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Abstract

We analyze the following problem: Each node of the d-dimensional hypercube independently

generates packets according to a Poisson process with rate A. Each of the packets is to be sent to

a randomly chosen destination; each of the nodes at Hamming distance k from a packet's origin is

assigned an a priori probability pk (1 _p)d- k. Packets are routed under a simple greedy scheme: each

of them is forced to cross the hypercube dimensions required in increasing index-order, with possible

queueing at the hypercube nodes. Assuming unit packet length and no other communications taking

place, we show that this scheme is stable (in steady-state) if p < 1, where pde Ap is the load factor

of the network; this is seen to be the broadest possible range for stability. Furthermore, we prove

that the average delay T per packet satisfies T < AdEp , thus showing that an average delay of O(d)

is attainable for any fixed p < 1. We also establish similar results in the context of the butterfly

network. Our analysis is based on a stochastic comparison with a product-form network.
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1. INTRODUCTION

1.1 Problem Definition - Summary of the Results

During the execution of parallel algorithms in a network of processors, it is necessary that

processors communicate with each other in order to exchange information. This is accomplished

by routing messages through the underlying interconnection network. In the present paper, we

consider a well-known problem: the nodes (i.e., processors) of the hypercube network generate

packets at random time instants; each packet has a single destination, which is selected at random.

We discuss a simple greedy scheme for routing these packets and we analyze its steady-state stability

and delay properties. The results to be derived extend to the butterfly network.

We consider the d-dimensional binary hypercube (or d-cube); e.g., see [BeT89]. This network

consists of 2 d nodes, numbered from 0 to 2 d - 1. Associated with each node z is a binary identity

(Zd, . . ., Z), which coincides with the binary representation of the number z. For j E {1,..., d),

we denote by ej the node numbered 2j-1; that is, all entries of the binary identity of ej equal 0

except for the jth one (from the right), which equals 1. For two nodes z and y, we denote by z D y

the vector (Zd ® Yd,..., zl E Yl), where D is the symbol for the XOR operation. Each arc of the

d-cube is directed and connects two nodes whose binary identities differ in a single bit; see Fig.

la, where the 3-cube is depicted. That is, arc (z, y) exists if and only if, for some m E {1, ... , d,

Zi = yi for i $ m and z,m y,,; this is equivalent to y = z () em for some m e {1,..., d}. Such an

arc is said to be of the mth type; the set of arcs of the mth type is called the mth dimension. Note

that (z, y) stands for a unidirectional arc pointing from z to y; of course, if arc (z, y) exists, so does

arc (y, z). Each node z has d neighbors, namely z D el,..., z E ed; thus, the d-cube has d2d arcs.

The Hamming distance between two nodes z and y is defined as the number of bits in which their

binary identities differ; it is denoted by H(z, y). Any path from z to y contains at least as many

arcs as the Hamming distance between z and y. Moreover, there always exist paths that contain

exactly that many arcs; these paths are shortest. It is easily seen that the diameter of the d-cube

equals d.

The underlying assumptions for communications are as follows: Each piece of information is

transmitted as a packet with unit transmission time. Only one packet can traverse an arc at a

time; all transmissions are error-free. Each node may transmit packets through all of its output

ports and at the same time receive packets through all of its input ports. Each node has infinite

buffer capacity. Finally, for analytical convenience, the time axis is taken to be continuous. (The

case of slotted time is briefly treated in §3.4.)

Routing a packet from a node z to another node y may be accomplished optimally by transmitting

the packet along one of the shortest paths from z to y; this takes time equal to H(z, y), provided

that the packet does not encounter any contention en route. This is the simplest conceivable

communication task. Under more general tasks, several packets are to be transmitted at the same
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time, with the set of origin-destination pairs having a special structure. (e.g., the permutation task,

where each node transmits one packet, with different packets having different destinations; see also

§1.2.) By exploiting this special structure, one may devise an algorithm to perform such a task

efficiently. Such routing problems are called static, because they consider tasks to be performed

only once, in the absence of other transmissions. In the dynamic version. of the routing problem,

it is assumed that multiple tasks are generated over an infinite time-horizon; moreover, different

tasks may interfere with each other. As discussed below, most of the literature on routing deals

with static problems.

In the present paper, we consider a dynamic problem with a simple structure:

Each node of the d-cube generates packets according to a Poisson process with rate A; different

nodes generate their packets independently of each other. Each packet has a single destination,

which is selected randomly; in particular, we assume that

Pr[a packet generated by node x is destined for node z] = pH(x'z)(l - p)d-H(0,z), (1)

where p E (0, 1]; different packets make their selections independently of each other.

Notice that the problem just defined is invariant under translation; that is, if each hypercube node

is renamed from z to ax e y* (where y* is a fixed d-bit string), then the statistics of the various

random variables are not affected.

It is seen from (1) that for p = - the destination distribution is uniform; that is, each node

(including its origin) is equally likely to be chosen as a packet's destination. This is the case

usually considered in the literature (see §1.2); in most of the related works, a packet's origin is not

a permissible destination; however, it is easily seen that our results (when rescaled appropriately)

also apply to this case. Also note that for p < - the destination distribution favors nodes at shorter

distance from a packet's origin; in this case, packet transmissions tend to be more localized.

As will be proved in §2.1, the inequality

def
pf Ap < 1

is a necessary condition for stability; p will be called the load factor of the system. Therefore, it

is of particular interest to devise a routing scheme that is guaranteed to be stable for all p < 1.

Moreover, it is desirable that such a scheme does not introduce excessive delay; in particular, it

is required that for each p < 1 there exists some C, (which does not depend on d) such that the

average delay T per packet does not exceed Cad. (Here, T is defined as the steady-state average

time elapsing until a packet reaches its destination.) This requirement on the delay is motivated by

the fact that, in the abscence of other transmissions, it would take at most dp time units (on the

average) to route a packet to its (random) destination; thus, it is desirable that the additional delay

due to contention does not increase this quantity by more than a multiplicative factor depending

on the load of the network.
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The simplest approach to our routing problem is for each packet to choose a shortest path

leading to its destination and attempt to traverse this path as fast as possible. Although it is

intuitively clear that such greedy schemes may possibly be efficient, their performance has not been

analyzed rigorously in the literature. In this paper, we prove that a particular greedy scheme is

very efficient. The routing scheme to be analyzed is as follows: Consider a packet originating at

node x and destined for node z; this packet will be routed through that shortest path (from x to

z) in which the hypercube dimensions are crossed in increasing index-order. (Such paths are often

referred to as canonical.) For example, a packet travelling from node (0, 0, 0, O0) to node (1, 0, 1, 1)

in the 4-cube would follow the path

(0, 0, 0,0) - (0, O, 0, 1) - (, 0, , (1, 0, 1, 1).

It will be proved that this simple routing scheme is stable for all p < 1, which is the broadest

possible stability region. Moreover, it will be established that, for p < 1, the delay T induced by

the scheme satisfies
P dp

dp+ p(t p ) < T <

2(l - p)- - 1-p

of particular interest is the upper bound on the delay, which guarantees that, for any fixed p, each

packet reaches its destination in an average time O(d). Notice also that under heavy traffic (i.e.,

for p - 1) the delay T increases as l. It will be established that such a behavior under heavy

traffic is optimal for any fixed d; indeed, it will be proved that limp,1 [(1 - p)T] > 0 under any

legitimate routing scheme.

The results above may be easily extended to the d-dimensional butterfly. This crossbar network

is an "unfolded" version of the d-cube; see §4.1 and [BeT89]. In this context, it is assumed that

packets are generated at one of the fronts of the butterfly and destined for a randomly chosen node

at the opposite front; the destination distribution is identical to that presented in (1), except for

the fact that x and z belong to opposite fronts of the butterfly. Notice that crossing the dimensions

in increasing index-order is the only legitimate choice of paths for the butterfly. Thus, the scheme

simply reduces to greedy routing; this will be seen to be stable for all p < 1, where p is now defined

as pd fA max{p, (1 - p)}; moreover, for p < 1, the average delay T satisfies

d ___AP + -A A(l - p) < __< _ d(1 - p)
2(1 - Ap) 2[1 - A( - p)] - - - Ap - A(1-p)

Again, the delay T is O(d) for any fixed p < 1, which is the optimal order of magnitude; also, the

behavior of T under heavy traffic will be seen to be optimal, for any fixed d.

To the best of our knowledge, these results are new. Moreover, our analysis provides the first

proof that some routing scheme (on either the d-cube or the butterfly) is stable for all p < 1

while satisfying the requirement for O(d) average delay; proving that greedy routing has these

properties has been a long-standing open question in the routing literature. Also, this is the first
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routing scheme for which the bounds on the delay are expressed in simple formulae involving the

system's parameters p and d. Finally, the approach for deriving the aforementioned results is new

as well: it is established that the hypercube (resp., the butterfly) behaves as a queueing network

with deterministic servers (each corresponding to an arc) and with Markovian routing among the

various servers; then, by using sample path arguments, it is shown that the delay induced by this

queueing network is dominated by that corresponding to a product-form network. This kind of

approach relies on the assumption of Poisson arrivals; nevertheless, we hope that our analysis will

be suggestive of the efficient perfomance of greedy routing under more general packet-generating

processes; in fact, the conditions for stability derived in our analysis are much more general.

1.2 Survey of Previous Work

As already mentioned, there exists considerable literature on algorithms for communication tasks

in various interconnection networks. However, several of the related articles analyze static problems,

where each task has to be performed only once, and no other packet transmissions are taking place

at the same time. In particular, for the hypercube network, Bertsekas et al. [BOSTT89] have

devised optimal algorithms for a variety of communication tasks. Previously, Saad and Schultz

[SaS85], as well as Johnsson and Ho [JoH89], had constructed optimal or nearly optimal algorithms

for hypercubes, under somewhat different assumptions on packet transmissions. The interested

reader may find more references in these three papers and in [BeT89].

The communication tasks considered in the aforementioned papers as well as the respective al-

gorithms do not employ any randomization. In his famous paper [Val82], Valiant has demonstrated

how to use randomization in order to perform a deterministic task. In particular, in the context of

the d-cube, he considered the permutation task and showed that it may be accomplished in time

O(d) with high probability, by using a randomized two-phase algorithm. In the first phase, each

packet chooses a random intermediate destination (with all nodes being equiprobable) and is sent

there; in the second phase, each packet travels from its intermediate destination to its actual des-

tination. In a later paper, Valiant and Brebner [VaB81] modified this algorithm, thus simplifying

considerably the analysis. In particular, they assumed that, in each of the two phases, packets

cross the various hypercube dimensions in increasing index-order. These paths coincide with the

ones used in the scheme analyzed in the present paper. It was established (for both permutation

algorithms) that there exists some constant R such that the completion time is at most Rd with

high probability. Notice, however, that these algorithms make inefficient use of the communication

resources of the network; indeed, the average traffic per arc is O(d ) packets per time unit. This

performance was improved later by Chang and Simon [ChS86] as well as by Valiant [Val88]. Each

of these articles presents an algorithm for routing d permutations on the d-cube in O(d) time (with

high probability); these algorithms result in an average traffic of 0(1) packets per arc and time unit.

[ChS86] also contains a scheme for routing continuously batches of permutations, by pipelining.

The dynamic routing problem of this paper has been dealt with in several articles, which we
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discuss below; all of them consider the case of uniform destination distribution. Abraham and

Padmanabhan [AbP86] have constructed an approximate model for this problem, under various

assumptions on the buffer capacity of the nodes. In particular, they assume that packets advance

in the respective paths independently of each other; the model involves some parameters, which

are determined by solving a system of non-linear equations. Greenberg and Hajek [GrH89] have

analyzed this problem under the assumption that deflection routing is used instead of shortest

path routing; that is, packets may be temporarily misrouted, rather than stored or dropped. The

analysis in [GrH89] is approximate too. Varvarigos [Var90] has formulated a Markov chain model

for evaluating the performance of deflection routing, and has investigated its stationary statistics

numerically. Note that all three [AbP86], [GrH89] and [Var90O] are dealing with the hypercube

network. The same problem has been analyzed in the context of the Manhattan network (square

mesh) by Greenberg and Goodman [GrG86], with their analysis being again approximate. Recently,

Leighton [Lei90O] proved that greedy routing in the square mesh has very satisfactory average per-

formance. Problems similar to ours were also analyzed by Mitra and Cieslak [MiC86], as well as

by Hajek and Cruz [HaC87], in the context of the extended Omega network (which is a crossbar

switch); it was assumed (in both papers) that, for each individual packet, transmission times over

the various arcs are independent and exponentially distributed random variables. This assumption

(called "Kleinrock's independence assumption") simplifies the analysis considerably; in fact, our

problem would have been trivial under this assumption, because the underlying networks would

have been of the Jackson type. Nevertheless, such an independence assumption appears to be

unrealistic for our problem.

Finally, another dynamic routing problem, was analyzed by Stamoulis and Tsitsiklis in [StT90],

where it was assumed that packets generated at random instants and at random nodes of the

hypercube must be broadcast to all nodes.

2. PRELIMINARY RESULTS FOR THE HYPERCUBE

2.1 The Necessary Condition for Stability

First, we start with an observation to be used several times in the analysis. Consider a fixed

packet P generated at node x. Let 3i denote the event that packet P will choose a destination

z such that zi £ xi; notice that if event B3i occurs, then P will have to cross an arc of the ith

dimension in order to reach its destination. It is a straightforward consequence of the definition of

the destination distribution [see (1)] that the following is true:

Lemma 1: For any fixed packet A, events Bl,..., 3d are mutually independent, with Pr[Bi]= p

for i = 1,..., d. Independence prevails both with and without conditioning on the origin of the

packet. m

Lemma 1 essentially implies the following: In order to choose the binary identity of its desti-
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nation, packet P flips each of the bits of the identity of its origin x; each hit-flip is performed

with probability p, independently of the others. Notice also that the average number of bit-flips

performed equals dp; therefore, under any routing scheme, each packet will have to traverse at least

dp hypercube arcs on the average.

Next, we derive the necessary condition for stability. The average total number of packets gener-

ated in the network per unit time equals A2d. Thus, by the conclusion of the previous paragraph, it

is seen that during each time unit an average total demand for at least A2ddp packet transmissions

is generated in the system. Since at most d2d packet transmissions may take place per unit time, it

follows that the system can be stable only if A2ddp < d2d. Thus, we obtain the following necessary

condition for stability under any routing scheme:

ef p 1, (2)

where p is the load factor of the system. This terminology is appropriate, because when p m 1 all

hypercube arcs are almost always busy, even if no redundant packet transmissions take place. Notice

that (2) is a necessary condition for stability under more general arrival processes. Furthermore,

this condition can be strengthened to p < 1, unless all arrival processes are deterministic.

2.2 Lower Bounds on the Delay

First, we establish a universal lower bound on the steady-state average delay T per packet; that

is, a bound that applies to any routing scheme. Recall that T is defined as the stationary average

of the time elapsing between the moment a packet is generated until it reaches its destination.

Proposition 2: The average delay T per packet induced by any routing scheme satisfies

T > max{dp,pT'(2d;p)} = (dp+p 2 (l _ V) , < 1

where 7D(2d; p) is the average delay for the M/D/2d queue with unit service time and arrival rate

2dp. U

Proof: Consider a fixed packet P generated at node z; if its random destination satisfies z1 7 zl

(that is, if event B31 occurs for P), then P will not reach its destination until it traverses at least

one arc of the 1st dimension. Let W be the average time until a packet crosses the 1st dimension,

with the convention that packets that never do so contribute zero to this average; clearly, T > W.

It is straightforward to see that the value of W can only decrease if we introduce the following

conditions:

(a) Each packet for which event B13 has not occured never crosses the 1st dimension.

(b) Each packet for which event B1 has occured, is available upon its generation at all nodes;

moreover, such a packet will only cross the first available arc of type 1.

Under these assumptions, the 2d arcs of the 1st dimension operate as an M/D/2d queue. The

input stream of this queue consists of all packets for which event B1 occurs; by Lemma 1, this
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stream is Poisson with rate A2dp = 2 dp. The average delay induced by this queue equals 'D(2 d; p);

since only a fraction p of the packets "joins" this M/D/2d queue, we have

W > pD(2d; p) . (3)

Recall now that T > W and T > dp (see §2.1); these facts together with (3) imply that

T > max{dp, pD(2d; p)} . (4)

Furthermore, it is known [Bru71] that

D(2d; p) > 1 + 2
2d+ (1 - p);

combining this with (4), it follows that

T =_ f max dp, p-F p ·di( 1 _ p)
( { P P2 d+l(l _ P}) = p2d( (d p)

where we have also used the inequality max{al, a 2} > L(a + t2 ). The proof of the result is now

complete. Q.E.D.

The universal lower bound of Proposition 2 shows that limp_1 [(1 - p)T] > 0, for any fixed

d, under any routing scheme. As far as asymptotics with respect to d are concerned, the bound

appears to be loose, due to the presence of the factor 1 . Below, we establish a sharper lower bound

applying to a restricted but fairly broad class of routing schemes.

As suggested by the proof of Proposition 2, a scheme that comes close to attaining the universal

lower bound for the delay T (if there exists such a scheme) would schedule transmissions adaptively.

This claim is further supported by Proposition 3, which establishes a lower bound on T under

oblivious schemes. Under an oblivious scheme, each packet selects its path independently of the

existing traffic and insists on traversing the selected path (see [BoH82]); we also assume that all

rules for path selection are time-independent. We now present the lower bound on the delay induced

by oblivious schemes.

Proposition 3: The average delay T per packet induced by any oblivious routing scheme satisfies

T=Q(dp+p P *

Proof: This proof is similar to that of Proposition 2. We consider a node x and an arc (y, y ) el);

under any oblivious scheme, the following is true: For each packet generated at x, arc (y, y D el )

is the first arc of type 1 to be crossed by such a packet with probability q,,y, independently of all

other events occuring in the network; moreover, there holds

E q., > P, Vz ({0,...,2 -1), (5)
y=O
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because it is with probability p that some packet generated by node x will necessarily cross an arc

of the 1st dimension. Let W be the average time until a packet crosses the 1st dimension for the

first time, with the convention that packets that never do so contribute zero to this average; clearly,

T > W. For any oblivious routing scheme, the value of W can only decrease if we introduce the

following conditions:

(a) Each packet to cross the 1st dimension is only delayed at the first time it does so.

(b) Each packet to cross arc (y, y $ el) is available at node y upon its generation.

Under these conditions, each arc (y, y ( el) is fed by a group of 2d Poisson streams. We denote

by r, the total arrive rate of the compound Poisson stream; obviously, we have

ry = A E q.,, Vy E {0,...,2 -2d 1}. (6)
X=0

Clearly, arc (y, y E el) behaves as an MID/1 queue with unit service time. Therefore (see [Kle75]),

the average delay Wy per packet joining this queue is given as follows:

Y 1 + 2(1 - r)

Using this, we obtain

1 2" -1 2' -I -1

W 1 >1 r [1 + Y (7)
- 2d 'WY W 2d [ 2(1-r)

y=O y=O

Combining (5) and (6), we have
2d -1

E ry > A2dp. (8)
y=O

Notice now that r[1 + 2(-T-) ] is a convex and increasing function of r; therefore, in light of (8), the

right-hand quantity in (7) is minimized when ry = Ap for all y {O0,...,2d - 1}. Thus, it follows

that
2" -1

>A2d E p + 2(1- Ap) 1 + 2(1 - p)

This together with the facts T > W and T > dp proves that

T > max dp,p 2(1 - p)

and the result follows. Q.E.D.

Proposition 3 implies that, for a fairly broad class of schemes, the universal lower bound on the

delay T (see Proposition 2) is rather loose. Suppose now that, under oblivious routing, we allow
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packets generated at node x to take into account the routing decisions taken by packets previously

generated at x. It is an interesting open question to investigate whether Proposition 3 still holds.

We believe it does, because each packet has a very limited knowledge of the routing decisions taken

within the entire network. If this is indeed the case, then a scheme violating the lower bound given

by Proposition 3 should involve centralized coordination and/or adaptive routing.

It is worth noting that Propositions 2 and 3 hold for any destination distribution that is invariant

under translation; that is, when the probability that a packet originating at node x is destined for

node z equals f(x ED z), which depends only on x ED z. In this case, p is defined as

def
p= max{p,..., Pd };

pj is the load factor for the jth dimension and equals

pdeftA Z f( 

{y:yj =1}

In this case, (2) is still a necessary condition for stability under any routing scheme.

2.3 Simple Non-Greedy Schemes

In this subsection, we discuss simple routing schemes based on pipelining successive instances of

an algorithm used in static routing. For simplicity, we assume that the destination distribution is

uniform (i.e., p= ).

As already mentioned in §1.2, in the first phase of the permutation algorithm of [VaB81], each

packet selects a destination at random (with all nodes being equiprobable) and travels there. This

algorithm has the following property: there exists a constant R > 1 such that the first phase takes

time less than Rd (and close to this value) with high probability. Consider now the following

routing scheme for our problem:

At time t = 0, each node selects one of its packets; all selected packets are routed as in the first

phase of [VaB81]. These packets arrive at their respective destinations at time t1 , where t1 < Rd

with high probability. At time tl, each node selects another one of its packets, and the selected

packets are again routed as in [VaB81] etc.

Under this scheme, each packet generated by some node x joins an MI/G/1 queue. The arrival rate

for this queue is A; the service time is distributed as the duration of the first phase of the algorithm

in [VaB81], which is close to Rd with high probability. (For simplicity, we ignore the overhead

required for termination detection.) Hence, node x routes one of its packets every Rd time units

(approximately); thus, stability may prevail only if ARd < 1, or equivalently p < 1j . Therefore,

for any fixed p, the simple scheme described becomes unstable for large d.

A potential remedy to this undesirable performance is to pipeline successive instances of an

efficient static algorithm for d permutations, such as those in [ChS86] and [Val88]. Such an approach
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would lead to a routing scheme which would be stable for p < p* with p* being some small constant;

e.g., using the algorithm of [ChS86] would lead to p* z 0.005, which is very small compared to the

upper bound given by (2).

All of the schemes described above are non-greedy, i.e. they involve idling: it often occurs that

packets wait at their respective origins, while some of the arcs to be traversed are idle. As will be

seen in §3, avoidance of this idling phenomenon improves performance dramatically.

3. THE MAIN RESULTS FOR THE HYPERCUBE

In this section, we analyze an efficient greedy routing scheme for the hypercube network. As

already mentioned in §1.1, the scheme is as follows: Each packet proceeds towards its destination

by crossing the dimensions required in increasing index-order. To clarify matters, consider a packet

P generated at node x and destined for node z; let il,..., ik be the entries in which the binary

identities of z and z differ, with il < i 2 < ... < ik ; then, packet P follows the path

x x -- x d ei, --* x ei, E ei --* -* x t1 ei1 ( .. . * ei, = z -

(This path is unique for each origin-destination pair.) It should be noted that packets advance

at their respective paths as fast as possible; that is, no idling occurs (hence the characterization

"greedy"). Also, whenever several packets present at a node y wish to traverse the same arc, then

priority is given to the one that arrived at y the first.

The routing scheme presented above is the non-idling version of one of the schemes described in

§2.3 (namely, of that based on the algorithm of [ValB81]); moreover, the scheme is oblivious (see

§2.2). It will be seen in §3.1 that, under this scheme, the hypercube is equivalent to a queueing

network with certain useful properties. The analysis in §§3.2 and 3.3 deals with the performance

of this equivalent queueing network.

3.1 The Equivalent Queueing Network

It is straightforward that, under our routing scheme, the d-cube may be viewed as a queueing

network, with d2d deterministic FIFO "servers"; each "server" has unit service duration and cor-

responds to a hypercube arc. This equivalent queueing network (to be referred to as Q) has the

following properties:

Property A: The external arrival stream at any arc (x, x ~ ei) is Poisson with rate Ap(1 _ p)i-;

streams corresponding to different arcs are mutually independent.

To see this, consider a packet P generated at node x of the d-cube; with probability p(l -p)i-l the

destination of P satisfies zl = xl,..., zig_ = zil and zi 5 zi (see Lemma 1). Since packets cross

the hypercube dimensions in increasing index-order, it follows that each of the packets generated

by node x will join the queue for arc (x, x ED ei) with probability p( - p)i-1 .

----·---·- ------- -~---~11- - -



Property B: After crossing arc (y, y (D ei), a packet will never traverse again an are (z, z ej )

with j E {1,..., i}. Thus, the equivalent network Q is a levelled network; that is, its "servers"

are organized in d levels, with the ith level comprising all arcs (y, y (D ei) for y E {0,..., 2 d - 1},

i.e. all arcs of the ith dimension. Upon "service completion" at a certain level, a packet either

joins a queue at a higher level or it departs from the network.

In Fig. la, we presented the 3-cube, while, in Fig. lb, we present the equivalent network Q.

Property C: Routing is Markovian. In particular, upon crossing arc (y, y (3 es), a packet takes

one of the following actions: either it joins the queue at arc (y E ei, y · ei E ej ) with probability

p(l - p)ij--l for j = i + 1,..., d; or it departs from the network with probability (1 - p)d-i.

After crossing arc (y, y $ ed), a packet departs from the network with probability 1. Different

packets take their routing decisions independently of each other.

The validity of this property requires some clarification; in particular, in light of Property B, we

need to show the following result:

Lemma 4: Consider a fixed packet P, which has just crossed arc (y, y e) ei); there holds

Pr[P will cross (yDei, yei EDej) I P has crossed (y, yDei)] = p( -p)j-i- , for i < j < d. (9)

Proof: Let x denote the origin of packet P. Clearly, in order to prove (9) it suffices to prove the

following:

Pr[P' will cross (yeei,yDei e ej) I P has crossed (y,y(Dei) and P originated at x] = p(l-p)i - -l,

for any permissible origin x of 'P. Notice, however, that P will skip the dimensions i + 1,..., j - 1

and cross the jth dimension next if and only if events Bi+ l ,. .. , jL- did not occur while 3j occured.

Hence, proving (9) is equivalent to proving the following:

Pr[i+l,...,j_-l,3 BjI 'P has crossed (y, yEDei) and P originated at x] = p(l - p)j-i-1 , (10)

where Bt is the complement of event Bt. Since hypercube dimensions are crossed in increasing

index-order, knowledge of the origin of P and of the fact that P has just crossed arc (y, y (D ei)

provides information only on the first i bits of the destination of 7P; thus, (10) follows from the

independence result of Lemma 1. Q.E.D.

According to the proof of Lemma 4, propagation of a packet P on the hypercube may also be visu-

alized as follows: Upon generation, P decides whether or not to cross dimension 1; the probability

that it decides positively equals p. If it does so, then it takes its step on this dimension and then

it decides whether or not to cross dimension 2; if it does not decide to cross dimension 1, then it

considers crossing dimension 2 etc.
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3.2 The Sufficient Condition for Stability of the Routing Scheme

In the previous subsection, we established that, under the routing scheme analyzed, the hyper-

cube is equivalent to a queueing network Q with Markovian routing. In this subsection, we derive

a sufficient condition for stability of the routing scheme. First, we prove the following result:

Proposition 5: The total arrival rate at any arc of the d-cube equals Ap = p. ·

Proof: By symmetry among the hypercube nodes, all arcs belonging to the same dimension j have

the same total arrival rate j . Furthermore, the total arrival rate for the jth dimension equals 2dAp,

because each of the packets generated within the d-cube crosses the jth dimension for an expected

numnber of p times. Hence, we have 2daj = 2dAp, which gives Oj = Ap = p for all j E {1,..., d}.

Q.E.D.

Notice now that the equivalent network Q has the following properties:

(a) Each "server" is fed externally by a Poisson process. Arrival processes corresponding to different

"servers" are independent.

(b) Service times are bounded. Also service times corresponding to different packets and/or different

"servers" are (trivially) independent.

(c) Routing is Markovian.

These properties allow us to apply Theorem 2A of [Bor87]; it thus follows that network Q is stable

if the total arrival rate for each "server" is less than unity. By stability it is meant that the

stationary distribution of the network's state is well-defined and is independent of the initial state.

(*) Recalling the equivalence of Q with the hypercube (under our greedy routing scheme) and

using Proposition 5, we reach the following conclusion:

Proposition 6: The greedy routing scheme under analysis is stable for all p < 1. ·

In light of the necessary condition for stability p < 1 (see §2.1), it is seen that the routing scheme

under analysis has optimal stability properties. In fact, Theorem 2A of [Bor87] applies to more

general arrival processes; therefore, Proposition 6 is rather general.

3.3 The Bounds for the Delay Induced by the Scheme

In this subsection, we establish both upper and lower bounds for the average delay T induced by

the routing scheme under analysis. Starting with the upper bound (which is the most interesting

result), we will show that T < --_- for all p < 1. The basic idea for proving this result is as follows:

If the service discipline at the "servers" of the equivalent network Q is changed from FIFO to

Processor Sharing (PS), then the average delay per packet increases; under the PS discipline, Q

becomes a product-form network, and its delay is easily computed.

(*) In this paper, we use the term "stable" as in [Wal88], rather than the term "ergodic" used in

[Bor87].
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Recall that under the PS discipline all customers present at a server receive an equal proportion of

service simultaneously; see [Wal88], p. 354. For example, consider a deterministic PS server, with

unit service rate; assume that it has two customers to serve, with the first customer arriving at

time 0 and the second at time I; upon arrival of the second customer, the first one has 4 units of

service remaining; however, due to the presence of the second customer, she will be served at rate

-; thus, she will depart at time - + 2- = 7; similarly, it can be seen that the second customer will

depart at time 2. Notice that we are using the term "service rate" for a PS server (rather than the

term "service duration"), because the time duration for which a customer receives service depends

on previous and future arrivals.

The proof of the upper bound on the delay T makes use of several lemmas that establish sample

path results; these we present next.

Lemma 7: Let there be a deterministic FIFO server with unit service duration. For a fixed

sequence t, t 2 ,. .. of arrival times, let D, D 2 ,. .. denote the corresponding sequence of departure

times. Similarly, let D 1, D 2 ,... be the departure times for a deterministic PS server, with unit

service rate, fed by the same input stream. There holds

Di < Di, for i = 1,... ·

Proof: Clearly, we have D1 = tl + 1. In the context of the PS server, the 1st customer will depart

at time tt + 1 only if no other customers arrive until that time; otherwise, the server will be slowed

down, and the 1st customer will depart later than t1 + 1. It follows that

DI > t1 + 1 = D1 . (11)

It is well-known that the PS discipline is work-conserving; see [Wal88], pp. 353-354. That is,

the unfinished work W(t) at time t is the same for both the FIFO and the PS servers considered.

By definition of W(t), we have

Di = ti + W(ti-)+l, for = 1,... (12)

We now consider the ith arrival at the PS server, where i > 2. If W(ti-) = 0, then reasoning

similarly as in proving (11), it follows that Di > ti + 1 = Di. Assume now that W(ti-) $ 0; it

is straightforward that customers depart from a deterministic PS server in the order they arrive;

hence, the ith customer may depart only after an amount W(ti -) + 1 of work has been finished by

the server. Therefore, we have

Di > ti + W(ti-) + 1 = Di ,

where we have also used (12). The proof of the lemma is now complete. Q.E.D.

Let there be two streams of events, one occuring at times rl,r2,... and the other at times

7T, T2,. . . If ri < ri' for i = 1, . . ., then the latter stream of events will be said to be a delayed version
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of the former. For example, as implied by Lemma 7, for any fixed arrival stream, the departing

stream of a deterministic PS server is a delayed version of the one of the corresponding FIFO server.

Lemma 8: Let there be a deterministic FIFO server with unit service duration. Let D1, D 2 ,...

(resp. D', D',...) be the sequence of departure times corresponding to a fixed sequence t1 , t 2 ,...

(resp. t', t',...) of arrival times. If ti < t' for i = 1,..., then

Di < D , for i = ,...

Proof: There holds

D 1 = tl + 1 and Di = max{Di_l,ti} + 1 for i = 2,...;

similarly,

D' = t' +1 and D' max{D 1 , t'}+l for i= 2,...

Using these facts and the assumption ti < t' for i = 1,..., the result follows by a straightforward

inductive argument. Q.E.D.

The result to be established next is based on Lemmas 7 and 8; generalizing this result will lead

to the upper bound on the delay induced by our greedy routing scheme. We consider the queueing

network 5 depicted in Fig. 2a. This consists of three deterministic FIFO servers with unit service

duration, denoted by S1, S2 and S3. Customers completing service at S1 or S2 either depart from

the network or they join the queue at S3; routing decisions are Markovian. Obviously, 5 is a levelled

network (see §3.1). We define a sample path w of g as the following collection of information:

(a) The external arrival times at servers S 1, S2 and S 3 .

(b) The routing decision taken by the ith customer upon service completion at S1 (resp. S2) for

i = 1,...

Clearly, given a sample path w, network g evolves in a deterministic fashion. The result to be

proved is as follows:

Lemma 9: Let 5 be a network identical to g except for the fact that PS service discipline applies

for the servers of 5 (instead of FIFO); see Fig. 2b. For a particular sample path w, let B(t) [resp.

B(t)] denote the number of customers departing from 5 (resp. 5) during the interval [0, t]; there

holds

B(t)> B(t), Vt > 0. 

Proof: First, we consider a network g' obtained from 9 by changing the service discipline only at

S1 and S2 (from FIFO to PS); see Fig. 2c.

We define as the output stream of a server the stream of customers completing service therein,

including those that do not depart from the network. Notice that server SI is not affected at all

by the presence of the other two servers; the same statement applies for server S2. Therefore,



applying Lemma 7, it is seen that the output stream of server S1 in A' is a delayed version of that

corresponding to S1 of 5. Recalling also that the routing decisions of customers completing service

are the same for networks 5 and 5', it follows that the substream of customers departing from 6'

at Si is a delayed version of the corresponding substream in 5. Similar statements apply for the

streams stemming from S2.

Next, we consider the stream feeding S3 in 5'; this stream is a delayed version of that feeding

S3 in 9, because each arrival at S3 of 9' corresponds to an arrival at S3 of 9 that occurs no later.

[Recall the aforementioned "comparison" of the output streams of S1 (resp. S 2 ) in the two networks

and the coupling of the routing decisions.] Therefore, applying Lemma 8, the output stream from

S3 of 9' is a delayed version of that corresponding to S3 of 9. The former output stream is delayed

further when the service discipline at S3 of 9' is changed from FIFO to PS. This modification

(which yields network 0) does not affect the streams of customers departing from the 1st level.

Therefore, for each of the servers of 5, its departing stream is a delayed version of that of the

corresponding server of 9; this proves the result in question.

Its should be noted that customers joining 53 may get out of order when changing the service

discipline; thus, a particular customer may depart earlier from 5 than from 9. Nevertheless, this

does not affect the validity of the lemma. Q.E.D.

Next, we generalize Lemma 9. In the context of the network Q, a sample path w is defined as the

collection of information comprising all external arrival times and all routing decisions. Notice that

routing decisions at each "server" are identified by the order they are taken, not by the identity of

the packets deciding; e.g. "the 1st packet to cross arc (el ( e2 , el) will advance to (el, el ( e3 ), the

2nd such packet will depart" etc. Such an identification of the routing decisions is legitimate due

to the fact that routing in Q is Markovian. Similarly as in Lemma 9, we denote as Q the network

obtained from Q after changing the service discipline of all "servers" from FIFO to PS.

Lemma 10: For a particular sample path w, let B(t) [resp. B(t)] denote the number of packets

that have departed from Q (resp. Q) during the interval [0, t]; there holds

B(t) > B(t), t > 0. 

Outline of the Proof: This proof is done by extending the argument used in proving Lemma 9.

In particular, one has to replace the FIFO "servers" by PS ones, on a level-by-level basis, starting

from the 1st level and moving one level at a time. At the jth step of this process, all streams

stemming from levels 1, . . ., j - 1 remain the same, while all streams stemming from levels j,..., d

are delayed. The only subtle point of this proof lies on the fact that packets may get out of order

at certain steps; see also the proof of Lemma 9. Nevertheless, this creates no difficulty, due to the

assumed coupling of routing decisions. If one insists on tracing the path followed by a particular

packet [say the first to arrive at "server" (0, el)] it may occur that this changes at some step of the

process described above; this is of no importance, because the "comparison" of the various streams

still applies, even though the streams may consist of different packets at each step. Q.E.D.
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Now that we have established Lemma 10, we can easily prove the following result:

Proposition 11: Let N(t) [resp. N(t)] denote the (random) total number of packets present in

network Q (resp. Q). There holds

N(t) _st i(t), Vt > O. ·

Proof: On a sample path basis, there holds N(t) = B(t) - A(t), where A(t) [resp. B(t)] is the

number of arrivals at (resp. departures from) network Q during [0, t]; a similar relation holds for

network Q. Using Lemma 10, we have N(t) < N(t) on a sample path basis. Relaxing the coupling

of the arrival processes and the routing decisions in the two networks, we obtain the stochastic

inequality in question. Q.E.D.

Notice that Proposition 11 (and Lemma 10) applies for all levelled networks with Markovian

routing and deterministic FIFO servers (possibly with different service times); in particular, if the

FIFO discipline is changed to PS, then the total number of customers in such a network increaces

in the stochastic sense.

Next, we present the main result of this subsection.

Proposition 12: The delay T of the greedy routing scheme under analysis satisfies

dp
T < , Vp < 1.

Proof: As established in [Wal88], pp. 93-94, network Q is of the product form, provided that it

is stable. Since the total arrival rate for each "server" equals p (as was the case under the FIFO

discipline), the steady-state probability that a particular "server" of Q hosts n packets equals

(1 - p)pn. Therefore, the steady-state average total number N of packets present in Q equals

N = d2dlP . This together with Proposition 11 implies that the average total number N of

packets present in network Q (in steady-state) satisfies

N < d2d P (13)
i-p

Recall now the equivalence of network Q with the d-cube under the greedy routing scheme analyzed.

By Little's law, the average delay T induced by this scheme satisfies

N NpT = . (14)A2d p2d

This together with (13) proves the result. Q.E.D.

Next, we comment on the number of packets stored per hypercube node. The steady-state

average number of packets per node equals N.; this satisfies < d l . Thus, it is seen that, for
21, h is sat isfes - _d-p T

any fixed p, the average size of the queue built at each node is O(d). In fact, one can show that the

17

- ------------ -- ~. ---- -- --



total number of packets within the d-cube is O(d2d) with high probability. Indeed, by Proposition

11 and the product-form property of 2, the limiting random variable limt-,, N(t) is stochastically

dominated by the sum of d2d independent geometrically distributed random variables with expected

value t . Using the Chernoff bound, it follows that, for t --+ oo, N(t) < d2dP (1 + e) with high

probability, for any e > 0.

As a final result, we present the lower bound on the delay T.

Proposition 13: The delay T of the greedy routing scheme under analysis satisfies

T > dp+ P2 (1 - ), Vp < 1.

Proof: Let Nj denote the stationary average number of packets in the queue for an arc of the jth

dimension. Since each dimension comprises 2d arcs, there holds

d

N= E 2 dN (15)
j=1

Each arc of the 1st dimension is only fed by a Poisson stream with rate p < 1; using the expression

for the average size of an MID/1 queue (see [Kle75]), it follows that

p2

NV, = p+ 2(1- p) (16)

Recall now that, for j > 2, arc (x, x E ej) has a total arrival rate of p; since each packet stays at

an arc for at least one time unit, we have Nj > p for j = 2,..., d. Combining this with (15) and

(16), we obtain

N >d2dp+ 2d 
2(1 - p)

this together with (14) proves the result. Q.E.D.

It should be noted that another lower bound for T follows immediately from Proposition 3, which

is applicable because our routing scheme is oblivious; the lower bound of Proposition 13 is sharper

by a factor of at most 2.

Next, notice that, by Propositions 12 and 13, we have (for fixed p)

< lim[(1 - p)T] < dp.
2 -

It is an interesting open question to close the gap in the above inequality. It is conjectured that

for all p E (0, 1), the upper bound is tight (within a factor independent of d). This conjecture is

based on the fact that, for p E (0, 1), each packet P faces additional contention for each dimension

it crosses; that is, P contends with packets that had not entered the path of P up to this point.

On the other hand, it is easily seen that the lower bound is tight for p = 1. Indeed, in this case,
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each packet generated at node x is destined for node a, where each entry of the binary identity of x

is the complement of the corresponding entry of x; thus, by crossing the hypercube dimensions in

increasing index-order, packets generated at different nodes follow disjoint paths; this easily gives

that T = d + 2(Pa) 

3.4 The Case of Slotted Time

In the analysis so far, it was assumed that the time axis is continuous. In the present subsection,

we briefly discuss the case of slotted time. In particular, we assume that the time axis is divided in

slots of duration r; all nodes are synchronized to the same clock. Since packets are taken to have

unit transmission times, we may assume, without loss of generality, that r < 1 and, in particular,

that ! is integer; otherwise, there will be some waste due to the fact that packets do not "fit"

exactly to time slots. Furthermore, it is assumed that each node of the hypercube generates a new

batch of packets at the beginning of each slot, namely at each time kr with k E {0, 1,...}. The

batch size has Poisson distribution with expected value Ar; thus, the input traffic intensity is the

same as in the case of continuous time. Notice that batches generated at different times and/or

different nodes have independent sizes. Again, each packet has a single destination, which is chosen

according to the rule used in the case of continuous time [see (1)]; packets are to be routed to their

respective destinations under the greedy scheme introduced in the beginning of this section.

In order to analyze the routing problem under the new assumptions, we shall consider the slotted-

time version of the equivalent network Q. The new network will be denoted by Q; it has the same

properties as Q, except for the fact that new arrivals occur in the way presented above and that all

events occur synchronously. We consider a sample path w of network Q (see §3.3); it is apparent

that a sample path a of Q can be obtained from w as follows: For each arc (x, x D ei), we take the

set of external arrivals occuring under w during the interval [kr, (k + 1)r) and we consider them

as the batch of external arrivals feeding (x, x E el) at time kr under the sample path i. Thus,

all external arrival streams are "advanced" in time, that is each new customer arrives under O

no later than under w. Henceforth, we assume that the two networks Q and Q are coupled in the

way presented above. Let N(kr) be the total number of customers present in Q at time kr. By

considering the streams stemming from each of levels of the two networks (starting from the 1st

level), it may be proved that

N(kr) < N(kr) + Xk,

where Xk equals the total number of external arrivals occuring in continuous time during the

interval [kr, (k + 1)r). Using this result, one can upper bound the various performance measures

corresponding to the case of slotted time; e.g., the new value T of the average delay per packet can

be seen to satisfy

T< p +r7, Vp< 1.
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4. GREEDY ROUTING ON THE BUTTERFLY NETWORK

In this section, we extend the results derived for the hypercube to the butterfly network. First,

we briefly describe the basic properties of this network.

4.1 The Butterfly Network

The d-dimensional butterfly is an "unfolded" version of the d-cube. It consists of (d+ 1)2d nodes,

organized in d + 1 levels, with each level having 2d nodes. In particular, for j E {1,..., d+ 1}, the

nodes of the jth level are denoted. by [x; j] where x E {0,..., 2d - 1}. For j 5 d+ 1, each node [z; j]

is connected to two nodes, namely [x; j + 1] and [x ( ej; j + 1]; see Fig. 3a, where the 2-butterfly

is depicted. Therefore, there exist two types of arcs:

(a) Arcs of the form [z; j] - [z; j + 1], which are referred to as straight arcs; for notational conve-

nience, arc [x; j] -- [x; j + 1] will be denoted by (z; j; s).

(b) Arcs of the form [x;j] -- [x (D ej; j + 1], which are referred to as vertical arcs; for notational

convenience, arc [x; j] [x ED ej; j + 1] will be denoted by (x; j; v).

The butterfly network is a crossbar switch; packets are assumed to be generated at the 1st level

and destined for the (d + 1)st level. It is easily seen that for each origin-destination pair [x; 1] and

[z; d + 1] there corresponds a unique path, which consists of d arcs. In particular, let il, . .. , ik be

the entries in which the binary identities of x and z differ, with ii < i2 < · . < ik. Then, the path

from [x; 1] to [z; d + 1] contains exactly k vertical arcs, namely

(X; il;v), (XD el; i2; V), -... , (x Del---EDei,_,;ik;V);

the remaining d - k arcs of the path are straight arcs. Notice that these k vertical arcs correspond

to the arcs traversed by a packet travelling from x to z in the d-cube, when dimensions are crossed

in increasing index-order.

4.2 Preliminary Results

The dynamic routing problem to be analyzed is essentially the same as that in the context of the

d-cube. That is, each node of the 1st level independently generates packets according to a Poisson

process with rate A; all packets have unit transmission time. Each packet has a single destination

in the (d + 1)st level; this destination is selected randomly, according to the following rule:

Pr [a packet generated by node [x; 1] is destined for node [z; d + 1]] = pH(,Z) (1 - p)d-H(a, z),

where p 6 [0, 1]; recall that H(x, z) denotes the Hamming distance of the binary representations

of x and z. Again, different packets take their selections independently of each other. Notice that,

for p = -, the destination distribution is uniform over the nodes of the (d + 1)st level; that is, each

such node is equally likely to be chosen as a packet's destination.
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First, we note that a result analogous to Lemma 1 applies; however, in the present context, Bj

corresponds to the event that a packet has to traverse a vertical arc stemming from the jth level.

Furthermore, notice that arcs (x; 1; s) and (x; 1; v) may only be traversed by packets generated by

node x. Therefore, packets to traverse arc (x; 1; v) form a Poisson stream with rate Ap; similarly,

packets to traverse arc (x; 1; s) form a Poisson stream with rate A(1 - p). Recalling that all packets

have unit transmission time, it follows that the inequalities Ap < 1 and A(1 - p) < 1 are both

necessary conditions for stability of any routing scheme. Combining these conditions, we obtain

the following result: Stability may prevail only if

pdfA max{p, 1 - p}< 1 . (17)

Notice that, for given A, the maximum value of p occurs for p = -. For p > -, the vertical arcs

become the bottleneck of the system; for p < 2, the straight arcs become the bottleneck of the

system; see also Proposition 15.

Next, we present a universal lower bound on the average delay T per packet.

Proposition 14: Under any routing scheme, there holds

Ap ((1 - p)
2(1- Ap) + (1-P)2 [1 - A( - p)]

Proof: When no idling occurs, the value W, (resp. Ws) of the average delay induced by arc (x; 1; v)

[resp. (x; 1; s)] equals that of an MID/1 queue with arrival rate Ap [resp. A(1 - p)] and unit service

duration; when idling occurs, these delay values are larger. Thus, we have [Kle75]

Ap X(1- p)
W + 2(1- Ap) and W > 1 + A(1- p) (18)p2(1- A7 2[1 - A(1- p)'

Note that after a packet arrives at the 2nd level, it requires at least d - 1 more time units until

it reaches its destination; thus, it is seen that, under any routing scheme, the average delay T per

packet satisfies

T > d - 1 + pW, + (1 -p)W .

This together with (18) proves the reult. Q.E.D.

Equation (17) as well as Proposition 14 demonstrate the limitations applying to the performance

of any routing scheme. The scheme to be analyzed below is the simplest possible:

Packets are routed in a greedy fashion; that is, each packet advances at its respective path as

fast as possible. When several packets contend for the same arc, then priority is allotted on a

FIFO basis.

In fact, given that there is only one path per origin-destination pair, greedy routing is the most

natural scheme arising in the context of the butterfly. It will be shown in §4.3 that this simple

scheme is very efficient.
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4.3 Performance Analysis of Greedy Routing

Similarly with the hypercube (see §3.1), under greedy routing, the butterfly may be viewed as

a queueing network 1 with d2d+ l deterministic FIFO "servers"; each of them has unit service

duration and corresponds to an arc. In Fig. 3b, we present the network 1? corresponding to the

2-dimensional butterfly. The main properties of the equivalent network 71 are as follows:

Property A: 1Z is a levelled network; it consists of d levels, with the jth level comprising all

arcs (x; 1; s) and (x; 1; v). In fact, each packet receives one time unit of "service" at each level,

contrary to the network described in §3.1, where a packet might skip some of the levels.

Property B: Routing is Markovian. In particular, after traversing arc (y; j; s) [resp. (y; j; v)],

where j $- d, a packet takes one of the following two actions: either it joins the queue for arc

(y; j + 1; s) [resp. (y E ej; j + 1; s)] with probability 1 - p; or it joins the queue for arc (y; j + 1; v)

[resp. (y E ej; j + 1; v)] with probability p. After crossing arc (y; d; s) [resp. (y; d; v)], a packet

departs from the network with probability 1. Different packets take their routing decisions

independently of each other.

This property may be established by reasoning similarly as in Lemma 4; recall that an independence

result, analogous to Lemma 1, applies for the butterfly as well (see §4.1).

Next, we investigate the stability properties of our greedy routing scheme; for this purpose, we

need the following result:

Proposition 15: The total arrival rate at each arc (x; j; s) equals 0s = A(1 - p). Also, the total

arrival rate at each arc (x; j; v) equals 6, = Ap. ·

Proof: We fix some j E {1,..., d}. By symmetry, all straight (resp. vertical) arcs of the jth level

have the same total arrival rate O?) [resp. 0(J)]. As already mentioned, each packet crosses some

straight (resp. vertical) arc of the jth level with probability 1 - p (resp. p); also the total arrival

rate over all arcs of the jth level equals A2d, because each packet crosses exactly one arc of this

level. Therefore, we have A2d(1-p) = 2 d 0
) and A2dp = 2d(jV), which proves the result. Q.E.D.

Similarly as in §3.2, the sufficient condition for stability of the equivalent network R (and of the

greedy routing scheme) is obtained by applying Theorem 2A of [Bor87]; this condition is as follows:

Proposition 16: Greedy routing on the butterfly is stable if

Ap < 1 and A(l-p) < 1,

def
or equivalently p =fA max{p, 1 - p} < 1.

In light of the necessary condition for stability in (17), it is seen that greedy routing in the

butterfly has optimal stability properties.

Finally, we establish the upper bound for the average delay T per packet induced by greedy

routing.
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Proposition 17: There holds

dp d(1 - p)
T 1 - Ap + 1 - A(1 - p) < 1.

Proof: By Little's law, we have

T = N~ d(19)
A2d

where N is the average total number of packets present in the equivalent network 7Z in steady-state.

We now consider the network 17, which is identical to 7R except for the fact that all of its "servers"

operate under a PS discipline; let ]N be the corresponding average total number of packets. Since

1Z is a levelled network with Markovian routing, we can apply Proposition 11; see also the comment

on the generality of that result, following its proof. Therefore, we have

N < N. (20)

In the stable case (i.e., for p < 1), network 7? is of the product form [Wal88], pp. 93-94. Recalling

also Proposition 15, it follows that the stationary probability that a particular "server" (x; j; v)

[resp. (x;j;s)] of )k hosts n packets equals (1 - Ap)(Ap)l (resp. [1 - A(1 - p)][A(1 - p)]n). Since

there exist d2d "servers" of each of the two types, it follows that

_ _ A(1 - p)
N = d2d Ap+ d2d A( ) (21)

1 - l - A(l - p)(

This together with (19) and (20) proves the result. Q.E.D.

Next, we comment on the number of packets stored per node of the butterfly; first, notice that

only the nodes of levels 1,..., d have to store packets. An overall estimate of the expected number

of packets per node is provided by the quantity N-, which satisfies

N Ap A(1 - p) def

d2d - 1 - Ap - A( - p)

This estimate is quite favorable because it suggests that the "overall" average queue-size per node

is 0(1) for any fixed p. However, it is not guaranteed that this bound holds for the average number

of packets stored by the nodes of each individual level. It is conjectured that this is actually the

case; the following result provides strong evidence for this claim: for any j E {1,..., d}, the total

number of packets stored by the nodes of levels 1,..., j does not exceed j2dqp(l + E) with high

probability, for any E > 0. This result may be proved by applying stochastic domination between

the first j levels of networks 7Z and 17, and using the product-form property of 7?.

Using Propositions 14 and 17 and the definition of p it follows that

- max{p, 1 - p} < liml[ (1 - p)T] < dmax{p, 1 - p} .2 p-A 23
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It is an interesting open question to close the gap in the above inequality. Similarly as for the

hypercube (see the end of §3.3), it is conjectured that the upper bound is tight for all p E (0, 1);

for p = 0 and for p = 1, the lower bound is tight, because packets originating at different nodes

follow disjoint paths.

Finally, it should be noted that the case of slotted time can be treated as in §3.4.

5. CONCLUDING REMARKS

In this paper, we analyzed a problem where the nodes of the hypercube network generate pack-

ets at random time instants, according to independent Poisson processes. Each packet has unit

transmission time and is destined for a randomly selected node; in a special case, the destination

distribution is uniform. We considered a simple greedy routing scheme, where each packet crosses

the hypercube dimensions required in increasing index-order. We proved that this scheme has op-

timal stability properties and, when stable, it induces an average delay T = 0(d) per packet; the

bounds on the average delay were given in simple closed-form expressions. Our analysis was based

on a new approach, which relates the behavior of the hypercube (under the routing scheme con-

sidered) to that of a queueing network with Markovian routing. Using the same idea, we extended

the results to the butterfly network, thus proving the efficiency of greedy routing in this context.

It would be of interest to analyze the problem under an arbitrary destination distribution. For

this case, it may be profitable to "mix" the packets by first sending each of them to a random

intermediate node, as is done for the permutation task in [VaB81] and [Val82]. Such a "mixing"

may result in improved delay properties under medium traffic, at the expense of reducing the

maximum traffic that may be sustained by the system.

In an even more general version of the problem analyzed, it may be assumed that each packet is

destined for a different subset of nodes; it may also be assumed that the packets received by a node

influence the packet-generating process of this node as well as the lengths and destinations of the

new packets. This situation arises in the distributed execution of iterative algorithms. Analyzing

this general problem seems to be a rather challenging and interesting direction for further research.
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