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Abstract

In 2005, Yves Couder and coworkers discovered that a millimetric droplet of silicone
oil may walk on the surface of a vertically-vibrating fluid bath, displaying features
that were once thought to be peculiar to quantum mechanics. We here explore this
hydrodynamic pilot-wave system through an integrated theoretical and experimen-
tal approach. We provide a theoretical characterization of the transition to chaos
in orbital pilot-wave dynamics for droplets walking in the presence of a Coulomb,
Coriolis, or central harmonic force. We proceed by investigating this hydrodynamic
system above the Faraday threshold experimentally, with an aim of finding mecha-
nisms to trap drops. We report a hydrodynamic analog of optical trapping with the
Talbot effect, showing that drops may become trapped at the extrema of waves gen-
erated in the vicinity of a linear array of pillars. We also characterize the dynamics
of droplets bouncing and walking above the Faraday threshold, indicating regimes of
particle trapping and Brownian motion. We investigate the effect of bath topography
in drop dynamics by considering a circular well that induces a circularly-symmetric
Faraday wave pattern. In this regime, we show that droplets become trapped into
stable circular orbits around the extrema of the well-induced wavefield. Finally, with
a view to extending the phenomenological range of this hydrodynamic system, we
consider a generalized pilot-wave framework, in which the relative magnitudes of dy-
namical parameters are altered relative to those relevant in the fluid system. In this
generalized framework, we validate the theoretical result of Durey et al. relating the
particle's mean wavefield to the emerging statistics, and characterizing the timescale
of emergence of the statistically steady state for the chaotic pilot-wave dynamics.

Thesis Supervisor: John W. M. Bush
Title: Professor of Applied Mathematics
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1-1 Regime diagram for 20 cS silicone oil droplets bouncing and walking on

the surface of a bath vibrating vertically at 80 Hz, as a function of the

non-dimensional vibrational acceleration -y/yF and vibration number

Q = w/V/o/(pR 3) [71]. The bouncing mode, denoted by (m, n)P, indi-

cates that for every every m driving periods, the particle will bounce

n times [44]. We distinguish different bouncing states with the same

mode number according to energy, with higher values of p correspond-

ing to more energetic modes [71, 106]. The behavior of droplets above

the Faraday threshold is reported in Chapter 4. . . . . . . . . . . . . 33

2-1 (a) Oblique view of a resonant walker [13]. The solid line tracks the

center of the walking droplet. (b) Top view of a walking droplet or-

biting on a rotating bath [52], a system to be explored numerically in

Section 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2-2 Linear stability diagram [791 of orbital solutions of radius ro arising in

the presence of a Coriolis force F = -2mQ x ,. -y is the driving accel-

eration, _YF is the Faraday threshold and AF is the Faraday wavelength.

The droplet's radius is RD = 0.4 mm, impact phase sin D = 0.2, vis-

cosity v = 20 cS and forcing frequency 80 Hz. Blue regions indicate

stable circular orbits. Green regions correspond to circular orbits that

destabilize via an oscillatory instability. Red regions correspond to or-

bits that destabilize via a nonoscillatory instability. The transition to

chaos is found by starting with an initially stable solution (ro, W, Q) to

Eq. (2.3) and increasing the dimensionless forcing acceleration 'y/F

progressively while keeping Q constant, following the procedure de-

scribed in Section 2.1. The white curve indicates the path through

parameter space for the results shown in Section 2.2. The transition

to chaos through a period-doubling cascade appears to be generic in

this system; specifically, it arises in passing from blue to green regions

with increasing memory. . . . . . . . . . . . . . . . . . . . . . . . . . 44

2-3 Numerical solutions to the trajectory equation (Eq. 2.2) with a Coriolis

force F = - x i,, which describes pilot-wave dynamics in a rotating

frame with dimensionless angular frequency ( = 0.6. The first column

shows the simulated trajectories xp(t) plotted over 100 orbital periods

T (blue), with the last 10 orbital periods (red) and the orbital center

xc(t) (black) superimposed. The second column shows the radius of

curvature R(t), with the local maxima greater than ro indicated by

the red circles. The third column shows the frequency spectrum of

R(t). The rows correspond to (a) a wobbling orbit (-y/YF = 0.957), (b)

a period-2 drifting orbit ('Y/YF = 0.959), (c) a period-4 drifting orbit

(7/7F = 0.9595), (d) a chaotic trajectory (y/-yF = 0.96004), and (e)

a period-10 orbit (-Yf/YF = 0.960066) in a periodic window within the

chaotic regim e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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2-4 Bifurcation diagrams showing the transition to chaos for a walker

in a rotating frame with dimensionless angular frequency f = 0.6.

For each value of the dimensionless forcing acceleration 7/F, the

points correspond to local maxima Rm in the radius of curvature R(t).

Panel (b) shows a magnified view illustrating the period-doubling cas-

cade for 'y/'yF > 0.9594. The color-coded vertical lines correspond

to the trajectories shown in Fig. 2-3. The dimensionless forcing ac-

celeration is changed in increments of A(?/7YF) = 103 for 'Y/ YF C

[0.950, 0.956], A(/-F) = 10- for 'Y/ YF E [0.9561,0.9594], A(Y/YF)

10-5 for -y/-YF E [0.95941,0.95980] and A(-y/yF) 10-6 for _ 1/F C

[0.959801, 0.960099]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2-5 Linear stability diagram [79] of orbital solutions of radius ro arising in

the presence of a linear spring force F = -kxp. 'Y/YF is the dimension-

less driving acceleration and AF is the Faraday wavelength. The drop's

radius is RD = 0.4 mm, impact phase sinID = 0.2, viscosity v = 20

cS and forcing frequency 80 Hz. Blue regions indicate stable circu-

lar orbits. Green regions correspond to circular orbits that destabilize

via an oscillatory instability. Red regions correspond to orbits that

destabilize via a nonoscillatory instability. The white curve indicates

the path through parameter space for the results shown in Section 2.3.

The transition to chaos is generic in this system; specifically, it arises

in passing from blue to green regions with increasing memory. . . . . 50
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2-6 Numerical solutions to the trajectory equation (Eq. 2.2) with a spring

force -'F = -kxp and a fixed dimensional spring constant k = 3.2 p.N/m

which describes pilot-wave dynamics in a harmonic potential. The

first column shows the simulated trajectories xp(t) plotted over many

orbital periods (blue) along with the last few orbital periods (red).

The second column shows the orbital radius r(t) = |xp(t)J. The third

column shows the frequency spectrum of r(t). The rows correspond

to (a) a wobbling orbit ('/'YIF = 0.9573), (b) a quasiperiodic wob-

bling orbit (7/'YF = 0.9583), (c) a frequency-locked wobbling orbit

(-Y/YF = 0.9600), (d) a frequency-locked wobbling orbit with an addi-

tional incommensurate frequency (-y/7yF = 0.9610), and (e) a chaotic

trajectory (y/'YF = 0.9613). . . . . . . . . . . . . . . . . . . .. . . 51

2-7 Diagram detailing the evolution with memory of the independent peak

frequencies in the spectrum of r(t) arising during the transition to

chaos in a harmonic potential with dimensional spring constant k =

3.2 ptN/m. Panel (a) tracks the principal wobbling frequency fl, which

first appears when the circular orbit becomes unstable. As the forcing

acceleration is increased further, a second independent frequency f2

appears, which later becomes locked with fi at f2/fl = 1/4, as shown

in panel (b). At higher accelerations, a third independent frequency

f3 appears that precedes the transition to a broadband spectrum in

the chaotic regime, as shown in panel (c). We label WI the single-

frequency state, W2 the two-frequency quasiperiodic state, W2* the

two-frequency frequency-locked state, W3 the state with a third incom-

mensurate frequency, and C the chaotic orbital state. The dimension-

less forcing acceleration is changed in increments of A(Y/mF) = 10- for

Y/_F C [0.945,0.956] and A(-y/-yF) = 10- for Y/17F E [0.9560,0.9614]. 52
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2-8 Linear stability diagram of orbital solutions of radius ro arising in the

presence of a 2D Coulomb force F = -Qx / IxP 2. _ / F is the dimen-

sionless driving acceleration and AF is the Faraday wavelength. Blue

regions indicate stable circular orbits. Green regions correspond to cir-

cular orbits that destabilize via an oscillatory instability. Red regions

correspond to orbits that destabilize via a nonoscillatory instability.

The transition to chaos is tracked along the white curve by finding

an initial stable solution (ro, W, Q) to Eq. (2.3) and increasing the di-

mensionless forcing acceleration 'y/YF progressively while keeping Q
constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2-9 Numerical simulations of Eq. (2.2) with F = -Qx / Ix,1
2, which de-

scribes the pilot-wave dynamics of a walking droplet subject to a two-

dimensional Coulomb force. The first column shows the trajectory

xp(t) = (xp(t), yp(t)) with the long term trajectory shown in blue, and

the last few orbits colored red. The radius of the orbit r(t) = IxP(t) is

plotted in the middle column with local maxima rm indicated by red

circles. The third column shows the frequency spectrum of r(t). The

memory parameter is progressively increased from panels (a) through

(e) with rows corresponding to: (a) a wobbling orbit (-y/-yF = 0.9375),

(b) a period-2 wobbling orbit (-Y/1F = 0.9394), (c) a period-4 wobbling

orbit (y/'yF = 0.94141), (d) a chaotic trajectory (7/7F = 0.941791),

and (e) a period-20 orbit (7/7F = 0.941815) in a periodic window

within the chaotic regime. . . . . . . . . . . . . . . . . . . . . . . . . 57
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2-10 Bifurcation diagrams showing the route to chaos for a walking droplet

subject to a two-dimensional Coulomb force with charge parameter

Q = 0.35 nJ. We track the local maxima rm of the orbital radius

r(t) = JXpI as a function of the non-dimensional forcing acceleration

-y/tF. Panel (b) gives a magnified view of the upper right corner (delin-

eated by the blue box) of panel (a), showing the details of the period-

doubling cascade immediately preceding the transition to chaos. Color-

coded vertical lines correspond to the trajectories depicted in Fig. 2-

9. The dimensionless forcing acceleration is changed in increments

of A(Y/YF) = i03 for "Y/'YF C [0.910,0.936], A(y/yF) = 10 for

/F E [0.9361, 0.9413], A(y/yF) 0-5 for 'y/yF E [0.94131, 0.94161]

and A(Y/YF) = 10-6 for y/'yF E [0.941611,0.941900]. . . . . . . . . . 58

3-1 (a) Experimental arrangement [53]. The fluid bath is shaken using an

electromagnetic shaker and imaged using a CCD camera through a 450

semi-reflective mirror with diffuse illumination {26j. (b) Top view of

the fluid bath shows the row of N protruding pillars of diameter D and

center-to-center separation d. . . . . . . . . . . . . . . . . . . . . . . 63

3-2 The surface of the shaken fluid. Pillars with diameter D = 3.1 mm

are spaced d = 9.5 mm apart from center to center. (a) f = 80 Hz,

_ = 0.99-Fy. Meniscus waves are evident around the pillars. (b) f = 80

Hz, -y = 1.007-F. Rows of images in front of the pillars are marked

with arrows. (c) f = 70 Hz, -y = 1.007yF. The pattern has lost its

periodicity. (d) f = 80 Hz, -y = 1.012-yF. The self-imaging pattern is

lost, replaced by a checkerboard of Faraday waves. . . . . . . . . . . . 65

3-3 Video frames showing the wavefield around the pillars, captured TF/2

apart. The waves on either side of the pillars are temporally out of

phase and the inter-pillar ridge sloshes back and forth in synchrony

with the wave patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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3-4 (a) Observed and (b) computed fluid surface height viewed from di-

rectly above, under oblique illumination. Circles at the bottom indi-

cate the location of the pillars. Pillar spacing d = 9.5 mm, number

of pillars N = 14, driving frequency f = 80 Hz, Faraday wavelength

AF= 4.75 mm and forcing acceleration -y = 1.007F ... . . . . . . . . . 68

3-5 Self-image locations are evident on video frames half a Faraday period

apart. Green lines indicate distances to the in-phase self-images of

Faraday wave sources and red lines to the shifted self-images of Faraday

wave sources. (a)-(b) Array spacing d = 12.5 mm, f = 58 Hz. Frames

(a) and (b) are 1/58 s apart. (c)-(d) Array spacing d = 9.5 mm, f = 80

Hz. Frames (c) and (d) are 1/80 s apart. . . . . . . . . . . . . . . . 70

3-6 Plot of the experimentally observed self-image positions (e) versus

predicted self-image positions (Z) for two different forcing frequencies.

Lengths are nondimensionalized by the Faraday wavelength AF. The

predicted self-image positions are at integer multiples of the Faraday-

Talbot length ZF, as defined in Eq. 3.4. Circles: Driving frequency

f = 58 Hz, AF = 6.13 mm, pillar spacing d = 12.5 mm, ZF = 23.9 mm.

Squares: f = 80 Hz, AF = 4.75 mm, d = 9.5 mm, ZF =17.7 mm. . . . 71

3-7 (a) Top view of the Faraday Talbot pattern for a circular array of

pillars with coherently sloshing ridges. f = 80 Hz, d = 9.5 mm,

F= 4.75 mm, R = 51.5 mm. The dashed lines indicate the peri-

odicities measured for the first three self-images. We note that this is

a transient pattern; after a few minutes the pattern starts developing

defects and destabilizes into an irregular pattern. (b) Computed fluid

surface height viewed from above. . . . . . . . . . . . . . . . . . . . . 72

3-8 Experimentally observed periodicity pe for a circular array of R = 51.5

mm versus predicted periodicity pC from Eq. 3.5 for n = 1, 2, 3. Lengths

are non-dimensionalized by the array spacing d. f = 80 Hz, AF = 4.75

mm , d = 9.5 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
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3-9 (a) Top view of the Faraday Talbot pattern for a circular array of

pillars with out-of-phase sloshing ridges. f = 55 Hz, d = 11 mm,

AF = 6.40 mm, R = 59.5 mm. The yellow dashed lines show the

measured periodicities. (b) Computed fluid surface height viewed from

above. . . . .. . . . . .. . ........... ... ... . . .. . . ..74

3-10 Bouncing droplets (small white circles) drift towards the Faraday-

Talbot length, and become localized between consecutive pillar images,

denoted by black crosses. (a) Two bouncers trapped within the first

row of images. This configuration arises for bouncing droplets of dif-

ferent sizes and bouncing modes. (b) Slow drifting motion of bouncing

droplets over time: the white circles indicate the final bouncer posi-

tions, and the blue trail their trajectories. Bouncers initially close to

the pillars tend to drift towards the first row of images, while more

distant bouncers are attracted to the second row of images. . . . . . . 75

3-11 A walking droplet with radius R = 0.395 0.005 mm impinges on a

row of pillars. The droplet approaches with a speed of approximately

16 mm/s before being transformed from a resonant walker to a chaotic

bouncer. Thereafter, it slowly drifts towards the first row of Talbot

images. The droplet trajectory is color-coded according to speed. . . 76

4-1 Experimental arrangement [53]. The fluid bath is shaken using an

electromagnetic shaker coupled with an air bearing that constrains

the vibrations to be vertical. A CCD camera placed above the bath

captures the horizontal dynamics, and a high-speed Phantom camera

allows for resolution of the vertical dynamics. . . . . . . . . . . . . . 82

4-2 (a) Circularly-symmetric Faraday pattern arising at the onset of the

Faraday instability, 'yf/YF ~ 1-01. (b) Checkerboard Faraday pattern

emerging at -y/yF = 1.05. . . . . . . . . . . . . . . . . . . . . . . . . 83
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4-3 Faraday wave rupture generates drops when the vibrational accelera-

tion is sufficiently high, 7 > -yR (= 4 .0 2 -/F for 20 cS oil vibrated at 80

H z ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4

4-4 Regime diagrams indicating the behavior of drops levitated on a vi-

brating bath. We delineate the parameter regimes as a function of

the dimensionless forcing acceleration y/-yF and vibration number Q =

w/ u-/(pR3). (a) 20 cS silicone oil driven at 80 Hz and (b) 50 cS sil-

icone oil driven at 50 Hz. The meandering regime is indicated in red,

zig-zagging in pink, erratic bouncing in blue, trapping in green, and

coalescing in striped black/blue regions. Yellow indicates the regime

of spontaneous drop creation from breaking Faraday waves, as arises

when the forcing acceleration exceeds the threshold for interface rup-

ture (Y > _YR) . . . . . . .. . . . . ..... .. . . . . . . . . . . . . 85

4-5 Dynamic states observed for - > YF. (a) Meandering trajectory, char-

acterized by a persistence length greater than the Faraday wavelength,

A = Lp/AF > 1. For this particular trajectory, A = 1.15. (b) A

zig-zagging trajectory is characterized by small amplitude lateral oscil-

lations, with wavelength on the order of AF, along a mean rectilinear

trajectory. The drop navigates the crests and troughs of the underlying

checkerboard Faraday wave pattern. (c) Erratic walking, characterized

by a dimensionless persistence length A < 1. For this particular trajec-

tory, A = 0.24. (d) Side view of a droplet trapped above the Faraday

threshold in a (4,1) bouncing mode. The drop bounces in place on

the trough of the underlying subharmonic wave once every 4 driving

periods (with period 2TF) . . . . . . . . . . . . . .. .. ...... 87

4-6 (a) Erratic trajectories resembling two-dimensional Brownian motion.

The circle indicates the boundary of the bath. (b) The effective dif-

fusivity D for the trajectories in Fig. 4-6(a) may be computed from

the long-time limit of the mean-squared displacement scaled by the

non-dimensional time 4t/TF . . . . . . . . . . . . . . . .. . . . . . . 88
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4-7 The observed dependence of the effective diffusion coefficient D on (a)

the forcing acceleration -y/YF for a drop of radius R = 0.376 mm, and

(b) the droplet radius R for 7/7F = 1.031. Dashed curves correspond

to the effective diffusivity obtained from scaling arguments, Eq. 4.6.

We note that surface diffusion arises in a relatively narrow region of

parameter space (1.015 < -y/yF , 1.04) for 20 cS - 80 Hz configura-

tion as shown in Fig. 4-4(a), so only small variations in the effective

diffusivity are apparent. . . . . . . . . . . . . . . . . . . . . . . . . . 90

4-8 An extension of the regime diagram obtained by Moldeek & Bush [72j

for 20 cS silicone oil driven at 80 Hz, including droplet dynamics above

the Faraday threshold, as reported in Fig. 4-4(a). We delineate the

parameter regimes as a function of the dimensionless forcing accelera-

tion y/-yF and vibration number Q = w/ u/(pR 3). Walkers transition

into the meandering and zig-zagging regimes. Small erratic bouncers

(R < 0.2 mm, Q < 0.31) tend to coalesce just above the Faraday

threshold, while large bouncers (R > 0.45 mm, Q > 0.86) tend to drift

until being trapped. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5-1 (a) Experimental setup. A droplet of radius R bounces on a bath

vibrating vertically with frequency f = 80 Hz and vibrational accel-

eration -y, with a central circular well of depth h, = 6.5mm. The

experiment is imaged from above, illuminated by a diffused light via

a semi-reflective mirror. (b) Top view of the most unstable circularly-

symmetric Faraday mode induced by the well for -y = 4.0g. The bound-

ary of the well is delineated by a dashed line. The Faraday threshold

has been crossed only in the region directly above the well, so that

d < -Y< _Ys96
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5-2 Preliminary experimental trajectories of droplets of radius R = 0.4

0.01 mm walking in the Faraday wavefield shown in Fig 5-1(b), with

forcing acceleration -y = 4.0g. The droplets tend to stabilize onto

quantized circular orbits, with preferred radii corresponding to half-

integer multiples of the Faraday wavelength AF. Each color corresponds

to a different trajectory, with white dashed lines indicating orbits of

half-integer multiples of the Faraday wavelength, r = (n + 1)AF/2. . . 99

5-3 Droplet trajectories calculated from the stroboscopic model (Eq. 5.2)

with an additional oscillatory force prescribed by Eq. 5.6, superim-

posed on the experimental wavefield from Fig. 5-1(b). Trajectories

were initialized in circular orbits with various initial radii, indicated

by colored arrows. After small oscillations, all trajectories converged

onto stable quantized orbits separated by half-integer multiples of the

Faraday wavelength AF. . . . . . . . . . . . . . . . . . . . . . . . .. 103

5-4 The first column corresponds to the simulated trajectories of walking

droplets in a generalized pilot-wave framework with Q = 0.3, k =

0.1. A few orbital periods are highlighted in red. The second column

shows the radius of the drop as a function of time, with corresponding

frequency spectrum in the third column. (a) The onset of wobbling at

y/yF= 0.945, where the wobbling frequency is approximately twice

the orbital frequency. fi ~ 2fo. (b) A second frequency f2 appears

at -y/7F ~ 0.963, corresponding to small-amplitude modulations in

wobbling. (c) y/yF = 0.9667. (d) The wobbling state destabilizes when

_Y/7F > 0.9668, being replaced by a chaotic trajectory characterized

by a broadband frequency spectrum. We note that the transition to

chaos occurs over a narrow range of AY/YF, requiring high numerical

precision beyond that attainable experimentally. . . . . . . . . . . . 106
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bles until settling onto a- larger stable radius. (a) Trajectory of a

single drop with n = 0.14, 0 = 252.8, simulated from Eq. 5.4 with

-/YF = 0.97, Q = 0.3, and k = 0.1, with time step At/TM = 2- and

total time tmax/TM = 120. The trajectory is color-coded according to

drop speed. (b) The corresponding radius as a function of time and

(c) the probability distribution. The transient state is short-lived, with

the drop locking onto the next largest orbital state (r/AF 2.5). . . . 107

5-6 Transient approach to a stable orbit deduced numerically from the

generalized pilot-wave framework. (a) A single drop with r = 0.14,

# = 252.8, simulated from Eq. 5.4 with y/7F = 0.98, Q = 0.3, and k =

0.1, with time step At/Tm = 2- and total time tmax/TM = 250. The

trajectory is color-coded according to drop speed. (b) Corresponding

radius as a function of time and (c) probability distribution. During

its long transient, the drop explores 6 orbitals before locking onto the

second largest (r/AF - 4-5). . . . . . . . . . . . . . . . . . . . . . . . 108

5-7 (a) Trajectory of a walker switching chaotically between unstable or-

bits, as obtained from simulations of our generalized pilot-wave frame-

work. The non-dimensional inertia R = 0.042 and pilot-wave force

/ = 152.8 were tuned to render all circular orbits unstable. The tra-

jectory is color-coded according to drop speed. (b) Radial position

of the droplet as a function of time displays no periodicity. (c) The

probability distribution of the drop's radial position indicates the rela-

tive instability of the unstable circular orbits. We note that the p.d.f.

saturates after approximately t/TM ~ 200, thereafter, there is no sig-

nificant change in the wave-like structure of the statistics. . . . . . . . 109
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dimensional drop inertia s = 0.042 and pilot-wave force 3 = 152.8.

The peaks of the wave-like statistics correspond to extrema of the

well-induced potential. In this parameter regime, all circular orbits

are unstable and the drop switches chaotically between them. (b) The

convolution of bouncer wavefield and drop's p.d.f. [29], TB(X) *

after t/TM = 800 is computed from Eq. 5.8. It is indistinguishable

from the mean wavefield computed numerically. . . . . . . . . . . . . 110

5-10 First column: Mean wavefield i(x, t) for the chaotically-switching tra-

jectory (Fig. 5-7). Second column: Convolution of steady probability

density function p(x, t) with stationary wavefield of a bouncer 71B (X)-

Third column: Absolute error I (x, t) - [p(x, t) * B (X)1. Fourth col-

umn: Probability density function of the drop p(x, t) We track the

evolution of these quantitites as a function of time for (a) t/TM = 3.5,

(b) t/TM = 8.2, (c) t/TM = 22.3, (d) t/TM = 34.0 . . . . . . . . . ..

21



22



List of Tables

2.1 List of symbols for dimensional variables, along with typical range of

experimental values explored. . . . . . . . . . . . . . . . . . . . . . . 41

23



24



Chapter 1

Introduction

"History shows that there long has been dispute over two viewpoints on the

nature of light: corpuscular and undulatory; perhaps, however, these two

are less at odds with each other than heretofore thought."

- Louis de Broglie, 1925 [18].

The nature of the interaction between particles and fields on both the macroscopic

and microscopic scales has been a subject of interest for scientists for centuries. Ex-

amples include the interaction of fish schools and bird flocks with their suspending

fluids, and the interaction of an electron with its self-induced electromagnetic field.

Some such interactions remain unresolved. An inability to resolve dynamics on the

microscopic scale has resulted in a number of quantum paradoxes, such as the wave-

particle duality of an electron passing through a double slit. In most introductory

quantum mechanics courses, one is invited to believe that electrons are neither par-

ticles, nor waves, but both (or neither), suggesting irreconcilable differences between

the classical and quantum realms.

An underlying principle of classical mechanics is the concept of determinism as

formalized by Newton in the late 1600s, and initially believed to hold at all scales.

Determinism states that, given a complete set of initial conditions, a system's behavior

can be determined entirely for all future time from the laws of physics. For example,

planets and galaxies behave deterministically, obeying Newton's laws of gravitation
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and following well-determined trajectories. However, determinism does not imply

predictability, as noted by Henri Poincar6 in 1908:

It may happen that small differences in the initial conditions produce very

great ones in the final phenomena. [...] Prediction becomes impossible,

and we have the fortuitous phenomenon [87].

This lack of predicability is evident in many classical systems, from a double-pendulum

[97] to gravitational systems of three or more bodies [56], to the weather [65]. It was

only in the 1960s that the notion of chaotic dynamics was formalized: systems that

are sensitive to initial conditions are not necessarily predictable [65]. This lack of

predictability often means that one can do no better than a probabilistic prediction;

for example, weather reports will only list the chance of rain for the following day. It

is noteworthy that the advent of quantum mechanics took place 60 years prior to the

development of chaos theory.

One of the pioneers of quantum theory, Louis de Broglie in 1925 [18 proposed a

physical framework for understanding quantum mechanics. By equating the particle's

rest mass energy moc2 with the vibrational energy hw, he proposed that each particle

has an associated Compton frequency wc = moc2 /h, where mo is the particle's proper

mass, c the speed of light, and h the reduced Planck's constant. He postulated

that each particle has an internal vibration occurring at that frequency and that

the particle moves in resonance with an underlying wave, a synchrony he referred

to as the "harmony of phases" [20, 14]. For the case of a monochromatic wave,

de Broglie derived the relation between a particle's momentum and its wavelength,

p = hk (where Jkl = 27r/A, and A its de Broglie wavelength). Although de Broglie's

relations, p = hk and mc2 = hw, were adopted into the mathematical framework of

quantum mechanics, his realist interpretation of a particle moving in resonance with

an underlying wave at the Compton frequency was largely discarded.

Schr6dinger set out to derive the equation governing de Broglie's pilot-wave. He

proposed that the pilot-wave was a solution of the Klein-Gordon equation, a relativis-
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tic wave equation that obeys Lorentz invariance [95],

1 &2i1 m2c2

- 02 +V2'=. (1.1)
c2 at2 h2

One may decompose the solution to Eq. 1.1, TI(x, t), into a product of two terms:

a term oscillating rapidly at the Compton frequency wc = mc2 /h, and a term

/(x, t) that varies slowly relative to the Compton frequency. Considering the ansatz

TI(x, t) = eiwcto (x, t), one obtains

a h ha82
'h- = 2 V 2 + h . (1.2)

at 2m 2wcat 2

Provided the enveloping term 0 varies slowly relative to the Compton frequency,

the last term in Eq. 1.2 is negligible, and Eq. 1.2 reduces to the Linear Schr6dinger

Equation (LSE), which describes the evolution of a free-particle wavefunction:

iha - V . (1.3)
at 2m

While originally derived by Schr6dinger to describe the pilot-wave in de Broglie's me-

chanics, the wavefunction has since been adopted to describe the statistical behavior

of quantum systems, with its squared modulus, 10 (x, t) 2, indicating the probability

density of measuring the particle at a given position. This probabilistic interpretation

of the wavefunction has led to many successful predictions about quantum states, but

also to a schism between quantum and classical mechanics.

According to the Copenhagen Interpretation of quantum mechanics, the wavefunc-

tion V(x, t) provides a complete description of an isolated quantum state. According

to Bohr, one of the original proponents of the Copenhagen Interpretation:

The very fact that repetition of the same experiment [...] in general yields

different recordings pertaining to the object, immediately implies that a

comprehensive account of experience in this field must be expressed by

statistical laws. (1963) [10

It is valuable to juxtapose Bohr's statement with that of Poincar6's regarding different
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measurements of the "same" experiment. According to Bohr, this indeterminism

implies that quantum mechanics is inherently probabilistic; for Poincar6, it simply

implied sensitivity to initial conditions, a hallmark of chaos.

By claiming that the microscopic world was inherently probabilistic, and that the

wavefunction provided a complete description of quantum systems, the Copenhagen

Interpretation raised philosophical questions about the nature of reality. Critics of

the Copenhagen Interpretation, including de Broglie, Schr6dinger, and Einstein, ex-

pressed strong objections to the philosophical implications of the completeness of

the statistical description of quantum mechanics. In particular, Einstein [351 saw a

logical conflict between his theory of relativity and the Copenhagen interpretation:

how could the wavefunction be delocalized instantaneously before measurement, and

localized after? According to Einstein,

It seems hard to sneak a look at God's cards. But that he plays dice and

uses "telepathic" methods (as the present quantum theory requires of him)

is something that I cannot believe for a single moment [27].

By "telepathic," or elsewhere "spooky action at a distance" [34j, Einstein referred

to the superluminal transmission of information that must accompany the act of

measurement if one insists on the completeness of quantum mechanics. According to

the Copenhagen Interpretation, measuring a particle at a specific position does not

imply that the particle was there instantaneously before measurement, as one would

expect classically. If the wavefunction is taken to be a complete description of the

quantum system, there cannot be additional "hidden" variables, such as the particle's

position or momentum. Thus, the particle is effectively smeared out over space with

a density prescribed by a wavefunction, which collapses instantaneously to a point in

response to the act of measurement.

In response to the philosophical difficulties introduced by the Copenhagen Inter-

pretation, a myriad other quantum interpretations emerged, some even more philo-

sophically extravagant. For instance, the Many-Worlds Interpretation developed by

Hugh Everett in 1957 [36] and popularized by Bryce deWitt [251 claims that every
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time a quantum measurement is made, all possible outcomes are realized. In order

to account for the simultaneous realization of all outcomes, this interpretation relies

on the metaphysical artifact of a "continual splitting of the universe into a multitude

of mutually unobservable but equally real worlds..." [25]. According to the Many-

Worlds Interpretation, there is a wavefunction, or state vector, which governs the

entire universe, including all of the many worlds, and hence never collapses upon

measurement [105]. An equally farfetched variant to the splitting of worlds comes

in the form of the Many-Minds interpretation, presented by Michael Lockwood 164],

which claims that

[A]ssociated with a sentient being at any given time, there is a multiplicity

of distinct conscious points of view. [... it is these conscious points of

views or 'minds,' rather than 'worlds,' that are to be conceived as literally

dividing or differentiating over time.

While most physicists are agnostic concerning quantum foundations, recent polls

at conferences on the subject indicate that the Copenhagen Interpretation and the

Many-Worlds Interpretation are among the most widely ascribed to [96].

In the opposite direction, towards a more common-sensical interpretation of quan-

tum mechanics, Max Born proposed the Statistical Interpretation of quantum me-

chanics, for which he obtained the Nobel prize in 1954. In his Nobel lecture [111,

Born discussed the concept of determinism in classical and quantum mechanics,

Can absolute predictions really be made for all time on the basis of the

classical equations of motion? It can easily be seen, by simple examples,

that this is only the case when the possibility of absolutely exact measure-

ment (of position, velocity, or other quantities) is assumed. [..] I should

like only to say this: the determinism of classical physics turns out to be

an illusion, created by overrating mathematico-logical concepts. It is an

idol, not an ideal in scientific research and cannot, therefore, be used as

an objection to the essentially indeterministic statistical interpretation of

quantum mechanics.
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The statistical interpretation of quantum mechanics was extended by Ballentine 1j

into the Ensemble Interpretation, which claims that the wavefunction describes an

ensemble of similarly prepared systems, rather than a single isolated system. Through

conceding that quantum mechanics does not provide a complete description of an iso-

lated quantum system, the Ensemble Interpretation obviates the need for the philo-

sophical extravagances that accompany the Copenhagen, Many-Worlds and Many-

Minds interpretations. In particular, it does not require metaphysical artifacts such

as branching worlds and minds, as presented in the Many-Worlds and Many-Minds

interpretations. Likewise, it avoids the issues of wavefunction collapse and superlu-

minal signaling that plague the Copenhagen Interpretation.

Finally, we consider the pilot-wave theory proposed by Bohm [71 in 1952, which in-

cluded a trajectory interpretation for single-particle quantum systems. The Madelung

transformation [66] casts the Linear Schrddinger Equation 1.3 in a hydrodynamic

form, and so represents the original Hydrodynamic Interpretation of quantum me-

chanics. Substituting a wavefunction written in polar form, V)(x, t) = R(x, t)eis(xt)/h,

into the LSE and equating the real and imaginary parts yields

8S h2 7 2 R (VS) 2
+ = 0at 2m R 2rn

+ (VS) - VR2 + R2 V . (VS) = 0. (1.4)
at

One thus obtains a Hamilton-Jacobi description of quantum statistics. The square

modulus of the wavefunction R2 corresponds to the probability density, while the

gradient of the action, VS prescribes the quantum velocity of probability u = VS/m.

It is of note that there is only one term in Eq. 1.4 that contains Planck's constant h,

Q= 2 V 2 R (1.5)
2m R

the so-called "quantum potential" [8]. Bohm [7] proposed to extract dynamics out

of this formulation, by equating the particle velocity vp to the quantum velocity of

probability, vp = VS/m. The trajectory of a particle of mass m subjected to a
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classical potential V is thus governed by:

mi = -VQ - VV (1.6)

Bohm's proposal was important in providing a counterexample to the Impossibility

Proofs that held sway at the time [75] and erroneously suggested the impossibility

of a dynamical completion of quantum mechanics [2]. Bohm's formulation did not,

however, provide a description of wave generation as envisioned by de Broglie in his

"harmony of phases" picture, where a vibrating particle moves in resonance with a

monochromatic guiding wave.

We here explore the first macroscopic realization of a pilot-wave system of the

form envisioned by de Broglie: the walking droplet system. In a remarkable series of

experiments, Yves Couder, Emmanuel Fort and collaborators discovered a hydrody-

namic system in which a millimetric droplet of silicone oil walks on the surface of a

vertically-vibrating fluid bath [17, 88]. The drop generates a monochromatic wave at

each impact position, and that wave, in turn, guides the drop. This hydrodynamic

pilot-wave system consists of a particle exchanging energy with a monochromatic

wave at its vibrational frequency, as in de Broglie's pilot-wave theory. In the hy-

drodynamic case, the wave-particle interaction may be measured experimentally and

modeled theoretically.

The walking droplet pilot-wave system exhibits many features that were once

thought to be peculiar to quantum mechanics, including quantized orbits [41, 52, 61,

79, 86], Zeeman splitting [41, 79], spin states [79, 63, 81], double quantization [86,

28, 59], tunneling [31, 73], and the emergence of multimodal statistics in confined

geometries [55, 42, 43, 94]. This hydrodynamic pilot-wave system and its relation to

realist models of quantum mechanics has been recently reviewed by Bush [14, 13].

The experimental system consists of a millimetric droplet of radius R, bouncing in

place [110] on the surface of a fluid bath vibrating vertically with vertical acceleration

F = -y cos (27ft). Provided the vibrational amplitude -y < 'YF, where 7F is the

Faraday instability [3] threshold, the surface would remain flat in the absence of
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the drop. When the bouncing drop becomes synchronized with its wavefield, its

bouncing period corresponds to the Faraday period TF = 2/f, and it is said to be

a resonant bouncer. Then, at each impact, it generates a localized field of Faraday

waves with characteristic wavelength AF = 27r/kF prescribed by the standard water-

wave dispersion relation [58],

( gk + -k tanh kh, (1.7)

where w is the driving frequency, g the acceleration due to gravity, - the surface

tension, p the density, and h the fluid depth.

As the vibrational amplitude is increased, the bouncing state destabilizes into a

walking state, as shown by Yves Couder, Emmanuel Fort and collaborators [17, 88].

The characterization of the droplet dynamics in terms of the non-dimensional vibra-

tional acceleration y/-YF and vibration number Q = w / c~/(pR3) is shown in Fig. 1-1

for 20 cS oil and vibration frequency 80 Hz [71, 721. In the absence of vertical vibra-

tion, all drops coalesce into the fluid bath. As the vibrational acceleration is increased

progressively, the drop passes through a variety of static bouncing states. Once its

bouncing period has doubled with respect to the bath vibration period, the drop

achieves resonance with its underlying subharmonic Faraday wavefield. Beyond the

walking threshold, this resonant bouncer destabilizes into a dynamic state. The re-

sulting walker self-propels along the bath surface, guided by its own wavefield. Exotic

bouncing and walking states were reported by Wind-Willassen et al. [1151. In Chap-

ter 4, we consider an extension of this regime diagram for vibrational accelerations

above the Faraday threshold -YF-

Mold6ek & Bush [71, 72] developed a theoretical description of the vertical and

horizontal motion of the walking drops by considering the long-time many-bounces

approximation to the wave generated by droplet impact. The vertical motion of the

droplet is characterized in terms of free-flight when the drop is not in contact with the

bath, and impact, during which the interface behaves like a logarithmic spring [71, 721.

The wavefield is expressed as a discrete sum of Bessel functions weighted by a temporal
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Figure 1-1: Regime diagram for 20 cS silicone oil droplets bouncing and walking on the
surface of a bath vibrating vertically at 80 Hz, as a function of the non-dimensional
vibrational acceleration -y/'-F and vibration number Q = w u/a (pR 3) [71]. The
bouncing mode, denoted by (m, n)P, indicates that for every every m driving periods,
the particle will bounce n times [441. We distinguish different bouncing states with
the same mode number according to energy, with higher values of p corresponding to
more energetic modes [71, 106]. The behavior of droplets above the Faraday threshold
is reported in Chapter 4.

33

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
0.9

1.1



damping term that depends on the vibrational acceleration, with each individual

wave mode solving a damped Matthieu equation [721. By considering that there is

a dominant unstable wave mode with wavenumber k = kF, Molacek & Bush [72]
asymptotically obtained an analytical expression for the wave form in terms of the

fluid parameters.

Building upon the modeling efforts of Mol6eek & Bush [71, 72], Oza et al. [80] de-

veloped an integro-differential trajectory equation to describe the walker's horizontal

motion. When the vertical dynamics is fast relative to the horizontal dynamics, the

discrete sum of waves may be expressed in terms of a continuous integral equation

for the wavefield. The propulsive force on the droplet is then prescribed by the gra-

dient of the underlying wavefield. The resulting trajectory equation, henceforth the

"stroboscopic model," is able to capture the supercritical pitchfork bifurcation from

bouncing to walking, and the stability of straight-line walking solutions: specifically,

straight-line trajectories are stable to perturbations along the direction of motion,

and neutrally stable to perpendicular perturbations.

The first theoretical model for the horizontal motion was proposed by Emmanuel

Fort [I. Refined models of the wavefield have recently been developed by Milewski et

al. [701, Blanchette [6], Oza et al. [821, Faria [38], and Durey et al. [28]. A reduced

dynamical model for the horizontal dynamics of a constrained walker has been devel-

oped by Gilet [421 and examined by Rahman & Blackmore [911. The various wave

models have been recently reviewed by Turton et al. [108].

Experimental explorations of orbital pilot-wave dynamics have provided analogs to

various quantum systems. For example, Fort et al. [41], demonstrated experimentally

the quantization of circular orbital radii for walkers in a rotating bath. Since the

Coriolis force is identical in form to the Lorentz force acting on a charged particle

moving through a uniform magnetic field, the authors drew the physical analogy

between their quantized inertial orbits and Landau levels in quantum mechanics.

Harris et al. [52] demonstrated experimentally that quantized orbits in the rotating

frame may become unstable, and eventually chaotic. In an accompanying theoretical

study, Oza et al. [79] performed a linear stability analysis of orbital solutions to the
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stroboscopic trajectory equation in a rotating frame, predicting that all circular orbits

are stable for sufficiently low vibrational acceleration, but eventually become unstable

as the acceleration increases progressively. In the chaotic regime, the drop moves in

an aperiodic fashion, but coherent quantum-like statistics emerges, where traces of

the unstable orbital modes are evident.

Perrard et al. [86] examined experimentally the dynamics of walking droplets sub-

jected to a central harmonic potential. The resulting drop trajectories exhibited dou-

ble quantization in radial position and angular momentum. At large vibrational forc-

ing, chaotic trajectories arose [851, in which the particle erratically switched between

unstable periodic orbits. Labousse et al. [61] considered theoretically the stability of

circular orbits in a simple harmonic potential, characterizing the radial quantization

of circular trajectories. The rich dynamical behavior of walkers in a harmonic po-

tential has also been explored numerically [61, 28, 59], where exotic orbits including

lemniscates and trefoils are observed, as in experiments. Although chaotic dynamics

are evident experimentally for both walker motion in a rotating frame and in the pres-

ence of a simple harmonic potential, the detailed transition from periodic to chaotic

trajectories had not yet been examined. We characterize this transition theoretically

in Chapter 2, using the stroboscopic model of Oza et al. [80].

This thesis is motivated by the following questions:

1. Might chaotic pilot-wave dynamics underlie quantum statistics?

2. What is the mechanism for the emergence of chaos in orbital pilot-wave dynam-

ics?

3. Can the stroboscopic model be generalized theoretically to capture and elucidate

additional quantum analogs?

In Chapter 2, we explore the onset of chaos in orbital pilot-wave dynamics. We

conduct a numerical investigation of droplets walking on a vertically-vibrating bath

and acted upon by either a Coriolis, Coulomb or linear spring force. As the vibra-

tional acceleration is increased progressively, circular orbits tend to destabilize into
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wobbling, and eventually chaotic trajectories. The manner in which chaos appears,

however, is dependent on the form of the external force. When acted upon by Coriolis

or Coulomb forces, the orbital trajectories undergo a period-doubling cascade leading

to chaos. In the presence of a linear spring force, the transition to chaos is reminiscent

of the Ruelle-Takens-Newhouse scenario. These results have been published in: "The

onset of chaos in orbital pilot-wave dynamics," L. D. Tambasco, D. M. Harris, A. U.

Oza, R. R. Rosales, and J. W. M. Bush, Chaos 26, 103107 (2016) 1103].

In Chapter 3, we examined experimentally the ability to trap walking droplets

with an underlying wavefield. We first explored a novel optical analogy, the Faraday-

Talbot effect: when a row of equally-spaced pillars is placed on a vibrating fluid bath

driven above the Faraday threshold, the resulting wavefield is marked by images of

the pillars projected at integer multiples of a fixed distance from the row, provided

that the spacing between the pillars is a multiple of the Faraday wavelength. This

underlying wavefield is shown to attract both bouncing and walking droplets to its

troughs, similar to a potential field. The Faraday-Talbot effect and droplet trapping

were first reported in: "Hydrodynamic analog of particle trapping with the Talbot

effect," N. Sungar, L. D. Tambasco, G. Pucci, P. J. Sienz, and J. W. M. Bush, Physical

Review Fluids 2, 103602 [1001, and further extended for the cases of alternating phase

and circular arrays in: "Faraday-Talbot effect: alternating phase and circular arrays,"

N. Sungar, J. P. Sharpe, J. J. Pilgram, J. Bernard and L. D. Tambasco, (Submitted,

2018) [99]. These experiments motivated our experimental and theoretical exploration

of droplet dynamics subjected to a topographically-induced wavefield.

In Chapter 4, we explored the horizontal dynamics of droplets driven above

the Faraday threshold, extending the regime diagram for droplets of 20 cS and 50

cS. Above threshold, we observed that straight-line walking is unstable, with drops

moving in meandering, zig-zagging, and chaotic trajectories, or otherwise becoming

trapped by the underlying wavefield. We investigated the chaotic trajectories, where

drops appear to exhibit Brownian motion, and we experimentally showed that the

effective diffusivity of the drops increases with vibrational acceleration and decreases

with drop radius. This chapter was submitted for publication as: "Bouncing droplet
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dynamics above the Faraday threshold," L. D. Tambasco, J. J. Pilgram and J. W. M.

Bush, (Submitted, 2018) [104].

In Chapter 5, we explored the effects of an imposed potential with both oscillatory

and quadratic components on the dynamics of walking droplets. We first conducted

an experimental investigation of droplets walking on a bath with a central circular

well. The well acts as a source of Faraday waves that may serve to trap walking

droplets into circular orbits. The observed orbits are stable and quantized, with the

preferred radii aligning with the extrema of the well-induced Faraday wave pattern.

We then used the stroboscopic model of Oza et al. with an added potential to examine

the interaction of the droplet with the underlying well-induced wavefield. We showed

that quantized orbits are stable for accessible fluid parameters. We proceeded by

considering a generalized pilot-wave system, in which the relative magnitudes of the

pilot-wave force and drop inertia may be tuned. When the drop inertia is dominated

by the pilot-wave force, the quantized circular orbits may all become unstable, with

the drop chaotically switching between them. The probability distribution of the

drop's position then reflects the relative instability of the circular orbits. This chapter

was submitted for publication as: "Exploring orbital dynamics and trapping with a

generalized pilot-wave framework," L. D. Tambasco and J. W. M. Bush (Submitted,

2018) [102].

Finally, in Chapter 6, we summarize our findings and discuss future directions in

the theoretical and experimental study of pilot-wave dynamics.
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Chapter 2

Chaos in orbital pilot-wave dynamics

In this chapter, we detail the manner in which stable circular orbits, for walking

droplets in the presence of Coriolis, linear spring or Coulomb forces, give way to

chaotic trajectories as the forcing acceleration is increased progressively. Orbital

pilot-wave dynamics were first examined by Fort et al. [41], who demonstrated ex-

perimentally the quantization of orbital radii for walkers in a rotating frame, and

rationalized this quantization with accompanying simulations. Owing to the iden-

tical forms of the Coriolis force acting on a mass moving in a rotating frame and

the Lorentz force acting on a charge in a uniform magnetic field, the authors drew

the analogy between these quantized inertial orbits and Landau levels in quantum

mechanics. Harris & Bush [52] demonstrated experimentally that these quantized

circular orbits can destabilize into wobbling and chaotic trajectories, features cap-

tured in the theoretical models of Oza et al. [80, 83].

Perrard et al. [861 explored walkers in a harmonic potential, and reported a double

quantization of orbital radius and angular momentum, features also captured in their

simulations [61]. In both of these orbital pilot-wave systems, the walker dynamics

becomes complex and presumably chaotic for sufficiently high forcing acceleration

-y. Nevertheless, traces of the unstable orbital solutions are evident in the emergent

chaotic trajectories, which exhibit multimodal quantum-like statistics.

These results have been published in: "The onset of chaos in orbital pilot-wave dynamics," L.
D. Tambasco, D. M. Harris, A. U. Oza, R. R. Rosales, and J. W. M. Bush, Chaos 26, 103107
(2016) [103].
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Figure 2-1: (a) Oblique view of a resonant walker [13]. The solid line tracks the
center of the walking droplet. (b) Top view of a walking droplet orbiting on a rotating
bath [52], a system to be explored numerically in Section 2.2.

In Section 2.1, we review the theoretical stroboscopic model for the horizontal

dynamics of walking droplets, and discuss the numerical method used to simulate

the drop's trajectories. We present the evolution from circular orbits to chaotic

trajectories for drops subject to Coriolis (Section 2.2), linear spring (Section 2.3)

and Coulomb (Section 2.4) forces. In Section 2.5 we discuss the two routes to chaos

observed, specifically the classic period-doubling cascade for orbits in the presence of

Coriolis and Coulomb forces, and a path to chaos reminiscent of the Ruelle-Takens-

Newhouse scenario for orbital dynamics in the presence of a linear spring force.

2.1 Trajectory equation and numerical method

We first summarize the stroboscopic trajectory equation of Oza et al. [80] which

forms the basis of our numerical investigation. We consider a resonant walker of

mass m, bouncing with frequency f/2 on a vertically vibrated fluid bath shaken with

forcing acceleration -y cos (27rft) and subjected to an applied force JF. We denote

its horizontal position at time t by x,(t) = (xp(t), yp(t)). As shown by Moldeek

& Bush [72] and Oza et al. [80], time-averaging the vertical dynamics leads to the
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Symbol Definition Typical Range of Values

R Drop radius 0.1 - 0.5 mm
V Drop kinematic viscosity 20-50 cS
P Drop dynamic viscosity 10-3-101 kg m- 1 s-1

Pa Air dynamic viscosity 10-5 kg m- 1 s 1

a Drop surface tension 20-21 mN m-1
p Silicone oil density 949-960 kg m-3
g gravitational acceleration 9.81 m s-2
7 forcing acceleration 0 - 60 m S

7F Faraday threshold acceleration 40 - 50 m s-2
f Bath shaking frequency 50-80 Hz

TF (= 2/f) Faraday period .025 - 0.04 s1
W (=27rf) Shaking angular frequency 314-504 rad s-1

WF (=w/2) Faraday frequency 107-252 rad s-1
h Fluid depth 1-6 mm

AF Faraday wavelength 4.75 - 6 mm
kF (=27r/AF) Faraday wavenumber 167 - 210 m--

Table 2.1: List of symbols for dimensional variables, along with typical range of
experimental values explored.

integro-differential equation for the horizontal motion:

M., + D.p = -mgVh(xp(t), t) + Y, (2.1)

with the wavefield

Art
h(x, t) Jo (kF X - xp(s) )e(t-s)/TMds,

TF-o

where g is the gravitational acceleration, TF= 2/f is the Faraday period, and kF

27r/AF is the wavenumber of the most unstable Faraday wave. We assume that the

fluid bath consists of silicone oil with viscosity v = 20 cS, driven at f = 80 Hz, and

that the walker has radius RD = 0.4 mm and mass m = 0.25 mg. For this particular

case, the time-averaged drag D = 2.0 mg/s and the wave amplitude A = 3.5 pm

were calculated from system parameters [72, 801. We note that A depends on the

droplet's bouncing phase (b, chosen such that sinqD = 0.2 to provide the best fit

between predicted and observed walking speeds [80]. Typical range of experimental
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parameters is reported in Table 2.1.

In addition to the applied force Y, the walker experiences a drag force opposing

its motion and a propulsive force proportional to the local slope of the interface. The

wavefield h is expressed as the sum of waves generated by all prior droplet impacts.

Contributions to the wavefield from previous impacts are exponentially damped over

the memory timescale TM = Td/(1 - y/'yF), where Td is the wave decay time in the

absence of forcing [72, 32]. Note that the memory time is a monotonically increasing

function of the forcing acceleration for -y < -yF, so we will use the terms memory and

vibrational forcing interchangeably in what follows.

We non-dimensionalize according to + -+ kFx, t -+ /TM and F kFTMF/D.

Dropping carets yields the dimensionless system:

r + i - -,3Vh(xp(t),t) + .F,

h(x, t) = ] Jo (Ix - xp(s)|) e-(t-s) ds, (2.2)

where n = m/DTM and 3 = mgAk2T%/DTF. This system is solved numerically

by a fourth-order Adams-Bashforth linear multistep method, the details of which

are reported elsewhere [83]. We initialize the simulations in a circular orbit, xp(t) =

ro (cos(wt), sin(wt)), where the orbital radius ro and angular frequency w are solutions

of the algebraic equations

-Iirow2 =fjJi (2ro sin -sin e-2dz + F -r,22

row = / Ji (2ro sin - cos ---e-z dz + F -, (2.3)
10 2 2

where j and 6 are the unit vectors in the radial and tangential directions respectively.

Eq. (2.3) guarantees that xp(t) = ro (cos(wt), sin(wt)) is an exact solution of Eq. (2.2),

which is stable for sufficiently low forcing acceleration -y/yF. After initializing the

simulation in a stable circular orbit, we increase the forcing acceleration in increments
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of A (_Y/yF), using the results from the previous simulation as the initial data. In order

to resolve the bifurcations, we adapt the step value A (-Y/YF), decreasing it as -y/'YF

increases. Each simulation is run using a dimensionless time step At = 2-6 and

up to a dimensionless time t/TM = 104 in order to integrate beyond any transient

behaviors.

2.2 Coriolis force

We first consider the pilot-wave dynamics of a walking droplet in a frame rotating

with angular frequency Q = Qi. The walker experiences a Coriolis force, F =

-2mg x -P, which assumes the dimensionless form F = -n x ,P, where f2 =

2mQ/D. It was demonstrated in prior experiments [41, 521 that, in certain param-

eter regimes, the walkers execute circular orbits in the rotating frame of reference,

xP(t) = ro(cos wt, sin wt). Above a critical value of the forcing acceleration, certain

radii are forbidden; thus, the stable orbits are quantized in radius, roughly sepa-

rated by half-integer multiples of the Faraday wavelength AF. The linear stability

of the system, as elucidated by Oza et al. [79], is summarized in Fig. 2-2. Labora-

tory experiments [521 and numerical simulations [83, 51] revealed that, as the forcing

acceleration is progressively increased, the quantized circular orbits destabilize into

wobbling orbits, characterized by a periodic oscillation in the radius of curvature. As

the memory is increased further, wobbling orbits then destabilize into drifting orbits,

in which the orbital center drifts on a time scale that is long relative to the orbital

period. Above a critical value of memory, the orbital dynamics becomes chaotic. We

here characterize the progression from wobbling to drifting to chaotic dynamics as

the memory is increased progressively.

Since the applied force is the Coriolis force, the circular orbits are not necessar-

ily centered at the origin, so we cannot characterize the orbits simply by the radius

r(t) = |xpj. We instead use the radius of curvature R(t) = kP 13 / 1, x .,l. Fig. 2-3

shows the trajectories obtained by numerically integrating Eq. (2.2) for a fixed di-

mensionless rotation rate ( = 0.6 and progressively increasing memory. The resulting
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Figure 2-2: Linear stability diagram [79] of orbital solutions of radius ro arising in
the presence of a Coriolis force F = -2mQ x ,. -y is the driving acceleration, -yF

is the Faraday threshold and AF is the Faraday wavelength. The droplet's radius is
RD= 0.4 mm, impact phase sin P = 0.2, viscosity v = 20 cS and forcing frequency
80 Hz. Blue regions indicate stable circular orbits. Green regions correspond to
circular orbits that destabilize via an oscillatory instability. Red regions correspond
to orbits that destabilize via a nonoscillatory instability. The transition to chaos is
found by starting with an initially stable solution (ro, w, Q) to Eq. (2.3) and increasing
the dimensionless forcing acceleration 'y/yF progressively while keeping Q constant,
following the procedure described in Section 2.1. The white curve indicates the path
through parameter space for the results shown in Section 2.2. The transition to chaos
through a period-doubling cascade appears to be generic in this system; specifically,
it arises in passing from blue to green regions with increasing memory.
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path through parameter space is indicated by the white curve in Fig. 2-2. In this pa-

rameter regime, the circular orbits have radius ro ~ 0.8AF and period T ~ 6TM. The

linear stability analysis [79] of these orbits (see Fig. 2-2) indicates that they are stable

for /yF < 0.951.

For 7/7F > 0.951, the circular orbit destabilizes into a wobbling orbit with an

oscillatory radius of curvature R(t), as shown in Fig. 2-3(a). The frequency spectrum

of R(t) shows a single peak at the wobbling frequency Wwobble ~ 2w. As the memory

is increased, the wobbling orbits destabilize into drifting orbits, where the radius

of curvature R(t) evidently undergoes a period-doubling bifurcation. These drifting

orbits consist of roughly circular loops of radius 0(ro) and orbital period T 27r/w

that slowly drift, such as those highlighted in red in the first column of Fig. 2-3(b)-(e).

Since the drifting is slow relative to T, we can define the orbital center for any loop:

xc(t) - - xp(s) ds, (2.4)
T t

where T corresponds to the strongest peak in the power spectrum of xp(t).

The orbital center for drifting orbits traces a circle on a timescale long relative

to the orbital period (tdrift ~ 100T). Fig. 2-3(c) shows a period-4 drifting orbit

at a still higher value of memory, which is confirmed by the presence of additional

frequencies and their integer linear combinations in the frequency spectrum of R(t).

As the memory is increased progressively, the trajectories undergo a period-doubling

cascade and eventually become chaotic, as suggested by the broadband frequency

spectrum of R(t) evident in Fig. 2-3(d). As one might expect, the trajectory of the

orbital center xc(t) is aperiodic for chaotic orbits.

Within the regime of chaotic trajectories, 7/F> 0.95994, we observe a periodic

window consisting of period-10 orbits, an example of which is shown in Fig. 2-3(e).

The period-doubling cascade observed along the white path shown in Figure 2-2 is

analogous to that seen in 1-dimensional unimodal maps. As the forcing acceleration is

increased beyond the white curve, our system departs from the behavior of unimodal

maps. In particular, we do not observe period-3 or period-5 windows for the parame-
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ters explored herein, but instead observe exotic orbits. An extensive numerical study

of these exotic orbits in the case of a rotating frame is presented in Oza et al. [831.

The period-doubling cascade may be seen more clearly in the bifurcation diagram

shown in Fig. 2-4. The points shown correspond to local maxima Rm > ro in the

radius of curvature R(t), corresponding to the circles in the plots of R(t) (middle

column of Fig. 2-3). We note that the trajectory has secondary local maxima that

are present throughout the period-doubling cascade and do not seem to affect it.

Similar period-doubling cascades were observed for paths crossing from blue to green

regions with increasing memory for other values of f and larger values of the initial

orbital radius ro.

We now provide a qualitative explanation for why the period-doubling bifurcation

coincides with the transition from wobbling to drifting orbits. Consider a simple

model for a wobbling orbit, xp(t) = ro(1 + ao cos awt)(cos wt, sin wt), where ao is the

wobbling amplitude and aw the wobbling frequency. Our linear stability analysis [79]

has shown that circular orbits destabilize into wobbling orbits via a Hopf bifurcation

as the memory is progressively increased, and that the most unstable eigenvalues have

imaginary part aw with a ~ 2. The linear theory only provides an estimate for

the wobbling frequency near the onset of wobbling, but the numerical simulations in

Fig. 2-3(a) confirm that the wobbling frequency is indeed approximately 2w.

A simple model for a period-doubled orbit is thus given by

xp(t) = ro [1 + ao cos(awt) + al cos(awt/2)] (coswt, sin wt), (2.5)

where ao is the wobbling amplitude and a1 is the amplitude of the new period-

doubled frequency. Note that, because a is close to 2, xp(t) will consist of loops that

do not close. Plugging the expression for xp(t) into Eq. (2.4) yields an expression for

the orbital center of the trajectory:

-t = 1 sm 7rO j(cos [OijE(t)] , sin [0i36(t)]), (2.6)
io j=0
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Figure 2-3: Numerical solutions to the trajectory equation (Eq. 2.2) with a Coriolis
force F = - x i,, which describes pilot-wave dynamics in a rotating frame with

dimensionless angular frequency Q = 0.6. The first column shows the simulated
trajectories xp(t) plotted over 100 orbital periods T (blue), with the last 10 orbital
periods (red) and the orbital center xc(t) (black) superimposed. The second column
shows the radius of curvature R(t), with the local maxima greater than ro indicated
by the red circles. The third column shows the frequency spectrum of R(t). The
rows correspond to (a) a wobbling orbit (y/-yF = 0.957), (b) a period-2 drifting orbit

(7/7F = 0.959), (c) a period-4 drifting orbit (Y/'yF = 0.9595), (d) a chaotic trajectory
(y/yF = 0.96004), and (e) a period-10 orbit (/'yF= 0.960066) in a periodic window
within the chaotic regime. 47
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Figure 2-4: Bifurcation diagrams showing the transition to chaos for a walker in a
rotating frame with dimensionless angular frequency 2 = 0.6. For each value of the

dimensionless forcing acceleration -y/7F, the points correspond to local maxima R,, in
the radius of curvature R(t). Panel (b) shows a magnified view illustrating the period-
doubling cascade for -y/7F > 0.9594. The color-coded vertical lines correspond to the

trajectories shown in Fig. 2-3. The dimensionless forcing acceleration is changed in

increments of A(7/-yF) = 10- for -y/-F E [0.950, 0.956], A(-y/-yF) = 10-' for -yl-F E

[0.9561, 0.9594], A(-Y/7F) - 5 for _Y1_F E [0.95941, 0.95980] and A(-y/7F) = 10-6

for 7/yF E [0.959801, 0.960099].
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where 8(t) = wt + -F and Oij = a/2' + (-)i. Because a . 2, Ooo - 3, 310 a 2,

1301 1 and /31 - 0. Hence, the coefficients sin(7ri)/7r/3i in Eq. (2.6) all nearly

vanish, except for that corresponding to 01, which leads to

1
Xc(t) aro (cos[ 11(wt + 7r)], sin[311(wt + 7r)]) . (2.7)

This formula shows that the orbital center approximately traces out a circle of radius

proportional to a, (the period-doubled amplitude), whose period 27/(011 w) is neces-

sarily long relative to the orbital period T. In order for this argument to hold, the

following conditions must be met.

Criterion 1: a must be close to, but not exactly equal to 2.

Criterion 2: A period-doubling bifurcation must happen after the wobbling state

emerges.

This argument provides a new rationale for the onset of period-doubling coinciding

with the onset of drifting, a feature highlighted in previous experiments [52] and

simulations [831.

2.3 Simple harmonic potential

We next consider the pilot-wave dynamics of a droplet walking in a harmonic poten-

tial. In this scenario, the walker is subjected to a radial spring force, F = -kxp.

This system was realized experimentally by Perrard et al. [86, 85] by encapsulating a

small amount of ferromagnetic fluid in a walking droplet and exposing this compound

droplet to a radially non-uniform vertical magnetic field. They demonstrated that,

as the forcing amplitude is increased progressively, quantized circular orbits emerge,

followed by more complex periodic and aperiodic trajectories. A key observation was

the emergence of orbits that were quantized in both mean radius and angular mo-

mentum, a quantum-like feature also captured in their simulations. They also noted
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Figure 2-5: Linear stability diagram [79] of orbital solutions of radius ro arising in
the presence of a linear spring force F = -kxp. y/-yF is the dimensionless driving
acceleration and AF is the Faraday wavelength. The drop's radius is RD = 0.4
mm, impact phase sin 4D = 0.2, viscosity v = 20 cS and forcing frequency 80 Hz.
Blue regions indicate stable circular orbits. Green regions correspond to circular
orbits that destabilize via an oscillatory instability. Red regions correspond to orbits
that destabilize via a nonoscillatory instability. The white curve indicates the path
through parameter space for the results shown in Section 2.3. The transition to chaos
is generic in this system; specifically, it arises in passing from blue to green regions
with increasing memory.
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Figure 2-6: Numerical solutions to the trajectory equation (Eq. 2.2) with a spring force
F = -kx, and a fixed dimensional spring constant k = 3.2 ttN/m which describes
pilot-wave dynamics in a harmonic potential. The first column shows the simulated
trajectories xp(t) plotted over many orbital periods (blue) along with the last few
orbital periods (red). The second column shows the orbital radius r(t) = Jxp(t)J.

The third column shows the frequency spectrum of r(t). The rows correspond to
(a) a wobbling orbit (-y/-yF = 0.9573), (b) a quasiperiodic wobbling orbit (-Y/7YF =

0.9583), (c) a frequency-locked wobbling orbit ('y/yF = 0.9600), (d) a frequency-
locked wobbling orbit with an additional incommensurate frequency ('y/-yF = 0.9610),
and (e) a chaotic trajectory (7/7F = 0.9613).
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Figure 2-7: Diagram detailing the evolution with memory of the independent peak
frequencies in the spectrum of r(t) arising during the transition to chaos in a har-
monic potential with dimensional spring constant k = 3.2 pN/m. Panel (a) tracks the
principal wobbling frequency fi, which first appears when the circular orbit becomes
unstable. As the forcing acceleration is increased further, a second independent fre-
quency f2 appears, which later becomes locked with fi at f2/fl = 1/4, as shown in
panel (b). At higher accelerations, a third independent frequency f3 appears that
precedes the transition to a broadband spectrum in the chaotic regime, as shown in
panel (c). We label W1 the single-frequency state, W2 the two-frequency quasiperi-
odic state, W2* the two-frequency frequency-locked state, W3 the state with a third
incommensurate frequency, and C the chaotic orbital state. The dimensionless forcing
acceleration is changed in increments of A(y/7F) = i03 for 7/7F E [0.945, 0.956]
and A(y/-y-F) = 10' for 'r/"F E [0.9560,0.9614].
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that in certain parameter regimes, an intermittent switching between the quantized

periodic states could be observed.

We here confine our attention to the stability of the quantized circular orbits. As

in Section 2.2, we examine the transition from a stable circular orbit to a chaotic

wobbling orbit as the forcing acceleration is increased. We proceed to demonstrate

that the transition to chaos is qualitatively different. We characterize the orbits in

terms of their local radius r(t) = Jxp(t)J, the distance to the center of the fixed

harmonic potential, as well as the associated frequency spectrum.

The dimensional spring constant is here fixed to be k = 3.2 pN/m which results in

circular orbital solutions of radius ro - 0.8AF for our choice of system parameters. For

7/yF < 0.948 these circular orbits are stable, in accordance with the linear stability

analysis [61] summarized in Fig. 2-5. For /7F 0.948, the circular orbit destabilizes

into a wobbling orbit (Fig. 2-6a) whose radius oscillates with a single well-defined

frequency fi that is approximately twice the orbital frequency w/27r. When the forcing

acceleration is increased to -y/YF = 0.9482, a second independent frequency f2 appears

in the wobbling spectrum as shown in Fig. 2-6(b). Note that the additional peaks

apparent in the spectrum of r(t) correspond to integer linear combinations of the two

base frequencies fi and f2. As the forcing acceleration is increased further, the ratio

of these frequencies changes continuously until they lock onto a fixed integer ratio at

7/-yF 0.9495 (Fig. 2-6c). For the simulations at higher memory, f2 remains locked

with fi in a ratio f2/fl = 1/4. When the forcing acceleration reaches 'y/'YF = 0.9610,

an additional incommensurate frequency f3 (along with its integer linear combinations

with fi and f2) appears as shown in Fig. 2-6(d). Shortly after the appearance of this

new frequency, for y/7F > 0.9613, the spectrum begins to show evidence of broadband

noise and the trajectory becomes chaotic, as shown in Fig. 2-6(e). Similar transitions

to chaos were observed in other tongues for paths crossing from blue to green regions

with increasing memory. We note that evidence of this particular route to chaos has

also been observed in experiments 1841.

In summary, we observe a transition from a base state (circular orbit), to a single-

frequency state (WI), to a two-frequency quasiperiodic state (W2), to a two-frequency
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frequency-locked state (W2*). Thereafter, a state with an additional incommensurate

frequency emerges (W3), followed by a chaotic orbital state (C). This evolution can

be summarized by the emergence of independent peaks in the frequency spectrum of

r(t) as shown in Fig. 2-7. This transition from a stable circular orbit to a chaotic

wobbling orbit is notably different from the classic period-doubling transition, but

instead appears similar to the Ruelle-Takens-Newhouse route to chaos [93, 771. In

the Ruelle-Takens-Newhouse scenario, a finite sequence of bifurcations gives rise to

additional frequencies in the spectrum and after three such bifurcations, it is likely

(but not guaranteed) that a strange attractor appears in phase space [30].

2.4 2D Coulomb potential

Finally, we consider a walking droplet subjected to a two-dimensional radial Coulomb

force F = -Qx / IxP 2 . Such a force would correspond to a walking droplet with

electric charge q attracted to an infinite line charge with charge density A placed at

the origin normal to the fluid bath where Q = qA/27rco (with electric constant co =

8.8 x 10-12 F/m). In dimensionless form, F = -Qx / IxP, 2, where Q = QkyTM/D.

Although this system is yet to be realized experimentally, we can investigate it numer-

ically using the integro-differential equation (2.2), which has been validated against

experiments for walkers in Coriolis [52] and central harmonic [861 forces.

Note that circular orbits xp(t) = ro (cos wt, sin wt), with radius ro and orbital

frequency w, are exact solutions of Eq. (2.3) with an external Coulomb force F. We

assess linear stability of these solutions by a procedure analogous to that used by Oza

et al. [791, and summarize our results in Fig. 2-8. Orbits with radii 0.3 < ro/AF < 0.5

are predicted to be stable provided y/_yF < 0.915. Thus, we initialize the simulation

with -/_F = 0.91 and a fixed charge parameter Q = 0.35 nJ that corresponds to a

stable circular orbit of radius ro = 0.385AF- We evolve the system as described in

Section 2.1 with an initial increment of A (7/7F) = 103.

As indicated by the linear stability analysis (Fig. 2-8), the circular orbit becomes

unstable to a wobbling orbit at y/ylYF > 0.920. An example of a wobbling orbit is
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Figure 2-8: Linear stability diagram of orbital solutions of radius ro arising in the
presence of a 2D Coulomb force F = -Qx,/ jxP 2 . Y/'YF is the dimensionless driving
acceleration and AF is the Faraday wavelength. Blue regions indicate stable circular
orbits. Green regions correspond to circular orbits that destabilize via an oscillatory
instability. Red regions correspond to orbits that destabilize via a nonoscillatory
instability. The transition to chaos is tracked along the white curve by finding an
initial stable solution (ro, W, Q) to Eq. (2.3) and increasing the dimensionless forcing
acceleration 7/7F progressively while keeping Q constant.
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shown in the first panel of Fig. 2-9(a) for -Y/YF = 0.9375. We use the fact that

the system has an imposed center to characterize the trajectory by its radius r(t) =

x, (t) , plotted in the second panel of Fig. 2-9(a), which exhibits a periodic oscillation

between two values. The frequency spectrum of r(t), shown in the third panel of

Fig. 2-9(a) indicates that the wobbling frequency is Wwobble ~ 0.65w. Since, Wwobble/W

is not close to 2 (Criterion 1), this system does not exhibit drifting orbits.

As the memory is further increased, the frequency spectra shown in the last column

of Fig. 2-9 exhibit evidence of successive period-doubling bifurcations: half-frequencies

Wwobble/2 emerge at -y/-yF ~ 0.9394, quarter-frequencies at 7/-yF - 0.94141, and

eventually a broadband frequency spectrum at 7/7F ~ 0.941791, evidence of chaotic

dynamics. We also see a period-20 orbit when 7/YF - 0.941815 (Fig. 2-9(e)), an

example of a periodic window within the chaotic regime. The period-doubling cascade

is more clearly evident in Fig. 2-10, where we plot the local maxima rm of the radius

r(t) as a function of the forcing acceleration 7/-yF.

Unlike those arising in the presence of a Coriolis force or a simple harmonic po-

tential, the transition to chaos was specific to the leftmost green tongue (Fig. 2-8),

where it was observed for different initial radii 0.3 < ro/AF < 0.5 and correspond-

ing Q. Chaotic orbits have not been observed in other isolated regions of oscillatory

instability, where unstable orbits tend to spiral into the center or away to infinity

instead of undergoing a period-doubling cascade.

2.5 Discussion

We have characterized the transition from stable circular orbits to chaos in three

pilot-wave systems as the forcing acceleration is increased progressively. Walking

droplets subject to Coriolis (Section 2.2) and Coulomb (Section 2.4) forces follow a

period-doubling route to chaos, whereby circular orbits are destabilized into wobbling

trajectories of increasing complexity. The main difference between these two scenar-

ios, arising from the fact that the rotating system does not have a fixed center of force,

is the existence of drifting orbits in the rotating frame. These orbits emerge when
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Figure 2-9: Numerical simulations of Eq. (2.2) with :F = -Qx / Ix,1
2 , which de-

scribes the pilot-wave dynamics of a walking droplet subject to a two-dimensional
Coulomb force. The first column shows the trajectory xp(t) = (xp(t), yp(t)) with the
long term trajectory shown in blue, and the last few orbits colored red. The radius
of the orbit r(t) = Jxp(t)l is plotted in the middle column with local maxima rm
indicated by red circles. The third column shows the frequency spectrum of r(t).
The memory parameter is progressively increased from panels (a) through (e) with
rows corresponding to: (a) a wobbling orbit (yl/F = 0.9375), (b) a period-2 wob-
bling orbit (7/yF = 0.9394), (c) a period-4 wobbling orbit (y/yF = 0.94141), (d) a
chaotic trajectory (-Y/YF = 0.941791), and (e) a period-20 orbit (Y/'YF = 0.941815)
in a periodic window within the chaotic regime.
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Figure 2-10: Bifurcation diagrams showing the route to chaos for a walking droplet
subject to a two-dimensional Coulomb force with charge parameter Q = 0.35 nJ.
We track the local maxima rm of the orbital radius r(t) = Jxpl as a function of

the non-dimensional forcing acceleration y/y7F. Panel (b) gives a magnified view
of the upper right corner (delineated by the blue box) of panel (a), showing the
details of the period-doubling cascade immediately preceding the transition to chaos.
Color-coded vertical lines correspond to the trajectories depicted in Fig. 2-9. The
dimensionless forcing acceleration is changed in increments of A(Y/-YF) = i- for

y/7F E [0.910,0.936], A(y/-yF) = 10' for y/'yF E [0.9361,0.9413], A(Y/7F) = 10-

for 7/-F E [0.94131,0.94161] and A(-Y/'YF) = 10-6 for 7-yF E [0.941611,0.941900].
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a wobbling orbit of frequency approximately twice the orbital frequency undergoes a

period-doubling bifurcation. The rotating system is thus seen to support stable non-

linear states characterized by a drifting self-orbiting motion, which are related to the

hydrodynamic spin states discussed in Oza et al. [79I, Bush [141, and Labousse [601.

The case of a walking droplet in a simple harmonic potential (Section 2.3) exhibits

an entirely different transition to chaos. The circular orbits destabilize into wobbling

orbits, but successive bifurcations lead to the appearance of new independent fre-

quencies in the power spectrum of the orbital radius. These independent frequencies

eventually lock; subsequently, just before the chaotic regime, we see the emergence

of an additional incommensurate frequency. The observed transition is similar to the

Ruelle-Takens-Newhouse route to chaos, as has been observed previously in other fluid

systems, including Rayleigh-Bernard convection [45] and Taylor-Couette flow [46], as

well as in simulations of converging-diverging channel flows [50].

As noted in the experimental realizations of walking droplets subject to Corio-

lis [52] and central [86] forces, increasing the forcing acceleration has the effect of

destabilizing circular orbits. The evolution from stable circular orbits to chaotic tra-

jectories occurs over a small range A (-y/-yF) ~ 10-4; thus, resolving this transition

requires extremely precise experiments. In our numerical investigation, we were able

to capture the details of each bifurcation and explore the transition to chaos by finely

adjusting our memory parameter. For Coulomb and Coriolis forces, we note that

the forcing acceleration was increased by increments as small as A ('Y/'YF) 10-6,

which allowed us to capture period-16 and period-32 orbits within exceedingly narrow

parameter windows. Such an exploration is not possible with current experimental

capabilities [53J.

Relating the periodic and quasiperiodic trajectories observed at low memory to

the multimodal statistical behavior of chaotic trajectories in the high-memory limit is

the subject of ongoing research. Establishing a quantitative link between the unstable

periodic orbits and the emergent statistical behavior in the high-memory limit is an

objective reminiscent of that of Gutzwiller, who related classical periodic orbits with

solutions of the time-independent Schr6dinger equation [49]. It is hoped that this
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study, the first theoretical investigation of routes to chaos in a pilot-wave system, will

attract the attention of the dynamical systems community to a remarkably rich new

class of problems.
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Chapter 3

The Faraday-Talbot effect

3.1 Introduction

Hydrodynamics has long served as a rich source of physical analogy. Newton de-

scribed corpuscles of light generating waves through the ether like stones dropped on

a pond [78], while Thomas Young argued the wave nature of light by analogy with

ripple tank experiments [117]. On an astrophysical scale, hydrodynamic analogs of

black holes [109] and white holes [57] have been explored. In the quantum realm,

both the Aharanov-Bohm [4] and Casimir effects [23] have been examined using fluid

analog systems. The quantum-like features of droplets walking on a vibrating fluid

bath [17, 88] are a subject of growing interest [14, 13].

As first reported by Faraday [37] in 1831, the free surface of a fluid bath vertically

vibrated with amplitude A, frequency f, and acceleration F(t) = 7cos(27rft) may

become unstable to standing surface waves with frequency f/2. For a vibrational ac-

celeration 7 = A(27rf)2 below the Faraday threshold 7F, the free surface is stable. For

_Y > _YF the surface becomes unstable to subharmonic Faraday waves with wavelength

AF = 27r/kF prescribed by the standard water-wave dispersion relation

Parts of this chapter were published in "Hydrodynamic analog of particle trapping with the
Talbot effect," N. Sungar, L. D. Tambasco, G. Pucci, P. J. Sienz, and J. W. M. Bush, Physical
Review Fluids 2, 103602 [100]. Section 3.3 was submitted in: "Faraday-Talbot effect: alternating
phase and circular arrays," N. Sungar, J. P. Sharpe, J. J. Pilgram, J. Bernard and L. D. Tambasco,
(Submitted, 2018) [99].
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W 2(k) (gk + k ) tanh(hk), (3.1)

where k is the wavenumber, g the gravitational acceleration, - the surface tension,

p the fluid density and h the fluid depth. Faraday waves have been extensively in-

vestigated both experimentally and theoretically [26, 3, 69]. Just below the Faraday

threshold -y < yF, perturbations of the surface generate Faraday waves that decay over

a characteristic memory time TM = / [87 2V (1 - YYF)], where v is the fluid's kine-

matic viscosity. The Faraday system has recently been used to study hydrodynamic

quantum analogs, as may arise when millimetric droplets levitating on the vibrating

bath self-propel through a resonant interaction with their own wavefield [17, 88, 14].

The optical Talbot effect occurs in the near field when a monochromatic wave is

modulated by a spatially periodic structure [116]. The effect was discovered in 1836

by Henry Fox Talbot in his examination of the optical pattern behind an illuminated

diffraction grating [101]. The supporting theory was developed in 1881 by Lord

Rayleigh, who showed that the effect results from the interference of monochromatic,

coherent waves emitted from the diffraction grating [92]. In his analysis, Rayleigh

expressed the optical field resulting from the interference of waves from individual

slits in terms of a sum over monochromatic plane waves with wavelength A and

transverse wave-vector components 27rn/d, where d is the slit spacing and n E No.

He showed that at integer multiples of a distance zT perpendicular to the grating, the

intensity distribution at the grating is reproduced. This distance, called the Talbot

length, is given by

ZT(A) A ( ~ 1~~2 (3.2)
2 (1 - 1 - (A)2

When A < d, Eq. 3.2 reduces to a better-known formula for the Talbot length

ZT = d2/A. The analysis shows that at even integer multiples of the Talbot length,

self-images are spatially in phase with the grating. At odd integer multiples of the

Talbot length, self-images are shifted by half the slit spacing (d/2), and so referred
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Figure 3-1: (a) Experimental arrangement [53]. The fluid bath is shaken using an
electromagnetic shaker and imaged using a CCD camera through a 450 semi-reflective
mirror with diffuse illumination [26]. (b) Top view of the fluid bath shows the row of
N protruding pillars of diameter D and center-to-center separation d.

to as shifted self-images [15].

The Talbot effect has since been extensively studied and applied in optics [113, 5].

This phenomenon has also been used in a variety of applications including optical

trapping of atoms [76] and particles [98], atom wave interference [16], Bose-Einstein

condensates [24], plasmonics [120], and X-ray imaging [112]. We here present a hy-

drodynamic analog of the Talbot effect in the Faraday system, and demonstrate its

ability to trap bouncing and walking droplets.

3.2 The hydrodynamic Talbot effect

3.2.1 Experiment

The setup consists of a circular bath 15.8 cm in diameter that is vertically shaken

and imaged from above using a diffuse light source. A schematic of the experiment is

shown in Fig. 3-1. Silicone oil of viscosity v = 20.9 cSt, density p = 950 kg/m3 and

surface tension o = 20.6 mN/m fills the circular bath to a depth of h = 6.10 0.05
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mm. The bath is surrounded by a shallow region of depth 1.1 mm and width 12.7

mm that serves to damp the waves at the bath boundaries. A linear, periodic array of

N pillars, each with diameter D = 3.1 0.1 mm and separated by a center-to-center

distance d, protrudes from the bath to a height of 2.1 mm above the fluid surface.

The recording camera directly above the bath images the surface at a frame rate

slightly higher than f/4 in order to reveal fast oscillations in the observed patterns.

The setup is illuminated from the side by an LED lamp, and the light is redirected

by a 450 semi-reflective mirror, as shown in Fig. 3-1. The incident light is normal to

the bath, then reflects back to the camera. With this imaging technique, flat areas

of the interface appear as bright regions, sloped areas as dark regions.

We report here experimental results with two different array separations of d = 9.5

mm and d = 12.5 mm with a total number of pillars N = 14 and N = 11, respectively.

Arrays with larger d necessarily had a smaller number of pillars and so produced

images only in the central region of the near field. Forcing frequencies in the range of

40 - 90 Hz were explored for each array. At every frequency investigated, the Faraday

threshold -F was determined by decreasing -y, initially above -YF, by decrements of

0.01g until Faraday waves far from the boundaries died out within 1 minute. The

Faraday threshold is then set to be 0.005g above this acceleration.

We note that meniscus waves of the form seen in Fig. 3-2(a) are evident around the

pillars even for 7 < -yF. The static menisci attached to the pillars have a characteristic

height corresponding to the capillary length uf-/pg ~ 1.5 mm. When the bath is

shaken, the variation in g causes the menisci to oscillate, emitting waves at the driving

frequency f with a wavelength Am = 27r/kM (of order 3 mm for the frequencies

considered) prescribed by Eq. 3.1 that is notably different from AF. We note that

the attenuation length of the harmonic meniscus waves can be shown to scale as

c(km)/(2vk 2k), where c(k) = dw/dk is the group velocity [1141. For the range of

frequencies considered, this attenuation length is of order 2 mm, consistent with

Fig. 3-2(a), where meniscus waves are seen to extend no further than 1 cm beyond

the pillars. While the meniscus waves contribute negligibly to the far field, they

do modify the waves near the pillars, perturbing and coupling to the subharmonic
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(c) (d)

Figure 3-2: The surface of the shaken fluid. Pillars with diameter D = 3.1 mm are
spaced d = 9.5 mm apart from center to center. (a) f = 80 Hz, y = 0. 9 9' F. Meniscus
waves are evident around the pillars. (b) f = 80 Hz, -y = 1.007YF. Rows of images in

front of the pillars are marked with arrows. (c) f = 70 Hz, y = 1.007yF. The pattern
has lost its periodicity. (d) f = 80 Hz, 7 = 1.0 12-yF- The self-imaging pattern is lost,
replaced by a checkerboard of Faraday waves.
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Faraday waves that emerge for 7 > -YF-

In a narrow range of driving frequencies that depends on the pillar spacing, stand-

ing wave patterns that replicated the periodicity of the pillar array were apparent

(see Fig. 3-2(b)). Outside this frequency range, patterns did not form regular pe-

riodic structures and were distorted with defects as shown in Fig. 3-2(c). We note

that even at the requisite driving frequency, sharp self-images were observed only

at accelerations within 0.2 - 1% of -F- At higher 7, the self-image was destroyed

and a checkerboard of Faraday waves, such as those shown in Fig. 3-2(d), dominated

the fluid surface. High speed videos of the fluid motion reveal that the oscillation

frequency of the pattern of all the pillar images is the resonant subharmonic, f/2,

indicating that the patterns result from interfering Faraday waves.

The self-imaging arises over a narrow frequency range in which the center-to-

center pillar spacing corresponds to approximately twice the Faraday wavelength

d - 2AF. For the array with d = 9.5 mm, the self-imaging is observed for f = 78 -82

Hz, corresponding to a Faraday wavelength range of AF _ 4.7 mm and meniscus

wavelength AM e 2.8 mm. Similarly, for the array with d = 12.5 mm, self-imaging

happens at 57 - 61 Hz, corresponding to AF O 6.0 mm and Am e 3.6mm. In both

cases, at the frequencies where self-imaging arises we observe that curved ridges form

between the pillars, and slosh laterally, normal to the array direction, in phase with

each other at f/2. Two video frames, taken half a Faraday period TF/2 = 11f

apart, are shown in Fig. 3-3. The patterns on opposite sides of the pillar arrays are

temporally out of phase, following the phase of the sloshing inter-pillar ridges.

We attribute these sloshing inter-pillar ridges to the interaction of Faraday and

meniscus waves in the vicinity of the pillars. For an individual pillar at the onset of

instability, y ;> -yF, waves are generated along the curved wall, producing wavefronts

projecting perpendicular to the pillars 126]. The wavefronts from neighboring pillars

evidently merge to form the sloshing ridges. These ridges persist even above the

regime where self-imaging is observed (see Fig. 3-2(d)). We infer that when a periodic

row of pillars is present, laterally sloshing ridges between the pillars act as sources

of Faraday waves emitted from between the pillars. In the context of our subsequent
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(a) (b)

Figure 3-3: Video frames showing the wavefield around the pillars, captured TF/2
apart. The waves on either side of the pillars are temporally out of phase and the
inter-pillar ridge sloshes back and forth in synchrony with the wave patterns.

theoretical developments it is important to note that it is not the pillars themselves

that act as sources of Faraday waves, but rather the sloshing ridges between them.

3.2.2 Modeling

We model this hydrodynamic Talbot effect in terms of a periodic array of point sources

emitting scalar waves. Guided by our observations, we treat the sources as emitters

of subharmonic Faraday waves located between the pillars. We define the x-axis

as lying along the pillars and the y-axis transverse to the pillars (see Fig. 3-1(b)).

The elementary solution to the two-dimensional wave equation is Jo(kr)e-iwt where

Jo(kr) is the Bessel function of the first kind. When kr > 1, the Bessel function can

be approximated as Jo(x) ~ cos(x - -r/4)/ irx/2. In adding waves from coherent

sources, we can suppress the phase 7r/4, and so write the displacement of fluid at a

position P(x, y) (Fig. 3-1(b)) as the following superposition:

f cos (kFr, - WFt)
u(x, y, t) = AF -(3.3)

n=1 ykr

where AF is the wave amplitude, rn = 1y2 + (x - (n - 1/2) d)2 , WF = 7f, and kF is

the wave number for Faraday waves, prescribed by the standard water-wave disper-

sion relation, Eq. 3.1. Using Eq. 3.3, we compute the displacement u(, y, t) at each
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(a) (b)

Figure 3-4: (a) Observed and (b) computed fluid surface height viewed from directly
above, under oblique illumination. Circles at the bottom indicate the location of the
pillars. Pillar spacing d = 9.5 mm, number of pillars N = 14, driving frequency
f = 80 Hz, Faraday wavelength AF = 4.75 mm and forcing acceleration -y = 1.0077F -

point, nondimensionalized by the wave amplitude AF. In order to compare the simu-

lation results with experimental videos, we use Surface Plot in MATLAB to visualize

the surface elevation. The reflectance properties of the surface are chosen such that

the resulting greyscale in our simulations are consistent with that captured in our

experiments. Fig. 3-4 shows a side-by-side comparison of the simulated and experi-

mentally observed fluid surface, revealing that the essential features of the observed

patterns are adequately captured by Eq. 3.3.

In our system, the self-images are generated predominantly by the Faraday waves

emitted between the pillars. For comparison between our experiments and classical

optics theory, which is for a monochromatic source of wavelength A, we use the

Faraday wavelength in Eq. 3.2 to evaluate the Faraday-Talbot length,

ZF = ZT(AF) - AF (3.4)
2 1 -6(8)
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Since the sources of Faraday waves are the subharmonic sloshing ridges between

the pillars, self-images that are aligned with the pillars occur at odd integer multiples

of ZF while those aligned with the gaps are at even integer multiples of ZF. Fig. 3-5

shows the measured distances of the self-images and shifted self-images in the video

frames. Self-images further from the pillars are not as sharp, resulting in larger

measurement errors.

For both arrays, the measured image locations are in agreement with the calcu-

lated Faraday-Talbot length ZF. Fig. 3-6 summarizes the results in a plot of experi-

mental image position versus predicted image position. Note that the image positions

are integer multiples of ZF-

3.3 Circular arrays

The Faraday-Talbot patterns formed by linear arrays preserves the transverse peri-

odicity of the generating array, producing peaks that are separated by the inter-pillar

distance d in the self-images. Curved arrays shift the locations of the self-images and

magnify (or demagnify) the transverse periodicities pa, the peak-to-peak separation in

the nth self image. In recent optical experiments with cylindrical gratings [107, 119],

the modified Talbot length ZTC and the periodicity pn of the nth self-image was found

to be

ntRZT ____R35

ZTc = RZT and pn = d, (3.5)
R - nZT R - nzT

where ZT is the Talbot length for a linear grating and d is the spacing of the grating.

The radius of curvature R is positive if the images form on the convex side or negative

if they form on the concave side. We here examine the images that form on the concave

side of the array of pillars.

When a circular array consisting of 34 pillars, with separation d = 9.5 mm is driven

at f = 80 Hz (corresponding to AF = 4.75 mm, d = 2AF), the ridges between the

pillars oscillate coherently at f/2 giving rise to the Faraday-Talbot pattern shown in

Fig. 3-7(a). The pattern is transient and decays within a few minutes, but it agrees
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(c) (d)

Figure 3-5: Self-image locations are evident on video frames half a Faraday period
apart. Green lines indicate distances to the in-phase self-images of Faraday wave
sources and red lines to the shifted self-images of Faraday wave sources. (a)-(b)
Array spacing d = 12.5 mm, f = 58 Hz. Frames (a) and (b) are 1/58 s apart. (c)-(d)
Array spacing d = 9.5 mm, f = 80 Hz. Frames (c) and (d) are 1/80 s apart.
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Figure 3-6: Plot of the experimentally observed self-image positions (z4) versus pre-
dicted self-image positions (Z) for two different forcing frequencies. Lengths are
nondimensionalized by the Faraday wavelength AF. The predicted self-image posi-
tions are at integer multiples of the Faraday-Talbot length ZF, as defined in Eq. 3.4.
Circles: Driving frequency f = 58 Hz, AF = 6.13 mm, pillar spacing d = 12.5 mm,

ZF = 23.9 mm. Squares: f = 80 Hz, AF= 4.75 mm, d = 9.5 mm, ZF = 17.7 mm.
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Figure 3-7: (a) Top view of the Faraday Talbot pattern for a circular array of pillars
with coherently sloshing ridges. f = 80 Hz, d = 9.5 mm, AF= 4.75 mm, R = 51.5
mm. The dashed lines indicate the periodicities measured for the first three self-
images. We note that this is a transient pattern; after a few minutes the pattern
starts developing defects and destabilizes into an irregular pattern. (b) Computed
fluid surface height viewed from above.

with numerical simulations with coherent sources of Faraday waves arranged on a

circular array, shown in Fig. 3-7(b).

We compare the measured periodicities with those predicted by Eq. 3.5, using the

Faraday-Talbot length ZF (Eq. 3.4). A plot of the measured periodicity is shown in

Fig. 3-8.

With a circular array of 34 pillars, separated by d = 11 mm and driven at f = 55

Hz (where AF = 6.4 mm, d - 1.5AF), the sloshing ridges are alternately out of phase

producing the stable pattern shown in Fig. 3-9(a). In this case, the sources have

alternating phases, making the periodicity of the array 2d. The stable Faraday-Talbot

pattern matches that obtained from a wave superposition model with alternating

phase, shown in Fig. 3-9(b).
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Figure 3-8: Experimentally observed periodicity pe for a circular array of R = 51.5
mm versus predicted periodicity pC from Eq. 3.5 for n = 1, 2, 3. Lengths are non-
dimensionalized by the array spacing d. f = 80 Hz, AF = 4.75 mm, d = 9.5 mm.
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Figure 3-9: (a) Top view of the Faraday Talbot pattern for a circular array of pillars
with out-of-phase sloshing ridges. f = 55 Hz, d = 11 mm, AF = 6.40 mm, R = 59.5
mm. The yellow dashed lines show the measured periodicities. (b) Computed fluid
surface height viewed from above.

3.4 Trapping of bouncing and walking droplets

We explore the trapping properties of the resulting wavefield for bouncing and walk-

ing droplets by introducing droplets of silicone oil on the surface of the bath [17]. The

dependence of the bouncing and walking behavior on drop size and forcing accelera-

tion has been well characterized both experimentally [88] and theoretically [71]. We

generate stationary bouncing droplets by rapidly extracting a pin to break the inter-

face. We then gradually increase the forcing acceleration until the wavefield generated

by the pillars is formed, and track the drift of the bouncing droplets over time. For

self-propelling 'walking' droplets, where control of drop size was required, we utilize a

piezo-electric droplet generator to make a single droplet of radius R = 0.395 t 0.005

mm [54]. We then increase the forcing acceleration beyond the Faraday threshold,

and direct the walking droplet towards the row of pillars.

In the absence of pillars, static bouncing droplets would bounce in place indef-

initely. However, as we gradually increase the forcing acceleration of the bath, en-

hancing the wavefield generated by the pillars, we note that the droplets begin to
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Figure 3-10: Bouncing droplets (small white circles) drift towards the Faraday-Talbot
length, and become localized between consecutive pillar images, denoted by black
crosses. (a) Two bouncers trapped within the first row of images. This configuration
arises for bouncing droplets of different sizes and bouncing modes. (b) Slow drifting
motion of bouncing droplets over time: the white circles indicate the final bouncer
positions, and the blue trail their trajectories. Bouncers initially close to the pillars
tend to drift towards the first row of images, while more distant bouncers are attracted
to the second row of images.

drift. Once the drifting is complete, bouncing droplets align along rows of images,

specifically at distances an integer number of the Faraday-Talbot length away from

the row of pillars. The bouncing droplets bounce stably between images, as shown in

Fig. 3-10(a), where the images are denoted by black crosses.

We note that the drift towards the rows of images arises from a wide range of initial

bouncing locations. Fig. 3-10(b) illustrates how bouncing droplets that start close to

the row of pillars will drift towards the first row of images and settle there. Bouncers

initially placed farther away generally drift towards the nearest row of images, which

in Fig. 3-10(b) corresponds to twice the Faraday-Talbot length. The resulting lattice

configurations may destabilize in response to drop-drop interactions, when the wave-

field generated by the other bouncers supersedes the background wavefield generated

by the pillars.

We also explored the behavior of relatively energetic walking droplets near the

Talbot images when the forcing acceleration was above the Faraday threshold, -y >

_YF. Specifically, we generated droplets of radius R = 0.395 0.005 mm and free

walking speed uo ~ 16 mm/s, and directed them toward the row of pillars. After
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Figure 3-11: A walking droplet with radius R 0.395 0.005 mm impinges on a row
of pillars. The droplet approaches with a speed of approximately 16 mm/s before
being transformed from a resonant walker to a chaotic bouncer. Thereafter, it slowly
drifts towards the first row of Talbot images. The droplet trajectory is color-coded
according to speed.

interacting with the row of pillars, the vertical dynamics of the droplets can change

drastically, transforming a fast walker into a chaotic bouncer. This bouncer may

then exhibit behavior similar to those in the previous experiments, slowly drifting

towards the Faraday-Talbot length, with a tendency to settle between images. A

sample trajectory is shown in Fig. 3-11, emphasizing how the droplet's horizontal

speed changes drastically after interacting with the pillar.

3.5 Discussion

We have reported a hydrodynamic analog of the Talbot effect arising on the surface

of a vertically shaken fluid with a periodic array of protruding pillars. The effect is

observed only for driving frequencies such that the Faraday wavelength is approxi-
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mately half the pillar spacing and for driving accelerations that are approximately

0.2 - 1% above the Faraday threshold. The patterns oscillate at half the driving fre-

quency, revealing their sources as sloshing Faraday waves excited between the pillars.

A Faraday-Talbot length was defined (Eq. 3.4) that rationalizes the locations of the

in-phase and shifted out-of-phase self-images.

Video recordings show laterally sloshing fluid ridges between the pillars that act as

the Faraday wave sources. There are also quickly decaying meniscus waves emitted

from the pillars at the driving frequency that mix with the Faraday waves close

to the pillars. While the self-images are formed from Faraday waves, the presence

of meniscus waves adjoining the pillars plays a critical role in seeding the Faraday

waves. The importance of the meniscus waves was underscored when we tried the

experiment using arrays of submerged pillars (0.3 mm below the fluid surface), and

the self-imaging did not arise.

In the optical Talbot effect, the observed light intensity is due to the diffraction

and interference of light from an illuminated grating. Although the grating is a

passive element, it modulates the light, producing a coherent, periodic source of

waves emanating from the grating. In our experiment, sloshing waves generated by

the row of pillars serve as the active element. The coherent waves emanating from

between the pillars interfere to form the observed Faraday-Talbot pattern. In both

cases, the pattern is the result of interference of waves from coherent periodic sources.

We have also explored the emergence of Faraday-Talbot patterns generated by

circular arrays of pillars, and compared the periodicity of the self-images to those

reported in optical studies of the Talbot effect with curved gratings. We obtained

transient patterns displaying the coherent Faraday-Talbot effect and stable patterns

displaying the alternating phase Faraday-Talbot effect. As in the optical case the

curvature of the array caused demagnification of the pattern.

The possibility of using the Faraday-Talbot effect for trapping bouncing and walk-

ing droplets has been demonstrated, and represents a hydrodynamic analog of particle

trapping with the Talbot effect [76, 98, 68]. Stationary bouncers simply drift towards

the images, to be trapped between them. The relatively energetic walkers have their

77



vertical dynamics altered through their interaction with the pillars, resulting in sta-

tionary bouncers trapped between the Faraday-Talbot images. Finally, in the broader

context of hydrodynamic analogs with the Faraday system [14, 39], this represents the

first example of an analog of an optical system arising above the Faraday threshold,

a parameter regime to be explored further in Chapter 4.
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Chapter 4

Crossing the Faraday threshold

4.1 Introduction

Droplets walking on a vibrating fluid bath have been shown to exhibit several fea-

tures of quantum mechanical systems [14], including quantized orbits [41, 52, 86, 28],

tunneling [31, 73], and the emergence of multimodal statistics in confined geome-

tries [55, 94]. Walking droplets are an example of a pilot-wave system: the droplet

generates a wave at every impact with the bath and is, in turn, guided by the local

slope of the bath surface, whose form is prescribed by the superposition of waves

generated from previous bounces. The longevity of the waves is controlled by the

vibrational acceleration of the bath, -y. If -y < -yF, where YF is the Faraday thresh-

old, the surface would remain unperturbed in the absence of the drop [3]. As -y

approaches _YF from below, linear waves generated by the drop persist for the mem-

ory time TM = Td/( - -y/F), where Td ~ 4/v is the temporal decay time of the

waves in the absence of forcing [321. Nonlinear wave effects are expected to be im-

portant near the Faraday threshold. For -y > 'YF, the entire surface becomes unstable

to the Faraday instability, so that waves appear throughout the bath. In previous

experimental investigations of this hydrodynamic pilot-wave system, care was taken

to ensure that -y remained below -YF, thus avoiding the appearance of a background

This chapter was submitted for publication as: "Bouncing droplet dynamics above the Faraday
threshold," L. D. Tambasco, J. J. Pilgram and J. W. M. Bush, (Submitted, 2018) [104].
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Faraday wavefield and ensuring that the drop was guided solely by its pilot-wave

field. For -y < _F, the walking drops execute rectilinear motion provided they are

sufficiently far from boundaries [115, 89].

According to stochastic electrodynamics, microscopic quantum particles inter-

act with a background field, specifically zero-point electromagnetic vacuum fluctua-

tions [12]. Notably, the inferred energy spectrum of this zero-point field E(w) = hw/2

allows for the introduction of Planck's constant, h, into a classical theory 112]. The

zero-point field has been sought as the basis for an electromagnetic pilot-wave theory

in quantum mechanics 121, 22], in which case it would play the role of the vibrating

bath in the hydrodynamic pilot-wave system in energizing the system 114]. Stochas-

tic dynamics [74, 48], de Broglie's pilot-wave theory [20], and Bohmian mechanics 19]

have all likewise sought to rationalize quantum mechanics in terms of interactions

between microscopic particles and a stochastic background field. With a view to

introducing an irregular forcing into this hydrodynamic pilot-wave system and so ex-

ploring a regime that might potentially yield new hydrodynamic quantum analogs,

we were thus compelled to examine the dynamics of bouncing droplets interacting

with a background field consisting of the Faraday wavefield arising for y > -YF-

In the hydrodynamic system, the waves serve to propel the bouncing drops by

imparting an impulse during impact. If the vertical dynamics of the droplet are ape-

riodic, that is, the phase of impact relative to the Faraday wave changes with every

bounce, then the resulting lateral impulses will be irregular. These impulses are thus

expected to serve as a source of stochasticity in hydrodynamic pilot-wave systems and

so may give rise to new dynamical states. For example, Oza et al. [79] theoretically

demonstrated that self-orbiting states exist but are unstable for accessible fluid pa-

rameters below the Faraday threshold. The introduction of a stochastic element has

been posited as a means to stabilize such hydrodynamic spin states [63]. The ques-

tion naturally arises as to whether these spin states might exist above the Faraday

threshold.

Only one previous study has examined the behavior of bouncing drops above the

Faraday threshold [1001, as reported in Chapter 3. We introduced an array of pillars
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to the bath and observed that, for /'YF ~ 1.02, the form of the Faraday waves in the

vicinity of the pillars is analogous to that arising in the optical Talbot Effect [101].

The resulting Faraday-Talbot wave pattern was capable of trapping both walking and

bouncing droplets in its troughs, a hydrodynamic analog of particle trapping with the

Talbot effect [76, 98, 68]. We here characterize the dynamics of droplets above the

Faraday threshold in the absence of pillars, and identify the regimes where droplets

become trapped by the underlying Faraday wavefield.

The bouncing and walking behavior of drops on a bath vibrating below the

Faraday threshold have been thoroughly characterized experimentally [32, 88, 33],

and considerable effort has been devoted to rationalizing this behavior theoreti-

cally [115, 71, 72, 28, 70]. We here extend the regime diagrams of Wind-Willassen et

al. [1151 for silicone oil droplets of kinematic viscosity 20 and 50 cSt at driving fre-

quencies of 80 and 50 Hz, respectively. In Section 4.2, we describe our experimental

apparatus and methods. In Section 4.3 we enumerate the dynamic states arising above

the Faraday threshold. In Section 4.4, we examine the dynamics of drops bouncing

erratically above the Faraday threshold, demonstrating that they exhibit behavior

akin to a two-dimensional random walk. We then characterize the dependence of the

effective drop diffusivity on droplet size and forcing acceleration, and rationalize this

dependence via simple scaling arguments.

4.2 Experiments

We explore the bouncing and walking dynamics above the Faraday threshold in a

circular bath filled to a depth of h = 6 mm with silicone oil of viscosity V = 20 or

50 cS. A schematic of the experimental arrangement is presented in Fig. 4-1. The

bath is vibrated vertically with amplitude A, frequency f and acceleration 1(t) =

-y cos(27rf t), where -y = A(27rf) 2 . Two vibrational frequencies are considered, f = 50

Hz for the 50 cS oil, and f = 80 Hz for the 20 cS oil, the combinations considered

below threshold in prior work [88, 71, 115]. When the vibrational acceleration is

sufficiently large, -Y > 7F, the surface of the bath becomes unstable to subharmonic
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Figure 4-1: Experimental arrangement [53]. The fluid bath is shaken using an elec-
tromagnetic shaker coupled with an air bearing that constrains the vibrations to be
vertical. A CCD camera placed above the bath captures the horizontal dynamics,
and a high-speed Phantom camera allows for resolution of the vertical dynamics.
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Figure 4-2: (a) Circularly-symmetric Faraday pattern arising at the onset of the
Faraday instability, 7/7F ~ 1.01. (b) Checkerboard Faraday pattern emerging at

7/7F= 1.05.

Faraday waves that oscillate with frequency f/2 and wavelength AF = 27r/kF. The

observed wave-number kF is well described by the standard water-wave dispersion

relation

2F(k) = gk + kk3 tanh(kh), (4.1)WF P

where wF = w/2 = irf is the subharmonic angular frequency, g the gravitational

acceleration, a the surface tension, p the fluid density. For the depth considered,

h = 6 mm, a vibrational frequency f = 80 Hz corresponds to a Faraday wavelength

AF = 4.75 mm, and 50 Hz to AF = 6.98 mm.

While the wavelength is prescribed by Eq. 4.1, the wave pattern realized depends

on both container shape and vibrational acceleration. For our circular bath, the

most unstable mode at the onset of the Faraday instability, Y ~ YF is a boundary-

dominated circularly-symmetric wave, with crests arranged in concentric rings sepa-

rated by AF (Fig. 4-2(a)). As the forcing acceleration -y is increased beyond approx-

imately 1. 0 15 7F, the circularly symmetric wavefield is replaced by a checkerboard

pattern with characteristic spacing AF (Fig. 4-2(b)). In this regime, the boundary
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Figure 4-3: Faraday wave rupture generates drops when the vibrational acceleration
is sufficiently high, 7 > 'YR (= 4 .02-YF for 20 cS oil vibrated at 80 Hz).

geometry has effectively no influence on the background field of Faraday waves. Suc-

cessive instabilities arising as -y increases progressively beyond -yF have been charac-

terized by Douady [26]. At the highest forcing acceleration considered in our study,

y/'yF= 1.2, the background wavefield consisted of a standing checkerboard pattern.

When the vibrational acceleration is sufficiently large, the interface breaks, gener-

ating droplets (Fig. 4-3). The critical acceleration for surface rupture in a vertically

vibrating bath has been determined empirically and theoretically [90, 47]. For low

viscosity fluids, the interface breaks when the upward inertial force due to the vi-

brational acceleration -y - 4g exceeds the stabilizing force associated with surface

tension: my > 27rAFOu, where m ~ pA3 is the accelerated fluid mass. Using the dis-

persion relation for deep-water capillary waves for AF yields the critical acceleration

'YR for interfacial rupture,

'_YR . 1/3 (4.2)

where C is an 0(1) constant that depends on the fluid-frequency combination. For

20 cS silicone oil vibrated at 80 Hz, 7R/YF ~ 4.02, while for 50 cS oil vibrated at 50
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Figure 4-4: Regime diagrams indicating the behavior of drops levitated on a vibrating
bath. We delineate the parameter regimes as a function of the dimensionless forcing
acceleration '7/iF and vibration number Q = w/c-r/(pR3 ). (a) 20 cS silicone oil
driven at 80 Hz and (b) 50 cS silicone oil driven at 50 Hz. The meandering regime is
indicated in red, zig-zagging in pink, erratic bouncing in blue, trapping in green, and
coalescing in striped black/blue regions. Yellow indicates the regime of spontaneous
drop creation from breaking Faraday waves, as arises when the forcing acceleration
exceeds the threshold for interface rupture ('Y > yR).
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Hz, 'YR/-yF e 2.15.

In order to characterize the droplet dynamics above the Faraday threshold, we use

a piezo-electric droplet generator [54] to repeatably create drops of uniform radii R

in the range 0.2 mm < R < 0.5 mm (with 0.5% variability). We generate a single

drop, place it at the center of the domain, and then affix a circular acrylic lid on

top of the bath to eliminate the influence of air currents. We gradually increase the

forcing acceleration beyond the Faraday threshold, -y > -yF. A CCD camera placed

above the bath captures the horizontal motion of the drop. An LED lamp and diffuser

illuminate the setup from the side while a high-speed Phantom camera placed beside

the bath captures the vertical dynamics, also allowing for accurate measurement of

the drop radius.

We sweep through the forcing accelerations above the Faraday threshold, Y/F >

1, at increments Ay/YF = 0.001 for drops with radii in the range 0.1 mm < R <

0.5 mm, corresponding to non-dimensional vibration numbers Q -- w///(pR 3) in

the range [0.1, 1.2]. For each value of the forcing acceleration, we record the trajectory

of the drop for one minute, or until it reaches the edge of the circular bath. We use

the recordings to characterize the dynamics, as will be summarized in Section 4.3.

We characterize droplet trajectories in terms of a persistence length [401 Lp, defined

as

(cos 6) = e-/Lp (4.3)

where 0 is the angle between the tangent velocity vectors at an initial point and at

another point an arclength s further along the trajectory. (.) indicates the average

value over all initial points along a single trajectory. The relative magnitudes of

Lp, the characteristic length over which the drop changes direction, and the Fara-

day wavelength AF provides a quantitative means of classifying the coherence of the

trajectories through the non-dimensional persistence length A = Lp/AF-
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Figure 4-5: Dynamic states observed for -y > _YF- (a) Meandering trajectory, charac-
terized by a persistence length greater than the Faraday wavelength, A = Lp/AF > 1-
For this particular trajectory, A = 1.15. (b) A zig-zagging trajectory is characterized
by small amplitude lateral oscillations, with wavelength on the order of AF, along
a mean rectilinear trajectory. The drop navigates the crests and troughs of the un-
derlying checkerboard Faraday wave pattern. (c) Erratic walking, characterized by
a dimensionless persistence length A < 1. For this particular trajectory, A = 0.24.
(d) Side view of a droplet trapped above the Faraday threshold in a (4,1) bouncing
mode. The drop bounces in place on the trough of the underlying subharmonic wave
once every 4 driving periods (with period 2TF).
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Figure 4-6: (a) Erratic trajectories resembling two-dimensional Brownian motion.

The circle indicates the boundary of the bath. (b) The effective diffusivity D for the

trajectories in Fig. 4-6(a) may be computed from the long-time limit of the mean-

squared displacement scaled by the non-dimensional time 4t/TF.

4.3 Results

We summarize the observed droplet dynamics above the Faraday threshold for 20

cS silicone oil driven at 80 Hz in the regime diagram shown in Fig. 4-4(a). For

all driving accelerations above -F, the smallest drops (R < 0.2 mm, corresponding

to Q < 0.31) tend to bounce irregularly, moving erratically in the horizontal until

eventually coalescing. We note that similar behavior also arises for these drops below

the Faraday threshold [71].

Slightly larger drops (0.2 mm < R < 0.4 mm, or 0.31 < Q < 0.86) walk along

straight paths below 'YF. For -y > -YF, they follow meandering trajectories, such

as that shown in Fig. 4-5(a), characterized by a relatively large non-dimensional

persistence length, 1 < A < 2. In this regime, the amplitude of the Faraday wavefield

is small relative to the drop's pilot-wave, so only weakly alters the walker's direction.

We note also that small loops of radius AF/2 were often apparent in meandering

trajectories (Fig. 4-5(c)), indicating a tendency towards hydrodynamic spin states [79,

63]. However, the underlying wavefield is still insufficient to stabilize these spin states:

in the parameter regime considered, the loops were always transient, never stable.

As the forcing acceleration is further increased (7/7F - 1.015), meandering gives

way to relatively regular zig-zagging trajectories, as shown in Fig. 4-5(b), a transition
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that coincides with the emergence of a checkerboard Faraday pattern on the fluid

surface (Fig 4-2(b)). In zig-zagging trajectories, the drop slightly deviates from a

straight-line path, with oscillations perpendicular to its direction of mean motion.

The oscillations occur with a characteristic wavelength on the order of AF, indicating

that the drop is navigating the background checkerboard field of Faraday waves.

For 1.015 < -/7YF < 1.04, the amplitude of the underlying Faraday wave becomes

significantly larger than that of the pilot-wave generated by the drop, and the droplet

motion becomes highly irregular (see Fig. 4-5(c)). Due to the loss of resonance in

the vertical dynamics, each impact arises at a different phase, so the drop impacts a

different waveform at every bounce. Since the drop's horizontal motion is driven by

the gradient of the underlying wave, it changes direction in response to these varying

impulses on the time-scale of its characteristic bouncing period TF. The frequent

change of direction translates to a dimensionless persistence length less than 1, typ-

ically in the range 0.1 < A < 0.5, allowing for differentiation from the meandering

trajectories arising at lower 7/7F-

For 7/'YF > 1.04, the checkerboard pattern is able to trap droplets of a certain

size, causing them to bounce in place. A trapped droplet is shown in Fig. 4-5(d);

the droplet bounces periodically in a (4,1) bouncing mode, once every 4 driving

periods [44]. We note also that the trapping is relatively robust; perturbations to

trapped states cause the drop to move erratically for a few seconds of transient motion

before being trapped in another trough. A further increase in forcing acceleration

(-/yF ;> 1.12) leads to longer transients thereby increasing the likelihood of drop

coalescence. Finally, the largest drops considered (R > 0.45 mm, or Q > 0.86 ) tend

to bounce in place at the onset of the Faraday threshold, but then undergo similar

transitions, from erratic motion to trapping, and eventually erratic bouncing and

coalescence.

Fig. 4-4(b) shows the regime diagram for 50 cS oil driven at 50 Hz above the

Faraday threshold. The observed dynamical states are similar to those observed for

the 20 cS - 80 Hz viscosity-frequency combination, but the transitions happen over a

significantly smaller range of forcing accelerations. We note that the range of droplet
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Figure 4-7: The observed dependence of the effective diffusion coefficient D on (a)
the forcing acceleration y/7F for a drop of radius R = 0.376 mm, and (b) the droplet
radius R for _Y/YF = 1.031. Dashed curves correspond to the effective diffusivity
obtained from scaling arguments, Eq. 4.6. We note that surface diffusion arises in

a relatively narrow region of parameter space (1.015 < 7/7F < 1.04) for 20 cS -
80 Hz configuration as shown in Fig. 4-4(a), so only small variations in the effective

diffusivity are apparent.

sizes that can be levitated in this parameter regime is smaller. Below the Faraday

threshold, all droplets are walkers in the drop size range considered [1151. Just above

the threshold, smaller droplets (R < 0.38 mm, Q < 0.50) meander, while larger drops

(R > 0.38 mm, Q > 0.50) zig-zag. Stable droplet trapping is observed over a narrow

range of forcing accelerations (1.005 ,< $/7F < 1.02). For larger -y, trapping states

become unstable, giving rise to erratic bouncing. Drops of all sizes eventually coalesce

for -y/7F > 1.04. Spontaneous droplet creation through interfacial fracture occurs for

_Y > YR = 2 .15-YF.

4.4 2D effective diffusion

Brownian motion may be characterized in terms of a diffusion coefficient,

D = lim 0 (4.4)
t- oCo 4t

where a2 (t) is the variance in position, or mean-squared displacement, of many real-

izations of the associated random walk as a function of time. We can thus compute
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Figure 4-8: An extension of the regime diagram obtained by Mol6cek & Bush [72]
for 20 cS silicone oil driven at 80 Hz, including droplet dynamics above the Fara-
day threshold, as reported in Fig. 4-4(a). We delineate the parameter regimes
as a function of the dimensionless forcing acceleration -y/7F and vibration number
Q = w/ u/(pR3). Walkers transition into the meandering and zig-zagging regimes.
Small erratic bouncers (R < 0.2 mm, Q < 0.31) tend to coalesce just above the
Faraday threshold, while large bouncers (R > 0.45 mm, Q > 0.86) tend to drift until
being trapped.
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the effective diffusivity in the erratic bouncing (blue) region in Fig. 4-4. For each com-

bination of droplet size and forcing acceleration, we recorded 10 trajectories such as

those shown on Fig. 4-6(a), and calculated the corresponding mean-squared displace-

ment, which is shown to scale linearly with time in the long-time limit (Fig. 4-6(b)).

We take the last 100 values of the mean-squared displacement and use their mean to

obtain the effective diffusivity, and their standard deviation for error bars.

Over the relatively small parameter regime of interest (see Fig. 4-4), the effec-

tive diffusivity depends only weakly on forcing acceleration and droplet size. As -Y

increases, the diffusion process is slightly enhanced, as suggested by Fig. 4-7(a). Simi-

larly, Fig. 4-7(b) suggests that smaller drops tend to diffuse slightly faster than larger

drops. We proceed by obtaining a rough scaling argument for the dependence of dif-

fusivity on drop size and forcing acceleration by modeling the impact of the droplet

with the bath using a linear spring 171] with a spring constant proportional to the

surface tension a 1441. A drop of radius R and mass m = 4p'rR3/3 will have charac-

teristic speed v oc u/a/pR after impact, assuming a penetration depth Az - R. The

horizontal component of the drop's velocity v2, depends on the slope of the surface,

which scales as /AF '-y / 7F - 1) due to the supercritical bifurcation at the onset

of the Faraday instability [118]; thus,

x ~ ~/. (4.5)
R AF pR

Over one bounce, the droplet will traverse a characteristic distance Ax = vxTF.

Since the drop is changing directions at nearly every bounce in the erratic regime,

the characteristic time-scale is At TF, yielding a scaling for the effective diffusivity

(Ax) 2  2 ,TF
D = =V T ~ F -1 (4.6)

At pR

The weak trends evident in Fig. 4-7, of D increasing with the distance from thresh-

old (7/yF - 1) and decreasing with radius R are both consistent with this simple

scaling. While these trends are barely discernible over the limited parameter regime

92



accessible in the systems considered, they may have some bearing in a more general

pilot-wave setting.

4.5 Discussion

We have expanded the characterization of bouncing and walking droplet dynamics,

extending the regime diagrams for 20 cS-80 Hz and 50 cS-50 Hz configurations above

the Faraday threshold. We classified the droplet dynamics into the following regimes:

trapped, coalescing, zig-zagging, meandering, and erratic bouncing. The meandering

and erratic bouncing regimes were differentiated on the basis of the dimensionless

persistence length A = Lp/AF. At the onset of the Faraday instability, while the

drop's pilot-wave is still comparable in amplitude to the unstable background Fara-

day wave, coherent motion (zig-zagging or meandering) arises, characterized by a

dimensionless persistence length A > 1. As the forcing acceleration is increased fur-

ther, the background Faraday wavefield dominates the pilot-wave, causing the drop

to change directions more frequently and abruptly, so that 0.1 < A < 0.5. The im-

pact of the relative contribution of the pilot-wave and the unstable Faraday wavefield

on drop dynamics in different geometric settings is a subject of current interest. In

Chapter 5, we discuss the interaction of a walker and the wavefield generated by a

circular well, assessing the ability of the well-induced waves to trap the walkers.

In Fig. 4-8, we summarize our results in a regime diagram for levitating drops

of 20 cS oil driven at 80 Hz that combines Fig. 4-4(a) with the regime diagram

presented in Fig. 11(d) of Molseek & Bush [721. We note that the meandering and

zig-zagging regimes are a continuous extension of the walking regime observed below

the Faraday threshold. Likewise, the erratic bouncing and coalescing regime arising

for smaller drops is simply a continuation of that below the threshold. We note

that the boundaries of the regime diagram are determined empirically. The form

of previous regime diagrams was rationalized through consideration of the dynamic

interaction between the bouncing drop and its wavefield [115, 71, 72]. Below -yF,

the wave forms may be described in terms of a superposition of linear waves, an
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assumption that breaks down at and above the Faraday threshold. While providing

theoretical rationale for the behavior for -y > YF is thus not straightforward, it is hoped

that our study may serve to motivate and guide further theoretical developments.

We have further characterized the emergence of Brownian motion above the Fara-

day threshold. In the erratic regime, when the bouncing of the drop is not synchro-

nized with the Faraday wave, the force imparted by the bath changes at every impact

in both magnitude and direction. This asynchrony introduces an irregular compo-

nent into the drop's trajectories, leading to the emergence of trajectories that may

be described in terms of classical diffusion, with a diffusivity that increases with forc-

ing amplitude and decreases with drop size, trends rationalized with simple scaling

arguments.

If unperturbed by boundaries or applied forces, a walker at -y < F executes

rectilinear motion at its free walking speed. This simple base state might be taken

as a shortcoming of the walker system as a quantum analog system if one assumes

that quantum particles diffuse in some fashion. However, the solution of the time-

dependent linear Schrbdinger equation for the probability density of a single free

particle initially localized to the extent possible given Heisenberg's uncertainty rela-

tion, ApAx > h/2, indicates ballistic diffusion, for which the variance o 2 ~ t2. This

solution is thus consistent with the rectilinear motion of an ensemble of quantum

particles with initial positions and momentum distributions prescribed by the uncer-

tainty relations. According to the ensemble or statistical interpretation of quantum

mechanics [1], quantum diffusion may thus be simply understood as resulting from

the uncertainty of the particle's initial conditions [48].

The walker's base state of rectilinear motion is thus not necessarily a shortcoming

of the system as a hydrodynamic quantum analog, and its free walking velocity should

be taken as the analog of hk/m. It remains an open question as to whether a stochastic

forcing need be invoked in the walker system to capture certain features of quantum

mechanics, or whether chaotic pilot-wave dynamics will be sufficient.
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Chapter 5

Orbital dynamics in a generalized

pilot-wave framework

5.1 Introduction

The vertical and horizontal dynamics of a droplet walking on a vibrating fluid bath

have been subject of considerable recent interest [17, 14]. The walking droplet system

is the first macroscopic realization of a pilot-wave system of the form envisioned by

Louis de Broglie [20], displaying various quantum-like features, including quantized

orbits [41, 52], double quantization [86, 28], tunneling [31, 73], and the emergence

of multimodal statistics in confined geometries [55, 94]. In this hydrodynamic pilot-

wave system, walking droplets generate a wave at impact with the bath surface, and

are in turn piloted by the resulting superposition of waves. The temporal decay time

of the waves TM increases monotonically with vibrational acceleration -Y, provided

-y < yF, the Faraday threshold above which waves form on the surface in the absence

of a drop. The horizontal motion of the droplet depends on the gradient of the

pilot-wave at the impact position, and a time-averaged drag term, proportional to

the droplet's velocity [80, 72]. A drop's trajectory may be further affected by an

external force acting on the drop, such as a Coriolis force, as arises on a rotating

This chapter was submitted for publication as: "Exploring orbital dynamics and trapping with
a generalized pilot-wave framework," L. D. Tambasco and J. W. M. Bush (Submitted, 2018) [102].
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Figure 5-1: (a) Experimental setup. A droplet of radius R bounces on a bath vibrating
vertically with frequency f = 80 Hz and vibrational acceleration -Y, with a central
circular well of depth h, = 6.5mm. The experiment is imaged from above, illuminated
by a diffused light via a semi-reflective mirror. (b) Top view of the most unstable
circularly-symmetric Faraday mode induced by the well for -Y = 4.0g. The boundary
of the well is delineated by a dashed line. The Faraday threshold has been crossed
only in the region directly above the well, so that 7jd < Y < _s.

bath [52, 41, 79, 83], or a linear spring force as generated from a magnetic field

acting on a drop with encapsulated ferrofluid [86, 61, 28, 59]. These scenarios may be

modeled by incorporating an additional force term into the stroboscopic trajectory

equation of Oza et al. [80].

The majority of walker studies have been undertaken in the deep-water limit, in

which the walker wavefield decays in amplitude before reaching the lower boundary

of the bath, so the walker dynamics is uninfluenced by bottom topography. In their

study of walker motion in elliptical corrals, Saenz et al. demonstrated the viability

of pilot-wave hydrodynamics in shallow water [94]. Furthermore, they demonstrated

that, in this shallow-water regime, bottom topography can be used to serve as effec-

tive potentials. Specifically, they demonstrated that submerged circular wells act to

attract walkers, and so play a role analogous to magnetic impurities in the quantum

corrals [671. Motivated by their insights, we here examine the interaction of a walker

with a submerged circular well in an otherwise open system.

We are motivated by an experiment in which a walking droplet interacts with the
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wavefield produced by a circular well at the center of the bath. In the deep region, the

vibrational acceleration y exceeds the Faraday threshold 7F, the critical acceleration

above which unstable Faraday waves form on the fluid surface in the absence of the

drop. Outside the well, -y < -F; thus, the well excites a circularly symmetric Faraday

wave across the bath that decays beyond the well. In Chapter 4, we showed that

an unstable checkerboard Faraday wave pattern may trap walking droplets, causing

them to bounce in place [1041. We investigate here how the well-induced circularly-

symmetric Faraday pattern may trap the droplet onto circular orbits.

The stability of circular orbits in a rotating frame [79] and in a harmonic poten-

tial [61, 28] have been characterized theoretically using the stroboscopic model of Oza

et al. [80]. In both settings, an increase in forcing acceleration destabilized circular

orbits into wobbling and eventually chaotic orbits. In Chapter 2, we characterized

the transition to chaos for both these external forces, as well as for a 2-dimensional

Coulomb force [103]. Walking drops acted upon by a Coriolis or Coulomb force under-

went a period-doubling cascade, while drops in a harmonic potential became chaotic

via a path reminiscent of the Ruelle-Takens-Newhouse scenario [93, 77]. Here, we

characterize the transition to chaos for a drop in a circular orbit over a well-induced

wavefield. We model the well-induced wave as an oscillatory force field with char-

acteristic wavelength AF and a spatial decay rate corresponding to that of a Bessel

function.

When the vibrational forcing acceleration is sufficiently high, a droplet will ex-

plore the domain of the bath erratically. Provided the memory time is larger than

the crossing time of the bath, coherent statistics will emerge in the drop's position

probability density function [55, 94]. Durey et al. [29] derived that the mean wavefield

i is related to the droplet's stationary probability distribution p(x) via a convolu-

tion with the bouncer wavefield 'rB (Theorem 1). Here, we validate this relationship

between mean wavefield and position distribution in the case of a particle interacting

with a well-induced wavefield. We further characterize numerically the time-scale of

convergence to this asymptotic result.

In Section 5.2, we describe the experimental methods and present trajectories of
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a droplet walking on a bath with a well-induced wavefield. In Section 5.3, we present

the integro-differential equation used to simulate drop trajectories and discuss the nu-

merical methods used. In Section 5.4, we present a generalized pilot-wave framework

in which tuning the relative magnitudes of the inertia and wave force terms renders

all circular orbits unstable. We investigate the manner in which small circular orbits

destabilize for sufficiently high vibrational acceleration, and characterize their tran-

sition to chaos. We also examine the relationship between the drop's mean wavefield

and its statistics. We discuss the implications of these results and future directions

in Section 5.5.

5.2 Experiments

The experimental setup is shown in Fig. 5-1(a). Silicone oil with viscosity v = 20

cS, surface tension o- = 20.9 x 10-3 N/m, and density p = 949 kg/M 3 fills a circular

container with a central well of radius d = 12 mm. The fluid depth is h, = 6.5 0.1

mm inside the well, and ho = 5.5 t 0.1 mm outside.

The bath is vibrated vertically with frequency f = 80 Hz, amplitude A, and accel-

eration F(t) = -y cos(27rft), where 7 = A(27rf)2 . When the vibrational acceleration of

the bath -y exceeds a critical value, the Faraday threshold 7F, the surface of the bath

becomes unstable, and subharmonic waves (with Faraday period TF = 2/f) appear

throughout the bath 13]. We note that the Faraday threshold decreases with depth of

the fluid bath. Denoting the Faraday thresholds in the deep and shallow regions by

-Y and -y, we operate in a regime such that -y < <y. Consequently, the deep

fluid serves as a source of Faraday waves that decay beyond the well (Fig. 5-1(b)).

The wave number of the most unstable Faraday mode, kF is obtained from the

standard water-wave dispersion relation,

w 2(k) = gk + k3 tanh(kh), (5.1)

where WF w/2 7rf is the subharmonic angular frequency, and g the gravitational
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Figure 5-2: Preliminary experimental trajectories of droplets of radius R = 0.4 0.01
mm walking in the Faraday wavefield shown in Fig 5-1(b), with forcing acceleration
-= 4.0g. The droplets tend to stabilize onto quantized circular orbits, with preferred
radii corresponding to half-integer multiples of the Faraday wavelength AF. Each
color corresponds to a different trajectory, with white dashed lines indicating orbits
of half-integer multiples of the Faraday wavelength, r = (n + 1)AF/2.

acceleration. Between the shallow (ho = 5.5 mm) and deep (hi = 6.5 mm) regions, the

Faraday wavelength changes negligibly, taking the values of AF= 27/kF 4.75 .01

mm, within measurement errors.

A drop of radius R = 0.4 0.01 mm deposited onto the surface of a vibrating

fluid bath bounces indefinitely, provided the vibrational acceleration of the bath -y is

sufficiently large. At each impact, the drop generates a circularly symmetric wave

centered at its bouncing position. Provided that -y < 7YF, the amplitude of such

waves decay in time, with a characteristic time-scale Tv, = Td/(1 - 'Y/'YF), where
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Td ~ A' /v ~ 0.018 is the decay time of waves in the absence of vibration. As

the vibrational acceleration is increased further, the bouncing state destabilizes and

the drop begins to walk in response to the gradient of the underlying wavefield. A

drop walking below the Faraday threshold performs rectilinear motion in the absence

of boundaries and external forces at a free speed prescribed by the balance of the

propulsive wave force and a linear drag [72, 801.

In the presence of the well, the walker interacts with a well-induced wavefield.

To characterize this interaction, we track the position of droplets walking on the

corrugated wavefield (Fig. 5-2). For all initial conditions considered, droplets lock

into stable circular orbits. Droplets initially placed in unstable positions wobble until

eventually settling onto a stable orbit. Circular orbits are separated by half-integer

multiples of the Faraday wavelength AF/2. This spacing may be rationalized by the

variability in the vertical phase of the walking droplet at impact: a ir-shift in phase is

sufficient to change the stability of the orbits. We proceed by investigating the drop's

interaction with the well-induced wavefield using the stroboscopic model of Oza et al.

with an additional topographically induced potential [80, 94].

5.3 Trajectory equation

Building upon the model of Molinek & Bush [72], Oza et al. developed an integro-

differential trajectory equation to describe the horizontal motion of a droplet of

mass m walking on a vibrating fluid bath [80]. The droplet's trajectory, xp(t) =

(x(t), yp(t)), is given by

mizp + Dip = mgVhixxP + T(IXP(t)1), (5.2)

where D is the time-averaged drag coefficient, g the gravitational acceleration, and

Y(Jxp(t)f) an externally applied radial force to be specified. Provided the vertical

bouncing time-scale TF is much smaller than the horizontal time-scale AF/ jic, or

equivalently the drop's vertical speed greatly exceeds its horizontal speed, the wave-
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field h may be approximated as an integral:

h(x, t) = A Jo (kF X - xp(s)) e(t-s)/TM ds, (5.3)

where A is the wave amplitude.

If we take the natural length and time-scales to be the Faraday wavelength AF and

the memory time TM, we may non-dimensionalize Eq. 5.2 via x = kFX, t t/TM.

Dropping tildes, we obtain the dimensionless equation:

r'. + , = Oft J1 (1xP(t) - xP(s)1) (xp(t) - xp(s)) e~(t-) ds + F(Ixp(t)l), (5.4)
J- |x,(t) - xP(s)I

where

K = m/DTm, f3=FkFTM /DTF (5.5)

are respectively the non-dimensional drop inertia and pilot-wave force parameters.

T(Y ) = kFTMY(xp)/D is the externally-applied force. We note that this corre-

sponds to the Generalized Pilot-wave Framework (GPF) outlined by Bush [14], as

will be further explored in Section 5.4.

We proceed by specifying the imposed external force TF(Ixp(t) 1) whose form is cho-

sen in order to best match the influence of the well-induced wavefield. We model the

well-induced standing Faraday wave as a subharmonic, circularly-symmetric Bessel

function of the first kind, with wavelength AF: hw(x, t) = A, 0 (IkFX) sin(7rft),

where A, is the well-induced wave amplitude. A walking drop in the (2,1) mode

resonant with the well-induced wave will experience a normal force prescribed by the

gradient of the standing wave, F(xp) = -mg Vh, .x=x(t)I n non-dimensional terms,

we thus obtain

F(xp) = QJ(|xp(t)j)i, (5.6)

where Q = mgA k2Tm sin()/D is the dimensionless well-induced wave parameter,

and i the unit radial vector. We solve the integro-differential system (Eq. 5.4) using

a fourth-order Adams-Bashforth linear multistep method [831.
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Circular orbits of radius ro and orbital angular speed w, xp(t) = ro(cos(wt), sin(wt)),

are solutions to Eq. 5.4 provided they satisfy the following system of algebraic equa-

tions:

- row2 =3 Ji (2ro sin sin -- eZ dz + Q Ji(ro)
Jo 2 2

row =# Ji (2ro sin (-) cos - e~z dz. (5.7)

We solve Eq. 5.7 in order to obtain the values of w and Q corresponding to various

initial radii ro. We initialize the simulations assuming circular orbits of radius ro for

time t < 0. At t = 0, we impose an external force given by Eq. 5.6, and solve the

system using a non-dimensional time-step At/TM = 2-. Fig. 5-3 displays trajectories

simulated for y/-yF = 0.9, superimposed on the wavefield observed experimentally. We

see that the radii of stable, quantized orbits deduced numerically correspond roughly

to the extrema of the well-induced Faraday wavefield, indicating that the external

force proposed in Eq. 5.6 is sufficient to capture the behavior observed experimentally.

We note that trajectories initialized at unstable radii wobble until eventually tending

to a stable circular orbit, as in experiments. For the forcing accelerations (0.85 <

7/-yF < 0.99) and initial radii (0.1 < ro/AF < 3) considered, trajectories always

settled into stable orbital solutions, corresponding to extrema of the imposed Bessel

function.

5.4 Generalized pilot-wave framework

One can imagine much richer system behavior, including chaotic switching between

unstable orbits, as has been observed in a number of hydrodynamic quantum ana-

logues [55, 52, 43, 94. With a view to observing transitions to unstable regimes, we

thus proceed by exploring a generalized pilot-wave framework, where the externally

applied force F and system parameters 3 and K may be altered relative to those of

the fluid system. Particular attention will be given to characterizing how circular

orbits destabilize and quantum-like statistics emerge.
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Figure 5-3: Droplet trajectories calculated from the stroboscopic model (Eq. 5.2) with
an additional oscillatory force prescribed by Eq. 5.6, superimposed on the experimen-
tal wavefield from Fig. 5-1(b). Trajectories were initialized in circular orbits with
various initial radii, indicated by colored arrows. After small oscillations, all trajec-
tories converged onto stable quantized orbits separated by half-integer multiples of
the Faraday wavelength AF.
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In order to destabilize the circular orbits observed in simulations of droplets walk-

ing in an oscillatory potential (Fig. 5-3), we introduce an additional force term into

the stroboscopic model (Eq. 5.4). Specifically, we consider a radial force arising from a

harmonic potential, T(xp) = -kxp, where k is the non-dimensional spring constant,

and explore the resulting dynamics. As we vary the relative magnitudes of the spring

and wave force coefficients, k and Q, circular orbits may become unstable. For a fixed

value of the spring constant k = 0.1, we note that lowering Q prompts a transition

from stable to wobbling, and eventually, chaotic orbits, as detailed in Fig. 5-4.

5.4.1 Transition to chaos

We here detail the manner in which smaller circular trajectories (r/AF - 0-5) tran-

sition to chaos in this generalized pilot-wave system with oscillatory and harmonic

potentials. We consider fixed values of the spring constant k = 0.1 and well-induced

wave force coefficient Q = 0.3. We vary non-dimensional parameters 3 and K accord-

ing to the vibrational forcing acceleration _Y/YF in a manner prescribed by Eq. 5.5.

We increase the forcing acceleration gradually and analyze the stability of the result-

ing orbits. The transition to chaos for smaller orbits is summarized in Fig. 5-4, where

columns correspond respectively to the particle's trajectory, the radius as a function

of time, and frequency decomposition of the radius signal.

We initialize the drop in a stable circular orbit of radius r/AF = 0.5 and -y/YF

0.94, and introduce a small non-dimensional perturbation 6X/AF = 0.01 at t 0.

We track the drop radius as a function of time; for stable circular orbits, the initial

perturbation decays exponentially and the drop radius tends to a constant. As 7/7yF

is increased gradually, the circular orbit destabilizes. For /'YF > 0.945, the initial

perturbation grows exponentially until eventually settling to a non-linear wobbling

state (Fig. 5-4(a)). The orbital radius wobbles periodically between two values, with

a wobbling frequency fi ~ 2fo, where fo is the orbital frequency. When Y/yF '-0.963

(Fig. 5-4(b)), a second frequency f2 emerges in the power spectrum, with f2/fi ~ 0.24.

The lower frequency corresponds to the slow modulation in the radius signal. The

amplitude of the modulation increases with -y/-F, reaching its maximal value at
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7/'yF= 0.9667 (Fig. 5-4(c)). Finally, for /yF > 0.9668, the orbit becomes chaotic,

as suggested by the broadband frequency spectrum shown in Fig. 5-4(d).

5.4.2 Emerging statistics

We may further explore the generalized pilot-wave framework by altering the depen-

dence of the pilot-wave force /, and the inertial coefficient K parameters relative to

those arising in the fluid system (K C [0, 1.5], 3 C [1, 500] for y/-YF < 0.985). In par-

ticular, we seek a parameter regime characterized by unstable orbits between which

walkers switch chaotically. We focus on a pilot-wave system in the large-3, low-r,

regime, where the non-dimensional wave force is significantly larger than the non-

dimensional inertial term. Physically, this corresponds to a particle with lower mass

than the droplets generating a higher-amplitude wave. Although not realizable in a

hydrodynamic setting, this regime is known to exhibit additional quantum features.

For example, Oza et al. [81] showed that hydrodynamic spin states characterized by

a drop spontaneously orbiting in its own wavefield [63, 79] are stable in this regime.

At low forcing acceleration y/yF= 0.95 (corresponding to 0 = 40.5, s = 0.35 via

Eq. 5.5) all orbits are stable, as those shown in Fig. 5-3. As the forcing acceleration

is increased, circular orbits tend to become unstable. We note that smaller orbits

destabilize more rapidly, as seen in Fig 5-5. In this case, an orbit is perturbed from

an initial radius ro/AF ~ 1.5 at yl/yF= 0.97 and the drop begins to wobble, with

an amplitude that increases until the drop reaches the next-largest stable radius,

r/AF - 2.5. The growth of the wobbling amplitude and eventual stabilization at the

next orbital radius are evident in the time series of r(t) reported Fig. 5-5(b). We

note that wave-like statistics begin to emerge in the drop's radial position probability

density function (Fig 5-5(c)); however a steady state is never reached, due to the

short-lived transient.

In Fig. 5-6(a), we see a trajectory simulated at y/yF= 0.98 (0 = 252.8, i 0.14)

where a structure of concentric rings appears in the drop's trajectory indicating the

preferred orbital radii. We track the drop's radial position as a function of time

(Fig. 5-6(b)), which indicates that the radius does not change monotonically; rather,
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Figure 5-4: The first column corresponds to the simulated trajectories of walking
droplets in a generalized pilot-wave framework with Q = 0.3, k = 0.1. A few orbital
periods are highlighted in red. The second column shows the radius of the drop as
a function of time, with corresponding frequency spectrum in the third column. (a)
The onset of wobbling at 7/ YF =0.945, where the wobbling frequency is approxi-
mately twice the orbital frequency. fi ~ 2fo. (b) A second frequency f2 appears
at y/YF ~ 0.963, corresponding to small-amplitude modulations in wobbling. (c)

7/-yF 0.9667. (d) The wobbling state destabilizes when 7/7F > 0.9668, being re-
placed by a chaotic trajectory characterized by a broadband frequency spectrum. We
note that the transition to chaos occurs over a narrow range of A7/7F, requiring high
numerical precision beyond that attainable experimentally.
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Figure 5-5: An orbit initialized at an unstable radial position (ro/AF =1.5) wobbles
until settling onto a larger stable radius. (a) Trajectory of a single drop with K = 0.14,
/ = 252.8, simulated from Eq. 5.4 with -y/yF = 0.97, Q = 0.3, and k = 0.1, with
time step At/TM 8 2 and total time tmax/TM = 120. The trajectory is color-coded
according to drop speed. (b) The corresponding radius as a function of time and (c)
the probability distribution. The transient state is short-lived, with the drop locking
onto the next largest orbital state (r/AF , 2.5).

it jumps from small to large orbits and back again. The droplet eventually settles into

a stable circular orbit of radius r/AF ~ 4.5, after approximately t/TM - 170. The

preferred radial positions during the transient motion are evident in the drop's radial

probability density function shown in Fig. 5-6(c). The preferred radii are half-integer

multiples of the Faraday wavelength (n + 1)AF/2, which correspond to those of stable

orbits at lower forcing accelerations -y.

We then lower the inertial non-dimensional coefficient R = 0.7n, while maintaining

the pilot-wave force 0 as that obtained from fluid parameters with Y/-yF = 0.98.

Specifically, R = 0.042 and 0 = 252.8. The simulated trajectories are shown in Fig. 5-

7(a). Once again, the concentric-ring structure in the particle trajectory highlights the

preferred orbital radii. In this case, however, all orbits are unstable, and the droplet

switches chaotically between them. We record the orbital radius as a function of time

(Fig. 5-7(b)), and the corresponding radial probability distribution (Fig. 5-7(c)). In

this chaotic regime, wave-like statistics emerge in the probability density function.
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Figure 5-6: Transient approach to a stable orbit deduced numerically from the gen-
eralized pilot-wave framework. (a) A single drop with r = 0.14, # = 252.8, simulated

from Eq. 5.4 with -yl/yF = 0.98, Q = 0.3, and k = 0.1, with time step At/TM =2-

and total time tmax/TM = 250. The trajectory is color-coded according to drop speed.

(b) Corresponding radius as a function of time and (c) probability distribution. Dur-
ing its long transient, the drop explores 6 orbitals before locking onto the second
largest (r/AF - 4.5).

The p.d.f. saturates after approximately t/TM ~ 200 indicating the time-scale of

approach to a statistically steady state. Thereafter, the p.d.f. reflects the relative

instability of the unstable circular orbits.

5.4.3 Mean pilot-wave field

Durey et al. 129] demonstrated that, for unbounded systems such as this, the mean

wavefield i(x) is related to the emerging statistics through the convolution:

*(x) = /7B(x - y)it (y) dy, (5.8)

where B(X) is the wavefield of a bouncer at the origin (Fig 5-8(a)) and p(x) is the

steady probability density function for the drop's position. We proceed by computing

the mean wavefield analytically for a periodic orbit, and characterizing numerically

the convergence time-scale of this result for chaotic orbits in our generalized pilot-
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dimensional inertia i = 0.042 and pilot-wave force 3 = 152.8 were tuned to render all
circular orbits unstable. The trajectory is color-coded according to drop speed. (b)
Radial position of the droplet as a function of time displays no periodicity. (c) The
probability distribution of the drop's radial position indicates the relative instability
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Figure 5-8: (a) Non-dimensionalized wavefield of a bouncer at the origin, /B(x)1AB,
computed from Eq. 5.3 with xp(t) = 0. (b) A stable circular trajectory with radius
r/AF - 4.5 obtained following the transient state shown in Fig. 5-6(a) is superimposed
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function. (c) A radial section comparing the mean wavefield computed numerically to
the convolution result (Eq. 5.9), for a stable circular trajectory after a time t/TM - 50.
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Figure 5-9: The statistics and mean wavefield of the trajectory shown in Fig. 5-7(a).
(a) Probability density function for droplet position, 1(x), generated from simulations
of the generalized pilot-wave (Eq. 5.4) with non-dimensional drop inertia r = 0.042
and pilot-wave force 0 = 152.8. The peaks of the wave-like statistics correspond to
extrema of the well-induced potential. In this parameter regime, all circular orbits
are unstable and the drop switches chaotically between them. (b) The convolution of
bouncer wavefield and drop's p.d.f. [29], rqB(X) * p(x) after t/TM = 800 is computed
from Eq. 5.8. It is indistinguishable from the mean wavefield computed numerically.

wave framework. In particular, we show numerically the existence of a steady-state

probability density function for a chaotic orbit.

We first consider the steady-state circular orbit that emerges following the tran-

sient behavior depicted in Fig. 5-6(a). In the case of a stable periodic circular orbit

of radius ro ~ 4.5AF (Fig. 5-8(b)), the radial probability distribution is given by

p(x) = 6(lxl - ro)/27rro. Since both the steady probability distribution and bouncer

wavefield are radially symmetric, we may perform the required convolution (Eq. 5.8)

analytically in polar coordinates:

(r) _ J0 ( r2 +p2 -2rp cos(0))6(p - ro)
AB f~2 wr0 p d p dOAB = fI2 27rro

Using the identity [111J

00
J (V r2 + p2 - 2rp cos (0)) =Z Em Jm(r) Jm (p) cos (mO),

M=O
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Figure 5-10: First column: Mean wavefield i(x, t) for the chaotically-switching trajec-

tory (Fig. 5-7). Second column: Convolution of steady probability density function

p(x, t) with stationary wavefield of a bouncer 77 (x). Third column: Absolute er-

ror I (x, t) - A(x, t) * W B(x 1. Fourth column: Probability density function of the

drop p(x, t) We track the evolution of these quantitites as a function of time for (a)

t/TM = 3.5, (b) t/Tm = 8.2, (c) t/TM = 22.3, (d) t/TM = 34.0.
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with EO = 1, cm = 2 for m # 0 yields the simple result

=(r) = AB JO(r) JO(ro). (5.9)

The mean wavefield has the form of Jo(r) and an amplitude prescribed by the orbital

radius ro. The resulting convolution field along with the generating circular path are

shown in Fig. 5-8(b). In Fig. 5-8(c), we compare the analytical convolution result

with the mean wavefield computed numerically. The two are indistinguishable.

For the chaotically-switching trajectory shown in Fig. 5-7(a), we consider a time

greater than the statistical relaxation time t > TS ~ 200TM so that A(x) has converged

to a statistically steady state. The steady probability distribution, A(x) (Fig. 5-9(b))

is then convolved with the wavefield of a bouncer, rIB(x), resulting in the mean wave-

field i(x). The wavefield computed numerically and the convolution of the bouncer

wavefield (Fig 5-8(a)) with the probability density (Fig. 5-9(a)) are in accord: the

root-mean square deviation between the two fields RMSD = 2.2 x 10-4.

We now consider the evolution towards the statistical steady state. Specifically,

we calculate the wavefield for the chaotically-switching trajectory via Eq. 5.3 and

compute the resulting average wavefield numerically:

i(x, t) f h(x, -F) d-. (5.10)

The average wavefield in Eq. 5.10 converges to that from Eq. 5.8 over a time-scale

Ts/TM ~ 200, the time-scale of statistical relaxation. In Fig 5-10(a), we show the

computed mean wavefield i(x, t), the convolution between the bouncer wavefield with

the particle's probability density function, the absolute error between the two quan-

tities, and the particle's probability density function p at time t/TM = 3.5. At early

times, there are discrepancies between the two fields, since the mean wavefield is

dominated by the most recent impacts, and the particle has not explored a signif-

icant portion of the domain. At t/TM = 8.2 (Fig 5-10(b)), the two quantities are

qualitatively similar, with minor wave-like traces evident in the absolute error, in the

vicinity of the walker. As the drop explores a larger portion of the domain, as seen at
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later times t/TM = 22.3 (Fig 5-10(c)) and t/TM = 34.0 (Fig 5-10(d)), the two fields

i7 and 7iB * p are effectively identical, with the error between them tending to zero

globally.

5.5 Discussion

We have explored the horizontal dynamics of walking droplets subject to an attrac-

tive oscillatory potential. Experiments of a droplet walking on the surface of a bath

with a topographically-induced Faraday wavefield demonstrate the existence of stable

quantized orbits with intra-orbital spacing AF/2. The radial quantization was also

observed in simulations using an integro-differential trajectory equation with an im-

posed oscillatory potential applied to model the influence of the underlying wavefield.

Similar orbital stability characteristics were observed numerically in the parameter

regime explored experimentally.

We then considered a generalized pilot-wave system where the magnitudes of the

drop's inertia , and pilot-wave force 3 may be tuned independently, and altered rela-

tive to those appropriate for the fluid system. We also considered an applied harmonic

potential in order to obtain unstable circular orbits and the resulting transition to

chaos. Circular orbits destabilize into wobbling, precessing, and finally chaotic orbits.

The transition from stable circular orbits to chaos is reminiscent of the Ruelle-Takens-

Newhouse scenario [93, 77, 30]. In this generalized framework, there are regions in

parameter space (K, 3) where all circular orbits become unstable. In this regime,

drops switch chaotically between them. The corresponding probability density for

the drop's radial position shows the emergence of wave-like statistics that assume a

stationary form after a time-scale Ts/TM - 200.

We also confirmed numerically the result of Durey et al. that the drop's mean

wavefield is related to the emergent statistics via a convolution with the wavefield

of a bouncer for both periodic and chaotic trajectories 1291. We showed that this

asymptotic behavior converges rapidly over the statistical relaxation time-scale TS~

TM.
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Chapter 6

Concluding remarks

I think that when this interpretation [de Broglie's Pilot-wave theory] is fur-

ther elaborated, extended, and eventually modified in some of its aspects,

it will lead to a better understanding of the true coexistence of waves and

particles about which actual Quantum mechanics only gives statistical in-

formation, often correct, but in my opinion incomplete.

- Louis de Broglie, 1987 [20].

We have considered the dynamics and statistics of droplets walking on the surface

of a vertically-vibrating fluid bath. This hydrodynamic system represents the first

realization of a pilot-wave system of the form envisioned by de Broglie [19]. The

two key components of de Broglie's pilot-wave theory present in the hydrodynamic

pilot-wave system are the monochromatic pilot wave, and the resonant interaction

between the wave and particle. We have explored the dynamics of walking droplets

subjected to various external forces and fields through an integrated experimental and

theoretical approach. Particular attention has been given to deducing conditions for

the trapping of walkers by an ambient wavefield, and to characterizing the transitions

to chaos in orbital pilot-wave dynamics.

Our investigation of droplet behavior above the Faraday threshold was motivated

by a desire to introduce a stochastic element into the drop dynamics, as has been

posited for quantum particles by Nelson [74], Bohm & Vigier [9], and de Broglie [20].
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In Stochastic Electrodynamics [74, 12, 481, the zero-point electromagnetic field serves

as a source of fluctuations. According to de la Pefia & Cetto [21, 22] in their modern

version of de Broglie's mechanics, these fluctuations serve only to excite the particle

vibration at its natural frequency, mc2 /h, and have no further influence on the parti-

cle's dynamics. Likewise, in the walker system, the background is important only in

exciting the drop vibration (bouncing) and the resulting monochromatic wavefield.

In a number of settings, we have seen that chaotic pilot-wave dynamics may suffice

to account for quantum-like statistics.

In our experimental characterization of droplet dynamics above the Faraday thresh-

old, we observed a variety of novel dynamical states. At the onset of the Faraday

instability, droplets would meander or zig-zag, surfing the troughs of the unstable

Faraday wave. In the rare cases where the drop synchronized with the ambient

wavefield, it would become trapped, bouncing at a local extremum of the underly-

ing wave. More generally, droplets bouncing on this corrugated Faraday wavefield

moved erratically, exhibiting behavior analogous to a 2D random walk. The diffu-

sive properties observed for drops bouncing erratically above the Faraday threshold

were purely classical, with the root-mean-square displacement scaling linearly with

time. We note that all current theoretical frameworks for computing the droplet's

horizontal dynamics assume the superposition of linear waves with a temporal decay,

an assumption that breaks down above the Faraday threshold. The characterization

of droplets bouncing and walking above the Faraday threshold was purely experi-

mental, since an accompanying theoretical treatment would require consideration of

non-linear wave effects.

In quantum mechanics, an initially localized wave-packet corresponding to a free

particle with speed h Ik /m diffuses ballistically, such that its variance scales as the

square of time, a ~ t2. This behavior may be simply interpreted in terms of recti-

linear motion of an ensemble of identically-prepared individual particles whose initial

positions and momenta satisfy Heisenberg's uncertainty relation ApAx > h/2: the

variance in this ensemble's position density function grows in a manner consistent

with ballistic diffusion. The base state of the walker, corresponding to rectilinear
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motion at the free-walking speed, is thus not a shortcoming of the hydrodynamic

system as a quantum analog.

We have also reported a hydrodynamic optical analog arising above the Faraday

threshold, namely the Faraday-Talbot effect. An array of equally-spaced circular

pillars protruding from the fluid surface generates waves provided the vibrational

acceleration is slightly above the Faraday threshold. The resulting wave superposition

exhibits a coherent structure, with self-images forming at integer multiples of the

Faraday-Talbot length. The result is a hydrodynamic analog of the optical Talbot

effect [101, 116], where a monochromatic electromagnetic wave is modulated by a

spatially periodic structure, generating an array of self-images in the near-field. We

further demonstrated that drops may become trapped, bouncing at the troughs of

the Faraday-Talbot wave field. We have thus presented a hydrodynamic analog of

particle trapping with the Talbot effect [76, 98, 681.

We have provided the first theoretical characterization of the transition from pe-

riodic circular orbits to chaotic dynamics in orbital pilot-wave dynamics. We note

that this transition arose over a remarkably small range of Ay - 0.005; consequently,

its characterization was well beyond existing experimental precision. Orbital motion

in the presence of external Coriolis or Coulomb force transitioned from a periodic

to chaotic motion through a period-doubling cascade, while circular orbits in the

presence of a harmonic potential became chaotic through a path reminiscent of the

Ruelle-Takens-Newhouse scenario. Although the mechanism for the transition to

chaos depends on the form of the externally-applied force, we observed similar statis-

tical forms emerging from the resulting chaotic trajectories. In particular, in the fully

chaotic regime, trajectories switch between unstable periodic states, with the resi-

dence time in each state indicating their relative instability [79, 85, 62, 281. One thus

sees the manner in which chaotic pilot-wave dynamics might account for quantum-like

statistics.

We exploited the fact that pilot-wave hydrodynamics is viable in shallow water,

as discovered by Sdenz et al. [94], and so explored the possibility of walker trapping

using variations in bottom topography. In particular, we considered a bath with a
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central circular well that induces a circularly-symmetric Faraday wave pattern. We

demonstrated that walking droplets become trapped on circular orbits whose radii

correspond to the extrema of the well-induced wavefield. For the fluid parameters

considered, quantized orbital trajectories were stable with a characteristic spacing of

approximately AF/2, indicating that walker trapping in a well-induced wavefield is

robust.

The hydrodynamic pilot-wave system has provided a new vehicle for extending the

range of classical systems to include behavior previously associated with quantum sys-

tems. Nevertheless, the walker system does have its limitations; in particular, certain

quantum-like features cannot be captured with fluid-like parameters. For example,

self-orbiting spin states are observed to be unstable [63], as has been rationalized

via the stroboscopic model [79, 81]. With a view to extending the phenomenological

range of the hydrodynamic pilot-wave system, we considered a generalized pilot-wave

framework, in which the relative magnitudes of the pilot-wave force and drop inertia

could be altered relative to those achievable in the fluid system. Using this generalized

pilot-wave framework, we extended our experimental study of well-induced trapping

by considering a walker subjected to both oscillatory and harmonic potentials.

With this generalized framework, we have shown that orbital trapped states, such

as those reported in Chapter 5, may be rendered unstable and eventually chaotic.

From these chaotic trajectories, we observed the emergence of wave-like statistics

that converge to a statistically steady state for times greater than the statistical

relaxation time T, which scales with the memory time. We computed the mean

wavefield numerically, and compared it with the convolution of the drop's probability

density function and a bouncer wavefield, testing the validity of the theoretical result

deduced by Durey et al. [29]. We noted the rapid convergence of the mean wavefield

to the convolution result for both periodic and chaotic trajectories. The relation

between the particle's dynamics and statistics in this pilot-wave system provides an

important step towards a hydrodynamic interpretation of quantum dynamics, where

a particle's position and momentum exist independent of measurement, and non-local

quantum interactions may be rationalized in terms of wave-mediated effects.
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Existing theoretical models [80, 71, 72] used throughout this thesis provide a well-

benchmarked framework for exploring hydrodynamic systems consisting of a single

particle in the absence of boundaries. Our study has made clear the value of ex-

tending this theoretical framework beyond that governing the fluid system. The gen-

eralized pilot-wave framework has allowed us to extend the phenomenological range

of pilot-wave systems beyond that achievable in the laboratory. The development

and exploration of further extensions would thus seem a fruitful direction for fu-

ture research. Possibilities include further exploration of non fluid-like parameters.

Efforts are underway to incorporate variable vertical dynamics through extension

of the stroboscopic models to include the dependence of bouncing phase on local

wave amplitude. One might also explore different wave forms, including different

forms of spatio-temporal damping. Finally, we envisage an extension of the strobo-

scopic model to three-dimensional space, where a pulsating particle is guided by a

spherically-symmetric pilot-wavefield.

We expect that future work will firm up the new links established between a drop's

dynamics and emerging statistics. A clear objective is the derivation of a Schr6dinger-

like equation for the particle's statistics that is consistent with an underlying chaotic

deterministic dynamics. Further characterization of this macroscopic pilot-wave sys-

tem may help bridge the gap between quantum and classical realms, restoring a realist

view of quantum mechanics similar to that originally envisioned by Louis de Broglie.

Sensing that the plethora of quantum interpretations was incomplete, Bush [14] con-

cocted his own:

[...] the Many-Many- Worlds Interpretation, according to which each quan-

tum interpretation is realized in some edition of the multimultiverse, and

there is even one world in which there is only one world [...] and beables

be.

My hope is that this is that world, the edition of the multimultiverse where beables

just be.
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