 280 

These recognition rates are significantly lower than the classification accuracy achieved by these models for 281 

the original full video clips, from which we cropped the minimal configurations (𝑃 ≤ 3.8 × 10−5, n=4, one-282 

tailed paired t test)). An example comparing humans and the C3D model for a minimal spatiotemporal 283 

configuration is shown in Fig. S5. The correct answer is not among the top 10 in this case. 284 

The models considered thus far had no training with the minimal configurations (the same holds for 285 

the human subject). Next, we evaluated whether training the models with minimal spatiotemporal 286 
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configurations (fine-tuning) could help improve their performance. We used a binary classifier based on the 287 

convolutional 3D network model (C3D19,20), which was pre-trained on the SportM dataset: the network was 288 

originally trained on 1M video clips from 427 different sport actions18. The network was then fine-tuned on 289 

a training set including 25 positive examples similar to a minimal spatiotemporal configuration from a 290 

single category and type (the ‘rowing’ minimal configuration, see examples in Fig. 4A. All positive 291 

examples were validated as recognizable to humans), as well as 10000 negative examples (e.g., Fig. 4B. See 292 

methods). The binary classifier was then tested on a novel set of 10 positive examples and 5000 negative 293 

examples, similar to the ones in training. Since our set of positive examples was constrained to specific 294 

body parts and specific viewing positions in ‘rowing’ video clips, the fine-tuned classifier was able to 295 

correctly classify most of the random negative examples; the Average Precision (AP) was 0.941. Still, a 296 

non-negligible set of negative examples was given high positive score by the fine-tuned model, from which 297 

we composed a new set that we refer to as ‘hard negative spatiotemporal configurations’ for further tests. 298 

The hard negative configurations included 30 examples of spatiotemporal configurations that were 299 

erroneously labeled by the fine-tuned network model (see examples in Fig. 4E). Comparing accuracy of 300 

human and network recognition for the set of hard negative configurations further revealed a significant 301 

gap: humans were not confused by any of the hard negative examples (AP = 1; see Fig. S6-C), while the 302 

fine-tuned network scored the hard negatives higher than most positive examples (AP=0.18; See Fig. S6-F).  303 

  A distinctive property of recognition at the minimal level is the sharp gap between minimal and 304 

sub-minimal images. We therefore further compare recognition by the binary CNN classifier and human 305 

recognition, we tested whether the network model was able to reproduce the gap in human recognition 306 

between the minimal configurations and their spatial and temporal sub-minimal ones. For this purpose, we 307 

collected a set of minimal and sub-minimal dynamic configurations showing a large gap in human 308 

recognition, which did not overlap with the training set for the network model. We tested the fine-tuned 309 

network model on a set containing 10 minimal configurations, 20 temporal sub-minimal configurations (e.g., 310 

Fig. 4F), and 20 spatial sub-minimal configurations (as in Fig. 4D), all from the same category of ‘rowing’ 311 

in a similar viewing position and size. The network model was not able to replicate human recognition over 312 

this test set. While there was a clear gap in human recognition between minimal and spatial sub-minimal 313 

spatiotemporal configurations (average gap in human recognition rate 0.63; see Fig. S6-A), and between 314 

minimal and temporal sub-minimal spatiotemporal configurations (average gap in human recognition rate 315 

0.68; see Fig. S6-B), the differences in recognition scores given by the network model for the minimal and 316 

sub-minimal examples were small (see Methods). In sum, none of the tested models, even when fine-tuned 317 

with minimal dynamic configurations described here, were able to account for human recognition of 318 

minimal spatiotemporal configurations. 319 

 320 
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Existing computational architectures do not integrate time and space cues the way humans do 321 

The psychophysics data in Sec. 2 and Sec. 3 shows that processing of minimal spatiotemporal 322 

configurations in the human visual system requires the combining of motion and spatial information. We 323 

next compared the use of motion information by the human system and current CNN models (such as C3D) 324 

in the recognition of minimal spatiotemporal configurations. For this purpose, we compared the recognition 325 

of minimal and sub-minimal spatiotemporal configurations by two network models: (i) A purely spatial 326 

VGG19 network model, pre-trained on ImageNet and fine-tuned on frames of minimal configurations (see 327 

Methods), and (ii) The C3D model, which is a spatiotemporal adaptation of the spatial VGG19 via 3D 328 

convolutional operations, pre-trained on ImageNet and UCF101 and fine-tuned on minimal configurations. 329 

Our goal was to quantify the match between the two models and human recognition on minimal 330 

configurations, in order to understand the contribution of temporal processing in the C3D model compared 331 

with static VGG19 architectures and to human behavior. 332 

For the static VGG19 model, the recall gap between ‘rowing’ minimal configurations and spatial 333 

sub-minimal configurations was 0.34 (see Fig. S6-G), a large difference from the corresponding human gap 334 

(0.63, as mentioned above). For the dynamic C3D model, the recall gap between the temporal sub-minimal 335 

and the minimal configurations was 0.37 (see Fig. S6-H), which was also very different from the 336 

corresponding human gap (0.68, as mentioned above). We also tested the VGG19 and C3D models on a set 337 

of hard-negative examples. (For this we repeated the test for hard negatives for C3D, and collected a set of 338 

30 hard negative examples for the fine-tuned VGG19 model). Comparing human and VGG19 recognition 339 

for the set of hard negatives showed a difference in recognition accuracy (AP=0.64 for VGG19, See Fig. 340 

S6-I. Humans were not confused by any of the hard negatives: AP=1), but also a gap in recognition 341 

accuracy between the VGG19 and C3D models (0.64 vs. 0.18). This shows that the Average Precision for 342 

VGG19 is higher, closer to humans, than the AP for C3D model, indicating that the VGG19 was better at 343 

rejecting hard negative examples.  344 

To conclude, the test results show that VGG19 is better than C3D in replicating human behavior for 345 

spatial sub-minimal configurations (recall gap: 0.34 for VGG19, 0.02 for C3D, 0.63 for humans) and for 346 

hard negative examples (AP=0.64 for VGG19, 0.18 for C3D, 1 for humans ), but the C3D is better 347 

than VGG19 in replicating human behavior for temporal sub-minimal examples (recall gap was 0.37 for 348 

VGG19 vs. 0.78 for C3D, 0.68 for humans). We suspect that the reason for the latter is that the C3D is 349 

sensitive to basic dynamic features, which are not contained in our temporal sub-configurations, and which 350 

the spatial VGG19 cannot capture. The more surprising point is that for the spatial sub-configurations and 351 

the hard negative examples, the motion information that is added in the C3D is contributing very little, if 352 

any, to replicating human behavior. The different conditions and results above as summarized in Table S2. 353 
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Since minimal dynamic configurations are limited in their amount of visual information, and require 354 

efficient use of the existing spatial and dynamic cues, comparing their recognition by humans and existing 355 

models uncovers differences in the use of the available information. By using these configurations, the 356 

experimental results above point to fundamentally different integration of the available time and space in 357 

formation by humans and the tested network models. 358 

Discussion 359 

We presented here minimal spatiotemporal configurations in which, by construction, all spatial and 360 

temporal visual information is required for human recognition (Figure 1). A slight change of the minimal 361 

configurations either in the spatial or temporal dimensions, led to a drastic drop in recognition of the action 362 

and objects in the scene. There was a trade-off between spatial and temporal information: adding more 363 

spatial information could enhance recognition when temporal information was insufficient and adding 364 

temporal information could enhance recognition when spatial information was insufficient (Figure 2). 365 

Action recognition in the minimal configurations was accompanied by interpretation of the different image 366 

parts and their interactions (Figure 3). State-of-the-art computational models of action recognition were 367 

unable to replicate the human behavior findings. 368 

The minimal spatiotemporal configurations contained a mixture of both static features (e.g., the legs and 369 

torso of the person playing the violin do not change in time) and moving features (e.g., the hand and bow 370 

are moving); both are crucial for human recognition and interpretation, as revealed by the sharp transition to 371 

unrecognizable spatial and temporal sub-minimal configurations. Previous works have shown how moving 372 

features alone (e.g., all features are moving in biological motion studies32 and in the slit experiments11) can 373 

be sufficient for action recognition. Many previous studies have also shown that static features can be 374 

sufficient for action recognition31,33. In contrast to the distinction between dynamic and static features 375 

suggested by those previous studies, we show that the interpretation is not divided into two separate 376 

channels, one for motion-based recognition, the other static: a particular mix of spatial and temporal features 377 

drives recognition and interpretation of minimal spatiotemporal configurations.  378 

A known role of dynamics in scene understanding is to provide the dynamical aspects of objects in the 379 

scene. For example, a ‘hand touching a box’ can already be recognized in each individual frame in a 380 

sequence; however, a sequence of the hand and box objects in motion is required for the action ‘moving a 381 

box’ to be recognized. Much of the computational vision literature has focused on this aspect of dynamics – 382 

the motion trajectories associated with objects that can be identified statically27,34. Minimal spatiotemporal 383 

configurations identify natural images that must have dynamics, as well as specific spatial cues, to allow 384 

recognition and interpretation by humans. These spatiotemporal configurations can thus be used to study the 385 
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mechanisms subserving integration of spatial and temporal information, and the trade-off in human visual 386 

processing, between static and motion cues during visual recognition.  387 

State-of-the-art deep learning models failed to capture human recognition of minimal spatiotemporal 388 

configurations, even when the models are fine-tuned for the task, and are trained with similar minimal 389 

configurations. This limitation motivates a future study of spatiotemporal features and computational 390 

recognition models that can better predict human behavior. The minimal spatiotemporal configurations 391 

provide a tool to study critical spatiotemporal features, as well as space-time dependency, by exploring the 392 

differences between the recognizable minimal configurations and their slightly reduced but unrecognizable 393 

sub-minimal versions. Future studies could extend recent modeling of full interpretation of spatial minimal 394 

images30,31, to the modeling of full spatiotemporal interpretation, leading to a better understanding and more 395 

accurate modeling of spatio-temporal integration and human recognition. 396 

Methods 397 

Setting initial spatiotemporal configuration: The normalized frame size, the frame rate, and presentation 398 

as animated GIF. The initial spatiotemporal configuration was created as follows: we selected 2 to 5 frames 399 

from the original video clip, from which the action and object were recognizable to the MTurk users, 400 

according to our criterion, and normalized their frame size to 50x50 image samples (pixels) and to graylevel 401 

colors.  We then built a spatiotemporal configuration in which the selected normalized frames repeat in a 402 

loop at a fixed frame rate of 2 frames/second (2Hz). The spatiotemporal configuration was presented as 403 

animated GIF format. The choice of 2Hz frame rate was made since it provided the best recognition 404 

accuracy by the MTurk users. 405 

Testing pre-trained network models on minimal spatiotemporal configurations: For 3D convolutional 406 

networks, we used the implementations by Hara et al21, based on Resent-18 and Resnet-101, which are 407 

currently the leading architectures in the UCF101 challenge. The models were pre-trained on the very large 408 

Kinetics dataset by Kay et al., 2017, then fine-tuned for the UCF101 benchmark. For two-stream network 409 

we used the implementation by Feichtenhofer et al., 2016, based on Resset-50. The model was pre-trained 410 

on ImageNet, and then fine-tuned on the UCF101 benchmark. For the RNN-based model we used the 411 

implementation by Donahue et al., 2015. Frames are input to layer of CNNs (based on AlexNet), then input 412 

to layer of LSTMs, scored by averaging across all video frames.  413 

Negative examples for fine-tuning DNNs with minimal spatiotemporal configuration: 10000 negative 414 

examples were collected containing spatiotemporal configurations of a similar frame size and frame length 415 

as the positive set (minimal spatiotemporal configurations of the same class and type, e.g., ‘rowing’ as in 416 

Fig. 4A), but taken from different categories (i.e., non-‘rowing’) video clips (e.g., Fig. 4B). This asymmetry 417 
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in size of positive and negative sets, is because negative examples were easier to find and to test 418 

psychophysically than the positive examples. Despite this asymmetry, a large set of negative examples can 419 

still contribute to the training process of deep CNNs35 when using standard data balancing techniques. 420 

Comparing minimal vs. sub-minimal recognition gap between humans and models: To compare the 421 

model and human recognition gap, we set the acceptance rate of the binary classifier to match the average 422 

human recognition rate (e.g., 78% of the minimal spatiotemporal configuration for ‘rowing’), and then 423 

compared the percentage of the minimal vs. spatial sub-minimal configurations that exceeded the network-424 

based classifier’s acceptance (hereinafter the network ‘recall’; a similar method was used in Ullman et al., 425 

20162). For the C3D model, the recall gap between ‘rowing’ minimal configurations and spatial sub-426 

minimal configurations was 0.02 (see Fig. S6-D), which is far from the recognition gap observed in humans. 427 

To test temporal sub-minimal configurations, we composed spatiotemporal configurations containing one 428 

frame from the minimal configuration, and a noise frame (see methods). The reason is that configurations 429 

with zero dynamics are trivially rejected by the C3D model. Nevertheless, distinguishing between the 430 

‘rowing’ temporal sub-minimal and the minimal configurations was less difficult for the C3D model, with a 431 

recall gap of 0.78 (see Fig. S6-E. All temporal sub-minimal configurations received a very low recognition 432 

score by the C3D model), which was close to the human gap. 433 

Constructing spatial VGG19 model for recognizing minimal spatiotemporal configuration: The spatial 434 

VGG19 model was constructed as a binary classifier (based on the pre-trained ImageNet version), which 435 

was fine-tuned on all frames from the positive and negative dynamic examples in the train set for the C3D 436 

mentioned above. When a novel dynamic configuration example was given to the VGG19, we applied the 437 

VGG19 network separately to each frame, and considered the maximal VGG score for the frames as the 438 

final returned recognition score. We tested the VGG19 on the three test sets mentioned above for the C3D, 439 

and then compared results for the VGG19 and C3D convolutional networks. 440 

Reporting Summary: Further information on experimental design is available in the Nature Research 441 

Reporting Summary linked to this article. 442 

Data availability: The data that support the finding of this study are available from the corresponding 443 

author upon request. 444 

Code availability: The computer codes are available from the corresponding author upon request. 445 
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 460 

  461 

Figure 1. Example of a minimal spatiotemporal configuration. A short initial video clip showing 
‘mopping’ activity (A) was gradually reduced in both space and time to a minimal recognizable 

configuration (B) (Methods). The numbers on the bottom of each image show the fraction of subjects who 

correctly recognized the action (subjects see only one of these images). The spatial and temporal trimming 
was repeated until none of the spatially reduced versions (E-I, solid connections) or temporally reduced 

versions (C,D, in dashed connections) reached the recognition criterion of 50% correct answers. Spatial 

reduced versions: In E each frame was cropped in the top-right corner, leaving 80% of the original pixel 

size in B. F,G,H are similar versions where the crop is on the top-left, bottom-right, and bottom-left 

corners, respectively, I is a version where the resolution of each frame was reduced to 80% of the frame in 
B. Temporal reduced versions: A single frame was removed, resulting in static frame#1 in C, and static 

frame#2 in D. See Supplementary file ‘fig1.ppsx’ for animated version of the dynamic configurations. 
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 462 

Figure 2. Trade-off between spatial and temporal information. Solid connectors represent spatially 

reduced versions, dashed connectors represent temporal reduced versions. The numbers below each 
configuration represent the fraction of subjects that correctly identified the action “playing violin”. The 

temporally sub-minimal single-frame green configuration is not recognizable, but it becomes 
recognizable when more spatial information (i.e., more pixels) is added in the single-frame configuration 

in blue. The converse also holds: adding temporal information to a spatial sub-minimal configuration can 

recover performance (Figure S2). See Supplementary file ‘fig2.ppsx’ for animated version of the dynamic 
configurations. 
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 464 

 465 

Figure 3. Spatiotemporal interpretation. When humans could recognize the object and action, they could 
also identify a set of internal components of the agent and the object of action (top). In contrast, humans 

could not recognize these internal components (or could partially recognize them) in the sub-minimal 
versions (bottom four panels). Here are some of the recognized semantic components of minimal 

spatiotemporal configurations for ‘mopping’ (in A) and ‘Playing a violin’ (in B). The numbers indicate the 

rate of correct identification of part, when human subjects were presented with the minimal configuration 
along with a probe pointing to the part location. Bolded entries indicate large differences between the 

minimal and sub-minimal configurations.   
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 467 

 468 

Figure 4. Testing minimal configurations with existing models for spatiotemporal recognition. (A-B) A 
binary classifier is trained to separate a positive set of similar minimal images (“rowing”), showing the 

same action at the same body region and viewing position (A) from a negative set (“not rowing”) including 
non-class images of the same size and style as the minimal configurations (B). 
(C) One type of binary classifier was based on CNNs with 2D convolutional filters, followed by taking the 

maximum detection score from each frame. (D) Another type of binary classifier was based on CNNs with 
3D convolutional filters (Duran et al., 2015;2018), which was fine-tuned with the positive and negative sets 

in A and B.  
(E-G) The binary classifiers could not replicate human recognition, and performance by 3D and 2D CNNs 

was similar. Six example configurations that were misclassified including two of the same size (E), two 

temporally sub-minimal (F) and two spatially sub-minimal (G).). See Supplementary file ‘fig4.ppsx’ for 

animated version of the dynamic configurations. 
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Supplementary 541 

Tables:   542 

UCF101 Categories use to for search of  

minimal spatiotemporal configuration 

Biking, 

Rowing, 

Playing violin,  

Playing flute,  

Playing Tennis,  

Playing Piano,  

Mopping,  

Cutting, 

Typing. 
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Table S1 543 

 544 

Tests comparing humans and  

computational models:  

Humans C3D model (fine-tuned on 

minimal configurations) 

VGG19 model (fine-tuned 

on minimal configurations) 

Classifying minimal 

configurations vs. ‘hard’ non-

class examples 

Ave. Precision 

=1 

Ave. Precision =0.18 Ave. Precision =0.64 

Recognizing minimal vs. spatial 

sub-minimal configurations 

Recall gap = 0.68 Recall gap = 0.78 Recall gap = 0.37 

Recognizing minimal vs. 

temporal sub-minimal 

configurations 

Recall gap = 0.63 Recall gap = 0.02 Recall gap = 0.34 

Table S2 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 
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Figures: 562 

 563 

 564 

 565 

 566 

Figure S1. Examples of minimal and sub-minimal spatiotemporal configurations. Each minimal 
spatiotemporal configuration is shown next to its temporal sub-minimal versions (left), and its spatial 

sub-minimal version (below). The number represents the percentage of correct recognition responses for 
the action denoted below each minimal configuration (recall that MTurk users who tested on a minimal 

configuration were not tested on its sub-minimal configurations). Tags for similar actions were 

considered correct as well (e.g., Playing Baseball was considered similar to Playing Tennis). In the 
presented minimal images both the human object and the action category were recognized. In the 

presented sub-minimal image the actions were not recognized. The person object was partially 
recognized in C and D (see Fig. 3), and was not recognized in either A or B. See Supplementary file 

‘figS1.ppsx’ for an animated version. 
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 569 

FigureS2. Trade-off between spatial and temporal information. Solid connectors 
represent spatially reduced versions, while dashed connectors represent temporal reduced 

versions. The spatial sub-minimal 2-frame green configuration is not recognizable, but it 

becomes recognizable when more temporal information (i.e., more frames) is added, as 
shown in the 3-frame configuration in blue. The converse also holds: adding spatial 

information can recover performance for a temporal sub-minimal configuration (Figure 
2). See supplementary file ‘figS2.ppsx’ for animated version.  
  

FigureS3. Interpretation experiment via MTurk.  
(A). Arrow probes (red) were inserted to each frame in a minimal configuration (here: ‘mopping’ action) 

pointing to a specific part (here pointing to the mop/vaccum). The modified frames were then shown 
repeatedly one after another as a spatiotemporal configuration with 2Hz frame rate. Human subjects 

were then asked to tag the object part pointed by the arrow.  
(B). A contour (red) was plotted along the border of a given object part (here along the border of a 
‘legs’, or ‘pants’) for each frame of the minimal spatiotemporal configuration. Subjects were then asked 

to tag the parts shown on both sides of the contour.  

B A 
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 570 

FigureS4.  
(A) Human recognition rate as a function of frames rate for the minimal configurations. 

Recognition decreases below frame rate of 2 Hz.  
(B) Two examples of the effect of changing frame rates on recognition of minimal 

spatiotemporal configurations. The same frames were shown to different MTurk users at 
different frame rates. The numbers show recognition success rate. See Supplementary file 

‘figS4.ppsx’ for animated version of the dynamic configurations.  
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FigureS5. Pre-trained CNNs for spatiotemporal input were tested over full-viewed video clips (A-B), 

similar to the ones on their training process, and over minimal spatiotemporal configurations (C-D). 

Here is an example of typical behavior of the tested network models (here shown for the C3D model). The 
model could correctly classify the original video clip shown in A yielding a probability of 1 for the 

correct class number and 0 otherwise (B). However, the model failed to recognize the minimal 
configuration shown in C, yielding a probability of almost 0 for the correct class (D). This behavior 

stands in stark contrast with human recognition performance (percentage correct shown below the 

spatiotemporal configurations in A and C). 
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 577 

 578 

 579 

 580 

FigureS6. Comparison between humans (A-C), the fine-tuned C3D computational model (D-F) and the 
fine-tuned VGG19 computational model (G-I) for the ’rowing’ example. The plot compares minimal 

(blue) versus spatial sub-minimal (red) configurations (A, D, G), minimal (blue) versus temporal sub-
minimal (red) configurations (B, E, H) and minimal (blue) versus hard negative (red) configurations (C, 

F, I).  
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