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Abstract

Personalized offers aim to maximize profit by taking into account customer pref-
erences inferred from past purchase behavior. For large retailers with extensive
product offerings, learning customer preferences can be challenging due to relatively
short purchase histories of most customers. To alleviate the dearth of data, we pro-
pose exploiting similarities among products and among customers to reduce problem
dimensions. We also propose that retailers use personalized offers not only to maxi-
mize expected profit, but to actively learn their customers' preferences. An offer that
does not maximize expected profit given current information may still provide valu-
able insights about customer preferences. This information enables more profitable
coupon allocation and higher profits in the long run. In this thesis we 1) derive ap-
proximate inference algorithms to learn customer preferences from purchase data in
real time, 2) formulate the retailers' offer allocation problem as a multiarmed bandit
and explore solution strategies.

Thesis Reader: Devavrat Shah
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Direct promotion offers are often used to induce trial and encourage brand loyalty,

ideally without rewarding purchases that would have otherwise occurred. Person-

alized offers aim to maximize profit by taking into account customer preferences

inferred from past purchase behavior.

Large retailers face unique challenges in offer personalization due to their ex-

tensive product lines. For example, the average supermarket carries approximately

38,900 SKUs 1, but most customers purchase a very small subset of these products in

a given time frame. This is especially true for new customers. The relative dearth of

purchase data makes it difficult to accurately learn customer preferences for effective

coupon personalization. The problem of interest is how a large retailer can allocate

personalized offers in real time with relatively little data about customer preferences.

To alleviate the dearth of data, we propose that retailers exploit the similarities

between products and between customers. For example, a customer who purchased

gluten-free pasta is likely to also prefer gluten-free bread. Instead of learning a

'Food Marketing Institute, Supermarket facts 2016, www.fmi.org
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customer's preference for each product separately, the retailer can learn preferences

for attributes that are shared by many products. Similarities between customers can

also be exploited. For example, a customer who purchased baby formula is likely to

be a parent and have preferences that are similar to other parents.

In addition, we propose that retailers use personalized offers not only to maxi-

mize expected profit, but also to actively learn about customer preferences. An offer

that does not maximize expected profit given current information may still provide

valuable insights about customer preferences. This information enables more prof-

itable coupon allocation and higher profits in the long run. The tradeoff between

exploration and exploitation can be captured in the multi-armed bandit framework.

Our goals in this thesis are to provide approximate inference algorithms that allow

retailers to learn customer preferences in real time, and to explore scalable solution

strategies for the retailers' multiarmed bandit problem. We are also interested in

the case of dynamic customer preferences. Preference dynamics occur, for example,

when customers learn about product quality through consumption.

14



Chapter 2

Consumer Model and Real-Time

learning of Preference Parameters

2.1 Consumer Model

In each purchase occasion, the consumer sets out to purchase products from an

exogenously chosen set of categories. Products are characterized by their levels

on n attributes which can be shared across different categories. An attribute is

a characteristic of the product (e.g. color), made up of various levels or degrees of

that characteristic (e.g. red, yellow, blue). Specifically, a product i is characterized

by a vector xi E R" that describes its levels on the n attributes. Attribute levels are

assumed to be fixed in time, except for price, which can change if the retailer decides

to offer a coupon on the product. A consumer is characterized by a vector w of her

preference weights for attributes. The consumer's expected utility from consuming

product i is w'xi. To account for unobserved fluctuations, the consumer's utility uit

at each time t is modeled by adding a random shock eit to the expected utility. The

15



random shock is assumed to be zero-mean Gaussian, with a variance /?. Both w

and Eit are known to the customer, but not directly observed by the retailer. In a

given category with m > 2 products, the consumer will purchase the product yt with

the maximum utility uit, according to the linear-in-parameters multinomial Probit

model:

uit = w'xit + Eit for i=,. . . ,m

yt = arg max uit,

The retailer would like to learn w in real time from sequential purchase observa-

tions. To avoid storing a growing purchase history for each consumer, the retailer

summarizes its beliefs about w as an independent Gaussian random vector, and up-

dates the mean and covariance after each purchase occasion. Consider the prior

n

P~w) N~w; psaj ) = w;y, .
j=1

The likelihood of observing the purchase yi = i is:

P(y1 = i w; X) = P(ti > U21,.. . ,ZUmi) = j 2)Uilj~i 1-j+ Zk=1 Xjkl k

Using Bayes' rule, the posterior is given by:

p(wly; x) oc p(y1w; x)p(w).

The posterior is not Gaussian and cannot be represented compactly, making the

inference task computationally inefficient.

16



A common way to tackle this problem is by using sampling techniques such as

MCMC. However, the slow convergence of MCMC makes it unsuitable for real time

learning and decisions.

2.2 Proposed approach - Expectation Propagation

We propose approximating the posterior at each iteration with a variational distri-
N

bution (w) = fJAf(wi; y , &2) and passing this independent Gaussian as the prior

for the next iteration. The approximate posterior P(w) is chosen to minimize the KL

divergence D(P(w) Ip(w)).

Equivalently, consider the joint pdf of the all the random variables at time t:

m
pXy) 'i7 S) 'W; X) AMU,~') JJ p(Ui si)p(s8iii; 5)p(W

i=1
m n

6(y = arg max ]7J 6(s- x 3) N(v ; s2 , f yj r(wi; pi, ) =Jtk
i=1 k

This equation shows that the joint pdf can be expressed as the product of factors

(functions) tk. Since the posterior is proportional to the joint pdf, approximating

the joint pdf by a function q(y, U, 8, W; X) = ]lk t, where all the approximate fac-

tors tik are gaussian guarantees that approximate joint pdf is gaussian, and hence it

guarantees that the approximate posterior is gaussian.

Expectation Propagation Algorithm: [Min01a]Min0lb]

1. Initialize term approximations ti to any gaussian terms (for example: the con-

stant 1).

17



2. Compute the approximate joint pdf from the product of ti:

q(y,) ,U, W; X) = fJt[
i

3. Repeat until all ti converge:

(a) choose a i to refine.

(b) Remove ii from the joint pdf to get an 'old' joint pdf

q\i(y, ,s, w; X) = )
k i

(c) Find a new q by projecting tiq\ (y, , 8, W; X) on the class of independent

gaussian distributions.

(d) Update
q(yl ,, i ; X )

qV (Y, I, U , )1 ; X)

2.3 Learning Preference Weights of Simple Consumer

- Binary Probit Choice Model

In this section, we focus on learning the preference weights for a single consumer

deciding whether to purchase a single product.

The product is characterized by a vector of attributes x, and the consumer by a

length-N vector of hidden preference weights w.

The consumer derives a random utility

U=wT x+E

18



from the product, where c is a 0 mean gaussian utility shock. For now, assume that

its variance is known and denote its value by 32. The learning method described

extends with small modifications to the case when only a conjugate prior on 3 is

known.

The consumer makes a purchase if the random utility is positive. Let y be 1 if the

consumer purchases the product, and -1 otherwise. The likelihood of observing y is

given by:

P(yw; x) = ( y.WTX

We would like to learn w from sequential purchase observations. For the purpose

of Bayesian learning, assume a priori that w is a gaussian vector with independent

components, i.e:
N

P(w) =JV f(wi; pi, 072).

i=1

By Bayes' rule, the posterior satisfies

p(wly; x) oc p(yIw; x)p(w).

The posterior is not Gaussian and cannot be represented compactly, making the

inference task inefficient.

As proposed, we approximate the posterior after each purchase occasion with a

Gaussian and pass this Gaussian as the prior for the next iteration. This approach,

minimizes the KL divergence between the posterior and its gaussian approximation

by moment matching, i.e. by using the mean and variance of the posterior marginals

as parameters for the Gaussian approximation. Finding the mean and variance of

the posterior marginals is non-trivial, and we resort to expectation propagation and

iterative message passing on factor graphs to accomplish this task.

19



2.4 Sum Product Algorithm on Factor Graphs [KFLO1]

The sum-product algorithm is an efficient way to compute marginals of joint dis-

tributions. It exploits the fact that a joint distribution can often be decomposed

into the product of several local functions (factors) and uses the distributive law to

simplify computations. It also allows reusing intermediate results (partial sums) in

computations of different marginals.

For example, consider a function g(X1 , 2, . . , x 4 ). In the most general case, comput-

ing the marginal g(xi), involves taking summations over all possible tuples (x2 , .. . , X,).

However, if g(xi,..., x,) can be expressed as fi(Xi)f2 (x2 , X 3)f 3(X3 , X 4 ), then a more

efficient way to marginalize is to invoke distributivity leading to

g(Xi) - fl(X) E f2(X2, X3 ) f 3 (X 3 , x4)
X3 X4

A factor graph is a graphical representation of the way that the joint can be decom-

posed into a product of factors. It is a bipartite graph consisting of factor nodes

and variable nodes. Each local function is represented with a factor node, and each

variable by a variable node. An edge connects a variable node x to factor node f if

and only if x is an argument of f. When the factor graph is cycle free, it not only

encodes the factorization of the joint pdf, but also the expressions needed to compute

its marginals.

The algorithm to compute a single marginal (for instance g(xi)) in a cycle-free

factor graph proceeds as follows. Treat x1 as the root of the tree. Messages are

passed on the tree from the leaves to the root. Starting at the leaves, each variable

message sends a trivial identity message to its parents, and each factor node sends a

description of itself to its parent. An intermediate variable node waits for messages

20



to arrive from all its children, takes their product and passes it on to its parent.

An intermediate factor node waits for messages to arrive from all its children, takes

their product, then sums the result over all variables except the parent variable before

passing it on. The algorithm proceeds all the way to the top until variable node x1

forms the product of all messages received from its children. The result is g(x1 ). 1

This procedure can be repeated for each marginal, or alternatively, a more efficient

approach that avoids computing intermediate messages multiple times can be used.

Instead of designating one node as a the root and having parent-child edges, treat

all nodes equally. Each neighbor of a node at some point assumes the role of parent

or child. Starting at the leaves, each node remains idle until it has received messages

from all its neighbors except one. This remaining neighbor assumes the role of a

parent, and messages are passed to it as in the single marginal algorithm. The

algorithm terminates once two messages have been passed on every edge, one in each

direction.

For the purpose of outlining the update equations, consider the following notation:

Let f be factor, x an argument (neighbor) of f, n(x) the neighbors of x, n(f) the

neighbors of f, mxf the message from x to f, and mfy, the message from f to x.

mnx~f = JrJ mnh- (2.1)
hCn(x)/{f}

mTnf =+ - f my Tvs; (2.2)
yen(f)/{x} yen(f)/{x}

Finally, finding the marginal at variable x is equivalent to taking the product of

'Note that all the messages passed are functions of a single variable.
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all incoming messages to x,

p(x) = ] mhx, (2.3)
hEn(x)

or equivalently, the product on one edge connected to x of an incoming and an

outgoing message,

p(x) = mxfymfx. (2.4)

If the factor graph has cycles, the procedure is not guaranteed to converge to the

exact marginals, and may not converge at all. However, it has been used successfully

in practice in many areas to yield very good approximations of the marginals.

Binary Probit Factor Graph [GCBH1O]

The factor graph below describes the joint PDF

p(y, t, s, w; X) = p(yt) p(t~s) p(sw; X) p(w)
q h g f

Factor fi samples weights w from the Gaussian prior p(w).

Factor g calculates the score s for x as wTx such that p(slw; x) = 6(s = wTX).

Factor h adds Gaussian noise to s to obtain t such that p(tIs) = .V(t; s, /2).

Factor q sets y to 1 if the utility is positive, such that p(ylt) = 6 (y = sign(t)).

2.4.1 Update Equations for Binary Probit

(From [GCBH10] with minor modification to allow for non-binary features)

Starting with a prior P(w) = ] f (wi; pi, of), the message passing algorithm

results in a Gaussian approximate posterior P(w) = If 1 K(wi; ji, &2), where the

22



Figure 2-1: Binary Probit Factory Graph
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posterior parameters are given by:

Ai Pi + Yxi -v (2.5)

o?~ ~ = x-1 (2.6)

where,

N

2 _2 + x2 2

= A((t;0,1)

w) (t; 0, 1)

W(t) =VMt - [MOt + t] (2.7)
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Derivation of update equations

The update equations above are obtained from calculating the messages labeled 1-6

in the binary probit factor graph.

Since all of the messages are Gaussian (and those that are non Gaussian are approx-

imated by Gaussians), means and variances can be conveniently passed as messages

instead of complete PDFs.2

Message 1:

piThe messages fi -a we are simply:{

Message 2:

Using the sum-product algorithm update equation 3 gives:

N

(S ~wIX) flV(Wi; i, 072 di3
i=1

where the second equality follows from recognizing that xTw is a linear combination

of independent Gaussians and hence a Gaussian.

Message 3:

Using the sum-product algorithm update equation 3 gives:

mh-t = jPJ(t; s, 2) -Af(s; Xilt, X 2Uo)ds
fs ~ i

0C Jf t;ZXi/_i7 / 2  Z X 2 -)

2In general, as long as all continuous distributions involved are in the exponential family, we can
pass sufficient statistics instead of complete distributions

24



where the proportionality term follows from equation (4.1) in the Appendix.

Message 4: [HMG06]

According to the sum-product algorithm, the true message mq-t is simply the de-

scription of factor q itself, J (y = sign(t)), which is non-Gaussian. Following the

expectation propagation algorithm, we approximate this message by a Gaussian as

follows:

" Approximate the marginal p(t) by a Gaussian P(t) through moment matching.

" Using equation (2.4), we know that p(t)= mt,, m qt. So P(t) mtq -hqat.

We can use this to find the approximate message hqat as . Since both

P(t) and mtq are Gaussian, rqn-qt is also Gaussian

First, the marginal p(t) satisfies the following:

p(t) 6 (y = sign(t)) -g t; x 02 + 2

T N+ t; xii, p2 + x o for t>

TN- t; Xipi, p2+ x20o) for t <

0

0 and y =+1

0 and y = -1

otherwise,

where TN+ (TN-) is the positive (negative) truncated normal PDF.

For compactness, we denote U := xpit, and as before E2 : 2 + Ti Xoo.

By moment matching, we approximate the truncated normal by a Gaussian with

25



mean U and 2

U= U+YE- Vy-

t2 =E

These are simply the expressions for the mean and variance of a truncated nor-

mal, where v(.) and w(.) are defined in (2.7). As per expectation propagation, the

approximate message is then,

13(t)
mq-+t=

(t-+q

f(t; U; F2)

E2& _ 2 2U E2t2

E2 _ t2 ' 2 _ t2

where the last proportionality term follows from equation (4.2) in the Appendix.

Message 5:

The message is given by:

mh js = f (t; s, 12)j

(s;

r (s; E2 _ 
2 U

E2 _ t2 '

E2U _ E2U

E2 _- 2

E2:Z2
, 2 -t

o2 
+

E2 _ E2

2k ZE2:2
2 t

26

) dt

P-

c A( (t;

E2Cj _ t2U

E2 _ 22

E(Y I]

Ar (t; U3, E2 ) dt



where the second equality results from equation (4.1) in the Appendix, and U3 and

E2 are defined as they appear in equation (4.1) (exact expressions omitted for space).

The last equality holds since A (t; U3, E') normalizes to 1, and integration is over t

not s.

Message 6:

Finally, factor g sends a message to each of wI,..., WN. To send a message to wi it

takes the product of its own description with all messages it received from all other

wjj, as well as the message it received from s. W.L.O.G:

f N
mq,= w w6x)S = 7(w pi 2) .K (s

/ 2... WN,S i=2

E2U _ 2U ) dw 2 ,.... IWN, 8

= f 2,---,jN-, s - WJW2..,WNS(

E20 _:t2U
.V S; , 2-

1E2 2 2

X1 E2 _- t2U

2X2 -- - - WN XN\ h- (W
2 ,;tl~,o0-2)

2> dW2,... IWN, s

N 1

-i x=2 fp,

-=2 .J

1
2

x 1 [2+

N ~

+Ex i J
i-2.

where the second equality follows by reordering terms inside 6(s = wTx), and the

third equality follows by treating s-W2X2- .- wNXN as a linear combination combination

of independent Gaussian terms, with the marginal Gaussian distributions appearing

inside the integral.

Resulting Approximate Posterior Marginals:

27
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The approximate marginal posterior at wi is

p(wi) mqWi - Af(wi; ,ui, o)1

I E2(T _ 2U N ~ t322 N ~

= ; V , 2 2+ ++ NX
X2 2-2 1 .2 _ t2 i=2

-N(Wj; pi, ao2)

= r (WI; /11, d 2)

Using equation (4.1) in the Appendix, the posterior variance is given by:

02 +F ++EN 22

uo 2 -+o (E2 _

62E22+ Ed2 2 _

0 2Xo 2 2+ 2 + E 2 2 _r 2  _ 

+ _ E2

or222 + or 2( 2 
-+ 2) (Z2 ~ t2

= - 1 1 (

] 2 : 2 +Z2 (E2- 2)

u~[z2i2 + E2 (E2 _ t2) _ X2,,2 (E2 -t2)]

= 2t 2 + E2  
--t2

Or(Z - - I)]

= - Xf 2 

1 1 -E

where the last equality was obtained by substituting the expression for t2 and sim-

plifying the expression.
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Similarly, we can find the posterior mean as follows:

2 N2

0b1+N X1

2 2

i=2

[
2 _

1N2+E22 + 2 T i

j3-27~ E iJi

A 2 E2 2 i= 2 2 2)
X [2~ ~2U1 E2 -22

01 22 2 or 2 +32 + E2t2

- 2 x 2 + -12_2] +0 1 2 [ 2U

N

i=2 .

E2  2+ 2_2

22 2-- 1 1XI-L1 + O-lxl E2 -t

N

i=2 _

a2X1 [_ (_ - t2) + z22

E 2 (E2 - t2 + z2E2

2

E2(2 - 2) E2t2

c: 1
2

t x1 yT-/11+ (A)

29
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i=2 .
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2.4.2 Gibbs Sampling with Data Augmentation

An alternative method for learning the preference parameters is to use Gibbs sam-

pling. The procedure below is for one consumer and multiple products (indexed by

j). Let X be an MxN matrix where each row xj represents the attributes (indexed

by i) of a single product. yj is 1 if product j is purchased and -1 otherwise. Uj is

the utility from consuming product J. The prior on w is V (P~O o 2 AV1).

Procedure

1. Choose an initial w0

2. Form= 1,2, ...

T+(Uj; Wm-lXj; 02) fy 1

(a) For each product j sample Um) TN I
TN- (U; wm,-IX; 2 ) if y -

(b) Sample w(m) ~ (w"n; (XTX + AO)- (XTU(mn) + Aopo) , (XTX + AO)

This is the procedure for the first purchase occasion. The posterior is non-

Gaussian, but we have samples from it. One possibility is to again approximate

the posterior by a Gaussian (by fitting the samples) and pass that as the prior for

the next iteration.

2.4.3 Multinomial Probit Formulation

In this section, we extend the expectation propagation update equations to the case

when the customer can choose among multiple products, i.e. to the multinomial

probit choice model. The main difference with the binary probit case is the presence

of cycles in the factor graph. There are no closed form expressions for the final values

30



of the preference parameters. Instead, we need to run the message passing algorithm

iteratively until convergence, which is not guaranteed. The messages passed in the

Figure 2-2: Linear in Parameters Multinomial Probit Factor Graph

Aff
F

multinomnial probit factor graph are exactly the same as those in the binary probit,

except for message 4, which we derive below.

Without a loss of generality, assume that the product purchased is m. The true

message mq--tj according to the sum product algorithm is:

mq-+tj 6 (tm > ti, tm-1) 11 mni-+ d tighj

However, this is not gaussian. As in the binary case outlined above, expectation

propagation approximates the message by a gaussian by moment matching. The

approximate message is:

Pt.
qmt,-q

31
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where Pt, is the non-gaussian marginal density of tj, and P, is the gaussian

approximation of the marginal density. For j f m,

t= mq t mtj -+q

Xki k 2 _

-j1 tk;

S d ti $ j

2 2i , 2

For compactness, denote Ei Xkipi by Uk and 2 + >x 44O- by s2.

Ptj = K m)(tj; Uj, s2) . A (tm; um, s ) d tm
t - U

k~mSj

We use moment matching to approximate Pt, with a gaussian. The mean of tj is

E[tj] = Jtj P d t2

J (tm; um, s2 )
-1 ' (tm-Uk)k54m,j S

A (tm;um,s2 ) 1kI
k4m~j

tm - Uk

Sk

where the last equality follows from the formula of the expected value of a truncated

normal, truncated from the right at tm.

32

6 t < tm) 6(2 < m -. - - m-1 < m

t 6(t <tm)Ar(tj; Uj, S2) d ty

tm -Uj

- n -U
(9

M
(tM > ti, ... tM_ 1) ][1 A' tk;

k=1



Similarly, the second moment is

E [t2] = t 2Pt d tj

= JNr (tm;um, s)

- JJ\/(UmV'm82 ) [ 2S

d tj] I- D

S (t~- a)~ (tU 3j

+~ ~ ~ (2tmj U S

m j

(tm-Uk)

(t,-Uk)

where the last equality follows from the formula of the second moment of a truncated

normal, truncated from the right at t,.

For j = m,

E[tm] = Jtm (tm; U', s2 k) fi
k54m

E [tm] = 2 tk (tM; , sknj 82) r
kom

tm - Uk

tm -Uk

These integrals were computed numerically in MATLAB. Finally, the message from

q to tj is computed as

Pt .

mt3 -+q

fi(tj, E [tj j, E [t] + E [tj1 2 )
AP (tj; EZ zi, +i zjiio)
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2.4.4 Simulations

To confirm that the EP procedure outlined above converges in practice towards the

true values of the mean and variance of the preference parameters, we ran simulation

experiments. We measure the KL divergence between the true distribution of w

and the approximate posterior over w obtained from EP after each purchase. The

KL divergence decreases as we observe more customer choices, indicating that the

approximate posterior approaches the true distribution.

The figure below shows the KL divergence after each of 10 purchase occasion for

a sample run on the algorithm with 17 products, and 6 attributes including price.

The parameters used are included in appendix B.

Figure 2-3: KL divergence between the true preference distribution and the ap-
proximate; posterior distribution obtained from Expectation Propagation after each
purchase occasion
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Chapter 3

Retailer's Optimization:

Multi-Armed Bandit Problem

In each purchase occasion, the retailer provides a personalized coupon (price dis-

count) for a at most one product in the category. The goal of the retailer is to

maximize its longterm profits. A coupon is characterized by the pair (at, Pat), where

at is the index of the product to be discounted, and Pat is the resulting reduced price

on that product. Let rt be the retailer's immediate profit in stage t

rt =py - cy,

where yt is the consumers' choice as a function of at, and Pat, and cyt is the cost of

product yt to the retailer.

If the retailer had perfect knowledge of w, the optimal policy would be to give

the coupon that maximizes the expected immediate profit in each period:

(at, pat) = arg max Eyt(at,pt) t.at Pat
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In the absence of this knowledge, the retailer is faced with a tradeoff between opti-

mizing immediate profit based on its partial knowledge of w, and trying to learn more

about w to allow better coupon allocation in the longterm. This tradeoff between

exploration and exploitation is captured by the multi-armed bandit framework.

3.1 Related Work

The multi-armed bandit problem was introduced by Thompson in 1933. It is con-

cerned with a decision maker who is given a set of statistical processes (arms) with

unknown reward profiles. The goal of the decision marker is to adaptively sample

the arms in a sequence that maximizes the total longterm expected reward. At the

heart of the problem is the need to balance exploring under-sampled arms to learn

their reward profile, and exploiting arms that have demonstrated high rewards.

In their seminal work, Gittins and Jones have shown that the optimal solution for

the discounted infinite horizon problem with finitely many independent arms takes

the form of an index rule [GJ79] [Git79]. An index for each arm is calculated in

each period, and the arm with the highest index is chosen. The index of an arm

can be interpreted as the 'present value' of playing that arm infinitely many times

into the future. Independence of the arms allows decoupling the problem into an

optimal stopping problem over each arm. Whittle (1988) derived conditions for the

indexability of multi-armed bandit problems in more general settings [Whi88].

In the setting we are considering, the rewards from different arms are correlated,

so the Gittins index does not provide exact solutions for the bandit problem. Treating

the rewards as independent may lead us to systematically underestimate the value
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of information for some arms. Moreover, the problem is not indexable.

The multi-armed bandit problem with correlated arms has been studied in the

regret minimization literature, which focuses on the finite horizon bandit problem and

tries to find policies that minimize regret asymptotically for long horizons. Regret

is the difference between using a given policy and playing the optimal arm for the

length of the horizon. In their seminal paper, Lai and Robbins (1985) proved a bound

on the regret for bandit problems with independent arms. The bound is Q(m log T),

where m is the number of arms and T is the horizon. They also show that the bound

is tight by suggesting a policy that can achieve it. [LR85]

Intuitively speaking, however, allowing correlation between arms should result in

more efficient exploration, creating more opportunities to exploit optimal arms and

minimize regret. Mersereau et al. (2009) focused on the case where the expected

rewards of all the arms are linear functions of the same (unobserved) random vari-

able. In that case, the mean payoffs of different arms are perfectly correlated, making

them equivalent in terms of exploration. A greedy policy, which myopically exploits

the current estimated best arm without regard to exploration is thus optimal. The

interesting result is that the regret of the greedy policy is O(V7 ) regardless of the

number of arms [MRT09].

Finally, Rusmevichinetong and Tsitsiklis (2010), consider the case when the ex-

pected rewards of the arms are linear functions of multiple random variables [RT10].

The correlation between different arms is no longer perfect, and a greedy policy is

no longer optimal. The authors show that if the arms are "strongly convex" a policy

that goes through disjoint phases of exploration followed by phases of exploitation

is optimal is the sense that it achieves the lower bound on regret Q(nVT) where

n is the number of underlying random variables. In the general case, they prove
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that the 'uncertainty ellipsoid" (UE) algorithm achieves near optimal regret '. The

uncertainty ellipsoid algorithm gives under-explored arms 'the benefit of the doubt'.

More specifically, let w be the current LMS estimate of '. An uncertainty ellipsoid

St around w is defined by:

where p is an appropriate slowly increasing function, and

t-1
A= Z XtX'

k=1

is the design matrix corresponding to the first t-1 time steps. It captures the likely

error in the LMS estimate of W'. The uncertainty radius R' associated with each arm

a is

R = max v'a

The UE policy chooses the arm a which maximizes a'5 + Rt. The results from

Rusmevichinetong and Tsitsiklis (2010) also do not carry over directly to our case,

even though the perceived utility is a linear function of the product characteristics.

The reason is that the retailer cannot observe these utilities directly. Instead, it

observes the product with the highest utility.

3.2 Thompson Sampling

Thompson sampling is a heuristic proposed by William R. Thompson in 1933 to

address the exploration-exploitation trade-off [Tho33j. It has received renewed at-

'a logarithmic factor away from the lower bound on regret
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tention due to its applicability to general reward distributions and correlation struc-

tures, and because of how naturally it interfaces with Bayesian systems. Thompson

sampling is a randomized policy which, at each step, samples an arm according to

the posterior probability of it yielding the highest rewards.

Let (yi,..., yt) be the purchase history observed up to time t, and let at be the

arm played at t. The arm played corresponds to the product that receives a coupon.

As discussed in chapter 2, customer purchases are modeled by a linear in parameters

multinomial probit. The parameters are the customer's preference weights w for

different attributes of the products. Let Ra(w) be the expected return from pulling

arm a given that the customer's preference weights are w, i.e.:

Ra(W)= E[pyt - cytlw, at = a]

If the preference weights w were known, the optimal strategy would be to always

pull the arm that maximizes expected return, i.e.arg maxa Ra(W). However, w is

unknown. We start with a prior distribution on w, and perform bayesian updates on

the distribution when purchases are observed as described in chapter 2. Let Wat be

the probability that a is the winning arm at time t, i.e. the probability that giving

a coupon for product a yields the maximum expected return (where expectation is

taken over the shock Et). At t = 0, we can use the prior on w to compute:

Wao = P (Ra = max{R,..., , Rm})

Upon receiving observations, the posterior on w can be used to compute:

Wat = P (Ra = max{ R, .... , Rm}|jyi, .. ., yt)
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Thompson sampling pulls arm a at time t with probability Wat. The probability

Wat can be computed by simulation. Let Ia(w) be an indicator random variable that

takes the value 1 if arm a yields the highest expected reward at time t, i.e.:

Ia(W) = 1 if Ra(w) = max{R1,... , Rm}

0, otherwise.

Then we can express Wao and Wat in terms of 'a(w):

Wa0 = E[Ia(w)]

Wat = E[Ia(w) yi, ... , yt]

Therefore, we can compute Wat by simulation as follows:

- Obtain L independent samples from the posterior distributions on w: () . , w(L)

L

- Compute Waft = Ia(W(1).
1=1

By the law of large numbers, Wat = lim W(L.
L-+oo

In practice, it is faster to obtain one sample w(O) from the posterior P(wly1 , yt),

and play the arm a = arg maxa Ra(W( )) [Sco10].

Other potential approaches are UCB_GLM, which extends the uncertainty el-

lipsoid method to generalized linear models [FCGS10], as well as the BayesUCB

algorithm which is asymptotically optimal for simple problems like binary bandits,

and has natural extensions to parametric multi-armed bandits [KCG12].

We conduct simulation studies that compare the performance of different solu-

tions for realistic problem parameters. Natural benchmarks are the myopic retailer

strategy which does not take into account the value of information, the strategy of
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a retailer with perfect knowledge of W', and a one-step-look ahead approximate DP

solution.

3.3 Simulations

We compared the performance of Thompson Sampling and the myopic approach (no

exploration) on toy data. For a problem with 9 products, 6 attribute levels (including

price), and 3 possible discount levels (no discount, 25% off, and 50% off) , Thompson

Sampling achieved higher cumulative revenue over 100 purchase occasions than the

myopic approach. The figure below shows the cumulative revenue from Thompson

Sampling and the myopic approach compared to the cumulative revenue achieved

by an oracle that knows the optimal arm to play. The parameters are included in

appendix C.

Figure 3-1: Cumulative revenue in 100 purchase occasions using 1) Myopic Coupon-
ing Policy (no exploration) versus 2) Thompson Sampling versus 3) Oracle that
always pulls optimal arm
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Chapter 4

Conclusions and Future Work

In this thesis, we propose that in addition to encouraging purchase, coupons can

be used to actively explore the preferences of customers, which can help with the

cold start problem faced by large retailers. The tradeoff between exploration and

exploitation is captured by the multiarmed bandit problem. We modeled customer

choice by a linear in parameters multinomial probit model. Instead of learning the

customers' preferences for different products independently, the linear in parameters

Probit allows the retailer to learn the preferences for attributes shared by many

products at once.

After each purchase occasion, the retailer has to update its beliefs about the cus-

tomer preferences in real time. The true posterior distribution cannot be expressed

in closed form making exact inference intractable. We proposed using expectation

propagation to approximate the posterior with an independent gaussian using mo-

ment matching. Update equations for expectation propagation over a factor graph

were derived for the binary probit and linear in parameters multinomial probit. Sim-

ulations show that the approximate posterior approaches the true distribution of the
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preference weights with each purchase occasion.

We use Thompson sampling to balance exploration and exploitation in deciding

which product to coupon. Instead of myopically exploiting the current estimates

'best' (most profitable) arm, Thompson sampling explores all possible product in

proportion to their likelihood of being optimal. Simulations show that Thompson

sampling yields higher cumulative profits than the myopic approach for realistic toy

examples.

Future work can explore dynamic customer preferences. If customers learn about

their utility for products through experience, retailers can use coupons to induce trial

and influence customer choices thereafter.
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4.1 Appendix

4.1.1 Elementary Gaussian Formulas

To simplify expressions, y(; y, o.2) will sometimes be represented in terms of its

canonical parameters: the precision, 7 := a--2, and the precision adjusted mean,

T := 7rpA.

Product and Ratio of Two Gaussian PDFs

The product of two Gaussian PDFs is given by:

V(X; piZ, a-?)JV(X; /-2, O2) = (111; [12, U2 + 0-2) M(X; Y3, U')

Where,

-2 -2

2 07 2__

OT3  2 +o2
'rl + 2

Similarly, the ratio of two Gaussian PDFs is given by:

V(X; pli, or2)
1 2 , C V ( X ; [ 3 , - 2)

JV(X; M2, 2f

(4.1)

(4.2)

Where,

72 2
CT-~ -i o pl2

[t 3  2

22 1
2 1 2___

73= 2 (T2
2 1
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The canonical representation results in more compact expressions:

73 71 -72

Integrating out Gaussian Prior on the Mean of Gaussian R.V.

j K(x; i 1, )Af(y; ax, c.2)dx oc V(y; am,; I + 7)
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4.2 Appendix B

Number of products = 17;

Number of attributes = 6;

Prior Mean = [1, 1, 1, 1, 1, 1]';

Prior Variance = [20, 20, 20, 20, 20, 20]';

Noise Covariance = 20 * I, where I is a 17 dimensional identity matrix.

Real Mean = [-3 -2 -1 1 2 -2]';

Number of Purchase occasions 10;

X= [1 0 1 0 0 2.5;

1 0 0 0 0 1.5;

100011;

I 1 1 0 1 2.5;

1 0 1 1 0 3;

1 0 0 1 0 5;

1 1 1 0 0 4.5;

1 1 0 1 1 0.5;

1 0 0 1 0 0.5;

1 1 0 0 1 2.5;

1 0 1 0 1 2.5;

1 0 1 0 0 3;

1 1 0 1 0 3.5;

1 1 1 1 0 1.5;

1 1 0 0 0 1.5;

1 1 1 1 0 2.5;
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1 1 0 0 0 1.8];
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4.3 Appendix C

True mean [10 3 6 2 -1 -1]';

Prior mean [11 11 1 1]';

Prior variance = [20 20 20 20 20 20]';

Noise covariance = 4*I, where I is a 9x9 identity matrix.

DiscountLevels = [0 0.25 0.5];

X = [ 0 0 1 1 0 3;

0 1 0 0 0 3;

1 0 1 1 0 20;

0 0 1 0 1 3;

0 1 0 0 1 1;

0 1 1 0 1 4;

0 0 1 0 1 2;

0 1 0 1 1 4;

0 0 0 1 1 1];
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