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1. INTRODUCTION

In this note, we examine the question of the genericity of simultaneous stabil-

izability, strong simultaneous stabilizability, and simultaneous pole assignability. The

principal contribution of this note is to present simple proofs of some previously

known results. In addition, we prove one new result and present some lemmas on

generic greatest common divisors that may be of independent interest.

As is customary, let Ri(s) denote the field of rational functions with real

coefficients; let IR s] denote the ring of polynomials with real coefficients; and let S

denote the ring of proper stable rational functions with real coefficients. It is known

that ]R(s) is the field of fractions associated with both R[is] and S. Let M(R(s))

denote the set of matrices (of whatever order) with elements in lR(s); M(R[s])

and M(S) are similarly defined.

Suppose we are given plants Pl, ' * ' ,PEM(R(s)), all having the same dimen-

sion. We say that these plants are simultaneously stabilizable if there exists a con-

troller CEM(IR(s)) that stabilizes each plant Pi. (The notion of stabilization used

here is that from [1,2].) The plants are strongly simultaneously stabiizable if there

exists a CEM(S) that stabilizes each Pi. The notion of these properties being gen-

eric was first broached in [3,4]. In [3] it was shown that a single plant P of dimen-

sion I Xm is generically strongly stabilizable if max{l,m}>1. In [4] it was shown that

two plants P1 ,P2, each having dimension I Xm, are generically simultaneously stabil-

izable if max{1,m}>1. This result was extended in [5], where it was shown that a

collection of plants Pl, ... ,P,, each having dimenison lXm, is generically simul-



taneously stabilizable if max{l,m})r. In the present note, a simple proof is given of

this last result, and it is also shown that generic strong simultaneous stabilizability

holds if max{l,m}>r; this is a new result.

The definition of simultaneous pole assignability, is a bit messy since each of the

plants may have a diffetrent dynamical order, but the term is essentially self-

explanatory. A precise definition is given in Section 5. The only results concerning

this property are in [5], where it is shown that generic pole assignability holds if

max{l,m})r, and in addition, an estimate is given of the dynamic order of a con-

troller that achieves it. In the present note, we give a simple proof of this result as

well.

2. PRELIMINARIES

In this section, we define precisely the concept of genericity used here, and state

without proof two results concerning the genericity of coprimeness and of Smith

forms.

Suppose X is a topological space. Recall that R is a binary relation on X if it is a

subset of XXX; more generally, R is an n- ary relation on X if it is a subset of X".

Definition 1 An n-ary relation R on X is generic if it is an open dense subset of

X" where the latter is endowed with the product topology derived from that on X

In other words, R is generic if it has two properties: (i) If an n-tuple

x = (21, - -,z.) satisfies the relation R, then there exists a neighborhood of x

within which every element satisfies the relation. (ii) If x does not satisfy the rela-

tion, then every neighborhood of x contains an element that does.



Now we state two "well-known" result without proof; they can be proved as in

[6, Section 7.6].

Lemma 1 Suppose R is a topological ring with two properties: (i) the singleton

set 0)} is closed, and (ii) the set

R = {(a,b): there exist x, y s.t. az+by = 1} (1)

is an open dense subset of R 2. If R is also a principal ideal domain, then for any

integers m,n with m<n, the set of matrices in RmXn that have a right inverse in

R " Xm is an open dense subset of R ' X.

An equivalent way of stating the above lemma is as follows: Let R be as above,

and define

R = {AERm": A-[Im 0}, (2)

where - denotes equivalence. Then R is an open dense subset of R m X .

To apply Lemma 1 to our specific problems,it is necessary first to topologize the

various sets in question. If f ES, then let

llf Ils = s = sup If( sj) su (3)

If fER [s] and f(s) = Zfis', then define

lf Ii t1j -IE If I. (4)
Smo

If FES" '" , define

IF Ils = E Ilf ii Ilss (5)

If FER[s]X " , its norm is defined analogously. In this way, both M(S) and

M(R [sj) become metric spaces. The topology on the set R (s) 'mx is the so-called



graph topology defined in 17]. To sketch the basic idea, suppose PER(s)mX", and

let (N,D) be any right-coprime factorization (r.c.f.) of P over the ring S; thus

NESmx", DES"XD. Then a 6basic neighborhood of P consists of all plants

Pl = NID l ', where iIN1- N lis + lIDI- D 1ls is less ,than a given positive number E.

The graph topology is the topology induced by the above base. It can be shown [7]

that the graph topology is metrizable, and is induced by the so-called graph metric.

Basically, in the graph metric, P 1 is close to P if P1 has an r.c.f. that is close to an

r.c.f. of P.

It is easy to see that both the rings S and R[ [s], topologized as above, satisfy

the conditions of Lemma 1. Thus we have the following result.

Lemma 2 On both S and R[s], the mn-ary relation defined in Lemma 1 is

generic.

3. SOME RESULTS ON GENERIC GREATEST COMMON DIVISORS

In this section, we state and prove some results on generic greatest common

divisors in a principal ideal domain, which may also be of some independent interest.

For this reason, the results below are stated in greater generality than is needed for

the present application.

Throughout this section, R denotes a principal ideal domain which is at the

same time an algebra over an infinite field K Clearly both S and R Is satisfy this

condition, with R playing the role of K.

Lemma S Suppose a,b,c,dER, and that g.c.d.{a,b,c,d}=1. If ad- bc#O,

then



g.c.d.{a+bk,c+dk} = 1 (6)

for all but a finite number of values of kEK

Proof Let r = ad- be, and suppose that, for some kEK, (6)does not hold. If

pER is a common divisor of a+bk,c+dk, then p also divides

(a+bk)d-(c+dk)b = r. Thus, whatever be kEK, the only possible common divi-

sors of a+bk,c+dk are the divisors of r. Let Pi, - - ,Pl denote the distinct prime

divisors of r. We claim that each Pi can be a common divisor of a+bk and c+dk

for at most one value of k. This is enough to show that, for all except at most I

values of k, none of the pi divides both a+bk and c+dk. This in turn establishes

(6).

To prove the claim, suppose kly3k 2, and that

Pi 1( a +bkl), pi I(a+bk2), Pi I( c+dkl), Pi 1(c+dk2). (7)
Then subtracting the first two relations implies that p;l(kl-k 2)b, i.e. pilb since

k 1- k 2 is a field element. This in turn shows that Pi la. Similarly the last two rela-

tions imply successively that P;i d and Pi; c. Since p, divides each of a,b,c,d, it also

divides their g.c.d., which is 1. But this is absurd, since pi is a prime element.

Hence each pi can divide both a+bk and c+dk for at most one value of k.

Lemma 4 Suppose a,b,c,dER, and g.c.d.{a,b,c,d}= q. Then

g.c.d.{a +bk,e c+dk } = q (8)

for all but a finite number of values of kEK

Proof Apply Lemma 3 to the collection {a/q,b/q,c/q, d/q}, whose g.c.d. is 1.
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Lemma 5 Suppose ai,biER for i=l, ,I, and define

q = g.c:d.{ai, b}. (g)

Suppose the matrix

al bl

. .I11 1 (10)
al b1 j

has rank 2. Then

g.cd.{ai+bjk} = q (11)

for all but a finite number of values of kEK

Proof Note that it can be assumed without loss of generality that b.iO for all i.

To see this, suppose by renumbering if necessary that b;=O for i=l, · -,m and

that b,#0 for m<iI<l. Then a;+bik = ai for all kEKwhenever l<i<m. As a

result,

g.c.d.(ai,,bi} = g.c.d.{al, ,am, g.c.d. {a,b},(12)
<<i<t (12)

and

.c.d.{a,+bik} = g.c.d.{a1, ,am, g.c.d. a,+bik}}. (13)
_ _' m<i<l

Hence, to prove the lemma, it is enough to show that

g.c.d. {a+bk } =-- g.c.d. {ai,bi (14)
m<i<l m<i<l

for all but a finite number of values of kEK

The proof is by induction on the integer 1. The result is true for l=I, by

Lemma 4. Suppose it is true up to 1- 1, and suppose by renumbering if necessary

that the matrix



a b
~~~~I~t,,t~al I6,_6,~~~~~~ i(15)

'am_ bm._

has rank 2. Define

Ca = R.c.d. {a,,bi}. (16)

Then, by the inductive hypothesis,

_tc.d -{a,+bk } = at (17)

for all except a finite number of kEK Also, since a, bi0, it follows from Lemma

4 that, for all but a finite number of values of k,

g.c.d.{a, al+blk } = g.c.d.{a+O-k, a+blk )

= g.c.d.{a,al,bl}

= g.c.d. (a, bi}, (18)

where the last equality follows from (16). Now, by combining (17) and (18) proves

the inductive hypothesis for 1.

Lemma 6 Suppose a,,bjER for 1<i<l,1<j<m, and define

q = g.c.d.{ai, bij) (19)
s,j

Suppose that, for some j, the matrix

. ] (20)

has rank 2. Then

g.c:d.{ai+ ~ bikj} = q (21)
i-i

for all k = (k l , · · · ,km)EK"- V, where V is a finite union of linear varieties.
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Proof It can be assumed that, for each j, we have b;,iyO for some i. Other-

wise, the corresponding kj does not appear anywhere and can be ignored.

The proof is by induction on-the integer m. The result is true when m=l, by

Lemma 5. Suppose it is true for m- "constants"' ki. To prove the result for m

constants, assume by renumbering if necessary that the matrix

al blmk .,, I (22)

has rank 2, and select integers il,i 2 such that ajlbm - abilm#O. Then

m-1

ai, + E bijky blm

a 2 + (23)m-1

ai + bj2jdki bim

equals ailbi2m - au2b;im plus a linear combination of kl, ,kmi1. Let Vm 1 denote

the set of (kl, * *,km_ l) where this quantity equals zero. Then V,m_ is a linear

variety in K m- l, and it is not all of K m - l since the origin in K m - l does not lie in

Vm 1. Hence Vm_ 1 is a linear variety in K m- 1 of dimension at most m- 2. Next, by

Lemma 5, we have, whenever (kl, ' ,km- l))Vm- I, that

m- 1

c~d a, Ei b jkj +b,m km)

m- l
-f .c.d.{a;+ E b jkj,bm} (24)

for all except a finite number of values of km. Of course, the number and values of

these exceptional km can depend on (k l, - - ,km_ 1). Now, what is the value of the

g.c.d. on the right side of (24)? By the inductive hypothesis, for almost all
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(k 1, ... ,km), this g.c.d. equals

Fi_<,d{a,,l2,' ** '' ,bim} (25)

provided that, for some j, the matrix

al bli

a, bq
|ba1 b, ](26)

bim 0

has rank 2. But this rank condition is easily verified. Select an arbitrary j, say j=1.

Then bilO for some integer i, and b,,#O for some integer n (recall the first para-

graph of the proof). Then

: iO |= bbiibm0 (27)

Thus it has been shown that, for almost all k = (kl, ,km), (21) holds.

It only remains to show the exceptional set V is a finite union of linear varieties.

This is most easily done as follows. Suppose that, for a particular choice koEKm , the

condition (21) fails to hold. Then (21) also fails for all kEKm such that

m m

ai+ > biiki = ai+ Z biikjo, for all i, (28)
jue4 .i=i

which defines a linear variety in Km. Thus V is certainly a union of linear varieties.

It is a finite union because, from (24), the projection of V along each coordinate axis

consists of only a finite number of points.

Since both S and IR[s] are algebras over the infinite field IR, Lemmas 3-6 apply

to these rings. In addition, since there is also a topology on these rings, Lemma 6



can be strengthened.

Lemma 7 Suppose R is either S or IR[8]. Suppose a,,biER for

1<i<l,1<j<m, and define q as in (19). Finally, suppose that for some j the

matrix in (20) has rank 2. Under these conditions, the set S of elements

v = (vl, · · v ,m)ER m with the property that

m

g.c:d.{a,+ F bijvj} = q (29)

is an open dense subset of R".

Proof With q as in (19), we have that for almost all vERm ,

g.c.d. {abilvl, . , bim vm} = q. (30)

Similarly, for almost all v, the matrix

al bljvl

: i (31)
al b1ivj

has rank 2 if the matrix of (20) has rank 2.

In proving the lemma, the openness of the set S defined by (29) is obvious,

and only the denseness requires some effort. Suppose (29) does not hold for some

vER m . We will construct a sequence in S converging to v. First, select a sequence

{v ( ))} converging to v such that

g.c d.{a;,bilvj"), ,b, v(") ) = q for all n, (32)

r ank bliv ) = 2 for all n.
rank = 2 for all n. (33)

al buvy n)

Then, by Lemma 6, for each n there is a sequence of real m-tuples k ( np)
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converging to (1, * ,l) such that

g.c d.{ai+ biv*)k P)} = q for all p. (34)
' iij-

Finally, the sequence {ki"'k)v"'), - ,k*"")v,()} lies in S for all n and converges

to v. Hence S is dense.

4. GENERJCIsTY OF SIMULTANEOUS STABILIZABILITY

In this section, we show that, given a collection of plants PI, ' ,PER (8s)X m ,

simultaneous stabilizability is generic if r<max{l,m}, and strong simultaneous sta-

bilizability is generic if r<max{l,m)}. In both cases, the set R(s)lxm is topologized

via the graph topology of [7]. The first result was proved in [51, but the present

proof is simpler; the second result is new.

Theorem 1 Suppose I,m are given positive integers, and equip the set R(s)lXm

with the graph topology. Let r be a positive integer, and define the r-ary relation R

on R(s)lXm by

R = {(PI, ,P,): P 1, ',P, are simultaneously stabilizable }. (35)

Then the relation R is generic if r<max(l,m).

The proof of the theorem is divided into two parts. First, it is shown that the

result is true in the case where min{l,m} = 1, i.e. the case where all plants are

either single-input or single-output. Then it is shown that the general case can be

reduced to this special case.

Lemma 8 Suppose min(l,m} = 1. Then the relation R defined in (35) is gen-

eric if r<max{l,m}.
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Proof The proof is given for the case where I = 1 and r<m; the case m = 1

and r<l can be treated by taking transposes, i.e. by noting that C stabilizes P if

and only if C' stabilizes P'.

Given plants P 1, ' - ,P,, each of dimension lXm, find left-coprime factoriza-

tions (l.c.f.'s) (d,IN) of Pi for i=l, -· ',r. Define the matrix QESrx>m+l) by

q = [ X (36)

Let CEIR(8s)mX be a controller, and let ([bl...bml',a) be an r.c.f. of C. Then by

[1,2] the controller C stabilizes each of the plants P; if and only if each of the return

differences ui defined by

tCL=:1 =Q~ i(37)
is a unit of the ring S. Turning this argument around, the set of plants {P1, , ,P,}

is simultaneously stabilizable if and only if there exist units us, i=1, -· ,r such that

(37) has a solution in M(S) for the unknowns a,b1 , - -',bm, where the first ele-

ment (a) is nonzero. Now, if r<m, the matrix Q has more columns than rows.

Hence, by Lemma 2, Q is generically right-invertible. That is, if Q is not right-

invertible, it can be made so by an arbitrarily small perturbation in each of its ele-

ments, which is precisely the same as slightly perturbing each of the plants P, in the

graph topology. Thus by slightly perturbing each of the plants if necessary, we can

ensure that (37) has a solution in M(S), whatever be the left side. In particular, one



14

can choose any arbitrary set of units {ul, * ' ,u,}, and (37) has a solution in M(S).

The only additional point to be worried about is that the first element of this solution

(corresponding to a) should be nonzero so that C is well-defined. But this too can

be guaranteed by perturbing the units slightly if necessary. The details of this argu-

ment are routine and are left to the reader.

The next step is to reduce the multivariable case to the case of single-output

plants.

Lemma 9 Suppose l,m are given positive integers, and let PER(s)lXm. Let

(N,D) be an r.c.f. of P over S. Under these conditions, the set of VER' such that

vN,D are right-coprime is generically an open dense subset of R '.

Proof As always, the openness is obvious and only the denseness needs a proof.

Let n(l), ' · ,n(') denote the rows of the matrix N. By Lemma 2, by slightly per-

turbing the matrices D and N if necessary, we can ensure that the Smith form of the

matrix

Mi= [n)] (38)

is [Im 0]' for all j. In other words, this means the g.c.d. of ID I and of all minors of

the m Xm minors of the matrix

M -_ (39)

involving exactly one row of N is equal to 1. Now, if v is a 1Xl vector, then D and

vN are right-coprime if and only if the g.c.d. of all m Xm minors of the matrix



Q e W (Wo)

is equal to 1. We show that this is generically the case for almost all vER. Now

the matrix Q has dimensions ( mi+l)Xm, as do the matrices M i defines in (39).

Moreover, since the determinant function is multilinear, a minor of Q involving the

last row can be expressed as a linear combination of the corresponding minors the

various Mi. To be precise, let qi denote the minor of Q obtained by omitting the i-

th row of the matrix D, and define mij to be the minor of M i obtained by omitting

its i-th row. Then

qi = ]mijvi. (41)
i-i

Since the Smith form of M; is [Im 0]', it is true that

g.c.d.{JD j,mi } = 1. (42)
tI,)

Hence, if the rank condition of Lemma 6 is satisfied, it follows that, for almost all

vectors vER , we have

g.c:d.{ID I, q} = 1. (43)

To complete the proof it only remains to verify that the requisite rank condition

is satisfied generically. Since P = ND-1 , it follows from Cramer's rule that the

minor min equals ± plj ID 1. Now the rank condition of Lemma 6 requires that, for

some j, the matrix



ID I 0

I l (44)
0 pliI ID)

0 Pmj ID I
has rank 2. But this is true provided piiO0 for some i,j, i.e. if P$O.

The significance of Lemma 9 is in showing that, generically, a multivariable

plant can be stabilized using a rank one controller. Suppose P is a given multivari-

able plant with an r.c.f. (N,D), and suppose one can find a vector v such that vN,D

are right-coprime. Then one can find a pair of elements (a,B)EM(S) such that

avN+BD = I. Note that a is a column vector. The Bezout identity above implies

that the controller B-Ilav stabilizes the plant P. Hence one can stabilize the plant P

using a rank one controller if one can find a vector v such vN,D are right-coprime.

Lemma 9 states that generically such a vector always exists, and that generically

almost any vector v will do.

Note that the only property of the ring S used in the above lemma is that gener-

ically a rectangular matrix has a one-sided inverse. Thus Lemma 9 is valid over any

ring satisfying the conditions of Lemma 1.

With the aid of Lemma 9, the proof of Theorem 1 can be completed.

Proof of Theorem 1 If min{l,m}=l1, then the truth of the theorem is established

by Lemma 8. If not, suppose without loss of generality that l<m,r<m; the case

1>m,l>r can be handled by taking transposes. Let (N;,D,) be an r.c.f. of Pi, for

i = 1, -- ,r. Then, for each fixed i, the set of v such that vN,,Di are right-
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coprime is an open dense subset of IR l. Moreover, since the intersection of a finite

number of such sets is again open and dense, it follows that the set of v such that

vNi,D i are right-coprime for all iis also an open dense subset of RI. Let Qi denote

the 1Xm plant vPi . By Lemma 1, generically there is a common stabilizing con-

troller C1 for the collection Q 1, ,Q,. Now let C = Clv; then C stabilizes each

of P 1, ,P,.

The advantages of the present proof over that in [5] are: (i) it is simpler, and

(ii) it suggests a constructive procedure for finding a common stabiizing controller.

It is shown in 14] that the problem of simultaneously stabilizing r plants is

equivalent to that of simultaneously stabilizing r- 1 plants using a stable controller.

Thus, in view of Theorem 1, it is natural to conjecture that r plants of dimension

IXm are generically strongly simultaneously stabilizable if r<min(l,m}. This is in

fact true.

Theorem 2 Suppose l,m are given positive integers, and equip the set R (s) l x

with the graph topology. Define an r-ary relation on R(s)lXm by

R = {(PI, ' ',P,) that are strongly simultaneously stabilizable}. (45)

Then R is generic if r<max{l,m).

Using Lemma 9, it is possible to restrict attention to the case where

min{l,m}=l. Suppose 1=1,m>r; the other case can be handled by taking tran-

sposes.

As shown in [41, the plants PI, ' ,P, are stronlgly simultaneously stabilizable

if and only if the r+l plants P=O,P1 , . ,P, are simultaneously stabilizable. As



before, let (ld,,N) be any l.c.f. of Pi over S, and define

1 0

S = ·· - Q ES ( ' + ") x m+l ). (46)

d,N,

Now by Lemma 2, the matrix Q is generically right-invertible if r<m. It is a simple

matter to verify that S is right-invertible if Q is. Finally, if S is right-invertible,

then 0,P 1, · ' ,P, are simultaneously stabilizable, whence PI, - ,P, are strongly

simultaneously stabilizable.

6. GENERIC POLE ASSIGNABILITY

In this section, we give a simple proof of a result from [5] concerning generic

simultaneous pole assignability. In order to prove the main result, it is necessasry

first to define the concept of characteristic polynomials. Suppose PEM(R(s)); then

the characteristic polynomial of P is the monic least common multiple of the denomi-

nators of the various minors of P. Alternatively, factor P as ND-l=D- ', where

N,D are right-coprime matrices in M(RI[s]), and N,D are left-coprime matrices in

M(R [s]); then (within a nonzero constant) ID I and tD I are both characteristic

polynomials of P. If P is proper, it is possible to give yet another equivalent

definition. Let (A,B,C,E) be a minimal realization of P; then IsI-A is the

characteristic polynomial of P.

Note that hereafter all factorizations are over the ring of polynomials R [8]; this

is in contrast with earlier sections where all factorizations are over the ring S of

stable rational functions.



Consider now a feedback interconnection of a plant P and a controller C. If

jI+PC 1 3 O, then the interconnection is well-posed, and the characteristic polyno-

mial associated with the closed-loop transfer matrix is denoted by b( P, C). Alterna-

tively, let (Dp,Np) be a left-coprime factorization of P, and let (N¢,D¢) denote a

right-coprime factorization of C. Then, within a nonzero constant,

t(P,C)= IDpDC + NpN¢ I. Further, suppose P is strictly proper and that C is

proper, and suppose without loss of generality that jDp 1, ID, I are both monic. Then

b( P, C) equals j/p De + N, N N -

Now we can define simultaneous pole assignability. Given a collection of strictly

proper plants P 1, ' ' ' ,P,, let ni denote the McMillan degree of Pi. Then the collec-

tion of plants is simultaneously pole assignable if there exists an integer q such that,

given any set of monic polynomials q1, *· ' ,X, with degrees deg (¢;)=n;+q, there

exists a controller C such that tb(P;, C)= ; for all i.

Theorem S Suppose the plants Pi has dimension I Xm and McMillan degree ni,

for i=1, - ' ,r. Then simultaneous pole assignability is generic if max{l,m} > r.

Moreover, generically the integer q in the above definition can be any integer that

satisfies

q[max{l,m}- r+l] > Eni- max{l,m}. (47)
ii=

Proof The proof hinges on two generic properties of polynomial matrices, apart

from that in Lemma 2. First, generically a square matrix is column proper. Second,

generically the highest column (or row) degrees of a matrix are all nearly equal.

That is, if AER ( 8]k and deg [A -=6, then generically all the column degrees of A
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will equal 6/k if k divides 6 exactly. If k does not divide 6 exactly, let f denote the

integer part of 6/k, and let a denote 6modk; then generically a columns of A will

have degree fl+1 while the rest will have degree ,.

As in Section 4, we first deal with the case where min{l,m}-=1. If this is not

true, then Lemma 9 can be applied to convert the problem to this case. (Observe

that the validity of Lemma 9 is not affected if N,D are polynomial matrices.)

Accordingly, suppose 1=l,m > r, and let (ai,Bi) be an l.c.f. of Pi, with a; monic.

Note that aiER[s] , B;ER[s]lx' . Form the matrix

Q= ER []rm+l). (48)
a, Br

If r < m, then generically Q has a right inverse. Thus, given any set of monic poly-

nomials 01, · ·- ,X,, generically there exist xER [s], YER Is]m a such that

Y{0] K} (49)

So if we define C=Yzx- , then we would have achieved the desired simultaneous

pole assignment, provided C is proper.

The proof is completed by showing that if (47) holds, then generically the above

C is proper. For this purpose, we make the following claim: If deg (0;)=n;+q, deg

x=q, deg (y;) < q for i=1, . * ,m-r, and z is monic, then generically C is

proper. To prove this claim, let
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pl( (8)
P(8)=I ER(8)rXxm=l P(l) p( 2 )j, (50)

where P(2 )ER(s)rXr. Since P is-strictly proper, its Laurent series is of the form

P(8)=Po - 1 + '' (51)

Partition Po as [Pol P0 21 where Po2ER X'r. Then generically Po02 3L-0. Now multi-

ply both sides of (49) by the diagonal matrix Diag{(alz) 1-, * ,(az)-l}. This

leads to

+ P(s)C()= . (52)
1i Xr/a,

Now note that deg 4-=deg ai+deg z, and that all polynomials are monic. Hence

Oi/aiz is proper and has the value 1 when 8=oo. Using this fact in (52) shows that

PC is strictly proper, i.e. that PC(oo)=-O. Partition C as I C 1 C2], where

C 2ER(e)'X'. Then C 1 is proper, by the hypothesis that deg yi < q for

i=-, * * ,m- r, whence P(')C1 is strictly proper. Since PC=P(')C1 + P(2)C2, we

see that p(2) C 2 is also strictly proper. Now, suppose by way of contradiction that C 2

is improper. Then the Laurent series of C 2 contains a term of the form C2osi,

where C 20y#0 and i is a positive integer. Since IP20 1fO, it follows that P 02C 0270,

so that p(2) C 2 is not strictly proper. This contradiction shows that C 2 is proper.

In order to complete the proof, it is shown that if (47) holds, then generically

one can always find z,Y satisfying (49) such that x is monic, deg Xz q, deg

y; _ q for i=1, · · ,m- r. Let , Y be any particular solution of (49) correspond-

ing to a given set of polynomials Xl, · · ,,. Then the general solution of (49) can
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be written as follows: Let p denote m- r+l, and select FER[s]l' , GER[s]'XP

such that

Q[: G rXP? [G -0] (53)

where - denotes equivalence. Then the general solution of (49) is

=[ + (54)

where al, · ',capER is] are arbitrary. The proof consists of showing that the ai's

can be chosen such that deg z-=q and z is monic, and deg yi < q for

i=l, ·- ,m-r.

Partition Q as [Q1 Q2] where Q 2E]R[s] xr'. Then generically IQ2 10o and

Q1,Q 2 are leftcoprime, in which case (G,F) is a right-coprime factorization of

Q2 1Q1. In particular, deg IF j=deg IQ2 . Since each plant Pi is strictly proper, each

element of the i-th row of Q 2 has degree no larger than n;- 1. Hence generically

7 7

deg IF j=deg IQ2I= (ni- 1) =N- r, where N denotes s n;. Now we consider two

cases: (a) p divides N- r+l, and (b) p does not divide N- r+l. In the former case,

generically the matrix F is column proper, and the column degree of each column is

(N- r+l)/p = : k, except for the first column whose degree is k- 1. By multiplying

F on the right by a unimodular matrix if necessary (which can be absorbed into the

free parameters al, - -- ,a), we can assume that F is already in Hermite form.

Thus f 11 has degree k-1 and fI' has degree k for all i > 2. Now, we proceed

sequentially as follows: First, by Euclidean division, choose ap such that deg
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('m- r+f ppo,) < deg fpP=k. Next, choose a£_ l such that deg

('m~--l+f p- ,pap+f I_ ,p- lap- < deg (f _l,pl=k. In this way, choose

a 2, ... ,a p such that deg (yl, '.,,m- r) < k- . Then, by the claim above, gener-

ically C=Yz - 1 is proper with McMillan degree q=k- 1. Finally, choose al such that

deg z=k- 1 and such that z is monic; this can be done since fll is k- 1. In case

(b), suppose p does not divide N- r+l, and let k denote the integer part of the frac-

tion (N- r+l)/p. Then the first several column degrees of F can be assumed to be

k, while the rest are k+1. By an argument similar to the above, C=Yz-l is generi-

cally proper with McMillan degree q=k. In case (a), we have

N-r+1 1 N-+1- p N-r+l _ 1=m(55)
p p P

pq > N- m. (56)

In case (b), we have that p(q+l) > N- r+l, since q=k is the integer part of

(N- r+l)/p. This again leads to the same inequality (56), which is the same as (47)

when min {, m }=1.

We have thus proved the theorem for the case when 1=1, m > r. If I > 1, we

can invoke Lemma 9 to find a constant row vector v such that (vN;,D;) are right.

coprime for i=l, ' ,r, where (N;,D;) is a right-coprime factorization of Pi. Then

we apply the foregoing result.

6. CONCLUSIONS

In this paper, we have derived some results concerning the genericity of simul-

taneous stabilizability, simultaneous strong stabilizability, and simultaneous pole

assignability. The results in the first and third category are already known [5], but
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the present proofs are simpler. The result concerning simultaneous strong stabiliza-

bility is new, and as far as we are able to determine, cannot be derived using the

methods of [5]. In addition, we.have presented some lemmas concerning generic

greatest common divisors which may be of some independent interest.

In contrast with [5], the proofs here are formulated in input-output setting,

without recourse to state-space realizations. As a consequence, the proofs given

here suggest simple procedures for the computation of a common controller that

achieves the desired property. These procedures are actually quite numerically

robust, and have been applied with success to the design of reliable controllers for a

jet engine. These results will be reported elsewhere.
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