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Abstract— Deterministic models of bacterial genetic circuits
commonly assume a well-mixed ensemble of species. This
assumption results in ordinary differential equations (ODEs)
describing the rate of change of the mean species concentration.
It is however well known that species are non-homogenously
distributed within a bacterial cell, where genes on the chro-
mosome are found mostly at the center of the cell while
synthetic genes residing on plasmids are often found at the
poles. Most importantly, ribosomes, the key gene expression
resource, are also arranged according to a non-homogenous
profile. Therefore, when analyzing the effects of sharing gene
expression resources, such as ribosomes, among synthetic ge-
netic circuits and chromosomal genes, it may be important
to consider the effects of spatial heterogeneity of the relevant
species. In this paper, we use a partial differential equation
(PDE) model to capture the spatial heterogeneity of species
concentration. Solutions to the model are gathered numerically
and approximations are derived via perturbation analysis in the
limit of fast diffusion. The solutions are compared to those of
the conventional “well-mixed” ODE model. The fast-diffusion
approximation predicts higher protein production rates for all
mRNAs in the cell and in some cases, these rates are more
sensitive to the activation of synthetic genes relative to the
well-mixed model. This trend is confirmed numerically using
common biological parameters to simulate the full PDE system.

I. INTRODUCTION AND MOTIVATION

Synthetic genetic circuits are usually designed by assem-
bling modules that have been previously characterized in
isolation [1]. Because circuit modules all share the same
limited resources required for gene expression, chiefly ri-
bosomes, the composition of modules often creates unpre-
dictable outcomes. In fact, when an input signal activates a
synthetic circuit which demands resources, it depletes the
resource pool and thus decreases the output of all other
circuits in the network. This undesired cross-talk between
circuits, prevents robust performance of modules and of the
network in which these modules are embedded. In [2], it was
shown that the expression levels of two synthetic genes with
no direct coupling were constrained to an isocost line due
to ribosome sharing. This cross-talk is not limited to local
interactions; over-producing synthetic proteins decreases free
ribosomes and thus lowers cellular growth rates [3].

It is desirable to use models that accurately capture
ribosome sharing to gain insight into designing circuits
within parameter ranges where cross-talk is minimal [4], as
well as to guide the design of solutions that mitigate the
effects of resource-sharing [5]. Current models, including
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the commonly used Ordinary Differential Equation (ODE)
model, assume that all the species in the cell are well-
mixed, and as such, do not capture any spatial heterogeneity.
However, ribosomes tend to localize and therefore are not
homogeneously distributed throughout the cell [6]. Further-
more, circuits tend to localize at the cells ends [7], away
from the chromosome which is near mid-cell. These spatial
features complicate ribosome transactions and raise doubt
on whether the well-mixed model has sufficient fidelity to
capture the effects of ribosome sharing on circuits behavior.

In this work, we propose a model of ribosome-sharing that
captures the experimentally observed non-homogeneity of
biomolecular species in the cell and investigate the coupling
between the expression levels of otherwise unconnected
genes. Specifically, we formulate a partial differential equa-
tion (PDE) model that captures the aforementioned spatial
features and ribosome sharing to predict protein expression.
The resulting nonlinear PDEs are solved numerically using
a collocation method. Furthermore, an approximation is
provided in the limit of fast diffusion.

In the limit of fast diffusion, the mRNA and ribosome
spatial concentration profiles are not homogeneous due to the
spatially varying available volume for the species to diffuse.
For the fast-diffusion approximation, all mRNAs in the cell
have a higher affinity to bind to ribosomes relative to the
standard “well-mixed” ODE model. The increased affinity
between mRNAs and ribosomes implies higher protein pro-
duction rates for all mRNAs in the cell and, in some cases,
these rates are more sensitive to the activation of synthetic
genes. Similar trends were observed for the full PDE model
relative to the well-mixed model via numerical simulations
using common biological parameters.

This paper is organized as follows. In Sec. II, we derive
the PDE model that we study in this paper. We consider
the input to the system of PDEs to be the activation of a
synthetic gene and the output to be the average concentration
per cell of the expression level of all other genes. In Sec. III,
matched asymptotic expansions are used to calculate an
approximation of the PDE in the limit of fast diffusion. The
implications of this approximation are provided in Sec. IV.
In Sec. V an example with realistic biological parameters is
provided. We end with conclusions and future work.

II. RIBOSOME SHARING MODEL

In this section, we derive a PDE model that captures
the spatial distribution of genes (chromosome or plasmid),
diffusion of species, and ribosome sharing among mRNAs.
The resulting equations are then cast in dimensionless form.
The inputs and outputs of the resulting system of PDEs are



Fig. 1: Cylindrical cell geometry. The distance between the mid-
cell and the poles is 𝐿. The horizontal dashed line denotes an axes
of symmetry and the vertical dashed line denotes symmetry about
the mid-cell. Plasmid genes are expressed at the cell poles. Endoge-
nous cellular mRNAs are expressed along the chromosome (green
line) whose density decreases away from mid-cell (increasing 𝑥). A
higher chromosome density at a location 𝑥 implies a lower available
volume 𝑣(𝑥) for diffusion. mRNAs diffuse through the chromosome
and compete for ribosomes.

specified and are used to determine how the activation of a
synthetic gene affects the expression of other genes, on the
chromosome or on plasmids. The well-mixed ODE model is
then introduced for comparison with the PDE model.

A. Geometry and General Diffusion Model

The cell actively regulates its geometry to achieve a near-
perfect cylindrical shape [8]. We model the cell as a cylinder
of length (𝐿). We assume angular and radial symmetry such
that the concentration of a species varies only axially (the
spatial 𝑥 direction). Symmetry relative to the mid-cell is
assumed and hence only half of the cell is considered. The
geometry is shown in Fig. 1.

For any given biomolecular species in the cell 𝑆, conserva-
tion of the number of molecules leads to the one-dimensional
balance equation (as derived in [9]):

𝜕𝑆(𝑥, 𝑡)

𝜕𝑡
= − 1

𝐴(𝑥)

𝜕

𝜕𝑥
[𝐽(𝑆, 𝑥)𝐴(𝑥)] + 𝜎(𝑆, 𝑥, 𝑡). (1)

Here 𝑡 denotes time, 𝑆(𝑥, 𝑡) is concentration per unit length,
𝐴(𝑥) is the cross-sectional area, 𝐽(𝑆, 𝑥) is the flux per
unit area per unit time, and 𝜎(𝑆, 𝑥, 𝑡) is a sink or source
term (e.g., biochemical reactions). We define 𝑣(𝑥) to be
the volume fraction (dimensionless) available to a species to
diffuse within the chromosome (Fig. 1). The 𝑣(𝑥) depends
on the local chromosome density at position 𝑥 and the size
of the species. An expression for the flux term, derived in
[12] is:

𝐽(𝑆, 𝑥) = −𝐷
(︂
𝜕𝑆(𝑥, 𝑡)

𝜕𝑥
𝑣(𝑥)− 𝑆(𝑥, 𝑡)

𝜕𝑣(𝑥)

𝜕𝑥

)︂
, (2)

where 𝐷 is the diffusion coefficient. The flux is driven
by two mechanisms: the first is concentration gradients,
which moves particles from high to low concentrations
and the second drives particles to regions with a higher
volume fraction. This second mechanism is refereed to as
the excluded volume effects. From (2), if |𝜕𝑆(𝑥,𝑡)

𝜕𝑥 𝑣(𝑥)| <
|𝑆(𝑥, 𝑡)𝜕𝑣(𝑥)𝜕𝑥 | and 𝜕𝑆(𝑥,𝑡)

𝜕𝑥
𝜕𝑣(𝑥)
𝜕𝑥 > 0, then the net flux coun-

terintuitively goes from low to high concentration. In Sec. IV,
we show that the excluded volume effects are responsible
for allowing inhomogeneous concentration gradients in the

limit of fast diffusion. For this work, we assume a constant
cross-sectional area along the axial direction. The boundary
conditions (BC) are flux-free at the cell poles and at the cell
center due to left-right symmetry:

𝐽(𝑆, 0) = 𝐽(𝑆,𝐿) = 0. (3)

Next, we specify the term 𝜎(𝑆, 𝑥, 𝑡) in (1) by giving the
biomolecular reactions that describe the sharing of ribosomes
by endogenous and synthetic mRNA species.

B. Diffusion in a Ribosome Sharing Context

Suppose the cell contains 𝑁 = 𝑁1 + 𝑁2 mRNA species
(𝑁1 endogenous and 𝑁2 synthetic) denoted as 𝑚𝑖(𝑥, 𝑡) for
𝑖 = 1, 2, . . . , 𝑁 , each binding to free ribosomes 𝑅(𝑥, 𝑡)
to form an mRNA-ribosome complex 𝑐𝑖(𝑥, 𝑡), which is
converted to protein 𝑃𝑖(𝑥, 𝑡) through the translation process
[10]. The corresponding biochemical reactions are [11]

∅ 𝛼i−→ mi, ∅ 𝛼r−→ R, mi
𝛾+𝜇−→ ∅, ci

𝜇−→ ∅, R
𝜇−→ ∅,

mi +R
ai


di

ci
𝜅i−→ Pi +mi +R, ci

𝛾−→ R, (4)

where 𝛾 is the rate of mRNA degradation; 𝜇 is the dilution
constant due to growth rate; 𝑎𝑖 and 𝑑𝑖 are the association
and dissociation constants, respectively, of mRNA-ribosome
binding; and 𝜅𝑖 is the rate at which proteins are synthesized.
The transcription profile 𝛼𝑖 = 𝛼𝑖(𝑥, 𝑡) determines whether
𝑚𝑖(𝑥, 𝑡) is transcribed from endogenous or synthetic genes.
We use 𝐷 to denote the average diffusion coefficient of
the mRNA-ribosome complex’s, which includes free mRNAs
as done in [12]. Similarly 𝐷𝑟 denotes the free-ribosome
diffusion coefficient. The available volumes for mRNA,
mRNA-ribosome complex, and free ribosomes are: 𝑣𝑚, 𝑣𝑐,
and 𝑣𝑟, respectively.

We lump all endogenous genes into one equivalent gene
(𝑁1 = 1) and assume that their mRNAs are synthesized
at a constant temporal rate with a spatial profile given
by: 𝛼𝑒(𝑥) = 𝛼𝑒,𝑙𝜌(𝑥), where 𝜌(𝑥) = 1

1+𝑒20(𝑥/𝐿−1/2) , is
the normalized local DNA density in the cell, empirically
calculated in [12]. The constant 𝛼𝑒,𝑙, is chosen such that
the total transcription in the cell �̄�𝑒 = 2

∫︀ 𝐿

0
𝛼𝑒(𝑥)𝑑𝑥. The

production of ribosomes is given by: 𝛼𝑟(𝑥) = 𝛼𝑟,𝑙𝜌(𝑥),

such that 2
∫︀ 𝐿

0
𝛼𝑟(𝑥)𝑑𝑥 = �̄�𝑟 for some specified cumulative

ribosome production �̄�𝑟 in the cell. For synthetic DNA
expressed from a plasmid, the mRNA transcription profile
𝛼𝑖(𝑥) is concentrated near the cell poles (𝑥 = 𝐿) [13],
such that 2

∫︀ 𝐿

0
𝛼𝑖(𝑥)𝑑𝑥 = �̄�𝑖, to achieve a total production

�̄�𝑖 of that synthetic mRNA per cell. The localization of
endogenous DNA mid-cell and of plasmid DNA in the cell
poles is illustrated in Fig. 1.

We work with variables and parameters in their dimension-
less form to identify the underlying time and length scales
that govern the physics of the model. We nondimensionalize
the system variables using the mRNA degradation (𝛾) as the
characteristic time scale, the endogenous mRNA per length
(𝛼𝑒,𝑙

𝛾 ) as the characteristic concentration per length scale,
and the length of the cell (𝐿) as the characteristic length:



𝑡* = 𝑡𝛾, 𝑦* = 𝑦 𝛾
𝛼𝑒,𝑙

, 𝑥* = 𝑥
𝐿 , where 𝑦 denotes some

general concentration per unit length and the superscript of
* is used on the dimensionless variable. All concentrations
are related to the endogenous mRNA production because it
is typically known. The dimensionless mRNA and complex
dynamics for 𝑖 = 1, 2, . . . , 𝑁 are given by:

𝜕𝑚*
𝑖

𝜕𝑡*
= 𝜒𝑚

(︂
𝜕2𝑚*

𝑖

𝜕𝑥*2
𝑣𝑚 −𝑚*

𝑖

𝜕2𝑣𝑚
𝜕𝑥*2

)︂
+ 𝛼*

𝑖

+𝐾𝑖𝑐
*
𝑖 − 2𝜃𝑖𝑅

*𝑚*
𝑖 − (1 + 𝜇*)𝑚*

𝑖 , (5a)

𝜕𝑐*𝑖
𝜕𝑡*

= 𝜒𝑚

(︂
𝜕2𝑐*𝑖
𝜕𝑥*2

𝑣𝑐−𝑐*𝑖
𝜕2𝑣𝑐
𝜕𝑥*2

)︂
+2𝜃𝑖𝑅

*𝑚*
𝑖−(1+𝐾𝑖+𝜇

*)𝑐*𝑖 ,

(5b)
where 𝛼*

𝑖 = 𝛼𝑖

𝛼𝑒,𝑙
, 𝐾𝑖 =

𝜅𝑖+𝑑𝑖

𝛾 and 2𝜃𝑖 =
𝑎𝑖𝛼𝑒,𝑙

𝛾2 , 𝜒𝑚 = 𝐷
𝐿2𝛾 ,

𝜇* = 𝜇
𝛾 , and 𝑥* ∈ [0, 1]. The ribosome dynamics are:

𝜕𝑅*

𝜕𝑡*
= 𝜒𝑟

(︂
𝜕2𝑅*

𝜕𝑥*2
𝑣𝑟 −𝑅* 𝜕

2𝑣𝑟
𝜕𝑥*2

)︂
+
∑︁𝑁

𝑖=1

(︀
(𝐾𝑖 + 1)𝑐*𝑖 − 2𝜃𝑖𝑅

*𝑚*
𝑖

)︀
+ 𝛼*

𝑟𝜌− 𝜇*𝑅*, (5c)

where 𝜒𝑟 = 𝐷𝑟

𝐿2𝛾 and 𝛼*
𝑟 =

𝛼𝑟,𝑙

𝛼𝑒,𝑙
. The boundary conditions

remain flux-free as in (3) for all species. A quantity of
interest is the mean mRNA-ribosome complex given by:

𝑐*𝑖 (𝑡
*) = 2

∫︁ 1

0

𝑐*𝑖 (𝑥
*, 𝑡*)𝑑𝑥*, (5d)

which we therefore view as the output of the system of PDEs
given in equations (5a)-(5c). The factor two accounts for
the other symmetric half of the cell. We are interested in
𝑐*𝑖 (𝑡

*) because it serves as a proxy for gene expression. The
production rate of protein 𝑃

*
𝑖 is given by 𝜅𝑖𝑐*𝑖 and it is the

quantity sensitive to fluctuations in ribosome concentration.
The output is taken in terms of concentrations per cell for
comparability with the commonly used ordinary differential
equation (ODE) model, which assumes that the contents in
the cell to be spatially homogeneous (referred to as “well-
mixed” [14]). Furthermore, concentrations per cell are often
the variables measured experimentally [15].

For the remainder of this paper, we proceed with the
assumption that all variables are in their dimensionless form
and hence, for ease of notation drop the * superscript.

C. Inputs and Outputs
To quantify the extent to which the activation of a synthetic

gene affects the mean expression of other genes (𝑐𝑖 in (5d)),
we let the input of system (5) be mRNA production rate
𝛼𝑖(𝑥, 𝑡), for some 𝑖. For a variable 𝑦(𝑥, 𝑡), the per cell
concentration is denoted using an overbar and it is given
by: 𝑦(𝑡) = 2

∫︀ 1

0
𝑦(𝑥, 𝑡)𝑑𝑥. Therefore, the spatially averaged

dynamics of (5) are given by:
𝑑𝑚𝑖

𝑑𝑡
= �̄�𝑖 +𝐾𝑖𝑐𝑖 − (1 + 𝜇)𝑚𝑖 − 𝜃𝑖𝑓𝑖(𝑡)𝑚𝑖𝑅, (6a)

𝑑𝑐𝑖
𝑑𝑡

= −(1 +𝐾𝑖 + 𝜇)𝑐𝑖 + 𝜃𝑖𝑓𝑖(𝑡)𝑚𝑖𝑅, (6b)

𝑑𝑅

𝑑𝑡
= �̄�𝑟 − 𝜇𝑅+

𝑁∑︁
𝑖=1

(︀
(1 +𝐾𝑖)𝑐𝑖 − 𝜃𝑖𝑓𝑖(𝑡)𝑚𝑖𝑅

)︀
, (6c)

where

𝑓𝑖(𝑡) =

∫︀ 1

0
𝑚𝑖(𝑥, 𝑡)𝑅(𝑥, 𝑡)𝑑𝑥∫︀ 1

0
𝑚𝑖(𝑥, 𝑡)𝑑𝑥

∫︀ 1

0
𝑅(𝑥, 𝑡)𝑑𝑥

. (7)

Even though (6) is written in terms of ODEs, to calculate 𝑐𝑖,
the PDEs must be solved because (7) depends on the PDE
variables 𝑚𝑖(𝑥, 𝑡),∀𝑖 and 𝑅(𝑥, 𝑡). However, in Sec. IV, we
show that in the limit of fast diffusion, (7) depends solely
on the available volume profiles and hence the PDEs can be
bypassed. For comparison, we define the well-mixed model.

Definition 1: The well-mixed ODE model is given by
setting 𝑓𝑖(𝑡) = 1, ∀𝑡 ∈ [0,∞),∀𝑖 in (6) and (7).

The term (7) can be interpreted as a modification to 𝜃𝑖
which is a measure of the affinity between the mRNA and
ribosome. Hence, 𝑓𝑖 provides a measure to compare how
close the average concentrations predicted by the PDE model
are to those of the “well-mixed” ODE model.

Lemma 1: Suppose that at some fixed 𝑡, 𝑚𝑖(𝑥, 𝑡) and
𝑅(𝑥, 𝑡) (as in (7)) are both strictly monotone in 𝑥. If
𝜕𝑅
𝜕𝑥

𝜕𝑚
𝜕𝑥 > 0, then 𝑓𝑖 > 1. If 𝜕𝑅

𝜕𝑥
𝜕𝑚
𝜕𝑥 < 0, then 𝑓𝑖 < 1. Equality

holds (𝑓𝑖 = 1) if and only if either 𝑚(𝑥, 𝑡) or 𝑅(𝑥, 𝑡) are
constant in 𝑥.
Proof: This follows from applying the Chebyshev Integral
Inequality [16] to (7). �

Thus, if 𝑓𝑖 > 1, it implies that 𝑚𝑖 has a higher affinity to
ribosomes relative to the well-mixed model.

III. ANALYSIS: LIMIT OF FAST DIFFUSION

For a given species with diffusion coefficient 𝐷, the time
scale associated with diffusion is given by 𝜏𝐷 = 𝐷

𝐿2 . In E.
coli, diffusion is fast due to its small length (𝐿 = 1.5𝜇m).
The diffusion time of a protein across the cell is about 0.01
seconds, which is fast compared to the cell doubling time
(greater than 20 minutes) and mRNA degradation, which
is about 3 minutes [17]. In what follows, we use matched
asymptotic expansions in time to derive an approximation
for (5) in the limit of fast diffusion [18]. If the available
volume fraction term in (2) were spatially constant, then
the results in [19] could be directly applied. However, due
to the space varying available volume fraction term in (2),
this approximation cannot be readily derived. Thus, in the
following section we provide the mathematical machinery
needed to derive a fast-diffusion approximation to (5).

A. Preliminaries

Notation: Let 𝑧 = [𝑧1, . . . , 𝑧𝑛]
𝑇 ∈ R𝑛 and the 𝑗-th

component of 𝑧 is denoted as 𝑧𝑗 . A vector of zeros is denoted
as 0𝑛 = [0, . . . , 0]𝑇 ∈ R𝑛 and we use 𝐴 = diag(𝑣) ∈ R𝑛×𝑛

to refer to a matrix with all zeros in the off-diagonals and
diagonal elements specified by the vector 𝑣. The (𝑗, 𝑘)-th
element of 𝐴 is denoted by 𝐴𝑗,𝑘 and 𝐼𝑛,𝑛 is the identity
matrix in R𝑛. R𝑛

+ denotes the positive orthant of R𝑛. Let
Ω = (0, 1), Ω = [0, 1], 𝜕Ω = {0, 1}

Definition 2: (Weighted 𝐿2 space) For a continuous func-
tion 𝑣(𝑥) : Ω → R+ we denote 𝐿2

𝑣(Ω) as a weighted
space of the square integrable functions such that 𝑓 ∈



𝐿2
𝑣(Ω) if and only if 𝑓

√︀
𝑣(𝑥) ∈ 𝐿2(Ω). The inner-product

is defined as (𝑓, 𝑔)𝑣 :=
∫︀
Ω
𝑓(𝑥)𝑔(𝑥)𝑣(𝑥), for 𝑓, 𝑔 ∈ 𝐿2

𝑣 .
Definition 3: (Linear Differential Operator: ℒ𝑣) For a

continuously differentiable function 𝑣(𝑥) : Ω → R+,
we define the operator ℒ𝑣 : 𝐿2

𝑣(Ω) → 𝐿2
𝑣(Ω), where

ℒ𝑣(𝑦) := − 1
𝑣(𝑥)

𝜕
𝜕𝑥

(︀
𝑣(𝑥)2 𝜕

𝜕𝑥 (𝑦)
)︀
, with domain 𝐷(ℒ𝑣) =

{𝑦 ∈ 𝐿2
𝑣(Ω) : 𝑦 and 𝜕𝑦

𝜕𝑥 are absolutely continuous, ℒ𝑣(𝑦) ∈
𝐿2
𝑣(Ω), and 𝜕𝑦

𝜕𝑥

⃒⃒
𝜕Ω

= 0}.
Lemma 2: (Positive semidefinite and self-adjoint Opera-

tor) The operator ℒ𝑣 in Definition 3:
I Has countably many, real, and distinct eigenvalues such

that 𝜆0 < . . . < 𝜆𝑛 < . . . and 𝜆𝑛 → ∞ as 𝑛→ ∞
II The set of corresponding eigenfunctions {𝜓𝑖(𝑥)} forms

an orthonormal basis for 𝐿2
𝑣(Ω)

III 𝜆0 = 0 and 𝜓0 = (
∫︀
Ω
𝑣)−1/2.

Proof: The proof of (I) and (II) follow from Sturm-Liouville
theory [20]. To prove (III), notice ℒ𝑣𝜓𝑖 = 𝜆𝑖𝜓𝑖 and taking
the inner product of both sides with 𝜓𝑖, using orthonormality,
and integrating by parts:

𝜆𝑖 = (𝐿𝜓𝑖, 𝜓𝑖)𝑣 =

∫︁
Ω

(︂
− 𝜕

𝜕𝑥

(︂
𝑣2

𝜕

𝜕𝑥
𝜓𝑖

)︂)︂
𝜓𝑖

= −𝜓𝑖𝑣
2

�
�
��>

0
𝜕𝜓𝑖

𝜕𝑥

⃒⃒
𝜕Ω

+

∫︁
Ω

(︂
𝑣
𝜕𝜓𝑖

𝜕𝑥

)︂2

≥ 0. (8)

The minimum of (8) is achieved (𝜆0 = 0) for 𝜓0 =
(
∫︀
Ω
𝑣)−1/2, since ℒ𝑣(𝜓0) = 0 and ||𝜓0||𝐿2

𝑣
=

√︀
(𝜓0, 𝜓0)𝑣 =

1 and therefore 𝜆𝑖 > 0,∀𝑖 > 0. �
Next, we introduce a general system and approximate its

solution in the limit of a parameter approaching zero. In
Sec. IV, after a change of coordinates, we apply the results
of the analysis to (5) in the limit of fast diffusion.

For 𝑧 ∈ R𝑛 and to each 𝑧𝑗 we attach a 𝑣𝑗(𝑥) : Ω →
(0, 1] which is twice continuously differentiable. Consider
the system:

𝜕𝑧(𝑥, 𝑡)

𝜕𝑡
= 𝐴ℒ(𝑥, 𝑧) + 𝐹 (𝑥, 𝑧), 𝑡 > 0, 𝑥 ∈ Ω, (9a)

𝜕𝑧(𝑥, 𝑡)

𝜕𝑥
= 0𝑁 , 𝑡 > 0, 𝑥 ∈ 𝜕Ω, (9b)

𝑧(𝑥, 0) = 𝑧00(𝑥), 𝑥 ∈ Ω, (9c)

where 𝐴 = diag([𝜒1, . . . , 𝜒𝑛]
𝑇 ) for 𝜒𝑖 ∈ R+, ℒ : Ω ×

R𝑛 → R𝑛 such that ℒ𝑗 = −ℒ𝑣𝑗 (𝑧
𝑗) as in Definition 3,

𝐹 : Ω × R𝑛 → R𝑛, and 𝑧00 : Ω → R𝑛 and 𝑧𝑗
00 ∈ 𝐿2

𝑣𝑗 (Ω).
It is assumed that 𝐹 is twice continuously differentiable in
both of its arguments and 𝐹𝑖 ≥ 0 when 𝑥 ∈ Ω and 𝑧𝑖 = 0.
These assumptions guarantee well-posedness of (9) [21].

B. Approximate solution through Matched Asymptotic Ex-
pansions

Let 𝐴 = 1
𝜖 𝐼𝑛,𝑛 with 0 < 𝜖≪ 1 such that (9a) becomes:

𝜖
𝜕𝑧

𝜕𝑡
= ℒ(𝑥, 𝑧) + 𝜖𝐹 (𝑥, 𝑧), (10)

subject to (9b) and (9c). To obtain an approximate solution to
(10) as 𝜖→ 0+, we use the Method of Matched Asymptotic
Expansions [18], which is often used for singularly perturbed

systems (see [19], for example). The following preliminary
claim is needed to carry out the expansion.

Claim 1: For a continuously differentiable function 𝑣(𝑥) :
Ω → R+ and some 𝑦00(𝑥) ∈ 𝐿2

𝑣(Ω), the solution to:

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
+ ℒ𝑣(𝑦) = 0 𝑡 > 0, 𝑥 ∈ Ω (11)

𝑦(𝑥, 0) = 𝑦00(𝑥), 𝑥 ∈ Ω, (12)

is given by 𝑦 =
∫︀
Ω
𝑦00(𝑥)𝑣(𝑥)∫︀
Ω
𝑣(𝑥)

+𝒪(𝑒−𝛿𝑡) for some 𝛿 > 0 .
Proof: Assume the solution is in the form 𝑦(𝑥, 𝑡) =
𝜓(𝑥)𝑌 (𝑡) and thus

𝜕
𝜕𝑡𝑌 (𝑡)

𝑌 (𝑡)
= −ℒ𝑣(𝜓(𝑥))/𝜓(𝑥) = −𝜆 =⇒ 𝑌 (𝑡) = 𝛼𝑒−𝜆𝑡.

notice that 𝜆 is an eigenvalue of ℒ𝑣 and 𝜓(𝑥) is the associ-
ated eigenfunction. Thus from Lemma 2, the solution can be
written as 𝑦(𝑥, 𝑡) = 𝛼0(

∫︀
Ω
𝑣(𝑥))−1/2 +

∑︀∞
𝑖=1 𝛼𝑖𝜓𝑖(𝑥)𝑒

−𝜆𝑖𝑡

where 𝜆𝑖 > 0,∀𝑖 > 0. Since {𝜓𝑖} forms an orthonormal
basis of 𝐿2

𝑣(Ω), the initial conditions are satisfied and any
other solution can be written in terms of {𝜓𝑖}, justifying
the separation of variables. Notice 𝑦00(𝑥) =

∑︀∞
𝑖=0 𝛼𝑖𝜓𝑖 and

by orthogonality (𝑦00, 𝜓0)𝑣 = (𝛼0𝜓0, 𝜓0)𝑣 = 𝛼0 and thus
𝛼0 = (𝑦00, 𝜓0)𝑣 . Here 𝛿 = 𝜆1 > 0. �

Theorem 1: An approximate solution to (10) subject to
(9b) and (9c) as 𝜖→ 0+, is given by:

𝑧𝑗(𝑥, 𝑡) = 𝛽𝑗(𝑡) +𝒪(𝑒−𝛿𝑗𝑡/𝜖) +𝒪(𝜖), (13a)

where 𝛿𝑗 > 0 and 𝛽𝑗(𝑡) satisfies:

𝑑𝛽𝑗(𝑡)

𝑑𝑡
=

∫︀
Ω
𝐹 𝑗(𝑥,𝛽)𝑣𝑗(𝑥)∫︀

Ω
𝑣𝑗(𝑥)

; 𝛽𝑗(0) =

∫︀
Ω
𝑧𝑗
00(𝑥)𝑣𝑗(𝑥)∫︀
Ω
𝑣𝑗(𝑥)

,

(13b)
where 𝛽 = [𝛽1, . . . , 𝛽𝑛]

𝑇 .
Proof: To study the fast dynamics of (10), we introduce
the fast time scale 𝜏 = 𝑡/𝜖 and the inner solution of (10)
𝑧in(𝜏, 𝑥, 𝜖), which is required to satisfy:

𝜕𝑧in

𝜕𝜏
= ℒ(𝑥, 𝑧in) + 𝜖𝐹 (𝑥, 𝑧in), (14)

with the initial and boundary conditions given in (9b)-(9c).
Assume the asymptotic expansion of 𝑧in in terms of 𝜖:

𝑧in(𝑥, 𝜏, 𝜖) =

∞∑︁
𝑖=0

𝜖𝑖𝑢𝑖(𝑥, 𝜏), 𝜖→ 0+, (15)

where each 𝑢𝑖 satisfies the boundary conditions in (9b) and

𝑢0(𝑥, 0) = 𝑧00(𝑥), 𝑢𝑖(𝑥, 0) = 0𝑛,∀𝑖 > 0.

Substituting (15) into (14) and collecting the 𝒪(1) terms, we
obtain:

𝜕𝑢0(𝑥, 𝜏)

𝜕𝜏
= ℒ(𝑥,𝑢0). (16)

The solution to (16) is given by Claim 1 and thus:

𝑧𝑗
in = 𝑢𝑗

0 +𝒪(𝜖) =

∫︀
Ω
𝑧𝑗
00𝑣𝑗(𝑥)∫︀

Ω
𝑣𝑗(𝑥)

+𝒪(𝑒−𝛿𝑗𝑡/𝜖) +𝒪(𝜖).



To determine the dynamics governed by the slow time scale
𝑡, we introduce the outer solution 𝑧out(𝑥, 𝑡, 𝜖), and require it
to satisfy

𝜖
𝜕𝑧out

𝜕𝑡
= ℒ(𝑥, 𝑧out) + 𝜖𝐹 (𝑥, 𝑧out),

along with the boundary conditions in (9b). Rather than
satisfying the initial conditions (9c), we require 𝑧out(𝑥, 𝑡 →
0, 𝜖) = 𝑧in(𝑥, 𝜏 → ∞, 𝜖). We assume the following asymp-
totic expansion of 𝑧out in terms of 𝜖:

𝑧out(𝑥, 𝑡, 𝜖) =

∞∑︁
𝑖=0

𝜖𝑖�̂�𝑖(𝑥, 𝑡), 𝜖→ 0+, (17)

where each �̂�𝑖 satisfies (9b). Substituting (17) into (10),
yields:

0 = ℒ(𝑥, �̂�0), (18)
𝜕�̂�0

𝜕𝑡
− 𝐹 (𝑥, �̂�0) = ℒ(𝑥, �̂�1), (19)

where (18) and (19) were obtained by collecting the 𝒪(1)
and 𝒪(𝜖) terms, respectively. From (18), �̂�𝑗

0 = 𝛽𝑗(𝑡),
for some undetermined 𝛽𝑗(𝑡) ∈ R. From the boundary
conditions (9b): (ℒ𝑣𝑗 (�̂�

𝑗
1), 1)𝑣𝑗 = 0, thus

∫︀
Ω

[︀
(
𝜕�̂�𝑗

0

𝜕𝑡 −
𝐹 𝑗(𝑥, �̂�0))𝑣𝑗(𝑥)

]︀
= 0. Hence, 𝛽𝑗(𝑡) is constrained as shown

in (13b). Finally, 𝑧𝑗 = 𝑧𝑗
in +𝑧𝑗

out −
∫︀
Ω
𝑧𝑗
00𝑣𝑗(𝑥)∫︀

Ω
𝑣𝑗(𝑥)

as in (13a). �
Remark 1: For 𝑧𝑗 as in (13), we define 𝑤𝑗(𝑥, 𝑡) =

𝑣𝑗(𝑥)𝑧
𝑗(𝑥, 𝑡), then 𝑤𝑗 =

∫︀
Ω
𝑤𝑗 = (𝑧𝑗 , 1)𝑣𝑗 and by the or-

thogonality of the eigenfunctions: 𝑤𝑗(𝑡) = 𝛽𝑗(𝑡)
∫︀
Ω
𝑣𝑗(𝑥)+

𝒪(𝜖),∀𝑡 ≥ 0. Thus, the spatially averaged solution 𝑤𝑗(𝑥),
only depends on the zeroth eigenvalue of ℒ𝑣𝑗

.

IV. IMPLICATIONS TO RESOURCE SHARING

Next, we apply the theoretical findings from Sec. III to
the PDE system (5) after a change of coordinates and obtain
an approximate solution in the limit of fast diffusion. We
discuss the implications of the approximation in the context
of ribosome sharing and compare to the well-mixed model.

A. Approximate Solution

Claim 2: Let 𝑦 = [𝑅,𝑚1, . . . ,𝑚𝑁 , 𝑐1, . . . , 𝑐𝑁 ]𝑇 be the
species corresponding (5) and 𝑀 = 2𝑁+1. For each species
𝑦𝑗 we let 𝑣𝑗(𝑥) : Ω̄ → (0, 1] be the associated available
volume profile. Assume 𝑣𝑗(𝑥) and 𝛼𝑗(𝑥) are sufficiently
smooth ∀𝑗 and 𝜒𝑚 = 𝜒𝑟 = 𝜒 = 1

𝜖 , then as 𝜖→ 0+:

𝑦𝑗 = 𝑣𝑗(𝑥)

(︂
𝑤𝑗(𝑡)∫︀
Ω
𝑣𝑗

+𝒪(𝑒−𝛿𝑗𝑡/𝜖) +𝒪(𝜖)

)︂
, (20a)

where 𝛿𝑗 > 0 and 𝑤(𝑡) = [𝑅,𝑚1, . . . ,𝑚𝑁 , 𝑐1, . . . , 𝑐𝑁 ]𝑇 is
the solution of (6) with (7) given by

𝑓𝑗 = 𝑓 =

∫︀
Ω
𝑣𝑟𝑣𝑚∫︀

Ω
𝑣𝑟

∫︀
Ω
𝑣𝑚

, ∀𝑗. (20b)

The spatial averaged solution is given by,

𝑦(𝑡) =

∫︁
Ω

𝑦(𝑥, 𝑡) = 𝑤(𝑡) +𝒪(𝜖). (20c)

Proof: Denoting 𝑧 ∈ R𝑀 such that 𝑧𝑗 = 𝑦𝑗/𝑣𝑗 , then the
𝑧 dynamics are in the form given by (9) where 𝑧𝑗

00 =
𝑦𝑗(𝑥, 0)/𝑣𝑗(𝑥) and 𝐴 = 𝜒𝐼𝑁,𝑁 . Thus, applying Theorem 1
we arrive at (20) and (20b). Finally, (20c) follows from the
discussion in Remark 1. �

Thus, in the limit of fast diffusion, any initial spatial
distribution 𝑦𝑗(𝑥, 0) will converge to a spatial profile mir-
roring the available volume profile 𝑣𝑗(𝑥) (not homogenize)
on a fast time scale associated with diffusion. The spatial
average value per cell

∫︀
Ω
𝑦𝑗(𝑥, 0) is conserved during this

fast transient. Thereon, the reaction dynamics take place on
this spatial manifold. Since concentrations per cell are given
by (20c), it implies that to compute the output (5d) in this
limiting case, one can bypass solving the PDEs in (5). Rather,
one solves the ODE model (6) with (7) given by (20b).

B. Implications of Approximate Solution

If (7) is given by 𝑓𝑖 = 𝑓, ∀𝑖, then: when 𝑓 = 1, (6)
coincides with the well-mixed model and when 𝑓 is given
by (20b), (6) coincides with the fast-diffusion approximation.
We now determine how these different values of 𝑓 affect the
output of interest 𝑐𝑖 (5d). For these two cases 𝑓 can be treated
as a system parameter.

First, we bound (20b). In [12] the available volume profiles
are all strictly monotonically increasing since the chromo-
some density was experimentally observed to monotonically
decrease away from mid-cell and by definition the profiles
are bounded below by zero and above by one. Thus leading
to the following clam:

Claim 3: For (20b), suppose that there exists
𝑎𝑟, 𝑏𝑟, 𝑎𝑚, 𝑏𝑚 ∈ R such that 0 < 𝑎𝑟 ≤ 𝑣𝑟(𝑥) ≤ 𝑏𝑟 ≤ 1,
0 < 𝑎𝑚 ≤ 𝑣𝑚(𝑥) ≤ 𝑏𝑚 ≤ 1, and 𝑣𝑟(𝑥), 𝑣𝑚(𝑥) are strictly
monotonically increasing for ∀𝑥 ∈ [0, 1], then:

1 < 𝑓 ≤ 1 +
( 𝑏𝑚𝑎𝑚

− 1)( 𝑏𝑟𝑎𝑟
− 1)

4
.

Proof: By Lemma 1, 𝑓 > 1 and by the Grüss inequality [16]:⃒⃒⃒⃒ ∫︀
Ω
𝑣𝑟(𝑥)𝑣𝑚(𝑥)−

∫︀
Ω
𝑣𝑟(𝑥)

∫︀
Ω
𝑣𝑚(𝑥)

⃒⃒⃒⃒
≤ (𝑏𝑚−𝑎𝑚)(𝑏𝑟−𝑎𝑟)

4

=⇒ 𝑓 − 1 ≤ (𝑏𝑚 − 𝑎𝑚)(𝑏𝑟 − 𝑎𝑟)

4
∫︀
Ω
𝑣𝑟(𝑥)

∫︀
Ω
𝑣𝑚(𝑥)

≤
( 𝑏𝑚𝑎𝑚

− 1)( 𝑏𝑟𝑎𝑟
− 1)

4

�
The results of Claim 3 imply that the effective affinity of

each mRNA to a ribosome is higher for the fast-diffusion
approximation (20) compared to the well-mixed model. For
the reminder of this section, we determine the implications of
this result on the overall magnitude of 𝑐𝑖 and how sensitive
this quantity is to the activation of a synthetic gene.

We consider the steady state concentrations (𝑡 → ∞) of
the ODEs in (6) to determine 𝑐𝑖. We define the total mRNA
𝑚𝑖,𝑇 = 𝑚𝑖 + 𝑐𝑖 and total ribosomes 𝑅𝑇 = 𝑅 +

∑︀𝑁
𝑖=1 𝑐𝑖.

Thus, from (6):

𝑑𝑚𝑖,𝑇

𝑑𝑡
= �̄�𝑖 − (1 + 𝜇)𝑚𝑖,𝑇 ;

𝑑𝑅𝑇

𝑑𝑡
= �̄�𝑟 − 𝜇𝑅𝑇 . (21)

The steady states of (21) are: 𝑚𝑖,𝑇 = �̄�𝑖

1+𝜇 and 𝑅𝑇 = �̄�𝑟

𝜇 .
Denoting the dimensionless dissociation constant as 𝐾𝑑,𝑖 =



1+𝐾𝑖+𝜇
𝜃𝑖

, the steady state of the ODEs in (6) are given by
𝑚𝑖 =

𝑚𝑖,𝑇

1+𝑅𝑓𝑖/𝐾𝑑,𝑖
and

𝑐𝑖 =
𝑚𝑖,𝑇𝑅𝑓𝑖/𝐾𝑑,𝑖

1 +𝑅𝑓𝑖/𝐾𝑑,𝑖

; 𝑅𝑇 = 𝑅+

𝑁∑︁
𝑖=1

𝑚𝑖,𝑇𝑅𝑓𝑖/𝐾𝑑,𝑖

1 +𝑅𝑓𝑖/𝐾𝑑,𝑖

. (22)

Claim 4: Let 𝑐𝑖(𝑓,𝑅) be given explicitly and 𝑅(𝑓) im-
plicitly by (22), with 𝑓𝑖 = 𝑓, ∀𝑖, where 𝑚𝑖,𝑇 , 𝐾𝑑,𝑖, and
𝑅𝑇 are fixed parameters. Then, 𝑐𝑖 and 𝑅 are monotonically
increasing and decreasing, respectively, with 𝑓 .
Proof: We show 𝑑𝑐𝑖

𝑑𝑓 > 0 and 𝑑𝑅
𝑑𝑓 < 0 independent of 𝑓 .

Taking the absolute derivative with respect to 𝑓 in (22):
𝑑𝑅
𝑑𝑓 =

−
∑︀𝑁

𝑘=1

𝜕𝑐𝑘
𝜕𝑓

1+
∑︀𝑁

𝑘=1

𝜕𝑐𝑘
𝜕𝑅

, where, 𝜕𝑐𝑘
𝜕𝑓 =

𝑚𝑘,𝑇𝑅/𝐾𝑑,𝑘

(1+𝑅𝑓/𝐾𝑑,𝑘)2
= 𝑅

𝑓
𝜕𝑐𝑘
𝜕𝑅 ,

and noting the positivity of 𝜕𝑐𝑘
𝜕𝑓 and 𝜕𝑐𝑘

𝜕𝑅
implies 𝑑𝑅

𝑑𝑓 < 0,∀𝑓,
as desired. Similarly:

𝑑𝑐𝑖
𝑑𝑓

=
𝜕𝑐𝑖
𝜕𝑓

+
𝜕𝑐𝑖

𝜕𝑅

𝑑𝑅

𝑑𝑓
=
𝜕𝑐𝑖
𝜕𝑓

(︂
1−

𝑓

𝑅

∑︀𝑁
𝑘=1

𝜕𝑐𝑘
𝜕𝑓

1 + 𝑓

𝑅

∑︀𝑁
𝑘=1

𝜕𝑐𝑘
𝜕𝑓

)︂
=
𝜕𝑐𝑖
𝜕𝑓

(︂
1

1 + 𝑓

𝑅

∑︀𝑁
𝑘=1

𝜕𝑐𝑘
𝜕𝑓

)︂
> 0,∀𝑓.

�
Claim 3 and Claim 4 imply that the 𝑐𝑖 predicted by the

fast-diffusion approximation is higher than that of the well-
mixed model at the expense of 𝑅.

As discussed in Sec. II-C, the input to the system (5) is
𝛼𝑗(𝑥, 𝑡) for some 𝑗. In terms of concentrations per cell,
as in (6), this input at steady state is denoted as 𝛼𝑗 =
2
∫︀
Ω
𝛼𝑗(𝑥, 𝑡 → ∞). Solutions of the well-mixed model and

the fast-diffusion approximation (20), do not depend on the
spatial form of 𝛼𝑗(𝑥, 𝑡) explicitly, but rather 𝛼𝑗 . From (21),
a higher 𝛼𝑗 increases 𝑚𝑗,𝑇 , and from (22), this decreases
𝑅 and 𝑐𝑖,∀𝑖 ̸= 𝑗. To quantify how increasing 𝛼𝑗 decreases
𝑐𝑖, 𝑖 ̸= 𝑗, for the fast-diffusion approximation relative to the
well-mixed model, let 𝑓𝑖 = 𝑓, ∀𝑖 and define

Δ𝑖(𝛼𝑗 , 𝑓) =
𝑐𝑖(𝛼𝑗 , 𝑓)

𝑐𝑖(0, 𝑓)
, Δ𝑖,1(𝛼𝑗) = Δ𝑖(𝛼𝑗 , 1), 𝑖 ̸= 𝑗. (23)

Here, Δ𝑖(𝛼𝑗 , 𝑓) is the normalized sensitivity of 𝑐𝑖 to 𝛼𝑗 for
a general 𝑓 ≥ 1 (as in the fast-diffusion approximation) and
Δ𝑖,1(𝛼𝑗) for the well-mixed model.

Next, we compute (23) using (22) in the special case where
𝑅𝑓/𝐾𝑑,𝑘 ≪ 1,∀𝑘 (as assumed in [2]). We are interested in
how Δ𝑖(𝛼𝑗 , 𝑓) varies as 𝑓 increases; however, increasing
𝑓 may violate the assumption that 𝑅𝑓/𝐾𝑑,𝑘 ≪ 1. The
following claim provides conditions when 𝑅𝑓/𝐾𝑑,𝑘 ≪ 1,∀𝑘
may be assumed for all 𝑓 ≥ 1.

Claim 5: For 𝑅 given implicitly by (22) where 𝑚𝑖,𝑇 ,
𝐾𝑑,𝑖, and 𝑅𝑇 are fixed parameters and 𝑓𝑖 = 𝑓, ∀𝑖, let
𝑞 = 𝑅𝑓 , 𝐾+ = max𝑘(𝐾𝑑,𝑘) ,𝐾− = min𝑘(𝐾𝑑,𝑘), and
𝜑 = 𝑅𝑇∑︀𝑁

𝑘=1 𝑚𝑘,𝑇
. Assume 𝜑 < 1, then 𝑞 monotonically

increases with 𝑓 and 𝐾− 𝜑
1−𝜑 ≤ 𝑞 ≤ 𝐾+ 𝜑

1−𝜑 as 𝑓 → ∞.

Proof: To show 𝑞 is monotonically increasing with 𝑓 , we
show 𝑑𝑞

𝑑𝑓 > 0. As in the proof of Claim 4, 𝜕𝑐𝑘
𝜕𝑓 > 0, thus,

𝑑𝑞

𝑑𝑓
= (𝑅+ 𝑓

𝑑𝑅

𝑑𝑓
) =

(︂
𝑅

1 + 𝑓

𝑅

∑︀𝑁
𝑘=1

𝜕𝑐𝑘
𝜕𝑓

)︂
> 0,

and (22) in terms of 𝑞 reads: 𝑅𝑇 = 𝑞
𝑓 +∑︀𝑁

𝑘=1𝑚𝑘,𝑇
𝑞/𝐾𝑑,𝑘

1+𝑞/𝐾𝑑,𝑘
. Assuming 𝑞 is bounded above,

𝑞
𝑓 → 0 as 𝑓 → ∞. This is true only if 𝜑 < 1, since
it implies 𝑅 → 0 as 𝑓 → ∞. Otherwise, if 𝜑 > 1,
then 𝑅 → 𝑅𝑇 −

∑︀𝑁
𝑘=1𝑚𝑘,𝑇 as 𝑓 → ∞. Therefore, as

𝑓 → ∞, (22) becomes 𝑅𝑇 =
∑︀𝑁

𝑘=1𝑚𝑘,𝑇
𝑞/𝐾𝑑,𝑘

1+𝑞/𝐾𝑑,𝑘
. Notice

𝑞/𝐾+

1+𝑞/𝐾+ ≤ 𝑞/𝐾𝑑,𝑘

1+𝑞/𝐾𝑑,𝑘
≤ 𝑞/𝐾−

1+𝑞/𝐾− , which implies

𝑞/𝐾+

1 + 𝑞/𝐾+

𝑁∑︁
𝑘=1

𝑚𝑘,𝑇 ≤ 𝑅𝑇 ≤ 𝑞/𝐾−

1 + 𝑞/𝐾−

𝑁∑︁
𝑘=1

𝑚𝑘,𝑇

and hence the desired result:

𝐾− 𝜑

1− 𝜑
≤ 𝑞 ≤ 𝐾+ 𝜑

1− 𝜑
, as 𝑓 → ∞.

�
Thus, 𝐾+ 𝜑

1−𝜑 serves as an upper bound of 𝑅𝑓 for all
𝑓 ≥ 1. With this upper bound we can make assumptions that
allow us to compare Δ𝑖(𝛼𝑗 , 𝑓) with Δ𝑖,1(𝛼𝑗) in the special
case where 𝑅𝑓/𝐾𝑑,𝑘 ≪ 1,∀𝑘 and ensure this assumption is
valid even as 𝑓 → ∞. This is demonstrated below.

Claim 6: For (22), let 𝐾+ = max𝑘(𝐾𝑑,𝑘) ,𝐾− =

min𝑘(𝐾𝑑,𝑘), and 𝜑 = 𝑅𝑇∑︀𝑁
𝑘=1 𝑚𝑘,𝑇

. If 𝐾+

𝐾−
𝜑

1−𝜑 ≪ 1, then
Δ𝑖(𝛼𝑗 , 𝑓) < Δ𝑖,1(𝛼𝑗) (as in (23)) for 𝑓 > 1 and 𝛼𝑗 > 0 .
Proof: By Claim 5, 𝐾+

𝐾−
𝜑

1−𝜑 ≪ 1 =⇒ 𝑅𝑓/𝐾𝑑,𝑘 ≪ 1,∀𝑘
regardless of the value of 𝑓 . Then, from (22), Δ𝑖(𝛼𝑗 , 𝑓) =

1

1+
𝛼𝑗/(𝐾𝑑,𝑗(1+𝜇))

1/𝑓+
∑︀

𝑘 ̸=𝑗 𝑚𝑘,𝑇 /𝐾𝑑,𝑘

which decreases with increasing 𝑓 . �

Thus, when 𝑅𝑓/𝐾𝑑,𝑘 ≪ 1,∀𝑘, 𝑐𝑖 is more sensitive to
𝛼𝑗 , 𝑗 ̸= 𝑖 for the fast-diffusion approximation than in the
well-mixed model.

V. ILLUSTRATIVE EXAMPLE

In this section, the PDE system (5) is made to illustrate
how the activation of a synthetic gene impacts plasmid
and chromosome genes. These predictions are both gathered
numerically (Sec. VI-B) and compared to the well-mixed
model (Def. 1) and the fast-diffusion approximation (20).

A. Parameter Values

For the PDEs in (5), we let: 𝛼1(𝑥) correspond to the
lumped endogenous genes, 𝛼2(𝑥) correspond to a plasmid
gene with 𝑚2 produced at a constant rate, and 𝛼3(𝑥) corre-
spond to a plasmid gene with 𝑚3 produced at a variable rate.
The transcription profile for the endogenous gene 𝛼1(𝑥) =
𝛼𝑒(𝑥) which is defined in Sec. II-B. For the plasmid genes
where 𝑖 = 2, 3: 𝛼𝑖(𝑥) = 𝐴𝑖𝑒

−4(1−𝑥)
𝑙 where 𝐴𝑖 =

2𝛼𝑖

𝑙(1−𝑒
−4
𝑙 )
,

𝑙 is a measure of localization such that 𝛼𝑖(𝑥) ≈ 0,∀𝑥 ∈
[0, 1− 𝑙) and 𝐴𝑖 was chosen to yield a total production per
cell: 2

∫︀ 1

0
𝛼𝑖(𝑥)𝑑𝑥 = 𝛼𝑖. The input to (5) is 𝛼3(𝑥), where



Fig. 2: The spatial steady state profiles of the endogenous mRNA-
ribosome complex 𝑐1, for several values of diffusion 𝜁 when 𝛼3 =
0. Solid lines correspond to the PDE system (5). The dashed line
is the fast-diffusion approximation (20), which agrees well with the
result for 𝜁 = 102. Table I provides the other parameters used.

𝛼3 ∈ [0, 𝛼𝑒]. The parameters used in this case study are
provided in Sec. VI-A. Using (6), solutions for the well-
mixed model are gathered with (7) given by 𝑓𝑖 = 1,∀𝑖
and for the fast diffusion approximation, (7) is given by
(20b). We define 𝜁 to be a factor that multiplies all diffusion
coefficients. If 𝜁 = 1, then the diffusion coefficients are at
their nominal values given in Table I.

B. Results

The results of simulating (5) with with the parameters
described above are presented here and compared to the
fast-diffusion approximation (20) and to the conventional
well-mixed ODE model (Definition 1). The steady state
spatial profile of the endogenous mRNA-ribosome complex
𝑐1(𝑥, 𝑡→ ∞) when 𝛼3 = 0 (no input) for several values of
diffusion (𝜁) is shown in Fig. 2 along with the fast-diffusion
approximation. For the nominal diffusion level, 𝜁 = 1, the
spatial profile is near that of the approximate solution. This
agreement improves for 𝜁 = 102. For the slow diffusion
case 𝜁 = 10−6, the spatial profile is concentrated near mid-
cell where most of the endogenous DNA is located. While
not shown, 𝑐2(𝑥, 𝑡 → ∞) follows a similar trend. For fast
diffusion, it converges to the approximate solution and as dif-
fusion slows down, it concentrates near the cell poles where
the synthetic DNA is expressed. This spatial separation of
mRNAs expressed from plasmids and the chromosome in the
limit of slow diffusion, implies that there is minimal cross-
talk between plasmid and chromosome genes. This point is
illustrated next.

For (5), as 𝑐3 is expressed (increasing input 𝛼3), we
characterize how this affects 𝑐1 and 𝑐2. These results are
shown in Fig. 3 for several values of diffusion 𝜁. The nominal
𝜁 = 1 and fast diffusion 𝜁 = 102 cases agree with the well-
mixed case. This is expected since for the 𝑣𝑟(𝑥) and 𝑣𝑚(𝑥)
used in the simulations, 𝑓 = 1.02 as in (20b). For slow
diffusion 𝜁 = 10−6, 𝑐1 becomes significantly less sensitive
to the expression of 𝑐3 while 𝑐2 is more sensitive. This is
expected since, for slow diffusion, mRNAs localize where
they are transcribed: endogenous mRNAs near mid-cell while
the plasmid mRNAs in the cell poles.

The available volume profiles 𝑣𝑟(𝑥) and 𝑣𝑚(𝑥), depend
on the size and geometry of each species and the chro-
mosome density [12]. Thus, these profiles can vary based

Fig. 3: The protein expression rates per cell (output) as a second
plasmid gene is expressed (increasing input 𝛼3) for several values
of diffusion (𝜁). The expressions are normalized by the level when
𝛼3 = 0 (second plasmid gene is silent). 𝛼3 is normalized by the
total endogenous gene mRNA production 𝛼𝑒. (A) 𝑐1 and (B) 𝑐2.
Solid lines correspond to the PDE system (5). The dashed line is the
well-mixed line ((6) with (7) given by 𝑓𝑖 = 1,∀𝑖). Table I provides
the other parameters used.

on experimental conditions and compromise the agreement
seen in Fig. 3 between the 𝜁 = 1 case and the well-mixed
model. To illustrate this, we modify 𝑣𝑟(𝑥) and 𝑣𝑚(𝑥) (as
specified in Sec. VI-A) to increase the value of 𝑓 given
by (20b) and evaluate the discrepancies between the PDE
(5), well-mixed model, and the fast-diffusion approximation
(20). When 𝛼3 = 𝛼𝑒, we define Δ1(𝑓) = 𝑐1(𝛼3,𝑓)

𝑐1(0,𝑓)
and

Δ2(𝑓) =
𝑐2(𝛼3,𝑓)
𝑐2(0,𝑓)

. In Fig. 4, we show the protein production
rate normalized by the well-mixed prediction (A) and Δ1

and Δ2 (B) as 𝑓 varies. These are shown for several values
of diffusion, 𝜁. We observe that the expression of 𝑐1 and
𝑐2 increases with 𝑓 . For 𝜁 = 1, the increase in expression
of 𝑐2 is higher than that of 𝑐1, but as diffusion increases
(𝜁 = 10) they increase by the same amount. Δ1 and Δ2 are
more sensitive to 𝛼3 relative to the well-mixed model as 𝑓
increases. As diffusion increases (see 𝜁 = 10), the numerical
predictions converge to the analytical one. These results are
consistent with the theoretical predictions from Sec. IV.

The results from Fig. 4, imply that: even though solutions
to (5) can be gathered numerically, depending on the ap-
plication and system parameters, the ODEs associated with
the fast-diffusion approximation (20) can be an alternative.
Due to the computational cost, it is advantageous to bypass
numerically solving the PDEs in (5).

VI. CONCLUSIONS

In this paper, we introduced a ribosome-sharing PDE
model that captures the spatial distribution of ribosomes and
DNA in the cell, which is not accounted for by common
ODE models. The PDE can be used to characterize the



Fig. 4: Numerical simulations of (5). (A) the output 𝑐(𝑓) when
𝛼3 = 0 normalized by the well-mixed prediction 𝑐(1) (Definition 1)
(B) The normalized expression Δ when 𝛼3

𝛼𝑒
= 1, as 𝑓 (given by

(20b)) varies. This is shown for 𝑐1 (solid line) and 𝑐2 (square)
at 𝜁 = 1 (red) and 𝜁 = 10 (blue). The predictions from the fast
diffusion approximation model (20) (black line) and the well-mixed
model (green) are also shown. Table I provides the other parameters
used and Sec. VI-A specifies how 𝑣𝑟(𝑥) and 𝑣𝑚(𝑥) are varied to
yield the several values of 𝑓 .

coupling between genes due to ribosome sharing. Specif-
ically, we investigated the affects of an input signal that
activates a synthetic gene on the output expression rate
of other genes. The resulting nonlinear PDEs were solved
numerically. Through perturbation analysis, we showed that
in the limit of fast diffusion that mRNA and ribosome
spatial profiles are not homogeneous. The profiles mirror
the available volume profiles and their monotonicity implies
that all mRNAs in the cell have a higher affinity to bind to
ribosomes relative to the standard “well-mixed” ODE model.
This increased affinity implies higher protein production
rate for all mRNAs in the cell, and in some cases, the
production rate is more sensitive to the activation of a
synthetic gene. These results were observed numerically for
the full PDE system using known biological parameters
found in the literature. With these parameters, the well-mixed
ODE model and PDE model matched well. We provided
an example where these two models do not agree, however,
the fast-diffusion approximation was a better alternative to
the well-mixed model. This approximation bypasses having
to solve the PDEs and thus saves computational effort. In
future work, we wish to prove the stability of the steady
state solutions, derive higher order correction factors to the
perturbation expansion, and account for changes in growth
rate as synthetic genes are expressed.
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APPENDIX

A. Parameters

We model the volume profiles as in [12], which are
empirically derived from experimental data. The ribosome
available volume profile is 𝑣𝑟(𝑥) = 𝑒−0.188𝜌(𝑥), for free
mRNA 𝑣𝑚(𝑥) = 𝑒−.754𝜌(𝑥), for the mRNA-ribosome com-
plex we used the available volume profile that corresponds
to a complex with the average number of ribosomes (12)
such that 𝑣𝑐(𝑥) = 𝑒−3.01𝜌(𝑥). Recalling the endogenous
mRNA production rate 𝛼𝑒,𝑙, the cell length 𝐿, and the
mRNA degradation rate 𝛾 were used to nondimensionlize the
governing equations. Again, the parameters provided below
will be dimensionless.

Typical growth (dilution) rates of the cell can be as high
as 2 hr−1 (20 minute doubling time) and as low as 0.1
hr−1 (416 minute doubling time) [25] depending on the
strain phenotype and growth conditions (e.g., media and
temperature). mRNA half lives are typically 3-8 min (5-
14 hr−1) [6]. In this example we chose 𝜇 = 0.1 (dilution
is a tenth of mRNA degradation) consistent with a healthy
growing cell. In [12] 𝜅𝑖+𝑑𝑖 = 10𝛾, hence 𝐾𝑖 =

𝜅𝑖+𝑑𝑖

𝛾 = 10
for all species.

The number of endogenous mRNA per cell is 5 × 103

[12]. For a cell doubling time of 30 minutes, the number of
ribosomes per cell is 45×103 [22]. On average, 12 ribosomes
load a single mRNA, hence 𝛼𝑟 = 𝑁ribo/(12𝑁mRNA) =
𝛼𝑟

𝜇
1+𝜇 = 3/4 𝜇

1+𝜇 .
The total endogenous mRNA concentration is 4140 mR-

NAs per cell and the synthetic mRNA concentration can vary
between 0−1000 mRNA’s per cell depending on the plasmid
copy number [23]. We assume that 𝑚1 is expressed from a
medium copy plasmid and hence 𝛼2 = 100/4140 and allow
𝛼3 to vary.

In [6] it was shown 80% of ribosomes were translating an
mRNA, hence we chose 𝜃𝑖 (same for all species) such that
with the given number of total ribosomes and endogenous
mRNA: 𝑐𝑒

𝑅𝑇
= 0.8 in isolation (no synthetic genes). This

corresponds to 𝜃𝑖 = 125.
The measure of localization 𝑙 was set at 𝑙 = 0.5. For

𝐿 = 1.5 𝜇m, 𝐷𝑚 = 0.05 𝜇m2/s, and 𝛾 = 10 h−1 as in [12],
𝜒𝑚 = 9.4. The ribosomal diffusion is 𝜒𝑟 = 8𝜒𝑚 [12].

In Sec. V-B, to generate the results in Fig. 4, we allowed
𝑓 as defined by (20b) to vary. Variations in 𝑓 were accom-
plished by:

𝑓(𝑛) =

∫︀ 1

0

[︀
𝑣𝑟(𝑥)

]︀4𝑛[︀
𝑣𝑚(𝑥)

]︀𝑛
𝑑𝑥∫︀ 1

0

[︀
𝑣𝑟(𝑥)

]︀4𝑛
𝑑𝑥

∫︀ 1

0

[︀
𝑣𝑚(𝑥)

]︀𝑛
𝑑𝑥
,

for 𝑛 ∈ (1, 4].



B. Numerical Collocation Method

This section introduces the numerical method used to
numerically simulate (5). We make use of the notation intro-
duced in Sec. III. Let 𝑦 = [𝑅,𝑚1, . . . ,𝑚𝑁 , 𝑐1, . . . , 𝑐𝑁 ]𝑇 be
the species corresponding to the system (5) and 𝑀 = 2𝑁+1.
For each species 𝑦𝑗(𝑥, 𝑡) with an available volume profile
𝑣𝑗(𝑥), consider the change of variables: 𝑤𝑗(𝑥, 𝑡) = 𝑦𝑗(𝑥,𝑡)

𝑣𝑗(𝑥)
.

This change of variables renders a simpler set of boundary
conditions (homogeneous Neumann):

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0,1

= 0.

Compactly expressing (5a)-(5c) after the change of coor-
dinates as:

𝜕𝑤

𝜕𝑡
= 𝑓(𝑤,𝑤𝑥,𝑤𝑥𝑥, 𝑥, 𝑡), (24)

where 𝑓 : 𝐷× [0, 1]× [𝑡0, 𝑡1] → R𝑀 , 0 ≤ 𝑡0 < 𝑡1, 𝐷 ⊂ R𝑀

and subscripts of 𝑥 denote partial differentiation with respect
to 𝑥. A set of initial conditions are prescribed to uniquely
define the problem.

A collocation method is implemented to numerically solve
(24) . We expand 𝑤𝑗(𝑥, 𝑡) by a set of orthonormal basis
{𝜑𝑖(𝑥)} of 𝐿2([0, 1]) :

𝑤𝑗(𝑥, 𝑡) =

∞∑︁
𝑖=0

𝑎𝑗𝑖(𝑡)𝜑𝑖(𝑥), (25)

where 𝑎𝑗𝑖(𝑡) ∈ R is the weight of the projection of 𝑤𝑗(𝑥, 𝑡)
onto 𝜑𝑖(𝑥). An admissible basis (satisfies the boundary
conditions) is 𝜑𝑖(𝑥) = cos(𝑖𝜋𝑥). A general Fourier series
expansion for 𝑤𝑗(𝑥, 𝑡) was possible, however all the sine
terms would nullify to satisfy the “flux” free boundary
conditions, resulting in the current expansion.

Let 𝑤𝑗
𝑛(𝑥, 𝑡) =

∑︀𝑛
𝑖=0 𝑎𝑗𝑖(𝑡) cos(𝑖𝜋𝑥) be the truncated

expansion of 𝑤𝑗 . This approximate solution will not satisfy
(24), instead:

𝜕𝑤𝑗
𝑛

𝜕𝑡
= 𝑓 𝑗(𝑤𝑛,𝑤𝑛,𝑥,𝑤𝑛,𝑥𝑥, 𝑥, 𝑡) + 𝜖𝑗(𝑥, 𝑡), (26)

where 𝜖𝑗(𝑥, 𝑡) ∈ R denotes the error term (residual) arising
from the approximation. The collocation method requires the
error to vanish at 𝑥 = 𝑥𝑖(𝑖 = 0, 1, . . . , 𝑛), the collocation
points. As a consequence:

𝜕𝑤𝑗
𝑛(𝑥𝑖, 𝑡)

𝜕𝑡
= 𝑓𝑗(𝑤𝑛(𝑥𝑖, 𝑡),𝑤𝑛,𝑥(𝑥𝑖, 𝑡),𝑤𝑛,𝑥𝑥(𝑥𝑖, 𝑡), 𝑥𝑖, 𝑡),

(27)
for each 𝑖 = 0, 1 . . . , 𝑛. This yields a system of 𝑀 × (𝑛+1)
ordinary differential equations for each 𝑎𝑗𝑖(𝑡).

REFERENCES

[1] D. Del Vecchio, A. J. Dy, and Y. Qian, “Control theory meets synthetic
biology,” J. R. Soc. Interface, vol. 13, no. 120, p. 20160380, 2016.

[2] A. Gyorgy, J. I. Jiménez, J. Yazbek, H. H. Huang, H. Chung, R. Weiss,
and D. Del Vecchio, “Isocost Lines Describe the Cellular Economy
of Genetic Circuits,” Biophys. J., vol. 109, no. 3, pp. 639–646, 2015.

[3] I. Shachrai, A. Zaslaver, U. Alon, and E. Dekel, “Cost of Unneeded
Proteins in E. coli Is Reduced after Several Generations in Exponential
Growth,” Mol. Cell, vol. 38, no. 5, pp. 758–767, 2010.

[4] Y. Qian, H. H. Huang, J. I. Jiménez, and D. Del Vecchio, “Resource
Competition Shapes the Response of Genetic Circuits,” ACS Synth.
Biol., vol. 6, no. 7, pp. 1263–1272, 2017.

[5] Y. Qian and D. Del Vecchio, “Mitigation of ribosome competition
through distributed sRNA feedback,” 2016 IEEE 55th Conf. Decis.
Control. CDC 2016, pp. 758–763, 2016.

[6] S. Bakshi, A. Siryaporn, M. Goulian, and J. C. Weisshaar, “Superreso-
lution imaging of ribosomes and RNA polymerase in live Escherichia
coli cells,” Mol. Microbiol., vol. 85, no. 1, pp. 21–38, 2012.

[7] S. Yao, D. R. Helinski, and A. Toukdarian, “Localization of the
naturally occurring plasmid ColE1 at the cell pole,” J. Bacteriol.,
vol. 189, no. 5, pp. 1946–1953, 2007.

[8] A. Amir and S. van Teeffelen, “Getting into shape: How do rod-like
bacteria control their geometry?,” Syst. Synth. Biol., vol. 8, no. 3,
pp. 227–235, 2014.

[9] Leah Edelstein-Keshet, “Mathematical Models in Biology,” Siam,
vol. XXXIII, no. 2, pp. 81–87, 2012.

[10] R. J. Brooker, E. P. Widmaier, L. E. Graham and P. Stilling,
“Biology,” McGraw-Hill, New York, 2014.

[11] D. Del Vecchio and R. M. Murray, “Biomolecular feedback systems,”
Princeton: Princeton University Press, 2014.

[12] M. Castellana, S. Hsin-Jung Li, and N. S. Wingreen, “Spatial orga-
nization of bacterial transcription and translation,” Proc. Natl. Acad.
Sci., vol. 113, no. 33, pp. 9286–9291, 2016.

[13] J. Salje, “Plasmid segregation: how to survive as an extra piece of
DNA,” Crit. Rev. Biochem. Mol. Biol., vol. 45, no. 4, pp. 296–317,
2010.

[14] W. Chen, M. Niepel, and P. Sorger, “Classic and contemporary
approaches to modeling biochemical reactions,” Genes Dev., vol. 24,
pp. 1861–1875, 2010.

[15] S. H. Cho, J. M. Godin, C.-H. Chen, W. Qiao, H. Lee, and Y.-H. Lo,
“Review Article: Recent advancements in optofluidic flow cytometer,”
Biomicrofluidics, vol. 4, p. 043001, dec 2010.
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