
December 1990 LIDS-P-2011

AN EFFICIENT ALGORITHM

FOR MULTIPLE SIMULTANEOUS BROADCASTS IN THE HYPERCUBE t

by

George D. Stamoulis i and John N. Tsitsiklis i

Abstract

We analyze the following problem: Each of K nodes of the d-cube wishes (at the same time)

to broadcast a packet to all hypercube nodes. We present a simple distributed algorithm for

performing this task efficiently for any value of K and for any K-tuple of broadcasting nodes, and

some variations of this algorithm that apply to special cases. In particular, we obtain a very easily

implementable algorithm for the multinode broadcast task (K = 2 d), which comes within a factor

of 2 from the optimal.

Key Words: Broadcast, distributed systems, hypercube communications, routing algorithms.

t Research supported by the NSF under Grant ECS-8552419 and by the ARO under GCrant
DAAL03-86-K-0171.

t Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cam-

bridge, Mass. 02139, USA; e-mail: stamouli@lids.mit.edu, jnt@lids.mit.edu.

1

1. INTRODUCTION

During the execution of parallel algorithms in a network of processors, it is often necessary that

a subset of processors broadcast simultaneously pieces of information to all others. In this note, we

present an efficient (yet simple to implement) algorithm for perfoming such simultaneous broadcasts

in the hypercube network.

We consider the d-dimensional hypercube (or d-cube); e.g. see [BeT89]. This network consists of

2 d nodes, numbered from 0 to 2 d - 1. Associated with each node z is a binary identity (zd, ... , zl),

which coincides with the binary representation of the number z. There exist arcs only between

nodes whose binary identities differ in a single bit. That is, arc (z, y) exists if and only if zi = yi

for i $ m and Zm $ y,m (or equivalently Iz - yjl = 2m-1) for some m E l1,...,d}. Note that (z,y)

stands for a unidirectional arc pointing from z to y; of course, if arc (z, y) exists, so does arc (y, z).

It is easily seen that the d-cube has d2d arcs; also the diameter of the d-cube equals d. Other

properties of the hypercube that are used in our analysis are presented in §2.1.

The underlying assumptions for communications are as follows: The time axis is divided into

slots of unit length; all nodes are following the same clock. Each piece of information is transmitted

as a packet of unit length. Only one packet can traverse an arc per slot; all transmissions are error-

free. Each node may transmit packets through all of its output ports and at the same time receive

packets through all of its input ports. Moreover, each node has infinite buffer capacity.

In the problem analyzed in this note, it is assumed that each of a subset of K nodes of the d-cube

wishes to broadcast a packet. We prove in §3.1 that, for any routing algorithm, the time required

to perform these simultaneous broadcasts in the absence of other transmissions is Q(max{d, K }),
for any K-tuple of broadcasting nodes. We then devise a simple distributed algorithm whose

completion time is O(max{d, K}),), for any K < 2d and for any K-tuple of broadcasting nodes.

The algorithm works even if no node of the hypercube knows the value of K or the identities of

any other broadcasting nodes. This algorithm uses a first phase, during which the broadcasting

nodes coordinate in a decentralized fashion; this phase involves a parallel prefix task (see §2.2). It

will be argued that such a coordination phase is necessary for an algorithm to attain a worst case

completion time of O(max{d, K}), unless K is either very large or very small. We also present a

randomized variation of this algorithm, which does not include the prefix task; when randomization

is employed, the completion time is O(max{d, Ki}) and the task is accomplished correctly with

high probability. Finally, we present some other efficient algorithms pertaining to the special cases

K = O(d), K = 2 and K = d; see §3.3.

The simplest communication task involving broadcasting is the single node broadcast, where

exactly one of the nodes wishes to broadcast a packet; see [BeT89]. This task can be accomplished

in d time units, by using a spanning tree with shortest paths. The single node broadcast is an

extreme case of the problem analyzed in this note, corresponding to K = 1. The other extreme

case, namely K = 2
d , corresponds to the multinode broadcast task, where all nodes wish to perform

2

a broadcast at the same time; see (BeT89]. The minimum possible time for this task (in the d-

cube) is [2 -1] and it is attained by an algorithm by Bertsekas et al. [BOSTT89]. Previously,

Saad and Schultz [SaS85], as well as Johnsson and Ho [JoH891, had constructed optimal or nearly

optimal multinode broadcast algorithms for hypercubes, under somewhat different assumptions on

packet transmissions. Our algorithm specialized to the multinode broadcast problem completes in

time 2 [1l + 2d - 1; this is a factor of 2 far from the optimal, but the algorithm is much easier

to implement than previously available algorithms. The multinode broadcast task arises in the

distributed execution of any iterative algorithm of the form x := f(z), where f : ?n -. Rn and n

is the number of nodes; typically, the ith node knows the function fi and updates xi. Assume that

the problem is dense, i.e. each entry of the function f(x) depends explictly on almost all entries

of z; then, once xi is updated, its new value must be broadcast to all other nodes, in order to be

used in their subsequent calculations. If all nodes are perfectly synchronized, then all entries of the

vector x are broadcast at the same time, which gives rise to a multinode broadcast. However, there

are cases where not all of the xi's are updated at the same time; e.g., in multigrid or Gauss-Seidel

algorithms. It is in such cases that a simultaneous broadcast by a subset of K $4 n nodes arises.

To the best of our knowledge, the results derived in this paper are new. The problem was

considered later by Varvarigos and Bertsekas [VaB90], who used a completely different approach

and derived an algorithm running in time OE(max{d, I K}); this time is optimal only if K is very

large [namely, if lnK = O(d)].

2. BACKGROUND MATERIAL

2.1 Background on the Hypercube Network

The fundamental properties of the hypercube network were briefly mentioned in §1. In this

subsection, we present some additional background material.

2.1.1 Definitions

Let z and y be two nodes of the d-cube. We denote by z (D y the vector (zd E$ d, .. .,z Z $ yl),

where E is the symbol for the XOR operation. The ith (from the right) entry of z ED y equals 1,

if and only if zi $ yj. For j E {1,...,d}, we denote by ej the node numbered 2J-1; that is, all

entries of the binary identity of ej equal 0 except for the jth one (from the right), which equals 1.

Nodes el,..., ed are the only neighbors of node (0,.. ., 0). In general, each node z has exactly d

neighbors, namely nodes z E el,..., z E ed. Clearly, arc (z, y) exists if and only if z E y = e,, for

some m E {1,..., d}. Such an arc is said to be of type m; the set of arcs of type m is called the

rmth dimension.

2.1.2 The Completely Unbalanced Spanning Tree

For two nodes z and y, let il < . < ik be the only entries of z ED y that equal 1; k is called the

3

Hamming distance between z and y. Any shortest path from z to y consists of k arcs, with one of

them being of type il, one of them being of type i 2 etc. A packet originating at z will reach node y

if it traverses exactly one arc of each of these types, regardless of the order in which it crosses the

various hypercube dimensions.

A completely unbalanced spanning tree rooted at some node z is defined as the spanning out-

tree (*) with the following property: Every node y is reached from the root z through the unique

shortest path in which the hypercube dimensions are crossed in increasing index-order. That is,

if il < *.. < ik are the dimensions to be crossed in any shortest path from z to y, then the tree

under consideration contains that shortest path where the first arc belongs to dimension il, the

second arc to dimension i2 etc. One can easily see that this collection of paths constitutes a tree.

A completely unbalanced spanning tree of the 3-cube is presented in Fig. 1; the root of that tree

is node (0, 0, 0).

A completely unbalanced spanning tree T rooted at node z has d subtrees T 1,..., Td. Each of

them is rooted at one of the neighbors of z. Subtree Ti consists of all nodes y with the following

property: y1 = zi,..., Yi-1 = Zi_ 1 and y1i za. Therefore, Ti contains 2d-i nodes, hence the termi-

nology "completely unbalanced". By considering different index-orders for crossing the hypercube

dimensions, we can obtain other trees, isomorphic to the tree T defined earlier. Henceforth, we call

all of these trees completely unbalanced, as well.

Completely unbalanced trees have been used extensively in algorithms for hypercube commu-

nications (see [SaS85], [BOSTT89] and [JoH89]). Johnsson and Ho [JoH89] use the terminology

"spanning binomial tree".

2.1.3 The d Disjoint Spanning Trees

Johnsson and Ho [JoH89] have constructed an imbedding of d disjoint (directed) spanning out-

trees in the d-cube; they call them "d Edge-Disjoint Spanning Binomial Trees" (dESBT). This

imbedding consists of d completely unbalanced trees T(1),..., T(d). Tree T(J) is rooted at node ej.

The index-order of crossing the hypercube dimensions in the paths of tree T(W) is as follows:

(jmodd) + 1, [(j +) modd] + 1,..., [(j + d - 1)modd] + 1.

In Fig. 2, we present this construction for d = 3; this figure is taken from [JoH89].

2.2 Parallel Prefix

Let ao,...,a 2dl be given scalars. A special case of the prefix problem [LaF80] is defined
as follows: Compute all partial sums of the form '2 ' a.a This prefix problem can be solved

efficiently in parallel in time 2d, by using 2d+l - 1 processors connected in a complete binary tree

(*) All spanning trees considered throughout the paper are directed, unless otherwise specified. Also,

an out-tree is a tree emanating from its root.

4

with bidirectional arcs [LeL90]. The problem can also be solved in the d-cube in time 2d, by

embedding such a tree in the d-cube [LeL90]. At the end, node x knows the value of E'Y - a.

3. THE RESULTS

3.1 Lower Bounds

First, we establish a lower bound on the time required to perform h simultaneous broadcasts in

the d-cube. Clearly, under any routing algorithm, K broadcasts involve a total of at least (2 d - 1)K

packet transmissions. Since at most d2d transmissions may be performed in each slot, this task

requires at least (2--')K = O(K) time units. Furthermore, the completion time of a broadcast

is no less than the diameter d of the d-cube. Hence, it follows that under any routing algorithm

and for any K-tuple of broadcasting nodes, the task of interest takes time Qf(max{d, -- }). In the

analysis to follow, the K broadcasting nodes will be taken distinct, unless otherwise specified.

As already mentioned in §1, we are interested in devising an algorithm that attains the optimal

order of magnitude 0(max{d, K}) of the completion time, for any K and for any K-tuple of

broadcasting nodes. The simplest possible distributed algorithm for our task would be as follows:

Each of the 2 d nodes of the hypercube is confined to broadcast its packet (if it has one) along a

prespecified spanning tree. Unfortunately, such an algorithm would not always attain the optimal

order of magnitude for the completion time. Indeed, for any fixed node x and for any of the 2 d

prespecified trees except for the one rooted at x, there exists exactly one arc of the form (2x ® ej, x)

that belongs to the tree. Thus, there exists some arc (x @ ej., x) that belongs to at least z2-1 of the

trees. Therefore, as long as K < 2 _d, an adversary can choose the K broadcasting nodes in such

a way that all of the packets will be received by node x through arc (x E ej., x); in such a case the

broadcasts last for at least K time units. [If K is O(d-E2d) with 0 < E < 1, then the adversary can

force Q(dl-EK) of the packets to be transmitted over the same arc.] The above argument shows

that, in the worst case, the completion time of the task will not of the optimal order of magnitude,

unless there is some flexibility in choosing the paths to be followed by the packets. This conclusion

(and the argument we used) is reminiscent of an important result by Borodin and Hopcroft [BoH82]

on the inefficiency of oblivious routing when performing a permutation task.

3.2 An Efficient Algorithm

In this subsection, we present a distributed algorithm for performing K simultaneous broadcasts

in time O(max{d, K-}) for any choice of K and of the broadcasting nodes. The main idea of the

algorithm is as follows: The K packets to be broadcast are split evenly among the d Disjoint

Spanning Trees; each of the packets is sent to the root of one of these d trees, which will eventually

broadcast the packet along that tree. In more detail, the algorithm consists of three phases:

Phase 1: A prefix task is implemented (see §2.2), with input ao,..., a2d_1 , where a, = 1 if

node x wishes to broadcast a packet, and a, = 0 otherwise. This task lasts for 2d time units. After

5.

completion of this prefix computation, node x knows the value of 2 ; notice that if node..=a av = r~; notice that if node

x is to broadcast a packet, then r. equals its rank under the decreasing order within the subset

of broadcasting nodes. Clearly, we have ro = K; node (0,..., 0) also has to transmit this value to

its neighbors el,..., ed. The total duration of this phase is 2d + 1 slots and its termination can be

detected individually by each node.

Phase 2: For each broadcasting node x, its respective packet is sent to the root ej(,) of tree

T(i(0)), where the index j(z) is determined by the following rule: j(xz)d-f(r - 1) modd + 1. Let

Nj be the number of packets to be received by root ej; since the r,'s of the broadcasting nodes

are distinct and consecutive, taking all the values K,..., 1, it follows easily that Nj equals either

[KJ or K-]1, for all j E {1,...,d}. Therefore, the packets to be broadcast are split among the d

Disjoint Trees as evenly as possible. The path to be followed by the packet of node x is the reverse

of the path from ej(0) to x that is contained in T(J(W)). Since the d Disjoint Trees remain disjoint

after reversing all their constituent arcs, packets sent to different roots do not intefere. Due to

pipelining, all Nj packets destined for root ej will have been received after at most Nj + d - 1 slots

from the beginning of the present phase. Therefore, all the transmissions involved in this phase will

have been completed after maxj=l,...,dtNj + d - 1} = K +± d - 1 slots. It is possible that these

transmissions are completed earlier. However, unless K is a multiple of d, not all of the root nodes

e 1 ,...,ed can detect termination earlier, because a root ej that has already received [J packets

cannot tell whether or not there is still one more packet that it has yet to receive. On the other

hand, termination of the phase can be detected individually by each root ej at time [K] + d - 1,

because nodes el,..., ed received the value of K at the last slot of the first phase. (Notice that the

rest of the nodes do not have to detect termination of this phase, because they are not supposed

to triger the next phase.)

Phase 3: Each of the roots el,..., ed broadcasts the packets received during the first phase.

Root ej broadcasts the corresponding Nj packets along T(f); just after forwarding the Njth packet,

root ej starts broadcasting [along T()] a termination packet. Again, packets broadcast along

different trees do not interfere. By pipelining successive broadcasts over the same tree and taking

the termination packets into account, it follows easily that this phase lasts for maxj=l ,...,{Nj +d} =

[K] + d slots; termination is detected individually by each node.

It follows from the description of the algorithm that its total duration is 2[K1 + 4d, which

is O(max{d, K}). For K > d2, the completion time of the algorithm exceeds the lower bound

max{d, 2 K} by a factor that is very close to 2. In fact, for the case K = 2d, which corresponds

to a multinode broadcast, the first phase of the algorithm is not necessary, because it is known that

r, = 2d - x for every node x. We thus obtain a multinode broadcast algorithm with completion

time 2F2 1 + 2d- 1, which exceeds the optimal value [2-d- l] by a factor of 2. However, the

suboptimal algorithm just derived is much simpler to implement than the multinode broadcast

algorithms of [SaS85], [BOSTT89], and [JoH89]. Indeed, the former algorithm involves a total of

6

d + 1 spanning trees, whereas the latter involve a total of at least 2 d trees; also the trees used by

the algorithm discussed above can be described in a rather concise way, which reduces its memory

requirements even further. For K <c d2, the completion time of the algorithm exceeds the lower

bound max{d, 2'--1K by a factor that is close to 4; finally, for K = 0(d 2), the corresponding

factor is between 2 and 6, with the worst case arising for K = d2. (It should also be noted that
the quantity max{d, 2'-t lthe quantity max{d, O-'K} is not necessarily a tight lower bound for the completion time of the
task.) It is worth noting that K - 0(d 2) is the largest order of magnitude for K that can possibly

lead to a completion time of 0(d), i.e. of the same order of magnitude as the time for a single node
broadcast.

The algorithm presented above is distributed, that is, it does not require any centralized coor-

dination. Moreover, the algorithm is non-oblivious, meaning that the paths followed by different

packets are not selected independently.

Finally, it should be noted that the first phase can be avoided, by employing randomization.

Indeed, assume that each of the broadcasting nodes x selects randomly the value of j(x), with

Pr[j(z) = i] = d for all i E {1,...,d}. Then, by applying the Chernoff bound, it can be seen

that for any C > e there holds max{Nl,.. ., Nd) < C-• with high probability. Thus, we can fix a

C'* > e and run phase 2 (and resp. phase 3) for C* K + d - 1 (and resp. C* K + d) slots, without

running phase 1 at all; then, the algorithm lasts for 2C* K + 2d - 1 slots and it accomplishes the

task correctly with high probability (which depends on C* and K). Alternatively, we can guarantee

that the algorithm accomplishes the task correctly, and attain a completion time of O(max(d,))

with high probability. This can be accomplished by running phase 2 until nodes e,..., ed receive

a total of K packets; termination of phase 2 can be detected in a distributed fashion (with a small

overhead), because nodes 0 and el,..., ed know the value of K.

Throughout the derivation of the algoritlunhm, it was assunmed that the K broadcasting nodes were

distinct. If this is not the case, the value of a, (in the prefix computation) should be set to the
number of packets to be broadcast by node z; K now stands for the total number of packets to be

broadcast. If node z has a, > 2 packets, then it should send the mth packet to the root indexed

by (r , - a , - 1 + m)modd + 1, for in = 1,..., a,.

3.3 Further Results for Some Special Cases

Next, we present some simple algorithms for cases where K is known to have a special value.

3.3.1 The Case K = O(d)

Consider the following distributed algorithm: Each of the K nodes broadcasts its packet along

a completely unbalanced spanning tree rooted at itself, with all these trees having the same index-

order of crossing the hypercube dimensions; e.g. the increasing index-order. Suppose that a copy

Pzj(z) of the packet originating at a node x wishes to traverse some arc (z, zEej) at the same time

with the copy Pv,j(y) of another packet originating at node y. Then, both P,,j(x) and 'P,j(y) are

71

destined for the same subset of nodes, namely all nodes of the form z ($ v with vt = * = vjt = 0

and vi = 1. Therefore, if P,lj(z) traverses arc (z, z, (ej) before Pz,j(y), then Pz,i(y) (or copies

thereof to be generated later) will never be delayed again due to copies of the packet originating at

node x. This argument implies that each copy of a packet suffers at most K - 1 units of delay caused

by contention; thus, the algorithm terminates after at most d + K - 1 time units. Unfortunately,

this upper bound for the completion time is of the optimal order of magnitude O(max{d, K }) only

if K is O(d); moreover, since each node is confined in a prespecified spanning tree, there are cases

where the algorithm does not complete in O(max{d, - }) time units (see §3.1). The algorithm

above is faster than the one presented in §3.2 for all K < 3d.

3.3.2 The Case K = 2

Next, we present a distributed algorithm for performing 2 broadcasts simultaneously in d time

units, which is clearly the fastest possible.

We denote by x and y the two dictinct broadcasting nodes; moreover, let z and y be the nodes at

Hamming distance d from z and y, respectively. Using the distributed algorithm presented in §3.3.1,

we can perform the 2 simultaneous broadcasts in at most d + 1 time units. Since each copy of a

packet suffers at most one unit of delay caused by contention (see §3.3.1), the algorithm will last for

exactly d slots if the following property holds: Node z receives the packet of node x after d slots and

at the same time node y receives the packet of node y after d slots. This is guaranteed by introducing

the following simple priority discipline: Assume that two copies Pz,j(z) and Pz,j(y) of the packets

under broadcast collide at arc (z, z $(ej); if node a (and resp. node y) will eventually receive a copy

of P2,j(z) [and resp. of P,zj(y)], then P,zj(z) [and resp. P,,j(y)] should be transmitted first. To see
that this priority discipline works, it suffices to show the following property: If Pz,j(x) is destined

for a, then P1',j(y) cannot be destined for node y, and vice versa. To see this notice that when

the hypercube dimensions are crossed in increasing index-order (or in any other prespecified index-

order), then the paths from x to Z and from y to y are disjoint. Indeed, if an arc (w, w (ej) were

shared by these two paths, then we would have wl t1,. ..,wj_l zjX-l,wj = j,. .,Wd = zd

and at the same time w 1 $ Yl,...,Wjl 5 Yj-1 ,Wj = yj,..., Wd = yd; these imply that x = y,

which is a contradiction.

3.3.3 The Case K = d

For K = d, the algorithm of §3.3.1 lasts for at most 2d - 1 slots. This upper bound can be

tightened by introducing priority disciplines such as the one presented in §3.3.2. Nevertheless,

there still exist cases where the algorithm would take more than d time units. Below, we present an

algorithm that completes in d time units; however, this algorithm assumes that each broadcasting

node z knows its rank r. within the d-tuple of broadcasting nodes. The algorithm is as follows:

Node z will broadcast its packet along the completely unbalanced spanning tree (rooted at z) in

8

which the hypercube dimensions are crossed in the following index-order:

r, modd+ 1,(r, + 1)modd + ,...,(r. +d- 1)modd + 1;

moreover, at the mth slot, the packet of node x may only cross the permissible arcs of dimension

(r, + m - 2) modd + 1. To see that copies of different packets never collide, it suffices to see that

(r. + m - 2) modd + 1 $ (ry + m - 2) modd + 1 for xz $ y; this follows from the fact r, $ ry while

both ra, and ry belong to {1,...,d}.

As already established in §3.2, the ranks of the broadcasting nodes can be computed in 2d time

slots, by running a parallel prefix phase. If this overhead is taken into account, then the total

duration of the algorithm would be 3d slots; this is better than the time 4d + 2 taken by the

algorithm of §3.2, but it exceeds the completion time attained by the simple algorithm of §3.3.1.

Of course, if the same d-tuple of nodes is to perform a simultaneous broadcast several times, then

the computation of the ranks should be carried out only once; in such a case, the present algorithm

might be preferable. In the extreme case where one node has d packets to broadcast, then the

parallel prefix computation is redundant, and the algorithm takes d time units, which is the fastest

possible.

4. CONCLUSION

In this note, we have considered the communication task where, at he same time, each of K

nodes of the d-cube wishes to broadcast a packet. The parameter K was allowed to take any

value from 1 to 2d. We have analyzed a distributed algorithm that attains the optimal order of

magnitude for the completion time of this task for any value of K and for K-tuple of broadcasting

nodes; this algorithm is very simple to implement. The communication task discussed in this note

is a generalization of the multinode broadcast task, where all nodes of a network wish to perform

a broadcast simultaneously.

Acknowledgement: The authors are grateful to Tom Leighton for his helpful suggestions.

REFERENCES

[BeT89] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,

Prentice-Hall.

[BOSTT89] D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis, "Optimal Communi-

cation Algorithms for Hypercubes". Laboratory for Information and Decision Systems, Report

LIDS-P-1847, M.I.T.

[BoH82] A. Borodin and J.E. Hopcroft, "Routing, Merging and Sorting on Parallel Models of Computa-

tion", Proceedings of the 14th Annual ACM Symposium on Theory of Computing, pp. 338-344.

9

[JoH89] S.L. Johnsson and C.-T. Ho, "Optimmn Broadcasting and Personalized Connmmunication in Hy-

percubes", IEEE Trans. Comput., vol. 38, pp. 1249-1267.

[LaF80] R.E. Ladner and M.I. Fischer, "Parallel Prefix Computation", J. ACM, vol. 27, pp. 832-838.

[LeL90] T. Leighton and C.E. Leiserson, "Theory of Parallel and VLSI Computation", Laboratory for

Computer Science, Report LCS/RSS 6, M.I.T.

[SaS851 Y. Saad and M.H. Schultz, "Data Connmmunication in Hypercubes", Dept. of Computer Sciences,

Research Report YALEU/DCS/RR-428, Yale University.

[VaB90] E.A. Varvarigos and D.P. Bertsekas, personal communication.

10

000 f 3 100 T3000

101
00o o _ _ type of arc

T1

3 ~-- 111

Figure 1: A completely unbalanced spanning tree. for d = :3.

11

000

001 010/

01i 01 110 Oil 101 110

110 101 011

T() T(2) TO)

Figure 2: The d Disjoint Spanning Trees.

12

